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Preface

It is often said that investment management
is an art, not a science. However, since the
early 1990s the market has witnessed a pro-
gressive shift toward a more industrial view of
the investment management process. There are
several reasons for this change. First, with
globalization the universe of investable assets
has grown many times over. Asset managers
might have to choose from among several
thousand possible investments from around
the globe. Second, institutional investors, of-
ten together with their consultants, have en-
couraged asset management firms to adopt
an increasingly structured process with docu-
mented steps and measurable results. Pressure
from regulators and the media is another fac-
tor. Finally, the sheer size of the markets makes
it imperative to adopt safe and repeatable
methodologies.

In its modern sense, financial modeling is
the design (or engineering) of financial instru-
ments and portfolios of financial instruments
that result in predetermined cash flows con-
tingent upon different events. Broadly speak-
ing, financial models are employed to manage
investment portfolios and risk. The objective
is the transfer of risk from one entity to an-
other via appropriate financial arrangements.
Though the aggregate risk is a quantity that can-
not be altered, risk can be transferred if there is
a willing counterparty.

Financial modeling came to the forefront of
finance in the 1980s, with the broad diffusion

of derivative instruments. However, the con-
cept and practice of financial modeling are quite
old. The notion of the diversification of risk
(central to modern risk management) and the
quantification of insurance risk (a requisite for
pricing insurance policies) were already under-
stood, at least in practical terms, in the 14th cen-
tury. The rich epistolary of Francesco Datini,
a 14th-century merchant, banker, and insurer
from Prato (Tuscany, Italy), contains detailed
instructions to his agents on how to diversify
risk and insure cargo.

What is specific to modern financial model-
ing is the quantitative management of risk. Both
the pricing of contracts and the optimization of
investments require some basic capabilities of
statistical modeling of financial contingencies.
It is the size, diversity, and efficiency of mod-
ern competitive markets that makes the use of
financial modeling imperative.

This three-volume encyclopedia offers not
only coverage of the fundamentals and ad-
vances in financial modeling but provides the
mathematical and statistical techniques needed
to develop and test financial models, as well as
the practical issues associated with implemen-
tation. The encyclopedia offers the following
unique features:

� The entries for the encyclopedia were writ-
ten by experts from around the world. This
diverse collection of expertise has created the
most definitive coverage of established and
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xviii Preface

cutting-edge financial models, applications,
and tools in this ever-evolving field.

� The series emphasizes both technical and
managerial issues. This approach provides
researchers, educators, students, and practi-
tioners with a balanced understanding of the
topics and the necessary background to deal
with issues related to financial modeling.

� Each entry follows a format that includes the
author, entry abstract, introduction, body, list-
ing of key points, notes, and references. This
enables readers to pick and choose among
various sections of an entry, and creates con-
sistency throughout the entire encyclopedia.

� The numerous illustrations and tables
throughout the work highlight complex top-
ics and assist further understanding.

� Each volume includes a complete table of con-
tents and index for easy access to various
parts of the encyclopedia.

TOPIC CATEGORIES
As is the practice in the creation of an ency-
clopedia, the topic categories are presented al-
phabetically. The topic categories and a brief
description of each topic follow.

VOLUME I
Asset Allocation
A major activity in the investment management
process is establishing policy guidelines to sat-
isfy the investment objectives. Setting policy be-
gins with the asset allocation decision. That is,
a decision must be made as to how the funds
to be invested should be distributed among the
major asset classes (e.g., equities, fixed income,
and alternative asset classes). The term “asset
allocation” includes (1) policy asset allocation,
(2) dynamic asset allocation, and (3) tactical as-
set allocation. Policy asset allocation decisions
can loosely be characterized as long-term as-
set allocation decisions, in which the investor
seeks to assess an appropriate long-term “nor-
mal” asset mix that represents an ideal blend
of controlled risk and enhanced return. In dy-
namic asset allocation the asset mix (i.e., the

allocation among the asset classes) is mechanis-
tically shifted in response to changing market
conditions. Once the policy asset allocation has
been established, the investor can turn his or her
attention to the possibility of active departures
from the normal asset mix established by policy.
If a decision to deviate from this mix is based
upon rigorous objective measures of value, it
is often called tactical asset allocation. The fun-
damental model used in establishing the policy
asset allocation is the mean-variance portfolio
model formulated by Harry Markowitz in 1952,
popularly referred to as the theory of portfolio
selection and modern portfolio theory.

Asset Pricing Models
Asset pricing models seek to formalize the rela-
tionship that should exist between asset returns
and risk if investors behave in a hypothesized
manner. At its most basic level, asset pricing
is mainly about transforming asset payoffs into
prices. The two most well-known asset pricing
models are the arbitrage pricing theory and the
capital asset pricing model. The fundamental
theorem of asset pricing asserts the equivalence
of three key issues in finance: (1) absence of
arbitrage; (2) existence of a positive linear pric-
ing rule; and (3) existence of an investor who
prefers more to less and who has maximized his
or her utility. There are two types of arbitrage
opportunities. The first is paying nothing to-
day and obtaining something in the future, and
the second is obtaining something today and
with no future obligations. Although the prin-
ciple of absence of arbitrage is fundamental for
understanding asset valuation in a competitive
market, there are well-known limits to arbitrage
resulting from restrictions imposed on rational
traders, and, as a result, pricing inefficiencies
may exist for a period of time.

Bayesian Analysis and Financial
Modeling Applications
Financial models describe in mathematical
terms the relationships between financial
random variables through time and/or across
assets. The fundamental assumption is that the
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model relationship is valid independent of the
time period or the asset class under consider-
ation. Financial data contain both meaningful
information and random noise. An adequate
financial model not only extracts optimally the
relevant information from the historical data
but also performs well when tested with new
data. The uncertainty brought about by the
presence of data noise makes imperative the use
of statistical analysis as part of the process of fi-
nancial model building, model evaluation, and
model testing. Statistical analysis is employed
from the vantage point of either of the two main
statistical philosophical traditions—frequentist
and Bayesian. An important difference be-
tween the two lies with the interpretation of the
concept of probability. As the name suggests,
advocates of the frequentist approach interpret
the probability of an event as the limit of its
long-run relative frequency (i.e., the frequency
with which it occurs as the amount of data in-
creases without bound). Since the time financial
models became a mainstream tool to aid in un-
derstanding financial markets and formulating
investment strategies, the framework applied
in finance has been the frequentist approach.
However, strict adherence to this interpretation
is not always possible in practice. When study-
ing rare events, for instance, large samples of
data may not be available, and in such cases
proponents of frequentist statistics resort to
theoretical results. The Bayesian view of the
world is based on the subjectivist interpretation
of probability: Probability is subjective, a de-
gree of belief that is updated as information or
data are acquired. Only in the last two decades
has Bayesian statistics started to gain greater
acceptance in financial modeling, despite its
introduction about 250 years ago. It has been
the advancements of computing power and the
development of new computational methods
that have fostered the growing use of Bayesian
statistics in financial modeling.

Bond Valuation
The value of any financial asset is the present
value of its expected future cash flows. To value

a bond (also referred to as a fixed-income secu-
rity), one must be able to estimate the bond’s
remaining cash flows and identify the appro-
priate discount rate(s) at which to discount the
cash flows. The traditional approach to bond
valuation is to discount every cash flow with
the same discount rate. Simply put, the rele-
vant term structure of interest rate used in val-
uation is assumed to be flat. This approach,
however, permits opportunities for arbitrage.
Alternatively, the arbitrage-free valuation ap-
proach starts with the premise that a bond
should be viewed as a portfolio or package
of zero-coupon bonds. Moreover, each of the
bond’s cash flows is valued using a unique dis-
count rate that depends on the term structure
of interest rates and when in time the cash flow
is. The relevant set of discount rates (that is,
spot rates) is derived from an appropriate term
structure of interest rates and when used to
value risky bonds augmented with a suitable
risk spread or premium. Rather than model-
ing to calculate the fair value of its price, the
market price can be taken as given so as to
compute a yield measure or a spread measure.
Popular yield measures are the yield to matu-
rity, yield to call, yield to put, and cash flow
yield. Nominal spread, static (or zero-volatility)
spread, and option-adjusted spread are popu-
lar relative value measures quoted in the bond
market. Complications in bond valuation arise
when a bond has one or more embedded op-
tions such as call, put, or conversion features.
For bonds with embedded options, the finan-
cial modeling draws from options theory, more
specifically, the use of the lattice model to value
a bond with embedded options.

Credit Risk Modeling
Credit risk is a broad term used to refer to three
types of risk: default risk, credit spread risk, and
downgrade risk. Default risk is the risk that the
counterparty to a transaction will fail to satisfy
the terms of the obligation with respect to the
timely payment of interest and repayment of
the amount borrowed. The counterparty could
be the issuer of a debt obligation or an entity on
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the other side of a private transaction such as a
derivative trade or a collateralized loan agree-
ment (i.e., a repurchase agreement or a secu-
rities lending agreement). The default risk of
a counterparty is often initially gauged by the
credit rating assigned by one of the three rat-
ing companies—Standard & Poor’s, Moody’s
Investors Service, and Fitch Ratings. Although
default risk is the one that most market partici-
pants think of when reference is made to credit
risk, even in the absence of default, investors
are concerned about the decline in the market
value of their portfolio bond holdings due to
a change in credit spread or the price perfor-
mance of their holdings relative to a bond in-
dex. This risk is due to an adverse change in
credit spreads, referred to as credit spread risk,
or when it is attributed solely to the downgrade
of the credit rating of an entity, it is called down-
grade risk. Financial modeling of credit risk is
used (1) to measure, monitor, and control a port-
folio’s credit risk, and (2) to price credit risky
debt instruments. There are two general cate-
gories of credit risk models: structural models
and reduced-form models. There is consider-
able debate as to which type of model is the
best to employ.

Derivatives Valuation
A derivative instrument is a contract whose
value depends on some underlying asset. The
term “derivative” is used to describe this prod-
uct because its value is derived from the value
of the underlying asset. The underlying asset,
simply referred to as the “underlying,” can be
either a commodity, a financial instrument, or
some reference entity such as an interest rate or
stock index, leading to the classification of com-
modity derivatives and financial derivatives.
Although there are close conceptual relations
between derivative instruments and cash mar-
ket instruments such as debt and equity, the two
classes of instruments are used differently: Debt
and equity are used primarily for raising funds
from investors, while derivatives are primarily

used for dividing up and trading risks. More-
over, debt and equity are direct claims against a
firm’s assets, while derivative instruments are
usually claims on a third party. A derivative’s
value depends on the value of the underly-
ing, but the derivative instrument itself repre-
sents a claim on the “counterparty” to the trade.
Derivatives instruments are classified in terms
of their payoff characteristics: linear and nonlin-
ear payoffs. The former, also referred to as sym-
metric payoff derivatives, includes forward,
futures, and swap contracts while the latter in-
clude options. Basically, a linear payoff deriva-
tive is a risk-sharing arrangement between the
counterparties since both are sharing the risk re-
garding the price of the underlying. In contrast,
nonlinear payoff derivative instruments (also
referred to as asymmetric payoff derivatives)
are insurance arrangements because one party
to the trade is willing to insure the counter-
party of a minimum or maximum (depending
on the contract) price. The amount received by
the insuring party is referred to as the contract
price or premium. Derivative instruments are
used for controlling risk exposure with respect
to the underlying. Hedging is a special case of
risk control where a party seeks to eliminate
the risk exposure. Derivative valuation or pric-
ing is developed based on no-arbitrage price
relations, relying on the assumption that two
perfect substitutes must have the same price.

VOLUME II
Difference Equations and Differential
Equations
The tools of linear difference equations and
differential equations have found many ap-
plications in finance. A difference equation is
an equation that involves differences between
successive values of a function of a discrete
variable. A function of such a variable is
one that provides a rule for assigning values
in sequences to it. The theory of linear dif-
ference equations covers three areas: solving
difference equations, describing the behavior
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of difference equations, and identifying the
equilibrium (or critical value) and stability
of difference equations. Linear difference
equations are important in the context of dy-
namic econometric models. Stochastic models
in finance are expressed as linear difference
equations with random disturbances added.
Understanding the behavior of solutions of
linear difference equations helps develop
intuition for the behavior of these models. In
nontechnical terms, differential equations are
equations that express a relationship between
a function and one or more derivatives (or
differentials) of that function. The relationship
between difference equations and differential
equations is that the latter are invaluable for
modeling situations in finance where there is a
continually changing value. The problem is that
not all changes in value occur continuously. If
the change in value occurs incrementally rather
than continuously, then differential equations
have their limitations. Instead, a financial
modeler can use difference equations, which
are recursively defined sequences. It would
be difficult to overemphasize the importance
of differential equations in financial modeling
where they are used to express laws that govern
the evolution of price probability distributions,
the solution of economic variational problems
(such as intertemporal optimization), and
conditions for continuous hedging (such as in
the Black-Scholes option pricing model). The
two broad types of differential equations are
ordinary differential equations and partial dif-
ferential equations. The former are equations or
systems of equations involving only one inde-
pendent variable. Another way of saying this
is that ordinary differential equations involve
only total derivatives. Partial differential equa-
tions are differential equations or systems of
equations involving partial derivatives. When
one or more of the variables is a stochastic pro-
cess, we have the case of stochastic differential
equations and the solution is also a stochastic
process. An assumption must be made about
what is driving noise in a stochastic differential

equation. In most applications, it is assumed
that the noise term follows a Gaussian random
variable, although other types of random
variables can be assumed.

Equity Models and Valuation
Traditional fundamental equity analysis in-
volves the analysis of a company’s opera-
tions for the purpose of assessing its economic
prospects. The analysis begins with the finan-
cial statements of the company in order to in-
vestigate the earnings, cash flow, profitability,
and debt burden. The fundamental analyst will
look at the major product lines, the economic
outlook for the products (including existing
and potential competitors), and the industries
in which the company operates. The result of
this analysis will be the growth prospects of
earnings. Based on the growth prospects
of earnings, a fundamental analyst attempts
to determine the fair value of the stock using
one or more equity valuation models. The two
most commonly used approaches for valuing a
firm’s equity are based on discounted cash flow
and relative valuation models. The principal
idea underlying discounted cash flow models
is that what an investor pays for a share of stock
should reflect what is expected to be received
from it—return on the investor’s investment.
What an investor receives are cash dividends
in the future. Therefore, the value of a share of
stock should be equal to the present value of
all the future cash flows an investor expects to
receive from that share. To value stock, there-
fore, an investor must project future cash flows,
which, in turn, means projecting future divi-
dends. Popular discounted cash flow models in-
clude the basic dividend discount model, which
assumes a constant dividend growth, and the
multiple-phase models, which include the two-
stage dividend growth model and the stochas-
tic dividend discount models. Relative valua-
tion methods use multiples or ratios—such as
price/earnings, price/book, or price/free cash
flow—to determine whether a stock is trad-
ing at higher or lower multiples than its peers.
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There are two critical assumptions in using rela-
tive valuation: (1) the universe of firms selected
to be included in the peer group are in fact com-
parable, and (2) the average multiple across the
universe of firms can be treated as a reason-
able approximation of “fair value” for those
firms. This second assumption may be prob-
lematic during periods of market panic or eu-
phoria. Managers of quantitative equity firms
employ techniques that allow them to identify
attractive stock candidates, focusing not on a
single stock as is done with traditional funda-
mental analysis but rather on stock character-
istics in order to explain why one stock out-
performs another stock. They do so by statis-
tically identifying a group of characteristics to
create a quantitative selection model. In con-
trast to the traditional fundamental stock se-
lection, quantitative equity managers create a
repeatable process that utilizes the stock selec-
tion model to identify attractive stocks. Equity
portfolio managers have used various statistical
models for forecasting returns and risk. These
models, referred to as predictive return models,
make conditional forecasts of expected returns
using the current information set. Predictive re-
turn models include regressive models, linear
autoregressive models, dynamic factor models,
and hidden-variable models.

Factor Models and Portfolio
Construction
Quantitative asset managers typically employ
multifactor risk models for the purpose of
constructing and rebalancing portfolios and
analyzing portfolio performance. A multifactor
risk model, or simply factor model, attempts to
estimate and characterize the risk of a portfolio,
either relative to a benchmark such as a market
index or in absolute value. The model allows
the decomposition of risk factors into a sys-
tematic and an idiosyncratic component. The
portfolio’s risk exposure to broad risk factors
is captured by the systematic risk. For equity
portfolios these are typically fundamental
factors (e.g., market capitalization and value

vs. growth), technical (e.g., momentum), and
industry/sector/country. For fixed-income
portfolios, systematic risk captures a portfolio’s
exposure to broad risk factors such as the
term structure of interest rates, credit spreads,
optionality (call and prepayment), credit, and
sectors. The portfolio’s systematic risk depends
not only on its exposure to these risk factors but
also the volatility of the risk factors and how
they correlate with each other. In contrast to
systematic risk, idiosyncratic risk captures the
uncertainty associated with news affecting the
holdings of individual issuers in the portfolio.
In equity portfolios, idiosyncratic risk can be
easily diversified by reducing the importance
of individual issuers in the portfolio. Because
of the larger number of issuers in bond indexes,
however, this is a difficult task. There are dif-
ferent types of factor models depending on the
factors. Factors can be exogenous variables or
abstract variables formed by portfolios. Exoge-
nous factors (or known factors) can be identified
from traditional fundamental analysis or from
economic theory that suggests macroeconomic
factors. Abstract factors, also called unidenti-
fied or latent factors, can be determined with
the statistical tool of factor analysis or principal
component analysis. The simplest type of
factor models is where the factors are assumed
to be known or observable, so that time-series
data are those factors that can be used to
estimate the model. The four most commonly
used approaches for the evaluation of return
premiums and risk characteristics to factors are
portfolio sorts, factor models, factor portfolios,
and information coefficients. Despite its use by
quantitative asset managers, the basic building
blocks of factor models used by model builders
and by traditional fundamental analysts are
the same: They both seek to identify the drivers
of returns for the asset class being analyzed.

Financial Econometrics
Econometrics is the branch of economics that
draws heavily on statistics for testing and
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analyzing economic relationships. The eco-
nomic equivalent of the laws of physics,
econometrics represents the quantitative, math-
ematical laws of economics. Financial econo-
metrics is the econometrics of financial markets.
It is a quest for models that describe financial
time series such as prices, returns, interest rates,
financial ratios, defaults, and so on. Although
there are similarities between financial econo-
metric models and models of the physical sci-
ences, there are two important differences. First,
the physical sciences aim at finding immutable
laws of nature; econometric models model the
economy or financial markets—artifacts subject
to change. Because the economy and financial
markets are artifacts subject to change, econo-
metric models are not unique representations
valid throughout time; they must adapt to the
changing environment. Second, while basic
physical laws are expressed as differential
equations, financial econometrics uses both
continuous-time and discrete-time models.

Financial Modeling Principles
The origins of financial modeling can be traced
back to the development of mathematical equi-
librium at the end of the nineteenth century, fol-
lowed in the beginning of the twentieth century
with the introduction of sophisticated mathe-
matical tools for dealing with the uncertainty
of prices and returns. In the 1950s and 1960s,
financial modelers had tools for dealing with
probabilistic models for describing markets, the
principles of contingent claims analysis, an op-
timization framework for portfolio selection
based on mean and variance of asset returns,
and an equilibrium model for pricing capital
assets. The 1970s ushered in models for pricing
contingent claims and a new model for pricing
capital assets based on arbitrage pricing. Con-
sequently, by the end of the 1970s, the frame-
works for financial modeling were well known.
It was the advancement of computing power
and refinements of the theories to take into
account real-world market imperfections and

conventions starting in the 1980s that facilitated
implementation and broader acceptance of
mathematical modeling of financial decisions.
The diffusion of low-cost high-performance
computers has allowed the broad use of numer-
ical methods, the landscape of financial mod-
eling. The importance of finding closed-form
solutions and the consequent search for simple
models has been dramatically reduced. Com-
putationally intensive methods such as Monte
Carlo simulations and the numerical solution
of differential equations are now widely used.
As a consequence, it has become feasible to
represent prices and returns with relatively
complex models. Nonnormal probability dis-
tributions have become commonplace in many
sectors of financial modeling. It is fair to say
that the key limitation of financial modeling is
now the size of available data samples or train-
ing sets, not the computations; it is the data
that limit the complexity of estimates. Math-
ematical modeling has also undergone major
changes. Techniques such as equivalent martin-
gale methods are being used in derivative pric-
ing, and cointegration, the theory of fat-tailed
processes, and state-space modeling (including
ARCH/GARCH and stochastic volatility mod-
els) are being used in financial modeling.

Financial Statement Analysis
Much of the financial data that are used in
constructing financial models for forecasting
and valuation purposes draw from the finan-
cial statements that companies are required to
provide to investors. The four basic financial
statements are the balance sheet, the income
statement, the statement of cash flows, and
the statement of shareholders’ equity. It is im-
portant to understand these data so that the
information conveyed by them is interpreted
properly in financial modeling. The financial
statements are created using several assump-
tions that affect how to use and interpret the
financial data. The analysis of financial state-
ments involves the selection, evaluation, and
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interpretation of financial data and other per-
tinent information to assist in evaluating the
operating performance and financial condition
of a company. The operating performance of a
company is a measure of how well a company
has used its resources—its assets, both tangible
and intangible—to produce a return on its in-
vestment. The financial condition of a company
is a measure of its ability to satisfy its obliga-
tions, such as the payment of interest on its
debt in a timely manner. There are many tools
available in the analysis of financial informa-
tion. These tools include financial ratio analysis
and cash flow analysis. Cash flows are essen-
tial ingredients in valuation. Therefore, under-
standing past and current cash flows may help
in forecasting future cash flows and, hence, de-
termine the value of the company. Moreover,
understanding cash flow allows the assessment
of the ability of a firm to maintain current divi-
dends and its current capital expenditure policy
without relying on external financing. Financial
modelers must understand how to use these fi-
nancial ratios and cash flow information in the
most effective manner in building models.

Finite Mathematics and Basic Functions
for Financial Modeling
The collection of mathematical tools that does
not include calculus is often referred to as
“finite mathematics.” This includes matrix
algebra, probability theory, and statistical anal-
ysis. Ordinary algebra deals with operations
such as addition and multiplication performed
on individual numbers. In financial modeling,
it is useful to consider operations performed on
ordered arrays of numbers. Ordered arrays of
numbers are called vectors and matrices while
individual numbers are called scalars. Prob-
ability theory is the mathematical approach
to formalize the uncertainty of events. Even
though a decision maker may not know which
one of the set of possible events may finally
occur, with probability theory a decision maker
has the means of providing each event with

a certain probability. Furthermore, it provides
the decision maker with the axioms to compute
the probability of a composed event in a
unique way. The rather formal environment
of probability theory translates in a reasonable
manner to the problems related to risk and
uncertainty in finance such as, for example, the
future price of a financial asset. Today, investors
may be aware of the price of a certain asset, but
they cannot say for sure what value it might
have tomorrow. To make a prudent decision,
investors need to assess the possible scenarios
for tomorrow’s price and assign to each sce-
nario a probability of occurrence. Only then can
investors reasonably determine whether the
financial asset satisfies an investment objective
included within a portfolio. Probability models
are theoretical models of the occurrence of
uncertain events. In contrast, statistics is about
empirical data and can be broadly defined as
a set of methods used to make inferences from
a known sample to a larger population that is
in general unknown. In finance, a particular
important example is making inferences from
the past (the known sample) to the future
(the unknown population). There are impor-
tant mathematical functions with which the
financial modeler should be acquainted. These
include the continuous function, the indicator
function, the derivative of a function, the
monotonic function, and the integral, as well
as special functions such as the characteristic
function of random variables and the factorial,
the gamma, beta, and Bessel functions.

Liquidity and Trading Costs
In broad terms, liquidity refers to the ability
to execute a trade or liquidate a position with
little or no cost or inconvenience. Liquidity de-
pends on the market where a financial instru-
ment is traded, the type of position traded, and
sometimes the size and trading strategy of an
individual trade. Liquidity risks are those as-
sociated with the prospect of imperfect mar-
ket liquidity and can relate to risk of loss or
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risk to cash flows. There are two main aspects
to liquidity risk measurement: the measure-
ment of liquidity-adjusted measures of mar-
ket risk and the measurement of liquidity risks
per se. Market practitioners often assume that
markets are liquid—that is, that they can liq-
uidate or unwind positions at going market
prices—usually taken to be the mean of bid
and ask prices—without too much difficulty or
cost. This assumption is very convenient and
provides a justification for the practice of mark-
ing positions to market prices. However, it is
often empirically questionable, and the failure
to allow for liquidity can undermine the mea-
surement of market risk. Because liquidity risk
is a major risk factor in its own right, port-
folio managers and traders will need to mea-
sure this risk in order to formulate effective
portfolio and trading strategies. A consider-
able amount of work has been done in the eq-
uity market in estimating liquidity risk. Because
transaction costs are incurred when buying or
selling stocks, poorly executed trades can ad-
versely impact portfolio returns and therefore
relative performance. Transaction costs are clas-
sified as explicit costs such as brokerage and
taxes, and implicit costs, which include market
impact cost, price movement risk, and opportu-
nity cost. Broadly speaking, market impact cost
is the price that a trader has to pay for obtain-
ing liquidity in the market and is a key com-
ponent of trading costs that must be modeled
so that effective trading programs for execut-
ing trades can be developed. Typical forecast-
ing models for market impact costs are based
on a statistical factor approach where the in-
dependent variables are trade-based factors or
asset-based factors.

VOLUME III
Model Risk and Selection
Model risk is the risk of error in pricing or
risk-forecasting models. In practice, model risk
arises because (1) any model involves simpli-

fication and calibration, and both of these re-
quire subjective judgments that are prone to er-
ror, and/or (2) a model is used inappropriately.
Although model risk cannot be avoided, there
are many ways in which financial modelers can
manage this risk. These include (1) recogniz-
ing model risk, (2) identifying, evaluating, and
checking the model’s key assumption, (3) se-
lecting the simplest reasonable model, (4) resist-
ing the temptation to ignore small discrepancies
in results, (5) testing the model against known
problems, (6) plotting results and employing
nonparametric statistics, (7) back-testing and
stress-testing the model, (8) estimating model
risk quantitatively, and (9) reevaluating mod-
els periodically. In financial modeling, model
selection requires a blend of theory, creativity,
and machine learning. The machine-learning
approach starts with a set of empirical data that
the financial modeler wants to explain. Data are
explained by a family of models that include
an unbounded number of parameters and are
able to fit data with arbitrary precision. There
is a trade-off between model complexity and
the size of the data sample. To implement this
trade-off, ensuring that models have forecast-
ing power, the fitting of sample data is con-
strained to avoid fitting noise. Constraints are
embodied in criteria such as the Akaike infor-
mation criterion or the Bayesian information
criterion. Economic and financial data are gen-
erally scarce given the complexity of their pat-
terns. This scarcity introduces uncertainty as
regards statistical estimates obtained by the fi-
nancial modeler. It means that the data might
be compatible with many different models with
the same level of statistical confidence. Methods
of probabilistic decision theory can be used to
deal with model risk due to uncertainty regard-
ing the model’s parameters. Probabilistic deci-
sion making starts from the Bayesian inference
process and involves computer simulations in
all realistic situations. Since a risk model is typi-
cally a combination of a probability distribution
model and a risk measure, a critical assump-
tion is the probability distribution assumed for
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the random variable of interest. Too often, the
Gaussian distribution is the model of choice.
Empirical evidence supports the use of proba-
bility distributions that exhibit fat tails such as
the Student’s t distribution and its asymmetric
version and the Pareto stable class of distribu-
tions and their tempered extensions. Extreme
value theory offers another approach for risk
modeling.

Mortgage-Backed Securities Analysis
and Valuation
Mortgage-backed securities are fixed-income
securities backed by a pool of mortgage loans.
Residential mortgage-backed securities (RMBS)
are backed by a pool of residential mortgage
loans (one-to-four family dwellings). The RMBS
market includes agency RMBS and nonagency
RMBS. The former are securities issued by
the Government National Mortgage Associa-
tion (Ginnie Mae), Fannie Mae, and Freddie
Mac. Agency RMBS include passthrough secu-
rities, collateralized mortgage obligations, and
stripped mortgage-backed securities (interest-
only and principal-only securities). The valua-
tion of RMBS is complicated due to prepayment
risk, a form of call risk. In contrast, nonagency
RMBS are issued by private entities, have no
implicit or explicit government guarantee, and
therefore require one or more forms of credit
enhancement in order to be assigned a credit
rating. The analysis of nonagency RMBS must
take into account both prepayment risk and
credit risk. The most commonly used method
for valuing RMBS is the Monte Carlo method,
although other methods have garnered favor,
in particular the decomposition method. The
analysis of RMBS requires an understanding of
the factors that impact prepayments.

Operational Risk
Operational risk has been regarded as a mere
part of a financial institution’s “other” risks.
However, failures of major financial entities

have made regulators and investors aware of
the importance of this risk. In general terms,
operational risk is the risk of loss resulting from
inadequate or failed internal processes, people,
or systems or from external events. This risk
encompasses legal risks, which includes, but is
not limited to, exposure to fines, penalties, or
punitive damages resulting from supervisory
actions, as well as private settlements. Opera-
tional risk can be classified according to several
principles: nature of the loss (internally inflicted
or externally inflicted), direct losses or indirect
losses, degree of expectancy (expected or unex-
pected), risk type, event type or loss type, and
by the magnitude (or severity) of loss and the
frequency of loss. Operational risk can be the
cause of reputational risk, a risk that can occur
when the market reaction to an operational loss
event results in reduction in the market value
of a financial institution that is greater than the
amount of the initial loss. The two principal
approaches in modeling operational loss dis-
tributions are the nonparametric approach and
the parametric approach. It is important to em-
ploy a model that captures tail events, and for
this reason in operational risk modeling, dis-
tributions that are characterized as light-tailed
distributions should be used with caution. The
models that have been proposed for assessing
operational risk can be broadly classified into
top-down models and bottom-up models. Top-
down models quantify operational risk without
attempting to identify the events or causes of
losses. Bottom-up models quantify operational
risk on a micro level, being based on identified
internal events. The obstacle hindering the im-
plementation of these models is the scarcity of
available historical operational loss data.

Optimization Tools
Optimization is an area in applied mathematics
that, most generally, deals with efficient algo-
rithms for finding an optimal solution among
a set of solutions that satisfy given constraints.
Mathematical programming, a management
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science tool that uses mathematical opti-
mization models to assist in decision making,
includes linear programming, integer program-
ming, mixed-integer programming, nonlinear
programming, stochastic programming, and
goal programming. Unlike other mathematical
tools that are available to decision makers such
as statistical models (which tell the decision
maker what occurred in the past), forecasting
models (which tell the decision maker what
might happen in the future), and simulation
models (which tell the decision maker what
will happen under different conditions),
mathematical programming models allow the
decision maker to identify the “best” solution.
Markowitz’s mean-variance model for port-
folio selection is an example of an application
of one type of mathematical programming
(quadratic programming). Traditional opti-
mization modeling assumes that the inputs
to the algorithms are certain, but there are
also branches of optimization such as robust
optimization that study the optimal decision
under uncertainty about the parameters of the
problem. Stochastic programming deals with
both the uncertainty about the parameters and
a multiperiod decision-making framework.

Probability Distributions
In financial models where the outcome of
interest is a random variable, an assumption
must be made about the random variable’s
probability distribution. There are two types
of probability distributions: discrete and
continuous. Discrete probability distributions
are needed whenever the random variable is
to describe a quantity that can assume values
from a countable set, either finite or infinite.
A discrete probability distribution (or law) is
quite intuitive in that it assigns certain values,
positive probabilities, adding up to one, while
any other value automatically has zero proba-
bility. Continuous probability distributions are
needed when the random variable of interest
can assume any value inside of one or more

intervals of real numbers such as, for example,
any number greater than zero. Asset returns,
for example, whether measured monthly,
weekly, daily, or at an even higher frequency
are commonly modeled as continuous random
variables. In contrast to discrete probability
distributions that assign positive probability to
certain discrete values, continuous probability
distributions assign zero probability to any sin-
gle real number. Instead, only entire intervals of
real numbers can have positive probability such
as, for example, the event that some asset return
is not negative. For each continuous probabil-
ity distribution, this necessitates the so-called
probability density, a function that determines
how the entire probability mass of one is dis-
tributed. The density often serves as the proxy
for the respective probability distribution. To
model the behavior of certain financial assets in
a stochastic environment, a financial modeler
can usually resort to a variety of theoretical
distributions. Most commonly, probability dis-
tributions are selected that are analytically well
known. For example, the normal distribution (a
continuous distribution)—also called the Gaus-
sian distribution—is often the distribution of
choice when asset returns are modeled. Or the
exponential distribution is applied to charac-
terize the randomness of the time between two
successive defaults of firms in a bond portfolio.
Many other distributions are related to them or
built on them in a well-known manner. These
distributions often display pleasant features
such as stability under summation—meaning
that the return of a portfolio of assets whose
returns follow a certain distribution again
follows the same distribution. However, one
has to be careful using these distributions since
their advantage of mathematical tractability
is often outweighed by the fact that the
stochastic behavior of the true asset returns
is not well captured by these distributions.
For example, although the normal distribution
generally renders modeling easy because all
moments of the distribution exist, it fails to
reflect stylized facts commonly encountered in
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asset returns—namely, the possibility of very
extreme movements and skewness. To remedy
this shortcoming, probability distributions
accounting for such extreme price changes
have become increasingly popular. Some of
these distributions concentrate exclusively on
the extreme values while others permit any real
number, but in a way capable of reflecting mar-
ket behavior. Consequently, a financial modeler
has available a great selection of probability
distributions to realistically reproduce asset
price changes. Their common shortcoming is
generally that they are mathematically difficult
to handle.

Risk Measures
The standard assumption in financial models is
that the distribution for the return on financial
assets follows a normal (or Gaussian) distri-
bution and therefore the standard deviation
(or variance) is an appropriate measure of risk
in the portfolio selection process. This is the
risk measure that is used in the well-known
Markowitz portfolio selection model (that is,
mean-variance model), which is the foundation
for modern portfolio theory. Mounting evi-
dence since the early 1960s strongly suggests
that return distributions do not follow a normal
distribution, but instead exhibit heavy tails
and, possibly, skewness. The “tails” of the dis-
tribution are where the extreme values occur,
and these extreme values are more likely than
would be predicted by the normal distribution.
This means that between periods where the
market exhibits relatively modest changes in
prices and returns, there will be periods where
there are changes that are much higher (that
is, crashes and booms) than predicted by the
normal distribution. This is of major concern to
financial modelers in seeking to generate prob-
ability estimates for financial risk assessment.
To more effectively implement portfolio se-
lection, researchers have proposed alternative
risk measures. These risk measures fall into

two disjointed categories: dispersion measures
and safety-first measures. Dispersion measures
include mean standard deviation, mean abso-
lute deviation, mean absolute moment, index
of dissimilarity, mean entropy, and mean colog.
Safety-first risk measures include classical
safety first, value-at-risk, average value-at-risk,
expected tail loss, MiniMax, lower partial
moment, downside risk, probability-weighted
function of deviations below a specified target
return, and power conditional value-at-risk.
Despite these alternative risk measures, the
most popular risk measure used in financial
modeling is volatility as measured by the
standard deviation. There are different types
of volatility: historical, implied volatility,
level-dependent volatility, local volatility,
and stochastic volatility (e.g., jump-diffusion
volatility). There are risk measures commonly
used for bond portfolio management. These
measures include duration, convexity, key rate
duration, and spread duration.

Software for Financial Modeling
The development of financial models requires
the modeler to be familiar with spreadsheets
such as Microsoft Excel and/or a platform to
implement concepts and algorithms such as
the Palisade Decision Tools Suite and other
Excel-based software (mostly @RISK1, Solver2,
VBA3), and MATLAB. Financial modelers can
choose one or the other, depending on their
level of familiarity and comfort with spread-
sheet programs and their add-ins versus pro-
gramming environments such as MATLAB.
Some tasks and implementations are easier in
one environment than in the other. MATLAB
is a modeling environment that allows for in-
put and output processing, statistical analysis,
simulation, and other types of model build-
ing for the purpose of analysis of a situa-
tion. MATLAB uses a number-array-oriented
programming language, that is, a program-
ming language in which vectors and matrices
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are the basic data structures. Reliable built-in
functions, a wide range of specialized tool-
boxes, easy interface with widespread software
like Microsoft Excel, and beautiful graphing ca-
pabilities for data visualization make imple-
mentation with MATLAB efficient and useful
for the financial modeler. Visual Basic for Appli-
cations (VBA) is a programming language en-
vironment that allows Microsoft Excel users to
automate tasks, create their own functions, per-
form complex calculations, and interact with
spreadsheets. VBA shares many of the same
concepts as object-oriented programming lan-
guages. Despite some important limitations,
VBA does add useful capabilities to spreadsheet
modeling, and it is a good tool to know because
Excel is the platform of choice for many finance
professionals.

Stochastic Processes and Tools
Stochastic integration provides a coherent way
to represent that instantaneous uncertainty (or
volatility) cumulates over time. It is thus fun-
damental to the representation of financial pro-
cesses such as interest rates, security prices, or
cash flows. Stochastic integration operates on
stochastic processes and produces random vari-
ables or other stochastic processes. Stochastic
integration is a process defined on each path as
the limit of a sum. However, these sums are dif-
ferent from the sums of the Riemann-Lebesgue
integrals because the paths of stochastic pro-
cesses are generally not of bounded variation.
Stochastic integrals in the sense of Itô are de-
fined through a process of approximation by
(1) defining Brownian motion, which is the con-
tinuous limit of a random walk, (2) defining
stochastic integrals for elementary functions as
the sums of the products of the elementary
functions multiplied by the increments of the
Brownian motion, and (3) extending this defi-
nition to any function through approximating
sequences. The major application of integra-
tion to financial modeling involves stochastic

integrals. An understanding of stochastic in-
tegrals is needed to understand an important
tool in contingent claims valuation: stochastic
differential equations. The dynamic of finan-
cial asset returns and prices can be expressed
using a deterministic process if there is no un-
certainty about its future behavior, or, with a
stochastic process, in the more likely case when
the value is uncertain. Stochastic processes in
continuous time are the most used tool to ex-
plain the dynamic of financial assets returns
and prices. They are the building blocks to con-
struct financial models for portfolio optimiza-
tion, derivatives pricing, and risk management.
Continuous-time processes allow for more ele-
gant theoretical modeling compared to discrete
time models, and many results proven in prob-
ability theory can be applied to obtain a simple
evaluation method.

Statistics
Probability models are theoretical models of
the occurrence of uncertain events. In contrast,
statistics is about empirical data and can be
broadly defined as a set of methods used to
make inferences from a known sample to a
larger population that is in general unknown. In
finance, a particular important example is mak-
ing inferences from the past (the known sam-
ple) to the future (the unknown population). In
statistics, probabilistic models are applied us-
ing data so as to estimate the parameters of
these models. It is not assumed that all param-
eter values in the model are known. Instead,
the data for the variables in the model to esti-
mate the value of the parameters are used and
then applied to test hypotheses or make infer-
ences about their estimated values. In financial
modeling, the statistical technique of regression
models is the workhorse. However, because re-
gression models are part of the field of financial
econometrics, this topic is covered in that topic
category. Understanding dependences or func-
tional links between variables is a key theme in
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financial modeling. In general terms, functional
dependencies are represented by dynamic
models. Many important models are linear
models whose coefficients are correlation coeffi-
cients. In many instances in financial modeling,
it is important to arrive at a quantitative mea-
sure of the strength of dependencies. The cor-
relation coefficient provides such a measure. In
many instances, however, the correlation coef-
ficient might be misleading. In particular, there
are cases of nonlinear dependencies that result
in a zero correlation coefficient. From the point
of view of financial modeling, this situation is
particularly dangerous as it leads to substan-
tially underestimated risk. Different measures
of dependence have been proposed, in partic-
ular copula functions. The copula overcomes
the drawbacks of the correlation as a measure
of dependency by allowing for a more general
measure than linear dependence, allowing for
the modeling of dependence for extreme events,
and being indifferent to continuously increas-
ing transformations. Another essential tool in
financial modeling, because it allows the incor-
poration of uncertainty in financial models and
consideration of additional layers of complex-
ity that are difficult to incorporate in analytical
models, is Monte Carlo simulation. The main
idea of Monte Carlo simulation is to represent
the uncertainty in market variables through sce-
narios, and to evaluate parameters of interest
that depend on these market variables in com-
plex ways. The advantage of such an approach
is that it can easily capture the dynamics of un-
derlying processes and the otherwise complex
effects of interactions among market variables.
A substantial amount of research in recent years
has been dedicated to making scenario genera-
tion more accurate and efficient, and a number
of sophisticated computational techniques are
now available to the financial modeler.

Term Structure Modeling
The arbitrage-free valuation approach to the
valuation of option-free bonds, bonds with em-

bedded options, and option-type derivative in-
struments requires that a financial instrument
be viewed as a package of zero-coupon bonds.
Consequently, in financial modeling, it is essen-
tial to be able to discount each expected cash
flow by the appropriate interest rate. That rate
is referred to as the spot rate. The term struc-
ture of interest rates provides the relationship
between spot rates and maturity. Because of its
role in valuation of cash bonds and option-type
derivatives, the estimation of the term struc-
ture of interest rates is of critical importance as
an input into a financial model. In addition to
its role in valuation modeling, term structure
models are fundamental to expressing value,
risk, and establishing relative value across the
spectrum of instruments found in the various
interest-rate or bond markets. The term struc-
ture is most often specified for a specific market
such as the U.S. Treasury market, the bond mar-
ket for double-A rated financial institutions,
the interest rate market for LIBOR, and swaps.
Static models of the term structure are char-
acterizations that are devoted to relationships
based on a given market and do not serve future
scenarios where there is uncertainty. Standard
static models include those known as the spot
yield curve, discount function, par yield curve,
and the implied forward curve. Instantiations of
these models may be found in both a discrete-
and continuous-time framework. An important
consideration is establishing how these term
structure models are constructed and how to
transform one model into another. In model-
ing the behavior of interest rates, stochastic dif-
ferential equations (SDEs) are commonly used.
The SDEs used to model interest rates must cap-
ture the market properties of interest rates such
as mean reversion and/or a volatility that de-
pends on the level of interest rates. For a one-
factor model, the SDE is used to model the
behavior of the short-term rate, referred to as
simply the “short rate.” The addition of another
factor (i.e., a two-factor model) involves extend-
ing the SDE to represent the behavior of the
short rate and a long-term rate (i.e., long rate).
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The entries can serve as material for a wide
spectrum of courses, such as the following:
� Financial engineering
� Financial mathematics
� Financial econometrics
� Statistics with applications in finance

� Quantitative asset management
� Asset and derivative pricing
� Risk management

Frank J. Fabozzi
Editor, Encyclopedia of Financial Models





Guide to the Encyclopedia of
Financial Models

The Encyclopedia of Financial Models provides
comprehensive coverage of the field of finan-
cial modeling. This reference work consists of
three separate volumes and 127 entries. Each
entry provides coverage of the selected topic
intended to inform a broad spectrum of read-
ers ranging from finance professionals to aca-
demicians to students to fiduciaries. To derive
the greatest possible benefit from the Encyclo-
pedia of Financial Models, we have provided this
guide. It explains how the information within
the encyclopedia can be located.

ORGANIZATION
The Encyclopedia of Financial Models is organized
to provide maximum ease of use for its readers.

Table of Contents
A complete table of contents for the entire en-
cyclopedia appears in the front of each volume.
This list of titles represents topics that have been
carefully selected by the editor, Frank J. Fabozzi.
The Preface includes a more detailed descrip-
tion of the volumes and the topic categories that
the entries are grouped under.

Index
A Subject Index for the entire encyclopedia is
located at the end of each volume. The sub-

jects in the index are listed alphabetically and
indicate the volume and page number where
information on this topic can be found.

Entries
Each entry in the Encyclopedia of Financial Mod-
els begins on a new page, so that the reader may
quickly locate it. The author’s name and affilia-
tion are displayed at the beginning of the entry.
All entries in the encyclopedia are organized
according to a standard format, as follows:

� Title and author
� Abstract
� Introduction
� Body
� Key points
� Notes
� References

Abstract
The abstract for each entry gives an overview of
the topic, but not necessarily the content of the
entry. This is designed to put the topic in the
context of the entire Encyclopedia, rather than
give an overview of the specific entry content.

Introduction
The text of each entry begins with an intro-
ductory section that defines the topic under
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discussion and summarizes the content. By
reading this section, the reader gets a general
idea about the content of a specific entry.

Body
The body of each entry explains the purpose,
theory, and math behind each model.

Key Points
The key points section provides in bullet point
format a review of the materials discussed in

each entry. It imparts to the reader the most
important issues and concepts discussed.

Notes
The notes provide more detailed information
and citations of further readings.

References
The references section lists the publications
cited in the entry.
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Mean-Variance Model for
Portfolio Selection
FRANK J. FABOZZI, PhD, CFA, CPA
Professor of Finance, EDHEC Business School

HARRY M. MARKOWITZ, PhD
Consultant

PETTER N. KOLM, PhD
Director of the Mathematics in Finance M.S. Program and Clinical Associate Professor,
Courant Institute of Mathematical Sciences, New York University

FRANCIS GUPTA, PhD
Director, Index Research & Design, Dow Jones Indexes

Abstract: The theory of portfolio selection together with capital asset pricing theory provides the
foundation and the building blocks for the management of portfolios. The goal of portfolio selec-
tion is the construction of portfolios that maximize expected returns consistent with individually
acceptable levels of risk. Using both historical data and investor expectations of future returns,
portfolio selection uses modeling techniques to quantify expected portfolio returns and acceptable
levels of portfolio risk and provides methods to select an optimal portfolio.

The theory of portfolio selection presented in
this entry, often referred to as mean-variance port-
folio analysis or simply mean-variance analysis,
is a normative theory. A normative theory is one
that describes a standard or norm of behavior
that investors should pursue in constructing a
portfolio rather than a prediction concerning
actual behavior.

Asset pricing theory goes on to formalize
the relationship that should exist between as-
set returns and risk if investors behave in a hy-
pothesized manner. In contrast to a normative

theory, asset pricing theory is a positive
theory—a theory that hypothesizes how in-
vestors behave rather than how investors
should behave. Based on that hypothesized be-
havior of investors, a model that provides the
expected return (a key input for constructing
portfolios based on mean-variance analysis) is
derived and is called an asset pricing model.

Together, portfolio selection theory and asset
pricing theory provide a framework to specify
and measure investment risk and to develop re-
lationships between expected asset return and

3
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risk (and hence between risk and required re-
turn on an investment). However, it is critically
important to understand that portfolio selection
is a theory that is independent of any theories
about asset pricing. The validity of portfolio se-
lection theory does not rest on the validity of
asset pricing theory.

It would not be an overstatement to say that
modern portfolio theory has revolutionized the
world of investment management. Allowing
managers to quantify the investment risk and
expected return of a portfolio has provided the
scientific and objective complement to the sub-
jective art of investment management. More
importantly, whereas at one time the focus of
portfolio management used to be the risk of in-
dividual assets, the theory of portfolio selection
has shifted the focus to the risk of the entire
portfolio. This theory shows that it is possible
to combine risky assets and produce a port-
folio whose expected return reflects its com-
ponents, but with considerably lower risk. In
other words, it is possible to construct a portfo-
lio whose risk is smaller than the sum of all its
individual parts!

Though practitioners realized that the risks of
individual assets were related, before modern
portfolio theory, they were unable to formalize
how combining these assets into a portfolio im-
pacted the risk at the entire portfolio level, or
how the addition of a new asset would change
the return–risk characteristics of the portfolio.
This is because practitioners were unable to
quantify the returns and risks of their invest-
ments. Furthermore, in the context of the entire
portfolio, they were also unable to formalize the
interaction of the returns and risks across as-
set classes and individual assets. The failure to
quantify these important measures and formal-
ize these important relationships made the goal
of constructing an optimal portfolio highly sub-
jective and provided no insight into the return
investors could expect and the risk they were
undertaking. The other drawback before the
advent of the theory of portfolio selection and
asset pricing theory was that there was no mea-

surement tool available to investors for judging
the performance of their investment managers.

SOME BASIC CONCEPTS
Portfolio theory draws on concepts from two
fields: financial economic theory and probabil-
ity and statistical theory. This section presents
the concepts from financial economic theory
used in portfolio theory. While many of the con-
cepts presented here have a more technical or
rigorous definition, the purpose is to keep the
explanations simple and intuitive so that the
importance and contribution of these concepts
to the development of modern portfolio theory
can be appreciated.

Utility Function and
Indifference Curves
There are many situations where entities (i.e.,
individuals and firms) face two or more choices.
The economic “theory of choice” uses the con-
cept of a utility function to describe the way
entities make decisions when faced with a set
of choices. A utility function assigns a (numeric)
value to all possible choices faced by the entity.
The higher the value of a particular choice, the
greater the utility derived from that choice. The
choice that is selected is the one that results in
the maximum utility given a set of constraints
faced by the entity.

In portfolio theory too, entities are faced with
a set of choices. Different portfolios have dif-
ferent levels of expected return and risk. Typi-
cally, the higher the level of expected return, the
larger the risk. Entities are faced with the deci-
sion of choosing a portfolio from the set of all
possible risk–return combinations, where when
they like return, they dislike risk. Therefore,
entities obtain different levels of utility from
different risk–return combinations. The utility
obtained from any possible risk–return com-
bination is expressed by the utility function.
Put simply, the utility function expresses the
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Figure 1 Indifference Curves

preferences of entities over perceived risk and
expected return combinations.

A utility function can be expressed in graph-
ical form by a set of indifference curves. Fig-
ure 1 shows indifference curves labeled u1, u2,
and u3. By convention, the horizontal axis mea-
sures risk and the vertical axis measures ex-
pected return. Each curve represents a set of
portfolios with different combinations of risk
and return. All the points on a given indiffer-
ence curve indicate combinations of risk and
expected return that will give the same level
of utility to a given investor. For example, on
utility curve u1, there are two points u and u′,
with u having a higher expected return than u′,
but also having a higher risk. Because the two
points lie on the same indifference curve, the
investor has an equal preference for (or is indif-
ferent to) the two points, or, for that matter, any
point on the curve. The (positive) slope of an in-
difference curve reflects the fact that, to obtain
the same level of utility, the investor requires a
higher expected return in order to accept higher
risk.

For the three indifference curves shown in
Figure 1, the utility the investor receives is
greater the further the indifference curve is from
the horizontal axis because that curve repre-
sents a higher level of return at every level

of risk. Thus, for the three indifference curves
shown in the figure, u3 has the highest utility
and u1 the lowest.

The Set of Efficient Portfolios and
the Optimal Portfolio
Portfolios that provide the largest possible
expected return for given levels of risk are
called efficient portfolios. To construct an effi-
cient portfolio, it is necessary to make some
assumption about how investors behave when
making investment decisions. One reasonable
assumption is that investors are risk averse. A
risk-averse investor is an investor who, when
faced with choosing between two investments
with the same expected return but two different
risks, prefers the one with the lower risk.

In selecting portfolios, an investor seeks to
maximize the expected portfolio return given
his tolerance for risk. (Alternatively stated, an
investor seeks to minimize the risk that he is
exposed to given some target expected return.)
Given a choice from the set of efficient portfo-
lios, an optimal portfolio is the one that is most
preferred by the investor.

Risky Assets vs. Risk-Free Assets
A risky asset is one for which the return that
will be realized in the future is uncertain. For
example, an investor who purchases the stock
of Pfizer Corporation today with the intention
of holding it for some finite time does not know
what return will be realized at the end of the
holding period. The return will depend on the
price of Pfizer’s stock at the time of sale and on
the dividends that the company pays during the
holding period. Thus, Pfizer stock, and indeed
the stock of all companies, is a risky asset.

Securities issued by the U.S. government are
also risky. For example, an investor who pur-
chases a U.S. government bond that matures in
30 years does not know the return that will be
realized if this bond is held for only one year.
This is because changes in interest rates in that
year will affect the price of the bond one year
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from now and that will impact the return on the
bond over that year.

There are assets, however, for which the re-
turn that will be realized in the future is known
with certainty today. Such assets are referred to
as risk-free or riskless assets. The risk-free asset
is commonly defined as a short-term obligation
of the U.S. government. For example, if an in-
vestor buys a U.S. government security that ma-
tures in one year and plans to hold that security
for one year, then there is no uncertainty about
the return that will be realized. The investor
knows that in one year, the maturity date of
the security, the government will pay a specific
amount to retire the debt. Notice how this sit-
uation differs for the U.S. government security
that matures in 30 years. While the 1-year and
the 30-year securities are obligations of the U.S.
government, the former matures in one year
so that there is no uncertainty about the return
that will be realized. In contrast, while the in-
vestor knows what the government will pay at
the end of 30 years for the 30-year bond, he does
not know what the price of the bond will be one
year from now.

MEASURING A PORTFOLIO’S
EXPECTED RETURN
We are now ready to define the actual and ex-
pected return of a risky asset and a portfolio of
risky assets.

Measuring Single-Period
Portfolio Return
The actual return on a portfolio of assets over
some specific time period is straightforward to
calculate using the formula:

Rp = w1 R1 + w2 R2 + . . . + wG RG (1)

where

Rp = rate of return on the portfolio over the
period

Rg = rate of return on asset g over the period

wg = weight of asset g in the portfolio (i.e., mar-
ket value of asset g as a proportion of the
market value of the total portfolio) at the be-
ginning of the period

G = number of assets in the portfolio

In shorthand notation, equation (1) can be ex-
pressed as follows:

Rp =
G∑

g=1

wg Rg (2)

Equation (2) states that the return on a port-
folio (Rp) of G assets is equal to the sum over all
individual assets’ weights in the portfolio times
their respective return. The portfolio return Rp

is sometimes called the holding period return
or the ex post return.

For example, consider the following portfolio
consisting of three assets:

Asset

Market Value at
the Beginning of
Holding Period

Rate of Return
over Holding
Period

1 $6 million 12%
2 $8 million 10%
3 $11 million 5%

The portfolio’s total market value at the be-
ginning of the holding period is $25 million.
Therefore,

w1 =$6 million/$25 million=0.24, or 24% and R1 =12%
w2 =$8 million/$25 million=0.32, or 32% and R2 =10%
w3 =$11 million/$25 million=0.44, or 44% and R3 =5%

Notice that the sum of the weights is equal to 1.
Substituting into equation (1), we get the hold-
ing period portfolio return,

Rp = 0.24(12%) + 0.32(10%) + 0.44(5%) = 8.28%

The Expected Return of a Portfolio
of Risky Assets
Equation (1) shows how to calculate the actual
return of a portfolio over some specific time pe-
riod. In portfolio management, the investor also
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wants to know the expected (or anticipated) re-
turn from a portfolio of risky assets. The ex-
pected portfolio return is the weighted average
of the expected return of each asset in the portfo-
lio. The weight assigned to the expected return
of each asset is the percentage of the market
value of the asset to the total market value of
the portfolio. That is,

E(Rp) = w1 E(R1) + w2 E(R2) + . . . + wG E(RG)
(3)

The E() signifies expectations, and E(RP) is
sometimes called the ex ante return, or the ex-
pected portfolio return over some specific time
period.

The expected return, E(Ri), on a risky asset i
is calculated as follows. First, a probability dis-
tribution for the possible rates of return that
can be realized must be specified. A probability
distribution is a function that assigns a proba-
bility of occurrence to all possible outcomes for
a random variable. Given the probability distri-
bution, the expected value of a random variable
is simply the weighted average of the possible
outcomes, where the weight is the probability
associated with the possible outcome.

In our case, the random variable is the un-
certain return of asset i. Having specified a
probability distribution for the possible rates of
return, the expected value of the rate of return
for asset i is the weighted average of the possi-
ble outcomes. Finally, rather than use the term
“expected value of the return of an asset,” we
simply use the term “expected return.” Math-
ematically, the expected return of asset i is ex-
pressed as

E(Ri ) = p1 R1 + p2 R2 + . . . + pN RN (4)

where

Rn = the nth possible rate of return for asset i
pn = the probability of attaining the rate of re-

turn Rn for asset i
N = the number of possible outcomes for the

rate of return

How do we specify the probability distribu-
tion of returns for an asset? We shall see later

Table 1 Probability Distribution for the Rate of
Return for Stock XYZ

n Rate of Return Probability of Occurrence

1 12% 0.18
2 10% 0.24
3 8% 0.29
4 4% 0.16
5 −4% 0.13

Total 1.00

on in this entry that in most cases the probabil-
ity distribution of returns is based on long-run
historical returns. If there is no reason to be-
lieve that future long-run returns should differ
significantly from historical long-run returns,
then probabilities assigned to different return
outcomes based on the historical long-run per-
formance of an uncertain investment could be a
reasonable estimate for the probability distribu-
tion. However, for the purpose of illustration,
assume that an investor is considering an in-
vestment, stock XYZ, which has a probability
distribution for the rate of return for some time
period as given in Table 1. The stock has five
possible rates of return and the probability dis-
tribution specifies the likelihood of occurrence
(in a probabilistic sense) of each of the possible
outcomes.

Substituting into equation (4) we get

E(RXYZ) = 0.18(12%) + 0.24(10%) + 0.29(8%)

+ 0.16(4%) + 0.13(−4%)

= 7%

Thus, 7% is the expected return or mean of the
probability distribution for the rate of return on
stock XYZ.

MEASURING PORTFOLIO
RISK
Investors have used a variety of definitions to
describe risk. Markowitz (1952, 1959) quanti-
fied the concept of risk using the well-known
statistical measure: the standard deviation and
the variance. The former is the intuitive concept.
For most probability density functions, about
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95% of the outcomes fall in the range defined
by two standard deviations above and below
the mean. Variance is defined as the square of
the standard deviation. Computations are sim-
plest in terms of variance. Therefore, it is con-
venient to compute the variance of a portfolio
and then take its square root to obtain standard
deviation.

Variance and Standard Deviation as
a Measure of Risk
The variance of a random variable is a measure
of the dispersion or variability of the possible
outcomes around the expected value (mean).
In the case of an asset’s return, the variance is
a measure of the dispersion of the possible rate
of return outcomes around the expected return.

The equation for the variance of the expected
return for asset i, denoted var(Ri), is

var(Ri ) = p1[r1 − E(Ri )]2 + p2[r2 − E(Ri )]2 + . . .

+ pN[rN − E(Ri )]2

or

var(Ri ) =
N∑

n=1

pn[rn − E(Ri )]2 (5)

Using the probability distribution of the re-
turn for stock XYZ, we can illustrate the calcu-
lation of the variance:

var(RXYZ) = 0.18(12% − 7%)2 + 0.24(10% − 7%)2

+ 0.29(8% − 7%)2 + 0.16(4% − 7%)2

+ 0.13(−4% − 7%)2 = 24.1%

The variance associated with a distribution
of returns measures the tightness with which
the distribution is clustered around the mean
or expected return. Markowitz argued that this
tightness or variance is equivalent to the uncer-
tainty or riskiness of the investment. If an asset
is riskless, it has an expected return dispersion
of zero. In other words, the return (which is
also the expected return in this case) is certain,
or guaranteed.

Since the variance is squared units, as we
know from earlier in this section, it is common
to see the variance converted to the standard
deviation by taking the positive square root:

SD(Ri ) =
√

Var(Ri )

For stock XYZ, then, the standard deviation is

SD(RXYZ) =
√

24.1% = 4.9%

The variance and standard deviation are con-
ceptually equivalent; that is, the larger the vari-
ance or standard deviation, the greater the
investment risk. (A criticism of the variance or
standard deviation as a measure is discussed
later in this entry.)

Measuring the Portfolio Risk of a Two-Asset
Portfolio
Equation (5) gives the variance for an individ-
ual asset’s return. The variance of a portfolio
consisting of two assets is a little more difficult
to calculate. It depends not only on the variance
of the two assets, but also upon how closely the
returns of one asset track those of the other as-
set. The formula is

var(Rp) = w2
i var(Ri ) + w2

j var(Rj )

+ 2wiw j cov(Ri , Rj ) (6)

where

cov(Ri, Rj) = covariance between the return
for assets i and j

In words, equation (6) states that the variance
of the portfolio return is the sum of the squared
weighted variances of the two assets plus two
times the weighted covariance between the two
assets. We will see that this equation can be
generalized to the case where there are more
than two assets in the portfolio.

Covariance
The covariance has a precise mathematical
translation. Its practical meaning is the degree
to which the returns of two assets covary
or change together. The covariance is not
expressed in a particular unit, such as dollars
or percent. A positive covariance means the
returns on two assets tend to move or change in
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Table 2 Probability Distribution for the Rate of
Return for Asset XYZ and Asset ABC

n

Rate of
Return for
Asset XYZ

Rate of
Return for
Asset ABC

Probability
of

Occurrence

1 12% 21% 0.18
2 10% 14% 0.24
3 8% 9% 0.29
4 4% 4% 0.16
5 −4% −3% 0.13

Total 1.00
Expected

return
7.0% 10.0%

Variance 24.1% 53.6%
Standard

deviation
4.9% 7.3%

the same direction, while a negative covariance
means the returns tend to move in opposite di-
rections. The covariance between any two assets
i and j is computed using the following formula:

cov(Ri , Rj ) = p1[ri1 − E(Ri )][r j1 − E(Rj )]
+ p2[ri2 − E(Ri )][r j2 − E(Rj )] + . . .

+ pN[ri N − E(Ri )][r j N − E(Rj )] (7)

where

rin = the nth possible rate of return for asset i
rjn = the nth possible rate of return for asset j
pn = the probability of attaining the rate of re-

turn rin and rjn for assets i and j
N = the number of possible outcomes for the

rate of return

To illustrate the calculation of the covariance
between two assets, we use the two stocks in
Table 2. The first is stock XYZ from Table 1
that we used earlier to illustrate the calcula-
tion of the expected return and the standard
deviation. The other hypothetical stock is stock
ABC, whose data are shown in Table 2. Substi-
tuting the data for the two stocks from Table 2
in equation (7), the covariance between stocks
XYZ and ABC is calculated as follows:

cov(RXYZ, RABC )
= 0.18(12% − 7%)(21% − 10%)

+ 0.24(10% − 7%)(14% − 10%) + 0.29(8%
− 7%)(9% − 10%) + 0.16(4% − 7%)(4% − 10%)
+ 0.13(−4% − 7%)(−3% − 10%) = 0.3396%

Relationship between Covariance
and Correlation
The correlation is related to the covariance
between the expected returns for two assets.
Specifically, the correlation between the returns
for assets i and j is defined as the covariance of
the two assets divided by the product of their
standard deviations:

cor(Ri , Rj ) = cov(Ri , Rj )/[SD(Ri )SD(Rj )]
(8)

Dividing the covariance between the returns
of two assets by the product of their standard
deviations results in the correlation between
the returns of the two assets. Because the
correlation is a standardized number (i.e., it has
been corrected for differences in the standard
deviation of the returns), the correlation is com-
parable across different assets. The correlation
between the returns for stock XYZ and stock
ABC is

cor(RXYZ, RABC ) = 0.3396%/(4.9% × 7.3%)≈0.95

The correlation coefficient can have values
ranging from +1.0, denoting perfect comove-
ment in the same direction, to –1.0, denoting
perfect comovement in the opposite direction.
Also note that because the standard deviations
are always positive, the correlation can only be
negative if the covariance is a negative number.
A correlation of zero implies that the returns are
uncorrelated.

Measuring the Risk of a Portfolio
Consisting of More than Two Assets
So far we have defined the risk of a portfolio
consisting of two assets. The extension to three
assets—i, j, and k—is as follows:

var(Rp) = w2
i var(Ri ) + w2

j var(Rj ) + w2
k var(Rk)

+2wiw j cov(Ri , Rj ) + 2wiwk cov(Ri , Rk)
+2w jwk cov(Rj , Rk) (9)

In words, equation (9) states that the variance
of the portfolio return is the sum of the squared
weighted variances of the individual assets plus
two times the sum of the weighted pairwise
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covariances of the assets. In general, for a port-
folio with G assets, the portfolio variance is
given by

var(Rp) =
G∑

g=1

w2
gvar(Rg)

+
G∑

g=1
and

G∑

h=1
h �=g

wgwhcov(Rg, Rh)

(10)

PORTFOLIO
DIVERSIFICATION
Often, one hears investors talking about diver-
sifying their portfolio. By this an investor means
constructing a portfolio in such a way as to re-
duce portfolio risk without sacrificing return.
This is certainly a goal that investors should
seek. However, the question is how to do this
in practice.

Some investors would say that including as-
sets across all asset classes could diversify a
portfolio. For example, a investor might argue
that a portfolio should be diversified by invest-
ing in stocks, bonds, and real estate. While that
might be reasonable, two questions must be
addressed in order to construct a diversified
portfolio. First, how much should be invested
in each asset class? Should 40% of the port-
folio be in stocks, 50% in bonds, and 10% in
real estate, or is some other allocation more ap-
propriate? Second, given the allocation, which
specific stocks, bonds, and real estate should the
investor select?

Some investors who focus only on one asset
class such as common stock argue that such
portfolios should also be diversified. By this
they mean that an investor should not place
all funds in the stock of one corporation, but
rather should include stocks of many corpo-
rations. Here, too, several questions must be
answered in order to construct a diversified
portfolio. First, which corporations should be
represented in the portfolio? Second, how much

of the portfolio should be allocated to the stocks
of each corporation?

Prior to the development of portfolio theory,
while investors often talked about diversifica-
tion in these general terms, they did not pos-
sess the analytical tools by which to answer the
questions posed above. For example, in 1945,
Leavens (1945, p. 473) wrote:

An examination of some fifty books and articles
on investment that have appeared during the last
quarter of a century shows that most of them refer
to the desirability of diversification. The majority,
however, discuss it in general terms and do not
clearly indicate why it is desirable.

Leavens illustrated the benefits of diversifi-
cation on the assumption that risks are inde-
pendent. However, in the last paragraph of his
article, he cautioned:

The assumption, mentioned earlier, that each secu-
rity is acted upon by independent causes, is im-
portant, although it cannot always be fully met in
practice. Diversification among companies in one
industry cannot protect against unfavorable fac-
tors that may affect the whole industry; additional
diversification among industries is needed for that
purpose. Nor can diversification among industries
protect against cyclical factors that may depress all
industries at the same time.

A major contribution of the theory of portfolio
selection is that using the concepts discussed
above, a quantitative measure of the diversifi-
cation of a portfolio is possible, and it is this
measure that can be used to achieve the maxi-
mum diversification benefits.

The Markowitz diversification strategy is pri-
marily concerned with the degree of covariance
between asset returns in a portfolio. Indeed a
key contribution of Markowitz diversification
is the formulation of an asset’s risk in terms
of a portfolio of assets, rather than in isolation.
Markowitz diversification seeks to combine as-
sets in a portfolio with returns that are less than
perfectly positively correlated, in an effort to
lower portfolio risk (variance) without sacrific-
ing return. It is the concern for maintaining re-
turn while lowering risk through an analysis of
the covariance between asset returns that sep-
arates Markowitz diversification from a naive
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approach to diversification and makes it more
effective.

Markowitz diversification and the impor-
tance of asset correlations can be illustrated
with a simple two-asset portfolio example. To
do this, we first show the general relationship
between the risk of a two-asset portfolio and the
correlation of returns of the component assets.
Then we look at the effects on portfolio risk of
combining assets with different correlations.

Portfolio Risk and Correlation
In our two-asset portfolio, assume that asset C
and asset D are available with expected returns
and standard deviations as shown:

Asset E(R) SD(R)

Asset C 12% 30%
Asset D 18% 40%

If an equal 50% weighting is assigned to both
stocks C and D, the expected portfolio return
can be calculated as shown:

E(Rp) = 0.50(12%) + 0.50(18%) = 15%

The variance of the return on the two-stock
portfolio from equation (6), using decimal form
rather than percentage form for the standard
deviation inputs, is

var(Rp) = w2
C var(RC ) + w2

Dvar(RD)

+2wCwD cov(RC , RD)

= (0.5)2(0.30)2 + (0.5)2(0.40)2

+2(0.5)(0.5) cov(RC , RD)

From equation (8),

cor(RC , RD) = cov(RC , RD)/[SD(RC )SD(RD)]

so

cov(RC , RD) = SD(RC )SD(RD)cor(RC , RD)

Since SD(RC) = 0.30 and SD(RD) = 0.40, then

cov(RC , RD) = (0.30)(0.40) cor(RC , RD)

Substituting into the expression for var(Rp),
we get

var(Rp) = (0.5)2(0.30)2 + (0.5)2(0.40)2

+2(0.5)(0.5)(0.30)(0.40)cor(RC , RD)

Taking the square root of the variance gives

SD(Rp)

=
√

(0.5)2(0.30)2 + (0.5)2(0.40)2

+2(0.5)(0.5)(0.30)(0.40)cor(RC , RD)

= √
0.0625 + (0.06)cor(RC + RD)

(11)

The Effect of the Correlation of
Asset Returns on Portfolio Risk
How would the risk change for our two-asset
portfolio with different correlations between
the returns of the component stocks? Let’s con-
sider the following three cases for cor(RC, RD):
+1.0, 0, and –1.0. Substituting into equation (11)
for these three cases of cor(RC, RD), we get:

cor(RC,RD) E(Rp) SD(Rp)

+1.0 15% 35%
0.0 15% 25%

−1.0 15% 5%

As the correlation between the expected re-
turns on stocks C and D decreases from +1.0
to 0.0 to –1.0, the standard deviation of the ex-
pected portfolio return also decreases from 35%
to 5%. However, the expected portfolio return
remains 15% for each case.

This example clearly illustrates the effect
of Markowitz diversification. The principle of
Markowitz diversification states that as the cor-
relation (covariance) between the returns for as-
sets that are combined in a portfolio decreases,
so does the variance (hence the standard devi-
ation) of the return for the portfolio.

The good news is that investors can main-
tain expected portfolio return and lower port-
folio risk by combining assets with lower (and
preferably negative) correlations. However, the
bad news is that very few assets have small
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Table 3 Portfolio Expected Returns and Standard Deviations for Five Mixes of Assets C and D
Asset C: E(RC) = 12%, SD(RC) = 30%
Asset D: E(RD) = 18%, and SD(RD) = 40%
Correlation between Assets C and D = cor(RC,RD) = –0.5

Portfolio Proportion of Asset C Proportion of Asset D E(Rp) SD(Rp)

1 100% 0% 12.0% 30.0%
2 75% 25% 13.5% 19.5%
3 50% 50% 15.0% 18.0%
4 25% 75% 16.5% 27.0%
5 0% 100% 18.0% 40.0%

to negative correlations with other assets! The
problem, then, becomes one of searching among
large numbers of assets in an effort to discover
the portfolio with the minimum risk at a given
level of expected return or, equivalently, the
highest expected return at a given level of risk.

The stage is now set for a discussion of effi-
cient portfolios and their construction.

CHOOSING A PORTFOLIO OF
RISKY ASSETS
Diversification in the manner suggested by
Markowitz leads to the construction of port-
folios that have the highest expected return for
a given level of risk. Such portfolios are called
efficient portfolios.

Constructing Efficient Portfolios
The technique of constructing efficient portfo-
lios from large groups of stocks requires a mas-
sive number of calculations. In a portfolio of
G securities, there are (G2 – G)/2 unique co-
variances to estimate. Hence, for a portfolio of
just 50 securities, there are 1,225 covariances
that must be calculated. For 100 securities, there
are 4,950. Furthermore, in order to solve for the
portfolio that minimizes risk for each level of re-
turn, a mathematical technique called quadratic
programming must be used. A discussion of
this technique is beyond the scope of this entry.
However, it is possible to illustrate the general
idea of the construction of efficient portfolios by

referring again to the simple two-asset portfolio
consisting of assets C and D.

Recall that for two assets, C and D, E(RC) =
12%, SD(RC) = 30%, E(RD) = 18%, and SD(RD)
= 40%. We now further assume that cor(RC,RD)
= –0.5. Table 3 presents the expected portfolio
return and standard deviation for five different
portfolios made up of varying proportions of C
and D.

Feasible and Efficient Portfolios
A feasible portfolio is any portfolio that an in-
vestor can construct given the assets available.
The five portfolios presented in Table 3 are all
feasible portfolios. The collection of all feasi-
ble portfolios is called the feasible set of portfo-
lios. With only two assets, the feasible set of
portfolios is graphed as a curve, which repre-
sents those combinations of risk and expected
return that are attainable by constructing port-
folios from all possible combinations of the two
assets.

Figure 2 presents the feasible set of portfo-
lios for all combinations of assets C and D. As
mentioned earlier, the portfolio mixes listed in
Table 3 belong to this set and are shown by
the points 1 through 5, respectively. Starting
from 1 and proceeding to 5, asset C goes from
100% to 0%, while asset D goes from 0% to
100%—therefore, all possible combinations of
C and D lie between portfolios 1 and 5, or on
the curve labeled 1–5. In the case of two assets,
any risk–return combination not lying on this
curve is not attainable since there is no mix of
assets C and D that will result in that risk–return
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Feasible set represented by curve 1–5
Markowitz efficient set: portion of curve 3–5

Figure 2 Feasible and Efficient Portfolios for
Assets C and D

combination. Consequently, the curve 1–5 can
also be thought of as the feasible set.

In contrast to a feasible portfolio, an efficient
portfolio is one that gives the highest expected
return of all feasible portfolios with the same
risk. An efficient portfolio is also said to be a
mean-variance efficient portfolio. Thus, for each
level of risk there is an efficient portfolio. The
collection of all efficient portfolios is called the
efficient set.

The efficient set for the feasible set presented
in Figure 2 is differentiated by the bold curve
section 3–5. Efficient portfolios are the combi-
nations of assets C and D that result in the
risk–return combinations on the bold section
of the curve. These portfolios offer the highest
expected return at a given level of risk. Notice
that two of our five portfolio mixes—portfolio
1 with E(Rp) = 12% and SD(Rp) = 20% and
portfolio 2 with E(Rp) = 13.5% and SD(Rp) =
19.5%—are not included in the efficient set. This
is because there is at least one portfolio in the
efficient set (for example, portfolio 3) that has
a higher expected return and lower risk than
both of them. We can also see that portfolio 4
has a higher expected return and lower risk than
portfolio 1. In fact, the whole curve section 1–3
is not efficient. For any given risk–return combi-
nation on this curve section, there is a combina-
tion (on the curve section 3–5) that has the same
risk and a higher return, or the same return and
a lower risk, or both. In other words, for any

E
(R

p)

II

I

III

IV

Risk [SD(Rp)]

• Feasible set: All portfolios on and 
   bounded by curve I–II–III
• Markowitz efficient set: All 
   portfolios on curve II–III

Figure 3 Feasible and Efficient Portfolios with
More Than Two Assetsa

aThe picture is for illustrative purposes only. The
actual shape of the feasible region depends on the
returns and risks of the assets chosen and the cor-
relation among them.

portfolio that results in the return/risk combi-
nation on the curve section 1–3 (excluding port-
folio 3), there exists a portfolio that dominates
it by having the same return and lower risk, or
the same risk and a higher return, or a lower
risk and a higher return. For example, portfolio
4 dominates portfolio 1, and portfolio 3 domi-
nates both portfolios 1 and 2.

Figure 3 shows the feasible and efficient sets
when there are more than two assets. In this
case, the feasible set is not a line, but an area.
This is because, unlike the two-asset case, it is
possible to create asset portfolios that result in
risk–return combinations that not only result
in combinations that lie on the curve I–II–III,
but all combinations that lie in the shaded area.
However, the efficient set is given by the curve
II–III. It is easily seen that all the portfolios on
the efficient set dominate the portfolios in the
shaded area.

The efficient set of portfolios is sometimes
called the efficient frontier because graphically all
the efficient portfolios lie on the boundary of the
set of feasible portfolios that have the maximum
return for a given level of risk. Any risk–return
combination above the efficient frontier cannot
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be achieved, while risk–return combinations of
the portfolios that make up the efficient fron-
tier dominate those that lie below the efficient
frontier.

Choosing the Optimal Portfolio in
the Efficient Set
Now that we have constructed the efficient set
of portfolios, the next step is to determine the
optimal portfolio.

Since all portfolios on the efficient frontier
provide the greatest possible return at their
level of risk, an investor or entity will want
to hold one of the portfolios on the efficient
frontier. Notice that the portfolios on the effi-
cient frontier represent trade-offs in terms of
risk and return. Moving from left to right on the
efficient frontier, the risk increases, but so does
the expected return. The question is which one
of those portfolios should an investor hold? The
best portfolio to hold of all those on the efficient
frontier is the optimal portfolio.

Intuitively, the optimal portfolio should de-
pend on the investor’s preference over different
risk–return trade-offs. As explained earlier, this
preference can be expressed in terms of a utility
function.

In Figure 4, three indifference curves rep-
resenting a utility function and the efficient
frontier are drawn on the same diagram. An in-
difference curve indicates the combinations of
risk and expected return that give the same level
of utility. Moreover, the farther the indifference
curve from the horizontal axis, the higher the
utility.

From Figure 4, it is possible to determine the
optimal portfolio for the investor with the indi-
fference curves shown. Remember that the
investor wants to get to the highest indifference
curve achievable given the efficient frontier.
Given that requirement, the optimal portfolio is
represented by the point where an indifference
curve is tangent to the efficient frontier. In
Figure 4, that is the portfolio P∗

MEF. For example,
suppose that P∗

MEF corresponds to portfolio 4

E
(R

p)

SD(Rp)

u3

u3

u2

u2

u1

u1

Markowitz
efficient
frontier

PMEF
*

u1, u2, u3 = indifference curves with u1 < u2 < u3

PMEF = optimal portfolio on Markowitz efficient frontier*

Figure 4 Selection of the Optimal Portfolio

in Figure 2. We know from Table 3 that this
portfolio is made up of 25% of asset C and 75%
of asset D, with an E(Rp) = 16.5% and SD(Rp) =
27.0%.

Consequently, for the investor’s preferences
over risk and return as determined by the shape
of the indifference curves represented in Fig-
ure 4, and expectations for asset C and D inputs
(returns and variance-covariance) represented
in Table 3, portfolio 4 is the optimal portfolio
because it maximizes the investor’s utility. If
this investor had a different preference for ex-
pected risk and return, there would have been
a different optimal portfolio.

At this point in our discussion, a natural ques-
tion is how to estimate an investor’s utility
function so that the indifference curves can be
determined. Economists in the field of behav-
ioral and experimental economics have con-
ducted a vast amount of research in the area
of utility functions. Though the assumption
sounds reasonable that individuals should pos-
sess a function that maps the different prefer-
ence choices they face, the research shows that it
it not so straightforward to assign an individual
with a specific utility function. This is because
preferences may be dependent on circum-
stances, and those may change with time.
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Table 4 Annualized Expected Returns, Standard Deviations, and Correlations between the Four Country Equity
Indexes: Australia, Austria, Belgium, and Canada

Expected Returns Standard Deviation Correlations 1 2 3 4

7.9% 19.5% Australia 1 1
7.9% 18.2% Austria 2 0.24 1
9.0% 18.3% Belgium 3 0.25 0.47 1
7.1% 16.5% Canada 4 0.22 0.14 0.25 1

The inability to assign an investor with a spe-
cific utility function does not imply that the
theory is irrelevant. Once the efficient frontier
is constructed, it is possible for the investor to
subjectively evaluate the trade-offs for the dif-
ferent return–risk outcomes and choose the ef-
ficient portfolio that is appropriate given his or
her tolerance to risk.

Example Using the MSCI World
Country Indexes
Now that we know how to calculate the optimal
portfolios and the efficient frontier, let us take a
look at a practical example. We start the exam-
ple using only four assets and later show these
results change as more assets are included. The
four assets are the four country equity indexes
in the MSCI World Index for Australia, Austria,
Belgium, and Canada.

Let us assume that we are given the annu-
alized expected returns, standard deviations,
and correlations between these countries as pre-
sented in Table 4. The expected returns vary
from 7.1% to 9%, whereas the standard devia-
tions range from 16.5% to 19.5%. Furthermore,
we observe that the four country indexes are not
highly correlated with each other—the highest
correlation, 0.47, is between Austria and Bel-
gium. Therefore, we expect to see some benefits
of portfolio diversification.

Figure 5 shows the efficient frontier for the
four assets. We observe that the four assets, rep-
resented by the diamond-shaped marks, are all
below the efficient frontier. This means that for
a targeted expected portfolio return, the mean-
variance portfolio has a lower standard devia-
tion. A utility maximizing investor, measuring

utility as the trade-off between expected return
and standard deviation, will prefer a portfolio
on the efficient frontier over any of the individ-
ual assets.

The portfolio at the leftmost end of the ef-
ficient frontier (marked with a solid circle in
Figure 5) is the portfolio with the smallest
obtainable standard deviation. It is called the
global minimum variance (GMV) portfolio.

Increasing the Asset Universe
We know that by introducing more (low corre-
lating) assets, for a targeted expected portfolio
return, we should be able to decrease the stan-
dard deviation of the portfolio. In Table 5, the
assumed annualized expected returns, stan-
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Figure 5 The Mean-Variance Efficient Frontier
of Country Equity Indexes of Australia, Austria,
Belgium, and Canada
Note: Constructed using the data in Table 4. The
expected return and standard deviation combi-
nation of each country index is represented by
a diamond-shaped mark. The global minimum
variance portfolio (GMV) is represented by a solid
circle. The portfolios on the curves above the GMV
portfolio constitute the efficient frontier.
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Figure 6 The Efficient Frontier Widens as the
Number of Low Correlated Assets Increase
Note: The efficient frontiers have been constructed
with 4, 12, and 18 countries (from the innermost to
the outermost frontier) from the MSCI World In-
dex. The portfolios on the curves above the GMV
portfolio constitute the efficient frontiers for the
three cases.

dard deviations, and correlations of 18 coun-
tries in the MSCI World Index are presented.

Figure 6 illustrates how the efficient frontier
moves outwards and upwards as we go from 4
to 12 assets and then to 18 assets. By increas-
ing the number of investment opportunities,
we increase the level of possible diversification
thereby making it possible to generate a higher
level of return at each level of risk.

Adding Short Selling Constraints
So far in this section, our theoretical derivations
imposed no restrictions on the portfolio weights
other than having them add up to one. In par-
ticular, we allowed the portfolio weights to take
on both positive and negative values; that is, we
did not restrict short selling. In practice, many
portfolio managers cannot sell assets short. This
could be for investment policy or legal rea-
sons, or sometimes just because particular asset
classes are difficult to sell short such real estate.
In Figure 7, we see the effect of not allowing for
short selling. Since we are restricting the oppor-
tunity set by constraining all the weights to be
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Figure 7 The Effect of Restricting Short Sell-
ing: Constrained versus Unconstrained Efficient
Frontiers Constructed from 18 Countries from the
MSCI World Index
Note: The portfolios on the curves above the GMV
portfolio constitute the efficient frontiers.

positive, the resulting efficient frontier is inside
the unconstrained efficient frontier.

ROBUST PORTFOLIO
OPTIMIZATION
Despite the great influence and theoretical
impact of modern portfolio theory, today full
risk–return optimization at the asset level is
primarily done only at the more quantitatively
oriented asset management firms. The avail-
ability of quantitative tools is not the issue—
today’s optimization technology is mature and
much more user-friendly than it was at the
time Markowitz first proposed the theory of
portfolio selection—yet many asset managers
avoid using the quantitative portfolio allocation
framework altogether.

A major reason for the reluctance of portfo-
lio managers to apply quantitative risk-return
optimization is that they have observed that
it may be unreliable in practice. Specifically,
mean-variance optimization (or any measure of
risk for that matter) is very sensitive to changes
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in the inputs (in the case of mean-variance opti-
mization, such inputs include the expected re-
turn and variance of each asset and the asset
covariance between each pair of assets). While
it can be difficult to make accurate estimates
of these inputs, estimation errors in the fore-
casts significantly impact the resulting portfolio
weights. As a result, the optimal portfolios gen-
erated by the mean-variance analysis generally
have extreme or counterintuitive weights for
some assets.1 Such examples, however, are not
necessarily a sign that the theory of portfolio se-
lection is flawed; rather, that when used in prac-
tice, the mean-variance analysis as presented
by Markowitz has to be modified in order to
achieve reliability, stability, and robustness with
respect to model and estimation errors.

It goes without saying that advances in the
mathematical and physical sciences have had a
major impact upon finance. In particular, math-
ematical areas such as probability theory, statis-
tics, econometrics, operations research, and
mathematical analysis have provided the nec-
essary tools and discipline for the development
of modern financial economics. Substantial ad-
vances in the areas of robust estimation and ro-
bust optimization were made during the 1990s,
and have proven to be of great importance for
the practical applicability and reliability of port-
folio management and optimization.

Any statistical estimate is subject to error—
that is, estimation error. A robust estimator is a
statistical estimation technique that is less sen-
sitive to outliers in the data and is not driven by
one particular set of observations of the data.
For example, in practice, it is undesirable that
one or a few extreme returns have a large im-
pact on the estimation of the average return of a
stock. Nowadays, statistical techniques such as
Bayesian analysis and robust statistics are more
commonplace in asset management. Taking it
one step further, practitioners are starting to
incorporate the uncertainty introduced by es-
timation errors directly into the optimization
process. This is very different from traditional
mean-variance analysis, where one solves the

portfolio optimization problem as a problem
with deterministic inputs (i.e., inputs that are
assumed to be known with certainty), with-
out taking the estimation errors into account.
In particular, the statistical precision of individ-
ual estimates is explicitly incorporated into the
portfolio allocation process. Providing this ben-
efit is the underlying goal of robust portfolio
optimization.2

Modern robust optimization techniques
allow a portfolio manager to solve the robust
version of the portfolio optimization problem
in about the same time as needed for the tra-
ditional mean-variance portfolio optimization
problem. The robust approach explicitly uses
the distribution from the estimation process to
find a robust portfolio in a single optimization,
thereby directly incorporating uncertainty
about inputs in the optimization process. As a
result, robust portfolios are less sensitive to es-
timation errors than other portfolios, and often
perform better than optimal portfolios deter-
mined by traditional mean-variance portfolios.
Moreover, the robust optimization framework
offers greater flexibility and many new interest-
ing applications. For instance, robust portfolio
optimization can exploit the notion of statis-
tically equivalent portfolios. This concept is
important in large-scale portfolio management
involving many complex constraints such as
transaction costs, turnover, or market impact.
Specifically, with robust optimization, a portfo-
lio manager can find the best portfolio that (1)
minimizes trading costs with respect to the cur-
rent holdings and (2) has an expected portfolio
return and variance that are statistically equiv-
alent to those of the classical mean-variance
portfolio.3

KEY POINTS
� Markowitz quantified the concept of diver-

sification through the statistical notion of
the covariances between individual securities
that make up a portfolio and the overall stan-
dard deviation of the portfolio.
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� A basic assumption behind modern portfolio
theory is that an investor’s preferences over
portfolios with different expected returns and
variances can be represented by a function
(utility function).

� The basic principle underlying modern port-
folio theory is that for a given level of ex-
pected return an investor would choose the
portfolio with the minimum variance from
among the set of all possible portfolios.

� Minimum variance portfolios are called
mean-variance efficient portfolios. The set of
all mean-variance efficient portfolios is called
the efficient frontier. The portfolio on the ef-
ficient frontier with the smallest variance is
called the global minimum variance portfolio
(GMVP).

� The efficient frontier moves outwards and
upwards as the number of (not perfectly
correlated) securities increases. The efficient
frontier shrinks as constraints are imposed
upon the portfolio.

� An advancement in the theory of portfolio
selection is the development of estimation
techniques that generate more robust mean-
variance estimates along with optimization
techniques that result in optimized portfolios
being more robust to the mean-variance esti-
mates used.

NOTES
1. See Best and Grauer (1991) and Chopra and

Ziember (1993).
2. There are two approaches that have been

suggested for dealing with this problem.
One is the application of estimation by us-
ing a statistical technique known as Bayes
analysis. (See Rachev, Hsu, Bagasheva, and
Fabozzi, 2008.) The Black-Litterman model
uses this approach. (See Black and Litter-
man, 1990.) The other approach is using a

resampling methodology as suggested by
Michaud (2001). A study by Markowitz and
Usmen (2003) found that the resampled ap-
proach is superior to that of a Bayesian ap-
proach.

3. For a discussion of these models, see
Fabozzi, Kolm, Pachamanova, and Focardi
(2007).
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Abstract: The mathematical theory of optimization has a natural application in the field of finance.
From a general perspective, the behavior of economic agents in the face of uncertainty involves
balancing expected risks and expected rewards. For example, the portfolio choice problem concerns
the optimal trade-off between risk and reward. A portfolio is said to be optimal in the sense that
it is the best portfolio among many alternative ones. The criterion that measures the quality of a
portfolio relative to the others is known as the objective function in optimization theory. The set
of portfolios among which we are choosing is called the “set of feasible solutions” or the “set of
feasible points.”

In optimization theory there is a distinction
between two types of optimization problems
depending on whether the set of feasible so-
lutions is constrained or unconstrained. If the
optimization problem is a constrained one, then
the set of feasible solutions is defined by means
of certain linear and/or nonlinear equalities
and inequalities. These functions are often said
to be forming the constraint set. Furthermore,
a distinction is made between the types of
optimization problems depending on the

assumed properties of the objective function and
the functions in the constraint set, such as linear
problems, quadratic problems, and convex problems.
The solution methods vary with respect to the
particular optimization problem type as there
are efficient algorithms prepared for particular
problem types.

In this chapter, we describe the basic types
of optimization problems and remark on
the methods for their solution. Boyd and
Vandenberghe (2004) and Ruszczynski (2006)

21
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provide more detailed information on the
topic.

UNCONSTRAINED
OPTIMIZATION
When there are no constraints imposed on the
set of feasible solutions, we have an uncon-
strained optimization problem. Thus, the goal is
to maximize or to minimize the objective func-
tion with respect to the function arguments
without any limits on their values. We con-
sider directly the n-dimensional case; that is,
the domain of the objective function f is the
n-dimensional space and the function values
are real numbers, f : R

n → R. Maximization is
denoted by

max f (x1, . . . , xn)

and minimization by

min f (x1, . . . , xn)

A more compact form is commonly used; for
example

min
x∈Rn

f (x) (1)

denotes that we are searching for the minimal
value of the function f (x) by varying x in the
entire n-dimensional space R

n. A solution to
problem (1) is a value of x = x0 for which the
minimum of f is attained:

f0 = f (x0) = min
x∈Rn

f (x)

Thus, the vector x0 is such that the function
takes a larger value than f 0 for any other
vector x,

f (x0) ≤ f (x), x ∈ R
n (2)

Note that there may be more than one vector
x0 satisfying the inequality in (2) and, therefore,
the argument for which f 0 is achieved may not
be unique. If (2) holds, then the function is said
to attain its global minimum at x0. If the inequal-
ity in (2) holds for x belonging only to a small
neighborhood of x0 and not to the entire space
R

n, then the objective function is said to have a

local minimum at x0. This is usually denoted by

f (x0) ≤ f (x)

for all x such that ||x − x0||2 < ε where
||x − x0||2 stands for the Euclidean distance
between the vectors x and x0,

||x − x0||2 =
√√√√

n∑

i=1

(xi − x0
i )2

and ε is some positive number. A local mini-
mum may not be global as there may be vectors
outside the small neighborhood of x0 for which
the objective function attains a smaller value
than f (x0). Figure 3 shows the graph of a
function with two local maxima, one of which
is the global maximum.

There is a connection between minimization
and maximization. Maximizing the objective
function is the same as minimizing the negative
of the objective function and then changing the
sign of the minimal value:

max
x∈Rn

f (x) = − min
x∈Rn

[− f (x)]

This relationship is illustrated in Figure 1. As
a consequence, problems for maximization can
be stated in terms of function minimization and
vice versa.

f(x)

f(x)

min[−f(x)]

max f(x)

0

X0

Figure 1 The Relationship between Minimiza-
tion and Maximization for a One-Dimensional
Function
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Minima and Maxima of a
Differentiable Function
If the second derivatives of the objective func-
tion exist, then its local maxima and minima,
often called generically local extrema, can be
characterized. Denote by ∇ f (x) the vector of the
first partial derivatives of the objective function
evaluated at x,

∇ f (x) =
(

∂ f (x)
∂x1

, . . . ,
∂ f (x)
∂xn

)

This vector is called the function gradient. At
each point x of the domain of the function, it
shows the direction of greatest rate of increase
of the function in a small neighborhood of x.
If for a given x the gradient equals a vector of
zeros,

∇ f (x) = (0, . . . , 0)

then the function does not change in a small
neighborhood of x ∈ R

n. It turns out that all
points of local extrema of the objective function
are characterized by a zero gradient. As a result,
the points yielding the local extrema of the ob-
jective function are among the solutions of the
system of equations,

∣∣∣∣∣∣∣∣

∂ f (x)
∂x1

= 0

. . .

∂ f (x)
∂xn

= 0

(3)

The system of equations (3) is often referred to
as representing the first-order condition for the
objective function extrema. However, it is only
a necessary condition; that is, if the gradient is
zero at a given point in the n-dimensional space,
then this point may or may not be a point of a
local extremum for the function. An illustration
is given in Figures 2 and 3. Figure 2 shows the
graph of a two-dimensional function and Fig-
ure 3 contains the contour lines of the function
with the gradient calculated at a grid of points.
There are three points marked with a black dot
which have a zero gradient. The middle point
is not a point of a local maximum even though
it has a zero gradient. This point is called a sad-

0.6

0.4

0.2

f(
x 1

,x
2)

0

−2

−2
0

0

2

2

x1
x2

Figure 2 A Function f (x1, x2) with Two Local
Maxima

dle point, since the graph resembles the shape of
a saddle in a neighborhood of it. The left and
the right points are where the function has two
local maxima corresponding to the two peaks
visible on the top plot. The right peak is a local
maximum which is not the global one and the
left peak represents the global maximum.

This example demonstrates that the first-
order conditions are generally insufficient to
characterize the points of local extrema. The ad-
ditional condition which identifies which of the

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x1

x 2

Figure 3 The Contour Lines of f (x1, x2) To-
gether with the Gradient Evaluated at a Grid of
Points
Note: The middle black point shows the position
of the saddle point between the two local maxima.
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zero-gradient points are points of local mini-
mum or maximum is given through the matrix
of second derivatives,

H =

⎛

⎜⎜⎜⎜⎜⎜⎝

∂2 f (x)
∂x2

1

∂2 f (x)
∂x1∂x2

. . .
∂2 f (x)
∂x1∂xn

∂2 f (x)
∂x2∂x1

∂2 f (x)
∂x2

2
. . .

∂2 f (x)
∂x2∂xn

...
...

. . .
...

∂2 f (x)
∂xn∂x1

∂2 f (x)
∂xn∂x2

. . .
∂2 f (x)

∂x2
n

⎞

⎟⎟⎟⎟⎟⎟⎠
(4)

which is called the Hessian matrix or just the
Hessian. The Hessian is a symmetric matrix be-
cause the order of differentiation is insignifi-
cant:

∂2 f (x)
∂xi∂xj

= ∂2 f (x)
∂xj∂xi

The additional condition is known as the
second-order condition. We will not provide
the second-order condition for functions of
n-dimensional arguments because it is rather
technical and goes beyond the scope of the en-
try. We only state it for two-dimensional func-
tions.

In the case n = 2, the following conditions
hold:

� If ∇ f (x1, x2) = (0, 0) at a given point (x1, x2)
and the determinant of the Hessian matrix
evaluated at (x1, x2) is positive, then the func-
tion has:

A local maximum in (x1, x2) if

∂2 f (x1, x2)
∂x2

1

< 0 or
∂2 f (x1, x2)

∂x2
2

< 0

A local minimum in (x1, x2) if

∂2 f (x1, x2)
∂x2

1

> 0 or
∂2 f (x1, x2)

∂x2
2

> 0

� If ∇ f (x1, x2) = (0, 0) at a given point (x1, x2)
and the determinant of the Hessian matrix
evaluated at (x1, x2) is negative, then the func-
tion f has a saddle point in (x1, x2).

� If ∇ f (x1, x2) = (0, 0) at a given point (x1, x2)
and the determinant of the Hessian matrix
evaluated at (x1, x2) is zero, then no conclu-
sion can be drawn.

Convex Functions
We just demonstrated that the first-order con-
ditions are insufficient in the general case to
describe the local extrema. However, when
certain assumptions are made for the objec-
tive function, the first-order conditions can be-
come sufficient. Furthermore, for certain classes
of functions, the local extrema are necessarily
global. Therefore, solving the first-order condi-
tions we obtain the global extremum.

A general class of functions with nice opti-
mal properties is the class of convex functions.
Not only are the convex functions easy to opti-
mize but also they have important application
in risk management. (See Chapter 6 in Rachev,
Stoyanov, and Fabozzi [2008] for a discussion of
general measures of risk.) It turns out that the
property which guarantees that diversification
is possible appears to be exactly the convexity
property. As a consequence, a measure of risk
is necessarily a convex functional.

A function in mathematics can be viewed as
a rule assigning to each element of a set D a
single element of a set C. The set D is called the
domain of f and the set C is called the codomain
of f . A functional is a special kind of a function
which takes other functions as its argument and
returns numbers as output; that is, its domain
is a set of functions. For example, the definite
integral can be viewed as a functional because
it assigns a real number to a function—the cor-
responding area below the function graph. A
risk measure can also be viewed as a functional
because it assigns a number to a random vari-
able. Any random variable is mathematically
described as a certain function the domain of
which is a set of outcomes �.

Precisely, a function f (x) is called a convex
function if it satisfies the property: For a given
α ∈ [0, 1] and all x1 ∈ R

n and x2 ∈ R
n in the

function domain,

f (αx1 + (1 − α)x2) ≤ α f (x1) + (1 − α) f (x2)

(5)
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f(x )

f(x2)

αf(x1) + (1 – α)f(x2)

f(x1)

f(xα)

x1 x α x 2

Figure 4 Illustration of the Definition of a Con-
vex Function in the One-Dimensional Case
Note: On the plot, xα = αx1 + (1 − α)x2.

The definition is illustrated in Figure 4. Basi-
cally, if a function is convex, then a straight line
connecting any two points on the graph lies
“above” the graph of the function.

There is a related term to convex functions.
A function f is called concave if the negative of
f is convex. In effect, a function is concave if
it satisfies the property: For a given α ∈ [0, 1]
and all x1 ∈ R

n and x2 ∈ R
n in the function

domain,

f (αx1 + (1 − α)x2) ≥ α f (x1) + (1 − α) f (x2)

If the domain D of a convex function is not
the entire space R

n, then the set D satisfies the
property

αx1 + (1 − α)x2 ∈ D (6)

where x1 ∈ D, x2 ∈ D, and 0 ≤ α ≤ 1. The sets
which satisfy (6) are called convex sets. Thus,
the domains of convex (and concave) func-
tions should be convex sets. Geometrically, a
set is convex if it contains the straight line con-
necting any two points belonging to the set.
Rockafellar (1997) provides detailed informa-
tion on the implications of convexity in opti-
mization theory.

We summarize several important properties
of convex functions:

� Not all convex functions are differentiable. If
a convex function is two times continuously
differentiable, then the corresponding Hes-
sian defined in (4) is a positive semidefinite
matrix. (A matrix H is a positive semidef-
inite matrix if x′ Hx ≥ 0 for all x ∈ R

n and
x �= (0, . . . , 0).)

� All convex functions are continuous if con-
sidered in an open set.

� The sublevel sets

Lc = {x : f (x) ≤ c} (7)

where c is a constant, are convex sets if f is
a convex function. The converse is not true
in general. Later, we provide more informa-
tion about nonconvex functions with convex
sublevel sets.

� The local minima of a convex function are
global. If a convex function f is twice con-
tinuously differentiable, then the global min-
imum is obtained in the points solving the
first-order condition

∇ f (x) = 0

� A sum of convex functions is a convex func-
tion:

f (x) = f1(x) + f2(x) + . . . + fk(x)

if fi, i = 1, . . . , k are convex functions.

A simple example of a convex function is the
linear function

f (x) = a ′x, x ∈ R
n

where a ∈ R
n is a vector of constants. In fact,

the linear function is the only function which
is both convex and concave. In finance, if we
consider a portfolio of assets, then the expected
portfolio return is a linear function of portfo-
lio weights, in which the coefficients equal the
expected asset returns.

As a more involved example, consider the fol-
lowing function:

f (x) = 1
2

x′Cx, x ∈ R
n (8)
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Figure 5 The Surface of a Two-Dimensional
Convex Quadratic Function

where C = {ci j }n
i, j=1 is an n × n symmetric ma-

trix. In portfolio theory, the variance of portfolio
return is a similar function of portfolio weights.
In this case, C is the covariance matrix. The func-
tion defined in (8) is called a quadratic function
because writing the definition in terms of the
components of the argument X, we obtain

f (x) = 1
2

[
n∑

i=1

cii x2
i +

∑

i �= j

ci j xi xj

]

which is a quadratic function of the components
xi, i = 1, . . . , n. The function in (8) is convex if
and only if the matrix C is positive semidefi-
nite. In fact, in this case the matrix C equals the
Hessian matrix, C = H. Since the matrix C con-
tains all parameters, we say that the quadratic
function is defined by the matrix C.

Figures 5–8 illustrate the surface and con-
tour lines of a convex and nonconvex two-
dimensional quadratic function. The contour
lines of the convex function are concentric el-
lipses and a sublevel set Lc is represented by
the points inside some ellipse. The point (0, 0) in
Figure 8 is a saddle point. The convex quadratic
function is defined by the matrix

C =
(

1 0.4
0.4 1

)
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and the nonconvex quadratic function is de-
fined by the matrix

C =
(−1 0.4

0.4 1

)

A property of convex functions is that the sum
of convex functions is a convex function. As a
result of the preceding analysis, the function

f (x) = λx′Cx − a ′x (9)

where λ > 0 and C is a positive semidefinite
matrix, is a convex function as a sum of two
convex functions. In the mean-variance efficient
frontier, as formulated by Markowitz (1952), we
find functions similar to (9). Let us use the prop-
erties of convex functions in order to solve the
unconstrained problem of minimizing the func-
tion in (9):

min
x∈Rn

λx′Cx − a ′x

This function is differentiable and we can search
for the global minimum by solving the first-
order conditions:

∇ f (x) = 2λCx − a = 0

Therefore, the value of x minimizing the objec-
tive function equals

x0 = 1
2λ

C−1a

where C−1 denotes the inverse of the matrix C.

Quasi-Convex Functions
Besides convex functions, there are other classes
of functions with convenient optimal proper-
ties. An example of such a class is the class
of quasi-convex functions. Formally, a function is
called quasi-convex if all sublevel sets defined
in (7) are convex sets. Alternatively, a function
f (x) is called quasi-convex if

f (x1) ≥ f (x2) implies f (αx1 + (1 − α)x2)

≤ f (x1)

where x1 and x2 belong to the function domain,
which should be a convex set, and 0 ≤ α ≤ 1.
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Figure 9 Example of a Two-Dimensional Quasi-
Convex Function

A function f is called quasi-concave if − f is
quasi-convex.

An illustration of a two-dimensional quasi-
convex function is given in Figure 9. It shows
the graph of the function and Figure 10 il-
lustrates the contour lines. A sublevel set is
represented by all points inside some contour
line. From a geometric viewpoint, the sublevel
sets corresponding to the plotted contour lines
are convex because any of them contains the
straight line connecting any two points belong-
ing to the set. Nevertheless, the function is not
convex, which becomes evident from the sur-
face in Figure 9. It is not guaranteed that a

−0.8
−0.7

−0.6

−0.6

−0.5

−0.5

−0.4

−0.4

−0.3

−0.3−0.3

−0.2

−0.2

−0.2

−0.2

−0.2

x1

x 2

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−0.4 −0.3

−0.3
−0.2 −0.2

−0 2

0.2

Figure 10 The Contour Lines of a Two-
Dimensional Quasi-Convex Function



28 Asset Allocation

straight line connecting any two points on the
surface will remain “above” the surface.

Properties of the quasi-convex functions in-
clude:

� Any convex function is also quasi-convex.
The converse is not true, which is demon-
strated in Figure 10.

� In contrast to the differentiable convex func-
tions, the first-order condition is not neces-
sary and sufficient for optimality in the case of
differentiable quasi-convex functions. (There
exists a class of functions larger than the class
of convex functions but smaller than the class
of quasi-convex functions, for which the first-
order condition is necessary and sufficient for
optimality. This is the class of pseudo-convex
functions. Mangasarian [2006] provides more
detail on the optimal properties of pseudo-
convex functions.)

� It is possible to find a sequence of convex op-
timization problems yielding the global min-
imum of a quasi-convex function. Boyd and
Vandenberghe (2004) provide further details.
Its main idea is to find the smallest value of
c for which the corresponding sublevel set
Lc is nonempty. The minimal value of c is
the global minimum, which is attained in the
points belonging to the sublevel set Lc.

� Suppose that g(x) > 0 is a concave function
and f (x) > 0 is a convex function. Then the
ratio g(x)/ f (x) is a quasi-concave function
and the ratio f (x)/g(x) is a quasi-convex
function.

Quasi-convex functions arise naturally in risk
management when considering optimization of
performance ratios. (See Chapter 10 in Rachev,
Stoyanov, and Fabozzi [2008].)

CONSTRAINED
OPTIMIZATION
In constructing optimization problems solving
practical issues, it is very often the case that
certain constraints need to be imposed in or-

der for the optimal solution to make practi-
cal sense. For example, long-only portfolio op-
timization problems require that the portfolio
weights, which represent the variables in op-
timization, should be nonnegative and should
sum up to one. According to the notation in
this chapter, this corresponds to a problem of
the type

min
x

f (x)

subject to x′e = 1

x ≥ 0

(10)

where

f (x) = the objective function
e ∈ R

n = a vector of ones, e = (1, . . . , 1)
x′e = the sum of all components of x,

x′e = ∑n
i xi

x ≥ 0 = all components of the vector x ∈ R
n

are nonnegative

In problem (10), we are searching for the mini-
mum of the objective function by varying x only
in the set

X =
{

x ∈ R
n :

x′e = 1
x ≥ 0

}
(11)

which is also called the set of feasible points or the
constraint set. A more compact notation, similar
to the notation in the unconstrained problems,
is sometimes used,

min
x∈X

f (x)

where X is defined in (11).
We distinguish between different types of

optimization problems depending on the as-
sumed properties for the objective function and
the constraint set. If the constraint set contains
only equalities, the problem is easier to han-
dle analytically. In this case, the method of
Lagrange multipliers is applied. For more gen-
eral constraint sets, when they are formed by
both equalities and inequalities, the method
of Lagrange multipliers is generalized by the
Karush-Kuhn-Tucker conditions (KKT condi-
tions). Like the first-order conditions we consid-
ered in unconstrained optimization problems,
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none of the two approaches lead to necessary
and sufficient conditions for constrained op-
timization problems without further assump-
tions. One of the most general frameworks in
which the KKT conditions are necessary and
sufficient is that of convex programming. We have
a convex programing problem if the objective
function is a convex function and the set of feasi-
ble points is a convex set. As important subcases
of convex optimization, linear programming and
convex quadratic programming problems are con-
sidered.

In this section, we describe first the method
of Lagrange multipliers, which is often applied
to special types of mean-variance optimization
problems in order to obtain closed-form solu-
tions. Then we proceed with convex program-
ming, which is the framework for reward-risk
analysis.

Lagrange Multipliers
Consider the following optimization problem
in which the set of feasible points is defined by
a number of equality constraints:

min
x

f (x)

subject to h1(x) = 0

h2(x) = 0

. . .

hk(x) = 0

(12)

The functions hi (x), i = 1, . . . , k build up the
constraint set. Note that even though the right-
hand side of the equality constraints is zero in
the classical formulation of the problem given in
(12), this is not restrictive. If in a practical prob-
lem the right-hand side happens to be different
from zero, it can be equivalently transformed;
for example:

{x ∈ R
n : v(x) = c} ⇐⇒ {x ∈ R

n : h1(x)

= v(x) − c = 0}
In order to illustrate the necessary condition

for optimality valid for (12), let us consider the

following two-dimensional example:

min
x∈R2

1
2 x′Cx

subject to x′e = 1
(13)

where the matrix is

C =
(

1 0.4
0.4 1

)

The objective function is a quadratic function
and the constraint set contains one linear equal-
ity. A mean-variance optimization problem in
which short positions are allowed is very simi-
lar to (13). (See Chapter 8 in Rachev, Stoyanov,
and Fabozzi [2008].) The surface of the objec-
tive function and the constraint are shown in
Figures 11 and 12. The black line on the surface
shows the function values of the feasible points.
Geometrically, solving problem (13) reduces to
finding the lowest point of the black curve on
the surface. The contour lines shown in Fig-
ure 12 imply that the feasible point yielding the
minimum of the objective function is where a
contour line is tangential to the line defined by
the equality constraint. On the plot, the tangen-
tial contour line and the feasible points are in
bold. The black dot indicates the position of the
point in which the objective function attains its
minimum subject to the constraints.

Even though the example is not general in the
sense that the constraint set contains one linear
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Linear Constraint x1 + x2 = 1

rather than a nonlinear equality, the same geo-
metric intuition applies in the nonlinear case.
The fact that the minimum is attained where a
contour line is tangential to the curve defined
by the nonlinear equality constraints in mathe-
matical language is expressed in the following
way: The gradient of the objective function at
the point yielding the minimum is proportional
to a linear combination of the gradients of the
functions defining the constraint set. Formally,
this is stated as:

∇ f (x0) − μ1∇h1(x0) − . . . − μk∇hk(x0) = 0
(14)

where μi , i = 1, . . . , k are some real numbers
called Lagrange multipliers and the point x0 is
such that f (x0) ≤ f (x) for all x which are fea-
sible. Note that if there are no constraints in
the problem, then (14) reduces to the first-order
condition we considered in unconstrained op-
timization. Therefore, the system of equations
behind (14) can be viewed as a generalization
of the first-order condition in the unconstrained
case.

The method of a Lagrange multipliers basi-
cally associates a function to the problem in
(12) such that the first-order condition for un-
constrained optimization for that function co-
incides with (14). The method of a Lagrange
multiplier consists of the following steps.

1. Given the problem in (12), construct the fol-
lowing function:

L(x, μ) = f (x) − μ1h1(x) − . . . − μkhk(x)
(15)

where μ = (μ1, . . . , μk) is the vector of La-
grange multipliers. The function L(x, μ) is
called the Lagrangian corresponding to prob-
lem (12).

2. Calculate the partial derivatives with respect
to all components of x and μ and set them
equal to zero:

∂L(x, μ)
∂xi

= ∂ f (x)
∂xi

−
k∑

j=1

μ j
∂h j (x)

∂xi
= 0,

i = 1, . . . , n (16)
∂L(x, μ)

∂μm
= hm(x) = 0, m = 1, . . . , k

Basically, the system of equations (16) cor-
responds to the first-order conditions for
unconstrained optimization written for the
Lagrangian as a function of both x and μ,
L : R

n+k → R.
3. Solve the system of equalities in (16) for x and

μ. Note that even though we are solving the
first-order condition for unconstrained opti-
mization of L(x, μ), the solution (x0, μ0) of
(16) is not a point of local minimum or maxi-
mum of the Lagrangian. In fact, the solution
(x0, μ0) is a saddle point of the Lagrangian.

The first n equations in (16) make sure that
the relationship between the gradients given in
(14) is satisfied. The following k equations in
(16) make sure that the points are feasible. As
a result, all vectors x solving (16) are feasible
and the gradient condition is satisfied at them.
Therefore, the points that solve the optimiza-
tion problem (12) are among the solutions of
the system of equations given in (16).

This analysis suggests that the method of La-
grange multipliers provides a necessary condi-
tion for optimality. Under certain assumptions
for the objective function and the functions
building up the constraint set, (16) turns out
to be a necessary and sufficient condition. For
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example, if f (x) is a convex and differentiable
function and hi (x), i = 1, . . . , k are affine func-
tions, then the method of Lagrange multipliers
identifies the points solving (12). A function
h(x) is called affine if it has the form h(x) =
a + c′x, where a is a constant and c = (c1, . . . , cn)
is a vector of coefficients. All linear functions are
affine. Figure 12 illustrates a convex quadratic
function subject to a linear constraint. In this
case, the solution point is unique.

Convex Programming
The general form of convex programming prob-
lems is

min
x

f (x)

subject to gi (x) ≤ 0, i = 1, . . . , m
h j (x) = 0, j = 1, . . . , k

(17)

where
f (x) is a convex objective func-

tion
g1(x), . . . , gm(x) are convex functions

defining the inequality
constraints

h1(x), . . . , hk(x) are affine functions
defining the equality
constraints

Generally, without the assumptions of con-
vexity, problem (17) is more involved than (12)
because besides the equality constraints, there
are inequality constraints. The KKT condition,
generalizing the method of Lagrange multipli-
ers, is only a necessary condition for optimality
in this case. However, adding the assumption of
convexity makes the KKT condition necessary
and sufficient.

Note that, similar to problem (12), the fact that
the right-hand side of all constraints is zero is
nonrestrictive. The limits can be arbitrary real
numbers.

Consider the following two-dimensional op-
timization problem

min
x∈R2

1
2 x′Cx

subject to (x1 + 2)2 + (x2 + 2)2 ≤ 3 (18)

in which

C =
(

1 0.4
0.4 1

)

The objective function is a two-dimensional
convex quadratic function and the function in
the constraint set is also a convex quadratic
function. In fact, the boundary of the feasible
set is a circle with a radius of

√
3 centered at

the point with coordinates (−2,−2). Figures 13
and 14 show the surface of the objective func-
tion and the set of feasible points. The shaded
part on the surface indicates the function values
of all feasible points. In fact, solving problem
(18) reduces to finding the lowest point on the
shaded part of the surface. Figure 14 shows the
contour lines of the objective function together
with the feasible set, which is in gray. Geomet-
rically, the point in the feasible set yielding the
minimum of the objective function is positioned
where a contour line only touches the constraint
set. The position of this point is marked with
a black dot and the tangential contour line is
given in bold.

Note that the solution points of problems of
the type (18) can happen to be not on the bound-
ary of the feasible set but in the interior. For
example, suppose that the radius of the circle
defining the boundary of the feasible set in (18)
is a larger number such that the point (0, 0) is
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inside the feasible set. Then, the point (0, 0)
is the solution to problem (18) because at this
point the objective function attains its global
minimum.

In the two-dimensional case, when we can
visualize the optimization problem, geometric
reasoning guides us to finding the optimal solu-
tion point. In a higher dimensional space, plots
cannot be produced and we rely on the ana-
lytic method behind the KKT conditions. The
KKT conditions corresponding to the convex
programming problem (17) are the following:

∇ f (x) +
m∑

i=1

λi∇gi (x) +
k∑

j=1

μ j∇h j (x) = 0

gi (x) ≤ 0 i = 1, . . . , m

h j (x) = 0 j = 1, . . . , k (19)

λi gi (x) = 0, i = 1, . . . , m

λi ≥ 0, i = 1, . . . , m

A point x0 such that (x0, λ0, μ0) satisfies (19) is
the solution to problem (17). Note that if there
are no inequality constraints, then the KKT con-
ditions reduce to (16) in the method of Lagrange
multipliers. Therefore, the KKT conditions gen-
eralize the method of Lagrange multipliers.

The gradient condition in (19) has the same
interpretation as the gradient condition in the

method of Lagrange multipliers. The set of con-
straints

gi (x) ≤ 0 i = 1, . . . , m

h j (x) = 0 j = 1, . . . , k

guarantee that a point satisfying (19) is feasible.
The next conditions

λi gi (x) = 0, i = 1, . . . , m

are called complementary slackness conditions.
If an inequality constraint is satisfied as a strict
inequality, then the corresponding multiplier λi

turns into zero according to the complemen-
tary slackness conditions. In this case, the cor-
responding gradient ∇gi (x) has no significance
in the gradient condition. This reflects the fact
that the gradient condition concerns only the
constraints satisfied as equalities at the solution
point.

Important special cases of convex program-
ming problems include linear programming
problems and convex quadratic programming
problems, which we consider in the remaining
part of this section.

Linear Programming
Optimization problems are said to be linear pro-
gramming problems if the objective function is
a linear function and the feasible set is defined
by linear equalities and inequalities. Since all
functions are linear, they are also convex, which
means that linear programming problems are
also convex problems. The definition of linear
programming problems in standard form is the
following:

min
x

c′x

subject to Ax ≤ b
x ≥ 0

(20)

where A is an m × n matrix of coefficients,
c = (c1, . . . , cn) is a vector of objective function
coefficients, and b = (b1, . . . , bm) is a vector of
real numbers. As a result, the constraint set con-
tains m inequalities defined by linear functions.
The feasible points defined by means of linear
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Figure 15 The Surface of a Linear Function and
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equalities and inequalities are also said to form
a polyhedral set. In practice, before solving a
linear programming problem, it is usually first
reformulated in the standard form given in (20).

Figures 15 and 16 show an example of a
two-dimensional linear programming problem
which is not in standard form as the two vari-
ables may become negative. Figure 15 contains
the surface of the objective function, which is
a plane in this case, and the polyhedral set of
feasible points. The shaded area on the surface
corresponds to the points in the feasible set.
Solving problem (20) reduces to finding the
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Figure 16 The Bottom Plot Shows the Tangential
Contour Line to the Polyhedral Feasible Set

lowest point in the shaded area on the sur-
face. Figure 16 shows the feasible set together
with the contour lines of the objective function.
The contour lines are parallel straight lines be-
cause the objective function is linear. The point
in which the objective function attains its mini-
mum is marked with a black dot.

A general result in linear programming is
that, on condition that the problem is bounded,
the solution is always at the boundary of the
feasible set and, more precisely, at a vertex of
the polyhedron. Problem (20) may become un-
bounded if the polyhedral set is unbounded
and there are feasible points such that the objec-
tive function can decrease indefinitely. We can
summarize that, generally, due to the simple
structure of (20), there are three possibilities:

1. The problem is not feasible, because the poly-
hedral set is empty.

2. The problem is unbounded.
3. The problem has a solution at a vertex of the

polyhedral set.

From computational viewpoint, the polyhe-
dral set has a finite number of vertices and an
algorithm can be devised with the goal of find-
ing a vertex solving the optimization problem in
a finite number of steps. This is the basic idea be-
hind the simplex method, which is an efficient
numerical approach to solving linear program-
ming problems. Besides the simplex algorithm,
there are other, more contemporary methods,
such as the interior point method.

Quadratic Programming
Besides linear programming, another class of
problems with simple structure is the class of
quadratic programming problems. It contains
optimization problems with a quadratic objec-
tive function and linear equalities and inequal-
ities in the constraint set:

min
x

c′x + 1
2 x′ Hx

subject to Ax ≤ b
(21)
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where
c = (c1, . . . , cn) is a vector of coefficients

defining the linear part of
the objective function

H = {hi j }n
i, j=1 is an n × n matrix defining

the quadratic part of the
objective

A = {ai j } is a k × n matrix defining k
linear inequalities in the
constraint set

b = (b1, . . . , bk) is a vector of real numbers
defining the right-hand side
of the linear inequalities

In optimal portfolio theory, mean-variance
optimization problems in which portfolio vari-
ance is in the objective function are quadratic
programming problems.

From the point of view of optimization theory,
problem (21) is a convex optimization problem
if the matrix defining the quadratic part of the
objective function is positive semidefinite. In
this case, the KKT conditions can be applied to
solve it.

KEY POINTS
1. The mathematical theory of optimization

concerns identifying the best alternative
within a set of available, or feasible, alterna-
tives and finds application in different areas
of finance such as portfolio selection or, more
generally, explaining behavior of economic
agents in the face of uncertainty.

2. An optimization problem has two important
components: an objective function defining
the criterion to be optimized and a feasibil-
ity set described by means of equality or in-
equality constraints.

3. The properties of the objective function and
the feasibility set are used to distinguish
different classes of optimization problems
with specific conditions for optimality and
numerical solution methods. The most im-
portant classes include linear, quadratic, and
convex programming problems.

4. In the theory of portfolio selection, the clas-
sical mean-variance analysis belongs to the
class of quadratic optimization problems.

5. Employing more general reward and risk
measures can result in a convex optimization
problem but if scenarios for assets returns are
available, the portfolio selection problem can
be simplified to a linear programming prob-
lem in some cases. Optimization of perfor-
mance ratios can be related to quasi-convex
programs.
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Abstract: Meeting the challenges of modern investment practice involves the design of novel forms
of investment solutions, as opposed to investment products customized to meet investors’ ex-
pectations. These new forms of investment solutions rely on the use of improved, more efficient
performance-seeking portfolio and liability-hedging portfolio building blocks, as well as on the
use of improved dynamic allocation strategies. Understanding the conceptual and technical chal-
lenges involved in the design of improved benchmarks for the performance-seeking portfolio
is critical.

Management is justified as an industry by the
capacity of adding value through the design
of investment solutions that match investors’
needs. For more than 50 years, the industry
has in fact mostly focused on security selec-
tion decisions as a single source of added value.

This sole focus has somewhat distracted the
industry from another key source of added
value, namely portfolio construction and as-
set allocation decisions. In the face of recent
crises, and given the intrinsic difficulty in de-
livering added value through security selection
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decisions only, the relevance of the old
paradigm has been questioned with heightened
intensity, and a new paradigm is starting
to emerge.

Academic research has provided very useful
guidance with respect to how asset allocation
and portfolio construction decisions should
be analyzed so as to best improve investors’
welfare. In a nutshell, the “fund separation the-
orems” that lie at the core of modern portfo-
lio theory advocate a separate management of
performance and risk control objectives. In the
context of asset allocation decisions with con-
sumption/liability objectives, it can be shown
that the suitable expression of the fund sep-
aration theorem provides rational support for
liability-driven investment (LDI) techniques that
have recently been promoted by a number of in-
vestment banks and asset management firms.
These solutions involve on the one hand the
design of a customized liability-hedging portfolio
(LHP), the sole purpose of which is to hedge
away as effectively as possible the impact of
unexpected changes in risk factors affecting li-
ability values (most notably interest rate and
inflation risks), and on the other hand the
design of a performance-seeking portfolio (PSP),
whose raison d’être is to provide investors with
an optimal risk-return trade-off.

One of the implications of this LDI paradigm
is that one should distinguish two different
levels of asset allocation decisions: alloca-
tion decisions involved in the design of the
performance-seeking or the liability-hedging
portfolio (design of better building blocks, or
BBBs), and asset allocation decisions involved
in the optimal split between the PSP and the
LHP (designed of advanced asset allocation de-
cisions, or AAAs). We address the question of
better building blocks in detail in this entry
and provide some thoughts on integrating these
building blocks in asset allocation. More specif-
ically, we mainly focus here on how to construct
efficient performance-seeking portfolios.

In this entry we provide an overview of the
key conceptual challenges involved in asset al-

location and portfolio construction in design-
ing the performance-seeking portfolio. We be-
gin by presenting the fundamental principle of
the maximization of risk/reward efficiency and
then deal with estimation of risk parameters
and expected return parameters. The empirical
results of optimal portfolio construction mod-
eling are presented. We also provide a brief dis-
cussion on integrating such properly designed
building blocks in the overall PSP at the asset
allocation level.

THE TANGENCY PORTFOLIO
AS THE RATIONALE BEHIND
SHARPE RATIO
MAXIMIZATION
Modern portfolio theory provides some useful
guidance with respect to the optimal design of a
PSP that would best suit investors’ needs. More
precisely, the prescription is that the PSP should
be obtained as the result of a portfolio optimiza-
tion procedure aiming at generating the highest
risk-reward ratio.

Portfolio optimization is a straightforward
procedure, at least in principle. In a mean-
variance setting, for example, the prescription
consists of generating a maximum Sharpe ra-
tio (MSR) portfolio based on expected return,
volatility, and pairwise correlation parameters
for all assets to be included in the portfolio, a
procedure that can even be handled analytically
in the absence of portfolio constraints.

More precisely, consider a simple mean-
variance problem:

max
w

μp − 1
2
γ σ 2

p

Here, the control variable is a vector w of op-
timal weight allocated to various risky assets,
μp denotes the portfolio expected return, and
σ p denotes the portfolio volatility. We further
assume that the investor is facing the follow-
ing investment opportunity set: a riskless bond
paying the risk-free rate r, and a set of N risky
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assets with expected return vector μ (of size N)
and covariance matrix � (of size NxN), all as-
sumed constant so far.

With these notations, the portfolio expected
return and volatility are respectively given by:

μp = w′ (μ − re) + r

σ 2
p = w′�w

In this context, it is straightforward to show
by standard arguments that the only efficient
portfolio composed with risky assets is the max-
imum Sharpe ratio portfolio, also known as the
tangency portfolio.1

Finally, the Sharpe ratio reads (where we fur-
ther denote by e vector of ones of size N):

SR = w′ (μ − re)

(w′�w)1/2

And the optimal portfolio is given by:

max
w

(
μp − 1

2
γ σ 2

p

)
⇒ w∗

0 = 1
γ

�−1 (μ − re)

= e ′�−1 (μ − re)
γ

�−1 (μ − re)
e ′�−1 (μ − re)︸ ︷︷ ︸

PSP

(1)

This is a two-fund separation theorem, which
gives the allocation to the MSR performance-
seeking portfolio (PSP), with the rest invested
in cash, as well as the composition of the MSR
performance-seeking portfolio.

In practice, investors end up holding more
or less imperfect proxies for the truly optimal
performance-seeking portfolio, if only because
of the presence of parameter uncertainty, which
makes it impossible to obtain a perfect estimate
for the maximum Sharpe ratio portfolio. De-
noting by λ the Sharpe ratio of the (generally
inefficient) PSP actually held by the investor,
and by σ its volatility, we obtain the following
optimal allocation strategy:

w∗
0 = λ

γ σ
PSP (2)

Hence the allocation to the performance-
seeking portfolio is a function of two objec-
tive parameters, the PSP volatility and the PSP

Sharpe ratio, and one subjective parameter, the
investor’s risk aversion. The optimal alloca-
tion to the PSP is inversely proportional to
the investor’s risk aversion. If risk aversion
goes to infinity, the investor holds the risk-free
asset only, as should be expected. For finite risk-
aversion levels, the allocation to the PSP is in-
versely proportional to the PSP volatility, and
it is proportional to the PSP Sharpe ratio. As
a result, if the Sharpe ratio of the PSP is in-
creased, one can invest more in risky assets.
Hence, portfolio construction modeling is not
only about risk reduction; it is also about perfor-
mance enhancement through a better spending
of investors’ risk budgets.

The expression (1) is useful because it pro-
vides in principle a straightforward expression
for the optimal portfolio starting from a set of
N risky assets. In the presence of a realistically
large number N of securities, the curse of di-
mensionality, however, makes it practically im-
possible for investors to implement such direct
one-step portfolio optimization decisions in-
volving all individual components of the asset
mix. The standard alternative approach widely
adopted in investment practice consists instead
in first grouping individual securities in vari-
ous asset classes according to various dimen-
sions, for example, country, sector, and/or style
within the equity universe, or country, maturity,
and credit rating within the bond universe, and
subsequently generating the optimal portfolio
through a two-stage process. On the one hand,
investable proxies are generated for maximum
Sharpe ratio (MSR) portfolios within each as-
set class in the investment universe. We call
this step, which is typically delegated to profes-
sional money managers, the portfolio construc-
tion step. On the other hand, when the MSR
proxies are obtained for each asset class, an op-
timal allocation to the various asset classes is
eventually generated so as to generate the max-
imum Sharpe ratio at the global portfolio level.
This step is called the asset allocation step, and
it is typically handled by a centralized deci-
sion maker (e.g., a pension fund CIO) with or
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without the help of specialized consultants, as
opposed to being delegated to decentralized as-
set managers. In this entry, the discussion fo-
cuses on the first step, and we provide some
concluding remarks on its relation to the sec-
ond step at the end of this entry.

For the definition of building blocks for asset
allocation, in the absence of active views, the
default option consists of using market cap
weighted indexes as proxies for the asset class
MSR portfolio. Academic research, however,
has found that such market cap indexes were
likely to be severely inefficient portfolios.2 In
a nutshell, market cap weighted indexes are
not good choices as investment benchmarks be-
cause they are poorly diversified portfolios. In
fact, cap-weighting tends to lead to exceedingly
high concentration in relatively few stocks. As a
consequence of their lack of diversification, cap
weighted indexes have been empirically found
to be severely inefficient portfolios, which do
not provide investors with the fair reward given
the risk taken. As a result of their poor diversi-
fication, they have been found to be dominated
by equally weighted benchmarks,3 which are
naı̈vely diversified portfolios that are optimal if
and only if all securities have identical expected
return, volatilities, and all pairs of correlations
are identical.

In what follows, we analyze in some detail a
number of alternatives based on practical im-
plementation of modern portfolio theory that
have been suggested to generate more efficient
proxies for the MSR portfolio in the equity in-
vestment universe. (See Figure 1.)

Modern portfolio theory was born with the
efficient frontier analysis of Markowitz (1952).
Unfortunately, early applications of the tech-
nique, based on naı̈ve estimates of the input pa-
rameters, have been found of little use because
they lead to nonsensible portfolio allocations.

In a first section, we explain how to help
bridge the gap between portfolio theory and
portfolio construction by showing how to gen-
erate enhanced parameter estimates so as to
improve the quality of the portfolio optimiza-

True Tangency
Portfolio
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Cap-weighted index
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depend on estimated
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The true tangency portfolio is a
function of the (unknown) true

parameter values

wMSR = f ( μt, σt,  ρtf)

wMSR = f( μt, σt, ρtf)ˆ ˆ ˆ ˆ

Figure 1 Inefficiency of Cap-Weighted Bench-
marks, and the Quest for an Efficient Proxy for
the True Tangency Portfolio

tion outputs (optimal portfolio weights). We
first focus on enhanced covariance parameter
estimates and explain how to meet the main
challenge of sample risk reduction.4 Against
this backdrop, we present the state-of-the art
methodologies for reducing the problem di-
mensionality and estimating the covariance
matrix with multifactor models. We then turn
to expected return estimation. We argue that
statistical methodologies are not likely to gener-
ate any robust expected return estimates, which
suggests that economic models such as the
single-factor CAPM and the multifactor APT
should instead be used for expected return esti-
mation. Finally, we also present evidence that
proxies for expected return estimates should
not only include systematic risk measures, but
they should also incorporate idiosyncratic risk
measures as well as downside risk measures.

ROBUST ESTIMATORS FOR
COVARIANCE PARAMETERS
In practice, success in the implementation of
a theoretical model relies not only upon its
conceptual grounds but also on the reliabil-
ity of the inputs of the model. In the case of
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mean-variance (MV) optimization the results
will highly depend on the quality of the pa-
rameter estimates: the covariance matrix and
the expected returns of assets.

Several improved estimates for the covari-
ance matrix have been proposed, including
most notably the factor-based approach sug-
gested by Sharpe (1963), the constant cor-
relation approach suggested by Elton and
Gruber (1973), and the statistical shrinkage ap-
proach suggested by Ledoit and Wolf (2004).
In addition, Jagannathan and Ma (2003) find
that imposing (non–short selling) constraints
on the weights in the optimization program im-
proves the risk-adjusted out-of-sample perfor-
mance in a manner that is similar to some of the
aforementioned improved covariance matrix
estimators.

In these papers, the authors have focused on
testing the out-of-sample performance of global
minimum variance (GMV) portfolios, as op-
posed to the MSR portfolios (also known as
tangency portfolios), given that there is a con-
sensus around the fact that purely statistical
estimates of expected returns are not robust
enough to be used. (This is discussed later in
this entry.)

The key problem in covariance matrix esti-
mation is the curse of dimensionality; when a
large number of stocks are considered, the num-
ber of parameters to estimate grows exponen-
tially, where the majority of them are pairwise
correlations.

Therefore, at the estimation stage, the chal-
lenge is to reduce the number of factors that
come into play. In general, a multifactor model
decomposes the (excess) return (in excess to the
risk-free asset) of an asset into its expected re-
wards for exposition to the “true” risk factors
as follows:

rit = αit +
K∑

j=1

βi, j t · F jt + εit

or in matrix form for all N assets:

rt = αt + βt Ft + εt

where βt is an N × K matrix containing the sen-
sitivities of each asset i with respect to the corre-
sponding j-th factor movements; rt is the vector
of the N assets’ (excess) returns, Ft a vector con-
taining the K risk factors’ (excess) returns, and εt

the N × 1 vector containing the zero mean un-
correlated residuals εit.The covariance matrix
for the asset returns implied by a factor model
is given by:

	 = β · �F · βT + �ε

where �F is the K × K covariance matrix of the
risk factors and �ε an N × N covariance matrix
of the residuals corresponding to each asset.

While the factor-based estimator is expected
to allow for a reasonable trade-off between sam-
ple risk and model risk, there still remains,
however, the problem of choosing the “right”
factor model. One popular approach aims at
relying as little as possible on strong theoreti-
cal assumptions by using principal components
analysis (PCA) to determine the underlying
risk factors from the data. The PCA method is
based on a spectral decomposition of the sam-
ple covariance matrix, and its goal is to explain
covariance structures using only a few linear
combinations of the original stochastic vari-
ables, which will constitute the set of (unob-
servable) factors.

Bengtsson and Holst (2002) and Fujiwara et al.
(2006) motivate the use of PCA in a similar way,
extracting principal components in order to es-
timate expected correlation within MV portfo-
lio optimization. Fujiwara et al. (2006) find that
the realized risk-return of portfolios based on
the PCA method outperforms the single-index-
based one and that the optimization gives a
practically reasonable asset allocation. Overall,
the main strength of the PCA approach at this
stage is that it allows “the data to talk” and
has them tell the financial modeler what the
underlying risk factors are that govern most
of the variability of the assets at each point
in time. This strongly contrasts with having to
rely on the assumption that a particular factor
model is the true pricing model and reduces the
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specification risk embedded in the factor-
based approach while keeping the sample risk
reduction.

The question of determining the appropriate
number of factors to structure the correlation
matrix is critical for the risk estimation when
using PCA as a factor model. Several options
have been proposed to answer this question,
some of them with more theoretical grounds
than others.

As a final note, we need to recognize that the
discussion is so far cast in a mean-variance set-
ting, which can in principle only be rational-
ized for normally distributed asset returns. In
the presence of non-normally distributed asset
returns, optimal portfolio selection techniques
require estimates for variance-covariance pa-
rameters, along with estimates for higher-order
moments and comoments of the return dis-
tribution. This is a formidable challenge that
severely exacerbates the dimensionality prob-
lem already present with mean-variance anal-
ysis. In a recent paper, Martellini and Ziemann
(2010) extend the existing literature, which has
mostly focused on the covariance matrix, by in-
troducing improved estimators for the coskew-
ness and cokurtosis parameters. On the one
hand, they find that the use of these enhanced
estimates generates a significant improvement
in investors’ welfare. On the other hand, they
find that also that when the number of con-
stituents in the portfolios is large (e.g., exceed-
ing 20), the increase in sample risk related to
the need to estimate higher-order comoments
by far outweighs the benefits related to consid-
ering a more general portfolio optimization pro-
cedure. In the end, when portfolio optimization
is performed on the basis of a large number of
individual securities, it appears that maximiz-
ing the portfolio Sharpe ratio leads to a better
out-of-sample return-to-VaR ratio or return-to-
CVaR ratio compared to a procedure focusing
on maximizing the return-to-VaR ratio or the
return-to-CVaR ratio, a result that holds true
even if improved estimators are used for higher-
order comoments.

ROBUST ESTIMATORS FOR
EXPECTED RETURNS

While it appears that risk parameters can be
estimated with a fair degree of accuracy, it
has been shown (Merton, 1980) that expected
returns are difficult to obtain with a reason-
able estimation error. What makes the problem
worse is that optimization techniques are very
sensitive to differences in expected returns, so
that portfolio optimizers typically allocate the
largest fraction of capital to the asset class for
which estimation error in the expected returns
is the largest.5

In the face of the difficulty of using sample-
based expected return estimates in a portfolio
optimization context, a reasonable alternative
consists in using some risk estimate as a proxy
for excess expected returns.6 This approach is
based on the most basic principle in finance;
that is, the natural relationship between risk
and reward. In fact, standard asset pricing the-
ories such as the arbitrage pricing theory as
proposed by Ross (1976) imply that expected
returns should be positively related to system-
atic volatility, such as measured through a factor
model that summarizes individual stock return
exposure with respect to a number of rewarded
risk factors.

More recently, a series of papers have focused
on the explanatory power of idiosyncratic, as
opposed to systematic, risk for the cross section
of expected returns. In particular, Malkiel and
Xu (2006), extending an insight from Merton
(1987), show that an inability to hold the
market portfolio, whatever the cause, will force
investors to care about total risk to some degree
in addition to market risk so that firms with
larger firm-specific variances require higher
average returns to compensate investors for
holding imperfectly diversified portfolios.7

That stocks with high idiosyncratic risk earn
higher returns has also been confirmed in a
number of recent empirical studies, including
in particular Tinic and West (1986) as well as
Malkiel and Xu (1997, 2006).
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Taken together, these findings suggest that to-
tal risk, a model-free quantity given by the sum
of systematic and specific risk, should be pos-
itively related to expected return. Most com-
monly, total risk is the volatility of a stock’s
returns. Martellini (2008) has investigated the
portfolio implications of these findings and has
found that tangency portfolios constructed on
the assumption that the cross-section of excess
expected returns could be approximated by the
cross-section of volatility posted better out-of-
sample risk-adjusted performance than their
market-cap-weighted counterparts.

More generally, recent research suggests that
the cross-section of expected returns might be
best explained by risk indicators taking into ac-
count higher-order moments. Theoretical mod-
els have shown that, in exchange for higher
skewness and lower kurtosis of returns, in-
vestors are willing to accept expected returns
lower (and with volatility higher) than those of
the mean-variance benchmark.8 More specifi-
cally, skewness and kurtosis in individual stock
returns (as opposed to the skewness and kurto-
sis of aggregate portfolios) have been shown to
matter in several papers. High skewness is asso-
ciated with lower expected returns in Barberis
and Huang (2004), Brunnermeier, Gollier, and
Parker (2005), and Mitton and Vorkink (2007).
The intuition behind this result is that investors
like to hold positively skewed portfolios. The
highest skewness is achieved by concentrating
portfolios in a small number of stocks that them-
selves have positively skewed returns. Thus in-
vestors tend to be underdiversified and drive
up the price of stocks with high positive skew-
ness, which in turn reduces their future ex-
pected returns. Stocks with negative skewness
are relatively unattractive and thus have low
prices and high returns. The preference for
kurtosis is in the sense that investors like low
kurtosis and thus expected returns should be
positively related to kurtosis. Boyer, Mitton,
and Vorkink (2010) and Conrad, Dittmar and
Ghysels (2008) provide empirical evidence that
individual stocks’ skewness and kurtosis is in-

deed related to future returns. An alternative to
direct consideration of the higher moments of
returns is to use a risk measure that aggregates
the different dimensions of risk. In this line, Bali
and Cakici (2004) show that future returns on
stocks are positively related to their value-at-
risk and Estrada (2000) and Chen, Chen, and
Chen (2009) show that there is a relationship
between downside risk and expected returns.

IMPLICATIONS FOR
BENCHMARK PORTFOLIO
CONSTRUCTION
Once careful estimates for risk and return
parameters have been obtained, one may then
design efficient proxies for an asset class bench-
mark with an attractive risk-return profile. For
example, Amenc et al. (2011) find that effi-
cient equity benchmarks designed on the ba-
sis of robust estimates for risk and expected
return parameters substantially outperform in
terms of risk-adjusted performance market cap
weighted indexes that are often used as default
options for investment benchmarks in spite of
their well-documented lack of efficiency.9

Table 1, borrowed from Amenc et al. (2011),
shows summary performance statistics for an
efficient index constructed according to the
aforementioned principles. For the average re-
turn, volatility, and the Sharpe ratio, we re-
port differences with respect to cap-weighting
and assess whether this difference is statistically
significant.

Table 1 shows that the efficient weighting
of index constituents leads to higher average
returns, lower volatility, and a higher Sharpe
ratio. All these differences are statistically sig-
nificant at the 10% level, whereas the differ-
ence in Sharpe ratios is significant even at the
0.1% level. Given the data, it is highly unlikely
that the unobservable true performance of ef-
ficient weighting was not different from that
of capitalization weighting. Economically, the
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Table 1 Risk and Return Characteristics for the Efficient Index

Index

Ann. Average
Return
(compounded)

Ann.
Standard
Deviation

Sharpe Ratio
(compounded)

Information
Ratio

Tracking
Error

Efficient index 11.63% 14.65% 0.41 0.52 4.65%
Cap-weighted 9.23% 15.20% 0.24 0.00 0.00%
Difference (efficient minus

cap-weighted)
2.40% –0.55% 0.17 – –

p-value for difference 0.14% 6.04% 0.04% – –

The table shows risk and return statistics portfolios constructed with the same set of constituents as the cap-weighted
index. Rebalancing is quarterly subject to an optimal control of portfolio turnover (by setting the reoptimization
threshold to 50%). Portfolios are constructed by maximizing the Sharpe ratio given an expected return estimate
and a covariance estimate. The expected return estimate is set to the median total risk of stocks in the same decile
when sorting by total risk. The covariance matrix is estimated using an implicit factor model for stock returns.
Weight constraints are set so that each stock’s weight is between 1/2N and 2/N, where N is the number of index
constituents. The p-values for differences are computed using the paired t-test for the average, the F-test for volatility,
and a Jobson-Korkie test for the Sharpe ratio. The results are based on weekly return data from 01/1959 to 12/2008.

performance difference is pronounced, as the
Sharpe ratio increases by about 70%.

ASSET ALLOCATION
MODELING: PUTTING THE
EFFICIENT BUILDING
BLOCKS TOGETHER
After efficient benchmarks have been designed
for various asset classes, these building blocks
can be assembled in a second step, the asset allo-
cation step, to build a well-designed multiclass
performance-seeking portfolio.

While the methods we have discussed so
far can in principle be applied in both con-
texts, a number of key differences should be
emphasized.

In the asset allocation context, the number
of constituents is small, and using time- and
state-dependent covariance matrix estimates
becomes reasonable, while they do not nec-
essarily improve the situation in portfolio
construction contexts when the number of
constituents is large. Similarly, while it is not
feasible in general, as explained above, to per-
form portfolio optimization with higher-order
moments in a portfolio construction context
where the number of constituents is typically

large, it is reasonable to go beyond mean-
variance analysis in an asset allocation context
where the number of constituents is limited.

Furthermore, in an asset allocation context,
the universe is not homogenous, which has im-
plications for expected returns and covariance
estimation. In terms of a covariance matrix, it
will not prove easy to obtain a universal factor
model for the whole investment universe. In
this context, it is arguably better to use statisti-
cal shrinkage toward, say, the constant correla-
tion model, as opposed to using a factor model
approach.10

KEY POINTS
� Modern portfolio theory advocates the sep-

aration of the management of performance
and risk control objectives. In the context of
asset allocation decisions, the fund separa-
tion theorem provides rational support for
liability-driven investment techniques whose
solutions involve the design of a customized
liability-hedging portfolio and the design of
a performance-seeking portfolio.

� The sole purpose of the liability-hedging port-
folio is to hedge away as effectively as possi-
ble the impact of unexpected changes in risk
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factors affecting liability values (most notably
interest rate and inflation risks); the purpose
of the performance-seeking portfolio is to pro-
vide investors with an optimal risk-return
trade-off.

� An implication of the liability-driven invest-
ment paradigm is that one should distinguish
two different levels of asset allocation deci-
sions: (1) decisions involved in the design
of the performance-seeking or the liability-
hedging portfolio (design of better build-
ing blocks), and (2) decisions involved in
the optimal split between the performance-
seeking portfolio and liability-hedging port-
folio (designed of advanced asset allocation
decisions).

� Although modern portfolio theory provides
some useful guidance with respect to the op-
timal design of performance-seeking portfo-
lios that would best suit investors’ needs,
in practice, investors end up holding more
or less imperfect proxies for the truly op-
timal performance-seeking portfolio, if only
because of the presence of parameter uncer-
tainty, which makes it impossible to obtain
a perfect estimate for the maximum Sharpe
ratio portfolio.

� The allocation to the performance-seeking
portfolio is a function of two objective param-
eters, the PSP volatility and the PSP Sharpe
ratio, and one subjective parameter, the in-
vestor’s risk aversion. The optimal allocation
to the PSP is inversely proportional to the in-
vestor’s risk aversion.

� In practice, the success in the implementation
of a theoretical model relies not only upon its
conceptual grounds but also on the reliabil-
ity of the inputs of the model. In the case of
mean-variance optimization the results will
highly depend on the quality of the parame-
ter estimates: the covariance matrix and the
expected returns of assets.

� Several improved estimates for the co-
variance matrix have been proposed: the
factor-based approach, constant correlation
approach, and statistical shrinkage approach.

� The key problem in covariance matrix esti-
mation is the curse of dimensionality. Conse-
quently, at the estimation stage, the challenge
is to reduce the number of factors that come
into play. In general, a multifactor model de-
composes the (excess) return (in excess to the
risk-free asset) of an asset into its expected re-
wards for exposition to the “true” risk factors.

� The problem of choosing the right factor
model still remains. The statistical technique
of principal components analysis is com-
monly used to determine the underlying risk
factors from the data.

� While it appears that risk parameters can
be estimated with a fair degree of accuracy,
it has been shown that expected returns
are difficult to obtain with a reasonable
estimation error. What makes the problem
worse is that optimization techniques are
very sensitive to differences in expected
returns, so that portfolio optimizers typically
allocate the largest fraction of capital to the
asset class for which estimation error in the
expected returns is the largest. In the face of
the difficulty of using sample-based expected
return estimates in a portfolio optimization
context, a reasonable alternative consists in
using some risk estimate as a proxy for excess
expected returns.

� Research suggests that the cross-section of ex-
pected returns might be best explained by risk
indicators taking into account higher-order
moments. Theoretical models have shown
that, in exchange for higher skewness and
lower kurtosis of returns, investors are will-
ing to accept expected returns lower (and
volatility higher) than those of the mean-
variance benchmark.

� Once careful estimates for risk and return pa-
rameters have been obtained, one may then
design efficient proxies for an asset class
benchmark with an attractive risk-return pro-
file. After efficient benchmarks have been
designed for various asset classes, these
building blocks can be assembled in a sec-
ond step, the asset allocation step, to build
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a well-designed multiclass performance-
seeking portfolio.

NOTES
1. For more details, see Appendix A.1 in

Amenc, Goltz, Martellini, and Mihau
(2011).

2. See, for example, Haugen and Baker (1991),
Grinold (1992), or Amenc, Goltz, and Le
Sourd (2006).

3. De Miguel et al. (2009).
4. Another key challenge is the presence of

nonstationary risk parameters, which can
be accounted for with conditional fac-
tor models capturing time-dependencies
(e.g., GARCH-type models) and state-
dependencies (e.g., Markov regime switch-
ing models) in risk parameter estimates.

5. See Britten-Jones (1999) or Michaud (1998).
6. This discussion focuses on estimating the

fair neutral reward for holding risky assets.
If one has access to active views on expected
returns, one may use a disciplined approach
(e.g., the Black-Litterman model) to com-
bine the active views with the neutral esti-
mates.

7. See also Barberis and Huang (2001) for
a similar conclusion from a behavioral
perspective.

8. See Rubinstein (1973) and Kraus and
Litzenberger (1976).

9. See, for example, Haugen and Baker (1991)
and Grinold (1992).

10. See Ledoit and Wolf (2003, 2004).
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Abstract: Asset pricing is mainly about transforming asset payoffs into prices. The most important
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In this entry, we discuss the general principles
of asset pricing. Our focus here is to analyze
asset pricing in a more general setup. Due to its
generality, this entry is inevitably more abstract
and challenging, but important for understand-
ing the foundations of modern asset pricing
theory. First, by extending the state-dependent
contingent claims with two possible states
allowing for an arbitrary number of states, we
introduce the economic notions of complete
market, the law of one price, and arbitrage.
Then, we provide the fundamental theorem of
asset pricing that ties these concepts to asset
pricing relations. Subsequently, we discuss
stochastic discount factor models, which is
the unified framework of various asset pricing
theories that include the capital asset pricing
model (CAPM) (see Sharpe, 1964; Lintner, 1965;
Mossin, 1966) and arbitrage pricing theory (APT)
(see Ross, 1976) as special cases.

ONE-PERIOD FINITE STATE
ECONOMY
If a security has payoffs, denoted by x,

x̃ =
{

$1, up
0, down

it means that the economy will have two states
next period, up or down, and the security will
have a value of $1 or 0 in the up and down
states, respectively. Similarly, as a simple exten-
sion, we can think that the economy has three
states next period: good, normal, and bad. Then,
any security in this economy must have three
payoffs corresponding to the three states. For
example,

x̃ =
⎧
⎨

⎩

$3, good
$2, normal
$1, bad
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is a security in the states economy with val-
ues of $3, $2, and $1, respectively, in the three
states. For notational brevity, we sometimes
use the transposed vector dropping the dollar
sign, (3, 2, 1)′, to denote the payoff of this secu-
rity, where the apostrophe (‘) is the symbol for
transpose.

In general, we can consider an economy with
an arbitrary number of s states and N securities.
In this economy, the payoff of any security can
be expressed as

x̃ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v1,

v2,
...

vs,

State 1
State 2

...
State s

(1)

where the v’s are the values of the security in the
m states. For example, suppose state s = 4, then
a security with payoff (1.10, 1.10, 1.10, 1.10)′ is
a well-defined security in our four-state econ-
omy. Suppose further that the price of this secu-
rity is $1, then this security earns $0.10 or 10%
($0.1/$1) regardless of the state. Hence, this se-
curity is risk free with a rate of return of 10%
regardless of the state of the economy.

Suppose now that there is a total of N secu-
rities, x̃1, · · · , x̃N, in an economy of s states. We
can summarize the payoffs next period of all
the N securities by using the following matrix,

X =

⎛

⎜⎝
v11 . . . v1N
...

. . .
...

vs1 · · · vs N

⎞

⎟⎠ (2)

where each of the N columns represents the
values of the securities. It is evident that matrix
X summarizes payoffs of all the securities and
determines their future values completely.

The asset pricing question is how to deter-
mine the price for each of the securities. Mathe-
matically, the pricing mechanism can be viewed
as a mapping from the j-th security (or the s
vector, the payoff obtained from owning the se-
curity), to a price p that an investor is willing to
pay today,

ρ(x̃ j ) = p j (3)

As it turns out, simple economic principles
imply many useful properties for the mapping,
which comprises the general principles of asset
pricing to be discussed below.

PORTFOLIOS AND MARKET
COMPLETENESS
In evaluating securities, a key principle is to
evaluate them as a whole, and not in isolation.
To do so, consider a portfolio of the N securities

x̃p = ϕ1 x̃1 + ϕ2 x̃2 + · · · + ϕNx̃N (4)

where the ϕ’s are portfolio weights that now
represent the units of the securities we purchase
in the portfolio, and x̃p is the payoff of the port-
folio, which simply adds up the individual val-
ues. Note that the weights can be either positive
or negative. A negative weight on a security is a
short position. In the case where no short sales
are allowed, the weights are restricted to be
positive.

Note that the portfolio weights are often the
percentages of money we invest in the securi-
ties, where prices are given and we are inter-
ested in the return on a portfolio. In contrast,
we focus here on the weights in terms of units
because we are interested in determining the
prices from payoffs. However, once the prices
are given, the weights in terms of either units
or percentages are equivalent. To see this, if we
express a portfolio in term of returns, denoted
by R, rather than payoffs as above, then the
portfolio return is

Rp = w1 R1 + w2 R2 + · · · + wN RN (5)

where

Rj = x̃ j

p j

is the gross return on security j , which is one
plus the usual percentage return. The relation
between the ϕ’s and the w’s is

w j = ϕ j p j

ϕ1 p1 + · · · + ϕN pN
(6)
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where the numerator is the amount of money
allocated to security j, and the denominator is
the total amount of money invested in the secu-
rities, so that the w’s are the percentage weights
as before.

Consider the following two securities in a
two-state economy:

x̃1 =
{

1,

0,

up
down

, x̃2 =
{

0,

1,

up
down

Suppose their prices today are $1. Then, with
an investment of $1 that buys 0.5 unit each of
the securities, one obtains a portfolio

x̃ = ϕ1 x̃1 + ϕ2 x̃2 = 0.5x̃1 + 0.5x̃2

with payoff

x̃ =
{

0.5,

0.5,

up
down

One can also buy 2 units of the first security,
and short one unit of the second security; then
the resulting portfolio is

x̃ = 2x̃1 + (−1)x̃2

with payoff

x̃ =
{

2,

−1,

up
down

Note that the payoff of the portfolio is neg-
ative, −$1, in the down state. This means that
when the economy is down, one has to buy back
the second security at a price of $1 (its value in
the down state) to cover the short position. The
net cost is $1, the payoff of the portfolio in the
down state. In contrast to the portfolio where
equal dollar amounts are invested in both secu-
rities, this portfolio with short sales permitted
has a higher payoff of $2 in the up state, which
compensates for the loss in the down state.

Redundant Assets
A portfolio is uniquely determined by its port-
folio weights, which can be summarized by
the N-vector

ϕ = (ϕ1, ϕ2, . . . , ϕN)′

The portfolio’s payoffs are then uniquely de-
termined by the s-vector,

Payoff = Xϕ (7)

For example, one can easily verify that this is
true in our first illustration in which X is simply
equal to the identity matrix.

A portfolio ϕ is said to be replicable if we can
find another portfolio with different weights, ω,
such that their payoffs are equal

Xω = Xϕ, ω �= ϕ (8)

In particular, if one of the x’s can be replicated
by a portfolio of others, it is called a redundant
asset or redundant security. In any economy, re-
dundant securities can be eliminated without
affecting the properties of all the possible port-
folios of the remaining assets. Sometimes, in
order to distinguish the securities, the x’s that
define the economy, and all their possible port-
folios, we will refer to the x’s as primitive secu-
rities because all other portfolios are composed
of them.

Consider the following two-state economy

x̃1 =
{

1,

0,

up
down

, x̃2 =
{

2,

0,

up
down

with prices for both securities being $1 and
$2 today. The portfolio with weight vector ϕ =
(0.5, 0.5)′ is

x̃ = 0.5x̃1 + 0.5x̃2

This portfolio is replicable because it is also
equal to

x̃ = 1.5x̃1

The primitive asset x2 is redundant here be-
cause its payoff is simply double the payoff of
the first asset.

Complete Market
In an economy with N risky securities and s
states, a security market is formed if arbitrary
buying and shorting are allowed, which creates
infinitely many possible portfolios. We say the
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market is complete and is hence referred to as a
complete market, if, for any possible payoff, there
is a portfolio of the primitive securities to repli-
cate it. That is, for any desired payoff x̃, we can
find portfolio weights such that

ϕ1 x̃1 + ϕ2 x̃2 + · · · + ϕNx̃N = x̃ (9)

A complete market not only allows investors
to obtain any desired payoff in any state (with a
price), but also permits unique security pricing,
as will be clear later.

For example, the two securities in our first
example will form a complete market. This is
because for any possible payoff

x̃ =
{

a ,

b,

up
down

the portfolio

a x̃1 + bx̃2

yields the payoff. To see why, if one investor
wants to get a $2 payoff in the up state and $3 in
the down state, buying 2 units of the first secu-
rity and 3 units of the second security will pro-
vide what is exactly desired. However, the two
securities in our second example above form an
incomplete market. This is because for any pos-
sible portfolios consisting of the two securities,
it will be impossible to create a payoff of $1 in
the down state.

In terms of matrix and vector notation, a com-
plete market requires that, for any payoff vec-
tor, we can find portfolio weights ϕ to solve the
linear equation with ϕ as the unknown variable

Xϕ = y (10)

Note that X is an s by N matrix and y is
an s-vector. Recall from linear algebra that the
number of independent columns of X is called
the rank of the matrix X, denoted as rank(X)
below. If rank(X) = s, the linear combinations
of these columns will generate all possible s-
vectors. That is, a portfolio of those securities
whose payoffs are those independent columns
is capable of producing any possible payoffs,
or the market must be complete. Conversely,

if the above linear equation has a solution to
any y, it must do so for s independent y’s, say,
the s columns of the s-dimensional identity ma-
trix, which is an s by s matrix with diagonal
elements 1 and zero elsewhere. For example, if
s = 2, the y’s correspond to the payoffs of the
two securities in our first example. This means
that the linear combinations of the columns of X
are capable of yielding s independent columns.
So, the number of independent columns must
be greater than or equal to s. Since X is an s by
N matrix, its number of independent columns,
rank(X), cannot be greater than s. Then the only
possibility is equal to s.

We can summarize our discussion in the fol-
lowing proposition:

Market Completeness Proposition: The market is
complete if and only if the rank of the s by N
payoff matrix X is s, that is,

rank(X) = s (11)

Consequently, for s possible states, we should
have at least N ≥ s primitive assets for the mar-
ket to be complete. One can verify that the rank
condition holds for the two securities in our first
example, but not in our second example.

THE LAW OF ONE PRICE AND
LINEAR PRICING
In this section, we first discuss the law of one
price and its relation to the linear pricing rule,
and then introduce the concept of state price
and relate it to the law of one price.

Linear Pricing
The law of one price (LOP) says that two assets
with identical payoffs must have the same price.
In international trade, in the absence of tariffs
and transportation costs, an apple sold in New
York City must have the same price as an apple
sold in London after converting the money into
the same currency. This provides an economic
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channel through which to tie the currencies to-
gether. In the financial markets, the LOP says
that we should not be able to profit from buying
the same security at a higher price and selling
it at a lower one.

Mathematically, under LOP, if two portfolios
have the same payoffs

Xϕ = Xω (12)

then their prices today must be the same

ρ(Xϕ) = ρ(Xω) (13)

where, as we recall from our earlier discussion,
ρ is the mapping that maps the payoff of an
asset or of a portfolio into its price.

A simple necessary and sufficient condition
for the LOP to hold is that every portfolio with
zero payoff must have zero price. To see the ne-
cessity, suppose that there is an asset with zero
payoff that sells at a nonzero price, say, $0.01.
We can combine this asset with any other asset
to form a new asset without changing the pay-
off, but the price of this new asset is $0.01 higher
than before packaging the two assets. The LOP
says that the old one and the new one must
have the same price, which is, of course, a con-
tradiction. Conversely, if two portfolios with an
identical price were sold at different prices, say
$2.01 and $2, buying the one with the price of
$2.01 and shorting the one with a price of $2
creates an asset with zero payoff, but a price of
$0.01. This is not possible from the zero price
condition.

The LOP essentially prevents an asset from
having multiple prices, which gives rise to its
name. Only when it is true is it possible for there
to be rational pricing with a unique price. An
important theoretical implication of the LOP is
that the price mapping, the ρ function, must be
linear:

ρ[X(aϕ + bω)] = aρ(Xϕ) + bρ(Xω) (14)

That is, the price of a portfolio must be equal
to a portfolio of the component prices. Intu-
itively, the price of two burgers must be two
times the price of one, and the price of a burger

and a Coke must be the same as the sum of
the two individual prices. The linear pricing
rule is fundamental in finance. It implies that, if
the share price of a company is its future cash
flows, then no matter how one slices the cash
flows, the price will remain unchanged and is
equal to the values of the slices added together.

The linear pricing rule clearly implies the
LOP. The price mapping is uniquely deter-
mined by the payoffs only, and so it must be
the case that the prices are identical if the pay-
offs are. Conversely, if the LOP is true, paying
the price of the left-hand side of equation (14)
will result in a portfolio with the identical pay-
off as the right-hand side, and hence their prices
must be the same. A formal statement of this is
as follows:

Linear Pricing Rule: The law of one price is valid
if and only if the linear pricing rule is true.

State Price
In asset pricing, the concept of a state price is
fundamental. In our states economy, there are
s states. The state price in state i is the price
investors are willing to pay today to obtain
one unit of payoff in that state, and nothing
in other states. The state price is also known as
the Arrow-Debreu price, named in honor of the
originators. A state price vector will then be an
s-vector of all the prices in all the states. If there
exists a state price vector q = (q1, q2, . . . , qs)′,
then we can write the asset price for each prim-
itive security as

p j = q1v1 j + q2v2 j + · · · + qsvs j (15)

In words, this equation says that the price of
the j-th security is equal to its payoffs in each of
the states times the price per unit value in that
state.

The state price is not only useful for linking
the payoffs of the primitive securities to their
prices, but also useful to price any new as-
sets, including any other contingent claims or
derivatives in the economy. All we need to do is
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to identify the payoffs of these assets and then
sum the products of the payoffs with their state
prices to obtain asset prices.

The question is whether the state price vec-
tor always exists. We rewrite the state pricing
relation (15) in matrix form as

p = X′q (16)

The existence of the state price vector q is the
existence of solution q to the linear equation
given by (16). In our states economy here, we
can show that the LOP is necessary and suffi-
cient for the existence of the state price, while
in more complex economies, say those with an
infinite number of assets and an infinite num-
ber of states, some auxiliary condition may be
needed.

Existence of State Price Condition: The law of one
price is valid if and only if the state price
vector exists.

The proof of the above follows from linear
algebra. If the state price vector exists, then

p′ϕ = q X′ϕ = q X′ω = p′ω

which says that the price of the portfolio with
weights ϕ is the same as the price of another
portfolio as long as their payoffs are identical.
Conversely, if the LOP is true, then for any port-
folio weights w with zero payoff or satisfying
X′ϕ = 0, we must have zero price or p′ϕ = 0.
This means that p is orthogonal to every vector
that is orthogonal to X. Now projecting p on
the entire N-dimensional space, p must then be
a linear combination of the columns of X. The
combination coefficients are exactly equal to q ,
which is what we are looking for. The proof is
therefore complete.

As an example, consider the following two
securities in a two-state economy,

x̃1 =
{

1,

0,

up
down

, x̃2 =
{

2,

0,

up
down

where the first security has a price of $1 and the
second of $2. Clearly the prices are consistent
with the LOP. In this case, a state price of (1, 0)′

can price all portfolios of the two securities:

1 = 1 × 1 + 0 × 0

and

2 = 1 × 2 + 0 × 0

Another state price (1, 2)′ can also do the
same. A more subtle case is in an economy when

x̃1 =
{

1,

1,

up
down

, x̃2 =
{

2,

2,

up
down

with the same prices of $1 and $2. Then
(0.5, 0.5)′ and (0.2, 0.8)′ both, among others,
price the two primitive securities and all their
portfolios correctly.

Under what conditions will the state price be
unique? To find the conditions, recall the matrix
form of the state pricing relation

p = X′q

The LOP is equivalent to the existence of the
state price vector q . If the market is in addition
complete, then q in the above equation can be
uniquely solved as

q = (XX′)−1 Xp (17)

Note that X is s by N, so its inverse is unde-
fined unless s = N. But the inverse of the s by s
matrix, XX′, is well defined. Equation (17) leads
to our next proposition.

Uniqueness of State Price Proposition: If the law
of one price holds, and if the market is
complete, the state price must exist and be
unique.

For example, consider the following two se-
curities in a two-state economy

x̃1 =
{

1,

2,

up
down

, x̃2 =
{

3,

4,

up
down

where the first security has a price of $4 and the
second of $10. We can check that both the rank
and LOP conditions are true. The unique state
price vector is then given by equation (17),
[

q1

q2

]
=

(
5 −3.5

−3.5 2.5

) (
1 3
2 4

) [
4

10

]
=

[
2
1

]
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It can be verified that these prices indeed work
for pricing the two primitive securities.

ARBITRAGE AND POSITIVE
STATE PRICING
The assumption of the absence of arbitrage is
the foundation upon which asset pricing the-
ories rely. When there are any free lunches or
what economists refer to as arbitrage opportuni-
ties, asset prices are not rational. Investors are
likely to be able to correct the prices by ex-
ploiting the arbitrage opportunities, and even-
tually these opportunities will disappear, and
the prices will reflect their true values. Asset
pricing theory is largely concerned with these
equilibrium true values.

In our states economy, the concept of arbitrage
can be formally defined. There are two types of
arbitrage. The first type exists if there is a port-
folio strategy that requires no investment to-
day (i.e., referred to earlier as a zero-investment
strategy) and yet yields nonnegative payoffs in
the future, and positive (or not identical to zero)
at least in one of the states. Mathematically, this
type of arbitrage can be expressed as

Xϕ ≥ 0, and not equal to zero

with

p1ϕ1 + p2ϕ2 + · · · + pNϕN ≤ 0

The second type of arbitrage is one in which
a portfolio strategy earns money today, and yet
has no future obligations. We can express this
mathematically as follows:

Xϕ ≥ 0

with

p1ϕ1 + p2ϕ2 + · · · + pNϕN < 0

Consider as an example the following two se-
curities in a two-state economy:

x̃1 =
{

1,

2,

up
down

, x̃2 =
{

2,

4.1,

up
down

with prices $1 and $2. If we follow a strategy
that involves shorting two units of the first se-
curity and buying one unit of the second secu-
rity, then our net investment will be zero, but
the payoffs will be

−2 × x̃1 + 1 × x̃2 =
[

0
0.1

]

This is an arbitrage of the first type. However,
there is no arbitrage of the second type. This is
because for any weights ϕ1 and ϕ2, if the cost is
negative, that is,

ϕ1 + 2ϕ2 < 0

then the payoff in the up state of the portfolio,

ϕ1 + 2ϕ2

will be negative too.
To illustrate, consider the following two secu-

rities in a two-state economy,

x̃1 =
{

1,

−1,

up
down

, x̃2 =
{

2,

−4,

up
down

with prices $1 and $1.9. If we short two units of
the first security and buy one unit of the second
security, then our net investment will be

(−2) × 1 + 1 × 1.9 = −0.1

but the payoffs will be

−2 × x̃1 + 1 × x̃2 =
[

0
0

]

This is an arbitrage of the second type. How-
ever, there is no arbitrage of the first type. This is
because for any weights ϕ1 and ϕ2, the arbitrage
requires the portfolio payoffs be nonnegative

ϕ1 + 2ϕ2 ≥ 0

and

−ϕ1 − 2ϕ2 ≥ 0

in the two states, respectively. The only non-
negative payoffs for both the states is the zero
payoff in this case. So, there cannot be an arbi-
trage of the first type.

Note that the pricing operator is to map the
payoffs of an asset to its price, and it provides
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that the state price of the payoff is $1 in that
state and nothing in other states. If the state
price in one state is zero, this will be clearly
an arbitrage opportunity as an investor can get
future payoffs in this state for paying a zero
price today. To rule out arbitrage opportunities
in the economy, it is hence necessary to require
the state prices be positive. When the pricing
operator is both linear and implying positive
state prices, we call it a positive linear pricing
rule. As it turns out below, the existence of such
a positive linear pricing rule is equivalent to
the absence of arbitrage opportunities in the
economy.

Arbitrage is also related to the LOP. If there is
no arbitrage, the LOP must be true. This is be-
cause if two portfolios with two identical pay-
offs were sold at different prices, a “buy low
and sell high” strategy will result in the con-
struction of a portfolio with zero payoffs in the
future, but with positive proceeds today. This
is an arbitrage of the first type. Thus, the no-
arbitrage condition is stronger than the LOP.
In finance, the assumption of no arbitrage is
crucial, as explained next by the fundamental
theorem of asset pricing.

THE FUNDAMENTAL
THEOREM OF ASSET
PRICING
Consider now an investor’s utility maximiza-
tion problem. Assume the investor prefers more
to less, so that the utility function is mono-
tonic in the consumption level. Given an initial
wealth W0, and given the trading opportunities,
the investor’s future consumption, as a vector
in the s states, will be

C1 = W1 + (W0 − C0) × Rp

where

C0 = consumption (measured in dollars)
today,

Rp = return on a portfolio of assets, which
can be optimally chosen by the investor
maximizing his or her utility, and

W1 = the investor’s income from other sources
next period, such as labor income

The utility is a monotonic function of both C0

and C1.
Then the following theorem ties together the

no-arbitrage, positive linear pricing rule, and
the utility maximization problem.

Fundamental Theorem of Asset Pricing: The fol-
lowing are equivalent:

1. Absence of arbitrage
2. Existence of a positive linear pricing rule
3. Existence of an investor with monotonic

preference whose utility is maximized

We provide a simplified proof here. (A more
rigorous proof is provided in Dybvig and Ross
(1987).)

To see that the absence of arbitrage implies ex-
istence of a positive linear pricing rule, we note
first that earlier we provided the argument for
the existence of the linear pricing rule. The pos-
itivity of the state prices must be true in the
absence of arbitrage. This is because, if there is
a zero or negative state price in some state, then
the payoffs in this state are free lunches, so arbi-
trage opportunities can arise. Conversely, if the
state prices are positive, every single payoff in
each state has a positive price, and there cannot
be any free lunch.

Mathematically, this can also be easily demon-
strated. If ϕ is an arbitrage portfolio so that its
price is zero or negative, then

0 ≥ p′ϕ = (X′q )′ϕ = q ′(Xϕ)

where the first equality is the linear pricing rule,
and the second equality holds by matrix multi-
plication rules. Because of positive state prices,
all components of q are positive. If p′ϕ is zero,
Xϕ must be all zeros, and if p′ϕ is negative, Xϕ

must have strictly negative components. Both
contradict the assumption that ϕ is an arbitrage
portfolio. Hence, there are no arbitrage oppor-
tunities when the state prices are positive.
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To see how the existence of a positive lin-
ear pricing rule implies the existence of an
investor with monotonic preference whose util-
ity is maximized, the consumption of the in-
vestor in each state must be finite since the
investor has finite wealth, and since the investor
faces a binding budget constraint due to pos-
itive state prices. Finally, the existence of an
investor with monotonic preference whose util-
ity is maximized clearly implies the absence of
arbitrage. This is because adding an arbitrage
portfolio (i.e., a free lunch) to the investor’s
portfolio will only strictly increase his or her
utility without affecting the budget, contradict-
ing the fact that the utility is maximized to begin
with. This concludes our proof.

An important insight from the fundamental
theorem is what we need for rational pricing.
In deriving pricing formulas, many theoreti-
cal equilibrium asset pricing models assume all
investors behave rationally and have identical
information sets. The theorem says that, to ra-
tionally price assets or to ensure market pricing
efficiency, we do not need to assume that all in-
vestors are smart. What we need is a few smart
ones who can capitalize on any arbitrage op-
portunities. Then, the prices should be in line
with their payoffs in the economy.

The Discount Factor
Related to the fundamental theorem is the con-
cept of the discount factor. As it turns out, this
is the common feature of almost all asset pric-
ing models, a point that will become evident in
the next section. Let θi > 0 be the probability for
state i to occur. The linear pricing rule given by
equation (15) can be rewritten as

p j = θ1(q1/θ1)v1 j + θ2(q2/θ2)v2 j + · · ·
+ θs(qs/θs)vs j = E(mv j ) (18)

where m is a random variable whose value in
state s is equal to

ms = qi

θs
(19)

Equation (18) says that the price for asset j is
given by the expected value of its payoff multi-
plied by a random variable m, where m is com-
mon for all assets.

Suppose now that there is a risk-free asset in
the economy that can earn a risk-free interest
rate r , and that the price of this risk-free asset
today is $1 (we can scale the asset unit if nec-
essary). Then the payoff of this risk-free asset’s
price in the next period will be 1 + r in all the
states. So, by equation (18), we have for the fol-
lowing expected payoff for this risk-free asset

1 = E[m(1 + r )]

and therefore

E[m] = 1
1 + r

(20)

If there were no risks in the economy, and if
there were no arbitrage, it is clear that all assets
should earn the same risk-free rate of return.
Hence, assets should be priced by their present
values of the cash flows, or the prices are equal
to the discounted cash flows with the discount
factor 1/(1 + r ). When there is risk as is the case
now, the payoffs are multiplied by the random
variable m whose mean is 1/(1 + r ). This is why
m is also known as a stochastic discount factor
because (1) it is random, and (2) it extends the
risk-free discounting to the risky asset case.

Consider, for example, three securities in a
three-state economy with prices $5, $5, and $6,
and with the following payoff matrix:

X =
⎛

⎝
10 20 30
10 10 10
10 5 5

⎞

⎠

In this economy, the first asset is the risk-free
asset since it has a constant payoff of $10 regard-
less of the future state. Moreover, the risk-free
rate is 100% because the asset is sold at a price
of $5. The state price vector can be solved using
equation (17) and is q = (0.1, 0.2, 0.2)′. Assume
the probability for each state is 1/3. Then the
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linear pricing rule can be expressed as

5 = p1 = 1
3

× (0.3 × 10) + 1
3

× (0.6 × 10)

+ 1
3

× (0.6 × 10),

5 = p2 = 1
3

× (0.3 × 20) + 1
3

× (0.6 × 10)

+ 1
3

× (0.6 × 5),

6 = p3 = 1
3

× (0.3 × 30) + 1
3

× (0.6 × 10)

+ 1
3

× (0.6 × 5)

Let m be a random variable that has values
0.3, 0.6, and 0.6 in the three possible states. Then
the above says that, for each asset, the price is
the expected value of the discounted payoff.
The mean of the discount factor is

E[m] = 1
3

× 0.3 + 1
3

× 0.6 + 1
3

× 0.6 = 0.5

= 1
1 + 100%

This verifies equation (19).
The state price vector, or equivalently the dis-

count factor, is not only useful for pricing primi-
tive assets, but also useful to price any portfolio
consisting of them, as well as derivatives. For
example, consider a call option that grants the
owner of the option the right to buy one unit of
the second asset at a price of $10. This option
will have a value in state 1 equal to $10 (the
price of the second asset in state 1 reduced by
the price that must be paid to acquire asset 1 as
provided for by the option, $10. The value of the
option is therefore $10, the difference between
$20 – $10 in state 1). In the other two states, the
value of the option is zero because the payoff
(i.e., the price of the second asset) is no greater
than $10. Hence, it would not be economic for
the owner of the option to exercise. Then the
price of this call option is

Price of Call = 1
3

× (0.3 × 10) + 1
3

× 0

+ 1
3

× 0 = 1

The discount factor prices the assets by taking
the expectation under the true probabilities.

Pricing Using Risk-Neutral
Probabilities
Alternatively, one can also price the assets un-
der a probability measure known as the risk-
neutral probabilities. The approach is especially
useful for pricing derivatives. The reason is that
the risk-neutralized payoffs are easier to deter-
mine, while the solution of the discount factor
is more complex.

To see how the risk-neutral approach works
here, we apply the linear pricing rule given by
equation (18) to the risk-free asset. We have:

1 = q1(1 + r ) + q2(1 + r ) + · · · + qs(1 + r )

so that

q1 + q2 + · · · + qs = 1
1 + r

= q

which says the sum of state prices must be equal
to the present value of $1 today. Denote by q the
sum of the individual q ’s. Since now all the state
prices are positive, the ratio of each to q can be
considered a probability. Since the ratios sum
to one, the probability is well defined. How-
ever, this is not the original true probability of
the states, but rather some artificial probability,
which will be useful in the future for pricing
derivatives and other assets.

Suppose now, without loss of generality, that
the risk-free asset is the first one. Then the pric-
ing relations for the other assets are

p j = q1v1 j + q2v2 j + · · · + qsvs j

= 1
1 + r

(
q1

q
v1 j + q2

q
v2 j + · · · + q2

q
vs j

)

= 1
1 + r

E Q[v j ] (21)

that is, the price is the present value discounted
at the risk-free rate of the risk-adjusted expected
payoff of the asset, where E Q denotes the expec-
tation taken under the artificial probability. In
other words, for any risky asset, we compute
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its value in two steps. In the first step, the risk-
neutralized payoff is calculated. In the second
step, treating this payoff as riskless, the payoff
is discounted at the risk-free rate to obtain the
price. Consequently, the artificial probability is
also often referred to as the risk-neutral probabil-
ity measure.

For example, for the assets in our previous
example, the sum of the state prices is

0.1 + 0.2 + 0.2 = 1
1 + 100%

= 0.5

Moreover, the risk-neutral probabilities are
1/5, 2/5, and 2/5. So the expected payoff of
the earlier call option is

E Q(call) = 1
5

× 10 + 2
5

× 0 + 1
5

× 0 = 2

Discounting the $2 at the risk-free rate (100%
in our example), we get the price of $1 (= $2/

(1 + 1)). This price is, of course, the same as
computed above using the discount factor to
price the call option.

DISCOUNT FACTOR MODELS
In this section, we provide the discount factor
models in a more general setup by allowing
the asset returns to be arbitrarily distributed,
not necessarily finite states as in the previous
section. Then we derive a lower bound on the
variance of all possible discount factors, known
as the Hansen-Jagannathan bound, and apply it
to analyze the implications of some important
theories in financial economics.

STOCHASTIC DISCOUNT
FACTORS
Consider now a more general problem of an in-
vestor who is interested in maximizing utility
over the current and future values of consump-
tion,

U(Ct, Ct+1) = u(Ct) + δE[u(Ct+1)]

where the first term is the utility of consump-
tion today, the second term is the utility of fu-

ture consumption, and δ is the subjective time-
discount factor of the investor that captures the
investor’s trade-off between current and future
consumption. Note that the second term has
an expectation operation since future consump-
tion is unknown today, and the investor can
only maximize the expected utility with the ex-
pectation taken over all possible random real-
izations of the future consumption.

Besides the quadratic utility, another popular
form of utility function is the power utility

u(Ct) = C1−γ
t

1 − γ

where γ is the risk-aversion coefficient. The
higher the γ , the more risk averse the investor.
Typically, a value of γ of about 3 is believed to
be reasonable.

For notational brevity, we assume there is only
one risky asset, which the pricing relation de-
veloped holds for an arbitrary number of as-
sets by adding them into the model. Unlike
earlier sections in this entry where finite pay-
offs were assumed, we now assume the payoff
of the risky asset can have an arbitrary proba-
bility distribution, so long as the expectation is
well defined. The budget constraints for maxi-
mizing the utility can be written as

Ct = Wt − ptw

Ct+1 = Wt+1 + Xt+1w

where Wt and Wt+1 are the investor’s wealth
from other sources, w is the number of units of
the risky asset the investor purchases today at
time t, pt is the security price, and Xt+1 is the
payoff.

Plugging the budget constraints into the util-
ity function, and taking the derivative with re-
spect to w, we obtain the first-order condition
(FOC):

ptu′(Ct) = Et[δu′(Ct+1)Xt+1]

or

pt = Et[mXt+1], m = δ
u′(Ct+1)
u′(Ct)

(22)

This equation says that the price today is the
expected value of the discounted payoff, and m
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is the discount factor. In the case of the power
utility,

m = δ

(
Ct+1

Ct

)−γ

(23)

which is a power function of the consumptions.
What we have derived in equation (22) is

called a consumption-based asset pricing model, so
named because the theory is motivated from
the perspective of consumption. This motiva-
tion is different from the earlier no-arbitrage
arguments that yield equation (18). However,
the pricing equations have the same form, ex-
cept that the discount factor now takes a new
specification. Indeed, most, if not all, asset pric-
ing models are of the discount factor form, and
different theories may specify the m differently.
For the particular specification of m given by
equation (22), it is also known as the marginal
rate of substitution because it is the ratio of the
marginal utilities.

Intuitively, when the marginal rate of substi-
tution is high, the value of future consumption
will be high, and an investor is willing to pay
more for the asset if the asset’s payoff is high
in this case. This is why the price, as given by
equation (22), is high.

The discount factor representation of asset
prices is often also expressed in terms of re-
turns. Let Rt be the gross return on the asset
where the gross return is equal to one plus the
return. That is,Rt = Xt+1/pt. Then the pricing
relation in equation (22) is equivalent to

1 = Et[mRt+1] (24)

If an asset price is scaled to be equal to $1, the
payoff will be its return, and then the expected
discounted return must be equal to $1, its price
today. When there are N risky assets, we can
write the discount factor model as

1 = Et[mRj,t+1] (25)

where Rj,t+1 is the return on the asset j.
Note that the expectation in equation (25) is

conditional on all available information and
therefore the pricing relation is known as the

conditional form of the discount factor model. Tak-
ing expectation on both sides of equation (25),
we obtain

1 = E[mRj,t+1] (26)

which is known as the unconditional form of the
discount factor model. Since conditional implies
unconditional, and the reverse is not necessar-
ily true, equation (26) is a weaker form of the
model.

Application to CAPM and APT
To see the generality of the discount factor
model, consider now its relation to the two
dominant equilibrium asset pricing models: the
CAPM and APT. As explained shortly, one can
write these two asset pricing models as follows:

E[Rj ] = τ + λ1β j1 + · · · + λK β j K (27)

where Rj is the gross return on asset j, β jk is the
beta or risk exposure on the k-th factor fk , λk

is the factor risk premium, for k = 1, 2, . . . , K ,
and τ is a constant.

Although equation (27) is now written out in
terms of the gross returns to conform with dis-
count factor notations, it can be reduced to have
exactly the same expression in terms of returns.
For example, the CAPM specifies K = 1, τ as the
gross risk-free rate 1 + r , λ1 = E[Rm] − 1 − r ,
and Rm is the gross return on the market portfo-
lio. In this case, λ1 is same as the usual market
return in excess of the risk-free rate since the
ones in their difference will be canceled out.

We claim that if, and only if, the stochastic
discount factor is a linear function of the factors

m = a + b1 f1 + · · · + bK fK (28)

we will obtain equation (27). Conversely, if
equation (27) is true, the discount factor must
be a linear function of the factors. Therefore, the
CAPM and APT are special cases of the discount
factors models.

To see why, it is sufficient to analyze the case
of K = 1. For simplicity, we drop the subscripts
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so that we want to show

m = a + b f (29)

and

E[Rj ] = τ + λβ j (30)

are equivalent. The latter is often referred to as
a beta pricing model. In the proof below, we can
assume E[ f ] = 0 since we can always move the
mean of f into a . Recall the simple statistical
formula that the covariance between any two
random variables can be written as a sum of the
expectation of their product and the product of
their expectations

Cov(x, y) = E[xy] + E[x]E[y] (31)

Using this formula and E[ f ] = 0, we have, if
equation (29) is true,

1 = E[mRj ] = aE[Rj ] + b E[ f Rj ]

= aE[Rj ] + bCov(Rj , f ) − b E[Rj ]E[ f ]

= aE[Rj ] + bCov(Rj , f )

Solving for E[Rj ], we obtain

E[Rj ] = 1
a

− b
a

Cov(Rj , f ) (32)

Comparing this equation with equation (30),
it follows that

τ = 1
a

, λ = −b
a

σ 2( f ) (33)

where σ 2( f ) is the variance of the factor. Hence,
if the discount factor model is true, it must im-
ply the beta pricing model. Conversely, if the
beta pricing model is true, we can solve a and
b from equation (33) to get the discount factor
model.

Hansen-Jagannathan Bound
As we discussed, an asset pricing model is a
specification of the discount factor. The ques-
tion is what properties all the possible discount
factors m must have. Hansen and Jagannathan
(1991) show that the variance of the discount
factors has to be bounded below. In other

words, m must be volatile enough with respect
to the asset returns to be priced.

The discount factor relation, equation (26),
ties the return Rt of an asset to its price via
the expectation of its product with m. It will be
useful to separate Rt out to understand further
the relation between m and Rt. Again using the
covariance formula, equation (31), we have

1 = Cov[m, Rt+1] + E[m]E[Rt+1] (34)

Suppose that a risk-free asset with gross re-
turn Rf = 1 + r is available, where r is the usual
risk-free rate. Applying equation (34) to the
risk-free asset, the first term will be zero, and
hence

E[m] = 1
1 + r

(35)

Note that this equation is true for all possible
discount factors and is an extension of earlier
equation (20). In other words, for all possible
stochastic discount factors, their mean must be
equal to 1/(1 + r ) to price the risk-free asset.

Now we multiply equation (34) by Rf on both
sides, and obtain

E[Rt+1] − Rf = −R f Cov[m, Rt+1]

This says that an asset’s return in excess of the
risk-free rate will be higher if it has a larger
negative covariance with m. Recall that the co-
variance is related to correlation and standard
deviations by

Cov[x, y] = σ (x) × σ (y) × Corr (x, y)

where σ (·) denotes the standard deviation func-
tion. Since the correlation is always between –1
and 1, we have from the earlier equation that

|E[Rt+1] − Rf | = R f |Cov[m, Rt+1]|
≤ Rf × σ (m) × σ (Rt+1)

Separating terms on m from those on Rt+1, we
have a lower bound on the standard deviation
of m as denoted by σ (m)

σ (m)
E[m]

≥ |E[Rt+1] − Rf |
σ (Rt+1)

(36)
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The right-hand side, the ratio of the expected
return on a risky asset to its standard devia-
tion, is the Sharpe ratio that measures the extra
return beyond the risk-free rate per unit of as-
set risk. The relationship given by equation (36)
says that, for any discount factor that prices the
assets, it must have enough variability so that
its standard deviation divided by its mean must
be greater than the Sharpe ratio of any risky as-
set in the economy.

The above lower bound on σ (m) is known as
the Hansen-Jagannathan bound. It is an impor-
tant result since if an asset pricing model fails
to pass this bound, then the proposed asset pric-
ing model can be rejected. For example, to test
the validity of either the discount factor model
given by equation (18) for a finite state economy,
or the consumption-based asset pricing given
by equation (22), or the CAPM and the APT,
one can test first whether it passes the bound
given by (36). No further testing will be neces-
sary if it fails the Hansen-Jagannathan bound.
Theoretically, Kan and Zhou (2006) show that
the Hansen-Jagannathan bound can be tight-
ened substantially with the use of information
on the state variables of the stochastic discount
factor.

KEY POINTS
� A complete market is one in which any de-

sired payoff in the future can be generated by
a suitable portfolio of the existing assets in the
economy.

� In a world where the number of states (future
scenarios) is finite, a market is complete if and
only if this number is equal to the rank of the
asset payoff matrix. In particular, it is neces-
sary for the number of assets to be greater
than the number of states.

� The law of one price states that any two assets
with identical payoffs in the future must have
the same price today.

� A linear pricing rule means that the price of
a basket of assets is equal to the sum of the
prices of those assets in the basket. The law
of one price is true if and only if the linear
pricing rule is true.

� The state price is the price one has to pay to-
day to obtain a one dollar payoff in a partic-
ular future state and nothing in other states.
The existence of the state price is equivalent to
the validility of the law of one price. It will be
unique if the market is in addition complete.

� There are two types of arbitrage opportuni-
ties. The first is paying nothing today and
obtaining something in the future, and the
second is obtaining something today with no
future obligations.

� The fundamental theorem of asset pricing as-
serts the equivalence of three key issues in
finance: (1) absence of arbitrage; (2) existence
of a positive linear pricing rule; and (3) exis-
tence of an investor who prefers more to less
and who has maximized utility (no more free
lunches to pick up from the economy).

� Due to risk, a rational investor will not pay a
price equal to the expected value of an as-
set and will instead discount it by a suit-
able factor for compensation for taking on the
risk. A stochastic discount factor is a random
variable such that the expected value of its
product with the asset payoffs is the rational
price of the asset. The stochastic discount ex-
tends the risk-free discounting (time value of
money) to the risky asset case and is the same
for pricing all the assets in the economy.

� The CAPM and APT are special cases of
stochastic discount factor models in which the
discount factor is a linear function of the mar-
ket factor or APT factors. Moreover, almost all
asset models can be formulated as stochastic
discount factor models.

� The Hansen-Jagannathan bound provides a
simple bound on the variance of a stochas-
tic discount factor, so that one can exam-
ine whether the stochastic discount factor
satisfies some basic restrictions on the data.
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If not, we can reject it without further
analysis.
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Abstract: Risk-return analysis in finance is a “normative” theory: It does not purport to describe,
rather it offers advice. Specifically, it offers advice to an investor regarding how to manage a
portfolio of securities. The investor may be an institution, such as a pension fund or endowment;
or it may be an asset management firm with multiple portfolios to manage (e.g., managing various
mutual funds and funds for institutional clients). The focus of risk-return analysis is on advice for
each individual portfolio. This contrasts with capital asset pricing models, which are hypotheses
concerning capital markets as a whole. They are “positive” models, that is, they are hypotheses
about that which is—as opposed to “normative” models, which advise on what should be or, more
precisely, advise on what an investor should do.

INTRODUCTION
Asset pricing theory seeks to explain how the
price or value of a claim from ownership of
a financial asset is determined. The pricing or
valuation of an asset must take into account the
timing of the payments expected to be received
and the risk associated with receiving the ex-
pected payments. The major challenge in asset
pricing theory is often not the timing issue but
the treatment of risk. The formulation of an as-
set pricing theory that has empirically proven to
have good predictive value offers investors the
opportunity to capitalize on mispriced assets.
Moreover, the theory provides investors with a
tool for pricing new financial instruments and
nonpublicly traded assets.

Cochrane (2001) suggests two popular ap-
proaches to asset pricing: absolute pricing and

relative pricing. The absolute pricing approach
seeks to price an asset by reference to its expo-
sure to fundamental macroeconomic risk. An
example of an absolute pricing approach is the
consumption-based capital asset pricing model
(CAPM) formulated by Breeden (1979). In con-
trast, the relative pricing approach seeks to
value an asset based only on the prices of other
assets without reliance on the exposure of the
asset to the various sources of macroeconomic
factors. The well-known option pricing model
formulated by Black and Scholes (1973) is an ex-
ample of an asset pricing model that employs
the relative pricing approach.

Most asset pricing models used in practice to-
day are the result of a blend of both approaches.
Capital asset pricing models (CAPM), the subject
of this entry, are an example. The CAPM starts
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as an absolute pricing model but then, as will be
explained, prices assets relative to the market.
There is no attempt in the CAPM to determine
how the market risk premium or the risk factor
is determined in an economy.

In this entry, we focus on the basic CAPM
first formulated in the 1960s by several aca-
demicians. There have been numerous ex-
tensions of the basic CAPM that have been
proposed in the decades that followed but these
will not be covered in this entry. However, be-
cause there is considerable confusion regard-
ing certain aspects of the theory, in addition
to describing the basic CAPM in this entry we
explain the sources of the confusion and their
implications.

SHARPE-LINTNER CAPM
The first CAPM was that of Sharpe (1964)
and Lintner (1965). The Sharpe-Lintner CAPM
(SL-CAPM) assumes the following:

� All investors have the same beliefs concern-
ing security returns.

� All investors have mean-variance efficient
portfolios.

� All investors can lend all they have or can
borrow all they want at the same risk-free
interest rate that the U.S. federal government
pays to borrow money.

By the mean it is meant the expected value
of the return of a security or portfolio. Thus,
throughout this entry, we use the terms “mean
return” and “expected return” interchangeably.
By variance, we mean the variance of the re-
turns of a security or portfolio. This is the square
of the standard deviation, the most commonly
used measure in statistics to quantify the dis-
persion of the possible outcomes of some ran-
dom variable. Standard deviation is the more
intuitively meaningful measure: Most of any
probability distribution is between its mean mi-

nus two standard deviations and mean plus
two distributions. It is not true that most of
a distribution is between the mean and plus
or minus two variances, or any other number
of variances. While standard deviation is the
more intuitive measure, formulas are more con-
veniently expressed in terms of variance. One
can most easily compute the variance of a port-
folio and then take its square root to obtain its
standard deviation.

By mean-variance efficient portfolios, we mean
that of all the possible portfolios that can be
created from all of the securities in the market,
the ones that have highest mean for a given
variance.

The two major conclusions of the SL-CAPM
are:

CAPM Conclusion 1. The market portfolio is a
mean-variance efficient portfolio.

CAPM Conclusion 2. The difference between
the expected return and the risk-free inter-
est rate, referred to as the excess return, of
each security is proportional to its beta.

The “market portfolio” includes all securities in
the market. The composition of the portfolio is
such that the sum of the weights allocated to all
the securities is equal to one. That is, denoting
XM

i as the percentage of security i in the market
portfolio (denoted by M), then

n∑

i=1

XM
i = 1 (1)

Each holding of a security is proportional to its
part of the total market capitalization. That is,

XM
i = Market value of i-th security

Total market value of all securities
(2)

CAPM Conclusion 1 is that this “market port-
folio” is on the mean-variance efficient frontier.

Let ri stand for the return on the i-th security
during some period. The return on the market
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portfolio then is

r M =
n∑

i=1

XM
i ri (3)

The beta (β) referred to in CAPM Conclusion
2 can be estimated using regression analysis
from historical data on observed returns for a
security and observed returns for the market.
In this regression analysis, security return is the
“dependent variable” and market return is the
“independent variable.” However, the beta pro-
duced by this analysis should be interpreted as
a measure of association rather than causation.
That is, it is a measure of the extent that the
two quantities move up and down together, not
as the so-called “independent variable” causing
the level of the “dependent variable.” Below we
examine why there is this association (not cau-
sation) in CAPM between security returns and
market return.

The excess return, denoted by ei , is the dif-
ference between the security’s expected return,
E(ri), and the risk-free interest rate, rf , at which
all investors are assumed to lend or borrow:

ei = E(ri ) − r f (4)

CAPM Conclusion 2 is that the excess return for
security i is proportional to its β. That is, letting
k be a constant then

ei = kβi i = 1, . . . , n (5)

It can also be shown that equation (5) applies
to portfolios as well as individual securities.
Thus in an SL-CAPM world, each security and
portfolio has an excess return that is propor-
tional to the regression of the security or port-
folio’s return against the return of the market
portfolio.

ROY CAPM
A second CAPM, which appeared shortly after
that of the writings of Sharpe and Lintner, dif-
fers from the SL-CAPM only in its assumption

concerning the investment constraint imposed
by investors. More specifically, it assumes that
each investor (I) can choose any portfolio that
satisfies

n∑

i=1

XI
i = 1 (6)

without regard to the sign of the variables. Pos-
itive XI

i is interpreted as a long position in a
security while a negative XI

i is interpreted as a
short position in a security.

However, a negative XI
i is far from a realistic

model of real-world constraints on shorting. For
example, equation (6) would consider feasible
a portfolio with

X1 = −1,000
X2 = 1,001
Xi = 0 i = 3, . . . , n

since the above sums to one. This would corre-
spond to an investor depositing $1,000 with a
broker; shorting $1,000,000 of stock 1; then us-
ing the proceeds of the sale, plus the $1,000 de-
posited with the broker to buy $1,001,000 worth
of stock 2. In fact, in this example, Treasury Reg-
ulation T (Reg T) would require that the sum of
long positions, plus the value of the stocks sold
short, not exceed $2,000.

Equation (6), as the only constraint on port-
folio choice, was first proposed by Roy (1952),
albeit not in a CAPM context. Since it is difficult
to pin down who first used this constraint set in
a CAPM (more than one did so almost simulta-
neously), we refer to this as the Roy CAPM as
distinguished from the SL-CAPM.

CONFUSIONS REGARDING
THE CAPM
Probably no other part of financial the-
ory has been subject to more confusion, by
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professionals and amateurs alike, than the
CAPM. Major areas of confusion include the
following:

Confusion 1. Failure to distinguish between the
following two statements:
The market is efficient in that each partici-

pant has correct beliefs and uses them to
their advantage.

and
The market portfolio is a mean-variance effi-

cient portfolio.
Confusion 2. Belief that equation (5) shows that

CAPM investors get paid for bearing “mar-
ket risk.” That this view—held almost uni-
versally until quite recently—is in error is
easily demonstrated by examples in which
securities have the same covariance structure
but different excess returns.

Confusion 3. Failure to distinguish between the
beta in Sharpe’s one-factor model of covari-
ance (see Sharpe, 1963) and that in Sharpe’s
CAPM.

The following sections present the assump-
tions and conclusions of the SL-CAPM and the
Roy CAPM, and discuss the nature of these
three historic sources of confusion, and their
practical implications.

TWO MEANINGS OF
MARKET EFFICIENCY
CAPM is an elegant theory. With the aid
of some simplifying assumptions, it reaches
dramatic conclusions about practical matters.
For example:

� How can an investor choose an efficient port-
folio? The answer: Just buy the market.

� How can an investor forecast expected re-
turns? The answer: Just forecast betas.

� How should an investor price a new security?
The answer is once again: Forecast its beta.

CAPM’s simplifying assumptions make it
easier to deduce properties of market equilib-

ria, which is like computing falling body trajec-
tories while assuming there is no air. But, before
betting the ranch that the feather and the brick
will hit the ground at the same time, it is best to
consider the implications of some of the omit-
ted complexities. The present section mostly ex-
plores the implications of generalizing one of
the CAPMs’ simplifying assumptions.

Note the difference between the statement
“The market is efficient,” in the sense that mar-
ket participants have accurate information and
use it correctly to their benefit, and the state-
ment “The market portfolio is a mean-variance
efficient portfolio.” Under some assumptions
the two statements are equivalent. Specifically,
if we assume:

Assumption 1. Transaction costs and other illiq-
uidities can be ignored.

Assumption 2. All investors hold mean-variance
efficient portfolios.

Assumption 3. All investors hold the same (cor-
rect) beliefs about means, variances, and co-
variances of securities.

Assumption 4. Every investor can lend all she or
he has or can borrow all she or he wants at
the risk-free interest rate.

Then based on these four assumptions we get
CAPM Conclusion 1: The market portfolio is a
mean-variance efficient portfolio. This CAPM
conclusion also follows if Assumption 4 is re-
placed by the following assumption:

Assumption 4′. Equation (6) is the only constraint
on the investor’s choice of portfolio.

As noted earlier, a negative Xi is interpreted
as a short position; but this is clearly a quite un-
realistic model of real-world short constraints.
Equation (6) would permit any investor to de-
posit $1,000 with a broker, sell short $1,000,000
worth of one security, and buy long $1,001,000
worth of another security.

In addition to CAPM Conclusion 1, Assump-
tions 1 through 4 imply CAPM Conclusion
2: In equilibrium, excess returns are propor-
tional to betas, as in equation (5). This CAPM
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Table 1 Expected Returns and Standard Deviations
for Three Hypothetical Securitiesa

Security Expected Return Standard Deviation

1 0.15% 0.18%
2 0.10% 0.12%
3 0.20% 0.30%
aSecurity returns are uncorrelated.

conclusion is the basis for the CAPM’s prescrip-
tions for risk adjustment and asset valuation.

Since a Roy CAPM world may or may not
have a risk-free asset, Assumptions 1–3 plus As-
sumption 4′ cannot imply CAPM Conclusion 2.
These assumptions do, however, imply the fol-
lowing:

CAPM Conclusion 2′. Expected returns are a lin-
ear function of betas, that is, there are con-
stants, a and b, such that

E(ri ) = a + bβi i = 1, . . . , n (7)

Equation (5) of the SL-CAPM is the same as
equation (7) of the Roy CAPM with a = rf .

CAPM Conclusions 1 and 2 (or 2′) do not
follow from Assumptions 1, 2, and 3 if 4 (or
Assumption 4′) is replaced by a more realistic
description of the investor’s investment con-
straints. This is illustrated by an example with
the expected returns and standard deviations
given in Table 1. In this example, it is assumed
that the returns are uncorrelated (but similar
results occur with correlated returns). The ex-
ample assumes that investors cannot sell short
or borrow. The same results hold if investors
can borrow limited amounts or can sell short
but are subject to Reg T or a similar constraint.

Assumptions 1 through 3 are assumed in
this example. Rather than Assumption 4 or As-
sumption 4′, the example assumes that the in-
vestor can choose any portfolio that meets the
following constraints:

X1+X2+X3 = 1.0 (8a)

and

X1 ≥ 0, X2 ≥ 0, X3 ≥ 0 (8b)

(0,1)

(0,0) (1,0)

X2

c

a

d

M

e
b X1

′

X1 = Fraction invested in Security 1
X2 = Fraction invested in Security 2
X3 = 1 – X1 – X2
     = Fraction invested in Security 3

Figure 1 Example Illustrating That When Short
Sales Are Not Allowed, the Market Portfolios Are
Typically Not Mean-Variance Efficient

This is the “standard” portfolio selection con-
straint set presented in Markowitz (1952). It
differs from the Roy constraint set in the inclu-
sion of nonnegativity constraints, the inequali-
ties given by (8b).

In Figure 1, X1—the fraction invested in Secu-
rity 1—is plotted on the horizontal axis; X2—the
fraction invested in Security 2—is plotted on
the vertical axis; and X3—the fraction invested
in the third security—is given implicitly by the
relationship X3 = 1 – X1 – X2. In the figure, the
portfolio labeled “c” has smaller variance than
any other portfolio that satisfies the equation
(8a) constraint. In general, such a minimum-
overall-variance portfolio may or may not sat-
isfy the inequalities given by (8b) constraints.
In other words, the minimum-overall-variance
portfolio may or may not be feasible for the
original Markowitz constraint set (Markowitz,
1952). In the present example it is. Results simi-
lar to those we illustrate here also typically hold
when c is not feasible for the standard model.1

The line ��′ connects all points (portfolios)
that minimize variance, on the portfolio-as-a-
whole, for various levels of portfolio expected
return, subject to equation (8a), ignoring non-
negativity inequalities (8b). Using differential
calculus, one can minimize a function such as

V =
3∑

i=1

X2
i Vi (9a)
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subject to constraints

3∑

i=1

Xi = 1 (9b)

E0 =
3∑

i=1

Xi E(ri ) (9c)

One can do so with the expected returns and
standard deviations from Table 1, letting E0

vary, and thereby obtain the line in Figure 1.
Moving downward and to the right on ��′, the
portfolio expected return increases. This down-
ward direction for increasing expected return
does not always hold: It depends on the choice
of security expected returns.

In the Roy model, every point in the figure
is feasible since they all satisfy equation (6)
or, equivalently, equation (8a). It follows that,
in the Roy CAPM, all points on ��′, from “c”
downward in the direction of increasing E, are
efficient. But in the standard model, including
nonnegativity inequalities (8b), all points on ��′

below the point “b” are not feasible (since they
have negative X2) and therefore cannot be ef-
ficient. In this example, when portfolio choice
is subject to the standard constraint set, the set
of efficient portfolios is the same as that of the
Roy constraint set from portfolio c to portfo-
lio b. After that, the set of efficient portfolios
moves horizontally along the X1 axis, ending at
point (0, 0). This represents the portfolio with
everything invested in Security 3, which has
maximum expected return in the example.

Suppose that some investors select the cau-
tious portfolio d, while the remainder selects the
more aggressive portfolio e. The market port-
folio M lies on the straight line that connects
d and e (e.g., halfway between if both groups
have equal amounts invested).

But M is not an efficient portfolio, either for
the standard constraint set or for the Roy con-
straint set. Thus, even though all investors hold
mean-variance efficient portfolios, the market
portfolio is not mean-variance efficient!

A Simple Market
Figure 1 demonstrates that if the expected re-
turns and variances for our three hypothet-
ical securities in Table 1 reflect equilibrium
beliefs, then the market portfolio would not
be a mean-variance efficient portfolio. But can
these be equilibrium beliefs? Consider the fol-
lowing simple market: Inhabitants of an island
live on coconuts and produce them from their
own gardens. The island has three enterprises,
namely, three coconut farms. Once a year, a
stock market convenes to trade the shares of
the three farms. Each year the resulting share
prices turn out to be the same as those of
preceding years. Thus the only source of un-
certainty of return is the dividend each stock
pays during the year, which is the stock’s pro
rata share of the farm’s production. Markowitz
(2005) shows that means, variances, and covari-
ances of coconut production exist that imply
the efficient set in Figure 1, or in any of the
other three security-efficient sets presented in
Markowitz (1952 and Chapter 7 in 1959) initial
works.

With such probability distributions of returns,
the market is rational in the sense that each par-
ticipant knows the true probability distribution
of returns, and each seeks and achieves mean-
variance efficiency. Nevertheless, in contrast to
the usual CAPM conclusion, the market port-
folio is not an efficient portfolio. It also follows
that there is no representative investor since no
one wants to hold the market portfolio.

Arbitrage
Suppose that most investors are subject to the
nonnegativity requirement of inequalities (8b),
but one investor can short in the CAPM sense.
(Perhaps the CAPM investor has surreptitious
access to a vault containing stock certificates
that he or she can “borrow” temporarily with-
out posting collateral.) Would this CAPM in-
vestor, with unlimited power to short and use
the proceeds to buy long, arbitrage away the
inefficiency in the market portfolio?
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Figure 2 Illustration That an Investor Who Can
Sell Short and Use the Proceeds to Buy Long
Should Not Short an Inefficient Market

Figure 2 shows an investor would not do so.
Suppose that portfolio P is the one most pre-
ferred by the Roy CAPM investor. If this in-
vestor shorts M and uses the proceeds to buy
more P, then the resulting portfolio will be on
the straight line connecting M and P—but this
time on the far side of P (e.g., at Q) rather than
between M and P. But Q is not efficient for the
Roy CAPM investor since it does not lie on the
��′ line. The Roy CAPM investor is better off
just holding P rather than shorting M to buy
more P.

With market participants holding portfolios
d, e, and P and with the weighted average of
the d and e investors being at M, the new mar-
ket portfolio will be on the straight line between
M and P, such as at Ma, Mb, or Mc in Figure 3.

(0,1)

X2

X1

(1,0)

P

b
e

M

d
a

c

(0,0)

′

Ma

Mb

Mc

Figure 3 Illustration That the Presence of a
CAPM Short Seller Does Not Make the Market
Portfolio Efficient

Mc cannot be the market equilibrium since this
would imply a negative market value for Secu-
rity 2. Similarly, Mb implies a zero market value
for Security 2, therefore a zero price.

Thus the only points (portfolios) between M
and P that are consistent with positive prices for
all securities lie strictly between M and Mb, such
as Ma; but Ma is not efficient for the investors
with either a standard or a Roy constraint set.

Expected Returns and Betas
If Assumptions 1 through 4 (or Assumption 4′)
are true, then CAPM Conclusion 2′ follows: Ex-
pected returns are linearly related to the betas
of each security as in equation (7), that is,

E1 = a + bβ1

E2 = a + bβ2

E3 = a + bβ3

where βi is the coefficient of the regression of the
return on the ith security against the return on
the market portfolio. In other words, all (Ei, β i)
combinations lie on the straight line

Y = a + b X

But equation (7) does not typically hold if As-
sumptions 1 through 3 are true but neither As-
sumption 4 nor Assumption 4′ is also true, as
illustrated using the data in Tables 2 and 3, and
Figure 4. Table 2 shows the β i for portfolio P; Ta-
ble 3 shows them for portfolio M. These betas
are computed using the fact that the regression
coefficient βs,r of random variable s against a
random variable r is

βs,r = Covariance(r, s)
Variances(s)

(10)

Table 2 Betas versus Portfolio P

Security Percent in P covi ,P = PiVi betai ,P

1 0.70% 0.0227 0.52
2 –0.25 –0.0036 –0.08
3 0.55 0.0495 1.12

Note: var(P) = 0.0440; betai ,P = covi ,P /var(P).
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Table 3 Betas versus Portfolio M

Security Percent in M covi ,M = MiVi betai ,M

1 0.30 0.0097 0.36
2 0.19 0.0027 0.10
3 0.51 0.0459 1.71

Note: var(M) = 0.0268; betai ,M = covi ,M/var(M).

Figure 4 shows the plot of these betas against
the expected returns given in Table 1 The re-
lationship between beta and expected return is
linear for regressions against P, as implied by
equation (7), but not against M. In general, ex-
pected returns are a linear function of betas if
and only if the regressions are against a portfo-
lio on the ��′ line. (See Chapter 12 in Markowitz
and Todd [2000].)

Limited Borrowing
Thus far we have seen that the market portfo-
lio is not necessarily an efficient portfolio, and
there is usually no linear relationship between
expected returns and betas (regressions against
the market portfolio) if the SL-CAPM or Roy
CAPM is replaced by the standard, Markowitz
constraint set, constraints given by (8). Figure 5
illustrates that the same conclusions hold if bor-
rowing and lending at a risk-free interest rate
are permitted, but borrowing is limited, for ex-
ample, to 100% of the equity in the portfolio.
In Figure 5, Security 3 is the risk-free asset.

Expected Return

3 vs. M
3 vs. P

1 vs. M
1 vs. P

2 vs. M2 vs. P

Beta
–0.5 0.0 0.5 1.0 1.5 2.0

0.25
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0.10
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0.00

Figure 4 Linear Relationship between Expected
Returns and Betas If and Only If the Regression Is
Against a Portfolio on the Line ��′ in Figure 1.
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Figure 5 Illustration That If Borrowing Is Per-
mitted but Limited, the Market Portfolio Is Still
Typically Not an Efficient Portfolio

With 100% borrowing permitted, the set of fea-
sible portfolios is no longer on and in the trian-
gle with (0, 0), (1, 0), and (0, 1) as its vertices.
Rather, the feasible region is on and in the tri-
angle whose vertices are (0, 0), (2, 0), and (0,
2). For example, the (2, 0) point represents the
portfolio with 200% invested in Security 1.

In the SL-CAPM, the efficient set starts at
the portfolio (0, 0), which holds only the risk-
free asset. From there, the efficient set moves
along a straight line in the first quadrant of Fig-
ure 5.2 In the SL-CAPM, this efficient line would
continue in the same direction without limit. In
the model with borrowing limited to at most
100% of equity, the ray extending from (0, 0)
is no longer feasible (therefore no longer effi-
cient) when it crosses the line connecting (0, 2)
and (2, 0)—at b in the figure. The efficient
set then moves towards the leveraged portfo-
lio with highest expected return: (2, 0) in the
present case. Thus in Figure 5 the set of effi-
cient portfolios is the line segment connecting
(0, 0) to b, followed by the segment connecting
b to (2, 0). As in our analysis using the standard
constraint set, if some investors hold portfolio
d and the remainder hold portfolio e, then the
“market portfolio” will be between them (e.g.,
at M′) and will not be an efficient portfolio.

We put “market portfolio” in quotes above
because M′ is a leveraged portfolio. In order
to meet the definition of market portfolio in
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equation (1), so that the holdings in the mar-
ket portfolio sum to one, we must rescale M′.
This gives us the market portfolio (no quota-
tion marks) M, which is also not an efficient
portfolio.

Finally, as in the analysis of the standard case
since M is not on the ��′ line, there does not
exist a linear relationship between expected re-
turns and betas. Also, there is no “representa-
tive investor,” since no investor wants to hold
the market portfolio.

Further Generalizations
Suppose that there are n securities (for n = 3 or
30 or 3,000). Suppose that one security has the
highest expected return, and that the n secu-
rities have a “nonsingular covariance matrix.”
This means that there is no riskless combina-
tion of risky securities. If the only constraint on
the choice of portfolio is equation (6), then the
portfolios that minimize portfolio variance Vp

for various values of portfolio expected return
Ep lie on a single straight line in n-dimensional
portfolio space. This is not true for an investor
also subject to nonnegativity constraints such
as in the inequalities given by (8b).

The critical line algorithm (CLA) for tracing out
all efficient portfolios begins with the portfolio
that is 100% invested in the security with high-
est expected return (see Markowitz and Todd,
2000). It traces out the set of efficient portfolios
in a series of iterations. Each iteration computes
one piece (one linear segment) of the piecewise
linear efficient set. Each successive segment has
either one more or one less security than the pre-
ceding segment. If the universe consists of, say
10,000 securities, and if all securities are to be
demanded by someone, then this universal ef-
ficient frontier must contain at least 10,000 seg-
ments. If investors have sufficiently diverse risk
tolerances, they will choose portfolios on many
different segments. The market portfolio is a
weighted average of individual portfolios and
typically will not be on any efficient segment.

This characterization of efficient sets remains
true if limited borrowing is allowed, as we saw.

It also remains true when short selling is permit-
ted but is subject to Reg T or a similar constraint
(see Jacobs, Levy, and Markowitz, 2005).

CAPM INVESTORS DO NOT
GET PAID FOR BEARING
RISK
Recall that if the SL-CAPM assumptions are
made, then a stock’s beta (regression against the
market portfolio) is proportional to its excess
return, as shown in equation (5). Markowitz
shows that this does not imply that CAPM in-
vestors are paid to bear risk (see Markowitz,
2008).

This is most easily seen if we assume that
risks are uncorrelated. (CAPM should cover
this case, too.) In this case, we show that two se-
curities can have the same variance but different
expected returns, or the same expected returns
and different variances. Therefore, it cannot be
true that the investor is paid for bearing risk!

According to equation (10), the beta of ri

against rM is

βi = Covariance(ri , r M)
Variance(r M)

Therefore, equation (5) holds if and only if we
also have

ei = b̃ covariance(ri , r M) (11)

where

b̃ = b/Var(r M)

In other words, excess return is proportional to
β i if and only if it is proportional to the covari-
ance between ri and rM.

As a calculus exercise one can show that, in
the uncorrelated case, the SL-CAPM investor
minimizes portfolio variance for given portfo-
lio mean if and only if the investor chooses a
portfolio such that

VXI
i = k I ei (12a)
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where Vi is the variance of ri and kI depends on
the investor’s risk aversion.

Equation (12a) implies a similar relationship
for the market portfolio:3

Vi XM
i

= kMei (12b)

Therefore,

XM
i

= kM
(

ei

Vi

)
for i = 1, . . . , n (12c)

Thus if two securities have the same positive
excess return but different variances, the mar-
ket portfolio will contain a larger dollar value
of the one with the lower variance. Conversely,
if two securities have the same variance but dif-
ferent positive excess returns, the market port-
folio will contain a larger dollar value of the one
with the higher excess return.

Now let us consider where the linear relation-
ship in equation (5), or (11), comes from in this
case of uncorrelated returns. It can be shown
that in equation (12b), Vi XM

i is the covariance
of the ri with the market. Therefore, covariance
with the market is proportional to excess re-
turn (and vice versa) because the security with
the higher ratio of excess return to variance is a
larger part of the market portfolio.

Thus, in the uncorrelated case, the relation-
ship between beta and excess return in equa-
tion (5) results from the security with higher
excess return (per unit variance) being a larger
part of the market portfolio. The beta in equa-
tion (5) is the regression of ri against the market
portfolio and, in the uncorrelated case, the only
security in the market portfolio with which it is
correlated is itself.

When returns are correlated, the formula for
the covariance between security return and
market portfolio return is more complicated,
but the basic principle is the same. For ex-
ample, if two securities have the same co-
variance structure, the one with the higher
expected return will constitute a larger share
of the market portfolio—despite the presence
in the market portfolio of securities with which
it is correlated—and hence have its own re-

turns more correlated with returns on the mar-
ket portfolio.

THE “TWO BETA” TRAP
Two distinct meanings of the word “beta”
are used in modern financial theory. These
meanings are sufficiently alike for people to
converse—some with one meaning in mind,
some with the other—without realizing they are
talking about two different things. The mean-
ings are sufficiently different, however, that one
can validly derive diametrically opposite con-
clusions depending on which one is used. The
net result of all this can be like an Abbott and
Costello vaudeville comedy routine with port-
folio theory rather than baseball as its setting.
This is what Markowitz (1984) calls the two beta
trap. Below we first review the background of
the two betas and then tabulate propositions
that are true for one concept and false for the
other.

Beta1963

Sharpe’s single-index (or one-factor) model of co-
variance introduced in 1963 assumes that the re-
turns of different securities are correlated with
each other because each is dependent on some
underlying systematic factor (see Sharpe, 1963).
This can be written as

ri = αi + βi F + ui (13)

where the expected value of ui is zero, and ui is
uncorrelated with F and every other uj .

Originally F was denoted by I and described
as an “underlying factor, the general prosper-
ity of the market as expressed by some index.”
We have changed the notation from I to F to em-
phasize that ri depends on the underlying factor
rather than the index used to estimate the fac-
tor. The index never measures the factor exactly,
no matter how many securities are used in the
index, provided that each security has positive
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variance of ui, since the index I equals:

I =
∑

wi ri

=
∑

αiwi + F (wiβi ) +
∑

uiwi

= A+ B F + U

(14)

where wi is the weight of return ri in the index,
and

A =
∑

αiwi

B =
∑

wiβi

U =
∑

uiwi

U is the error in the observation of F. Under
the conditions stated, the variance of U is

VU =
N∑

i=1

w2
i VUi > 0 (15)

Sharpe (1963) tested equation (13) as an ex-
planation of how security returns tend to go up
and down together. He concluded that equation
(13) was as complex a model of covariance as
seemed to be needed. This conclusion was sup-
ported by research of Cohen and Pogue (1967).
King (1966) found strong evidence for industry
factors in addition to the market-wide factor.
Rosenberg (1974) found other sources of sys-
tematic risk beyond the market-wide factor and
industry factors.

We refer to the beta coefficient in equation (13)
as “beta1963” since it is the subject of Sharpe’s
1963 article. We contrast the properties of this
beta with that of the beta that arises from the
Sharpe-Lintner CAPM. The latter we will refer
to as “beta1964” since it is the subject of Sharpe
(1964).

Beta1964

We noted that the SL-CAPM makes various as-
sumptions about the world, including that all
investors are mean-variance efficient, have the
same beliefs, and can lend or borrow all they
want at the same “risk-free” interest rate. Note,
however, one assumption that the SL-CAPM

does not make is that the covariances among
securities satisfy equation (13). On the contrary,
the assumptions it makes concerning covari-
ances are quite general.4 They are consistent
with equation (13) but do not require it. They
are also consistent with the existence of indus-
try factors as noted by King, or other sources
of systematic risk such as those identified by
Rosenberg.

As previously noted, the beta that appears in
the CAPM relationship of equation (5) (which
we now refer to as beta1964) is the regression of
the ith security’s return against the return on
the market portfolio. This is defined whether
or not the covariance structure is generated by
the single-factor model of equation (13). Equa-
tion (5) is an assertion about the expected return
of a security and how it relates to the regres-
sion of the security’s return against the market-
portfolio return. Unlike equation (13), it is not
an assertion about how security returns covary.

One source of confusion between beta1963 and
beta1964 is that William Sharpe presented each
of them. Sharpe, however, has never been con-
fused on this point. In particular, when explain-
ing beta1964 he emphasizes that he derived it
without assuming equation (13).

Propositions about Betas
Table 4 lists various propositions about betas
and indicates whether they are true or false for
beta1963 or beta1964. The first column presents
each proposition, the second indicates whether
the proposition is true or false for beta1963, and
the third column indicates the same for beta1964.
Most of the propositions in Table 4 are true for
one of the betas and false for the other.

Proposition 1
Because of the definition of a regression beta in
general, both beta1963 and beta1964 equal

βi = cov(ri , R)/V(R)

for some random variable R. In the case of
beta1963, R is F for equation (13); in the case of
beta1964, R is the M in equations (1) and (2).
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Table 4 Propostions about Beta

β1963 β1964

1. The β i of the ith security equals cov(ri,R)/V(R) for some random variable R. T T
2. R is “observable”; specifically, it may be computed exactly from security returns (ri)

and market values (Xi).
F T

3. R is a value-weighted average of the (ri). F T
4. An index I that estimates R should ideally be weighted by a combination of (1/Vui )

and (β i/Vi). Unfortunately, the β i and Vui needed to determine these weights are
unobservable.

T F

5. If ideal weights are not used, then equal weights are “not bad” in computing I;
specifically, nonoptimum weights can be compensated for by increased sample size.

T F

6. Essentially, all that is important in computing I is to have a large number of securities;
it is not necessary to have a large fraction of all securities.

T F

7. The ideally weighted index is an efficient portfolio. F T

Proposition 2
Equation (15) implies that F cannot be observed
exactly no matter how many securities are used
to estimate it, provided that no security has a
zero variance of ui. In contrast, portfolio M in
equation (2) is observable, at least in principle,
if only we are diligent enough to measure each
XM

i in the market. Thus, the assertion that R is
observable is true in principle for beta1964 and
false for beta1963.

Propositions 3 and 4
One source of confusion about the two betas
concerns whether an index estimating R should
be “value weighted”; that is, should the wi used
in computing an estimate of R from the ri equal
the XM

i ? We have seen that in the case of beta1964:

R =
∑

XM
i ri

In this case Wi = XM
i = market-value weights.

The answer is different in the case of beta1963.
Ideally, we would like to eliminate the error
term U from equation (14). Our index would
be perfect if VU = 0, provided of course B �= 0.
Nevertheless, as long as no security has Vui =
0, the perfect index cannot be achieved with a
finite number of securities. Short of this, it might
seem that the best to be wished is that VU be a
minimum. In this case, wi would equal 1/Vui .
The optimum choice of weights for estimating

the underlying factor F is more complicated,
depending also on β i/Vi (see Markowitz, 1983)
and more complicated still, since Vui and βi are
not known.

Proposition 5
The fifth proposition in Table 4 asserts that if
ideal weights cannot be obtained, equal weights
are good enough. In particular, an increase in
the number of securities can compensate for
nonoptimum weights. We have already seen
that this proposition is false for beta1964. It is
easily seen to be true for beta1963 under mild
restrictions on how fast the Vui increases as i
increases.

Proposition 6
The next proposition asserts that all that is im-
portant in designing a good index is to have
many securities, as opposed to having a large
percentage of the population represented in
the index. This proposition is true for I1963 and
false for I1964, as may be illustrated by two ex-
treme examples.

First, suppose that there are only a few secu-
rities in the entire population, and all of them
are used in computing a value-weighted index.
Then I1964 would, in fact, be M and would be
precisely correct. In the case of I1963, on the other
hand, equation (15) implies that if n = 6, for
example, the error term VU is the same
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regardless of whether the six securities are 100%
or 1% of the universe.

At the other extreme, imagine that the sam-
ple is large but is a small percentage of the total
population. For example, suppose N = 1,000
out of 100,000 securities. Then I1963 will give
a good reading for F, and therefore beta1963,
but I1964 may lead to serious misestimates of
beta1964. First, the covariance with I1964 of an
asset not in this index will tend to be too low.
Second, if the index contains more of certain
kinds of assets than is characteristic of the en-
tire population, then assets of this sort will tend
to have a higher correlation with the index than
with the true M, and assets of other sorts will
tend to have lower correlations. More precisely,
the covariance between return ri and the mar-
ket is a weighted average of the covariances σ ij

(including Vi = σ ii) weighted by market val-
ues. If the index chosen does not have approx-
imately the same average σ ij for a given i, the
estimates of β i,1964 will be in error.

Proposition 7
This proposition asserts that the ideal index is
an efficient portfolio. This is true for I1964 and
false for I1963 since one of the conclusions of
the SL-CAPM assumptions is that the market
portfolio is efficient. In fact, the market portfo-
lio is the only combination of risky assets that is
efficient in this CAPM. All other efficient port-
folios consist of either investment in the market
portfolio plus lending at the risk-free rate, or
of investment in the market portfolio financed
in part by borrowing at the risk-free rate. On
the other hand, beta1963 has nothing to do with
expected returns or market efficiency.

KEY POINTS
� The two major conclusions of the Sharpe-

Lintner CAPM are that (1) the market portfo-
lio is a mean-variance efficient portfolio; and
(2) the excess return of each security is pro-
portional to its beta.

� The “market portfolio” includes all securities
in the market.

� The beta (β) in the CAPM is estimated using
regression analysis using historical data on
observed returns for a security (response vari-
able) and observed returns for the market (ex-
planatory variable).

� The Roy CAPM differs from the Sharpe-
Lintner CAPM only in its assumption con-
cerning the investment constraint imposed by
investors. More specifically, it assumes that
each investor can short securities.

� Confusion regarding the CAPM involves (1)
the failure to distinguish between the follow-
ing two statements: The market is efficient in
that each participant has correct beliefs and
uses them to their advantage on the one hand,
and the market portfolio is a mean-variance
efficient portfolio on the other hand; (2) be-
lief that CAPM investors get paid for bearing
nondiversifiable risk; and (3) failure to distin-
guish between the beta in Sharpe’s one-factor
model of covariance (1963 beta) and that in
Sharpe’s CAPM (1964 beta).

NOTES
1. Markowitz presents examples of three-

security standard analyses in which “c” is
feasible in some cases and not feasible in oth-
ers. It is possible in the latter case for the set
of mean-variance efficient portfolios to be a
single line segment or even a single point.
But typically, when “c” is outside of the fea-
sible triangle, as well as when it is within
it, the set of efficient portfolios consists of
two or more line segments (the “efficient seg-
ments”), which meet at “corner portfolios.”
Thus the construction in Figure 1 can typi-
cally be carried out in cases in which “c” is
not feasible. (See Markowitz, 1952.)

2. The SL-CAPM requires nonnegative invest-
ments. Thus if the parameters of an exam-
ple were such that the straight line would
move into, say, the fourth quadrant, X2

would equal zero on the line and would, in
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effect, drop out of the market, and out of the
analysis.

3. If we multiply both sides of equation (12a)
by wI, the I-th investor’s equity as a fraction
of total market equity, and sum we get

Vi

(
∑

I

w I XI
i

)
=

(∑
w I k I

)
ei

If we sum the above over all securities, the
second factor on the left, namely

S =
∑

i

(
∑

I

w I XI
i

)

will not necessarily sum to one since noth-
ing in the SL-CAPM assumptions prevents
market participants from being either net
borrowers or net lenders. However, if we
divide both sides of equation (12c) by S, we
get equation (12b) for the market portfolio as
defined in equations (1) and (2).

4. Mossin (1966) provides a precise statement
of the assumptions behind the S-L CAPM.
Specifically all that Mossin assumes about
covariances is that the covariance matrix is
nonsingular (i.e., that no portfolio of risky
securities is riskless).
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Abstract: The dynamics of asset price processes in discrete time increments are typically described by
two kinds of models: trees (lattices) and random walks. Arithmetic, geometric, and mean reverting
random walks are examples of the latter type of models. When the time increment used to model
the asset price dynamics becomes infinitely small, we talk about stochastic processes in continuous
time. Models for asset price dynamics can incorporate different observed characteristics of an asset
price process, such as a drift or a reversion to a mean, and are important building blocks for risk
management and financial derivative pricing models.

Many classical asset pricing models, such as the
capital asset pricing theory and the arbitrage
pricing theory, take a myopic view of invest-
ing: They consider events that happen one time
period ahead, where the length of the time pe-
riod is determined by the investor. This entry
presents apparatus that can handle asset dy-
namics and volatility over time. The dynamics
of price processes in discrete time increments
are typically described by two kinds of models:
trees (such as binomial trees) and random walks.
When the time increment used to model the
asset price dynamics becomes infinitely small,
we talk about stochastic processes in continuous
time.

In this entry, we introduce the fundamentals
of binomial tree and random walk models, pro-
viding examples for how they can be used in
practice. We briefly discuss the special nota-

tion and terminology associated with stochas-
tic processes at the end of the entry; however,
our focus is on interpretation and simulation
of processes in discrete time. The roots for the
techniques we describe are in physics and the
other natural sciences. They were first applied
in finance at the beginning of the 20th century
and have represented the foundations of asset
pricing ever since.

FINANCIAL TIME SERIES
Let us first introduce some definitions and no-
tation. A financial time series is a sequence of
observations of the values of a financial vari-
able, such as an asset price (index level) or asset
(index) returns, over time. Figure 1 shows an
example of a time series, consisting of weekly
observations of the S&P 500 price level over a

79
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Figure 1 S&P 500 Index Level between August
19, 2005 and August 19, 2009

period of five years (August 19, 2005 to August
19, 2009).

When we describe a time series, we talk about
its drift and volatility. The term “drift” is used
to indicate the direction of any observable trend
in the time series. In the example shown in Fig-
ure 1, it appears that the S&P 500 time series
has a positive drift up from August 2005 until
about the middle of 2007, as the level of prices
appears to have been generally increasing over
that time period. From the middle of 2007 until
the beginning of 2009, there is a negative drift.
The volatility is smaller (the time series is less
“squiggly”) from August 2005 until about the
middle of 2007, but increases dramatically be-
tween the middle of 2007 and the beginning of
2009.

We are usually interested also in whether
the volatility increases when the price level
increases, decreases when the price level
decreases, or remains constant independently
of the current price level. In this example,
the volatility is lower when the price level is
increasing, and is higher when the price level
is decreasing.

Finally, we talk about the continuity of the
time series—is the time series smooth, or are
there jumps whose magnitude appears to be
large relative to the price movements the rest of
the time? From August 2005 until about the
middle of 2007, the time series is quite smooth.
However, some dramatic drops in price levels
can be observed between the middle of 2007
and the beginning of 2009—notably in the fall
of 2008.

For the remainder of this entry, we will use
the following notation:

� St: value of underlying variable (price, inter-
est rate, index level, etc.) at time t.

� St+1: value of underlying variable (price, in-
terest rate, etc.) at time t +1.

� ωt: a random error term observed at time t.
(For the applications in this entry, it will fol-
low a normal distribution with mean equal to
0 and standard deviation equal to σ .)

� εt: a realization of a normal random variable
with mean equal to 0 and standard deviation
equal to 1 at time t.

BINOMIAL TREES
Binomial trees (also called binomial lattices) pro-
vide a natural way to model the dynamics of a
random process over time. The initial value of
the security S0 (at time 0) is known. The length
of a time period, �t, is specified before the tree
is built. (The symbol � is often used to denote
difference. The notation �t therefore means time
difference, i.e., length of one time period.)

The binomial tree model assumes that at the
next time period, only two values are possible
for the price, that is, the price may go up with
probability p or down with probability (1 – p) .
Usually, these values are represented as multi-
ples of the price at the beginning of the period.
The factor u is used for an up movement, and
d is used for a down movement. For example,
the two prices at the end of the first time period
are u·S0 and d·S0. If the tree is recombining,
there will be three possible prices at the end of
the second time period: u2·S0, u·d·S0, and d2·S0.
Proceeding in a similar manner, we can build
the tree in Figure 2.

The binomial tree model may appear simple,
because, given a current price, it only allows
for two possibilities for the price at each time
period. However, if the length of the time pe-
riod is small, it is possible to represent a wide
range of values for the price after only a few
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Figure 2 Example of a Binomial Tree

steps. To see this, notice that each step in the
tree can be thought of as a Bernoulli trial—it
is a “success” with probability p and a “fail-
ure” with probability (1 – p). (One can think of
the Bernoulli random variable as the numerical
coding of the outcome of a coin toss, where one
outcome is considered a “success” and one out-
come is considered a “failure.” The Bernoulli
random variable takes the value 1 (“success”)
with probability p and the value of 0 (“failure”)
with probability 1 – p. Note that the definition
of success and failure here is arbitrary, because
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Figure 3 Binomial Distribution
Note: Probability of success (p) assumed to be 0.3. Number of trials (A) n = 3; (B) n = 20; (C) n = 100.

an increase in price is not always desirable, but
we define them in this way for the example’s
sake.)

After n steps, each particular value for the
price will be reached by realizing k successes
and (n – k) failures, where k is a number between
0 and n. The probability of reaching each value
for the price after n steps will be

P (k successes) = n!
k! (n − k)!

pk (1 − p)n−k

For large values of n, the shape of the bino-
mial distribution becomes more and more sym-
metric and looks like a continuum. (See Fig-
ure 3(A)–(C).) In fact, the binomial distribution
approximates a normal distribution with spe-
cific mean and standard deviation related to
the probability of success and the number of
trials. (The normal distribution is a continuous
probability distribution. It is represented by a
bell-shaped curve, and the shape of the curve is
entirely described by the distribution mean and
variance. Figure 4 shows a graph of the stan-
dard normal distribution, which has a mean of
zero and a standard deviation of 1.) One can
therefore represent a large range of values for
the price as long as the number of time periods
used in the binomial tree is large. Practitioners
often use also trinomial trees, that is, trees with
three branches emanating from each node, in
order to obtain a better representation of the
range of possible prices in the future.
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ARITHMETIC RANDOM
WALKS
Instead of assuming that at each step the asset
price can only move up or down by a certain
multiple with a given probability, we could as-
sume that the price moves by an amount that
follows a normal distribution with mean μ and
standard deviation σ . In other words, the price
for each period is determined from the price of
the previous period by the equation

St+1 = St + μ + ω̃t

where ω̃t is a normal random variable with
mean 0 and standard deviation σ . We will also
assume that the random variable ω̃t describing
the change in the price in one time period is
independent of the random variables describ-
ing the change in the price in any other time
period. (This is known as the Markov property.
It implies that past prices are irrelevant for fore-
casting the future, and only the current value of
the price is relevant for predicting the price in
the next time period.) A sequence of indepen-
dent and identically distributed (IID) random
variables ω̃0, . . . , ω̃t, . . . with zero mean and fi-
nite variance σ 2 is sometimes referred to as white
noise.

The movement of the price expressed through
the equation above is called an arithmetic random
walk with drift. The drift term, μ, represents the
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Figure 5 Five Paths of an Arithmetic Random
Walk Assuming μ = –0.1697 and σ = 3.1166

average change in price over a single time pe-
riod. Note that for every time period t, we can
write the equation for the arithmetic random
walk as

St = St−1 + μ + ω̃t−1

= (St−2 + μ + ω̃t−2) + μ + ω̃t−1

= (St−3 + μ + ω̃t−3) + 2 · μ + ω̃t−1 + ω̃t−2

= S0 + μ · t +
t−1∑

i=0

ω̃i

Therefore, an arithmetic random walk can be
thought of as a sum of two terms: a determin-
istic straight line St = S0 + μ·t and a sum of all
past noise terms. (See Figure 5.)

Simulation
The equation for the arithmetic random walk
can be expressed also as

St+1 = St + μ + σ · ε̃t

where ε̃t is a standard normal random variable.
To show this, we need to mention that every
normal distribution can be expressed in terms
of the standard normal distribution, and the lat-
ter has mean of 0 and standard deviation of 1.
Namely, if ε̃ is a standard normal variable with
mean 0 and standard deviation 1, and x̃ is a nor-
mal random variable with mean μ and standard
deviation σ , we have

ε̃ = x̃ − μ

σ
(equivalently, x̃ = σ · ε̃ + μ)
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This is a property unique to the normal
distribution—no other family of probability
distributions can be transformed in the same
way. In the context of the equation for the arith-
metic random walk, we have a normal random
variable ω̃t with mean 0 and standard devia-
tion σ . It can be expressed through a standard
normal variable ε̃t as σ · ε̃ + 0.

The equation for St+1 above makes it easy to
generate paths for the arithmetic random walk
by simulation. All we need is a way of gen-
erating the standard normal random variables
ε̃t. We start with an initial price S0, which is
known. We also know the values of the drift μ

and the volatility σ over one period. To generate
the price at the next time period, S1, we add μ

to S0, simulate a normal random variable from
a standard normal distribution, multiply it by
σ , and add it to S0 + μ. At the next step (time
period 2), we use the price at time period 1 we
already generated, S1, add to it μ, simulate a
new random variable from a standard normal
distribution, multiply it by σ , and add it to S1 +
μ. We proceed in the same way until we gener-
ate the desired number of steps of the random
walk. For example, given a current price S, in
Excel the price for the next time period can be
generated with the formula

S + μ + σ ∗NORMINV(RAND(), 0, 1)

Parameter Estimation
In order to simulate paths of the arithmetic ran-
dom walk, we need estimates of the parame-
ters (μ and σ ). We need to assume that these
parameters remain constant over the time pe-
riod of estimation. Note that the equation for
the arithmetic random walk can be written as

St+1 − St = μ + σ · ε̃t

Given a historical series of T prices for an as-
set, we can therefore do the following to esti-
mate μ and σ :

1. Compute the price changes St+1 – St for each
time period t, t = 0, . . . , T–1.

2. Estimate the drift of the arithmetic random
walk, μ, as the average of all the price
changes.

3. Estimate the volatility of the arithmetic ran-
dom walk, σ , as the standard deviation of all
the price changes.

An important point to keep in mind is the
units in which the parameters are estimated. If
we are given time series in monthly increments,
then the estimates of μ and σ we will obtain
through steps 1–3 will be for monthly drift and
monthly volatility. If we then need to simulate
future paths for monthly observations, we can
use the same μ and σ . However, if, for exam-
ple, we need to simulate weekly observations,
we will need to adjust μ and σ to account for
the difference in the length of the time period. In
general, the parameters should be stated as an-
nual estimates. The annual estimates can then
be adjusted for daily, weekly, monthly, and so
on increments.

For example, suppose that we have estimated
the weekly drift and the weekly volatility. To
convert the weekly drift to an annual drift, we
multiply the number we found for the weekly
drift by 52, the number of weeks in a year. To
convert the weekly volatility to annual volatil-
ity, we multiply the number we found for the
weekly volatility by the square root of the num-
ber of weeks in a year, that is, by

√
52. Con-

versely, if we are given annualized values for
the drift and the volatility, we can obtain weekly
values by dividing the annual drift and the
volatility by 52 and

√
52, respectively.

Arithmetic Random Walks: Some
Additional Facts
If we use the arithmetic random walk model,
any price in the future, St, can be expressed
through the initial (known) price S0 as

St = S0 + μ · t + σ ·
t−1∑

i=0

ε̃i
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The random variable corresponding to the
sum of t independent normal random variables
ε̃0, . . . , ε̃t−1 is a normal random variable with
mean equal to the sum of the means and stan-
dard deviation equal to the square root of the
sum of variances. Since ε̃0, . . . , ε̃t−1 are inde-
pendent standard normal variables, their sum
is a normal variable with mean 0 and standard
deviation equal to

√
1 + . . . + 1︸ ︷︷ ︸

t times

= √
t

Therefore, we can have a closed-form expres-
sion for computing the asset price at time t given
the asset price at time 0:

St = S0 + μ · t + σ · √
t · ε̃

where ε̃ is a standard normal random variable.
Based on the discussion so far in this section,

we can state the following observations about
the arithmetic random walk:

� The arithmetic random walk has a constant
drift μ and volatility σ , that is, at every time
period, the change in price is normally dis-
tributed, on average equal to μ, with a stan-
dard deviation of σ .

� The overall noise in a random walk never de-
cays. The price change over t time periods
is distributed as a normal distribution with
mean equal to μ·t and standard deviation
equal to σ

√
t. That is why in industry one

often encounters the phrase “The uncertainty
grows with the square root of time.”

� Prices that follow an arithmetic random walk
meander around a straight line St = S0 + μ·t.
They may depart from the line, and then cross
it again.

� Because the distribution of future prices is
normal, we can theoretically find the prob-
ability that the future price at any time will
be within a given range.

� Because the distribution of future prices is
normal, future prices can theoretically take in-
finitely large or infinitely small values. Thus,
they can be negative, which is an undesirable
consequence of using the model.

Asset prices, of course, cannot be negative. In
practice, the probability of the price becoming
negative can be made quite small as long as the
drift and the volatility parameters are selected
carefully. However, the possibility of generat-
ing negative prices with the arithmetic random
walk model is real.

Another problem with the assumptions un-
derlying the arithmetic random walk is that
the change in the asset price is drawn from
the same random probability distribution, in-
dependently of the current level of the prices.
A more natural model is to assume that the pa-
rameters of the random probability distribution
for the change in the asset price vary depend-
ing on the current price level. For example, a $1
change in a stock price is more likely when the
stock price is $100 than when it is $4. Empirical
studies confirm that over time, asset prices tend
to grow, and so do fluctuations. Only returns
appear to remain stationary, that is, to follow
the same probability distribution over time. A
more realistic model for asset prices may there-
fore be that returns are an IID sequence. We de-
scribe such a model in the next section.

GEOMETRIC RANDOM
WALKS
Consider the following model:

rt = μ + σ · ε̃t

where ε̃0, . . . , ε̃t is a sequence of independent
normal variables, and rt, the return, is com-
puted as

rt = St+1 − St

St

Returns are therefore normally distributed,
and the return over each interval of length 1 has
mean μ and standard deviation σ . How can we
express future prices if returns are determined
by the equations above?
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Suppose we know the price at time t, St. The
price at time t+1 can be written as

St+1 = St · St+1

St

= St ·
(

St

St
+ St+1 − St

St

)

= St ·
(

1 + St+1 − St

St

)

= St · (1 + r̃t)

= St + μ · St + σ · St · ε̃t

This last equation is very similar to the equa-
tion for the arithmetic random walk, except that
the price from the previous time period appears
as a factor in all of the terms.

The equation for the geometric random walk
makes it clear how paths for the geometric ran-
dom walk can be generated. As in the case of the
arithmetic random walk, all we need is a way of
generating the normal random variables ε̃t. We
start with an initial price S0, which is known.
We also know the values of the drift μ and the
volatility σ over one period. To generate the
price at the next time period, S1, we add μ·S0 to
S0, simulate a normal random variable from a
standard normal distribution, multiply it by σ

and S0, and add it to S0 + μ·S0. At the next step
(time period 2), we use the price at time period
1 we already generated, S1, add to it μ·S1, sim-
ulate a new random variable from a standard
normal distribution, multiply it by σ and S1,
and add it to S1 + μ·S1. We proceed in the same
way until we generate the desired number of
steps of the geometric random walk. For exam-
ple, given a current price S, in Excel the price
for the next time period can be generated with
the formula

S + μ*S + σ *S*NORMINV(RAND(), 0, 1)

Using similar logic to the derivation of the
price equation earlier, we can express the price
at any time t in terms of the known initial price
S0. Note that we can write the price at time t as

St = S0 · S1

S0
· . . . · St−1

St−2
· St

St−1

Therefore,

St = S0 · (1 + r̃0) · . . . · (1 + r̃t−1)

In the case of the arithmetic random walk,
we determined that the price at any time pe-
riod follows a normal distribution. This was
because if we know the starting price S0, the
price at any time period could be obtained by
adding a sum of independent normal random
variables to a constant term and S0. The sum of
independent normal random variables is a nor-
mal random variable itself. In the equation for
the geometric random walk, each of the terms
(1 + r̃0) , . . . , (1 + r̃t−1) is a normal random vari-
able as well. (It is the sum of a normal ran-
dom variable and a constant.) However, they
are multiplied together. The product of normal
random variables is not a normal random vari-
able, which means that we cannot have a nice
closed-form expression for computing the price
St based on S0.

To avoid this problem, let us consider the nat-
ural logarithm of prices. (The natural logarithm
is the function ln so that eln(x) = x, where e is the
number 2.7182 . . . .) Unless otherwise specified,
we will use “logarithm” to refer to the natural
logarithm, that is, the logarithm of base e.

If we take logarithms of both sides of the equa-
tion for St, we get

ln(St) = ln(S0 · (1 + r̃0) . . . (1 + r̃t−1))

= ln(S0) + ln(1 + r̃0) + . . . + ln(1 + r̃t−1)

Log returns are in fact differences of log
prices. To see this, note that

ln(1 + rt) = ln
(

1 + St+1 − St

St

)

= ln
(

St+1

St

)

= ln(St+1) − ln(St)

Now assume that log returns (not returns) are
independent and follow a normal distribution
with mean μ and standard deviation σ :

ln(1 + r̃t) = ln(St+1) − ln(St) = μ + σ · ε̃t
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As a sum of independent normal variables,
the expression

ln(S0) + ln(1 + r̃0) + . . . + ln(1 + r̃t−1)

is also normally distributed. This means that
ln(St) (rather than St) is normally distributed,
that is, St is a lognormal random variable. Sim-
ilarly to the case of an arithmetic random walk,
we can compute a closed-form expression for
the price St given S0:

ln(St) = ln(S0) +
(

μ − 1
2

· σ 2
)

· t + σ · √
t · ε̃

or, equivalently,

St = S0 · e (μ− 1
2 ·σ 2)·t+σ ·√t·ε̃

where ε̃ is a standard normal variable.
Notice that the only inconsistency with the

formula for the arithmetic random walk is the
presence of the extra term

(
−1

2
· σ 2

)
· t

in the drift term
(

μ − 1
2

· σ 2
)

· t

Why is there an adjustment of one half of the
variance in the expected drift? In general, if Ỹ
is a normal random variable with mean μ and
variance σ 2, then the random variable, which is
an exponential of the normal random variable
Ỹ, X̃ = eỸ, has mean

E[X̃] = eμ+ 1
2 ·σ 2

At first, this seems unintuitive—why is the
expected value of X̃ not

E[X̃] = eμ?

The expected value of a linear function of a
random variable is a linear function of the ex-
pected value of the random variable. For exam-
ple, if a is a constant, then

E[a · Ỹ] = a · E[Ỹ]

However, determining the expected value of a
nonlinear function of a random variable (in par-
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Figure 6 Example of a Lognormal Distribution
with Mean of 1 and Standard Deviation of 0.8

ticular, the exponential function, which is the
function we are using here) is not as trivial. For
example, there is a well-known relationship, the
Jensen inequality, which states that the expected
value of a convex function of a random variable
is less than the value of the function at the ex-
pected value of the random variable.

In our example, X̃ is a lognormal random
variable, so its probability distribution has the
shape shown in Figure 6. The random variable
X̃ cannot take values less than 0. Since its vari-
ance is related to the variance of the normal
random variable Ỹ, as the variance σ 2 of Ỹ in-
creases, the distribution of X̃ will spread out
in the upward direction. This means that the
mean of the lognormal variable X̃ will increase
not only as the mean of the normal variable Ỹ,
μ, increases, but also as Ỹ’s variance, σ 2, in-
creases. In the context of the geometric random
walk, Ỹ represents the normally distributed log
returns, and X̃ is in fact the factor by which the
asset price from the previous period is multi-
plied in order to generate the asset price in the
next time period. In order to make sure that
the geometric random process grows exponen-
tially at average rate μ, we need to subtract a
term (that term turns out to be σ 2/2), which will
correct the bias.

Specifically, suppose that we know the price
at time t, St. We have

ln(St+1) = ln(St) + ln(1 + r̃t)
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that is,

St+1 = St · e ln(1+r̃t)

Note that we are explicitly assuming a multi-
plicative model for asset prices here—the price in
the next time period is obtained by multiplying
the price from the previous time period by a
random factor. In the case of an arithmetic ran-
dom walk, we had an additive model—a ran-
dom shock was added to the asset price from
the previous time period.

If the log return ln(1 + r̃t) is normally dis-
tributed with mean μ and standard deviation
σ , then the expected value of

e ln(1+r̃t)

is

eμ+ 1
2 ·σ 2

and hence

E[St+1] = St · eμ+ 1
2 ·σ 2

In order to make sure that the geometric ran-
dom walk process grows exponentially at an
average rate μ (rather than (μ + 0.5 · σ 2)), we
need to subtract the term 0.5·σ 2 when we gen-
erate the future price from this process. This ar-
gument can be extended to determining prices
for more than one time period ahead.

We will understand better why this formula
holds when we review stochastic processes at
the end of this entry.

Simulation
It is easy to see how future prices can be gen-
erated based on the initial price S0. First, we
compute the term in the power of e: We sim-
ulate a value for a standard normal random
variable, multiply it by the standard deviation
and the square root of the number of time peri-
ods between the initial point and the point we
are trying to compute, and subtract the product
from the drift term adjusted for the volatility
and the number of time periods. We then raise e
to the exponent we just computed and multiply

the resulting value by the value of the initial
price. For example, given a current price S, in
Excel we use the formula

S* exp((μ − 0.5*σ∧2)*t − σ *
√

t*

NORMINV(RAND(), 0, 1))

One might wonder whether this approach for
simulating realizations of an asset price fol-
lowing a geometric random walk is equivalent
to the simulation approach mentioned earlier
when we introduced geometric random walks,
which is based on the discrete version of the
equation for a random walk. The two ap-
proaches are different (for example, the ap-
proach based on the discrete version of the
equation for the geometric random walk does
not produce the expected lognormal price dis-
tribution), but it can be shown that the differ-
ences in the two simulation approaches tend to
cancel over many steps.

Parameter Estimation
In order to simulate paths of the geometric ran-
dom walk, we need to have estimates of the
parameters (μ and σ ). The implicit assump-
tion here, of course, is that these parameters
remain constant over the time period of estima-
tion. (We will discuss how to incorporate con-
siderations for changes in volatility later in this
entry.) Note that the equation for the geometric
random walk can be written as

ln(St+1) − ln(St) = ln(1 + r̃t)

Equivalently,

ln
(

St+1

St

)
= μ + σ · ε̃t

Given a historical series of T prices of an asset,
we can therefore do the following to estimate μ

and σ :

1. Compute ln(St+1/St) for each time period t,
t = 0, . . . , T–1.

2. Estimate the volatility of the geometric ran-
dom walk, σ , as the standard deviation of all
ln(St+1/St).
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3. Estimate for the drift of the arithmetic ran-
dom walk, μ, as the average of all ln(St+1/
St), plus one half of the standard deviation
squared.

If we are given data on the returns rt of an asset
rather than the prices of the asset, we can com-
pute ln(1 + rt), and use it to replace ln(St+1/St)
in steps 1–3 above. This is because

log
(

St+1

St

)
= log

(
1 + St+1 − St

St

)
= log(1 + r̃t)

Geometric Random Walk: Some
Additional Facts
To summarize, the geometric random walk has
several important characteristics:

� It is a multiplicative model, that is, the price at
the next time period is a multiple of a random
term and the price from the previous time
period.

� It has a constant drift μ and volatility σ .
At every time period, the percentage change
in price is normally distributed, on average
equal to μ, with a standard deviation of σ .

� The overall noise in a geometric random walk
never decays. The percentage price change
over t time periods is distributed as a nor-
mal distribution with mean equal to μ·t and
standard deviation equal to σ

√
t.

� The exact distribution of the future price
knowing the initial price can be found. The
price at time t is lognormally distributed with
specific probability distribution parameters.

� Prices that follow a geometric random walk
in continuous time never become negative.

The geometric random walk model is not
perfect. However, its computational simplicity
makes the geometric random walk and its vari-
ations the most widely used processes for mod-
eling asset prices. The geometric random walk
defined with log returns never becomes nega-
tive, because future prices are always a multiple
of the initial stock price and a positive term. (See
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Figure 7 Five Paths of a Geometric Random
Walk with μ = –0.0014 and σ = 0.0411
Note: Although the drift is slightly negative, it is
still possible to generate paths that generally in-
crease over time.

Figure 7.) In addition, observed historical stock
prices can actually be quite close to lognormal.

It is important to note that, actually, the as-
sumption that log returns are normal is not re-
quired to justify the lognormal model for prices.
If the distribution of log returns is non-normal,
but the log returns are IID with finite variance,
the sum of the log returns is asymptotically nor-
mal. (This is based on a version of the central
limit theorem.) Stated differently, the log return
process is approximately normal if we consider
changes over sufficiently long intervals of time.

Price processes, however, are not always ge-
ometric random walks, even asymptotically. A
very important assumption for the geometric
random walk is that price increments are inde-
pendently distributed; if the time series exhibits
autocorrelation, the geometric random walk is
not a good representation. We will see some
models that incorporate considerations for au-
tocorrelation and other factors later in this entry.

MEAN REVERSION
The geometric random walk provides the foun-
dation for modeling the dynamics for asset
prices of many different securities, including
stock prices. However, in some cases it is not
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Figure 8 Weekly Data for One-Year Treasury Bill
Rates: January 5, 1962–July 31, 2009

justified to assume that asset prices evolve with
a particular drift, or can deviate arbitrarily far
from some kind of a representative value. In-
terest rates, exchange rates, and the prices of
some commodities are examples for which the
geometric random walk does not provide a
good representation over the long term. For
instance, if the price of copper becomes high,
copper mines would increase production in or-
der to maximize profits. This would increase
the supply of copper in the market, therefore
decreasing the price of copper back to some
equilibrium level. Consumer demand plays a
role as well—if the price of copper becomes
too high, consumers may look for substitutes,
which would reduce the price of copper back to
its equilibrium level.

Figure 8 illustrates the behavior of the one-
year Treasury bill yield from the beginning of
January 1962 through the end of July 2009. It
can be observed that, even though the variabil-
ity of Treasury bill rates has changed over time,
there is some kind of a long-term average level
of interest rates to which they return after de-
viating up or down. This behavior is known as
mean reversion.

The simplest mean reversion (MR) model is
similar to an arithmetic random walk, but the
means of the increments change depending on
the current price level. The price dynamics are
represented by the equation

St+1 = St + κ · (μ − St) + σ · ε̃t

where ε̃t is a standard normal random variable.
The parameter κ is a nonnegative number that
represents the speed of adjustment of the mean-
reverting process—the larger its magnitude, the
faster the process returns to its long-term mean.
The parameter μ is the long-term mean of the
process. When the current price St is lower than
the long-term mean μ, the term (μ – St) is posi-
tive. Hence, on average there will be an upward
adjustment to obtain the value of the price in
the next time period, St+1. (We add a positive
number, κ·(μ – St), to the current price St.) By
contrast, if the current price St is higher than the
long-term mean μ, the term (μ – St) is negative.
Hence, on average there will be a downward ad-
justment to obtain the value of the price in the
next time period, St+1. (We add a negative num-
ber, κ·(μ – St), to the current price St.) Thus, the
mean-reverting process will behave in the way
we desire—if the price becomes lower or higher
than the long-term mean, it will be drawn back
to the long-term mean.

In the case of the arithmetic and the geometric
random walks, the cumulative volatility of the
process increases over time. By contrast, in the
case of mean reversion, as the number of steps
increases, the variance peaks at

σ 2

κ · (2 − κ)

In continuous time, this basic mean-reversion
process is called the Ornstein-Uhlenbeck process.
(See the last section of this entry.) It is widely
used when modeling interest rates and ex-
change rates in the context of computing bond
prices and prices of more complex fixed-income
securities. When used in the context of model-
ing interest rates, this simple mean-reversion
process is also referred to as the Vasicek model
(see Vasicek, 1977).

The mean-reversion process suffers from
some of the disadvantages of the arithmetic ran-
dom walk—for example, it can technically be-
come negative. However, if the long-run mean
is positive, and the speed of mean reversion is
large relative to the volatility, the price will be
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Figure 9 Five Paths with 50 Steps Each of a
Mean-Reverting Process with μ = 1.4404, κ =
0.0347, and σ = 0.0248

pulled back to the mean quickly when it be-
comes negative. Figure 9 contains an example
of five paths generated from a mean-reverting
process.

Simulation
The formula for the mean-reverting process
makes it clear how paths for the mean-reverting
random walk can be generated. As in the case of
the arithmetic and the geometric random walks,
all we need is a way of simulating the standard
normal random variables ε̃t. We start with an
initial price S0, which is known. We know the
values of the drift μ, the speed of adjustment κ ,
and the volatility σ over one period. To gener-
ate the price at the next time period, S1, we add
κ·(μ – S0) to S0, simulate a normal random vari-
able from a standard normal distribution, mul-
tiply it by σ , and add it to S0 + κ·(μ – S0). At
the next step (time period 2), we use the price
at time period 1 we already generated, S1, add
to it κ·(μ – S1), simulate a new random variable
from a standard normal distribution, multiply
it by σ , and add it to S1 + κ·(μ – S1). We proceed
in the same way until we generate the desired
number of steps of the random walk. For exam-
ple, given a current price S, in Excel the price
for the next time period can be generated with
the formula

S + κ∗(μ − S) + σ ∗NORMINV(RAND(), 0, 1)

Parameter Estimation
In order to simulate paths of the mean-reverting
random walk, we need estimates of the param-
eters (κ , μ, and σ ). Again, we assume that these
parameters remain constant over the time pe-
riod of estimation. The equation for the mean-
reverting process can be written as

St+1 − St = κ · (μ − St) + σ · ε̃t

or, equivalently,

St+1 − St = κ · μ − κ · St + σ · ε̃t

This equation has the characteristics of a lin-
ear regression model, with the absolute price
change (St+1 – St) as the response variable and
St as the explanatory variable. Given a his-
torical series of T prices for an asset, we can
therefore do the following to estimate κ , μ,
and σ :

1. Compute the price changes (St+1 – St) for
each time period t, t = 0, . . . , T–1.

2. Run a linear regression with (St+1 – St) as the
response variable and St as the explanatory
variable.

3. Verify that the estimates from the linear re-
gression model are valid:
a. Plot the values of St versus (St+1 – St). The

points in the scatter plot should approxi-
mately vary around a straight line with no
visible cyclical or other patterns.

b. The p-value for the coefficient in front
of the explanatory variable St should be
small, preferably less than 0.05. (The p-
values of the regression coefficients are
part of standard regression output for
most software packages. Most generally,
they measure the degree of significance
of the regression coefficient for explaining
the response variable in the regression.)

4. An estimate for the speed of adjustment of
the mean-reversion process, κ , can be ob-
tained as the negative of the coefficient in
front of St. Since the speed of adjustment can-
not be a negative number, if the coefficient in
front of St is positive, the regression model
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cannot be used for estimating the parameters
of the mean reverting process.

5. An estimate for the long-term mean of the
mean-reverting process, μ, can be obtained
as the ratio of the intercept term estimated
from the regression and the slope coefficient
in front of St (if that slope coefficient is valid,
i.e., negative and with low p-value).

6. An estimate for the volatility of the mean-
reverting process, σ , can be obtained as the
standard error of the regression. (The stan-
dard error of the regression is also part
of standard regression output for statisti-
cal software packages and spreadsheet pro-
grams like Excel. It measures the standard
deviation of the points around the regression
line.)

Geometric Mean Reversion
A more advanced mean-reversion model that
bears some similarity to the geometric random
walk is the geometric mean reversion (GMR)
model

St+1 = St + κ · (μ − St) · St + σ · St · ε̃t

(Note that this is a special case of the mean
reversion model St+1 = St + κ·(μ – St)·St +
σ ·Sγ

t ·ε̃t, where γ is a parameter selected in ad-
vance. The most commonly used models have
γ = 1 or γ = 1/2.) The intuition behind
this model is similar to the intuition behind
the discrete version of the geometric random
walk—the variability of the process changes
with the current level of the price. However,
the GMR model allows for incorporating mean
reversion. Even though it is difficult to estimate
the future price analytically from this model, it
is easy to simulate. For example, given a cur-
rent price S, in Excel the price for the next time
period can be generated with the formula

S + κ∗(μ − S)∗S + σ ∗S
∗NORMINV(RAND(), 0, 1)
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Figure 10 Five Paths with 50 Steps Each of a
Geometric Mean Reversion Process with μ =
1.4464, κ = 0.0253, and σ = 0.0177

Figure 10 contains an example of five paths
generated from a geometric mean reversion
model.

To estimate the parameters κ , μ, and σ to use
in the simulation, we can use a series of T his-
torical observations for the price of an asset. As-
sume that the parameters of the geometric mean
reversion remain constant during the time pe-
riod of estimation.

Note that the equation for the geometric
mean-reverting random walk can be written as

St+1 − St

St
= κ · (μ − St) + σ · ε̃t

or, equivalently, as

St+1 − St

St
= κ · μ − κ · St + σ · ε̃t

Again, this equation bears characteristics of
a linear regression model, with the percentage
price change (St+1 – St)/St as the response
variable and St as the explanatory variable.
Given a historical series of T prices of an asset,
we can therefore do the following to estimate
κ , μ, and σ :

1. Compute the percentage price changes
(St+1 – St)/St for each time period t, t =
0, . . . , T–1.

2. Run a linear regression with (St+1 – St)/St as
the response variable and St as the explana-
tory variable.
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3. Verify that the estimates from the linear re-
gression model are valid:
a. Plot the values of St versus (St+1 – St)/St.

The points in the scatter plot should ap-
proximately vary around a straight line
with no visible cyclical or other patterns.

b. The p-value for the coefficient in front
of the explanatory variable St should be
small, preferably less than 0.05.

4. An estimate for the speed of adjustment of
the mean-reverting process, κ , can be ob-
tained as the negative of the coefficient in
front of St. Since the speed of adjustment can-
not be a negative number, if the coefficient in
front of St is positive, the regression model
cannot be used for estimating the parameters
of the geometric mean-reverting process.

5. An estimate for the long-term mean of the
mean-reverting process, μ, can be obtained
as the ratio of the intercept term estimated
from the regression and the slope coefficient
in front of St (if that slope coefficient is valid,
i.e., negative and with low p-value).

6. An estimate for the volatility of the mean-
reverting process, σ , can be obtained as the
standard error of the regression.

ADVANCED RANDOM WALK
MODELS
The models we described so far provide build-
ing blocks for representing the asset price dy-
namics. However, observed real-world asset
price dynamics has features that cannot be in-
corporated in these basic models. For exam-
ple, asset prices exhibit correlation—both with
each other and with themselves over time. Their
volatility typically cannot be assumed to be con-
stant. This section reviews several techniques
for making asset price models more realistic de-
pending on observed price behavior.

Correlated Random Walks
So far, we have discussed models for asset
prices that assume that the dynamic processes
for the prices of different assets evolve inde-

pendently of each other. This is an unrealistic
assumption—it is expected that market condi-
tions and other factors will have an impact on
the prices of groups of assets simultaneously.
For example, it is likely that stock prices for
companies in the oil industry will generally
move together, as will stock prices for compa-
nies in the telecommunications industry.

The argument that asset prices are codepen-
dent has theoretical and empirical foundations
as well. If asset prices were independent ran-
dom walks, then large portfolios would be fully
diversified, have no variability, and therefore
be completely deterministic. Empirically, this
is not the case. Even large aggregates of stock
prices, such as the S&P 500, exhibit random be-
havior.

If we make the assumption that log returns
are jointly normally distributed, then their de-
pendencies can be represented through the
covariance matrix (equivalently, through the
correlation matrix). It is worth noting that
in general, covariance and correlation are not
equivalent with dependence of random vari-
ables. Covariance and correlation measure only
the strength of linear dependence between
two random variables. However, in the case
of a multivariate normal distribution, covari-
ance and correlation are sufficient to represent
dependence.

Let us give an example of how one can model
two correlated stock prices assumed to follow
geometric random walks. Suppose we are given
two historical series of T observations each of
observed asset prices for Stock 1 and Stock 2.
We follow the steps described in the previous
sections of this entry to estimate the drifts and
the volatilities of the two processes. To estimate
the correlation structure, we find the correlation
between

ln

(
S(1)

t+1

S(1)
t

)
and ln

(
S(2)

t+1

S(2)
t

)

where the indices (1) and (2) correspond to
Stock 1 and Stock 2, respectively. For example,
in Excel the correlation between two data series
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stored in Array1 and Array2 can be computed
with the function CORREL(Array1, Array2).
This correlation can then be incorporated in
the simulation. (Excel cannot simulate corre-
lated normal random variables. A number of
Excel add-ins for simulation are available, how-
ever, and they have the capability to do so. Such
add-ins include @RISK (sold by Palisade Cor-
poration, http://www.palisade.com), Crystal
Ball (sold by Oracle, http://www.oracle.com),
and Risk Solver (from Frontline Systems,
the developers of the original Excel Solver,
http://www.solver.com).) Basically, at every
step, we generate correlated normal random
variables, ε

(1)
t and ε

(2)
t , with means of zero and

with a given covariance structure. Those real-
izations of the correlated normal random vari-
ables are then used to compute the next period’s
Stock 1 price and the next period’s Stock 2 price.

When we consider many different assets, the
covariance matrix becomes very large and can-
not be estimated accurately. Factor models can
be used to reduce the dimension of the covari-
ance structure. Multivariate random walks are
in fact dynamic factor models for asset prices.
A multifactor model for the return of asset i can
be written in the following general form:

r (i)
t = μ(i) +

K∑

k=1

β(i,k) · f (k)
t + ε

(i)
t

where the K factors f (k) follow random walks,
β(i,k) are the factor loadings, and ε

(i)
t are normal

random variables with zero means.
It is important to note that the covariance ma-

trix cannot capture correlations at lagged times
(i.e., correlations of dynamic nature). Further-
more, the assumptions that log returns behave
as multivariate normal variables is not always
applicable—some assets exhibit dependency of
a nonlinear kind, which cannot be captured by
the covariance or correlation matrix. Alterna-
tive tools for modeling covariability include
copula functions and transfer entropies. (See,
for example, Chapter 17 and Appendix B in
Fabozzi, Focardi, and Kolm, 2006.)

Incorporating Jumps

Many of the dynamic asset price processes used
in industry assume continuous sample paths, as
was the case with the arithmetic, geometric, and
the different mean-reverting random walks we
considered earlier in this entry. However, there
is empirical evidence that the prices of many se-
curities incorporate jumps. The prices of some
commodities, such as electricity and oil, are no-
torious for exhibiting “spikes.” The logarithm
of a price process with jumps is not normally
distributed, but is instead characterized by a
high peak and heavy tails, which are more typi-
cal of market data than the normal distribution.
Thus, more advanced models are needed to in-
corporate realistic price behavior.

A classical way to include jumps in models
for asset price dynamics is to add a Poisson pro-
cess to the process (geometric random walk or
mean reversion) used to model the asset price.
A Poisson process is a discrete process in which
arrivals occur at random discrete points in time,
and the times between arrivals follow an expo-
nential distribution with average time between
arrivals equal to 1/λ. This means that the num-
ber of arrivals in a specific time interval follows
a Poisson distribution with mean rate of arrival
λ. The “jump” Poisson process is assumed to be
independent of the underlying “smooth” ran-
dom walk.

The Poisson process is typically used to fig-
ure out the times at which the jumps occur. The
magnitude of the jumps itself could come from
any distribution, although the lognormal distri-
bution is often used for tractability.

Let us explain in more detail how one would
model and simulate a geometric random walk
with jumps. At every point in time, the process
moves as a geometric random walk and up-
dates the price St to St+1. If a jump happens, the
size of the jump is added to St as well to obtain
St+1. In order to avoid confusion about whether
we have included the jump in the calculation,
let us denote the price right before we find out
whether a jump has occurred S(−)

t+1, and keep the

http://www.palisade.com
http://www.oracle.com
http://www.solver.com
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total price for the next time period as St+1. We
therefore have

S(−)
t+1 = St + μ · St + σ · St · ε̃t

that is, S(−)
t+1 is computed according to the normal

geometric random walk rule. Now suppose that
a jump of magnitude J̃ t occurs between time t
and time t+1. Let us express the jump magni-
tude as a percentage of the asset price, that is,
let

St+1 = S(−)
t+1 · J̃ t

If we restrict the magnitude of the jumps J̃ t

to be nonnegative, we will make sure that the
asset price itself does not become negative.

Let us now express the changes in price in
terms of the jump size. Based on the relationship
between St+1, S(−)

t+1, and J̃ t, we can write

St+1 − S(−)
t+1 = S(−)

t+1·( J̃ t − 1)

and hence

S(−)
t+1 = St+1 − S(−)

t+1 · ( J̃ t − 1)

Thus, we can substitute this expression for
S(−)

t+1 and write the geometric random walk with
jumps model as

St+1 = St + μ · St + σ · St · ε̃t + S(−)
t+1 · ( J̃ t − 1)

How would we simulate a path for the jump-
geometric random walk process? Note that
given the relationship between St+1, S(−)

t+1, and
J̃ t, we can write

ln(St+1) = ln(S(−)
t+1) + ln( J̃ t)

Since S(−)
t+1 is the price resulting only from the

geometric random walk at time t, we already
know what ln(S(−)

t+1) is. Recall based on our dis-
cussion of the geometric random walk that

ln(S(−)
t+1) = ln(St) + (μ − 0.5 · σ 2) + σ ε̃t

Therefore, the overall equation will be

ln(St+1) = ln(St) + (μ − 0.5 · σ 2) + σ · ε̃t

+
∑

i

ln
(
J (i)

t
)

where J (i)
t are all the jumps that occur during

the time period between t and t+1. This means
that

St+1 = St · eμ−0.5·σ 2+σ ·ε̃t ·
∏

i

J (i)
t

where the symbol 
 denotes product. (If no
jumps occurred between t and t+1, we set the
product to 1.)

Hence, to simulate the price at time t+1, we
need to simulate

� A standard normal random variable ε̃t, as in
the case of a geometric random walk.

� How many jumps occur between t and t+1.
� The magnitude of each jump.

For more details, see Pachamanova and
Fabozzi (2010) and Glasserman (2004).

As Merton (1976) pointed out, if we assume
that the jumps follow a lognormal distribu-
tion, then ln( J̃ t) is normal, and the simulation
is even easier. See Glasserman (2004) for more
advanced examples.

Stochastic Volatility
The models we considered so far all assumed
that the volatility of the stochastic process re-
mains constant over time. Empirical evidence
suggests that the volatility changes over time,
and more advanced models recognize that fact.
Such models assume that the volatility param-
eter σ itself follows a random walk of some
kind. Since there is some evidence that volatil-
ity tends to be mean-reverting, often different
versions of mean-reversion models are used.
For more details on stochastic volatility models
and their simulation see, for example, Glasser-
man (2004) and Hull (2008).

STOCHASTIC PROCESSES
In this section, we provide an introduction to
what is known as stochastic calculus. Our goal
is not to achieve a working knowledge in the
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subject, but rather to provide context for some
of the terminology and the formulas encoun-
tered in the literature on modeling asset prices
with random walks.

So far, we discussed random walks for which
every step is taken at a specific discrete point
in time. When the time increments are very
small, almost zero in length, the equation of
a random walk describes a stochastic process in
continuous time. In this context, the arithmetic
random walk model is known as a generalized
Wiener process or Brownian motion (BM). The geo-
metric random walk is referred to as geomet-
ric Brownian motion (GBM), and the arithmetic
mean-reverting walk is the Ornstein-Uhlenbeck
process described earlier.

Special notation is used to denote stochastic
processes in continuous time. Increments are
denoted by d or �. (For example, (St+1 – St) is
denoted dSt, meaning a change in St over an in-
finitely small interval.) The equations describ-
ing the process, however, have a very similar
form to the equations we introduced earlier in
this section:

dSt = μ dt + σ dW

Equations involving small changes (“differ-
ences”) in variables are referred to as differ-
ential equations. In words, the equation above
reads “The change in the price St over a small
time period dt equals the average drift μ multi-
plied by the small time change plus a random
term equal to the volatility σ multiplied by dW,
where dW is the increment of a Wiener pro-
cess.” The Wiener process, or Brownian motion,
is the fundamental building block for many of
the classical asset price processes.

A standard Wiener process W(t) has the fol-
lowing properties:

1. For any time s < t, the difference W(t) – W(s)
is a normal random variable with mean zero
and variance (t – s). It can be expressed as√

t − s · ε̃, where ε̃ is a standard normal ran-
dom variable.

2. For any times 0 ≤ t1 < t2 ≤ t3 < t4, the dif-
ferences (W(t2) – W(t1)) and (W(t4) – W(t3))
(which are random variables) are indepen-
dent. (These differences are the actual incre-
ments of the process at different points in
time.) Note that independent implies uncor-
related.

3. The value of the Wiener process at the begin-
ning is zero, W(t0) = 0.

Using the new notation, the first two proper-
ties can be restated as

Property 1. The change dW during a small pe-
riod of time dt is normally distributed with
mean 0 and variance dt and can be expressed
as

√
dt · ε̃.

Property 2. The values of dW for any two
nonoverlapping time intervals are indepen-
dent.

The arithmetic random walk can be obtained
as a generalized Wiener process, which has the
form

dSt = a dt + b dW

The appeal of the generalized Wiener process
is that we can find a closed-form expression for
the price at any time period. Namely,

St = S0 + a · t + b · W(t)

The generalized Wiener process is a special
case of the more general class of Ito processes,
in which both the drift term and the coefficient
in front of the random term are allowed to be
nonconstant. The equation for an Ito process is

dSt = a (S,t) dt + b(S,t) dW

GBM and the Ornstein-Uhlenbeck process are
both special cases of Ito processes.

In contrast to the generalized Wiener process,
the equation for the Ito process does not allow
us to write a general expression for the price at
time t in closed form. However, an expression
can be found for some special cases, such as
GBM. We now show how this can be derived.

The main relevant result from stochastic cal-
culus is the so-called Ito’s lemma, which states



96 Asset Pricing Models

the following. Suppose that a variable x follows
an Ito process

dxt = a (x, t) dt + b(x, t) dW

and let y be a function of x, that is,

yt = f (x, t)

Then, y evolves according to the following
differential equation:

dyt =
(

∂ f
∂x

· a + ∂ f
∂t

+ 1
2

· ∂2 f
∂x2 · b2

)
dt

+ ∂ f
∂x

· b · dW

where the symbol ∂ is standard notation for the
partial derivative of the function f with respect
to the variable in the denominator. For exam-
ple, ∂f/∂t is the derivative of the function f with
respect to t assuming that all terms in the ex-
pression for f that do not involve t are constant.
Respectively, ∂2 denotes the second derivative
of the function f with respect to the variable in
the denominator, that is, the derivative of the
derivative.

This expression shows that a function of a
variable that follows an Ito process also follows
an Ito process.

Although a rigorous proof of Ito’s lemma is
beyond the scope of this entry, we will provide
some intuition. Let us see how we would go
about computing the expression for y in Ito’s
lemma.

In ordinary calculus, we could obtain an ex-
pression for a function of a variable in terms of
that variable by writing the Taylor series exten-
sion:

dy = ∂ f
∂x

· dx + ∂ f
∂t

· dt + 1
2

· ∂2 f
∂x2 · dx2

+ 1
2

· ∂2 f
∂t2 · dt2 + ∂2 f

∂x∂x
· dx dt + . . .

We will get rid of all terms of order dt2 or
higher, deeming them too small. We need to
expand the terms that contain dx, however,
because they will contain terms of order dt. We

have

dy = ∂ f
∂x

· (a (x, t) dt + b(x, t) dW) + ∂ f
∂t

· dt

+ 1
2

· ∂2 f
∂x2 · (a (x, t) dt + b(x, t) dW)2

The last expression in parentheses, when ex-
panded, becomes (dropping the arguments of a
and b for notational convenience)

(a dt + b dW)2 = a2(dt)2 + b2(dW)2

+ 2ab · dt · dW

= b2dt

To obtain this expression, we dropped the first
and the last term in the expanded expression,
because they are of order higher than dt. The
middle term, b2(dW)2, in fact equals b2·dt as dt
goes to 0. The latter is not an obvious fact, but
it follows from the properties of the standard
Wiener process. The intuition behind it is that
the variance of (dW)2 is of order dt2, so we can
ignore it and treat the expression as determinis-
tic and equal to its expected value. The expected
value of (dW)2 is in fact dt.

Substituting this expression back into the ex-
pression for dy, we obtain the expression in Ito’s
lemma.

Using Ito’s lemma, let us derive the equation
for the price at time t, St that was the basis for
the exact simulation method for the geometric
random walk. Suppose that St follows the GBM

dSt = (μ · St) dt + (σ ·St) dW

We will use Ito’s lemma to compute the equa-
tion for the process followed by the logarithm
of the stock price. In other words, in the nota-
tion we used in the definition of Ito’s lemma,
we have

yt = f (x, t) = ln St

We also have

a = μ · S and b = σ · S

Finally, we have

∂ f
∂x

= ∂(ln S)
∂S

= 1
S

and
∂2 f
∂x2 = ∂(1/S)

∂S
= − 1

S2
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Plugging into the equation for y in Ito’s
lemma, we obtain

d ln S =
(

1
S

· a + 0 + 1
2

·
(

− 1
S2

)
· b2

)
dt

+ 1
S

· b · dW

=
(

μ − 1
2

· σ 2
)

dt + σ · dW

which is the equation we presented earlier. This
also explains the presence of the

−1
2

· σ 2

term in the expression for the drift of the GBM.

KEY POINTS
� Models of asset dynamics include trees (such

as binomial trees) and random walks (such
as arithmetic, geometric, and mean-reverting
random walks). Such models are called dis-
crete when the changes in the asset price are
assumed to happen at discrete time incre-
ments. When the length of the time increment
is assumed to be infinitely small, we refer to
them as stochastic processes in continuous
time.

� The arithmetic random walk is an additive
model for asset prices—at every time period,
the new price is determined by the price at
the previous time period plus a deterministic
drift term and a random shock that is dis-
tributed as a normal random variable with
mean equal to zero and a standard deviation
proportional to the square root of the length of
the time period. The probability distribution
of future asset prices conditional on a known
current price is normal.

� The arithmetic random walk model is analyti-
cally tractable and convenient; however, it has
some undesirable features such as a nonzero
probability that the asset price will become
negative.

� The geometric random walk is a multiplica-
tive model for asset prices—at every time pe-

riod, the new price is determined by the price
at the previous time period multiplied by a
deterministic drift term and a random shock
that is distributed as a lognormal random
variable. The volatility of the process grows
with the square root of the elapsed amount
of time. The probability distribution of future
asset prices conditional on a known current
price is lognormal.

� The geometric random walk is not only an-
alytically tractable, but is more realistic than
the arithmetic random walk, because the as-
set price cannot become negative. It is widely
used in practice, particularly for modeling
stock prices.

� Mean reversion models assume that the asset
price will meander, but will tend to return to a
long-term mean at a speed called the speed of
adjustment. They are particularly useful for
modeling prices of some commodities, inter-
est rates, and exchange rates.

� The codependence structure between the
price processes for different assets can be
incorporated directly (by computing the
correlation between the random terms in
their random walks), by using dynamic
multifactor models, or by more advanced
means such as copula functions and transfer
entropies.

� A variety of more advanced random walk
models are used to incorporate different as-
sumptions, such as time-varying volatility
and “spikes,” or jumps, in the asset price.
They are not as tractable analytically as the
classical random walk models, but can be
simulated.

� The Wiener process, a stochastic process in
continuous time, is a basic building block
for many of the stochastic processes used
to model asset prices. The increments of a
Wiener process are independent, normally
distributed random variables with variance
proportional to the length of the time period.

� An Ito process is a generalized Wiener pro-
cess with drift and volatility terms that can be
functions of the asset price and time.
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� An important result in stochastic calculus is
Ito’s lemma, which states that a variable that
is a function of a variable that follows an Ito
process follows an Ito process itself with spe-
cific drift and volatility terms.
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Abstract: Arbitrage in its most basic form involves the simultaneous buying and selling of an
asset at two different prices in two different markets. In real-world financial markets, arbitrage
opportunities rarely, if ever, exist. Less obvious arbitrage opportunities exist in situations where a
package of assets can be assembled that have a payoff (return) that is identical to an asset that is
priced differently. A market is said to be a complete market if an arbitrary payoff can be replicated
by a portfolio. The most fundamental principle in asset pricing theory is the absence of arbitrage
opportunities.

The principle of absence of arbitrage or the
no-arbitrage principle is perhaps the most
fundamental principle of finance theory. In the
presence of arbitrage opportunities, there is
no trade-off between risk and returns because
it is possible to make unbounded risk-free
gains. The principle of absence of arbitrage is
fundamental for understanding asset valuation
in a competitive market. This entry discusses
arbitrage pricing in a finite-state, discrete-time
setting. However, it is important to note that
there are well-known limits to arbitrage,
first identified by Shleifer and Vishny (1997),
resulting from restrictions imposed on rational
traders and, as a result, pricing inefficiencies
may exist for a period of time.

THE ARBITRAGE PRINCIPLE
Let’s begin by defining what is meant by
arbitrage. In its simple form, arbitrage is the

simultaneous buying and selling of an asset at
two different prices in two different markets.
The arbitrageur profits without risk by buying
cheap in one market and simultaneously selling
at the higher price in the other market. Such
opportunities for arbitrage are rare. In fact,
a single arbitrageur with unlimited ability to
sell short could correct a mispricing condition
by financing purchases in the underpriced
market with proceeds from short sales in the
overpriced market. This means that riskless
arbitrage opportunities are short-lived.

Less obvious arbitrage opportunities exist in
situations where a package of assets can pro-
duce a payoff (return) identical to an asset that
is priced differently. This arbitrage relies on a
fundamental principle of finance called the law
of one price, which states that a given asset must
have the same price regardless of the location
where the asset is traded and the means by
which one goes about creating that asset. The

99
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law of one price implies that if the payoff of an
asset can be synthetically created by a package
of assets, the price of the package and the price
of the asset whose payoff it replicates must be
equal.

When a situation is discovered whereby the
price of the package of assets differs from that
of an asset with the same payoff, rational in-
vestors will trade these assets in such a way
so as to restore price equilibrium. This market
mechanism is founded on the fact that an arbi-
trage transaction does not expose the investor
to any adverse movement in the market price
of the assets in the transaction.

For example, consider how we can produce an
arbitrage opportunity involving three assets A,
B, and C. These assets can be purchased today at
the prices shown below, and can each produce
only one of two payoffs (referred to as State 1
and State 2) a year from now:

Asset Price Payoff in State 1 Payoff in State 2

A $70 $50 $100
B 60 30 120
C 80 38 112

While it is not obvious from the data pre-
sented above, an investor can construct a port-
folio of assets A and B that will have the
identical payoff as asset C in both State 1 and
State 2. Let wA and wB be the proportion of assets
A and B, respectively, in the portfolio. Then the
payoff (i.e., the terminal value of the portfolio)
under the two states can be expressed mathe-
matically as follows:
� If State 1 occurs: $50 wA + $30 wB
� If State 2 occurs: $100 wA + $120 wB

We create a portfolio consisting of A and B
that will reproduce the payoff of C regardless
of the state that occurs one year from now. Here
is how: For either condition (State 1 and State 2),
we set the payoff of the portfolio equal to the
payoff for C as follows:
� State 1: $50 wA + $30 wB = $38
� State 2: $100 wA + $120 wB = $112

We also know that wA + wB = 1. If we solved
for the weights for wA and wB that would si-
multaneously satisfy the above equations, we
would find that the portfolio should have 40%
in asset A (i.e., wA = 0.4) and 60% in asset B
(i.e., wB = 0.6). The cost of that portfolio will be
equal to

(0.4)($70) + (0.6)($60) = $64

Our portfolio (i.e., package of assets) com-
prised of assets A and B has the same payoff
in State 1 and State 2 as the payoff of asset C.
The cost of asset C is $80 while the cost of the
portfolio is only $64. This is an arbitrage oppor-
tunity that can be exploited by buying assets
A and B in the proportions given above and
shorting (selling) asset C.

For example, suppose that $1 million is in-
vested to create the portfolio with assets A and
B. The $1 million is obtained by selling short as-
set C. The proceeds from the short sale of asset
C provide the funds to purchase assets A and B.
Thus, there would be no cash outlay by the in-
vestor. The payoffs for States 1 and 2 are shown
below:

Asset Investment State 1 State 2

A $ 400,000 $ 285,715 $ 571,429
B 600,000 300,000 1,200,000
C −1,000,000 −475,000 −1,400,000

Total 0 $110,715 $371,429

ARBITRAGE PRICING IN A
ONE-PERIOD SETTING
We can describe the concepts of arbitrage pric-
ing in a more formal mathematical context. It
is useful to start in a simple one-period, finite-
state setting as in the example of the previous
section. This means that we consider only one
period and that there is only a finite number M
of states of the world. In this setting, asset prices
can assume only a finite number of values.

The assumption of finite states is not as
restrictive as it might appear. In practice,



ARBITRAGE PRICING: FINITE-STATE MODELS 101

security prices can only assume a finite num-
ber of values. Stock prices, for example, are not
real numbers but integer fractions of a dollar.
In addition, stock prices are nonnegative num-
bers and it is conceivable that there is some very
high upper level that they cannot exceed. In ad-
dition, whatever simulation we might perform
is a finite-state simulation given that the preci-
sion of computers is finite.

The finite number of states represents uncer-
tainty. There is uncertainty because the world
can be in any of the M states. At time 0 it is not
known in what state the world will be at time 1.
Uncertainty is quantified by probabilities but a
lot of arbitrage pricing theory can be developed
without any reference to probabilities. Suppose
there are N securities. Each security i pays
dij number of dollars (or of any other unit
of account) in each state of the world j. The
payoff of each security need not be a positive
number. For instance, a derivative instrument
might have negative payoffs in some states of
the world. Therefore, in a one-period setting,
the securities are formally represented by an
N × M matrix D = {dij} where the dij entry is
the payoff of security i in state j. The matrix D
can also be written as a set of N row vectors:

D =
⎡

⎣
d1

·
dN

⎤

⎦ , di = [di1 · di M]

where the M-vector di represents the payoffs of
security i in each of the M states.

Each security is characterized by a price S.
Therefore, the set of N securities is character-
ized by an N-vector S and an N×M matrix D.
Suppose, for instance, there are two states and
three securities. Then the three securities are
represented by

S =
⎡

⎣
S1

S2

S3

⎤

⎦ , D =
⎡

⎣
d11 d12

d21 d22

d31 d32

⎤

⎦

Every row of the D matrix represents one se-
curity, every column one state. Note that in a
one-period setting, prices are defined at time 0

while payoffs are defined at time 1. There is no
payoff at time 0 and there is no price at time 1.
A portfolio is represented by an N-vector of
weights θ. In our example of a market with
two states and three securities, a portfolio is a
3-vector:

θ =
⎡

⎣
θ1

θ2

θ3

⎤

⎦

The market value Sθ of a portfolio θ at time 0
is a scalar given by the scalar product:

Sθ = Sθ =
N∑

i=1

Siθi

Its payoff dθ at time 1 is the M-vector:

dθ = D′θ

The price of a security and the market value
of a portfolio can be a negative number. In the
previous example of a two-state, three-security
market we obtain

Sθ = Sθ = S1θ1 + S2θ2 + S3θ3

dθ = D′θ =
[

d11 d21 d31

d12 d22 d32

]⎡

⎣
θ1

θ2

θ3

⎤

⎦

=
[

d11θ1+ d21θ2+ d31θ3

d12θ1+ d22θ2+ d32θ3

]

Let’s introduce the concept of arbitrage in
this simple setting. As we have seen, arbitrage
is essentially the possibility of making money
by trading without any risk. Therefore, we de-
fine an arbitrage as any portfolio θ that has a
negative market value Sθ = Sθ < 0 and a non-
negative payoff Dθ = D′θ ≥ 0 or, alternatively,
a nonpositive market value Sθ = Sθ ≤ 0 and a
positive payoff Dθ = D′θ > 0.

State Prices
Next we define state prices. A state-price vector
is a strictly positive M-vector ψ such that secu-
rity prices can be written as S = Dψ. In other
words, given a state-price vector, if it exists,
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security prices can be recovered as a weighted
average of the securities’ payoffs, where the
state-price vector gives the weights. In the pre-
vious two-state, three-security example we can
write:

ψ =
[

ψ1

ψ2

]

S = Dψ

⎡

⎣
S1

S2

S3

⎤

⎦ =
⎡

⎣
d11 d12

d21 d22

d31 d32

⎤

⎦
[

ψ1

ψ2

]
=

⎡

⎣
d11ψ1+ d12ψ2

d21ψ1+ d22ψ2

d31ψ1+ d32ψ2

⎤

⎦

Given security prices and payoffs, state prices
can be determined solving the system:

d11ψ1 + d12ψ2 = S1

d21ψ1 + d22ψ2 = S2

d31ψ1 + d32ψ2 = S3

This system admits solutions if and only if
there are two linearly independent equations
and the third equation is a linear combination
of the other two. Note that this condition is nec-
essary but not sufficient to ensure that there are
state prices as state prices must be strictly posi-
tive numbers.

A portfolio θ is characterized by payoffs dθ =
D′θ. Its price is given, in terms of state prices,
by: Sθ = Sθ = Dψθ = dθψ.

It can be demonstrated that there is no arbi-
trage if and only if there is a state-price vector.
The formal demonstration is quite complicated
given the inequalities that define an arbitrage
portfolio. It hinges on the separating hyper-
plane theorem, which says that, given any two
convex disjoint sets in RM, it is possible to find
a hyperplane separating them. A hyperplane is
the locus of points xi that satisfy a linear equa-
tion of the type:

a0 +
M∑

i=1

ai xi = 0

Intuitively, however, it is clear that the ex-
istence of state prices ensures that the law of

one price introduced in the previous section
is automatically satisfied. In fact, if there are
state prices, two identical payoffs have the same
price, regardless of how they are constructed.
This is because the price of a security or of
any portfolio is univocally determined as a
weighted average of the payoffs, with the state
prices as weights.

Risk-Neutral Probabilities
Let’s now introduce the concept of risk-neutral
probabilities. Given a state-price vector, con-
sider the sum of its components ψ0 = ψ1 + ψ2 +
. . . + ψM. Normalize the state-price vector by
dividing each component by the sum ψ0. The
normalized state-price vector

ψ = {ψ j } =
{

ψ j

ψ0

}

is a set of positive numbers whose sum is one.
These numbers can be interpreted as probabil-
ities. They are not, in general, the real proba-
bilities associated with states. They are called
risk-neutral probabilities. We can then write

S
1
ψ0

= Dψ

We can interpret the above relationship as fol-
lows: The normalized security prices are their
expected payoffs under these special probabili-
ties. In fact, we can rewrite the above equation
as

S̄i = Si

ψ0
= E[di ]

where expectation is taken with respect to
risk-neutral probabilities. In this case, security
prices are the discounted expected payoffs un-
der these special risk-neutral probabilities.

Suppose that there is a portfolio θ̄ such that
dθ̄ = D′θ̄ = {1, 1, . . . , 1}. This portfolio can be
one individual risk-free security. As we have
seen above, Sθ = dθψ, which implies that
ψ0 = θ̄S is the discount on riskless borrowing.
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Complete Markets
Let’s now define the concept of complete mar-
kets, a concept that plays a fundamental role
in finance theory. In the simple setting of the
one-period finite-state market, a complete mar-
ket is one in which the set of possible portfo-
lios is able to replicate an arbitrary payoff. Call
span(D) the set of possible portfolio payoffs,
which is given by the following expression:

span(D) ≡ {D′θ: θ ∈ RM}

A market is complete if span(D) = RM.
A one-period finite-state complete market is

one where the equation

D′θ = ξ : ξ ∈ RM

always admits a solution. Recall from matrix
algebra that this is the case if and only if the
rank of D is M. This means that there are at
least M linearly independent payoffs—that is,
there are as many linearly independent pay-
offs as there are states. Let’s write down explic-
itly the system in the two-state, three-security
market.

D′θ = ξ

[
d11 d21 d31

d12 d22 d32

]⎡

⎣
θ1

θ2

θ3

⎤

⎦ =
[

ξ1

ξ2

]

d11θ1 + d21θ2 + d31θ3 = ξ1

d12θ1 + d22θ2 + d32θ3 = ξ2

This system of linear equations admits solu-
tions if and only if the rank of the coefficient
matrix is 2. This condition is not verified, for
example, if the securities have the same pay-
off in each state. In this case, the relationship
ξ1 = ξ2 must always be verified. In other words,
the three securities can only replicate portfolios
that have the same payoff in each state.

In this simple setting it is easy to associate
risk-neutral probabilities with real probabili-
ties. In fact, suppose that the vector of real prob-
abilities p is associated to states so that pi is
the probability of the i-th state. For any given

M-dimensional vector x, we write its expected
value under the real probabilities as

E[x] = px =
M∑

i=1

pi xi

It can be demonstrated that there is no arbi-
trage if and only if there is a strictly positive M-
vector π such that: S = E[Dπ]. Any such vector
π is called a state-price deflator. To see this point,
define

πi = ψi

pi

Prices can then be expressed as

Si =
M∑

j=1

dijψ j =
M∑

j=1

p j dij
ψ j

pi
=

M∑

j=1

p j dijπ j

which demonstrates that S = E[Dπ].
We can now specialize the above calculations

in the numerical case of the previous section.
Recall that in the previous section we gave the
example of three securities with the following
prices and payoffs expressed in dollars:

S =
⎡

⎣
70
60
80

⎤

⎦

D =
⎡

⎣
50 100
30 120
38 112

⎤

⎦

We first compute the relative state prices:

50ψ1 + 100ψ2 = 70

30ψ1 + 120ψ2 = 60

38ψ1 + 112ψ2 = 80

Solving the first two equations, we obtain
[

ψ1

ψ2

]
=

[
4/5

3/10

]

However, the third equation is not satisfied by
these values for the state prices. As a conse-
quence, there does not exist a state-price vector,
which confirms that there are arbitrage oppor-
tunities as observed in the first section.
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Now suppose that the price of security C
is $64 and not $80. In this case, the third
equation is satisfied and the state-price vector
is the one shown above. Risk-neutral probabil-
ities can now be easily computed. Here is how.
First sum the two state prices: 4/5 + 3/10 = 11/10 to
obtain

ψ0 = ψ1 + ψ2 = 11/10

and consequently the risk-neutral probabilities:

ψ =
[

ψ1

ψ2

]
=

[
ψ1/ψ0

ψ2/ψ0

]
=

[ 8/11
3/11

]

Risk-neutral probabilities sum to one while
state prices do not. We can now check if our
market is complete. Write the following equa-
tions:

50θ1 + 30θ2 + 38θ3 = ξ1

100θ1 + 120θ2 + 112θ3 = ξ2

The rank of the coefficient matrix is clearly 2 as
the determinant of the first minor is different
from zero:
[

50 30
100 120

]
= 50 × 120 − 100 × 30 = 300 �= 0

Our sample market is therefore complete and
arbitrage-free. A portfolio composed of the first
two securities can replicate any payoff and the
third security can be replicated as a portfolio of
the first two.

ARBITRAGE PRICING IN A
MULTIPERIOD FINITE-STATE
SETTING
The above basic results can be extended to
a multiperiod finite-state setting using proba-
bilistic concepts. The economy is represented by
a probability space (�,�, P) where � is the set
of possible states, � is the algebra of events (re-
call that we are in a finite-state setting and there-
fore there are only a finite number of events),
and P is a probability function. As the number
of states is finite, finite probabilities P({ω}) ≡

P(ω) ≡ pω are defined for each state. There is
only a finite number of dates from 0 to T.

Propagation of Information
The propagation of information is represented by a
filtration �t that, in the finite case, is equivalent
to an information structure It. The latter is a
discrete, hierarchical organization of partitions
It with the following properties:

Ik ≡ ({Aik}); k = 0, . . . , T ; i = 1, . . . , Mk ;

1 = M1 ≤ · ≤ Mk ≤ · ≤ MT = M

Aik ∩ Ajk = O/ if i �= j and
Mk⋃

i=1

Aik = �

and, in addition, given any two sets Aik, Ajh,
with h > k, either their intersection is empty
Aik ∩ Ajh = O/ or Aik ⊇ Ajh. In other words, the
partitions become more refined with time.

Each security i is characterized by a payoff
process di

t and by a price process Si
t . In this

finite-state setting, di
t and Si

t are discrete vari-
ables that, given that there are M states, can
be represented by M-vectors di

t = [di
t (ω)] and

Si
t = [Si

t (ω)] where di
t (ω) and Si

t (ω) are, respec-
tively, the payoff and the price of the i-th asset at
time t, 0 ≤ t ≤ T and in state ω ∈ �. All payoffs
and prices are stochastic processes adapted to
the filtration �t. Given that di

t and Si
t are adapted

processes in a finite probability space, they have
to assume a constant value on each partition of
the information structure It. It is convenient to
introduce the following notation:

di
Ajt

= di
t (ω), ω ∈ Ajt

Si
Ajt

= Si
t (ω), ω ∈ Ajt

where di
Ajt

and Si
Ajt

represent the constant val-

ues that the processes di
t and Si

t assume on the
states that belong to the sets Ajt of each parti-
tion It. There is M0 = 1 value for di

Aj0
and Si

Aj0
,

Mt values for di
Ajt

and Si
Ajt

and MT = M val-
ues for di

AjT
and Si

AjT
. The same notation and

the same consideration can be applied to any
process adapted to the filtration �t.
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Trading Strategies
We have to define the meaning of trading strate-
gies in this multiperiod setting. A trading strat-
egy is a sequence of portfolios θ such that θt

is the portfolio held at time t after trading. To
ensure that there is no anticipation of informa-
tion, each trading strategy θ must be an adapted
process. The payoff dθ generated by a trading
strategy is an adapted process dθ

t with the fol-
lowing time dynamics:

dθ
t = θt−1(St + dt) − θt St

An arbitrage is a trading strategy whose pay-
off process is nonnegative and not always zero.
In other words, an arbitrage is a trading strat-
egy that is never negative and which is strictly
positive for some instants and some states. Note
that imposing the condition that payoffs are al-
ways nonnegative forbids any initial positive
investment that is a negative payoff.

A consumption process is any nonnegative
adapted process. Markets are said to be com-
plete if any consumption process can be ob-
tained as the payoff process of a trading strategy
with some initial investment. Market complete-
ness means that any nonnegative payoff process
can be replicated with a trading strategy.

State-Price Deflator
We will now extend the concept of state-price
deflator to a multiperiod setting. A state-price
deflator is a strictly positive adapted process πt

such that the following set of M equations hold:

Si
t = 1

πt
Et

⎡

⎣
T∑

j=t+1

π j di
j

⎤

⎦

In other words, a state-price deflator is a strictly
positive process such that prices Si

t are random
variables equal to the conditional expectation
of discounted payoffs with respect to the filtra-
tion �. As noted above, in this finite-state set-
ting a filtration is equivalent to an information
structure It. Note that in the above stochastic
equation—which is a set of M equations, one

for each state, the term on the left, the prices
Si

t , is an adapted process that, as mentioned,
assumes constant values on each set of the par-
tition It. The term on the right is a conditional
expectation multiplied by a factor 1/πt . The pro-
cess πt is adapted by definition and, therefore,
assumes constant values πAit on each set of the
partition It.

In this finite setting, conditional expecta-
tions are expectations computed with condi-
tional probabilities. Conditional expectations
are adapted processes. Therefore they assume
one value at t = 0, Mj values for t = j , and M
values at the last date.

To illustrate the above, let’s write down ex-
plicitly the above equation in terms of the nota-
tion di

Ajt
and Si

Ajt
. Note first that

P({ω}|Akt) = P({ω} ∩ Akt)
P(Akt)

= P({ω})
P(Akt)

,

if ω ∈ Akt, 0 if ω �∈ Akt

Given that the probability space is finite,

P(Ajt) =
∑

ω∈Ajt

pω

As we defined P({ω}) ≡ pω, the previous equa-
tion becomes

P({ω}|Akt) = P({ω} ∩ Akt)
P(Akt)

= P({ω})
P(Akt)

= pω( ∑
ω∈Akt

pt0

)

if ω ∈ Akt, 0 if ω �∈ Akt.

Pricing Relationships
We can now write the pricing relationship as
follows:

Si
Akt

= 1
πAkt

⎡

⎣
∑

ω∈Akt

⎛

⎝P({ω}|Akt)

⎛

⎝
T∑

j=t+1

π j (ω)di
j (ω)

⎞

⎠

⎞

⎠

⎤

⎦

= 1
πAkt

⎡

⎢⎢⎣
∑

ω∈Akt

⎛

⎜⎜⎝
pω( ∑

ω∈Akt

pω

)

⎛

⎝
T∑

j=t+1

π j (ω)di
j (ω)

⎞

⎠

⎞

⎟⎟⎠

⎤

⎥⎥⎦

Akt ∈ It, 1 ≤ k ≤ Mt
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The above formulas generalize to any trading
strategy. In particular, if there is a state-price de-
flator, the market value of any trading strategy
is given by

θt × St = 1
πt

E

⎡

⎣
T∑

j=t+1

π j dθ
j

⎤

⎦

(θtSt)Akt = 1
πAkt

⎡

⎣
∑

ω∈Akt

⎛

⎝P({ω}|Akt)

⎛

⎝
T∑

j=t+1

π j (ω)dθ
j (ω)

⎞

⎠

⎞

⎠

⎤

⎦

= 1
πAkt

⎡

⎢⎢⎢⎢⎣

∑

ω∈Akt

⎛

⎜⎜⎜⎜⎝
pω(

∑
ω∈Akt

pω

)

⎛

⎝
T∑

j=t+1

π j (ω)dθ
j (ω)

⎞

⎠

⎞

⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎦

It is possible to demonstrate that the payoff-
price pair (di

t , Si
t ) admits no arbitrage if and

only if there is a state-price deflator. These con-
cepts and formulas generalize those of a one-
period setting to a multiperiod setting.

Given a payoff-price pair (di
t , Si

t ) it is possi-
ble to compute the stateprice deflator, if it ex-
ists, from the previous equations. In fact, it is
possible to write a set of linear equations in
the πt, πt−1 for each period. One can proceed
backward from the period T to period 1 writ-
ing a homogeneous system of linear equations.
As the system is homogeneous, one of the vari-
ables can be arbitrarily fixed; for example, the
initial value π0 can be assumed equal to 1. If
the system admits nontrivial solutions and if
all solutions are strictly positive, then there are
state-price deflators.

To illustrate the above, let’s write down ex-
plicitly the previous formulas for prices, ex-
tending the example of the previous section to
a two-period setting. We assume there are three
securities and two periods, that is, three dates
(0,1,2) and four states, indicated with the inte-
gers 1,2,3,4, so that � = {1,2,3,4}. Assume that
the information structure is given by the follow-
ing partitions of events:

Ii ≡ (I0 ≡ {A1,0}, I1 ≡ {A1,1, A2,1},
I2 ≡ {A1,2, A2,2, A3,2, A4,2})

A1,0 = {1 + 2 + 3 + 4}, A1,1 = {1 + 2},
A2,1 = {3 + 4}
A1,2 = {1}, A2,2 = {2}, A3,2 = {3}, A4,2 = {4}

where we use + to indicate logical union, so
that, for example, {1 + 2} is the event formed by
states 1 and 2. The interpretation of the above
notation is the following. At time zero the world
can be in any possible state, that is, the securi-
ties can take any possible path. Therefore the
partition at time zero is formed by the event
{1 + 2 + 3 + 4}. At time 1, the set of states is
partitioned into two mutually exclusive events,
{1 + 2} or {3 + 4}. At time 2 the partition is
formed by all individual states. Note that this is
a particular example; different partitions would
be logically admissible.

Figure 1 represents the above structure. Each
security is characterized by a price process and
a payoff process adapted to the information
structure. Each process is a collection of three
discrete random variables indexed with the
time indexes 0,1,2. Each discrete random vari-
able is a 4-vector as it assumes as many values as
states. However, as processes are adapted, they
must assume the same value on each partition
of the information structure. Note also that pay-
offs are zero at date zero and prices are zero at
date 2. Therefore, in this example, we can put
together these vectors in two 3 × 4 matrices for

Figure 1 An Information Structure with Four
States and Three Dates
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each security as follows

{
Si

t (ω)
} ≡

⎡

⎢⎢⎢⎢⎢⎣

Si
0(1) Si

1(1) 0

Si
0(2) Si

1(2) 0

Si
0(3) Si

1(3) 0

Si
0(4) Si

1(4) 0

⎤

⎥⎥⎥⎥⎥⎦
;

{
di

t (ω)
} ≡

⎡

⎢⎢⎢⎢⎢⎣

0 di
1(1) di

2(1)

0 di
1(2) di

2(2)

0 di
1(3) di

2(3)

0 di
1(4) di

2(4)

⎤

⎥⎥⎥⎥⎥⎦

The following relationships hold:

Si
0(1) = Si

0(2) = Si
0(3) = Si

0(4) = Si
A1,0

;

Si
1(1) = Si

1(2) = Si
A1,1

;

Si
1(3) = Si

1(4) = Si
A2,1

di
1(1) = di

1(2) = di
A1,1

; di
1(3) = di

1(4) = di
A2,1

where, as above, Si
t (ω) is the price of secu-

rity i in state ω at moment t and di
t (ω) is

the payoff of security i in state ω at time t
with the restriction that processes must assume
the same value on partitions. This is because
processes are adapted to the information struc-
ture so that there is no anticipation of informa-
tion. One must not be able to discriminate at
time 0 events that will be revealed at time 1 and
so on.

Observe that there is no payoff at time 0 and
no price at time 2 and that the payoffs at time
2 have to be intended as the final liquidation of
the security as in the one-period case. Payoffs at
time 1, on the other hand, are intermediate pay-
ments. Note that the number of states is chosen
arbitrarily for illustration purposes. Each state
of the world represents a path of prices and
payoffs for the set of three securities. To keep
the example simple, we assume that of all the
possible paths of prices and payoffs only four
are possible.

The state-price deflator can be represented as
follows:

{πt(ω)} ≡

⎡

⎢⎢⎢⎢⎣

π0(1) π1(1) π2(1)

π0(2) π1(2) π2(2)

π0(3) π1(3) π2(3)

π0(4) π1(4) π2(4)

⎤

⎥⎥⎥⎥⎦

π0(1) = π0(2) = π0(3) = π0(4)

π1(1) = π1(2) = π1(3) = π1(4)

A probability pω is assigned to each of the
four states of the world. The probability of each
event is simply the sum of the probabilities of
its states. We can write down the formula for
security prices in this way:

Si
A1,2

= Si
2(1) = Si

A2,2
= Si

2(2) = Si
A3,2

= Si
2(3)

= Si
A4,2

= Si
2(4) = 0

Si
A1,1

= Si
1(1) = Si

1(2)

= 1
πA1,1

[P(A1,2|A1,1)π2(1)di
2(1)

+ P(A2,2|A1,1)π2(2)di
2(2)]

= 1
πA1,1

[
p1

p1 + p2
π2(1)di

2(1)

+ p2

p1 + p2
π2(2)di

2(2)
]

Si
A2,1

= Si
1(3) = Si

1(4)

= 1
πA2,1

[P(A3,2|A2,1)π2(3)di
2(3)

+ P(A4,2|A2,1)π2(4)di
2(4)]

= 1
πA2,1

[
p3

p3 + p4
π2(3)di

2(3)

+ p4

p3 + p4
π2(4)di

2(4)
]

Si
A1,0

= {
p1

[
πA1,1 di

A1,1
+ π2(1)di

2(1)
] + p2

[
πA1,1 di

A1,1

+π2(2)di
2(2)

] + p3
[
πA1,2 di

A1,2
+ π2(3)di

2(3)
]

+p4
[
πA1.2 di

A1,2
+ π2(4)di

2(4)
]}

These equations illustrate how to com-
pute the state-price deflator knowing prices,
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payoffs, and probabilities. They form a ho-
mogeneous system of linear equations in
π2(1), π2(2), π2(3), π2(4), πA1,1 , πA2,1 , πA1,0 .

p1di
2(1)π2(1) + p2di

2(2)π2(2) − Si
A1,1

(p1 + p2)

πA1,1 = 0

p3di
2(3)π2(3) + p4di

4(4)π2(4) − Si
A2,1

(p3 + p4)

πA2,1 = 0

p1di
2(1)π2(1) + p2di

2(2)π2(2) + p3di
2(3)π2(3)

+ p4di
4(4)π2(4) + (p1 + p2)di

A1,1
πA1,1

+ (p3 + p4)di
A2,3

πA2,3 − Si
A1,0

πA1,0 = 0

Substituting, we obtain

p1di
2(1)π2(1) + p2di

2(2)π2(2) − Si
A1,1

(p1 + p2)

πA1,1 = 0

p3di
2(3)π2(3) + p4di

4(4)π2(4) − Si
A2,1

(p3 + p4)

πA2,1 = 0

[(p1 + p2)Si
A1,1

+ (p1 + p2)di
A1.1

]πA1,1

+ [(p3 + p4)Si
A2,1

+ (p3 + p4)di
A2,1

]πA2,1

− Si
A1,0

πA1,0 = 0

This homogeneous system must admit a
strictly positive solution to yield a state-price
deflator. There are seven unknowns. However,
as the system is homogeneous, if nontrivial so-

lutions exist, one of the unknowns can be ar-
bitrarily fixed, for example πA1,0 . Therefore, six
independent equations are needed. Each asset
provides two conditions, so a minimum of three
assets are needed.

To illustrate the point, we assume that all
states (which are also events in this discrete
example) have the same probability 0.25. Thus
the events of the information structure have the
following probabilities: the single event at time
zero has probability 1, the two events at time 1
have probability 0.5, and the four events at time
2 coincide with individual states and have prob-
ability 0.25. Conditional probabilities are shown
in Table 1.

For illustration purposes, let’s write the fol-
lowing matrices for payoffs for each security at
each date in each state:

{di
1(ω)} ≡

⎡

⎢⎢⎢⎣

0 15 50
0 15 100
0 20 70
0 20 110

⎤

⎥⎥⎥⎦ ; {di
2(ω)} ≡

⎡

⎢⎢⎢⎣

0 8 30
0 8 120
0 15 40
0 15 140

⎤

⎥⎥⎥⎦ ;

{di
3(ω)} ≡

⎡

⎢⎢⎢⎣

0 5 38
0 5 112
0 8 42
0 8 130

⎤

⎥⎥⎥⎦

Table 1 Conditional Probabilities

P(A1,1|A1,0) = P(A1,1 ∩ A1,0)
P(A1,0)

= P{1 + 2}
P{1 + 2 + 3 + 4} = 0.5 P(A2,1|A1,0) = P(A2,1 ∩ A1,0)

P(A1,0)
= P{3 + 4}

P{1 + 2 + 3 + 4} = 0.5

P(A1,2|A1,0) = P(A1,2 ∩ A1,0)
P(A1,0)

= P{1}
P{1 + 2 + 3 + 4} = 0.25 P(A2,2|A1,0) = P(A2,2 ∩ A1,0)

P(A1,0)
= P{2}

P{1 + 2 + 3 + 4} = 0.25

P(A3,2|A1,0) = P(A3,2 ∩ A1,0)
P(A1,0)

= P{3}
P{1 + 2 + 3 + 4} = 0.25 P(A4,2|A1,0) = P(A4,2 ∩ A1,0)

P(A1,0)
= P{4}

P{1 + 2 + 3 + 4} = 0.25

P(A1,2|A1,1) = P(A1,2 ∩ A1,1)
P(A1,1)

= P{1}
P{1 + 2} = 0.25

0.5
= 0.5 P(A1,2|A2,1) = P(A1,2 ∩ A2,1)

P(A2,1)
= P{O/}

P{1 + 2} = 0

P(A2,2|A1,1) = P(A2,2 ∩ A1,1)
P(A1,1)

= P{2}
P{1 + 2} = 0.25

0.5
= 0.5 P(A2,2|A2,1) = P(A2,2 ∩ A2,1)

P(A2,1)
= P{O/}

P{1 + 2} = 0

P(A3,2|A1,1) = P(A3,2 ∩ A1,1)
P(A1,1)

= P{O/}
P{1 + 2} = 0 P(A3,2|A2,1) = P(A3,2 ∩ A2,1)

P(A2,1)
= P{3}

P{3 + 4} = 0.5

P(A4,2|A1,1) = P(A4,2 ∩ A1,1)
P(A1,1)

= P{O/}
P{1 + 2} = 0 P(A4,2|A2,1) = P(A4,2 ∩ A2,1)

P(A2,1)
= P{4}

P{3 + 4} = 0.5
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We will assume that the state-price deflator is
the following given process:

{πt(ω)}≡

⎡

⎢⎢⎣

1 0.8 0.7
1 0.8 0.75
1 0.9 0.75
1 0.9 0.8

⎤

⎥⎥⎦

Each price is computed according to the previ-
ous equations. For example, calculations related
to asset 1 are as follows:

S1
2 (1) = S1

2 (2) = S1
2 (3) = S1

2 (4) = 0

S1
A1,1

= 1
0.8

(0.5 × 0.7 × 50 + 0.5 × 075 × 100)

= 68.75

S1
A2,1

= 1
0.9

(0.5 × 0.75 × 70 + 0.5 × 0.8 × 110)

= 78.05

S1
A1,0

= 1
1

[0.25(0.8 × 15 + 0.7 × 50)

+ 0.25(0.8 × 15 + 0.75 × 100)

+ 0.25(0.9 × 20 + 0.75 × 70)

+ 0.25(0.9 × 20 + 0.8 × 110)]

= 68.75

S2
2 (1) = S2

2 (2) = S2
2 (3) = S2

2 (4) = 0

S2
A1,1

= 1
0.8

(0.5 × 0.7 × 30 + 0.5 × 0.75 × 120)

= 69.37

S2
A2,1

= 1
0.9

(0.5 × 0.75 × 40 + 0.5 × 0.8 × 140)

= 78.88

S2
A1,0

= 1
1

[0.25(0.8 × 8 + 0.7 × 30)

+ 0.25(0.8 × 8 + 0.75 × 120)

+ 0.25(0.9 × 15 + 0.75 × 40)

+ 0.25(0.9 × 15 + 0.8 × 140)]

= 73.2

S3
2 (1) = S3

2 (2) = S3
2 (3) = S3

2 (4) = 0

S3
A1,1

= 1
0.8

(0.5 × 0.7 × 38 + 0.5 × 0.75 × 112)

= 69.12

S3
A2,1

= 1
0.9

(0.5 × 0.75 × 42 + 0.5 × 0.8 × 130)

= 75.27

S3
A1,0

= 1
1

[0.25(0.8 × 5 + 0.7 × 38)

+ 0.25(0.8 × 5 + 0.75 × 112)

+ 0.25(0.9 × 8 + 0.75 × 42)

+ 0.25(0.9 × 8 + 0.8 × 130)]

= 67.125

With the above equations we computed prices
from payoffs and state-price deflators. If prices
and payoffs were given, we could compute
state-price deflators from the homogeneous
system for state prices established above. Sup-
pose that the following price processes were
given:

{S1
t (ω)} =

⎡

⎢⎢⎣

68.75 68.75 0
68.75 68.75 0
68.75 78.05 0
68.75 78.05 0

⎤

⎥⎥⎦

{S2
t (ω)} =

⎡

⎢⎢⎣

73.2 69.37 0
73.2 69.37 0
73.2 78.88 0
73.2 78.88 0

⎤

⎥⎥⎦

{S3
t (ω)} =

⎡

⎢⎢⎣

67.125 69.12 0
67.125 69.12 0
67.125 75.27 0
67.125 75.27 0

⎤

⎥⎥⎦

We could then write the following system of
equations to compute state-price deflators:

0.25 × 50 × π2(1) + 0.25 × 100 × π2(2)

− 68.75 × 0.5 × πA1,1 = 0

0.25 × 70 × π2(1) + 0.25 × 110 × π2(2)

− 78.05 × 0.5 × πA1,1 = 0

(55 × 0.5 + 0.5 × 15) × πA1,1 + (70.25 × 0.5

+ 0.5 × 20) × πA2,1 − 68.75 × πA1,0 = 0

0.25 × 30 × π2(1) + 0.25 × 120 × π2(2)

− 69.37 × 0.5 × πA1,1 = 0

0.25 × 40 × π2(1) + 0.25 × 140 × π2(2)

− 78.88 × 0.5 × πA1,1 = 0

(55.5 × 0.5 + 0.5 × 8) × πA1,1 + (71 × 0.5

+ 0.5 × 15) × πA2,1 − 73.2 × πA1,0 = 0
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0.25 × 38 × π2(1) + 0.25 × 115 × π2(2)

− 69.12 × 0.5 × πA1,1 = 0

0.25 × 42 × π2(1) + 0.25 × 130 × π2(2)

− 75.27 × 0.5 × πA1,1 = 0

(55 × 0.5 + 0.5 × 15) × πA1,1 + (70.25 × 0.5

+ 0.5 × 20) × πA2.1 − 67.125 × πA1,0 = 0

It can be verified that this system, obviously, is
solvable and returns the same state-price defla-
tors as in the previous example.

Equivalent Martingale Measures
We now introduce the concept and properties
of equivalent martingale measures. This concept
has become fundamental for the technology of
derivative pricing. The idea of equivalent mar-
tingale measures is the following. A martingale
is a process Xt such that at any time t its con-
ditional expectation at time s, s > t coincides
with its present value: Xt = Et[Xs]. In discrete
time, a martingale is a process such that its value
at any time is equal to its conditional expecta-
tion one step ahead. In our case, this principle
can be expressed in a different but equivalent
way by stating that prices are the discounted
expected values of future payoffs. The law of it-
erated expectation then implies that price plus
payoff processes are martingales.

In fact, assume that we can write

St = Et

⎡

⎣
T∑

j=t+1

d j

⎤

⎦

then the following relationship holds:

St = Et

⎡

⎣
T∑

j=t+1

d j

⎤

⎦ = Et

⎡

⎣dt+1 + Et+1

⎡

⎣
T∑

j=t+1+1

d j

⎤

⎦

⎤

⎦

= Et[dt+1 + St+1]

Given a probability space, price processes are
not, in general, martingales. However it can
be demonstrated that, in the absence of arbi-
trage, there is an artificial probability measure
in which all price processes, appropriately dis-

counted, become martingales. More precisely,
we will see that in the absence of arbitrage
there is an artificial probability measure Q in
which the following discounted present value
relationship holds:

Si
t = E Q

t

⎡

⎣
T∑

j=t+1

di
j

Rt, j

⎤

⎦

We can rewrite this equation explicitly as
follows:

Si
t = E Q

t

⎡

⎣
T∑

j=t+1

di
j

Rt, j

⎤

⎦

= E Q
t

⎡

⎣ di
t+1

Rt,t+1
+ 1

Rt,t+1

T∑

j=t+2

di
j

Rt+1, j

⎤

⎦

= E Q
t

⎡

⎣ di
t+1

Rt,t+1
+ E Q

t+1

Rt,t+1

⎡

⎣
T∑

j=t+2

di
j

Rt, j

⎤

⎦

⎤

⎦

= E Q
t

[
di

t+1 + Si
t+1

Rt,t+1

]

which shows that the discounted price plus
payoff process is a martingale. The terms on
the left are the price processes, the terms on
the right are the conditional expectations un-
der the probability measure Q of the payoffs
discounted with the risk-free payoff.

The measure Q is a mathematical construct.
The important point is that this new probabil-
ity measure can be computed either from the
real probabilities if the state-price deflators are
known or directly from the price and payoff
processes. This last observation illustrates that
the concept of arbitrage depends only on the
structure of the price and payoff processes and
not on the actual probabilities. As we will see
later in this entry, equivalent martingale mea-
sures greatly simplify the computation of the
pricing of derivatives.

Let’s assume that there is short-term risk-free
borrowing in the sense that there is a trad-
ing strategy able to pay for any given inter-
val (t, s) one sure dollar at time s given that
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(dtdt+1 . . . ds−1)−1 has been invested at time t.
Equivalently, we can define for any time inter-
val (t, s) the payoff of a dollar invested risk-free
at time t as Rt,s = (dtdt+1 . . . ds−1).

We now define the concept of equivalent prob-
ability measures. Given a probability measure P
the probability measure Q is said to be equiv-
alent to P if both assign probability zero to the
same events. An equivalent probability mea-
sure Q is an equivalent martingale measure if
all price processes discounted with Ri, j become
martingales. More precisely, Q is an equivalent
martingale measure if and only if the market
value of any trading strategy is a martingale:

θt × St = E Q
t

⎡

⎣
T∑

j=t+1

dθ
j

Rt, j

⎤

⎦

Risk-Neutral Probabilities
Probabilities computed according to the equiv-
alent martingale measure Q are the risk-neutral
probabilities. Risk-neutral probabilities can be
explicitly computed. Here is how. Call qω the
risk-neutral probability of state ω. Let’s write
explicitly the relationship

Si
t = E Q

t

[
di

j

Rt, j

]

as follows:

Si
Akt

=
∑

ω∈Akt

qω

Q(Akt)

⎡

⎣
T∑

j=t+1

di
j (ω)

Rt, j

⎤

⎦

=
∑

ω∈Akt

qω(
∑

ω∈Akt

qω

)

⎡

⎣
T∑

j=t+1

di
j (ω)

Rt, j

⎤

⎦

The above system of equations determines
the risk-neutral probabilities. In fact, we can
write, for each risky asset, Mt linear equations,
where Mt is the number of sets in the partition
It plus the normalization equation for probabil-
ities. From the above equation, one can see that

the system can be written as

∑

ω∈Ak,t

qω

⎡

⎣
T∑

j=t+1

di
j (ω)

Rt, j
− Si

Akt

⎤

⎦ = 0

S∑

ω=1

qω = 1

This system might be determined, indeter-
mined, or impossible. The system will be im-
possible if there are arbitrage opportunities.
This system will be indetermined if there is an
insufficient number of securities. In this case,
there will be an infinite number of equivalent
martingale measures and the market will not be
complete.

Now consider the relationship between risk-
neutral probabilities and state-price deflators.
Consider a probability measure P and a nonneg-
ative random variable Y with expected value
on the entire space equal to 1. Define a new
probability measure as Q(B) = E[1BY] for any
event B and where 1B is the indicator function
of the event B. The random variable Y is called
the Radon-Nikodym derivative of Q and it is
written

Y = dQ
dP

It is clear from the definition that P and Q
are equivalent probability measures as they as-
sign probability zero to the same events. Note
that in the case of a finite-state probability space
the new probability measure is defined on each
state and is equal to

qω = Y(ω)pω

Suppose πt is a state-price deflator. Let Q be
the probability measure defined by the Radon-
Nikodym derivative:

ξT = πT R0,T

π0

The new state probabilities under Q are the
following:

qω = πT (ω)R0,T

π0(ω)
pω
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Define the density process ξt for Q as ξt =
Et[ξT ]. As ξt = Et[ξT ] is an adapted process, we
can write:

(Et[ξT ])Akt = ξAkt =
∑

ω∈Akt

pω

P(Akt)
ξT (ω)

=
∑

ω∈Akt

pω

P(Akt)
πT (ω)R0,T

π0(ω)
= πAkt R0,t

π0(ω)

× 1
πAkt

∑

ω∈Akt

pω

P(Akt)
πT [π0(ω)]Rt,T

= πAkt R0,t

π0

As Rt,s = (dtdt+1 . . . ds−1) is the payoff at time
s of one dollar invested in a risk-free asset at
time t, s > t, we can then write the following
equation:

1 = 1
πt

Et[πs Rt,s]

Therefore,

1 = 1
πAkt

⎡

⎣
∑

ω∈Akt

P({ω}|Akt)πs(ω)Rt,s

⎤

⎦

= 1
πAkt

⎡

⎣
∑

ω∈Akt

pω

P(Akt)
πs(ω)Rt,s

⎤

⎦

1 ≤ k ≤ Mt

Substituting in the previous equation, we ob-
tain, for each interval (t, T),

ξAkt = (Et[ξT ])Akt = πAkt R0,t

πA10

which we can rewrite in the usual notation as

ξt = Et[ξT ] = πt R0,t

π10

We can now state the following result. Con-
sider any � j -measurable variable xj . This con-
dition can be expressed equivalently stating
that xj assumes constant values on each set of
the partition Ij. Then the following relationship
holds:

E Q
t [xj ] = E P

t
1
ξt

[ξ j x j ]

To see this, consider the following demonstra-
tion, which hinges on the fact that xj assumes a
constant value on each Ahj and, therefore, can
be taken out of sums. In addition, as demon-
strated above, from

1 = 1
πt

Et[πs Rt,s]

the following relationship holds:

P(Akt)πAkt =
∑

ω∈Akt

pωπs(ω)Rt,s

1 ≤ k ≤ Mt

(E Q
t [xj ])Akt

=
∑

ω∈Akt

qω

Q(Akt)
xj (ω) =

∑

ω∈Akt

pω

Q(Akt)
πT (ω)R0,T

π0(ω)
x, (ω)

= 1
Q(Akt)

∑

Ahj ⊂Akt

⎡

⎣
∑

ω∈Ahj

R0, j Rj,T pωπT (ω)xj (ω)
π0(ω)

⎤

⎦

= 1
Q(Akt)

∑

Ahj ⊂Akt

⎡

⎣ xAhj R0, j

π0(ω)

∑

ω∈Ahj

Rj,T pωπT (ω)

⎤

⎦

= 1
Q(Akt)

∑

Ahj ⊂Akt

[
xAhj R0, jπAhj P(Ahj )

π0(ω)

]

= 1
Q(Akt)

∑

Ahj ⊂Akt

[
xAhj ξAhj P(Ahj )

]

= 1
ξAkt

∑

Ahj ⊂Akt

xAhj ξAhj P(Ahj )
P(Akt)

= 1
ξAkt

[E P
t (ξ j x j )Akt]

Let’s now apply the above result to the rela-
tionship:

Si
t = 1

πt
Et

⎡

⎣
T∑

j=t+1

π j di
j

⎤

⎦ = π0

πt
Et

⎡

⎣
T∑

j=t+1

π j Rt, j

π0

di
j

Rt, j

⎤

⎦

= π0

πt R0, j
Et

⎡

⎣
T∑

j=t+1

π j R0, j

π0

di
j

Rt, j

⎤

⎦ = E Q
t

(
di

j

Rt, j

)

We have thus demonstrated the following re-
sults: There is no arbitrage if and only if there is
an equivalent martingale measure. In addition,
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πt is a state-price deflator if and only if an equiv-
alent martingale measure Q has the density pro-
cess defined by

ξt = πt R0,t

π0

In addition, it can be demonstrated that, if
there is no arbitrage, markets are complete if
and only if there is a unique equivalent martin-
gale measure.

To illustrate the above we now proceed to de-
tail the calculations for the previous example of
three assets, three dates, and four states. Let’s
first write the equations for the risk-free asset:

1 = 1
πAkt

⎡

⎣
∑

ω∈Akt

pω

P(Akt)
πs(ω)Rt,s

⎤

⎦

1 = 1
πA11

(
p1

p1 + p2
π2(1)R1,2 + p2

p1 + p2
π2(2)R1,2

)

1 = 1
πA21

(
p3

p3 + p4
π2(3)R1,2 + p4

p3 + p4
π2(4)R1,2

)

1 = 1
πA10

[p1π2(1)R0,2 + p2π2(2)R0,2

+ p3π2(3)R0,2 + p4π2(4)R0,2]

πA11 = π1(1) = π1(2)

πA21 = π1(3) = π1(4)

πA10 = π0(1) = π0(2) = π0(3) = π0(4)

We can now rewrite the pricing relationships
for the other risky assets as follows:

At date 2, prices are zero: Si
2 = 0.

At date 1, the relationship

Si
1 = E1

[
di

2

R1,2

]

holds. In fact, we can write the following:

Si
A1,1

= Si
1(1) = Si

1(2)

= 1
π1(2)

[P(A1,2|A1,1)π2(1)di
2(1)

+ P(A2,2|A1,1)π2(2)di
2(2)]

= 1
π11

(
p1

p1 + p2
π2(1)R1,2

di
2(1)
R1,2

+ p2

p1 + p2
π2(2)R1,2

di
2(2)
R1,2

)

=
[

Q(A1,2|A1,1)
di

2(1)
R1,2

+ Q(A2,2|A1,1)
di

2(2)
R1,2

]

=
[

q1

q1 + q2

di
2(1)
R1,2

+ q2

q1 + q2

di
2(2)
R1,2

]

Si
A2,1

= Si
1(3) = Si

1(4)

=
[

Q(A3,2|A1,1)
di

2(3)
R1,2

+ Q(A4,2|A1,1)
di

2(4)
R1,2

]

=
[

q3

q3 + q4

di
2(3)
R1,2

+ q4

q3 + q4

di
2(4)
R1,2

]

At date 0, the relationship

Si
0 = E0

[
di

1

R0,1
+ di

2

R0,2

]

holds. In fact we can write the following:

Si
A1,0

= Si
0(1) = Si

0(2) = Si
0(3) = Si

0(4)

= 1
πA10

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p1[π1(1)di
1(1) + π2(1)di

2(1)]

+p2[π1(2)di
1(2) + π2(2)di

2(2)]

+p3[π1(3)di
1(3) + π2(3)di

2(3)]

+p4[π1(4)di
1(4) + π2(4)di

2(4)]

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

= p1

[
π1(1)R0,1

πA1,0

di
1(1)
R0,1

+ π2(1)R0,2

πA1,0

di
2(1)
R0,2

]

+ p2

[
π1(2)R0,1

πA1,0

di
1(2)
R0,1

+ π2(2)R0,2

πA1,0

di
2(2)
R0,2

]

+ p3

[
π1(3)R0,1

πA1,0

di
1(3)
R0,1

+ π2(3)R0,2

πA1,0

di
2(3)
R0,2

]

+ p4

[
π1(4)R0,1

πA1,0

di
1(4)
R0,1

+ π2(4)R0,2

πA1,0

di
2(4)
R0,2

]

= p1

{
π1(1)R0,1

πA1,0

di
1(1)
R0,1

1
π11

[
p1

p1 + p2
π2(1)R1,2

+ p2

p1 + p2
π2(2)R1,2

]}

+ p2

{
π1(2)R0,1

πA1,0

di
1(2)
R0,1

1
π21

[
p1

p1 + p2
π2(1)R1,2

+ p2

p1 + p2
π2(2)R1,2

]}

+ p3

{
π1(3)R0,1

πA1,0

di
1(3)
R0,1

1
π31

[
p3

p3 + p4
π2(3)R1,2

+ p4

p3 + p4
π2(4)R1,2

]}
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+ p4

{
π1(4)R0,1

πA1,0

di
1(4)
R0,1

1
π41

[
p3

p3 + p4
π2(3)R1,2

+ p3

p3 + p4
π2(4)R1,2

]}

+ q1
di

2(1)
R0,2

+ q2
di

2(2)
R0,2

+ q3
di

2(3)
R0,2

+ q4
di

2(4)
R0,2

= di
1(1)
R0,1

[
p1π2(1)
πA1,0

R0,2 + p2π2(2)
πA1,0

R0,2

]

+ di
2(3)
R0,1

[
p3π2(3)
πA1,0

R0,2 + p4π2(4)
πA1,0

R0,2

]

+ q1
di

2(1)
R0,2

+ q2
di

2(2)
R0,2

+ q3
di

2(3)
R0,2

+ q4
di

2(4)
R0,2

= q1
di

1(1)
R0,1

+ q2
di

1(2)
R0,1

+ q3
di

1(3)
R0,1

+ q4
di

1(4)
R0,1

+ q1
di

2(1)
R0,2

+ q2
di

2(2)
R0,2

+ q3
di

2(3)
R0,2

+ q4
di

2(4)
R0,2

The value of a derivative instrument might
depend on the path of its past values. Consider a
lookback option on a stock—that is, a derivative
instrument on a stock whose payoff at time t is
the maximum difference between the price of
the stock and a given value K at any moment
prior to t. Call Vt the payoff of the lookback
option at time t. We can then write:

Vt = max
0≤k<t

(Sk − K )+

(Sk − K )+ Sk − K (Sk − K )+ = max(Sk − K , 0)

THE BINOMIAL MODEL
Let’s now introduce the simple but important
multiperiod finite-state model known as the
binomial model. The binomial model is impor-
tant because it gives a simple and mathemat-
ically tractable model of stock price behavior
that tends, in the limit of a zero time step, to a
Brownian motion.1 We introduce a market pop-
ulated by one risk-free asset and by one or more
risky assets whose price(s) follow(s) a binomial
or trinomial model. In the next section we will
see how to compute the price of derivative in-
struments in this market.

In the binomial model of stock prices, we as-
sume that at each time step the stock price will
assume one of two possible values. This is a re-
striction of the general multiperiod finite-state
model described in the previous sections on
probability theory. The latter is, as we have seen
in the previous section, a hierarchical structure
of partitions of the set of states. The number of
sets in any partition is arbitrary, provided that
partitions grow more refined with time.

The binomial model assumes that there are
two positive numbers, d and u, such that 0 <

d < u and such that at each time step the price
St of the risky asset changes to dSt or to uSt.
In general one assumes that 0 < d < 1 < u so
that d represents a price decrease (a movement
down) while u represents a price increase (a
movement up). It is often required that

d = 1
u

In this case an equal number of movements up
and down leave prices unchanged. The bino-
mial model is a Markov model as the distri-
bution of St clearly depends only on the value
of St−1.

A binomial model can be graphically repre-
sented by a tree. For example, Figure 2 shows a
binomial model for three periods. A binomial
model over T time steps, from 0 to T, produces a
total of 2T paths. Therefore, the corresponding
space of states has 2T states. However, the

Figure 2 Binomial Model: Illustration of a Bino-
mial Tree with Three Dates, Three Final Prices, and
Four States: uu, ud, du, dd
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number of different final prices ST =
ukdT−k S0, k = 0, 1, . . . , T is determined
solely by the number of u and d in each path
and increases by 1 at each time step; there are
as many final prices as dates. For example, the
model in Figure 2 shows three final prices and
four states.

Note that there is a simple relationship be-
tween the numbers d and u and returns. In fact,
we can write,

Rt(up) = St+1 − St

St
= uSt − St

St
= u − 1

Rt(down) = d − 1

Real probabilities of states are typically con-
structed from the probabilities of a movement
up or down. Call p the probability of a move-
ment up; 1 −p is thus the probability of a move-
ment down. Suppose that the state s, which is
identified by a price path, has k movements up
and T−k movements down. The probability of
the state s is

ps = pk(1 − p)T−k

Consider the final date T. Each of the possible
flnal prices ST = ukdT−k S0, k = 0, 1, . . . , T can
be obtained through

(
T
k

)
= T !

k!(T − k)!

paths with k movements up and T − k move-
ments down. The probability distribution of fi-
nal prices is therefore a binomial distribution:

P(ST = ukdT−k S0) =
(

T
k

)
pk(1 − p)T−k

Following the same reasoning, one can
demonstrate that at any intermediate date the
probability distribution of prices is a binomial
distribution as follows:

P(St = ukdt−k S0) =
(

y
k

)
pk(1 − p)t−k

Next introduce a risk-free security. In the set-
ting of a binomial model, a risk-free security is
simply a security such that d = u = 1 + r where

r > 0 is the positive risk-free rate. To avoid arbi-
trage it is clearly necessary that d < 1 + r < u.
In fact, if the interest rate is inferior to both the
up and down returns, one can make a sure profit
by buying the risky asset and shorting the risk-
free asset. If the interest rate is superior to both
the up and down returns, one can make a sure
profit by shorting the risky asset and buying
the risk-free asset. Denote by bt the price of the
risk-free asset at time t. From the definition of
price movement in the binomial model we can
write: bt = (1 + r )tb0.

Risk-Neutral Probabilities for the
Binomial Model
Let’s now compute the risk-neutral probabili-
ties. In the setting of binomial models, the com-
putation of risk-neutral probabilities is simple.
In fact we have to impose the condition:

qt = E Q
t [qt+1]

which we can explicitly write as follows:

St = quSt + (1 − q )d St

1 + r
1 + r = qu + d − qd

q = 1 + r − d
u − d

1 − q = u − 1 − r
u − d

As we have assumed 0 < d < 1 + r < u, the
condition 0 < q < 1 holds. Therefore we can
state that the unique risk-neutral probabilities
are

q = 1 + r − d
u − d

1 − q = u − 1 − r
u − d

The binomial model is complete and arbitrage
free.

Suppose that there is more than one risky as-
set, for example two risky assets, in addition
to the risk-free asset. At each time step each
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risky asset can go either up or down. Therefore
there are four possible joint movements at each
time step: uu, ud, du, dd that we identify with
the states 1,2,3,4. Four probabilities must be de-
termined at each time step; four equations are
therefore needed. Two equations are provided
by the martingale conditions:

S1
t = q1uS1

t + q2uS1
t + q3uS1

t + q4uS1
t

1 + r

S2
t = q1uS2

t + q3uS2
t + q2uS2

t + q4uS2
t

1 + r

A third equation is provided by the fact that
probabilities must sum to 1. The fourth condi-
tion, however, is missing. The model is incom-
plete.

The problem of approximating price pro-
cesses when there are two stocks and one bond
and where the stock prices follow two corre-
lated lognormal processes has long been of in-
terest to financial economists. As seen above,
with two stocks and one bond available for trad-
ing, markets cannot be completed by dynamic
trading. This is not the case in the continuous-
time model, in which markets can be completed
by continuous trading in the two stocks and the
bond. Different solutions to this problem have
been proposed in the literature.2

ARBITRAGE PRICING
IN A DISCRETE-TIME,
CONTINUOUS-STATE
SETTING
Let’s now discuss the discrete-time,
continuous-state setting. This is an impor-
tant setting as it is, for example, the setting of
the arbitrage pricing theory (APT) model.3

As in the previous discrete-time, discrete-
state setting, we apply probabilistic concepts.
The economy is represented by a probability
space (�, σ, P) where � is the set of possible
states, σ is the σ -algebra of events (formed, in

this continuous-state setting, by a nondenumer-
able number of events), and P is a probability
function. As the number of states is infinite, the
probability of each state is zero and only events,
in general, formed by nondenumerable states
have a finite probability. There are only a finite
number of dates from 0 to T. The propagation of
information is represented by a finite filtration
�t, t = 0, 1, . . . , T . In this case, the filtration �t

is not equivalent to an information structure It.
Each security i is characterized by a payoff

process di
t and by a price process Si

t . In this
continuous-state setting, di

t and Si
t are formed

by a finite number of continuous variables. As
before, di

t (ω) and Si
t (ω) are, respectively, the

payoff and the price of the i-th asset at time
t, 0 ≤ t ≤ T and in state ω ∈ �. All payoffs and
prices are stochastic processes adapted to the
filtration � .

To develop an intuition for continuous-
state arbitrage pricing, consider the previous
multiperiod, finite-state case with a very large
number M of states, M >> N where N is the
number of securities. Recall from our earlier
discussion that risk-neutral probabilities can be
computed solving the following system of lin-
ear equations:

∑

ω∈Ak,t

qω

⎡

⎣
T∑

j=t+1

di
j (ω)

Rt, j
− Si

Akt

⎤

⎦ = 0

M∑

ω=1

qω = 1

Recall also that at each date t the information
structure It partitions the set of states into Mt

subsets. Each partition therefore yields N × Mt

equations and the system is formed by a total
of

N ×
T−1∑

t=0

Mt

equation plus the probability normalizing
equation. Consider that the previous system
can be broken down, at each date t, into sep-
arate blocks formed by N equations (one for
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each asset) of the following type:

∑

ω∈Akt

q ∗
ω

T∑

j=t+1

di
j

Rt, j
= SAkt

q ∗
ω = qω∑

ω∈Akt

qω

Each of these systems can be solved individ-
ually for the conditional probabilities q ∗

ω. Recall
that a system of this type admits a solution if
and only if the coefficient matrix and the aug-
mented coefficient matrix have the same rank.
If the system is solvable, its solution will be
unique if and only if the number of unknowns
is equal to the rank of the coefficient matrix.

If the above system is not solvable, then there
are arbitrage opportunities. This occurs if the
payoffs of an asset are a linear combination of
those of other assets, but its price is not the same
linear combination of the prices of the other
assets. This happens, in particular, if two assets
have the same payoff in each state but different
prices. In these cases, in fact, the rank of the
coefficient matrix is inferior to the rank of the
augmented matrix.

Under the assumption

M  N ×
T−1∑

t=0

Mt

this system, if it is solvable, will be undeter-
mined. Therefore, there will be infinite equiv-
alent risk-neutral probabilities and the market
will not be complete. Going to the limit of an
infinite number of states, the above reason-
ing proves, heuristically, that a discrete-time
continuous-state market with a finite number
of securities is inherently incomplete. In addi-
tion, there will be arbitrage opportunities only
if the random variable that represents the pay-
off of an asset is a linear combination of the
random variables that represent the payoffs of
other assets, but the random variables that rep-
resent prices are not in the same relationship.

The above discussion can be illustrated in the
case of multiple assets, each following a bino-
mial model. If there are N linearly indepen-

dent assets, the price paths in the interval (0, T)
will form a total of 2NT states. In a binomial
model, we can limit our considerations to one
time step as the other steps are identical. In one
step, each price Si

t at time t can go up to Si
t ui

or down to Si
t di at time t + 1. Given the prices

{Si
t } ≡ {S1

t , S2
t , . . . , SN

t } at time t, there will be
at the next time step, 2N possible combinations
{S1

t w
1, S2

t w
2, . . . , SN

t wN}, wi = ut or di.
Suppose that there are 2N states and that each

combination of prices identifies a state. This
means that at each date t the information struc-
ture It partitions the set of states into 2Nt sub-
sets. Each set of the partition is partitioned into
2N subsets at the next time step. This yields
2N(t + 1) subsets at time t + 1.

Note that this partitioning is compatible with
any correlation structure between the random
variables that represent prices. In fact, corre-
lations depend on the value of the probability
assigned to each state while the partitioning we
assume depends on how different prices are as-
signed to different states.

Risk-neutral probabilities qi , i = 1, 2, . . . , 2N

can be determined solving the following system
of martingale conditions:

2N∑

j=1

q j Si
t w

i ( j) = Si
t

2N∑

j=1

q j , = 1

j = 1, 2, . . . , 2N, i = 1, 2, . . . , N

which becomes, after dividing each equation by
Si

t , the following:

2N∑

i=1

q 1w j ( j) = 1

2N∑

j=1

q j = 1

where wi ( j) = ui or di for asset i in state j.
It can be verified that, under the previous as-

sumptions and provided prices are positive, the
above system admits infinite solutions. In fact,
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as N + 1 < 2N, the number of equations is larger
than the number of unknowns. Therefore, if the
system is solvable it admits infinite solutions.
To verify that the system is indeed solvable,
let’s choose the first asset and partition the set
of states into two events corresponding to the
movement up or down of the same asset. Assign
to these events probabilities as in the binomial
model

q 1
t = 1 − r + d1

t

u1
t − d1

t
and 1 − q 1

t

Choose a second asset and partition each of the
previous events into two events corresponding
to the movements up or down of the second
asset. We can now assign the following proba-
bilities to each of the following four events:

q 1
t q 2

t , q 1
t (1 − q 2

t ), (1 − q 1
t )q 2

t , (1 − q 2
t )(1 − q 1

t )

It can be verified that these numbers sum to
one. The same process can be repeated for each
additional asset. We obtain a set of positive
numbers that sum to one and that satisfy the
system by construction. There are infinite other
possible constructions. In fact, at each step, we
could multiply probabilities by “correlation fac-
tors” (i.e., numbers that form a 2 × 2 correlation
matrix) and still obtain solutions to the system.

We can therefore conclude that a system of
positive binomial prices such as the one above
plus a risk-free asset is arbitrage-free and forms
an incomplete market. If we let the number
of states tend to infinity, the binomial dis-
tribution converges to a normal distribution.
We have therefore demonstrated heuristically
that a multivariate normal distribution plus a
risk-free asset forms an incomplete and
arbitrage-free market. Note that the presence
of correlations does not change this conclusion.

Let’s now see under what conditions this con-
clusion can be changed. Go back to the multiple
binomial model, assuming, as before, that there
are N assets and T time steps. There is no logical
reason to impose that the number of states be
2NT . As we can consider each time step sepa-
rately, suppose that there is only one time step

and that there are a number of states less than or
equal to the number of assets plus 1: M ≤ N + 1.
In this case, the martingale condition that deter-
mines risk-neutral probabilities becomes:

M∑

j=1

q jw
i ( j)

N∑

j=1

q j = 1

There are M equations and N + 1 unknowns
with M ≤ N + 1. This system will either deter-
mine unique risk-neutral probabilities or will
be unsolvable. Therefore, the market will be ei-
ther complete and arbitrage-free or will exhibit
arbitrage opportunities. Note that in this case
we cannot use the constructive procedure used
in the previous case.

What is the economic meaning of the con-
dition that the number of states be less than
or equal to the number of assets? To illustrate
this point, assume that the number of states
is M = 2K ≤ N + 1. This means that we can
choose K assets whose independent price pro-
cesses identify all the states as in the previous
case. Now add one more asset. This asset will go
up or down not in specific states but in events
formed by a number of states. Suppose it goes
up in the event A and goes down in the event B.
These events are determined by the value of the
first K assets. In other words, the new asset will
be a function of the first K assets. An interesting
case is when the new asset can be expressed as a
linear function of the first K assets. We can then
say that the first K assets are factors and that any
other asset is expressed as a linear combination
of the factors.

Consider that, given the first K assets, it is pos-
sible to determine state-price deflators. These
state-price deflators will not be uniquely de-
termined. Any other price process must be ex-
pressed as a linear combination of state-price
deflators to avoid arbitrage. If all price pro-
cesses are arbitrage-free, the market will be
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complete if it is possible to determine uniquely
the risk-neutral probabilities.

If we let the number of states become very
large, the number of assets must become large
as well. Therefore it is not easy to develop sim-
ple heuristic arguments in the limit of a large
economy. What we can say is that in a large
discrete economy where the number of states
is less than or equal to the number of assets, if
there are no arbitrage opportunities the market
might be complete. If the market is complete
and arbitrage-free, there will be a number of
factors while all other processes will be linear
combinations of these factors.

KEY POINTS
� The law of one price states that a given asset

must have the same price regardless of the
means by which one goes about creating that
asset.

� Arbitrage is the simultaneous buying and
selling of an asset at two different prices in
two different markets.

� A finite-state one-period market is repre-
sented by a vector of prices and a matrix of
payoffs.

� A state-price vector is a strictly positive vector
such that prices are the product of the state-
price vector and the payoff matrix.

� There is no arbitrage if and only if there is a
state-price vector.

� A market is complete if an arbitrary payoff
can be replicated by a portfolio.

� A finite-state one-period market is complete if
there are as many linearly independent assets
as states.

� A multiperiod finite-state economy is repre-
sented by a probability space plus an infor-
mation structure.

� In a multiperiod finite-state market each se-
curity is represented by a payoff process and
a price process.

� An arbitrage is a trading strategy whose pay-
off process is nonnegative and not always
zero.

� A market is complete if any nonnegative pay-
off process can be replicated with a trading
strategy.

� A state-price deflator is a strictly positive pro-
cess such that prices are random variables
equal to the conditional expectation of dis-
counted payoffs.

� A martingale is a process such that at any time
t its conditional expectation at time s, s > t
coincides with its present value.

� In the absence of arbitrage there is an arti-
ficial probability measure in which all price
processes, appropriately discounted, become
martingales.

� Given a probability measure P, the probabil-
ity measure Q is said to be equivalent to P
if both assign probability zero to the same
events.

� The binomial model assumes that there are
two positive numbers, d and u, such that
0 < d < u and such that at each time step the
price S of the risky asset changes to d S or
to uS.

� The distribution of prices of a binomial model
is a binomial distribution.

� The binomial model is complete.

NOTES
1. The binomial model was first suggested for

the pricing of options by Cox, Ross, and
Rubinstein (1979), Rendleman and Bartter
(1979), and Sharpe (1978).

2. See He (1990).
3. For an application of the principles discussed

here to the APT, see Focardi and Fabozzi
(2004).
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Abstract: The principle of absence of arbitrage is perhaps the most fundamental principle of finance
theory. In the presence of arbitrage opportunities, there is no trade-off between risk and returns
because it is possible to make unbounded risk-free gains. The principle of absence of arbitrage is
fundamental for understanding asset valuation in a competitive market. Arbitrage pricing can be
developed in a finite-state, discrete-time setting and a continuous-time, continuous-state setting.

In this entry, we describe arbitrage pricing in the
continuous-state, continuous-time setting. There
are a number of important conceptual changes
in going from a discrete-state, discrete-time set-
ting (as described in the entry “Arbitrage Pric-
ing: Finite-State Models”) to a continuous-state,
continuous-time setting. First, each state of the
world has probability zero. This precludes the
use of standard conditional probabilities for
the definition of conditional expectation and
requires the use of filtrations (rather than of
information structures) to describe the propa-
gation of information. Second, the tools of ma-
trix algebra are inadequate; the more complex
tools of calculus and stochastic calculus are re-
quired. Third, simple generalizations are rarely
possible as many pathological cases appear in
connection with infinite sets.

THE ARBITRAGE PRINCIPLE
IN CONTINUOUS TIME

Let’s start with the definition of basic concepts.
The economy is represented by a probability
space (�,�, P) where � is the set of possible
states, � is the σ -algebra of events, and P is a
probability measure. Time is a continuous vari-
able in the interval [0, T]. The propagation of
information is represented by a filtration �t.
The latter is a family of σ -algebras such that
�t ⊆ �s, t < s.

Each security i is characterized by a payoff-
rate process δi

t and by a price process Si
t . In

this continuous-state setting, δi
t and Si

t are real
variables with a continuous range such that
δi

t (ω) and Si
t (ω) are, respectively, the payoff-rate

and the price of the i-th asset at time t, 0 ≤ t ≤ T
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and in state ω ∈ �. Note that δi
t represents a

rate of payoff and not a payoff as was the case
in the discrete-time setting. The payoff-rate
process must be interpreted in the sense that the
cumulative payoff of each individual asset is

Di
t =

t∫

0

δi
sds

We assume that the number of assets is fi-
nite. We can therefore use the vector notation
to indicate a set of processes. For example,
we write δt and St to indicate the vector pro-
cess of payoff rates and prices respectively. All
payoff-rates and prices are stochastic processes
adapted to the filtration �. One can make as-
sumptions about the price and the payoff-rate
processes. For example, it can be assumed that
price and payoff-rate processes satisfy a set of
stochastic differential equations or that they ex-
hibit finite jumps. Later in this entry we will
explore a number of these processes.

Conditional expectations are defined as par-
tial averaging. In fact, given a variable Xs, s > t,
its conditional expectation Et[Xs] is defined as
a variable that is �t-measurable and whose av-
erage on each set A ∈ �t is the same as that
of X:

Y t = Et[Xs] ⇔ E[Yt(ω)] = E[Xs(ω)]

for ω ∈ A,∀A ∈ �t and Y is �t-measurable.
The law of iterated expectations applies as in

the finite-state case:

Et[Eu(Xs)] = Et[Xs]

In a continuous-state setting, conditional ex-
pectations are variables that assume constant
values on the sets of infinite partitions. Imagine
the evolution of a variable X. At the initial date,
X0 identifies the entire space �. At each sub-
sequent date t, the space � is partitioned into
an infinite number of sets, each determined by
one of the infinite values of Xt.1 However, these
sets have measure zero. In fact, they are sets of
the type: {A: ω ∈ A ⇔ Xt(ω) = x} determined
by specific values of the variable Xt. These sets

have probability zero as there is an infinite num-
ber of values Xt. As a consequence, we cannot
define conditional expectation as expectation
under the usual definition of conditional prob-
abilities the same way we did in the case of
finite-state setting.

Trading Strategies and
Trading Gains
We have to define the meaning of trading strate-
gies in the continuous-state, continuous-time
setting; this requires the notion of continu-
ous trading. Mathematically, continuous trad-
ing means that the composition of portfolios
changes continuously at every instant and that
these changes are associated with trading gains
or losses. A trading strategy is a (vector-valued)
process θ = {θ i } such that θt = {θ t

t } is the port-
folio held at time t. To ensure that there is no
anticipation of information, each trading strat-
egy θ must be an adapted process.

Given a trading strategy, we have to define
the gains or losses associated with it. In discrete
time, the trading gains equal the sum of payoffs
plus the change of a portfolio’s value

T∑

t=0

(
∑

t

di
t θ

i
t

)
+

∑

i

Si
Tθ i

T −
∑

i

Si
0θ

i
0

over a finite interval [0, T].
We must define trading gains when time is

a continuous variable. It is not possible to re-
place finite sums of stochastic increments with
pathwise Riemann-Stieltjes integrals after let-
ting the time interval go to zero. The reason
is that, though we can assume that paths are
continuous, we cannot assume that they have
bounded variation. As a consequence, pathwise
Riemann-Stieltjes integrals generally do not ex-
ist. However, we can assume that paths are of
bounded quadratic variation. Under this latter
assumption, using Itô isometry, we can define
pathwise Itô integrals and stochastic integrals.

Let’s first assume that the payoff-rate pro-
cess is zero, so that there are only price pro-
cesses. Under this assumption, the trading gain
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Tt of a trading strategy can be represented by a
stochastic integral:

Tt =
t∫

0

θsdSs =
∑

i

t∫

0

θ i
s dSi

s

In the rest of this section, we will not strictly
adhere to the vector notation when there is no
risk of confusion. For example, we will write θ ·
S to represent the scalar product θ · S. If a payoff-
rate process is associated with each asset, we
have to add the gains consequent to the payoff-
rate process. We therefore define the gain
process

Gi
t = Si

t + Di
t

as the sum of the price processes plus the cu-
mulative payoff-rate processes, and we define
the trading gains as the stochastic integral

Tt =
t∫

0

θsdGs =
∑

i

t∫

0

θ i
s dGi

s

How can we match the abstract notion of a
stochastic integral with the buying and selling
of assets? In discrete time, trading gains have a
meaning that is in agreement with the practical
notion of buying a portfolio of assets, holding it
for a period, and then selling it at market prices,
thus realizing either a gain or a loss. One might
object that in continuous time this meaning is
lost. How can a process where prices change so
that their total variation is unbounded be a rea-
sonable representation of financial reality? This
is a question of methodology that is relevant to
every field of science. In classical physics, the
use of continuous models was assumed to re-
flect reality; time and space, for example, were
considered continuous. Quantum physics upset
the conceptual cart of classical physics, and the
reality of continuous processes has since been
questioned at every level. In quantum physics,
a theory is considered to be nothing but a model
useful as a mathematical device to predict mea-
surements. This is, in essence, the theory set
forth in the 1930s by Niels Bohr and the school

of Copenhagen; it has now become mainstream
methodology in physics. It is also, ultimately,
the point of view of positive economics. In a
famous and widely quoted essay, Milton Fried-
man (1953) wrote:

The relevant question to ask about the “assump-
tions” of a theory is not whether they are descrip-
tively “realistic,” for they never are, but whether
they are sufficiently good approximations for the
purpose in hand. And this question can be answered
only by seeing whether the theory works, which
means if it yields sufficiently accurate predictions.

In the spirit of positive economics,
continuous-time financial models are math-
ematical devices used to predict, albeit in
a probabilistic sense, financial observations
made at discrete intervals of time. Stochastic
gains predict trading gains only at discrete
intervals of time–the only intervals that can be
observed. Continuous-time finance should be
seen as a logical construction that meets obser-
vations only at a finite number of dates, not as
a realistic description of financial trading.

Let’s consider processes without any interme-
diate payoff. A self-financing trading strategy is
a trading strategy such that the following rela-
tionships hold:

θtSt =
∑

i

θ i
t Si

t =
∑

i

⎛

⎝θ i
0 Si

0 +
t∫

0

θ i
t dSi

t

⎞

⎠ , t ∈ [0, T]

We first define arbitrage in the absence of
a payoff-rate process. An arbitrage is a self-
financing trading strategy such that: θ0S0 < 0
and θT ST ≥ 0, or θ0S0 ≤ 0 and θT ST > 0. If there
is a payoff-rate process, a self-financing trad-
ing strategy is a trading strategy such that the
following relationships hold:

θtSt =
∑

i

θ i
t Si

t =
∑

i

⎛

⎝θ i
0 Si

0 +
t∫

0

θ i
t dGi

t

⎞

⎠ , t ∈ [0, T]

where Gi
t = Si

t + Di
t is the gain process as pre-

viously defined. An arbitrage is a self-financing
trading strategy such that: θ0S0 < 0 and θTST ≥
0, or θ0S0 ≤ 0 and θTST > 0.
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ARBITRAGE PRICING IN
CONTINUOUS-STATE,
CONTINUOUS-TIME
The abstract principles of arbitrage pricing are
the same in a discrete-state, discrete-time set-
ting as in a continuous-state, continuous-time
setting. Arbitrage pricing is relative pricing. In
the absence of arbitrage, the price and payoff-
rate processes of a set of basic assets fix the
prices of other assets given the payoff-rate pro-
cess of the latter. If markets are complete, every
price process can be computed in this way. In a
discrete-state, discrete-time setting, the compu-
tation of arbitrage pricing is done with matrix
algebra. In fact, in the absence of arbitrage, ev-
ery price process can be expressed in two alter-
native ways:

1. Prices Si
t are equal to the normalized condi-

tional expectation of payoffs deflated with
state prices under the real probabilities:

Si
t = 1

πt
Et

⎡

⎣
T∑

j=t+1

π j di
j

⎤

⎦

2. Prices Si
t are equal to the conditional expec-

tation of discounted payoffs under the risk-
neutral probabilities

Si
t = E Q

t

⎡

⎣
T∑

j=t+1

di
j

Rt, j

⎤

⎦

State-price deflators and risk-neutral probabili-
ties can be computed solving systems of linear
equations for a kernel of basic assets. The above
relationships are algebraic linear equations that
fix all price processes.

In a continuous-state, continuous-time set-
ting, the principle of arbitrage pricing is the
same. In the absence of arbitrage, given a num-
ber of basic price and payoff stochastic pro-
cesses, other processes are fixed. The latter are
called redundant securities as they are not nec-
essary to fix prices. If markets are complete, ev-
ery price process can be fixed in this way. In

order to make computations feasible, some ad-
ditional assumptions are made, in particular, all
payoff-rate and price processes are assumed to
be Itô processes.

The theory of arbitrage pricing in a
continuous-state, continuous-time setting uses
the same tools as in a discrete-state, discrete-
time setting. Under an equivalent martingale
measure, all price processes become martin-
gales. Therefore prices can be determined as
discounted present value relationships. Equiv-
alent martingale measures are the same concept
as state-price deflators: After appropriate de-
flation, all processes become martingales. The
key point of arbitrage pricing theory is that both
equivalent martingale measures and state-price
deflators can be determined from a subset of the
market. All other processes are redundant.

In the following sections we will develop
the theory of arbitrage pricing in steps. First,
we will illustrate the principles of arbitrage
pricing in the case of options, arriving at the
Black-Scholes option pricing formula. We will then
extend this theory to more general derivative
securities. Subsequently, we will state arbitrage
pricing theory in the context of equivalent mar-
tingale measures and of state-price deflators.

OPTION PRICING
We will now apply the concepts of arbitrage
pricing to option pricing in a continuous-state,
continuous-time setting. Suppose that a mar-
ket consists of three assets: a risk-free asset
(which allows risk-free borrowing and lending
at the risk-free rate of interest), a stock, and a
European option. We will show that the price
processes of a stock and of a risk-free asset fix
the price process of an option on that stock.

Suppose the risk-free rate is a constant r. The
value Vt of a risk-free asset with constant rate
r evolves according to the deterministic dif-
ferential equation of continually compounding
interest rates:

dVt = rVtdt
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The above is a differential equation with sepa-
rable variables. After separating the variables,
the equation can be written as

dVt

Vt
= rdt

which admits the solution Vt = V0ert where V0

is the initial value of the bank account. This
formula can also be interpreted as the price
process of a risk-free bond with deterministic
rate r .

Stock Price Processes
Let’s now examine the price process of the
stock. Consider the process y = αt + σ Bt where
Bt is a standard Brownian motion. From the def-
inition of Itô integrals, it can be seen that this
process, which is called an arithmetic Brownian
motion, is the solution of the following diffu-
sion equation:

dyt = αdt + σdBt

where α is a constant called the drift of the dif-
fusion and σ is a constant called the volatility of
the diffusion.

Consider now the process St = S0e (αt+σ Bt), t ≥
0. Applying Itô’s lemma it is easy to see that
this process, which is called a geometric Brow-
nian motion, is an Itô process that satisfies the
following stochastic differential equation:

dSt = μStdt + σ StdBt; S0 = x

where x is an initial value, μ = α + 1/2σ 2 and
Bt is a standard Brownian motion. We assume
that the stock price process follows a geometric
Brownian motion and that there is no payoff-
rate process.

Now consider a European call option, which
gives the owner the right but not the obligation
to buy the underlying stock at the exercise price
K at the expiry date T. Call Yt the price of the
option at time t. The price of the option as a
function of the stock price is known at the final

expiry date. If the option is rationally exercised,
the final value of the option is

YT = max(ST − K , 0)

In fact, the option can be rationally exercised
only if the price of the stock exceeds K. In that
case, the owner of the option can buy the un-
derlying stock at the price K, sell it immediately
at the current price St and make a profit equal
to (ST − K ). If the stock price is below K, the
option is clearly worthless. After T, the option
ceases to exist.

How can we compute the option price at ev-
ery other date? We can arrive at the solution in
two different but equivalent ways: (1) through
hedging arguments and (2) the equivalent mar-
tingale measures. In the following sections we
will introduce hedging arguments and equiva-
lent martingale measures.

Hedging
To hedge means to protect against an adverse
movement. The seller of an option is subject to
a liability as, from his point of view, the op-
tion has a negative payoff in some states. In our
context, hedging this option means to form a
self-financing trading strategy formed with the
stock plus the risk-free asset in appropriate pro-
portions such that the option plus this hedging
portfolio is risk free. Hedging the option implies
that the hedging portfolio perfectly replicates
the option payoff in every possible state.

A European call option has only one payoff
at the expiry date. It therefore suffices that the
hedging portfolio replicates the option payoff at
that date. Suppose that there is a self-financing
trading strategy (θ1

t , θ2
t ) in the bond and the

stock such that

θ1
t VT + θ2

t ST = YT

To avoid arbitrage, the price of the option at any
moment must be equal to the value of the hedg-
ing self-financing trading strategy. In fact, sup-
pose that at any time t < T the self-financing
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strategy (θ1
t , θ2

t ) has a value lower than the
option:

θ1
t Vt + θ2

t St < Yt

An investor could then sell the option for Yt,
make an investment θ1

t Vt + θ2
t St in the trading

strategy, and at time T liquidate both the option
and the trading strategy. As θ1

T VT + θ2
t ST = YT

the final liquidation has value zero in every
state of the world, so that the initial profit
Yt − θ1

t VT + θ2
t ST is a risk-free profit. A simi-

lar reasoning could be applied if, at any time
t < T , the strategy (θ1

t , θ2
t ) had a value higher

than the option. Therefore, we can conclude
that if there is a self-financing trading strategy
that replicates the option’s payoff, the value
of the strategy must coincide with the op-
tion’s price at every instant prior to the expiry
date.

Observe that the above reasoning is an in-
stance of the law of one price. If two portfolios
have the same payoffs at every moment and in
every state of the world, their price must be the
same. In particular, if a trading strategy has the
same payoffs of an asset, its value must coincide
with the price of that asset.

The Black-Scholes Option
Pricing Formula
Let’s now see how the price of the option can be
computed. Assume that the price of the option
is a function of time and of the price of the un-
derlying stock: Yt = C(St, t). This assumption
is reasonable but needs to be justified; for the
moment it is only a hint as to how to proceed
with the calculations. It will be justified later by
verifying that the pricing formula produces the
correct final payoff.

As St is assumed to be an Itô process, in
particular a geometric Brownian motion, Yt =
C(St, t)—which is a function of St—is an Itô pro-
cess as well. Therefore, using Itô’s formula, we
can write down the stochastic equation that Yt

must satisfy. Itô’s formula prescribes that:

dYt =
[
∂C(St, t)

∂t
+ ∂C(St, t)

∂St
Stμ

+ 1
2

∂2C(St, t)
∂S2

t
S2

t σ
2
]

dt + ∂C(St, t)
∂St

σ StdB

Suppose now that there is a self-financing
trading strategy Yt = θ1

t Vt + θ2
t St. We can write

this equation as

t∫

0

dYt = θ1
t

t∫

0

dVt + θ2
t

t∫

0

dSt

or, in differential form, as

dYt = θ1
t dVt + θ2

t dSt

= (θ1
t rVt + θ2

t μSt)dt + θ2
t σ StdBt

If the trading strategy replicates the option
price process, the two expressions for dYt—
the one obtained through Itô’s lemma and
the other obtained through the assumption
that there is a replicating self-financing trading
strategy—must be equal:

(θ 1
t rVt + θ 2

t μSt)dt + θ 2
t σ StdBt

=
[

∂C(St, t)
∂t

+ ∂C(St, t)
∂St

Stμ + 1
2

∂2C(St, t)
∂S2

t
S2

t σ
2
]

dt

+ ∂C(St, t)
∂St

σ StdBt

The equality of these two expressions implies
the equality of the coefficients in dt and dB re-
spectively. Equating the coefficients in dB yields

θ2
t = ∂C(St, t)

∂St

As Yt = C(St, t) = θ1
t Vt + θ2

t St, substituting, we
obtain

θ1
t = 1

Vt

[
C(St, t) − ∂C(St, t)

∂St
St

]

We have now obtained the self-financing
trading strategy in function of the stock and
option prices. Substituting and equating the
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coefficients of dt yields

1
Vt

[
C(St, t) − ∂C(St, t)

∂St
St

]
rVt + ∂C(St, t)

∂St
μSt

= ∂C(St, t)
∂t

+ ∂C(St, t)
∂St

Stμ + 1
2

∂2C(St, t)
∂S2

t
S2

t σ 2

Simplifying and eliminating common terms,
we obtain

−rC(St, t) + r
∂C(St, t)

∂St
St + ∂C(St, t)

∂t

+ 1
2

∂2C(St, t)
∂S2

t
S2

t σ 2 = 0

If the function C(St, t) satisfies this relation-
ship, then the coefficients in dt match. The
above relationship is a partial differential equa-
tion (PDE). This equation can be solved with
suitable boundary conditions. Boundary con-
ditions are provided by the payoff of the option
at the expiry date:

YT = C(ST , T) = max(ST − K , 0)

The closed-form solution of the above PDE with
the above boundary conditions was derived by
Black and Scholes (1973) and referred to as the
Black-Scholes option pricing formula:

C(St, t) = x
(z) − e−r (T−t) K
(z − σ
√

T − t)

with

z = log(St/K ) + (r + 1
2σ 2)(T − t)

σ
√

T − t

and where 
 is the cumulative normal
distribution.

Let’s stop for a moment and review the log-
ical steps we have followed thus far. First, we
defined a market made by a stock whose price
process follows a geometric Brownian motion
and a bond whose price process is a determinis-
tic exponential. We introduced into this market
a European call option. We then made two as-
sumptions: (1) The option’s price process is a
deterministic function of the stock price pro-
cess; and (2) the option’s price process can be
replicated by a self-financing trading strategy.

If the above assumptions are true, we can
write a stochastic differential equation for the
option’s price process in two different ways:
(1) Using Itô’s lemma, we can write the op-
tion price stochastic process as a function of
the stock stochastic process; and (2) using the
assumption that there is a replicating trading
strategy, we can write the option price stochas-
tic process as the stochastic process of the trad-
ing strategy. As the two equations describe the
same process, they must coincide. Equating the
coefficients in the deterministic and stochastic
terms, we can determine the trading strategy
and write a deterministic PDE that the pric-
ing function of the option must satisfy. The lat-
ter PDE together with the boundary conditions
provided by the known value of the option at
the expiry date uniquely determine the option
pricing function.

Note that the above is neither a demonstra-
tion that there is an option pricing function, nor
a demonstration that there is a replicating trad-
ing strategy. However, if both a pricing func-
tion and a replicating trading strategy exist, the
above process allows one to determine both by
solving a partial differential equation. After de-
termining a solution to the PDE, one can ver-
ify if it provides a pricing function and if it
allows the creation of a self-financing trading
strategy. Ultimately, the justification of the ex-
istence of an option’s pricing function and of
a replicating self-financing trading strategy re-
sides in the possibility of actually determining
both. Absence of arbitrage ensures that this so-
lution is unique.

Generalizing the Pricing of
European Options
We can now generalize the above pricing
methodology to a generic European option and
to more general price processes for the bond
and for the underlying stock. In the most gen-
eral case, the process underlying a derivative
need not be a stock price process. However, we
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suppose that the underlying is a stock price pro-
cess so that replicating portfolios can be formed.
We generalize in three ways:

� The option’s payoff is an arbitrary finite-
variance random variable.

� The stock price process is an Itô process.
� The short-rate process is stochastic.

Following the definition given in the finite-
state setting, we define a European option on
some underlying process St as an asset whose
payoff at time T is given by the random vari-
able YT = g(ST ) where g(x), x ∈ R is a contin-
uous real-valued function. In other words, a
European option is defined as a security whose
payoff is determined at a given expiry date T
as a function of some underlying random vari-
able. The option has a zero payoff at every other
date t ∈ [0, T]. This definition clearly distin-
guishes European options from American op-
tions, which yield payoffs at random stopping
times.

Let’s now generalize the price process of the
underlying stock. We represent the underly-
ing stock price process as a generic Itô pro-
cess. A generic univariate Itô process can be
represented through the differential stochastic
equation:

dSt = μ(St, t)dt + σ (St, t)dBt; S0 = x

where x is the initial condition, B is a standard
Brownian motion, and μ(St, t) and (St, t) are
given functions R × (0,∞) → R. The geomet-
ric Brownian motion is a particular example of
an Itô process.

Let’s now define the bond price process. We
retain the risk-free nature of the bond but let
the interest rate be stochastic. Recall that in a
discrete-state, discrete-time setting, a bond was
defined as a process that, at each time step, ex-
hibits the same return for each state though the
return can be different in different time steps.
Consequently, in continuous-time we define a
bond price process as the following integral:

Vt = V0e

t∫

0
r (Su,u)du

where r is a given function that represents the
stochastic rate. In fact, the rate r depends on
the time t and on the stock price process St.
Application of Itô’s lemma shows that the bond
price process satisfies the following equation:

dVt = Vtr (St, t)dt

We can now use the same reasoning that led to
the Black-Scholes formula. Suppose that there
are both an option pricing function Yt = C(St, t)
and a replicating self-financing trading strategy

Yt = θ1
t Vt + θ2

t St

We can now write a stochastic differential
equation for the process Yt in two ways:

� Applying Itô’s lemma to Yt = C(St, t)
� Directly to Yt = θ1

t Vt + θ2
t St

The first approach yields

dYt =
[
∂C(St, t)

∂t
+ ∂C(St, t)

∂St
μ(St, t)

+ 1
2

∂2C(St, t)
∂S2

t
σ 2(St, t)

]
dt

+ ∂C(St, t)
∂St

σ (St, t)dBt

The second approach yields

dYt = [θ1
t r (St, t) Vt + θ2

t μ(St, t)]dt + θ2
t σ (St, t)dBt

Equating coefficients in dt, Db we obtain the
trading strategy

θ1
t = 1

Vt

[
C(St, t) − ∂C(St, t)

∂St
St

]

θ2
t = ∂C(St, t)

∂St

and the PDE

−r (x, t)C(x, t) + r (x, t)
∂C(x, t)

∂x
x

+ ∂C(x, t)
∂t

+ 1
2

∂2C(x, t)
∂x2 σ 2(x, t) = 0

with the boundary conditions C(ST , T) = g(ST ).
Solving this equation we obtain a candidate op-
tion pricing function. In each specific case, one
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can then verify that the option pricing function
effectively solves the option pricing problem.

STATE-PRICE DEFLATORS
We now extend the concepts of state prices
and equivalent martingale measures to a
continuous-state, continuous-time setting. As
in the previous sections, the economy is rep-
resented by a probability space (�,�, P) where
� is the set of possible states, � is the σ -algebra
of events, and P is a probability measure. Time
is a continuous variable in the interval [0, T].
The propagation of information is represented
by a filtration �t. A multivariate standard Brow-
nian motion B = (B1, . . . , BD) in RD adapted to
the filtration �t is defined over this probabil-
ity space. We know that there are mathematical
subtleties that we will not take into consider-
ation, as regards whether (1) the filtration is
given and the Brownian motion is adapted to
the filtration or (2) the filtration is generated by
the Brownian motion.

Suppose that there are N price processes
X = (X1, . . . , XN) that form a multivariate Itô
process in RN. Trading strategies are adapted
processes θ = (θ1, . . . , θ N) that represent the
quantity of each asset held at each instant. In
order to ensure the existence of stochastic inte-
grals, we require the processes (X1, . . . , XN) and
any trading strategy to be of bounded variation.
Let’s first suppose that there is no payoff-rate
process. This assumption will be relaxed in a
later section. Suppose also that one of these pro-
cesses, say X1

t , is defined by a short-rate process
r, so that

X1
t = e

∫ t
0 rudu

or

d X1
t = rt X1

t dt

where rt is a deterministic function of t called
the short-rate process. Note that X1

t could
be replaced by a trading strategy. We can
think of rt as the risk-free short-term contin-
uously compounding interest rate and of X1

t

as a risk-free continuously compounding bank
account.

The concept of arbitrage and of trading strat-
egy was defined in the previous section. We
now introduce the concept of deflators in a
continuous-time continuous-state setting. Any
strictly positive Itô process is called a deflator.
Given a deflator Y we can deflate any process
X, obtaining a new deflated process

XY
t = XtYt

For example, any stock price process of a non-
defaulting firm or the risk-free bank account
is a deflator. For technical reasons it is neces-
sary to introduce the concept of regular defla-
tors. A regular deflator is a deflator that, after
deflation, leaves unchanged the set of admissi-
ble bounded-variation trading strategies.

We can make the first step towards defin-
ing a theory of pricing based on equivalent
martingale measures. It can be demonstrated
that if Y is a regular deflator, a trading strat-
egy θ is self-financing with respect to the price
process X = (X1, . . . , XN) if and only if it is
self-financing with respect to the deflated price
process

XY = (Yt X1
t , . . . ,Yt XN

t )

In addition, it can be demonstrated that the
price process X = (X1, . . . , XN) admits no arbi-
trage if and only if the deflated price process

XY = (Yt X1
t , . . . ,Yt XN

t )

admits no arbitrage.
A state-price deflator is a deflator π with the

property that the deflated price process Xπ is a
martingale. A martingale is a stochastic process
Mt such that its current value equals the condi-
tional expectation of the process at any future
time: Mt = Et[Ms], s > t. For each price process
Xi

t , the following relationship therefore holds:

πt Xi
t = Et[πs Xi

s], s > t

This definition is the equivalent in continuous
time of the definition of a state-price deflator
in discrete time. In fact, a state-price deflator is
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defined as a process π such that

Si
t = 1

πt
Et

⎡

⎣
T∑

j=t+1

π j di
j

⎤

⎦

If there is no intermediate payoff, as in our
present case, the previous relationship can be
written as

πt Si
t = Et[πT Si

T ] = Et[Et+1[πT Si
T ]]

= Et[πt+1Si
t+1]

The next proposition states that if there is a
regular state-price deflator, then there is no ar-
bitrage. The demonstration of this proposition
hinges on the fact that, as the deflated price pro-
cess is a martingale, the following relationship
holds:

E

⎡

⎣
T∫

0

θudSπ
u

⎤

⎦ = 0

and therefore any self-financing trading strat-
egy is a martingale. We can thus write

θ0Sπ
0 = E[θT Sπ

T ]

If

θT Sπ
T ≥ 0 then θ0Sπ

0 ≥ 0

and if θT Sπ
T > 0 then θ0Sπ

0 > 0

which shows that there cannot be any arbitrage.
We have now stated that the existence of state-

price deflators ensures the absence of arbitrage.
The converse of this statement in a continuous-
state, continuous-time setting is more delicate
and will be dealt with later. We will now move
on to equivalent martingale measures.

EQUIVALENT MARTINGALE
MEASURES
In the previous section we saw that if there is a
regular state-price deflator then there is no ar-
bitrage. A state-price deflator transforms every
price process and every self-financing trading
strategy into a martingale. We will now see that,

after discounting by an appropriate process,
price processes become martingales through
a transformation of the real probability mea-
sure into an equivalent martingale measure.2

This theory parallels the theory of equivalent
martingale measures developed in the discrete-
state, discrete-time setting in the entry “Arbi-
trage Pricing: Finite-State Models.” First some
definitions must be discussed.

Given a probability measure P, the probability
measure Q is said to be equivalent to P if both
assign probability zero to the same events, that
is, if P(A) = 0 if and only if Q(A) = 0 for every
event A. The equivalent probability measure Q
is said to be an equivalent martingale measure for
the process X if X is a martingale with respect
to Q and if the Radon-Nikodym derivative

ξ = dQ
dP

has finite variance. The definition of the Radon-
Nikodym derivative is the same here as it is
in the finite-state context. The Radon-Nikodym
derivative is a random variable ξ such that
Q(A) = E P [ξ IA] for every event A where IA is
the indicator function of the event A.

To develop an intuition for this definition,
consider that any stochastic process X is a time-
dependent random variable Xt. The latter is
a family of functions � → R from the set of
states to the real numbers indexed with time
such that the sets {Xt(ω) ≤ x} are events for
any real x. Given the probability measure P,
the finite-dimension distributions of the pro-
cess X are determined. The equivalent measure
Q determines another set of finite-dimension
distributions. However, the correspondence be-
tween the process paths and the states remains
unchanged.

The requirement that P and Q are equivalent
is necessary to ensure that the process is effec-
tively the same under the two measures. There
is no assurance that given an arbitrary process
an equivalent martingale measure exists. Let’s
assume that an equivalent martingale measure
does exist for the N-dimensional price process
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X = (X1, . . . , XN). It can be demonstrated that
if the price process X = (X1, . . . , XN) admits an
equivalent martingale measure, then there is no
arbitrage.

The proof is similar to that for state-price
deflators as discussed above. Under the
equivalent martingale measure Q, which we
assume exists, every price process and every
self-financing trading strategy becomes a mar-
tingale. Using the same reasoning as above it is
easy to see that there is no arbitrage.

This result can be generalized; here is how.
If there is a regular deflator Y such that the
deflated price process XY = (Yt X1

t , . . . ,Yt XN
t )

admits an equivalent martingale measure, then
there is no arbitrage. The proof hinges on the
result established in the previous section that,
if there is a regular deflator Y , the price process
X admits no arbitrage if and only if the deflated
price process XY admits no arbitrage.

Note that none of these results is constructive.
They only state that the existence of an equiva-
lent martingale measure with respect to a price
process ensures the absence of arbitrage. Con-
ditions to ensure the existence of an equivalent
martingale measure with respect to a price pro-
cess are given in the next section.

EQUIVALENT MARTINGALE
MEASURES AND
GIRSANOV’S THEOREM
We first need to establish an important mathe-
matical result known as Girsanov’s theorem. This
theorem applies to Itô processes. Let’s first state
Girsanov’s theorem in simple cases. Let X be a
single-valued Itô process where B is a single-
valued standard Brownian motion:

Xt = x +
t∫

0

μsds +
t∫

0

σsdBs

Suppose that a process ν and a process θ such
that σtθt = μt − νt are given. Suppose, in addi-
tion, that the process θ satisfies the Novikov

condition which requires

E

⎡

⎣e

⎛

⎝1
2

t∫

0

θ2
s ds

⎞

⎠

⎤

⎦ < ∞

Then, there is a probability measure Q equiva-
lent to P such that the following integral

B̂t = Bt +
t∫

0

θsds

defines a standard Brownian motion B̂t in R on
(�,�, Q) with the same standard filtration of
the original Brownian motion Bt. In addition,
under Q the process X becomes

Xt = x +
t∫

0

νsds +
t∫

0

σsdB̂s

Girsanov’s theorem states that we can add
drift to a standard Brownian motion and still
obtain a standard Brownian motion under
another probability measure. In addition, by
changing the probability measure we can ar-
bitrarily change the drift of an Itô process.

The same theorem can be stated in multiple
dimensions. Let X be an N-valued Itô process:

Xt = x +
t∫

0

μsds +
t∫

0

σsdBs

In this process, μS is an N-vector process and
σs is an N × D matrix. Suppose that there are
both a vector process ν = (ν1, . . . , νN) and a
vector process θ = (θ1, . . . , θN) such that σtθt =
μt − νt where the product σtθt is not a scalar
product but is performed component by com-
ponent. Suppose, in addition, that the process θ

satisfies the Novikov condition:

E

⎡

⎣e

⎛

⎝1
2

t∫

0

θ · θds

⎞

⎠

⎤

⎦ < ∞

Then there is a probability measure Q equiva-
lent to P such that the following integral

B̂t = Bt +
t∫

0

θsds
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defines a standard Brownian motion B̂t in RD

on (�,�, Q) with the same standard filtration
of the original Brownian motion Bt. In addition,
under Q the process X becomes

Xt = x +
t∫

0

νsds +
t∫

0

σsdB̂s

Girsanov’s theorem essentially states that un-
der technical conditions (the Novikov condi-
tion) by changing the probability measure, it is
possible to transform an Itô process into another
Itô process with arbitrary drift. Prima facie, this
result might seem unreasonable. In the end the
drift of a process seems to be a fundamental
feature of the process as it defines, for example,
the average of the process. Consider, however,
that a stochastic process can be thought as the
set of all its possible paths. In the case of an
Itô process, we can identify the process with
the set of all continuous and square integrable
functions. As observed above, the drift is an
average, and it is determined by the probabil-
ity measure on which the process is defined.
Therefore, it should not be surprising that by
changing the probability measure it is possible
to change the drift.

The Diffusion Invariance Principle
Note that Girsanov’s theorem requires neither
that the process X be a martingale nor that Q
be an equivalent martingale measure. If X is
indeed a martingale under Q, an implication of
Girsanov’s theorem is the diffusion invariance
principle, which can be stated as follows. Let X
be an Itô process:

dXt = μtdt + σtdBt

If X is a martingale with respect to an equiva-
lent probability measure Q, then there is a stan-
dard Brownian motion B̂T in RD under Q such
that

dXt = σtdB̂t

Let’s now apply the previous results to a price
process X = (V, S1, . . . , SN−1) where

dSt = μtdt + σldBt

and

dVt = rtVtdt

If the short-term rate r is bounded, V−1
t

is a regular deflator. Consider the deflated
processes:

Zt = StV−1
t

By Itô’s lemma, this process satisfies the follow-
ing stochastic equation:

dZt =
(

−rt Zt + μt

Vt

)
dt + σt

Vt
dBt

Suppose there is an equivalent martingale
measure Q. Under the equivalent martingale
measure Q, the discounted price process

Zt = StV−1
t

is a martingale. In addition, by the diffusion in-
variance principle there is a standard Brownian
motion B̂t in RD under Q such that:

dZt = σt

Vt
dB̂t

Applying Itô’s lemma, given that ZtVt = St,
we obtain the fundamental result:

dSt = rtdt + σtdB̂t

This result states that, under the equivalent
martingale measure, all price processes become
Itô processes with the same drift.

Application of Girsanov’s
Theorem to Black-Scholes Option
Pricing Formula
To illustrate Girsanov’s theorem, let’s see how
the Black-Scholes option pricing formula can be
obtained from an equivalent martingale mea-
sure. In the previous setting, let’s assume that
N = 3, d = 1, rt is a constant and

σt = σ St
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with σ constant. Let S be the stock price process
and C be the option price process. The option’s
price at time T is

C = max(S1
T − K )

In this setting, therefore, the following three
equations hold:

dSt = μS
t dt + σ SS

t dBt

dC2
t = μc

t dt + σ c
t dBt

dVt = rVtdt

Given that CtV−1
t is a martingale, we can write

Ct = Vt E Q
t

[
C2

T

Vt

]
= E Q

t [e−r (T−t) max(ST − K )]

It can be demonstrated by direct computation
that the above formula is equal to the Black-
Scholes option pricing formula presented ear-
lier in this entry.

EQUIVALENT MARTINGALE
MEASURES AND COMPLETE
MARKETS
In the continuous-state, continuous-time set-
ting, a market is said to be complete if any finite-
variance random variable Y can be obtained as
the terminal value at time T of a self-financing
trading strategy θ : Y = θT XT . A fundamental
theorem of arbitrage pricing states that, in the
absence of arbitrage, a market is complete if and
only if there is a unique equivalent martingale
measure. This condition can be made more spe-
cific given that the market is populated with as-
sets that follow Itô processes. Suppose that the
price process is X = (V, S1, . . . , SN−1) where, as
in the previous section:

dSt = μtdt + σtdBt

dVt = rVtdt

and B is a standard Brownian motion B =
(B1, . . . , B D) in RD.

It can be demonstrated that markets are com-
plete if and only if rank(σ ) = d almost every-
where. This condition should be compared with

the conditions for completeness we established
in the discrete-state setting. In that setting, we
demonstrated that markets are complete if and
only if the number of linearly independent price
processes is equal to the maximum number of
branches leaving a node. In fact, market com-
pleteness is equivalent to the possibility of solv-
ing a linear system with as many equations as
branches leaving each node.

In the present continuous-state setting, there
are infinite states and so we need different types
of considerations. Roughly speaking, each price
process (which is an Itô process) depends on D
independent sources of uncertainty as we as-
sume that the standard Brownian motion is D-
dimensional. In a finite-state setting this means
that, if processes are Markovian, at each time
step any process can jump to D different values.
The market is complete if there are D indepen-
dent price processes. Note that the number D is
arbitrary.

EQUIVALENT MARTINGALE
MEASURES AND STATE
PRICES
We will now show that equivalent martingale
measures and state prices are the same concept.
We use the same setting as in the previous sec-
tions. Suppose that Q is an equivalent martin-
gale measure after deflation by the process

1
V1

t
= e

∫ t
0 −rudu

where r is a bounded short-rate process. The
density process ξt for Q is defined as

ξt = Er

[
dQ
dP

]
, t ∈ [0, T]

where
[

dQ
dP

]

is the Radon-Nikodym derivative of Q with re-
spect to P. As in the discrete-state setting, the
Radon-Nikodym derivative of Q with respect
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to P is a random variable

ξ =
[

dQ
dP

]

with average value on the entire space equal to 1
and such that, for every event A, the probability
of A under Q is the average of ξ :

P Q(A) = E A[ξ ]

It can be demonstrated that, given any �t-
measurable random variable W, the density
process ξt for Q has the following property:

E Q
t [W] = Et[Wξt]

ξt

To gain an intuition for the Radon-Nikodym
derivative in a continuous-state setting, let’s
assume that the probability space is the real
line equipped with the Borel σ -algebra and
with a probability measure P. In this case,
ξ = ξ (x), R → R and we can write

Q(A) =
∫

A

ξdP

or, dQ = ξdP. Given any random variable X
with density f under P and density q under Q,
we can then write

E Q[X] =
∫

R

xq (x)dx =
∫

R

xξ (x) f (x)dx

In other words, the random variable ξ is a func-
tion that multiplies the density f to yield the
density q.

We can now show the following key result.
Given an equivalent martingale measure with
density process ξt a state-price deflator is given
by the process

πt = ξte

t∫

0
−rudu

Conversely, given a state-price deflator πt, the
density process

ξt = e

t∫

0
rudu πt

π0

defines an equivalent martingale measure. In
fact, suppose that Q is an equivalent martingale

measure for XY with πt = ξtYt where

Yt = e

t∫

0
−rudu

Then, using the above relationship we can
write:

Et[πt Xt] = Et[ξt XY
t ] = ξt E Q

t [ξt XY
t ] = ξt XY

t

= πt Xt

which shows that πt is a state-price deflator. The
same reasoning in reverse order demonstrates
that if πt is astate-price deflator then:

ξt = e

t∫

0
rudu πt

π0

is a density process for Q.

ARBITRAGE PRICING WITH
A PAYOFF RATE
In the analysis thus far, we assumed that there
is no intermediate payoff. The owner of an
asset makes a profit or aloss due only to the
changes in value of the asset. Let’s now intro-
duce a payoff-rate process δi

t for each asset i.
The payoff-rate process must be interpreted in
the sense that the cumulative payoff of each in-
dividual asset is

Di
t =

t∫

0

δi
sds

We define a gain process

Gi
t = Si

t + Di
t

By the linearity of the Itô integrals, we can write
any trading strategy as

t∫

0

θtdGt =
t∫

0

θtd Xt +
t∫

0

θtdDt

If there is a payoff-rate process, a self-
financing trading strategy is a trading strategy
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such that the following relationship holds:

θtSt =
∑

i

θ i
t Si

t =
∑

i

(
θ i

t Si
t

+
t∫

0

θ i
t dGi

t

)
, t ∈ [0, T]

An arbitrage is, as before, a self-financing trad-
ing strategy such that

θ0S0 < 0 and θT ST ≥ 0, or θ0S0 ≤ 0 and θT ST > 0

The previous arguments extend to this case.
An equivalent martingale measure for the pair
(D, S) is defined as an equivalent probabil-
ity measure Q such that the Radon-Nikodym
derivative

ξ =
[

dQ
dP

]

has finite variance and the process G = S + D
is a martingale. Under these conditions, the fol-
lowing relationship holds:

St = E Q
t

⎡

⎣e
∫ T

r −rudu +
T∫

t

e
∫ S

t −rududDs

⎤

⎦

IMPLICATIONS OF THE
ABSENCE OF ARBITRAGE
We saw that the existence of an equivalent mar-
tingale measure or of state-price deflators im-
plies absence of arbitrage. We have also seen
that, in the absence of arbitrage, markets are
complete if and only if there is a unique equiv-
alent martingale measure.

In a discrete-state, discrete-time context we
could establish the complete equivalence be-
tween the existence of state-price deflators,
equivalent martingale measures and absence of
arbitrage, in the sense that any of these con-
ditions implies the other two. In addition, the
existence of a unique equivalent martingale
measure implies absence of arbitrage and mar-
ket completeness.

In the present continuous-state context, how-
ever, absence of arbitrage implies the existence

of an equivalent martingale measure and of
state price deflators only under rather restric-
tive and complex technical conditions. If we
want to relax these conditions, the condition
of absence of arbitrage has to be slightly mod-
ified. These discussions are quite technical and
will not be presented in this entry.3

WORKING WITH
EQUIVALENT MARTINGALE
MEASURES
The concepts established in the preceding sec-
tions of this entry might seem very complex, ab-
stract, and scarcely useful. On the contrary, they
entail important simplifications in the computa-
tion of derivative prices. Applications of these
computations can be found in the pricing of
bonds and credit derivatives. Here we want to
make a few general comments on how these
tools are used.

The key result of the arbitrage pricing the-
ory is that, under the equivalent martingale
measure, all discounted price processes be-
come martingales and all price processes have
the same drift. Therefore, all calculations can
be performed under the assumption that the
change to an equivalent martingale measure
has been made. This environment allows im-
portant simplifications. For example, as we
have seen, the option pricing problem becomes
a problem of computing the present value of
simpler processes.

Obviously one has to go back to a real en-
vironment at the end of the pricing exercise.
This is essentially a calibration problem, as risk-
neutral probabilities have to be estimated from
real probabilities. Despite this complication, the
equivalent martingale methodology has proved
to be an important tool in derivative pricing.

KEY POINTS
� A trading strategy is a vector-valued pro-

cess that represents portfolio weights at each
moment.
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� Trading gains are defined as stochastic inte-
grals.

� A self-financing trading strategy is one whose
value at every moment is the initial value plus
the trading gains at that moment.

� An arbitrage is a self-financing trading strat-
egy whose initial value is either negative and
the final value nonnegative or the initial value
non-negative and the final value positive.

� The Black-Scholes option pricing formula can
be established by replicating self-financing
trading strategies.

� The Black-Scholes pricing argument is based
on constructing a self-financing trading strat-
egy that replicates the option price in each
state and for each time.

� Absence of arbitrage implies that a replicating
self-financing trading strategy must have the
same price as the option.

� The Black-Scholes option pricing formula is
obtained by solving the partial differential
equation implied by the equality of the repli-
cating self-financing trading strategy and the
option price process.

� A deflator is any strictly positive Itô process;
a state-price deflator is a deflator with the
property that the deflated price process is a
martingale.

� If there is a (regular) state-price deflator, then
there is no arbitrage; the converse is true only
under a number of technical conditions.

� Two probability measures are said to be
equivalent if they assign probability zero to
the same event.

� Given a process X on a probability space with
probability measure P, the probability mea-
sure Q is said to be an equivalent martingale
measure if it is equivalent to P and X is a
martingale with respect to Q (plus other con-
ditions).

� If there is a regular deflator such that the
deflated price process admits an equiva-
lent martingale measure, then there is no
arbitrage.

� Under the equivalent martingale measure, all
Itô price processes have the same drift.

� In the absence of arbitrage, a market is com-
plete if and only if there is a unique equivalent
martingale measure.

NOTES
1. One can visualize this process as a tree struc-

ture with an infinite number of branches
and an infinite number of branching points.
However, as the number of branches and of
branching points is a continuum, intuition
might be misleading.

2. The theory of equivalent martingale mea-
sures was developed in Harrison and Pliska
(1981, 1985) and Harrison and Kreps (1979).

3. See Delbaen and Schachermayer (1994,
1999).
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Abstract: One of the basic mechanisms of learning is assimilating the information arriving from
the external environment and then updating the existing knowledge base with that information.
This mechanism lies at the heart of the Bayesian framework. A Bayesian decision maker learns
by revising beliefs in light of the new data that become available. From the Bayesian point of
view, probabilities are interpreted as degrees of belief. Therefore, the Bayesian learning process
consists of revising probabilities. Contrast this with the way probability is interpreted in the classical
(frequentist) statistical theory—as the relative frequency of occurrence of an event in the limit, as the
number of observations goes to infinity. Bayes’ theorem provides the formal means of putting that
mechanism into action; it is a simple expression combining the knowledge about the distribution
of the model parameters and the information about the parameters contained in the data.

Quantitative financial models describe in math-
ematical terms the relationships between fi-
nancial random variables through time and/or
across assets. The fundamental assumption is
that the model relationship is valid indepen-
dent of the time period or the asset class un-
der consideration. Financial data contain both
meaningful information and random noise. An
adequate financial model not only extracts op-
timally the relevant information from the his-

torical data but also performs well when tested
with new data. The uncertainty brought about
by the presence of data noise makes imperative
the use of statistical analysis as part of the pro-
cess of financial model building, model evalua-
tion, and model testing.

Statistical analysis is employed from the van-
tage point of either of the two main statis-
tical philosophical traditions—frequentist and
Bayesian. An important difference between the

139
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two lies with the interpretation of the concept
of probability. As the name suggests, advocates
of frequentist statistics adopt a frequentist in-
terpretation: The probability of an event is the
limit of its long-run relative frequency (i.e., the
frequency with which it occurs as the amount
of data increases without bound). Strict adher-
ence to this interpretation is not always pos-
sible in practice. When studying rare events,
for instance, large samples of data may not be
available and in such cases proponents of fre-
quentist statistics resort to theoretical results.
The Bayesian view of the world is based on the
subjectivist interpretation of probability: Prob-
ability is subjective, a degree of belief that is
updated as information or data are acquired.

The concept of subjective probability is de-
rived from arguments for rationality of the pref-
erences of agents. It originated in the 1930s with
the (independent) works of Bruno de Finetti
(1931) and Frank Ramsey (1931), and was fur-
ther developed by Leonard Savage (1954) and
Dennis Lindley (1971). The subjective prob-
ability interpretation can be traced back to
the Scottish philosopher and economist David
Hume, who also had philosophical influence
over Harry Markowitz (by Markowitz’s own
words in his autobiography published in Les
Prix Nobel, 1991).

Closely related to the concept of probability is
that of uncertainty. Proponents of the frequen-
tist approach consider the source of uncertainty
to be the randomness inherent in realizations
of a random variable. The probability distribu-
tions of variables are not subject to uncertainty.
In contrast, Bayesian statistics treats probability
distributions as uncertain and subject to modi-
fication as new information becomes available.
Uncertainty is implicitly incorporated by prob-
ability updating. The probability beliefs based
on the existing knowledge base take the form
of the prior probability.

The posterior probability represents the up-
dated beliefs. Since the beginning of the last
century, when quantitative methods and mod-
els became a mainstream tool to aid in un-

derstanding financial markets and formulating
investment strategies, the framework applied in
finance has been the frequentist approach. The
term frequentist usually refers to the Fisherian
philosophical approach named after Sir Ronald
Fisher.

Strictly speaking, “Fisherian” has a broader
meaning as it includes not only frequentist sta-
tistical concepts such as unbiased estimators,
hypothesis tests, and confidence intervals, but
also the maximum likelihood estimation frame-
work pioneered by Fisher. Only in the last two
decades has Bayesian statistics started to gain
greater acceptance in financial modeling, de-
spite its introduction about 250 years ago by
Thomas Bayes, a British minister and mathe-
matician. It has been the advancements of com-
puting power and the development of new
computational methods that has fostered the
growing use of Bayesian statistics in finance.

On the applicability of the Bayesian concep-
tual framework, consider an excerpt from the
speech of the former chairman of the Board
of Governors of the Federal Reserve System,
Alan Greenspan, at the Meeting of the Amer-
ican Statistical Association in San Diego, Cali-
fornia, January 3, 2004:

The Federal Reserve’s experiences over the past
two decades make it clear that uncertainty is not
just a pervasive feature of the monetary policy
landscape; it is the defining characteristic of that
landscape. The term “uncertainty” is meant here
to encompass both “Knightian uncertainty,” in
which the probability distribution of outcomes is
unknown, and “risk,” in which uncertainty of out-
comes is delimited by a known probability distribu-
tion. . . . This conceptual framework emphasizes un-
derstanding as much as possible the many sources of
risk and uncertainty that policymakers face, quan-
tifying those risks when possible, and assessing the
costs associated with each of the risks. In essence,
the risk management approach to monetary poli-
cymaking is an application of Bayesian [decision
making].

The three steps of Bayesian decision making
that Alan Greenspan outlines are:

1. Formulating the prior probabilities to reflect
existing information.
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2. Constructing the quantitative model, taking
care to incorporate the uncertainty intrinsic
in model assumptions.

3. Selecting and evaluating a utility function
describing how uncertainty affects alterna-
tive model decisions.

While these steps constitute the rigorous
approach to Bayesian decision making, appli-
cations of Bayesian methods to financial mod-
eling often only involve the first two steps or
even only the second step. This tendency is a
reflection of the pragmatic Bayesian approach
that financial modelers often favor.

Applications of the Bayesian framework to fi-
nancial modeling include:

� Bayesian approach to mean-variance portfo-
lio selection.

� Reflecting degrees of belief in an asset pricing
model when selecting an optimal portfolio.

� Bayesian methods of portfolio selection
within the context of the Black-Litterman
model.

� Computing measures of market efficiency.
� Estimating complex volatility models.

All of these applications are presented in
Rachev et al. (2008).

In this entry, we discuss some of the basic
principles of Bayesian analysis.

THE LIKELIHOOD FUNCTION
Suppose we are interested in analyzing the re-
turns on a given stock and have available a his-
torical record of returns. Any analysis of these
returns, beyond a very basic one, would require
that we make an educated guess about (pro-
pose) a process that might have generated these
return data. Assume that we have decided on
some statistical distribution and denote it by

p (y | θ ) (1)

where y is a realization of the random variable
Y (stock return) and θ is a parameter specific to

the distribution, p. Assuming that the distribu-
tion we proposed is the one that generated the
observed data, we draw a conclusion about the
value of θ . Obviously, central to that goal is our
ability to summarize the information contained
in the data. The likelihood function is a statisti-
cal construct with this precise role. Denote the
n observed stock returns by y1, y2, . . . , yn. The
joint density function of Y, for a given value of
θ , is

f (y1, y2, . . . , yn | θ )

By using the term “density function,” we im-
plicitly assume that the distribution chosen for
the stock return is continuous, which is invari-
ably the case in financial modeling.

We can observe that the function above can
also be treated as a function of the unknown
parameter, θ , given the observed stock returns.
That function of θ is called the likelihood function.
We write it as

L(θ | y1, y2, . . . , yn) = f (y1, y2, . . . , yn | θ ) (2)

Suppose we have determined from the data
two competing values of θ , θ1 and θ2, and want
to determine which one is more likely to be
the true value (at least, which one is closer to
the true value). The likelihood function helps
us make that decision. Assuming that our data
were indeed generated by the distribution in
(1), θ1 is more likely than θ2 to be the true pa-
rameter value whenever L

(
θ1 | y1, y2, . . . , yn

)
>

L
(
θ2 | y1, y2, . . . , yn

)
. This observation provides

the intuition behind the method most often
employed in “classical” statistical inference to
estimate θ from the data alone—the method of
maximum likelihood. The value of θ most likely
to have yielded the observed sample of stock
return data, y1, y2, . . . , yn, is the maximum like-
lihood estimate, θ̂ , obtained from maximizing
the likelihood function in (2).

To illustrate the concept of a likelihood func-
tion, we briefly discuss two examples—one
based on the Poisson distribution (a discrete
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distribution) and another based on the normal
distribution (one of the most commonly em-
ployed continuous distributions).

The Poisson Distribution
Likelihood Function
The Poisson distribution is often used to de-
scribe the random number of events occurring
within a certain period of time. It has a single
parameter, θ , indicating the rate of occurrence
of the random event, that is, how many events
happen on average per unit of time. The proba-
bility distribution of a Poisson random variable,
X, is described by the following expression:

p
(
X = k

) = θ k

k!
e−θ , k = 0, 1, 2, . . .. (3)

The Poisson distribution is employed in the
context of finance (most often, but not exclu-
sively, in the areas of credit risk and operational
risk) as the distribution of a stochastic process,
called the Poisson process, which governs the
occurrences of random events.

Suppose we are interested in examining the
annual number of defaults of North American
corporate bond issuers and we have gathered a
sample of data for the period from 1986 through
2005. Assume that these corporate defaults oc-
cur according to a Poisson distribution. Denot-
ing the 20 observations by x1, x2, . . . , x20, we
write the likelihood function for the Poisson pa-
rameter θ (the average rate of defaults) as1

L
(
θ | x1, x2, . . . , x20

)
=

20∏

i=1

p
(

X = xi | θ
)

=
20∏

i=1

θ xi

xi !
e−θ

= θ
∑20

i=1 xi

∏20
i=1 xi !

e−20θ (4)

It is often customary to retain in the expressions
for the likelihood function and the probability
distributions only the terms that contain the un-
known parameter(s); that is, we get rid of the
terms that are constant with respect to the pa-

rameter(s). Thus, (4) could be written as

L
(
θ | x1, x2, . . . , x20

) ∝ θ
∑20

i=1 xi e−20θ (5)

where ∝ denotes “proportional to.” Clearly,
for a given sample of data, the expressions in
(4) and (5) are proportional to each other and
therefore contain the same information about θ .
Maximizing either of them with respect to θ , we
obtain that the maximum likelihood estimator
of the Poisson parameter, θ , is the sample mean,
x:

θ̂ = x =
∑20

i=1 xi

20

For the 20 observations of annual corporate de-
faults, we get a sample mean of 51.6. The Pois-
son probability distribution function (evaluated
at θ equal to its maximum-likelihood estimate,
θ̂ = 51.6) and the likelihood function for θ can
be visualized, respectively, in the left-hand-side
and right-hand-side plots in Figure 1.

The Normal Distribution
Likelihood Function
The normal distribution (also called the Gaus-
sian distribution) has been the predominant
distribution of choice in finance because of the
relative ease of dealing with it and the availabil-
ity of attractive theoretical results resting on it.2

It is certainly one of the most important distri-
butions in statistics. Two parameters describe
the normal distribution—the location param-
eter, μ, which is also its mean, and the scale
(dispersion) parameter, σ , also called standard
deviation. The probability density function of a
normally distributed random variable Y is ex-
pressed as

f
(
y
) = 1√

2πσ
e− (y−μ)2

2σ2 (6)

where y and μ could take any real value and
σ can only take positive values. We denote the
distribution of Y by Y ∼ N

(
μ, σ

)
. The normal

density is symmetric around the mean, μ, and
its plot resembles a bell.
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Figure 1 The Poisson Distribution Function and Likelihood Function
Note: The graph on the left represents the mass function of the Poisson random variable evaluated at the
maximum-likelihood estimate, θ̂ = 51.6. The graph on the right represents the likelihood function for
the parameter of the Poisson distribution.

Suppose we have gathered daily dollar return
data on the MSCI-Germany Index for the pe-
riod January 2, 1998, through December 31, 2003
(a total of 1,548 returns), and we assume that
the daily return is normally distributed. Then,
given the realized index returns (denoted by
y1, y2, . . . , y1548), the likelihood function for the
parameters μ and σ is written in the following
way:

L
(
μ, σ | y1, y2, . . . , y1548

)

=
1548∏

i=1

f
(
yi

)

=
(

1√
2πσ

)1548

e− ∑1548
i=1

(yi −μ)2

2σ2

∝ σ−1548e− ∑1548
i=1

(yi −μ)2

2σ2 (7)

We again implicitly assume that the MSCI-
Germany index returns are independently and
identically distributed (IID), that is, each daily
return is a realization from a normal distribu-
tion with the same mean and standard devia-
tion.

In the case of the normal distribution, since
the likelihood is a function of two arguments,
we can visualize it with a three-dimensional
surface as in Figure 2. It is also useful to plot
the so-called contours of the likelihood, which
we obtain by “slicing” the shape in Figure 2
horizontally at various levels of the likelihood.

Each contour corresponds to a pair of parame-
ter values (and the respective likelihood value).
In Figure 3, for example, we could observe that
the pair (μ, σ ) = (−0.23e − 3, 0.31e − 3), with
a likelihood value of 0.6, is more likely than
the pair (μ, σ ) = (0.096e − 3, 0.33e − 3), with a
likelihood value of 0.1, since the corresponding
likelihood is larger.

BAYES’ THEOREM
Bayes’ theorem is the cornerstone of the Bayesian
framework. Formally, it is a result from in-
troductory probability theory, linking the un-
conditional distribution of a random variable
with its conditional distribution. For Bayesian

Figure 2 The Likelihood Function for the Pa-
rameters of the Normal Distribution
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Figure 3 The Likelihood Function for the Pa-
rameters of the Normal Distribution: Contour Plot

proponents, it is the representation of the philo-
sophical principle underlying the Bayesian
framework that probability is a measure of the
degree of belief one has about an uncertain
event. Bayes’ theorem is a rule that can be used
to update the beliefs that one holds in light of
new information (for example, observed data).

We first consider the discrete version of Bayes’
theorem. Denote the evidence prior to observ-
ing the data by E and suppose that a re-
searcher’s belief in it can be expressed as the
probability P(E). The Bayes theorem tells us
that, after observing the data, D, the belief in
E is adjusted according to the following expres-
sion:

P(E | D) = P(D | E) × P(E)
P(D)

(8)

where:

1. P(D | E) is the conditional probability of the
data given that the prior evidence, E, is true.

2. P(D) is the unconditional (marginal) proba-
bility of the data, P(D) > 0; that is, the prob-
ability of D irrespective of E, also expressed
as

P(D) = P(D | E) × P(E) + P(D | Ec) × P(Ec)

where the subscript c denotes a complemen-
tary event.3

The probability of E before seeing the data,
P(E), is called the prior probability, whereas the
updated probability, P(E | D), is called the poste-
rior probability.4 Notice that the magnitude of the
adjustment of the prior probability, P(E), after
observing the data is given by the ratio P(D|E)/
P(D). The conditional probability, P(D|E), when
considered as a function of E, is in fact the like-
lihood function, as will become clear further
below.

As an illustration, consider a manager in
an event-driven hedge fund. The manager is
testing a strategy that involves identifying
potential acquisition targets and examines the
effectiveness of various company screens, in
particular the ratio of stock price to free cash
flow per share (PFCF). Let us define the follow-
ing events:

D = Company X’s PFCF has been more than
three times lower than the sector average for
the past three years.

E = Company X becomes an acquisition target
in the course of a given year.

Independently of the screen, the manager as-
sesses the probability of company X being tar-
geted at 40%. That is, denoting by Ec the event
that X does not become a target in the course of
the year, we have

P(E) = 0.4

and

P(Ec) = 0.6

Suppose further that the manager’s analysis
suggests that the probability a target company’s
PFCF has been more than three times lower than
the sector average for the past three years is 75%
while the probability that a nontarget company
has been having that low of a PFCF for the past
three years is 35%:

P(D | E) = 0.75

and

P(D | Ec) = 0.35
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If a bidder does appear on the scene, what is
the chance that the targeted company had been
detected by the manager’s screen? To answer
this question, the manager needs to update the
prior probability P(E) and compute the pos-
terior probability P(E | D). Applying (8), we
obtain

P(E | D) = 0.75 × 0.4
0.75 × 0.4 + 0.35 × 0.6

≈ 0.59 (9)

After taking into account the company’s persis-
tently low PFCF, the probability of a takeover
increases from 40% to 59%.

In financial applications, the continuous ver-
sion of the Bayes’ theorem (as follows later) is
predominantly used. Nevertheless, the discrete
form has some important uses, two of which we
briefly outline now.

Bayes’ Theorem and Model
Selection
The usual approach to modeling of a financial
phenomenon is to specify the analytical and
distributional properties of a process that one
thinks generated the observed data and treat
this process as if it were the true one. Clearly,
in doing so, one introduces a certain amount
of error into the estimation process. Account-
ing for model risk might be no less important
than accounting for (within-model) parameter
uncertainty, although it seems to preoccupy re-
searchers less often.

One usually entertains a small number of
models as plausible ones. The idea of apply-
ing the Bayes’ theorem to model selection is to
combine the information derived from the data
with the prior beliefs one has about the degree
of model validity. One can then select the single
“best” model with the highest posterior proba-
bility and rely on the inference provided by it or
one can weigh the inference of each model by its
posterior probability and obtain an “averaged-
out” conclusion.

Bayes’ Theorem and Classification
Classification refers to assigning an object,
based on its characteristics, into one out of
several categories. It is most often applied in
the area of credit and insurance risk, when
a creditor (an insurer) attempts to determine
the creditworthiness (riskiness) of a potential
borrower (policyholder). Classification is a
statistical problem because of the existence
of information asymmetry—the creditor’s (in-
surer’s) aim is to determine with very high
probability the unknown status of the borrower
(policyholder). For example, suppose that a
bank would like to rate a borrower into one
of three categories: low risk (L), medium risk
(M), and high risk (H). It collects data on the
borrower’s characteristics such as the current
ratio, the debt-to-equity ratio, the interest cov-
erage ratio, and the return on capital. Denote
these observed data by the four-dimensional
vector y. The dynamics of y depends on the
borrower’s category and is described by one of
three (multivariate) distributions,

f ( y| C = L)

f ( y| C = M)

or

f ( y| C = H)

where C is a random variable describing the cat-
egory. Let the bank’s belief about the borrower’s
category be π i, where

π1 = π (C = L)

π2 = π (C = M)

and

π3 = π (C = H)

The discrete version of Bayes’ theorem can be
employed to evaluate the posterior (updated)
probability, π (C = i | y), i = L, M, H, that the
borrower belongs to each of the three categories.

Let us now take our first steps in illustrating
how Bayes’ theorem helps in making inferences
about an unknown distribution parameter.
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P1 P2 P3 P4 P5 P6

D1 = −1, 0, 1

D2 = −1, 0, 1 .....

D5 = −1, 0, 1

A1 = D1 + D2

A2 = D2 D3+
. . .

A4 = D4 D5+

where

Note: X = number of occurences of A = 2 within the sample period

Di = −1  if Pi+1< Pi

Di = 0   if Pi+1 = Pi

Di = 1   if Pi+1> Pi

Figure 4 The Number of Consecutive Trade-by-Trade Price Increases

Bayesian Inference for the Binomial
Probability
Suppose we are interested in analyzing the dy-
namic properties of the intraday price changes
for a stock. In particular, we want to evaluate
the probability of consecutive trade-by-trade
price increases. In an oversimplified scenario,
this problem could be formalized as a binomial
experiment.

The binomial experiment is a setting in which
the source of randomness is a binary one (only
takes on two alternative modes/states) and the
probability of both states is constant through-
out. The binomial random variable is the num-
ber of occurrences of the state of interest. In our
illustration, the two states are “the consecutive
trade-by-trade price change is an increase” and
“the consecutive trade-by-trade price change is
a decrease or null.” The random variable is the
number of consecutive price increases. Denote
it by X. Denote the probability of a consecutive
increase by θ . Our goal is to draw a conclusion
about the unknown probability, θ .

As an illustration, we consider the transaction
data for the AT&T stock during the two-month
period from January 4, 1993, through February

26, 1993 (a total of 55,668 price records). The
diagram in Figure 4 shows how we define the
binomial random variable given six price obser-
vations, P1, . . . , P6. (Notice that the realizations
of the random variable are one less than the
number of price records.) A consecutive price
increase is “encoded” as A = 2 and its proba-
bility is θ = P(A = 2); all other realizations of
A (A = −2, −1, 0 or 1) have a probability of
1 − θ . We say that the number of consecutive
price increases, X, is distributed as a binomial
random variable with parameter θ . The proba-
bility mass function of X is represented by the
expression

P(X = x | θ ) =
(

n
x

)
θ x(1 − θ )n−x

x = 0, 1, 2, . . . , n (10)

where n is the sample size (the number of trade-
by-trade price changes; a price change could

be zero) and
(

n
x

)
= n!

x!(n−x)! . During the sam-

ple period, there are X = 176 trade-by-trade
consecutive price increases. This information is
embodied in the likelihood function for θ :

L
(
θ | X = 176

) = θ176(1 − θ )55667−176 (11)
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We would like to combine that information
with our prior belief about what the probability
of a consecutive price increase is. We denote the
prior distribution of an unknown parameter θ

by π (θ ), the posterior distribution of θ by π (θ
|data), and the likelihood function by L(θ | data).

We consider two prior scenarios for the prob-
ability of consecutive price increases, θ :

1. We do not have any particular belief about
the probability θ . Then, the prior distribution
could be represented by a uniform distribu-
tion on the interval [0, 1]. Note that this prior
assumption implies an expected value for θ

of 0.5. The density function of θ is given by

π (θ ) = 1, 0 ≤ θ ≤ 1

2. Our intuition suggests that the probability of
a consecutive price increase is around 2%. A
possible choice of a prior distribution for θ is
the beta distribution.5 The density function
of θ is then written as

π (θ | α, β) = 1
B(α, β)

θα−1(1 − θ )β−1, 0 ≤ θ ≤ 1

(12)

where α > 0 and β > 0 are the parameters of
the beta distribution and B(α, β) is the so-called
beta function. We set the parameters α and β to
1.6 and 78.4, respectively.

Figure 5 presents the plots of the two prior
densities. Notice that under the uniform prior,
all values of θ are equally likely, while under
the beta prior, we assert higher prior probability
for some values and lower prior probability for
others.

Combining the sample information with the
prior beliefs, we obtain θ ’s posterior distribu-
tion. We rewrite Bayes’ theorem with the nota-
tion in the current discussion:

p(θ | x) = L(θ | x)π (θ )
f (x)

(13)

where f (x) is the unconditional (marginal) dis-
tribution of the random variable X, given by

f (x) =
∫

L(θ | x)π (x) dθ (14)
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Figure 5 Density Curves of the Two Prior Dis-
tributions for the Binomial Parameter, θ

Note: The density curve on top is the uniform den-
sity, while the one at the bottom is the beta density.

Since f (x) is obtained by averaging over all
possible values of θ , it does not depend on θ .
Therefore, we can rewrite (8) as

π (θ | x) ∝ L(θ | x)π (θ ) (15)

The expression in (15) provides us with the pos-
terior density of θ up to some unknown con-
stant. However, in certain cases we would still
be able to recognize the posterior distribution as
a known distribution, as we see shortly.6 Since
both assumed prior distributions of θ are con-
tinuous, the posterior density is also continuous
and (13) and (15), in fact, represent the continu-
ous version of Bayes’ theorem.

Let us see what the posterior distribution for
θ is under each of the two prior scenarios.

1. The posterior of θ under the uniform prior
scenario is written as

π (θ | x) ∝ L(θ | x) × 1

∝ θ176(1 − θ )55667−176

= θ177−1(1 − θ )55492−1 (16)
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where the first ∝ refers to omitting the
marginal data distribution term in (14), while
the second ∝ refers to omitting the constant
term from the likelihood function.

The expression θ177−1(1 − θ )55492−1 above
resembles the density function of the beta
distribution in (12). The missing part is the
term B(177, 55492), which is a constant with
respect to θ . We call θα−1(1 − θ )β−1 the ker-
nel of a beta distribution with parameters α

and β. Obtaining it is sufficient to identify
uniquely the posterior of θ as a beta distribu-
tion with parameters α = 177 and β = 55492.

2. The beta distribution is the conjugate prior
distribution for the binomial parameter θ .
This means that the posterior distribution of
θ is also a beta distribution (of course, with
updated parameters):

π (θ | x) ∝ L(θ | x)π (θ )

∝ θ176(1 − θ )55667−176θ1.6−1(1 − θ )78.4−1

= θ177.6−1(1 − θ )55569.4−1 (17)

where again we omit any constants with re-
spect to θ . As expected, we can recognize
the expression in the last line above as the
kernel of a beta distribution with parameters
α = 177.6 and β = 55569.4.

Finally, we might want to obtain a single num-
ber as an estimate of θ . In the classical (fre-
quentist) setting, the usual estimator of θ is the
maximum likelihood estimator (the value max-
imizing the likelihood function in (11)), which
happens to be the sample proportion θ̂ :

θ̂ = 176
55667

= 0.00316 (18)

or 0.316%.
In the Bayesian setting, one possible estimate

of θ is the posterior mean, that is, the mean of
θ ’s posterior distribution. Since the mean of the
beta distribution is given by α/(α + β), the pos-
terior mean of θ (the expected probability of
consecutive trade-by-trade increase in the price
of the AT&T stock) under the uniform prior

scenario is

θ̃U = 177
177 + 55492

= 0.00318

or 0.318%, while the posterior mean of θ under
the beta prior scenario is

θ̃B = 177.6
177.6 + 55569.4

= 0.00319

or 0.319%.
The two posterior estimates and the

maximum-likelihood estimate are the same for
all practical purposes. The reason is that the
sample size is so large that the information con-
tained in the data sample “swamps out” the
prior information.

KEY POINTS
� Statistical analysis is employed from the van-

tage point of either of the two main statisti-
cal philosophical traditions—frequentist and
Bayesian.

� The frequentist interpretation of the proba-
bility of an event is that it is the limit of
its long-run relative frequency (i.e., the fre-
quency with which it occurs as the amount of
data increases without bound).

� The Bayesian view of the world is based on
the subjectivist interpretation of probability:
Probability is subjective, a degree of belief
that is updated as information or data are ac-
quired.

� In the Bayesian framework, probability be-
liefs based on the existing knowledge base
take the form of the prior probability; the
posterior probability represents the updated
beliefs.

� The likelihood function is a statistical con-
struct summarizing the information con-
tained in the sample of data.

� Bayes’ theorem links the unconditional
and unconditional probabilities. Under the
Bayesian approach, prior beliefs are com-
bined with sample information to create up-
dated posterior beliefs.
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� Two important applications of the discrete
form of Bayes’ theorem are model selection
and classification.

� In financial applications, the continuous ver-
sion of Bayes’ theorem is predominantly
used.

NOTES
1. In this example, we assume, perhaps unre-

alistically, that θ stays constant through time
and that the annual number of defaults in
a given year is independent from the num-
ber of defaults in any other year within
the 20-year period. The independence as-
sumption means that each observation of the
number of annual defaults is regarded as a
realization from a Poisson distribution with
the same average rate of defaults, θ ; this al-
lows us to represent the likelihood function
as the product of the mass function at each
observation.

2. One such result is the Central Limit Theo-
rem which asserts that, under certain mild
regularity conditions, sums of independent
random variables are distributed with the
normal distribution asymptotically (as the
terms of the sum become indefinitely many).

3. The complement (complementary event) of
E, Ec, includes all possible outcomes that
could occur if E is not realized. The probabil-
ities of an event and its complement always
sum up to 1: P(E) + P(Ec) = 1.

4. The expression in (8) is easily generalized
to the case when a researcher updates be-

liefs about one of many mutually exclusive
events (such that two or more of them oc-
cur at the same time). Denote these events
by E1, E2, . . . , EK. The events are such that
their probabilities sum up to 1: P(E1) + · · · +
P(EK) = 1. Bayes’ theorem then takes the form

P(Ek | D) =
P(D | Ek ) × P(Ek )

P(D | E1) × P(E1) + P(D | E2) × P(E2) + · · · + P(D | EK ) × P(EK )

for k = 1, . . . , K and P(D) > 0.
5. The beta distribution is the conjugate dis-

tribution for the parameter of the binomial
distribution.

6. When the posterior distribution is not rec-
ognizable as a known distribution, inference
about θ is accomplished with the help of nu-
merical methods.
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Assistant Professor of Statistics and Econometrics, Ozyegin University, Turkey

SVETLOZAR T. RACHEV, PhD, Dr Sci
Frey Family Foundation Chair Professor, Department of Applied Mathematics and Statistics,
Stony Brook University, and Chief Scientist, FinAnalytica

JOHN S. J. HSU, PhD
Professor of Statistics and Applied Probability, University of California, Santa Barbara

FRANK J. FABOZZI, PhD, CFA, CPA
Professor of Finance, EDHEC Business School

Abstract: Bayesian inference is the process of arriving at estimates of the model parameters reflecting
the blending of information from different sources. Most commonly, two sources of information
are considered: prior knowledge or beliefs and observed data. The discrepancy (or lack thereof)
between them and their relative strength determines how far away the resulting Bayesian estimate
is from the corresponding classical estimate. Along with the point estimate, which most often is the
posterior mean, in the Bayesian setting one has available the whole posterior distribution, allowing
for a richer analysis.

In this entry, we focus on the essentials
of Bayesian inference. Formalizing the practi-
tioner’s knowledge and intuition into prior
distributions is a key part of the inferential pro-
cess. Especially when the data records are not
abundant, the choice of prior distributions can
influence greatly posterior conclusions. After
presenting an overview of some approaches to
prior specification, we focus on the elements
of posterior analysis. Posterior and predictive
results can be summarized in a few numbers,
as in the classical statistical approach, but one

could also easily examine and draw conclusions
about all other aspects of the posterior and pre-
dictive distributions of the (functions of the)
parameters.

PRIOR INFORMATION
The prior distribution for the model parameters
is an integral component of the Bayesian infer-
ence process. The updated (posterior) beliefs
are the result of the trade-off between the prior
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and data distributions. The continuous form of
Bayes’ theorem is:

p(θ | y) ∝ L(θ | y)π (θ ) (1)

where

θ = unknown parameter whose infer-
ence we are interested in.

y = a vector (or a matrix) of recorded
observations.

π (θ ) = prior distribution of θ depending
on one or more parameters, called
hyperparameters.

L(θ|y) = likelihood function for θ .
p(θ|y) = posterior (updated) distribution

of θ .

Two factors determine the degree of posterior
trade-off—the strength of the prior information
and the amount of data available. Generally,
unless the prior is very informative (in a sense
that will become clear), the more observations,
the greater the influence of the data on the pos-
terior distribution. On the contrary, when very
few data records are available, the prior distri-
bution plays a predominant role in the updated
beliefs.

How to translate the prior information about
a parameter into the analytical (distributional)
form, π (θ ), and how sensitive the posterior in-
ference is to the choice of prior have been ques-
tions of considerable interest in the Bayesian
literature.1 There is, unfortunately, no “best”
way to specify the prior distribution and trans-
lating subjective views into prior values for the
distribution parameters could be a difficult un-
dertaking.

Before we review some commonly used ap-
proaches to prior elicitation, we make the
following notational and conceptual note. It is
often convenient to represent the posterior dis-
tribution, p(θ | y), in a logarithmic form. Then,
it is easy to see that the expression in (1) is trans-
formed according to

log(p(θ | y)) = const + log(L(θ | y)) + log(π (θ )),

where const is the logarithm of the constant of
proportionality.

Informative Prior Elicitation
Prior beliefs are informative when they mod-
ify substantially the information contained in
the data sample so that the conclusions we
draw about the model parameters based on the
posterior distribution and on the data distri-
bution alone differ. The most commonly used
approach to representing informative prior be-
liefs is to select a distribution for the unknown
parameter and specify the hyperparameters so
as to reflect these beliefs.

Informative Prior Elicitation for Location and
Scale Parameters
Usually, when we think about the average value
that a random variable takes, we have the typ-
ical value in mind. Therefore, we hold beliefs
about the median of the distribution rather than
its mean.2 This distinction does not matter in the
case of symmetric distributions, since then the
mean and the median coincide. However, when
the distribution we selected is not symmetric,
care must be taken to ensure that the prior pa-
rameter values reflect our beliefs. Formulating
beliefs about the spread of the distribution is
less intuitive. The easiest way to do so is to
ask ourselves questions such as, for instance:
Which value of the random variable do a quar-
ter of the observations fall below/above? De-
noting the random variable by X, the answers
to these questions give us the following proba-
bility statements:

P(X < x0.25) = 0.25

and

P(X > x0.75) = 0.25

where x0.25 and x0.75 are the values we have sub-
jectively determined and are referred to as the
first and third quartiles of the distribution, re-
spectively. Other similar probability statements
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can be formulated, depending on the prior
beliefs.

As an example, suppose that we model the
behavior of the monthly returns on some finan-
cial asset and the normal distribution, N(μ, σ 2)
(along with the assumption that the returns are
independently and identically distributed), de-
scribes their dynamics well. Assume for now
that the variance is known, σ 2 = σ 2*, and thus
we only need to specify a prior distribution for
the unknown mean parameter, μ. We believe
that a symmetric distribution is an appropri-
ate choice and go for the simplicity of a normal
prior:

μ ∼ N(η, τ 2) (2)

where η is the prior mean and τ 2 is the prior
variance of μ; to fully specify μ’s prior, we need
to (subjectively) determine their values. We be-
lieve that the typical monthly return is around
1%, suggesting that the median of μ’s distribu-
tion is 1%. Therefore, we set η to 1%. Further,
suppose we (subjectively) estimate that there is
about a 25% chance that the average monthly
return is less than 0.5% (i.e., μ0.25 = 0.5%). Then,
using the tabulated cumulative probability val-
ues of the standard normal distribution, we find
that the implied variance, τ 2, is approximately
equal to 0.742.3 Our choice for the prior distri-
bution of μ is thus π (μ) = N(1, 0.742).

Noninformative Prior Distributions
In many cases, our prior beliefs are vague
and thus difficult to translate into an infor-
mative prior. We therefore want to reflect
our uncertainty about the model parameter(s)
without substantially influencing the posterior
parameter inference. The so-called noninforma-
tive priors, also called vague or diffuse priors,
are employed to that end.

Most often, the noninformative prior is cho-
sen to be either a uniform (flat) density defined
on the support of the parameter or the Jeffreys’
prior.4 The noninformative distribution for a
location parameter, μ, is given by a uniform

distribution on its support ((−∞, ∞)), that is,5

π (μ) ∝ 1 (3)

The noninformative distribution for a scale pa-
rameter, σ (defined on the interval (0, ∞)) is6

π (σ ) ∝ 1
σ

(4)

Notice that the prior densities in both (3) and
(4) are not proper densities, in the sense that
they do not integrate to one:

∫ ∞

−∞
1 dμ = ∞

and
∫ ∞

0

1
σ

dσ = ∞

Even though the resulting posterior densities
are usually proper, care must be taken to ensure
that this is indeed the case. To avoid impropri-
ety of the posterior distributions, one could em-
ploy proper prior distributions but make them
noninformative, as we discuss further on.

When one is interested in the joint posterior
inferences for μ and σ , these two parameters
are often assumed independent, giving the joint
prior distribution

π (μ, σ ) ∝ 1
σ

(5)

The prior in (5) is often referred to as the Jeffreys’
prior.7

Prior ignorance could also be represented by a
(proper) standard distribution with a very large
dispersion—the so-called flat or diffuse proper
prior distribution. Let us turn again to the ex-
ample for the monthly returns for some finan-
cial asset we considered earlier and suppose
that we do not have particular prior informa-
tion about the range of typical values the mean
monthly return could take. To reflect this igno-
rance, we might center the normal distribution
of μ around 0 (a neutral value, so to speak) and
fix the standard deviation, τ , at a large value
such as 106, that is, π (μ) = N(0, (106)2).

The prior of μ could take alternative dis-
tributional forms. For instance, a symmetric
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Student’s t-distribution could be asserted. A
standard Student’s t-distribution has a single
parameter, the degrees of freedom, ν, which
one can use to regulate the heaviness of the
prior’s tails—the lower ν is, the flatter the prior
distribution. Asserting a scaled Student’s t-
distribution with a scale parameter, σ , provides
additional flexibility in specifying the prior of
μ.8 It can be argued that eliciting heavy-tailed
prior distributions (with tails heavier than the
tails of the data distribution) increases the pos-
terior’s robustness, that is, lowers the sensitiv-
ity of the posterior to the prior specification.

Conjugate Prior Distributions
In many situations, the choice of a prior dis-
tribution is governed by the desire to obtain
analytically tractable and convenient posterior
distribution. Thus, if one assumes that the data
have been generated by a certain class of dis-
tributions, employing the class of the so-called
“conjugate prior distributions” guarantees that
the posterior distribution is of the same class
as the prior distribution.9 Although the prior
and posterior distributions have the same form,
their parameters differ—the parameters of the
posterior distribution reflects the trade-off be-
tween prior and sample information. We now
consider the case of the normal data distribu-
tion, since it is central to our discussions of fi-
nancial applications.

If the data, x, are assumed to come from a
normal distribution, the conjugate priors for the
normal mean, μ, and variance, σ 2, are, respec-
tively, a normal distribution and an inverted χ2

distribution10

π (μ | σ 2) = N
(

η,
σ 2

T

)

and

π (σ 2) = Inv − χ2(ν0, c2
0) (6)

where Inv − χ2(ν, c2) denotes the inverted χ2

distribution with ν0 degrees of freedom and a
scale parameter c2

0. The prior parameters (hy-
perparameters) that need to be (subjectively)

specified in advance are η, T, ν0, and c2
0. The

parameter T plays the role of a discount factor,
reflecting the degree of uncertainty about the
distribution of μ. Usually, T is greater than one
since one naturally holds less uncertainty about
the distribution of the mean, μ, (with variance
σ 2/T) than the data, x (with variance σ 2).

In various financial applications, the normal
distribution is often not the most appropriate
assumption for a data-generation process in
view of various empirical features that financial
data exhibit. Alternative distributional choices
most often do not have corresponding conju-
gate priors and the resulting posterior distribu-
tions might not be recognizable as any known
distributions. Then, numerical methods are ap-
plied to compute the posteriors.

In general, eliciting conjugate priors should
be preceded by an analysis of whether prior be-
liefs would be adequately represented by them.

Empirical Bayesian Analysis
So far, we took care to emphasize the sub-
jective manner in which prior information is
translated into a prior distribution. This in-
volves specifying the prior hyperparameters
(if an informative prior is asserted) before
observing/analyzing the set of data used
for model evaluation. One approach for elic-
iting the hyperparameters parts with this
tradition—the so-called “empirical Bayesian
approach.” In it, sample information is used
to compute the values of the hyperparameters.
Here we provide an example with the natural
conjugate prior for a normal data distribution.

Denote the sample of n observations by x =(
x1, x2, . . . , xn

)
. It can be shown that the nor-

mal likelihood function can be expressed in the
following way:

L(μ, σ 2 | x)

= (
2πσ 2)−n/2

exp
(

−
∑n

i = 1(xi − μ)2

2σ 2

)

= (
2πσ 2)−n/2

exp
(

− 1
2σ 2

(
νs2 + n(μ − μ̂)2)

)

(7)
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where

μ̂ =
∑n

i = 1 xi

n
, ν = n − 1,

and

s2 =
∑n

i = 1(xi − μ̂)2

n − 1
(8)

The quantities μ̂ and s2 are, respectively, the
unbiased estimators of the mean, μ, and the
variance, σ 2, of the normal distribution.11 It is
now easy to see that the likelihood in (7) can be
viewed as the product of two distributions—a
normal distribution for μ conditional on σ 2,

μ | σ ∼ N
(

μ̂,
σ 2

n

)

and an inverted χ2 distribution for σ 2,

σ 2 ∼ Inv − χ2 (
ν, s2)

which become the prior distributions under
the empirical Bayesian approach. We can ob-
serve that these two distributions are, of course,
the same as the ones in (6). Their parame-
ters are functions of the two sufficient statistics
for the normal distribution, instead of subjec-
tively elicited quantities. The sample size, n,
above plays the role of the discount factor, T,
in (6)—the more data available, the less uncer-
tain one is about the prior distribution of μ (its
prior variance decreases).

We now turn to a discussion of the fundamen-
tals of posterior inference. Later in this entry, we
provide an illustration of the effect various prior
assumptions have on the posterior distribution.

POSTERIOR INFERENCE
The posterior distribution of a parameter (vec-
tor) θ given the observed data x is denoted as
p(θ | x) and obtained by applying the Bayes’
theorem given by (1). Being a combination of
the data and the prior, the posterior contains all
relevant information about the unknown
parameter θ .

Posterior Point Estimates
Although the benefit of being able to visual-
ize the whole posterior distribution is unques-
tionable, it is often more practical to report
several numerical characteristics describing the
posterior, especially if reporting the results to
an audience used to the classical (frequentist)
statistical tradition. Commonly used for this
purpose are the point estimates, such as the
posterior mean, the posterior median, and the
posterior standard deviation.12 When the pos-
terior is available in closed form, these numer-
ical summaries can also be expressed in closed
form. The posterior parameters in the natural
conjugate prior scenario with a normal sam-
pling density (see (6)) are also available ana-
lytically. The mean parameter, μ, of the normal
distribution has a normal posterior, conditional
on σ 2,

p
(
μ | x, σ 2) = N

(
μ∗,

σ 2

T + n

)
(9)

The posterior mean and variance of μ are
given, respectively, by

E(μ | x, σ 2) ≡ μ∗ = μ̂

n
σ 2

n
σ 2 + T

σ 2

+ η

T
σ 2

n
σ 2 + T

σ 2

= μ̂
n

n + T
+ η

T
n + T

(10)

where μ̂ is the sample mean as given in (8) and

var(μ | x, σ 2) = σ 2

T + n
(11)

In practical applications, usually the empha-
sis is placed on obtaining the posterior dis-
tribution of μ, not least because it is more
difficult to formulate prior beliefs about the
variance, σ 2 (let alone the whole covariance ma-
trix in the multivariate setting). Often, then, the
variance (covariance matrix) is estimated out-
side of the regression model and then fed into
it, as if it were the “known” variance (covari-
ance matrix).13 Nevertheless, for completeness,
we provide σ 2’s posterior distribution—an in-
verted χ2,

p
(
σ 2 | x

) = Inv − χ2 (
ν∗, c2∗)

(12)
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where

ν∗ = ν0 + n, (13)

c2∗ = 1
ν∗

(
ν0c2

0 + (n − 1)s2 + Tn
T + n

(μ̂ − η)2
)

(14)

and s2 is the unbiased sample estimator of the
normal variance as given in (8). Using (13) and
(14), one can now compute the posterior mean
and variance of σ 2 as, respectively14

E(σ 2 | x) = ν∗

ν∗ − 2
c2∗

(15)

and

var(σ 2 | x) = 2ν∗2

(ν∗ − 2)2(ν∗ − 4)

(
c2∗)2

(16)

When the posterior is not of known form
and is computed numerically (through simu-
lations), so are the posterior point estimates,
as well as the distributions of any functions of
these estimates (see Chapter 4 in Rachev et al.,
2008).

Bayesian Intervals
The point estimate for the center of the pos-
terior distribution is not too informative if the
posterior uncertainty is significant. To assess the
degree of uncertainty, a posterior (1 − α)100%
interval [a, b], called a credible interval, can
be constructed. The probability that the un-
known parameter, θ , falls between a and b is
(1 − α)100%,

P(a < θ < b | x) =
∫ b

a
p(θ | x) dθ = 1 − α

For reasons of convenience, the interval bounds
may be determined so that an equal proba-
bility, α/2, is left in the tails of the posterior
distribution. For example, a could be chosen
to be the 0.25th quantile, while b—the 0.75th
quantile. The interpretation of the credible in-
terval is often mistakenly ascribed to the classi-
cal confidence interval. In the classical setting,
(1 − α)100% is a coverage probability—if ar-

bitrarily many repeated samples of data are
recorded, (1 − α)100% of the corresponding
confidence intervals will contain θ—a much less
intuitive interpretation.

The credible interval is computed either ana-
lytically, by finding the theoretical quantiles of
the posterior distribution (when it is of known
form), or numerically, by finding the empirical
quantiles using the simulations of the posterior
density (see Chapter 4 in Rachev et al., 2008).15

Bayesian Hypothesis Comparison
The title of this section16 abuses the usual ter-
minology by intentionally using “comparison”
instead of “testing” in order to stress that the
Bayesian framework affords one more than
the mere binary reject/do-not-reject decision of
the classical hypothesis testing framework. In
the classical setting, the probability of a hypoth-
esis (null or alternative) is either 0 or 1 (since fre-
quentist statistics considers parameters as fixed,
although unknown, quantities).

In contrast, in the Bayesian setting (where pa-
rameters are treated as random variables), the
probability of a hypothesis can be computed
(and is different from 0 or 1, in general), allow-
ing for a true hypothesis comparison.17

Suppose one wants to compare the null hy-
pothesis

H0 : θ is in 
0

with the alternative hypothesis

H1 : θ is in 
1

where 
0 and 
1 are disjoint sets of possible
values for the unknown parameter θ . As with
point estimates and credible intervals, hypothe-
sis comparison is entirely based on θ ’s posterior
distribution. We compute the posterior proba-
bilities of the null and alternative hypotheses,

P(θ is in 
0 | x) =
∫


0

p(θ | x) dθ (17)

and

P(θ is in 
1 | x) =
∫


1

p(θ | x) dθ (18)
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respectively. These posterior hypotheses prob-
abilities naturally reflect both the prior
beliefs and the data evidence about θ . An in-
formed decision can now be made incorporat-
ing that knowledge. For example, the posterior
probabilities could be employed in scenario-
generation—a tool of great importance in risk
analysis.

The Posterior Odds Ratio
Although the framework outlined in the pre-
vious section is generally sufficient to make an
informed decision about the relevance of hy-
potheses, we briefly discuss a somewhat more
formal approach for Bayesian hypothesis test-
ing. That approach consists of summarizing
the posterior relevance of the two hypotheses
into a single number—the posterior odds ra-
tio. The posterior odds ratio is the ratio of the
weighted likelihoods for the model parameters
under the null hypothesis and under the alter-
native hypothesis, multiplied by the prior odds.
The weights are the prior parameter distribu-
tions (thus, parameter uncertainty is taken into
account).18

Denote the a priori probability of the null hy-
pothesis by α. Then, the prior odds are the ra-
tio α/(1 − α). The posterior odds, denoted by
PO, are simply the prior odds updated with
the information contained in the data and are
given by

PO = α

1 − α
×

∫
L(θ | x, H0) π (θ ) dθ∫
L(θ | x, H1) π (θ ) dθ

(19)

where L(θ | x, H0) is the likelihood function
reflecting the restrictions imposed by the null
hypothesis and L(θ | x, H1) is the likelihood
function under the alternative hypothesis.

When no prior evidence in favor or against the
null hypothesis exists, the prior odds is usually
set equal to one. A low value of the posterior
odds generally indicates evidence against the
null hypothesis.

BAYESIAN PREDICTIVE
INFERENCE
After performing Bayesian posterior inference
about the parameters of the data-generating
process, one may use the process to predict the
realizations of the random variable ahead in
time. The purpose of such a prediction could be
to test the predictive power of the model (for
example, by analyzing a metric for the distance
between the model’s predictions and the ac-
tual realizations) as part of a backtesting proce-
dure or to directly use it in the decision-making
process.

As in the case of posterior inference, pre-
dictive inference provides more than sim-
ply a point prediction—one has available the
whole predictive distribution (either analyti-
cally or numerically) and thus increased mod-
eling flexibility.19 The density of the predictive
distribution is the sampling (data) distribution
weighted by the posterior parameter density. By
averaging out the parameter uncertainty (con-
tained in the posterior), the predictive distri-
bution provides a superior description of the
model’s predictive ability. In contrast, the clas-
sical approach to prediction involves comput-
ing point predictions or prediction intervals by
plugging in the parameter estimates into the
sampling density, treating those estimates as if
they were the true parameter values.

Denoting the sampling and the posterior den-
sity by f (x | θ ) and p(θ | x), respectively, the
predictive density one step ahead is given by20

f (x+1 | x) =
∫

f (x+1 | θ )p(θ | x) dθ (20)

where x+1 denotes the one-step-ahead realiza-
tion. Notice that since we integrate (average)
over the values of θ , the predictive distribution
is independent of θ and depends only on the
past realizations of the random variable X—it
describes the process we assume has gener-
ated the data. The predictive density could be
used to obtain a point prediction (for example,
the predictive mean) or an interval prediction
(similar in spirit to the Bayesian interval
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discussed above) or to perform a hypotheses
comparison.

ILLUSTRATION: POSTERIOR
TRADE-OFF AND THE
NORMAL MEAN
PARAMETER
Using an illustration, we show the effects prior
distributions have on posterior inference. For
simplicity, we look at the case of a normal data
distribution with a known variance, σ 2 = 1.
That is, we need to elicit a prior distribution of
the mean parameter, μ, only. We investigate the
following prior assumptions:

1. A noninformative, improper prior (Jeffreys’
prior): π (μ) ∝ 1.

2. A noninformative, proper prior: π (μ) = N(η,
τ 2), where η = 0 and τ = 106.

3. An informative conjugate prior with
subjectively determined hyperparameters:
π (μ) = N(η, τ 2), where η = 0.02 and τ = 0.1.

As mentioned earlier in the entry, the relative
strengths of the prior and the sampling distribu-
tion determine the degree of trade-off of prior
and data information in the posterior. When the
amount of available data is large, the sampling
distribution dominates the prior in the posterior
inference. (In the limit, as the number of obser-
vations grows indefinitely, only the sampling
distribution plays a role in determining poste-
rior results.21) To illustrate this sample-size ef-
fect, we consider the following two samples of
data:

1. The monthly return on the S&P 500 stock
index for the period January 1999 through
December 2005 (a total of 192 returns).

2. The monthly return on the S&P 500 stock
index for the period January 2005 through
December 2005 (a total of 12 returns).

Let us denote the return data by the n × 1
vector r = (r1, r2, . . . , rn), where n = 192 or

n = 12. We assume that the sampling (data) dis-
tribution is normal, R ∼ N(μ, σ 2). Combining
the normal likelihood and the noninformative
improper prior, we obtain for the posterior dis-
tribution of μ

p(μ | r, σ 2 = 1) ∝ (2π)−n/2 exp
(
−

∑n
i = 1(ri − μ)2

2

)

∝ exp
(

−n(μ − μ̂)2

2

)
(21)

where μ̂ is the sample mean as given in (8).
Therefore, the posterior of μ is a normal dis-
tribution with mean μ̂ and variance 1/n. As
expected, the data completely determine the
posterior distributions for both data samples,
since we assumed prior ignorance about μ.

When a normal prior for μ, N(η, τ 2), is as-
serted, the posterior can be shown to be normal
as well. In the generic case, for an arbitrary data
variance σ 2, we have

p
(
μ | r, σ 2) = (2πσ 2)−n/2 exp

(
−

∑n
i = 1(ri − μ)2

σ 2

)

× (2πτ 2)−1/2 exp
(

− (μ − η)2

2τ 2

)

∝ exp
(

− (μ − μ∗)2

2τ 2∗

)
(22)

where the posterior mean, μ*, is

μ∗ = μ̂

n
σ 2

n
σ 2 + 1

τ 2

+ η

1
τ 2

n
σ 2 + 1

τ 2

(23)

and the posterior variance, τ 2*, is

τ 2∗ = 1
n
σ 2 + 1

τ 2

(24)

Notice that the posterior mean is a weighted
average of the sample mean, μ̂, and the prior
mean, η. The quantities 1/σ 2 and 1/τ 2 have
self-explanatory names: data precision and prior
precision, respectively. The higher the preci-
sion, the more concentrated the distribution
around its mean value.22 Let us see how the
information trade-off between the data and the
prior is reflected in the values of the posterior
parameters.
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Figure 1 Sample Size and Posterior Trade-Off
for the Normal Mean Parameter: The Case of In-
formative Prior

In the case of the noninformative, proper
prior, τ = 106. The rightmost term in (23) is
then negligibly small and the posterior mean is
very close to the sample mean: μ∗ ≈ μ̂, while
the posterior variance in (24) is approximately
equal to 1/n (substituting in σ 2 = 1). That is, for
both data samples, the noninformative proper
prior produced posteriors almost the same as in
the case of the noninformative improper prior,
as expected.

Consider how the posterior is affected when
informativeness of the prior is increased, as in
the third prior scenario. Figure 1 helps visu-
alize the posterior trade-off for the long and
short data samples, respectively. The smaller
the amount of observed data, the larger the
influence of the prior on the posterior (the
“closer” the posterior to the prior).

KEY POINTS
� The degree of posterior information trade-off

has two determinants: strength of the prior in-
formation and amount of historical data avail-
able.

� Informative prior beliefs can modify substan-
tially the information content of the observed
data.

� Informative prior elicitation most commonly
involves two steps: selecting the form of
the prior distribution (usually, an analytically
convenient one) and specifying its parame-
ters (the hyperparameters) to reflect the prior
beliefs.

� Noninformative priors help account for esti-
mation uncertainty without substantially in-
fluencing the posterior parameter inference.

� A conjugate prior distribution guarantees
that the resulting posterior distribution is of
the same form as the prior.

� The posterior distribution can be summarized
with point estimates, such as posterior mean,
posterior median, posterior standard devia-
tion, and posterior quantiles, as well as inter-
val estimates.

� As in the case of posterior inference, when
forecasting, one has available the whole pre-
dictive distribution of the random variable(s).

NOTES
1. See Chapter 3 in Berger (1985), Chap-

ter 3 in Leonard and Hsu (1999), Berger
(1990, 2006), and Garthwaite, Kadane, and
O’Hagan (2005), among others.

2. The median is a measure of the center
of a distribution alternative to the mean,
defined as the value of the random vari-
able, which divides the probability mass in
halves. The median is the typical value the
random variable takes. It is a more robust
measure than the mean as it is not affected
by the presence of extreme observations
and, unless the distribution is symmetric,
is not equal to the mean.

3. A random variable, X ∼ N(μ, σ 2), is trans-
formed into a standard normal random
variable, Z ∼ N(0, 1), by subtracting the
mean and dividing by its standard devia-
tion:

Z = X − μ

σ

4. Reference priors are another class of nonin-
formative priors developed by Berger and
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Bernardo (1992); see also Bernardo and
Smith (1994). Their derivation is somewhat
involved and applications in the field of fi-
nance are rare. One exception is Aguilar and
West (2000).

5. Suppose a density has the form f (x − μ).
The parameter μ is called the location pa-
rameter if it only appears within the expres-
sion (x − μ). The density, f , is then called
a location density. For example, the normal
density, N(μ, σ 2*), is a location density when
σ 2* is fixed.

6. Suppose a density has the form 1
σ

f ( x
σ

). The
parameter σ is the scale parameter. For exam-
ple, the normal density, N(μ*, σ 2), is a scale
density when the mean is fixed at some μ*.

7. See Jeffreys (1961). In general, Jeffreys’ prior
of a parameter (vector), θ , is given by

π (θ) = |I (θ)|1/2

where I (θ ) is the so-called Fisher’s informa-
tion matrix for θ , given by

I (θ) = −E
(

∂2 log f (x | θ )
∂θ∂θ ′

)

and the expectation is with respect to the
random variable X, whose density func-
tion is f (x | θ ). Notice that applying the
expression for π (θ ) to, for example, the nor-
mal distribution, one obtains the joint prior
π (μ, σ ) ∝ 1/σ 2, instead of the one in (5).
Nevertheless, Jeffreys advocated the use of
(5) since he assumed independence of the
location and scale parameters.

8. The Student’s t-distribution has heavier
tails than the normal distribution. For val-
ues of ν less than 2, its variance is not de-
fined.

9. Technically speaking, for the parameters of
all distributions belonging to the exponen-
tial family there are conjugate prior distri-
butions.

10. Notice that μ and σ 2 are not independent in
(6). This prior scenario is the so-called natu-

ral conjugate prior scenario. Natural con-
jugate priors are priors whose functional
form is the same as the likelihood’s. The
joint prior density of μ and σ 2, π (μ, σ 2)
can be represented as the product of a
conditional and a marginal density: π (μ,
σ 2) = π (μ|σ 2)π (σ 2). If the dependence of
the normal mean and variance is deemed in-
appropriate for the particular application, it
is possible to make them independent and
still benefit from the convenience of their
functional forms—by eliciting a prior for μ

as in (2).
11. An unbiased estimator of a parameter

θ is a function of the data (a statistic),
whose expected value is θ . The statistics
μ̂ and s2 are the so-called sufficient statis-
tics for the normal distribution—knowing
them is sufficient to uniquely determine
the normal distribution that generated the
data. In empirical Bayesian analysis, the
hyperparameters are usually functions of
the sufficient statistics of the sampling
distribution.

12. In decision theory, loss functions are used
to assess the impact of an action. In the con-
text of parameter inference, if θ * is the true
parameter value, the loss associated with
employing the estimate θ̂ instead of θ * is
represented by the loss function L(θ∗, θ̂).
One approach to estimating θ is to deter-
mine the value that minimizes the expected
resulting loss. In Bayesian analysis, we min-
imize the expected posterior loss: its ex-
pectation is computed with respect to θ ’s
posterior distribution. It can be shown that
the estimate of central tendency that min-
imizes the expected, posterior, squared-
error loss function, L(θ∗, θ̂ ) = (θ∗ − θ̂ )2,
is the posterior mean, while the esti-
mate that minimizes the expected, poste-
rior, absolute-error loss function, L(θ∗, θ̂ ) =
|θ∗ − θ̂ |, is the posterior median.

13. One example for such an approach is
the Black-Litterman model. See Black and
Litterman (1991).
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14. These are the expressions for expected
value and variance of a random variable
with the inverted χ2 distribution.

15. A special type of Bayesian interval is the
highest posterior density (HPD) interval.
It is built so as to include the values of
θ that have the highest posterior proba-
bility (the most likely values). When the
posterior is symmetric and has a single
peak (is unimodal), credible and HPD inter-
vals coincide. With very skewed posterior
distributions, however, the two intervals
look very different. A disadvantage of
HPD intervals is that they could be dis-
joint when the posterior has more than one
peak (is multimodal). In unimodal settings,
the Bayesian HPD interval obtained under
the assumptions of a noninformative prior
corresponds to the classical confidence
interval.

16. In this section, we emphasize a practical ap-
proach to Bayesian hypothesis testing. For a
rigorous description of Bayesian hypothesis
testing, see, for example, Zellner (1971).

17. In the classical setting, the decision to reject
or not the null hypothesis is made on the
basis of the realization of a test statistic—a
function of the data—whose distribution is
known. The p-value of the hypothesis test
is the probability of obtaining a value of the
statistic as extreme or more extreme than
the one observed. The p-value is compared
to the test’s significance level, which repre-
sents the predetermined probability of re-
jecting the null hypothesis falsely. If the
p-value is sufficiently small (smaller than
the significance level), the null hypothesis
is rejected. The p-value is often mistakenly
given the interpretation of a posterior prob-
ability of the null hypothesis. It has been
suggested that a low p-value, interpreted by
many as strong evidence against the null
hypothesis, could be in fact quite a mis-
leading signal about evidence strength. See,
for example, Berger (1985) and Stambaugh
(1999).

18. The posterior odds ratio bears similarity to
the likelihood ratio which is at the center
of most frequentist hypothesis tests. As its
name suggests, the likelihood ratio is the
ratio of the (maximized) likelihoods under
the null and the alternative hypotheses.

19. The predictive density is usually of known
(closed) form under conjugate prior as-
sumptions.

20. Here, we assume that θ is continuous,
which is the case in most financial appli-
cations.

21. This statement is valid only if one assumes
that the data-generating process remains
unchanged through time.

22. The posterior mean is an example for the
shrinkage effect that combining prior and
data information has.
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Abstract: Linear regression is the “workhorse” of financial modeling. Cornerstone applications,
such as asset pricing models, as well as time series models, are built around linear regression’s
methods and tools. Casting the linear regression methodology in a Bayesian setting helps account
for estimation uncertainty, allows for integration of prior information, and makes accessible the
Bayesian numerical simulation framework.

In this entry, we lay the foundations of
Bayesian linear regression estimation. We start
with a univariate model with Gaussian in-
novations and consider two cases for prior
distributional assumptions—diffuse and infor-
mative. Then, we show how one could in-
corporate knowledge that the sample is not
homogeneous with respect to the variance,
for example, due to a structural break. Fi-
nally, multivariate regression estimation is
discussed.

THE UNIVARIATE LINEAR
REGRESSION MODEL
The univariate linear regression model at-
tempts to explain the variability in one variable
(called the dependent variable) with the help
of one or more other variables (called explana-
tory or independent variables) by asserting a
linear relationship between them. We write the
model as

Y = α + β1 X1 + β2 X2 + · · · βK−1 XK−1 + ε (1)
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where

Y = dependent variable;
Xk = independent (explanatory) variables,

k = 1, . . . , K − 1;
α = regression intercept;

βk = regression (slope) coefficients, k =
1, . . . , K − 1, representing the effect a
unit change in Xk, k = 1, . . . , K − 1, has
on Y, keeping the remaining indepen-
dent variables, Xj, j �= k, fixed;

ε = regression disturbance.

The regression disturbance is the source of
randomness about the linear (deterministic) re-
lationship between the dependent and inde-
pendent variables. Whereas α + β1 X1 + · · · +
βK−1 XK−1 represents the part of Y’s variability
explained by Xk, k = 1, . . . , K − 1, ε represents
the portion of Y’s variability left unexplained. It
is usually assumed that the independent vari-
ables are fixed (nonstochastic).

Suppose that we have n observations of the
dependent and the independent variables avail-
able. These data are then described by

yi = α + β1x1,i + · · · + βK−1xK−1,i + εi

i = 1, . . . , n (2)

The subscript i, i = 1, . . . , n, refers to the ith ob-
servation of the respective random variable. To
describe the source of randomness, ε, one needs
to make a distributional assumption about it.
For simplicity, assume that εi , i = 1, . . . , n, are
independently and identically distributed (IID)
with the normal distribution and have zero
means and (equal) variances, σ 2. Then, the de-
pendent variable, Y, has a normal distribution
as well,

yi ∼ N(μi , σ
2) (3)

where μi = α + β1x1,i + · · · + βK−1xK−1,i . No-
tice that the constant-variance assumption in (3)
is quite restrictive. We come back to this issue
later in the entry.

The expression in (2) is often written in the
following compact form

y = Xβ + ε (4)

where y is a n × 1 vector,

y =

⎛

⎜⎜⎜⎝

y1

y2
...

yn

⎞

⎟⎟⎟⎠

β is a (K ) × 1 vector,

β =

⎛

⎜⎜⎜⎝

α

β1
...

βK−1

⎞

⎟⎟⎟⎠

X is an n × (K ) matrix whose first column con-
sists of ones,

X =

⎛

⎜⎜⎜⎝

1 x1,1 · · · xK−1,1

1 x1,2 · · · xK−1,2
...

...
...

...
1 x1,n · · · xK−1,n

⎞

⎟⎟⎟⎠

and ε is an n × 1 vector,

ε =

⎛

⎜⎜⎜⎝

ε1

ε2
...
εn

⎞

⎟⎟⎟⎠

We write the normal distributional assump-
tion for the regression disturbances in compact
form as

ε ∼ N(0, σ 2 In)

where In is an (n × n) identity matrix. The pa-
rameters in (4) we need to estimate are β and σ 2.
Assuming normally distributed disturbances,
we write the likelihood function for the model
parameters as

L(α, β1, . . . βK−1, σ | y, X)

= (2πσ 2)−n/2 exp

{
− 1

2σ 2

n∑

i=1

(yi − α

−β1x1,i − · · · − βK−1xK−1,i )2

}
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Or, in matrix notation, we have the likelihood
function for the parameters of a multivariate
normal distribution,

L(β, σ | y, X) = (2πσ 2)−n/2

× exp
{
− 1

2σ 2 ( y− Xβ)′( y− Xβ)
}

(5)

Bayesian Estimation of the
Univariate Regression Model
In the classical setting, the regression parame-
ters are usually estimated by maximizing the
model’s likelihood with respect to β and σ 2,
for instance, the likelihood in (5) if the normal
distribution is assumed. When disturbances are
assumed to be normally distributed, the maxi-
mum likelihood and the ordinary least squares
(OLS) methods produce identical parameter es-
timates. It can be shown that the OLS estima-
tor of the regression coefficients vector, β, is
given by

β̂ = (X′ X)−1 X′ y (6)

where the prime symbol (′) denotes a matrix
transpose.1 The estimator of σ 2 is2

σ̂ 2 = 1
n − K

(
y− Xβ̂

)′(y− Xβ̂
)

(7)

To account for the parameters’ estimation risk
and to incorporate prior information, regres-
sion estimation can be cast in a Bayesian setting.
We consider two prior scenarios—a diffuse im-
proper prior and an informative conjugate prior
for the regression parameter vector, (β, σ 2).

Diffuse Improper Prior
The joint diffuse improper prior for β and σ 2 is
given by

π (β, σ 2) ∝ 1
σ 2 (8)

where the regression coefficients can take any
real value, −∞ < βk < ∞, for k = 1, . . . , K ,

and the disturbance variance is positive,
σ 2 > 0.

Combining the likelihood in (5) and the prior
above, we obtain the posteriors of the model
parameters as follows:

� The posterior distribution of β conditional on
σ 2 is (multivariate) normal:

p
(
β | y, X, σ 2) = N

(
β̂, (X′ X)−1σ 2) (9)

where β̂ is the OLS estimate in (6) and
(X′ X)−1σ 2 is the covariance matrix of β̂.

� The posterior distribution of σ 2 is inverted-
χ2:

p
(
σ 2 | y, X

) = Inv-χ2 (
n − K , σ̂ 2) (10)

where σ̂ 2 is the estimator of σ 2 in (7).

It could be useful to obtain the marginal (un-
conditional) distribution of β in order to char-
acterize it independently of σ 2 (as in practical
applications, the variance is an unknown pa-
rameter).3 It can be shown, by integrating the
joint posterior distribution

p
(
β, σ 2 | y, X

) = p
(
β | y, X, σ 2) p

(
σ 2 | y, X

)

with respect to σ 2, that β’s unconditional pos-
terior distribution is a multivariate Student’s t
distribution with a kernel given by4

p (β | y, X) ∝
(

(n − K ) + (β − β̂)′
X′ X
σ̂ 2 (β − β̂)

)−n/2

(11)

Notice that integrating σ 2 out makes β’s distri-
bution more heavy-tailed, duly reflecting the
uncertainty about σ 2’s true value. Although
β’s mean vector is unchanged, its variance in-
creased (on average) by the term ν/(ν − 2):

	β = σ̂ 2(X′ X)−1 ν

ν − 2

where ν = n − K is the degrees of freedom
parameter of the multivariate Student’s t
distribution above.

In conclusion of our discussion of the pos-
teriors in the diffuse improper prior scenario,
suppose we are interested particularly in one
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of the regression coefficients, say βk . For exam-
ple, βk could be the return on a factor (size,
value, momentum, etc.) in a multifactor model
of stock returns. It can be shown that the stan-
dardized βk has a Student’s t distribution with
n − K degrees of freedom as its marginal pos-
terior distribution,

βk − β̂k

(hk,k)1/2 | y, X ∼ tn−K (12)

where hk,k is the kth diagonal element of
σ̂ 2(X′ X)−1 and β̂k is the OLS estimate of βk (the
corresponding component of β̂). Bayesian inter-
vals for βk can then be constructed analytically.

Informative Prior
Under the normality assumption for the regres-
sion errors in (4), one can make use of the natu-
ral conjugate framework to reflect the existing
prior knowledge and to obtain convenient ana-
lytical posterior results. Thus, let us assume that
the regression coefficients vector, β, has a nor-
mal prior distribution (conditional on σ 2) and
σ 2—an inverted-χ2 prior distribution:

β | σ ∼ N(β0, σ
2 A) (13)

and

σ 2 ∼ Inv-χ2 (
ν0, c2

0

)
(14)

Four parameters have to be determined a pri-
ori: β0, A, ν0, and c2

0. The scale matrix A is of-
ten chosen to be τ−1(X′ X)−1 in order to obtain
a prior covariance the same as the covariance
matrix of the OLS estimator of β up to a scal-
ing constant. Varying the (scale) parameter, τ ,
allows one to adjust the degree of confidence
one has that β’s mean is β0—the smaller the
value of τ , the greater the degree of uncertainty
about β.

The easiest way to assert the prior mean, β0,
is to fix it at some default value (such as 0, de-
pending on the estimation context), unless more
specific prior information is available, or to set
it equal to the OLS estimate, β̂, obtained from

running the regression (4) on a prior sample
of data.5

The parameters of the inverted-χ2 distribu-
tion could be asserted using a prior sample of
data as follows:

ν0 = n0 − K

c2
0 = 1

ν0

(
y0 − X0β̂0

)′(y0 − X0β̂0
)

where the subscript, 0, refers to the prior data
sample. If no prior data sample is available, the
inverted-χ2 hyperparameters could be speci-
fied indirectly, by expressing beliefs about the
prior mean and variance of σ 2.6

The posterior distributions for the model pa-
rameters, β and σ 2 have the same form as the
prior distributions, however, their parameters
are updated to reflect the data information,
along with the prior beliefs.

� The posterior for β is

p
(
β | y, X, σ 2) = N

(
β∗, 	β

)
(15)

where the posterior mean and covariance ma-
trix of β are given by

β∗ = (
A−1 + X′ X

)−1 (
A−1β0 + X′ Xβ̂

)

(16)
and

	β = σ 2 (
A−1 + X′ X

)−1
(17)

We can observe that the posterior mean is a
weighted average of the prior mean and the
OLS estimator of β, as noted earlier in the
entry as well.7

� The inverted-χ2 posterior distribution of σ 2

is

p
(
σ 2 | y, X

) = Inv-χ2(ν∗, c2∗)
(18)

The parameters of σ 2’s posterior distribution
are given by

ν∗ = ν0 + n (19)

and

ν∗c2∗ = (n − K )σ̂ 2 + (β0 − β̂)′ H(β0−β̂)+ν0c2
0

(20)
where H = (

(X′ X)−1 + A
)−1
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As earlier, we can derive the marginal pos-
terior distribution of β by integrating σ 2 out
of the joint posterior distribution. We obtain
again a multivariate Student’s t distribution,
t(ν∗, β∗, Q),

p (β | y, X) ∝ (
ν∗ + (β − β∗)′ Q(β − β∗)

)−ν∗/2

(21)
where Q = (

A−1 + X′ X
)
/c2∗

The mean of β remains the same, β∗ (as it
is independent of σ 2), while its unconditional
(with respect to σ 2) covariance matrix is equal
to Q−1ν∗/(ν∗ − 2). The marginal posterior dis-
tribution for a single regression coefficient, βk ,
can be shown to be

βk − β∗
k

(qk,k)1/2 | y, X ∼ tν0+n−K (22)

where qk,k is the kth diagonal element of Q−1

and β∗
k is the kth component of β∗.

Prediction
Suppose that we would like to predict the
dependent variable, Y, p steps ahead in
time and denote by the p × 1 vector ỹ =
(yT+1, yT+2, . . . , yT+p) these future observa-
tions. We assume that the future observations
of the independent variables are known and
given by X̃. The predictive density in the linear
regression context can be expressed as,8

p(̃ y| y, X̃, X) =
�

p(̃ y| β, σ 2, X̃)

× p(β, σ 2 | y, X) dβ, σ 2 (23)

where p(β, σ 2 | y, X) is the joint posterior distri-
bution of β and σ 2.

It can be shown that the predictive distri-
bution is multivariate Student’s t. Under the
diffuse improper prior scenario, the predictive
distribution is

p(̃ y| y, X̃, X) = t(n − K , X̃ β̂, S) (24)

where S = σ̂ 2(Ip + X̃(X′ X)−1 X̃′) and β̂ is the
posterior mean of β under the diffuse improper
scenario. In the case of the informative prior,

the predictive distribution of ỹ is

p(̃ y| y, X̃, X) = t(ν0 + n, X̃ β∗, V) (25)

where V = c2∗(Ip + X̃(A−1 + X′ X)−1 X̃′) and β∗

is the posterior mean of β in (16).
Certainly, it is again possible to derive the dis-

tribution for the predictive distribution for a
single component of ỹ—a univariate Student’s t
distribution—in the two scenarios, respectively,

ỹk − X̃k
β̂k

s1/2
k,k

∼ tn−K (26)

where X̃k is the kth row of X̃ (the observations
of the independent variables pertaining to the
kth future period), and sk,k is the kth diagonal
element of the scale matrix, S, in (24), and

ỹk − X̃kβ∗
k

v
1/2
k,k

∼ tν0+n−K (27)

where vk,k is the kth diagonal element of the
scale matrix, V , in (25).

The Case of Unequal Variances
We mentioned earlier in the entry that the equal-
variance assumption in (3) might be somewhat
restrictive. Two examples would help clarify
what that means. First, suppose that the n
observations of Y are collected through time.
It is a common practice in statistical estima-
tion to use the longest available data record,
likely spanning many years. Changes in the un-
derlying economic or financial paradigms, the
way data are recorded, and so on, that might
have occurred during the sample period might
have caused the variance of the random vari-
able (as well as its mean, for that matter) to
shift.9 The equal-variance assumption would
then lead to variance overestimation in the low-
variance period(s) and variance underestima-
tion in the high-variance period(s). When the
variance (and/or mean) shifts permanently, the
so-called “structural-break” models can be em-
ployed to reflect it.10
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Second, if our estimation problem is based on
observations recorded at a particular point in
time (producing a cross-sectional sample), the
equal-variance assumption might be violated
again. All units in our sample could potentially
have different variances, so that var(yi ) = σ 2

i ,
instead of var(yi ) = σ 2 as in (3), for i = 1, . . . , n.
Estimation would then be severely hampered
because this would imply a greater number of
unknown parameters (variances and regression
coefficients) than available data points.

In practice one would perhaps be able to iden-
tify groups of homogeneous sample units that
can be assumed to have equal variances. Sup-
pose, for instance, that the cross-sectional sam-
ple consists of small-cap and large-cap stock
returns. One could then expect that the return
variances (volatilities) across the two groups
differ but assume that companies within each
group have equal return volatilities. More gen-
erally, one could assume some form of func-
tional relation among the unknown variances—
this would serve to reduce the number of un-
known parameters to estimate. We now pro-
vide one possible way to address the variance
inequality in the case when the sample obser-
vations can be divided into two homogeneous
(with respect to their variances) groups or when
a structural break (whose timing we know) is
present in the sample.11

Denote the observations from the two
groups by y1 = (y1,1, y1,2, . . . , y1,n1 ) and y2 =
(y2,1, y2,2, . . . , y2,n2 ), so that y = ( y1, y2) and n1 +
n2 = n. The univariate regression setup in (1) is
modified as

y1 = X1β + ε1

y2 = X2β + ε2 (28)

where X1 and X2 are, respectively, (n1 × K )
and (n2 × K ) matrices of observations of the in-
dependent variables. The disturbances are as-
sumed to be independent and distributed as

ε1 ∼ N(0, σ 2
1 In1 )

ε2 ∼ N(0, σ 2
2 In2 ) (29)

where σ 2
1 �= σ 2

2 . The likelihood function for the
model parameters, β, σ 2

1 , and σ 2
2 is given by

L
(
β, σ 2

1 , σ 2
2 | y, X1, X2

) ∝ (σ 2
1 )−

n1
2 (σ 2

2 )−
n2
2

× exp
(

− 1
2σ 2

1

( y1 − X1β)′( y1 − X1β)

− 1
2σ 2

2

( y2 − X2β)′( y2 − X2β)
)

(30)

A noninformative diffuse prior can be as-
serted, as in (3.5), by assuming that the parame-
ters are independent. The prior is written, then,
as

π (β, σ1, σ2) ∝ 1
σ1σ2

It is straightforward to write out the joint
posterior density of β, σ 2

1 , and σ 2
2 , which can

be integrated with respect to the two vari-
ances to obtain the marginal posterior distribu-
tion of the regression coefficients vector. Zellner
(1971) shows that the marginal posterior of β

is the product of two multivariate Student’s t
densities.

p(β | y, X1, X2) ∝ t(ν1, β̂1, S1) × t(ν2, β̂2, S2)

where, for i = 1, 2, β̂i is the OLS estimator of β in
the two expressions in (28) viewed as separate
regressions,

νi = ni − K , Si = ŝ2
i (X′

i Xi )

and

ŝ2
i = 1

ni − K
( yi − Xi β̂i )′( yi − Xi β̂i ).

Zellner shows that the marginal posterior of
β above can be approximated with a normal
distribution (through a series of asymptotic
expansions).

Illustration: The Univariate Linear
Regression Model
We now provide an example to illustrate the
posterior and predictive inference in a univari-
ate linear regression model. We restrict our
attention to the diffuse noninformative prior
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and the informative prior discussed above,
in order to take advantage of their analytical
convenience.12

Our data consist of the monthly returns on
25 portfolios; the companies in each portfolio
are ranked according to market capitalization
and book-to-market (BM) ratios. The returns we
use for model estimation span the period from
January 1995 to December 2005 (a total of 132
time periods). We extract the factors that best
explain the variability of returns of the 25 port-
folios using principal components analysis. The
first five factors explain around 95% of the vari-
ability and we use their returns as the indepen-
dent variables in our linear regression model,
making up the matrix X (the first column is a
column of ones). The return on the portfolio
consisting of the companies with the smallest
size and BM ratios is the dependent variable,
y. In addition, returns recorded for the months
from January 1990 to December 1994 (a total

of 60 time periods) are employed to compute
the hyperparameters of the informative prior
distributions, in the manner explained in the
previous section. Our interest centers primar-
ily on the posterior inference for the regression
coefficients, βk , k = 1, . . . , 6—the intercept and
the five factor exposures (in the terminology of
multifactor models).

Posterior Distributions
The prior and posterior parameter values for β

are given in Table 1. Part A of the table presents
the results under the diffuse improper prior
assumption and Part B under the informative
prior assumption. In parentheses are the poste-
rior standard deviations of the regression coeffi-
cients.13 The OLS estimates of the regression co-
efficients are given by the posterior means in the
diffuse prior scenario. Notice how the posterior
mean of β under the informative prior is shrunk

Table 1 Posterior Inference for β

  1 2 3 4 5 6

  Intercept Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

Prior Mean - - - - - - 

Posterior Mean 0.0048 -0.3108 -0.3997 0.0648 -0.4132 -0.0042 

Posterior Standard 
Deviation 

(0.0011) (0.0048) (0.0103) (0.0202) (0.0297) (0.0410) 

b0.01 0.0021 -0.3219 -0.4238 0.0174 -0.4826 -0.1000 

b0.05 0.0029 -0.3187 -0.4168 0.0312 -0.4624 -0.0721 

b0.25 0.0040 -0.314 -0.4067 0.0511 -0.4333 -0.0319 

b0.75 0.0055 -0.3075 -0.3928 0.0784 -0.3931 0.0235 

b0.95 0.0067 -0.3029 -0.3827 0.0983 -0.364 0.0636 

A. 

b0.99 0.0075 -0.2996 -0.3757 0.1121 -0.3438 0.0915 

Prior Mean 0.0037 -0.2952 -0.4217 0.038 -0.2784 0.1063 

Posterior Mean 0.0042 -0.303 -0.4107 0.0514 -0.3458 0.0510 

Posterior Standard 
Deviation 

(0.0008) (0.0033) (0.0072) (0.0142) (0.0208) (0.0287) 

b0.01 0.0024 -0.3108 -0.4276 0.0182 -0.3945 -0.0162 

b0.05 0.0029 -0.3085 -0.4226 0.0280 -0.3801 0.0038 

b0.25 0.0037 -0.3052 -0.4156 0.0418 -0.3598 0.0318 

b0.75 0.0048 -0.3007 -0.4059 0.0609 -0.3318 0.0703 

b0.95 0.0056 -0.2975 -0.3986 0.0747 -0.3115 0.0983 

B. 

b0.99 0.0061 -0.2952 -0.3939 0.0844 -0.2972 0.1180 

Notes: Part A contains posterior results under the diffuse improper
prior; Part B contains posterior results under the informative prior.
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Figure 1 Posterior Densities of β6 under the Two Prior Scenarios
Notes: The plot on the left refers to the diffuse improper prior; the plot on the right—to the informative
prior.

away from the the OLS estimate and towards
the prior value, for the chosen value of τ = 1.
We could introduce more uncertainty into the
prior distribution of β (make it less informative)
by choosing a smaller value of τ—the posterior
mean of β would then be closer to the OLS esti-
mate. Conversely, the stronger our prior belief
about the mean of β, the closer the posterior
mean would be to the prior mean.

Credible Intervals
Since the marginal posterior distribution of βk ,
k = 1, . . . , 6, is of known form (Student’s t), we
can compute analytically the Bayesian confi-
dence intervals for the regression coefficients.
We provide the values of several quantiles of
the posterior distribution of each βk . For ex-
ample, under the diffuse improper prior, the
95% (symmetric) Bayesian interval for β2 is
(−0.3187,−0.3029), while, under the informa-
tive prior, the 99% (symmetric) Bayesian inter-
val for β6 is (−0.0162, 0.1180).14

Hypothesis Comparison
In the frequentist regression tradition, testing
the significance of the regression coefficients
is of great interest—the validity of the null
hypothesis βk = 0 is examined. In the Bayesian

setting, we could evaluate and compare the
posterior probabilities, P(βk > 0 | y, X) and
P(βk < 0 | y, X) (given in Table 1 for each
factor exposure). We could safely conclude
that the exposures on Factor 1 through Factor
4 are different from zero—the mass of their
posterior distributions is concentrated on either
positive or negative values. For the exposure
on Factor 5, the picture is less than clear-cut.
Under the diffuse, improper prior, a bit over
50% of the posterior mass is below zero and
the rest—above zero. Therefore, one would
perhaps take the pertinence of this factor for
explaining the variability of the return on the
small-cap/small-BM portfolio with a grain
of salt. Notice, however, how the situation
changes in the informative-prior case. More
than 95% of the posterior mass is above zero.
The strong prior beliefs about a positive mean
of β6 lead to the conclusion that the exposure
of the portfolio returns to Factor 5 is not zero.
Figure 1 further illustrates these observations.

THE MULTIVARIATE LINEAR
REGRESSION MODEL
Quite often in finance, and especially in invest-
ment management, one is faced with modeling
data consisting of many assets whose returns
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or other attributes are not independent. Casting
the problem in a multivariate framework is one
way to tackle dependencies between assets.15 In
this section, we outline the basics of multivari-
ate regression estimation within the Bayesian
setting.16

Suppose that T observations are available on
N dependent variables. We arrange these in the
T × N matrix, y,

y =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

y1
...
yt
...

yT

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎝

y1,1 y1,2 . . . y1,N

. . . . . . . . . . . .

yt,1 yt,2 . . . yt,N

. . . . . . . . . . . .

yT,1 yT,2 . . . yT,N

⎞

⎟⎟⎟⎟⎟⎠

The multivariate linear regression is written as

y = XB + U (31)

where
X = T × K matrix of observations of the K

independent variables,

X =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

x1
...

xt
...

xT

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎝

x1,1 x1,2 . . . x1,K

. . . . . . . . . . . .

xt,1 xt,2 . . . xt,K

. . . . . . . . . . . .

xT,1 xT,2 . . . xT,K

⎞

⎟⎟⎟⎟⎟⎠

B = K × N matrix of regression coefficients,

B =

⎛

⎜⎜⎝

α

β1

. . .

βK

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

α1 α2 . . . αN

β1,1 β1,2 . . . β1,N

. . . . . . . . . . . .

βK ,1 βK ,2 . . . βK ,N

⎞

⎟⎟⎠

U = T × N matrix of regression disturbances,

U =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

u1
...

ut
...

uT

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎝

u1,1 u1,2 . . . u1,N

. . . . . . . . . . . .

ut,1 ut,2 . . . ut,N

. . . . . . . . . . . .

uT,1 uT,2 . . . uT,N

⎞

⎟⎟⎟⎟⎟⎠

The first column of X usually consists of ones
to reflect the presence of an intercept. In the
multivariate setting, the usual linear regres-
sion assumption that the disturbances are IID

means that each row of U is an independent
realization from the same N-dimensional mul-
tivariate distribution. We assume that this dis-
tribution is multivariate normal with zero mean
and covariance matrix, 	,

ut ∼ N(0, 	) (32)

for t = 1, . . . , T . The off-diagonal elements of 	

are nonzero, as we assume the dependent vari-
ables are correlated, and the covariance matrix
contains N variances and N(N − 1)/2 distinct
covariances.

Using the expression for the density of the
multivariate normal distribution, we write the
likelihood function for the unknown model pa-
rameters, B and 	, as17

L(B, 	 | Y , X) ∝ |	|−T/2

× exp

(
−1

2

T∑

t=1

( yt − xtB)	−1( yt − xtB)′
)

(33)

where |	| is the determinant of the covariance
matrix. We now turn to specifying the prior dis-
tributional assumptions for B and 	.

Diffuse Improper Prior
The lack of specific prior knowledge about the
elements of B and 	 can be reflected by employ-
ing the Jeffreys’ prior, which, in the multivariate
setting, takes the form18

π (B, 	) ∝ |	|− N+1
2 (34)

The posterior distributions parallel those in the
univariate case. With the risk of stating the ob-
vious, note that B is a random matrix; therefore,
its posterior distribution, conditional on 	, will
be a generalization of the multivariate normal
posterior distribution in (9). To describe it, we
first vectorize (expand column-wise) the ma-
trix of regression coefficients, B, and denote the
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resulting K N × 1 vector by β,

β = vec(B) =

⎛

⎜⎜⎜⎝

α′

β ′
1
...

β ′
K

⎞

⎟⎟⎟⎠

by stacking vertically the columns of B′. It can
be shown that β’s posterior distribution, con-
ditional on 	, is a multivariate normal given
by

p (β | Y , X, 	) = N
(
β̂, 	 ⊗ (X′ X)−1) (35)

where β̂ = vec(B̂) = vec
(
(X′ X)−1(X′Y )

)
is the

vectorized OLS estimator of B and “⊗” denotes
the Kronecker product.19

The posterior distribution of 	 can be shown
to be the inverted-Wishart distribution (the
multivariate analog of the inverted-gamma
distribution),

p (	 | y, X) = IW (ν∗, S) (36)

where the degrees of freedom parameter is ν∗ =
T − K + N + 1 and the scale matrix is S = (Y −
XB̂)′(Y − XB̂).

A full Bayesian informative prior approach to
estimation of the multivariate linear regression
model would involve specifying a prior distri-
bution for the regression coefficients, β, and the
covariance matrix, 	. The conjugate prior sce-
nario is invariably the scenario of choice, so as
to keep the estimation within analytically man-
ageable boundaries. That scenario consists of a
multivariate normal prior for β and inverted-
Wishart for 	.20

KEY POINTS
� To account for estimation risk and to incorpo-

rate prior information, regression estimation
can be cast in a Bayesian setting.

� Depending on the amount of prior informa-
tion, diffuse or informative priors can be se-
lected for the regression parameters.

� Under the assumption that the regression in-
novations are distributed with the normal

distribution, the natural conjugate priors for
the regression coefficients and variance are
Gaussian and inverted-χ2 distributions, re-
spectively.

� The case of unequal variances is easily incor-
porated into the linear regression. Unequal
variances may be due to reasons such as struc-
tural breaks in time series data or nonhomo-
geneity in cross-sectional data.

NOTES
1. In order for the inverse matrix in (6) to exist,

it is necessary that X′ X be nonsingular, that
is, that the n × K matrix X have a rank K
(all its columns be linearly independent).

2. The MLE of σ 2 is in fact

σ̂ 2
ML E = 1

n

(
y− Xβ̂

)′(y− Xβ̂
)

However, as it is not unbiased, the estimator
in (7) is more often employed.

3. In fact, it is possible to describe fully the
distribution of β even without knowing its
unconditional distribution, by employing a
numerical simulation method such as the
Gibbs sampler, for example, and making in-
ferences on the basis of samples drawn from
β’s and σ 2’s posterior distributions.

4. We denote the multivariate scaled, noncen-
tral Student’s t distribution with degrees of
freedom ν, location parameter vector μ, and
scale matrix S by t(ν, μ, S). Its mean and co-
variance matrix are given, respectively, by
μ and S−1ν/(ν − 2).

5. There are two contrasting approaches to
prior parameter assertion. The full Bayesian
approach calls for specifying the hyper-
prior parameters independently of the data
used for model estimation. The empirical
Bayesian approach would use the OLS es-
timate, β̂, obtained from the data sample
used for estimation, as the value for the hy-
perprior parameter.

6. The mean and variance of a random vari-
able X distributed with the inverted-χ2 dis-
tribution with parameters ν and c are given,
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respectively, by

E(X) = ν

ν − 2
c var(X) = 2ν2

(ν − 2)2(ν − 4)
c2

7. See Chapter 6 in Rachev et al. (2008) for
more details on this shrinkage effect.

8. Denoting the sampling and posterior densi-
ties by f (x | θ ) and p(θ | x), respectively, the
predictive density one step ahead is defined
as

f (x+1 | x) =
∫

f (x+1 | θ )p(θ | x) dθ

where x is the observed data, θ is the sam-
pling distribution’s parameter, and x+1 de-
notes the one-step-ahead realization.

9. Returns on interest-rate instruments and
foreign exchange are particularly likely to
exhibit structural breaks.

10. See, for example, Wang and Zivot (2000).
Chapter 11 in Rachev et al. (2008) discusses
the so-called “regime switching” models, in
which parameters are allowed to change
values according to the state of the world
prevailing in a particular period in time.

11. See Chapter 4 in Zellner (1971).
12. See Chapter 5 in Rachev et al. (2008) for

details on how to employ numerical simu-
lation methods to tackle inference when no
analytical results are available.

13. The standard deviation of the univariate
Student’s t distribution with degrees-of-
freedom parameter ν and scale parameter
σ is given by σ

√
ν/(ν − 2).

14. Notice that, since the Student’s t distribu-
tion is unimodal, these (symmetric) inter-
vals are also the highest posterior density
intervals.

15. Although the multivariate normal distri-
bution is usually assumed because of its
analytical tractability, dependencies among
asset returns could be somewhat more
complex than what the class of elliptical
distributions (to which the normal distribu-
tion belongs) is able to describe. Alternative
distributional assumptions could be made

at the expense of analytical convenience
and occasional substantial estimation prob-
lems (especially in high-dimensional set-
tings). A more flexible way of dependence
modeling is provided through the use of
copulas. Some types of copulas could also
suffer from estimation problems, especially
in large-scale applications.

16. For applications to portfolio construction,
see Chapters 6 through 9 in Rachev et al.
(2008).

17. The expression in the exponent in (33) could
also be written as

−1
2

tr(Y − XB)′(Y − XB)	−1,

where “tr” denotes the trace operator,
which sums the diagonal elements of a
square matrix.

18. As in the univariate case, we assume in-
dependence between (the elements of) B
and 	.

19. The Kronecker product is an operator for
direct multiplication of matrices (which are
not necessarily compatible). For two matri-
ces, A of size m × n and B of size p × q , the
Kronecker product is defined as

A⊗ B =
⎛

⎝
a1,1 B a1,2 B . . . a1,n B
. . . . . . . . . . . .

am,1 B am,2 B . . . am,n B

⎞

⎠

resulting in an mp × nq block matrix.
20. See Chapters 6 and 7 of Rachev et al. (2008)

for further details in the context of portfolio
selection.
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Abstract: Empirical evidence abounds that asset returns exhibit characteristics such as volatility
clustering, asymmetry, and heavy-tailedness. Volatility clustering describes the tendency of returns
to alternate between periods of high volatility and low volatility. In addition, volatility responds
asymmetrically to positive and negative return shocks—it tends to be higher when the market
falls than when it rises. The nonconstancy of volatility has been suggested as an underlying rea-
son for returns’ fat tails. Volatility models attempt to systematically explain these stylized facts
about asset returns. The Bayesian methodology offers distinct advantages over the classical frame-
work in estimating volatility models. Parameter restrictions, such as stationarity restriction, are
notoriously difficult to handle within the frequentist setting and straightforward to implement in
the Bayesian one. The MCMC numerical simulation methods facilitate greatly the estimation of
complex volatility models, such as Markov-switching volatility models.

Generalized autoregressive conditional het-
eroskedastic (GARCH) models are used in finan-
cial modeling to provide a measure of volatility
that could be employed in portfolio selection,
risk management, and derivatives pricing. In
this entry, we focus on the Bayesian treatment of

GARCH model estimation. Our discussion of
prior distributions’ choice and posterior anal-
ysis is developed around an example where
the data are assumed to follow the Student’s t
distribution. We then introduce a Bayesian ap-
proach to Markov-switching GARCH models

175
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and explain in detail the steps one could use to
estimate this important extension of the simple
GARCH model.

BAYESIAN ESTIMATION OF
THE GARCH(1,1) MODEL
Volatility is a forward-looking concept. It is the
variance of the yet unrealized asset return, con-
ditional on all relevant, available information.
Denote by rt the asset return at time t and by
Ft−1 the set of information available up to time
t − 1. The information set includes, for example,
past asset returns and past trading volume. The
return’s dynamics can be described as follows:

rt = μt|t−1 + σt|t−1εt (1)

where

� μt|t−1 is the return’s conditional expectation
at time t,

� σt|t−1 is the return’s conditional volatility at
time t,

� εt is a white noise process (a sequence of
independent and identically distributed ran-
dom variables with zero mean and variance
of one).

The aim of volatility models is to specify the
dynamics of σt|t−1. Autoregressive conditional
heteroskedastic (ARCH)-type models describe
the conditional volatility at time t as a determin-
istic function of (attribute of) past squared re-
turns. That is, volatility at time t can be uniquely
determined at time t − 1. The volatility up-
dating expression of a GARCH(1,1) process is
given by

σ 2
t|t−1 = ω + αu2

t−1 + βσ 2
t−1|t−2 (2)

where ut = σt|t−1εt. The model parameters are
restricted to be nonnegative—ω > 0, α ≥ 0, and
β ≥ 0—in order to ensure that the conditional
variance is positive for all values of the white
noise process, εt. Additionally, the requirement
for stationarity imposes the constraint that the
sum α + β is smaller than one.

Estimation of the model parameters is usually
performed by likelihood maximization. Since
the return at time t, rt, depends on σt|t−1 and
through it on the conditional volatilities in all
previous periods, the unconditional density of
the return is not available in closed form (it is
a mixture of densities depending on the dy-
namics of σ 2

t|t−1). Therefore, the likelihood func-
tion of the GARCH(1,1) model is expressed as
the product of the conditional densities of rt for
each period t, t = 1, 2, . . . , T .

Given F0, the likelihood function
L
(
θ | r1, r2, . . . , rT , F0

)
is written as1

L
(
θ | r, F0

) = f
(
r1 | θ , F0

)
f
(
r2 | θ, F1

)
. . .

f
(
rT | θ , FT−1

)
(3)

where r = (
r1, r2, . . . , rT

)
. Due to the form of the

likelihood function, posterior estimation is per-
formed, without exception, numerically. This,
on the other hand, implies that few, if any,
restrictions exist on the choice of prior distri-
butions, when estimation is cast in a Bayesian
setting.

In this entry, our focus is on the Student’s t
distributional assumption for the return dis-
turbances, in an attempt to reflect the em-
pirically observed heavy-tailedness of returns.
This comes at the expense of only a marginal
increase in complexity (compared to estima-
tion of a model with normally distributed
disturbances). The two numerical simulation
methods we employ to simulate the posterior
distribution of the vector of model parameters,
θ , are the Metropolis-Hastings algorithm and
the Gibbs sampler.2

Our focus is the model of returns in (1) with a
modification. We assume that the return mean
is unconditional and equal to zero. That is, we
define our parameter vector as θ = (ω, α, β, ν)

Distributional Setup
Next, we outline the general setup we use in our
Bayesian estimation of the GARCH(1,1) model.
We modify this setup in the second half of the
entry, where we discuss regime switching.
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Likelihood Function
Assuming that εt is distributed with a Student’s
t distribution with ν degrees of freedom, we
write the likelihood function for the model’s
parameters as

L
(
θ | r, F0

) ∝
T∏

t=1

⎡

⎣(σ 2
t|t−1)−1

(
1 + 1

ν

r2
t

σ 2
t|t−1

)− ν+1
2

⎤

⎦

(4)

where σ 2
0 is considered as a known constant, for

simplicity. Under the Student’s t assumption for
εt, the conditional volatility at time t is given by

ν

ν − 2
σ 2

t

for ν greater than 2.

Prior Distributions
For simplicity, assume that the conditional
variance parameters have uninformative dif-
fuse prior distributions over their respective
ranges,3

π (ω, α, β) ∝ 1I{θG } (5)

where I{θG } is an indicator function reflecting
the constraints on the conditional variance pa-
rameters,

I{θG } =
{

1 if ω > 0, α > 0, and β > 0,

0 otherwise
(6)

The choice of prior distribution for the degrees-
of-freedom parameter, ν, requires more care.
Bauwens and Lubrano (1998) show that if a dif-
fuse prior for ν is asserted on the interval [0,∞),
the posterior distribution of ν is not proper
(its right tail does not decay quickly enough,
so that the posterior does not integrate to 1).
Therefore, the prior for ν needs to be proper.
Geweke (1993a) advocates the use of an expo-
nential prior distribution with density given by

π (ν) = λ exp (−νλ) (7)

The mean of the exponential distribution is
given by 1/λ. The parameter λ can thus be
uniquely determined from the prior intuition
about ν’s mean. Another prior option for ν is
a uniform prior over an interval [0, M], where

M is some finite number. Empirical research
indicates that the degrees-of-freedom parame-
ter calibrated from financial returns data (espe-
cially of daily and higher frequency) is usually
less than 20, so the upper bound, M, of ν’s range
could be fixed at 20, for instance. Bauwens and
Lubrano propose a third prior for ν—the upper
half of a Cauchy distribution centered around
zero. In our discussion, we adopt the exponen-
tial prior distribution for ν in (7).

Posterior Distributions
Given the distributional assumptions above,
the posterior distribution of θ is written as

p(θ | r, F0) ∝
T∏

t=1

⎡

⎣(σ 2
t|t−1)−1

(
1 + 1

ν

r2
t

σ 2
t|t−1

)− ν+1
2

⎤

⎦

× exp
(−νλ

)

× I{θG } (8)

The restrictions on ω, α, and β are enforced
during the sampling procedure by rejecting the
draws that violate them. Stationarity can also
be imposed and dealt with in the same way.

As evident from the expression in (8), the joint
posterior density does not have a closed form.
Posterior numerical simulations are facilitated
if one employs a specific representation of the
Student’s t distribution—a scale mixture of nor-
mal distributions. We explain this representa-
tion before we move on to the discussion of
sampling algorithms.

Mixture of Normals Representation of the
Student’s t Distribution
Suppose that return rt is distributed with the
Student’s t distribution with ν degrees of free-
dom, scale parameter σ , and location param-
eter μ. This distributional assumption can be
represented as a scale mixture of normal distri-
butions, given by4

rt | μt, σt, ηt ∼ N
(

μt,
σt

ηt

)
(9)
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where η, the so-called “mixing variable,” has
the gamma distribution,

ηt | ν ∼ Gamma
(ν

2
,
ν

2

)
, for t = 1, . . . , T

(10)
The benefit of employing this representation is
increased tractability of the posterior distribu-
tion because the nonlinear expression for the
model’s likelihood in (4) is linearized. Sam-
pling from the conditional distributions of the
remaining parameters is thus greatly facili-
tated. This comes at the expense of T ad-
ditional model parameters, η = (

η1, . . . , ηT
)′,

whose conditional posterior distribution needs
to be simulated as well.5

Under this Student’s t representation, the pa-
rameter vector, θ , is transformed to6

θ = (
ω, α, β, ν, η′) (11)

The log-likelihood function for θ is simply the
normal log-likelihood,

log
(
L
(
θ | r, F0

)) = const − 1
2

T∑

t=1

×
[

log
(
σ 2

t|t−1

) − log
(
ηt

) + ηtr2
t

σ 2
t|t−1

]
(12)

The posterior distribution of θ has an
additional term reflecting the mixing variables’
distribution. The log-posterior distribution is
written as

log
(

p
(
θ | r, F0

)) = const − 1
2

T∑

t=1

×
[

log
(
σ 2

t|t−1

) − log
(
ηt

) + ηtr2
t

σ 2
t|t−1

]

+ Tν

2
log

(ν

2

)
− T log

(
�

(ν

2

))

+
(ν

2
− 1

) T∑

t=1

log (ηt)

− ν

2

T∑

t=1

(ηt) − νλ (13)

for ω > 0, α ≥ 0, and β ≥ 0

Next, we discuss some strategies for simulat-
ing the posterior in (13).

Posterior Simulations with the
Metropolis-Hastings Algorithm
The Metropolis-Hastings (M-H) algorithm
could be implemented in two ways. The first
way is by sampling the whole parameter vec-
tor, θ , from a proposal distribution (usually a
multivariate Student’s t distribution) centered
on the posterior mode and scaled by the nega-
tive inverse Hessian (evaluated at the posterior
mode).7 The second way is by employing a sam-
pling scheme in which the parameter vector is
updated component by component. Here, we
focus on the latter M-H implementation.

Consider the decomposition of the param-
eter vector θ into three components, θ =(
θG, ν, η′), where θG = (

ω, α, β
)
. We would

like to employ a scheme of sampling
consecutively from the conditional posterior
distributions of the components, given, respec-
tively, by p (θG | η, ν, r, F0), p (ν | θG, η, r, F0),
and p (η | θG, ν, r, F0). The scale mixture of nor-
mals representation of a Student’s t distribution
allows us to recognize the conditional posterior
distribution of the last component, η, as a stan-
dard distribution. For the first two components,
θG and ν, whose posterior distributions are not
of standard form, we offer two posterior simu-
lation approaches and mention alternatives that
have been suggested in the literature.

Conditional Posterior Distribution for η

The full conditional posterior distribution for
the (independently-distributed) mixing param-
eters, ηt, t = 1, . . . , T , can be shown to be a
gamma distribution,

p (ηt | θG, ν, r, F0)

= Gamma

(
ν + 1

2
,

r2
t

2σ 2
t|t−1

+ ν

2

)
(14)

Conditional Posterior Distribution for ν

It can be seen from (13) that the conditional pos-
terior distribution of the degrees-of-freedom
parameter, ν, does not have a standard form.
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The kernel of the posterior distribution is given
by the expression,

p (ν | θG, η, r, F0) ∝ �
(ν

2

)−T (ν

2

) Tν
2

exp (νλ∗)

(15)

where

λ∗ = 1
2

T∑

t=1

(
log (ηt) − ηt

) − λ (16)

Geweke (1993b) describes a rejection sampling
approach that could be employed to simulate
draws from the conditional posterior distribu-
tion of ν in (15). In this entry, we employ a
sampling algorithm called the griddy Gibbs
sampler. The appendix provides details on it.

Proposal Distribution for θ G

The kernel of θG ’s log-posterior distribution is
given by the expression,

log (p (θG | θ−θG , r, F0))

= const − 1
2

T∑

t=1

[
log

(
σ 2

t|t−1

) + ηtr2
t

σ 2
t|t−1

]

for ω > 0, α ≥ 0, and β ≥ 0

where σ 2
t|t−1, t = 1, . . . , T , is a function of θG .

We specify a Student’s t proposal distribu-
tion for θG , centered on the posterior mode
of θG and scaled by the negative inverse Hes-
sian of the posterior kernel, evaluated at the
posterior mode. Other approaches for posterior
simulation, for example, the griddy Gibbs sam-
pler, could be employed as well. (In this case,
the components of θG would be sampled sepa-
rately.)

Having determined the full conditional
posterior distribution η, as well as a proposal
distribution for θG and a sampling scheme for
ν, implementing a hybrid M-H algorithm is
straightforward. Its steps are as follows. At it-
eration m of the algorithm,

� Draw an observation, θ∗
G , of the vector of con-

ditional variance parameters, θG , from its pro-
posal distribution.

� Check whether the positivity (and stationar-
ity) parameter restrictions on the components
of θG are satisfied. If not, draw θ∗

G repeatedly
until they are satisfied.

� Compute the acceptance probability

a
(
θ∗

G, θ
(t−1)
G

)

= min

{
1,

p
(
θ∗

G |y
)
/ q

(
θ∗

G | θ (t−1)
G

)

p
(
θ

(t−1)
G |y

)
/ q

(
θ

(t−1)
G | θ∗

G

)

}

(17)

where p(θG |y) is θG ’s posterior distribution
and q (θG |·) is θG ’s proposal distribution. The
previous draw of the parameter vector is
given by θ t−1

G . Accept or reject the candidate
draw θ∗

G with probability a
(
θ∗

G, θ
(t−1)
G

)
.

� Draw an observation, η(m), from the
full conditional posterior distribution,
p

(
ηt | θ (m)

G , r, F0
)
, in (14)

� Draw an observation, ν(m), from its condi-
tional posterior distribution with kernel in
(15) using the griddy Gibbs sampler as ex-
plained in the appendix.

At each iteration of the sampling algorithm,
the sampling strategy described above pro-
duces a large output consisting of the draws
from the model parameters and the T mix-
ing variables, η. However, since the role of the
mixing parameters is only auxiliary and their
conditional distribution is of no interest, at any
iteration of the algorithm above one needs to
store only the latest draw of η (as well as the
draws of v and θG , of course).

In the simple GARCH model discussed now,
it is implicitly assumed that expression (2) de-
scribes the volatility process during the whole
sample period and (at least) in the short run
after the end of the sample. That is, the pa-
rameters of the model are unchanged through-
out. It is not inconceivable, however, that the
volatility dynamics differ in different peri-
ods. Then, volatility forecasts produced by a
simple (single-regime) model are likely to over-
estimate volatility during periods of low volatil-
ity and underestimate it during periods of



180 Bayesian Analysis and Financial Modeling Applications

high volatility. In the next section, we dis-
cuss a class of models extending the simple
GARCH(1,1) model, which could potentially
provide more accurate volatility forecasting
power. Regime-switching models incorporate
the possibility that the dynamics of the volatil-
ity process evolves through different states of
nature, which we call regimes.

MARKOV-SWITCHING
GARCH MODELS
The Markov-switching (MS) models, introduced
by Hamilton (1989), provide maximal flexibility
in modeling transitions of the volatility dynam-
ics across regimes. They form the class of the
so-called endogenous regime-switching mod-
els in which transitions between states of nature
are governed by parameters estimated within
the model; the number of transitions is not
specified a priori, unlike the number of states.
Each volatility state could be revisited multi-
ple times.8 In our discussion below, we use the
terms “state” and “regime” interchangeably.

Different approaches to introducing regime
changes in the GARCH process have been
proposed in the empirical finance literature.
Hamilton and Susmel (1994) incorporate a
regime-dependent parameter, gSt , into the stan-
dard deviation (scale) of the returns process,

rt = μt|t−1 + √
gSt σt|t−1εt

where St denotes period t’s regime. Another
option, pursued by Cai (1994), is to include a
regime-dependent parameter as part of the con-
stant in the conditional variance equation,

σ 2
t|t−1 = (

ω + gSt

) +
P∑

p=1

αpu2
t−p

Both Hamilton and Susmel (1994) and Cai
(1994) model the dynamics of the conditional
variance with an ARCH process. The reason, as
explained further below, is that when GARCH
term(s) are present in the process, the regime-

dependence makes the likelihood function an-
alytically intractable.

The most flexible approach to introducing
regime-dependence is to allow all parameters
of the conditional variance equation to vary
across regimes. That approach is suggested by
Henneke, Rachev, Fabozzi, and Nikolov (2011)
who model jointly the conditional mean as an
ARMA(1,1) process in a Bayesian estimation
setting.9 The implication for the dynamics of the
conditional variance is that the manner in which
the variance responds to past return shocks
and volatility levels changes across regimes.
For example, high-volatility regimes could be
characterized by “hyper-sensitivity” of asset re-
turns to return shocks and high volatility in
one period could have a more lasting effect
on future volatilities compared to low-volatility
regimes. This would call for a different relation-
ship between the parameters α and β in differ-
ent regimes.

In this section, we discuss the estimation
method of Henneke, Rachev, Fabozzi, and
Nikolov (2011), with some modifications.

Preliminaries
Suppose that there are three states the condi-
tional volatility can occupy, denoted by i, i =
1, 2, 3. We could assign economic interpreta-
tion to them by labeling them “a low-volatility
state,” “a normal-volatility state,” and “a high-
volatility state.” Denote by πi j the probability
of a transition from state i to state j. The transi-
tion probabilities, πi j , could be arranged in the
transition probability matrix, �,

� =
⎛

⎝
π11 π12 π13

π21 π22 π23

π31 π32 π33

⎞

⎠ (18)

such that the probabilities in each row sum up
to 1. The Markov property (central to model
estimation, as we will see below) that lends its
name to the MS models concerns the memory of
the process—which volatility regime the system
visits in a given period depends only on the
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regime in the previous period. Analytically, the
Markov property is expressed as

P
(
St | St−1, St−2, . . . , S1

) = P
(
St | St−1

)
(19)

Each row of � in (18) represents the three-
dimensional conditional probability distribu-
tion of St, conditional on the regime realization
in the previous period, St−1. We say that {St}T

t=1
is a three-dimensional (discrete-time) Markov
chain with transition matrix, �.

In the regime-switching GARCH(1,1) setting,
the expression for the conditional variance dy-
namics becomes

σ 2
t|t−1 = ω(St) + α(St)u2

t−1 + β(St)σ 2
t−1|t−2

(20)
For each period t,

(ω(St), α(St), β(St)) =
⎧
⎨

⎩

(ω1, α1, β1) if St = 1,

(ω2, α2, β2) if St = 2,

(ω3, α3, β3) if St = 3

The presence of the GARCH component in
(20) complicates the model estimation substan-
tially. To see this, notice that, via σ 2

t−1|t−2, the
current conditional variance depends on the
conditional variances from all preceding peri-
ods and, therefore, on the whole unobservable
sequence of regimes up to time t. A great num-
ber of regime paths could lead to the particular
conditional variance at time t (the number of
possible regime combinations grows exponen-
tially with the number of time periods), render-
ing classical estimation very complicated. For
that reason, the early treatments of MS mod-
els include only an ARCH component in the
conditional variance equation. The MCMC
methodology, however, copes easily with the
specification in (20), as we will see below.

We adopt the same return decomposition as
in (1)—with the conditional mean set to zero—
and note that, given the regime path, (20) repre-
sents the same conditional variance dynamics
as a simple GARCH(1,1) process. We return to
this point again further below when we discuss
estimation of that MS GARCH(1,1) model.

Next, we outline the prior assumptions for the
MS GARCH(1,1) model.

Prior Distributional Assumptions
The parameter vector of the MS GARCH(1,1)
model, specified by (1), (20), and the Markov
chain {St}T

t=1, is given by

θ = (
η′, ν, θG,1, θG,2, θG,3,π1,π2,π3, S

)
(21)

where, for i = 1, 2, 3,

θG,i = (ωi , αi , βi ) and π i = (πi1, πi2, πi3)

and S is the regime path for all periods,

S = (S1, . . . , ST )

Our prior specifications for η and ν remain un-
changed from our earlier discussion: The scale-
mixture-of-normals mixing parameters, η, and
the degrees-of-freedom parameter, ν, are not af-
fected by the regime specification in the MS
GARCH(1,1) model. We assert prior distribu-
tions for the vector of conditional variance pa-
rameters, θG,i , under each regime, i, and a prior
distribution for each triple of transition proba-
bilities π i , i = 1, 2, 3.

Prior Distributions for θ G,i

To reflect our prior intuition about the effect the
three regimes have on the conditional variance
parameters, we assert proper normal priors for
θG,i , i = 1, 2, 3.

θG,i ∼ N (μi , �i ) I{θG,i } (22)

where the indicator function, I{θG,i }, is given in
(6). As explained earlier in the entry, the param-
eter constraints are imposed during the imple-
mentation of the sampling algorithm.

Prior Distribution for π i

A convenient prior for the probability pa-
rameter in a binomial experiment is the beta
distribution.10 The analogue of the beta distri-
bution in the multivariate case is the so-called
Dirichlet distribution.11 Therefore, we specify
a Dirichlet prior distribution for each triple of
transition probabilities, i = 1, 2, 3,

π i ∼ Dirichlet (ai1, ai2, ai3) (23)
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To elicit the prior parameters, aij, i, j = 1, 2, 3,
it is sufficient that one express prior intuition
about the expected value of each of the tran-
sition probabilities in a triple, then solve the
system equations for aij.

Estimation of the MS GARCH
Model
The evolution of volatility in the MS GARCH
model is governed by the realizations of
the unobservable (latent) regime variable, St,
t = 1, . . . , T . Hence, the discrete-time Markov
chain, {St}T

t=1 is also called a hidden Markov
process. Earlier, we briefly discussed that the
presence of the hidden Markov process creates
a major estimation difficulty in the classical set-
ting. The Bayesian methodology, in contrast,
deals with the latent-variable characteristic in
an easy and natural way: The latent variable
is simulated together with the model param-
eters. In other words, the parameter space is
augmented with St, t = 1, . . . , T , in much the
same way as the vector of mixing variables, η,
was added to the parameter space in estimating
the Student’s t GARCH(1,1) model. The distri-
bution of S is a multinomial distribution,

p (S | π ) =
T−1∏

t=1

p (St+1 | St,π )

= π
n11
11 π

n12
12 . . . π

n32
32 π

n33
33 (24)

= π
n11
11 π

n12
12

(
1 − π11 − π12

)n13
. . .

π
n32
32

(
1 − π31 − π32

)n33

where nij denotes the number of times the chain
transitions from state i to state j during the span
of period 1 through period T. The first equality
in (24) follows from the Markov property of
{St}T

t=1.
Based on our discussion of the Student’s t

GARCH(1,1) model and the hidden Markov
process, as well as the prior distributional
assumptions for π i and θG,i , i = 1, 2, 3, the
joint log-posterior distribution of the MS
GARCH(1,1) model’s parameter vector θ is

given by

log (p (θ | r, F0)) = const

−1
2

T∑

t=1

[
log

(
σ 2

t|t−1

) + log
(
ηt

) + ηtr2
t

σ 2
t|t−1

]

− 1
2

3∑

i=1

(θG,i − μi )
′
�−1

i (θG,i − μi ) I{S(t)=i}

+ Tν

2
log

(ν

2

)
− T log

(
�

(ν

2

))
+

(ν

2
− 1

)

×
T∑

t=1

log (ηt) − ν

2

T∑

t=1

ηt − νλ

+
3∑

i=1

3∑

j=1

(
ai j + ni j − 1

)
log

(
πi j

)
(25)

for ωi > 0, αi ≥ 0, and βi ≥ 0

Although (25) looks very similar to the joint
log-posterior in (13), there is a crucial differ-
ence. The model’s log-likelihood (given by the
right-hand-side term in the first line of (25))
depends on the whole sequence of regimes, S.
Conditional on S, however, it is the same log-
likelihood as in (12). We will exploit this fact
in constructing the posterior simulation algo-
rithm as an extension of the algorithm for the
Student’s t GARCH(1,1) model estimation.

We now outline the posterior results for
π i , S, and θG,i . The posterior results for the
degrees-of-freedom parameter, ν, and the mix-
ing variables, η, remain unchanged from our
earlier discussion.

Conditional Posterior Distribution of π i

The conditional log-posterior distribution of the
vector of transition probabilities, π i , i = 1, 2, 3,
is given by

log
(

p
(
π i | r, θ−π i

)) = const

+
3∑

j=1

(
ai j + ni j − 1

)
log

(
πi j

)

for i = 1, 2, 3 (26)

where θ−π i denotes the vector of all parame-
ters except π i . The expression in (26) is readily
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recognized as the logarithm of the kernel
of a Dirichlet distribution with parameters(
ai1 + ni1, ai2 + ni2, ai3 + ni3

)
. The parameters

aij are specified a priori, while the parameters
nij can be determined by simply counting the
number of times the Markov chain, {St}T

t=1, tran-
sitions from i to j.

Sampling from the Dirichlet distribution in
(26) is accomplished easily in the following
way.12 For each i, i = 1, 2, 3,

(1) sample three independent observations,

yi1 ∼ χ2
2
(

ai1+ni1

), yi2 ∼ χ2
2
(

ai2+ni2

),

yi3 ∼ χ2
2
(

ai3+ni3

)

(2) set

πi1 = yi1∑3
k=1 yik

, πi2 = yi2∑3
k=1 yik

,

πi3 = yi3∑3
k=1 yik

Conditional Posterior Distribution of S
In the three-regime switching setup of this en-
try, the number of regime paths that could have
potentially generated ST, the regime in the final
period, is 3T . The level of complexity makes it
impossible to obtain a draw of the whole 1 × T
vector, S, at once. Instead, its components can
be drawn one at a time, in a T-step procedure. In
other words, at each step, we sample from the
full conditional posterior density of St given by

p (St = i | r, θ−S, S−t) (27)

where θ−S is the parameter vector in (21) ex-
cluding S and S−t is the regime path excluding
the regime at time t. Applying the rules of con-
ditional probability, p (St = i | r, θ−St ) is written
as

p (St = i | r, θ−S, S−t) = p (St = i, S−t, r | θ−S)
p (S−t, r | θ−S)

= p (r | θ−S, S−t, St = i) p (St = i, S−t | θ−S)
p (S−t, r | θ−S)

(28)

The first term in the numerator,
p (r | θ−S, S−t, St = i), is simply the model’s
likelihood evaluated at a given regime path, in
which St = i . The second term in the numer-
ator, p (St = i, S−t), is given, by the Markov
property, by

p (St = i, S−t | θ−S) = p (St = i, St−1 = j, St+1

= k | θ−S)

= π j,iπi,k (29)

while the denominator in (28) is expressed as

p (S−t, r | θ−S) =
3∑

s=1

p (St = s, S−t, r | θ−S)

(30)
Using (28), (29), and (30), we obtain the condi-
tional posterior distribution of St as

p (St = i | r, θ−S, S−t)

= p (r | θ−S, S−t, St = i) π j,i πi,k∑3
s=1 p (r | θ−S, S−t, St = s) π j,s πs,k

(31)

for i = 1, 2, 3. An observation, S∗
t , from the con-

ditional density in (31) is obtained in the fol-
lowing way:

� Compute the probability in (31) for i = 1, 2, 3.
� Split the interval (0, 1) into three intervals of

lengths proportional to the probabilities in
step (1).

� Draw an observation, u, from the uniform dis-
tribution U[0, 1].

� Depending on which interval u falls into, set
S∗

t = i .

To draw the regime path, S(m), at the mth itera-
tion of the posterior simulation algorithm,

� Draw S(m)
1 from p (S1 | r, θ−S1 ) in (31). Update

S(m) with S(m)
1 .

� For t = 2, . . . , T , draw S(m)
t from p (St | r, θ−St )

in (31). Update S(m) with S(m)
t .

Proposal Distribution for θ G,i

The posterior distribution of the vector of con-
ditional variance parameters is not available in
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closed form because of the regime dependence
of the conditional variance. Since in the regime-
switching setting we adopted informative prior
distributions for θG,i , i = 1, 2, 3, the kernel of
the conditional log-posterior distribution is a
bit different from the one in (17) and is given
by

log
(

p
(
θG,i | θ−θG,i , r, F0

)) = const

−1
2

T∑

t=1

[
log

(
σ 2

t|t−1

) + log
(
ηt

) + ηtr2
t

σ 2
t|t−1

]

− 1
2

3∑

i=1

(θG,i − μi )
′
�−1

i (θG,i − μi ) I{St=i},

(32)

for ω > 0, α ≥ 0, β ≥ 0, and

i = 1, 2, 3

For a given regime path, S, the only differ-
ence between the earlier posterior kernel and
(32) is the term reflecting the informative prior
of θG,i . Therefore, specifying a proposal dis-
tribution for θG,i is in no way different from
the approach in the single-regime Student’s t
GARCH(1,1) setting.

Sampling Algorithm for the Parameters of the
MS GARCH (1,1) Model
The sampling algorithm for the MS
GARCH(1,1) model parameters consists of the
following steps. At iteration m,

� Draw π
(m)
i from its posterior density in (26),

for i = 1, 2, 3.
� Draw S(m) from (31).
� Draw η(m) from (14).
� Draw ν(m) from (15).
� Draw θ∗

G,i , i = 1, 2, 3, from the proposal dis-
tribution, as explained earlier.

� Check whether the parameter restrictions on
the components of θG,i are satisfied; if not,
draw θ∗

G,i repeatedly, until they are satisfied.
� Compute the acceptance probability in (17)

and accept of reject θ∗
G,i , for i = 1, 2, 3.

The parameter vector, θ , is updated as new
components are drawn. The steps above are re-
peated a large number of times until conver-
gence of the algorithm.

APPENDIX: THE GRIDDY
GIBBS SAMPLER
Implementation of the Gibbs sampler requires
that parameters’ conditional posterior distribu-
tions be known. Sometimes, however, the con-
ditional posterior distributions have no closed
forms. In these cases, a special form of the Gibbs
sampler, called the griddy Gibbs sampler, can
be employed whereby the (univariate) condi-
tional posterior densities are evaluated on grids
of parameter values. The griddy Gibbs sam-
pler, developed by Ritter and Tanner (1992), is
a combination of the ordinary Gibbs sampler
and a numerical routine. In this appendix, we
illustrate the griddy Gibbs sampler with the
posterior distribution of the degrees-of-
freedom parameter, ν.

Recall the expression for the kernel of ν’s con-
ditional log-posterior distribution,

log (p (ν | θ−ν, r, F0)) = const

+Tν

2
log

(ν

2

)
− T log

(
�

(ν

2

))

+
(ν

2
− 1

) T∑

t=1

log (ηt) − ν

2

T∑

t=1

ηt − νλ (33)

The griddy Gibbs sampler approach to drawing
from the conditional posterior distribution of ν

is to recognize that at iteration m we can treat
the latest draws of the remaining parameters as
the known parameter values. Therefore, we can
evaluate numerically the conditional posterior
density of ν on a grid of its admissible values.
The support of ν is the positive part of the real
line. However, a reasonable range for the values
of ν in an application to asset returns could be
(2, 30).13



BAYESIAN ESTIMATION OF ARCH-TYPE VOLATILITY MODELS 185

Drawing from the Conditional
Posterior Distribution of ν

Denote the equally-spaced grid of values for
ν by (ν1, ν2, . . . , νJ ). We outline the steps for
drawing from ν’s conditional posterior distri-
bution at iteration m of the sampling algorithm.
Denote the most recent draws of the remain-
ing model parameters by θ

(m−1)
−ν . (Note that this

notation is not entirely precise since some of
the parameters might have been updated last
during the mth iteration of the sampler but
before ν.)

� Compute the value of ν’s posterior kernel (the
exponential of the expression in (33)) at each
of the grid nodes and denote the resultant
vector by

p(ν) = (p(ν1), p(ν2), . . . , p(νJ )) (34)

� Normalize p(ν) by dividing each vector com-
ponent in (34) by the quantity

∑J
j=1 p(ν j )(ν2 −

ν1). For convenience of notation, let us rede-
fine p(ν) to denote the vector of (normalized)
posterior density values at each node of ν’s
grid.

� Compute the empirical cumulative distribu-
tion function (CDF),

F (ν) =
⎛

⎝p(ν1),
2∑

j=1

p(ν j ), . . . ,
J∑

j=1

p(ν j )

⎞

⎠

(35)
If the grid is adequate, the first element of F (ν)
should be nearly 0, while the last element of
F (ν) nearly 1.

� Draw an observation from the uniform distri-
bution (U[0, 1]) and denote it by u.

� Find the element of F (ν) closest to u without
exceeding it.

� The grid node corresponding to the value of
F (ν) in the previous step is the draw of ν from
its posterior distribution.

The method above of obtaining a draw from
ν’s distribution using its CDF is called the CDF
inversion method.

Constructing an adequate grid is the key
to efficient sampling from ν’s posterior. Since
the griddy Gibbs sampling procedure relies on
multiple evaluations of the posterior kernel,
two desired characteristics of an adequate grid
are short length and coverage of the parame-
ter support where the posterior distribution has
positive probability mass. A simple example il-
lustrates this point. Suppose that for a given
sample of observed data, the likely values of ν

are in the interval (2, 15). Suppose further that
we construct an equally-spaced grid of length
30, with nodes on each integer from 2 to 30. The
value of the posterior kernel at the nodes corre-
sponding to ν equal to 16 and above would be
only marginally different from zero. The pos-
terior kernel evaluations at those nodes should
be avoided, if possible.

If no prior intuition exists about what the
likely parameter values are, one could employ
a variable grid instead of a fixed grid. At each
iteration of the sampling algorithm one must
analyze the distribution of posterior mass and
adjust the grid, so that the majority of the grid
nodes are placed in the interval of greatest prob-
ability mass. Automating this process could in-
volve some computational effort.

KEY POINTS
� The unconditional density of the return in

GARCH models is not available in closed
form. Therefore, the likelihood function of the
GARCH parameters is expressed as a prod-
uct of the return’s conditional density in each
period.

� In the Bayesian setting, estimation of GARCH
models is performed numerically.

� Posterior numerical simulations are facili-
tated if the scale mixture of normal dis-
tributions representation is adopted for the
Student’s t distribution.

� Markov-switching GARCH models provide
maximal flexibility in modeling transitions of
the volatility dynamics across regimes.
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� Transitions among regimes are governed by
an unobserved state variable.

� In posterior simulations, the whole path
of regimes, governed by the state vari-
able, is simulated together with the model
parameters.

NOTES
1. To see that, notice that when Ft is defined as

an information set consisting of lagged asset
returns, F1 = F0

⋃
r1, F2 = F1

⋃
r2, etc.

2. For a discussion of numerical estimation
methods, see, for example, Rachev, et al.
(2008). See also Geweke (1989) for an ap-
plication of importance sampling to the es-
timation of ARCH models.

3. It is possible to assert a prior distribution
for ω, α, and β defined on the whole real
line, for example, a normal distribution. To
respect the positivity constraints on the pa-
rameters, such a prior would have to be
truncated at the lower bound of the pa-
rameters’ range. In practice, however, the
constraints could also be enforced during
the posterior simulation as explained fur-
ther below. Alternatively, one could assert
such a prior without enforcing constraints,
after transforming ω, α, and β by taking
their logarithms (their ranges then become
the whole real line).

4. Many heavy-tailed distributions can be
represented as (mean-) scale mixtures of
normal distributions. Such representations
make estimation based on numerical, itera-
tive procedures easier. See, for example, Fer-
nandez and Steel (2000) for a discussion of
the Bayesian treatment of regression anal-
ysis with mixtures of normals. In contin-
uous time, the mean and scale mixture of
normals models lead to the so-called sub-
ordinated processes, widely used in mathe-
matical and empirical finance. Rachev and
Mittnik (2000) offer an extensive treatment
of subordinated processes.

5. This is an example of the technique known
as “data augmentation.” It consists of in-
troducing latent (unobserved) variables to
help construct efficient simulation algo-
rithms. For a (technical) review of data aug-
mentation, see, for example, van Dyk and
Meng (2001).

6. Recall that we assume that μt = 0.
7. The Hessian matrix is the matrix of sec-

ond derivatives. According to a fundamen-
tal result in maximum likelihood theory,
the maximum likelihood estimator’s distri-
bution is asymptotically normal, with co-
variance matrix—the negative inverse Hes-
sian matrix, evaluated at the maximum
likelihood estimate. Usually, the Hessian
is provided as a “by-product” of numer-
ical optimization routines for finding the
maximum-likelihood estimate. See, for ex-
ample, Rachev, et al. (2008) for additional
details.

8. It is certainly possible to introduce (test
for) a deterministic permanent shift in a
model parameter into the regime-switching
model. For example, Kim and Nelson (1999)
apply such a model to a Bayesian investiga-
tion of business cycle fluctuations. See also
Carlin, Gelfand, and Smith (1992). Wang
and Zivot (2000) consider Bayesian esti-
mation of a heteroskedastic model with
structural breaks only. The variance in that
investigation, however, does not evolve ac-
cording to an ARCH-type process.

9. See also Haas, Mittnik, and Paolella (2004),
Klaassen (1998), Francq and Zakoian (2001),
and Ghysels, McCulloch, and Tsay (1998),
among others.

10. The beta distribution is the conjugate dis-
tribution for the probability parameter in a
binomial experiment.

11. A K-dimensional random variable
p = (p1, p2, . . . , pK ), where pk ≥ 0
and

∑K
k=1 pk = 1, distributed with a

Dirichlet distribution with parameters
a = (a1, a2, . . . , aK ), ai > 0, i = 1, . . . , K ,
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has a density function

f ( p | a) = �(
∑K

k=1 ak)
∏K

k=1 �(ak)

K∏

k=1

pak−1
k

where � is the gamma function. The mean
and the variance of the Dirichlet distribu-
tion are given, respectively, by E(pk) = ak

a0

and var(pk) = ak (a0−ak )
a2

0 (a0+1)
, where a0 = ∑K

j=1 a j .
The Dirichlet distribution is the conjugate
prior distribution for the parameters of the
multinomial distribution. As can be seen
in our discussion on the MS GARCH (1,1)
estimation, the distribution of the Markov
chain, {St}T

t=1, is, in fact, a multinomial dis-
tribution.

12. See, for example, Anderson (2003).
13. This is the typical range of the degrees-

of-freedom parameter of a Student’s t
distribution fitted to return data. The higher
the data frequency is, the more heavy-tailed
returns are and the lower the value of the
degrees-of-freedom parameter.
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Abstract: Investment policies constructed using inferior estimates, such as sample means and sam-
ple covariance matrices, typically perform very poorly in practice. Besides introducing spurious
changes in portfolio weights each time the portfolio is rebalanced, this undesirable property also
results in unnecessary turnover and increased transaction costs. These phenomena are not neces-
sarily a sign that portfolio optimization does not work, but rather that the modern portfolio theory
framework is very sensitive to the accuracy of inputs. There are different ways to address this issue.
On the estimation side, one can try to produce more robust estimates of the input parameters for
the optimization problems. This is most often achieved by using estimators that are less sensitive
to outliers, and possibly, other sampling errors, such as Bayesian and shrinkage estimators. On
the modeling side, one can constrain portfolio weights, use portfolio resampling, or apply robust or
stochastic optimization techniques to specify scenarios or ranges of values for parameters estimated
from data, thus incorporating uncertainty into the optimization process itself.

In this entry, we provide a general overview
of some of the common problems encoun-
tered in mean-variance optimization before
we turn our attention to shrinkage estima-
tors for expected returns and the covariance
matrix. Within the context of Bayesian estima-
tion, we focus on the Black-Litterman model
(see Black and Litterman, 1992). We derive

the model using so-called mixed estima-
tion from classical econometrics. Introducing
a simple cross-sectional momentum strategy,
we then show how one can combine this
strategy with market equilibrium using the
Black-Litterman model in the mean-variance
framework to rebalance the portfolio on a
monthly basis.

189
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PRACTICAL PROBLEMS
ENCOUNTERED IN
MEAN-VARIANCE
OPTIMIZATION
The simplicity and the intuitive appeal of port-
folio construction using modern portfolio the-
ory have attracted significant attention both in
academia and in practice. Yet, despite consid-
erable effort, it took many years until portfolio
managers started using modern portfolio the-
ory for managing real money. Unfortunately, in
real world applications there are many prob-
lems with it, and portfolio optimization is still
considered by many practitioners to be difficult
to apply. In this section we consider some of the
typical problems encountered in mean-variance
optimization. In particular, we elaborate on: (1)
the sensitivity to estimation error; (2) the effects
of uncertainty in the inputs in the optimization
process; and (3) the large data requirement nec-
essary for accurately estimating the inputs for
the portfolio optimization framework. We start
by considering an example illustrating the ef-
fect of estimation error.

Example: The True, Estimated, and
Actual Efficient Frontiers
Broadie introduced the terms true frontier,
estimated frontier, and actual frontier to re-
fer to the efficient frontiers computed us-
ing the true expected returns (unobservable),
estimated expected returns, and true expected
returns of the portfolios on the estimated fron-
tier, respectively.1 In this example, we refer to
the frontier computed using the true, but un-
known, expected returns as the true frontier.
Similarly, we refer to the frontier computed us-
ing estimates of the expected returns and the
true covariance matrix as the estimated frontier.
Finally, we define the actual frontier as follows:
We take the portfolios on the estimated frontier
and then calculate their expected returns using
the true expected returns. Since we are using the
true covariance matrix, the variance of a port-

folio on the estimated frontier is the same as the
variance on the actual frontier.

From these definitions, we observe that the ac-
tual frontier will always lie below the true fron-
tier. The estimated frontier can lie anywhere
with respect to the other frontiers. However, if
the errors in the expected return estimates have
a mean of zero, then the estimated frontier will
lie above the true frontier with extremely high
probability, particularly when the investment
universe is large. We look at two cases consid-
ered by Ceria and Stubbs:2

1. Using the covariance matrix and expected
return vector from Idzorek (2005), they ran-
domly generate a time series of normally dis-
tributed returns and compute the average to
use as estimates of expected returns. Using
the expected-return estimate calculated in
this fashion and the true covariance matrix,
they generate an estimated efficient frontier
of risk versus expected return where the
portfolios were subject to no-shorting con-
straints and the standard budget constraint
that the sum of portfolio weights is one. Sim-
ilarly, Ceria and Stubbs compute the true
efficient frontier using the original covari-
ance matrix and expected return vector. Fi-
nally, they construct the actual frontier by
computing the expected return and risk of
the portfolios on the estimated frontier with
the true covariance and expected return val-
ues. These three frontiers are illustrated in
Figure 1.

2. Using the same estimate of expected returns,
Ceria and Stubbs also generate risk versus
expected return where active holdings of
the assets are constrained to be ±3% of the
benchmark holding of each asset. These fron-
tiers are illustrated in Figure 2.

We observe that the estimated frontiers sig-
nificantly overestimate the expected return for
any risk level in both types of frontiers. More
importantly, we note that the actual frontier
lies far below the true frontier in both cases.
This shows that the optimal mean-variance
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Figure 1 Markowitz Efficient Frontiers
Source: Figure 2 in Ceria and Stubbs (2005, p. 6).
Reprinted with the permission of Axioma, Inc.

portfolio is not necessarily a good portfolio;
that is, it is not mean-variance efficient. Since
the true expected return is not observable, we
do not know how far the actual expected re-
turn may be from the expected return of the
mean-variance optimal portfolio, and we end
up holding an inferior portfolio.

Sensitivity to Estimation Error
In a portfolio optimization context, securities
with large expected returns and low stan-
dard deviations will be overweighted and
conversely, securities with low expected re-
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Source: Figure 3 in Ceria and Stubbs (2005, p. 7).
Reprinted with the permission of Axioma, Inc.

turns and high standard deviations will be
underweighted. Therefore, large estimation er-
rors in expected returns and/or variances/
covariances introduce errors in the optimized
portfolio weights. For this reason, people of-
ten cynically refer to optimizers as error
maximizers.

Uncertainty from estimation error in expected
returns tends to have more influence than
in the covariance matrix in a mean-variance
optimization.3 The relative importance de-
pends on the investor’s risk aversion, but as
a general rule of thumb, errors in the expected
returns are about 10 times more important than
errors in the covariance matrix, and errors in
the variances are about twice as important as
errors in the covariances.4 As the risk tolerance
increases, the relative impact of estimation er-
rors in the expected returns becomes even more
important. Conversely, as the risk tolerance de-
creases, the impact of errors in expected returns
relative to errors in the covariance matrix be-
comes smaller. From this simple rule, it follows
that the major focus should be on providing
good estimates for the expected returns, fol-
lowed by the variances. In this entry we discuss
shrinkage techniques and the Black-Litterman
model in order to mitigate estimation errors.

Constraining Portfolio Weights
Several studies have shown that the inclu-
sion of constraints in the mean-variance opti-
mization problem leads to better out-of-sample
performance.5 Practitioners often use no short-
selling constraints or upper and lower bounds
for each security to avoid overconcentration in
a few assets. Gupta and Eichhorn (1998) suggest
that constraining portfolio weights may also as-
sist in containing volatility, increase realized ef-
ficiency, and decrease downside risk or shortfall
probability.

Jagannathan and Ma (2003) provide a theoret-
ical justification for these observations. Specif-
ically, they show that the no short-selling
constraints are equivalent to reducing the
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estimated asset covariances, whereas upper
bounds are equivalent to increasing the cor-
responding covariances. For example, stocks
that have high covariance with other stocks
tend to receive negative portfolio weights.
Therefore, when their covariance is decreased
(which is equivalent to the effect of impos-
ing no short-selling constraints), these negative
weights disappear. Similarly, stocks that have
low covariances with other stocks tend to get
overweighted. Hence, by increasing the corre-
sponding covariances the impact of these over-
weighted stocks decreases.

Furthermore, Monte Carlo experiments per-
formed by Jagannathan and Ma indicate that
when no-short-sell constraints are imposed, the
sample covariance matrix has about the same
performance (as measured by the global min-
imum variance (GMV) portfolio) as a covari-
ance matrix estimator constructed from a factor
structure.

Care needs to be taken when imposing con-
straints for robustness and stability purposes.
For example, if the constraints used are too
tight, they will completely determine the port-
folio allocation—not the forecasts.

Instead of providing ad hoc upper and
lower bounds on each security, as proposed
by Bouchaud, Potters, and Aguilar (1997), one
can use so-called diversification indicators that
measure the concentration of the portfolio.
These diversification indicators can be used as
constraints in the portfolio construction phase
to limit the concentration to individual securi-
ties. The authors demonstrate that these indi-
cators are related to the information content of
the portfolio in the sense of information theory.6

For example, a very concentrated portfolio cor-
responds to a large information content (as we
would only choose a very concentrated alloca-
tion if our information about future price fluctu-
ations is perfect), whereas an equally weighted
portfolio would indicate low information con-
tent (as we would not put “all the eggs in one
basket” if our information about future price
fluctuations is poor).

Importance of Sensitivity Analysis
In practice, in order to minimize dramatic
changes due to estimation error, it is advisable
to perform sensitivity analysis. For example,
one can study the results of small changes or
perturbations to the inputs from an efficient
portfolio selected from a mean-variance opti-
mization. If the portfolio calculated from the
perturbed inputs drastically differs from the
first one, this might indicate a problem. The per-
turbation can also be performed on a security
by security basis in order to identify those secu-
rities that are the most sensitive. The objective
of this sensitivity analysis is to identify a set of
security weights that will be close to efficient
under several different sets of plausible inputs.

Issues with Highly Correlated Assets
The inclusion of highly correlated securities is
another major cause for instability in the mean-
variance optimization framework. For example,
high correlation coefficients among common as-
set classes are one reason why real estate is pop-
ular in optimized portfolios. Real estate is one
of the few asset classes that has a low correlation
with other common asset classes. But real estate
in general does not have the liquidity necessary
in order to implement these portfolios and may
therefore fail to deliver the return promised by
the real estate indexes.

The problem of high correlations typically
becomes worse when the correlation matrix
is estimated from historical data. Specifically,
when the correlation matrix is estimated over
a slightly different period, correlations may
change, but the impact on the new portfolio
weights may be drastic. In these situations, it
may be a good idea to resort to a shrinkage es-
timator or a factor model to model covariances
and correlations.

Incorporating Uncertainty in the
Inputs into the Portfolio
Allocation Process
In the classical mean-variance optimiza-
tion problem, the expected returns and the
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covariance matrix of returns are uncertain
and have to be estimated. After the estima-
tion of these quantities, the portfolio opti-
mization problem is solved as a deterministic
problem—completely ignoring the uncertainty
in the inputs. However, it makes sense for the
uncertainty of expected returns and risk to en-
ter into the optimization process, thus creating
a more realistic model. Using point estimates
of the expected returns and the covariance ma-
trix of returns, and treating them as error-free
in portfolio allocation does not necessarily cor-
respond to prudent investor behavior.

The investor would probably be more com-
fortable choosing a portfolio that would
perform well under a number of different
scenarios, thereby also attaining some protec-
tion from estimation risk and model risk. Ob-
viously, to have some insurance in the event of
less likely but more extreme cases (e.g., scenar-
ios that are highly unlikely under the assump-
tion that returns are normally distributed), the
investor must be willing to give up some of
the upside that would result under the more
likely scenarios. Such an investor seeks a ro-
bust portfolio, that is, a portfolio that is assured
against some worst-case model misspecifica-
tion. The estimation process can be improved
through robust statistical techniques such as
shrinkage and Bayesian estimators discussed
later in this entry. However, jointly consider-
ing estimation risk and model risk in the finan-
cial decision-making process is becoming more
important.

The estimation process frequently does not
deliver a point forecast (that is, one single num-
ber), but a full distribution of expected returns.
Recent approaches attempt to integrate estima-
tion risk into the mean-variance framework by
using the expected return distribution in the
optimization. A simple approach is to sample
from the return distribution and average the
resulting portfolios (Monte Carlo approach).7

However, as a mean-variance problem has to
be solved for each draw, this is computationally
intensive for larger portfolios. In addition, the

averaging does not guarantee that the resulting
portfolio weights will satisfy all constraints.

Introduced in the late 1990s by Ben-Tal and
Nemirovski (1998, 1999) and El Ghaoui and Le-
bret (1997) the robust optimization framework is
computationally more efficient than the Monte
Carlo approach. This development in optimiza-
tion technology allows for efficiently solving
the robust version of the mean-variance opti-
mization problem in about the same time as
the classical mean-variance optimization prob-
lem. The technique explicitly uses the distri-
bution from the estimation process to find a
robust portfolio in one single optimization.
It thereby incorporates uncertainties of inputs
into a deterministic framework. The classical
portfolio optimization formulations such as the
mean-variance portfolio selection problem, the
maximum Sharpe ratio portfolio problem, and
the value-at-risk (VaR) portfolio problem all
have robust counterparts that can be solved in
roughly the same amount of time as the original
problem.8

Large Data Requirements
In classical mean-variance optimization, we
need to provide estimates of the expected re-
turns and covariances of all the securities in
the investment universe considered. Typically,
however, portfolio managers have reliable re-
turn forecasts for only a small subset of these
assets. This is probably one of the major rea-
sons why the mean-variance framework has not
been adopted by practitioners in general. It is
simply unreasonable for the portfolio manager
to produce good estimates of all the inputs re-
quired in classical portfolio theory.

We will see later in this entry that the Black-
Litterman model provides a remedy in that it
blends any views (this could be a forecast on
just one or a few securities, or all of them)
the investor might have with the market equi-
librium. When no views are present, the re-
sulting Black-Litterman expected returns are
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just the expected returns consistent with the
market equilibrium. Conversely, when the in-
vestor has views on some of the assets, the re-
sulting expected returns deviate from market
equilibrium.

SHRINKAGE ESTIMATION
It is well known since the seminal work by Stein
(1956) that biased estimators often yield better
parameter estimates than their generally pre-
ferred unbiased counterparts. In particular, it
can be shown that if we consider the problem of
estimating the mean of an N-dimensional mul-
tivariate normal variable (N > 2), X ∈ N (μ, �)
with known covariance matrix �, the sample
mean μ̂ is not the best estimator of the pop-
ulation mean μ in terms of the quadratic loss
function

L(μ, μ̂) = (μ − μ̂)′�−1(μ − μ̂)

For example, the so-called James-Stein shrink-
age estimator

μ̂J S= (1 − w)μ̂+wμ0ι

has a lower quadratic loss than the sample
mean, where

w = min
(

1,
N − 2

T(μ̂ − μ0ι)′�−1(μ̂ − μ0ι)

)

and ι = [1,1,. . .,1]′. Moreover, T is the number
of observations, and μ0 is an arbitrary number.
The vector μ0ι and the weight w are referred
to as the shrinkage target and the shrinkage
intensity (or shrinkage factor), respectively. Al-
though there are some choices of μ0 that are
better than others, what is surprising with this
result is that it could be any number! This fact
is referred to as the Stein paradox.

In effect, shrinkage is a form of averaging
different estimators. The shrinkage estimator
typically consists of three components: (1) an
estimator with little or no structure (like the
sample mean above); (2) an estimator with a
lot of structure (the shrinkage target); and (3)
the shrinkage intensity. The shrinkage target is

chosen with the following two requirements in
mind. First, it should have only a small num-
ber of free parameters (robust and with a lot of
structure). Second, it should have some of the
basic properties in common with the unknown
quantity being estimated. The shrinkage inten-
sity can be chosen based on theoretical proper-
ties or simply by numerical simulation.

Probably the most well-known shrinkage
estimator9 used to estimate expected returns
in the financial literature is the one proposed
by Jorion (1986) where the shrinkage target is
given by μgι with

μg = ι′�−1μ̂

ι′�−1ι

and

w = N + 2
N + 2 + T(μ̂ − μgι)′�−1(μ̂ − μgι)

We note that μg is the return on the GMV
portfolio. Several studies document that for the
mean-variance framework: (1) the variability in
the portfolio weights from one period to the
next decrease; and (2) the out-of-sample risk-
adjusted performance improves significantly
when using a shrinkage estimator as compared
to the sample mean.10

We can also apply the shrinkage technique
for covariance matrix estimation. This involves
shrinking an unstructured covariance estimator
toward a more structured covariance estimator.
Typically the structured covariance estimator
only has a few degrees of freedom (only a few
nonzero eigenvalues) as motivated by random
matrix theory.

For example, as shrinkage targets, Ledoit and
Wolf (2003, 2004) suggest using the covariance
matrix that follows from the single-factor model
developed by Sharpe (1963) or the constant
correlation covariance matrix.11 In practice the
single-factor model and the constant correlation
model yield similar results, but the constant cor-
relation model is much easier to implement. In
the case of the constant correlation model, the
shrinkage estimator for the covariance matrix
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takes the form

�̂LW = w�̂CC + (1 − w)�̂

where �̂ is the sample covariance matrix, and
�̂CC is the sample covariance matrix with con-
stant correlation. The sample covariance matrix
with constant correlation is computed as fol-
lows.

First, we decompose the sample covariance
matrix according to

�̂ = �C�′

where is � a diagonal matrix of the volatilities of
returns and C is the sample correlation matrix,
that is,

C =

⎡

⎢⎢⎢⎢⎣

1 ρ̂12 · · · ρ̂1N

ρ̂21
. . . . . .

...
...

. . . . . . ρ̂N−1N

ρ̂N1 · · · ρ̂NN−1 1

⎤

⎥⎥⎥⎥⎦

Second, we replace the sample correlation ma-
trix with the constant correlation matrix

CCC =

⎡

⎢⎢⎢⎢⎣

1 ρ̂ · · · ρ̂

ρ̂
. . . . . .

...
...

. . . . . . ρ̂

ρ̂ · · · ρ̂ 1

⎤

⎥⎥⎥⎥⎦

where ρ̂ is the average of all the sample corre-
lations, in other words

ρ̂ = 2
(N − 1)N

N∑

i=1

N∑

j=i+1

ρ̂ij

The optimal shrinkage intensity can be shown
to be proportional to a constant divided by the
length of the history, T.12

Ledoit and Wolf (2003, 2004) compare the
empirical out-of-sample performance of their
shrinkage covariance matrix estimators with
other covariance matrix estimators, such as the
sample covariance matrix, a statistical factor
model based on the first five principal compo-
nents, and a factor model based on the 48 in-
dustry factors as defined by Fama and French
(1997). The results indicate that when it comes

to computing a GMV portfolio, their shrinkage
estimators are superior compared to the others
tested, with the constant correlation shrinkage
estimator coming out slightly ahead. Interest-
ingly enough, it turns out that the shrinkage
intensity for the single-factor model (the shrink-
age intensity for the constant coefficient model
is not reported) is fairly constant throughout
time with a value around 0.8. This suggests that
there is about four times as much estimation
error present in the sample covariance matrix
as there is bias in the single-factor covariance
matrix.

THE BLACK-LITTERMAN
MODEL
In the Black-Litterman model an estimate of
future expected returns is based on combin-
ing market equilibrium (e.g., the CAPM equi-
librium) with an investor’s views. As we will
see, the Black-Litterman expected return is a
shrinkage estimator where market equilibrium
is the shrinkage target and the shrinkage in-
tensity is determined by the portfolio manger’s
confidence in the model inputs. We will make
this statement precise later in this section. Such
views are expressed as absolute or relative de-
viations from equilibrium together with confi-
dence levels of the views (as measured by the
standard deviation of the views).

The Black-Litterman expected return is calcu-
lated as a weighted average of the market equi-
librium and the investor’s views. The weights
depend on (1) the volatility of each asset and
its correlations with the other assets and (2) the
degree of confidence in each forecast. The re-
sulting expected return, which is the mean of
the posterior distribution, is then used as in-
put in the portfolio optimization process. Port-
folio weights computed in this fashion tend to
be more intuitive and less sensitive to small
changes in the original inputs (i.e., forecasts of
market equilibrium, investor’s views, and the
covariance matrix).
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The Black-Litterman model can be interpreted
as a Bayesian model. Named after the English
mathematician Thomas Bayes, the Bayesian ap-
proach is based on the subjective interpreta-
tion of probability. A probability distribution
is used to represent an investor’s belief on the
probability that a specific event will actually
occur. This probability distribution, called the
prior distribution, reflects an investor’s knowl-
edge about the probability before any data are
observed. After more information is provided
(e.g., data observed), the investor’s opinions
about the probability might change. Bayes’ rule
is the formula for computing the new proba-
bility distribution, called the posterior distri-
bution. The posterior distribution is based on
knowledge of the prior probability distribution
plus the new data. A posterior distribution of
expected return is derived by combining the
forecast from the empirical data with a prior
distribution.

The ability to incorporate exogenous in-
sight, such as a portfolio manager’s judgment,
into formal models is important: Such insight
might be the most valuable input used by the
model. The Bayesian framework allows fore-
casting systems to use such external informa-
tion sources and subjective interventions (i.e.,
modification of the model due to judgment) in
addition to traditional information sources such
as market data and proprietary data.

Because portfolio managers might not be
willing to give up control to a black box,
incorporating exogenous insights into formal
models through Bayesian techniques is one
way of giving the portfolio manager better
control in a quantitative framework. Forecasts
are represented through probability distribu-
tions that can be modified or adjusted to in-
corporate other sources of information deemed
relevant. The only restriction is that such ad-
ditional information (i.e., the investor’s views)
be combined with the existing model through
the laws of probability. In effect, incorporating
Bayesian views into a model allows one to ra-
tionalize subjectivity within a formal, quanti-

tative framework. “[T]he rational investor is a
Bayesian,” as Markowitz noted (1987, p. 57).

Derivation of the
Black-Litterman Model
The basic feature of the Black-Litterman model
that we discuss in this and the following sec-
tions is that it combines an investor’s views
with the market equilibrium. Let us under-
stand what this statement implies. In the clas-
sical mean-variance optimization framework
an investor is required to provide estimates
of the expected returns and covariances of all
the securities in the investment universe con-
sidered. This is of course a humongous task,
given the number of securities available today.
Portfolio and investment managers are very un-
likely to have a detailed understanding of all
the securities, companies, industries, and sec-
tors that they have at their disposal. Typically,
most of them have a specific area of expertise
that they focus on in order to achieve superior
returns.

This is probably one of the major reasons why
the mean-variance framework has not been
adopted among practitioners in general. It is
simply unrealistic for the portfolio manager to
produce reasonable estimates (besides the ad-
ditional problems of estimation error) of the in-
puts required in classical portfolio theory.

Furthermore, many trading strategies used
today cannot easily be turned into forecasts of
expected returns and covariances. In particu-
lar, not all trading strategies produce views on
absolute return, but rather just provide rela-
tive rankings of securities that are predicted
to outperform/underperform other securities.
For example, considering two stocks, A and B,
instead of the absolute view, “the one-month
expected return on A and B are 1.2% and 1.7%
with a standard deviation of 5% and 5.5%, re-
spectively,” a relative view may be of the form
“B will outperform A with half a percent over
the next month” or simply “B will outperform
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A over the next month.” Clearly, it is not an easy
task to translate any of these relative views into
the inputs required for the modern portfolio
theoretical framework. We now walk through
and illustrate the usage of the Black-Litterman
model in three simple steps.

Step 1: Basic Assumptions and
Starting Point
One of the basic assumptions underlying the
Black-Litterman model is that the expected re-
turn of a security should be consistent with
market equilibrium unless the investor has a
specific view on the security. In other words, an
investor who does not have any views on the
market should hold the market.13

Our starting point is the CAPM model:

E(Ri ) − Rf = βi (E(RM) − Rf )

where E(Ri), E(RM), and Rf are the expected re-
turn on security i, the expected return on the
market portfolio, and the risk-free rate, respec-
tively. Furthermore,

βi = cov(Ri , RM)
σ 2

M

where σ 2
M is the variance of the market port-

folio. Let us denote by wb = (wb1, . . ., wbN)′ the
market capitalization or benchmark weights, so
that with an asset universe of N securities14 the
return on the market can be written as

RM =
N∑

j=1

wb j Rj

Then by the CAPM, the expected excess re-
turn on asset i, �i = E(Ri) – Rf, becomes

�i = βi (E(RM) − Rf )

= cov(Ri , RM)
σ 2

M

(E(RM) − Rf )

= E(RM) − Rf

σ 2
M

N∑

j=1

cov(Ri , Rj )wb j

We can also express this in matrix-vector
form as

� = δ�w

where we define the market price of risk as

δ = E(RM) − Rf

σ 2
M

the expected excess return vector

� =

⎡

⎢⎣
�1
...

�N

⎤

⎥⎦

and the covariance matrix of returns

� =

⎡

⎢⎣
cov(R1, R1) · · · cov(R1, RN)

...
. . .

...
cov(RN, R1) · · · cov(RN, RN)

⎤

⎥⎦

The true expected returns μ of the securities
are unknown. However, we assume that our
previous equilibrium model serves as a reason-
able estimate of the true expected returns in the
sense that

� = μ + ε�, ε� ∼ N(0, τ�)

for some small parameter τ << 1. We can think
about τ� as our confidence in how well we can
estimate the equilibrium of expected returns. In
other words, a small τ implies a high confidence
in our equilibrium estimates and vice versa.

According to portfolio theory, because the
market portfolio is on the efficient frontier, as
a consequence of the CAPM an investor will
be holding a portfolio consisting of the market
portfolio and a risk-free instrument earning the
risk-free rate. But let us now see what happens
if an investor has a particular view on some of
the securities.

Step 2: Expressing an Investor’s Views
Formally, K views in the Black-Litterman model
are expressed as a K-dimensional vector q with

q = Pμ + εq , εq ∼ N(0,�)

where P is a K × N matrix (explained in the
following example) and � is a K × K matrix
expressing the confidence in the views. In order
to understand this mathematical specification
better, let us take a look at an example.
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Let us assume that the asset universe that we
consider has five stocks (N = 5) and that an
investor has the following two views:

1. Stock 1 will have a return of 1.5%.
2. Stock 3 will outperform Stock 2 by 4%.

We recognize that the first view is an absolute
view whereas the second one is a relative view.
Mathematically, we express the two views to-
gether as

[
1.5%
4%

]
=

[
1 0 0 0 0
0 −1 1 0 0

]

⎡

⎢⎢⎢⎢⎢⎣

μ1

μ2

μ3

μ4

μ5

⎤

⎥⎥⎥⎥⎥⎦
+

[
ε1

ε2

]

The first row of the P matrix represents the first
view, and similarly, the second row describes
the second view. In this example, we chose the
weights of the second view such that they add
up to zero, but other weighting schemes are
also possible. For instance, the weights could
also be chosen as some scaling factor times one
over the market capitalizations of the stock,
some scaling factor times one over the stock
price, or other variations thereof. We come
back to these issues later in this section when
we discuss how to incorporate time-series–
based strategies and cross-sectional ranking
strategies.

We also remark at this point that the error
terms ε1, ε2 do not explicitly enter into the
Black-Litterman model—but their variances do.
Quite simply, these are just the variances of
the different views. Although in some instances
they are directly available as a by-product of the
view or the strategy, in other cases they need to
be estimated separately. For example,

� =
[

1%2 0
0 1%2

]

corresponds to a higher confidence in the views,
and conversely,

� =
[

5%2 0
0 7%2

]

represents a much lower confidence in the
views. We discuss a few different approaches
in choosing the confidence levels below. The
off-diagonal elements of � are typically set to
zero. The reason for this is that the error terms
of the individual views are most often assumed
to be independent of one another.

Step 3: Combining an Investor’s Views with
Market Equilibrium
Having specified the market equilibrium and
an investor’s views separately, we are now
ready to combine the two. There are two differ-
ent, but equivalent, approaches that can be used
to arrive at the Black-Litterman model. We will
describe a derivation that relies upon standard
econometrical techniques, in particular, the so-
called mixed estimation technique described by
Theil (1971). The approach based on Bayesian
statistics has been explained in some detail by
Satchell and Scowcroft (2000).

Let us first recall the specification of market
equilibrium

� = μ + ε�, ε� ∼ N(0, τ�)

and the one for the investor’s views

q = Pμ + εq, εq ∼ N(0,�)

We can stack these two equations together in
the form

y = Xμ + ε, ε ∼ N(0, V)

where

y =
[

�

q

]
, X =

[
I
P

]
, V =

[
τ�

�

]

with I denoting the N × N identity matrix. We
observe that this is just a standard linear model
for the expected returns μ. Calculating the gen-
eralized least squares (GLS) estimator for μ, we
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obtain

μ̂BL = (X′V−1X)−1X′V−1y

=
(

[I P′]
[

(τ�)−1

�−1

] [
I
�

])−1

× [I P′]
[

(τ�)−1

�−1

] [
�

q

]

=
(

[I P′]
[

(τ�)−1

�−1P

])−1

[I P′]
[

(τ�)−1�

�−1q

]

= [(τ�)−1 + P′�−1P]−1
[
(τ�)−1� + P′�−1q

]

The last line in the above formula is the Black-
Litterman expected returns that blend the mar-
ket equilibrium with the investor’s views.

Some Remarks and Observations
Following are some comments in order to pro-
vide a better intuitive understanding of the
formula. We see that if the investor has no
views (that is, q = � = 0) or the confidence in
the views is zero, then the Black-Litterman ex-
pected return becomes μ̂BL = �. Consequently,
the investor will end up holding the market
portfolio as predicted by the CAPM. In other
words, the optimal portfolio in the absence of
views is the defined market.

If we were to plug return targets of zero or
use the available cash rates, for example, into
an optimizer to represent the absence of views,
the result would be an optimal portfolio that
looks very much different from the market. The
equilibrium returns are those forecasts that in
the absence of any other views will produce
an optimal portfolio equal to the market port-
folio. Intuitively speaking, the equilibrium re-
turns in the Black-Litterman model are used to
center the optimal portfolio around the market
portfolio.

By using q = Pμ + εq, we have that the
investor’s views alone imply the estimate
of expected returns μ̂ = (P′P)−1P′q. Since
P(P′P)−1P′ = I where I is the identity matrix,
we can rewrite the Black-Litterman expected
returns in the form

μ̂BL=
[
(τ�)−1+P′�−1P

]−1 [
(τ�)−1�+P′�−1Pμ̂

]

Now we see that the Black-Litterman ex-
pected return is a confidence weighted linear
combination of market equilibrium � and the
expected return μ̂ implied by the investor’s
views. The two weighting matrices are given
by

w� = [
(τ�)−1 + P′�−1P

]−1
(τ�)−1

wq = [
(τ�)−1 + P′�−1P

]−1
P′�−1P

where

w� = wq = I

In particular, (τ�)−1and P′�−1P represent the
confidence we have in our estimates of the
market equilibrium and the views, respectively.
Therefore, if we have low confidence in the
views, the resulting expected returns will be
close to the ones implied by market equilib-
rium. Conversely, with higher confidence in the
views, the resulting expected returns will de-
viate from the market equilibrium implied ex-
pected returns. We say that we tilt away from
market equilibrium.

It is straightforward to show that the Black-
Litterman expected returns can also be written
in the form

μ̂BL = � + τ�P′(� + τP�P′)−1(q − P�)

where we now immediately see that we tilt
away from the equilibrium with a vector pro-
portional to �P′(� + τP�P′)−1(q − P�).

We also mention that the Black-Litterman
model can be derived as a solution to the fol-
lowing optimization problem:

μ̂BL = arg min
μ

{
(� − μ)′ �−1 (� − μ)

+ τ (q − Pμ)′�−1(q − Pμ)
}

From this formulation we see that μ̂BL is chosen
such that it is simultaneously as close to �, and
Pμ is as close to q as possible. The distances
are determined by �−1 and �−1. Furthermore,
the relative importance of the equilibrium ver-
sus the views is determined by τ . For example,
for τ large the weight of the views is increased,
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whereas for τ small the weight of the equilib-
rium is higher. Moreover, we also see that τ is
a redundant parameter as it can be absorbed
into �.

It is straightforward to calculate the variance
of the Black-Litterman combined estimator of
the expected returns by the standard sandwich
formula, that is,

var(μ̂BL) = (X′V−1X)−1

= [
(τ�)−1 + P′�−1P

]−1

The most important feature of the Black-
Litterman model is that it uses the mixed
estimation procedure to adjust the entire mar-
ket equilibrium implied expected return vector
with an investor’s views. Because security re-
turns are correlated, views on just a few assets
will, due to these correlations, imply changes
to the expected returns on all assets. Mathemat-
ically speaking, this follows from the fact that
although the vector q can have dimension K <<

N, P′�−1 is an N × K matrix that propagates the
K views into N components, P′�−1q. This effect
is stronger the more correlated the different se-
curities are. In the absence of this adjustment
of the expected return vector, the differences
between the equilibrium expected return and
an investor’s forecasts will be interpreted as
an arbitrage opportunity by a mean-variance
optimizer and result in portfolios concentrated
in just a few assets (“corner solutions”). Intu-
itively, any estimation errors are spread out over
all assets, making the Black-Litterman expected
return vector less sensitive to errors in individ-
ual views. This effect contributes to the mitiga-
tion of estimation risk and error maximization
in the optimization process.

Practical Considerations and Extensions
In this subsection we discuss a few practi-
cal issues in using the Black-Litterman model.
Specifically, we discuss how to incorporate fac-
tor models and cross-sectional rankings in this
framework. Furthermore, we also provide some
ideas on how the confidences in the views can

be estimated in cases where these are not di-
rectly available.

It is straightforward to incorporate factor
models in the Black-Litterman framework. Let
us assume we have a factor representation of
the returns of some of the assets, that is

Ri = αi + Fβi + εi , i ∈ I

where I ⊂ {1, 2, . . . , N}. Typically, from a factor
model it is easy to obtain an estimate of the
residual variance, var(εi). In this case, we set

qi =
{

α + Fβ, i ∈ I
0, otherwise

and the corresponding confidence

ω2
ii =

{
var(εi ), i ∈ I
0, otherwise

The P matrix is defined by

pii =
{

1, i ∈ I
0, otherwise

pij = 0, i �= j

Of course in a practical implementation we
would omit rows with zeros.

Many quantitative investment strategies do
not a priori produce expected returns, but
rather just a simple ranking of the securities. Let
us consider a ranking of securities from best to
worst (from an outperforming to an underper-
forming perspective, etc.). For example, a value
manager might consider ranking securities in
terms of increasing book-to-price ratio (B/P),
where a low B/P would indicate an underval-
ued stock (potential to increase in value) and
high B/P an overvalued stock (potential to de-
crease in value). From this ranking we form a
long-short portfolio where we purchase the top
half of the stocks (the group that is expected to
outperform) and we sell short the second half
of stocks (the group that is expected to under-
perform). The view q in this case becomes a
scalar, equal to the expected return on the long-
short portfolio. The confidence of the view can
be decided from backtests, as we describe next.
Further, here the P matrix is a 1 × N matrix of
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ones and minus ones. The corresponding col-
umn component is set to one if the security be-
longs to the outperforming group, or minus one
if it belongs to the underperforming group.

In many cases we may not have a direct es-
timate of the expected return and confidence
(variance) of the view. There are several differ-
ent ways to determine the confidence level.

One of the advantages of a quantitative strat-
egy is that it can be backtested. In the case of
the long-short portfolio strategy discussed pre-
viously, we could estimate its historical vari-
ance through simulation with historical data.
Of course, we cannot completely judge the per-
formance of a strategy going forward from our
backtests. Nevertheless, the backtest methodol-
ogy allows us to obtain an estimate of the Black-
Litterman view and confidence for a particular
view/strategy.

Another approach of deriving estimates of
the confidence of the view is through sim-
ple statistical assumptions. To illustrate, let us
consider the second view in the preceding ex-
ample: “Stock 3 will outperform Stock 2 by 4%.”
If we don’t know its confidence, we can come
up with an estimate for it from the answers to a
few simple questions. We start asking ourselves
with what certainty we believe the strategy will
deliver a return between 3% and 5% (4% ± α

where α is some constant, in this case α = 1%).
Let us say that we believe there is a chance of
two out of three that this will happen, 2/3 ≈ 67%.
If we assume normality, we can interpret this as
a 67% confidence interval for the future return
to be in the interval [3%, 5%]. From this con-
fidence interval we calculate that the implied
standard deviation is equal to about 0.66%.
Therefore, we would set the Black-Litterman
confidence equal to (0.66%)2 = 0.43%.

Some extensions to the Black-Litterman
model have been derived. For example, Satchel
and Scowcroft (2000) propose a model where
an investor’s view on global volatility is incor-
porated in the prior views by assuming that
τ is unknown and stochastic. Idzorek (2005)
introduces a new idea for determining the

confidence level of a view. He proposes that
the investor derives his confidence level indi-
rectly by first specifying his confidence in the
tilt away from equilibrium (the difference be-
tween the market capitalization weights and the
weights implied by the view alone). Qian and
Gorman (2001) describe a technique based on
conditional distribution theory that allows an
investor to incorporate his views on any or all
variances.

Of course other asset classes beyond equities
and bonds can be incorporated into the Black-
Litterman framework.15 Some practical expe-
riences and implementation details have been
described by Bevan and Winkelman (1998) and
He and Litterman (1999). A Bayesian approach,
with some similarity to the Black-Litterman
model, to portfolio selection using higher mo-
ments has been proposed by Harvey et al.
(2010).

KEY POINTS
� Classical mean-variance optimization is sen-

sitive to estimation error and small changes
in the inputs.

� There are four different approaches to make
the classical mean-variance framework more
robust: (1) improve the accuracy of the inputs;
(2) use constraints for the portfolio weights;
(3) use portfolio resampling to calculate the
portfolio weights; and (4) apply the robust
optimization framework to the portfolio allo-
cation process.

� Typically, errors in the expected returns are
about 10 times more important than errors in
the covariance matrix, and errors in the vari-
ances are about twice as important as errors
in the covariances.

� Estimates of expected return and covariances
can be improved by using shrinkage esti-
mation. Shrinkage is a form of averaging
different estimators. The shrinkage estimator
typically consists of three components: (1)
an estimator with little or no structure; (2) an
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estimator with a lot of structure (the shrink-
age target); and (3) the shrinkage intensity.

� Jorion’s shrinkage estimator for the expected
return shrinks toward the return of the global
minimum variance portfolio.

� The sample covariance matrix should not be
used as an input to the mean-variance prob-
lem. By shrinking it toward the covariance
matrix with constant correlations, its quality
will be improved.

� The Black-Litterman model combines an in-
vestor’s views with the market equilibrium.

� The Black-Litterman expected return is a con-
fidence weighted linear combination of mar-
ket equilibrium and the investor’s views. The
confidence in the views and in market equi-
librium determines the relative weighting.

� Factor models as well as simple ranking mod-
els can be simultaneously incorporated into
the Black-Litterman model.

NOTES
1. See Broadie (1993).
2. We are grateful to Axioma Inc. for provid-

ing us with this example. Previously, it has
appeared in Ceria and Stubbs (2005).

3. See Best and Grauer (1991, 1992).
4. See Chopra and Ziemba (1993) and Kallberg

and Ziemba (1984).
5. See, for example, Frost and Savarino (1988),

Chopra (1991), and Grauer and Shen (2000).
6. The relationship to information theory is

based upon the premise that the diversifi-
cation indicators are generalized entropies.
See Curado and Tsallis (1991).

7. See, for example, Michaud (1998), Jorion
(1992), and Scherer (2002).

8. See Goldfarb and Iyengar (2003).
9. Many similar approaches have been pro-

posed. For example, see Jobson and Korkie
(1981) and Frost and Savarino (1986).

10. See, for example, Michaud (1998), Jorion
(1986), and Larsen and Resnick (2001).

11. Elton, Gruber, and Urich (1978) proposed
the single factor model for purposes of co-

variance estimation. They show that this ap-
proach leads to (1) better forecasts of the
covariance matrix; (2) more stable portfolio
allocations over time; and (3) more diversi-
fied portfolios. They also find that the aver-
age correlation coefficient is a good forecast
of the future correlation matrix.

12. Although straightforward to implement,
the optimal shrinkage intensity, w, is a bit
tedious to write down mathematically. Let
us denote by ri,t the return on security i dur-
ing period t, 1 ≤ i ≤ N, 1 ≤ t ≤ T,

r̄i = 1
T

T∑

t=1

ri,t and

σ̂ij = 1
T − 1

T∑

t=1

(ri,t − r̄i )(ri,t − r̄i )

Then the optimal shrinkage intensity is
given by the formula

w = max
{

0, min
{

κ̂

T
, 1

}}

where

κ̂ = π̂ − ĉ
γ̂

and the parameters, π̂ , ĉ, ŷ, are computed
as follows. First, π̂ is given by

π̂ =
N∑

i, j=1

π̂ij

where

π̂ij = 1
T

T∑

t= j

((ri,t − r̄i )(r j,t − r̄ j ) − σ̂ij)2

Second, ĉ is given by

ĉ =
N∑

i=1

π̂ii

+
N∑

i=1
i �= j

ρ̂

2

(√
ρ̂ii/ρ̂iiϑ̂ii,jj +

√
ρ̂ii/ρ̂iiϑ̂jj,ii

)
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where

ϑii,jj = 1
T

T∑

t=1

[(
(ri,t − r̄i )2 − σ̂ii

)

× (
(ri,t − r̄i )(r j,t − r̄i ) − σ̂ij

)]

Finally, γ̂ is given by

γ̂ = ||C − CCC||2F
where || · ||F denotes the Frobenius norm
defined by

||A||F =
√√√√

N∑

i, j=1

a2
ij

13. A predecessor to the Black-Litterman model
is the so-called Treynor-Black model. In this
model, an investor’s portfolio is shown to
consist of two parts: (1) a passive portfolio/
positions held purely for the purpose of
mimicking the market portfolio, and (2)
an active portfolio/positions based on the
investor’s return/risk expectations. This
somewhat simpler model relies on the
assumption that returns of all securities
are related only through the variation of
the market portfolio (Sharpe’s diagonal
model). See Treynor and Black (1973).

14. For simplicity, we consider only equity
securities. Extending this model to other
assets classes such as bonds and currencies
is fairly straightforward.

Two comments about the above two rela-
tionships are of importance:
1. As it may be difficult to accurately esti-

mate expected returns, practitioners use
other techniques. One is that of reverse
optimization, also referred to as the tech-
nique of implied expected returns. The
technique simply uses the expression
� = δ�w to calculate the expected re-
turn vector given the market price of risk
δ, the covariance matrix �, and the mar-
ket capitalization weights w. The tech-
nique was first introduced by Sharpe
(1974) and Fisher (1975) and is an impor-

tant component of the Black-Litterman
model.

2. We note that E(RM) – Rf is the market
risk premium (or the equity premium)
of the universe of assets considered. As
pointed out by Herold (2005) and Id-
zorek (2005), using a market proxy with
different risk-return characteristics than
the market capitalization weighted port-
folio for determining the market risk pre-
mium may lead to nonintuitive expected
returns. For example, using a market risk
premium based on the S&P 500 for cal-
culating the implied equilibrium return
vector for the NASDAQ 100 should be
avoided.

15. See, for example, Black and Litterman
(1992) and Litterman (2003).
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Abstract: The value of any financial asset is the present value of its expected future cash flows.
To value a bond, one must be able estimate the bond’s remaining cash flows and identify the
appropriate discount rate(s). The traditional approach to bond valuation is to discount every
cash flow with the same discount rate. Simply put, the relevant yield curve used in valuation is
assumed to be flat. This approach permits opportunities for arbitrage. Alternatively, the arbitrage-
free valuation approach starts with the premise that a bond should be viewed as a portfolio or
package of zero-coupon bonds. Moreover, each of the bond’s cash flows is valued using a unique
discount rate that depends on the shape of the yield curve and when the cash flow is delivered in
time. The relevant set of discount rates (that is, spot rates) is derived from the Treasury yield curve
and when used to value risky bonds augmented with a spread.

Valuation is the process of determining the fair
value of a financial asset. In this entry, we will
explain the general principles of bond valua-
tion. Our focus will be on how to value option-
free bonds (that is, bonds that are not callable,
putable, or convertible). A special analytical
framework is required to value more complex
bond structures such as bonds that are callable
or putable and mortgage-backed and certain
asset-backed securities.

GENERAL PRINCIPLES OF
BOND VALUATION
The fundamental principle of valuation is that
the value of any financial asset is equal to the
present value of its expected future cash flows.

This principle holds for any financial asset from
zero-coupon bonds to interest rate swaps. Thus,
the valuation of a financial asset involves the
following three steps:

Step 1: Estimate the expected future cash flows.
Step 2: Determine the appropriate interest rate

or interest rates that should be used to dis-
count the cash flows.

Step 3: Calculate the present value of the ex-
pected future cash flows found in Step 1 by
using the appropriate interest rate or interest
rates determined in Step 2.

Estimating Cash Flows
Cash flow is simply the cash that is expected
to be received in the future from owning a
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financial asset. For a fixed income security, it
does not matter whether the cash flow is interest
income or repayment of principal. A security’s
cash flows represent the sum of each period’s
expected cash flow. Even if we disregard de-
fault, the cash flows for only a few fixed income
securities are simple to forecast accurately. U.S.
Treasury securities possess this feature since
they have known cash flows. While the prob-
ability of default of the U.S. government is not
zero, it is close enough to that threshold to be
safely ignored. Besides, if the U.S. government
ever does default, we will have other things to
worry about than valuing bonds. For Treasury
coupon securities, the cash flows consist of the
coupon interest payments every six months up
to and including the maturity date and the prin-
cipal repayment at the maturity date.

Many fixed income securities have features
that make estimating their cash flows problem-
atic. These features may include one or more of
the following:

1. The issuer or the investor has the option to
change the contractual due date of the repay-
ment of the principal.

2. The coupon and/or principal payment is re-
set periodically based on a formula that de-
pends on one or more market variables (e.g.,
interest rates, inflation rates, exchange rates,
etc.).

3. The investor has the choice to convert or ex-
change the security into common stock or
some other financial asset.

Callable bonds, putable bonds, mortgage-
backed securities, and asset-backed securities
are examples of (1). Floating-rate securities and
Treasury Inflation Protected Securities (TIPS)
are examples of (2). Convertible bonds and ex-
changeable bonds are examples of (3).1

For securities that fall into the first category,
a key factor determining whether the owner of
the option (either the issuer of the security or
the investor) will exercise the option to alter the
security’s cash flows is the level of interest rates

in the future relative to the security’s coupon
rate. In order to estimate the cash flows for these
types of securities, we must determine how the
size and timing of their expected cash flows will
change in the future. For example, when esti-
mating the future cash flows of a callable bond,
we must account for the fact that when interest
rates change, the expected cash flows change.
This introduces an additional layer of complex-
ity to the valuation process. For bonds with
embedded options, estimating cash flows is ac-
complished by introducing a parameter that re-
flects the expected volatility of interest rates.

Determining the Appropriate
Interest Rate or Rates
Once we estimate the cash flows for a fixed in-
come security, the next step is to determine the
appropriate interest rate for discounting each
cash flow. Before proceeding, we pause here
to note that we will use the terms “interest
rate,” “discount rate,” and “required yield” in-
terchangeably throughout this entry. The inter-
est rate used to discount a particular security’s
cash flows will depend on three basic factors:
(1) the level of benchmark interest rates (that is,
U.S. Treasury rates); (2) the risks that the mar-
ket perceives the securityholder is exposed to;
and (3) the compensation the market expects to
receive for these risks.

The minimum interest rate that an investor
should require is the yield available in the mar-
ketplace on a default-free cash flow. For bonds
with dollar-denominated cash flows, yields on
U.S. Treasury securities serve as benchmarks for
default-free interest rates. For now, we can think
of the minimum interest rate that investors re-
quire as the yield on a comparable maturity
Treasury security.

The additional compensation or spread over
the yield on the Treasury issue that investors
will require reflects the additional risks the in-
vestor faces by acquiring a security that is not
issued by the U.S. government. These risks in-
clude default risk, liquidity risk, and the risks
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associated with any embedded options. These
yield spreads will depend not only on the risks
an individual issue is exposed to but also on
the level of Treasury yields, the market’s risk
aversion, the business cycle, and so forth.

For each cash flow estimated, the same in-
terest rate can be used to calculate the present
value. This is the traditional approach to val-
uation and it serves as a useful starting point
for our discussion. We discuss the traditional
approach in the next section and use a single
interest rate to determine present values. By do-
ing this, however, we are implicitly assuming
that the yield curve is flat. Since the yield curve
is almost never flat and a coupon bond can be
thought of as a package of zero-coupon bonds,
it is more appropriate to value each cash flow
using an interest rate specific to that cash flow.
After the traditional approach to valuation is
discussed, we will explain the proper approach
to valuation using multiple interest rates and
demonstrate why this must be the case.

Discounting the Expected
Cash Flows
Once the expected (estimated) cash flows and
the appropriate interest rate or interest rates
that should be used to discount the cash flows
are determined, the final step in the valuation
process is to value the cash flows. The present
value of an expected cash flow to be received t
years from now using a discount rate i is:

Present valuet = Expected cash flow in periodt

(1 + i)t

The value of a financial asset is then the sum of
the present value of all the expected cash flows.
Specifically, assuming that there are N expected
cash flows:

Value = Present value1 + Present value2 + · · ·
+Present valueN

Determining a Bond’s Value
Determining a bond’s value involves comput-
ing the present value of the expected future cash
flows using a discount rate that reflects market
interest rates and the bond’s risks. A bond’s
cash flows come in two forms—coupon inter-
est payments and the repayment of principal at
maturity. In practice, many bonds deliver semi-
annual cash flows. Fortunately, this does not
introduce any complexities into the calculation.
Two simple adjustments are needed. First, we
adjust the coupon payments by dividing the an-
nual coupon payment by 2. Second, we adjust
the discount rate by dividing the annual dis-
count rate by 2. The time period t in the present
value expression is treated in terms of 6-month
periods as opposed to years.

To illustrate the process, let’s value a 4-year,
6% coupon bond with a maturity value of $100.
The coupon payments are $3 (0.06 × $100/2)
every six months for the next eight periods. In
addition, on the maturity date, the investor re-
ceives the repayment of principal ($100). The
value of a nonamortizing bond can be divided
in two components: (1) the present value of the
coupon payments (that is, an annuity) and (2)
the present value of the maturity value (that is,
a lump sum). Therefore, when a single discount
rate is employed, a bond’s value can be thought
of as the sum of two present values—an annuity
and a lump sum.

The adjustment for the discount rate is easy to
accomplish but tricky to interpret. For example,
if an annual discount rate of 6% is used, how
do we obtain the semiannual discount rate? We
will simply use one-half the annual rate, 3.0%
(6%/2). How can this be? A 3.0% semiannual
rate is not a 6% effective annual rate. As we
will see later in this entry, the convention in the
bond market is to quote annual interest rates
that are just double the semiannual rates. This
convention will be explained more fully later
when we discuss yield to maturity. For now,
accept on faith that one-half the discount rate
is used as a semiannual discount rate in the
balance of the entry.
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We now have everything in place to value a
semiannual coupon-paying bond. The present
value of an annuity is equal to:

Annuity payment ×

⎡

⎢⎢⎣

1 − 1
(1 + r )no. of years

r

⎤

⎥⎥⎦

where r is the annual discount rate.
Applying this formula to a semiannual-pay

bond, the annuity payment is one half the an-
nual coupon payment and the number of peri-
ods is double the number of years to maturity.
Accordingly, the present value of the coupon
payments can be expressed as:

Semiannual coupon payment

×

⎡

⎢⎢⎣

1 − 1
(1 + i)no. of years×2

i

⎤

⎥⎥⎦

where i is the semiannual discount rate (r/2).
Notice that in the formula, for the number of pe-
riods we use the number of years multiplied by
2 since a period in our illustration is six months.

The present value of the maturity value is just
the present value of a lump sum and is equal
to:

Present value of the maturity value

= $100
(1 + i)No. of years×2

We will illustrate the calculation by valuing
our 4-year, 6% coupon bond assuming that the
relevant discount rate is 7%. The data are sum-
marized below:

Semiannual coupon payment = $3 (per $100 of
par value)
Semiannual discount rate (i) = 3.5% (7%/2)
Number of years to maturity= 4

The present value of the coupon payments is:

$3 ×

⎡

⎢⎢⎣
1 − 1

(1.035)4×2

0.035

⎤

⎥⎥⎦ = $20.6219

This number tells us that the coupon payments
contribute $20.6219 to the bond’s value.

The present value of the maturity value is:

Present value of the maturity value = $100
(1.035)4×2

= $75.9412

This number ($75.9412) tells us how much the
maturity value contributes to the bond’s value.
The bond’s value is then $96.5631 ($20.6219 +
$75.9412). The price is less than par value and
the bond is said to be trading at a discount.
This will occur when the fixed coupon rate a
bond offers (6%) is less than the required yield
demanded by the market (the 7% discount rate).
A discount bond has an inferior coupon rate
relative to new comparable bonds being issued
at par so its price must drop so as to offer the
required yield of 7%. If the discount bond is
held to maturity, the investor will experience a
capital gain that just offsets the lower current
coupon rate so that it appears equally attractive
to new comparable bonds issued at par.

Suppose instead of a 7% discount rate, a 5%
discount rate is used. This discount rate is less
than the coupon rate on the bond (6%). It can
be shown that the present value of the coupon
payments is $21.5104 and the present value of
the maturity value is $82.0747. Thus, the bond’s
value in this case is $103.5851. That is, the price
is greater than par value and the bond is said
to be trading at a premium. This will occur
when the fixed coupon rate a bond offers (6%)
is greater than the required yield demanded by
the market (the 5% discount rate). Accordingly,
a premium bond carries a higher coupon rate
than new bonds (otherwise the same) being is-
sued today at par so the price will be bid up
and the required yield will fall until it equals
5%. If the premium bond is held to maturity,
the investor will experience a capital loss that
just offsets the benefits of the higher coupon
rate so that it will appear equally attractive to
new comparable bonds issued at par.

Finally, let’s suppose that the discount rate is
equal to the coupon rate. That is, suppose that
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the discount rate is 6%. It can be shown that
the present value of the coupon payments is
$21.0591 and the present value of the maturity
value is $78.9409. Thus, the bond’s value in this
case is $100 or par value. Thus, when a bond’s
coupon rate is equal to the discount rate, the
bond will trade at par value. Note that the pre-
ceding statement is strictly true only when a
bond is valued on its coupon payment dates.

Valuing a Zero-Coupon Bond
For a zero-coupon bond, there is only one cash
flow—the repayment of principal at maturity.
The value of a zero-coupon bond that matures
N years from now is:

Maturity value
(1 + i)N×2

where i is the semiannual discount rate.
The expression presented above states that

the price of a zero-coupon bond is simply
the present value of the maturity value. In the
present value computation, why is the number
of periods used for discounting rather than the
number of years to the bond’s maturity when
there are no semiannual coupon payments? We
do this in order to make the valuation of a zero-
coupon bond consistent with the valuation of
a coupon bond. In other words, both coupon
and zero-coupon bonds are valued using semi-
annual discounting rates.

To illustrate, the value of a 10-year zero-
coupon bond with a maturity value of $100 dis-
counted at a 6.4% interest rate is $53.2606, as
presented below:

i = 0.032 = (0.064/2)
N = 10

$100
(1.032)10×2 = $53.2606

Valuing a Bond between Coupon Payments
In our discussion of bond valuation to this
point, we have assumed that the bonds are val-
ued on their coupon payment dates (that is, the
next coupon payment is one full period away).

For bonds with semiannual coupon payments,
this occurs only twice a year. Our task now is
to describe how bonds are valued on the other
363 days (or 364 days) of the year.

In order to value a bond with a settlement
date between coupon payments, we must an-
swer three questions. First, how many days are
there until the next coupon payment date? The
answer depends on the day count convention
for the bond being valued. Second, how should
we compute the present value of the cash flows
received over the fractional period? Third, how
much must the buyer compensate the seller for
the coupon earned over the fractional period?
This amount is accrued interest. We will answer
these three questions in order to determine the
full price and the clean price of a coupon bond.
For a more detailed discussion of these issues
for not only U.S. bonds but bonds traded in
other countries, see Krgin (2002).

Computing the Full Price When valuing a bond
purchased with a settlement date between
coupon payment dates, the first step is to de-
termine the fractional periods between the set-
tlement date and the next coupon date. Using
the appropriate day count convention, this is
determined as follows:

w periods =
Days between settlement date

and next coupon payment date
Days in the coupon period

Then the present value of each expected fu-
ture cash flow to be received t periods from
now using a discount rate i assuming the next
coupon payment is w periods from now (settle-
ment date) is:

Present valuet = Expected cash flow
(1 + i)t−1+w

Note for the first coupon payment subsequent
to the settlement date, t = 1 so the exponent
is just w. This procedure for calculating the
present value when a bond is purchased be-
tween coupon payments is called the “Street
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method.” In the Street method, as can be seen
in the previous expression, coupon interest is
compounded over the fractional period w.2

To illustrate the calculation, suppose that a
U.S. Treasury note maturing on December 31,
2007, was purchased with a settlement date of
November 22, 2006. This note’s coupon rate
was 4.375 and it had coupon payment dates of
June 30 and December 31. As a result, the next
coupon payment was December 31, 2006, while
the previous coupon payment was paid on June
30, 2006. There were three cash flows remain-
ing and they were to be delivered on December
31, 2006, June 30, 2007, and December 31, 2007.
The final cash flow represented the last coupon
payment and the maturity value of $100. Also
assume the following:

1. Actual/actual day count convention
2. 39 days between the settlement date and the

next coupon payment date
3. 184 days in the coupon period

Then w is 0.2120 periods (39/184). The present
value of each cash flow assuming that each is
discounted at a 4.9% annual discount rate is

Period 1: Present value1 = $2.1875
(1.0245)0.2120

= $2.1761

Period 2: Present value2 = $2.1875
(1.0245)1.2120

= $2.1243

Period 3: Present value3 = $102.1875
(1.0245)2.2120

= $96.8498

The sum of the present values of the cash flows
is $101.1502. This price is referred to as the full
price (or the dirty price).

It is the full price the bond’s buyer pays the
seller at delivery. However, the very next cash
flow received and included in the present value
calculation was not earned by the bond’s buyer.
A portion of the next coupon payment is the ac-
crued interest. Accrued interest is the portion of
a bond’s next coupon payment that the bond’s

seller is entitled to depending on the amount of
time the bond was held by the seller. Recall that
the buyer recovers the accrued interest when
the next coupon payment is delivered.

Computing the Accrued Interest and the Clean
Price The last step in this process is to find the
bond’s value without accrued interest (called
the clean price or simply price). To do this, the
accrued interest must be computed. The first
step is to determine the number of days in
the accrued interest period (that is, the num-
ber of days between the last coupon payment
date and the settlement date) using the appro-
priate day count convention. For ease of ex-
position, we will assume in the example that
follows that the actual/actual calendar is used.
We will also assume there are only two bond-
holders in a given coupon period—the buyer
and the seller.

As an illustration, we return to the previous
example with the 4.375% coupon Treasury note.
Since there were 184 days in the coupon period
and 39 days from the settlement date to the next
coupon period, there were 145 days (184−39)
in the accrued interest period. Therefore, the
percentage of the next coupon payment that is
accrued interest is:

145
184

= 0.7880 = 78.80%

Of course, this is the same percentage found by
simply subtracting w from 1. In our example, w
was 0.2120. Then, 1 − 0.2120 = 0.7880.

Given the value of w, the amount of accrued
interest (AI) is equal to:

AI = Semiannual coupon payment × (1 − w)

Accordingly, using a 4.375 Treasury note with a
settlement date of November 22, 2006, the por-
tion of the next coupon payment that was ac-
crued interest was:

$2.1875 × (1 − 0.7880) = $1.7238 (per $100 of

par value)

Once we know the full price and the accrued
interest, we can determine the clean price. The
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clean price is the price quoted in the market and
represents the bond’s value to the new bond-
holder. The clean price is computed as follows:

Clean price = Full price − Accrued interest

In our illustration, the clean price is:

$99.43 = $101.1502 − $1.7238

Note that in computing the full price, the
present value of the next coupon payment is
computed. However, the buyer pays the seller
the accrued interest now despite the fact that
it will not be recovered until the next coupon
payment date. To make this concrete, suppose
one sells a bond such that the settlement date is
halfway between the coupon payment dates. In
this case w = 0.50. Accordingly, the seller will
be entitled to one-half of the next coupon pay-
ment which would not otherwise be received
for another three months. Thus, when calculat-
ing the clean price, we subtract “too much” ac-
crued interest—one-half the coupon payment
rather than the present value of one-half the
coupon payment. Of course, this is the mar-
ket convention for calculating accrued interest
but it does introduce a curious twist in bond
valuation.

The Price/Discount Rate
Relationship
An important general property of present value
is that the higher (lower) the discount rate, the
lower (higher) the present value. Since the value
of a security is the present value of the expected
future cash flows, this property carries over
to the value of a security: The higher (lower)
the discount rate, the lower (higher) a secu-
rity’s value. We can summarize the relationship
between the coupon rate, the required market
yield, and the bond’s price relative to its par
value as follows:

Coupon rate = Yield required by market
⇒ Price = Par value

Coupon rate < Yield required by market
⇒ Price < Par value (discount)

Coupon rate > Yield required by market
⇒ Price > Par value (premium)

This agrees with what we found for the 4-year,
6% coupon bond:

Coupon
Rate

Yield
Required by

Market Price
Bond

Trading at

6% 7% $96.5631 Discount
6% 5% $103.5851 Premium
6% 6% $100.0000 Par

Figure 1 depicts this inverse relationship be-
tween an option-free bond’s price and its dis-
count rate (that is, required yield). There are
two things to infer from the price/discount rate
relationship depicted in the figure. First, the re-
lationship is downward sloping. This is simply
the inverse relationship between present values
and discount rates at work. Second, the rela-
tionship is represented as a curve rather than a
straight line. In fact, the shape of the curve in
Figure 1 is referred to as convex. By convex, it
simply means the curve is “bowed in” relative
to the origin. This second observation raises two
questions about the convex or curved shape of
the price/discount rate relationship. First, why
is it curved? Second, what is the import of the
curvature?

Price

Discount rate

Figure 1 Price/Discount Rate Relationship for
an Option-Free Bond
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The answer to the first question is mathemat-
ical. The answer lies in the denominator of the
bond pricing formula. Since we are raising one
plus the discount rate to powers greater than
one, it should not be surprising that the rela-
tionship between the level of the price and the
level of the discount rate is not linear.

As for the importance of the curvature to
bond investors, let’s consider what happens to
bond prices in both falling and rising inter-
est rate environments. First, what happens to
bond prices as interest rates fall? The answer
is obvious—bond prices rise. How about the
rate at which they rise? If the price/discount
rate relationship was linear, as interest rates fell,
bond prices would rise at a constant rate. How-
ever, the relationship is not linear, it is curved
and curved inward. Accordingly, when interest
rates fall, bond prices increase at an increasing
rate. Now, let’s consider what happens when
interest rates rise. Of course, bond prices fall.
How about the rate at which bond prices fall?
Once again, if the price/discount rate relation-
ship were linear, as interest rates rose, bond
prices would fall at a constant rate. Since it
curved inward, when interest rates rise, bond
prices decrease at a decreasing rate.

Time Path of Bond
As a bond moves towards its maturity date,
its value changes. More specifically, assuming
that the discount rate does not change, a bond’s
value:

1. Decreases over time if the bond is selling at
a premium.

2. Increases over time if the bond is selling at a
discount.

3. Is unchanged if the bond is selling at par
value.

With respect to the last property, we are assum-
ing the bond is valued on its coupon anniver-
sary dates.

At the maturity date, the bond’s value is equal
to its par or maturity value. So, as a bond’s

maturity approaches, the price of a discount
bond will rise to its par value and a premium
bond will fall to its par value—a characteristic
sometimes referred to as pull to par value.

ARBITRAGE-FREE BOND
VALUATION
The traditional approach to valuation is to dis-
count every cash flow of a fixed income secu-
rity using the same interest or discount rate.
The fundamental flaw of this approach is that it
views each security as the same package of cash
flows. For example, consider a 5-year U.S. Trea-
sury note with a 6% coupon rate. The cash flows
per $100 of par value would be 9 payments of
$3 every six months and $103 ten 6-month pe-
riods from now. The traditional practice would
discount every cash flow using the same dis-
count rate regardless of when the cash flows
are delivered in time and the shape of the yield
curve. Finance theory tells us that any security
should be thought of as a package or portfolio
of zero-coupon bonds.

The proper way to view the 5-year 6% coupon
Treasury note is as a package of zero-coupon in-
struments whose maturity value is the amount
of the cash flow and whose maturity date co-
incides with the date the cash flow is to be re-
ceived. Thus, the 5-year 6% coupon Treasury
issue should be viewed as a package of 10
zero-coupon instruments that mature every six
months for the next five years. This approach
to valuation does not allow a market partici-
pant to realize an arbitrage profit by breaking
apart or “stripping” a bond and selling the in-
dividual cash flows (that is, stripped securities)
at a higher aggregate value than it would cost
to purchase the security in the market. Simply
put, arbitrage profits are possible when the sum
of the parts is worth more than the whole or
vice versa. Because this approach to valuation
precludes arbitrage profits, we refer to it as the
arbitrage-free valuation approach.

By viewing any security as a package of
zero-coupon bonds, a consistent valuation
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framework can be developed. Viewing a secu-
rity as a package of zero-coupon bonds means
that two bonds with the same maturity and
different coupon rates are viewed as different
packages of zero-coupon bonds and valued ac-
cordingly. Moreover, two cash flows that have
identical risk delivered at the same time will
be valued using the same discount rate even
though they are attached to two different bonds.

To implement the arbitrage-free approach it is
necessary to determine the theoretical rate that
the U.S. Treasury would have to pay on a zero-
coupon Treasury security for each maturity. We
say “theoretical” because other than U.S. Trea-
sury bills, the Treasury does not issue zero-
coupon bonds. Zero-coupon Treasuries are,
however, created by dealer firms. The name
given to the zero-coupon Treasury rate is the
(Treasury) spot rate. Our next task is to explain
how the Treasury spot rate can be calculated.

Theoretical Spot Rates
The theoretical spot rates for Treasury securities
represent the appropriate set of interest or dis-
count rates that should be used to value default-
free cash flows. A default-free theoretical spot
rate can be constructed from the observed Trea-
sury yield curve or par curve. We will begin our
quest of how to estimate spot rates with the par
curve.

Par Rates
The raw material for all yield curve analysis is
the set of yields on the most recently issued
(that is, on-the-run) Treasury securities. The
U.S. Treasury routinely issues 10 securities—the
1-month, 3-month, 6-month, and 1-year bills
and the 2-, 3-, 5-, 7-, and 10-year notes, and
a 30-year bond. These on-the-run Treasury is-
sues are default risk-free and trade in one of
the most liquid and efficient secondary markets
in the world. Because of these characteristics,
historically Treasury yields serve as a reference
benchmark for risk-free rates which are used for

pricing other securities. However, other bench-
marks such as the swap curve are now used but
the principles of valuation remain unchanged.

In practice, however, the observed yields for
the on-the-run Treasury coupon issues are not
usually used directly. Instead, the coupon rate
is adjusted so that the price of the issue would
be the par value. Accordingly, the par yield
curve is the adjusted on-the-run Treasury yield
curve where coupon issues are at par value and
the coupon rate is therefore equal to the yield to
maturity. The exception is for the 6-month Trea-
sury bills; the bond-equivalent yield for this is-
sue is already the spot rate.

Deriving a par curve from a set of points start-
ing with the yield on the 6-month bill and end-
ing the yield on the 30-year bond is not a trivial
matter. The end result is a curve that tells us “if
the Treasury were to issue a security today with
a maturity equal to say 12 years, what coupon
rate would the security have to pay in order
to sell at par?” Some analysts contend that es-
timating the par curve with only the yields of
the on-the-run Treasuries uses too little infor-
mation that is available from the market. In
particular, one must estimate the back-end of
the yield curve with only one security, that is,
the 30-year bond. Some analysts prefer to use
the on-the-run Treasuries and selected off-the-
run Treasuries.

In summary, a par rate is the average dis-
count rate of many cash flows (those of a par
bond) over many periods. This begs the ques-
tion, “the average of what?” As we will see, par
rates are complicated averages of the implied
spot rates. Thus, in order to uncover the spot
rates, we must find a method to “break apart”
the par rates. There are several approaches that
are used in practice.3 The approach that we de-
scribe below for creating a theoretical spot rate
curve is called bootstrapping.

Bootstrapping the Spot Rate Curve
Bootstrapping begins with the par curve. To il-
lustrate bootstrapping, we will use the Treasury
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Table 1 Hypothetical Treasury Par Yield Curve

Period Years

Annual
Yield to

Maturity
(BEY)
(%)* Price

Spot
Rate

(BEY)
(%)*

1 0.5 3.00 — 3.0000
2 1.0 3.30 — 3.3000
3 1.5 3.50 100.00 3.5053
4 2.0 3.90 100.00 3.9164
5 2.5 4.40 100.00 4.4376
6 3.0 4.70 100.00 4.7520
7 3.5 4.90 100.00 4.9622
8 4.0 5.00 100.00 5.0650
9 4.5 5.10 100.00 5.1701

10 5.0 5.20 100.00 5.2772
11 5.5 5.30 100.00 5.3864
12 6.0 5.40 100.00 5.4976
13 6.5 5.50 100.00 5.6108
14 7.0 5.55 100.00 5.6643
15 7.5 5.60 100.00 5.7193
16 8.0 5.65 100.00 5.7755
17 8.5 5.70 100.00 5.8331
18 9.0 5.80 100.00 5.9584
19 9.5 5.90 100.00 6.0863
20 10.0 6.00 100.00 6.2169

∗The yield to maturity and the spot rate are annual rates.
They are reported as bond-equivalent yields. To obtain
the semiannual yield or rate, one half the annual yield
or annual rate is used.

par curve shown in Table 1. The par yield curve
shown extends only out to 10 years. Our ob-
jective is to show how the values in the last
column of the table (labeled “Spot Rate”) are
obtained. Throughout the analysis and illustra-
tions to come, it is important to remember the
basic principle is that the value of the Treasury
coupon security should be equal to the value of
the package of zero-coupon Treasury securities
that duplicates the coupon bond’s cash flows.

The key to this process is the existence of the
Treasury strips market. A government securi-
ties dealer has the ability to take apart the cash
flows of a Treasury coupon security (that is,
strip the security) and create zero-coupon secu-
rities. These zero-coupon securities, which are
called Treasury strips, can be sold to investors.
At what interest rate or yield can these Trea-
sury strips be sold to investors? The answer is

they can be sold at the Treasury spot rates. If the
market price of a Treasury security is less than
its value after discounting with spot rates (that
is, the sum of the parts is worth more than the
whole), then a dealer can buy the Treasury se-
curity, strip it, and sell off the Treasury strips so
as to generate greater proceeds than the cost of
purchasing the Treasury security. The resulting
profit is an arbitrage profit.

Before we proceed to our illustration of boot-
strapping, a very sensible question must be
addressed. Specifically, if Treasury strips are
in effect zero-coupon Treasury securities, why
not use strip rates (that is, the rates on Trea-
sury strips) as our spot rates? In other words,
why must we estimate theoretical spot rates via
bootstrapping using yields from Treasury bills,
notes, and bonds when we already have strip
rates conveniently available? There are three
major reasons. First, although Treasury strips
are actively traded, they are not as liquid as on-
the-run Treasury bills, notes, and bonds. As a re-
sult, Treasury strips have some liquidity risk for
which investors will demand some compensa-
tion in the form of higher yields. Second, the tax
treatment of strips is different from that of Trea-
sury coupon securities. Specifically, the accrued
interest on strips is taxed even though no cash is
received by the investor. Thus, they are negative
cash flow securities to taxable entities, and, as a
result, their yield reflects this tax disadvantage.
Finally, there are maturity sectors where non-
U.S. investors find it advantageous to trade off
yield for tax advantages associated with a strip.
Specifically, certain non-U.S. tax authorities al-
low their citizens to treat the difference between
the maturity value and the purchase price as a
capital gain and tax this gain at a favorable tax
rate. Some will grant this favorable treatment
only when the strip is created from the prin-
cipal rather than the coupon. For this reason,
those who use Treasury strips to represent the-
oretical spot rates restrict the issues included to
coupon strips.

Now let’s see how to generate the spot rates.
Consider the 6-month Treasury security in
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Table 1. This security is a Treasury bill and is
issued as a zero-coupon instrument. Therefore,
the annualized bond-equivalent yield (not the
bank discount yield) of 3.00% for the 6-month
Treasury security is equal to the 6-month spot
rate. Using the yield on the 1-year bill, we use
3.3% as the 1-year spot rate. Given these two
spot rates, we can compute the spot rate for a
theoretical 1.5-year zero-coupon Treasury. The
value of a theoretical 1.5-year Treasury should
equal the present value of the three cash flows
from the 1.5-year coupon Treasury, where the
yield used for discounting is the spot rate cor-
responding to the time of receipt of the cash
flow. Since all the coupon bonds are selling at
par, as explained in the previous section, the
yield to maturity for each bond is the coupon
rate. Using $100 as par, the cash flows for the
1.5-year coupon Treasury are:

0.5 year 0.035 × $100 × 0.5 = $1.75
1.0 year 0.035 × $100 × 0.5 = $1.75
1.5 years 0.035 × $100 × 0.5 + 100 = $101.75

The present value of the cash flows is then:

1.75
(1 + z1)1 + 1.75

(1 + z2)2 + 101.75
(1 + z3)3

where

z1 = one-half the annualized 6-month theoreti-
cal spot rate

z2 = one-half the 1-year theoretical spot rate
z3 = one-half the 1.5-year theoretical spot rate

Since the 6-month spot rate is 3% and the
1-year spot rate is 3.30%, we know that:

z1 = 0.0150 and z2 = 0.0165

We can compute the present value of the 1.5-
year coupon Treasury security as:

1.75
(1 + z1)1 + 1.75

(1 + z2)2 + 101.75
(1 + z3)3 = 1.75

(1.015)1

+ 1.75
(1.0165)2 + 101.75

(1 + z3)3

Since the price of the 1.5-year coupon Trea-
sury security is equal to its par value (see

Table 1), the following relationship must hold

1.75
(1.015)1 + 1.75

(1.0165)2 + 101.75
(1 + z3)3 = 100

If we had not been working with a par yield
curve, the equation would have been set to the
market price for the 1.5-year issue rather than
par value.

Note we are treating the 1.5 year par bond
as if it were a portfolio of three zero-coupon
bonds. Moreover, each cash flow has its own
discount rate that depends on when the cash
flow is delivered in the future and the shape of
the yield curve. This is in sharp contrast to the
traditional valuation approach that forces each
cash flow to have the same discount rate.

We can solve for the theoretical 1.5-year spot
rate as follows:

1.7241 + 1.6936 + 101.75
(1 + z3)3 = 100

101.75
(1 + z3)3 = 96.5822

(1 + z3)3 = 101.75
96.5822

(1 + z3)3 = 1.05351

z3 = 0.017527

= 1.7527%

Doubling this yield we obtain the bond-
equivalent yield of 3.5053%, which is the theo-
retical 1.5-year spot rate. This is the rate that the
market would apply to a 1.5-year zero-coupon
Treasury security if, in fact, such a security ex-
isted. In other words, all Treasury cash flows
to be received 1.5 years from now should be
valued (that is, discounted) at 3.5053%.

Given the theoretical 1.5-year spot rate, we
can obtain the theoretical 2-year spot rate. The
cash flows for the 2-year coupon Treasury in
Table 1 are:

0.5 year 0.039 × $100 × 0.5 = $1.95
1.0 year 0.039 × $100 × 0.5 = $1.95
1.5 years 0.039 × $100 × 0.5 = $1.95
2.0 years 0.039 × $100 × 0.5 + 100 = $101.95
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The present value of the cash flows is then:

1.95
(1 + z1)1 + 1.95

(1 + z2)2 + 1.95
(1 + z3)3 + 101.95

(1 + z4)4

where z4 = one-half of the 2-year theoretical
spot rate.

Since the 6-month spot rate, 1-year spot rate,
and 1.5-year spot rate are 3.00%, 3.30%, and
3.5053%, respectively, then:

z1 = 0.0150 z2 = 0.0165 z3 = 0.017527

Therefore, the present value of the 2-year
coupon Treasury security is:

1.95
(1.0150)1 + 1.95

(1.0165)2 + 1.95
(1.017527)3

+ 101.95
(1 + z4)4 = 100

Since the price of the 2-year coupon Treasury se-
curity is equal to par, the following relationship
must hold:

1.95
(1.0150)1 + 1.95

(1.0165)2 + 1.95
(1.017527)3

+ 101.95
(1 + z4)4 = 100

We can solve for the theoretical 2-year spot rate
as follows:

101.95
(1 + z4)4 = 94.3407

(1 + z4)4 = 101.95
94.3407

z4 = 0.019582 = 1.9582%

Doubling this yield, we obtain the theoretical 2-
year spot rate bond-equivalent yield of 3.9164%.

One can follow this approach sequentially to
derive the theoretical 2.5-year spot rate from
the calculated values of z1, z2, z3, and z4 (the
6-month, 1-year, 1.5-year, and 2-year rates), and
the price and coupon of the 2.5-year bond in
Table 1. Further, one could derive theoretical
spot rates for the remaining 15 half-yearly rates.
The spot rates thus obtained are shown in the
last column of Table 1. They represent the term
structure of default-free spot rate for maturities
up to 10 years at the particular time to which
the bond price quotations refer.

Let us summarize to this point. We started
with the par curve which is constructed using
the adjusted yields from the on-the-run Trea-
suries. A par rate is the average discount rate
of many cash flows over many periods. Specifi-
cally, par rates are complicated averages of spot
rates. The spot rates are uncovered from par
rates via bootstrapping. A spot rate is the av-
erage discount rate of a single cash flow over
many periods. It appears that spot rates are also
averages. Spot rates are averages of one or more
forward rates.

Valuation Using Treasury Spot Rates
To illustrate how Treasury spot rates are used to
compute the arbitrage-free value of a Treasury
security, we will use the hypothetical Treasury
spot rates shown in the fourth column of Ta-
ble 2 to value an 8%, 10-year Treasury security.
The present value of each period’s cash flow
is shown in the fifth column. The sum of the
present values is the arbitrage-free value for the
Treasury security. For the 8%, 10-year Treasury
it is $107.0018.

Reason for Using Treasury
Spot Rates
Thus far, we have simply asserted that the
value of a Treasury security should be based
on discounting each cash flow using the
corresponding Treasury spot rate. But what if
market participants value a security using just
the yield for the on-the-run Treasury with a
maturity equal to the maturity of the Treasury
security being valued? Let’s see why the value
of a Treasury security should trade close to its
arbitrage-free value.

Stripping and Arbitrage-Free
Valuation
The key to the arbitrage-free valuation ap-
proach is the existence of the Treasury strips
market. A dealer has the ability to take apart the
cash flows of a Treasury coupon security (that
is, strip the security) and create zero-coupon
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securities. These zero-coupon securities, called
Treasury strips, can be sold to investors. At
what interest rate or yield can these Treasury
strips be sold to investors? They can be sold
at the Treasury spot rates. If the market price
of a Treasury security is less than its value us-
ing the arbitrage-free valuation approach, then
a dealer can buy the Treasury security, strip it,
and sell off the individual Treasury strips so as
to generate greater proceeds than the cost of
purchasing the Treasury security. The resulting
profit is an arbitrage profit. Since as we will
see, the value determined by using the Trea-
sury spot rates does not allow for the genera-
tion of an arbitrage profit, this is referred to as
an “arbitrage-free” approach.

To illustrate this, suppose that the yield for
the on-the-run 10-year Treasury issue is 7.08%.
Suppose that the 8% coupon 10-year Treasury
issue is valued using the traditional approach
based on 7.08%. The value based on discounting
all the cash flows at 7.08% is $106.5141 as shown
in the next-to-the-last column in Table 2.

Consider what would happen if the market
priced the security at $106.5141 and that the
spot rates are those shown in the fourth column
of Table 2. The value based on the Treasury spot
rates is $107.0018 as shown in the fifth column
of Table 2. What can the dealer do? The dealer
can buy the 8% 10-year issue for $106.5141, strip
it, and sell the Treasury strips at the spot rates
shown in Table 2. By doing so, the proceeds that
will be received by the dealer are $107.0018. This
results in an arbitrage profit (ignoring transac-
tion costs) of $0.4877 (= $107.0018 − $106.5141).
Dealers recognizing this arbitrage opportunity
will bid up the price of the 8% 10-year Trea-
sury issue in order to acquire it and strip it. The
arbitrage profit will be eliminated when the se-
curity is priced at $107.0018, the value that we
said is the arbitrage-free value.

To understand in more detail where this arbi-
trage profit is coming from, look at the last three
columns in Table 2. The sixth column shows
how much each cash flow can be sold for by
the dealer if it is stripped. The values in this

Table 2 Determination of the Arbitrage-Free Value of an 8% 10-Year Treasury and Arbitrage Opportunity

Arbitrage-Free Value Abitrage Opportunity

Cash Flow Present Arbitrage
Period Years ($) Spot Rate (%) Value ($) Sell for Buy for Profit

1 0.5 4 6.05 3.8826 3.8826 3.8632 0.0193
2 1.0 4 6.15 3.7649 3.7649 3.7312 0.0337
3 1.5 4 6.21 3.6494 3.6494 3.6036 0.0458
4 2.0 4 6.26 3.5361 3.5361 3.4804 0.0557
5 2.5 4 6.29 3.4263 3.4263 3.3614 0.6486
6 3.0 4 6.37 3.3141 3.3141 3.2465 0.0676
7 3.5 4 6.38 3.2107 3.3107 3.1355 0.0752
8 4.0 4 6.40 3.1090 3.1090 3.0283 0.0807
9 4.5 4 6.41 3.0113 3.0113 2.9247 0.0866

10 5.0 4 6.48 2.9079 2.9079 2.8247 0.0832
11 5.5 4 6.49 2.8151 2.8151 2.7282 0.0867
12 6.0 4 6.53 2.7203 2.7203 2.6349 0.0854
13 6.5 4 6.63 2.6178 2.6178 2.5448 0.0730
14 7.0 4 6.78 2.5082 2.5082 2.4578 0.0504
15 7.5 4 6.79 2.4242 2.4242 2.3738 0.0504
16 8.0 4 6.81 2.3410 2.3410 2.2926 0.0484
17 8.5 4 6.84 2.2583 2.2583 2.2142 0.0441
18 9.0 4 6.93 2.1666 2.1666 2.1385 0.0281
19 9.5 4 7.05 2.0711 2.0711 2.0654 0.0057
20 10.0 104 7.20 51.2670 51.2670 51.8645 −0.5975

Total 107.0018 107.0018 106.5141 0.4877
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column are just those in the fifth column. The
next-to-last column shows how much the dealer
is effectively purchasing the cash flow for if each
cash flow is discounted at 7.08%. The sum of the
arbitrage profit from each stripped cash flow is
the total arbitrage profit and is contained in the
last column.

We have just demonstrated how coupon strip-
ping of a Treasury issue will force the market
value to be close to the value as determined by
the arbitrage-free valuation approach when the
market price is less than the arbitrage-free value
(that is, the whole is worth less than the sum of
the parts). What happens when a Treasury is-
sue’s market price is greater than the arbitrage-
free value? Obviously, a dealer will not want to
strip the Treasury issue since the proceeds gen-
erated from stripping will be less than the cost
of purchasing the issue.

When such situations occur, the dealer can
purchase a package of Treasury strips so as to
create a synthetic Treasury coupon security that
is worth more than the same maturity and same
coupon Treasury issue. This process is called
reconstitution.

The process of stripping and reconstituting
ensures that the price of a Treasury issue will
not depart materially (depending on transac-
tion costs) from its arbitrage-free value.

Credit Spreads and the Valuation of
Non-Treasury Securities
The Treasury spot rates can be used to value any
default-free security. For a non-Treasury secu-
rity, the theoretical value is not as easy to de-
termine. The value of a non-Treasury security
is found by discounting the cash flows by the
Treasury spot rates plus a yield spread which
reflects the additional risks (e.g., default risk,
liquidity risks, the risk associated with any em-
bedded options, and so on).

The spot rate used to discount the cash flow of
a non-Treasury security can be the Treasury spot
rate plus a constant credit spread. For example,

suppose the 6-month Treasury spot rate is 6.05%
and the 10-year Treasury spot rate is 7.20%. Also
suppose that a suitable credit spread is 100 ba-
sis points. Then a 7.05% spot rate is used to dis-
count a 6-month cash flow of a non-Treasury
bond and an 8.20% discount rate is used to
discount a 10-year cash flow. (Remember that
when each semiannual cash flow is discounted,
the discount rate used is one-half the spot rate:
3.525% for the 6-month spot rate and 4.10% for
the 10-year spot rate.)

The drawback of this approach is that there is
no reason to expect the credit spread to be the
same regardless of when the cash flow is ex-
pected to be received. Consequently, the credit
spread may vary with a bond’s term to matu-
rity. In other words, there is a term structure
of credit spreads. Generally, credit spreads in-
crease with maturity. This is a typical shape for
the term structure of credit spreads. Moreover,
the shape of the term structure is not the same
for all credit ratings. Typically, the lower the
credit rating, the steeper the term structure of
credit spreads.

Dealer firms typically estimate the term struc-
ture of credit spreads for each credit rating and
market sector. Typically, the credit spread in-
creases with maturity. In addition, the shape
of the term structure is not the same for all
credit ratings. Typically, the lower the credit
rating, the steeper the term structure of credit
spreads.

When the relevant credit spreads for a given
credit rating and market sector are added to the
Treasury spot rates, the resulting term struc-
ture is used to value the bonds of issuers with
that credit rating in that market sector. This
term structure is referred to as the benchmark
spot rate curve or benchmark zero-coupon rate
curve.

For example, Table 3 reproduces the Treasury
spot rate curve in Table 2. Also shown is a hy-
pothetical term structure of credit spreads for
a non-Treasury security. The resulting bench-
mark spot rate curve is in the next-to-the-last
column. Like before, it is this spot rate curve
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Table 3 Calculation of Arbitrage-Free Value of a Hypothetical 8% 10-Year Non-Treasury Security Using
Benchmark Spot Rate Curve

Cash Treasury
Flow Spot Credit Benchmark Present

Period Years ($) Rate (%) Spread (%) Spot (%) Value ($)

1 0.5 4 6.05 0.30 6.35 3.8769
2 1.0 4 6.15 0.33 6.48 3.7529
3 1.5 4 6.21 0.34 6.55 3.6314
4 2.0 4 6.26 0.37 6.63 3.5108
5 2.5 4 6.29 0.42 6.71 3.3916
6 3.0 4 6.37 0.43 6.80 3.2729
7 3.5 4 6.38 0.44 6.82 3.1632
8 4.0 4 6.40 0.45 6.85 3.0553
9 4.5 4 6.41 0.46 6.87 2.9516

10 5.0 4 6.48 0.52 7.00 2.8357
11 5.5 4 6.49 0.53 7.02 2.7369
12 6.0 4 6.53 0.55 7.08 2.6349
13 6.5 4 6.63 0.58 7.21 2.5241
14 7.0 4 6.78 0.59 7.37 2.4101
15 7.5 4 6.79 0.63 7.42 2.3161
16 8.0 4 6.81 0.64 7.45 2.2281
17 8.5 4 6.84 0.69 7.53 2.1340
18 9.0 4 6.93 0.73 7.66 2.0335
19 9.5 4 7.05 0.77 7.82 1.9301
20 10.0 104 7.20 0.82 8.02 47.3731

Total 101.763

that is used to value the securities of issuers that
have the same credit rating and are in the same
market sector. This is done in Table 3 for a hy-
pothetical 8% 10-year issue. The arbitrage-free
value is $101.763. Notice that the theoretical
value is less than that for an otherwise compa-
rable Treasury security. The arbitrage-free value
for an 8% 10-year Treasury is $107.0018 (see
Table 3).

KEY POINTS
� A bond can be thought of as a portfolio or

package of cash flows. Accordingly, the value
of a bond is simply the present value of its
remaining expected future cash flows.

� There is an inverse relationship between bond
prices/required yields.

� The traditional approach to valuation is to
discount each cash flow with the same dis-
count rate. The weakness of the traditional

approach is its reliance on using the same dis-
count rate for all of the bond’s cash flows.

� The arbitrage-free approach allows each cash
flow to be valued as a zero-coupon bond with
a discount rate that depends on the shape of
the yield curve and when the cash flow is
delivered in time.

� The bootstrapping technique is used to derive
the discount rates for discounting a bond’s
cash flows. These discount rates are called
spot rates.

� Default-free bonds should trade at prices
close to their arbitrage-free values. The pro-
cess of stripping and reconstituting of Trea-
sury securities ensures that this will occur.

NOTES
1. For a description of these securities, see

Fabozzi (2012).
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2. There is another method called the “Trea-
sury method,” which treats the coupon in-
terest over the fractional period as simple
interest.

3. There is an extensive literature on es-
timating spot rates or what is known
as term structure modeling. See Fabozzi
(2002).
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Abstract: Valuation of fixed-income products employs one of two basic methods—discounted cash
flows and relative value. Methods using discounted cash flows require several assumptions to
be used as inputs but produce a precise valuation result. The tools of relative value analysis are
less ambitious. They help us discern differences in value between two similar bonds on a relative
basis. Relative value analysis investors make statements such as “Bond X is cheaper than Bond Y.”
Relative value tools range in complexity from yield spreads to asset swap spreads and the credit
default swap basis.

There are two basic approaches to the valua-
tion of fixed-income products. The discounted
cash flow method seeks to value a bond given
assumptions about cash flows, reference yield
curves, risk premiums, and so on. Given these
inputs, the bond’s value is determined. Once
computed, this value is compared to the pre-
vailing market price and a rich/cheap determi-
nation can be made. The alternative method,
relative valuation, is less ambitious and not sur-
prisingly more popular.

Tools of relative value analysis, when prop-
erly interpreted, give the user some clues about
how similar bonds are currently valued in the
market on a relative basis. This battery of tools
allows us to make conjectures such as “Bond X is
cheaper than Bond Y.” Yield measures are basic
relative value tools. For example, one method

of measuring a risky bond’s relative value is
to compute its yield spread relative to a desig-
nated benchmark. Discerning relative value is
then a matter of comparing the yield spreads
of two or more bonds that are otherwise the
same. The bond with the largest yield spread
is viewed as the cheapest and is considered
the best relative value. In this entry, we will
introduce yield spread measures utilizing in-
struments from both the cash and derivatives
markets.1

One common way fixed-income portfolio
managers attempt to outperform benchmarks
is through security selection. When pursuing a
security selection strategy, managers attempt to
overweight cheap issues and underweight rich
issues to enhance the total rate of return rela-
tive to their benchmark. For this to occur, one or
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more of the bond’s risks must be mispriced. Ac-
tive security selection to enhance performance
leads to the search for effective relative value
tools in bond markets.

YIELD SPREADS OVER SWAP
AND TREASURY CURVES
As noted, yield spreads are a frequently used
tool of relative value analysis. The computation
is a simple one. A yield spread is the difference
between a risky bond’s yield and a benchmark
yield holding maturity constant. It is critical to
note the yield spread does not have any predic-
tive power on the bondholder’s realized return;
the yield spread is merely a convenient way to
express the price relative to the benchmark.

There are two commonly used benchmarks:
the interest rate swap curve and the U.S. Trea-
sury yield curve. A swap is a contract used
to transform cash flows from one form to an-
other. In its most basic form, in an interest
rate swap two counterparties agree to exchange
cash flows at designated future dates for a spec-
ified length of time. The fixed-rate payer makes
payments that are determined by a fixed rate
called a swap rate. Correspondingly, the floating-
rate payer makes payments based on a reference
rate, usually the London Interbank Offered Rate
(LIBOR). LIBOR is the interest rate that prime
banks in London are willing to pay other prime
banks on certificates of deposit denominated in
U.S. dollars.

Market participants quote swap rates for
swaps across the maturity spectrum. The rela-
tionship between the swap rate and the swap’s
maturity is called the swap curve. Since the refer-
ence rate for a swap’s floating rate payments is
usually LIBOR, the swap curve is also referred
to as the LIBOR curve.

Over time the swap curve has supplanted
the Treasury yield curve as the benchmark of
choice for computing yield spreads. Indeed, in
some countries and currencies, the interest rate
swap market is more liquid than the market
for sovereign debt. It is important to keep in

mind that the swap curve does not represent
a set of default-free interest rates. A swap rate
is a rate that embodies two risks: (1) the de-
fault risk of the counterparty, and (2) liquidity
risk.

As noted, in many countries, the swap curve is
the benchmark of choice over a country’s gov-
ernment securities yield curve. There are sev-
eral reasons that augur use of the swap curve.
First, in order to construct a government bond
yield curve that is reflective of the term struc-
ture of interest rates, yields on government
securities must be available across the entire
maturity spectrum. In most government bond
markets, however, a limited number of securi-
ties are available. For example, the U.S. Trea-
sury issues only six securities with a maturity
of two years or more (two, three, five, seven, 10,
and 30 years). Conversely, in the swap market,
swap rates are quoted on a wide swath of the
maturity spectrum.

Second, technical factors introduce some
noise into Treasury yields and preclude them
from being clear signals of benchmark risk-free
interest rates. Treasury securities differ on di-
mensions other than level of the coupon and
maturity. Yields are affected when a note or
bond is cheapest to deliver into the Treasury note
or bond futures contracts. In addition, yields
are also affected when the security is “on spe-
cial” in the repo market. The tax treatment of
bonds, especially those trading at a premium
or a discount, can affect yields. Swap rates for
the most part do not carry this excess baggage
and are therefore more reflective of true, albeit
risky, interest rates.

Lastly, because of the differences in sovereign
credit risk, comparing government yields
across countries is tenuous at best. The swap
curve, by contrast, reflects roughly the same
level of credit risk across countries. Cross-
country comparisons are more meaningful.

A spread over the benchmark swap curve is
simply the difference between the yield mea-
sure in question and the linearly interpolated
swap rate at the same maturity. It should be a
suitable yield measure such as yield to maturity,
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yield to call, or cash flow yield for structured
products. Because the swap rate is interpolated,
the spread over the benchmark swap curve is
often referred to as the interpolated spread or the
I-spread. Interpolated spreads circumvent the
problem of maturity mismatch that affects
the level of the spread. This is especially true
if the yield curve is steeply sloped.

To find the I-spread, consider a 5.25% coupon
bond issued by General Electric (GE) that ma-
tures on December 6, 2017. For a settlement
date of January 27, 2009, the I-spread was 261.6
basis points. This spread can be interpreted as
the compensation the market demanded for the
risk differential between the risky bond and the
benchmark swap curve.

The yield spreads can also be computed us-
ing active or on-the-run Treasuries. On-the-run
Treasuries are the most recently issued Trea-
sury securities of a particular maturity. Since
the yield curve is not flat, the yield spreads
differ depending on the maturity of the on-
the-run Treasury. Thus, even if the yield curve
remains fixed, the yield spread will change as
the bond rolls down the curve. Using the in-
terpolated 8.9-year Treasury yield, suppose the
yield spread for the GE bond on January 27,
2009 was 284 basis points. This yield spread
can then be compared to similar bonds at the
time in order to determine which bond reflects
the best relative value.

ASSET SWAPS
An asset swap is a synthetic structure that trans-
forms the nature of the bond’s cash flow from
one form into another. The structure is created
through the combination of a bond position
(fixed-rate or floating-rate) with one or more
interest rate swaps. Asset swaps are used exten-
sively by financial institutions for asset-liability
management. Namely, asset swaps transform
the cash flows of long-term fixed-rate assets to
floating-rate cash flows, which are in a form
more amendable to financial institutions’ fund-
ing opportunities.

Asset Swap Mechanics
The mechanics of an asset swap are straight-
forward. An investor, whom we shall refer to
as the asset swap buyer, does the following:
(1) takes a long position in a fixed-rate coupon
bond with a bullet maturity, and (2) simulta-
neously enters into an off-market interest rate
swap with a tenor equal to the bond’s remain-
ing term to maturity. An off-market swap is
one whose floating rates are determined with
a nonzero spread added to the reference rate.
Assume that the bond is trading at par. The
asset swap buyer enters into an agreement to
pay the semiannual coupon payments as the
fixed-rate leg in exchange for floating-rate pay-
ments at LIBOR plus (or minus) a spread (called
the asset swap spread). For simplicity, assume
the frequency of the fixed-rate and floating-rate
payments are the same. The spread over LIBOR
that makes the net present value of the coupon
payments (i.e., the fixed-rate leg) and the pro-
jected floating-rate payments equal to zero is
the asset swap spread.2 This asset swap spread is
used as a measure of relative value regardless
of whether the cash flows are actually swapped.

Determining the Asset Swap Spread for a Par
Bond
To better understand how all the pieces fit to-
gether, let’s illustrate how an asset swap spread
is calculated. Consider a corporate bond issued
by General Electric that matures on December 6,
2017, and pays coupon interest semiannually
at an annual rate of 5.25%. Assume a position
with a par value of $1 million. Further assume
that this bond sold for par for settlement on
December 6, 2008. For ease of exposition, we
will evaluate the asset swap on a coupon pay-
ment date to abstract some of the details of
swaps.

The asset swap spread is determined using
the following procedure. First, assume that a $1
million par value position of the General Elec-
tric coupon bond was valued at a price of $100
for settlement on December 6, 2008. (It actu-
ally traded at a large premium at the time.) The
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price paid for the bond at settlement is the flat
price of $1,000,000 plus zero accrued interest
such that the full price is $1,000,000 since it is
a coupon payment date. Second, assume that a
long position in an interest rate swap is estab-
lished with a notional principal of $1,000,000.
Third, determine the net cash difference at set-
tlement. This amount is simply the difference
between the bond’s full price and the swap’s
principal amount plus accrued interest. By
construction, this difference is zero in our illus-
tration. Fourth, determine the spread over the
reference rate (i.e., LIBOR) required to equate
the present value of the swap’s floating-rate
payments and the present value of the fixed-
rate payments (i.e., the bond’s cash flows). In
our illustration, a swap spread of 221.1 basis
points satisfied this condition.

Our illustration is a special case for a bond
selling at par, and the accrued interest on both
the bond and the swap are equal to zero. The
asset swap spread makes the present value of a
par swap’s floating payments equal the bond’s
payments to maturity. This is true because the
net cash at settlement is equal to zero.

Par versus Market Structures
Market participants use two types of fixed-
floating asset swap structures—par and market.
The par structure is the most prevalent. When
utilizing a par structure, the notional amount
of the interest rate swap is equal to the bond’s
maturity value. The price of the bond acquired
by the asset swap buyer is par regardless of its
market price.3 If the bond is trading at a dis-
count, the asset swap seller receives more for
the bond than it is worth and garners an upfront
“profit.” Alternatively, if the bond is trading at
a premium, the asset swap seller receives less
for the bond than it is worth and suffers an up-
front “loss.” At the initiation of the asset swap,
the present value of the net cash flows of both
parties is zero, so any upfront profit or loss is
illusory because the spread adjusts. The asset
swap seller “gives up” the premium over par

at inception and in return pays a lower spread
on the floating-rate cash flows. For bonds trad-
ing at a discount, the asset swap seller pays a
higher spread on the floating-rate cash flows
as recompense for capturing the discount at
settlement.

An asset swap with a par structure is two
separate transactions: (1) The asset swap buyer
pays par to the asset swap seller for a bond
and (2) an off-market swap. Accordingly, after
the asset swap’s cash flows are established, the
bond’s credit performance has no impact on the
interest rate swap. If the bond were to default,
the asset swap buyer no longer receives coupon
payments or the maturity payment. The asset
swap buyer’s obligations imposed by the swap
continue on as before until it matures or can be
closed out at market value.

An alternative structure for an asset swap is
called a market structure. This method differs
from a par structure in four respects. First, the
bond is purchased at its prevailing market price
rather than at par. Second, the notional principal
of the off-market swap floating-rate payments is
scaled by the bond’s full price. Third, at the end
of the transaction’s life, the asset swap buyer
pays par to the asset swap seller and receives the
original full price of the bond. Lastly, note also
that the counterparty risk exposure is allocated
differently in the two asset swap structures. If
the bond in question trades at a premium, the
asset swap seller bears more of the counterparty
risk. Conversely, in a market structure for the
same premium bond, the counterparty risk is
tilted toward the asset swap buyer due to the
net payment of the bond’s premium at the end
of the transaction. Correspondingly, if the bond
in question trades at a discount, the tilt of the
counterparty risk exposure is reversed for both
structures.

Determining the Asset Swap Spread
in the General Case
Let’s introduce some real-world complications.
First, we consider an asset swap with a
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settlement date that falls between two coupon
payment dates. Once this circumstance is con-
sidered, both the coupon-paying bond and
swap will have nonzero accrued interest. Sup-
pose an asset swap with a par structure has a
settlement day that falls between the two semi-
annual coupon payment dates. By market con-
vention, the asset swap buyer pays par for the
bond and does not directly pay accrued interest.
The asset swap buyer receives the full coupon
payment at the next payment date and pays the
full coupon payment as required on the fixed-
rate side of the swap. The floating-rate swap
payment from the asset swap seller is treated
somewhat differently. Floating-rate payments
are usually more frequent than fixed-rate
payments (quarterly versus semiannually) and
almost always use a different day count con-
vention. The floating-rate payment is adjusted
accordingly.

As an illustration, consider a 4.125% coupon
bond issued by Wal-Mart that matured on
February 15, 2011. This bond delivered coupon
payments semiannually. Suppose an asset swap
buyer took a long position in this bond that
was trading at a flat price of 103.764. We will
sketch the procedure for calculating the asset
swap spread if it had a trade settlement date
of June 23, 2008. The notional principal is set
to the default of $1 million. The asset swap
spread that equates the present value of the
cash flows was 75.7 basis points. As a result, the
floating-rate swap payments would have been
calculated with a rate of 3-month LIBOR plus
75.7 basis points. The asset swap buyer’s swap
payments would have been simply the five
semiannual coupon payments of $20,625 and
$1,000,000 on the maturity date of February 15,
2011. The asset swap seller’s floating-rate swap
payments would have depended on the value of
3-month LIBOR on each payment date. As
noted, the first floating-rate payment of
$2,835.04 reflects the accrual from the settle-
ment date on January 28, 2009, to the first
payment date of February 15, 2009, using an
actual/360 day count convention.

Uses of Asset Swaps
The primary reason for using an asset swap is
to acquire some exposure to risks of a fixed rate
while neutralizing the interest rate risk. For ex-
ample, financial institutions typically fund on a
floating-rate basis and unless they have a view
on interest rates, management wants to invest
in floating-rate assets. Financial institutions are
active participants in the asset swap market by
buying fixed-rate bonds and transforming the
cash flow from those bonds into floating pay-
ments, which provide a better match against
their liability structure. An active asset swap
market tends to eliminate pricing discrepancies
between fixed-rate and floating-rate products.

Asset swap spreads are often used as an indi-
cator of relative value. If a fixed-income investor
is considering five fixed-rate bonds of similar
maturity and risk for inclusion in a portfolio
and wants to assess their relative value, the in-
vestor would simply find the highest asset swap
spreads, which represent the best relative value.

In practice, however, asset swaps are typically
employed as a relative value detector in the fol-
lowing manner. After choosing portfolio dura-
tion (and perhaps key rate durations to control
shaping risk) and after choosing a credit mix
(or perhaps an average credit rating), find the
constrained portfolio that produces the highest
asset swap spread. This portfolio presumably
represents the best relative value for a given
duration target and credit target—with or with-
out distributional constraints on durations and
credit ratings.

A Miscellany of Asset Swaps
There are a handful of variations on the stan-
dard asset swap structure discussed to this
point. A forward start asset swap involves tak-
ing a long position in a risky bond on a forward
settlement date in combination with an inter-
est rate swap whose asset swap spread is estab-
lished today. This transaction allows an investor
to gain an exposure to a risky product in the
future at a known price today. Investors bear
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no exposure to credit risk until the forward set-
tlement date because the asset swap terminates
if the bond defaults prior to this date.

A cross-currency asset swap is a combination
of a long position in a risky bond whose cash
flows are denominated in a different currency
and an off-market interest rate swap. The swap
transforms the fixed-rate coupon payments into
floating-rate cash flows in the investor’s home
currency. An exchange of principal occurs at the
end of the swap’s life as is common with cur-
rency swaps. Moreover, the swap’s cash flows
are converted using a predetermined exchange
rate. This asset swap variation would allow, say,
a U.S. investor to take an exposure to a yen-
denominated corporate bond while simultane-
ously mitigating the interest rate and currency
risks.

Investors often use asset swaps in convertible
bond arbitrage. Convertibles are ideal securities
for “arbitrage” because the convertible itself,
namely the underlying stock and the embedded
derivatives, are traded along predictable ratios
and any discrepancy or mispricing would give
rise to arbitrage opportunities for hedge fund
managers to exploit. The valuation of convert-
ible bonds is driven by four primary factors:
(1) interest rates, (2) credit spreads, (3) stock
prices, and (4) volatility of stock prices.
Convertible bond arbitrage involves taking a
leveraged position (usually long) in the con-
vertible bond to gain exposure to a mispriced
factor while simultaneously hedging interest
rates and small changes in stock prices.

Callable asset swaps are used to strip out eq-
uity and credit components with a structure
that allows the investor to cancel the off-market
swap on any call date. This ability to terminate
the swap is accomplished through the purchase
of Bermudan receiver swaptions.

CREDIT DEFAULT SWAPS
Credit default swaps (CDS) are contracts that en-
able the transfer of credit risk between the two

counterparties to the trade. CDS resemble insur-
ance policies.4 Taking long/short CDS positions
is referred to as buying/selling “protection.”
The protection buyer pays the protection seller
a periodic payment (premium) for protection
against a credit event experienced by a reference
asset or entity. Simply put, sellers of protection
are taking on credit risk for a fee while pro-
tection buyers are paying to reduce their credit
risk exposure. A reference asset could refer to
a single asset, and this is termed a single-name
credit default swap. Alternatively, if the refer-
ence asset is a group of assets, it is referred to as
a basket credit default swap. A reference entity
could be a corporation or government entity
(sovereign or municipal).

The payout of credit default swaps is contin-
gent on the occurrence of a credit event. Defini-
tions of credit events are published by the ISDA,
the so-called “1999 Definitions.” The 1999 Def-
initions list eight different credit events, which
include: (1) bankruptcy, (2) credit event upon
merger, (3) cross acceleration, (4) cross default,
(5) downgrade, (6) failure to pay, (7) repudi-
ation/moratorium, and (8) restructuring. The
most controversial credit event is a restructur-
ing. A restructuring refers to an alteration of
the debt obligation’s original terms in an effort
to make the obligation less onerous to the bor-
rower. Among the terms that may be offered: (1)
reduction in the stated rate of interest, (2) princi-
pal reduction, (3) principal payment reschedul-
ing or interest payment postponement, or (4) a
change in the seniority level of the obligation.
The inclusion of restructuring as a trigger for
a credit event is desired by protection buyers
because they insist it is part of their essential
credit protection. Protection sellers counter that
the restructuring provision is triggered by rou-
tine modifications to the debt. In April 2001, the
ISDA issued the so-called “Supplement Defini-
tion” that indicates the conditions needed to
qualify for a restructuring: (1) The reference
obligation must have at least four bondholders,
and (2) at least two-thirds of the bondholders
must consent to the restructuring.
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The market for single-name credit default
swaps is an over-the-counter interdealer mar-
ket. For credit default swaps on corporate or
sovereign debt, the contract specifications are
largely standardized. For example, the tenor is
usually five years. Certain dealers are also will-
ing to create customized contracts better suited
to the counterparty’s risk exposure. A protec-
tion buyer makes payments (typically quar-
terly) that are fixed by contract until a credit
event is triggered or maturity, whichever is ear-
lier. The formula for calculating the protection
buyer’s quarterly is given by the expression

quarterly payment = CDS spread

×notional principal

×(days in period)/360

Figure 1 presents these payments. If a credit
event does not occur during the tenor of the
CDS, the protection buyer’s fixed payments are
the only payments. At inception, there is no ex-
change of principal between the buyer and the
seller. If a credit event is triggered, there is an
exchange between the protection buyer and
protection seller. The protection buyer makes
accrued payments up until the credit event date
and then stops making quarterly payments.

What both parties must do when there is a
credit event depends on the settlement terms
of the CDS. The settlement terms can specify
either physical settlement or cash settlement.
If the CDS specifies physical delivery, the pro-
tection buyer delivers the reference obligation
to the protection seller in return for the cash
payment. Figure 2 illustrates this scenario. If
the credit event is triggered, the seller’s pay-

Quarterly Fixed
Premium
Payments

Zero

Protection

Seller

Protection

Buyer

Figure 1 Premium Payments for a CDS Assum-
ing no Credit Event

Deliverable Obligation

Notional Amount

Protection

Seller

Protection

Buyer

Figure 2 The Exchange if a Credit Event Occurs

ment may be a prespecified amount or it may
reflect the reference obligation’s value decline.
When the payment is fixed, it is based on a
notional principal amount. Conversely, when
the payment is based on the reference obli-
gation’s value decline, it is usually computed
using pricing information obtained by polling
several CDS dealers.

Usually there is more than one obligation of
the reference entity from which the protection
buyer can choose. The set of all obligations that
are permitted for physical delivery is called the
deliverable obligations. Any obligation meeting
the stated criteria (coupon, maturity, etc.) is part
of this basket. Naturally, the protection buyer
will choose among the deliverable obligations
the one that is cheapest to deliver.

CDS are structured to replicate the experience
of a default in the cash market. If a credit event
occurs, the deliverable obligation should trade
at a deep discount to par.

The seller’s net loss will be the difference be-
tween par and the deliverable obligation’s re-
covery value. Note that the CDS is a pure play
in the deliverable obligation’s credit risk. A long
position in the reference instrument exposes the
investor to other risks.

As an illustration, consider a CDS with a refer-
ence asset being a Citigroup 6.5% coupon bond
that matured on January 18, 2011. The notional
principal for this contract was $10 million. Sup-
pose the following information was available:

Reference Entity/Asset Citigroup 6.5% 1/18/2011

Tenor 5 years
Effective date 7/3/08
Maturity date 9/20/13
Payment frequency Quarterly
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The first coupon payment date was Septem-
ber 22, 2008. Suppose the deal spread was 143.5
basis points. Presented in the following table
are the first four quarterly payments that the
protection buyer made to the seller.

Date Cash flow ($)

9/22/08 $32,287.50
12/22/08 $36,273.61
3/20/09 $35,077.78
6/22/09 $37,469.44

There were 81 actual days of accrual from
the effective date of 7/3/08 to the first coupon
date of 9/22/08, so inserting this number along
with the notional principal of $10 million and a
spread of 143.5 basis points (in decimal) gives
the first quarterly payment of

$32,287.50 = 0.01435 × $10 million × (81/360)

The remainder of the quarterly payments are
computed in the same fashion. Note that while
the CDS spread remains fixed, the payments
will vary somewhat due to the varying number
of days between coupon payment dates.

Credit Default Swap Basis
A CDS is, under certain simplifying assump-
tions, equivalent to a long position in an
asset-swapped fixed-rate bond financed with a
repurchase (repo) agreement. Accordingly, it is
critical to address the linkage between asset
swap spreads, CDS spreads, and credit spreads.

Practitioners access relative value by compar-
ing CDS spreads and asset-swap spread levels.
In fact, the difference between the CDS pre-
mium and the asset swap spread is referred
to as the credit default swap basis (CDS basis).5

Practitioners also look at differences between
CDS spreads and either the I-spread or the zero-
volatility spread (Z-spread). A nonzero basis
signals opportunities for investors. If the basis
is negative (i.e., the CDS spread is less than the
asset swap spread), this suggests that the in-
vestor buy the bond in the cash market and buy
protection via a CDS. Conversely, if the basis

is positive (i.e., the CDS spread is greater than
the asset swap spread), this suggests that the
investor sell the bond in the cash market and
sell protection via a CDS.

KEY POINTS
� There are two approaches to the valuation of

fixed-income products: discounted cash flow
and relative value.

� The relative value method can provide infor-
mation about how similar bonds are priced
on a relative basis.

� A yield spread is the difference between a
risky bond’s yield and a benchmark yield
holding maturity constant.

� Two commonly used benchmark yield curves
are the swap curve and the U.S. Treasury
curve.

� An asset swap is a synthetic structure that
transforms the nature of cash flows from one
form into another.

� An asset swap spread is used as an indicator
of relative value and is the spread over the
reference rate that equates the value of the
floating rate cash flows and the bond’s cash
flows.

� The credit default swap (CDS) basis is the dif-
ference between the CDS premium and the
asset swap spread.

� A nonzero CDS basis signals opportunities
for investors.

NOTES
1. For a further discussion of relative value

tools, see Fabozzi and Mann (2010) and
Grieves and Mann (2010).

2. For simplicity, we are ignoring any nonzero
net payments at the beginning and end of
the swap’s life. These elements will be intro-
duced shortly.

3. When nonpar bonds are purchased as part
of an asset swap structure, tax and account-
ing rules create incentives to buy and sell
premium/discount bonds at par through an
asset swap structure.
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4. More on the mechanics of CSD can be found
in Anson, Fabozzi, Choudhry, and Chen
(2004).

5. For a further discussion of the CDS spread,
see Choudhry (2006).
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Abstract: The complication in valuing bonds with embedded options and option-type derivatives
is that cash flows depend on interest rates in the future. Academicians and practitioners have
attempted to capture this interest rate uncertainty through various models, often designed as one-
or two-factor processes. These models attempt to capture the stochastic behavior of rates. In practice,
these elegant mathematical models must be implemented numerically in order to be useful. One
such model is a single factor model that assumes a stationary variance, or volatility.

An often-used framework for the valuation of
interest rate instruments with embedded op-
tions and interest rate option–type derivatives
is the lattice framework. Effectively, the lattice
specifies the distribution of short-term interest
rates over time. The lattice holds all the informa-
tion required to perform the valuation of certain
option-like interest rate products. First, the lat-
tice is used to generate the cash flows across the
life of the security. Next, the interest rates on the
lattice are used to compute the present value of
those cash flows.

There are several interest rate models that
have been used in practice to construct an inter-
est rate lattice. In each case, interest rates can real-
ize one of several possible levels when we move
from one period to the next. A lattice model that

allows only two rates in the next period is called
a binomial model. A lattice model that allows
three possible rates in the next period is called
a trinomial model. There are even more com-
plex models that allow more than three possible
rates in the next period.

Regardless of the underlying assumptions,
each model shares a common restriction. In
order to be “arbitrage-free,” the interest rate
tree generated must produce a value for an on-
the-run optionless bond that is consistent with
the current par yield curve. In effect, the value
generated by the model must be equal to the
observed market price for the optionless instru-
ment. Under these conditions the model is said
to be “arbitrage free.” A lattice that produces an
arbitrage-free valuation is said to be “fair.” The
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lattice is used for valuation only when it has
been calibrated to be fair. More on calibration
below.

In this entry we will demonstrate how a lattice
is used to value an option-free bond. The model
is also used to value bonds with embedded op-
tions, floating-rate securities with option-type
derivatives, bond options, and swaptions.1

THE INTEREST RATE
LATTICE
In our illustration, we represent the lattice as
a binomial tree, the simplest lattice form. Fig-
ure 1 provides an example of a binomial interest
rate tree, which consists of a number of “nodes”
and “legs.” Each leg represents a one-year in-
terval over time. A simplifying assumption of
one-year intervals is made to illustrate the key
principles. The methodology is the same for
smaller time periods. In fact, in practice the
selection of the length of the time period is
critical, but we need not be concerned with this
nuance here.

The distribution of future interest rates is rep-
resented on the tree by the nodes at each point
in time. Each node is labeled as “N” and has
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Figure 1 Four-Year Binomial Interest Rate Tree

a subscript, a combination of L’s and H’s. The
subscript indicates whether the node is lower or
higher on the tree, respectively, relative to the
other nodes. Thus, node NHH is reached when
the 1-year rate realized in the first year is the
higher of the two rates for that period, then the
highest of the rates in the second year.

The root of the tree is N, the only point in
time at which we know the interest rate with
certainty. The 1-year rate today (that is, at N) is
the current 1-year spot rate, which we denote
by r0.

We must make an assumption concerning the
probability of reaching one rate at a point in
time. For ease of illustration, we have assumed
that rates at any point in time have the same
probability of occurring. In other words, the
probability is 50% on each leg.

The interest rate model we will use to con-
struct the binomial tree assumes that the 1-year
rate evolves over time based on a lognormal
random walk with a known (stationary) volatil-
ity. Technically, the tree represents a one-factor
model. Under the distributional assumption, the
relationship between any two adjacent rates at
a point in time is calculated via the following
equation:

r1,H = r1,Le2σ
√

t

where σ is the assumed volatility of the 1-year
rate, t is the length of the time period in years,
and e is the base of the natural logarithm. Since
we assume a 1-year interval, that is, t = 1, we
can disregard the calculation of the square root
of t in the exponent.

For example, suppose that r1,L is 4.4448% and
σ is 10% per year, then:

r1,H = 4.4448%(e2×0.10) = 4.4448%(1.2214)

= 5.4289%

In the second year, there are three possible
values for the 1-year rate. The relationship be-
tween r2,LL and the other two 1-year rates is as
follows:

r2,H H = r2,L L (e4σ ) and r2,HL = r2,L L (e2σ )
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Figure 2 Four-Year Binomial Interest Rate Tree
with 1-Year Rates∗

So, for example, if r2,LL is 4.6958%, and assum-
ing once again that σ is 10%, then

r2,H H = 4.6958%(e4×0.10) = 7.0053%

and

r2,HL = 4.6958%(e2×0.10) = 5.7354%

This relationship between rates holds for each
point in time. Figure 2 shows the interest rate
tree using this notation.

Determining the Value at a Node
In general, to get a security’s value at a node we
follow the fundamental rule for valuation: The
value is the present value of the expected cash
flows. The appropriate discount rate to use for
cash flows one year forward is the 1-year rate
at the node where we are computing the value.
Now there are two present values in this case:
the present value of the cash flows in the state
where the 1-year rate is the higher rate, and
one where it is the lower rate state. We have
assumed that the probability of both outcomes
is equal. Figure 3 provides an illustration for a
node assuming that the 1-year rate is r∗ at the
node where the valuation is sought and letting:

Bond’s value in higher-rate
state one year forward

1-year rate
at node where
bond’s value
is sought

Cash flow in
higher-rate state

Cash flow in
lower-rate state

Bond’s value in lower-rate
state one year forward

VH + C•

V

r *

•

VL + C•

Figure 3 Calculating a Value at a Node

VH = the bond’s value for the higher 1-year rate
state

VL = the bond’s value for the lower 1-year rate
state

C = coupon payment

From where do the future values come? Ef-
fectively, the value at any node depends on the
future cash flows. The future cash flows include
(1) the coupon payment one year from now and
(2) the bond’s value one year from now, both
of which may be uncertain. Starting the pro-
cess from the last year in the tree and working
backwards to get the final valuation resolves
the uncertainty. At maturity, the instrument’s
value is known with certainty—par. The final
coupon payment can be determined from the
coupon rate, or from prevailing rates to which
it is indexed. Working back through the tree,
we realize that the value at each node is quickly
calculated. This process of working backward
is often referred to as recursive valuation.

Using our notation, the cash flow at a node is
either:

VH + C for the higher 1-year rate
VL + C for the lower 1-year rate

The present value of these two cash flows us-
ing the 1-year rate at the node, r∗, is:

VH + C
(1 + r∗)

= present value for higher 1-year rate

VL + C
(1 + r∗)

= present value for lower 1-year rate
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Then, the value of the bond at the node is
found as follows:

Value at a node = 1
2

[
VH + C
(1 + r∗)

+ VL + C
(1 + r∗)

]

CALIBRATING THE LATTICE
We noted above the importance of the no-
arbitrage condition that governs the construc-
tion of the lattice. To assure this condition holds,
the lattice must be calibrated to the current par
yield curve, a process we demonstrate here. Ul-
timately, the lattice must price optionless par
bonds at par.

Assume the on-the-run par yield curve for a
hypothetical issuer as it appears in Table 1. The
current 1-year rate is known, 3.50%. Hence, the
next step is to find the appropriate 1-year rates
one year forward. As before, we assume that
volatility, σ , is 10% and construct a 2-year tree
using the 2-year bond with a coupon rate of
4.2%, the par rate for a 2-year security.

Figure 4 shows a more detailed binomial tree
with the cash flow shown at each node. The root
rate for the tree, r0, is simply the current 1-year
rate, 3.5%. At the beginning of Year 2 there are
two possible 1-year rates, the higher rate and
the lower rate. We already know the relation-
ship between the two. A rate of 4.75% at NL

has been arbitrarily chosen as a starting point.
An iterative process determines the proper rate
(that is, trial and error). The steps are described
and illustrated below. Again, the goal is a rate
that, when applied in the tree, provides a value
of par for the 2-year, 4.2% bond.

Step 1: Select a value for r1. Recall that r1 is
the lower 1-year rate. In this first trial, we
arbitrarily selected a value of 4.75%.

Table 1 Issuer Par Yield Curve

Maturity Par Rate Market Price

1 year 3.50% 100
2 years 4.20% 100
3 years 4.70% 100
4 years 5.20% 100

100.000•

NHH 4.2

98.486

4.2•

NH 5.8017%

100.000•99.691•

N 3.5000% NHL 4.2

99.475

4.2•

NL 100.0004.7500% •

NLL 4.2

Year 2Year 1Today

Figure 4 The 1-Year Rates for Year 1 Using the
2-Year 4.2% On-the-Run Issue: First Trial

Step 2: Determine the corresponding value for
the higher 1-year rate. As explained earlier,
this rate is related to the lower 1-year rate
as follows: r1e2σ . Since r1 is 4.75%, the higher
1-year rate is 5.8017% (= 4.75% e2x0.10). This
value is reported in Figure 4 at node NH.

Step 3: Compute the bond’s value one year from
now as follows:
a. Determine the bond’s value two years

from now. In our example, this is sim-
ple. Since we are using a 2-year bond, the
bond’s value is its maturity value ($100)
plus its final coupon payment ($4.2). Thus,
it is $104.2.

b. Calculate VH. Cash flows are known. The
appropriate discount rate is the higher
1-year rate, 5.8017% in our example.
The present value is $98.486 (= $104.2/
1.058017).

c. Calculate VL. Again, cash flows are
known—the same as those in Step 3b. The
discount rate assumed for the lower 1-
year rate is 4.75%. The present value is
$99.475 (= $104.2/1.0475).

Step 4: Calculate V.
a. Add the coupon to both VH and VL to ob-

tain the values at NH and NL, respectively.
In our example we have $102.686 for the
higher rate and $103.675 for the lower rate.
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b. Calculate V. The 1-year rate is 3.50%.
(Note: At this point in the valuation,
r∗ is the root rate, 3.50%. Therefore,
$99.691 = 1/2($99.214 + $100.169.)

Step 5: Compare the value in Step 4 to the bond’s
market value. If the two values are the same,
then the r1 used in this trial is the one we
seek. If, instead, the value found in Step 4 is
not equal to the market value of the bond,
then r1 in this trial is not the 1-year rate that
is consistent with the current yield curve. In
this case, the five steps are repeated with a
different value for r1.

When r1 is 4.75%, a value of $99.691 results in
Step 4, which is less than the observed market
price of $100. Therefore, 4.75% is too large and
the five steps must be repeated trying a lower
rate for r1.

Let’s jump right to the correct rate for r1 in
this example and rework Steps 1 through 5. This
occurs when r1 is 4.4448%. The corresponding
binomial tree is shown in Figure 5. The value
at the root is equal to the market value of the
2-year issue (par).

We can “grow” this tree for one more year
by determining r2. Now we will use the 3-year
on-the-run issue, the 4.7% coupon bond, to get
r2. The same five steps are used in an iterative

100.000•

NHH 4.2

98.834

4.2•

NH 5.4289%

100.000•100.000•

N3.5000%N HL 4.2

99.766

4.2•

NL 4.4448% 100.000•

NLL 4.2

Year 2Year 1Today

Figure 5 The 1-Year Rates for Year 1 Using the
2-Year 4.2% On-the-Run Issue
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4.7•
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100.000•4.7•
NL 4.4448% ? NHLL 4.7

4.7•
NLL ?

100.000•
NLLL 4.7
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Figure 6 Information for Deriving the 1-Year
Rates for Year 2 Using the 3-Year 4.7% On-the-Run
Issue

process to find the 1-year rates in the tree two
years from now. Our objective is now to find
the value of r2 that will produce a bond value
of $100. Note that the two rates one year from
now of 4.4448% (the lower rate) and 5.4289%
(the higher rate) do not change. These are the
fair rates for the tree one year forward.

The problem is illustrated in Figure 6. The
cash flows from the 3-year, 4.7% bond are in
place. All we need to perform a valuation are
the rates at the start of Year 3. In effect, we need
to find r2 such that the bond prices at par. Again,
an arbitrary starting point is selected, and an
iterative process produces the correct rate.

The completed version of Figure 6 is found
in Figure 7. The value of r2, or equivalently

100.000•

97.846 NHHH 4.7

4.7•

97.823 NHH 7.0053%

100.000•4.7•

100.000 NH 5.4289% 99.021 NHHL 4.7

4.7••

3.5000%N 99.777 NHL 5.7354%

100.000•4.7•

NL 4.4448% 100.004 NHLL 4.7

4.7•

NLL 4.6958%

100.000•

NLLL 4.7

Year 3Year 2Year 1Today

Figure 7 The 1-Year Rates for Year 2 Using the
3-Year 4.7% On-the-Run Issue
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r2,LL, which will produce the desired result
is 4.6958%. The corresponding rates r2,HL and
r2,HH would be 5.7354% and 7.0053%, respec-
tively. To verify that these are the correct 1-
year rates two years from now, work backwards
from the four nodes at the right of the tree in Fig-
ure 7. For example, the value in the box at NHH

is found by taking the value of $104.7 at the two
nodes to its right and discounting at 7.0053%.
The value is $97.846. Similarly, the value in the
box at NHL is found by discounting $104.70 by
5.7354% and at NLL by discounting at 4.6958%.

USING THE LATTICE FOR
VALUATION
To illustrate how to use the lattice for valua-
tion purposes, consider a 6.5% option-free bond
with four years remaining to maturity. Since this
bond is option-free, it is not necessary to use the
lattice model to value it. All that is necessary to
obtain an arbitrage-free value for this bond is
to discount the cash flows using the spot rates
obtained from bootstrapping the yield curve
shown in Table 1. (All calculations are highly
sensitive to the number of decimal places cho-
sen.) The spot rates are as follows:

1-year 3.5000%
2-year 4.2147%
3-year 4.7345%
4-year 5.2707%

Discounting the 6.5% 4-year option-free bond
with a par value of $100 at the above spot rates
would give a bond value of $104.643.

Figure 8 contains the fair tree for a four-year
valuation. Figure 9 shows the various values in
the discounting process using the lattice in Fig-
ure 8. The root of the tree shows the bond value
of $104.643, the same value found by discount-
ing at the spot rate. This demonstrates that the
lattice model is consistent with the valuation of
an option-free bond when using spot rates.

9.1987%•
NHHH

7.0053%•
NHH

7.5312%•5.4289%•
NH NHHL

5.7354%•3.5000%•
N NHL

6.1660%•4.4448%•
NL NHLL

4.6958%•
NLL

5.0483%•
NLLL

Year 3Year 2Year 1Today

Figure 8 Binomial Interest Rate Tree for Valuing
up to a 4-Year Bond for Issuer (10% Volatility As-
sumed)

The lesson here can be applied to more com-
plex instruments, those with option features
that require the lattice-based process for proper
valuation and derivatives such as swaptions.
Regardless of the security or derivative to be
valued, the generation of the lattice follows
the same no-arbitrage principles outlined here.
Subsequently, cash flows are determined at
each node, the recursive valuation process un-
dertaken to arrive at fair values. Hence, a single
lattice and a valuation process prove to be ro-
bust means for obtaining fair values for a wide
variety of fixed income instruments.

KEY POINTS
� The complication in valuing bonds with em-

bedded options and option-type derivatives
is that cash flows depend on interest rates in
the future.

� In practice, several interest rate models have
been employed to construct an interest rate
lattice. In each case, interest rates can real-
ize one of several possible levels when we
move from one period to the next. There are
binomial lattices (two possible rates in the
next period), trinomial lattices (three possi-
ble rates in the next period), and even more
complex models that allow more than three
possible rates in the next period.
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Figure 9 Valuing an Option-Free Bond with Four Years to Maturity and a Coupon Rate of 6.5% (10%
Volatility Assumed)

� Several models have been developed to
value bonds with embedded options and
option-type interest rate derivatives, the
most common model being a one-factor
model.

� The lattice framework uses an arbitrage-free
interest rate lattice or tree to generate the cash
flows over the life of the financial instrument
and then to determine the present value of
the cash flow. The present value of the cash
flow is then the fair value of the financial
instrument.

� The lattice must be constructed so as to be
consistent with (that is, calibrated to) the ob-
served market value of an on-the-run option-
free issue.

NOTE
1. For an extensive discussion of the appli-

cation to the valuation of embedded op-
tions in bonds see Kalotay, Williams, and
Fabozzi (1993), and for the application to
interest rate swaptions see Fabozzi and Bue-
tow (2000).
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Abstract: In principle, the valuation of a financial instrument is straightforward: It is the present
value of the expected cash flow. For fixed income securities, the expected cash flow, ignoring the
possibility of default, is the periodic interest payments and the maturity value. The interest rates
used to discount the expected cash flows are obtained from an appropriate benchmark spot rate
curve. When a fixed-rate or floating-rate bond has an interest-sensitive embedded option such as a
call option, put option, or a cap in the case of a floater, the expected cash flow will be dependent on
future interest rates. To value fixed income securities with embedded options, the lattice framework
is the standard tool in practice. The same lattice-based framework is also used to value interest-
sensitive derivatives such as options, caps, and floors.

We will demonstrate in this entry how the lattice
framework provides a robust means for valuing
fixed-rate and floating-rate bonds and interest
rate derivatives. In addition, we extend the ap-
plication of the interest rate tree to the calcu-
lation of the option-adjusted spread, as well as
the effective duration and convexity of a fixed
income instrument. The model described below
was first introduced by Kalotay, Williams, and
Fabozzi (1993).

FIXED-COUPON BONDS
WITH EMBEDDED OPTIONS

The valuation of bonds with embedded options
proceeds in the same fashion as in the case of an
option-free bond. However, the added complex-
ity of an embedded option requires an adjust-
ment to the cash flows on the tree depending
on the structure of the option. A decision on
whether to call or put must be made at nodes
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on the tree where the option is eligible for exer-
cise. Examples for both callable and putable bonds
follow. The analysis can be extended to cases
where there are several embedded options such
as a callable bond with an accelerated sinking
fund provision.

Valuing a Callable Bond
In the case of a call option, the call will be made
when the present value (PV) of the future cash
flows is greater than the call price at the node
where the decision to exercise is being made.
Effectively, the following calculation is made:

Vt = Min[Call Price, PV(Future Cash Flows)]

where Vt represents the PV of future cash flows
at the node. This operation is performed at each
node where the bond is eligible for call.

For example, consider a 6.5% bond with four
years remaining to maturity that is callable in
one year at $100. We will value this bond, as
well as the other instruments in this entry, using
a binomial tree. The on-the-run yield curve for
the issuer used to construct the tree is given in
Table 1. The methodology for constructing the
binomial interest rate tree from the yield curve
is not discussed here but is explained in Entry
16. Application of the methodology results in
the binomial interest rate tree in Figure 1. In
constructing the binomial tree in Figure 1, it is
assumed that interest rate volatility is 10% and
that cash flows occur at the end of the year. This
binomial tree will be used throughout this entry.

Figure 2 shows two values are now present at
each node of the binomial tree. The discounting
process is used to calculate the first of the two
values at each node. The second value is the
value based on whether the issue will be called.
To simplify the analysis, it is assumed that the

Table 1 Issuer Par Yield Curve

Maturity Par Rate Market Price

1 year 3.50% 100
2 years 4.20% 100
3 years 4.70% 100
4 years 5.20% 100
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7.5312%•5.4289%•
NH NHHL

5.7354%•3.5000%•
NN HL

6.1660%•4.4448%•
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4.6958%•
NLL

5.0483%•
NLLL

Year 3Year 2Year 1Today

Figure 1 Binomial Interest Rate Tree for Valuing
up to a Four-Year Bond for Issuer (10% Volatility
Assumed)

issuer calls the issue if the PV of future cash
flows exceeds the call price. This second value is
incorporated into the subsequent calculations.

In Figure 3 certain nodes from Figure 2 are
highlighted. Panel (a) of the figure shows nodes
where the issue is not called (based on the sim-
ple call rule used in the illustration) in year 2
and year 3. The values reported in this case are
the same as in the valuation of an option-free
bond. Panel (b) of the figure shows some nodes
where the issue is called in year 2 and year
3. Notice how the methodology changes the
cash flows. In year 3, for example, at node NHLL

the recursive valuation process produces a PV of
100.315.1 However, given the call rule, this issue
would be called. Therefore, 100 is shown as the
second value at the node and it is this value that
is then used as the valuation process continues.
Taking the process to its end, the value for this
callable bond is 102.899.

The value of the call option is computed as the
difference between the value of an optionless
bond and the value of a callable bond. In our
illustration, the value of the option-free bond
can be shown to be 104.643. The value of the
callable bond is 102.899. Hence, the value of the
call option is 1.744 (=104.634 − 102.899).

Valuing a Putable Bond
A putable bond is one in which the bondholder
has the right to force the issuer to pay off the
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Computed value
Call price if exercised; 

computed value if not exercised
Coupon
Short-term rate (r *)

•   100.000
NHHHH 6.5

97.529
97.529•

NHHH 6.5
9.1987%97.925

100.000•97.925•
NHH 6.5 NHHHL 6.5

99.0417.0053%100.032
99.041•100.000•

NH 6.5 NHHL 6.5
7.5312%100.2705.4289%

100.000•100.000•102.899•
N 3.5000% NHL 6.5 NHHLL 6.5

100.3155.7354%101.968
100.000•100.000•

NL 6.5 NHLL 6.5
6.1660%101.7234.4448%

100.000•100.000•
NLL 6.5 NHLLL 6.5

101.3824.6958%
100.000•

NLLL 6.5
5.0483%

•   100.000
NLLLL 6.5

Year 4Year 3Year 2Year 1Today

Figure 2 Valuing a Callable Bond with Four Years to Maturity, a Coupon Rate of 6.5%, and Callable
after the First Year at 100 (10% Volatility Assumed)

97.529
97.529•

NHHH 6.5
97.925

(a)

(b)

9.1987%
97.925•

NHH 6.5
99.0417.0053%
99.041•

NHHL 6.5
7.5312%
Year 3Year 2

100.315
100.000•

NHLL 6.5
6.1660%101.723

100.000•
NLL 6.5

101.3824.6958%
100.000•

NLLL 6.5
5.0483%
Year 3Year 2

Figure 3 Highlighting Nodes in Years 2 and 3 for
a Callable Bond: (a) Nodes Where the Call Option
Is Not Exercised and (b) Selected Nodes Where
the Call Option Is Exercised

bond prior to the maturity date. The analysis
of the putable bond follows closely that of the
callable bond. In the case of the putable, we
must establish the rule by which the decision to
put is made. The reasoning is similar to that for
the callable bond. If the PV of the future cash
flows is less than the put price (that is, par), then
the bond will be put. In equation form,

Vt = Max[Put Price, PV(Future Cash Flows)]

Figure 4 is analogous to Figure 3. It shows
the binomial tree with the values based on
whether or not the investor exercises the put
option at each node. The bond is putable any
time after the first year at par. The value of the
bond is 105.327. Note that the value is greater
than the value of the corresponding option-free
bond.

With the two values in hand, we can calculate
the value of the put option. Since the value of
the putable bond is 105.327 and the value of the
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Computed value
Put price if exercised; computed value if not exercised
Coupon
Short-term rate (r *) 97.529 NHHHH 6.5

100.000•

99.528 NHHH 6.5

9.1987%100.000•

101.429 NHH 6.5 NHHHL 6.5

7.0053%101.429 99.041•

NH 100.000•6.5

100.8725.4289% NHHL 6.5

7.5312%100.872•105.327• •
N 3.5000% NHL 6.5 NHHLL 6.5

100.3155.7354%103.598

100.315•103.598•

NL 102.5346.5 NHLL 6.5

6.1660%4.4448% 102.534•

NLL 6.5 NHLLL 6.5

4.6958% 101.382

101.382•

NLLL 6.5

5.0483%
NLLLL 6.5

Year 4Year 3Year 2Year 1Today

100.000

•  100.000

•  100.000

•  100.000

•  100.000

Figure 4 Valuing a Putable Bond with Four Years to Maturity, a Coupon Rate of 6.5%, and Putable
after the First Year at 100 (10% Volatility Assumed)

corresponding option-free bond is 104.643, the
value of the embedded put option purchased
by the investor is effectively 0.684.

Suppose that a bond is both putable and
callable. The procedure for valuing such a struc-
ture is to adjust the value at each node to re-
flect whether the issue would be put or called.
Specifically, at each node there are two decisions
about the exercising of an option that must be
made. If it is called, the value at the node is
replaced by the call price. The valuation proce-
dure then continues using the call price at that
node. If the call option is not exercised at a node,
it must be determined whether or not the put
option will be exercised. If it is exercised, then
the put price is substituted at that node and is
used in subsequent calculations.

FLOATING-COUPON BONDS
WITH EMBEDDED OPTIONS
Simple discounted cash flow methods of anal-
ysis fail to handle floaters with embedded or
option-like features. In this section we demon-
strate how to use the lattice model to value (1)
a capped floater, and (2) a callable capped floater.
We will streamline the notation used in the bi-
nomial tree in the figures shown in this section.

Valuing Capped Floating-Rate
Bonds
Consider a floating-rate bond with a coupon
indexed to the 1-year rate (the reference rate)
plus a spread. For our purposes, assume a 25
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basis point (bp) spread to the reference rate.
The coupon adjusts at each node to reflect the
level of the reference rate plus the spread.

Using the same valuation method as before,
we can find the value at each node. Recall the
value of the bond is 100 (par) at the end of
year 4. Consider NHLL.

NHL L = 1
2

[
100 + 6.416

1.06166
+ 100 + 6.416

1.06166

]

= 100.235

Stepping back one period

NLL = 1
2

[
100.235 + 4.9458

1.046958
+ 100.238 + 4.9458

1.046958

]

= 100.465

Following this same procedure, we arrive
at the price of 100.893. How would this

Maturity
(Yrs)

Coupon
Index

Spread
(bps)

Par
Value

10025.001-yr Rate4
100.000

Cap: 7.250%
Volatility:

N98.215

10.000%

HHHH

7.250%

N99.272 HHH

100.000

9.199%
7.250%

N99.998 HH N99.7387.005% HHHL

7.250%5.679%

N100.516 H N100.2245.429% HHL

100.000

7.532%
5.985%3.750%

N 3.500% N100.569 HL N100.2355.735% HHLL

6.416%4.695%

NL 4.445% N100.465 HLL

100.000

6.166%
4.946%

NLL 4.696% N100.238 HLLL

5.299%

NLLL 5.049%

NLLLL

4321Today

100.000

Figure 5 Valuation of a Capped Floating-Rate Bond

change if the interest rate on the bond were
capped?

Assume that the cap is 7.25%. In Figure 5
we’ve taken the tree from Figure 1 and, as was
the case with the optionless fixed-coupon bond,
at each node we’ve entered the cash flow ex-
pected at the end of each period based on the
reset formula. As rates move higher there is a
possibility that the current reference rate ex-
ceeds the cap. Such is the case at NHHH and
NHHL. The coupon is subject to the following
constraint:

Ct = Min[rt, 7.25%]

As a result of the cap, the value of the bond
in the upper nodes at t = 3 falls below par. For
example,

NHHH = 1
2

[
100 + 7.25
1.091987

+ 100 + 7.25
1.09198

]
= 98.215
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Valuing recursively through the tree, we ar-
rive at the current value of the capped floater,
100.516, a value lower than the plain vanilla
floater. This last calculation gives us a means
for pricing the embedded option. Without a cap,
the bond is priced at 100.893. The difference be-
tween these two prices is the value of the cap,
0.377. It is important to note that the price of the
cap is volatility dependent. Any change in the
volatility would result in a different valuation
for the cap. The greater the volatility, the higher
the price of the option, and vice versa.

We can extend the application of the lattice
to the initial pricing of securities. What if an
issuer wanted to offer this bond at par? In such
a case, an adjustment has to be made to the
coupon. To lower the price from 100.516 to par,
a lower spread over the reference rate is offered
to investors. Figure 6 shows the relationship
between the spread over the 1-year reference
rate and the bond price. At a spread of 8.70
bps over the 1-year reference rate, the capped
floater in Figure 5 will be priced at par. Again,
the spread of 8.7 bps is volatility dependent.

Callable Capped Floating-Rate
Bonds
Now consider a call option on the capped
floater. As was the case for a fixed-coupon bond,
we must be careful to specify the appropriate
rules for calling the bond on the valuation tree.
It turns out that the rule is the same for floaters
and fixed-coupon bonds. Any time the bond
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Figure 6 Spread to Index to Price Cap at Par

has a PV above par at a node where the bond
is callable, the bond will be called. (Here we
assume a par call to simplify the illustration.)

Before we get into the details, it is important
to motivate the need for a call on a floating-rate
bond. The value of a cap to the issuer increases
as market rates near the cap and there is the
potential for rates to exceed the cap prior to
maturity. As rates decline, so does the value of
the cap. The problem for the issuer in the event
of low rates is the additional basis-point spread
it is paying for a cap that now has little or no
value. Thus, when rates decline, a call has value
to the issuer because it can call and reissue at a
different spread.

Suppose that the capped floater is callable at
par anytime after the first year. Figure 7 pro-
vides details on the effect of the call option
on valuation of the capped floater. Again, for a
callable bond, when the present value exceeds
par in a recursive valuation model, the bond is
called. In the case of our 4-year bond, in Figure
7 the value of the bond at several lower nodes is
now 100, the call price. The full effect of the call
option on price is evident with today’s price for
the bond moving to 99.9140.

The by-product of this analysis is the value of
the call option on a capped floater. We now have
the fair value of the capped floater versus the
callable capped floater. So the call option has a
value of 100.516 − 100.189 = 0.327.

How would one structure the issue so that it
is priced at par? We have to offer a lower spread
over the floating rate than the holder is already
receiving for accepting the cap. In this case, we
need to move the total spread over the 1-year
floating rate to 13.37 bps. Figure 8 shows the
relationship between spread and value.

VALUING CAPS AND
FLOORS
An interest rate cap is nothing more than a pack-
age or strip of options. More specifically, a cap
is a strip of European options on interest rates.
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Maturity
(Yrs)

Coupon
Index

Spread
(bps)

Par
Value

Call
Price

10010025.001-yr Rate4

100.000
Cap: 7.250%

Volatility: N98.21510.000% HHHH

7.250%

N99.272 HHH 9.199%
7.250%

N99.892 HH N99.7387.005% HHHL

7.250%5.679%

N100.189 H N100.0005.429% HHL 7.532%
5.985%3.750%

N 3.500% N100.000 HL N100.0005.735% HHLL

6.416%4.695%

NL 4.445% N100.000 HLL 6.166%
4.946%

NLL 4.696% N100.000 HLLL

5.299%

NLLL 5.049%

NLLLL

4321Today

100.000

100.000

100.000

100.000

Figure 7 Valuation of a Capped Floating-Rate Bond

Thus, to value a cap, the value of each period’s
cap, called a caplet, is found and all the caplets
are then summed.
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Figure 8 Spread to Index to Price Callable Cap
at Par

In order to value caps and floors, a modifi-
cation of the lattice framework is required. The
modification is necessary because of the timing
of the payments for a cap and floor: Settlement
for the typical cap and floor is paid in arrears.
Payment in arrears means that the interest rate
paid is determined at the beginning of the pe-
riod, but the actual payment is made at the end
of the period (that is, beginning of the next pe-
riod). This modification complicates the nota-
tion and will not be made here but is explained
in Fabozzi (2006).

To illustrate, we once again use the binomial
tree given in Figure 1 to value a cap. Consider a
5.2% 3-year cap with a notional amount of $10
million. The reference rate is the 1-year rate. The
payoff for the cap is annual.
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The three panels in Figure 9 show how this
cap is valued by valuing the three caplets. The
value for the caplet for any year, say year X, is
found as follows. First, calculate the payoff in
year X at each node as either:

1. Zero if the one-year rate at the node is less
than or equal to 5.2%, or

2. The notional amount of $10 million times
the difference between the 1-year rate at the
node and 5.2% if the 1-year rate at the node
is greater than 5.2%.

Assumptions:
Cap rate: 5.2%
Notional amount: $10,000,000
Payment frequency: Annual

Panel A: The Value of the Year 1 Caplet

Value of Year 1 caplet = $11,058

Panel B: The Value of the Year 2 Caplet

Panel C: The Value of the Year 3 Caplet

Value of Year 2 caplet = $66,009

• 22,890
NH 5.4289%

• 11,058
N 3.5000%

• 0
NL 4.4448%

Year 1Today

• 180,530
NHH 7.0053%

• 111,008
NH 5.4289%

• 66,009 • 53,540
N 3.5000% NHL 5.7354%

• 25,631
NL 4.4448%

• 0
NLL 4.6958%

Year 2Year 1Today

• 399,870
NHHH 9.1987%

• 295,775
NHH 7.0053%

• 214,217 • 233,120
NH 5.4289% NHHL 7.5312%

• 150,214 • 155,918
N 3.5000% NHL 5.7354%

• 96,726 • 96,600
NL 4.4448% NHLL 6.1660%

• 46,134
NLL 4.6958%

• 0
NLLL 5.0483%

Year 3Year 2Year 1Today

Value of Year 3 caplet = $150,214
Summary : Value of 3-Year Cap = $11,058 + $66,009 + 
$150,214 = $227,281
Note on calculations: Payoff in last box of each figure is

$10,000,000 × Maximum [(Rate at node – 5.2%, 0)] 
 

Figure 9 Valuation of a Three-Year 5.2% Cap
(10% Volatility Assumed)

Then, the recursive valuation process is used to
determine the value of the year X caplet.

For example, consider the year 3 caplet. At
the top node in year 3 of Panel C of Figure 9,
the 1-year rate is 9.1987%. Since the 1-year
rate at this node exceeds 5.2%, the payoff in
year 3 is:

$10,000,000 × (0.091987 − 0.052) = $399,870

For node NHH we look at the value for the cap
at the two nodes to its right, NHHH and NHHL.
Discounting the values at these nodes, $399,870
and $233,120, by the interest rate from the bino-
mial tree at node NHH, 7.0053%, we arrive at a
value of $295,755. That is,

Value at NH H = [$399,870/(1.070053)

+ $233,120(1.070053)]/2

= $295,775

The values at nodes NHH and NHL are dis-
counted at the interest rate from the binomial
tree at node NH, 5.4289%, and then the value is
computed. That is,

Value at NH = [$295,775/(1.054289)

+ $155,918/(1.054289)]/2

= $214,217

Finally, we get the value at the root, node N,
which is the value of the year 3 caplet found
by discounting the value at NH and NL by
3.5% (the interest rate at node N). Doing so
gives:

Value at N = [$214,217/(1.035)

+ $96,726/(1.035)]/2

= $150,214

Following the same procedure, the value of
the year 2 caplet is $66,009 and the value of the
year 1 caplet is $11,058. The value of the cap is
then the sum of the three caplets.

Thus, the value of the cap is $227,281, found
by adding $11,058, $66,009, and $150,214. The
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valuation of an interest rate floor is done in the
same way.

VALUATION OF TWO MORE
EXOTIC STRUCTURES
The lattice-based recursive valuation method-
ology is robust. To further support this claim,
we address the valuation of two more exotic
structures—the step-up callable note and the
range floater.

Valuing a Step-Up Callable Note
Step-up callable notes are callable instruments
whose coupon rate is increased (that is,
“stepped up”) at designated times. When the
coupon rate is increased only once over the
security’s life, it is said to be a single step-up
callable note. A multiple step-up callable note
is a step-up callable note whose coupon is in-
creased more than one time over the life of
the security. Valuation using the lattice model
is similar to that for valuing a callable bond

4.25% for Years 1 and 2Step-up coupon structure:

100.000•7.50% for Years 3 and 4

Computed value
Coupon based on step-up schedule
Short-term rate (r *)

98.444 NHHHH 7.5

7.5•

99.722 NHHH 9.1987% 100.000•

4.25• NHHHL 7.5

99.817 NHH 7.0053% 99.971

7.5•4.25•

102.082 NHH 102.2495.4289% NHHL 100.0007.5312% •

4.25•• NHHLL 7.5

N 3.5000% 102.993 NHL 5.7354% 101.257

7.5•4.25•

NLL 4.4448% 104.393 NHLL 100.0006.1660% •

4.25• NHLLL 7.5

NLL 4.6958% 102.334

7.5•

NLLL 5.0483% 100.000•

NLLLL 7.5

Year 4Year 3Year 2Year 1Today

Figure 10 Valuing a Single Step-Up Noncallable Note with Four Years to Maturity (10% Volatility
Assumed)

described above except that the cash flows are
altered at each node to reflect the coupon char-
acteristics of a step-up note.

Suppose that a four-year step-up callable note
pays 4.25% for two years and then 7.5% for two
more years. Assume that this note is callable at
par at the end of year 2 and year 3. We will use
the binomial tree given in Figure 1 to value this
note.

Figure 10 shows the value of the note if it were
not callable. The valuation procedure is the re-
cursive valuation from Figure 2. The coupon
in the box at each node reflects the step-up
terms. The value is 102.082. Figure 11 shows
that the value of the single step-up callable note
is 100.031. The value of the embedded call op-
tion is equal to the difference in the optionless
step-up note value and the step-up callable note
value, 2.051.

Now we move to another structure where the
coupon floats with a reference rate, but is re-
stricted. In this next case, a range is set in which
the bond pays the reference rate when the rate
falls within a specified range, but outside the
range no coupon is paid.
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100.000•

4.25% for Years 1 and 2Step-up coupon structure:

98.444

7.50% for Years 3 and 4

NHHHH 7.5
98.444•

NHHH 7.5
9.1987%99.722

100.000•99.722•
NHH 4.25 NHHHL 7.5

98.750 7.0053% 99.971
99.971•98.750•

NH 4.25 NHHL 7.5
101.6555.4289% 7.5312%

100.000•100.000•100.031•
N 3.5000% NHL 4.25 NHHLL 7.5

101.2575.7354%98.813
100.000•98.813•

NL 4.25 NHLL 7.5
6.1660%102.6784.4448%

100.000•100.000•
NLL 4.25 NHLLL 7.5

102.3344.6958%
100.000•

Computed value
Call price if exercised; computed value if not exercised
Coupon based on step-up schedule
Short-term rate (r *)

NLLL 7.5
5.0483% 100.000•

NLLLL 7.5

Year 4Year 3Year 2Year 1Today

Figure 11 Valuing a Single Step-Up Callable Note with Four Years to Maturity, Callable in Two Years
at 100 (10% Volatility Assumed)

Valuing a Range Note
A range note is a security that pays the reference
rate only if the rate falls within a band. If the
reference rate falls outside the band, whether
the lower or upper boundary, no coupon is paid.
Typically, the band increases over time.

To illustrate, suppose that the reference rate
is, again, the 1-year rate and the note has three
years to maturity. Suppose further that the band
(or coupon schedule) is defined as in Table 2.
Figure 12 shows the interest rate tree and the
cash flows expected at the end of each year. Ei-

Table 2 Coupon Schedule (Bands) for a Range Note

Year 1 Year 2 Year 3

Lower Limit 3.00% 4.00% 5.00%
Upper Limit 5.00% 6.25% 8.00%

ther the 1-year reference rate is paid, or nothing.
In the case of this 3-year note, there is only one
state in which no coupon is paid. Using our re-
cursive valuation method, we can work back
through the tree to the current value, 98.963.

VALUING AN OPTION
ON A BOND
Thus far we have seen how the lattice can be
used to value bonds with embedded options.
The same tree can be used to value a stand-
alone option on a bond.

To illustrate how this is done, consider a 2-
year American call option on a 6.5% 2-year Trea-
sury bond with a strike price of 100.25 which
will be issued two years from now. We will as-
sume that the on-the-run Treasury yields are
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100.000
107.0053•

100.000 NHH 7.0053
5.4289•

98.963 NHH 100.0005.4289
105.7354•3.5000•

N 97.8533.5000 NHL 5.7354
4.4448•

NLL 95.5154.4448
100.0000•

NLL 4.6958
Year 2Year 1Year 0

Figure 12 Valuation of a Three-Year Range
Floater

those represented in Figure 13. Within the bino-
mial tree we find the value of the Treasury bond
at each node. Figure 14 shows the value of our
hypothetical Treasury bond (excluding coupon
interest) at each node at the end of year 2.

The decision rule at a node for determining
the value of an option on a bond depends on
whether or not the call or put option being val-
ued is in the money. Moreover, the exercise deci-
sion is only applied at the expiration date. That
is, a call option will be exercised at the option’s
expiration date if the bond’s value at a node is
greater than the strike price. In the case of a put
option, the option will be exercised if the strike
price at a node is greater than the bond’s value
(that is, if the put option is in the money).

Three values for the underlying 2-year bond
are shown in Figure 14: 97.925, 100.418, and

Value of call at end of year 20•
Call value NHH Treasury value at end of year 297.9249

Expected call value0.0799•
NH Rate from binomial tree5.4289%

0.6056• Value of call at end of year 20.1684•
N 3.5000% NHL Treasury value at end of year 2100.4184

Expected call value1.1738•
NL Rate from binomial tree4.4448%

Value of call at end of year 22.2835•
NRate from binomial tree LL Treasury value at end of year 2102.5335

Year 2Year 1Today

Figure 13 Using the Arbitrage-Free Binomial Method
Expiration: 2 years; Strike Price: 100.25; Current Price: 104.643; Volatility Assumption: 10%

102.534. Given these three values, the value of
a call option with a strike price of 100.25 can
be determined at each node. For example, if in
year 2 the price of this Treasury bond is 97.925,
then the value of the call option would be zero.
In the other two cases, since the value at the
end of year 2 is greater than the strike price, the
value of the call option is the difference between
the price of the bond at the node and 100.25.

Given these values, the binomial tree is used
to find the present value of the call option us-
ing recursive valuation. The discount rates are
the now familiar 1-year forward rates from the
binomial tree. The expected value at each node
for year 1 is found by discounting the call op-
tion value from year 2 using the rate at the node.
Move back one more year to “Today.” The value
of the option is 0.6056.

The same procedure is used to value a put
option on a bond.

EXTENSIONS
We next demonstrate how to compute the
option-adjusted spread, effective duration, and
the convexity for a fixed income instrument
with an embedded option.

Option-Adjusted Spread
We have concerned ourselves with valuation
to this point. However, financial market trans-
actions determine the actual price for a fixed



254 Bond Valuation

* Each 1-year rate is 35 basis points greater than in Figure 1.

Computed value
Call price if exercised; 

computed value if not exercised
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Figure 14 Demonstration That the Option-Adjusted Spread is 35 Basis Points for a 6.5% Callable Bond
Selling at 102.218 (Assuming 10% Volatility)

income instrument, not a series of calculations
on an interest rate lattice. If markets are able
to provide a meaningful price (usually a func-
tion of the liquidity of the market in which the
instrument trades), this price can be translated
into an alternative measure of relative value,
the option-adjusted spread (OAS).

The OAS for a security is the fixed spread
(usually measured in basis points) over the
benchmark rates that equates the output from
the valuation process with the actual market
price of the security.2 For an optionless security,
the calculation of OAS is a relatively simple it-
erative process. The process is much more ana-
lytically challenging with the added complexity
of optionality. And, just as the value of the op-

tion is volatility dependent, the OAS for a fixed
income security with embedded options or an
option-like interest rate product is volatility de-
pendent.

Recall our illustration in Figure 2 where the
value of a callable bond was calculated as
102.899. Suppose that we had information from
the market that the price is actually 102.218. We
need the OAS that equates the value from the
lattice with the market price. Since the market
price is lower than the valuation, the OAS is a
positive spread to the rates in the figure, rates
which we assume to be benchmark rates.

The solution in this case is 35 basis points,
which is incorporated into Figure 14 that shows
the value of the callable bond after adding
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35 basis points to each rate. The simple, bino-
mial tree provides evidence of the complex cal-
culation required to determine the OAS for a
callable bond. In Figure 2, the bond is called at
NHLL. However, once the tree is shifted 35 bps
in Figure 14, the PV of future cash flows at NHLL

falls below the call price to 99.985, so the bond
is not called at this node. Hence, as the lattice
structure grows in size and complexity, the need
for computer analytics becomes obvious.

Effective Duration and Effective
Convexity
Duration and convexity provide a measure of
the interest rate risk inherent in a fixed income
security.3 We rely on the lattice model to calcu-
late the effective duration and effective convexity
of a bond with an embedded option and other
option-like securities. The formulas for these
two risk measures are given below:

Effective duration = V− − V+
2 V0(�r )

Effective convexity = V+ − V− − 2V0

2 V0(�r )2

where V− and V+ are the values derived follow-
ing a parallel shift in the yield curve down and
up, respectively, by a fixed spread. The model
adjusts for the changes in the value of the em-
bedded call option that result from the shift in
the curve in the calculation of V− and V+.

Note that the calculations must account for
the OAS of the security. Below we provide the
steps for the proper calculation of V+. The cal-
culation for V− is analogous.

Step 1: Given the market price of the issue, cal-
culate its OAS.

Step 2: Shift the on-the-run yield curve up by a
small number of basis points (�r).

Step 3: Construct a binomial interest rate tree
based on the new yield curve from Step 2.

Step 4: Shift the binomial interest rate tree by
the OAS to obtain an “adjusted tree.” That

is, the calculation of the effective duration
and convexity assumes a constant OAS.

Step 5: Use the adjusted tree in Step 4 to deter-
mine the value of the bond, V+.

We can perform this calculation for our 4-
year callable bond with a coupon rate of 6.5%,
callable at par selling at 102.218. We computed
the OAS for this issue as 35 basis points. Figure
15 shows the adjusted tree following a shift in
the yield curve up by 25 basis points, and then
adding 35 basis points (the OAS) across the tree.
The adjusted tree is then used to value the bond.
The resulting value, V+ is 101.621.

To determine the value of V−, the same five
steps are followed except that in Step 2, the on-
the-run yield curve is shifted down by the same
number of basis points (�r). It can be demon-
strated that for our callable bond, the value for
V− is 102.765.

The results are summarized below:

�r = 0.0025
V+ = 101.621
V− = 102.765
V0 = 102.218

Therefore,

effective duration = 102.765 − 101.621
2(102.218)(0.0025)

= 2.24

Effective convexity =
101.621 + 102.765 − 2(102.218)

2(102.218)(0.0025)2

= −39.1321

Notice that this callable bond exhibits negative
convexity.

KEY POINTS
� The valuation of an option-free bond is

straightforward. However, once there is a pro-
vision in the bond structure that grants the is-
suer and/or the investor an option, valuation
becomes more difficult.

� The standard technology employed to value
bonds with embedded options that depend
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* +25 basis point shift in on-the-run yield curve.
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Figure 15 Determination of V+ for Calculating Effective Duration and Convexity*

on future interest rates, such as callable and
putable bonds, is the lattice framework.

� The initial step in the lattice approach is to
generate an arbitrage-free lattice or interest
rate tree from an appropriate on-the-run yield
curve.

� Based on rules specified by the modeler for
when an option will be exercised, a lattice of
future cash flows is obtained and then valued
using the interest rates in the lattice.

� The same model is used to value interest
rate-sensitive derivatives such as options on
bonds, interest rate caps, and interest rate
caps and floors.

� Other useful analytical measures can be ob-
tained using the lattice model. These mea-
sures include the option-adjusted spread—a
measure of relative value—and effective du-
ration and effective convexity—measures of
price sensitivity to changes in interest rates.

NOTES
1. See Kalotay, Williams, and Fabozzi (1993).
2. For a discussion of OAS, see Fabozzi (1990,

2012).
3. See Fabozzi (1999, 2012) for a discussion of

effective duration and convexity.
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Abstract: Ubiquity of option-adjusted spread (OAS) in finance practice is remarkable, in light of the
fact that there is no general consensus on its implementation. Investors in mortgage-backed (MBS)
and asset-backed (ABS) securities hold a long position in noncallable bonds and short positions in
prepayment (call) options. The noncallable bond is a bundle of zero coupon bonds, and the call
option gives the borrower the right to prepay the loan at any time prior to the scheduled principal
repayment dates. The call option component of the valuation consists of intrinsic and time values.
To the extent that the option embedded in ABS/MBS is a delayed American exercise style, the time
value component associated with prepayment volatility needs to be evaluated. To evaluate this
option, OAS analysis uses an option-based technique to price ABS/MBS under different interest
rate scenarios. Hence, OAS is the spread differential between the zero volatility spread and option
value components of an ABS/MBS.

Investors and analysts continue to wrestle
with the differences in option-adjusted-spread
(OAS) values for securities they see from com-
peting dealers and vendors. And portfolio man-
agers continue to pose fundamental questions
about OAS with which we all struggle in the fi-
nancial industry. Some of the frequently asked
questions are

� How can we interpret the difference in deal-
ers’ OAS values for a specific security?

� What is responsible for the differences?
� Is there really a correct OAS value for a given

security?

In this entry, we examine some of the ques-
tions about OAS analysis, particularly the basic
building block issues about OAS implementa-

tion. Because some of these issues determine
“good or bad” OAS results, we believe there is a
need to discuss them. To get at these fundamen-
tal issues, we hope to avoid sounding pedantic
by relegating most of the notations and expres-
sions to the endnotes.

Clearly, it could be argued that portfolio man-
agers do not need to understand the OAS en-
gine to use it but that they need to know how
to apply it in relative value decisions. This ar-
gument would be correct if there were market
standards for representing and generating in-
terest rates and prepayments. In the absence of
a market standard, investors need to be familiar
with the economic intuitions and basic assump-
tions made by the underlying models. More
important, investors need to understand what

257



258 Bond Valuation

works for their situation and possibly iden-
tify those situations in which one model incor-
rectly values a bond. Although pass-throughs
are commoditized securities, OAS results still
vary considerably from dealer to dealer and
vendor to vendor. This variance is attributable
to differences in the implementation of the re-
spective OAS models.

Unlike other market measures, for example,
yield to maturity and the weighted average life
of a bond, which have market standards for
calculating their values, OAS calculations suf-
fer from the lack of a standard and a black-
box mentality. The lack of a standard stems
from the required inputs in the form of inter-
est rate and prepayment models that go into
an OAS calculation. Although there are many
different interest rate models available, there
is little agreement on which one to use. More-
over, there is no agreement on how to model
prepayments. The black-box mentality comes
from the fact that heavy mathematical machin-
ery and computational algorithms are involved
in the development and implementation of an
OAS model. This machinery is often so cryptic
that only a few initiated members of the intel-
lectual tribe can decipher it. In addition, dealers
invest large sums in the development of their
term structures and prepayment models and,
consequently, they are reluctant to share it.

In this entry, we review some of the proposed
term structures and prepayments. Many of the
term structure models describe “what is” and
only suggest that the models could be used.
Which model to use perhaps depends on the
problem at hand and the resources available.
In this entry, we review some of the popular
term structure models and provide some gen-
eral suggestions on which ones should not be
used.

Investors in asset-backed securities (ABS) and
mortgage-backed securities (MBS) hold long
positions in noncallable bonds and short po-
sitions in call (prepayment) options. The non-
callable bond is a bundle of zero-coupon bonds
(e.g., Treasury strips), and the call option gives

the borrower the right to prepay the mortgage
at any time prior to the maturity of the loan.
In this framework, the value of MBS is the dif-
ference between the value of the noncallable
bond and the value of the call (prepayment)
option. Suppose a theoretical model is devel-
oped to value the components of ABS/MBS.
The model would value the noncallable com-
ponent, which we loosely label the zero volatil-
ity component, and the call option component.
If interest rate and prepayment risks are well
accounted for, and if those are the only risks
for which investors demand compensation, one
would expect the theoretical value of the bond
to be equal to its market value. If these values
are not equal, then market participants demand
compensation for the unmodeled risks. One of
these unmodeled risks is the forecast error asso-
ciated with the prepayments. By this, we mean
the actual prepayment may be faster or slower
than projected by the model. Other unmodeled
risks are attributable to the structure and liquid-
ity of the bond. In this case, OAS is the market
price for the unmodeled risks.

To many market participants, however, OAS
indicates whether a bond is mispriced. All else
being equal, given that interest rate and prepay-
ment risks have been accounted for, one would
expect the theoretical price of a bond to be equal
to its market price. If these two values are not
equal, a profitable opportunity may exist in a
given security or a sector. Moreover, OAS is
viewed as a tool that helps identify which secu-
rities are cheap or rich when the securities are
relatively priced.

The zero volatility component of ABS/MBS
valuation is attributable to the pure interest
rate risk of a known cash flow—a noncallable
bond. The forward interest rate is the main
value driver of a noncallable bond. Indeed, the
value driver of a noncallable bond is the sum
of the rolling yield and the value of the con-
vexity. The rolling yield is the return earned if
the yield curve and the expected volatility are
unchanged. Convexity refers to the curvature
of the price-yield curve. A noncallable bond
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exhibits varying degrees of positive convexity.
Positive convexity means a bond’s price rises
more for a given yield decline than it falls for
the same yield. By unbundling the noncallable
bond components in ABS/MBS to their zero-
coupon bond components, the rolling yield be-
comes dominant. Hence, it is called the zero
volatility component—that is, the component of
the yield spread that is attributable to no change
in the expected volatility.

The call option component in ABS/MBS val-
uation consists of intrinsic and time values. To
the extent the option embedded in ABS/MBS is
the delayed American exercise style—in other
words, the option is not exercised immediately
but becomes exercisable any time afterward—
the time value component dominates. Thus, in
valuing ABS/MBS, the time value of the op-
tion associated with the prepayment volatility
needs to be evaluated. To evaluate this option,
OAS analysis uses an option-based technique
to evaluate ABS/MBS prices under different
interest rate scenarios. OAS is the spread dif-
ferential between the zero volatility and op-
tion value components of MBS. These values
are expressed as spreads measured in basis
points.

The option component is the premium paid
(earned) from going long (shorting) a prepay-
ment option embedded in the bond. The bond-
holders are short the option, and they earn the
premium in the form of an enhanced coupon.
Mortgage holders are long the prepayment op-
tion, and they pay the premium in spread above
the comparable Treasury. The option compo-
nent is the cost associated with the variability
in cash flow that results from prepayments over
time.

The two main inputs into the determination
of an OAS of a bond are as follows:

� Generate the cash flow as a function of the
principal (scheduled and unscheduled) and
coupon payments.

� Generate interest rate paths under an as-
sumed term structure model.

At each cash flow date, a spot rate deter-
mines the discount factor for each cash flow.
The present value of the cash flow is equal to
the sum of the product of the cash flow and
the discount factors.1 When dealing with a case
in which uncertainty about future prospects is
important, the cash flow and the spot rate need
to be specified to account for the uncertainty.2

The cash flow and spot rate become a function
of time and the state of the economy. The time
consideration is that a dollar received now is
worth more than one received tomorrow. The
state of the economy consideration accounts for
the fact that a dollar received in a good econ-
omy may be perceived as worth less than a dol-
lar earned in a bad economy. For OAS analysis,
the cash flow is run through different economic
environments represented by interest rates and
prepayment scenarios. The spot rate, which is
used to discount the cash flow, is run through
time steps and interest rate scenarios. The spot
rate represents the instantaneous rate of risk-
free return at any time, so that $1 invested now
will have grown by a later time to $1 multiplied
by a continuously compounded rollover rate
during the time period.3 Arbitrage pricing the-
ory stipulates the price one should pay now to
receive $1 at later time is the expected discount
of the payoff.4 So by appealing to the arbitrage
pricing theory, we are prompted to introduce an
integral representation for the value equation;
in other words, the arbitrage pricing theory al-
lows us to use the value additivity principle
across all interest rate scenarios.

IS IT EQUILIBRIUM OR AN
ARBITRAGE MODEL?
Market participants are guided in their invest-
ment decision making by received economic
philosophy or intuition. Investors, in general,
look at value from either an absolute or rel-
ative value basis. Absolute value basis pro-
ceeds from the economic notion that the market
clears at an exogenously determined price
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that equates supply-and-demand forces. Abso-
lute valuation models are usually supported
by general or partial equilibrium arguments.
In implementing market measure models that
depend on equilibrium analysis, the role of
an investor’s preference for risky prospects is
directly introduced. The formidable task en-
countered with respect to preference modeling
and the related aggregation problem has ren-
dered these types of models useless for most
practical considerations. One main exception is
the present value rule that explicitly assumes
investors have a time preference for today’s dol-
lar. Where the present value function is a mono-
tonically decreasing function of time, today’s
dollar is worth more than a dollar earned tomor-
row. Earlier term structure models were sup-
ported by equilibrium arguments, for example,
the Cox-Ingersoll-Ross (CIR) model.5 In partic-
ular, CIR provides an equilibrium foundation
for a class of yield curves by specifying the en-
dowments and preferences of traders, which,
through the clearing of competitive markets,
generates the proposed term structure model.

Relative valuation models rely on arbitrage
and dominance principles and characterize as-
set prices in terms of other asset prices. A
well-known example of this class is the Black-
Scholes6 and Merton7 option pricing model.
Modern term structure models, for example,
Hull-White,8 Black-Derman-Toy (BDT),9 and
Heath-Jarrow-Morton (HJM),10 are based on
arbitrage arguments. Although relative val-
uation models based on arbitrage principles
do not directly make assumptions about in-
vestors’ preferences, there remains a vestige
of the continuity of preference, for example,
the notion that investors prefer more wealth to
less. Thus, whereas modelers are quick in at-
tributing “arbitrage-freeness” to their models,
assuming there are no arbitrage opportunities
implies a continuity of preference that can be
supported in equilibrium. So, if there are no
arbitrage opportunities, the model is in equi-
librium for some specification of endowments
and preferences. The upshot is that the distinc-

tion between equilibrium models and arbitrage
models is a stylized fetish among analysts to
demarcate models that explicitly specify en-
dowment and preference sets (equilibrium) and
those models that are outwardly silent about
the preference set (arbitrage). Moreover, ana-
lysts usually distinguish equilibrium models as
those that use today’s term structure as an out-
put and no-arbitrage models as those that use
today’s term structure as an input.

Arbitrage opportunity exists in a market
model if there is a strategy that guarantees a
positive payoff in some state of the world with
no possibility of negative payoff and no initial
net investment. The presence of arbitrage op-
portunity is inconsistent with economic equi-
librium populated by market participants that
have increasing and continuous preferences.
Moreover, the presence of arbitrage opportu-
nity is inconsistent with the existence of an op-
timal portfolio strategy for market participants
with nonsatiated preferences (prefer more to
less) because there would be no limit to the
scale at which they want to hold an arbitrage
position. The economic hypothesis that main-
tains two perfect substitutes (two bonds with
the same credit quality and structural charac-
teristics issued by the same firm) must trade
at the same price is an implication of no arbi-
trage. This idea is commonly referred to as the
law of one price. Technically speaking, the fun-
damental theorem of asset pricing is a collection
of canonical equivalent statements that implies
the absence of arbitrage in a market model.
The theorem provides for weak equivalence be-
tween the absence of arbitrage, the existence of
a linear pricing rule, and the existence of op-
timal demand from some market participants
who prefer more to less. The direct consequence
of these canonical statements is the pricing
rule: the existence of a positive linear pricing
rule, the existence of positive risk-neutral prob-
abilities, and associated riskless rate or the ex-
istence of a positive state price density.

In essence, the pricing rule representa-
tion provides a way of correctly valuing a



UNDERSTANDING THE BUILDING BLOCKS FOR OAS MODELS 261

security when the arbitrage opportunity is elim-
inated. A fair price for a security is the arbitrage-
free price. The arbitrage-free price is used as a
benchmark in relative value analysis to the ex-
tent that it is compared with the price observed
in actual trading. A significant difference be-
tween the observed and arbitrage-free values
may indicate the following profit opportunities:

� If the arbitrage price is above the observed
price, all else being equal, the security is cheap
and a long position may be called for.

� If the arbitrage price is below the observed
price, all else being equal, the security is rich
and a short position may be called for.

In practice, the basic steps in determining the
arbitrage-free value of the security are as fol-
lows:

� Specify a model for the evolution of the un-
derlying security price.

� Obtain a risk-neutral probability.
� Calculate the expected value at expiration us-

ing the risk-neutral probability.
� Discount this expectation using the risk-free

rates.

In studying the solution to the security val-
uation problem in the arbitrage pricing frame-
work, analysts usually use one of the following:

� Partial differential equation (PDE) frame-
work

� Equivalent martingale measure framework

The PDE framework is a direct approach and
involves constructing a risk-free portfolio, then
deriving a PDE implied by the lack of arbitrage
opportunity. The PDE is solved analytically or
evaluated numerically.11

Although there are few analytical solutions
for pricing PDEs, most of them are evaluated
using numerical methods such as lattice, fi-
nite difference, and Monte Carlo. The equiv-
alent martingale measure framework uses the
notion of arbitrage to determine a probability
measure under which security prices are mar-
tingales once discounted. The new probability

measure is used to calculate the expected value
of the security at expiration and discounting
with the risk-free rate.

WHICH IS THE RIGHT
MODEL OF THE INTEREST
RATE PROCESS?
The bare essential of the bond market is a col-
lection of zero-coupon bonds for each date, for
example, now, that mature later. A zero-coupon
bond with a given maturity date is a contract
that guarantees the investor $1 to be paid at
maturity. The price of a zero-coupon bond at
time t with a maturity date of T is denoted by
P(t, T). In general, analysts make the follow-
ing simplifying assumptions about the bond
market:

� There exists a frictionless and competitive
market for a zero-coupon bond for every ma-
turity date. By a frictionless market, we mean
there is no transaction cost in buying and sell-
ing securities and there is no restriction on
trades such as a short sale.

� For every fixed date, the price of a zero-
coupon bond, {P(t, T); 0 ≤ t ≤ T}, is a
stochastic process with P(t, t) = 1 for all t.
By stochastic process, we mean the price of a
zero-coupon bond moves in an unpredictable
fashion from the date it was bought until it
matures. The present value of a zero-coupon
bond when it was bought is known for certain
and it is normalized to equal one.

� For every fixed date, the price for a zero-
coupon bond is continuous in that at every
trading date the market is well bid for the
zero-coupon bond.

In addition to zero-coupon bonds, the bond
market has a money market (bank account) ini-
tialized with a unit of money.12 The bank ac-
count serves as an accumulator factor for rolling
over the bond.
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A term structure model establishes a mathe-
matical relationship that determines the price
of a zero-coupon bond, {P(t, T); 0 ≤ t ≤ T},
for all dates t between the time the bond is
bought (time 0) and when it matures (time T).
Alternatively, the term structure shows the re-
lationship between the yield to maturity and
the time to maturity of the bond. To compute
the value of a security dependent on the term
structure, one needs to specify the dynamic of
the interest rate process and apply an arbitrage
restriction. A term structure model satisfies the
arbitrage restriction if there is no opportunity
to invest risk-free and be guaranteed a positive
return.13

To specify the dynamic of the interest rate
process, analysts have always considered a
dynamic that is mathematically tractable and
anchored in sound economic reasoning. The
basic tenet is that the dynamic of interest rates
is governed by time and the uncertain state
of the world. Modeling time and uncertainty
are the hallmarks of modern financial theory.
The uncertainty problem has been modeled
with the aid of the probabilistic theory of the
stochastic process. The stochastic process mod-
els the occurrence of random phenomena; in
other words, the process is used to describe un-
predictable movements. The stochastic process
is a collection of random variables that take val-
ues in the state space. The basic elements distin-
guishing a stochastic process are state space14

and index parameter,15 and the dependent re-
lationship among the random variables (e.g.,
Xt).16 The Poisson process and Brownian mo-
tion are two fundamental examples of continu-
ous time stochastic processes.

In everyday financial market experiences, one
may observe, at a given instant, three possible
states of the world: Prices may go up a tick,
decrease a tick, or do not change. The ordi-
nary market condition characterizes most trad-
ing days; however, security prices may from
time to time exhibit extreme behavior. In finan-
cial modeling, there is the need to distinguish
between rare and normal events. Rare events

usually bring about discontinuity in prices. The
Poisson process is used to model jumps caused
by rare events and is a discontinuous process.
Brownian motion is used to model ordinary
market events for which extremes occur only
infrequently according to the probabilities in
the tail areas of normal distribution.17

Brownian motion is a continuous martingale.
Martingale theory describes the trend of an ob-
served time series. A stochastic process behaves
like a martingale if its trajectories display no
discernible trends.

� A stochastic process that, on average, in-
creases is called a submartingale.

� A stochastic process that, on average, declines
is called a supermartingale.

Suppose one has an interest in generating a
forecast of a process (e.g., Rt − interest rate)
by expressing the forecast based on what has
been observed about R based on the informa-
tion available (e.g., Ft) at time t.18 This type of
forecast, which is based on conditioning on in-
formation observed up to a time, has a role in
financial modeling. This role is encapsulated in
a martingale property.19 A martingale is a pro-
cess, the expectation for which future values
conditional on current information are equal
to the value of the process at present. A mar-
tingale embodies the notion of a fair gamble:
The expected gain from participating in a fam-
ily of fair gambles is always zero and, thus, the
accumulated wealth does not change in expec-
tation over time. Note the actual price of a zero-
coupon bond does not move like a martingale.
Asset prices move more like sub-martingales
or supermartingales. The usefulness of martin-
gales in financial modeling stems from the fact
that one can find a probability measure that is
absolutely continuous with objective probabil-
ity such that bond prices discounted by a risk-
free rate become martingales. The probability
measures that convert discounted asset prices
into martingales are called equivalent martin-
gale measures. The basic idea is that, in the
absence of an arbitrage opportunity, one can
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find a synthetic probability measure Q abso-
lutely continuous with respect to the original
measure P so that all properly discounted as-
set prices behave as martingales. A fundamen-
tal theorem that allows one to transform Rt

into a martingale by switching the probabil-
ity measure from P to Q is called the Girsanov
theorem.

The powerful assertion of the Girsanov the-
orem provides the ammunition for solving a
stochastic differential equation driven by Brow-
nian motion in the following sense: By chang-
ing the underlying probability measure, the
process that was driving the Brownian motion
becomes, under the equivalent measure, the
solution to the differential equation. In finan-
cial modeling, the analog to this technical re-
sult says that in a risk-neutral economy assets
should earn a risk-free rate. In particular, in the
option valuation, assuming the existence of a
risk-neutral probability measure allows one to
dispense with the drift term, which makes the
diffusion term (volatility) the dominant value
driver.

To model the dynamic of interest rates, it is
generally assumed the change in rates over in-
stantaneous time is the sum of the drift and
diffusion terms (see Figure 1).20 The drift term
could be seen as the average movement of
the process over the next instants of time, and
the diffusion is the amplitude (width) of the
movement. If the first two moments are suffi-
cient to describe the distribution of the asset

Figure 1 Drift and Diffusion

return, the drift term accounts for the mean
rate of return and the diffusion accounts for the
standard deviation (volatility). Empirical evi-
dence has suggested that interest rates tend to
move back to some long-term average, a phe-
nomenon known as mean reverting that corre-
sponds to the Ornstein-Ulhenbeck process (see
Figure 2).21 When rates are high, mean rever-
sion tends to cause interest rates to have a neg-
ative drift; when rates are low, mean reversion
tends to cause interest rates to have a positive
drift.

The highlights of the preceding discussion are
as follows:

� The modeler begins by decomposing bonds to
their bare essentials, which are zero-coupon
bonds.

� To model a bond market that consists of zero-
coupon bonds, the modeler makes some sim-
plifying assumptions about the structure of
the market and the price behaviors.

� A term structure model establishes a mathemat-
ical relationship that determines the price of a
zero-coupon bond and, to compute the value
of a security dependent on the term structure,
the modeler needs to specify the dynamic of
the interest rate process and apply arbitrage
restriction.

� The stochastic process is used to describe the
time and uncertainty components of the price
of zero-coupon bonds.
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Figure 2 Process with Mean Reversion (Ornstein-Uhlenbeck Process)

� There are two basic types of stochastic pro-
cesses used in financial modeling: The Pois-
son process is used to model jumps caused
by rare events, and Brownian motion is used
to model ordinary market events for which
extremes occur only infrequently.

� We assume the market for zero-coupon bonds
is well bid, that is, the zero-coupon price
is continuous. Brownian motion is the suit-
able stochastic process to describe the evolu-
tion of interest rates over time. In particular,
Brownian motion is a continuous martingale.
Martingale theory describes the trend of the
observed time series.

� Once we specify the evolution of interest rate
movements, we need an arbitrage pricing the-
ory that tells us the price one should pay
now to receive $1 later is an expected dis-
counted payoff. The issue to be resolved is,
What are the correct expected discount factors
to use? The discount must be determined by
the market and based on risk-adjusted proba-
bilities. In particular, when all bonds are prop-
erly risk-adjusted, they should earn risk-free
rates; if not, arbitrage opportunity exists to
earn riskless profit.

� The risk-adjusted probability consistent with
the no-arbitrage condition is the equivalent
martingale measure; it is the probability mea-

sure that converts the discounted bond price
to a martingale (fair price). The elegance of
the martingale theory is the “roughs and tum-
bles” one finds in the world of partial differ-
entiation are to some extent avoided and the
integral representation it allows fits nicely
with Monte Carlo simulations.

Several term structure models have been pro-
posed with subtle differences. However, the ba-
sic differences amount to how the dynamic of
the interest rate is specified, the number of fac-
tors that generate the rate process, and whether
the model is closed by equilibrium or arbitrage
arguments.

Which of these models to use in OAS analy-
sis depends on the available resources. Where
resource availability is not an issue, we favor
models that account for the path-dependent
nature of mortgage cash flows. Good rules-of-
thumb in deciding which model to use are as
follows:

� Flexibility: How flexible is the model?
� Simplicity: Is the model easy to understand?
� Specification: Is the specification of the interest

rate process reasonable?
� Realism: How real is the model?
� Good fit: How well does the result fit the mar-

ket data?
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� Internal consistency rule: A necessary condition
for the existence of market equilibrium is the
absence of arbitrage, and the external consis-
tency rule requires models to be calibrated to
market data.

TERM STRUCTURE MODELS:
WHICH IS THE RIGHT
APPROACH FOR OAS?
Numerical schemes are constructive or algo-
rithmic methods for obtaining practical solu-
tions to mathematical problems. They provide
methods for effectively finding practical solu-
tions to asset pricing PDEs.

The first issue in a numerical approach is
discretization. The main objective for discretiz-
ing a problem is to reduce it from continuous
parameters formulation to an equivalent dis-
crete parameterization in a way that makes it
amenable to practical solution. In financial val-
uation, one generally speaks of a continuous
time process in an attempt to find an analytical
solution to a problem; however, nearly all the
practical solutions are garnered by discretizing
space and time. Discretization involves finding
numerical approximatizations to the solution at
some given points rather than on a continuous
domain.

Numerical approximation may involve the
use of a pattern, lattice, network, or mesh of
discrete points in place of the (continuous)
whole domain, so that only approximate solu-
tions are obtained for the domain in the iso-
lated points, and other values such as integrals
and derivatives can be obtained from the dis-
crete solution by the means of interpolation and
extrapolation.

With the discretization of the continuous do-
main come the issues of adequacy, accuracy,
convergence, and stability. Perhaps how these
issues are faithfully addressed in the implemen-
tation of OAS models speaks directly to the type
of results achieved. Although these numerical

techniques—lattice methods, finite difference
methods, and Monte Carlo methods—have
been used to solve asset pricing PDEs, the lattice
and Monte Carlo methods are more in vogue in
OAS implementations.

Lattice Method
The most popular numerical scheme used by fi-
nancial modelers is the lattice (or tree) method. A
lattice is a nonempty collection of vertices and
edges that represent some prescribed mathe-
matical structures or properties. The node (ver-
tex) of the lattice carries particular information
about the evolution of a process that generates
the lattice up to that point. An edge connects
the vertices of a lattice. A lattice is initialized
at its root, and the root is the primal node that
records the beginning history of the process.

The lattice model works in a discrete frame-
work and calculates expected values on a dis-
crete space of paths. A node in a given path of a
nonrecombining lattice distinguishes not only
the value of the underlying claim there but also
the history of the path up to the node. A bushy
tree represents every path in the state space and
can numerically value path-dependent claims.
A node in a given path of a bushy tree distin-
guishes not only the value of the underlying
claim there but also the history of the path to
the node. There is a great cost in constructing a
bushy tree model. For example, modeling a 10-
year Treasury rate in a binary bushy tree with
each time period equal to one coupon payment
would require a tree with 220 (1,048,576) paths.
Figure 3 shows a schematic of a bushy tree.

In a lattice construction, it is usually assumed
the time to maturity of the security, T, can be
divided into discrete (finite and equal) time-
steps M, �t = T/M. The price of the underlying
security is assumed to have a finite number
of “jumps” (or up-and-down movements) N
between the time-steps �t. In a recombining
lattice, the price or yield of the underlying
security is assumed to be affected by N and not
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Figure 3 Bushy or Nonrecombining Tree

the sequences of the jumps. For computational
ease, N is usually set to be two or three; the case
where N = 2 is called binomial lattice (or tree),
and N = 3 is the trinomial lattice. Figures 4 and
5 show the binomial and trinomial lattices, re-
spectively, for the price of a zero-coupon bond.

Monte Carlo Method
The Monte Carlo method is a numerical scheme
for solving mathematical models that involve
random sampling. This scheme has been used
to solve problems that are either deterministic
or probabilistic in nature. In the most common

Figure 4 Binomial Lattice for the Price of a Zero-
Coupon Bond

Figure 5 Trinomial Lattice for the Price of a
Zero-Coupon Bond

application, the Monte Carlo method uses ran-
dom or pseudo-random numbers to simulate
random variables. Although the Monte Carlo
method provides flexibilities in dealing with a
probabilistic problem, it is not precise especially
when one desires the highest level of accuracy
at a reasonable cost and time.

Aside from this drawback, the Monte Carlo
method has been shown to offer the following
advantages:

� It is useful in dealing with multidimensional
problems and boundary value problems with
complicated boundaries.

� Problems with random coefficients, random
boundary values, and stochastic parameters
can be solved.

� Solving problems with discontinuous bound-
ary functions, nonsmooth boundaries, and
complicated right-hand sides of equations
can be achieved.

The application of the Monte Carlo method
in computational finance is predicated on the
integral representation of security prices. The
approach taken consists of the following:

� Simulating in a manner consistent with a risk-
neutral probability (equivalent martingale)
measure the sample path of the underlying
state variables

� Evaluating the discounted payoff of the secu-
rity on each sample path

� Taking the expected value of the discounted
payoff over the entire sample paths
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The Monte Carlo method computes a mul-
tidimensional integral—the expected value of
discounted cash flows over the space of sample
paths. For example, let f (x) be an integral func-
tion over d-dimensional unit hypercube, then
a simple (or crude) estimate of the integral is
equal to the average value of the function f
over n points selected at random (more appro-
priately, pseudorandom) from the unit hyper-
cube. By the law of large numbers,22 the Monte
Carlo estimate converges to the value as n tends
to infinity. Moreover, we know from the cen-
tral limit theorem that the standard error of
estimate tends toward zero as 1/(

√
n). To im-

prove on the computational efficiency of the
crude Monte Carlo method, there are several
variance-reduction techniques available.

IS THERE A RIGHT WAY TO
MODEL PREPAYMENTS?
Because cash flows are one of the most impor-
tant inputs in determining the value of a se-
curity, there has to be a model for cash flow.
The cash flow model consists of a model for
distributing the coupon and scheduled princi-
pal payments to the bondholders, as contained
in the deal prospectus, and a prepayment model
that projects unscheduled principal payments.
The basic types of prepayment models are as
follows:

� Rational prepayment models. These models ap-
ply an option-theoretic approach and link
prepayment and valuation in a single unified
framework.

� Econometric prepayment models. This class of
models is based on econometric and statistical
analysis.

� Reduced-form prepayment models. This type of
model uses past prepayment rates and other
endogenous variables to explain current pre-
payment. It fits the observed prepayment
data, unrestricted by theoretical considera-
tion.

The reduced-form prepayment model is the
most widely used approach among dealers and
prepayment vendors because of its flexibility
and unrestricted calibration techniques. The ba-
sic determinants of the voluntary and invol-
untary components of total prepayments are
collateral and market factors. Collateral fac-
tors are the origination date, weighted average
coupon (WAC), and weighted average matu-
rity, and the market-related factors are bench-
mark rates and spreads.

KEY POINTS
� There are foundational issues that explain (1)

why there is a difference in dealers’ OAS val-
ues for a specific bond, (2) what may be re-
sponsible for the differences, and (3) why one
OAS value may be more correct than another.

� As a general guideline, portfolio managers
should become familiar with the economic in-
tuitions and basic assumptions made by the
models.

� The reasonableness of the OAS values pro-
duced by different models should be consid-
ered. Moreover, because prepayment options
are not traded in the market, calibrating OAS
values using the prices of these options is not
possible.

� Interest rate models, which are closed by
precluding arbitrage opportunities, are more
tractable and realistic.

� Interest rate models that account for the path-
dependent natures of ABS and MBS cash
flows are more robust.

� With the path-dependent natures of ABS and
MBS cash flows come the difficulties of imple-
mentation, in particular, the speed of calcula-
tion; the toss-up here is between the lattice
and Monte Carlo schemes.

� There is a tendency for market participants to
believe that because we are talking about in-
terest rate scenarios, the ideal candidate for
the job would be Monte Carlo techniques,
but this should not necessarily be the case.
Although lattice implementation could do a
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good job, the success of this scheme depends
highly on ad hoc techniques that have not
been time-tested. Hence, whereas the OAS
implementation scheme is at the crux of what
distinguishes good or bad results, the pre-
ferred scheme is an open question that crit-
ically depends on available resources.

� Reduced-form prepayment models should be
favored because of their flexibility and unre-
stricted calibration techniques. In particular,
a model that explicitly identifies its control
parameters and is amenable to the perturba-
tion of these parameters is more robust and
transparent.

� With respect to how to interpret the differ-
ences in dealers’ OAS value for a specific
security, decisions by dealers, vendors, and
portfolio managers to choose one interest rate
and prepayment model over others and the
different approaches they take in implement-
ing these models largely account for the wide
variance in OAS results. Moreover, to compli-
cate the issue, the lack of a market for tradable
prepayment options makes calibrating the re-
sulting OAS values dicey at best.

� As for whether there is a correct OAS value
for a given security, examining the change in
OAS value over time, the sensitivity of OAS
parameters, and their implications to relative
value analysis are some of the important indi-
cators of the reasonableness of the OAS value.

NOTES
1. In the world of certainty, the present value

is

PV =
n∑

i=1

c fi

(1 + ri )i

where ri is the spot rate applicable to cash
flow cfi. In terms of forward rates, the equa-
tion becomes

PV =
n∑

i=1

c fi

(1 + f1)(1 + f2) . . . (1 + fn)

where fi is the forward rate applicable to
cash flow cfi.

2. The present value formula becomes more
complicated and could be represented as

PV� =
�∑

ωi

T∑

ti

c f (ti , ωi )
(1 + r (ti , ωi ))

∀ i = 1, 2, . . . N

where

PV� = the present value of uncertain
cash flow

cf (ti, ωi) = the cash flow received at time
ti and state ωi

r(ti, ωi) = the spot rate applicable at time
ti and state ωi

For OAS analysis, a stylized version of the
previous equation is given by

PV� = lim
n→∞

1
N

c f (ti , ωi )
(1 + r (ti , ωi ))

∀i = 1, 2, . . . N

3. $1
[

exp
(∫ T

t
r (u)du

)]

4. p(t, T) = E
[

exp
(

−
∫ T

t
r (u, du)

∣∣∣Ft

)]

5. Cox, Ingersoll, and Ross (1985).
6. Black and Scholes (1973).
7. Merton (1974).
8. Hull and White (1990).
9. Black, Derman, and Toy (1990).

10. Heath, Jarrow, and Morton (1992).
11. For example, the PDE for a zero-coupon

bond price is

∂p
∂t

+ 1
2
σ 2 ∂2 p

∂r2 + (μ − λσ )
∂p
∂r

− rp = 0

where

p = zero-coupon price
r = instantaneous risk-free rate
μ = the drift rate
σ = volatility
λ = market price of risk

To solve the zero-coupon price PDE,
we must state the final and boundary
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conditions. The final condition that corre-
sponds to payoff at maturity is p(r, T) = k.

12. The bank account is denoted by

B(t) = exp
[∫ t

0
r (u)du

]

and B(0) = 1.
13. Technically, the term structure model is said

to be arbitrage-free if and only if there is a
probability measure Q on � (Q ∼ P) with
the same null

Z(t, T) = P(t, T)
B(t)

, 0 ≤ t ≤ T

set as P, such that for each t, the process is
a martingale under Q.

14. State space is the space in which the possi-
ble values of Xt lie. Let S be the state space.
If S = (0, 1, 2. . .), the process is called the dis-
crete state process. If S = �(−∞,∞) that is
the real line, and the process is called the
real-valued stochastic process. If S is Eu-
clidean d-space, then the process is called
the d-dimensional process.

15. Index parameter: If T = (0, 1. . .), then Xt is
called the discrete-time stochastic process.
If T = �+[0,∞), then Xt is called a contin-
uous time stochastic process.

16. Formally, a stochastic process is a family of
random variables X = {xt; t ∈ T}, where T
is an ordered subset of the positive real line
�+. A stochastic process X with a time set [0,
T] can be viewed as a mapping from �×[0,
T] to � with x(ω, t) denoting the value of
the process at time t and state ω. For each
ω ∈ �, {x(ω, t); t∈ [0,T]} is a sample path of
X sometimes denoted as x(ω, •). A stochas-
tic process X = {xt; t ∈ [0, T]} is said to
be adapted to filtration F if xt is measurable
with respect to Ft for all t ∈ [0, T]. The adapt-
edness of a process is an informational con-
straint: The value of the process at any time
t cannot depend on the information yet to
be revealed strictly after t.

17. A process X is said to have an independent
increment if the random variables x(t1) −

x(t0), x(t2) − x(t1) . . . and x(tn) − x(tn−1) are
independent for any n ≥ 1 and 0 ≤ t0 <

t1 < . . . < tn ≤ T. A process X is said to
have a stationary independent increment if,
moreover, the distribution of x(t) − x(s) de-
pends only on t − s. We write z ∼ N(μ, σ 2)
to mean the random variable z has normal
distribution with mean μ and variance σ 2.
A standard Brownian motion W is a process
having continuous sample paths, stationary
independent increments, and W(t) ∼ N(μ,
t) (under probability measure P). Note that
if X is a continuous process with station-
ary and independent increments, then X is
a Brownian motion. A strong Markov prop-
erty is a memoryless property of a Brownian
motion. Given X as a Markov process, the
past and future are statistically independent
when the present is known.

18. We write

Et[Rt] = E[RT |Ft], t < T

19. More concretely, given a probability space,
a process {Rt t ∈ (0,∞)} is a martingale with
respect to information sets Ft, if for all t > 0,
1. Rt is known, given Ft, that is, Rt is Ft

adapted
2. Unconditional forecast is finite;

E|Rt| < ∞
3. And if

Et[Rt] = RT , ∀ t < T

with a probability of 1. The best forecast of
unobserved future value is the last observa-
tion on Rt.

20. In particular, assume

d X(t) = α(t, X(t))dt + β(t, X(t))dW(t)

for which the solution X(t) is the factor.
Depending on the application, one can
have n-factors, in which case we let X
be an n-dimensional process and W an
n-dimensional Brownian motion. Assume
the stochastic differential equation for X(t)
describes the interest process r(t), (i.e., r(t)
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is a function of X(t)). A one-factor model of
interest rate is

dr(t) = α(t)dt + β(t)dW(t)

21. This process is represented as

dr = a (b − r )dt + σrβdW

where a and b are called the reversion speed
and level, respectively.

22. Strong Law of Large Numbers. Let X = X1,
X2 . . . be an independent identically dis-
tributed random variable with E(X2) < ∞
then the mean of the sequence up to the nth
term, though itself a random variable, tends
as n get larger and larger, to the expectation
of X with probability 1. That is

P

(
lim

n→∞

(
1
n

n∑

i=1

Xi

)
= E(X)

)
= 1
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Abstract: Convertible bonds are bonds that give their holders the right to periodic coupon payments
and, as of a fixed date, the right to convert the bonds into a fixed number of shares. If the bondholder
decides to exercise his conversion right, instead of being paid back the par value of the bonds, he will
receive a fixed number of shares in exchange. There are several options embedded in a convertible
bond. There is obviously a call option on the underlying stock. All convertible bonds are callable.
A convertible bond may be putable. The presence of all of these options complicates the valuation
of convertible bonds. There are models that practitioners use for valuation purposes. These models
are classified as analytical models and numerical models.

Convertibles are ideal securities for arbitrage,
because the convertible itself, namely the un-
derlying stock and the associated derivatives,
are traded along predictable ratios, and any dis-
crepancy or misprice would give rise to arbi-
trage opportunities for fund managers. Traders
use quantitative models to identify convert-
ible bonds whose market value differs from
their theoretical price. However, unlike callable
bonds or putable bonds that have interest
rate–embedded options, a convertible bond
also has an embedded equity option. This com-
plicates the quantitative modeling of these se-
curities.

Quantitative models, or valuation models, for
convertible bonds are divided into two cate-
gories: analytical models and numerical models. In
this entry, we describe the more commonly used
model in both of these categories.

ANALYTICAL MODELS
Ingersoll (1977) proposed a valuation model for
convertible bonds based on the option theory
and on the Black-Scholes option pricing model.
The model’s main assumptions are:

� Markets operate continuously.
� There are no transaction costs.
� Share prices follow an Ito diffusion process.
� Securities prices have a lognormal distribu-

tion.
� The underlying stock volatility is constant.

Ingersoll’s model assumes that prices vary con-
tinuously, that is, there is always liquidity in
the market and there are no limits to securities
lending and short selling. It also assumes that
the company’s market value follows an Ito dif-
fusion process, that is, a continuous Brownian
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motion. Under this assumption, it is possible to
set up a closed analytical formula to calculate
the value of a convertible bond.

The model can be applied only to European
convertibles, namely, convertibles that can be
exercised only upon expiration. Moreover, the
model makes it clear how complex the valua-
tion of convertible bonds is, and it provides a
highly interesting theoretical reference, in that
it can reach an analytical solution to the val-
uation of convertibles. Yet, we know all too
well that interest rates, credit spreads, curren-
cies, and dividends are not constant, and the
clauses and provisions written in the prospec-
tus of a convertible are often highly varied and
complicated, making it fairly difficult to apply
analytical valuation models. This is why it is
necessary to turn to numerical approximation
models.

The Ingersoll Model
As just noted, the Ingersoll model provides an
analytic solution for the pricing of a convertible
bond, given some general market assumptions.
The strongest assumptions are:

� Capital markets are perfect with no transac-
tion costs, no taxes, and equal access to infor-
mation for all investors.

� Trading takes place continuously in time and
there are no restrictions against borrowing or
short sales.

� The market value of the company follows an
Ito diffusion process.

The Black-Scholes option pricing model is used
to value the convertible bond as a contingent
claim on the firm as a whole.

Consider a convertible bond that is convert-
ible only at maturity, therefore with a European
call option embedded. Let

γ = n
n + N

equal the dilution factor, indicating the fraction
of the common equity that would be held by

the convertible bond issue’s owners if the entire
issue were converted:

V = market value of the company
τ = maturity of the convertible bond
B = balloon payment (nominal value of the

convertible bond)
r = interest rate

In light of the continuous-time analysis, the
functional form to assume for the call price of a
convertible bond is the exponential:

K (τ ) = B · e−ρτ

where

ρ = rate of change in the call price
σ 2 = the instantaneous variance of returns

of the stock underlying the convertible
bond

�(x) = 1√
2π

x∫

−∞
e−t2/2 dt

is the cumulative normal distribution

F (V, τ ; B, 0) =

B · e−rt ·
[
�

(
− log(B · e−rt/V) + 1

2σ 2τ

σ
√

τ

)

+ V · �

(
− log(B·e−rt/V)+ 1

2 σ 2τ

σ
√

τ

)

B · e−rt

⎤

⎥⎦

W(γ V, τ ; B) = γ · V · �

(
log

(
γ ·V

B

) + (
r + 1

2 σ 2
)
τ

σ
√

τ

)

−B · e−rt · �

(
log

(
γ ·V

B

) + (
r + 1

2 σ 2
)
τ

σ
√

τ
− σ

√
τ

)

The value of the convertible bond is

H(V, τ ) = F (V, τ ; B, 0) + W(γ V, τ ; B)

+
(

K (τ )
γ V

)2(r−ρ)/σ 2

· (
F (γ V · e (ρ−r )t, τ ; B · e (r−ρ)τ , 0)

−F (γ V · e (ρ−r )τ , τ ;
B
γ

· e (r−ρ)τ , 0)
)
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Figure 1 Plot of a Convertible Bond Function for
Different Firm Values

To illustrate the model, let’s plot the function
H with the following parameters:

B = 100
ρ = 0,02
γ = 0,2
σ 2 = 5%
r = 7%

V ranges from 0 to 625.
The plots are shown in Figure 1. The straight

lines cross at

V(τ ) = K (τ )
γ

NUMERICAL MODELS
The most widely used mathematical models
among hedge fund managers for the valuation
of convertible bonds are numerical methods,
among which are the binomial and trinomial
trees, the three-dimensional binomial model,
implied trees, and the Monte Carlo simulation
model.

The binomial tree model was introduced by Cox,
Ross, and Rubinstein (1979) and by Sharpe in
his textbook (Sharpe, 1978). This model allows
one to build a tree of possible share prices be-
tween now and the convertible’s maturity date.
This tree is then used to find the convertible’s
current value by calculating its value along all
the tree’s nodes. In the binomial tree model,

the tree has two branches that develop from
every node, while in the trinomial tree model
there are three branches diverging from each
node. The higher the number of nodes, the
more accurate the model is. The binomial model
makes it possible to also value an American op-
tion that would otherwise find no solution in a
closed form. If the number of time steps grows
bigger, the binomial tree tends toward the
Black-Scholes continuous formula for European
options.

All these models are helpful when making a
decision, but many of the options embedded in
a convertible do not fit the models and there-
fore the fund manager’s skill and a rigorous
risk management discipline become more pre-
cious. The manager’s art lies in finding innova-
tive ways to evaluate convertible bonds without
being swamped with too many details.

The trinomial tree model was introduced by
Boyle (1986). The share price can move in three
directions from every single node and there-
fore the number of time steps can be reduced
to reach the same precision obtained with the
binomial tree.

The Monte Carlo method, named after the
casino of the Principality of Monaco, is a sta-
tistical simulation method, according to which
data obtained through the generation of ran-
dom numbers coming from a given statistical
distribution is considered empirical and is used
to estimate the parameters under consideration.
Thousands of random samples are generated,
derived from the assumed statistical distribu-
tion, which takes as parameters the maximum
likelihood estimators using real data, and then
these data are used to estimate the parameters
under examination.

The Binomial Tree Model
Here, we will describe a version of the Cox-
Ross-Rubinstein model as modified by Gold-
man Sachs. The binomial tree model can be used
to evaluate convertible bonds with either an
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embedded European call option or an embed-
ded American call option.

To determine the value of the convertible
bond, it’s necessary to build four different trees
in the following order:

1. Stock price tree.
2. Conversion probability tree.
3. Credit-adjusted spread tree.
4. Convertible bond value tree that is calculated

backward from the previous trees.

In the first step we build the stock price tree.
The binomial tree model allows us to build up
a picture of how a stock is likely to perform be-
tween now and the maturity of the convertible
bond (T). The number of nodes (N) is calcu-
lated from the maturity of the convertible bond
according to the formula T · (T + 1)/2. The more
nodes, the more accurate will be the model.

Between a node and the following node, the
stock price can move upward or downward.
The jump of the stock price depends on the
length of the time interval �t = T/N and on
the stock price volatility σ . Therefore

u = eσ
√

�t (upward move)
d = e−σ

√
�t (downward move)

The stock price, S, at each node is set equal to

S · ui · d j−i

where i = 0, 1, . . . , j
N is the time step and i is the number of up-

ward moves.
The probability of a downward move in stock

price at the next time step �t is

p = eb
√

�t−d

u − d

while the probability of a downward move
must be (1 − p), since the probability of going
either up or down equals unity.

In the second step we build the conversion
probability tree. We calculate the conversion
probabilities backward, starting from the leaves
of the stock price tree. If it’s optimal to convert
the bond, the conversion probability is 1, other-

wise it is 0. For the steps before the end of the
tree, the conversion probability is 1 if it’s opti-
mal to convert the bond; otherwise, it is equal to

qn,i = p · qn+1,i+1 + (1 + p) · qn+1,i

In the third step we build the credit-adjusted
spread tree. If the convertible bond is out-of-
the-money, futures cash flows should be dis-
counted to a rate equal to the risk-free rate, r,
plus a credit spread, k, of that particular bond.
In fact, if the stock price is much lower than the
conversion price, the convertible bond behaves
like a plain vanilla bond. If the convertible bond
is in-the-money, future cash flows must be dis-
counted at the risk-free rate. In this case, the
convertible bond behaves like a stock. There-
fore, instead of using a fixed discount rate r, in
each node is calculated a discount rate rn,i and a
conversion probability qn,i is used. The discount
rate is equal to

rn,i = qn,i · r + (1 − qn,i ) · (r + k)

In the fourth step, we build the convertible
bond value tree. At each node of the tree, the
price of the convertible bond is equal to the
maximum between the conversion value of the
bond and the face value plus the final coupon.
The tree is built backward: from the leaves back
to the root of the tree. The root of the tree is the
price of the convertible bond.

If it’s optimal to convert the bond at a node,
then that node is assigned the conversion value;
otherwise, the price of the convertible bond is

Pn,i = max[mS, p · Pn+1,i+1 · ern+1,i+1 ·�t

+ (1 − p) · Pn+1,i · e−rn+1,t · �t]

where m is the conversion ratio.
For example, let’s determine the price of a con-

vertible bond with the binomial tree method,
starting with the following data:

T = 5 years (maturity)
�t = 1 year (step)
N = 5 (number of nodes)
r = 4% (risk-free rate)
k = 2% (credit spread)
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Stock Price Tree

85.00
93.94 76.91

103.82 85.00 69.59
114.74 93.94 76.91 62.97

126.81 103.82 85.00 69.59 56.98
140.14 114.74 93.94 76.91 62.97 51.56

Conversion Probability Tree

0.48
0.61 0.21

0.76 0.31 0.00
0.90 0.46 0.00 0.00

1.00 0.68 0.00 0.00 0.00
1.00 1.00 0.00 0.00 0.00 0.00

Credit-Adjusted Spread

5.03%
4.77% 5.58%

4.49% 5.37% 6.00%
4.21% 5.08% 6.00% 6.00%

4.00% 4.64% 6.00% 6.00% 6.00%
4.00% 4.00% 6.00% 6.00% 6.00% 6.00%

Convertible Bond Value

90.4
97.9 88.9

106.4 94.9 91.9
115.8 101.4 97.6 97.6

126.8 108.1 103.6 103.6 103.6
140.1 114.7 110.0 110.0 110.0 110.0

Figure 2 Binomial Trees Necessary to Determine the Value of a Convertible Bond

The convertible bond has nominal value 100
and coupon 10%.

m = 100% (conversion ratio)
S = 85 (stock price)
σ = 10% (stock volatility)

With the formulas discussed above we calculate

u = 1.1052 (upwards move)
d = 0.9048 (downwards move)
p = 0.6787 (probability of an upward move

of the stock price in the next time
interval �t)

As shown in Figure 2 we built first the stock
price tree, then the conversion probability tree,

then the credit-adjusted spread tree, and finally
the convertible bond value tree. The value in the
root of the tree is 90.4, which is the price of the
convertible bond.

KEY POINTS
� To implement strategies involving convert-

ible bonds, traders and fund managers re-
quire a valuation model.

� Analytical models provide a closed-form so-
lution for the value of a convertible bond, and
the most commonly used model in practice is
the Ingersoll model.
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� While there are several models that fall into
the realm of numerical models, the one com-
monly used is the binomial tree model, which
requires the construction of a stock price tree,
conversion probability tree, credit-adjusted
spread tree, and convertible bond value tree
that is calculated backward from the previous
trees.

REFERENCES
Boyle, P. P. (1986). Option valuation using a three

jump process. International Options Journal 3:
7–12.

Boyle, P. P. (1988). A lattice framework for option
pricing with two state variables. Journal of Fi-
nancial and Quantitative Analysis 23, 1: 1–12.

Black, F., and Scholes, M. (1973). The pricing of op-
tions and corporate liabilities. Journal of Political
Economy 81, 3: 637–654.

Cox, J. C., Ross, S. A., and Rubinstein, M. (1979).
Option pricing: A simplified approach. Journal
of Financial Economics 7, 3: 229–263.

Cox, J. C. and Rubinstein, M. (1985). Option Mar-
kets. Englewood Cliffs, NJ: Prentice Hall.

Ingersoll, J. (1977). A contingent-claims valuation
of convertible securities. Journal of Financial Eco-
nomics 4, 2: 289–322.

Sharpe, W. F. (1978). Investments. Englewood
Cliffs, NJ: Prentice Hall.



Quantitative Approaches to
Inflation-Indexed Bonds
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Abstract: Inflation-indexed bonds, as a way of financing government debt, were proposed in the
1920s by economists such as Alfred Marshall and John Maynard Keynes. In Israel, they have been
issued since the 1950s and have often dominated that country’s bond market. Inflation-indexed
sovereign bonds now exist in a broad range of developed countries, as well as in a number of
emerging markets. A wide variety of bond structures and tax regimes exist. Issuance volumes
and the breadth of the investor base vary widely from country to country; liquidity varies from
reasonably good to very poor. When inflation-indexed bonds were introduced in the United States
in 1997, there was some disagreement about the degree to which inflation-indexed bonds—called
Treasury inflation-protected securities or TIPS—are “risk-free” and the role they should play in a
portfolio. In particular, it had not been universally appreciated that these bonds can have volatile
mark-to-market returns.

Since their introduction in 1997, Treasury
inflation-protected securities (TIPS) have become
an established part of the U.S. bond market.
This entry reviews the structure of TIPS and the
factors that drive TIPS returns; examines the
role that TIPS play in a broader bond portfolio,
and the nature of TIPS interest rate risk; and
discusses some methods employed by TIPS in-
vestors to assess value and risk.

BOND STRUCTURES AND
THE CONCEPT OF REAL
YIELD
The key features of the TIPS bond structure are
summarized here:

� TIPS pay interest semiannually. Interest pay-
ments are based on a fixed coupon rate. How-
ever, the underlying principal amount of the
bonds is indexed to inflation; this inflation-
adjusted principal amount is used to calcu-
late the coupon payments, which therefore
also rise with inflation. At maturity, the re-
demption value of the bonds is equal to their
inflation-adjusted principal amount, rather
than their original par amount.

� The inflation-adjusted principal amount is
equal to the original par amount multiplied
by an index ratio, which is based on changes
in the Consumer Price Index (CPI) and which
is recalculated every day. The index ratio
is simply the reference CPI on the relevant
date divided by the reference CPI on the
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issue date. Negative inflation adjustments are
not made.

� The reference CPI for the first day of any
month is defined to be the non–seasonally
adjusted CPI-U for the third preceding cal-
endar month, while the reference CPI for any
subsequent day in that month is determined
by linearly interpolating the reference CPI for
the first of the month and the reference CPI
for the first day of the next month.

� Price-yield calculations are as follows. Com-
pute the “real price” of the bond from the
quoted real yield via the standard bond pricing
formula, using an actual/actual day count ba-
sis, round to 3 decimal places (in $100); then
multiply the real price by the index ratio to
obtain the inflation-adjusted price. Accrued
interest is computed in exactly the same way,
except that no rounding is carried out.

An attractive feature of the TIPS structure is
that inflation indexation occurs with no sub-
stantial lag. In the U.K., there is an eight-month
lag in the inflation adjustment of index-linked
gilts; in Australia and New Zealand, there is
a three- to six-month lag. The lag means that
real returns from these inflation-indexed bonds
are subject to short-term inflation risk and con-
siderably complicates the analysis of the bonds.

The obvious question, of course, is: Where
does the real yield come from, and how much
can it change? To investors used to thinking
of bond yields as being driven by inflation ex-
pectations, it is not obvious that real yields
should be volatile at all—except perhaps be-
cause of temporary imbalances in supply and
demand, or changes in liquidity. After all, there
are respectable economic theories that suggest
that real interest rates should be constant. But
in practice, there are various economic reasons
why real yields do in fact fluctuate.1

Causes of Real Yield Volatility
The real yield may be defined as the long-term
cost of risk-free capital (net of inflation). That

is, since TIPS are competing with other invest-
ments, real yields on TIPS will move with the
cost of capital in the economy as a whole. Of
course, other factors affect real yields: For ex-
ample, index-linked gilts in the U.K. have had
artificially low real yields because of their fa-
vorable tax treatment and because of a regu-
latory requirement (since loosened) making it
virtually obligatory for pension funds to own
them. However, in this entry we will focus on
economic and market factors.

Long-term real yields are influenced by ex-
pectations about future long-term real interest
rates. The two main macroeconomic factors that
affect these expectations are:

1. The domestic factor: long-term expected
growth in real gross domestic product
(GDP). Strong growth generally drives up
real interest rates, since the demand for cap-
ital tends to rise, and borrowers—expecting
higher real returns—are prepared to shoul-
der higher real borrowing costs.

2. The international factor: long-term expected
changes in the current account deficit. De-
mand for capital is by definition higher in
countries with a large current account deficit,
driving up domestic interest rates in order to
attract required international investment.

Note that short-term trends in real GDP
and the current account deficit can have a
strong influence on real yields, because they
tend to influence the long-term expectations of
investors.2 (Roll [1996] has also argued, based
on an analysis of tax effects, that real yields
should also rise when expected inflation rises;
this argument is outlined later in this entry. For
the moment we ignore tax effects.)

Real yields on inflation-linked bonds are
also influenced by relative demand for these
bonds when compared with competing in-
vestments that may offer investors some
protection—albeit imperfect—against inflation.
The balance between competing investments
constantly shifts, depending on subjective
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factors such as investor aversion to different
kinds of risk. Relevant investments include:

1. Money market investments: If investors are
confident that short-term interest rates will
move broadly in line with inflation—which
was the case for US monetary policy dur-
ing the “Great Moderation” period from the
early 1980s up to the recent financial crisis,
but not before or since—then real returns on
money market instruments will be relatively
stable over the long term.

2. Equities: When profit margins are stable, cor-
porate profits, and hence dividends and divi-
dend growth rates, tend to rise with the price
level; thus, it is reasonable to regard equities
as an inflation hedge in the long term (re-
membering that equity investors are exposed
to additional risks in comparison to holders
of inflation-indexed bonds).

3. Corporate bonds: As with equities, corporate
bond performance is partly linked to infla-
tion: Rising price levels drive up corporate
revenues and reduce the real value of exist-
ing fixed-rate debt, and both these factors can
cause yield spreads to tighten. However, this
relationship is often weak and dominated by
other factors.

4. Commodities: A basket of commodities also
provides a partial hedge against inflation;
in practice, this investment alternative was
not historically as important as the previous
three, though its importance has increased
considerably since 2005 as financial innova-
tion has expanded the investor base.

To summarize: Real yields are far from stable,
and the behavior of real yields is just as complex
as the behavior of nominal yields. Real yields
are influenced by both economic fundamentals
and market supply/demand factors across as-
set classes. It is not at all obvious that inflation-
linked bonds should be “among the least risky
of all assets.” Indeed, in the Australian market
these securities were long regarded as highly
risky in comparison to nominal bonds—though
this is partly because of their poorer liquidity.

In all countries where inflation-linked bonds
are actively traded, real yields have, historically,
been quite volatile. Like nominal yields, market
real yields trade in ranges of hundreds of basis
points (see Figure 1). Historical examples from
other countries include:

� In the U.K., real yields on long index-linked
gilts fluctuated between 2% and 4.5% in the
period 1981–1993.3 In the period 1984–1994,
real yields on short index-linked gilts fluctu-
ated between 1.5% and 5.75%, partly reflect-
ing instability in monetary policy.4

� In Israel from 1984–1993, long-dated real
yields fluctuated between −1.5% and 3.3%;
however, they more typically traded in the
range ±1%.5

� In Australia, real yields have varied from a
high of 5.75% in 1986 and 1994 to a low of
3.25% in 1993.6

Real yields are often estimated by subtract-
ing current (i.e., recent historical) inflation from
current nominal bond yields; but this proce-
dure is obviously illogical, as it assumes that
expected inflation is equal to current inflation.
One can get a better idea of what market real
yields would have been by taking nominal
yields and subtracting a consensus inflation
forecast. Figure 1 shows the 10-year nominal
Treasury yield minus the 10-year consensus CPI
forecast, as reported in the Philadelphia Fed’s
Survey of Professional Forecasters; this mea-
sures investors’ expectations of real returns on
10-year Treasury bonds and is therefore a rea-
sonable estimate of the 10-year real yield go-
ing back several decades. Figure 1 also shows
the market real yield of the 10-year TIPS (dat-
ing back only to 1997); it is correlated with the
survey-based real yield estimate, but not per-
fectly. We discuss this divergence at the end of
the entry.

Even though using consensus data has a num-
ber of drawbacks, this rough analysis yields
some useful results. The figure shows clearly
how long-dated real yields soared in the early
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Figure 1 U.S. 10-Year Real Yield Estimated from Consensus Long-Term CPI Forecasts and TIPS
Real Yield

1980s, due to the extreme instability in mone-
tary policy. They stabilized after 1985, once the
Fed stopped targeting monetary aggregates and
adopted interest rate targeting instead. Since
then they have fluctuated between 5% (in the
overheated economy of the late 1980s) and less
than 0.5% (in the crisis and postcrisis periods).
Note the apparent link between long-term real
yields and current GDP growth in recent years.

Figure 2 shows a more detailed history of TIPS
real yields since issuance. It also shows the yield
spread between the 10-year TIPS and the 10-
year CMT nominal yield. This may be regarded
as a rough measure of the market’s inflation
expectations over the next 10 years.

It’s interesting that 10-year TIPS real yields
have never been stable, whereas 10-year TIPS
break-even inflation was remarkably stable
from about 2004–2007, a period of relative
macroeconomic stability and strong Fed cred-
ibility. Also note the extraordinary period of
volatility during the crisis period of late 2008
and early 2009, during which TIPS were highly
correlated with risky asset classes such as eq-
uities and credit (as predicted above, but per-

haps not for the fundamental economic reasons
cited).

A derivative market for inflation swaps
has developed alongside the cash market for
inflation-linked bonds. While inflation swaps
will not be discussed explicitly in this entry,
much of the material is also applicable to them.

Existence of an Inflation
Risk Premium
It is often asserted that real yields on inflation-
linked bonds should reflect an inflation risk
premium, since investors are not exposed to in-
flation risk as they are with nominal bonds.
Note that if future inflation were known—not
necessarily zero—there would be no inflation
risk premium; it is uncertainty about inflation
that creates a risk premium. The more volatile
inflation is expected to be, the higher the infla-
tion risk premium on nominal bonds should be,
and the lower real yields should be in relation
to nominal yields.

It is important to note that it is uncertainty
about future inflation that should determine the
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Figure 2 TIPS Real Yield History and Spread to Nominal Yield Curve (“Break-Even Inflation”)

risk premium, not the historical volatility of in-
flation. For example, the inflationary episode of
the 1970s is not relevant unless investors think it
may be repeated. Investors’ expectations about
the future volatility of inflation are not directly
observable, but it may be helpful to look at
economists’ estimates. It is also useful to com-
pare expected inflation volatility with expected
volatility in real interest rates, since both factors
are relevant to the risk/return opportunities of-
fered by inflation-indexed bonds.

Note that if the inflation risk premium ex-
ists, one would not expect it to be unvary-
ing. Since it is related to market expectations
about potential uncertainty in inflation, it is
comparable to option-implied volatility. One
would thus expect the inflation risk premium
to depend on bond maturity, and also to vary
over time; for example, if the market lost con-
fidence in the Fed’s ability or willingness to
control inflation, the inflation risk premium
would rise, causing nominal yields to rise rel-
ative to real yields. However, since the infla-
tion risk premium is determined by inflation
uncertainty over a long period (10 years for the

10-year TIPS), sudden changes should be un-
usual. Absent unusual shocks to Fed credibility,
the inflation risk premium should experience
moderate fluctuations, like long-dated swap-
tion implied volatilities, and not sharp ones, like
short-dated exchange-traded option implied
volatilities.

In the absence of a complete inflation-linked
derivatives market, the inflation risk premium
is not directly observable. Furthermore, naive
attempts to measure it can lead to grossly over-
stated estimates, and a number of proposed
methods for measuring it turn out to be spu-
rious. For example, it has been asserted that the
differential between money market and bond
yields arises because of an inflation risk pre-
mium, which can thus be estimated by looking
at the long-term average spread between the
Fed Funds rate and the two-year bond yield
(about 70 bp in the period since deregulation).
This argument has a grain of truth, but the con-
clusion is incorrect as it stands. The slope of
the yield curve reflects a term premium that
is not solely attributable to inflation risk. In
addition, there are other reasons why money
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market yields are usually lower than bond
yields: Liquidity preference and the impact of
capital charges both have important effects.
Furthermore, if the spread between money mar-
ket and bond yields reflects a risk premium, this
is not just an inflation risk premium but a real
rate risk premium as well.

Also, the argument that the difference be-
tween the Fed Funds rate and the two-year
bond yield equals the inflation risk premium
implies that the yields of money market secu-
rities reflect no inflation risk premium, while
this risk premium is fully priced into two-year
bond yields. This would only be plausible if
money market securities were not (perceived to
be) subject to inflation risk, and this is far from
obvious, particularly since real money market
returns were frequently negative during the
1970s.

Thus we must look for more valid ways of
estimating what the inflation risk premium
should be. There is no strong consensus in the
literature, and a surprisingly wide range of es-
timates appears in the literature, from around
100 bp to modestly negative.7 However, the
most credible estimates tend to fall in the zero to
50 bp range.8

One approach is to try to observe inflation un-
certainty directly and then derive a “fair” infla-
tion risk premium by applying a market price of
risk. Figure 3 shows the probabilities attached
by economists to various GDP growth and in-
flation scenarios; it is taken from the Survey of
Professional Forecasters.

Economists’ forecasts recognize that both in-
flation and real yields are volatile, and that they
have comparable volatilities. It is tempting to
conclude that nominal bond yields should in-
deed reflect an inflation risk premium, since
returns on nominal bonds are affected by both
inflation volatility and real yield volatility,
while returns on inflation-linked bonds are only
affected by real yield volatility. And the re-
ported uncertainty in inflation naively leads to
an (again, very rough) estimate of the inflation
risk premium at the upper end of the range

mentioned above. But this conclusion is not nec-
essarily correct.

Based on an analysis of 30 years’ worth
of cross-country panel data, Judson and
Orphanides (1999) have shown that—as one
might expect—there is a strong negative cor-
relation between inflation and growth. Thus,
as inflation rises, real yields should fall, and
vice versa; in other words, the risks arising from
fluctuations in inflation and fluctuations in real
yields at least partly offset each other, at least
over the medium to long term. It is therefore
conceivable that, over the medium to long term,
a portfolio of nominal bonds may be less risky,
not more risky, than a portfolio of inflation-
linked bonds, in which case an inflation risk
premium need not exist at all. Certainly the sit-
uation is more complex than it seems at first.

We can actually use the earlier “economists’
estimates” of volatility in real GDP growth and
CPI inflation, together with the implied volatil-
ity of short-term rates, to compute a rough
estimate of the correlation between inflation
and growth. Assuming that nominal rates are
solely determined by growth and inflation, we
have:

σ 2
nom = σ 2

GDP + σ 2
CPI + 2ρσGDPσCPI

where σGDP, σCPI denote the volatility of growth
and inflation respectively, and ρ is the correla-
tion between growth and inflation.

If all three volatilities are around 1% per an-
num, then solving this formula for ρ gives an
estimate of around 0.5. However, it would not
be meaningful to try to compute a more precise
estimate this way.

Incidentally, Judson and Orphanides (1999)
also found a strong negative correlation be-
tween inflation volatility and growth. In other
words, if inflation is expected to become more
volatile, real yields should fall, that is, inflation-
indexed bond prices should rally. However, in
this scenario inflation-linked bonds should out-
perform nominal bonds, since the inflation risk
premium should rise.
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Figure 3 Economists’ Uncertainty about Future GDP Growth and Future Inflation

INFLATION-INDEXED
BONDS IN A NOMINAL
PORTFOLIO
TIPS behave in unique ways and resemble nei-
ther nominal Treasuries nor spread products.
It’s therefore worth going back to basics in or-
der to understand the nature of the interest rate

risk inherent in TIPS and the role they can play
in broader portfolios.

What Is the Duration of an
Inflation-Indexed Bond?
Inflation-indexed bonds are often used for
specialized purposes (e.g., asset/liability
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management for insurance companies offering
inflation-linked life annuities, or for defined
benefit plans where benefits are subject to
cost of living adjustments), and may thus be
segregated from other fixed-income holdings.
However, if they are held in the same portfolio
as nominal bonds, an interesting problem
arises when attempting to define their price
sensitivity to rate changes as measured by “du-
ration.” We first examine the simplest possible
definition of duration and its consequences;
then we look at some alternative definitions.

It is easy to compute the duration of an
inflation-indexed bond using exactly the same
method as one would use for a nominal bond.
Because of its low real coupon and low real
yield, an inflation-indexed bond tends to have
a much longer duration than a nominal bond of
comparable maturity.

But what does this duration mean? The du-
ration of a nominal Treasury bond measures its
sensitivity to changes in nominal yields, that
is, to changes in inflation and real interest rate
expectations. By contrast, the duration of an
inflation-linked bond measures its sensitivity
to changes in real yields, that is, to changes in
real interest rate expectations alone. In other
words, the two durations are not comparable:
They are measuring different things. So, for ex-
ample, it does not make sense to look for a “ref-
erence” nominal yield for the TIPS real yield:
While the TIPS yield may appear to trade off
the 10-year Treasury during some periods, or
off the 5-year Treasury during other periods,
there is no fundamental reason why any such
relationship should persist.

This creates a problem at the portfolio level.
If we try to compute a portfolio duration
by adding up the durations of nominal and
inflation-indexed bond holdings, what does the
resulting figure mean? Two portfolios could
have the same duration but, depending on
the relative weighting of index-linked bonds,
might have a very different response to a
change in investors’ economic expectations.
A simple duration target is no longer an

effective way of controlling portfolio interest
rate risk.

Thus, when a portfolio contains both nominal
and inflation-linked bonds, it is critical to mon-
itor and report the relative weights and dura-
tions of the “nominal” and “real” components
of the portfolio separately. One approach is to
report two durations for the portfolio, which
distinguish two sources of risk:

1. A “portfolio real yield duration” equal to the
sum of the durations of both nominal and
inflation-indexed bond holdings. This shows
how the portfolio value will respond to a
change in market real yields (which also af-
fect nominal yields).

2. A “portfolio inflation duration” equal to
the duration of the nominal bond holdings
alone. This shows how the portfolio value
will respond to a change in market inflation
expectations (which affect nominal yields
but not real yields).

Similarly, care must be taken when carrying
out portfolio simulations. For example, when
carrying out parallel interest rate simulations, it
is standard practice to apply an identical yield
shift to all securities in the portfolio. For a port-
folio containing both nominal and inflation-
indexed bonds, this actually corresponds to a
“real yield simulation.” One should also carry
out “expected inflation simulations,” where
the yield shift is applied to nominal but not
inflation-indexed bond yields.

There is one practical situation in which it
makes sense to compare the durations of a nom-
inal and inflation-indexed bond directly: when
designing trading strategies based on expected
inflation. Suppose the central banking author-
ity is targeting a long-term core CPI inflation
rate of no more than 2%; and suppose that the
10-year nominal yield is 3.5% while the 10-year
real yield is 0.5%. This means that the market
is predicting an average headline CPI inflation
rate, over the next 10 years, of 3%. If one had
faith in the central bank’s ability to meet its in-
flation target and one did not believe headline
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CPI would consistently outpace core CPI over
the next decade, nominal bonds would look un-
dervalued relative to inflation-indexed bonds.

How should one exploit this perceived op-
portunity without changing exposure to other
sources of risk? The correct way is to exe-
cute a duration-matched swap, selling 10-year
inflation-indexed bonds and buying 10-year
nominal bonds. If inflation expectations fall,
the strategy would realize a profit. If real inter-
est rate expectations change (i.e., if real yields
change), there would be no effect—which is
the intention. (This kind of strategy can be
implemented more precisely using a full term
structure of market inflation forecasts, and in-
corporating short horizon economist forecasts.)

The above duration calculation is based on
the (known) real cash flows and discounts at
the real yield. There are other potential ways to
compute the “duration” of an inflation-linked
bond, which involve forecasting the (unknown)
nominal cash flows and discounting using nom-
inal yields on a zero coupon curve basis. The
three most obvious alternatives are:

1. Using a fixed inflation forecast, generate pro-
jected bond cash flows (one should use a fore-
cast that ensures that the net present value of
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Figure 4 Shift in Nominal Yield versus Shift in Break-Even Inflation

the forecast cash flows, discounted using the
current nominal zero coupon curve, is equal
to the current bond price). Compute the du-
ration of this fixed cash flow stream using
±100 bp shifts in the nominal zero coupon
curve.

2. The same, except that when shifting the zero
coupon curve by ±100 bp, one recalculates
the bond cash flows based on a new inflation
forecast, adjusted by ±1%. That is, the cash
flow stream is assumed to depend on the
level of nominal yields.

3. The same, except that one adjusts the infla-
tion forecast by an amount different from
±1%. For example, Figure 4 shows that his-
torically, a 10 bp rise in U.S. nominal yields
corresponded, on average, to a 9 bp rise
in market long-term inflation expectations
(though with much variation around that
average). Thus one might adjust the inflation
forecast by (say) ±0.9%. The precise number
depends on the reference Treasury yield,
and the historical period used to estimate
the relationship.

In each case, some minor variations are pos-
sible; for example, either constant or time-
varying inflation forecasts could be used. These
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calculations can be related to the above con-
cepts of “real yield duration” and “inflation du-
ration” in the following way:

1. Assuming a fixed cash flow stream (i.e., a
fixed inflation scenario) amounts to assum-
ing that the ±100 bp shift in nominal yields
is due to a change in real yields, not a change
in inflation expectations. Thus, this calcula-
tion determines the sensitivity to a change
in real yields, that is, it is essentially com-
puting a real yield duration and produces an
answer very close to the duration calculation
described above.

2. Assuming an inflation scenario that varies by
±1% amounts to assuming that the ±100 bp
shift in nominal yields is due to a change in
inflation expectations. Thus, this calculation
measures an inflation duration, that is, a sen-
sitivity to a shift in market inflation expec-
tations, which is conceptually different from
the real yield duration. The inflation dura-
tion of a TIPS will be approximately zero,
but it may depend on the precise way the
calculation is carried out.

3. Assuming an inflation scenario that varies
by some amount based on the empirical rela-
tionship between nominal yields and market
inflation expectations amounts to calculating
a nominal yield duration, which attempts to
measure the sensitivity of an inflation-linked
bond to a shift in nominal yields.

Real yield duration is the most important of
these risk measures—and, as we have seen,
it can be calculated without using an infla-
tion forecast. The inflation duration is not a
useful risk measure for TIPS; however, in the
U.K. and Australian markets, where inflation-
indexed Treasuries have some residual inflation
sensitivity due to the lag in inflation indexation,
inflation duration is perhaps worth monitoring.
The definition of nominal yield duration makes
essential use of an estimate about an empirical
relationship that is probably unstable, severely
limiting the usefulness of this risk measure.

Note that if inflation-indexed Treasury bonds
did have stable nominal durations—that is, if
they did respond in an absolutely predictable
way to a change in nominal yields—then they
would not be a very useful risk manage-
ment tool, since their mark-to-market behavior
could be perfectly replicated by nominal bonds,
which, moreover, are more liquid. In fact, expe-
rience shows that inflation-indexed bonds can-
not be hedged perfectly with nominal bonds.

One can also attempt to compute a “tax-
adjusted duration” for an inflation-linked bond,
which takes its tax treatment into account; this
may be of importance in the U.K., where infla-
tion accruals are not taxed. In the U.S. market
inflation-linked and nominal bonds are taxed
on a broadly consistent basis; in particular, by
analogy with Treasury STRIPS, the inflation ad-
justment to the bond principal is taxable as it
occurs, and not simply at bond maturity. Thus,
just as one continues to use pretax durations for
Treasury STRIPS despite their tax treatment, it
seems reasonable to use pretax durations for
TIPS as well. The trading behavior of inflation-
linked bonds in a range of markets suggests that
pretax duration measures suffice for most day-
to-day interest rate risk management. However,
it is worth discussing tax briefly.

The Impact of Taxation: An Outline
Inflation-indexed bonds attempt to eliminate
inflation risk, but it reappears on an after-tax
basis. We begin with the fact that tax affects
returns on both nominal bonds and inflation-
indexed bonds in an unfortunate way: High in-
flation results in lower after-tax real returns. For
inflation-indexed bonds, an investor would rea-
son as follows:9

forecast after-tax real yield
= forecast after-tax nominal yield

− forecast inflation
= tax rate × forecast pretax nominal yield

− forecast inflation
= tax rate × (pretax real yield

+ forecast inflation) − forecast inflation
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= tax rate × pretax real yield −
(1 − tax rate) · forecast inflation

For nominal bonds, the reasoning is similar:

forecast after-tax real yield
= forecast after-tax nominal yield

− forecast inflation
= tax rate × forecast pretax nominal yield

− forecast inflation
= tax rate × (pretax real yield

+ market inflation) − forecast inflation
= tax rate × pretax real yield

− (forecast inflation
− tax rate · market inflation)

where “forecast inflation” refers to the in-
vestor’s inflation forecast and “market infla-
tion” refers to the market’s inflation forecast as
reflected in the spread between market nominal
yields and market real yields.

Thus an investor who agrees with the mar-
ket’s inflation forecast and who is thus in-
different between inflation-linked bonds and
nominal bonds on a pretax basis will also be
indifferent on an after-tax basis. The arguments
show that projected after-tax real returns on
both inflation-indexed and nominal bonds de-
pend on forecast inflation.

An important consequence is that since U.S.
inflation-indexed bonds and nominal bonds are
affected equally, inflation-linked bonds do not
protect investors against the negative after-tax
impact of high inflation. Thus, TIPS real yields
reflect only a premium for “pretax inflation
risk.” By contrast, since U.K. index-linked gilts
receive preferential tax treatment, their yields
also reflect a premium for “after-tax inflation
risk.” The price paid by U.K. investors, as ob-
served by Roll (1996) and by Brown and Schae-
fer (1996), is lower liquidity: The market for
index-linked gilts is confined to investors with
high marginal tax rates and to investors who
have other incentives, such as regulatory in-
centives, to own inflation-linked securities.10

Roll (1996) points out a further consequence:
If the demand for inflation-indexed or nomi-

nal bonds is a function of expected after-tax re-
turns, pretax real yields should rise as expected
inflation rises, to maintain a constant after-tax
real yield. It is not clear whether real yields on
inflation-indexed bonds actually behave in this
way, although the Australian experience in 1994
suggests that they do. In any case, this intro-
duces a further source of uncertainty about the
future behavior of real yields.

Inflation-Indexed Bonds and
Portfolio Efficiency
Inflation-indexed bonds have a risk profile
quite different from that of nominal bonds. In
fact, it could be argued that for asset alloca-
tion purposes, they should not be grouped with
nominal bonds but should be treated as an en-
tirely separate asset class. We will use portfolio
theory to explore the consequences of adopt-
ing this point of view. More specifically, we will
try to determine what weight TIPS should have
in efficient portfolios with varying degrees of
risk, and what impact their inclusion has on ex-
pected returns.

For simplicity, we focus on maximizing nom-
inal returns in the U.S. market, and we work in
a total return framework. Other kinds of analy-
sis are possible; for example, Eichholtz, Naber,
and Petri (1993) discuss the problem of match-
ing inflation-indexed liabilities in the U.K. and
Israeli markets.

The results of any Markowitz-style analysis
are always highly dependent on the expected
returns, volatilities, and correlations used. The
assumptions we use are set out in Table 1 and
are broadly based on market data and pre-
sumed market expectations. They were derived
as follows:

1. Expected nominal returns for cash and nom-
inal bonds (aggregate bond index) are based
on current market yields—this is more mean-
ingful than using historical returns. For sim-
plicity, we assume that nominal bonds and
TIPS have the same expected return (in prac-
tice, one would derive expected returns more
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Table 1 Assumptions Used in Efficient
Portfolio Analysis

Cash Bonds TIPS Equities

Expected return 2.0% 2.8% 2.8% 5.8%
Return volatility 0.6% 3.6% 5.9%/3.6% 16.5%
Correlations
Cash 1.00 0.06 −0.03 0.01
Bonds 1.00 0.73 −0.01
TIPS 1.00 0.03
Equities 1.00

carefully). The expected return for equities is
obtained by adding a risk premium of 3% to
that for bonds.

2. Return volatilities for cash, nominal bonds,
TIPS, and equities are historical, calculated
using monthly Barclays index return data
and S&P 500 return data over the pe-
riod 1997–2011. In addition to the histori-
cal volatility for TIPS—which is quite high,
largely due to the experience during the cri-
sis period—we also carry out an alterna-
tive analysis that assumes that they have the
same volatility as nominal bonds.

3. We use historical correlations estimated us-
ing the same time period.
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Figure 5 Composition of Efficient Portfolios, 5.9% Volatility Assumption

At first glance, the results seem highly depen-
dent on the volatility assumption used for TIPS.
Figure 5 shows the composition of theoreti-
cally efficient portfolios with varying degrees
of risk, using the realistic volatility assump-
tion; Figure 6 shows the same, using the low
volatility assumption. Using the higher volatil-
ity, TIPS play almost no role in any efficient
portfolio; for example, at moderate risk levels,
nominal bonds are preferred because of their
lower correlation with equities. However, using
the lower volatility, TIPS have a much more im-
portant role to play. They partly displace cash
at low risk levels, and more importantly they
partly displace nominal bonds at moderate risk
levels. Only the equity weightings remain more
or less unchanged.

But how much value do TIPS actually add?
Figure 7 shows the efficient frontier; that is,
expected returns from efficient portfolios, cal-
culated using both the realistic and low TIPS
volatility assumptions. Above the 2% risk level,
they are very close: Expected returns differ
only marginally. That is, even assuming that
TIPS will have a very low return volatility does
not significantly increase their expected value
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Figure 6 Composition of Efficient Portfolios, 3.6% Volatility Assumption

added to portfolio returns unless different ex-
pected return assumptions are used as well
(or unless we move beyond the pure mean-
variance framework).

Figure 8 is even more telling. It shows ex-
pected returns from efficient portfolios under
the low TIPS volatility assumption for both
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Figure 7 Efficient Frontier for the Two Different Volatility Assumptions

unconstrained portfolios and portfolios from
which TIPS have been excluded. Even at moder-
ate risk levels, where TIPS are most important,
the difference in expected returns is extremely
modest. Moreover, an investor who currently
held a TIPS-free portfolio, and who wanted to
capture these additional few basis points by
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purchasing TIPS, would have to trade over a
quarter of the portfolio to achieve the optimal
asset class weightings.

The overall conclusions are that (1) a realis-
tic TIPS return volatility assumption, consistent
with historical experience, implies that TIPS do
not add much value to asset allocation; and
(2) even under a very optimistic TIPS return
volatility assumption, the value added by TIPS
is modest. The main reasons are that TIPS do
not have a higher expected return than nomi-
nal bonds, but have a slightly higher assumed
correlation with equities.

These results should be compared with the
findings of Eichholtz, Naber, and Petri (1993),
who used data from 1983–1991 and discovered
a significant difference between relatively low-
inflation countries such as the U.K. in that pe-
riod and countries such as Israel where inflation
had been extremely high and volatile.

� Results for the U.K.: If the goal is to maximize
total return, inflation-linked bonds do not ap-
pear in any efficient portfolio. If inflation-
linked liabilities are included in the problem
(but setting regulatory considerations aside),
they appear in very low-risk efficient portfo-
lios, but with negligible weight: less than 1%.

� Results for Israel: If the goal is to maximize
total return, inflation-linked bonds play a mi-
nor role in low-risk portfolios but a major
role in risky portfolios, sometimes having a
weight of over 50%. If inflation-linked liabil-
ities are included in the problem, inflation-
linked bonds play a major role at all levels of
risk, with weights between 44% and 88%.

TIPS provide insurance against inflation, and
each investor’s subjective assessment of future
inflation risk and the need for inflation protec-
tion must strongly influence any conclusions
about the role of TIPS. U.S. investors will have
to decide which set of results provides more
useful guidance.

ADVANCED ANALYTICAL
APPROACHES TO
INFLATION-INDEXED
BONDS
As the U.S. TIPS market has matured, with a
full term structure of maturities and a trading
history spanning several business cycles and in-
flation environments, investors have developed
many analytical approaches in the search for
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investment opportunities. Rather than attempt-
ing a comprehensive survey, the remainder of
this entry gives two brief examples, both of
them focusing on economic factors rather than
supply/demand relationships or “market tech-
nicals.” Standard econometric techniques turn
out to be useful.

Link between TIPS Performance
and Short-Term Inflation
The relative performance of TIPS versus nom-
inal Treasuries is determined both by daily
mark-to-market movements and by infla-
tion accrual, which influences both inflation-
adjusted principal and interest payments.
Inflation accrual is clearly determined by real-
ized headline CPI inflation (relative to nominal
yields). Since headline CPI is quite volatile, this
“carry” component of TIPS returns can often be
a dominant factor in the performance of short
and even intermediate maturity TIPS.

One useful way of looking at this is by isolat-
ing the impact of the more volatile components
of CPI. Bryan and Meyer (2010) divide the CPI
basket into “flexible price” and “sticky price”
categories, leading to two separate measures
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Figure 9 TIPS Performance and Flexible Price CPI

of inflation. Examples of flexible price items
are gasoline, fruit and vegetables, and women’s
apparel; examples of sticky price items are fur-
niture, alcoholic beverages, and public trans-
portation.

Figure 9 shows that during the period since
the introduction of TIPS in 1997, there was a
positive correlation between changes in 10-year
TIPS break-even inflation and changes in three-
month flexible price CPI inflation. It may seem
surprising that 10-year inflation expectations
are visibly influenced by realized three-month
inflation; but this simply reflects the strong in-
fluence of carry on the trading behavior of TIPS,
even 10-year maturity TIPS.

We can get a more refined view of the re-
lationship if we run a vector autoregression
analysis and examine the impulse-response
functions. Some of the results from an analy-
sis using 2003–2011 data on five-year TIPS (i.e.,
a shorter maturity, more strongly influenced
by carry considerations) are shown in Fig-
ure 10. The impulse-response functions suggest
that:

1. 5-year TIPS break-even inflation responds
more strongly to flexible price CPI than
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Response of 5-year TIPS breakeven inflation to inflation shocks
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Figure 10 Five-Year TIPS Break-Even Inflation and Shocks to Flexible Price CPI Inflation

to sticky price CPI, that is, the sources of
shorter-term inflation volatility are more im-
portant; despite the fact that

2. Shocks to flexible price CPI inflation tend to
be quite short-lived, dissipating after a cou-
ple of months and even tending to (partially)
correct.

Since TIPS inflation accrual is based on non-
seasonally-adjusted headline CPI inflation, a
further aspect of TIPS carry is the strong sea-
sonal pattern exhibited by CPI inflation. This
needs to be analyzed separately. Seasonal fac-
tors have often been a source of market ineffi-
ciency in the past.
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The TIPS Premium versus
Survey-Based Real Yield Measures
As can be seen from Figure 1, TIPS real yields
have usually (but not always) been higher than
the real yields implied by subtracting consen-
sus inflation forecasts from observed nominal
Treasury yields. In other words, TIPS real yields
usually incorporate an apparent “concession.”
The historical behavior of this apparent real
yield premium is shown in Figure 11, together
with an estimate of its trend behavior (de-
rived by applying a standard Hodrick-Prescott
filter11).

This premium has averaged around 40–50 bp,
but has fluctuated quite a bit over time. It seems
to mean revert to trend (heavy line in Figure 11)
over about a 12-month period on average.

Why would this premium exist?

1. Survey bias: Economists’ forecasts of fu-
ture inflation may be systematically biased
(higher) relative to the market’s forecasts.
This is more likely to have been true dur-
ing the period of declining trend inflation
from the mid-1980s to the mid-2000s; and in-
deed the real yield premium seems to have
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Figure 11 Apparent TIPS Real Yield Premium

decreased since then, though it has still been
positive on average.

2. Recalculation risk: There may be a downward
bias to the risk of future changes to the defi-
nition of CPI.12

3. Liquidity: TIPS are less liquid than nominals
(i.e., they have wider and more uncertain
bid/ask spreads, and greater market impact
of large trades), so investors require a higher
real yield to compensate for that.

4. Tracking error: TIPS aren’t in the standard
bond indexes, so index-sensitive investors
need to be compensated for the fact that ow-
ing TIPS leads to additional tracking error.

5. Undesirable correlations: TIPS tend to under-
perform in deflations/recessions, which is
when investors most want bonds to do well;
another kind of undesirable correlation is
that TIPS liquidity tends to deteriorate in pe-
riods of general market stress.

The first two factors are difficult to quantify,
but one could argue that their influence is prob-
ably fairly constant over time. It thus seems
feasible to develop relative value measures con-
ditioned on the remaining three factors, which
are potentially more tractable.
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The (il)liquidity premium turns out to be
particularly important, since it exhibits the
most time variation. It is difficult to estimate
based on yield data alone;13 furthermore, as
with all liquidity premiums, it is not fully
determined by prevailing liquidity conditions
(bid/ask spreads, quoted volumes, and market
impact of trades) but is also influenced by the
perceived risk that future liquidity conditions
may differ from today’s.

Modeling liquidity premiums is extremely
difficult, but useful information can be ex-
tracted via model-free approaches. For exam-
ple, Christensen and Gillan (2011) argue that
the difference between TIPS break-even infla-
tion and inflation swap rates provides a time-
varying upper bound on the TIPS liquidity
premium. This upper bound has typically fluc-
tuated between 10 bp and 20 bp, but rose to over
100 bp in late 2008 during the financial crisis; it
has been highly correlated with other measures
of bond liquidity, such as the yield premium
of off-the-run versus on-the-run nominal Trea-
suries.

KEY POINTS
� TIPS real yields are volatile. They are influ-

enced by domestic growth, external balances,
and the behavior of competing asset classes.

� TIPS real yields also reflect a modest and
somewhat volatile inflation risk premium.

� There are different notions of TIPS duration
corresponding to different aspects of TIPS in-
terest rate risk.

� TIPS often do not play a significant role in
efficient portfolios, and some investors may
be better off regarding them as opportunistic
rather than core investments.

� Market returns on TIPS are often driven
by short-term inflation accrual, and this is
best analyzed by breaking observed inflation
down into suitable components.

� Survey-based measures of inflation and real
yields often differ from those implied by the

TIPS market, and it is important for investors
to understand the reasons for the divergence.

NOTES
1. The following discussion of risk factors

expands on the account in Carmody and
Mason (1996).

2. See Chapter 12 in Keynes (1936).
3. See Eichholtz, Naber, and Petri (1993).
4. See Brown and Schaefer (1996).
5. See Eichholtz, Naber, and Petri (1993).
6. See Carmody and Mason (1996).
7. See the citations in Grishchenko and Huang

(2009).
8. See, for example, D’Amico, Kim, and Wei

(2008) and Durham (2006).
9. See Roll (1996) for more details.

10. By the way, this provides an example of the
tax clientele effects analyzed by Dybvig and
Ross (1986).

11. The Hodrick-Prescott filter developed in
Hodrick and Prescott (1997) is an economet-
ric technique employed in macroeconomics
in the analysis of time series data.

12. See the change in the calculation of CPI fol-
lowing the recommendations of the Boskin
Commission (1996).

13. D’Amico, Kim, and Wei (2008).
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Abstract: Credit risk technology has evolved with advances in computer science and information
technology. Traditional credit ratings date back to 1860, an era when the cost of collecting and
analyzing corporate credit information was high. The commercial advantages of a central provider
of credit risk analysis were high. With the advent of better computer technology and databases of
corporate financial information and stock prices, quantitative approaches to credit risk assessment
have become more popular and increasingly accurate. Credit scoring is a quantitative approach to
retail credit assessment, but, in the corporate world, more and more credit analysts prefer a default
probability with an explicit maturity to a “credit rating” or “credit score.”

This entry introduces the topic of credit risk mod-
eling by first summarizing the key objectives
of credit risk modeling. We then discuss rat-
ings and credit scores, contrasting them with
modern default probability technology. Next, we
discuss why valuation, pricing, and hedging of
credit risky instruments are even more impor-
tant than knowing the default probability of the
issuer of the security. We review some empiri-
cal data on the consistency of movements be-
tween common stock prices and credit spreads
with some surprising results. Finally, we com-
pare the accuracy of ratings, the Merton model
of risky debt, and reduced form credit models.

KEY OBJECTIVES IN CREDIT
RISK MODELING
In short, the objective of the credit risk modeling
process is to provide an investor with practical
tools to “buy low/sell high.”1 Robert Merton, in

a 2002 story retold by van Deventer, Imai, and
Mesler (2004), explained how Wall Street has
worked for years to get investors to focus on
expected returns, ignoring risk, in order to get
investors to move into higher risk investments.
In a similar vein, investment banks have tried
to get potential investors in collateralized debt
obligations (CDOs) to focus on “expected loss”
instead of market value and the volatility of that
market value on a CDO. The result, according to
the Global Stability Report of the International
Monetary Fund, was an estimated $945 billion
in global credit losses during the credit crisis
that began in earnest in 2007.2

This means that we need more than a de-
fault probability. The default probability pro-
vides some help in the initial yes/no decision on
a new transaction, but it is not enough informa-
tion to make a well-informed yes/no, buy/sell
decision, as we discuss below. Once the trans-
action is done, we have a number of very crit-
ical objectives from the credit risk modeling

299
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process. We need to know the value of the
portfolio, the risk of the portfolio (as measured
most importantly by the random variation in its
value), and the proper hedge of the risk if we
deem the risk to be beyond our risk appetite.
Indeed, the best single sentence test of a credit
model is “What is the hedge?” If one cannot
answer this question, the credit modeling effort
falls far short of normal risk management stan-
dards. It is inconceivable that an interest rate
risk manager could not answer this question.
Why should we expect any less from a credit
risk manager, who probably has more risk in his
area of responsibility than almost anyone else?
Indeed, stress testing with respect to macroeco-
nomic factors is now standard under proposals
from the European Central Bank and under the
U.S. programs titled “Supervisory Capital As-
sessment Program” and “Comprehensive Cap-
ital Analysis and Review.” The latter programs,
applied to the 19 largest financial institutions
in the United States, focused on macro factors
like home prices, real gross domestic product
growth, and unemployment.

RATINGS AND “CREDIT
SCORES” VERSUS DEFAULT
PROBABILITIES
Rating agencies have played a major role in
fixed income markets around the world since
the origins of Standard & Poor’s in 1860. Even
the “rating agencies” of consumer debt, the
credit bureaus, play prominently in the bank-
ing markets of most industrialized countries.
Why do financial institutions use ratings and
credit scores instead of default probabilities? As
a former banker myself, I confess that the em-
barrassing answer is “There is no good reason”
to use a rating or a credit score as long as the de-
fault probability modeling effort is a sophisticated
one and the inputs to that model are complete.

Ratings have a lot in common with interest
accrual based on 360 days in a year. Both rat-
ings and this interest accrual convention date

from an era that predates calculators and mod-
ern default probability technology. Why use a
debt rating updated every 1–2 years when one
can literally have the full term structure of de-
fault probabilities on every public company up-
dated daily or in real time? In the past, there
were good reasons for the reliance on ratings:

� Default probability formulas were not dis-
closed, so proper corporate governance
would not allow reliance on those default
probabilities.

� Default probability model accuracy was ei-
ther not disclosed or disclosed in such a way
that weak performance was disguised by se-
lecting small sectors of the covered universe
for testing.

� Default probability models relied on old tech-
nology, like the Merton model of risky debt
and its variants, that has long been recognized
as out of date.3

� Default probability models implausibly re-
lied on a single input (the unobservable value
of company assets), ignoring other obvious
determinants of credit risk like cash balances,
cash flow coverage, the charge card balance
of the CEO of a small business, or the number
of days past due on a retail credit.

With modern credit technology, none of these
reasons are currently valid because there is a
rich, modern credit technology available with
full disclosure and an unconstrained ability to
take useful explanatory variables. In this vein,
ratings suffer from a number of comparisons to
the modern credit model:

� Ratings are discrete with a limited number of
grades. There are 21 Standard & Poor’s rat-
ings grades, for example, running from AAA
to D. Default probabilities are continuous and
run (or should run) from 0 to 100%.

� Ratings are updated very infrequently and
there are obvious barriers that provoke even
later than usual response from the rating
agencies, like the 2004 downgrade from AAA
to AA- for Merck, a full three weeks after the
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withdrawal of its major drug Vioxx crushed
the company’s stock price. Another example
is General Electric, first rated AAA in 1956,
which was not downgraded until March 2009,
a full four months after General Electric was
forced to borrow under the Federal Reserve’s
Commercial Paper Funding Facility.4 Default
probabilities can adjust in real time if done
right.

� Ratings have an ambiguous maturity, which
we discuss in the next section. The full term
structure of default probabilities is available
and the obvious impact of the business cy-
cle is observable: The full default probabil-
ity term structure rises and falls through the
business cycle, with short-term default prob-
abilities rising and falling more dramatically
than long-term default probabilities. Figure 1
illustrates this cyclical rise and fall during the
credit crisis of 2007–2011 for Bank of Amer-
ica Corporation and Citigroup, two of the
largest U.S. bank holding companies, using
the reduced form model default probabilities
discussed below and provided by Kamakura
Corporation.

Figure 1 Five-Year Default Probabilities for Bank of America and Citigroup: January 1, 2007 to
May 1, 2011

The cyclical rise and fall of default probabil-
ities for both banks are very clear and show
the impact of the credit crisis, which was at its
height in 2007–2009. We take a longer-term view
from 1990 to 2006 below.

Figure 2 shows clearly the joint rise in default
probabilities in 1990–1991, a mini recession in
1994–1995, and the impact of the Russian debt
crisis and high-tech crash in 1998–2002. By way
of contrast, Standard & Poor’s only changed
its ratings on Bank of America twice in the
1995–2006 period, once in 1996 and once in 2005.

What about consumer and small business
“credit scores”? Like ratings and the interest ac-
crual method mentioned above, these date from
an era when there was limited understanding of
credit risk in the financial community. Vendors
of credit scores had two objectives in marketing
a credit risk product: to make it simple enough
for any banker to understand and to avoid an-
gering consumers who might later learn how
they are ranked under the credit measure. The
latter concern is still, ironically, the best reason
for the use of credit scores instead of default
probabilities today on the retail side. From a
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Figure 2 Five-Year Default Probabilities for Bank of America and Citigroup: January 1, 1990 to
December 31, 2006

banker’s perspective, though, the score hides
information that is known to the credit score
vendor. The credit scoring vendor is actually us-
ing the statistical techniques we describe below
to derive a default probability for the consumer.
They then hide it by scaling the default proba-
bility to run from some arbitrary range like 600
to 1,000 with 1,000 being best.5 One scaling that
does this, for example, is the formula:

Credit score = 1,000 − 4 (Consumer 1-year

default probability)

This scaling formula hides the default proba-
bility that Basel II requires and modern bankers
are forced to “undo” by analyzing the mapping
of credit scores to defaults. This just wastes ev-
eryone’s time for no good reason other than the
desire to avoid angering retail borrowers with
a cold-hearted default probability assessment.

The only time a rating or credit score can out-
perform a modern credit model is if there are
variables missing in the credit model. Heading
into the credit crisis as of December 31, 2006,
for example, Citigroup had a roughly $50 bil-
lion direct and indirect exposure to super senior

tranches of collateralized debt obligations, but
these exposures were not reported in a quanti-
tative form and therefore could not be used in
a quantitative credit model. A judgmental rat-
ing in this case would be able to adjust for this
risk if proper disclosure were made to the rat-
ing agencies. This, however, is a rare case and
in general a first-class modeling effort will be
consistently superior.6

WHAT “THROUGH THE
CYCLE” REALLY MEANS
Financial market participants often comment
that default probabilities span a specific pe-
riod of time (30 days, 1 year, 5 years) while
ratings are “through the cycle” ratings. What
does “through the cycle” really mean?

Figure 3 provides the answer. It shows the
term structure of default probabilities out for
10 years for Morgan Stanley on October 15,
2008, one month after the collapse of Lehman
Brothers, and July 7, 2011. The July 7, 2011
term structure was quite low because business
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Figure 3 Term Structure of Default Probabilities for Morgan Stanley on October 15, 2008
and July 7, 2011

conditions at the time were excellent.7 Look-
ing at the right-hand side of the curve, we can
see that both default probability curves are con-
verging and, if the graph is continued to a long
enough maturity, both will hit about 42–50 basis
points for a very long-term default probability.

This is consistent with the “long-run” default
experience for both Morgan Stanley’s 2011 rat-
ing of A.8 Over the 15 years after being rated
A, 2.77% of those formerly rated A defaulted.
This is the same as a constant default rate over
those 15 years of 18.7 basis points, a rate dou-
ble the 8 basis point default rate in just the first
one year after being rated A. Morgan Stanley
is a higher than average risk for an A-rated
company as it was forced to borrow as much
as $61.3 billion from the Federal Reserve on
September 29, 2008.9 “Through the cycle” has
a very simple meaning—it is a very long-term
default probability that is totally consistent with
the term structure of default probabilities of a well-
specified model. What is the term? The major
rating agencies are currently reporting about
30 years of historical experience, so the answer
is 30 years.

VALUATION, PRICING, AND
HEDGING

Earlier in this entry, we said the best one-
sentence test of a credit model is “what is the
hedge?” That statement is no exaggeration, be-
cause in order to be able to specify the hedge, we
need to be able to value the risky credit (or port-
folio of risky credits). If we can value the credits,
we can price them as well. If we can value them,
we can stress test that valuation as macroeco-
nomic factors driving default probabilities shift.
The pervasive impact of macroeconomic fac-
tors on default probabilities Figure 1 shows for
Bank of America and Citigroup makes obvious
what is documented by van Deventer and Imai
(2003). The business cycle drives default risk
(and valuations) up and down. With this val-
uation capability, we can meet one of the key
objectives specified in this entry: We know the
true value of everything we own and every-
thing Wall Street wants us to buy or sell. We
can see that the structured product offered at
103 is in reality only worth 98. This capability
is essential to meet modern risk management
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standards. Just as important, it is critical in-
surance against becoming yet another victim
of Wall Street.

EMPIRICAL DATA ON
CREDIT SPREADS AND
COMMON STOCK PRICES
Before exploring the nature and performance
of modern credit models, it is useful to look at
the relationship between stock prices and credit
spreads. Van Deventer and Imai (2003) print in
its entirety a useful data series of new issue
credit spreads compiled over a nine-year pe-
riod beginning in the mid-1980s by First Inter-
state Bancorp. First Interstate at the time was
the seventh largest bank holding company in
the United States, one of the largest debt issuers
in the United States, and a company whose rat-
ing ranged from AA to BB during the course
of the data series. The credit spreads were the
average credit spread quoted for a new issue of
noncall debt of $100 million by six investment
banking firms, with the high and low quota-
tions thrown out. Data were collected weekly
for 427 weeks. No yield curve smoothing or
secondary market bond prices were necessary
to get the spreads, as the spreads themselves
were the pricing quotation. These data, in the
author’s judgment, are much more reliable than
the average credit default swap spread avail-
able since 2003 because of the extremely low
volumes of credit default swap transactions re-
ported by the Depository Trust and Clearing
Corporation on www.dtcc.com.

Jarrow and van Deventer (1998, 1999) first
used these data to test the implications of credit
models. They reported the following findings
on the relationship between credit spreads and
equity prices:

� Stock prices and credit spreads moved in op-
posite directions during the week 172–184
times (depending on the maturity of the credit
spread) of the 427 observations.

� Stock prices and credit spreads were both un-
changed in only 1–3 observations.

� In total, only 40.7% to 43.6% of the observa-
tions were consistent with the Merton model
(and literally any of its single factor variants)
of risky debt.

This means that multiple variables are im-
pacting credit spreads and stock prices, not the
single variable (the value of company assets)
that is the explanatory variable in any of the
commercially available implementations of de-
fault probabilities that are Merton related. We
address this issue in detail in our discussion of
the Merton model10 and its variants in the fol-
lowing section. The summary data on the First
Interstate stock price and credit spreads are re-
produced in Table 1.

STRUCTURAL MODELS OF
RISKY DEBT
Modern derivatives technology was the first
place analysts turned in the mid-1970s as they
sought to augment Altman’s early work on
corporate default prediction with an analytical
model of default.11 The original work in this re-
gard was done by Black and Scholes (1973) and
Merton (1974). This early work and almost all of
the more recent extensions of it share a common
framework:

� The assets of the firm are assumed to be per-
fectly liquid and are traded in efficient mar-
kets with no transactions costs.

� The amount of debt is set at time zero and
does not vary.

� The value of the assets of the firm equal the
sum of the equity value and the sum of the
debt value, the original Modigliani and Miller
assumptions.

All of the analysts using this framework con-
clude that the equity of the firm is some kind of
option on the assets of the firm. An immediate
implication of this is that one variable (except

http://www.dtcc.com


AN INTRODUCTION TO CREDIT RISK MODELS 305

Table 1 Analysis of Changes in First Interstate Bancorp Credit Spreads Stock Prices

SPREAD SPREAD SPREAD SPREAD SPREAD
2 Years 3 Years 5 Years 7 Years 10 Years Total

Total Number of Data Points 427 427 427 427 427 2135
Data Points Consistent with Merton

Opposite Move in Stock Price and Spreads 179 178 183 172 184 896
Stock Price and Credit Spreads Unchanged 3 3 1 2 2 11

Total Consistent 182 181 184 174 186 907
Percent Consistent
With Merton Model 42.6% 42.4% 43.1% 40.7% 43.6% 42.5%

Standard Deviation 2.4% 2.4% 2.4% 2.4% 2.4% 1.1%
Standard Deviations from 100% Consistency −23.9 −24.1 −23.7 −24.9 −23.5 −53.8
Standard Deviations from 50% Consistency −3.1 −3.2 −2.9 −3.9 −2.7 −7.0

Source: van Deventer and Imai (2003).

in the cases of random interest rates assumed
below), the random value of company assets,
completely determines stock prices, debt prices,
and credit spreads. Except for the random in-
terest rate versions of the model, this means
that when the value of company assets rises,
then stock prices should rise and credit spreads
should fall. Table 1 rejects the hypothesis that
this result is true by 23.5 to 24.9 standard devi-
ations using the First Interstate data described
earlier. In fact, as the First Interstate data show,
stock prices and credit spreads move in the di-
rection implied by various versions of the Mer-
ton model only 40.7% to 43.6% of the time. Van
Deventer and Imai (2003) report on a similar
analysis for a large number of companies with
more than 20,000 observations and find similar
results.

Given this inconsistency of actual market
movements with the strongly restrictive as-
sumption that only one variable drives debt
and equity prices, why did analysts choose the
structural models of risky debt in the first place?
Originally, the models were implemented on
the hope (and sometimes belief) that perfor-
mance must be good. Later, once the perfor-
mance of the model was found to be poor, this
knowledge was known only to very large fi-
nancial institutions who had an extensive credit
model testing regime. One very large institu-
tion, for example, told the author in 2003 that
it had known for years that the most popu-

lar commercial implementation of the Merton
model of risky debt was less accurate than the
market leverage ratio in the ordinal ranking of
companies by riskiness. The firm was actively
using this knowledge to arbitrage market par-
ticipants who believed, but had not confirmed,
that the Merton model of risky debt was accu-
rate. We report on the large body of test results
that began to enter the public domain in 1998
in a later section.

As analysts began to realize there were prob-
lems with the structural models of risky debt,
active attempts were made to improve the
model. We present in the following paragraphs
a brief listing of the types of assumptions that
can be used in the structural models of risky
debt.12

Pure Black-Scholes/Merton
Approach
The original Merton model assumes interest
rates are constant and that equity is a European
option on the assets of the firm. This means
that bankruptcy can occur only at the maturity
debt of the single debt instrument issued by the
firm. Lando (2004, p. 14) notes a very important
liability of the basic Merton model as the matu-
rity of debt gets progressively shorter: “When
the value of assets is larger than the face value
of debt, the yield spreads go to zero as time
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to maturity goes to 0 in the Merton model.”
This is a critical handicap in trying to use
this one-period model as a complete valuation
framework. If credit spreads are unrealistic, we
cannot achieve accuracy in our one-sentence
credit model test: What’s the hedge?

We note here that allowing for various classes
of debt is a very modest extension of the
model. Allowing for subordinated debt does
not change the probability of default. The im-
plicit loss given default will simply be higher
for the subordinated debt issue than it will for
the senior debt issue.

Merton Model with Stochastic
Interest Rates
The Merton model with stochastic interest rates
was published by Shimko, Tejima, and van De-
venter (1993). This modest extension of the
original Merton framework simply combined
Merton’s own model for options when interest
rates are random with the structural credit risk
framework. The model has the virtue of allow-
ing two random factors (the risk-free short-term
rate of interest and the value of company assets,
which can have any arbitrary degree of corre-
lation). It provides at least a partial explanation
of the First Interstate results discussed above,
but it shares most of the other liabilities of the
basic Merton approach.

The Merton Model with Jumps in
Asset Values
One of the most straightforward ways in which
to make credit spreads more realistic is to
assume that there are random jumps in the
value of company assets, overlaid on top of
the basic Merton assumption of geometric
Brownian motion (i.e., normally distributed as-
set returns and lognormally distributed asset
values). This model produces more realistic
credit spread values, but Lando (2004, p. 27)
concludes, “while the jump-diffusion model is

excellent for illustration and simulating the ef-
fects of jumps, the problems in estimating the
model make it less attractive in practical risk
management.”

Introducing Early Default in the
Merton Structural Approach
In 1976, Black and Cox allowed default to oc-
cur prior to the maturity of debt if the value of
company assets hits a deterministic barrier that
can be a function of time. The value of equity is
the equivalent of a “down and out” call option.
When there are dividend payments, model-
ing gets much more complicated. Lando (2004,
p. 33) summarizes key attributes of this mod-
eling assumption: “While the existence of a de-
fault barrier increases the probability of default
in a Black-Cox setting compared with that in a
Merton setting, note that the bond holders ac-
tually take over the remaining assets when the
boundary is hit and this in fact leads to higher
bond prices and lower spreads.”

Other Variations on the
Merton Model
Other extensions of the model summarized by
Lando include

� A Merton model with continuous coupons
and perpetual debt.

� Stochastic interest rates and jumps with bar-
riers in the Merton model.

� Models of capital structure with stationary
leverage ratios.

Ironically, all current commercial implemen-
tations of the Merton model for default prob-
ability estimation are minor variations on the
original Merton model or extremely modest
extensions of Black and Cox (1976). In short,
at best 34-year-old technology is being used.
Moreover, all current commercial implementa-
tions assume interest rates are constant, mak-
ing failure of the “What’s the hedge test” a
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certainty for fixed income portfolio managers,
the primary users of default technology. All of
the problems raised in the previous section on
the First Interstate dataset remain for all current
commercial implementations. That has much
to do with the empirical results summarized
below.

REDUCED-FORM MODELS
OF RISKY DEBT
The many problems with the major variations
on the Merton approach led Jarrow and Turn-
bull (1995) to elaborate on a reduced form
of the original Merton model. In his options
model for companies where the stock price is
lognormally distributed, Merton allowed for a
constant instantaneous default intensity. If the
default event occurred, the stock price was as-
sumed to go to zero. Merton derived the value
of options on a defaultable common stock in
a constant interest rates framework. Van De-
venter (2006) shows how to use this Merton
“reduced form” model to imply default proba-
bilities from observable put and call options.

Jarrow and Turnbull adopted this default in-
tensity approach as an alternative to the Mer-
ton structural approach. They did so under
the increasingly popular belief that compa-
nies’ choices of capital structure vary dynam-
ically with the credit quality of the firm, and
that the assets they hold are often highly illiq-
uid, contrary to the assumptions in the struc-
tural approach. Duffie and Singleton (1999),
Jarrow (2001), and many others have dramat-
ically increased the richness of the original
Jarrow-Turnbull model to include the following
features:

� Interest rates are random.
� An instantaneous default intensity is also ran-

dom and driven by interest rates and one or
more random macroeconomic factors.

� Bonds are traded in a less liquid market, and
credit spreads have a “liquidity premium”

above and beyond the loss component of the
credit spread.

� Loss given default can be random and driven
by macroeconomic factors as well.

Default intensities and the full term structure
of default probabilities can be derived in two
ways:

� By implicit estimation, from observable bond
prices, credit default swap prices, or options
prices or any combination of them

� By explicit estimation, using a historical de-
fault database

The first commercial implementation on a
sustained basis of the latter approach was the
2002 launch of the Kamakura Risk Informa-
tion Services multiple models default proba-
bility service, which includes both Merton and
reduced form models benchmarked in histor-
ical default data bases. The first commercial
implementation of this approach for sovereign
default risk assessment was also by Kamakura
Risk Information Services in 2008.

In deriving default probabilities from histor-
ical data, financial economists have converged
on a hazard rate modeling estimation proce-
dure using logistic regression, where estimated
default probabilities P[t] are fitted to a historical
database with both defaulting and nondefault-
ing observations and a list of explanatory vari-
ables Xi. Chava and Jarrow (2004) prove that the
logistic regression is the maximum likelihood
estimator when trying to predict a dependent
variable that is either one (i.e., in the default
case) or zero (in the “no default” case):

P[t] = 1/[1 + exp(−α−
n∑

i=1

βiXi)]

This simple equation makes obvious the most
important virtue of the reduced form approach.
The reduced form approach can employ any
variable, without restriction, that improves the
quality of default prediction, because any vari-
able can contribute in the equation above in-
cluding Merton default probabilities if they
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have explanatory power. This means that the
reduced form approach can never be worse
than the Merton model because the Merton
model can always be an input. The reverse is
not true—the charge card balance of the chief
executive officer is a well-known predictor of
small business default, but the Merton default
formulas do not have the flexibility to use this
insight. Note also that the linear function in
the denominator can be thought of as Altman’s
1968 z-score concept. In that sense, the reduced
form/logistic regression approach has both Alt-
man’s work and Merton’s work as ancestors.

In short, reduced form models can be the re-
sult of unconstrained variable selection among
the full set of variables that add true eco-
nomic explanatory power to default prediction.
The Merton model, in any variation, is a con-
strained approach to default estimation because
the mathematical formula for the model does
not allow many potential explanatory variables
to be used.

Most importantly, the logistic regression ap-
proach provides a solid opportunity to test
whether in fact the Merton model does have
the problems one would predict from the First
Interstate data discussed above. We turn to that
task now.

EMPIRICAL EVIDENCE ON
MODEL PERFORMANCE
Shumway and Bharath (2008) conduct an ex-
tensive test of the Merton approach. They
test two hypotheses. Hypothesis 1 is that the
Merton model is a “sufficient statistic” for the
probability of default, that is, a variable so pow-
erful that in a logistic regression like the formula
in the previous section no other explanatory
variables add explanatory power. Hypothesis
2 is the hypothesis that the Merton model adds
explanatory power even if common reduced
form model explanatory variables are present.
They specifically test modifications of the Mer-
ton structure partially disclosed by commercial

vendors of the Merton model. The Shumway
and Bharath (2008) conclusions, based on all
publicly traded firms in the United States (ex-
cept financial firms) using quarterly data from
1980 to 2003 are as follows:13

� “We conclude that the . . . Merton model does
not produce a sufficient statistic for the prob-
ability of default.”

� “Models 6 and 7 include a number of other co-
variates: the firm’s returns over the past year,
the log of the firm’s debt, the inverse of the
firm’s equity volatility, and the firm’s ratio
of net income to total assets. Each of these
predictors is statistically significant, making
our rejection of hypothesis one quite robust.
Interestingly, with all of these predictors in-
cluded in the hazard model, the . . . Merton
probability is no longer statistically signifi-
cant, implying that we can reject hypothesis
two.”

� “Looking at CDS implied default probabil-
ity regressions and bond yield spread regres-
sions, the . . . Merton probability does not
appear to be a significant predictor of either
quantity when our naı̈ve probability, agency
ratings and other explanatory variables are
accounted for.”

These conclusions have been confirmed by
Kamakura Corporation in five studies done in
2002, 2003, 2004, 2006, and 2011. The current
Kamakura default database includes more than
1.76 million monthly observations on all pub-
lic companies in North America from 1990 to
December 2008, including 2,046 defaulting ob-
servations. Both hypotheses 1 and 2 were tested
in the context of a “hybrid” model, which adds
the Kamakura Merton implementation as an
additional explanatory variable alongside the
Kamakura reduced form model inputs. In ev-
ery case, Kamakura agrees with Shumway and
Bharath that hypothesis 1 can be strongly re-
jected. Kamakura has found 49 other variables
that are statistically significant predictors of de-
fault even when Merton default probabilities
are added as an explanatory variable.
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Somewhat different from Shumway and
Bharath, Kamakura finds that the Merton de-
fault probability has weak statistical signifi-
cance when added as an explanatory variable to
these other 49 variables, but the coefficient on
the Merton default probability has the wrong
sign; when Merton default probabilities rise,
the predicted hybrid default probabilities fall.
This is because Merton default probabilities are
highly correlated with other variables like the
market leverage ratio (which was mentioned
above as out-predicting the commercial Merton
implementation) and the ratio of total liabili-
ties to total assets. It is an interesting economet-
ric question whether the Merton input variable
should be retained in such an event.

These findings were indirectly confirmed in
Bohn, Arora, and Korablev (2005), in which
Moody’s for the first time releases quantitative
test results on their Merton implementation.
In that paper, the authors report on the rela-
tive accuracy of their proprietary Merton im-
plementation compared to the more standard
Merton theoretical implementation; they state
that on a relatively easy data set (1996–2004
with small firms and financial institutions ex-
cluded) the proprietary Merton implementa-
tion has a receiver operating characteristics
(ROC) accuracy ratio 7.5% higher than the stan-
dard Merton implementation.14 This puts the
accuracy of the Moody’s model more than
5% below that reported on a harder data set
(all public firms of all sizes, including banks,
1990–2004) in the Kamakura Risk Information
Services Technical Guide, Version 4.1 (2005) and
again in the Kamakura Risk Information Ser-
vices Guide, Version 5.0 (2010) on data span-
ning 1990–2008. The accuracy is also well be-
low reduced form model accuracy published
in Bharath and Shumway (2008), Campbell,
Hilscher, and Szilagyi (2008), Hilscher and Wil-
son (2011), van Deventer and Imai (2003), and
van Deventer, Imai, and Mesler (2004). The stan-
dard Merton accuracy ratio reported by Bohn,
Arora, and Korablev (2005) is identical to that
reported by Kamakura on a harder data set. It is

not surprising that there were no comparisons
to reduced-form models using logistic regres-
sion in Bohn, Arora, and Korablev.

KEY POINTS
� Ratings date from the founding of a prede-

cessor of Standard & Poor’s in 1860. The very
existence of ratings as a credit assessment tool
dates from an era when computers did not ex-
ist and the electronic transmission of financial
information was impossible.

� Because of this history, ratings are extremely
simple ordinal rankings of firms or other
counterparties by a small number of ratings
grades, 21 grades in the case of the U.S. rating
agencies.

� Ratings have no explicit maturity and no
explicit default probability associated with
them.

� For consumer credit risk assessment, “credit
scores” are similar to ratings in that they are
an ordinal risk measure, they have no matu-
rity, and they have no explicit default proba-
bility associated with the score. While some
credit bureaus state that credit scores rank
the risk of a 90-day past due experience over
24 months, they are used on the full spectrum
of credits from charge cards to 30-year mort-
gages.

� Unlike ratings, which have both qualitative
and quantitative inputs to the process, the cre-
ation of credit scores is fully automated and
based on a sophisticated statistical process.

� In the modern era, there is no need for either
ratings or credit scores if the credit analyst has
access to best in class default probabilities for
a full term structure of time horizons for each
counterparty.

� The ratings debate about “point in time” and
“through the cycle” is a distinction without a
difference. All ratings reflect information as of
the ratings announcement date, as do default
probabilities, so they are in that sense a “point
in time.” The longest term default probability
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is the best measure of long-term risk and the
shortest term default probability is the best
measure of short-term risk. The longest de-
fault probability is “through the cycle” if the
maturity is long enough. The maturity of the
rating has never been clearly articulated by
the rating agencies themselves.

� The first attempts at measuring default prob-
abilities were based on the early work by
Robert Merton nearly 40 years ago. Merton’s
theory is simple and has intuitive appeal.

� The Merton model has not been accurate in
practical use because it is based on assump-
tions that are simply not true: that common
stock prices and bond prices are driven by
only one factor, the value of company assets,
and that company assets are perfectly liquid.

� A modern reduced form approach will al-
ways be more accurate than the Merton ap-
proach because the reduced form approach
can employ any input that makes economic
sense and improves accuracy.

� Logistic regression is the maximum likeli-
hood estimator for prediction of a variable
that has a zero (no default) or one (default)
value.

� Reduced form default models were intro-
duced by Jarrow based on an early continu-
ous time default model by Merton. Empirical
evidence suggests reduced form models are
more accurate than ratings and the Merton
approach in predicting default.

� Reduced form default models were first
launched commercially in 2002 for public
firms and in 2008 for sovereigns. They are also
in wide use for predicting default of retail and
small business clients.

NOTES
1. For a detailed discussion of the objectives

of the credit risk modeling process, see van
Deventer and Imai (2003).

2. Financial Times, April 8, 2008.
3. For evidence in this regard, see Bharath and

Shumway (2008), Campbell, Hilscher, and

Szilagyi (2008), and Hilscher and Wilson
(2011).

4. The exact amounts, dates, and terms of bor-
rowing are available at www.frb.gov.

5. Typically, the range of credit scores runs from
300 to 850 in the United States. There are
differences by region and by vendor in the
range used.

6. For examples, see Hilscher and Wilson (2011)
and Kamakura Corporation press releases on
March 15, 2006 and March 8, 2011.

7. The Kamakura Corporation troubled com-
pany index measures the percent of public
firms that are “troubled,” defined as firms
with annualized 1 month default risk over
1%. This index was only 6% in July 2011, and
it was near 25% in October 2008.

8. See Table 24 in Standard & Poor’s (2011).
9. See “Case Studies in Liquidity Risk:

Morgan Stanley,” Kamakura blog, www
.kamakuraco.com, May 31, 2011.

10. See Merton (1974).
11. See Altman (1968).
12. For a summary of the extensions of the

model, see Chapter 2 in Lando (2004).
13. Quotations are from an unpublished 2004

version of the paper, rather than the final
2008 published version, as some of the au-
thor’s insights were removed during the ed-
itorial process.

14. The difference is 15% on the equivalent cu-
mulative accuracy profile basis, which is
scaled from 0 to 100, compared to a 50–100
scale for the ROC accuracy ratio.
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Default Correlation in Intensity
Models for Credit Risk Modeling
ABEL ELIZALDE, PhD
Credit Derivatives Strategy, J.P. Morgan

Abstract: The two primary types of credit risk models that seek to statistically describe default
processes are the reduced-form model and the structural model. The most extended types of
reduced-form models are the intensity models. There are three main approaches to incorporate
credit risk correlation among firms within the framework of reduced models. The first approach,
the conditionally independent defaults models, introduces credit risk dependence among firms
through the dependence of the firms’ default intensity processes on a common set of state variables.
Contagion models extend the conditionally independent defaults approach to account for default
clustering (periods in which the firms’ credit risk is increased and in which the majority of the
defaults take place). Finally, default dependencies can also be accounted for using copula functions.
The copula approach takes as given the marginal default probabilities of the different firms and
plugs them into a copula function, which provides the model with the default dependence structure.

There are two primary types of models in the
literature that attempt to describe default pro-
cesses for debt obligations and other default-
able financial instruments, usually referred to as
structural and reduced-form (or intensity) models.

Structural models use the evolution of firms’
structural variables, such as asset and debt val-
ues, to determine the time of default. Merton’s
model (1974) was the first modern model of
default and is considered the first structural
model. In Merton’s model, a firm defaults if,
at the time of servicing the debt, its assets
are below its outstanding debt. A second ap-
proach within the structural framework was
introduced by Black and Cox (1976). In this ap-
proach defaults occur as soon as a firm’s asset
value falls below a certain threshold. In con-

trast to the Merton approach, default can occur
at any time.

Reduced-form models do not consider the re-
lation between default and firm value in an ex-
plicit manner. Intensity models represent the
most extended type of reduced-form models.1

In contrast to structural models, the time of de-
fault in intensity models is not determined via
the value of the firm, but it is the first jump
of an exogenously given jump process. The pa-
rameters governing the default hazard rate are
inferred from market data.

Structural default models provide a link be-
tween the credit quality of a firm and the firm’s
economic and financial conditions. Thus, de-
faults are endogenously generated within the
model instead of exogenously given as in the

313
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reduced approach. Another difference between
the two approaches refers to the treatment of
recovery rates: Whereas reduced models ex-
ogenously specify recovery rates, in structural
models the value of the firm’s assets and liabil-
ities at default will determine recovery rates.

This entry focuses on the intensity approach,
analyzing various models and reviewing the
three main approaches to incorporate credit risk
correlation among firms within the framework
of reduced-form models.

PRELIMINARIES
In this section, we fix the information and prob-
abilistic framework we need to develop the
theory of reduced-form models. After present-
ing the basic features of reduced models and
the motivation of the default intensity through
Poisson processes, we apply these concepts to
the specification of single firm default proba-
bilities and to the valuation formulas for de-
faultable and defeault-free bonds. Finally, we
analyze the different treatments the recovery
rate has received in the literature.

Information Framework
For the purposes of this investigation, we shall
always assume that economic uncertainty is
modeled with the specification of a filtered
probability space � = (�,F , (Ft) , P), where �

is the set of possible states of the economic
world, and P is a probability measure. The filtra-
tion (Ft) represents the flow of information over
time. F = σ

(⋃
t≥0 Ft

)
is a σ -algebra, a family of

events at which we can assign probabilities in
a consistent way.2 Before continuing with the
exposition, let us make some remarks about the
choice of the probability space.

First, we assume, as a starting point, that we
can fix a unique physical or real probability
measure P̄, and we consider the filtered prob-
ability space �̃ = (

�,F , (Ft) , P̄
)
. The choice of

the probability space will vary in some respects,
according to the particular problems under con-
sideration. In the rest of the entry, as we indi-
cated above, we shall regularly make use of a
probability measure P, that will be assumed to
be equivalent to P̄. The choice of P then varies
according to the context.

The model for the default-free term structure
of interest rates is given by a non-negative,
bounded and (Ft)-adapted default-free short-
rate process rt. The money market account
value process is given by:

βt = exp
(∫ t

0
rsds

)
(1)

For our purposes we shall use the class of
equivalent probability measures P, where non-
dividend-paying (NDP) asset processes dis-
counted by the money market account are
((Ft) , P)-martingales, that is, where P is an
equivalent probability measure that uses the
money market account as numeraire.3 Such an
equivalent measure is called a risk neutral mea-
sure, because under this probability measure
the investors are indifferent between investing
in the money market account or in any other as-
set. There are different scenarios under which
the transition from the physical to the equiv-
alent (or risk neutral) probability measure can
usually be accomplished.

We present a mathematical framework that
will embody essentially all models used
throughout this entry. Nevertheless, more gen-
eral frameworks can be considered. On our
probability space � we assume that there
exists an RJ -valued Markov process Xt =
(X1,t, . . . , XJ ,t)

′ or background process, that
represents J economy-wide variables, either
state (observable) or latent (not observable).4

There also exist I counting processes, Ni,t, i =
1, . . . , I , initialized at 0, that represent the de-
fault processes of the I firms in the econ-
omy such that the default of the ith firm
occurs when Ni,t jumps from 0 to 1. (GX,t)
and (Gi,t), where GX,t = σ (Xs, 0 ≤ s ≤ t) and
Gi,t = σ (Ni,t, 0 ≤ s ≤ t), represent the filtrations
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generated by Xt and Ni,t respectively. The filtra-
tion (GX,t) represents information about the de-
velopment of general market variables and all
the background information, whereas (Gi,t) only
contains information about the default status of
firm i.

The filtration (Ft) contains the information
generated by both the information contained
in the state variables and the default processes:

(Ft) = (GX,t) ∨ (G1,t) ∨ . . . ∨ (GI,t) (2)

We also define the filtrations (Fi,t), i = 1, . . . , I ,
as

(Fi,t) = (GX,t) ∨ (Gi,t) (3)

which only accumulate the information gener-
ated by the state variables and the default status
of each firm.

Poisson and Cox Processes
Poisson processes provide a convenient way of
modeling default arrival risk in intensity-based
default risk models.5 In contrast to structural
models, the time of default in intensity mod-
els is not determined via the value of the firm,
but instead is taken to be the first jump of a
point process (for example, a Poisson process).
The parameters governing the default intensity
(associated with the probability measure P) are
inferred from market data.

First, we recall the formal definition of Pois-
son and Cox processes. Consider an increasing
sequence of stopping times (τh < τh+1). We de-
fine a counting process associated with that se-
quence as a stochastic process Nt given by

Nt =
∑

h

1{τh≤t} (4)

A (homogeneous) Poisson process with inten-
sity λ > 0 is a counting process whose incre-
ments are independent and satisfy

P [Nt − Ns = n] = 1
n!

(t − s)n
λn exp (− (t − s) λ)

(5)

for 0 ≤ s ≤ t, that is, the increments Nt − Ns are
independent and have a Poisson distribution
with parameter λ (t − s) for s ≤ t.

So far, we have considered only the case of
homogeneous Poisson processes where the de-
fault intensity is a constant parameter λ, but
we can easily generalize it allowing the de-
fault intensity to be time dependent λt = λ (t),
in which case we would talk about unhomoge-
neous Poisson processes.

If we consider stochastic default intensities,
the Poisson process would be called a Cox pro-
cess. For example, we can assume λt follows a
diffusion process of the form

dλt = μ (t, λt) dt + σ (t, λt) dWt (6)

where Wt is a Brownian motion. We can also
assume that the intensity is a function of a set
of state variables (economic variables, interest
rates, currencies, etc.) Xt, that is, λt = λ (t, Xt) .

The fundamental idea of the intensity-based
framework is to model the default time as the
first jump of a Poisson process. Thus, we define
the default time to be

τ = inf
{
t ∈ R+ | Nt > 0

}
(7)

The survival probabilities in this setup are
given by

P [Nt = 0] = P [τ > t] = E
[

exp
(

−
∫ t

0
λsds

)]

(8)

The intensity, or hazard rate, is the conditional
default arrival rate, given no default:

lim
h→0

P [τ ∈ (t, t + h] | τ > t]
h

= f (t)
1 − F (t)

= λt

(9)

where

F (t) = P [τ ≤ t] (10)

and f (t) is the density of F.
The functions p(t, T) = P [τ ≤ T | τ > t] and

s (t, T) = P [τ > T | τ > t] are the risk neutral
default and survival probabilities from time t
to time T respectively, where 0 ≤ t ≤ T . Note
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that s (t, T) = 1 − p(t, T) , and if we fix t = 0,
then p (0, T) = F (T).

The hazard or intensity rate λt is the central
element of reduced form models, and repre-
sents the instantaneous default probability, that
is, the (very) short-term default risk.

Pricing Building Blocks
This section reviews the pricing of risk-free
and defaultable zero-coupon bonds, which to-
gether with the default/survival probabilities
constitute the building blocks for pricing credit
derivatives and defaultable instruments.

We assume a perfect and arbitrage-free cap-
ital market, where the money market account
value process βt is given by (1). Since our prob-
ability measure P takes as numeraire the money
market account process, the value of any NDP-
asset discounted by the money market account
follows an ((Ft) , P)-martingale. Using the pre-
vious property, the price at time t of a default-
free zero coupon bond with maturity T and face
value of 1 unit is given by

P (t, T) = βt E
[

P (T, T)
βT

| Ft

]

= E
[

exp
(

−
∫ T

t
rsds

)
| Ft

]
(11)

From the previous section we know that the
survival probability s (t, T) in the risk-neutral
measure can be expressed as

s (t, T) = P [τ > T | τ > t]

= E
[

exp
(

−
∫ T

t
λsds

)
| Ft

]
(12)

Consider a defaultable zero coupon bond is-
sued by firm i with maturity T and face value
of M units that, in case of default at time τ <

T , generates a recovery payment of Rτ units.
Rt is an (Ft)-adapted stochastic process, with
Rt = 0 for all t > T .6 The price of the default-
able coupon bond at time t, (0 ≤ t ≤ T), is given

by

Q (t, T) = βt E
[

Q (T, T)
βT

| Ft

]

= βt E
[

M1{τ>T}
βT

| Ft

]
+ βt E

[
Rτ

βτ

| Ft

]

(13)

which can be expressed as7

Q (t, T) = E
[
exp

(
−

∫ T

t
(rs + λs) ds

)
M | Ft

]
+

E
[∫ T

t
Rsλs exp

(
−

∫ s

t
(ru + λu) du

)
ds | Ft

]

(14)

assuming τ > t and all the technical conditions
that ensure that the expectations are finite.8

This expression has to be evaluated consider-
ing the treatment of the recovery payment and
any other assumptions about the correlations
between interest rates, intensities, and recover-
ies. The first term represents the expected dis-
counted value of the payment of M units at time
T, taking into account the possibility that the
firm may default and the M units not received,
through the inclusion of the hazard or inten-
sity rate (instantaneous probability of default)
in the discount rate. The second term represents
the expected discounted value of the recovery
payment using the risk-free rate plus the in-
tensity rate as discount factor. The first integral
in the second term of the previous expression,
from t to T, makes reference to the fact that de-
fault can happen at any time between t and T.
Thus, for each s ∈ (t, T], we discount the value
of the recovery rate Rs times the instantaneous
probability of default at time s given that no de-
fault has occurred before, which is given by the
intensity λs .

Recovery Rates
Recovery rates refer to how we model, after
a firm defaults, the value that a debt instru-
ment has left.9 In terms of the recovery rate
parametrization, three main specifications have
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been adopted in the literature. The first one
considers that the recovery rate is an exoge-
nous fraction of the face value of the defaultable
bond (recovery of face value, RFV).10 Jarrow
and Turnbull (1997) consider the recovery rate
to be an exogenous fraction of the value of an
equivalent default-free bond (recovery of trea-
sury, RT). Finally, Duffie and Singleton (1999a)
fix a recovery rate equal to an exogenous frac-
tion of the market value of the bond just before
default (recovery of market value, RMV).

The RMV specification has gained a great deal
of attention in the literature thanks to, among
others, Duffie and Singleton (1999a). Consider
a zero-coupon defaultable bond, which pays M
at maturity T if there is no default prior to ma-
turity and whose payoff in case of default is
modeled according to the RMV assumption.
They show that this bond can be priced as if
it were a default-free zero-coupon bond, by re-
placing the usual short-term interest rate pro-
cess rt with a default-adjusted short rate process
πt = rt + λt Lt. Lt is the expected loss rate in the
market value if default were to occur at time t,
conditional on the information available up to
time t :

Rτ = (1 − Lτ )Q(τ−, T) (15)

Q(τ−, T) = lim
s→τ

s≤τ

Q(s, T) (16)

where τ is the default time, Q (τ−, T) the mar-
ket price of the bond just before default, and
Rτ the value of the defaulted bond. Duffie and
Singleton (1999a) show that (14) can be ex-
pressed as

Q (t, T) = E
[

exp
(

−
∫ T

t
πsds

)
M | Ft

]
(17)

This expression shows that discounting at the
adjusted rate πt accounts for both the probabil-
ity and the timing of default, and for the effect of
losses at default. But the main advantage of the
previous pricing formula is that, if the mean loss
rate λt Lt does not depend on the value of the de-
faultable bond, we can apply well-known term
structure processes to model πt instead of rt to

price defaultable debt. One of the main draw-
backs of this approach is that since λt Lt appears
multiplied in πt, in order to be able to estimate
λt and Lt separately using data of defaultable
instruments, it is not enough to know default-
able bond prices alone. We would need to have
available a collection of bonds that share some,
but not all, default characteristics, or deriva-
tive securities whose payoffs depend, in differ-
ent ways, on λt and Lt. In case λt and Lt are
not separable, we shall have to model the prod-
uct λt Lt (which represents the short-term credit
spread).11 This identification problem is the rea-
son why most of the empirical work that tries to
estimate the default intensity process from de-
faultable bond data uses an exogenously given
constant, that is, Lt = L for all t, recovery rate.12

The previous valuation formula allows one
to introduce dependencies between short-term
interest rates, default intensities, and recovery
rates (via state variables, for example).

From a pricing point of view, the above pric-
ing formula allows us to include the case in
which, as is often seen in practice after a default
takes place, a firm reorganizes itself and contin-
ues with its activity. If we assume that after each
possible default the firm is reorganized and the
bondholders lose a fraction Lt of the predefault
bond’s market value, Giesecke (2002a) shows
that letting Lt be a constant, that is, Lt = L for
all t, the price of a default risky zero-coupon
bond is, as in the case with no reorganization,
given by (17).

Another advantage of this framework is that
it allows one to consider liquidity risk by in-
troducing a stochastic process lt as a liquidity
spread in the adjusted discount process πt; that
is, πt = rt + λt Lt + lt.

SINGLE ENTITY
The aim of this section is to develop some tools
in the modeling of intensity processes, in or-
der to build the models for default correlation. In
case we consider a deterministic specification
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for default intensities, it is natural to think of
time dependent intensities, in which λt = λ (t),
where λ (t) is usually modeled as either a con-
stant, linear, or quadratic polynomial of the time
to maturity.13

The treatment of default-free interest rates,
the recovery rate, and the intensity process dif-
ferentiates each intensity model.

It is interesting to note that the difference be-
tween the pricing formulas of default-free zero-
coupon bonds and survival probabilities in the
intensity approach lies in the discount rate:

P (0, t) = E
[

exp
(

−
∫ t

0
rsds

)]
(18)

s (0, t) = E
[

exp
(

−
∫ t

0
λsds

)]
(19)

This analogy between intensity-based default
risk models and interest rate models allows us
to apply well-known short-rate term models to
the modeling of default intensities.

Schönbucher (2003) enumerates several char-
acteristics that an ideal specification of the in-
terest rate rt and the default intensity λt should
have. First, both rt and λt should be stochas-
tic. Second, the dynamics of rt and λt should
be rich enough to include correlation between
them. Third, it is desirable to have processes
for rt and λt that remain positive at all times.
And finally, the easier the pricing of the pricing
building blocks, the better.

We start with a general framework, making
use of the Markov process Xt = (X1,t, . . . , XJ ,t)

′,
which represents J state variables. The most
general process for Xt that we shall consider
is called a basic affine process, which is an ex-
ample of an affine jump diffusion given by

d Xj,t = κ j
(
θ j − Xj,t

)
dt + σ j

√
Xj,tdWj,t + dq j,t

(20)

for j = 1, . . . , J , where Wj,t is an ((Ft) , P)-
Brownian motion. κ j and θ j represent the mean
reversion rate and level of the process, and σ j is
a constant affecting the volatility of the process.
dq j,t denotes any jump that occurs at time t of

a pure-jump process q j,t, independent of Wj,t,
whose jump sizes are exponentially distributed
with mean μ j and whose jump times are inde-
pendent Poisson random variables with inten-
sity of arrival γ j (jump times and jump sizes
are also independent). By modeling the jump
size as an exponential random variable, we re-
strict the jumps to be positive. This process is
called a basic affine process with parameters(
κ j , θ j , σ j , μ j , γ j

)
.14

Making rt and λt dependent on a set of com-
mon stochastic factors Xt, one can introduce
randomness and correlation in the processes of
rt and λt. Moreover, if we use basic affine pro-
cesses for the common factors Xt, we can make
use of the following results, which will yield
closed-form solutions for the building blocks
we examined in the previous section:15

1. For any discount-rate function ϕ : RJ → R
and any function g : RJ → R, if Xt is a
Markov process (which holds in the case of
basic affine process), then

E
[
exp

(
−

∫ t

s
ϕ (Xu) du

)
g (Xt) | Fs

]
= H (Xs)

(21)

for 0 ≤ s ≤ t and for some function H :
RJ → R.

2. Defining an affine function as constant plus
linear, if ϕ (x) and g (x) are affine functions
(ϕ (x) = a0 + a1x1 + . . . + a J xJ and g (x) =
b0 + b1x1 + . . . + bJ xJ ) then, as shown by
Duffie, Pan, and Singleton (2000), if Xt is
an affine jump-diffusion process, it is veri-
fied that H (Xs) can be expressed in closed
form by

H (Xs) = exp (α (s, t) + θ (s, t) · Xs) (22)

for some coefficients α (s, t) , θ1 (s, t) , . . . ,

θJ (s, t) which are functions, also in closed
form, of the parameters of the model.16

Observing that our pricing building blocks
P (t, T), s (t, T) and Q (t, T) are special cases of
the previous expressions, one realizes the gains
in terms of tractability achieved by the use of
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affine processes in the modelling of the default
term structure.17 In order to make use of this
tractability the state variables Xt should follow
affine processes, and the specification for the
risk-adjusted rate πt should be an affine func-
tion of the state variables.

Consider the case in which the X1,t, . . . , XJ ,t

follow (20). If we eliminate the jump component
from the process of Xj,t

dX j,t = κ j
(
θ j − Xj,t

)
dt + σ j

√
Xj,tdWj,t (23)

we obtain the CIR process, and eliminating the
square root of Xj,t

dX j,t = κ j
(
θ j − Xj,t

)
dt + σ j dW j,t (24)

we end up with a Vasicek model.
Various reduced-form models differ from

each other in their choices of the state variables
and the processes they follow. In the models we
consider below, the intensity and interest rate
are linear, and therefore affine, functions of Xt,
where Xt are basic affine processes.18

One can consider expressions for rt and λt of
the general form

rt = a0,r (t) + a1,r (t) X1,t + . . . + a J ,r (t) XJ ,t

(25)

λt = a0,λ (t) + a1,λ (t) X1,t + . . . + a J ,λ (t) XJ ,t

(26)

for some deterministic (possibly time-
dependent) coefficients a j,r and a j,λ,
j = 1, . . . J . This type of model allows us
to treat rt and λt as stochastic processes, to
introduce correlations between them, and to
have analytically tractable expressions for
pricing the building blocks. A simple example
could be

drt = κr (θr − rt) dt + σr
√

rt dWr,t (27)

dλt = κλ (θλ − λt) dt

+ σλ

√
λt dWλ,t + dqλ,t (28)

dWr,t dWλ,t = ρ dt (29)

in which the state variables are rt and λt them-
selves, whose Brownian motions are correlated.

Duffie (2005) presents an extensive review
of the use of affine processes for credit risk
modeling using intensity models, and applies
such models to price different credit derivatives
(credit default swaps, credit guarantees, spread
options, lines of credit, and ratings-based step-
up bonds.)

Default Times Simulation
Letting U be a uniform (0,1) random variable
independent of (GX,t), the time of default is de-
fined by

τ = inf
{

t > 0 | exp
(

−
∫ t

o
λsds

)
≤ U

}
(30)

Equivalently, we can let η be an exponentially
distributed random variable with parameter 1
and independent of (GX,t) and define the default
time as

τ = inf
{

t > 0 |
∫ t

o
λsds ≥ η

}
(31)

Once we have specified and calibrated the dy-
namics of λt, we can easily simulate default
times using a simple procedure based on the
two previous definitions. First, we simulate a
realization u of a uniform [0, 1] random variable
U and choose τ such that exp

(− ∫ τ

o λsds
) = u.

Equally, we can simulate a random variable η

exponentially distributed with parameter 1 and
fix τ such that

∫ τ

o λsds = η.

DEFAULT CORRELATION
This section reviews the different approaches to
model the default dependence between firms in
the reduced-form approach. With the tools pro-
vided in the previous section we can calculate
the survival or default probability of a given
firm in a given time interval. The next natural
question to ask ourselves concerns the default
or survival probability of more than one firm. If
we are currently at time t (0 ≤ t ≤ T) and no de-
fault has occurred so far, what is the probability
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that n ≥ 1 different firms default before time T?
or, what is the probability that they all survive
until time T?

Schönbucher (2003), again, points out some
properties that any good approach to model de-
pendent defaults should verify. First, the model
must be able to produce default correlations
of a realistic magnitude. Second, it has to do
it by keeping the number of parameters in-
troduced to describe the dependence structure
under control, without growing dramatically
with the number of firms. Third, it should be
a dynamic model, able to model the number
of defaults as well as the timing of defaults.
Fourth, since it is clear from the default history
that there are periods in which defaults may
cluster, the model should be capable of repro-
ducing these periods. And fifth, the easier the
calibration and implementation of the model,
the better.

We can distinguish three different approaches
to model default correlation in the literature
of intensity credit risk modeling. The first
approach introduces correlation in the firms’
default intensities making them dependent on
a set of common variables Xt and on a firm
specific factor. These models have received the
name of conditionally independent defaults
(CID) models, because conditioned to the re-
alization of the state variables Xt, the firm’s
default intensities are independent as are the
default times that they generate. Apparently,
the main drawback of these models is that they
do not generate sufficiently high default corre-
lations. However, Yu (2002a) indicates that this
is not a problem of the model per se, but rather
an indication of the lack of sophistication in the
choice of the state variables.

Two direct extensions of the CID approach
try to introduce more default correlation in the
models. One is the possibility of joint jumps
in the default intensities (Duffie and Singleton
1999b) and the other is the possibility of default-
event triggers that cause joint defaults (Duffie
and Singleton 1999b, Kijima 2000, and Kijima
and Muromachi 2000).

The second approach to model default corre-
lation, contagion models, relies on the works by
Davis and Lo (1999) and Jarrow and Yu (2001).
It is based on the idea of default contagion in
which, when a firm defaults, the default inten-
sities of related firms jump upwards. In these
models default dependencies arise from direct
links between firms. The default of one firm in-
creases the default probabilities of related firms,
which might even trigger the default of some of
them.

The last approach to model default corre-
lation makes use of copula functions. A cop-
ula is a function that links univariate marginal
distributions to the joint multivariate distri-
bution with auxiliary correlating variables.
To estimate a joint probability distribution of
default times, we can start by estimating the
marginal probability distributions of individual
defaults, and then transform these marginal es-
timates into the joint distribution using a cop-
ula function. Copula functions take as inputs
the individual probabilities and transform them
into joint probabilities, such that the depen-
dence structure is completely introduced by the
copula.

Measures of Default Correlation
The complete specification of the default cor-
relation will be given by the joint distribution
of default times. Nevertheless, we can spec-
ify some other measures of default correlation.
Consider two firms A and B that have not de-
faulted before time t (0 ≤ t ≤ T). We denote the
probabilities that firms A and B will default in
the time interval [t, T] by pA and pB respectively.
Denote pAB the probability of both firms default-
ing before T, and τA and τB the default times of
each firm. The linear correlation coefficient be-
tween the default indicator random variables
1A = 1{τA≤T} and 1B = 1{τB≤T} is given by

ρ (1{τA≤T}, 1{τB≤T}) = pAB − pApB√
pA (1 − pA) pB (1 − pB)

(32)
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In the same way we can define the linear cor-
relation of the random variables 1{τA>T} and
1{τB>T}. Another measure of default dependence
between firms is the linear correlation between
the random variables τA and τB , ρ (τA, τB).

The conclusions extracted from the com-
parison of linear default correlations should
be viewed with caution because they are
covariance-based and hence they are only the
natural dependence measures for joint ellipti-
cal random variables.19 Default times, default
events, and survival events are not elliptical
random variables, and hence these measures
can lead to severe misinterpretations of the true
default correlation structure.20

The previous correlation coefficients, when
estimated via a risk neutral intensity model,
are based on the risk neutral measure. How-
ever, when we calculate the correlation co-
efficients using empirical default events, the
correlation coefficients are obtained under the
physical measure. Jarrow, Lando, and Yu (2001)
and Yu (2002a, b) provide a procedure for com-
puting physical default correlation through the
use of risk neutral intensities.

Conditionally Independent
Default Models
From now on, we consider i = 1, . . . , I differ-
ent firms and denote by λi,t and τi their default
intensities and default times respectively.

In CID models, firms’ default intensities are
independent once we fix the realization of the
state variables Xt. The default correlation is in-
troduced through the dependence of each firm’s
intensity on the random vector Xt. A firm-
specific factor of stochasticity λ*

i,t, independent
across firms, completes the specification of each
firm’s default intensity:

λi,t = a0,λi + a1,λi X1,t + . . . + a J ,λi XJ ,t + λ*
i,t

(33)

where a j,λi are some deterministic coefficients,
for j = 1, . . . , J and i = 1, . . . , I .21

Since default times are continuously dis-
tributed, this specification implies that the prob-
ability of having two or more simultaneous
defaults is zero.

Let us consider an example of a CID model
based on Duffee (1999). The default-free interest
rate is given by

rt = ar,0 + X1,t + X2,t (34)

where ar,0 is a constant coefficient, and X1,t and
X2,t are two latent factors (unobservable, inter-
preted as the slope and level of the default-
free yield curve). After having estimated the
latent factors X1,t and X2,t from default-free
bond data, Duffee (1999) uses them to model
the intensity process of each firm i as

λi,t = a0,λi + a1,λi

(
X1,t − X̄1

) + a2,λi

(
X2,t − X̄2

)

+λ*
i,t (35)

dλ*
i,t = κi

(
θi − λ*

i,t

)
dt + σi

√
λ*

i,tdWi,t (36)

where W1,t, . . . , WI,t are independent Brownian
motions, a0,λi , a1,λi , and a2,λi are constant coeffi-
cients, and X̄1 and X̄2 are the sample means of
X1,t and X2,t.

The intensity of each firm i depends on the
two common latent factors X1,t and X2,t, and on
an idiosyncratic factor λ*

i,t, independent across
firms. The coefficients a0,λi , a1,λi , a2,λi , κi , θi and
σi are different for each firm. In Duffee’s model,
λ*

i,t captures the stochasticity of intensities and
the coefficients a1,λi and a2,λi , i = 1, . . . , I , cap-
ture the correlations between intensities them-
selves, and between intensities and interest
rates.

Duffee (1999), Zhang (2003), Driessen (2005),
and Elizalde (2005b) propose, and estimate, dif-
ferent CID models.22

The literature on credit risk correlation has
criticized the CID approach, arguing that it
generates low levels of default correlation
when compared with empirical default cor-
relations. However, Yu (2002a) suggests that
this apparent low correlation is not a prob-
lem of the approach itself but a problem of the
choice of state or latent variables, owing to the
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inability of a limited set of state variables to
fully capture the dynamics of changes in default
intensities. In order to achieve the level of corre-
lation seen in empirical data, a CID model must
include among the state variables the evolu-
tion of the stock market, corporate and default-
free bond markets, as well as various industry
factors.

According to Yu, the problem of low corre-
lation in Duffee’s model may arise because of
the insufficient specification of the common fac-
tor structure, which may not capture all the
sources of common variation in the model, leav-
ing them to the idiosyncratic component, which
in turn would not be independent across firms.
In fact, Duffee finds that idiosyncratic factors
are statistically significant and correlated across
firms. As long as the firms’ credit risk depend
on common factors different from the interest
rate factors, Duffee’s specification is not able
to capture all the correlation between firms’
default probabilities. Xie, Wu, and Shi (2004)
estimate Duffee’s model for a sample of U.S.
corporate bonds and perform a careful analysis
of the model pricing errors. A principal com-
ponent analysis reveals that the first factor ex-
plains more than 90% of the variation of pricing
errors. Regressing bond pricing errors with re-
spect to several macroeconomic variables, they
find that returns on the S&P 500 index ex-
plain around 30% of their variations. Therefore,
Duffee’s model leaves out some important ag-
gregate factors that affect all bonds.

Driessen (2005) proposes a model in which
the firms’ hazard rates are a linear function of
two common factors, two factors derived from
the term structure of interest rates, a firm id-
iosyncratic factor, and a liquidity factor. Yu also
examines the model of Driessen (2005), finding
that the inclusion of two new common factors
elevates the default correlation.

Finally, Elizalde (2005b) shows that any firm’s
credit risk is, to a very large extent, driven by
common risk factors affecting all firms. The
study decomposes the credit risk of a sample
of corporate bonds (14 U.S. firms, 2001–2003)

into different unobservable risk factors. A single
common factor accounts for more than 50% of
all (but two) of the firms’ credit risk levels, with
an average of 68% across firms. Such factor rep-
resents the credit risk levels underlying the U.S.
economy and is strongly correlated with main
U.S. stock indexes. When three common factors
are considered (two of them coming from the
term structure of interest rates), the model ex-
plains an average of 72% of the firms’ credit
risk.23

Default Times Simulation
In the CID approach, to simulate default times
we proceed as we did in the single entity case.
Once we know the realization of the state vari-
ables Xt, we simulate a set of I independent unit
exponential random variables η1, . . . , ηI , which
are also independent of (GX,t). The default time
of each firm i = 1, . . . , I is defined by

τi = inf
{

t > 0 |
∫ t

o
λi,sds ≥ ηi

}
(37)

Thus, once we have simulated ηi , τi will be such
that

∫ τi

o
λi,sds = ηi (38)

Joint Jumps/ Joint Defaults Duffie and Singleton
(1999b) proposed two ways out of the low cor-
relation problem. One is the possibility of joint
jumps in the default intensities, and the other
is the possibility of default-event triggers that
cause joint defaults.24

Duffie and Singleton develop an approach
in which firms experience correlated jumps in
their default intensities. Assume that the de-
fault intensity of each firm follows the follow-
ing process:

dλi,t = κi (θi − λi,t) dt + dqi,t (39)

which consists of a deterministic mean rever-
sion process plus a pure jump process qi,t,
whose intensity of arrival is distributed as a
Poisson random variable with parameter γi and
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whose jump size follows an exponential ran-
dom variable with mean μ (equal for all firms
i = 1, . . . , I ).25 Duffie and Singleton introduce
correlation to the firm’s jump processes, keep-
ing unchanged the characteristics of the in-
dividual intensities. They postulate that each
firm’s jump component consists of two kinds
of jumps, joint jumps and idiosyncratic jumps.
The joint jump process has a Poisson intensity
γc and an exponentially distributed size with
mean μ. Individual default intensities experi-
ence a joint jump with probability pi. That is, a
firm suffers a joint jump with Poisson intensity
of arrival of piγc . In order to keep the total jump
in each firm’s default intensity with intensity
of arrival γi and size μ, the idiosyncratic jump
(independent across firms) is set to have an ex-
ponentially distributed size μ and intensity of
arrival hi, such that γi = piγc + hi .

Note that if pi = 0 the jumps are only
idiosyncratic jumps, implying that default
intensities and hence default times are indepen-
dent across firms. If pi = 1 and hi = 0 all firms
have the same jump intensity, which does not
mean that default times are perfectly correlated,
since the size of the jump is independent across
firms. Only if we additionally assume that μ

goes to infinity we obtain identical default
times.

The second alternative considers the possibil-
ity of simultaneous defaults triggered by com-
mon credit events, at which several obligors can
default with positive probability. Imagine there
exist m = 1, . . . , M common credit events, each
one modeled as a Poisson process with inten-
sity λc

m,t. Given the occurrence of a credit event
m at time t, each firm i defaults with proba-
bility pi,m,t. If, given the occurrence of a com-
mon shock, the firm’s default probability is less
than one, this common shock is called nonfa-
tal shock, whereas if this probability is one, the
common shock is called fatal shock. In addi-
tion to the common credit events, each entity
can experience default through an idiosyncratic
Poisson process with intensity λ*

i,t, which is in-
dependent across firms. Therefore, the total in-

tensity of firm i is given by

λi,t = λ*
i,t +

M∑

m=1

pi,m,tλ
c
m,t (40)

Consider a simplified version of this setting
with two firms, constant idiosyncratic intensi-
ties λ*

1 and λ*
2 , and one common and fatal event

with constant intensity λc . In this case firm i’s
survival probability is given by

si (t, T) = exp
(
−

(
λ*

i + λc
)

(T − t)
)

(41)

Denoting by s (t; T1, T2) the joint survival prob-
ability, given no default until time t, that firm 1
does not default before time T1 and firm 2 does
not default before time T2, then

s(t; T1, T2) = exp(−λ*
1(T1 − t) − λ*

2(T2 − t)

−λc max{T1 − t, T2 − t}) =
= exp(−(λ*

1 + λc)(T1 − t)

−(λ*
2 + λc)(T2 − t) + λc

min{T1 − t, T2 − t}) (42)

which can be expressed as

s (t; T1, T2) = s1 (t, T) s2 (t, T)

min
{
exp (λc (T1 − t)) , exp (λc (T2 − t))

}
(43)

This expression for the joint survival prob-
ability explicitly includes individual survival
probabilities and a term that introduces the
dependence structure. This is the approach
followed by copula functions, which couple
marginal probabilities into joint probabilities.
In fact, the above example is a special case of
copula function, called Marshall-Olkin copula.

The relationship between joint survival and
default probabilities is given by

s(t; T1, T2) = 1 − p1(t, T1) − p2(t, T2)

+p(t; T1, T2) (44)

where p (t; T1, T2) represents the joint default
probability, given no default until time t, that
firm 1 defaults before time T1 and firm 2
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defaults before time T2. Obviously the case with
multiple common shocks is more troublesome
in terms of notation and calibration because, for
every possible common credit event, an inten-
sity must be specified and calibrated.26

Duffie and Singleton (1999b) propose algo-
rithms to simulate default times within these
two frameworks. The criticisms that the joint
credit event approach has received stem from
the fact that it is unrealistic that several firms
default at exactly the same time, and also from
the fact that after a common credit event that
makes some obligors default, the intensity of
other related obligors that do not default does
not change at all.

Although theoretically appealing, the main
drawback of these two last models has to do
with their calibration and implementation. To
the best of my knowledge there is not a sin-
gle paper that carries out an empirical calibra-
tion and implementation of a model like the
ones presented in this section. The same applies
to the contagion models presented in the next
section.

Contagion Mechanisms
Contagion models take CID models one step
further, introducing into the model two empir-
ical facts: that the default of one firm can trig-
ger the default of other related firms and that
default times tend to concentrate in certain pe-
riods of time, in which the default probability
of all firms is increased. The last model exam-
ined in the previous section (joint credit events)
differs from contagion mechanisms in that if an
obligor does not experience a default, its inten-
sity does not change due to the default of any
related obligor. The literature of default con-
tagion includes two approaches: the infectious
defaults model of Davis and Lo (1999), and the
model proposed by Jarrow and Yu (2001), which
we shall refer to as the propensity model. The
main issues to be resolved concerning these two
models are associated with difficulties in their
calibration to market prices.

The Davis-Lo Infectious
Defaults Model
The model developed by Davis and Lo (1999)
has two versions, a static version that only con-
siders the number of defaults in a given time
period,27 and a dynamic version in which the
timing of default is also incorporated. 28

In the dynamic version of the model, each firm
has an initial hazard rate of λi,t, for i = 1, . . . , I ,
which can be constant, time dependent, or fol-
low a CID model. When a default occurs, the
default intensity of all remaining firms is in-
creased by a factor a > 1, called the enhance-
ment factor, to aλi,t. This augmented intensity
remains for an exponentially distributed period
of time, after which the enhancement factor
disappears (a = 1). During the period of aug-
mented intensity, the default probabilities of
all firms increase, reflecting the risk of default
contagion.

The Jarrow-Yu Propensity Model
In order to account for the clustering of default
in specific periods, Jarrow and Yu (2001) ex-
tend CID models to account for counterparty
risk: the risk that the default of a firm may
increase the default probability of other firms
with which it has commercial or financial rela-
tionships. This allows them to introduce extra-
default dependence in CID models to account
for default clustering. In a first attempt, Jarrow
and Yu assume that the default intensity of a
firm depends on the status (default/not default)
of the rest of the firms (symmetric dependence).
However, symmetric dependence introduces a
circularity in the model, which they refer to as
looping defaults, which makes it extremely dif-
ficult and troublesome to construct and derive
the joint distribution of default times.

Jarrow and Yu restrict the structure of the
model to avoid the problem of looping de-
faults. They distinguish between primary firms
(1, . . . , K ) and secondary firms (K + 1, . . . , I ).
First, they derive the default intensity of
primary firms, using a CID model. The primary
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firm intensities λ1,t, . . . , λK ,t are (GX,t)-adapted
and do not depend on the default status of
any other firm. If a primary firm defaults, this
increases the default intensities of secondary
firms, but not the other way around (asymmet-
ric dependence). Thus, secondary firms’ default
intensities are given by

λi,t = λ̂i,t +
K∑

j=1

a j
i,t1{τ j ≤t} (45)

for i = K + 1, . . . , I and j = 1, . . . , K , where
λ̂i,t and a j

i,t are (GX,t)-adapted. λ̂i,t represents the
part of secondary firm i’s hazard rate indepen-
dent of the default status of other firms.

Default intensities of primary firms
λ1,t, . . . , λK ,t are (GX,t)-adapted, whereas
default intensities of secondary firms
λK+1,t, . . . , λI,t are adapted with respect to
the filtration (GX,t) ∨ (G1,t) ∨ . . . ∨ (GK ,t).

This model introduces a new source of de-
fault correlation between secondary firms, and
also between primary and secondary firms, but
it does not solve the drawbacks of low correla-
tion between primary firms, which CID models
apparently imply, because the setting for pri-
mary firms is, after all, only a CID model.29

Default Times Simulation First we simulate the
default times for the primary firms exactly as
in the case of CID. Then, we simulate a set
of I−K independent unit exponential random
variables ηK+1, . . . , ηI (independent of (GX,t) ∨
(G1,t) ∨ . . . ∨ (GK ,t)), and define the default time
of each secondary firm i = K + 1, . . . , I as

τi = inf
{

t > 0 |
∫ t

o
λi,sds ≥ ηi

}
(46)

Copulas
In CID and contagion models the specification
of the individual intensities includes all the
default dependence structure between firms.
In contrast, the copula approach separates in-
dividual default probabilities from the credit
risk dependence structure. The copula function

takes as inputs the marginal probabilities and
introduces the dependence structure to gener-
ate joint probabilities.

Copulas were introduced in 1959 and have
been extensively applied to model, among oth-
ers, survival data in areas such as actuarial
science.30

In the rest of this section we review copula
theory and its use in the credit risk literature.
To make notation simple, assume we are at time
t = 0 and take si (t) and pi (t) (or Fi (t)) to be the
survival and default probabilities, respectively,
of firm i = 1, . . . , I from time 0 to time t > 0.
Then

Fi (t) = P [τi ≤ t] = 1 − si (t) = 1 − P [τi > t]

(47)

where τi denotes the default time of firm i.
A copula function transforms marginal prob-

abilities into joint probabilities. In case we
model default times, the joint default probabil-
ity is given by

F (t1, . . . , tI ) = P [τ1 ≤ t1, . . . , τI ≤ tI ]

= Cd (F1(t1), . . . , FI (tI )) (48)

and if we model survival times, the joint sur-
vival probability takes the form

s (t1, . . . , tI ) = P [τ1 > t1, . . . , τI > tI ]

= Cs (s1(t1), . . . , sI (tI )) (49)

where Cd and Cs are two different copulas.31

The copula function takes as inputs the
marginal probabilities without considering
how we have derived them. Thus, the intensity
approach is not the only framework with which
we can use copula functions to model the de-
fault dependence structure between firms. Any
other approach to model marginal default prob-
abilities, such as the structural approach, can
use copula theory to model joint probabilities.

Description
An intuitive definition of a copula function is
as follows:32
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Copula Function A function C : [0, 1]I →
[0, 1] is a copula if there are uniform ran-
dom variables U1, . . . , UI taking values in
[0, 1] such that C is their joint distribution
function.

A copula function C has uniform marginal
distributions, that is,

C (1, . . . , 1, ui , 1, . . . , 1) = ui (50)

for all i = 1, . . . , I and ui ∈ [0, 1].
This definition is used, for example, by

Schönbucher (2003).33 The copula function C
is the joint distribution of a set of I uniform
random variables U1, . . . , UI . Copula functions
allow one to separate the modeling of the
marginal distribution functions from the mod-
eling of the dependence structure. The choice
of the copula does not constrain the choice of
the marginal distributions. Sklar (1959) showed
that any multivariate distribution function F
can be written in the form of a copula func-
tion. The following theorem is known as Sklar’s
theorem:

Sklar’s Theorem Let Y1, . . . , YI be
random variables with marginal dis-
tribution functions F1, . . . , FI and joint
distribution function F. Then there ex-
ists an I-dimensional copula C such
that F (y1, . . . , yI ) = C (F1(y1), . . . , FI (yI ))
for all (y1, . . . , yI ) in RI. Moreover, if each
Fi is continuous, then the copula C is
unique.

We shall consider the default times of each
firm τ1, . . . , τI as the marginal random variables
whose joint distribution function will be deter-
mined by a copula function. If Y is a random
variable with distribution function F, then the
random variable U, defined as U = F (Y), is a
uniform [0, 1] random variable. Denoting by ti

the realization of each τi ,34

F (t1, . . . , tI ) = P [τ1 ≤ t1, . . . , τI ≤ tI ]

= C (F1(t1), . . . , FI (tI )) (51)

The marginal distribution of the default time τi

will be given by

Fi (ti ) = F (∞, . . . ,∞, ti ,∞, . . . ,∞)

= P [τ1 ≤ ∞, . . . , τi ≤ ti , . . . , τI ≤ ∞] =
= C (F1(∞), . . . , Fi (ti ), . . . , FI (∞))

= C (1, . . . , Fi (ti ), . . . , 1) (52)

In the bivariate case, the relationship between
the copula Cd and the survival copula Cs , which
satisfies s (t1, t2) = Cs (s1(t1), s2(t2)), is given by35

Cs (u1, u2) = u1 + u2 − 1

+Cd (1 − u1, 1 − u2) (53)

Nelsen (1999) points out that Cs is a cop-
ula and that it couples the joint survival
function s (·, . . . , ·) to its univariate margins
s1(·), . . . , sI (·) in a manner completely analo-
gous to the way in which a copula connects
the joint distribution function F (·, . . . , ·) to its
margins F1(·), . . . , FI (·). When modeling credit
risk using the copula framework we can spec-
ify a copula for either the default times or the
survival times.

Measures of the Dependence Structure The de-
pendence between the marginal distributions
linked by a copula is characterized entirely
by the choice of the copula. If C1 and C2 are
two I-dimensional copula functions we say that
C1 is smaller than C2, denoted by C1 ≺ C2, if
C1 (u) ≤ C2 (u) for all u ∈ [0, 1]I .

The Fréchet-Hoeffding copulas, C− and C+,
are two reference copulas given by36

C− = max {u1 + . . . + uI + 1 − I, 0} (54)

C+ = min {u1, . . . , uI } (55)

satisfying C− ≺ C ≺ C+ for any copula C. How-
ever, this is a partial ordering in the sense that
not every pair of copulas can be compared in
this way.

In order to compare any two copulas, we
would need an index to measure the depen-
dence structure between two random variables
introduced by the choice of the copula function.
Linear (Pearson) correlation coefficient ρ is the
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most used measure of dependence; however,
it harbors several drawbacks, which makes it
not very suitable to compare copula functions.
For example, linear correlation depends not
only on the copula but also on the marginal
distributions.

We focus on four dependence measures that
depend only on the copula function, not in the
marginal distributions: Kendall’s tau, Spear-
man’s rho, and upper/lower tail dependence
coefficients.

First, we introduce the concept of
concordance:

Concordance Let (y1, y2) and (ý1, ý2) be
two observations from a vector (Y1, Y2)
of continuous random variables. Then,
(y1, y2) and (ý1, ý2) are said to be concor-
dant if (y1 − ý1) (y2 − ý2) > 0 and discor-
dant if (y1 − ý1) (y2 − ý2) < 0.

Kendall’s tau and Spearman’s rho are two
measures of concordance:

Kendall’s Tau Let (Y1, Y2) and
(
Ý1, Ý2

)
be

IID random vectors of continuous random
variables with the same joint distribution
function given by the copula C (and with
marginals F1 and F2). Then, Kendall’s tau
of the vector (Y1, Y2) (and thus of the cop-
ula C) is defined as the probability of con-
cordance minus the probability of discor-
dance; that is,

τ = P
[(

Y1 − Ý1
) (

Y2 − Ý2
)

> 0
]

−P
[(

Y1 − Ý1
) (

Y2 − Ý2
)

< 0
]

(56)

Spearman’s Rho Let (Y1, Y2),
(
Ý1, Ý2

)
and(

´́Y1,
´́Y2

)
be IID random vectors of contin-

uous random variables with the same joint
distribution function given by the copula
C (and with marginals F1 and F2). Then,
Spearman’s rho of the vector (Y1, Y2) (and
thus of the copula C) is defined as

ρS = 3(P[(Y1 − Ý1)(Y2 − ´́Y2) > 0]

−P[(Y1 − Ý1)(Y2 − ´́Y2) < 0]) (57)

Both Kendall’s tau and Spearman’s rho37 take
values in the interval [0, 1] and can be defined
in terms of the copula function by

τ = 4
�

[0,1]2

C (u, v) dC (u, v) − 1 (58)

ρS = 12
�

[0,1]2

uvdC (u, v) − 3 = 12
�

[0,1]2

C (u, v) dudv − 3 (59)

The Fréchet-Hoeffding copulas take the two
extreme values of Kendall’s tau and Spear-
man’s rho: If the copula of the vector (Y1, Y2)
is C− then τ = ρS = −1, and if it has copula
C+ then τ = ρS = 1. The product copula CP

represents independent random variables, that
is, if Y1, . . . , YI are independent random vari-
ables, their copula is given by CP , such that
CP (u1, . . . , uI ) = u1 . . . uI . For a vector (Y1, Y2)
of independent random variables, τ = ρS = 0.
Kendall’s tau and Spearman’s rho are equal for
a given copula C and its associated survival
copula Cs .

Kendall’s tau and Spearman’s rho are mea-
sures of global dependence. In contrast, tail
dependence coefficients between two random
variables (Y1, Y2) are local measures of depen-
dence, as they refer to the level of dependence
between extreme values, that is, values at the
tails of the distributions F1 (Y1) and F2 (Y2).

Tail Dependence Let (Y1, Y2) be a ran-
dom vector of continuous random vari-
ables with copula C (and with marginals
F1 and F2). Then, the coefficient of upper
tail dependence of the vector (Y1, Y2) (and
thus of the copula C) is defined as

λU = lim
u↗1

P
[
Y1 > F −1

1 (u) | Y2 > F −1
2 (u)

]
(60)

where F −1
i represents the inverse function

of Fi, provided the limit exists. We say that
the random vector (and thus the copula
C ) has upper tail dependence if λU > 0.
Similarly, the coefficient of lower tail de-
pendence of the vector (Y1, Y2) (and thus
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of the copula C) is defined as

λL = lim
u↘0

P
[
Y1 < F −1

1 (u) | Y2 < F −1
2 (u)

]
(61)

We say that the random vector (and thus
the copula C) has lower tail dependence if
λL > 0.

Upper (lower) tail dependence measures the
probability that one component of the vector
(Y1, Y2) is extremely large (small) given that the
other is extremely large (small). As in the case of
Kendall’s tau and Spearman’s rho, tail depen-
dence is a copula property and can be expressed
as38

λU = lim
u↗1

1 + C (u, u) − 2u
1 − u

(62)

λL = lim
u↘0

C (u, u)
u

(63)

The upper (lower) coefficient of tail dependence
of the copula C is the lower (upper) coefficient
of tail dependence of its associated survival
copula Cs .

Consider the random vector (τ1, τ2) of default
times for two firms. The coefficient of upper
(lower) tail dependence represents the prob-
ability of long-term survival (immediate joint
death). The existence of default clustering peri-
ods implies that a copula to model joint default
(survival) probabilities should have lower (up-
per) tail dependence to capture those periods.

Examples of Copulas Here, we review some of
the most used copulas in default risk model-
ing. The first two copulas, normal and Student
t copulas, belong to the elliptical family of cop-
ulas. We also present the class of Archimedean
copulas and the Marshall-Olkin copula.39

1. Elliptical Copulas The I-dimensional nor-
mal copula with correlation matrix � is given
by

C (u1, . . . , uI ) = �I
�

(
�−1 (u1) , . . . , �−1 (uI )

)

(64)

where �I
� represents an I-dimensional normal

distribution function with covariance matrix �,

and �−1 denotes the inverse of the univariate
standard normal distribution function.

Normal copulas are radially symmetric (λU =
λL ), tail independent (λU = λL = 0), and their
concordance order depends on the linear corre-
lation parameter ρ:

C− ≺ Cρ=−1 ≺ Cρ<0 ≺ Cρ=0 = CP ≺ Cρ>0 ≺
Cρ=1 = C+ (65)

As with any other copula, the normal copula
allows the use of any marginal distribution. We
can express the linear correlation coefficients for
a normal copula (ρ) in terms of both Kendall’s
tau (τ ) and Spearman’s rho (ρS) in the following
way:

ρ = 2 sin
(π

6
ρS

)
= sin

(π

2
τ
)

(66)

Another elliptical copula is the t-copula. Let-
ting X be an random vector distributed as an
I-dimensional multivariate t-student with v de-
grees of freedom, mean vector μ (for v > 1)
and covariance matrix v

v−2� (for v > 2), we can
express X as

X = μ +
√

v√
S

Z (67)

where S is a random variable distributed as
an χ2 with v degrees of freedom and Z is an
I-dimensional normal random vector, indepen-
dent of S, with zero mean and linear correlation
matrix �. The I -dimensional t-copula of X can
be expressed as

C (u1, . . . , uI ) = t I
v,R

(
t−1
v (u1) , . . . , t−1

v (uI )
)

(68)

where t I
v,R represents the distribution function

of
√

v√
S

Y, where Y is an I-dimensional normal ran-
dom vector, independent of S, with zero mean
and covariance matrix R. t−1

v denotes the inverse
of the univariate t-student distribution function
with v degrees of freedom and Rij = �ij√

�ii�jj
.

The t-copula is radially symmetric and ex-
hibits tail dependence given by

λU = λL = 2 − 2tv+1

(
(v + 1) (1 − ρ)

(1 + ρ)

) 1
2

(69)
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where ρ is the linear correlation of the bivariate
t-distribution.

2. Archimedean Copulas An I-dimensional
Archimedean copula function C is represented
by

C (u1, . . . , uI ) = φ−1 (φ (u1) + . . . + φ (uI ))

(70)

where the function φ : [0, 1] → R+, called the
generator of the copula, is invertible and sat-
isfies φ

′
(u) < 0, φ

′′
(u) > 0, φ (1) = 0, φ (0) =

∞. An Archimedean copula is entirely char-
acterized by its generator function. Relevant
Archimedean copulas are the Clayton, Frank,
Gumbel, and Product copulas, whose genera-
tor functions are given by:

Copula Generator φ (u)

Clayton u−θ −1
θ

for θ ≥ 0

Frank − ln e−θu−1
e−θ −1 for θ ∈ R\ {0}

Gumbel (− ln u)θ for θ ≥ 1

Product − ln u

The Clayton copula has lower tail dependence
but not upper tail dependence. The Gumbel
copula has upper tail dependence but not lower
tail dependence. The Frank copula does not ex-
hibit either upper or lower tail dependence.

Archimedean copulas allow for a great vari-
ety of different dependence structures, and the
ones presented above are especially interesting
because they are one-parameter copulas. In par-
ticular, the larger the parameter θ (in absolute
value), the stronger the dependence structure.
The Clayton, Frank, and Gumbel copulas are
ordered in θ (i.e., Cθ1 ≺ Cθ2 for all θ1 ≤ θ2). Un-
like the Gumbel copula, which does not allow
for negative dependence, Clayton and Frank
copulas are able to model continuously the
whole range of dependence between the lower
Fréchet-Hoeffding copula, the product copula
and the upper Fréchet-Hoeffding copula. Cop-
ulas with this property are called inclusive or
comprehensive copulas. Frank copulas are the

only radially symmetric Archimedean copulas
(C = Cs).

For Archimedean copulas, tail dependence
and Kendall’s tau coefficients can be expressed
in terms of the generator function

τ = 1 + 4
∫ 1

0

φ (u)
φ′ (u)

du (71)

λU = 2 − 2 lim
u→0

φ−1
′
(2u)

φ−1′
(u)

(72)

λL = 2 lim
u→∞

φ−1
′
(2u)

φ−1′
(u)

(73)

provided the derivatives and limits exist.
Archimedean copulas are interchangeable,

which means that the dependence between any
two (or more) random variables does not de-
pend on which random variables we choose. In
terms of credit risk analysis, this imposes an im-
portant restriction on the dependence structure
since the default dependence introduced by an
Archimedean copula is the same between any
group of firms.

3. Marshall-Olkin Copula This copula was
already mentioned when we dealt with joint de-
faults in intensity models. In its bivariate spec-
ification the Marshall-Olkin copula is given by

C (u1, u2) = min
{

u1−α1
1 u2, u1u1−α2

2

}

= u1u2 min
{
u−α1

1 , u−α2
2

}
(74)

for α1, α2 ∈ (0, 1).40

Copulas for Default Times
Within the reduced-form approach, we can dis-
tinguish two approaches to introduce default
dependence using copulas. The first one, which
we will refer to as Li’s approach, was intro-
duced by Li (1999) and represents one of the first
attempts to use copula theory systematically
in credit risk modeling. Li’s approach takes as
inputs the marginal default (survival) probabil-
ities of each firm and derives the joint prob-
abilities using a copula function.41 Although
Li (1999) studies the case of a normal copula,
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any other copula can be used within this frame-
work.

If we are using a copula function as a joint
distribution for default (survival) times, the
simulated vector (u1, . . . , uI ) of uniform [0, 1]
random variables from the copula will cor-
respond to the default F1, . . . , FI (survival
s1, . . . , sI ) marginal distributions. Once we have
simulated the vector (u1, . . . , uI ), we use it to
derive the implied default times τ1, . . . , τI such
that τi = F −1

i (ui ) , or τi = s−1
i (ui ) in the survival

case, for i = 1, . . . , I .
The second approach was introduced by

Schönbucher and Schubert (2001), and here we
shall call it the Schönbucher-Schubert (SS) ap-
proach. In the algorithm to draw a default
time in the case of a single firm, we simu-
lated a realization ui of a uniform [0, 1] ran-
dom variable Ui independent of (GX,t), and
defined the time of default of firm i as τi such
that

exp
(

−
∫ τi

o
λi (s) ds

)
= ui (75)

where λi is the default intensity process of firm i.
The idea of the SS approach is to link the default
thresholds U1, . . . , UI with a copula.

Schönbucher and Schubert consider that the
processes λ1, . . . λI are (Fi,t)-adapted42 and call
them pseudo default intensities. Thus, λi is
the default intensity if investors only consider
the information generated by the background
filtration (GX,t) and by the default status of
firm i, (Gi,t). However, investors are not re-
stricted to the information represented by (Fi,t)
as they also observe the default status of the
rest of the firms. Therefore, λi is not the den-
sity of default with respect to all the informa-
tion investors have available, as represented
by (Ft), but rather with respect to a smaller
information set.

To calculate the default (or survival) proba-
bilities conditional to all the information that
investors have available, (Ft), we cannot define
those probabilities in terms of the pseudo de-
fault intensities λ1, . . . λI . We have to find the

“real” intensities implied by the investors’ in-
formation set. The difference between pseudo
and real intensities lies in the fact that real inten-
sities, in addition to all the information consid-
ered by pseudo intensities, include information
about the default status of all firms. The default
thresholds’ copula function includes this infor-
mation in the SS approach.

In order to find the “real” default intensi-
ties h1, . . . hI , which are (Ft)-adapted, we need
to combine both the pseudo default intensities
and the copula function, which links the default
thresholds. The pseudo default intensity λi in-
cludes information about the state variables and
the default situation of firm i, and only coincides
with the “real” default intensity hi in cases of in-
dependent default or when the information of
the market is restricted to (Fi,t).43

The simulation of the default times in this ap-
proach is exactly the same as in Li’s approach.
The only difference with the SS approach is that
it allows us to recover the dynamics of the “real”
default intensities h1, . . . hI , which include the
default contagion effects implicit in the default
threshold copula. In contrast to the models of
Jarrow and Yu (2001) and Davis and Lo (1999),
the SS approach allows the contagion effects
to arise endogenously through the use of the
copula.

Schönbucher (2003) calls the SS approach a
dynamic approach in the sense that it considers
the dynamics of the “real” default intensities
h1, . . . hI , as opposed to Li’s approach, which
only considers the dynamics of the pseudo de-
fault intensities.

As Schönbucher and Schubert (2001) point
out, this setup is very general, and the reader
has freedom to choose the specification of the
default intensities. We can introduce default
correlation by both correlating the default in-
tensities, for example with a CID model, and
by using any of the copula approaches we have
just presented.

In an extension of the SS approach, Rogge
and Schönbucher (2003) propose not to use the
normal or t-copulas but Archimedean copulas,
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arguing that normal and t-copulas do not imply
a realistic dynamic process for default intensi-
ties.

Galiani (2003) provides a detailed analysis of
the use of copula functions to price multiname
credit derivatives using both a normal and Stu-
dent t copula.

Choosing and Calibrating the Copula
Once we have reviewed how to use copula the-
ory in the context of joint default probabilities,
we have to choose a copula and estimate its pa-
rameters. In order to choose a copula we should
consider aspects such as the dependence struc-
ture each copula involves as well as the number
of parameters we need to estimate.

Since the normal copula presents neither
lower nor upper tail dependence, the use of
multivariate normal distributions to model de-
fault (or price) behavior has been strongly crit-
icized for not assigning enough probability to
the occurrence of extreme events and, among
them, the periods of default clustering. The use
of the t-copula is the natural answer to the
lack of tail dependence, since, subject to the
degrees of freedom and covariance matrix, this
copula exhibits tail dependence. The main prob-
lem in using a normal or t-copula is the number
of parameters we have to estimate, which grows
with the dimensionality of the copula.44

Archimedean copulas are especially attrac-
tive because there exists a large number of
one-parameter Archimedean copulas45 which
allows for a great variety of dependence
structures. The disadvantage of Archimedean
copulas is that they may impose too much
dependence structure in the sense that, as they
are interchangeable copulas, the dependence
between any group of firms is the same inde-
pendently of the firms we consider.

In case we decide to use an Archimedean cop-
ula, Genest and Rivest (1993) propose a proce-
dure for identifying the Archimedean copula
that best fits the data.46 The problem is that
they consider only the bivariate case and that,

as we shall see later, we need a sample of the
marginal random variables (the random vari-
ables X1, . . . , XI whose marginal distributions
we link to the copula function) that is available
if we are modeling equity returns, but not if
we are modeling default times. More generally,
Fermanian and Scaillet (2004) discuss the issue
of choosing the copula that best fits a given data
set, using goodness-of-fit tests.

According to Durrleman, Nikeghbali, and
Roncalli (2000):

There does not exist a systematic rigorous method
for the choice of the copula: nothing can tell us that
the selected family of copula will converge to the
real structure dependence underlying the data. This
can provide biased results since according to the
dependence structure selected the obtained results
might be different.

Jouanin et al. (2001) use the term model risk
to denote this uncertainty in the choice of the
copula.

Assuming we manage to select a copula
function, we now face the estimation of its pa-
rameters. The main problem of the use of cop-
ula theory to model credit risk is the scarcity
of default data from which to calibrate the
copula.

We cannot rely on multiname credit deriva-
tives, such as ith-to-default products, to cali-
brate the copula because, in most cases, they
are not publicly traded and also because of their
lack of liquidity.

Imagine that, instead of fitting a copula to
default times, we are fitting a copula to daily
stock returns for I different firms. Let Y1, . . . , YI

be random variables denoting the daily
returns of firms i = 1, . . . , I with marginal dis-
tribution functions F1, . . . , FI and joint dis-
tribution function F. Sklar’s theorem proves
that there exists an I-dimensional copula C
such that F (y1, . . . , yI ) = C (F1(y1), . . . , FI (yI ))
for all (y1, . . . , yI ) in RI. In this case, we have
available, for each day, a sample of the ran-
dom vector Y1, . . . , YI that we can use to esti-
mate the parameters of the copula. We would
have to estimate the parameters of the marginal
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distribution functions F1, . . . , FI and then esti-
mate the parameters of the copula. Since, in our
application to default times, we already have
the marginal distributions, determined by the
specification of the marginal default intensities,
we are left with the estimation of the copula
parameters. Providing we have a large sample
of the random variables Y1, . . . , YI , we can esti-
mate the copula parameters in several ways.47

If the copula is differentiable we can al-
ways use maximum likelihood to estimate the
parameters.48 De Matteis (2001) mentions that
this parametric method may be convenient
when we work with a large data set, but in
case there are outliers or if the marginal distri-
butions are heavy tailed, a nonparametric ap-
proach may be more suitable.

A nonparametric approach would involve the
use of the sample version of a dependence mea-
sure, such as Kendall’s tau or Spearman’s rho
(or both), 49 to calibrate the copula parameters.
However, this nonparametric approach is re-
stricted to the bivariate case, and we would
need to have at least the same sample depen-
dence measures as copula parameters.50

The estimation methods exposed above rely
on the availability of a large sample of the ran-
dom variables Y1, . . . , YI . However, this is not
the case when we work with default times. We
do not have available a large sample of default
times for the I firms. In fact, we do not have a
single realization of the default times random
vector.

One solution is to assume that the
marginal default (survival) probabilities and
the marginal distributions of the equity returns
share the same copula, that is, share the same
dependence structure, and use equity returns to
estimate the copula parameters. But this short-
cut has its own drawbacks. We need to fit a cop-
ula to a set of given marginal distributions for
the default (survival) times, which are charac-
terized by a default intensity for each firm. Ide-
ally we should estimate the parameters of the
copula function using default times data. How-
ever, we rarely have enough default times data

available such as to properly estimate the pa-
rameters of the copula function. In those cases,
we must rely on other data sources to calibrate
the copula function. For example, a usual prac-
tice is to calibrate the copula using equity data
of the different firms. However, the dependence
of the firms’ default probabilities will probably
differ from the dependence in the evolution of
their equity prices.

Another way of dealing with the estimation of
the copula parameters is, as Jouanin et al. (2001)
propose, through the use of “original meth-
ods that are based on the practice of the credit
market rather than mimicking statistical meth-
ods that are never used by practitioners.” They
suggest a method based on Moody’s diversity
score.51 The diversity score or binomial expan-
sion technique consists of transforming a port-
folio of (credit dependent) defaultable bonds on
an equivalent portfolio of uncorrelated and ho-
mogeneous credits assumed to mimic the de-
fault behavior of the original portfolio, using
the so-called diversity score parameter, which
depends on the degree of diversification of the
original portfolio. We then match the first two
moments of the number of defaults within a
fixed time horizon for both the original and the
transformed portfolio. Since the original port-
folio assumes default dependence, the distribu-
tion of the number of defaults will depend on
the copula parameters. In the transformed port-
folio, that is, independent defaults, the number
of defaults follows a binomial distribution with
some probability p. Matching the first two mo-
ments of the number of defaults in both port-
folios, we would extract an estimation for the
probability p and for the copula parameters.52

However, Moody’s diversity score approach
has its own drawbacks. Among others, it is a
static model with a fixed time horizon, that is, it
does not consider when defaults take place but
only the number of defaults within the fixed
time horizon. In fact, the Committee on the
Global Financial System (Bank for International
Settlements) suggests, in its last report,53 that
diversity scores “are a fairly crude measure of



DEFAULT CORRELATION IN INTENSITY MODELS FOR CREDIT RISK MODELING 333

the degree of diversification in a portfolio of
credits.”

Similarly to the choice of the copula function,
there does not exist a rigorous method to esti-
mate the parameters of the copula. We can talk
about parameter risk which, together with the
model risk mentioned earlier, are the principal
problems we face if we use the copula approach
in the modeling of dependent defaults.

KEY POINTS
� There are two primary types of models in the

literature that attempt to describe default pro-
cesses: structural and reduced-form models.
Intensity models represent the most extended
type of reduced-form models. In contrast to
structural models, the time of default in inten-
sity models is not determined via the value of
the firm, but it is the first jump of an exoge-
nously given jump process. The fundamental
idea of the intensity-based framework is to
model the default time as the first jump of a
Poisson process. The default intensity of the
Poisson process, also referred to as the hazard
rate, can be deterministic (constant or time
dependent) or stochastic.

� We review three different ways of introducing
default correlations among firms in the frame-
work of intensity models: the conditionally
independent defaults (CID) approach, conta-
gion models, and copula functions.

� CID models generate credit risk dependence
among firms through the dependence of the
firms’ intensity processes on a common set
of state variables. Firms’ default rates are in-
dependent once we fix the realization of the
state variables. Different CID models differ in
their choices of the state variables and the pro-
cesses they follow. Extensions of CID mod-
els introduce joint jumps in the firms’ default
processes or common default events.

� Contagion models extend the CID approach
to account for the empirical observation of de-

fault clustering (periods in which firms’ credit
risk increases simultaneously and in which
the majority of defaults take place). They are
based on the idea that, when a firm defaults,
the default intensities of related firms jump
(upwards), that is, the default of one firm in-
creases the default probabilities of other firms
(to the point of potentially causing the de-
fault of some of them). These models include,
on the specification of default intensities, the
existence of contagion sources among firms,
which can be explained by either their com-
mercial/financial relationships or simply by
their common exposure to the economy.

� In CID and contagion models the specifi-
cation of the individual intensities includes
all the default dependence structure between
firms. In contrast, the copula approach sepa-
rates individual default probabilities from the
credit risk dependence structure.

� A copula is a function that links univari-
ate marginal distributions to the joint mul-
tivariate distribution function. The copula
approach takes as given the marginal default
probabilities of the different firms and plugs
them into a copula function, which provides
the model with the dependence structure to
generate joint default probabilities. This ap-
proach separates the modeling and estima-
tion of the individual default probabilities,
determined by the default intensity processes,
from the modeling and calibration or estima-
tion of the device that introduces the credit
risk dependence, the copula.

NOTES
1. Brody, Hughston, and Macrina (2007)

present an alternative reduced-form model
based on the amount and precision of the in-
formation received by market participants
about the firm’s credit risk. Such a model
does not require the use of default in-
tensities; it belongs to the reduced-form
approach because (like intensity models)
it relies on market prices of defaultable
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instruments as the only source of informa-
tion about the firms’ credit risk.

2. An event is a subset of �, namely a col-
lection of possible outcomes. σ -algebras
are models for information, and filtrations
models for flows of information.

3. For some applications we may wish to
enlarge this category of probability mea-
sures by relaxing the martingale condi-
tion to a local martingale condition, though
this point does not concern us in what
follows.

4. Given the filtered probability space �, an
(Ft)-adapted process Xt is a Markov process
with respect to (Ft) if

E [ f (Xt) | Fs] = E [ f (Xt) | Xs]

with probability one, for all 0 ≤ s ≤ t, and
for every bounded function f . This means
that the conditional distribution at time s of
Xt, given all available information, depends
only on the current state Xs .

5. For a more detailed exposition see Lando
(1994) and Chapter 5 in Schönbucher (2003).

6. This specification of the recovery rate incor-
porates all possible ways of dealing with
recovery payments considered in the lit-
erature. Here we consider a continuous
version of the recovery rate, that is, Rt is
measured and received precisely at the de-
fault time. In the discrete version of the re-
covery rate, Rt is measured and received on
the first date after default among a prespec-
ified list T1 < . . . < Tn of times, where Tn is
the maturity date T.

7. See Hughston and Turnbull (2001).
8. See proof on Lando (1994, Proposition 3.1)

and Bielecki and Rutkowski (2002, Proposi-
tion 8.2).

9. For an extensive review of the treatment of
recovery rates see Chapter 6 in Schönbucher
(2003).

10. Houweling and Vorst (2001) consider the
RFV specification for pricing credit default
swaps.

11. See Duffie and Singleton (1999a) and Jarrow
(1999).

12. There exist some empirical works that, un-
der some specifications of λt and rt, find
that the value of the recovery rate does not
substantially affect the results, as long as
the recovery rate lies within a logical inter-
val. See, for instance, Houweling and Vorst
(2001) and Elizalde (2005a).

13. See Houweling and Vorst (2001) and
Elizalde (2005a) for a comparison of dif-
ferent specifications of (deterministic) time-
dependent intensity rates.

14. For a detailed description of affine pro-
cesses see Duffie and Kan (1996), Duffie
(1998), Duffie, Pan, and Singleton (2000),
Duffie, Filipovic, and Schachermayer
(2002), and Appendix A in Duffie and
Singleton (2003). An affine jump-diffusion
process is a jump-diffusion process for
which the drift vector, instantaneous
covariance matrix, and jump intensities all
have affine dependence on the state vector.
If Xt is a Markov process in some space
state D ⊂ Rd , Xt is an affine jump-diffusion
if it can be expressed as

d Xt = μ (Xt) dt + σ (Xt) dWt + dqt

where Wt is an (Ft)-Brownian motion inRd ,
μ : D → Rd , σ : D → Rd and q is a pure
jump process whose jumps have a fixed
probability distribution ν on Rd and ar-
rive with intensity

{
ψ (Xt) : t ≥ 0

}
, for some

constant ψ : D → [0,∞). That is, the drift
vector μ, instantaneous covariance matrix
σσ ′ and jump intensities ψ all have affine
dependence on the state vector Xt. Intu-
itively this means that, conditional on the
path of Xt, the jump times of q are the
jump times of a Poisson process with time
varying-intensity

{
ψ (Xt) : t ≥ 0

}
, and that

the size of the jump at time T is indepen-
dent of {Xs : 0 ≤ s ≤ t} and has the proba-
bility distribution ν.

15. See Duffie and Kan (1996) and Duffie, Pan,
and Singleton (2000).
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16. For the basic affine model, the coefficients
can be calculated explicitly. See Duffie and
Garleanu (2001), Appendix A in Duffie and
Singleton (2003), and Duffie, Pan, and Sin-
gleton (2000) for details and extensions.

17. Duffie, Pan, and Singleton (2000) developed
a similar closed-form expression to the sec-
ond term of the price of a defaultable zero-
coupon bond Q (t, T)

E
[∫ T

t
Rsλs exp

(
−

∫ s

t
(ru + λu) du

)
ds | Ft

]

Using their expression, the pricing of de-
faultable zero-coupon bonds with constant
recovery of face value reduces to the com-
putation of a one-dimensional integral of a
known function.

18. Several versions of the modeling of rt and
λt in this framework can be found in
Duffie, Schroder, and Skidas (1996), Duffee
(1999), Duffie and Singleton (1999, 2003),
Kijima (2000), Kijima and Muromachi
(2000), Duffie and Garleanu (2001), Bielecki
and Rutkowski (2002), and Schönbucher
(2003). For the estimation of an affine pro-
cess intensity model without jumps see
Duffee (1998) and Duffie, Pedersen, and Sin-
gleton (2003).

19. If Y is an n-dimensional random vector and,
for some μ ∈ Rn and some n x n nonnegative
definite, symmetric matrix �, the charac-
teristic function ψY−μ (t) of Y − μ is a func-
tion of the quadratic form tT�t, ψY−μ (t) =
φ

(
tT�t

)
. We say that Y has an elliptical

distribution with parameters μ, � and φ.
For example, normal and Student t distribu-
tions are elliptical distributions. For a more
detailed treatment of elliptical distributions
see Bingham and Kiesel (2002) and refer-
ences cited therein.

20. See Embrechts, McNeal, and Straumann
(1999) and Embrechts, Lindskog, and
McNeil (2001).

21. We can always consider a model such as

dλi,t = κi (θi − λi,t) dt + σi
√

λi,tdWi,t + dqi,t

for each firm i, and introduce correlation
via the Browian motions W1,t, . . . , WI,t.

22. Duffee (1999), Driessen (2005), and Elizalde
(2005b) use latent variables instead of state
variables. Collin-Dufresne, Goldstein, and
Martin (2001) show that financial and eco-
nomic variables cannot explain the correla-
tion structure of intensity processes. Latent
factors are modeled as affine diffusions and
estimated through a maximum likelihood
procedure based on the Kalman filter.

23. While Driessen (2005) considers that all
firms with the same rating are affected in
the same way by common factors, Elizalde
(2005b) allows for the effect of each common
factor to differ across firms, which increases
the flexibility of the credit risk correlation
structure.

24. See also Kijima (2000), Kijima and Muro-
machi (2000), and Giesecke (2002b).

25. This is a basic affine process with parame-
ters (κi , θi , σi = 0, μ, γi ).

26. See Embrechts, Lindskog, and McNeil
(2001) and Giesecke (2002b).

27. Extending the diversity score (or binomial
expansion technique) of Moody’s.

28. This dynamic version is introduced in Davis
and Lo (2001).

29. See Yu (2002a) and Frey and Backhaus
(2003) for an extension of the Jarrow and
Yu (2001) model.

30. See Sklar (1959) and Frees and Valdez
(1998).

31. Note that Fi (ti ) = F (∞, . . . , ti , . . . ,∞) and
si (ti ) = s (0, . . . , ti , . . . , 0).

32. For a more detailed description of cop-
ula theory see Joe (1997), Frees and Valdez
(1998), Nelsen (1999), Costinot, Roncalli,
and Teiletche (2000), Embrechts, Lindskog,
and McNeil (2001), De Matteis (2001), and
Georges et al. (2001).

33. A more formal definition would be the fol-
lowing (Frey, McNeil, and Nyfeler 2001):
An I-dimensional copula C is a function
C : [0, 1]I → [0, 1] with the following prop-
erties:
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� Grounded: For all u ∈ [0, 1]I , C (u) = 0
if at least one coordinate u j = 0, j =
1, . . . , I .

� Reflective: If all coordinates of u are 1 ex-
cept uj then C (u) = u j , j = 1, . . . , I .

� I-increasing: The C-volume of all hyper-
cubes with vertices in [0, 1]I is positive,
i.e.
2∑

i1=1

. . .

2∑

i I =1

(−1)i1+...+i I C (u1,i1 , . . . , uI,i I ) ≥ 0

for all (u1,1, . . . , uI,1) and (u1,2, . . . , uI,2) in
[0, 1]I with u j,1 ≤ u j,2 for all j = 1, . . . , I .

34. We will use Cd , or simply C, to denote the
copula function of default times and Cs for
the copula function of survival times.

35. See Georges et al. (2001) for a complete char-
acterization of the relation between default
and survival copulas.

36. C− is always a copula, but C+ is only a cop-
ula for I ≥ 3.

37. A simple interpretation of Spearman’s rho
is the following. Let (Y1, Y2) be a ran-
dom vector of continuous random vari-
ables with the same joint distribution
function H (whose margins are F1 and F2)
and copula C, and consider the random
variables U = F (Y1) and V = F (Y2). Then,
we can write the Spearman’s rho coefficient
of (Y1, Y2) as

ρS (Y1, Y2) = 12
�

[0,1]2

C (u, v) dudv − 3

= 12E [UV] − 3 = E [UV] − 1
4

1
12

=

= Cov (U, V)√
Var (U) Var (V)

= ρ (U, V)

= ρ (F1 (Y1) , F2 (Y2))

where ρ denotes the Pearson or linear corre-
lation coefficient. So the Spearman’s rho of
the vector (Y1, Y2) is the Pearson correlation
of the random variables F1 (Y1) and F2 (Y2).

38. Since P
[
Y1 > F −1

1 (u) | Y2 > F −1
2 (u)

]
can be

written as
1 − P

[
Y1 ≤ F −1

1 (u)
]

− P
[
Y2 ≤ F −1

2 (u)
]

+ P
[
Y1 ≤ F −1

1 (u) ,Y2 ≤ F −1
2 (u)

]

1 − P
[
Y2 ≤ F −1

2 (u)
]

we can express λU as

λU = lim
u↗1

1 + C (u, u) − 2u
1 − u

39. See Embrechts, Lindskog, and McNeil
(2001) and Nelsen (1999) for a more detailed
description.

40. For a multivariate version of the Marshall-
Olkin copula, see Embrechts, Lindskog, and
McNeil (2001).

41. Li (1999) considers a copula that links indi-
vidual survival probabilities to model the
joint survival probability. However, as we
have explained previously, this can be done
exactly in the same way if we consider de-
fault probabilities instead of survival prob-
abilities.

42. Remember that (Fi,t) = (GX,t) ∨ (Gi,t) is the
information generated by the state variables
plus the information generated by the de-
fault status of firm i.

43. This distinction between pseudo and real
default intensities can also be found in
Gregory and Laurent (2002).

44. If we are considering I firms, the number
of parameters of the normal copula will
be I (I−1)

2 , and we have to add the degrees
of freedom parameter in the case of the
t-copula.

45. See Nelsen (1999).
46. See also De Matteis (2001) and Frees and

Valdez (1998).
47. For a more detailed description of cop-

ula parameters estimation see Frees and
Valdez (1998), Bouyé et al. (2000), Durrle-
man, Nikeghbali, and Roncalli (2000), De
Matteis (2001), and Patton (2002).

48. We have to distinguish the case in which
we estimate the parameters of the marginal
distributions and the copula function al-
together from the case in which we first
estimate the parameters of the marginal
distributions and then, using those param-
eters, we estimate the parameters of the
copula function. The latter approach is
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called inference functions for margins or the
IFM method.

49. Imagine we have N random samples of a
bivariate vector (Y1, Y2), let us denote them
by

(
yn

1 , yn
2

)
, n = 1, . . . , N. The sample esti-

mators of Kendall’s tau (τ̂ ) and Spearman’s
rho (ρ̂S) are given by:

ρ̂S = 12
N (N2 − 1)

N∑

n=1

(
rank (yn

1 ) − n (n + 1)
2

)

×
(

rank (yn
2 ) − n (n + 1)

2

)

τ̂ = c − d
c + d

= 2
N (N − 1)

∑

n<m

sign
[
(yn

1 − ym
1 ) (yn

2 − ym
2 )

]

where c and d are the number of concordant
and discordant pairs, respectively.

50. In some cases analytical expressions for
the dependence measures are available.
Otherwise we have to use a root-finding
procedure.

51. For a detailed description of the diversity
score method see Cifuentes, Murphy, and
O’Connor (1996), Cifuentes and O’Connor
(1996), and Cifuentes and Wilcox (1998).

52. See Jouanin et al. (2001).
53. See Committee on the Global Financial

System (2003).
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Schönbucher, P. J. (2003). Credit derivatives pricing
models. Wiley Finance.
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Structural Models in Credit
Risk Modeling
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Abstract: Structural models and reduced-form models are the two primary types of credit risk
models that seek to statistically describe default processes. Structural models use the evolution of
firms’ structural variables, such as asset and debt values, to model the time of default. In contrast,
reduced-form models do not consider structural variables in an explicit manner when modeling
default processes; instead, they model default as an exogenously driven process. Structural models
include first passage models, liquidity process models, and state dependent models.

In this entry we review the structural approach
for credit risk modeling, both considering the
case of a single firm and the case with de-
fault dependencies between firms. In the sin-
gle firm case, we review the Merton (1974)
model and first passage models, examining their
main characteristics and extensions. Liquida-
tion process models extend first passage mod-
els to account for the possibility of a lengthy
liquidation process, which might or might not
end up in default. Finally, we review structural
models with state-dependent cash flows (reces-
sion vs. expansion) or debt coupons (rating-
based). The estimation of structural models is
also addressed in this entry, covering the dif-
ferent ways proposed in the literature. Finally,
we present some approaches to model default
dependencies between firms within the struc-
tural approach. These approaches account for
two types of default correlations: cyclical default
correlation and contagion effects.

REVIEW OF STRUCTURAL
MODELS

Structural models use the evolution of firms’
structural variables, such as asset and debt val-
ues, to determine the time of default. Merton’s
model (1974) was the first modern model of
default and is considered the first structural
model. In Merton’s model, a firm defaults if,
at the time of servicing the debt, its assets
are below its outstanding debt. A second ap-
proach, within the structural framework, was
introduced by Black and Cox (1976). In this ap-
proach defaults occur as soon as the firm’s asset
value falls below a certain threshold. In contrast
to the Merton approach, default can occur at any
time.

Reduced form models do not consider the re-
lation between default and firm value in an ex-
plicit manner. In contrast to structural models,
the time of default in intensity models is not

341
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determined via the value of the firm, but it is
the first jump of an exogenously given jump
process. The parameters governing the default
hazard rate are inferred from market data.1

Structural default models provide a link be-
tween the credit quality of a firm and the
firm’s economic and financial conditions. Thus,
defaults are endogenously generated within
the model instead of exogenously given as
in the reduced approach. Another difference
between the two approaches refers to the
treatment of recovery rates: Whereas reduced
models exogenously specify recovery rates, in
structural models the value of the firm’s assets
and liabilities at default will determine recov-
ery rates.

The structural literature on credit risk starts
with the paper by Merton (1974), who applies
the option pricing theory developed by Black
and Scholes (1973) to the modeling of a firm’s
debt. In Merton’s model, the firm’s capital struc-
ture is assumed to be composed by equity and
a zero-coupon bond with maturity T and face
value of D. The firm’s equity is simply a Eu-
ropean call option with maturity T and strike
price D on the asset value and, therefore, the
firm’s debt value is just the asset value minus
the equity value. This approach assumes a very
simple and unrealistic capital structure and im-
plies that default can only happen at the matu-
rity of the zero-coupon bond.

Black and Cox (1976) introduced the first of
the so-called first passage models (FPM). First pas-
sage models specify default as the first time the
firm’s asset value hits a lower barrier, allowing
default to take place at any time. When the de-
fault barrier is exogenously fixed, as in Black
and Cox (1976) and Longstaff and Schwartz
(1995), it acts as a safety covenant to protect
bondholders. Alternatively it can be endoge-
nously fixed as a result of the stockholders’
attempt to choose the default threshold that
maximizes the value of the firm.2

Structural models have considered interest
rates both as nonstochastic processes3 and as
stochastic processes.4,5

In first passage models, by definition, default
occurs the first time the asset value goes below
a certain lower threshold, that is, the firm is liq-
uidated immediately after the default event. In
contrast with first passage models, a new set of
models has been put forward, supported by re-
cent theoretical and empirical research, where
a default event does not immediately cause liq-
uidation but it represents the beginning of a
process, the liquidation process, which might
or might not cause liquidation after it is com-
pleted. This practice is consistent, for example,
with Chapter 11 of the U.S. Bankruptcy Law,
where firms filing for bankruptcy are granted
a court-supervised grace period (up to several
years) aimed at sorting out their financial prob-
lems in order to, if possible, avoid liquidation.
We label those models liquidation process models
(LPM).

State dependent models (SDM) represent, to-
gether with LPM, two recent efforts to incor-
porate into structural models different real-life
phenomena. Although theoretically they make
good sense, they lack empirical research test-
ing their performance. SDM assume that some
of the parameters governing the firm’s ability
to generate cash flows or its funding costs are
state dependent, where states can represent the
business cycle (recession vs. expansion) or the
firm’s external rating.

After the single firm case, we review some
structural models for default correlations, in
order to account for both cyclical default
correlation6 as well as credit risk contagion
effects.7 We will finish the default correlation
section mentioning the so-called factor models.8

We concentrate on the review of the dynam-
ics of the processes that generate the default
times, without paying attention to the valua-
tion formulas for defaultable bonds that each
model generates. The aim of this entry is to
serve as an introduction and guide to the litera-
ture of structural credit risk models. We provide
an extensive list of references for each model
specification and possible extensions or related
papers.
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SINGLE FIRM
We denote the physical and risk-neutral prob-
ability measures as P̄ and P respectively,
and assume an arbitrage-free market.9 Unless
otherwise stated, all probabilities and expec-
tations are taken under the risk-neutral mea-
sure. The model for the default-free term
structure of interest rates is given by a short-
rate process rt.

Merton’s Model
Merton (1974) makes use of the Black and
Scholes (1973) option pricing model to value
corporate liabilities. This is a straightforward
application only if we adapt the firm’s capital
structure and the default assumptions to the
requirements of the Black-Scholes model. Let
us assume that the capital structure of the firm
is comprised by equity and by a zero-coupon
bond with maturity T and face value of D,
whose values at time t are denoted by Et and
z(t, T) respectively, for 0 ≤ t ≤ T . The firm’s as-
set value Vt is simply the sum of equity and
debt values. Under these assumptions, equity
represents a call option on the firm’s assets with
maturity T and strike price of D. If at maturity T
the firm’s asset value VT is enough to pay back
the face value of the debt D, the firm does not
default and shareholders receive VT − D. Oth-
erwise (VT < D) the firm defaults, bondholders
take control of the firm, and shareholders re-
ceive nothing. Implicit in this argument is the
fact that the firm can only default at time T. This
assumption is important to be able to treat the
firm’s equity as a vanilla European call option,
and therefore apply the Black-Scholes pricing
formula.

The rest of the assumptions Merton (1974)
adopts are the inexistence of transaction costs,
bankruptcy costs, taxes, or problems with in-
divisibilities of assets; continuous time trading;
unrestricted borrowing and lending at a con-
stant interest rate r; no restrictions on the short
selling of the assets; the value of the firm is
invariant under changes in its capital structure

(Modigliani-Miller theorem), and that the firm’s
asset value follows a diffusion process.

The firm’s asset value is assumed to follow a
diffusion process given by

dVt = rVtdt + σVVtdWt (1)

where σV is the (relative) asset volatility and Wt

is a Brownian motion.10

The payoffs to equityholders and bondhold-
ers at time T under the assumptions of this
model are respectively, max {VT − D, 0} and
VT − ET , that is,

ET = max {VT − D, 0} (2)

z(T, T) = VT − ET (3)

Applying the Black-Scholes pricing formula,
the value of equity at time t ( 0 ≤ t ≤ T) is given
by

Et (Vt, σV, T − t)

= e−r (T−t)
[
er (T−t)Vt� (d1) − D� (d2)

]
(4)

where �(.) is the distribution function of a stan-
dard normal random variable and d1 and d2 are
given by

d1 =
ln

(
er (T−t)Vt

D

)
+ 1

2σ 2
V(T − t)

σV
√

T − t
(5)

d2 = d1 − σV
√

T − t (6)

The probability of default at time T is given by

P [VT < D] = � (−d2) (7)

Therefore, the value of the debt at time t is
z(t, T) = Vt − Et.

In order to implement Merton’s model we
have to estimate the firm’s asset value Vt, its
volatility σV (both unobservable processes), and
we have to transform the debt structure of the
firm into a zero-coupon bond with maturity T
and face value D.

The maturity T of the zero-coupon bond can
be chosen either to represent the maturity struc-
ture of the debt, for example as the Macaulay
duration of all the liabilities, or simply as a re-
quired time horizon (for example, in case we
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are pricing a credit derivative with some spe-
cific maturity).

Criticisms and Extensions
The main advantage of Merton’s model is
that it allows us to directly apply the the-
ory of European options pricing developed by
Black and Scholes (1973). But to do so the
model needs to make the necessary assump-
tions to adapt the dynamics of the firm’s asset
value process, interest rates, and capital struc-
ture to the requirements of the Black-Scholes
model. There is a trade-off between realistic
assumptions and ease of implementation, and
Merton’s model opts for the latter one. All ex-
tensions to this model introduce more realistic
assumptions trying to end up with a model not
too difficult to implement and with closed, or
at least numerically feasible, solutions for the
expressions of the debt value and the default
probabilities. Merton (1974) presents some ex-
tensions to the model, in order to account for
coupon bonds, callable bonds, stochastic inter-
est rates, and relaxing the assumption that the
Modigliani-Miller theorem holds.

One problem of Merton’s model is the restric-
tion of default time to the maturity of the debt,
ruling out the possibility of an early default, no
matter what happens with the firm’s value be-
fore the maturity of the debt. If the firm’s value
falls down to minimal levels before the maturity
of the debt but it is able to recover and meet the
debt’s payment at maturity, the default would
be avoided in Merton’s approach.

Another handicap of the model is that the
usual capital structure of a firm is much more
complicated than a simple zero-coupon bond.
Geske (1977, 1979) considers the debt struc-
ture of the firm as a coupon bond, in which
each coupon payment is viewed as a com-
pound option and a possible cause of default.
At each coupon payment, the shareholders
have the option either to make the payment to
bondholders,11 obtaining the right to control the
firm until the next coupon, or to not make the
payment, in which case the firm defaults. Geske
also extends the model to consider character-

istics such as sinking funds, safety covenants,
debt subordination, and payout restrictions.

The assumption of a constant and flat term
structure of interest rates is another major criti-
cism the model has received. Jones et al. (1984,
p. 624) suggest that “there exists evidence that
introducing stochastic interest rates, as well
as taxes, would improve the model’s perfor-
mance.” Stochastic interest rates allow us to
introduce correlation between the firm’s asset
value and the short rate, and have been consid-
ered, among others, by Ronn and Verma (1986),
Kim, Ramaswamy, and Sundaresan (1993),
Nielsenet al. (1993), Longstaff and Schwartz
(1995), Briys and de Varenne (1997), and Hsu,
Saá-Requejo, and Santa-Clara (2004).

Another characteristic of Merton’s model,
which will also be present in some of the FPM,
is the predictability of default. Since the firm’s
asset value is modeled as a geometric Brow-
nian motion and default can only happen at
the maturity of the debt, it can be predicted
with increasing precision as the maturity of the
debt comes near. As a result, in this approach
default does not come as a surprise, which
makes the models generate very low short-term
credit spreads.12 As we shall review, introduc-
ing jumps in the process followed by the asset
value has been one of the solutions considered
to this problem.

Delianedis and Geske (2001) study the pro-
portion of the credit spread that, in a corporate
bond data set, is explained by default risk, us-
ing the Merton (1974) and Geske (1977) frame-
works. They conclude that it only explains a
small fraction of the credit spreads; the rest is
attributable to taxes, jumps, liquidity, and mar-
ket risk factors. They also include a jump com-
ponent in the Merton model finding that (p. 24)
“while jumps may explain a portion of the resid-
ual spread it is unlikely that jumps can explain
it entirely.”

First Passage Models
First passage models were introduced by Black
and Cox (1976) extending the Merton model to
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the case when the firm may default at any time,
not only at the maturity date of the debt.

Consider, as in the previous section, that the
dynamics of the firm’s asset value under the
risk-neutral probability measure P are given by
the diffusion process

dVt = rVtdt + σVVtdWt (8)

and that there exists a lower level of the asset
value such that the firm defaults once it reaches
this level. Although Black and Cox (1976) con-
sidered a time-dependent default threshold, let
us assume first a constant default threshold
K > 0. If we are at time t ≥ 0, default has not
been triggered yet and Vt > K , then the time of
default τ is given by

τ = inf {s ≥ t | Vs ≤ K } (9)

Using the properties of the Brownian motion
Wt, in particular the reflection principle, we
can infer the default probability from time t to
time T :13

P [τ ≤ T | τ > t] = � (h1) + exp
{

2
(

r − σ 2
V

2

)

ln
(

K
Vt

)
1
σ 2

V

}
� (h2) (10)

where

h1 =
ln

(
K

er (T−t)Vt

)
+ σ 2

V
2 (T − t)

σV
√

T − t
(11)

h2 = h1 − σV
√

T − t (12)

FPM have been extended to account for
stochastic interest rates, bankruptcy costs,
taxes, debt subordination, strategic default,
time-dependent and stochastic default barriers,
jumps in the asset value process, and so on.
Although these extensions introduce more real-
ism into the model, they increment its analytical
complexity.14

The default threshold, always positive, can
be interpreted in various ways. We can think
of it as a safety covenant of the firm’s debt,
which allows the bondholders to take con-
trol of the company once its asset value has
reached this level. The safety covenant would

act as a protection mechanism for the bond-
holders against an unsatisfactory corporate per-
formance. In this case, the default threshold
would be deterministic, although possibly time
dependent, and exogenously fixed when the
firm’s debt is issued. Kim, Ramaswamy, and
Sundaresan (1993) and Longstaff and Schwartz
(1995) assume an exogenously given constant
default threshold K. Black and Cox (1976) con-
sider a time-dependent default barrier given by
e−γ (T−t) K . A particular case of the Black and
Cox default threshold specification is to con-
sider γ = r , that is, to consider a default barrier
equal to the face value of the debt discounted
at the risk-free interest rate. In that case, the
default threshold can be made stochastic if the
model considers a stochastic process for the in-
terest rate, as in Briys and de Varenne (1997).

Longstaff and Schwartz (1995) choose a con-
stant default threshold and point out that “since
it is the ratio of Vt to K, rather than the actual
value of K, that plays the major role in our anal-
ysis, allowing a more general specification for K
simply makes the model more complex without
providing additional insight into the valuation
of risky debt.”

Hsu, Saá-Requejo, and Santa-Clara (2004)
suggest that Vt and K do not matter directly
to the valuation of default risky bonds but only
through their ratio, which is a measure of the
solvency of the firm. They model the default
threshold as a stochastic process, which to-
gether with the stochastic process assumed for
the firm’s asset value, allow them to obtain the
stochastic process of the ratio Vt

K . The dynamics
of the ratio Vt

K are used to price corporate bonds.
The default threshold can also be chosen en-

dogenously by the stockholders to maximize
the value of the equity.15 The literature has also
considered the possibility of negotiation pro-
cesses between stockholders and bondholders
when the firm goes near the point of financial
distress, from which the default threshold is
determined.16

Similar to the description of the choice of
the face-value of the zero-coupon in the Mer-
ton model, in FPM the default threshold can be
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calculated as a weighted average of short and
long-term debts.

Interest rates can be considered either as
a constant or as a stochastic process.17 The
stochasticity of interest rates allows the model
to introduce correlation between asset value
and interest rates, and to make the default
threshold stochastic, in the cases when it is spec-
ified as the discounted value of the face value
of the debt. Nielsen et al. (1993) and Longstaff
and Schwartz (1995) consider a Vasicek process
for the interest rate, correlated with the firm’s
asset value:

dVt = (c − d)Vtdt + σV VtdWt (13)

drt = (a − brt) dt + σr dW̄t (14)

dW̄tdWt = ρdt (15)

where W̄t and Wt are correlated Brownian mo-
tions. Other specifications for the stochastic pro-
cess of the short rate have been considered. For
example Kim, Ramaswamy, and Sundaresan
(1993) suggest a CIR process

drt = (a − brt) dt + σr
√

rtdW̄t (16)

and Briys and de Varenne (1997) a generalized
Vasicek process

drt = (a (t) − b(t)rt) dt + σr (t)dW̄t (17)

Hsu, Saá-Requejo, and Santa-Clara (2004) con-
sider both the case of independence between
risk-free interest rates and the default generat-
ing mechanism (given by the dynamics of the
ratio Vt

K ) and the case of correlation between
both processes, specifying the risk-free rate as
a CIR process. They present an interesting em-
pirical illustration of the model, covering the
calibration of the risk-free rate process and the
estimation of the model’s parameter through
the generalized method of moments.

Drawbacks and Extensions
The principal drawback of FPM is the analyti-
cal complexity that they introduce, which is in-
creased if we consider stochastic interest rates
or endogenous default thresholds. This mathe-

matical complexity makes it difficult to obtain
closed form expressions for the value of the
firm’s equity and debt, or even for the default
probability, forcing us to make use of numerical
procedures.

The empirical testing of FPM and struc-
tural models in general has not been very
successful.18 Eom, Helwege, and Huang (2003),
who carry out an empirical analysis of five mod-
els (Merton, Geske, Leland and Toft, Longstaff
and Schwartz, and Collin-Dufresne and Gold-
stein), conclude that (p. 502)

Using estimates from the implementations we con-
sider most realistic, we agree that the five structural
bond pricing models do not accurately price corpo-
rate bonds. However, the difficulties are not limited
to the underprediction of spreads. . . . they all share
the same problem of inaccuracy, as each has a dra-
matic dispersion of predicted spreads.

Zhou (1997, Abstract) indicates that “the em-
pirical application of a diffusion approach has
yielded very disappointing results.”

Another drawback of the structural models
presented before is the so-called predictability
of defaults. Generally, structural models con-
sider continuous diffusion processes for the
firm’s asset value and complete information
about the asset value and default threshold. In
this setting, the actual distance from the asset
value to the default threshold tells us the near-
ness of default, in such a way that if we are
far away from default the probability of default
in the short-term is close to zero, because the
asset value process needs time to reach the de-
fault point. The knowledge of the distance of
default and the fact that the asset value follows
a continuous diffusion process makes default a
predictable event, that is, default does not come
as a surprise.

This predictability of defaults makes the mod-
els generate short-term credit spreads close to
zero. In contrast, it is observed in the mar-
ket that even short-term credit spreads are
bounded from below, incorporating the possi-
bility of an unexpected default or deterioration
in the firm’s credit quality.19
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The same characteristics of the structural
models that imply the predictability of default
also imply predictability of recovery. In mod-
els that do not consider strategic defaults, the
bondholders get the remaining value of the firm
in case of default, which is precisely the value
of the default threshold at default. Thus, if we
assume complete information about the asset
value and default threshold, the recovery rate
is also a predictable quantity.

Essentially, two ways out of the predictability
effects of structural models have been proposed
in the literature. The predictability of default
comes from the assumption of investors’ per-
fect knowledge of the firm’s asset value and
default threshold. In practice, it is not possible
to deduce from the capital structure of the firm
neither the value of the firm Vt, its volatility
σV , nor the level of the default threshold. If we
consider incomplete information about either
the firm value process, the default threshold
(or both), investors can only infer a distribu-
tion function for these processes, which makes
defaults impossible to predict. These considera-
tions can be found, among others, in Duffie and
Lando (2001), Giesecke (2005), and Jarrow and
Protter (2004).20

The second way consists in incorporating
jumps in the dynamics of the firm value, which
implies that the asset value of the firm can sud-
denly drop, reducing drastically the distance
of default (between the asset value and de-
fault threshold), or even causing a default if
the drop is sufficiently high. Thus, default is
not a predictable event anymore, the default
probabilities for short maturities do not tend
to zero, and so the credit spreads generated.
Zhou (1997, 2001a) and Hilberink and Rogers
(2002) deal with structural models in which the
firm’s asset value incorporates a jump compo-
nent. While Zhou extends the Longstaff and
Schwartz (1995) model considering a lognor-
mally distributed jump component, Hilberink
and Rogers (2002) opt for an extension of Le-
land (1994) and Leland and Toft (1996) using
Levy processes, which only allow for down-

ward jumps in the firm’s value. Both models
avoid the problem of default predictability im-
plying positive credit spreads for short matu-
rities. Another characteristic of jump models is
that they convert the recovery payment at de-
fault in a random variable, since the value of
the firm can drop suddenly below the default
threshold, whereas if the firm’s value follows a
diffusion process without jumps, the value of
the firm at default, that is, what bondholders
get, is always equal to the default threshold be-
cause of the continuity of the firm’s value path.

Fouque, Sircar and Solna (2006) consider
the effect of introducing stochastic volatility
in FPM, finding that it increases short-term
spreads.

Davydenko (2005) criticizes existing struc-
tural models because they obviate the liquid-
ity reasons as the main determinants of default
for some firms, particularly the ones with high
external financing costs (p. 2):

Several default triggers have been proposed in
structural models of debt pricing. Most models
assume that a firm defaults when the market
value of its assets falls below a certain boundary
(Black and Cox, 1976; Leland, 1994). This default
boundary may correspond to an exogenous net-
worth covenant, or to the endogenously determined
threshold at which equityholders are no longer will-
ing to service debt obligations. Should the firm find
itself in a liquidity crisis while its asset value is still
above the boundary, equityholders in these models
will always be willing and able to avoid default by
raising outside financing. This approach contrasts
with the assumption that firms default when cur-
rent assets fall short of current obligations, due to
either a minimum cash-flow covenant, or market
frictions precluding the firm from raising sufficient
new external financing (Kim et al., 1993; Ander-
son and Sundaresan, 1996). Models incorporating
both value- and liquidity-based defaults are rare,
and little empirical evidence is available to moti-
vate the choice of the default trigger. If, in reality,
default is triggered by different factors for different
firms, existing models are likely to lack accuracy in
predictions.

Davydenko (2005), using a sample of U.S.
(speculative rating-grade) bond issuers from
1996 to 2003, shows that the importance of
liquidity shortages in triggering default for a
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particular firm depends on the firm’s cost of ex-
ternal financing (p. 2): “firms with low costs of
external financing default when the continua-
tion value of assets is low. By contrast, if exter-
nal funds are costly, a liquidity crisis may force
reorganization even if the going-concern sur-
plus is still substantial.”21 Moreover, the author
presents empirical evidence against the view
that default is triggered when the asset value
crosses a particular threshold.

Therefore, empirical evidence suggests that
structural models need to be theoretically ex-
tended in order to incorporate the possibility of
the firms defaulting because of liquidity short-
ages and high funding costs.

Estimation
The literature provides several ways of calibrat-
ing Vt and σV . The first method makes use of
Ito’s lemma to obtain a system of two equations
in which the only two unknown variables are
Vt and σV .22 Assume the firm’s equity value
follows a geometric Brownian motion under P,
with volatility σE :

dEt = r Etdt + σE EtdWt (18)

Since the value of the equity is a function of time
and of the value of the assets, Et = f (Vt, t), we
can apply Ito’s lemma to get

dEt =
[
δ f (Vt, t)

δt
+ δ f (Vt, t)

δVt
Vtr

+ 1
2

δ2 f (Vt, t)

(δVt)
2 (VtσV)2

]
dt

+ δ f (Vt, t)
δVt

VtσVdWt (19)

Comparing the coefficients multiplying the
Brownian motion in the two previous equations
we obtain the following identity

σE Et = δ f (Vt, t)
δVt

VtσV (20)

Noting that δ f (Vt,t)
δVt

= δEt
δVt

= � (d1) and rearrang-
ing we obtain the first equation of the system:23

σV = Et

Vt
σE� (d1) (21)

The second equation results simply from
matching the theoretical value of equity with
the observed market price (Êt):

Et (Vt, σV, T − t) = Êt (22)

As we mentioned before, the only two un-
knowns in the system formed by the last two
equations are Vt and σV .24

Duan (1994) points out some drawbacks of
the previous method. First, the method con-
siders the equity volatility as constant and in-
dependent of the firm’s asset value and time.
Second, he claims that the first equation is re-
dundant since it is used to derive the second
equation. And third, the traditional method
does not provide us with distribution functions,
or even confidence intervals, for the estimates
of Vt and σV .

Duan (1994) proposes another method of es-
timating Vt and σV , based on maximum like-
lihood estimation using equity prices and the
one-to-one relationship between equity and as-
set levels given by (4).25 Duan et al. (2004) follow
the maximum likelihood approach introduced
by Duan (1994) but, unlike previous works,
they take into account the survivorship issue,
by incorporating into the likelihood function
the fact that a firm survived. They argue that
(p. 3), “In the credit risk setting, it is impera-
tive for analysts to recognize the fact that a firm
in operation has by definition survived so far.
Estimating a credit risk model using the sample
of equity prices needs to reflect this reality, or
runs the risk of biasing the estimator.”

Duan and Fulop (2005) extend Duan’s (1994)
maximum likelihood estimation method to ac-
count for the fact that observed equity prices
might be contaminated by trading noises. They
find that taking into account trading noises gen-
erates lower estimates for the asset volatility σV
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and therefore overestimates the firms’ default
probabilities.

Bruche (2005) describes how structural mod-
els can be estimated using a simulated max-
imum likelihood procedure, which allows us
to use data on any of the firm’s traded claims
(bonds, equity, CDS, . . .) as well as balance sheet
information to improve the efficiency of the es-
timation. The paper explores the possibility of
considering that not only equity, but the rest of
the claims used in the estimation procedure can
be priced with noise, showing that (p. 3) “even
small amounts of noise can have serious con-
sequences for estimation results when they are
ignored.”

A different way of estimating Vt and σV ,
which can be found in Jones et al. (1984), con-
sists simply of estimating the asset value as
the sum of the equity market value, the market
value of traded debt, and the estimated value
of nontraded debt. Provided with a time series
for Vt we can estimate its volatility σV .

Hull, Nelken, and White (2004) propose a way
to estimate the model’s parameters from im-
plied volatilities of options on the company’s
equity, avoiding the need to estimate σE and to
transform the firm’s debt structure into a zero-
coupon bond. Using as inputs two equity im-
plied volatilities and an estimate of the firm’s
debt maturity T, their model provides us with
an estimate of σV and the leverage ratio De−r (T−t)

Vt
,

which allows us to calculate Et and the probabil-
ity of default. We should note that to calculate
the value of the debt z(t, T) = Vt − Et we still
need an estimate for Vt.26

We still have to estimate the default threshold
K. Sundaram (2001) indicates that (p. 7) “de-
fault tends to occur in practice when the market
value of the firm’s assets drops below a critical
point that typically lies below the book value
of all liabilities, but above the book value of
short-term liabilities.” Thus, one approach is to
choose a value for D between those two limits.
Davydenko (2005) estimates the default thresh-
old to be around 72% of the firm’s face value
of debt.

Liquidation Process Models

In FPM default occurs the first time the asset
value goes below a certain lower threshold, that
is, the firm is liquidated immediately after the
default event; the default event corresponding
to the crossing of the asset value through the
lower barrier. In contrast with FPM, a new set
of models considers the case where the default
event does not immediately cause liquidation
but it represents the beginning of a process, the
liquidation process, which might or might not
cause liquidation after it is completed. As ex-
plained earlier, we refer to these models as liq-
uidation process models (LPM).

The distinction between the terms default event
and liquidation must be clear to understand
LPM and their differences with FPM. A default
event takes place when the firm’s asset value
Vt goes below the lower threshold K (which
can be exogenous, constant, time dependent,
stochastic, or endogenously derived). A default
event signals the beginning of a financially dis-
tressed period, which will not necessarily lead
to liquidation. Liquidation takes place when the
firm is actually liquidated, its activity stops,
and its remainings are distributed among its
claimholders.

In FPM described above the default event
does coincide with liquidation.27 However, as
pointed out by Couderc and Renault (2005,
p. 2), most liquidations “do not arise suddenly
but are rather the conclusion of a long lasting
process.” As pointed out by Moraux (2004, p. 3):
“Empirical studies in USA have found that ad-
ditional ‘survival’ periods beyond the main de-
fault event last up to 3 years (Altman-Eberhart
(1994), Betker (1995), Hotchkiss (1995)). Hel-
wege (1999) reports that the longest default of
modern US junk bond market is seven years
long.”28

The fact that the liquidation process can take
quite a while implies that when empirically
studying the causes of liquidation past informa-
tion shows up as a significant explanatory vari-
able, together, of course, with contemporaneous
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information, because it comprises information
about the liquidation process. Information here
refers to the firms’ financial variables as well
as financial markets, business cycle, credit mar-
kets, and default cycle indicators. Couderc and
Renault (2005) use a database containing the
rating history of over ten thousand firms for
the period 1981–2003 and analyze, using dura-
tion models, whether past values of several fi-
nancial markets (business cycle, credit markets,
and default cycle) are relevant in explaining
default probabilities in addition to their con-
temporaneous values. Their results show the
critical importance of past information in de-
fault probabilities.

LPM extend FPM to account for the fact that
the liquidation time takes place after (some-
times quite a lot after) the occurrence of a
default event. François and Morellec (2004),
Moraux (2004), and Galai, Raviv, and Wiener
(2005) put forward a theoretical LPM.

François and Morellec (2004) argue that while
in most of FPM the default event leads to an im-
mediate liquidation of the firm’s assets, firms
in financial distress have several options to
deal with their distress. First, under Chapter 7
of the U.S. Bankruptcy Code, they can liqui-
date its assets straight away. This possibility
would fit FPM. However firms can also file
for bankruptcy under Chapter 11 of the U.S.
Bankruptcy Code and start a court-supervised
liquidation process. The authors refer to exist-
ing literature (p. 390) to provide some evidence
about the relevance of Chapter 11:

Upon default, the court grants the firm a period of
observation during which the firm can renegotiate
its claims. At the end of this period, the court decides
whether the firm continues as a going concern or
not.

Empirical studies show that most firms emerge
from Chapter 11. Only a few firms (5%, accord-
ing to Gilson, John, and Lang [1990] and Weiss
[1990], and between 15% and 25%, according to
Morse and Shaw [1988]) are eventually liquidated
under Chapter 7 after filing Chapter 11. Why do
some firms recover while others do not? It is gener-
ally acknowledged (see Wruck 1990 or White 1996)
that there exist two types of defaulting firms. First,

firms that are economically sound promptly recover
under Chapter 11. Default was only due to a tem-
porary financial distress. Second, firms that are
economically unsound keep on losing value under
Chapter 11.29

François and Morellec consider that, after a
default event, i.e. after the asset value Vt goes
below the lower threshold K, a firm is liqui-
dated if and only if Vt remains below K con-
secutively during a period of time of a given
length d (which in their numerical simulations
they take to be two years). If a default event
happens and the asset value remains under the
lower threshold for a period lower than d, the
liquidation process finishes and the firm contin-
ues in business as usual. The term consecutively
in the definition of liquidation above means that
the number of successfully managed past de-
fault events and liquidation periods30 the firm
has experienced does not affect the maximum
length d of future liquidation periods.

The authors provide closed-form solutions for
corporate debt and equity values and analyze
the implications of the model for optimal lever-
age and credit spreads. Numerical simulations
show that credit spreads are an increasing func-
tion of the length d.

Moraux (2004) extends the François and
Morellec (2004) model including an additional
cause of liquidation to François and Morellec’s
one (which they call liquidation procedure A).
Under his proposed liquidation procedure, pro-
cedure B, liquidation happens when the total,
that is, cumulative, time the firm’s assets value
stands under the default threshold exceeds d.
The difference between procedures A and B lies
in the words consecutively and cumulative, and
Moraux (2004, p. 17) explains it clearly:

Under the procedure A, each time the firm value
process passes through and above K, the liquida-
tion procedure is closed and the hypothetical distress
counter is set to zero. The next time a default event
occurs, an identical procedure is run and an equal
period of time d is granted. . . . Under the procedure
B, the distress counter is never set to zero. Sub-
sequent granted periods (and therefore tolerance)
will be lower and lower as more default events and
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long financial distress will be observed. In fact, the
granted time is lowered (each time) by the duration
just used.

Financial distress refers to the situation in
which Vt < K . A firm can be liquidated by ei-
ther one or the other liquidation procedures.
Moraux (2004) shows that any liquidation pro-
cedure based on the time spent by the firm in
financial distress is bounded by the procedures
A and B in the sense that its implied liquidation
date will be higher (lower) than the liquidation
date implied by procedure B (A).

The author derives closed form solutions for
different claims such as equity, different senior-
ity debts, and convertible debt. In particular,
the value of equity is derived as a down and
out Parisian option written on the firm assets
under liquidation procedure A and as a down
and out cumulative call option under liquida-
tion procedure B. Numerical simulations show
that the value of equity is an increasing function
of d, and that, unlike in François and Morellec
(2004), credit spreads increase or decrease with
d depending on the seniority of the debt.

Galai, Raviv, and Wiener (2005) represent a
step forward in the refinement of LPM, propos-
ing a model extending and including the two
previous ones. They argue that in the two pre-
vious models, the only thing that matters for
a firm to be liquidated is the amount of time
it spends in financial distress (either succes-
sively or cumulatively), but they fail to (p. 5)
“capture the following two common features
of bankruptcy procedures: (i) Recent distress
events may have a greater effect on the deci-
sion to liquidate a firm’s assets then old dis-
tress events. . . . (ii) Severe distress events may
have greater effect on the decision to liquidate
a firm than mild distress events.” To account for
such two stylized facts, the authors propose a
structural model in which a firm is liquidated
when a state variable representing the cumu-
lative weighted time period spent by the firm
in distress exceeds d. At each time, the cumu-
lative weighted time period is computed as a
weighted average of the total time spent by

the firm in distress, weighted by (1) how far
away in the past such distress occurred and (2)
how severe was such a distress, where distress
severity is measured as an increasing function
of max {0, K − V}.

Galai, Raviv, and Wiener’s model has as spe-
cial cases models such as Merton (1974), Black
and Cox (1976), Leland (1994), Fan and Sun-
daresan (2001), François and Morellec (2004),
and Moraux (2004). As a consequence it repre-
sents a general general LPM so far. They solve
the model numerically using Monte Carlo sim-
ulation based on Parisian options and Parisian
contracts techniques to value debt and equity.
They provide a very intuitive comparison of the
liquidation mechanics in their general model
with François and Morellec’s and Moraux’s
ones, showing that Moraux’s cumulative liq-
uidation procedure (B) has too strong mem-
ory because far-away distress periods have the
same impact on liquidation triggering as cur-
rent ones.

Although theoretically very appealing, LPM
have not, unlike FPM, been empirically tested,
and remains a field for future research.

State Dependent Models
Another avenue for (so far) theoretical re-
search within the structural approach consists
of extending standard models with regime
switching: Some of the model parameters are
state-contingent. As we review below, states
can represent the state of the business cycle or
simply the firm’s external rating. Cash flows,
bankruptcy costs, and funding costs might be
state-dependent.

This branch of structural models is able to re-
duce the problems of predictability of defaults
(and recovery) suffered by standard models be-
cause the firm is subject to exogenous changes
of parameters, which affect its ability to gener-
ate cash flows or its funding costs, which are
the main drivers of default probabilities.

Hackbarth, Miao, and Morellec (2004) and
Elizalde (2005b) put forward two different
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models illustrating the previous ideas. In both
cases the authors provide closed form expres-
sions for the value of equity and debt, whose
solutions imply solving systems of ordinary dif-
ferential equations.

In Hackbarth, Miao, and Morellec (2004) cash
flows and recovery rates depend on the state
of the business cycle. Cash flows xt follow
a geometric Brownian motion and are scaled
by a business cycle scalar factor: They are
higher in expansions yH xt than in recessions
yL xt, yH > yL . In the same way, bankruptcy
costs are expressed as a state-dependent frac-
tion 1 − α of the firm’s assets; again, the re-
covery rate in expansions αH is higher than in
recessions αL , αH > αL . At each point in time,
there is an exogenous probability of switching
between recession and expansion. The default
threshold is endogenously chosen by equity-
holders to maximize the value of equity, and
it turns out to be higher in recessions: The
firm defaults earlier in recessions than in ex-
pansions. Numerical examples illustrate the im-
plications of the model for default thresholds,
default clustering, optimal leverage (counter-
cyclical), and credit spreads. As argued above
the model is able to generate nontrivial short-
term spreads.

Elizalde (2005b) develops a structural model
which, although originally applied to banks,
can be extended to any firm. In contrast with
previous models, the firms’ asset value is
assumed to be unobserved by debtholders.
Debtholders rely on the ratings published by
rating agencies to set the debt’s coupon as a
function of those ratings. As a consequence,
the firms’ funding costs are contingent on their
ratings. Rating agencies perform timely audits
to firms, with a given frequency, to find out
their risk and asset levels, which determine the
rating. Switching from one rating to another
implies changes in the cost of debt and, as a
consequence, in the ability of the firm to repay
it. As in Hackbarth, Miao, and Morellec (2004)
the default threshold is chosen endogenously
by equityholders and it is rating-dependent.

As described by Duffie (2005, p. 2772), “It
has become increasingly common for bond is-
suers to link the size of the coupon rate on their
debt with their credit rating, offering a higher
coupon rate at lower ratings, perhaps in an at-
tempt to appeal to investors based on some
degree of hedging against a decline in credit
quality.” This embedded derivative is called a
ratings-based step-up. The author illustrates an
example of a ratings-based step-up bond issued
by Deutsche Telecom in 2002 with coupon pay-
ments linked to the firm’s rating. While Elizalde
(2005b) derives the price of such a bond using
a structural model, Duffie provides its pricing
formula using an intensity model.31

Like LPM, state-dependent models have only
been developed theoretically and their future
success in credit risk modeling (if any) lies in
their empirical applicability and their ability to
replicate and predict credit spreads and default
probabilities.

DEFAULT CORRELATION
To incorporate default dependencies between
firms using structural models the literature
has essentially relied on natural extensions
of single firm’s models, either Merton (1974)
type models or FPM. We will start this sec-
tion reviewing these extensions, under which
the default dependences between firms are in-
troduced through correlated asset processes.32

Giesecke (2004) and Giesecke and Goldberg
(2004) suggest that the default correlation im-
plied by the use of correlated firms’ asset pro-
cesses accounts for the dependence of the firms’
credit quality on common macroeconomic fac-
tors, what they term cyclical default correlation,
but it does not account for credit risk contagion
across firms and periods of default clustering.
In order to introduce the contagion correlation
in the model, Giesecke (2004) and Giesecke and
Goldberg (2004) propose a model in which the
firms’ default thresholds are dependent one to
each other and are unknown to investors.
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After reviewing Giesecke (2004) and Giesecke
and Goldberg (2004) we present factor models,
which express the value of the firms’ assets as
a function of several common factors, which
generate the correlation, and an idiosyncratic
factor.33 Duan et al. (2002) and Hull and White
(2001) present two alternative approaches to
deal with default correlation in structural
models.

Cyclical Default Correlation
The most natural way to introduce default de-
pendencies between firms in structural models
is by correlating the firms’ asset processes.34

Suppose we have i = 1, . . . , I different firms
with asset value processes given by

dVi,t = rVi,tdt + σVi Vi,tdWi,t (23)

for i = 1, . . . , I , where W1,t, . . . , WI,t are corre-
lated Brownian motions. As in the single firm
case, these models imply predictable defaults.
One way of getting rid of the default pre-
dictability would be to introduce jump compo-
nents in the firms’ asset processes. Those jump
components could be either correlated or uncor-
related across firms. Correlated jump compo-
nents, besides making defaults unpredictable,
would also account for credit risk contagion ef-
fects. The main problem lies in the calibration
of the jump components.

Contagion Default Correlation
Cyclical default correlation does not account for
all the credit risk dependence between firms.
Giesecke (2004) and Giesecke and Goldberg
(2004) extend structural models for default cor-
relation to incorporate credit risk contagion ef-
fects. The default of one firm can trigger the
default of related firms. Furthermore, default
times tend to concentrate in some periods of
time in which the probability of default of all
firms is increased and which cannot be to-

tally, or even partially, explained by the firms’
common dependence on some macroeconomic
factors.

Contagion effects can arise in this setting by
direct links between firms in terms of, for exam-
ple, commercial or financial relationships. The
news about the default of one firm has a big im-
pact on the credit quality of other related firms,
which is immediately reflected in their default
probabilities.

In structural FPM we assume that investors
have complete information about both asset
processes and default thresholds, so they al-
ways know the nearness of default for each
firm, that is, the distance between the ac-
tual level of the firm’s assets and its default
threshold.35

Giesecke (2004) and Giesecke and Goldberg
(2004) introduce contagion effects in the model
by relaxing the assumption that investors have
complete information about the default thresh-
olds of the firms. In Giesecke (2004), bondhold-
ers do not have perfect information, neither
about the thresholds nor about their joint distri-
bution. However, they form a prior distribution,
which is updated at any time one of such thresh-
olds is revealed, which only happens when the
corresponding firm defaults. In Giesecke (2004)
investors have incomplete information about
the firms’ default thresholds but complete in-
formation about their asset processes. Giesecke
and Goldberg (2005) extend that framework to
one in which investors do not have informa-
tion about the firms’ asset values or about their
default thresholds. In this case, default correla-
tion is introduced through correlated asset pro-
cesses and, again, investors receive information
about the firms’ asset and default barrier only
when they default. Such information is used
to update their priors about the distribution of
the remaining firms’ asset values and default
thresholds.

The incomplete information about the level
of the default thresholds and the fact that those
levels are dependent among firms (through a
copula function) generate the source of credit
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risk contagion. Investors form a belief about
the level of the firms’ default thresholds. Each
time one of the firms defaults, the true level of
its default threshold is revealed, and investors
use this new information to update their beliefs
about the default thresholds of the rest of the
firms. This sudden updating of the investors’
perceptions about the default thresholds of the
firm, and thus about the nearness of default for
each firm, introduces the default contagion ef-
fects in the models.

This model allows for the introduction of
default correlation both through dependencies
between firms’ asset values, cyclical default cor-
relations, and through dependencies between
firms’ default barriers, contagion effects.

The major problem of this approach is to cali-
brate and estimate the default threshold copula.
See Giesecke (2003) for some remarks on how
to choose and calibrate that copula.

Factor Models
Factor models consider the firms’ asset values
as a function of a group of common factors,
which introduce the default correlation in the
model, plus a firm’s specific factor:

Vi,t =
J∑

j=1

wi, j Zj,t + εi,t (24)

where Z1, . . . ZJ represent the common factors,
ε1, . . . , εI the firms’ specific factors (indepen-
dent of Z1, . . . ZJ ), and the correlation structure
is given by the coefficient w. Once we know the
realization of the common factors, the firms’
asset value and thus the firms’ default proba-
bilities are independent.

The calibration of factor models is usually car-
ried out by a logit or probit regression, depend-
ing on the assumptions about the distribution of
the factors. Schönbucher (2000), Finger (1999),
and Frey, McNeil, and Nyfeler (2001) present
illustrations of these models.

KEY POINTS
� The structural approach for credit risk mod-

eling considers the link between the credit
quality of a firm and the firm’s economic
and financial conditions. As a consequence,
defaults are endogenously generated within
the models (instead of exogenously given as
in reduced-form models). By relying on the
firm’s assets and liabilities to model default
risk, structural models also provide a frame-
work to analyze recovery rates.

� The structural literature on credit risk started
with the Merton model, which used op-
tion pricing theory for valuing the debt of a
firm. In the Merton model, the firm’s capital
structure is composed by equity and a zero-
coupon. The firm is assumed to default at the
bond maturity if the value of its assets is be-
low the face value of the bond.

� The structural modeling approach has mainly
developed by relaxing the strict assumptions
of the Merton model, generating more real-
istic models, which take into account differ-
ent characteristics of firms’ capital structure,
bankruptcy laws, macro variables, and so on.

� Structural models include first passage mod-
els, liquidation process models, and state-
dependent models. In first passage models
a default occurs the first time the firm’s as-
set value goes below a certain lower thresh-
old (related to the firm’s level of debt). These
models assume that the firm is liquidated
immediately after the default event. Liqui-
dation process models extend first passage
models by taking into account the fact that
firms that file for bankruptcy may avoid liq-
uidation. Finally, state-dependent models as-
sume that some of the parameters governing
the firm’s ability to generate cash flows or its
funding costs depend on variables such as the
business cycle (recession vs. expansion) or the
firm’s external rating.

� There are several ways to account for de-
fault correlation within the structural ap-
proach. Cyclical default correlation and factor
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models consider the dependence of firms’
credit quality on common macroeconomic
factors. Contagion models include the depen-
dence of firms’ credit quality on other firms’
credit quality.

NOTES
1. For a review of reduced form models, see

Entry 22.
2. See, for example, Leland (1994) and Leland

and Toft (1996).
3. See Black and Cox (1976), Geske (1977), Le-

land (1994), and Leland and Toft (1996).
4. See Ronn and Verma (1986), Kim, Rama-

swamy, and Sundaresan (1993), Nielsen
et al. (1993), Longstaff and Schwartz (1995),
Briys and de Varenne (1997), and Hsu, Saá-
Requejo, and Santa-Clara (2004).

5. We reproduce here an updated list of exten-
sions and improvements within the litera-
ture of structural models provided by Eom,
Helwege, and Huang (2003, p. 500): “See,
for example, Black and Cox (1976), Bryis
and De Varenne (1997), Goldstein, Ju, and
Leland (2001), Ho and Singer (1982), Kim,
Ramaswamy, and Sundaresan (1993), Le-
land (1994, 1998), Nielsen, Saá-Requejo, and
Santa-Clara (1993), and Titman and Torous
(1989). Anderson and Sundaresan (1996)
and Mella-Barral and Perraudin (1997) in-
corporate strategic defaults into traditional
structural models. See also Acharya and
Carpenter (2002), Acharya et al. (2000), An-
derson, Sundaresan, and Tychon (1996), Fan
and Sundaresan (2000), and Huang (1997).
Duffie and Lando (2001) take into account
incomplete accounting information. Gar-
bade (1999) examines managerial discre-
tion. Huang and Huang (2002) and Zhou
(2001) incorporate jumps.”

6. See Zhou (2001b) and Giesecke (2004).
7. See Giesecke (2004) and Giesecke and Gold-

berg (2004).

8. See Schönbucher (2000), Finger (1999), and
Frey, McNeil, and Nyfeler (2001).

9. For our purposes we shall use the class of
equivalent probability measures P where
nondividend-paying asset processes dis-
counted with the risk-free interest rate are
P-martingales.

10. Since we are working under the risk-neutral
probability measure, the drift term of the
asset value process is given by the risk-
free instantaneous interest rate. Under the
physical probability measure, r would be re-
placed by a parameter μV representing the
mean rate of return on assets; and the firm’s
asset process would be given by

dVt = μV Vtdt + σVVtdW̃t

where W̃t is a Brownian motion under the
physical probability measure P̄.

11. Since shareholders finance each coupon is-
suing new equity, the dilution effect reduces
the relative value of each share.

12. See Jones et al. (1984) and Franks and Torous
(1989).

13. See Iori (2003) and Chapter 3.1 in Jeanblanc
and Rutkowski (2000).

14. For an extensive review of FPM, see Chap-
ter 3 in Bielecki and Rutkowski (2002) and
references therein.

15. See, for example, Mello and Parsons (1992),
Nielsen et al. (1993), Leland (1994), Ander-
son and Sundaresan (1996), Leland and Toft
(1996), Mella-Barral and Perraudin (1997),
and François and Morellec (2004).

16. For a discussion of strategic debt service, see
Mella-Barral and Perraudin (1997), Fan and
Sundaresan (2000), and references therein.

17. See Black and Cox (1976), Leland (1994),
and Leland and Toft (1996) for models with
constant interest rates, and see Kim, Ra-
maswamy, and Sundaresan (1993), Nielsen
et al. (1993), Longstaff and Schwartz
(1995), Bryis and de Varenne (1997), Collin-
Dufresne and Goldstein (2001), and Hsu,



356 Credit Risk Modeling

Saá-Requejo, and Santa-Clara (2004) for
models with stochastic interest processes.

18. See Anderson and Sundaresan (2000), Eom,
Helwege, and Huang (2003), and Ericsson
and Reneby (2004).

19. See Jones et al. (1984), Franks and Torous
(1989), Sarig and Warga (1989), Fons (1994),
Huang and Huang (2003), and Leland
(2004).

20. Elizalde (2005a) presents a review of struc-
tural models that appeared in the literature,
which consider incomplete information as-
sumptions and bridge the gap between the
structural and the reduced approach.

21. At any given point in time the firms’ own-
ers face a decision of whether to liquidate
the firm, or to maintain the status quo by
continuing operations under the current
regime, also referred to as a going concern.

22. See, for example, Jones et al. (1984), Ronn
and Verma (1986), Eom et al. (2000),
Delianedis and Geske (2003), and Ericsson
and Reneby (2005).

23. Crosbie and Bohn (2003) point out that this
equation holds only instantaneously, and
that in practice, market leverage, which
would be represented here by e−t(T−t) D

Vt
,

moves around far too much for that equa-
tion to provide reasonable results.

24. Ronn and Verma (1986) extend the estima-
tion to the cases of nonstationary σE and
stochastic interest rates.

25. For a complete description of this method
see Duan (1994), Duan et al. (2002), and
Ericsson and Reneby (2005), who also
present a comparison with the traditional
method.

26. Eom et al. (2000) suggest another procedure
to estimate σV , which they term the bond-
implied volatility method.

27. In fact, we called simply default to such an
occurrence. In what follows we shall use the
terms default and liquidation with the same
meaning (different from default event!). A
default event starts the process of liquida-
tion. The process of liquidation has two pos-

sible endings: liquidation or default and
reorganization (which happens when the
firm manages to improve its financial health
and avoid closure).

28. See also Frank and Torous (1989) and Gilson
(1997).

29. See also Kahl (2001) and Morrison (2003).
30. Successfully managed means that such liq-

uidation periods did not last longer than d
and, as a consequence, did not trigger liq-
uidation.

31. Manso, Strulovici, and Tchistyi (2004)
present an alternative derivation of ratings-
based step-up bonds using structural mod-
els, and review the existing literature.

32. See Zhou (2001b).
33. See Schönbucher (2000), Finger (1999), and

Frey, McNeil, and Nyfeler (2001).
34. See Zhou (2001b).
35. We are not considering here jump com-

ponents in the dynamics of the assets
processes.
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Abstract: Modeling credit risk is more challenging than modeling market risk. Some of these chal-
lenges relate to the differences in the conceptual approaches used for modeling credit risk and the
data limitations associated with the estimation of key model parameters. Hence, there is invariably
a subjective element to the modeling of credit risk. A better understanding of these subjective
elements can help practitioners to exercise sound judgment and to raise the right questions when
trying to interpret the statistical outputs provided by credit risk models.

This entry describes the building blocks to
modeling credit risk. Key elements of the build-
ing blocks include probability of default of the
issuer; recovery rate in the event of issuer de-
fault; and the probabilities of migrating to dif-
ferent credit rating states. Various techniques
that can be employed to estimate the probability
of issuer default, including their relative mer-
its and limitations, are then discussed. Subse-
quently, the common approaches to quantifying
credit risk are introduced. These include the de-
fault mode paradigm, which considers default
and no default as two states of the world; and
the migration mode paradigm, which includes
migrations to other credit rating categories in-
cluding the default state. The entry concludes
with a numerical example to illustrate the vari-
ous concepts presented.

The views expressed here are those of the author and not necessarily those of the Bank for International
Settlements.

ELEMENTS OF CREDIT RISK
Credit risk is the risk that a borrower will be
unable to make payment of interest or princi-
pal in a timely manner. Under this definition, a
delay in repayments, restructuring of borrower
repayments, and bankruptcy, which constitute
default events, will fall under credit risk. In ad-
dition to this, the mark-to-market loss of a bond
resulting from a change in the market percep-
tion of the issuer to service the debt in future
is also attributed to credit risk. This manifests
itself in the form of a widening of the credit
spread of the security in question against a risk-
free asset, such as the Treasury bond, of similar
maturity. The fluctuations in the credit spread
between the two securities reflect views on the
intrinsic creditworthiness of the issuer of the
defaultable security.
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The key determinants of credit risk at the se-
curity level include probability of default (PD) of
the issuer, that is, the probability that the is-
suer will default on its contractual obligations
to repay its debt; recovery rate given that the
issuer has defaulted; and rating migration prob-
abilities, that is, the extent to which the credit
quality of the issuer improves or deteriorates as
expressed by a change in the probability of
default of the issuer. The following sections
discuss in greater detail these determinants of
credit risk for corporate issuers, and wherever
relevant, methods commonly employed to esti-
mate them will be indicated.

Probability of Default
Assessments about an issuer’s ability to service
debt obligations play a fundamental role in es-
tablishing the level of credit risk embedded in
a security. This is usually expressed through
the default probability that quantifies the likeli-
hood of the issuer not being able to service the
debt obligations. Since probability of default is
a function of the time horizon over which one
measures the debt servicing ability, it is stan-
dard practice to assume a one-year time horizon
to quantify this.

In general, the approaches used to determine
default probabilities at the issuer level fall into
two broad categories. The first is empirical in
nature and requires the existence of a pub-
lic credit-quality rating scheme. The second is
based on Merton’s options theory framework
(Merton, 1974), and hence, is a structural ap-
proach. The empirical approach to estimating
PD makes use of a historical database of cor-
porate defaults to form a static pool of com-
panies having a particular credit rating for a
given year. Annual default rates are then cal-
culated for each static pool, which are then ag-
gregated to provide an estimate of the average
historical default probability for a given credit
rating. If one uses this approach, then the de-
fault probabilities for any two issuers having
the same credit rating will be identical. The op-

tion pricing approach to estimate default prob-
ability makes use of the current estimates of
the firm’s assets, liabilities, and asset volatil-
ity, and hence, is related to the dynamics of the
underlying structure of the firm. Each of these
approaches is discussed below in greater detail.

Empirical Approach
The empirical approach to determining proba-
bility of default is taken by major rating agen-
cies that include Moody’s Investors Service,
Standard & Poor’s Corporation, and Fitch Rat-
ings. The rating agencies assign credit ratings
to different issuers on the basis of extensive
analysis of both the quantitative and qualita-
tive performance of a firm, which is intended
to capture the level of credit risk. (How credit
ratings are assigned is not discussed in this en-
try.) For purpose of illustrating the empirical
approach used to determining default probabil-
ities for different credit ratings, we will discuss
Moody’s methodology.

Moody’s rating symbols (Aa, A, Baa, etc.) for
issuer ratings are opinions of the ability of the
issuer to honor senior unsecured financial obli-
gations and contracts denominated in foreign
and/or domestic currency. The rating grada-
tions provide bondholders with a simple sys-
tem to measure an issuer’s ability to meet its
senior financial obligations.

In addition to the generic rating categories,
Moody’s applies numerical modifiers 1, 2, and
3 for the rating categories from Aa to Caa. The
modifier 1 indicates that the issuer is in the
higher end of its letter-rating category; the mod-
ifier 2 indicates a mid-range ranking; the mod-
ifier 3 indicates that the issuer is in the lower
end of the letter-ranking category. It is custom-
ary to refer to a rating change from grade Aa1
to Aa2 as a one-notch rating downgrade. Bonds
issued by firms rated between Aaa to Baa are
referred to as investment-grade bonds and the
rest as non-investment-grade bonds.

It is important to emphasize here that
Moody’s ratings incorporate assessments of
both the likelihood and the severity of default.
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Considering that a particular issuer could have
debt issues with different collateral and senior-
ity, Moody’s approach will lead to different debt
issues of a particular issuer having different rat-
ings. However, when an issuer is deemed to
have defaulted on a particular debt issue, cross
default clauses will require all outstanding debt
of the issuer to be considered as having de-
faulted. This in turn brings us to the following
question: What events signal the default of an
issuer? Moody’s definition of default considers
three types of default events:

1. There is a missed or delayed disbursement of
interest and/or principal including delayed
payments made within a grace period.

2. An issuer files for bankruptcy or legal re-
ceivership occurs.

3. A distressed exchange occurs where (1) the
issuer offers bondholders a new security or
package of securities that amount to a dimin-
ished financial obligation, or (2) the exchange
had the apparent purpose of helping the bor-
rower to default.

One may note here that the above defini-
tions of default are meant to capture events
that change the relationship between the bond-
holder and bond issuer, which subjects the
bondholder to an economic loss.

The empirical approach to determining prob-
ability of default relies on historical defaults of
various rated issuers. This requires forming a
static pool of issuers with a given rating ev-
ery year and computing the ratio of defaulted
issuers after a one-year period to the number
of issuers that could have potentially defaulted
for the given rating. If, during the year, ratings
for certain issuers are withdrawn, then these is-
suers are subtracted from the potential number
of issuers who could have defaulted in the static
pool. Specifically, the one-year default rates for
A-rated issuers during a given year represent
the number of A-rated issuers that defaulted
over the year divided by the number of A-rated
issuers that could have defaulted over that year.
Annual default rates calculated in this manner

for each rating grade are then aggregated to
provide an estimate of the average historical
default probability for a given rating grade.

We mentioned earlier in this entry that
although different debt issues of a particular
issuer could have different ratings assigned de-
pending on the seniority of the issue, cross de-
fault clauses will require all outstanding debt of
a particular issuer to default at the same time.
This raises an important question when manag-
ing corporate bond portfolios, namely, whether
the issuer rating or the rating of the bond issue is
to be considered when implying the probability
of default. The short answer to this question is
that it depends on how credit risk will be quan-
tified for the given bond. The approach taken
here to quantify bond-level credit risk requires
that the credit rating of the bond issuer is the
one to be used. This will be evident when we
discuss the quantification of credit risk at the
bond level.

Merton’s Approach
Merton’s approach to estimating the probability
of default of a firm builds on the limited liabil-
ity rule that allows shareholders to default on
their obligations while surrendering the firm’s
assets to the creditors. In this framework, the
firm’s liabilities are viewed as contingent claims
on the assets of the firm, and default occurs at
debt maturity when the firm’s asset value falls
below the debt value. Assuming that the firm
is financed by means of equity St and a single
zero-coupon debt maturing at time T with face
value F and current market value Bt, the firm’s
assets at time t can be represented as

At = St + Bt (1)

The probability of default in Merton’s frame-
work for the firm will be the probability that
the firm’s assets is less than the face value of
the debt, which is given by,

PD = prob [AT < F ] (2)

In order to determine PD in Merton’s frame-
work, we need to select a suitable model for the
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process followed by At. Standard assumption is
to postulate that At follows a log-normal pro-
cess with growth rate μ and asset volatility σA

which is given below:

At = A0 exp[(μ − 0.5σ 2
A)t + σA

√
t zt] (3)

In equation (3) zt is a normally distributed ran-
dom variable with zero mean and unit variance.
Using equation (3) in conjunction with equation
(2) we can denote the PD as

PD = prob[ln A0 + (μ − 0.5σ 2
A)T

+ σA
√

T zT < ln F ] (4)

In equation (4) we have taken logarithm on
both sides of the inequality, since doing so does
not change the probabilities. Rearranging the
terms in equation (4), the probability of default
for the firm can be represented as

PD = prob

[
zT < − ln A0

F + (μ − 0.5σ 2
A)T

σA
√

T

]

(5)
Since zT is a normally distributed random

variable, PD can be represented as

PD = N(−D) (6)

where

D = ln A0
F + (μ − 0.5σ 2

A)T

σA
√

T
(7)

N(−D) = 1√
2π

−D∫

−∞
exp(− 1

2 x2)dx (8)

In equation (7), D represents the distance to
default, which is the distance between the log-
arithm of the expected asset value at maturity
and the logarithm of the default point normal-
ized by the asset volatility.

Although Merton’s framework for determin-
ing PD for issuers is rather simple, applying this
directly in practice runs into difficulties. This is
because firms seldom issue zero coupon bonds
and usually have multiple liabilities. Further-
more, firms in distress may be able to draw on
lines of credit to honor coupon and principal

payments, resulting in a maturity transforma-
tion of their liabilities.

To resolve these difficulties Moody’s KMV
suggests some modifications to Merton’s frame-
work to make the default probability estimate
meaningful in a practical setting (see Cros-
bie and Bohn, 2002). (Moody’s KMV refers to
probability of default as expected default fre-
quency or EDFTM). For instance, rather than
using face value of the debt to denote the de-
fault point, Moody’s KMV suggests using the
sum of the short-term liabilities (coupon and
principal payments due in less than one year)
and one-half of the long-term liabilities. This
choice is based on the empirical evidence that
firms default when their asset value reaches a
level that is somewhat between the value of to-
tal liabilities and the value of short-term liabili-
ties. Further, since the asset returns of the firms
may in practice deviate from a normal distri-
bution, Moody’s KMV maps the distance to the
default variable to a historical default statistics
database to estimate the probability of default.
In the KMV framework, default probabilities
for issuers can take values in the range between
0.02% and 20%.

To illustrate the KMV approach, let DPT de-
note the default point, which is equal to the sum
of the short-term liabilities due in less than one
year and one-half of the long-term liabilities,
and E(AT) the expected value of the firm’s as-
sets one year from now. Then the distance to
default is given by,

D = ln E(AT )
DPT

σA
= ln A0

DPT + (
μ − 0.5σ 2

A

)
T

σA
√

T
(9)

In equation (9), the market value of the firm’s
assets is not observed since liabilities of the firm
are not traded. What can be observed in the
market is the equity value of the firm because it
is traded. Since the value of the firm’s equity at
time T can be seen as the value of a call option
on the assets of the firm with a strike price equal
to the book value of the liabilities, we have the
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following equation:

ST = AT × N(d1) − e−rT × DPT × N(d2)
(10)

In equation (10), N(·)is cumulative standard
unit normal distribution, r is the risk-free inter-
est rate, and the variables d1 and d2 are given
by,

d1 = ln(AT/DPT) + (r + 1
2σ 2

A)T

σA
√

T
(11)

d2 = d1 − σA
√

T (12)

It is possible to show that equity and as-
set volatility are related through the following
relation:

σS = AT

ST
× N(d1) × σA (13)

From this relation it is possible to solve for the
asset value and asset volatility, given the equity
value and equity volatility using an iterative
procedure. Knowing the asset volatility and as-
set value, it is possible to compute the distance
to default using equation (9) from which prob-
ability of default can be inferred.

Relative Merits
The empirical and structural approaches to de-
termine the probability of default for issuers
can result in significant differences in the es-
timates of PD. Both approaches have their
relative advantages and disadvantages. For
instance, the empirical approach has the im-
plicit assumption that all issuers having the
same credit rating will have identical PD. Fur-
thermore, this default probability will be equal
to the historical average rate of default. Use of
the structural approach, on the other hand, will
result in PD being more responsive to changes
in economic conditions and business cycles as
it incorporates current estimates of the asset
value and asset volatility of the firm in deriv-
ing this information. One drawback, however,
is that the historical database of defaulted firms
is comprised mostly of industrial corporates.
As a consequence, use of the industrial corpo-

rate default database to infer the PD of regu-
lated financial firms could potentially result in
biased PD estimates. Seen from a trading per-
spective, credit spreads for corporates tend to
be influenced much more by agency ratings and
credit rating downgrades rather than EDF val-
ues. This has the implication that bond market
participants tend to attach greater significance
to rating agency decisions for pricing. For the
purpose of modeling portfolio credit risk and
selecting an optimal corporate bond portfolio
to replicate the benchmark risk characteristics,
we will demonstrate the usefulness of both ap-
proaches in the entries to follow.

On Rating Outlooks
Rating agencies provide forward-looking as-
sessment of the creditworthiness of issuers over
the medium term. Such forward-looking credit
assessments of issuers are referred to as rating
outlooks. Outlooks assess the potential direc-
tion of an issuer’s rating or creditworthiness
over the next six months to three years. A posi-
tive outlook suggests an improvement in credit
rating, a negative outlook indicates deteriora-
tion in credit rating, and a stable outlook sug-
gests a rating change is less likely to happen.
Bond prices tend to react to changes in rating
outlook although no actual change in credit rat-
ing has occurred. In particular, the impact on
prices is much more significant if the issuer is
Baa since a rating downgrade can result in the
issuer being rated non–investment grade. Fur-
thermore, if a particular sector (such as Tele-
com) is having a negative rating outlook, a
change in rating outlook from stable to nega-
tive for an issuer in this sector can also have a
significant effect on bond prices.

The above observations raise the following
important question: Should a negative or a pos-
itive rating outlook for a given issuer be in-
corporated in our assessment of PD through a
downgrade or upgrade before it has actually
happened? The short answer to this question
is no, primarily because our estimate of credit
risk will incorporate the probability that credit
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rating of issuers can change over time. Forcing
a rating change for the issuer before it has actu-
ally happened may tend to bias our estimate of
credit risk.

Captive Finance Companies
Large companies in most industrial sectors
have captive finance subsidiaries. The princi-
pal function of any financial subsidiary is to
support the sales of the parent’s products. This
function can make the finance company a crit-
ical component of the parent’s long-term busi-
ness strategy. In light of this close relationship
between the captive finance company and its
parent, credit ratings for both are usually iden-
tical. However, if the legal clauses guarantee
that the parent company’s bankruptcy does
not automatically trigger the bankruptcy of
the financial subsidiary, rating differences may
exist between the parent company and its finan-
cial subsidiary. For the purpose of quantifying
credit risk, we will use the actual credit rating
of the financial subsidiary in the calculations.

Estimating the probability of default of fi-
nancial subsidiaries on the basis of Merton’s
structural model can lead to difficulties. This is
because the equity of the financial subsidiary
may not be traded. For example, Ford Motor
is traded whereas the financial subsidiary Ford
Credit is not traded. Considering that the fi-
nancing arm of major industrial corporates is
vital to the survival of both the parent and the
subsidiary, one can argue that the equity market
takes this relationship into account when valu-
ing the parent company. Under this argument,
one can assign the same probability of default
to both companies where only one of them is
traded in the market.

Recovery Rate In the event of default, bond-
holders will not receive all of the promised
coupon and principal payments on the bond.
Recovery rate for a bond, which is defined as
the percentage of the face value that can be
recovered in the event of default, will be of
natural interest to investors. Considering that

credit market convention is to ask how much
of promised debt is lost rather than how much
of it is recovered, the term “loss given default”
(LGD), which is defined as one minus recovery
rate, is also commonly used in the credit risk
literature.

In general, estimating the recovery value of
the bond in the event of default is rather com-
plex. This is because the payments made to
bondholders could take the form of a combi-
nation of equity and derivative securities, new
debt, or modifications to the terms of the sur-
viving debt. Considering that there may be no
market for some forms of payments, it may not
be feasible to measure the recovery value. More-
over, the amount recovered could take several
months or even years to materialize and could
potentially also depend on the relative strength
of the negotiating positions. As a result, esti-
mating historical averages of amounts recov-
ered from defaulted debt will require making
some simplifying assumptions.

Moody’s, for instance, proxy the recovery rate
with the secondary market price of the de-
faulted instrument approximately one month
after the time of default. The motivation for
such a definition is that many investors may
wish to trade out of defaulted bonds, and a
separate investor clientele may acquire these
and pursue the legal issues related to recover-
ing money from defaulted debt instruments. In
this context, Moody’s recovery rate proxy can
be interpreted as a transfer price between these
two investor groups.

Empirical research on recovery rates suggests
that industrial sector, seniority of the debt, state
of the economy, and credit rating of the is-
suer one year prior to default are variables that
have significant influence on potential recovery
rates. For example, during periods of economic
downturns, the recovery rate is usually lower
relative to historical averages. This has the im-
plication that there is also a time dimension to
the potential recovery rates. Differences in re-
covery rates for defaulted debt across industry
sectors arise because the recovery amount will
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depend on the net worth of the firm’s tangible
assets. For instance, firms belonging to indus-
trial sectors with physical assets such as public
utilities have higher recovery rates compared
to the industry-wide average. Empirical results
also tend to suggest that issuers that were rated
investment grade one year prior to default tend
to have higher recovery values compared to is-
suers that were rated non–investment grade.

In order to incorporate the variations in the
observed recovery rates over time and between
issuers when quantifying credit risk, the stan-
dard deviation of recovery rates, denoted σRR, is
taken into account. Including the uncertainty in
recovery rates will have the effect of increasing
credit risk at the issuer level. Common practice
is to use beta distribution to model the observed
variations in recovery rates. The advantage of
choosing beta distribution is that it has a simple
functional form dependent on two parameters
that allows for high recovery rate outliers ob-
served in the empirical data to be modeled. The
beta distribution has support on the interval 0
to 1, and its density function is given by,

f (x, α, β) =
{

�(α+β)
�(α)·�(β) xα−1(1 − x)β−1, 0 < x < 1

0 otherwise
(14)

where α > 0, β > 0, and �(·) is the gamma func-
tion. The mean and variance of the beta distri-
bution are given by,

μ = α

α + β
(15)

σ 2 = α · β

(α + β)2 · (α + β + 1)
(16)

Table 1 shows the empirical estimates of re-
covery rates on defaulted securities covering

the period 1978 to 2001 based on prices at time of
default. One can notice that senior secured debt
recovers on average 53% of the face value of the
debt whereas senior unsecured debt recovers
only around 42% of face value. The standard
deviation of the recovery rates for all seniority
classes is roughly around 25%.

The empirical estimates for average recov-
ery rates tend to vary somewhat depending on
the data set used and the recovery rate defi-
nition. For instance, the study by Moody’s us-
ing defaulted bond data covering the period
1982–2008 suggest that mean recovery rates for
senior secured bonds is 53%, for senior un-
secured bonds is 32.4%, and for subordinated
bonds is 23.5%.

In the numerical examples to be presented
in this entry, we have assumed that the bonds
under consideration are senior unsecured debt.
Furthermore, we have assumed that the stan-
dard deviation of the recovery rate is 25% and
the average recovery rate is 35%, which is closer
to Moody’s estimate incorporating more recent
default data.

Rating Migrations The framework for assess-
ing the issuer’s PD comprised of estimating
the probability associated with the issuer de-
faulting on its promised debt payments. In this
framework, the issuer is considered to be in one
of two states: its current rating or the default
state. In practice, default is just one of many
states to which the issuer’s rating can transi-
tion. Actions of rating agencies can result in the
issuer’s rating being downgraded or upgraded
by one or several notches. One can associate
the concept of a state with each rating grade

Table 1 Recovery Rate Statistics on Defaulted Securities (1978–2001)

Bond Seniority
Number
of Issuers Median Mean

Standard
Deviation

Senior secured 134 57.42% 52.97% 23.05%
Senior unsecured 475 42.27% 41.71% 26.62%
Senior subordinated 340 31.90% 29.68% 24.97%
Subordinated 247 31.96% 31.03% 22.53%

Source: Altman, Resti, and Sironi (2001).
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so that rating actions result in the transition to
one of several states. Each rating action can be
viewed as a credit event that changes the per-
ceived probability of default of the issuer. In the
credit risk terminology such a multistate credit
event process is described as credit or rating mi-
gration. Associated with rating migrations are
transition probabilities, which model the rela-
tive frequency with which such credit events
occur.

Modeling the rating migrations process will
require estimating a matrix of transition prob-
abilities, which is referred to as the rating tran-
sition matrix. Each cell in the one-year rating
transition matrix corresponds to the probabil-
ity of an issuer migrating from one rating state
to another over the course of a 12-month hori-
zon. Mathematically speaking, a rating transi-
tion matrix is a Markov matrix, which has the
property that the sum of all cells in any given
row of the matrix is equal to one. Incorporating
rating migrations into the credit risk-modeling
framework provides a much richer picture of
changes in aggregate credit quality of the issuer.

The techniques used to estimate transition
probabilities are similar in principle to the es-
timation of probability of default. For instance,
computing the one-year transition probability

from the rating Aa1 to Baa1 will require first de-
termining the number of issuers that are rated
Baa1 and that had an Aa1-rating one year ear-
lier. Dividing this number by the total num-
ber of issuers that were rated Aa1 during the
previous year will give us the one-year tran-
sition probability between these two ratings.
Again, if the ratings of some Aa1 issuers are
withdrawn during the one-year period of inter-
est to us, then the total number of Aa1 issuers
is reduced by this number. Annual transition
probabilities calculated in this manner are then
aggregated over a number of years to estimate
the average historical transition probability.
Table 2 shows an example rating transition ma-
trix, with the transition probabilities expressed
in percentages.

The interpretation of the numbers in the rat-
ing transition matrix is the following. The first
cell in the matrix refers to the probability (ex-
pressed in percentage terms) of remaining in
the rating grade Aaa one year from now. The
estimate of this probability is 89.06% in the rat-
ing transition matrix. The cell under column A3
in the first row of the matrix refers to the proba-
bility of an issuer migrating from Aaa-rating to
A3-rating in one year, and the estimate of this
probability is 0.17%. Similarly, the cells in the

Table 2 An Example One-Year Rating Transition Matrix

Aa3 A1 A2 A3 Baa1 Baa2 Baa3 Ba1 Ba2 Ba3 B1 B2 B3 Caa-C Default

0.49 0.74 0.29 0.17 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.01
6.86 2.41 0.33 0.05 0.19 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.02
8.82 4.13 1.42 0.61 0.17 0.00 0.00 0.00 0.00 0.05 0.08 0.00 0.00 0.00 0.03

81.48 9.30 3.28 0.89 0.25 0.22 0.17 0.00 0.04 0.09 0.00 0.00 0.00 0.00 0.04
5.76 80.88 7.50 3.00 0.81 0.28 0.14 0.37 0.26 0.05 0.12 0.01 0.00 0.00 0.06
0.80 5.57 80.75 7.48 2.99 0.83 0.41 0.29 0.11 0.12 0.03 0.07 0.03 0.03 0.08
0.24 1.55 8.68 75.40 7.03 3.83 1.50 0.57 0.20 0.23 0.35 0.05 0.05 0.01 0.10
0.19 0.21 2.84 8.04 74.68 7.73 3.29 1.09 0.48 0.37 0.58 0.09 0.02 0.02 0.13
0.18 0.18 0.92 3.87 7.27 75.35 7.40 1.77 0.55 0.69 0.51 0.47 0.27 0.03 0.23
0.08 0.19 0.61 0.69 3.42 9.92 71.29 6.79 2.76 2.02 0.85 0.33 0.36 0.17 0.46
0.03 0.24 0.13 0.73 0.82 3.20 8.36 72.31 5.00 4.22 1.22 1.38 1.24 0.36 0.67
0.03 0.04 0.16 0.14 0.39 0.77 2.53 9.18 70.35 6.82 1.84 4.07 2.07 0.58 1.03
0.00 0.04 0.17 0.19 0.19 0.28 0.75 2.94 5.47 72.38 5.25 5.60 3.34 0.92 2.46
0.00 0.06 0.10 0.16 0.08 0.26 0.32 0.45 2.69 6.09 71.52 5.58 6.80 1.90 3.97
0.01 0.11 0.00 0.07 0.18 0.12 0.19 0.30 1.69 3.05 5.95 63.38 11.70 3.82 9.37
0.00 0.02 0.04 0.07 0.12 0.13 0.22 0.20 0.38 1.28 4.41 3.69 68.14 7.51 13.72
0.00 0.00 0.00 0.00 0.00 0.54 0.54 0.71 0.00 1.52 2.06 1.37 3.20 60.46 29.60
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.0
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second row correspond to the one-year migra-
tion probabilities of an issuer that is currently
rated Aa1.

Considering that Table 2 is representative of
a typical rating transition matrix that credit
agencies publish, one can draw interesting con-
clusions from the relative frequency of rating
downgrades and upgrades from this table. For
example, the rating transition matrix suggests
that higher ratings have generally been less
likely to be revised over one year than lower
ratings. Another observation is that large and
sudden rating changes occur infrequently. As
one moves down the rating scale, the likelihood
of a multinotch rating change increases.

Quantifying Credit Risk
In the previous section we identified the im-
portant variables that influence credit risk at
the security level. In this section we will fo-
cus our attention on quantifying credit risk at
the security level. Without loss of generality, it
will be assumed that the security is a corporate
bond. Most of us are familiar with the concept
of risk in connection with financial assets. In
broad terms, risk is associated with potential
financial loss that can arise from holding the as-
set, the exact magnitude of which is difficult to
forecast. As a result, it is common to describe
the potential loss in value using an appropriate
probability distribution whose mean and stan-
dard deviation serve as useful measures for risk
quantification.

The above practice is well known in the eq-
uities market where investors focus on market
risk that model variations in stock return. This
leads us to quantifying the market risk mea-
sures through expected return and standard de-
viation of return. Under the assumption that
equity returns are normally distributed, the re-
alized return will lie within one standard de-
viation of the expected return with two-thirds
probability.

Quantifying credit risk for a corporate bond
is similar in principle. Unlike the case for eq-

Pdirty

δ = 1

δ = 0 Pdirty

ψ

Figure 1 Typical Shape of the Credit Loss
Distribution

uities, corporate bond investors focus on the
distribution of potential losses that can result
from the issuer-specific credit events. Borrow-
ing the principle from equities market, it has
become common practice to quantify credit risk
at the security level through the mean and stan-
dard deviation of the loss distribution. How-
ever, there is an important difference between
the two risk measures. This pertains to the dis-
tribution of credit loss, which unlike for mar-
ket risk, is far from being a normal distribution.
Hence, deviations from the expected loss by one
standard deviation can occur more frequently
than on one in three occasions. Credit market
convention is to refer to the standard deviation
of loss resulting from credit events as unexpected
loss (UL) and the average loss as expected loss
(EL). Figure 1 shows the typical shape of the
distribution of credit losses.

In this section we will discuss how expected
and unexpected loss used to quantify credit
risk at the security or bond level can be deter-
mined. Depending on whether the loss distri-
bution takes into account the changes in bond
prices resulting from rating migrations, we can
compute two sets of loss variables, one in the de-
fault mode and another in the migration mode.
Quantification of credit risk in both these modes
is discussed below.

Expected Loss Under Default Mode Expected
loss under default mode of a bond is defined
as the average loss the bondholder can expect
to incur if the issuer goes bankrupt. Consider-
ing that default probability estimates are based
on a one-year holding period, expected loss
is also expressed over a one-year period. In
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practice, the issuer could actually default at any
time during the one-year horizon. Since a bond
portfolio manager is usually interested in the
worst-case loss scenario, which corresponds to
the issuer defaulting in the immediate future,
we will use the one-year PD to quantify the
worst-case loss. This has the implication that
we can quantify credit risk using the current
trading price for the bond rather than its one-
year forward price. Often, a portfolio manager’s
goal is to manage relative risk versus a bench-
mark. In this case, the use of one-year PD in
conjunction with current trading prices will not
bias the relative risk estimates. Moreover, this
assumption leads to considerable simplification
in quantifying credit risk since deriving for-
ward yield curves for various credit ratings is
quite tedious.

The estimate of expected loss for a security
depends on three variables: probability of de-
fault of the issuer, the average recovery rate,
and the nominal exposure (NE) to the security.
One can think of the default process δ as be-
ing a Bernoulli random variable that takes the
value 0 or 1. The value δ = 1 signals a default
and the value δ = 0 signals no default. Condi-
tional upon default, the recovery rate � is a ran-
dom variable whose mean recovery rate is RR.
Figure 2 pictorially depicts the default process
and the recovery values. In this exhibit, Pdirty de-
notes the dirty price (clean price plus accrued
interest) for a $1 face value of the bond.

Figure 2 indicates that if the issuer defaults,
the price of the bond will be equal to its recovery
rate ψ , which is a random variable. If the issuer
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Figure 2 Bond Price Distribution Under Default
Mode

does not default, the bond can be sold for a
value equal to its current dirty price Pdirty. In
this default mode framework, the price of the
risky debt can be written as,

P̃ = Pdirty × I[δ=0] + ψ × I[δ=1] (17)

In equation (17), I is the indicator function of
the default process. For the purpose of quanti-
fying credit risk, the variable of interest to us is
the credit loss resulting from holding the cor-
porate bond. This is a random variable, which
we denote 	̃, and is given by,

	̃ = Pdirty − P̃ = Pdirty − Pdirty

× I[δ=0] − ψ × I[δ=1] (18)

Taking expectations on both sides of equation
(18) will allow us to compute the expected loss
arising from credit risk. This is given by,

EL = E(	̃) = Pdirty − Pdirty

× (1 − PD) − E(ψ × I[δ=1]) (19)

We note that computing expected loss re-
quires taking the expectation of the product of
two random variables, the recovery rate process
and the default process. Knowledge of the joint
distribution of these two random variables will
be required to compute this expectation. Most
credit risk models will make the simplifying
assumption that these two random variables
are independent. If we make this assumption,
we get the equation for expected loss as given
below:

EL = Pdirty × PD − RR × PD
= PD × (Pdirty − RR)

(20)

We remind the reader that Pdirty is the dirty
price of the bond for $1 nominal and RR in
equation (20) is the mean recovery rate, which
is expressed as a fraction of the face value of the
debt. It is important to draw attention to the fact
that the quantity (Pdirty − RR) is different from
LGD, which is defined as one minus the recov-
ery rate. We therefore introduce the term “loss
on default” (LD) to capture this new quantity
as given below:

LD = Pdirty − RR (21)
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We note that loss on default will be identical
to the quantity loss given default if the dirty
price of the bond is equal to one. In all other
circumstances these two quantities will not be
the same.

Equation (20) has been derived under the
assumption that the nominal exposure is one
dollar. The expected loss from credit risk for a
nominal exposure equal to NE is given by,

EL = NE × PD × LD (22)

The use of the quantity LD rather than LGD in
defining expected loss might raise some doubts
in the minds of the reader. To clear these doubts,
let us consider the following example that illus-
trates why LD is more appropriate than LGD in
the context of bond portfolio management.

Let us consider the case of a bond portfolio
manager who has the option to invest $1 mil-
lion either in a bond with dirty price $100 (issuer
A) or in a bond with dirty price $80 (issuer B). In
the latter case, the portfolio manager will buy
$1.25 million nominal value of issuer B’s bond
to fully invest the $1 million. Let us assume that
both issuers default within the next year and the
recovery value is $50 for $100 face value of expo-
sure. If the portfolio manager had invested in is-
suer A’s bond, he would recover $500,000 since
the nominal exposure is $1 million. On the other
hand, if the portfolio manager invested in issuer
B’s bond, then the amount recovered would be
$625,000. This is because the portfolio manager
has a nominal exposure of $1.25 million of is-
suer B’s bond. Clearly, from the portfolio man-
ager’s perspective the credit loss resulting from
an investment in issuer A’s bond is $500,000,
whereas the credit loss from an investment in
issuer B’s bond is only $375,000, although both
investments recovered 50% of the face value of
debt. Use of the quantity LD correctly identi-
fies the losses in both circumstances whereas
the LGD definition will indicate that the losses
are $500,000 for issuer A’s bond and $625,000
for issuer B’s bond. In practice, LGD is used in
conjunction with the exposure amount of the
transaction to identify the expected loss. How-

ever, this definition will also incorrectly identify
the losses as being identical for both bonds in
this example.

Unexpected Loss Under Default Mode We
learned that the expected loss on the bond is the
average loss that the investor can expect to incur
over the course of a one-year period. However,
the actual loss may well exceed this average loss
over certain time periods. The potential devia-
tion from the expected loss that the investor
can expect to incur is quantified in terms of the
standard deviation of the loss variable defined
in equation (18). Credit market convention is
to refer to the standard deviation of loss as un-
expected loss. Hence, to derive the unexpected
loss formula, we need to compute the standard
deviation of the random variable 	̃. To facilitate
this computation, we will rewrite equation (18)
as follows:

	̃ = Pdirty − Pdirty × (1 − I[δ=1]) + ψ × I[δ=1]

= I[δ=1] × (Pdirty − ψ)
(23)

Recalling a standard result from probability
theory, the variance of any random variable z
can be written as the difference between the ex-
pected value of the random variable squared
minus the square of its expected value. In equa-
tion form this is given by,

σ 2
z = E(z2) − [E(z)]2 (24)

We will again make the simplifying as-
sumption that the default and recovery rate
processes are independent in deriving the
unexpected loss formula. Under this assump-
tion the variance of the random variable 	̃ can
be written as,

Var(	̃) = E(I 2
[δ=1]) × E[(Pdirty − ψ)2]

−[E(I[δ=1])]2 × [E(Pdirty − ψ)]2 (25)

Taking expected values and using the relation
(24), equation (25) simplifies to,

Var(	̃) = [σ 2
PD + PD2] × [σ 2

RR + LD2] − PD2 × LD2

(26)
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In the above equation, σ 2
PD is the variance

of the Bernoulli random variable δ, which is
given by

σ 2
PD = PD × (1 − PD) (27)

Simplifying the terms in equation (26), it
can be shown that unexpected loss, which is
the standard deviation of the loss variable, is
given by

UL =
√

PD × σ 2
RR + LD2 × σ 2

PD (28)

The above formula for unexpected loss as-
sumes that the nominal exposure is equal to
one dollar. For a nominal exposure equal to NE,
the unexpected loss at the security level will be
given by

UL = NE ×
√

PD × σ 2
RR + LD2 × σ 2

PD (29)

On the Independence Assumption
In deriving the expressions for expected and un-
expected losses on a bond resulting from credit
risk, we made the simplifying assumption that
the default process and recovery rate process
are independent. The question we should ask
ourselves is whether this assumption is a rea-
sonable one to make. Examining existing theo-
retical models on credit risk does not give us a
definitive answer to this question. For instance,
in Merton’s framework the default process of a
firm is driven by the value of the firm’s assets.
The risk of a firm’s default is therefore explic-
itly linked to the variability in the firm’s asset
value. In this setup both the default process and
the recovery rate are a function of the structural
characteristics of the firm, and one can show
that PD and RR are inversely related.

The reduced-form models, unlike structural
models, do not condition default on the value of
the firm. The default and recovery processes are
modeled independently of the structural fea-
tures of the firm and are further assumed to be
independent of each other. This independence
assumption between default and recovery pro-
cesses, which is fundamental to reduced-form

models, is pervasive in all existing credit value
at risk models.

Empirical results on the relationship between
default and recovery values tend to suggest that
these two variables are negatively correlated.
The intuition behind this result is that both de-
fault rate and recovery rate may depend on
certain structural factors. For instance, if a bor-
rower defaults on the debt payments, the re-
covery rate will depend on the net worth of the
firm’s assets. This net worth, which is usually a
function of prevailing economic conditions, will
be lower during periods of recession. On the
contrary, during recession the probability of de-
fault of issuers tends to increase. The combina-
tion of these two effects will result in a negative
correlation between default and recovery rates.

Empirical research on the relationship be-
tween default and recovery rate processes
suggests that a simple microeconomic interpre-
tation based on supply and demand tends to
drive aggregate recovery rate values. In partic-
ular, during high default years the supply of
defaulted securities tends to exceed demand,
which in turn drives secondary market prices
down. Considering that RR values are based on
bond prices shortly after default, the observed
recovery rates are lower when there is an excess
supply of defaulted securities.

In order to incorporate the empirical evi-
dence that recovery values decrease when de-
fault rates are high, we will have to identify
periods when PD is high relative to normal lev-
els. If PD values are determined on the basis
of historical average default rates as is done
by rating agencies, it is difficult to distinguish
between low and high default periods. On the
other hand, if a structural approach is used to
estimate PD values as is done by KMV Corpo-
ration, it is possible to signal periods when PD
values are higher than historical average levels.
This information can then be incorporated to
determine the appropriate recovery rates to be
used. Such an approach will amount to the use
of a regime-switching model to determine the
average recovery rates.
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Expected Loss Under Migration Mode
To derive the formula for expected loss under
default mode we took into consideration the
credit event that results in the issuer default-
ing on debt payments. In general, this is not
the only credit event the bondholder will ex-
perience that influences the market price of the
bond. More frequent are credit events that re-
sult in rating upgrades or downgrades of the
bond issuer. These credit events correspond to
a change in the opinion of the rating agencies
concerning the creditworthiness of the issuer.
Since rating changes are issuer-specific credit
events, the associated bond price changes will
fall under credit risk. Including price risk result-
ing from rating migrations in the calculation of
potential credit losses is referred to as credit risk
under migration mode.

In practice, the change in bond price can
be both positive and negative depending on
whether the rating change results in an upgrade
or downgrade, respectively. However, we will
use the term “credit loss” generically to refer to
a change in bond price as a result of a credit
event. Before proceeding to derive the formula
that quantifies expected loss under migration
mode, we will indicate how the price change
resulting from a credit event can be estimated.

Estimating Price Changes Practitioners familiar
with pricing of corporate bonds know that the
issuer’s rating does not fully explain yield dif-
ferentials between bonds of similar maturities.
In an empirical study, Elton, Gruber, Agrawal
and Mann (2002) find that pricing errors can
vary from 34 cents per $100 for Aa financials to
over $1.17 for Baa industrials. Their study sug-
gests that the following factors have an impor-
tant influence on observed price differentials
between corporate bonds:

� The finer rating categories introduced by the
major rating agencies when combined with
the bond’s maturity

� Differences between Standard and Poor’s and
Moody’s ratings for the issuer

� Differences in expected recovery rate for the
bond

� The coupon on the bond due to different tax
treatment

� Whether the bond is new and has traded for
more than one year

These observations indicate that we cannot
use generic yield curves for various rating
grades to reprice bonds when the issuer’s rating
changes. We will have to adopt a different tech-
nique to estimate the price risk resulting from
rating changes. It is important to bear in mind
that in the context of credit risk quantification,
our objective is to estimate approximate price
changes from rating migrations rather than to
capture the correct trading price for the bond.
To this end, rating migrations should result in
a price change that is consistent with perceived
change in the creditworthiness of the issuer.

The technique we will adopt here to estimate
the change in bond price due to a rating change
makes use of the current modified duration and
convexity of the bond. To determine the change
in yield associated with a rating change, we will
assume that there exists a fixed yield spread
between each rating grade that is a function of
the debt issue’s seniority. These yield spreads
will be taken relative to the government yield
curve. If we denote modified duration of the
bond by D and convexity by C, then the change
in price of the bond due to a change 
y in the
bond yield as a result of the rating change is
given by,

Price change = −Pdirty × D × 
y + 0.5

× Pdirty × C × 
y2 (30)

Considering that our interest is to estimate the
loss resulting from the rating change to quantify
credit risk, the following equation is the one that
is relevant to us:


P = Pdirty × D × 
y − 0.5 × Pdirty × C × 
y2

(31)
The advantage of such a technique is that it

will retain price differentials observed in the
market between bonds with similar maturity
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Table 3 Example Yield Spreads for Different Rating Grades and Debt Seniority

Rating
Grade

Rating
Description

Senior
Unsecured Subordinated

1 Aaa / AAA 15 bp 20 bp
2 Aa1 / AA+ 30 bp 40 bp
3 Aa2 / AA 45 bp 60 bp
4 Aa3 / AA− 60 bp 80 bp
5 A1 / A+ 75 bp 100 bp
6 A2 / A 90 bp 120 bp
7 A3 / A− 105 bp 140 bp
8 Baa1 / BBB+ 130 bp 180 bp
9 Baa2 / BBB 155 bp 220 bp

10 Baa3 / BBB− 180 bp 260 bp
11 Ba1 / BB+ 230 bp 330 bp
12 Ba2 / BB 280 bp 410 bp
13 Ba3 / BB− 330 bp 480 bp
14 B1 / B+ 430 bp 610 bp
15 B2 / B 530 bp 740 bp
16 B3 / B− 630 bp 870 bp
17 Caa-C / CCC 780 bp 1040 bp

and credit rating when the issuer migrates to
a different rating grade. Table 3 shows the in-
dicative yield spreads relative to government
bonds for different rating grades as a function
of the seniority of the debt issue. These yield
spreads will be used to illustrate how the price
change resulting from a rating migration can be
estimated by using it in conjunction with the
current duration and convexity of the bond.

Deriving Expected Loss
Unlike in the case of the default mode, the issuer
can migrate to one of several rating grades un-
der the migration mode during the course of the
year. Associated with these rating migrations
are discrete transition probabilities that com-
prise the rows of the rating transition matrix
given in Table 2. In the rating migration frame-
work, the transition probabilities represent
historical averages and can be treated as deter-
ministic variables. The random variables here
are the credit losses that the bondholder incurs
when the issuer rating changes. The expected
value of the credit loss for a rating change from
the ith grade to the kth grade is given by,


Pik = Pdirty × D × 
yik − 0.5 × Pdirty

× C × 
y2
ik (32)

In equation (32), 
yik denotes the yield change
when the issuer rating changes from grade i to
grade k. When the issuer migrates to the de-
fault state, the credit loss 
Pik will be equal to
the loss on default LD. Considering that there
are 18 rating grades including the default state,
the expected loss under the rating migration
mode for an issuer whose current credit rating
is i is given by,

EL =
18∑

k=1

pik × 
Pik (33)

In equation (33), pik denotes the one-year tran-
sition probability to migrate from rating grade i
to rating grade k. The above equation quantifies
the expected loss over a one-year horizon for a
nominal exposure of one dollar. For a nominal
exposure NE, the expected loss under migration
mode is given by,

EL = NE ×
18∑

k=1

pik × 
Pik (34)

Unexpected Loss Under
Migration Mode
By definition, unexpected loss under migration
mode is the standard deviation of the credit loss
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variable. The loss variable under the migration
mode is given by,

	̃ =
18∑

k=1

pik × 
P̃ik (35)

In equation (35), 
P̃ik denotes the credit loss
when the credit rating changes from grade i to
grade k, which is regarded as a random variable.
The expected value of this random variable is

Pik, and we shall denote its variance by σ 2

ik.
When k is equal to the default state, σik will be
equal to σRR, which is the standard deviation of
the recovery rate. Recalling equation (24), we
can write the variance of the loss variable as,

Var(	̃) = E

(
18∑

k=1

pik × 
P̃2
ik

)

−
[

E

(
18∑

k=1

pik × 
P̃ik

)]2

(36)

Taking expectations and making use of the
relation (24) once more, we get the following
expression for the variance of the loss variable:

Var(	̃) =
18∑

k=1

pik × (
P2
ik + σ 2

ik)

−
[

18∑

k=1

pik × 
Pik

]2

(37)

If we assume that there is no uncertainty asso-
ciated with the credit losses except in the default
state, all σ 2

ik terms in equation (37) will drop out
other than σ 2

RR. Making this assumption and
noting that pik is equal to PD when k is the de-
fault state, the unexpected loss under migration
mode for a nominal exposure NE is given by,

UL = NE

×

√√√√PD × σ 2
RR +

18∑

k=1

pik × 
P2
ik −

[
18∑

k=1

pik × 
Pik

]2

(38)

Numerical Example
In this section we will consider a numerical
example to illustrate the computations of ex-

Table 4 Security Level Details of the Example Bond

Description Value

Issuer rating grade A3
Dirty price for $1 nominal 1.0533
Nominal exposure $1,000,000
Modified duration 4.021
Convexity 19.75
Mean recovery rate 35%
Volatility of RR 25%

pected and unexpected losses under the de-
fault mode and migration mode. The security
level details of the example we will consider
are given in Table 4.

Since the mean recovery rate is assumed to be
35%, the loss on default for this security is equal
to 0.7033 for one-dollar nominal exposure. The
probability of default for this security is equal to
0.10%, which corresponds to the last column in
row A3 of the transition matrix given in Table
3. The expected and unexpected losses in the
default mode when PD = 0.001 are given below.

EL = NE × PD × LD
= 1,000,000 × 0.001 × 0.7033 = $703.3

UL = NE ×
√

PD × σ 2
RR + LD2 × σ 2

PD
= 1,000,000

×
√

0.001 × 0.252 + 0.70332 × 0.001 × (1 − 0.001)
= $22, 369.3

Under the migration mode, the breakdown
of the calculations involved in estimating ex-
pected and unexpected losses are given in
Table 5.

The expected loss under migration mode is
given by,

EL = NE ×
18∑

k=1
pik × 
Pik

= 1,000,000 × 0.003132 = $3, 132

The unexpected loss under migration mode is
given by,

UL = NE

×
√

PD × σ 2
RR +

18∑
k=1

pik × 
P2
ik −

[
18∑

k=1
pik × 
Pik

]2

= 1,000,000
× √

0.001 × 0.252 + 6.803 × 10−4 − 0.0031322

= $27, 073.8
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Table 5 Calculation of EL and UL Under Migration Mode

Grade pik �yik �Pik pik × �Pik pik × �P2
ik

1 0.05% −0.90% −0.0390 −0.000019 7.590E-07
2 0.11% −0.75% −0.0323 −0.000036 1.151E-06
3 0.05% −0.60% −0.0258 −0.000013 3.325E-07
4 0.24% −0.45% −0.0193 −0.000046 8.912E-07
5 1.55% −0.30% −0.0128 −0.000198 2.539E-06
6 8.68% −0.15% −0.0064 −0.000553 3.529E-06
7 75.40% 0.00% 0.0000 0.000000 0.000E+00
8 7.03% 0.25% 0.0105 0.000740 7.785E-06
9 3.83% 0.50% 0.0209 0.000801 1.676E-05

10 1.50% 0.75% 0.0312 0.000468 1.458E-05
11 0.57% 1.25% 0.0513 0.000293 1.501E-05
12 0.20% 1.75% 0.0709 0.000142 1.006E-05
13 0.23% 2.25% 0.0900 0.000207 1.864E-05
14 0.35% 3.25% 0.1267 0.000443 5.615E-05
15 0.05% 4.25% 0.1612 0.000081 1.299E-05
16 0.05% 5.25% 0.1937 0.000097 1.876E-05
17 0.01% 6.75% 0.2385 0.000024 5.688E-06
18 0.10% 0.7033 0.000703 4.946E-04

Sum 0.003132 6.803E-04

It is useful to note here that under migration
mode the expected loss is more than four times
higher. The increase in the unexpected loss in
migration mode is, however, only around 21%
higher than the unexpected loss under default
mode.

KEY POINTS
� Approaches used to determine default proba-

bilities at the issuer level fall under two broad
categories: the empirical approach that uses
historical default data and public credit rat-
ing schemes; and the structural approach that
uses options theory framework.

� Recovery rates on defaulted bonds vary over
the business cycle and across industry sectors;
and there is a negative relationship between
recovery rates and probability of default.

� Credit risk for a corporate bond can be quan-
tified in terms of the first

two moments of its loss distribution: expected
loss and unexpected loss.

� Approaches to quantifying credit risk fall un-
der two categories: those that are based on
two states of the world, namely default or
no default; and those that include migrations
to other credit rating categories including the
state of default.
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Simulating the Credit
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Abstract: Monte Carlo methods have become a valuable computational tool in modern finance as
the increased availability of powerful computers has enhanced their efficiency. A particularly useful
feature of Monte Carlo methods is that their computational complexity increases linearly with the
number of variables. Moreover, they are flexible and easy to implement for a range of distributional
assumptions for the underlying variables that influence the outcomes of interest. Monte Carlo
methods are particularly effective for simulating credit loss distribution and for evaluating tail risk
measures, and they are computationally less intensive than analytical methods.

The distribution of portfolio credit risk is highly
skewed and has a long fat tail. Unlike the
case for a normally distributed loss distribu-
tion, knowledge of the first two moments of
the credit loss distribution provides little in-
formation about tail risk. To compute tail risk
(large losses that occur with a low probabil-
ity) one has to simulate the credit loss distribu-
tion using Monte Carlo techniques. In this entry
we will provide a brief introduction to Monte
Carlo methods and subsequently describe the
computational process involved in performing
a Monte Carlo simulation to generate the distri-
bution of credit losses. Simulating the credit loss
distribution is discussed under the assumption
that the asset returns that drive credit events are
either multivariate normal or multivariate t dis-
tributed. The discussion and the examples cited

The views expressed here are those of the author and not necessarily those of the Bank for International
Settlements.

in this entry assume that the credit risk arises
from holding a portfolio of corporate bonds.

MONTE CARLO METHODS
Numerical methods known as Monte Carlo
methods can be loosely described as statistical
simulation methods that make use of sequences
of random numbers to perform the simulation.
The first documented account of Monte Carlo
simulation dates back to the 18th century when
a simulation technique was used to estimate
the value π . However, it is only since the digi-
tal computer era that this technique has gained
scientific acceptance for solving complex nu-
merical problems in various disciplines. The
name “Monte Carlo” was coined by Metropolis

377
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during the Manhattan Project of World War II
because of the similarity of statistical simula-
tion to games of chance symbolized by the cap-
ital of Monaco. Von Neumann laid much of
the early foundations of Monte Carlo simula-
tion that require generation of pseudo-random
number generators and inverse cumulative
distribution functions. The application of
Monte Carlo simulation techniques to finance
was pioneered by Phelim Boyle (1977) in con-
nection with pricing of options.

It is tempting to think of Monte Carlo
methods as a technique to simulate random
processes that are described by a stochastic
differential equation. This belief stems from
the option pricing applications of Monte Carlo
methods in finance where the underlying vari-
able of interest is the evolution of stock prices
that are described by a stochastic differential
equation. However, this description is too re-
strictive because many Monte Carlo applica-
tions have no apparent stochastic content, such
as the evaluation of a definite integral or inver-
sion of a system of linear equations. In many
applications of Monte Carlo methods, the only
requirement is that the physical or mathemat-
ical quantity of interest to us can be described
by a probability distribution function.

Monte Carlo methods have become a valu-
able computational tool in modern finance to
price complex derivative securities and to per-
form value at risk calculations. An important
advantage of Monte Carlo methods is that they
are flexible and easy to implement. Further, the
increased availability of powerful computers
has enhanced the efficiency of these methods.
Notwithstanding this, the method can still be
slow and standard errors of estimates can be
large when applied to high-dimensional prob-
lems or if the region of interest to us is not
around the mean of the distribution. In such
cases, we require a large number of simulation
runs to estimate the variable of interest with
reasonable accuracy. The standard errors on
the estimated parameters can be reduced using
conventional variance reduction procedures

such as control variate techniques or antithetic
sampling approaches.

More recent techniques to speed up the
convergence of Monte Carlo methods for high-
dimensional problems make use of determin-
istic sequences rather than random sequences.
These sequences are known by the name quasi-
random sequences in contrast to the pseudo-
random sequences commonly used in standard
Monte Carlo methods. The advantage of using
quasi-random sequences is that they generate
sequences of n-tuples that fill n-dimensional
space more uniformly than uncorrelated points
generated by pseudo-random sequences. How-
ever, the computational advantage of quasi-
random sequences diminishes as the number
of variables increases beyond 30.

An important advantage of Monte Carlo
methods is that the computational complexity
increases linearly with the number of variables.
In contrast, the computational complexity in-
creases exponentially in the number of variables
for discrete probability tree approaches for solv-
ing similar kinds of problems. This point is best
illustrated by considering the problem of credit
loss simulation. One approach to computing
the loss distribution of a two-bond portfolio is
to enumerate all possible combination of credit
states this portfolio can be in one year’s time.
Assuming there are 18 possible credit states that
each bond can be in, the two-bond portfolio
could take one of 324 (18 times 18) credit states.
Valuing the credit loss associated with each one
of the 324 states will allow us to derive the credit
loss distribution of the two-bond portfolio. If
the number of bonds in the portfolio increases
to 10, the total number of possible credit states
will be equal to 18 to the power 10, which is
equal to 3.57 × 1012 credit states. Clearly, even
with such a small portfolio, it is practically im-
possible to enumerate all the states and com-
pute the credit loss distribution.

If we use Monte Carlo simulation, on the other
hand, the problem complexity remains the same
irrespective of whether the portfolio is com-
prised of 2, 10, or more bonds. In each of these
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cases we may wish to run several scenarios,
each of which corresponds to a simulation run,
and under each scenario compute the credit loss
associated with the portfolio. Performing many
simulation runs will allow us to compute the
credit loss distribution of the bond portfolio. As
the number of bonds in the portfolio increases,
the computational effort involved increases lin-
early in the number of bonds in the portfolio.

The basic building blocks for performing
Monte Carlo simulation will require a scheme to
generate uniformly distributed random num-
bers and a suitable transformation algorithm if
the probability distribution of the variable sim-
ulated is different from a uniform distribution.
Most applications in finance require the genera-
tion of a normally distributed random variable.
To simulate such a random variable, the stan-
dard transformation techniques used are either
the Box-Muller method or the inverse cumu-
lative normal method. If the simulated random
variables are greater than one, we need methods
to generate correlated random numbers that
model the relationship between the variables.

Credit Loss Simulation
At the security level, credit loss arises from
credit events that include rating migrations and
outright default. As these credit events are as-
sociated with changes in perceptions about an
obligor’s ability to make the contractual debt
payments, one needs to identify variables that
influence the obligors’ ability to pay. The vari-
able that is often used in practice is the as-
set returns of the obligor. The motivation for
using asset returns is that changes in asset
values of a firm influence its solvency posi-
tion. When asset values fall below outstand-
ing liabilities, the firm is no longer considered
solvent. But other thresholds based on rating
transition probabilities can be derived and used
to infer how changes in asset values will influ-
ence credit ratings. Simulating asset returns and
checking their values against these thresholds

will allow us to signal credit events, which can
then be used to estimate the credit loss for a
particular simulation run.

Computing portfolio credit risk requires ex-
tending the above approach to model joint
rating migrations, which in turn requires mod-
eling the comovement of asset returns of dif-
ferent obligors. Considering that the marginal
distribution of asset returns is assumed to be
normal in Merton’s option pricing framework
(Merton, 1974), one can make a simplifying as-
sumption that the joint distribution of asset
returns is multivariate normal. The joint evo-
lution of the asset returns of the obligors under
the multivariate normal distribution will signal
how the value of the portfolio evolves, or equiv-
alently, what the credit loss on the portfolio will
be. The distribution of obligor asset returns un-
der the multivariate normal distribution can be
generated using Monte Carlo simulation. This
will allow us subsequently to compute the loss
distribution of the bond portfolio resulting from
credit events.

The description given above provides the
basic intuition behind the use of Monte Carlo
simulation for computing the credit loss distri-
bution. In the context of its intended use here,
the Monte Carlo simulation technique can be
described as a computational scheme that uti-
lizes sequences of random numbers generated
from a given probability distribution function
to derive the distribution of portfolio credit
loss. The distribution of portfolio credit loss
can be computed both under the default mode,
which only considers whether the obligor is
solvent or not, and under the migration mode
that includes credit events arising from rating
changes. Consequently, to compute the credit
loss under the default mode, we only need to
consider the loss resulting from obligor default;
whereas under the migration mode, we have to
compute the credit loss associated with rating
migrations in addition to the credit loss result-
ing from obligor default.

To generate the credit loss for one run of
the Monte Carlo simulation, we need to go
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through three computational steps described
below.

1. Simulate correlated random numbers that
model the joint distribution of asset returns
of the obligors in the portfolio.

2. Infer the implied credit rating of each obligor
based on simulated asset returns.

3. Compute the potential loss in value based
on the implied credit rating, and in those
cases where the asset return value signals an
obligor default, compute a random loss on
default value by sampling from a beta distri-
bution function.

Repeating the above simulation run many
times and computing the credit loss under each
simulation run will allow us to generate the
distribution of portfolio credit loss under the
migration mode. If we are only interested in the
credit loss distribution under the default mode,
we can compute this by setting credit loss asso-
ciated with rating migrations to zero in the sim-
ulation run. In the following sections we will
briefly describe the computational steps that are
required to generate the credit loss distribution.

Generating Correlated Asset
Returns
We briefly described earlier the steps involved
in simulating the credit loss distribution for
a bond portfolio. As the first step, we men-
tioned that correlated random numbers that
model the joint distribution of asset returns
have to be simulated. An immediate question
that will arise in our minds is whether the
obligor-specific means and standard deviations
of asset returns have to be taken into account
in the simulations. The simple answer to this
question is no. This is because the simulated
asset returns will be compared against the rat-
ing migration thresholds, which are computed
under the assumption that asset returns are
standardized normal random variables. As a
result, the obligor-specific mean and standard
deviation of asset returns are not required for

simulating the loss distribution. Hence, we will
assume that obligor asset returns are standard
normal random variables (having mean zero
and standard deviation equal to one). Under
this assumption, the Monte Carlo simulation
method will require generating a sequence
of random vectors that are sampled from a
standardized multivariate normal distribution.

Many standard numerical packages provide
routines to generate sequences of random
vectors sampled from a multivariate normal
distribution. Although the details of the im-
plementation are not discussed here, we will
briefly outline the numerical procedure com-
monly used to generate sequences of multivari-
ate normal random vectors. Let us assume that
the multivariate normal random vector has a
mean vector �a and covariance matrix C. Co-
variance matrices have the property that they
are symmetric and positive definite (meaning
all its eigenvalues are greater than zero). Given
such a matrix, it is possible to find a unique
lower triangular matrix L such that,

L LT = C (1)

The matrix L is referred to as the Cholesky fac-
tor corresponding to the positive definite matrix
C. Once the Cholesky factor is determined, gen-
erating a sequence of random vectors with the
desired multivariate distribution only requires
generating a sequence of independent standard
normal random variables. If �x denotes the vec-
tor of independent standard normal random
variables, the vector �r with the desired multi-
variate normal distribution can be constructed
as follows:

�r = �a + L �x (2)

The sequence of random vectors �r that are
generated will have the property that their joint
distribution is multinormal with mean vector �a
and covariance matrix C.

It is useful to note here that by setting the
mean vector �a to zero and the covariance ma-
trix equal to the correlation matrix, we can
generate a sequence of random vectors whose
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Table 1 Rating Transition Probabilities and z-Thresholds

Transition
Probabilities z-Threshold (Gaussian) z-Threshold (Student’s t)

Transition to Rating A2-rated A3-rated A2-rated A3-rated A2-rated A3-rated

Aaa 0.05 0.05 3.28 3.28 5.04 5.04
Aa1 0.06 0.11 3.05 2.95 4.43 4.15
Aa2 0.30 0.05 2.64 2.86 3.49 3.96
Aa3 0.80 0.24 2.25 2.61 2.77 3.43
A1 5.57 1.55 1.49 2.05 1.66 2.45
A2 80.75 8.68 −1.15 1.24 −1.24 1.35
A3 7.48 75.40 −1.65 −1.08 −1.86 −1.16
Baa1 2.99 7.03 −2.05 −1.48 −2.45 −1.65
Baa2 0.83 3.83 −2.27 −1.87 −2.79 −2.18
Baa3 0.41 1.50 −2.43 −2.15 −3.08 −2.61
Ba1 0.29 0.57 −2.60 −2.33 −3.40 −2.90
Ba2 0.11 0.20 −2.69 −2.41 −3.58 −3.05
Ba3 0.12 0.23 −2.81 −2.54 −3.86 −3.28
B1 0.03 0.35 −2.86 −2.85 −3.96 −3.96
B2 0.07 0.05 −2.98 −2.94 −4.25 −4.15
B2 0.03 0.05 −3.06 −3.06 −4.43 −4.43
Caa-C 0.03 0.01 −3.16 −3.09 −4.67 −4.50
Default 0.08 0.10 −1000 −1000 −1000 −1000

joint distribution is standardized multivariate
normal. Since the joint distribution of obligor
asset returns was assumed to be standardized
multivariate normal, this sequence of random
vectors will be the one of interest to us.

Inferring Implied Credit Rating
The next step in the credit loss simulation pro-
cess is to infer the credit rating of the various
obligors in the portfolio as implied by the simu-
lated asset return vector. In order to do this, we
need to determine the thresholds against which
the asset returns will be compared to identify
rating changes or obligor default. To illustrate
how these thresholds can be determined, let us
consider an obligor that has a current credit rat-
ing of A1. (Moody’s rating categories are used
here to denote the credit rating of an obligor.)
Let pA1,Aaa denote the probability of transition-
ing to the credit rating Aaa. Under the assump-
tion that the asset returns of the obligor are
normally distributed, the credit event that sig-
nals the obligor rating migration from A1 to Aaa
will occur when the standardized asset returns
of the obligor exceed the threshold zA1,Aaa . This

threshold can be determined by solving the fol-
lowing integral equation:

pA1,Aaa = 1√
2π

∞∫

zA1,Aaa

exp(− 1
2 x2) dx (3)

A rating transition of this obligor from A1 to
Aa1 will occur if the asset return falls between
the thresholds zA1,Aaa and zA1,Aa1. The thresh-
old zA1,Aa1 can be determined by solving the
following integral equation:

pA1,Aa1 = 1√
2π

zA1,Aaa∫

zA1,Aa1

exp(− 1
2 x2) dx (4)

One can extend this sequential rule to de-
termine the thresholds for migrating to other
rating grades. We note here that these z-
thresholds are a function of the current credit
rating of the obligor. Table 1 shows the rating
transition probabilities and the corresponding
z-thresholds for two different obligor credit rat-
ings when the asset returns are assumed to be
Gaussian (normal distribution).

Let us consider the two-bond portfolio given
in Table 2 to illustrate the specific steps involved
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Table 2 Security Level Details for the Two-Bond
Portfolio

Description Bond 1 Bond 2

Issuer rating grade A3 A2
Dirty price for $1 nominal 1.0533 1.0029
Nominal exposure $1,000,000 $1,000,000
Modified duration 4.021 3.747
Convexity 19.75 16.45
Mean recovery rate 35% 35%
Volatility of recovery rate 25% 25%

in computing the credit loss from one simula-
tion run for this portfolio. Suppose during one
draw from a bivariate normal distribution the
random asset returns are, respectively, 2.5 for
bond 1 and –3.5 for bond 2. Given the initial is-
suer rating of A3 for bond 1, one can infer from
the z-threshold values for A3-rated issuers in
Table 1 that an asset return value of 2.5 implies
a credit rating change of the issuer to an A1 rat-
ing. Similarly, one can infer from Table 1 that
an asset return value of –3.5 for an A2-rated is-
suer will imply that the issuer defaults on the
outstanding debt. Proceeding in this manner,
the implied credit rating of the debt issuers in
the two-bond portfolio for every simulation run
can be derived on the basis of the z-threshold
values in Table 1.

For a general n-bond portfolio, the implied
credit rating of the debt issuers for each sim-
ulation run can be similarly determined. It is
important to note here that the number of oblig-
ors in an n-bond portfolio will be less than or
equal to n. In the case where there are fewer
than n obligors, credit rating changes should
be identical for all bonds issued by the same
obligor in any simulation run. This has the im-
plication that the dimension of the simulated
asset return vector should be equal to the num-
ber of obligors or debt issuers in the bond
portfolio.

Computing Credit Loss
Once the implied rating changes for the oblig-
ors are determined for the simulated asset re-

turn vector, the corresponding credit loss asso-
ciated with such implied rating changes could
be determined. It is important to note here that
we generically refer to the price change result-
ing from the rating change as a loss although
a credit improvement of the obligor will result
in a price appreciation for the bond. The price
change of a bond as a result of a rating change
for the bond issuer will be a function of the
change in the yield spreads and the maturity
of the bond. Assuming that our interest is to
estimate the credit loss due to a change in the
bond’s mark to market value as a result of the
rating change, we would want to know at what
time horizon the bond’s price has to be marked
to market. If we were to compute the worst-case
loss scenario, it would correspond to a rating
change of the obligor during the next trading
day. In this case, the current trading price of
the bond and its risk parameters, duration, and
convexity serve to characterize the credit loss.
The credit loss resulting from a rating change
from the ith grade to the kth grade will be a
function of the change in the bond yield and is
given by,

�Pik = Pdirty × D ×�yik − 0.5×Pdirty × C×�y2
ik

(5)

In equation (5), Pdirty is the dirty price of the
bond (accrued interest plus traded price), �yik

is the yield change when issuer rating changes
from grade i to grade k, D is the modified dura-
tion of the bond, and C the convexity. When the
issuer migrates to the default state, the credit
loss will be equal to the dirty price Pdirty minus
the recovery rate.

To illustrate the credit loss computation, let us
again focus on the two-bond portfolio example.
In this example, the asset return value signaled
an upgrade to an A1 rating from the current
rating of A3 for bond 1. Suppose the change
in the yield spread associated with this rating
change is –30 basis points. Then, substituting
the various parameter values into equation (5),
the credit loss for $1 million notional amount
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held of bond 1 is given by,

Credit loss = 1, 000, 000 × [1.0533 × 4.021

×(−0.003) − 0.5 × 1.0533×19.75

×(−0.003)2] = −$12, 799.6

We note here that the negative sign associated
with the credit loss is suggesting that this rating
change results in a profit rather than a loss.

For bond 2, the simulated asset return value of
–3.5 implies default of the obligor. In this case,
we must find a random loss on default, which
will be a function of the assumed recovery rate
distribution. Many credit risk models assume
the recovery rate process to have a beta distri-
bution with mean μ and standard deviation σ .
Given the values for μ and σ , the parameters
α and β that define the beta distribution with
the desired mean and standard deviation can
be computed as given below:

α = μ2(1 − μ)
σ 2 − μ (6)

β = α

μ
− α (7)

For the bond in question, let us assume
the mean recovery rate to be μ = 35% and
the standard deviation of the recovery rate to
be σ = 25%. Corresponding to these recovery
rate values, the parameters of the beta distribu-
tion function are α = 0.924 and β = 1.716.

The random recovery rate for bond 2 for the
simulation run is determined by drawing a ran-
dom number from a beta distribution with α

and β parameter values as above. Let us as-
sume that the simulated recovery value is 40%
for bond 2. The implied loss on default for the
bond that trades at a dirty price of $1.0533 is
then equal to 0.6533 (bond dirty price minus
the recovery value). The credit loss arising from
bond 2 for this simulation run will be equal to
the nominal exposure times the loss on default,
which is equal to $653,300.

For the two-bond portfolio, the total credit
loss for this simulation run is the sum of the
two losses. If this simulation run corresponds
to the ith run, the portfolio credit loss under the

ith simulation run, denoted �i , is given by,

�i = −$12, 799.6 + $653, 300 = $640, 500.4

It is important to emphasize here that for a
general n-bond portfolio, all bonds of a particu-
lar issuer should have the same recovery value
for any one simulation run if they have the same
seniority. This information must be taken into
account when simulating the credit loss distri-
bution of a general n-bond portfolio.

Computing Expected and
Unexpected Loss
The above procedure outlined how the portfolio
credit loss can be computed for one simulation
run. By repeating the simulation run N times
where N is sufficiently large, the distribution
of the credit losses can be generated. Given the
simulated loss distribution, one can compute
various risk measures of interest. For instance,
the expected and unexpected credit loss (the
first two moments of the loss distribution) us-
ing the simulated loss data can be computed as
follows:

ELP = 1
N

N∑

i=1

�i (8)

ULP =
√√√√ 1

N − 1

N∑

i=1

(�i − ELP )2 (9)

To reduce the standard error of the estimated
portfolio expected loss, it is common practice
to perform antithetic sampling when perform-
ing the Monte Carlo simulation. The idea be-
hind antithetic sampling technique is that when
random samples are drawn from a symmetric
distribution, sampling errors can be avoided if
the antithetic or symmetric part of the random
sample is also drawn. This will ensure that the
empirical mean of the random samples is equal
to the mean of the distribution function from
which the samples are drawn. Including the an-
tithetic part of the samples will double the total
number of simulation runs.
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Importance Sampling
The Monte Carlo simulation technique de-
scribed so far is based on random sampling.
In such a sampling process, the probability of
any value being generated is proportional to
the probability density at that point. This prop-
erty will have the effect of generating asset
return values in the simulations that tend to
cluster around the mean of the normal distri-
bution function. Rating migrations and obligor
defaults, however, are events that are driven
by asset return values that deviate significantly
from the mean of the normal distribution. The
implication is that a significant proportion of
the simulation runs will not trigger any credit
events. If our intention is to compute the ex-
pected and unexpected loss of the portfolio
from the simulations, random sampling will be
the appropriate method to use. If, on the other
hand, we expect to compute risk measures asso-
ciated with tail events from the simulated data,
random sampling will be inefficient.

If our primary intention of performing Monte
Carlo simulations is to compute tail risk mea-
sures (to be discussed in the next section), we
can improve the simulation efficiency through
importance sampling (see Glasserman and Li,
2005). Simulation efficiency in our context refers
to the number of simulation runs required to
compute the risk measure of interest for a spec-
ified standard error of the estimate. Importance
sampling artificially inflates the probability of
choosing random samples from those regions
of the distribution that are of most interest to
us. This would mean that our sampling pro-
cess is biased in such a manner that a large
number of credit events are simulated relative
to what would occur in practice. In the Monte
Carlo simulation terminology, the adjustment
made to the probability of a particular point
being sampled is referred to as its importance
weight. To estimate the true probability distri-
bution of the simulated losses when performing
importance sampling, we have to restore the ac-
tual probability of each sample by multiplying
it by the inverse of its importance weight. In

practice, when the number of obligors in the
portfolio is large (this is usually true for the
benchmark portfolio), performing importance
sampling will lead to improved computational
efficiency.

Tail Risk Measures
The discussions so far focused on how the mean
(expected loss) and standard deviation (unex-
pected loss) of the credit loss distribution for
a corporate bond portfolio can be computed
from the simulations. If the distribution of credit
losses is normally distributed, standard devia-
tion can be interpreted as the maximum devia-
tion around the mean that will not be exceeded
with a 66% level of confidence. Since the credit
loss distribution is not normal, a similar inter-
pretation to the standard deviation of credit loss
does not hold. In most cases, computing the
probability of incurring a large credit loss on a
corporate bond portfolio using unexpected loss
information is usually not possible.

In general, a major preoccupation of most cor-
porate bond portfolio managers is to structure
the portfolio so as to minimize the probability
of large losses. To do this an estimate of the po-
tential downside risk of the portfolio becomes
a key requirement. Computing any downside
risk measure requires an estimate of the prob-
ability mass associated with the tail of the loss
distribution. If the simulated credit loss distri-
bution is available, it is quite easy to derive ap-
propriate tail risk measures of interest. For a
corporate bond portfolio, the tail risk measures
of interest are credit value at risk and expected
shortfall risk. Both these risk measures are dis-
cussed below, and the method to compute these
measures using the simulated loss distribution
is also indicated.

Credit Value at Risk
Credit value at risk (CVaR) is a tail risk measure
that quantifies the extreme losses arising from
credit events that can occur at a prespecified
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level of confidence over a given time horizon.
In practical terms, CVaR provides an estimate of
the maximum credit loss on a portfolio, which
could be exceeded by a probability p. Without
loss of generality, it will be assumed that this
probability is expressed in percentage. If the
probability p is chosen to be sufficiently small,
one can expect that the credit loss will not ex-
ceed the CVaR amount at a high confidence
level given by (100 − p)%. Stated differently,
CVaR at a confidence level of (100 − p)% refers
to the maximum dollar value of loss that will
only be exceeded p% of the time over the given
time horizon. Since losses from credit risk are
measured over a one-year horizon, the CVaR
measure we will compute also relates to a one-
year time horizon.

In order to compute CVaR to quantify the tail
risk of the credit loss distribution in a corporate
bond portfolio, we need to specify the confi-
dence level at which it should be determined.
Within the framework of economic capital al-
location, CVaR is usually measured at a confi-
dence level that reflects the solvency standard
of the institution in question. For instance, the
solvency standard of an AA-rated institution is
typically 99.97%, and hence, CVaR will be com-
puted at this confidence level. From a portfolio
management perspective, however, the confi-
dence level of interest for CVaR estimate would
typically be much lower. The motivation for
this is that portfolio managers have to pro-
vide monthly performance reports to clients,
and return deviations over this period need to
be explained. In this case, estimating CVaR at a
confidence level of 91.6% would imply that the
underperformance relative to the benchmark
will exceed the monthly CVaR estimate once
during the year on average if monthly per-
formance reporting is used. In this case, the
CVaR estimate provides useful information to
the portfolio manager and the client in terms of
both the return surprises one could expect and
also to actually observe it happen.

Motivated by the above observation, we will
choose the confidence level for the CVaR esti-

mate to be 90%. At this level of confidence, the
portfolio manager can expect the credit losses
to exceed the monthly CVaR estimate for one
reporting period during the year. Once the con-
fidence level for CVaR is specified, estimating
CVaR from the simulated loss distribution is
quite simple. If, for instance, the number of
simulation runs is equal to 10,000, then the
90% CVaR will be equal to the 1,000th worst-
case credit loss. Assuming that the simulated
credit losses are sorted in an ascending order of
magnitude, the credit loss corresponding to the
9,000th row in the sorted data will be the CVaR
at 90% confidence level for 10,000 simulation
runs.

Considering that standard practice in portfo-
lio management is to report risk measures rela-
tive to the current market value of the portfolio,
we will introduce the term “percentage credit
value at risk.” If MP denotes the current mark
to market value of the portfolio, the percentage
CVaR at 90% confidence level is defined as,

%CVaR90% = CVaR90%

MP
(10)

Expected Shortfall
Although CVaR is a useful tail risk measure, it
fails to reflect the severity of loss in the worst-
case scenarios in which the loss exceeds CVaR.
In other words, CVaR fails to provide insight
as to how far the tail of the loss distribution ex-
tends. This information is critical if the portfolio
manager is interested in restricting the severity
of the losses in the worst-case scenarios under
which losses exceed CVaR. In order to better
motivate this point, Figure 1 shows the credit
loss distribution for two portfolios that have
identical CVaR at the 90% level of confidence.

Examining Figure 1 it is clear that although
both portfolios have identical CVaR at the 90%
confidence level, the severity of the worst-case
losses that exceed the 90% confidence level
are lower for portfolio 1 compared to portfo-
lio 2. This example suggests that in order to
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Figure 1 Credit Loss Distribution for Two Port-
folios

investigate whether portfolio credit risk is well
diversified, it is not sufficient if we only exam-
ine the tail probability beyond some confidence
level. Examining the loss exceedence beyond
the desired confidence level at which CVaR is
estimated is important to gauge the loss sever-
ity in the tail part of the loss distribution.

One such risk measure that provides an es-
timate of the loss severity in the tail part of
the loss distribution is the expected shortfall (ES),
which is sometimes also referred to as condi-
tional VaR. Similar to CVaR, expected short-
fall requires specifying a confidence level and
a time horizon. Considering that ES is usually
used in conjunction with CVaR, the confidence
level should be chosen as 90% and the time hori-
zon one year. A simple interpretation of ES is
that it measures the average loss in the worst p%
scenarios where (100 − p)% denotes the con-
fidence level at which CVaR is estimated. In
mathematical terms, expected shortfall can be
defined as the conditional expectation of that
part of the credit loss that exceeds the CVaR
limit. The interpretation of ES as conditional
VaR follows from this definition. If �̃ denotes
the loss variable, ES can be defined as given
below:

ES = E
[
�̃

∣∣ �̃ > CVaR
]

(11)

Given the simulated loss distribution of the
portfolio, computing expected shortfall risk is
quite simple. Let �i denote the simulated credit
loss distribution for the ith simulation run, and
let us assume that the losses are sorted in as-
cending order. If the number of simulation runs
is equal to N, the relevant equation to compute
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Figure 2 Various Risk Measures for Portfolio
Credit Risk

ES at the 90% confidence level from the simula-
tions is given below:

ES90% = 1
(1 − 0.9)N

×
N∑

i=0.9N+1

�i (12)

The percentage ES at 90% confidence level is
defined as,

%ES90% = ES90%

MP
(13)

Figure 2 shows the various credit risk mea-
sures presented here that can be computed from
the simulated loss data.

Relaxing the Normal Distribution
Assumption
A growing body of empirical studies conducted
on financial time series data suggests that re-
turns on traded financial instruments exhibit
volatility clustering and extreme movements
that are not representative of a normally dis-
tributed random variable. Another commonly
observed property of financial time series is that
during times of large market moves, there is
greater degree of comovement of returns across
many firms compared to those observed during
normal market conditions. This property, usu-
ally referred to as tail dependence, captures the
extent to which the dependence (or correlation)
between random variables arises from extreme
observations. Stated differently, for a given level
of correlation between the random variables
a multivariate distribution with tail depen-
dence has a much greater tendency to generate
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simultaneous extreme values for the random
variables in contrast to those distributions that
do not have this property.

A multivariate normal distribution does not
exhibit tail dependence. The dependence or
correlation structure exhibited between the
random variables in a multivariate normal dis-
tribution arises primarily from comovements
of the variables around the center of the distri-
bution. As a consequence, contagion or herd-
ing behavior commonly observed in financial
markets is difficult to model within the frame-
work of multivariate normal distributions. In
order to capture contagion and herding behav-
ior in financial markets, distributions that ex-
hibit tail dependence should be used to model
financial variables of interest. In the context of
credit risk modeling, contagion effects would
result in greater comovement of asset returns
across firms during periods of recession lead-
ing to higher probability of joint defaults. If
we model the joint distribution of asset returns
to be multivariate normal, we will fail to cap-
ture the effects of contagion in the aggregate
portfolio credit risk measures we compute. In
the next section we relax the assumption that
the distribution of asset returns is multivariate
normal.

Student’s t Distribution
Among the class of distribution functions that
exhibit tail dependence, the family of multivari-
ate normal mixture distributions, which include
Student’s t distribution and generalized hyper-
bolic distribution, is an interesting alternative.
This is because normal mixture distributions in-
herit the correlation matrix of the multivariate
normal distribution. Hence, correlation matri-
ces for normal mixture distributions are easy to
calibrate.

Formally, a member of the m-dimensional
family of variance mixtures of normal distribu-
tions is equal in distribution to the product of a
scalar random variable s and a normal random

vector �u having zero mean and covariance ma-
trix �. The scalar random variable s is assumed
to be positive with finite second moment and
independent of �u. If �x denotes a random vec-
tor having a multivariate normal mixture dis-
tribution, our definition leads to the following
equation:

�x = s · �u (14)

Since normal mixture distributions inherit the
correlation matrix of the multivariate normal
distribution, we have the following relation-
ship:

Corr(xi , xk) = Corr(ui , uk) (15)

The random vector �x will have multivariate
t distribution with ν degrees of freedom if the
scalar random variable s is defined as below:

s =
√

ν

ω
(16)

In equation (16), ω is a chi-square distributed
random variable with ν degrees of freedom.
For ν > 2, the resulting Student’s t distribu-
tion will have zero mean vector and covariance
matrix ν

ν−2�. The Student’s t distribution has
the property that as ν increases, the distribu-
tion approaches a normal distribution. In fact,
for values of ν greater than 25, it is difficult to
distinguish between a normal distribution and
t distribution. In a multivariate setting, as ν de-
creases, the degree of tail dependence between
the random variables will increase. For finan-
cial time series, ν is typically around 4 (Platen
and Sidorowicz, 2007).

An important distinction between the t
distribution and the normal distribution is
that uncorrelated random variables are mutu-
ally independent, whereas the components of
multivariate t are in general dependent even if
they are uncorrelated. In modeling credit risk,
this property makes it possible to capture co-
movements of asset returns between firms in
extreme market situations even if the asset re-
turns exhibit little or no correlation under nor-
mal market conditions.
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In the univariate case, the probability density
function of the Student’s t distribution with ν

degrees of freedom has the following functional
form:

fν(x) = �((ν + 1)/2)√
νπ × �(ν/2)

×
(

1 + x2

ν

)−(ν+1)/2

(17)
In equation (17) �(·) is the gamma function,

which is given by

�(α) =
∞∫

0

xα−1e−xdx (18)

Loss Simulation Under Multivariate
t Distribution
The steps involved in simulating the credit loss
distribution when asset returns are multivari-
ate t follow the same procedure as for the mul-
tivariate normal case. Instead of generating the
sequence of correlated asset returns from a mul-
tivariate normal distribution, we now have to
generate this sequence from a multivariate t dis-
tribution. The next step will involve inferring
the credit rating change of the various oblig-
ors in the portfolio as implied by the simulated
asset return vector. To do this, we need to de-
termine the thresholds against which the as-
set returns will be compared to identify rating
changes or obligor default. These z-thresholds
have to be calibrated to correspond to the Stu-
dent’s t distribution. Specifically, the integrand
for computing the z-thresholds will be the
Student’s t density function.

For purpose of illustration, let us consider an
obligor that has a current credit rating of A1.
Let pA1,Aaa denote the probability of transition-
ing to the credit rating Aaa. Under the assump-
tion that the asset returns of the obligor are
t-distributed, the credit event that signals the
obligor rating migration from A1 to Aaa will
occur when the asset returns of the obligor ex-
ceed the threshold zA1,Aaa . This threshold can
be determined by solving the following integral

equation:

pA1,Aaa= �((ν + 1)/2)√
νπ × �(ν/2)

∞∫

zA1,Aaa

(
1+ x2

ν

)−(ν+1)/2

dx

(19)
A rating transition of this obligor from A1 to

Aa1 will occur if the asset return falls between
the thresholds zA1,Aaa and zA1,Aa1. The threshold
zA1,Aa1 can be determined by solving the follow-
ing integral equation:

pA1,Aa1= �((ν+1)/2)√
νπ×�(ν/2)

zA1,Aaa∫

zA1,Aa1

(
1 + x2

ν

)−(ν+1)/2

dx

(20)
One can extend this sequential rule to deter-

mine the thresholds for migrating to other rat-
ing grades. Table 1 shows the z-threshold values
computed using the rating transition probabil-
ities for A2- and A3-rated obligors when the
asset returns are t-distributed.

The rest of this section discusses the proce-
dure to generate a sequence of random vectors
from a multivariate t distribution. Following the
discussion earlier in this entry, a random vector
with multivariate t distribution having ν de-
grees of freedom can be derived by combining
a chi-square random variable with ν degrees
of freedom and a random vector that is nor-
mally distributed and independent of the chi-
square random variable. This procedure will
allow us to generate a sequence of multivariate
t-distributed random vectors with ν degrees of
freedom.

To generate a sequence of chi-square dis-
tributed random variables, the standard pro-
cedure is to make use of the relationship
between chi-square distribution and gamma
distribution. A random variable x is said to have
gamma distribution if its density function is de-
fined as below:

f (x) =
⎧
⎨

⎩

1
�(α)βα

xα−1e−x/β, x > 0

0, x ≤ 0
(21)

In equation (21) α > 0 and β > 0 are the pa-
rameters of the gamma distribution, and �(α)
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is the gamma function given by equation (18).
The chi-square distribution with ν degrees of
freedom is a special case of the gamma dis-
tribution with parameter values α = ν/2 and
β = 2.

Given the above relationship between gamma
and chi-square distribution, a sequence of ran-
dom variables having chi-square distribution
with ν degrees of freedom can be generated
by sampling from a gamma distribution with
parameter values α = ν/2 and β = 2. Most
standard software packages provide routines to
generate random sequences from a gamma dis-
tribution. Hence, we will not discuss the details
concerned with generating such a sequence of
random variables.

To summarize, the following are the steps
involved in generating an n-dimensional se-
quence of multivariate t distributed random
variables with ν degrees of freedom.

Step 1: Compute the Cholesky factor L of the
matrix C where C is the n × n asset return
correlation matrix.

Step 2: Simulate n independent standard nor-
mal random variates z1, z2, · · · , zn and set
�u = L �z.

Step 3: Simulate a random variate ω from
chi-square distribution with ν degrees of
freedom that is independent of the normal
random variates and set s =

√
ν√
ω

.
Step 4: Set �x = s · �u which represents the de-

sired n-dimensional t variate with ν degrees
of freedom and correlation matrix C.

Repeating the steps 2 to 4 will allow us to gen-
erate the sequence of multivariate t-distributed
random variables.

Computing the credit loss for the two-bond
portfolio in Table 2 will require comparing the
asset return values under each simulation run
against the z-thresholds given in Table 1 to trig-
ger rating migrations and defaults for the oblig-
ors in the two-bond portfolio. On the basis of the
implied rating changes assigned to the obligors

using simulated asset returns, the credit loss for
each simulation run can be calculated. The rest
of the steps involved in computing the credit
risk measures of interest from the simulated
loss distribution are identical to the ones for
the normal distribution case.

KEY POINTS
� Monte Carlo methods provide a flexible tool

to simulate credit loss distribution and are
relatively simple to implement.

� To simulate the credit loss distribution under
the rating migration mode, rating transition
probabilities have to be transformed into cor-
responding z-thresholds for the assumed dis-
tribution function for the asset returns.

� Simulating multivariate t random vectors re-
quires appropriately scaling the sequence of
multivariate normal vectors by another se-
quence of chi-square random variables that
are uncorrelated with the normal random
vectors.

� From the simulated loss distribution, various
tail risk measures of interest can be computed.

� Using techniques such as importance sam-
pling can significantly reduce the standard
errors of tail risk measures for a given num-
ber of simulation runs.
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Abstract: Extensive empirical research has shown that the spread volatility of credit securities is
linearly proportional to their level of spread. This finding holds true across corporate and sovereign
issuers, for both cash and credit default swaps. A superior measure of spread risk for credit securities
is the product of spread duration and spread, a measure referred to as duration times spread (DTS).
DTS measures the sensitivity of the price of a bond to relative changes in spread, which are much
more stable through time and cross-sectionally than absolute spread volatilities. DTS allows for
better risk projection, hedging, replication, and portfolio construction.

The traditional presentation of the asset al-
location in a portfolio or a benchmark is in
terms of percentage of market value. For fixed-
income portfolios, it is widely recognized that
this is not sufficient, as differences in durations
can cause two portfolios with the same mar-
ket weight allocations to have very different ex-
posures to macro-level risks. Market practices
have evolved to address this issue. A common
approach to structuring a fixed-income portfo-
lio or comparing it to a benchmark is to partition
it into homogeneous market cells comprised
of securities with similar characteristics. Many
fixed-income portfolio managers have become

accustomed to expressing their cell allocations
in terms of contributions to duration—the prod-
uct of the percentage of portfolio market value
in a given market cell and the average duration
of securities comprising that cell. This repre-
sents the sensitivity of the portfolio to a par-
allel shift in yields across all securities within
this market cell. For credit portfolios, the cor-
responding measure would be contributions to
spread duration, measuring the sensitivity to a
parallel shift in spreads. Determining the set of
active spread duration bets to different market
cells and issuers is one of the primary decisions
made by credit portfolio managers.

391
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Yet all spread durations were not created
equal. Just as one could create a portfolio
that matches the benchmark exactly by mar-
ket weights, but clearly takes more credit risk
(e.g., by investing in the longest duration cred-
its within each cell), one could match the bench-
mark exactly by spread duration contributions
and still take more credit risk—by choosing
the securities with the widest spreads within
each cell. These bonds presumably trade wider
than their peer groups for a reason—that is, the
market consensus has determined that they are
more risky—and they are often referred to as
high beta, because their spreads tend to react
more strongly than the rest of the market to
a systematic shock. We found strong empiri-
cal evidence that this relation takes on a nearly
perfect linear form: Spread changes are linearly
proportional to spread levels at the start of the
period.

Based on the linear relation between spread
level and the volatility of spread changes, we
have advocated since 2005 a new measure of
risk sensitivity that utilizes spreads as a funda-
mental part of the credit portfolio management
process. To reflect the view that higher spread
credits represent greater exposures to sector-
specific risks, we represent sector exposures
by contributions to duration times spread (DTS),
computed as the product of market weight,
spread duration, and spread. For example, an
overweight of 5% to a market cell implemented
by purchasing bonds with a spread of 80 basis
points (bps) and spread duration of three years
would be equivalent to an overweight of 3% us-
ing bonds with an average spread of 50 bps and
spread duration of eight years.

The shift from spread duration exposures to
DTS exposures as the measure of market risk
sensitivity embraces a different paradigm for
credit spread movement—in the form of rela-
tive spread changes rather than parallel shifts in
spread. The introduction of the DTS paradigm
was motivated by an extensive empirical study
using over 560,000 monthly observations of in-
dividual corporate bonds spreads, spanning the

period of September 1989 to January 2005.1 The
analysis showed that changes in spreads are
not parallel, but rather depend on the level
of spread. Specifically, spread change volatility
(both systematic and idiosyncratic) was shown
to be linearly proportional to spread level for
both investment-grade and high-yield credit se-
curities, irrespective of the sector, duration, or
time period. Subsequent studies indicated that
the results were not confined to the realm of
U.S. corporate bonds, but also extend to other
spread asset classes with a significant default
risk such as credit default swaps, European
corporate and sovereign bonds, and emerg-
ing market sovereign debt denominated in U.S.
dollars.2 Furthermore, even from a theoretical
standpoint structural credit risk models such as
Merton (1974) imply a near-linear relation be-
tween spread level and volatility.3

The DTS concept has many implications for
portfolio managers, both in terms of the way
they manage exposures to industry and credit
quality factors (systematic risk) and in terms of
their approach to issuer exposures (nonsystem-
atic risk). After a short review of the DTS con-
cept and the empirical evidence supporting it,
we discuss how it can help investors improve
projected risk estimates, hedging, replication,
and portfolio construction.

THE DTS CONCEPT
To understand the intuition behind DTS, con-
sider the return, Rspread, due strictly to change
in spread. Let D denote the spread duration of a
bond and s its spread; the spread change return
is then:

Rspread = −D · �s (1)

Or, equivalently,

Rspread = −D · s · �s
s

(2)

That is, just as spread duration is the sensitiv-
ity to an absolute change in spread (e.g., spreads
widen by 5 bps), DTS (D · s) is the sensitivity to
a relative change in spread (e.g., spreads widen
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by 5%). Note that this notion of relative spread
change provides for a formal expression of the
idea mentioned earlier—that credits with wider
spreads are riskier since they tend to experience
greater spread changes.

In the absolute spread change approach
shown in equation (1), we can see that the vola-
tility of excess returns can be approximated by

σreturn ∼= D · σ absolute
spread (3)

while in the relative spread change approach of
equation (2), excess return volatility follows

σreturn ∼= D · s · σ relative
spread (4)

Given that the two representations above are
equivalent, why should one of them be prefer-
able to another? The key advantage of model-
ing changes in spreads in relative terms is the
resulting stability. The above equations, for sim-
plicity, present returns and volatilities as ideal-
ized concepts. We have not added subscripts
to specify whether we are referring to specific
securities or sectors, or over what time period.
Yet the way spread changes of different securi-
ties relate to each other, or the way volatilities
in one time period relate to those in another,
can be of critical importance in measuring and
controlling portfolio risk.

For example, to determine a portfolio’s expo-
sure to a systematic widening of spreads, one
needs to know how spread changes are likely to
be realized across a sector. If one is concerned
that spreads might move in parallel, then expo-
sures should be measured as the overall contri-
bution to spread duration as per equation (1).
However, if spreads tend to change proportion-
ally, then the contribution to DTS provides the
correct exposure to such an event.

Similarly, volatility can be measured or pro-
jected in many different ways. Historically
realized volatilities can be measured using
observed spread changes at a specified fre-
quency over a given sample period. Projec-
tions of forward-looking volatilities are the
key building blocks of risk management sys-
tems. The accuracy with which historically re-

alized volatilities can project future volatilities
is therefore of fundamental importance. If rel-
ative spread volatilities can be predicted with
greater accuracy than absolute spread volatili-
ties, then equation (4) should be preferred over
(3). We found this to be the case, based on ex-
tensive empirical evidence from credit markets.

DTS AS BETA-ADJUSTED
SPREAD DURATION
What are the dynamics of credit spread
changes? Do spreads tend to widen in paral-
lel, or do wider spreads widen by more? Fig-
ure 1 shows a specific example in which spread
changes show a clear dependence on spread.
The figure shows the changes in spreads expe-
rienced by key issuers in the Communications
sector of the Barclays Capital Corporate Index
in January 2001, during a temporary rally in
the midst of the dot-com crisis. It is clear that
this sector-wide rally was not characterized by
a purely parallel shift; rather, issuers with wider
spreads tightened by more.

Certainly, not all spread changes follow such
a clear pattern. In many months, there are
no large industry-wide spread changes, and
spread changes are mostly idiosyncratic in na-
ture. Occasionally, an industry will experience
a systematic spread change that does seem to
take the form of a parallel shift. However, an ex-
tensive set of regressions using individual bond
spread changes across eight distinct market sec-
tors and 185 months indicated that systematic
factors expressed in terms of relative spread
changes across an industry were able to capture
nearly twice as much of the overall spread vari-
ance as factors based on parallel shifts in indus-
try spreads. Furthermore, Ben Dor et al. (2007)
found clear evidence that whenever a system-
atic widening or tightening of spreads across
an industry occurred, credits with the highest
spreads at the beginning of the month were
most likely to experience the largest change in
spreads.
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Figure 1 Average Spreads and Spread Changes for Key Issuers in the Communications Sector of the
Barclays Capital Corporate Index (January 2001)
Source: Barclays Capital.

This idea may strike investors as reminiscent
of the idea of “market beta” that is familiar
from the capital asset pricing model (CAPM),
in which the beta of a given security represents
the extent to which it would be expected to par-
ticipate in a market-wide rally or decline. Some
credit market investors, in fact, have used mod-
els of beta-adjusted spread duration to measure
systematic risk exposures. The difficulty with this
approach lies in estimating the betas. Empiri-
cal betas can be backed out of historical data,
for example, by regressing the spread changes
realized by a given bond against the average
spread changes of the sector. However, it is not
clear how much historical data to use for this
purpose—a short sample may not give a good
statistical estimate, but a long sample may in-
clude observations from a time when the se-
curity had very different characteristics. From
this viewpoint, we can offer another interpre-
tation of DTS. Essentially, DTS can be viewed
as an implementation of beta-adjusted spread
duration, in which the betas are provided by
the market in the form of spreads. The ra-
tio of a given issuer’s spread to the average
spread for the industry gives its beta, or sen-
sitivity, to a relative spread change across the
industry.

To demonstrate this, we carried out head-to-
head tests of DTS versus empirical betas using
weekly spread change data from the credit de-
fault swap (CDS) market.4 In the first test, we
measured the empirical betas of each issuer’s
CDS with respect to its industry peer group.
We then tested two different predictors for this
beta—either the empirical beta from the prior
period, or the ratio of issuer DTS to the indus-
try average DTS as of the beginning of the pe-
riod. In the second test, we set up long-short
CDS trades between two issuers from within
the same industry and investigated different
approaches to setting up the hedge ratios so
as to minimize the systematic risk exposures of
the trades. The DTS approach was found to be
superior to empirical betas for both tasks.

THE RELATION BETWEEN
SPREAD VOLATILITY AND
SPREAD LEVEL
We now turn our attention to the dependence
of spread change behavior on spread level.
Figure 2 plots the relation between systematic
spread volatility and spread level using over
15 years of monthly spread change data from
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Figure 2 Systematic Spread Volatility versus Spread Level
Note: Based on monthly observations of bonds rated Aaa to B in the Barclays Capital Corporate and
High-Yield Indexes, September 1989–January 2005.
Source: Barclays Capital.

U.S. credit markets, spanning investment-grade
and high-yield rated bonds. The bonds in the
Barclays Capital indexes for these markets were
partitioned each month by sector, quality, and
spread level. The average spread level for
each market cell is plotted against the time-
series volatility of the average absolute spread
changes in each month. The results suggest that
spread volatility can be closely approximated
by a simple linear model of the form

σ absolute
spread (s) ∼= θ · s (5)

This simple model provides an excellent fit
to the data shown in Figure 2, with θ equal to
9.4% irrespective of sector or maturity. Hence,
the results suggest that the historical volatil-
ity of systematic spread movements can be
expressed quite compactly, in terms of a rela-
tive spread change volatility of about 9% per
month. That is, spread volatility for a market
segment trading at 50 bps should be about
4.5 bps/month, while that of a market segment
at 200 bps should be about 18 bps/month. Ben
Dor et al. (2007) documented a similar pattern
for idiosyncratic volatility: The cross-sectional
volatility of credit spread changes across a sec-

tor also exhibits a linear dependence on spread
with about the same slope.

The results in Figure 2 suggest that measur-
ing spread volatility in relative terms should be
much more stable than absolute spread volatil-
ities, and therefore forms the basis for more ac-
curate projections of forward-looking risk. The
advantage of using relative spread volatility
should be particularly strong in the event of
a market crisis. If we plot the absolute spread
volatilities of various assets in the postcrisis
period against their precrisis volatilities, we
will find a marked increase across the board.
Essentially, market data from the earlier pe-
riod becomes useless for estimating risk in the
postcrisis world. However, if we work with
relative spread volatilities, we may find that
they have not changed that much. The abso-
lute spread volatility increases proportionally
with the spread level, and the relative spread
volatility remains stable. This relationship is
illustrated in Figure 3 using data from U.S.
credit markets in the period before and after the
Russian crisis of 1998.

Two clear phenomena can be observed in Fig-
ure 3. First, as discussed above, most of the
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observations representing absolute spread
volatilities are located far above the diagonal,
pointing to an increase in volatility in the sec-
ond period of the sample. In contrast, rela-
tive spread volatilities are quite stable, with
almost all observations located on the 45-degree
line or very close to it. This is because the
pickup in volatility in the second period was
accompanied by a similar increase in spreads.
Second, the relative spread volatilities of var-
ious sectors are quite tightly clustered, rang-
ing from 5%/month to a bit over 10%/month,
whereas the range of absolute volatilities is
much wider, ranging from 5 bps/month to
more than 20 bps/month.

The results in Figure 3 exhibit the sharp dis-
continuity in credit market volatility that was
experienced in 1998 due to the Russian crisis
and the LTCM hedge fund failure. Since the
introduction of DTS, global markets have pro-
vided us with ample opportunity to test the
model with data from new out-of-sample crises.
In both the credit crisis of 2007–2009 and the
ensuing sovereign crisis that began in 2009, we
have found that the DTS model has performed

admirably. In each case, a plot of precrisis vs.
postcrisis volatility reveals results similar to
Figure 3, showing the stability advantage of rel-
ative spread volatilities. The incorporation of
spread into the projection of risk was shown to
keep risk projections much more accurate than
traditional absolute volatility risk measures.5

These results clearly indicate that absolute
spread volatility is highly unstable and tends to
rise with increasing spread. Computing volatil-
ities based on relative spread change generates
a more stable time series. These findings have
important implications for the appropriate way
of measuring credit exposures and projecting
excess return volatility, which we discuss next.

DTS AND EXCESS RETURN
VOLATILITY
If the volatility of both systematic and idiosyn-
cratic spread changes is proportional to the level
of spread, then equation (4) suggests two as-
sertions regarding excess returns. First, excess
return volatility should increase linearly with
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DTS, where the slope represents the volatility
of relative spread changes. Second, the mag-
nitude of excess return volatility should be
approximately equal across portfolios with sim-
ilar DTS values, irrespective of their spread and
spread duration characteristics. The results of
Ben Dor et al. (2007) strongly supported both
empirical predictions.

Another implication of the linear relation be-
tween spread level and spread volatility is that
projecting volatility based on the current level
of spread and the DTS slope from Figure 2
should be superior to using historical realiza-
tions of absolute spread changes. Specifically,
using the product of DTS and the historical
volatility of relative spread changes should gen-
erate better risk estimates than the product of
spread duration and volatility of past absolute
spread changes.

Our results confirmed that the DTS-based es-
timator was superior. A further indication that
the DTS-based risk projection was more accu-
rate is that it resulted in a smaller number of
extreme realizations (above or below two stan-
dard deviations) than either of two estimators
based on absolute spread volatility, using trail-
ing windows of two different lengths.

Our understanding of these results is that
the approach based on relative spread change
volatility is able to give a more timely risk pro-
jection since it can react almost instantaneously
to a change in market conditions reflected in
the spread of the security. This should help the
model react more quickly both to increase risk
estimates at the onset of a crisis and to relax
them once the turbulence subsides. Any sig-
nificant widening or tightening of spreads will
immediately flow through the DTS into the pro-
jection of excess return volatility.

IMPLICATIONS OF DTS FOR
PORTFOLIO MANAGERS
We have highlighted above the key points that
emerge from the empirical evidence supporting

the DTS paradigm. Spread changes are propor-
tional to the level of spread. Systematic changes
in spread across a sector tend to follow a pattern
of relative spread change, in which bonds trad-
ing at wider spreads experience larger spread
changes. The systematic spread volatility of a
given sector (if viewed in terms of absolute
spread changes) is proportional to the average
spread in the sector; the nonsystematic spread
volatility of a particular bond or issuer is pro-
portional to its spread as well. Those findings
hold irrespective of sector, duration, or time
period.

There are several implications for a portfo-
lio manager who wishes to act on these re-
sults. First, the best measure of exposure to
a systematic change in spread within a given
sector or industry is not the contribution to
spread duration, but the contribution to DTS.
At many asset management firms, the targeted
active exposures for a portfolio relative to its
benchmark are expressed as contribution-to-
duration overweights and underweights within
a sector by quality grid. Reports on the ac-
tual portfolio follow the same format. In the
relative spread change paradigm, managers
would express their targeted overweights and
underweights in terms of contributions to DTS
instead.

Second, our finding that the volatility of non-
systematic return is proportional to DTS offers
a simple mechanism for defining an issuer limit
policy that enforces smaller positions in more
risky credits. Many investors specify ad hoc
weight caps by credit quality to control issuer
risk. Alternatively, we can set a limit on the
overall contribution to DTS for any single is-
suer. For example, say the product of Market
value percentage × Spread × Duration must be
5 or less. Then, a position in issuer A, with a
spread of 100 bps and a duration of five years,
could be up to 1% of portfolio market value;
while a position in issuer B, with a spread of
150 and an average duration of 10 years, would
be limited to 0.33%. Issuer limits based on DTS
and those based on market weight each have
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their advantages and disadvantages; investors
might want to consider some combination of
the two.6

Third, DTS can help improve the hedging
of security-vs.-security or security-vs.-market
credit trades. Say a hedge fund manager has
a view on the relative performance of two is-
suers within the same industry and would like
to capitalize on this view by going long issuer
A and short issuer B in a market-neutral man-
ner. How do we define market neutrality? A
typical approach might be to match the dol-
lar durations of the two bonds, or to go long
and short CDS of the same maturities with the
same notional amounts. However, if issuer A
trades at a wider spread than issuer B, our re-
sults would indicate that a better hedge against
market-wide spread changes would be ob-
tained by using more of issuer B, so as to match
the contributions to DTS on the two sides of
the trade.

Fourth, portfolio management tools such
as risk and performance attribution models
should represent sector exposures in terms of
DTS contributions and sector spread changes
in relative terms. A risk model for any asset
class is essentially a set of factors that char-
acterize the main risks that securities in that
asset class are exposed to. The risk of an indi-
vidual security or portfolio is computed based
on its sensitivities to the various risk factors and
the factor volatilities and correlations estimated
from their past realizations. For credit-risky se-
curities, traditional risk factors typically mea-
sure absolute spread changes based on a sector
by quality partition that spans the universe of
bonds. A risk factor specification based instead
on relative spread changes has two important
benefits. First, such factors would exhibit more
stability over time and allow better forward-
looking risk forecasts. Second, the partition by
quality would no longer be necessary to control
risk, and each sector can be represented by a
single risk factor. This would allow managers to
express more focused views, essentially trading
off the elimination of the quality-based factors

with a more finely grained partition by indus-
try. Similarly, a key goal for performance attri-
bution models is to match the allocation process
as closely as possible. If and when a manager
starts to state allocation decisions in terms of
DTS exposures, performance attribution should
follow suit.

One practical difficulty that may arise in the
implementation of DTS-based models is an
increased vulnerability to pricing noise. Any
small discrepancies in asset pricing should
cause only small discrepancies in market val-
ues, but may potentially result in much larger
variations in spreads. Consequently, managers
who rely heavily on contribution-to-DTS expo-
sures will need to implement strict quality con-
trols on pricing.

Perhaps one of the most useful applications of
DTS is in the management of core-plus portfo-
lios that combine both investment-grade and
high-yield assets. Traditionally, investment-
grade credit portfolios are managed based
on contributions to duration, while high-yield
portfolios are managed based on market value
weights. Using contributions to DTS across both
markets could help bring consistency to this
portfolio construction process. Skeptics may
point out that in high-yield markets, especially
when moving toward the distressed segment,
neither durations nor spreads are particularly
meaningful, and the market tends to trade on
price, based on an estimated recovery value. A
useful property of DTS in that context is that
in the case of distressed issuers, where shorter
duration securities tend to have artificially high
spreads, DTS is fairly constant across the matu-
rity spectrum, so that managing issuer contri-
butions to DTS becomes roughly equivalent to
managing issuer market weights.

The introduction of the DTS paradigm has
had wide-ranging effects. It changed portfolio
management practices across the industry and
has been incorporated into some of the lead-
ing portfolio management analytics systems.
We view it as a fundamental insight into the
behavior of credit markets.
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KEY POINTS
� Changes in credit spreads tend to be propor-

tional to spread levels.
� Volatility of relative spread changes is more

stable than volatility of absolute spread
changes. This applies to all credit securities
with a default component including corpo-
rate and sovereign issuers in developed and
emerging market countries for both cash and
derivatives.

� Whereas spread duration measures sensitiv-
ity to a parallel shift in spreads, DTS measures
sensitivity to a relative change in spreads.

� The risk associated with credit spread ex-
posures can therefore be managed more ef-
fectively using contributions to DTS than
contributions to spread duration. This is true
at the level of asset classes, industries, and
individual issuers.

� Including spread in the estimation of risk can
reduce the need to rely on credit ratings, al-
lowing risk models to provide greater indus-
try detail.

NOTES
1. See Ben Dor, Dynkin et al. (2007).
2. For example, see Ben Dor, Polbennikov, and

Rosten (2007) and Ben Dor, Desclée, Hyman,
and Polbennikov (2010).

3. See Chapter 4 in Ben Dor et al. (2012).
4. For details, see Chapter 8 in Ben Dor et al

(2012).
5. See Ben Dor et al. (2012) for details. The appli-

cation of DTS to the modeling of European
sovereign risk is discussed in Chapter 3 of
Ben Dor et al. (2012), and Chapter 10 reviews
the performance of the model through the
2007–2009 credit crisis.

6. For a detailed discussion of different ap-
proaches to issuer limits, see Chapter 11 in
Ben Dor et al. (2012).
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Abstract: Credit spread decomposition refers to breaking down a bond’s option-adjusted spread
to Treasuries into market-wide risk premium, expected default loss, and expected liquidity cost
components. Credit spread decomposition is implemented empirically by regressing a bond’s
option-adjusted spread on a measure of its expected default losses (credit default swap spread) and
expected liquidity cost. Credit spread decomposition can help investors determine the extent to
which credit spreads reflect expected default losses, liquidity costs, or a market-wide risk premium.
Investors can also apply spread decomposition analysis to construct targeted hedging strategies
and to identify relative value opportunities. Regulators can use spread decomposition to monitor
separately the liquidity and credit risk of the institutions they supervise, and to help determine
capital adequacy.

At issuance, a credit bond has a positive yield
spread (i.e., a credit spread) over comparable-
maturity Treasury bonds to compensate in-
vestors for the chance that the bond may default
with a recovery value less than par. However,
studies have documented that credit spreads
are generally much larger than justified by their
subsequent default and recovery experience.1

Beyond expected default losses, a portion of
the credit spread may reflect the expected liquid-
ity cost to execute a roundtrip trade. This cost
is typically greater for a credit bond than for a
comparable-maturity Treasury bond. Investors
who anticipate selling a credit bond at some
point demand compensation for this cost at the
time of purchase in the form of a wider spread.
Another portion of the credit spread may re-

flect a market-wide risk premium demanded by
risk-averse investors due to the general uncer-
tainty associated with the timing, magnitude,
and recovery of defaults and the magnitude of
liquidity costs. The greater the degree of this un-
certainty, or the more risk-averse the marginal
investor, the more the credit spread will exceed
the expected default cost. Credit spread decomposi-
tion refers to the econometric exercise of break-
ing down a bond’s option-adjusted spread
(OAS) to Treasuries into its risk premium, ex-
pected default loss, and expected liquidity cost
components.

Credit spread decomposition can serve many
purposes. For example, suppose an insurance
company, typically a buy-and-hold investor, is
considering investing in credit bonds trading

401
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at wide spreads. The company’s decision will
likely depend on whether the wide spreads are
due to large expected default losses, high liq-
uidity costs, or a high market risk premium.
Presumably, the company can ride out periods
of high liquidity cost and risk aversion. How-
ever, if the wide spreads reflect high expected
default losses, the company may decide not to
invest.

This entry begins with an example highlight-
ing the ability of credit spread decomposition
to reveal additional information hidden in a
bond’s OAS. Next, the entry outlines the speci-
fication of the spread decomposition model and
shows how it can be implemented. Following a
discussion on how to interpret the model re-
sults, the entry illustrates how they can be used
in portfolio management applications. The en-
try concludes with a discussion of some alterna-
tive specifications of the spread decomposition
model.

REVEALING THE DRIVERS
OF CREDIT SPREADS
To illustrate the informational value of spread
decomposition, consider the historical spread
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Figure 1 OAS, CDS, and LCS of a Typical Bond over Time

behavior of a typical investment-grade bond.
As shown in Figure 1 the bond’s OAS var-
ied over time. The figure also shows the
level of the issuer’s credit default swap (CDS)
spread—a measure of expected default losses.
While movements in the bond’s OAS loosely
tracked changes in the issuer’s CDS, there was a
wide and variable gap between the two spreads,
reflecting movements in risk premium and ex-
pected liquidity costs.

Figure 1 also plots the bond’s expected liq-
uidity cost over the same period. To measure a
bond’s liquidity cost investors can use a bond’s
bid-ask spread (in price terms) expressed as a
percentage of the bond’s bid price. This cost is
labeled as the bond’s liquidity cost score (LCS)
by Dastidar and Phelps (2009). Much of the vari-
ability in the OAS-CDS spread gap (the CDS-
cash basis) mirrored movements in the bond’s
LCS. The initial rise in the issuer’s OAS was
driven by both default and liquidity concerns
(all three lines moved up), whereas the larger
subsequent spike was mainly a liquidity event
(the line plotting the LCS moved up sharply
while the CDS line was little changed). This ex-
ample illustrates that investors need to measure
the components of OAS separately to more fully
understand OAS movements.
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CREDIT SPREAD
DECOMPOSITION: MODEL
SPECIFICATION AND
IMPLEMENTATION
To decompose credit spreads, a bond’s OAS
is regressed against three variables: a variable
reflecting expected default cost, a variable re-
flecting expected liquidity cost, and a market-
wide variable unrelated to the bond’s attributes
representing the market-wide risk premium de-
manded by investors. Conceptually, for every
time t, the cross-sectional OLS regression model
is:

OASit = αt + βt ExpectedDefaultCostit

+ γt ExpectedLiquidityCostit + ηit

The risk premium variable (the intercept term,
α) represents a market-level risk premium, not
a risk premium specific to each bond. The value
of the intercept is likely, but not necessarily, to
be positive, reflecting that equilibrium credit
spreads are typically determined at the margin
by risk-averse investors.

Any bond-level risk premium is likely to be
highly correlated with the bond’s default cost or
liquidity cost. In other words, an investor will
demand a higher spread premium for a bond
with a high liquidity cost as compensation for
liquidity cost uncertainty. This makes it diffi-
cult to decompose a bond’s spread into separate
expected liquidity cost and liquidity risk pre-
mium components. The same applies to default
cost and default risk premium. If default risk or
liquidity risk premiums are highly correlated
with default or liquidity costs, then the regres-
sion coefficients (β and γ ) will be larger and/or
more significant. Any part of the risk premi-
ums that is unrelated to bond-level default
and liquidity cost—in other words, a market-
level risk premium—will show up in the
intercept.

Credit spread decomposition is implemented
empirically by running the following regression
across a set of bonds (denoted by i) at a given

time t:

OASit = αt + βt CDSit + γt LCSit + ηit (1)

The LCS is used to measure bond-level ex-
pected liquidity cost. An issuer’s CDS (with a
similar spread duration as the bond) is used
to measure its expected default cost (i.e., de-
fault probability and loss given default). If the
CDS itself is illiquid, it will contain some illiq-
uidity premium, thereby distorting results. So,
only liquid CDS should be chosen. While an
issuer’s CDS can be used to measure the ex-
pected default cost of its bonds, other measures
of expected default cost could be used in lieu
of CDS. For example, some investors may use
firm-specific fundamental information, equity
prices, and macroeconomic data to estimate an
issuer’s default probability and recovery rate.

To get a sense of the value of incorporating
a bond-level liquidity variable to explain the
cross-sectional distribution of spreads, an in-
vestor can first estimate the model without LCS
as an explanatory variable. The model can then
be re-estimated adding LCS to see if the regres-
sion’s fit improves and does not detract from
the explanatory power of CDS. If LCS is a use-
ful explanatory variable, adding LCS as a re-
gressor should produce an improvement in the
adjusted R2 and a significant (and positive) LCS
coefficient, with little disturbance to the signif-
icance and magnitude of the CDS coefficient.

INTERPRETING THE
RESULTS OF THE CREDIT
SPREAD DECOMPOSITION
MODEL
The estimated regression coefficients can be
used to break down the average OAS into
the three spread components in terms of basis
points. For example, suppose the average OAS,
CDS, and LCS are 2.09%, 1.14%, and 0.73%, re-
spectively. In addition, suppose the estimated
coefficients of CDS and LCS are 0.67 and 1.41,
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respectively. A variable’s contribution to the av-
erage OAS can be determined by multiplying
the average value of the variable by its esti-
mated regression coefficient (e.g., 1.41 × 0.73%
is the contribution of LCS to the average OAS).
Repeating spread decomposition at different
time periods can show fluctuations in the rel-
ative contributions to OAS of the three compo-
nents over time as shown in Figure 2.

When liquidity is abundant, LCS might not
play an important role in explaining spread dif-
ferences across bonds. In fact, adding LCS to
the regression may not meaningfully improve
the R2. In contrast, when liquidity conditions
deteriorate, adding LCS to the regression will
likely improve the R2.

As discussed, the regression intercept cap-
tures the portion of (average) spread that is in-
dependent of CDS and LCS. The market risk
premium is likely to be, at times, an important
contributor to the level of OAS. The time series
can be used as an indicator of the variation of
the market risk premium—or risk aversion—in
the credit market. When the intercept explains
a relatively high proportion of OAS, this sug-
gests that systematic market factors, rather than
bond-specific factors, are driving spreads. This
may occur because of very high levels of aggre-

gate risk aversion or because the market is pric-
ing bonds with little concern for issuer-specific
information. When the intercept explains a rela-
tively low proportion of OAS, this suggests that
bond-specific factors are driving spreads.

The regression coefficients for both CDS and
LCS are expected to be positive. While the rela-
tionship of CDS with OAS is naturally tight,
it may not be as close as one might think.
Since default risk for high-grade bonds has been
very low over long periods of time, a relatively
large proportion of the OAS is likely liquidity-
related.

APPLICATIONS OF CREDIT
SPREAD DECOMPOSITION
The parameter estimates from the spread de-
composition model can be used in a variety
of portfolio management applications. Active
portfolio managers can use spread decompo-
sition to take positions in specific bonds with
large liquidity or default components, depend-
ing on their views about how these components
are likely to evolve. Regulators can use spread
decomposition to monitor separately the liq-
uidity and credit risk embedded in the credit
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portfolios of the institutions they supervise,
which can help determine capital adequacy.

Presented below is a discussion of two im-
portant applications of credit spread decompo-
sition: identifying bonds that may be trading
“rich” or “cheap,” and allowing the manager to
construct hedges that target specific drivers of
OAS fluctuations.

Identifying Relative Value
So far, credit spread decomposition analysis has
been described using contemporaneous data to
attribute OAS levels to default and liquidity
cost components at a given time. However, in-
vestors can apply spread decomposition analy-
sis to ex ante investment decisions as well.

In principle, spread decomposition should
help identify relative value opportunities. A
bond’s OAS can be compared with its estimated
OAS using the parameters from the spread de-
composition model. If the actual OAS is wider
than the estimated OAS, it suggests that the
bond is trading too wide, and vice versa. This
may be a signal that the bond’s OAS may
change to correct this “mispricing.”

To examine whether the realized residuals η̂i,t,
from (1) can help predict future OAS changes,
one can examine whether the bond’s future
OAS changes are of the opposite sign to the
sign of the residual by running the follow-
ing regression and testing to see if the θ ’s are
negative.

�OASit,t+ j = αt + θt η̂it + δt MonthDummyt + eit

(2)

Hedging a Credit Bond Portfolio
One method to determine a hedge for a credit
is to use regression to examine the historical
relationship between the bond’s OAS and po-
tential hedge variables. The issuer’s CDS may
be an effective hedge targeted against changes
in expected default losses. Since movements in
the volatility index (VIX) are closely related to
changes in LCS,2 VIX futures can potentially

be used as a credit hedging instrument to target
spread changes related to changes in liquidity.

If an investor seeks to hedge the default
or liquidity components separately, then the
contribution to OAS in basis points from
the credit spread decomposition model (in
differences—discussed below) determines the
appropriate hedge ratio for each component. Of
course, the success of such a hedge depends on
the goodness of fit and whether the historical
relationship will hold in the future.

ALTERNATIVE CREDIT
SPREAD DECOMPOSITION
MODELS
There are alternative formulations of the credit
spread decomposition model. As discussed ear-
lier, the analysis has ignored explicit bond-level
risk premium variables. Instead, it assumes that
any bond-level risk premium is highly related
to either the expected liquidity cost or the ex-
pected default cost. An alternative model can
include a term representing a bond-level liq-
uidity risk premium. This additional term re-
flects compensation demanded by investors for
the risk that the actual cost at liquidation may
be different from the expected liquidity cost as
measured by the current LCS. A bond’s LCS
volatility over the prior 12 months can be con-
sidered a measure of liquidity risk. For example,
two bonds may have the same LCS today, but
bond A may have a much more volatile LCS his-
tory than bond B. An investor may view bond
A as having a riskier liquidity cost and demand
an OAS premium versus bond B, all else equal.

The equation below shows the spread de-
composition model incorporating a bond-level
liquidity risk factor, LCSVoli,t. Generally, the
results may show that LCSVoli,t is highly sig-
nificant, but absorbs part of the effect of LCS,
thereby not improving the regression’s adjusted
R2 substantially.

OASit = αt + βt C DSit + γtLCSit + φtLCSVolit
+ δtMonthDummyt + ηit (3)
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The credit spread decomposition model can
also be estimated in differences to check if
changes in the liquidity and default proxies
affect changes in OAS (i.e., contemporaneous
returns). The regression model below details
the specification, where �OASit, �CDSit, and
�LCSit refer to changes in a bond’s characteris-
tics in consecutive periods. As described above,
this model of spread decomposition can be used
for designing targeted hedges.

�OASit = αt + βt �CDSit + γt �LCSit

+ δt MonthDummyt + ηit (4)

Finally, the spread decomposition model may
be susceptible to outliers, especially since de-
fault and liquidity are arguably more impor-
tant considerations for higher spread bonds. To
check this, one can run log regressions (e.g.,
the dependent variable is log(OAS) instead of
OAS, similarly for the independent variables),
as shown below. If the conclusions from the log
model are unchanged, this would indicate that
outliers are not driving the results.

ln(OASit) = αt + βt ln(CDSit) + γt ln(LCSit) + ηit

(5)

KEY POINTS
� Credit spread decomposition refers to break-

ing down a bond’s option-adjusted spread
(OAS) to Treasuries into market risk pre-
mium, expected default loss, and expected
liquidity cost components.

� To decompose credit spreads, a bond’s OAS is
regressed on a measure of its expected default
cost (CDS) and expected liquidity cost (LCS).

� Credit spread decomposition can help credit
investors determine the extent to which
spreads reflect expected default losses, high
liquidity costs, or a high market-wide risk
premium, and make portfolio decisions ac-
cordingly.

� Investors can also apply spread decomposi-
tion analysis for determining targeted hedg-
ing strategies and to help identify relative
value opportunities.

NOTES
1. See, for example, Ng and Phelps (2011) and

Elton et al. (2001).
2. Dastidar and Phelps (2009).
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Abstract: The credit crisis of 2007–2009 in the United States and Europe and the collapse of the
Japanese bubble in the 1990–2002 period show that, without hedging credit risk, the largest financial
institutions in the world are very likely to fail. Many trillions of dollars of taxpayer bailouts have put
the credit quality of the United States and Japan at risk. The solution to this financial institutions’
risk management problem and the related sovereign risk problem is hedging with respect to macro
factor movements. Hedging interest rate movements has a 40-year history, but now the focus has
turned to a longer list of macro factors like home prices, commercial real estate prices, oil prices,
commodity prices, foreign exchange rates, and stock indices. This hedging capability is now widely
available in best practice enterprise risk management software. Stress testing with respect to macro
factors is now a mandatory requirement of the European Central Bank and U.S. bank regulators.

In this entry, we examine practical tools for
hedging credit risk at both the transaction level
and the portfolio level, focusing on the interac-
tion between the credit modeling technologies
and traded instruments that would allow one
to mitigate credit risk. We start with a discus-
sion linking credit modeling and credit portfo-
lio management in a practical way. We then turn
to the credit default swap market as a potential
hedging tool. Finally, the state of the art is dis-
cussed: hedging transaction level and portfolio
credit risk using hedges that involve macroe-
conomic factors that are traded in the market-
place.

CREDIT PORTFOLIO
MODELING: WHAT’S THE
HEDGE?
One of the reasons that the popular value-at-
risk (VaR) concept has been regarded as an
incomplete risk management tool is that it
provides little or no guidance on how to hedge
if the VaR indicator of risk levels is regarded
as too high. In a more subtle way, the same
criticisms apply to many of the key modeling
technologies that are popular in financial mar-
kets, like the copula approach to the simulation of
credit portfolios. In this entry we summarize the

407
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Figure 1 Cyclical Rise and Fall in 5-Year Reduced Form Default Probabilities: Citigroup and Ford
Motor Company, 2006–2011

virtues and the vices from a hedging perspec-
tive of both various credit modeling techniques
and credit derivative instruments traded in the
marketplace. One of the key issues that requires
a lot of attention in credit portfolio modeling
is the impact of the business cycle on default
probabilities. Default probabilities rise and fall
when the economy weakens and strengthens.
This is both obvious and so subtle that almost
all commercially available modeling technolo-
gies ignore it. It’s easy to talk about it and hard
to do.

Figures 1 and 2 show the cyclical rise and
fall in 5-year reduced-form default probabili-
ties for Citigroup and Ford Motor Company
for the periods 1990–2005 and 2006–2011.1 The
figures show the obvious correlation in de-
fault probabilities for both companies as they
rise or fall in the 1990–1991 recession and in
the recession spanning 1999–2003, depending
on the sector, but the greatest correlation is in
the credit crisis period of 2007–2009. Over the
full 1990–2011 period, their respective 5-year
default probabilities have a simple correlation
of 45.2%.

With this common knowledge as background,
we begin with the hedging implications of the
Merton model at the individual transaction and
portfolio level (see Merton, 1974).

THE MERTON MODEL AND
ITS VARIANTS:
TRANSACTION-LEVEL
HEDGING
As of this writing, every publicized commer-
cial implementation of the Merton model or its
variants has one principal assumption in com-
mon: The only random factor in the model is
the “value of company assets.” Regardless of
the variety of Merton model used, all models of
this type have the following attributes in com-
mon when the value of company assets rises:

Stock prices rise.
Debt prices rise.
Credit spread falls.
Default probability falls.
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Figure 2 Cyclical Rise and Fall in 5-Year Reduced Form Default Probabilities: Citigroup and Ford
Motor Company, 1990–2005

From a theoretical point of view, there are
three obvious ways to think about hedging in
the Merton context:

� Hedge a long position in the debt of the firm
with a short position in the assets of the com-
pany.

� Hedge a long position in the debt of the firm
with a short position in the common stock of
the company.

� Hedge a long position in the debt of the firm
with a short position in another debt instru-
ment of the company.

The first hedging strategy is consistent with
the assumptions of the Merton model and all
of its commercial variants, because assets of the
firm are assumed to be traded in perfectly liquid
efficient markets with no transactions costs. Un-
fortunately, for most industrial companies, this
is a very unrealistic assumption. Investors in
Ford Motor Company cannot go long or short
auto plants in any proportion. The third hedg-
ing strategy is also not a strategy that one can
use in practice, although the credit derivative
instruments we discuss in the next section pro-
vide a variation on this theme.

From a practical point of view, shorting the
common stock is the most direct hedging route
and the one that combines a practical hedge and
one consistent with the model theory. Unfor-
tunately, however, even this hedging strategy
has severe constraints that restrict its practical
use. Specifically, even if the Merton model or its
variant is true, mathematically, the first deriva-
tive of the common stock price with respect to
the value of company assets approaches zero
as the company becomes more and more dis-
tressed. When the value of company assets is
well below the amount of debt due, the com-
mon stock will be trading just barely above zero.
One would have to short more and more eq-
uity to offset further falls in debt prices, and
at some point a hedging strategy that shorts
even 100% of the company’s equity becomes too
small to fully offset the risk still embedded in
debt prices. In short, even if the Merton model
is literally true, the model fails the hedging
test (“What’s the hedge?”) for deeply distressed
situations.

What about companies that are not yet
severely distressed? Jarrow and van Deventer
(1998, 1999), analyzed a 9-year weekly data
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series of new issue fixed rate bond spreads
collected by First Interstate Bancorp, which at
the time was the seventh largest bank holding
company in the United States. Over the sam-
ple period used by Jarrow and van Deventer,
First Interstate’s debt ratings varied from AA to
BBB. They analyzed the debt and equity hedge
ratios produced by the Merton model (and its
variants) and tested for biases that would re-
duce hedging errors. The results of that analysis
showed that a common stock hedge in the op-
posite direction of that indicated by the Merton
model (and its variants) would have improved
results. That is, one should have gone long the
equity even if one is long the debt, not short
the equity. Jarrow and van Deventer are careful
to point out that this strategy is certainly not
recommended. The reason for this finding was
simple: During the 9-year weekly data series be-
ginning in 1984, credit spreads and stock price
changes move in the direction predicted by the
Merton model less than 45% of the time. Van
Deventer and Imai (2003) obtain similar results
over a much larger sample.

Jarrow and van Deventer make the point that
the Merton model is clearly missing key vari-
ables that would allow credit spreads and eq-
uity prices to move in either the same direction
or the opposite direction as these input vari-
ables change. None of the Merton models in
commercial use have this flexibility and there-
fore any hedge ratios they imply are quite sus-
pect.

What about companies that are not invest-
ment grade but do not yet fall in the “severely
distressed” category? It is in this sector that
individual transaction hedging using Merton-
type intuition is potentially the most useful.
Most of the research that has been done in this
regard has been done on a proprietary basis on
Wall Street. Even if the Merton model hedging
is useful for companies in the BB and B rat-
ings grade, how effective can it be in protecting
the owner of a bond that once was rated AA but
sinks to a distressed CCC? Whether or not hedg-
ing errors in the AA to BBB and CCC ratings

ranges more than offset hedging benefits in the
BB and B range is an important question. Mod-
ern corporate governance requires that users of
the Merton model have evidence that it works
in this situation, rather than relying on a be-
lief that it works. On September 12, 2005, the
Wall Street Journal reported on the hundreds of
millions of dollars that were lost by arbitrageurs
using Merton-type hedges on Ford and General
Motors when both firms were downgraded by
the major rating agencies.2

There are a few more points that one needs
to make about the Merton model and all of its
commercial variants when it comes to transac-
tion level hedging:

� The Merton model default probability is not
an input in this hedging calculation for the
same reason that the return on the common
stock is not an input in the Black-Scholes op-
tions model. The Merton model and all of its
commercial variants incorporate all possible
probabilities of default that stem from every
possible variation in the value of company
assets.

� Loss given default is also not an input in this
hedging calculation because all possible loss
given defaults (one for each possible ending
level of company asset value) are analyzed by
the Merton model and in turn have an impact
on the calculated hedge ratio.

These insights are not widely recognized by
analysts who consider hedging using the Mer-
ton technology. Given the value of company as-
sets, we can calculate the Merton hedge ratio
directly with no need for a default probabil-
ity estimate or a loss given default estimate. If
instead we are given the Merton (or its vari-
ants) default probability, we do not know the
hedge ratio without full disclosure of how the
default probability was derived. Any failure to
make this disclosure is a probable violation of
the Basel II capital accords from the Basel Com-
mittee on Banking Supervision.
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THE MERTON MODEL AND
ITS VARIANTS: PORTFOLIO-
LEVEL HEDGING
One of the attractive things about the Merton
model, in spite of the limitations mentioned
above, is its simple intuition. We know that the
basic businesses of Ford and General Motors
are highly correlated, so it is a small logical step
to think about how the assets of the two compa-
nies must be closely correlated. One has to make
a very substantial set of additional assumptions
if one wants to link the macroeconomic factors
that drive correlated defaults to the value of
company assets in the Merton framework or
any of its one-factor commercial variants. Let’s
assume away those complexities and assume
that we know the returns on the assets of Ford
have a 0.25 correlation with the returns on the
assets of General Motors. Note that the 0.25 cor-
relation does not refer to

� The correlation in the default probabilities
themselves.

� The correlation in the events of default, de-
fined as the vector of 0s and 1s at each time
step where 0 denotes no default and 1 denotes
default.

These are different and mathematically dis-
tinct definitions of correlation. Jarrow and van
Deventer (1998, 1999) show some of the mathe-
matical links between these different definitions
of correlation. Jarrow and van Deventer (2005)
formalize these results.

Once we have the correlation in the returns on
the value of company assets, we can simulate
correlated default as follows:

� We generate N random paths for the values
of company assets of GM and Ford that show
the assumed degree of correlation.

� We next calculate the default probability that
would prevail, given that level of company
assets, at that point in time in the given sce-
nario.

� We then simulate default/no default.

For any commercial variant of the Merton
model, an increase in this “asset correlation”
results in a greater degree of bunching of de-
faults from a time perspective. This approach
was a common first step for analysts evalu-
ating first-to-default swaps and collateralized
debt obligations because they can be done in
common spreadsheet software packages with a
minimum of difficulty.

There are some common pitfalls to beware of
in using this kind of analysis that are directly
related to the issues raised about the Merton
framework and its commercial variants:

� If one is using the original Merton model of
risky debt, default can happen at only one
point in time: the maturity date of the debt.
This assumption has to be relaxed to allow
more realistic modeling.

� If one is using the “down and out option”
variation of the Merton model, which dates
from 1976, one has to specify the level of the
barrier that triggers default at each point in
time during the modeling period.

Unless one specifically links the value of com-
pany assets to macroeconomic factors, the port-
folio simulation has the same limitations from
a hedging point of view as a single transaction.
As explained earlier, the hedge using a short
position in the common stock would not work
for deeply troubled companies from a theoreti-
cal point of view and it does not work for higher
rated credits (BBB and above) from an empirical
point of view.

If one does link the value of company as-
sets to macroeconomic factors, there is still
another critical and difficult task one has to
undertake to answer the key question: “What’s
the hedge?” One needs to convert the single-
period, constant interest rates Merton model
or Merton variant to a full valuation frame-
work for multiperiod fixed-income instru-
ments, many of which contain a multitude of
embedded options (like a callable bond or a line
of credit). One of the many lessons of the Wall
Street Journal article cited above and subsequent
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experience in 2007–2009 is easy to summarize:
This approach to hedging and simulating credit
risk (called the “copula approach” as well as the
Merton approach) simply did not work. Salmon
(2009) called the Merton/copula approach the
“formula that killed Wall Street” via the $945
billion in credit losses that resulted from the
credit crisis.3

What if we want to use the Merton/copula
approach in spite of its role in recent losses? As
Lando (2004) discusses, this is a large set of non-
trivial analytical issues to deal with. Most im-
portantly, moving to a multiperiod framework
with random interest rates leads one immedi-
ately to the reduced form model approach, where
it is much easier for the default probability mod-
els to be completely consistent within the valu-
ation framework. We turn to that task now.

Reduced-Form Models:
Transaction-Level Hedging
One of the many virtues of the reduced form
modeling approach is that it explicitly links
factors driving default probabilities, like in-
terest rates and other macroeconomic factors,
to the default probabilities themselves. Just as
important, the reduced form framework is a
multiperiod, no-arbitrage valuation framework
in a random interest rate context. Once we
know the default probabilities and the factors
driving them, credit spreads follow immedi-
ately, as does valuation. Valuation, even when
there are embedded options, often comes in
the form of analytical closed-form solutions.
More complex options require numerical meth-
ods that are commonly used on Wall Street.
The ability to stress test portfolio values and
portfolio losses with respect to macro factor
movements is now required by the European
Central Bank and by U.S. bank regulators via
two programs: the Comprehensive Capital As-
sessment Review and the Supervisory Capital
Assessment Program. The later program, re-
quired of the top 19 U.S. financial institutions
in 2009, mandated stress tests with respect to

changes in home prices, real gross domestic prod-
uct, and the unemployment rate.

Suffice it to say that for any simulated value
of the risk factors driving default, there are
two valuations that can be produced in the re-
duced form framework. The first valuation is
the value of the security in the event that the is-
suer has not defaulted. This value can be stress
tested with respect to the risk factors driving
default to get hedge ratios with respect to the
nondiversifiable risk factors. The second value
that is produced is the value of the security
given that default has occurred. In the reduced
form framework of Duffie and Singleton (1999)
and Jarrow (2001), this loss given default can
be random and is expressed as a fraction of
the defaultable instrument one instant prior to
default.

These default-related jumps in value have
two components. The first part is the sys-
tematic (if any) dependence of the loss given
default or recovery rate on macroeconomic
factors. The second part is the issuer-specific
default event, since (conditional on the current
values of the risk factors driving default for all
companies) the events of default are indepen-
dent. At the individual transaction level, this
idiosyncratic company-specific component can
only be hedged by shorting a defaultable in-
strument of the same issuer or a credit default
swap of that issuer.

At the portfolio level, this is not necessary. We
explain why next.

Reduced-Form Models:
Portfolio-Level Hedging
One of the key conclusions of a properly spec-
ified reduced form model is that the default
probabilities of each of N companies at a given
point in time are independent, conditional on
the values of the macroeconomic factors driv-
ing correlated defaults. That is, as long as none
of the factors causing correlated default have
been left out of the model, then by defini-
tion, given the value of these factors, default is
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independent. This is an insight of Jarrow,
Lando, and Yu (2005).

This powerful result means that individual
corporate credit risk can be diversified away,
leaving only the systematic risk driven by
the identified macroeconomic variables. This
means that we can hedge the portfolio with re-
spect to changes in these macroeconomic vari-
ables just as we do in every hedging exercise:
We mark to market the portfolio on a credit-
adjusted basis and then stress test with respect
to one macroeconomic risk factor. We calcu-
late the change in value that results from the
macroeconomic risk factor shift and this gives
us the “delta.” We then can calculate the equiva-
lent hedging position to offset this risk. This is a
capability that is present in modern enterprise-
wide risk management software.4

This exercise needs to be done for a wide
range of potential risk factor shifts, recogniz-
ing that some of the macroeconomic risk factors
are in fact correlated themselves. Van Deventer,
Imai, and Mesler (2004) outline procedures for
doing this in great detail.

We turn now to commonly used credit-related
derivative instruments and discuss what role
they can play in a hedging program.

CREDIT DEFAULT SWAPS
AND HEDGING
Credit default swaps in their purest form pro-
vide specific credit protection on a single issuer.
They are particularly attractive when the small
size of a portfolio (in terms of issuer names) or
extreme concentrations in a portfolio rule out
diversification as a vehicle for controlling the
idiosyncratic risk associated with one portfolio
name.

Generally speaking, credit default swaps
should only be used when diversification does
not work. As we discuss in a later section, deal-
ing directly in the macroeconomic factors that
are driving correlated default is much more ef-
ficient both in terms of execution costs and in

terms of minimizing counterparty credit risk.
An event that causes a large number of cor-
porate defaults over a short time period would
also obviously increase the default risk of the fi-
nancial institutions that both lend to them and
act as intermediaries in the credit default swap
market. This insight was not widely appreci-
ated as recently as 2006, but it is now. The
bankruptcy of Lehman Brothers on Septem-
ber 15, 2008, the March 2008 rescue of Bear
Stearns, and the September 2008 rescues of Mer-
rill Lynch (by Bank of America with U.S. gov-
ernment support) and Morgan Stanley (by the
Federal Reserve) have convinced any doubters
of the importance of counterparty credit risk in
the credit default swap market. As of this writ-
ing, only 14 dealers are registered to clear credit
default swaps with the Depository Trust and
Clearing Corporation.5

Many researchers have begun to find that
credit spreads and credit default swap quota-
tions are consistently higher than actual credit
losses would lead one to expect.6 How can
such a “liquidity premium” persist in an effi-
cient market? From the perspective of the in-
surance provider on the credit default swap,
in the words of one market participant, “Why
would we even think about providing credit in-
surance unless the return on that insurance was
a lot greater than the average losses we expect to
come about?” That preference is simple enough
to understand, but why doesn’t the buyer of the
credit insurance refuse to buy insurance that is
“overpriced”?

One potential explanation is related to the
lack of diversification that individual market
participants face even if their employers are
fully diversified. An individual fund manager
may have only 10–20 fixed income exposures
and a bonus pool that strictly depends on his
or her ability to outperform a specific bench-
mark index over a specific period of time. One
default may devastate the bonus, even if the
fund manager in 1 billion repeated trials may
in fact outperform the benchmark. The individ-
ual has more reason to buy single-name credit
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insurance than the employer does because (1)
his or her work-related portfolio is much less
diversified than the entire portfolio of the em-
ployer, (2) the potential loss of the bonus makes
him or her much more risk averse than the
employer, and (3) the employer is much less
likely to be aware that the credit insurance
is (on average) overpriced than the individ-
ual market participant. Jarrow, Li, Mesler, and
van Deventer (2007) have quantified the mag-
nitude of this premium and shown that fac-
tors as diverse as company size (bigger firms
get smaller spreads) and location (Japanese
firms get smaller spreads) affect the premium of
CDS spreads over default risk. These premiums
are available daily via the Thomson Reuters
“Credit Views” page.7

A more important concern with credit default
swap hedging is the very thin trading volume
in the CDS market in the aftermath of the credit
crisis. A study8 found the following:

� Only 241 corporate reference names averaged
more than 5 trades per day.

� Only 63 reference names averaged more than
10 trades per day.

� Only 14 reference names averaged more than
15 trades per day.

� No reference names averaged more than 23
trades per day.

Given these low volumes, there is a serious
risk of market manipulation that should give
any potential hedger great concern.

PORTFOLIO- AND
TRANSACTION-LEVEL
HEDGING USING TRADED
MACROECONOMIC INDICES
The instantaneous probability of default can be
specified as a linear function of one or more
macroeconomic factors. An example is the case
where the default intensity is a linear func-
tion of the random short-term rate of interest

r and a macroeconomic factor with normally
distributed return Z:

λ(t) = λ0 + λ1 r (t) + λ2 Z(t)

The constant term in this expression is an id-
iosyncratic term that is unique to the company.
Random movements in the short rate r and the
macroeconomic factor Z will cause correlated
movements in the default intensities for all com-
panies whose risk is driven by common factors.
The default intensity has a term structure like
the term structure of interest rates, and this en-
tire term structure moves up and down with
the business cycle as captured by the macroeco-
nomic factors. The parameters of this reduced
from model can be derived by observable his-
tories of bond prices of each counterparty or
from observable histories of credit derivatives
prices using enterprise-wide risk management
software.

Alternatively, a historical default database can
be used to parameterize the term structure of
default probabilities using discrete instead of
continuous default probabilities, just as discrete
interest rates are used in practice based on yield
curve movements in continuous time. The most
common approach to historical default prob-
ability estimation uses logistic regression. For
each company, monthly observations are de-
noted 0 if the company is not bankrupt in the
following month and 1 if the company does go
bankrupt in the next month. Explanatory vari-
ables Xi are selected and the parameters α and
β, which produce the best fitting predictions of
the default probability using the following lo-
gistic regression formula:

P[t] = 1/[1 + exp(−α−
n∑

i=1

βiXi)]

By fitting this logistic regression for each de-
fault probability on the default probability term
structure, one can build the entire cumulative
and annualized default probability term struc-
tures for a large universe of corporations. Fig-
ure 3 shows the cumulative term structure of
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Figure 3 Cumulative Term Structure of Default Probabilities for Washington Mutual: September 2008,
One Day Prior to Default

default probabilities for Washington Mutual,
just prior to its failure in September 2008.

Alternatively, one can annualize the entire
term structure of default probabilities for easy
comparison with credit spreads and credit de-
fault swap quotations. The resulting curve is
downward sloping for high-risk credits like
Washington Mutual (see Figure 4).

The key advantage of the reduced-form ap-
proach is that critical macroeconomic factors
can be linked explicitly to default probabilities
as explanatory variables. The result is a spe-
cific mathematical link like the linear function
of the pure Jarrow reduced form model or the
logistic regression formula used for historical
database fitting. The logistic regression formula
is very powerful for simulating forward since it
always produces default probability values be-
tween zero and 100%. These values can then be
converted to the linear Jarrow form for closed-
form mark-to-market values for every transac-
tion in a portfolio.

Van Deventer, Imai, and Mesler (2004) then
summarize how to calculate the macroeco-

nomic risk factor exposure as follows. The
Jarrow model is much better suited to hedging
credit risk on a portfolio level than the Merton
model because the link between the (N) macro
factor(s) M and the default intensity is explicitly
incorporated in the model. Take the example of
Washington Mutual, whose probability of de-
fault is driven by interest rates and home prices,
among other things. If M(t) is the macro factor
defined as the one-year change in home prices,
it can be shown that the size of the hedge that
needs to be bought or sold to hedge one dol-
lar of risky debt zero coupon debt with market
value v under the Jarrow model is given by

∂vl(t, T : i)/∂ M(t) = −[∂γi (t, T)/∂ M(t)

+ λ2(1 − δi )(T − t)/

σm M(t)]vl(t, T : i)

The variable ν is the value of risky zero-
coupon debt and γ is the liquidity discount
function representing the illiquidities often ob-
served in the debt market. There are similar
formulas in the Jarrow model for hedging



416 Credit Risk Modeling

Figure 4 Annualized Term Structure of Default Probabilities for Washington Mutual: September 2008,
One Day Prior to Default

coupon-bearing bonds, defaultable caps, floors,
credit derivatives, and so on.

In practice, these hedge ratios are derived
from a sophisticated simulation on “best prac-
tice” enterprise-wide risk management soft-
ware. Van Deventer and Imai (2003) show that
the steps in hedging the macro factor risk for
any portfolio are identical to the steps that a
trader of options has been taking for 30 years
(hedging the net position with a long or short
position in the common stock underlying the
options):

� Calculate the change in the value (including
the impact of interest rates on default) of all
retail credits with respect to interest rates.

� Calculate the change in the value (including
the impact of interest rates on default) of all
small business credits with respect to interest
rates.

� Calculate the change in the value (including
the impact of interest rates on default) of all
major corporate credits with respect to inter-
est rates.

� Calculate the change in the value (including
the impact of interest rates on default) of all
bonds, derivatives, and other instruments.

� Add these “delta” amounts together.
� The result is the global portfolio “delta,” on

a default-adjusted basis, of interest rates for
the entire portfolio.

� Choose the position in interest rate deriva-
tives with the opposite delta.

� This eliminates interest rate risk from the
portfolio on a default-adjusted basis.

We can replicate this process for any macroe-
conomic factor that impacts default, such as
home prices, exchange rates, stock price indices,
oil prices, the value of class A office buildings
in the central business district of key cities, and
so on.

Most importantly,

� We can measure the default-adjusted trans-
action level and portfolio risk exposure with
respect to each macroeconomic factor.

� We can set exposure limits on the default-
adjusted transaction level and portfolio risk
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exposure with respect to each macroeconomic
factor.

� We know how much of a hedge would elimi-
nate some or all of this risk.

The reason this analysis is so critical to suc-
cess in credit risk portfolio management is the
all-pervasiveness of correlated risk. Let us put
aside the 2007–2009 credit crisis and look at
other recent history. Take the Japan scenario.
At the end of December 1989, the Nikkei stock
price index had reached almost 39,000. Over
the course of the next 14 years, it traded as
low as 7,000. Commercial real estate prices fell
by more than 60%. Single-family home prices
fell in many regions for more than 15 consecu-
tive years. More than 135,000 small businesses
failed. Six of the 21 largest banks in Japan were
nationalized in a span of two years. How would
this approach have worked in Japan?

First of all, fitting a logistic regression for
small businesses in Japan over this period
shows that the properly specified inputs for
the Nikkei and the yen/U.S. dollar exchange
rates have t-score equivalents of more than 45
standard deviations from zero in a logistic re-
gression. By stress testing a small business loan
portfolio with this knowledge, we would have
known how many put options on the Nikkei
and put options on the yen were necessary to
fully or partially offset credit-adjusted mark-to-
market loan losses, just as the Federal Deposit
Insurance Corporation announced it was doing
in its 2003 Loss Distribution Model.9

This same approach works with

� Retail loan portfolios
� Small business loan portfolios
� Large corporate loan, bond, derivative, and

other portfolios
� Sovereign and other government exposures

If common factors are found to drive each
class of loans, then we have enterprise-wide
correlations in defaults. An identical approach
in the U.S. market would have spared many fi-
nancial institutions tens of billions in losses that

resulted from an inability to do the stress tests
described above and that are now mandated by
the U.S. government and the European Central
Bank.

The key to success in this analysis is a risk
management software package that can handle
it.10 What is also important in doing the model-
ing is to recognize that macroeconomic factors
that are exchange traded (such as the S&P 500,
home price futures, etc.) are much preferred to
similar indicators that are not traded (such as
the Conference Board index of leading indica-
tors or the unemployment rate).

If one takes this approach, total balance sheet
credit hedging is very practical

� Without using credit derivatives
� Without using first-to-default swaps
� Without using Wall Street as a counterparty

from a credit risk point of view

All of these benefits are critical to answer the
key question of “What’s the hedge?”

KEY POINTS
� It is not enough to know only the default risk

of a counterparty. Over the full portfolio, a fi-
nancial institution needs to know the answer
to the question “What is the hedge?” if the
measured credit risk is uncomfortably large.

� The major U.S. (2007–2009) and Japanese
(1990–2002) financial institutions required
government bailouts in the trillions of dol-
lars because of their inability to measure and
hedge macro factor risks like those of home
price movements and commercial real estate
price movements.

� The Merton model is a logical place to start
thinking about how to hedge because of its
simple structure and focus on the value of
company assets.

� Unfortunately, for theoretical reasons alone,
hedging in the Merton framework does not
work for a company that is highly distressed.
A perfect hedge could easily require a short
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position of more than 100% of the shares of
outstanding common stock.

� The only practical and accurate approach to
hedging credit risk is the reduced form mod-
eling approach.

� Hedging with credit default swaps is not
practical because of the high degree of coun-
terparty credit risk that is now obvious in the
wake of the 2007–2009 credit crisis and the
effective failures of investment banking firms
like Bear Stearns, Lehman Brothers, Morgan
Stanley, and Merrill Lynch. Moreover, trading
volume in the credit default swap market is
now so thin that large trades cannot be effi-
ciently executed, and the risk of market ma-
nipulation is very high.

� The reduced form approach explicitly links
macro factors to both observable bond and
CDS prices and to a historical default
database. A similar approach links macro fac-
tors to credit spreads and recovery rates. The
recovery on a mortgage that is in default is an
example. Obviously, it depends on the value
of the house that is collateral.

� Delta hedging of aggregate portfolio exposure
to these macro factors that drive credit risk
is done in best practice enterprise-wide risk
management software.

� This modern application of stress testing, ap-
plied to a longer list of macro factors than in-
terest rates alone, is not just theory. It is now
mandated by the European Central Bank and
U.S. regulatory authorities.

NOTES
1. Default probabilities presented in this chap-

ter are supplied by Kamakura Corporation.
2. See Whitehouse (2005).
3. International Monetary Fund, Global Stabil-

ity Report, as reported by the Financial Times,
April 8, 2008.

4. See “Kamakura Risk Manager In Depth,”
July 2011, available on www.kamakuraco
.com for an example.

5. See www.dtcc.com for a list of dealers and
related CDS trading volume.

6. See Chapter 18 in van Deventer, Imai, and
Mesler (2004) for a summary of the research
in this area.

7. The credit views page compares credit de-
fault swap spreads reported by Markit
Partners with default probabilities from
Kamakura Risk Information Services.

8. van Deventer (2010).
9. See press release dated December 10, 2003,

on www.fdic.gov .
10. See, for example, the Kamakura Risk Man-

ager risk management software system.
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Abstract: The three key factors that drive the valuation of a financial asset are risk, return, and
timing of cash flows. A fundamental assumption in valuation is that in the absence of costless
arbitrage opportunities, if two investments whose risk, return, and timing of cash flow properties
are exactly the same are identified, they must have the same price in the marketplace. Otherwise,
market participants can make free money by simultaneously selling the more expensive one and
buying the cheaper one. This principle allows for the development of no-arbitrage price relations for
forwards, futures, and swaps. The price of a futures contract is identical to the price of a forward
contract in an environment in which short-term interest rates are known. In addition, a swap
contract is nothing more than a portfolio of forward contracts. Hence, if a forward contract can be
valued, a swap can be valued. The forward price and the underlying spot price are inextricably
linked by the net cost of carry relation.

Exchange-traded and over-the-counter (OTC)
derivatives contracts are traded worldwide. Of
these, the lion’s share is plain-vanilla forwards,
futures, and swaps. The purpose of this entry is
to develop no-arbitrage price relations for for-
wards, futures, and swap contracts. In doing so,
we rely only on the assumption that two perfect
substitutes must have the same price. The two
substitutes, in this case, are a forward/futures
contract and a levered position in the under-
lying asset. The key to understanding the for-
ward/futures valuation lies in identifying the
net cost of carrying (i.e., “buying and holding”)
an asset. We begin therefore with a discussion of
carry costs/benefits. We then proceed by devel-
oping a number of important no-arbitrage rela-

tions governing forward and futures prices. Fi-
nally, we show that, since a swap contract is an
exchange of future payments at a price agreed
upon today, it can be valued as a portfolio of
forward contracts.

UNDERSTANDING CARRY
COSTS/BENEFITS
Derivative contracts are written on four types of
assets—stocks, bonds, foreign currencies, and
commodities. The derivatives literature con-
tains seemingly independent developments of
derivative valuation principles for each type

423
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of asset. Generally speaking, however, the val-
uation principles are not asset-specific. The
only distinction among assets is how carry
costs/benefits are modeled.

The net cost of carry refers to the difference
between the costs and the benefits of holding
an asset. Suppose a breakfast cereal producer
needs 5,000 bushels of wheat for processing in
two months. To lock in the price of the wheat
today, he can buy it and carry it for two months.
One carry cost common to all assets is the op-
portunity cost of funds. To come up with the
purchase price, he must either borrow money
or liquidate existing interest-bearing assets. In
either case, an interest cost is incurred. We as-
sume this cost is incurred at the risk-free rate
of interest. Beyond interest cost, however, carry
costs vary depending upon the nature of the
asset. For a physical asset or commodity such
as wheat, we incur storage costs (e.g., rent and
insurance). At the same time, certain benefits
may accrue. By storing wheat we may avoid
some costs of possibly running out of our reg-
ular inventory before two months are up and
having to pay extra for emergency deliveries.
This is called convenience yield. Thus, the net
cost of carry for a commodity equals interest
cost plus storage costs less convenience yield,
that is,

Net carry cost = Cost of funds + Storage cost

− Convenience yield

For a financial asset or security such as a stock
or a bond, the carry costs/benefits are differ-
ent. While borrowing costs remain, securities
do not require storage costs and do not have
convenience yields. What they do have, how-
ever, is income (yield) that accrues in the form of
quarterly cash dividends or semiannual coupon
payments. Thus, the net cost of carry for a
security is

Net carry cost = Cost of funds − Income

Carry costs and benefits are modeled either
as continuous rates or as discrete flows. Some
costs/benefits such as the cost of funds (i.e.,
the risk-free interest rate) are best modeled
as continuous rates. The dividend yield on a
broadly based stock portfolio, the interest in-
come on a foreign currency deposit, and the
lease rate on gold also fall into this category.
Other costs/benefits such as warehouse rent
payments for holding an inventory of grain,
quarterly cash dividends on individual com-
mon stocks, and semiannual coupon receipts on
a bond are best modeled as discrete cash flows.
Below we provide the continuous rate and dis-
crete flow cost of carry assumptions. For ease
of exposition, we first introduce some notation.
The current price of the asset is denoted S. Its
price at future time T is S̃T , where the tilde de-
notes the future asset price is uncertain. The
opportunity cost of funds (i.e., the risk-free rate
of interest) is assumed to be a constant, contin-
uous rate and is denoted r. If we borrow to buy
the asset today, we will owe SerT at time T.

Continuous Rates
The types of assets whose carry costs are typ-
ically modeled as constant, continuous rates
include broadly based stock index portfolios,
foreign currencies, and gold. Assume that we
borrow at the risk-free rate of interest to buy a
stock index portfolio that pays cash dividends
at a constant continuous rate i. If we buy one
unit of the index today and reinvest all divi-
dends immediately as they are received in more
shares of the index portfolio, the number of
units of the index portfolio will grow to exactly
eiT units at time T. Alternatively, if we want ex-
actly one unit of the index on hand at time T, we
buy only e−iT units today at a cost of Se−iT. The
terminal value of our investment in the index
portfolio at time T will be S̃T . The loan value has
accrued from Se−iT to Se−iT erT = Se(r−i)T . After
repaying the loan, the terminal portfolio value
will be S̃T − Se(r−i)T . Within this continuous
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rate framework, the net cost of carry rate of an
index portfolio equals the difference between
the risk-free rate of interest r and the dividend
yield rate i. The situation for a foreign currency
is identical. If we borrow at the domestic risk-
free rate, buy a foreign currency, and then invest
the currency at the prevailing foreign risk-free
rate, the net cost of carry rate equals the differ-
ence between the domestic interest rate r and
the foreign interest rate i. Similarly, if we bor-
row at the risk-free rate, buy gold, and then
lend it in the marketplace, the net cost of carry
rate equals the difference between the interest
rate r and the lease rate on gold i. Within this
framework, the total cost of carry paid at time
T is

Net carry costT = S[e (r−i)T ] − 1 (1)

To illustrate, assume that the S&P 500 index
is currently at a level of 1,100 and pays divi-
dends at the continuous rate of 3% annually.
Assume also that “shares” of the S&P 500 index
can be purchased and sold at the index level
(i.e., one share currently costs $1,100). Suppose
that an investor wants exactly 3,000 shares of
the S&P 500 index on hand in five days. How
many shares of the S&P 500 index must the in-
vestor buy today if all dividends paid are rein-
vested in more shares of the index portfolio?

If the investor wants 3,000 shares of the index
on hand in five days, the investor needs to buy
3,000e−0.03(5/365) = 2,998.77 shares today. Over
the first day, the number of shares will grow
by a factor e0.03(1/365) due to the reinvestment
of dividends, bringing the number of shares
to 2,998.77e0.03(1/365) = 2,999.01. Over the sec-
ond day, the number of shares will again grow
by a factor e0.03(1/365) due to the reinvestment
of dividends, bringing the number of shares to
2,999.26. Since the dividends are being paid at
a constant, continuous rate, we know the orig-
inal number of shares purchased will grow to
exactly 3,000 shares by the end of day 5 (i.e.,
3,000e0.03(5/365)e−0.03(5)(1/365) = 3,000), as is shown
in the following table.

Day Index Level Units of Index
Value of Index
Position

0 1,100.00 2,998.77 3,298,644
1 1,160.00 2,999.01 3,478,856
2 1,154.00 2,999.26 3,461,146
3 1,145.00 2,999.51 3,434,435
4 1,170.00 2,999.75 3,509,712
5 1,175.00 3,000.00 3,525,000

Discrete Flows
For most other types of assets including stocks
with quarterly cash dividends and bonds
with semiannual coupon payments, noninter-
est carry costs/benefits are best modeled as dis-
crete flows. Suppose a stock promises to pay n
known cash dividends in the amount Ii at time
ti, i = 1, . . . , n between now and future time T.
If we borrow S to cover the purchase price of
the stock and reinvest all cash dividends as they
are received at the risk-free rate of interest, the
terminal value of our position will be

S̃T +
n∑

i=1

Ii er (T−ti ) − SerT

In this instance, the net cost of carry at time T is

Net carry costT = S(erT − 1) −
n∑

i=1

Ii er (T−ti )

For coupon-bearing bonds, the expressions are
the same; however, S denotes the bond price
and Ii at time ti, i = 1, . . . , n denote coupon
payments.

To illustrate, an investor buys 10,000 shares
of ABC Corporation and carries that position
for 90 days. ABC’s current share price is $50,
and the stock promises to pay a $4 dividend
in exactly 30 days. What will be the value of
the portfolio when the investor unwinds in
90 days, assuming that the risk-free rate of inter-
est is 5%? As Table 1 shows, the initial invest-
ment in 10,000 shares of ABC costs $500,000.
The investor financed the entire purchase price
with risk-free borrowings, hence the initial in-
vestment is $0. In 90 days, the investor has
three components to the portfolio. First, the in-
vestor owns 10,000 shares valued at S̃T a share.
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Table 1 Future Value of Asset That Pays Discrete Cash Flows

Trade Initial Investment Value on Day T

Buy stock −50(10,000) 10,000S̃T

Borrow funds 500,000 −500,000e0.05(90/365) = −506,202.54
Receive cash dividends on day t, and reinvest at

risk-free rate until day T
40,000e0.05(60/365) = 40,330.12

Value of position 0 10, 000S̃T − 506, 202.54 + 40, 330.12

Next, the investor must repay the $500,000 in
risk-free borrowings plus interest at a cost of
$506,202.54. Finally, the investor received cash
dividends of $4 a share or $40,000 on day 30,
which the investor invested immediately in
risk-free discount bonds. Dividends plus ac-
crued interest amount to $40,330.12 on day T.
Thus, the total value of the portfolio in 90 days
is 10,000S̃T − 506,202.54 + 40,330.12.

Summary and Some Guidelines
Carry costs/benefits are the known costs/
benefits associated with holding an asset over a
fixed period of time. In general, they consist of
two components—(1) interest and (2) income
(in the case of a financial asset) or storage (in
the case of a physical asset). The interest com-
ponent is always expressed as a rate. If we buy
an asset today with borrowed funds, we will
owe erT per unit of the asset on day T. Income
and noninterest costs are expressed either as a
continuous proportion of the asset price or as
discrete cash flows, depending upon the nature
of the underlying asset. Firms potentially have
four different sources of price risk—equity risk,
interest rate risk, foreign exchange risk, and
commodity price risk. Table 2 presents terminal
values of leveraged asset positions using the
net cost of carry assumption appropriate to
each asset category.

VALUING FORWARDS
With the concept of net cost of carry in hand,
we now turn to valuing forward contracts. A
forward is a contract that requires its seller to

deliver the underlying asset on future day T at
a price agreed upon today. We denote today’s
forward price as f . Its price on day T is denoted
f̃T . A forward with no time remaining to expi-
ration must have the same price as the underly-
ing asset, that is, f̃T = S̃T as shown in Figure 1.
Otherwise, a costless arbitrage profit is possi-
ble by buying the asset and selling the forward,
or vice versa. The purpose of this section is to
derive the value of a forward contract relative
to its underlying asset price prior to time T un-
der the continuous and discrete net carry cost
assumptions.

Continuous Rates
To establish the price of a forward today, con-
sider a U.S. corporation that needs to make a
EUR 1,000,000 payment in T days and wants
to lock in the U.S. dollar value of this payment
today. The firm can accomplish this goal in two
ways.

First, it can borrow U.S. dollars and buy euros
today at the spot exchange rate S, and then carry
the position for T days. To have one euro on
hand in T days, they need to buy e−iT units today
where i is the risk-free interest rate in Europe.
To finance the entire purchase today, they need
to borrow Se–iT. The repayment of the loan will
occur in T days, and the principal plus interest
will amount to Se−iTeiT per euro where r is the
U.S. risk-free interest rate.

Second, it can negotiate the price of a
T-day forward contract with its bank. Under the
terms of the forward contract, the firm will buy
1,000,000 euros in T days at a cost of f per euro.
No money changes hands today. In making its
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Price

0 Time

Forward

Asset

Convergence at expiration, fT = ST

Figure 1 Price paths of forward contract and its underlying asset through time. Price convergence
occurs at expiration.

decision about which strategy to take, the firm
will compare the forward price with the future
value had the euros been purchased today and
carried until day T. If f exceeds Se(r−i)T, the firm
will buy the euros in the spot market and carry
them. If f is less than Se(r−i)T, the firm will buy
the forward contract. Both alternatives provide
the firm with EUR 1,000,000 in T days at a price
locked in today. Since they are perfect substi-
tutes, they must have the same price. The value
of a forward in a constant continuous net cost
of carry framework is

f = Se(r−i)T (2)

The relation (2) is sometimes called the net cost
of carry relation. When the prices of the forward
and the asset are such that (2) holds exactly, the
forward market is said to be at full carry. Un-
less costless arbitrage is somehow impeded, we
can be assured that the forward market will al-
ways be at full carry. Suppose, for an instant
in time, f > Se(r−i)T . Such a condition implies
that there is a costless arbitrage opportunity.
We should immediately sell the forward and
buy the asset, financing the purchase of the as-
set with risk-free borrowing. Table 3 shows the
outcome. With no investment today, we earn
a certain outcome of f − Se(r−i)T > 0 on day
T. Naturally, the market cannot be in equilib-

rium. The costless arbitrage activity would con-
tinue until the selling pressure on the forward
price and the buying pressure on the asset price
makes the arbitrage profit equal to 0. Where no
arbitrage opportunity exists, the cost of carry
relation (2) holds.

The net cost of carry relation (2) is written
in future value form, since both sides of the
equation are values on day T, as shown in Table
3. The relation can also be expressed in present
value form. Multiplying both sides of (2) by the
discount factor e−rT, we get

fe−rT = Se−iT (3)

What (3) says is that the prepaid forward con-
tract, fe−rT, equals the initial cost of the asset
position, Se−iT.

Table 3 Costless Arbitrage Trades Where f > Se(r−i)T

Trades
Initial
Investment Value on Day T

Buy e−iT units of asset −Se−iT S̃T

Borrow (sell risk-free
bonds)

Se−iT −Se(r−i)T

Sell forward contract −(S̃T − f )

Net portfolio value 0 f − Se(r−i)T
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Discrete Flows
In the event that income or noninterest carry
costs are more appropriately modeled as dis-
crete cash flows, the net cost of carry relation is

f = SerT − FVI

where FVI is the future value of the promised in-
come receipts. If the underlying asset is a phys-
ical asset, the future value of the income, FVI,
may be negative as a result of storage cost pay-
ments. The relation can also be written in its
present value form,

fe−rT = S − PVI

where PVI is the present value of the promised
income receipts, that is, PVI = FVIe−rT . The
prepaid forward price equals S − PVI, where
the underlying asset distributes discrete known
cash flows through time.

To illustrate, let’s compute the value of a
forward contract on a hypothetical dividend-
paying stock, HAL Company. Specifically, we
want to value a six-month forward contract on
3,000 shares of this company, assuming that the
current share price is $120 and that a $3 cash
dividend will be paid in two months and then
again in five months. Assume the risk-free rate
of interest is 5%. Since the cash dividend pay-
ments are discrete cash inflows, the cost of carry
relation given by (1) is the most appropriate.
The future value of the first dividend payment
is 3e0.05(4/12) given by (1) and the future value
of the second dividend is 3e0.05(1/12). The future
value of all income received during the forward
contract’s life is therefore

FVI = 3e0.05(4/12) + 3e0.05(1/12) = 6.06

The value of the forward contract is therefore

f = 120e0.05(6/12) − 6.06 = 116.97 per share

or $350,910 in total.

Hedging with Forwards
Before turning to futures contract valuation, it
is worth considering the no-arbitrage portfolio
in Table 3 more closely. It contains important

Table 4 Hedging a Stock Protfolio Using a Forward
Contract

Trades
Initial
Investment Value on Day T

Own stock portfolio.
Reinvest all
dividend income
into more shares of
stocks.

−S S̃T eiT

Sell e−iT forward
contract.

0 −(S̃T − f )eiT

Net portfolio value 0 feiT

intuition regarding hedging risk. Suppose that
we hold a stock portfolio and fear that the mar-
ket will decline over the next few months. To
avoid the risk of a stock market decline, we can
sell our stocks and buy risk-free bonds. Alter-
natively, we can sell a forward contract on our
stock portfolio. These alternatives are perfect
substitutes.

To see this, assume that our portfolio is suf-
ficiently broad-based that it is reasonable to
assume that the dividend yield is a constant
continuous rate, i. If all dividend income is in-
vested in more units of the stock portfolio, one
unit in the stock portfolio today will grow to
eiT units on day T, as we discussed earlier and
illustrated in Table 4. To hedge the price risk
exposure of eiT units of the stock portfolio on
day T, we need to sell eiT forward contracts to-
day. The value of this forward position will be
−(S̃T − f )eiT on day T. Once the positions are
netted, the terminal value of the portfolio is feiT.
Note that the value is certain. The forward price,
the dividend yield rate, and the hedge period
horizon (i.e., the life of the forward contract)
are all known on day 0. To see that the return
on the hedged portfolio equals the risk-free re-
turn, substitute the net cost of carry relation,
f = Se(r−i)T , in the expression for the terminal
value of the portfolio in Table 4. The net termi-
nal value is feiT = Se(r−i)T eiT = SerT, exactly the
amount we would have had if the stock portfo-
lio had been liquidated and invested in risk-free
bonds at the outset.
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Table 5 Perfect Substitutes Implied by the Net Cost of Carry Relation

Position 1 Position 2

Buy asset/sell forward = Buy risk-free bonds (lend)
Buy risk-free bonds (lend)/buy forward = Buy asset
Buy asset/sell risk-free bonds (borrow) = Buy forward

Sell asset/buy forward = Sell risk-free bonds (borrow)
Sell risk-free bonds (borrow)/sell forward = Sell asset
Sell asset/buy risk-free bonds (lend) = Sell forward

Summary
A long forward position is a perfect substitute
for buying the asset using risk-free borrowings.
Consequently, the price of a forward equals the
price of the asset plus net carry costs. But this
is only one possible combination of positions
in the asset, the forward, and risk-free bonds.
Table 5 shows all possible pairings. Using the
net cost of carry relation, we can demonstrate
why Position 1 is a perfect substitute for Posi-
tion 2 in all six rows of the table. A full under-
standing of each relation will prove invaluable
in understanding valuation and risk manage-
ment problems.

VALUING FUTURES
Futures contracts are like forward contracts, ex-
cept that price movements are marked-to-market
each day rather than waiting until contract ex-
piration and having a single, once-and-for-all
settlement. If the marking-to-market produces
a gain during the futures contract’s life, the gain
can be reinvested in interest-bearing securities.
Conversely, if the marking-to-market produces
a loss, the loss must be covered with either exist-
ing interest-bearing assets or borrowing at the
risk-free interest rate.

To distinguish between buying a forward and
buying a futures, consider the futures position
cash flows shown in Table 6. As we discussed
earlier, a forward contract purchased today has
a value S̃T − f on day T. In contrast, a futures
contract is marked to market each day, and the
daily gains/losses gather interest. If risk-free

rate of interest is 0%, the terminal value of the
futures position (i.e., the sum of the mark-to-
market gain/loss column) is the same as the
terminal value of the forward position. If risk-
free rate of interest is greater than 0%, however,
the value of the futures position on day T may
be greater or less than the terminal value of the
forward position, depending on the path that
futures prices follow over the life of the contract.

To illustrate, suppose that an investor needs
£1,000,000 in three days and wants to lock in
the price today. Suppose also that a three-day
forward contract on British pounds is priced
at $1.60 per pound and that a British pound
futures contract with three days remaining to
expiration also has a price of $1.60. Let’s com-
pare the terminal values of a long forward po-
sition with a long futures position at the end
of three days assuming the domestic risk-free
rate is 5%. Assume that the futures prices over

Table 6 Cash Flows of Long Futures Positions
through Time

Day t
Futures
Price

Mark-to-
Market
Gain/Loss
on Day t

Value of
Gain/Loss on
Day T

0 F
1 F̃1 F̃1 − F (F̃1 − F )er (T−1)

2 F̃2 F̃2 − F̃1 (F̃2 − F̃1)er (T−2)

. . . . . .

t F̃t F̃t − F̃t−1 (F̃t − F̃t−1)er (T−t)

. . . . . .

T−1 F̃T−1 F̃T−1 − F̃T−2 (F̃T−1 − F̃T−2)er

T F̃T F̃T − F̃T−1 F̃T − F̃T−1

Total F̃2 − F̃1

T∑
t=1

(F̃t − F̃t−1)er (T−t)



NO-ARBITRAGE PRICE RELATIONS FOR FORWARDS, FUTURES, AND SWAPS 431

the next three days are $1.71, $1.67, and $1.70,
respectively.

The terminal value of a long forward posi-
tion is simply the exchange rate on day 3, $1.70,
less the forward price, $1.60, times one million,
$100,000, exactly equal to the sum of the mark-
to-market gains/losses on the long futures po-
sition. The terminal value of the long futures
position when the mark-to-market gains/losses
are invested/financed at the risk-free rate of in-
terest, however, is $100,024.66, as is shown in
the following table.

Day t
Futures
Price

Mark-to-
Market
Gain/Loss on
day t

Value of
Gain/Loss on
Day T

0 1.60
1 1.71 110,000.00 110,030.14
2 1.67 −40,000.00 −40,005.48
3 1.70 30,000.00 30,000.00

Total 100,000.00 100,024.66

In general, the terminal value of a long for-
ward and a long futures will be different. The
reason that the terminal values are different
is that the terminal value of the futures posi-
tion depends on how the futures price evolves
through time. Other futures price paths will
produce different terminal values. If, for exam-
ple, the futures price had been $1.51 on day
1 rather than $1.71, the terminal value of the
futures position would have been $99,997.26,

below (not above) the $100,000 terminal value
of the long forward.

Telescoping Futures Position
Interestingly, the fact that a long forward po-
sition does not have the same terminal value
of a long futures position does not imply that
the forward and futures prices are different. In-
deed, as we will show shortly, they are equal.
We can control the effect of the reinvestment
of the mark-to-market proceeds by creating a
“telescoping futures position.”

A telescoping futures position is created as
follows. We begin, on day 0, with e−rT futures
contracts. Since we enter the position at the
close of day 0, the marked-to-market gain for
the day is 0. In preparation for day 1, we in-
crease the size of the futures position by a
factor er. At the end of day 1, the futures posi-
tion is marked-to-market, generating proceeds
of e−r (T−1)(F̃1 − F ). If this gain/loss is carried
forward at the risk-free interest rate until day T,
the terminal gain/loss will be e−r (T−1)(F̃1 − F )
er (T−1) = F̃1 − F , as shown in Table 7. On day 2,
the position is again increased by a factor er and
is marked-to-market at e−r (T−2)(F2 − F1). Car-
rying this amount forward to day T, we have
e−r (T−2)(F̃2 − F̃1)er (T−2) = (F̃2 − F̃1), and so on.
Because the number of futures is chosen to ex-
actly offset the accumulated interest factor on
the daily mark-to-market gain/loss, there will
be exactly one futures contract on hand on day

Table 7 Cash Flows of Telescoping Futures Position Providing Same Terminal Value as Forward Position on Day T

Day t
Futures
Prices

No. of Futures
Contracts

Mark-to-Market
Gain/Loss on Day t Value of Gain/Loss on Day T

0 F e−rT

1 F̃1 e−r (T−1) e−r (T−1)(F̃1 − F ) e−r (T−1)(F̃1 − F )er (T−1) = (F̃1 − F )
2 F̃2 e−r (T−2) e−r (T−2)(F̃2 − F̃1) F̃2 − F̃1

. . . . . .

t F̃t e−r (T−t) e−r (T−t)(F̃t − F̃t−1) F̃t − F̃t−1
. . . . . .

T−1 F̃T−1 e−r e−r (F̃T−1 − F̃T−2) F̃T−1 − F̃T−2
T F̃T 1 F̃T − F̃T−1 F̃T − F̃T−1

Total F̃T − F = S̃T − F
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T, and the value of the futures position will be
ST−F. Assuming that the futures and forward
contracts expire at the same time, the telescop-
ing futures position will have exactly the same
terminal value as the long forward position.

Using an illustration, let’s compare terminal
values of long forward and long telescoping fu-
tures positions. Suppose that an investor needs
£1,000,000 in three days and wants to lock in
the price today. Suppose also that a three-day
forward contract on British pounds is priced at
$1.60 per pound and that a British pound fu-
tures contract with three days remaining to ex-
piration also has a price of $1.60. Assume that
the domestic risk-free interest rate is 5% and
that the futures prices over the next three days
are $1.71, $1.67, and $1.70, respectively.

As in the previous illustration, the terminal
value of a long forward position is the exchange
rate on day 3, $1.70, less the forward price,
$1.60, times one million, or $100,000. Because
the initial futures position has less than 1 million
units, the total of the mark-to-market gains/
losses column is less than $100,000. The
terminal value of the telescoping futures
position when the mark-to-market gains/losses
are invested/financed at the risk-free rate of in-
terest is exactly $100,000, as is shown in the
following table:

Day
Futures
Price

Number of
Units

Mark-to-
Market
Gain/Loss
on day t

Value of
Gain/Loss
on Day T

0 1.60
1 1.71 999,726.06 109,969.87 110,000.00
2 1.67 999,863.02 −39,994.52 −40,000.00
3 1.70 1,000,000.00 30,000.00 30,000.00

Total 99,975.35 100,000.00

The dynamic rebalancing of the futures position
within the telescoping strategy ensures that the
outcome is exactly the same as a long forward
position.

Equivalence of Forward and
Futures Prices
The fact that a long telescoping futures position
has a terminal value of S̃T − F and that a long
forward position has a terminal value of S̃T − F
implies that the futures price and forward price
must be equal to each other.1 If they are not, a
costless arbitrage profit would be possible by
selling the forward and entering a long tele-
scoping position in the futures (if f > F) or by
buying the forward and entering a short tele-
scoping position in the futures (if f < F). Given
the equivalence of forward and futures prices,
the valuation equations for a futures contract
are the same as those of the forward, that is,

F = f = Se(r−i)T (4)

if all carry costs are constant continuous rates,
and

F = f = SerT − FVI (5)

if noninterest carry costs are discrete.
Let’s illustrate how to short sell stocks syn-

thetically using stock futures. Retail investors
in the U.S. often find it costly to short sell shares
of common stock. Consequently, stocks futures
were recently launched. Assume that an in-
vestor wants to short sell a particular stock over
the next T days. Its current share price is S, and
a cash dividend of D has been declared and will
be paid in t days. Let’s demonstrate that selling
a telescoping position in share futures is equiv-
alent to short selling the stock.

First, the value in T days of a short position
in the stock must be identified. Short selling
a share of the stock generates proceeds of S.
Assume that an investor can take the proceeds
from the short sale and invest them at the risk-
free rate of interest. In addition, the stock pays
a cash dividend of D on day t. The investor
is responsible for paying the cash dividend.
On day T, the value of each security position
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in the portfolio is as reported in the following
table:

Trades
Initial
Investment Value on Day T

Short sell stock.
Must pay cash
dividends, if
any.

S −S̃T − Der (T−t)

Buy risk-free
bonds

−S SerT

Net portfolio value 0 SerT − Der (T−t) − S̃T

The net portfolio value on day T is SerT −
Der (T−t) − S̃T .

From the discussion above, we know that sell-
ing a telescoping position in the share futures
has a terminal value of F − S̃T . But, from val-
uation equation (5), we know that, in the ab-
sence of costless arbitrage opportunities, F =
SerT − Der (T−t). Substituting, we find that the
value of the short futures position on day T is
SerT − Der (T−t) − S̃T , an amount identical to that
of the short stock position.

HEDGING WITH FUTURES
The telescoping futures position has implica-
tions in terms of hedging with futures contracts.
For the hedge to be completely effective, the
number of futures must equal the number of
units of the underlying asset on day T. Under
the continuous carry cost assumption, we know
that one unit of the asset grows to eiT units on
day T. We also know that telescoping futures
positions that starts with e−rT futures contracts
today has a single contract at time T. Con-
sequently, to hedge the long asset position in
Table 4, our futures hedge would start off with
being short e−(r−i)T futures contract on day 0,
and would scale up by a factor of er contracts
per day over the life of the hedge. Assum-
ing the futures expires on day T, the terminal
value of the short telescoping position would be
−(S̃T − F )eiT and the net terminal value of the
hedged portfolio would be FeiT. Substituting the

net cost of carry relation (4), the net terminal
value of the hedged portfolio may be written
SerT, which shows that hedging using a short
telescoping futures position is equivalent to liq-
uidating the asset position and buying risk-free
bonds. The day-to-day increase in the size of the
futures position by the interest factor er undoes
the effects of interest on the daily marking to
market of the futures gains/losses. In practice,
this dynamic, day-to-day adjustment is called
tailing the hedge.

SUMMARY
Futures contracts are like forward contracts ex-
cept that price movements are marked to mar-
ket daily. Because these daily gains/losses are
allowed to accrue interest until the end of the
contract’s life, a long futures position will not
in general have the same terminal value as a
long forward position. The effects of the inter-
est accrual on the mark-to-market gains/losses
can be undone, however, using a telescoping
futures position. Each day t, the number of fu-
tures is set equal to e−r (T−t) for each unit of the
underlying asset at the end of the hedging in-
terval. Set in this way, the terminal value of a
long telescoping position in the futures equals
the terminal value of a long forward. From a
costless arbitrage perspective, therefore, the fol-
lowing are perfect substitutes:

Long telescoping futures position = Long

forward position

Short telescoping futures position = Short

forward position

The telescoping futures strategy also has im-
plications for hedging. To undo the effects of
interest on the daily marking to market of the
futures gains/losses when the life of the futures
matches the hedging horizon T, the size of a fu-
tures hedge starts at a level equal to the present
value of the number of terminal units of that
asset, that is, e−rT for each unit of the asset and
increases in size by a factor of er each day.
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IMPLYING FORWARD NET
CARRY RATES
Thus far, we have examined forward/futures
contracts with a single maturity. A casual exam-
ination of the financial pages, however, shows
multiple maturities for the same underlying as-
set. In these situations, we can use the net cost
of carry relation (2) to deduce implied forward
cost of carry rates.

VALUING SWAPS
A swap contract is an agreement to exchange a
set of future cash flows. A plain-vanilla swap
is usually regarded to be an exchange of a
fixed payment for a floating payment, where
the floating payment is tied to some reference
rate, index level, or price. Like a forward con-
tract, the underlying asset can be anything from
a financial asset such as a stock or a bond to a
physical asset such as crude oil or gold. Also,
like a forward contract, a swap involves no up-
front payment.

The key information needed to value a swap
contract is the forward curve of the underlying
asset and the zero-coupon yield curve for
risk-free bonds. The forward curve refers to
the relation between the price of a forward
contract on the underlying asset and its time
to expiration or settlement. Where the time to
expiration is 0, the forward price equals the pre-
vailing spot price. Figure 2 shows two possible
forward curve relations. A normal forward curve
is upward sloping, and an inverted forward curve
is downward sloping. For financial assets, the
slope will depend on the net difference between
the risk-free rate and the income received on
the underlying asset. Thus, a normal forward
curve will arise in markets where the interest
rate is greater than the income rate, and an
inverted forward curve will arise in markets
where the interest rate is less than the income
rate. For physical assets or commodities, the
nature of the forward curve depends also on

Normal forward
curve

Inverted forward
curve

Time to expiration

Fo
rw

ar
d 
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e

Figure 2 Forward curve: Relation between for-
ward price and its time to expiration. Where time
to expiration is 0, forward price equals spot price.

the cost of storage and convenience yield. The
zero-coupon yield curve refers to the relation
between interest rates and term to maturity.

In terms of swap valuation, the nature of the
forward curve is irrelevant as long as the for-
ward prices represent tradable prices. To see
this, consider a jeweler (i.e., long hedger) who
needs 1,000 troy ounces of gold each quarter
over the next two years and wants to lock in his
input cost today. One hedging alternative is to
buy a strip of forward (or futures) contracts, one
corresponding to each desired delivery date.
The cost of the gold each quarter will be locked
in; however, the cost of the gold will be dif-
ferent each quarter unless the forward curve
is a horizontal line. The gold market, however,
is typically in contango, so the cost, although
certain, will escalate through time. A second
alternative is to buy a swap contract that pro-
vides for the delivery of 1,000 ounces of gold
each quarter, where there is single fixed price
for all deliveries.2 In the absence of costless ar-
bitrage opportunities, it must be the case that
the present value of the deliveries using the for-
ward curve must be the same as the present
value of the deliveries using the fixed price of
the swap contract, that is,

n∑

i=1

fi e−ri Ti =
n∑

i=1

f̄ e−ri Ti (6)
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where n is the number of delivery dates, fi is
the price of a forward contract with time to
expiration Ti, ri is the risk-free rate of interest
corresponding to time to expiration Ti,3 and f
is the fixed price in the swap agreement.4 In
an instance where the right-hand side of (6)
is greater (less) than the left-hand side, an ar-
bitrageur would buy (sell) the swap and sell
(buy) the strip of forward contracts, pocketing
the difference. Because such free money op-
portunities do not exist, (6) must hold as an
equality.

Equation (6) can be rearranged to isolate the
fixed price of the swap agreement, that is,

f̄ =

n∑
i=1

fi e−ri Ti

n∑
i=1

e−ri Ti

=
n∑

i=1

fi

⎛

⎜⎜⎝
e−ri Ti

n∑
i=1

e−ri Ti

⎞

⎟⎟⎠ (7)

Expressed in this fashion, it becomes obvious
that the fixed price of a swap is a weighted
average of forward prices, one corresponding
to each delivery date.5

KEY POINTS
� The net cost of carry is the cost of holding an

asset over a period of time. One component
of the cost of carry for all assets is the oppor-
tunity cost of funds. In order to buy the asset,
an investor must pay for it.

� Beyond interest cost, however, carry costs
may be positive or negative, depending upon
the nature of the underlying asset. If the as-
set is a physical asset or commodity such as
grain, the asset holder must pay storage costs
such as warehouse rent and insurance. If the
underlying asset is a financial asset or secu-
rity such as a stock, a bond, or a currency, on
the other hand, there are no storage costs. In-
stead, such assets produce a known income
stream in the form of dividend payments or
interest receipts, and this income can be used
to subsidize the cost of borrowing.

� The interest cost is modeled as a con-
stant continuous rate and the noninterest
costs/benefits as either continuous rates or
discrete cash flows, depending on the nature
of the underlying asset.

� Given the assumption and definition of the
cost of carry, pricing equations for forward
and futures contracts can be developed. The
price of a forward equals the price of a fu-
tures and both are equal to the asset price
plus net carry costs. This is because if an in-
vestor needs an asset on hand at some future
date at a price “locked-in” today, the investor
can buy a forward contract, buy a futures, or
buy the underlying asset and carry it.

� Perfect substitutes must have the same
price.

� The relation between the forward curve
and the fixed price of a swap is as follows.
In the absence of costless arbitrage opportu-
nities, the fixed price is a weighted average of
the prices of the corresponding forward con-
tracts, with the weights equal to the discount
factor of each flow in relation to the sum of all
discount factors.

NOTES
1. Cox, Ingersoll, and Ross (1981) use no-

arbitrage arguments to demonstrate the
equivalence of forward and futures prices
when future interest rates are known. They
go on to show, however, that if interest rates
are uncertain, the futures price will be greater
than or less than the forward price, de-
pending upon whether the correlation be-
tween futures price changes and interest
rate changes is negative or positive. See also
Jarrow and Oldfield (1981).

2. As a practical matter, many swap agree-
ments are cash-settled, so, instead of pay-
ing the fixed price per ounce and receiving
1,000 ounces in gold, we will receive in cash
1,000 times the difference between the pre-
vailing (random) spot price of gold each
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quarter and the fixed price. If the spot price is
greater than the fixed price, we receive a cash
payment from our counter-party, and vice
versa.

3. Note that we are allowing for the fact that
the risk-free rate may be term-specific.

4. The delivery quantity is irrelevant since it
is the same on both sides of the equation.
That is, equation (6) assumes that one unit is
delivered on each delivery date.

5. For illustrations of how to compute the fixed
rate of a swap based on the forward curve
and the unwind price of swap based on

forward curve, see Chapter 4 in Whaley
(2006).
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Abstract: For derivative instruments, in the absence of costless arbitrage price relations can be
developed. In the case of options (calls and puts), there are three types of price relations that can
be obtained. The first is the lower bound on the option’s price. The second, and perhaps most
important, no-arbitrage price relation is the one between the price of a put and the price of a call.
This relation is called the put-call parity relation and arises from simultaneous trades in the call, the
put, and the asset. The third price relation is the intermarket relation, which is the link between the
prices of asset options and the prices of futures options. The price relations exist for European-style
and American-style options and under both the continuous rate and discrete flow net cost of carry
assumptions. Price relations are important for risk management strategies using options. Option
pricing models go beyond these price relations to provide a fair value for an option.

The purpose of this entry is to develop no-
arbitrage price relations for option contracts as-
suming that two perfect substitutes have the
same price. In the absence of costless arbitrage
opportunities, options have three types of no-
arbitrage price relations—lower bounds, put-
call parity relations, and intermarket relations.
Each type of relation is developed in turn, for
both European- and American-style options1

and under both the continuous rate and discrete
flow net cost of carry assumptions. Before deriv-
ing the no-arbitrage price relations for options,
however, we focus on clearly distinguishing be-
tween the characteristics of option and forward
contracts.

OPTIONS AND FORWARDS
Options differ from forwards in two key re-
spects. First, the net cost of carry of a forward
contract is zero since it involves no investment
outlay. An option, on the other hand, involves
investment. An option buyer pays the option
premium for the right to buy or sell the un-
derlying asset, and, like the buyer of any other
asset, faces carry costs. For an option, however,
the only carry cost is interest. Holding an op-
tion neither produces income like a dividend-
paying stock nor requires storage costs like a
commodity (i.e., a physical asset).

The effects of carry costs on the terminal profit
functions of forward and option contracts are

437
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(a) Long forwardProfit, πT
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0
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Figure 1 Terminal Profit of Long and Short Forward Positions

shown in Figures 1 through 3. The profit from a
long forward position at expiration is

πlong forward,T = ST − f (1)

where ST denotes the future price of the asset
and f denotes the forward price.

On the other hand, the profit from a long call
position is

πlong call T =
{

ST − X − cerT , if ST ≥ X

−cerT , if ST < X
(2)

and from a long put position is

πlong put,T =
{−perT , if ST ≥ X

X − ST − perT , if ST < X
(3)

where c and p are the prices of a European-
style call and put, respectively; X is the exercise

Profit, πT

ST

(a) Long call

0

ST – X – cerT

–cerT

Profit, πT

ST

(b) Short call

ST – X – cerT

cerT

0

Figure 2 Terminal Profit of Long and Short Call Positions

price or strike price of the option. The oppor-
tunity cost of funds (i.e., the risk-free rate of
interest) is denoted by r. Note that the profit
functions for the long call and the long put
(2) and (3) reflect the fact that the initial op-
tion premiums, c and p, are carried forward
until the option’s expiration at the risk-free in-
terest rate. We have lost the opportunity cost
of the funds we tied up in buying the option.
Conversely, short call and short put positions
(i.e., πshort call, T = −πlong call, T and πshort put, T =
−πlong put, T ) reflect the fact that the option seller
receives the premium payment and invests the
cash at the risk-free interest rate. The profit func-
tion of a long forward position (1) has no in-
terest component since the forward price is a
promised payment on day T rather than a cash
outlay today.
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Profit, πT
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Figure 3 Terminal Profit of Long and Short Put Positions

The second key difference between forwards
and options is that the buyer of a forward is
obliged to buy the underlying asset at expira-
tion, independent of whether or not the termi-
nal asset price is greater than or less than the
initial forward price. The buyer of an option,
on the other hand, is not obliged to buy or
sell the underlying asset, but will do so only
when it is profitable. The profit function for the
long call position (2), for example, shows that
the option is exercised only when ST ≥ X. If
ST < X, the call option buyer chooses not to
exercise, forfeiting only his original investment
plus carry costs, cerT. The limited liability fea-
ture of the long call and long put positions are
illustrated in Figures 2a and 3a, respectively. In
the interest of completeness, the short positions
in the respective instruments are illustrated in
Figures 1b through 3b.

The profit functions of the call and the put
show a certain complementarity to the profit
function of a forward. Suppose we buy a call
and sell a put at the same exercise price. The
profit function for the overall position is

πc,T − πp,T =
{

ST − X − cerT + perT if ST ≥ X

ST − X − cerT − perT if ST < X

= ST − X − cerT − perT

Now, suppose that we chose the exercise price
of the options such that X = f − cerT + perT .
The profit functions of the option portfolio and
the long forward position will be exactly the
same. If we buy the option portfolio and sell the

forward contract, the terminal value of the over-
all position must be 0. In the absence of costless
arbitrage opportunities, the current value of the
position must also be equal to 0, and, therefore,
the call and put prices must be equal. Buying
the call and selling the put (with the exercise
price defined as above) is a perfect substitute
for buying a forward. Viewed in this way, we
can construct virtually any derivatives contract
from any of the following pairs of basic instru-
ments: (1) a forward and a call, (2) a forward
and a put, and (3) a call and a put.

CONTINUOUS RATES
The net cost of carry refers to the difference be-
tween the costs and the benefits of holding an
asset. One carry cost common to all assets is
the opportunity cost of funds. We assume this
cost is incurred at the risk-free rate of inter-
est. Beyond interest cost, however, carry costs
vary depending upon the nature of the asset.
For a physical asset or commodity, we incur
storage costs (e.g., rent and insurance). At the
same time, certain benefits may accrue. By stor-
ing wheat we may avoid some costs of possi-
ble running out of our regular inventory before
two months are up and having to pay extra for
emergency deliveries. This is called convenience
yield. Thus, the net cost of carry for a commod-
ity equals interest cost plus storage costs less
convenience yield.
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Table 1 Arbitrage Portfolio Trades Supporting Lower Price Bound of European-Style Call
Option Where the Underlying Asset Has a Continuous Net Carry Rate, c ≥ Se−iT − Xe−rT

Value on Day T

Trades Initial Investment ST < X ST ≥ X

Sell asset Se−iT −S̃T −S̃T
Buy call option −c 0 −S̃T − X
Buy risk-free bonds −Xe−rT X X

Net portfolio value Se−iT − Xe−rT − c X − S̃T 0

For a financial asset or security such as a stock
or a bond, the carry costs/benefits are differ-
ent. While borrowing costs remain, securities
do not require storage costs and do not have
convenience yields. What they do have, how-
ever, is income (yield) that accrues in the form of
quarterly cash dividends or semiannual coupon
payments. Thus, the net cost of carry for a se-
curity is equal to the cost of funds reduced by
income. Carry costs and benefits are modeled
either as continuous rates or as discrete flows.
Some costs/benefits such as the cost of funds
(i.e., the risk-free interest rate) are best modeled
as continuous rates.

Under the continuous rate assumption, both
interest cost and noninterest costs/benefits are
modeled as continuous rates. Under the dis-
crete flow assumption, interest cost is mod-
eled as a continuous rate but noninterest costs/
benefits are modeled as discrete cash flows. This
section relies on the continuous rate assump-
tion. The interest carry cost rate is represented
by the notation r, and the noninterest carry
benefit/cost rate is i. If the asset holder receives
income from holding the asset such as the div-
idend yield on a stock portfolio or interest on
a foreign currency investment, the income rate
is positive (i.e., i > 0). If the asset holder pays
costs in addition to interest in order to hold the
asset (e.g., storage costs of holding a physical
commodity), the income rate is negative (i.e.,
i < 0). Where i = 0, the only cost of carry is
interest. As noted earlier in this section, the net
cost of carry of an option is simply the interest
rate.

Lower Price Bound of
European-Style Call
Under the continuous rate assumption, the
lower price bound of a European-style call op-
tion is

c ≥ max(0, Se−iT − Xe−rT ) (4)

The reason that the call price must be greater
or equal to 0 is obvious—we do not have to be
paid to take on a privilege. The reason the call
price must exceed Se−iT − Xe−rT is less obvious
and is derived by means of an arbitrage port-
folio. Suppose we form a portfolio by selling
e−iT units of the underlying asset2 and buying
a European-style call. In addition, to make sure
that we have enough cash on hand to exercise
the call at expiration, we buy Xe−rT in risk-free
bonds. The initial investment and terminal val-
ues of these positions are shown in Table 1. On
day T, the net terminal value of the portfolio
depends on whether the asset price is above or
below the exercise price. If the asset price is less
than the exercise price (i.e., ST < X), we let the
call expire worthless. We then use the risk-free
bonds to buy one unit of the asset to cover the
short sale obligation. What remains is X − S̃T ,
which we know is greater than 0. If the asset
price is greater than or equal to the exercise
price (i.e., ST ≥ X), we exercise the call. This
requires a cash payment of X. Fortunately we
have exactly that amount on hand in the form
of risk-free bonds. The unit of the asset that we
receive upon exercising the call is used to retire
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the short sale obligation. In this case, the net
terminal value is certain to be 0.

What are the implications of this strategy?
Well, we have formed a portfolio that is cer-
tain to have a terminal value of at least 0.
In the absence of costless arbitrage opportuni-
ties, this implies that the greatest initial value
is 0. More simply, we cannot reasonably ex-
pect to collect money at the outset without
risk of loss. In the absence of costless arbitrage
opportunities, Se−iT − Xe−rT − c ≤ 0. Hence, a
lower price bound for the European-style call is
c ≥ Se−iT − Xe−rT .3

In general, the lower price bound of an op-
tion is called its intrinsic value, and the differ-
ence between the option’s market value (price)4

and its intrinsic value is called its time value.
Thus a European-style call has an intrinsic value
of max(0,Se−iT − Xe−rT) and a time value of
c − max(0,Se−iT − Xe−rT). This entry deals
with identifying intrinsic values by virtue of
no-arbitrage arguments. Option pricing mod-
els uncover the determinants of time value.

To illustrate, suppose a three-month European-
style call option written on a stock index portfo-
lio has an exercise price of 70 and a market price
of 4.25. Suppose also the current index level is
75, the portfolio’s dividend yield rate is 4%, and
the risk-free rate of interest is 5%. Is a costless
arbitrage profit possible?

To test for the possibility of a costless arbitrage
profit, substitute the problem parameters into
the lower price bound (4), that is,

4.25 < max[0, 75e−0.04(3/12) − 70e−0.05(3/12)] = 5.12

Since the lower bound relation is violated, a
costless arbitrage profit of at least 5.12 − 4.25
= 0.87 is possible. Since the violation may re-
sult from either the call being underpriced or
the asset being overpriced, the arbitrage re-
quires buying the call and selling the asset.5 The
appropriate arbitrage trades are provided in
Table 1. Substituting the prices and rates,

Value at Time T

Trades
Initial
Investment ST < 70 ST ≥ 70

Sell index portfolio 74.25 −S̃T −S̃T
Buy call option −4.25 0 S̃T − 70
Buy risk-free bonds −69.13 70 70

Net portfolio value 0.87 70 − S̃T 0

In examining the net portfolio value, note that
you (a) earn an immediate profit of 0.87, and (b)
have the potential of earning even more if the in-
dex level is below 70 at the option’s expiration.
If prices in the market were actually configured
at such levels, you should expect that buying
pressure on the call and selling pressure on the
index portfolio would very quickly return the
market to equilibrium. In the absence of costless
arbitrage opportunities, c ≥ Se−iT − Xe−rT .

Lower Price Bound of
American-Style Call
American-style options are like European-style
options except that they can be exercised at any
time up to and including the expiration day.
Since this additional right cannot have a neg-
ative value, the relation between the prices of
American-style and European-style call options
is

C ≥ c (5)

where the uppercase C represents the price of
an American-style call option with the same ex-
ercise price and time to expiration and on the
same underlying asset as the European-style
call. The lower price bound of an American-
style call option is

C ≥ max(0, Se−i t − Xe−rt, S − X) (6)

This is the same as the lower price bound of the
European-style call (4), except that the term S −
X is added within the maximum value operator
on the right-hand side. The reason is, of course,
that the American-style call cannot sell for
less than its immediate early exercise proceeds,
S − X. If C < S − X, a costless arbitrage profit
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of S − X − C can be earned by simultaneously
buying the call (and exercising it) and selling
the asset.

As an illustration, suppose a three-month
American-style call option written on a stock
index portfolio has an exercise price of 70 and
a market price of 4.25. Suppose also the current
index level is 75, the portfolio’s dividend yield
rate is 4%, and the risk-free rate of interest is
5%. Is a costless arbitrage profit possible?

To test for the possibility of a costless arbitrage
profit, substitute the problem information into
(6), that is,

4.25 < max[0, 75e−0.04(3/12)

− 70e−0.05(3/12), 75 − 70]

= max(0, 5.12, 5) = 5.12

At the current call price of 4.25, two types of ar-
bitrage are possible. A costless arbitrage profit
of 5.00 − 4.25 = 0.75 is possible simply by buy-
ing the call, exercising it, and selling the asset.
The amount of this arbitrage profit, however, is
less than the arbitrage profit of at least 5.12 −
4.25 = 0.87 that can be earned by buying the
call, selling the asset, buying risk-free bonds,
and holding the portfolio until the call’s expi-
ration, as was shown in the previous arbitrage
table. Under this second alternative, you earn
an immediate profit of 0.87, and have the po-
tential of earning even more if the asset price is
below 70 at the option’s expiration.

Early Exercise of American-Style
Call Options
The structure of the lower price bound of the
American-style call (6) can be used to provide
important insight regarding the possibility of
early exercise. The second term in the squared
brackets, Se−iT − Xe−rT, is the minimum price at
which the call can be sold in the marketplace.6

The third term is the value of the American-
style if it is exercised immediately. If the value

of the second term is greater than the third term
(for a certain set of call options), the call’s price
in the marketplace will be always exceed its
exercise proceeds so it will never be optimal to
exercise the call early.

To identify this set of calls, we must examine
the conditions under which the relation

Se−i t − Xe−rt > S − X

holds. The job is easier if we rearrange the rela-
tion to read

S(e−iT − 1) > −X(1 − e−rT ) (7)

Since the risk-free interest rate is positive, the
expression of the right-hand side is negative. If
the left-hand side is positive or zero, the call op-
tion holder can always get more by selling his
option in the marketplace than by exercising
it; so early exercise will never be optimal and
the value of the American-style call is equal to
the value of the European-style call, C = c. This
condition is met for calls whose underlying as-
set has a negative or zero noninterest carry rate,
i ≤ 0.

The intuition for this result can be broken
down into two components—interest cost, r,
and noninterest benefit (i.e., i > 0) or cost (i.e.,
i < 0). With respect to interest cost, recognize
that exercising the call today requires that we
pay X today. If we defer exercise until the call’s
expiration, on the other hand, we have the
opportunity to earn interest (i.e., our liability
is only the present value of the exercise cost,
Xe−rT). So, holding other factors constant, we al-
ways have an incentive to defer exercise.7 With
respect to the noninterest costs, recall that as-
sets with i < 0 are typically physical assets that
require storage. If we exercise a call written on
such an asset, we must take delivery, where-
upon we immediately begin to incur storage
costs. If we defer exercise, on the other hand,
and continue to hold the claim on the asset
rather than the asset itself, we avoid paying
storage costs. Thus, where i < 0, there are two
reasons not to exercise early. But even if storage
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costs are zero (i.e., with i = 0), condition (7)
holds since the interest cost incentive remains.

For American-style call options on assets with
i > 0 (e.g., stock index portfolio with a nonzero
dividend yield and foreign currencies with a
nonzero foreign interest rate), on the other
hand, early exercise may be optimal. The intu-
ition is that, while there remains the incentive
to defer exercise and earn interest on the exer-
cise price, deferring exercise means forfeiting
the income on the underlying asset (e.g., the
dividend yield on a stock index portfolio). The
only way to capture this income is by exercis-
ing the call and taking delivery of the asset. For
American-style call options on assets with i >

0, early exercise may be optimal and, therefore,
C > c.

Lower Price Bound of
European-Style Put
The lower price bound of a European-style put
option is

p ≥ max(0, Xe−rT − Se−iT ) (8)

Again, the reason that the option price must
be greater or equal to 0 is obvious—we do not
have to be paid to take on a privilege. The
reason the put price must exceed the bound,
Xe−rT − Se−iT , is given by the arbitrage trade
portfolio in Table 2. If we buy e−iT units of the
asset and a put, and sell Xe−rT risk-free bonds,
the net terminal value of the portfolio is certain
to be greater than or equal to 0. If the asset price
is less than or equal to the exercise price at the

option’s expiration (i.e., ST ≤ X), we will exer-
cise the put, delivering the asset and receiving X
in cash. We will then use the exercise proceeds
X to cover our risk-free borrowing obligation.
In the event the asset price is greater than the
exercise price (i.e., ST ≤ X), we will consider the
put expire worthless. We still need to cover our
risk-free borrowing, which we do by selling the
asset. After repaying our debt, we have S̃T − X
remaining.

For example, a three-month European-style put
option written on a stock index portfolio has
an exercise price of 70 and a market price of
8.80. Suppose also the current index level is 61,
the portfolio’s dividend yield rate is 4%, and
the risk-free rate of interest is 5%. Is a costless
arbitrage profit possible?

To test for the possibility of a costless arbitrage
profit, substitute the problem parameters into
the lower price bound (8),

8.80 > max[0, 70e−0.05(3/12) − 61e−0.04(3/12)] = 8.74

At the current price of 8.80, the no-arbitrage
condition (8) holds, so no costless arbitrage op-
portunity exists.

Lower Price Bound for
American-Style Put
An American-style put has an early exer-
cise privilege, which means that the rela-
tion between the prices of American-style and
European-style put options is

P ≥ p (9)

Table 2 Arbitrage Portfolio Trades Supporting Lower Price Bound of European-Style Put
Option Where the Underlying Asset Has a Continuous Net Carry Rate, p ≥ Xe−rT − Se−iT

Value on Day T

Trades Initial Investment ST < X ST ≥ X

Sell asset −Se−iT S̃T S̃T
Buy call option −p X − S̃T 0
Buy risk-free bonds Xe−rT −X −X

Net portfolio value Xe−rT − Se−iT − p 0 S̃T − X
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where uppercase P represents the price of an
American-style put option with the same ex-
ercise price, time to expiration, and underlying
asset as the European-style put. The lower price
bound of an American-style put option is

p ≥ max(0, Xe−rT − Se−iT , X − S) (10)

This is the same as the lower price bound of
the European-style put (8), except that, because
the American-style put may be exercised at any
time including now, the exercise proceeds, X −
S, is added within the maximum value operator
on the right-hand side. If P < X − S, a costless
arbitrage profit of X − S − P can be earned by
simultaneously buying the put (and exercising
it) and buying the asset.

To illustrate, assume that a three-month
American-style put option written on a stock
index portfolio has an exercise price of 70 and
a market price of 8.80. Suppose also the current
index level is 61, the portfolio’s dividend yield
rate is 4%, and the risk-free rate of interest is
5%. Is a costless arbitrage profit possible?

To test for the possibility of a costless arbitrage
profit, substitute the problem information into
(10), that is,

8.80 < max[0, 70e−0.05(3/12)

− 61e−0.04(3/12), 70 − 61]

= max(0, 8.74, 9.00) = 9.00

At the current price of 8.80, the no-arbitrage re-
lation (10) is violated, indicating the presence
of a costless arbitrage opportunity. Since it is
the early exercise condition (third term) on the
right-hand side that is violated, you should buy
the put (and exercise it) and buy the index port-
folio. You would pay 8.80 for the put and 61 for
the index portfolio, and receive 70 when you
deliver the index portfolio upon exercising the
put. The amount of the arbitrage profit is 0.20
and is earned immediately.

Early Exercise of American-Style
Put Options
In the case of an American-style call, we found
that if the underlying asset had carry costs and
above interest (e.g., storage), the call option
holder would never (rationally) exercise early.
In the case of an American-style put, no com-
parable condition exists.8 There is always some
prospect of early exercise, so the American-style
put is always worth more than the European-
style put, that is, P > p. The intuition is
straightforward. Suppose, for whatever reason,
the asset price falls to 0. The put option holder
should exercise immediately. There is no chance
that the asset price will fall further, so delaying
exercise means forfeiting the interest income
that can be earned on the exercise proceeds of
the put, X. The interest-induced, early-exercise
incentive works in exactly the opposite way for
the put than it did for the call. For the put, we
want to exercise early to get the cash and let it
begin to earn interest. For the call, we want to
defer exercise and let the cash continue to earn
interest.

Put-Call Parity for European-Style
Options
Perhaps the most important no-arbitrage price
relation for options is put-call parity.9 The
put-call parity price relation arises from the
simultaneous trades in the call, the put, and
the asset. Put-call parity for European-style
options is given by

c − p = Se−iT − Xe−rT (11)

The composition of the put-call parity arbitrage
portfolio is given in Table 3. A portfolio that
consists of a long position of e−iT units of
the asset, a long put, a short call, and a short
position of Xe−rT in risk-free bonds is certain to
have a net terminal value of 0. If the terminal
asset price is less than or equal to the exercise
price of the options (i.e., ST ≤ X), we exercise
the put and deliver the asset. The cash proceeds
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Table 3 Arbitrage Portfolio Trades for European-Style Put-Call Parity Where the
Underlying Asset Has a Continuous Net Carry Rate, c − p = Se−iT − Xe−rT

Value at Time T

Trades Initial Investment ST < X ST ≥ X

Buy asset −Se−iT S̃T S̃T
Buy put option −p X − S̃T 0
Sell call option c 0 −(S̃T − X)
Sell risk-free bonds Xe−rT −X −X

Net portfolio value Xe−rT − Se−iT − p + c 0 0

from exercise are used to repay our debt. The
call option is out-of-the-money, so the call
option holder will let it expire worthless. On
the other hand, if the terminal asset price
exceeds the exercise price (i.e., ST > X), we will
let our put expire worthless. The call option
holder will exercise, requiring that we deliver
a unit of the asset, which we just happen to
have.10 The call option holder pays us X, which
we use to retire our risk-free borrowings. Since
the net terminal portfolio value is zero, the cost
of entering into such a portfolio today must
also be 0, otherwise costless arbitrage would
be possible. If the initial investment is 0, the
put-call parity relation (11) holds.

The set of arbitrage trades spelled out in
Table 3 (i.e., buy the asset, buy the put, sell the
call, and sell risk-free bonds) is called a conver-
sion. If all of the trades are reversed (i.e., sell the
asset, sell the put, buy the call, and buy risk-free
bonds), it is called a reverse conversion. These
names arise from the fact that we can create any
position in the asset, options, or risk-free bonds
by trading (or converting) the remaining secu-

rities, in the same manner we used a call and a
put to create a forward contract at the beginning
of the entry. Table 4 provides a complete list of
the conversions that are possible using the put-
call parity relation for European-style options.
The first row says that buying the asset, buying
a put, and selling a call is equivalent to buying
risk-free bonds. We can check this by creating
an arbitrage trade table, or by simply working
through it mentally. If the asset price is less than
the exercise price at expiration, we will exercise
our put and sell the asset. If the asset price is
greater than the exercise price, the call option
holder will exercise, requiring that we deliver
the asset. In both cases, we are certain to have
X in cash when all is said and done. This is the
same as the amount we would have had if we
bought risk-free bonds.

Let’s see how put-call parity is applied for
European-style options. Suppose that a three-
month call and put with an exercise price of
70 have prices of 5.00 and 4.50, respectively.
Suppose also that the current level of the index

Table 4 Perfect Substitutes Implied by European-Style Put-Call Parity

Position 1 Position 2

Buy asset/buy put/sell call = Buy risk-free bonds (lend)
Buy asset/buy put/sell risk-free bonds = Buy call
Sell asset/buy call/buy risk-free bonds = Buy put
Sell put/buy call/buy risk-free bonds = Buy asset

Sell asset/sell put/buy call = Sell risk-free bonds (borrow)
Sell asset/sell put/buy risk-free bonds = Sell call
Buy asset/sell call/sell risk-free bonds = Sell put
Buy put/sell call/sell risk-free bonds = Sell asset
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portfolio underlying the options is 70, the index
portfolio has a dividend yield rate of 3%, and
the risk-free rate of interest is 5%. Is a costless
arbitrage profit possible?

To test for the possibility of a costless arbitrage
profit, substitute the problem parameters into
the put-call parity relation (11),

5.00 − 4.50 = 0.50 > 70e−0.03(3/12)

− 70e−0.05(3/12) = 0.34

Since the equation does not hold, a costless arbi-
trage profit is possible. Since the violation may
result from either the call being overpriced, the
put being underpriced, or the asset being un-
derpriced, the arbitrage will require all three
trades: selling the call, buying the put, and buy-
ing the asset. Using the trades as set out in
Table 3, we get:

Value at Time T

Trades
Initial
Investment ST < 70 ST ≥ 70

Buy asset −69.48 S̃T S̃T
Buy put option −4.50 S̃T − 70 0
Sell call option 5.00 0 −(S̃T − 70)
Sell risk-free bonds 69.13 −70 −70

Net portfolio value 0.16 0 0

By forming this portfolio, we generate a costless
arbitrage profit of 0.16. The buying pressure on
the index portfolio and the put will cause their
prices to rise, and the selling pressure on the
call will cause its price to fall. The arbitrage
trading will stop when the initial value invest-
ment column sums to zero (i.e., the costless ar-

bitrage opportunity ceases to exist), or where
c − p = Se−iT − Xe−rT .

Put-Call Parity for American-Style
Options
The early exercise feature of American-style op-
tions complicates the put-call parity relation.
The nature of the relation depends on the level
of noninterest costs/benefits, i. Specifically, the
put-call parity relations are

S − X ≤ C − P ≤ Se−iT − Xe−rT if i = 0

(12a)

and

Se−iT − X ≤ C − P ≤ S − Xe−rT if i > 0

(12b)

Each inequality in (12a) and in (12b) has a sep-
arate set of arbitrage trades. To illustrate, con-
sider (12b), the case in which the asset pays
some form of income, say, a stock index port-
folio with a constant dividend yield rate, or a
foreign currency with a constant foreign risk-
free rate of interest. To establish the left-hand
side inequality of (12b), consider the arbitrage
portfolio trades in Table 5. To generate the table
entries, assume the left-hand side inequality of
(12b) is reversed. This means the asset price is
overpriced, the put is overpriced, and/or the
call is underpriced. Thus, the arbitrage port-
folio must account for all three possibilities.
We should sell the asset, sell the put, buy the
call, and buy some risk-free bonds. At the op-
tions’ expiration, the portfolio is certain to have

Table 5 Arbitrage Portfolio Trades Supporting American-Style Put-Call Parity Where the Underlying Asset Has a
Continuous Net Carry Rate, Se−iT − X < C − P

Value on Day T

Trades Initial Investment Early Exercise at t ST < X ST ≥ X

Sell asset −Se−iT −S̃te−i(T−t) −S̃T −S̃T
Sell put option P −(X − S̃t) −(X − S̃T ) 0
Buy call option −C −C̃t 0 S̃T − X
Buy risk-free bonds −X Xert Xert Xert

Net portfolio value Se−iT + P − C − X S̃t[1 − e−i(T−t)] + C̃t + X(erT − 1) X(erT − 1) X(erT − 1)
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positive value X(erT − 1). If ST < X, the put op-
tion holder exercises, requiring that we pay X in
return for a unit of the underlying asset. We pay
the exercise price using a portion of our risk-free
bonds, and use the delivered asset to cover our
short position. On the other hand, if ST ≥ X, we
exercise the call and receive the asset. The asset
delivered on the call is used to cover the short
position. We use some of the risk-free bonds to
pay for the exercise price of the call.

The early exercise feature of the American-
style options requires that we consider one
other contingency within the arbitrage table,
that is, what happens if the put option holder
decides to exercise early at some arbitrary time
t between now and expiration. Looking at
Table 5, we see that our obligation should the
put be exercised early is −(X − S̃t). But since we
have Xert in risk-free bonds, we have more than
enough to cover the payment of X to the put
option holder. In return, we receive S̃t, which
is more than enough to cover our short asset
position in the asset that has value −S̃te−i(T−t).
In addition, we have a long position in the
call with value C̃t. Because the net portfolio
value is positive at expiration and also in the
event the put is exercised early, the initial in-
vestment must be negative (since if it were
zero or positive, there would be a certain ar-
bitrage). And, if Se−iT − X − C + P < 0, then
Se−iT − X < C + P .

To establish the right-hand side inequality of
(12b), consider the arbitrage portfolio trades
in Table 6. To generate the table entries, again
assume the right-hand side inequality of (9b)

is reversed. This means the asset price is
underpriced, the put is underpriced, and/or the
call is overpriced. The arbitrage portfolio trades
must account for all possibilities. We should
buy the asset, buy the put, sell the call, and
sell some risk-free bonds. At the options’ expi-
ration, the portfolio is certain to have positive
value S̃T (eiT − 1). If ST < X, we exercise the put
and sell the asset. The long asset position has a
value S̃T eiT , which is more than enough to pay
for the unit of the asset owed on the put. The
cash received from exercising the put is used
to cover our risk-free bond obligation. On the
other hand, if ST ≥ X, the call option holder ex-
ercises, implying that we receive X in return for
delivering one unit of the asset. We use the call
received from the call option holder to retire the
risk-free bond position. The value of our asset
position, S̃T eiT , is more than we need to deliver
on the put.

The early exercise feature of the American-
style call must also be considered, that is, what
happens if the call option holder decides to ex-
ercise early on day t? Looking at Table 6, we
see that the call exercise obligation is −(S̃t − X).
But, if we receive X, that is more than enough
to cover the balance of −Xe−r(T−t) in risk-free
bonds. We must pay S̃t, but we have more than
one unit of the asset, that is, S̃tei(T−t). In addi-
tion, we have a long position in the put with
value P̃t. Since the net portfolio value is pos-
itive at expiration and in the event the call is
exercised early, the initial investment must be
negative. And, if −S + Xe−rT + C − P < 0,
C − P < S − Xe−rT.

Table 6 Arbitrage Portfolio Trades Supporting American-Style Put-Call Parity Where the Underlying Asset Has a
Continuous Net Carry Rate, C − P < S − Xe−rT

Value on Day T

Trades Initial Investment Early Exercise at t ST < X ST ≥ X

Buy asset −S S̃teiT S̃T eiT S̃T eiT

Buy put option −P P̃t X − S̃T 0
Sell call option C −(S̃t − X) 0 −(S̃T − X)
Sell risk-free bonds Xert −Xe−r (T−t) −X −X

Net portfolio value −S − P + XerT + C S̃t(e−i t − 1) + P̃t + X[1 − e−r (T−t)] S̃T (eiT − 1) S̃T (eiT − 1)
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Table 7 No-Arbitrage Price Relations For European- and American-Style Options Where the Underlying Asset
Has a Continuous Net Carry Rate

Description European-Style Options American-Style Options

Lower price bound for call c ≥ max(0, Se−iT − Xe−rT ) C ≥ max(0, Se−iT − Xe−rT , S − X)
Lower price bound for put p ≥ max(0, Xe−rT − Se−iT ) P ≥ max[0, Xe−rT − Se−iT , X − S]
Put-call parity relation c − p = Se−iT − Xe−rT S − X < C − P < Se−iT − Xe−rT , if i ≤ 0

Se−iT − X < C − P < S − Xe−rT , if i > 0

Summary
This completes the derivations of no-
arbitrage price relations for European-style and
American-style options on assets with a con-
tinuous net carry rate. For convenience, a sum-
mary of the no-arbitrage relations is provided
in Table 7.

DISCRETE FLOWS
With the no-arbitrage price relations for an un-
derlying asset with a continuous carry cost rate
in hand, the focus now turns to developing the
same set of relations for an asset that has interest
cost modeled as a continuous rate but noninter-
est costs/benefits modeled as a discrete flow.
If the noninterest flow is income such as in the
case of a cash dividend payment on a share of
stock or a coupon payment on a bond, the in-
come is represented as a positive value, that is,
It > 0. If the flow is a cost such as, say, warehouse
rent from storing an inventory of wheat, the in-
come is represented as a negative value, that is,
It < 0. Again, since this book deals primarily
with financial assets, most of the illustrations
will have It discussed as being a positive value.
Although It represents a cash payment on any

type of asset, we will call It a dividend payment
throughout this section for expositional conve-
nience.

Lower Price Bound of
European-Style Call
The lower price bound of a European-style call
option on an asset that makes a single, discrete
cash dividend payment during the option’s life
is

c ≥ max (0, S − Ite−rt − Xe−rT ) (13)

In this relation, Ite−rt is the present value of
the promised dividend to be received at time
t, where t < T. The arbitrage trading strategy
that supports (13) is: sell the asset, buy a call,
and buy risk-free bonds. The initial investment
and terminal values are shown in Table 8. The
first row in the table represents the short asset
position. Today, we collect S, and, at the option’s
expiration, the short position must be covered
at a cost of S̃t. Shorting an asset, however, re-
quires that we pay any dividends on the under-
lying asset. If we are short a stock and the stock
pays a dividend, for example, we are obliged to
pay the dividend out of our own pocket. Since
the dividend is made during the option’s life

Table 8 Arbitrage Portfolio Trades Supporting Lower Price Bound of European-Style Call
Option Where the Underlying Asset Pays a Discrete Cash Dividend, C − P < S − Xe−rT

Value on Day T

Trades Initial Investment
Cash Flow
at t ST < X ST ≥ X

Buy asset S −It −S̃T −S̃T
Buy call option −c 0 S̃T − X
Buy risk-free bonds −Xe−rT − Ite−rt It X X

Net portfolio value S − Ite−rt − Xe−rT − c 0 X − S̃T 0
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(i.e., t < T), the first row has a cash outflow of
−It paid on day t. The second row shows the
long call position. On day t, the call is worth
nothing if ST < X and S̃T − X if ST ≥ X. Finally,
we buy some risk-free bonds. The amount nec-
essary must be sufficient to cover the payment
of the exercise price, X, on day T and the pay-
ment of the cash dividend, It, on day t, that is,
−Xe−rT − Ite−rt . Since the portfolio is certain to
have a nonnegative net value on day t, the net
portfolio value today must be less than or equal
to 0, which implies c ≥ S − Ite−rt − Xe−rT .

Lower Price Bound of
American-Style Call
A discrete cash dividend payment on the under-
lying asset affects the early exercise behavior of
American-style call options differently than in
the continuous carry rate case. In the case of an
American-style call written on a stock, it may
be optimal to exercise either just prior to the ex-
dividend date (when the stock price falls by It)
or at expiration. Early exercise between today
and the ex-dividend instant and between the
ex-dividend instant and expiration are not op-
timal because the call is worth more alive than
dead.11 The lower price bound of an American-
style call is therefore the lower bound of a call
expiring at the ex-dividend instant, max(0,S −
Xe−rt), and the lower bound of the call expiring
at expiration, max(0, S − Ite−rt − Xe−rT ). Com-
bining these two results,

c ≥ max(0, S − Xe−rt, S − Ite−rt − Xe−rT )
(14)

Early Exercise of American-Style
Call Options
The last two terms on the right-hand side of
(14) provide important guidance in deciding
whether to exercise the American call option
early, just prior to the ex-date. The second term
in the parentheses is the present value of the
early proceeds of the call. If this amount is less
than the lower price bound of the call that ex-

pires normally, that is, if

S − Xe−rt < S − Ite−rt − Xe−rT

an American-style call will not be exercised
early. To understand why, rewrite the expres-
sion as

It < X[1 − e−r (T−t)] (15)

The American-style call will not be exercised
early if the cash flow (e.g., dividend or coupon
payment) captured by exercising prior to the ex-
date is less than the interest implicitly earned
by deferring exercise from the ex-date until
expiration.

The logic underlying the relation (15) also
applies to the case where there are multiple
known dividends paid during the call option’s
life. Take a stock option, for example. If the ith
dividend is less than the present value of the
interest income that can be implicitly earned as
a result of deferring the payment of the exercise
price until the next dividend payment, that is,
if

Ii < X[1 − e−r (ti+1−ti )] (16)

exercising just prior to the ith dividend pay-
ment will not be optimal. This relation proves
useful for simplifying the valuation of long-
term stock options. The following example
shows that dividend-induced early exercise on
a long-term American-style call is most likely
to occur just prior to the last dividend payment
during the option’s life.

Let’s identify whether an American-style call
option with an exercise price of 50 and one year
remaining to expiration may be exercised early
just prior to any of the dividend payments.
Assume that the stock pays a quarterly divi-
dend of 0.50 in 70 days, 161 days, 252 days, and
343 days. Assume the risk-free rate of interest
is 5%.

Whether or not the call may be exercised early
depends on the amount of the dividend pay-
ment in relation to the present value of the
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interest income implicitly received by deferring
the payment of the exercise price. For the first
dividend, compute the values in expression (16)
and find

0.50 < 50[1 − e−0.05(161/365−70/365)] = 0.6194

Hence, the call will not optimally be exercised
just prior to the first dividend payment. The
same is true for the second and third dividend
payments, as shown in the table below.

Quarter
Cash
Dividend

Days to
Dividend
Payment

Years to
Dividend
Payment

PV of
Interest
Income

1 0.50 70 0.1918 0.6194
2 0.50 161 0.4411 0.6194
3 0.50 252 0.6904 0.6194
4 0.50 343 0.9397 0.1505

For the last dividend payment in 353 days, con-
dition (13) is violated, that is,

0.50 > 50[1 − e−0.05(365−343)/365] = 0.1505

This implies that exercise just prior to the last
dividend payment during this option’s life may
be optimal.

Lower Price Bound of
European-Style Put
The lower price bound for the European-style
put option is

p ≥ max(0,Xe−rT − S + Ite−rt) (17)

Again, the asset price is reduced by the present
value of the promised cash dividend on the as-
set. Unlike the call, however, the dividend pay-
ment increases the lower price bound of the
European-style put. Because the put option is
the right to sell the underlying asset at a fixed
price, a discrete drop in the asset price such as
one induced by the payment of a dividend on
a stock serves to increase the value of the op-
tion. The arbitrage trades driving this relation
are buy a put, buy a share of stock, and sell
Ite−rt + Xe−rT risk-free bonds.

Lower Price Bound of
American-Style Put
The lower price bound of the American-style
put is

P ≥ max(0, Xe−rt − S + Ite−rt, X − S) (18)

The second term on the right-hand side is the
present value of the exercise proceeds if the put
is exercised just after the dividend payment.
This lower price bound is supported by the
arbitrage trades listed above for the European-
style put. The third term on the right is the
exercise proceeds if the put is exercised imme-
diately. If P < X − S, a costless arbitrage profit
can be earned by buying the put and the asset,
and then exercising the put. The arbitrage profit
is X − S − P > 0.

Early Exercise of American-Style
Put Options
The early exercise behavior induced by the dis-
crete cash dividend on the asset is different for
the American-style put that it was for the call.
If the third term exceeds the second in (18), the
put will not be exercised early prior to the pay-
ment date. In that period the interest earned on
the exercise proceeds of the option is less than
the drop in the stock price from the payment
of the dividend. For the third term to be larger
than the second, that is,

Xe−rt − S + Ite−rt > X − S

it must be the case that

It > X(ert − 1) (19)

In other words, if the amount of the dividend
amount exceeds the interest income that will
accrue on the cash received if the put is exer-
cised immediately, the put will not optimally
be exercised early.

As in the case of the call, this argument can be
generalized to handle the multiple dividends
during the life of an American-style put. Again,
consider a stock option. If the ith dividend is
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greater than the interest that will accrue over
the period,

It > X[er (ti −ti−1) − 1] (20)

the put will not be exercised before the dividend
payment, as the illustration below shows.

We’ll use an example to identify whether an
American-style put option with an exercise
price of 50 and one year remaining to expira-
tion may be exercised early just after any of
the dividend payments. Assume that the stock
pays a quarterly dividend of 0.50 in 70 days,
161 days, 252 days, and 343 days. Assume the
risk-free rate of interest is 5%.

Whether or not the put may be exercised early
depends on the amount of the dividend pay-
ment in relation to the interest income that
could be earned if the put were exercised im-
mediately. For the first dividend, compute the
values in expression (20), that is,

0.50 > 50[e0.05(70/365) − 1] = 0.4818

This implies that the put will not be exercised
before the first dividend payment in 70 days.

The computation for the second dividend is

0.50 > 50[e0.05(161/365−70/365) − 1] = 0.6272

This implies that the put may be exercised in
the period between the first and second divi-
dends. The same is true between the second and
third dividends, and the third and fourth divi-
dends, as indicated below. Early exercise after

the fourth dividend is paid may also be optimal
since no more dividends are paid during the
option’s life.

Quarter
Cash
Dividend

Days to
Dividend
Payment

Years to
Dividend
Payment

Accrued
Interest

1 0.50 70 0.1918 0.4818
2 0.50 161 0.4411 0.6272
3 0.50 252 0.6904 0.6272
4 0.50 343 0.9397 0.6272

Put-Call Parity for European-Style
Options
Put-call parity for European-style options on
assets with discrete noninterest cash flows is

c − p = S − Ite−rt − Xe−rT (21)

To see this, assume the left-hand side of (21) is
less than the right-hand side. If such is the case,
an arbitrage profit can be made by selling the as-
set, selling the put, buying the call, and buying
some risk-free bonds. The arbitrage is shown in
Table 9. On day t, the net portfolio value is cer-
tain to be 0. The same is true on day t, when the
cash dividend is made. Thus the value at time
0, S − Ite−rt − Xe−rT + p − c, represents the ar-
bitrage profit and is positive if the left-hand side
of (21) is less than the right-hand side. Since the
market cannot be in equilibrium, arbitrage will
continue until the net portfolio value goes to 0.
When it does, the market is in equilibrium and
(21) holds.

Table 9 Arbitrage Portfolio Trades Supporting European-Style Put-Call Parity Where the
Underlying Asset Pays a Discrete Cash Dividend, c − p = S − Ite−rt − Xe−rT

Value on Day T

Trades Initial Investment
Cash Flow
at t ST < X ST ≥ X

Sell asset S −It −S̃T −S̃T
Sell put option p −(X − S̃T ) 0
Buy call option −c 0 S̃T − X
Buy risk-free bonds −Xe−rT − Ite−rt It X X

Net portfolio value S − Ite−rt − Xe−rT + p − c 0 0 0
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Table 10 Arbitrage Trades Supporting American-Style Put-Call Parity Where the Underlying Asset Pays a
Discrete Cash Dividend, S − Ite−rt − X < C − P

Put Exercised Normally,
Terminal Value (T)

Trades Initial Value
Ex-Day
Value (t)

Put Exercised Early,
Intermediate
Value (τ ) S̃T ≤ X S̃T < X

Buy call −C C̃τ 0 S̃T − X
Sell put P −(X − S̃τ ) −(X − S̃T ) 0
Sell asset S −It −S̃τ −S̃T −S̃T
Buy risk-free bonds −Ite−rt − X It Xerτ XerT XerT

Net portfolio value −C + P + S
− Ite−rt − X

0 C̃τ + X(erτ − 1) X(erT − 1) X(erT − 1)

Put-Call Parity for American-Style
Options
The put-call parity for American-style options
on assets with discrete cash dividends is

S − Ite−rt − X ≤ C − P ≤ S − Ite−rt − Xe−rT

(22)
To understand why, we consider each inequal-
ity in (22) in turn. The inequality on the left
can be derived by considering the values of a
portfolio that consists of buying a call, selling a
put, selling the stock, and buying X + Ite−rt in
risk-free bonds. Table 10 contains these trades
as well as the net portfolio value.

In Table 10, we see that, if all positions stay
open until expiration, the net portfolio value
is positive independent of whether the termi-
nal asset price is above or below the exercise
price of the options. If the terminal asset price
is above the exercise price, the call option is ex-
ercised, and the asset acquired at exercise price

X is used to deliver, in part, against the short as-
set position. If the terminal asset price is below
the exercise price, the put is exercised. The as-
set received in the exercise of the put is used to
cover the short stock position. In the event the
put is exercised early at time τ , the investment
in the risk-free bonds is more than sufficient
to cover the payment of the exercise price, and
the asset received upon delivery can be used to
cover the short asset position. In addition, the
call position remains open and has a nonnega-
tive value. In other words, the combination of
securities described in Table 10 will never have
a negative future value. And, if the future value
is certain to be nonnegative, the sum of the ini-
tial investment column must be nonpositive. In
the absence of costless arbitrage opportunities,
the left-hand inequality of (22) must hold.

The right inequality of (19) may be derived us-
ing the same portfolio used to prove European-
style put-call parity. Table 11 contains the

Table 11 Arbitrage Trades Supporting American-Style Put-Call Parity Where the Underlying Asset Pays a
Discrete Cash Dividend, C − P < S − Ite−rt − Xe−rT

Call Exercised
Normally, Terminal

Value (T)

Trades Initial Value
Ex-Day
Value (t)

Call Exercised Early,
Intermediate Value
(τ ) S̃T ≤ X S̃T < X

Sell call C −(S̃τ − X) 0 −(S̃T − X)
Buy put −P P̃τ X − S̃τ 0
Buy stock −S It S̃τ −S̃T S̃T

Sell risk-free bonds −Ite−rt + Xe−rt −It −Xe−r (T−τ ) −X −X

Net portfolio value C − P − S
+ Ite−rt + X

0 P̃τ + X(1 − er (T−τ )) 0 0
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Table 12 No-Arbitrage Price Relations For European- and American-Style Options on Assets Where the
Underlying Asset Pays a Discrete Cash Dividend

Description European-Style Options American-Style Options

Lower price bound for call c ≥ max(0,S − Ite−rt − Xe−rT ) c ≥ max[0,S − Xe−rt, S − Ite−rt − X]
Lower price bound for put p ≥ max(0,Xe−rT − S + Ite−rt) P ≥ max(0,X − S, Xe−rt − S + Ite−rt)
Put-call parity relation c − p = S − Ite−rt − Xe−rT S − Ite−rt − X ≤ C − P

≤ S − Ite−rt − Xe−rT

arbitrage portfolio trades. In this case, the net
portfolio value at expiration is certain to be
0 should the option positions stay open until
that time. In the event the American call option
holder decides to exercise early, the portfolio
holder delivers his share of stock, receives cash
in the amount of the exercise price, and then
uses the cash to retire his outstanding debt. Af-
ter these actions are taken, the portfolio holder
still has an open long put position and cash in
the amount of X[1 − e−r(T−τ )]. Since the portfo-
lio is certain to have nonnegative outcomes, the
initial value must be negative or the right-hand
inequality of (22) must hold.

Summary
This completes our derivations of arbitrage re-
lations for European-style and American-style
options on assets with discrete cash dividends.
Options on dividend-paying stocks and on
coupon-bearing bonds fall into this category.
Before proceeding with a discussion of arbi-
trage relations for futures options, we summa-
rize our results in Table 12.

NO-ARBITRAGE FUTURES
OPTIONS RELATIONS
A futures option is like an asset option, except
that if the option is exercised, a futures po-

sition is entered. Exercising a call option on
a futures contract, for example, means that
the holder will receive a long position in the
futures at a price equal to the exercise price of
the call.

Developing the lower bounds and put-call
parity for European- and American-style fu-
tures options follows directly from the previous
discussions. All we need to do is recall the pre-
paid version of the net cost of carry relations for
futures: Fe−rT = Se−iT where noninterest costs
are modeled as a continuous rate, and Fe−rT = S
− Ie−rt where noninterest costs are modeled as a
discrete flow. Substituting Fe−rT = Se−iT into the
no-arbitrage price relations summarized in Ta-
ble 7 or Fe−rT = S − Ie−it in the relations summa-
rized in Table 12 produces the no-arbitrage price
relations for futures options summarized in Ta-
ble 13. The arbitrage portfolios supporting each
of these relations are the same as those used to
derive the relations for the asset throughout the
entry.

NO-ARBITRAGE
INTERMARKET RELATIONS
In many cases, both asset options and futures
options trade concurrently. The Chicago Board
Options Exchange, for example, lists options
on the S&P 500 index, while the Chicago Mer-
cantile Exchanges lists options on the S&P 500

Table 13 No-Arbitrage Price Relations For European- and American-Style Options on Futures Contracts

Description European-Style Options American-Style Options

Lower price bound for call c ≥ max[0, e−rT (F − X)] C ≥ max(0,F − X)
Lower price bound for put p ≥ max[0, e−rT (X − F )] P ≥ max(0, X − F )
Put-call parity relation c − p = e−rT (F − X) F e−rT − X < C − P < F − Xe−rT
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futures (which, in turn, is written on the S&P
500 index). The prices of asset options are inex-
tricably linked to the prices of futures options.
Under the assumption that the futures and op-
tions expire simultaneously and that the exer-
cise prices of the asset and futures options are
the same, a number of no-arbitrage price rela-
tions may be derived. Next we present such re-
lations for European-style and American-style
options.

European-Style Options
The price of a European-style asset option is
equal to the price of the corresponding futures
option, that is,

c(S) = c(F ) (23a)

and

p(S) = p(F ) (23b)

The reason is that at expiration the payoffs of
the asset option and the futures option are iden-
tical. Suppose, for the sake of illustration, that
the price of a call on a futures exceeds the price
of a call on an asset. In such a situation, cost-
less arbitrage profits may be earned by buying
the asset call and selling the futures call, as is
shown in Table 14. The long asset option posi-
tion pays nothing at expiration if the terminal
asset price is less than the exercise price and
pays S̃T − X if the terminal asset price exceeds
the exercise price. At the same time, the short
futures option position expires worthless at ex-
piration if the terminal futures (asset) price is
less than the exercise price and costs −(F̃T − X)
if the terminal futures (asset) price exceeds the
exercise price. But, since F̃T = S̃T , the net port-

folio value is certain to be zero. A portfolio that
is certain to pay nothing on day T must cost
nothing. Hence, in the absence of costless ar-
bitrage opportunities, European-style asset op-
tions and European-style futures options have
the same price.

American-Style Options
The relation between the price of an American-
style asset option and the price of the corre-
sponding futures option depends on whether
the futures price is greater than the asset price
or not. If F > S,

C(S) < C(F ) (24a)

and

P(S) > P(F ) (24b)

To see this, consider the American-style call op-
tions. Since both the call on the futures and the
call on the asset may be exercised early, we can
compare the early exercise proceeds to establish
which has greater value. The call on the asset
has immediate early exercise proceeds of S −
X and the call on the futures has early exercise
proceeds of F − X > S − X. Thus as long as there
is some chance of early exercise, the call on the
futures is worth more than the call on the asset
and the put on the asset is worth more than the
put on the futures.

For cases where futures price is less than the
asset price, the opposite results hold, that is,

C(S) > C(F ) (25a)

and

P(S) < P(F ) (25b)

Table 14 Arbitrage Portfolio Trades Demonstrating the Equivalence of Prices of European-Style
Call Options on an Asset and a Futures, c(F) = c(S)

Value on Day T

Trades Initial Investment ST < X ST ≥ X

Buy call option on asset −c(S) 0 S̃T − X
Sell call option on futures c(F) 0 −(F̃T − X) = −(S̃T − X)

Net portfolio value c(F) − c(S) 0 0
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Table 15 No-Arbitrage Relations Between the Prices
of Asset Options and Futures Options

Description
European-Style
Options

American-Style
Options

Call c(S) = c(F) C(S) < C(F) if F > S
C(S) > C(F) if F < S

Put p(S) = p(F ) P(S) > P(F) if F > S
P(S) < P(F) if F < S

The previous arbitrage argument is merely re-
versed. Table 15 summarizes the results.

KEY POINTS
� Under the assumption that no costless ar-

bitrage (i.e., free money) opportunities are
available in the marketplace, no-arbitrage
price relations for European- and American-
style options can be developed.

� The net cost of carry of the underlying asset
plays an important role. Consequently, it is
necessary to model interest cost as a constant
continuous rate and the noninterest cost as a
continuous rate or as a discrete flow, depend-
ing on the nature of the underlying asset.

For options on stock indexes, currencies,
and some commodities, the continuous rate
assumption is most appropriate. For options
on stocks, bonds, and other commodities, the
discrete flow assumption is preferred.

� With the assumptions regarding net cost of
carry, lower price bounds, put-call parity
price relations, and intermarket price rela-
tions can be derived for both European-style
and American-style options on an asset and
on a forward/futures.

� For American-style options, there is always
the prospect of early exercise. Under certain
circumstances regarding the cost of carry, the
holder of an American-style call option would
never (rationally) exercise early. In the case of
an American-style put, there is always some
prospect of early exercise, so the American-
style put is always worth more than the
European-style put.

� Perhaps most important is the no-arbitrage
price relation between the price of a put and
the price of a call. This relation, called the
put-call parity relation, arises from simulta-
neous trades in the call, the put, and the asset.

� With respect to intermarket price relations,
the prices of asset options are inextricably
linked to the prices of futures options. Under
the assumption that the futures and options
expire simultaneously and that the exercise
prices of the asset and futures options are the
same, a number of no-arbitrage price relations
may be derived.

NOTES
1. European-style options can be exercised only

on expiration day, while American-style op-
tions can be exercised at any time up to and
including the expiration day. Both types
of options are traded on exchanges and in
OTC markets.

2. Under the continuous cost of carry rate as-
sumption, the continuously paid income
received from holding the asset is immedi-
ately reinvested in more units of the asset,
so that e−iT units on day 0 grows to one unit
on day T. For a short asset position, the re-
verse applies in the sense that our liability
(in terms of number of units owed) grows
at rate i.

3. It is also worthwhile to note that the
lower price bound of the call can be re-
expressed relative to the forward/futures
prices. The net cost of carry relation for
forwards/futures prices is fe−rT = Se−iT.
Substituting the cost of carry relation into
(4), c ≥ max(0,fe−rt − Xe−rT).

4. The distinction between value and price is
subtle, but important. A price is what we ob-
serve for the security in the marketplace; a
value is what we believe a security is worth.
If the value exceeds the price, the security
is underpriced, and, if the value is less than
the price, the security is overpriced.

5. Note that we are not making any judgment
on whether the call price is too high or too
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low per se. We are saying only that the call
is incorrectly priced (in this case it is priced
too low) relative to the price of the underly-
ing asset. To execute the arbitrage, we must
trade both the call and the underlying asset,
so that we make money when their prices
come back into line relative to each other. In
this example, the prices come back into line
with each other for certain at the option’s
expiration.

6. To exit a long position in an American-style
call option, we have three alternatives. First,
we can hold it to expiration, at which time
we will (a) let it expire worthless if it is out
of the money or (b) exercise it if it is in the
money. Second, we can exercise it immedi-
ately, receiving the difference between the
current asset price and the exercise price.
Third, we can sell it in the marketplace.
There is, after all, an active secondary mar-
ket for standard calls and puts.

7. This point was first demonstrated by Mer-
ton (1973) for call options on nondividend-
paying stocks. He refers to such options are
being worth more “alive” than “dead.”

8. In the expression on the right-hand side of
(10), the third term is greater than the sec-
ond term over some range for S, indepen-
dent of the level of i.

9. The term, “put-call parity,” was first coined
by Stoll (1969) in the first academic study to
develop and test the relation.

10. If we buy a put option, we pay the premium
today for the right to sell the underlying
asset at the exercise price. If we sell the put,
we collect the premium today but have the
obligation to deliver the asset and receive
the exercise price if the put option buyer
chooses to exercise.

11. By not exercising in the period prior to
ex-dividend, the call option holder enjoys
the benefits of implicitly earning interest on
the dividend and the exercise price of the
call. By not exercising after the ex-dividend
date but before expiration, the call option
holder enjoys the benefit of implicitly earn-
ing interest on the exercise price of the
call.
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Abstract: Contingent claims are a tool for valuing securities and for analyzing the effects of risky fi-
nancial decisions. Contingent claims analysis can be used to value any kind of financial instrument,
including such apparently exotic instruments as put and call options and convertible securities.
Contingent claim analysis defines risky outcomes relative to states of the world, and uses claims to
represent and value state outcomes. Thus given a definition of risky states, all financial instruments
and arrangements can be represented as combinations of contingent claims on those states. Theo-
retically complete markets assume claims can be traded on every state of the world, but in practice
markets are not likely to be complete at any point in time. Since in practice market incompleteness
will inhibit certain risk management strategies, in so doing it also provides incentives to create new
instruments that can be used to manage and to value claims on additional states of the world.

Contingent claims analysis is used in financial
modeling to value any financial instrument, in-
cluding such apparently exotic instruments as
put and call options and convertible securities.
In this entry, we discuss this important tool.
We begin by explaining the notion of states of
the world, a way of classifying risky outcomes
whose value can then be represented using con-
tingent claims. After providing examples of val-
uation using contingent claims, we introduce
the concept of incomplete markets and consider
its importance for modeling real-world finan-
cial arrangements. We then examine some fi-
nancial instruments and arrangements that can
be used to trade or to manage risks.

STATES OF THE WORLD

The idea of states of the world is useful for think-
ing about convenient ways to model risky pay-
offs. In a two-time-point model, states of the
world are defined as those future events that
matter to the decision problem being consid-
ered. These states of the world are defined by
the decision maker to be mutually exclusive
and collectively exhaustive. Using an example
given by Savage (1951), if one is about to break
a ninth egg into a bowl already containing eight
other eggs, the relevant states of the world could
be whether the ninth egg is rotten and would
hence spoil the others. (Here we presume the

457
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rottenness of an egg is not discernible until the
egg has been broken and fallen into the bowl.)

In a second example more closely related to
finance, an investor might be concerned with
the future price of a share of stock, and this
price might in turn depend on economic condi-
tions. Suppose the investor defines (1) “states”
to represent economic conditions, and (2) “fu-
ture prices” to be the following list of possible
share prices that may obtain at the time a given
state is actually realized:

State Future Price
1 $10
2 $8
3 $6

For example, state 1 might mean that the in-
dustry in which the firm operates faces buoyant
market conditions; state 2, conditions that are
neither good nor bad; and state 3, conditions
that are depressed. In each state, the effect is
registered on the stock price.

We shall usually associate probabilities with
the states; for example, pi might represent the
probability that state i will actually occur; that
is, i = 1, 2, 3. Because the states are mutually
exclusive, only one can actually occur; because
they are collectively exhaustive, one of the three
must occur. Hence �i pi = 1.

Note that although in this chapter we make
less use of multiperiod models using contin-
gent claims, we can also define states at differ-
ent points in time, for example, the states of the
world at different times.

CONTINGENT CLAIMS AND
THEIR VALUE
A unit contingent claim is a security that will pay
an amount of $1 if a certain state of the world
is actually realized, but nothing otherwise. A
claim that pays $1 if state i is realized is fre-
quently called a unit claim on state i. A unit
contingent claim is also referred to as a primary
security or Arrow-Debreu security (so named after

the economists who introduced them—Arrow
[1964] and Debreu [1959]).

Accordingly, the future stock price described
earlier may be regarded as equivalent to a pack-
age containing all of the following:

Ten unit claims on state 1
Eight unit claims on state 2
Six unit claims on state 3

The idea of a contingent claim is thus useful
for expressing, in terms of fundamental units,
exactly what a given security’s payoff may be
in different possible states of the world.

It may take a little imagination to come
up with real-world examples of claims, and
those real-world examples are not numerous.
(A ticket to win on a horse race is an example
of a claim; a fire insurance policy is another.
One example of a unit claim is an option that
pays off $1 if the value of some underlying asset
exceeds a fixed dollar value.) But packages of
unit claims represent perfect substitutes for the
more ordinary types of securities such as stocks
or bonds, and we shall frequently find it use-
ful to employ claims to help understand price
relations between securities. For example, if we
assume a perfectly competitive financial mar-
ket along with a description of future events in
terms of states of the world, certain price re-
lationships between securities and contingent
claims must obtain. This means in turn that cer-
tain predictable relationships between securi-
ties prices must also obtain.

To see these relationships, suppose that we
can describe the world using two states and
that two stocks are available, stock A and stock
B. We assume the stocks’ future prices have the
following distributions:

Stock A Stock B
1 $10 $7
2 $8 $9

Let A(0) = denote the time 0 price of stock
A and B(0) = the time 0 price of stock B, and
suppose these prices admit no arbitrage oppor-
tunities. Now if we let C1 and C2 represent the
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time 0 prices of unit claims on states 1 and 2, we
can use the foregoing information about stock
prices and payoffs to find the time 0 prices C1

and C2. Purchasing stock A for $6 is equivalent
to buying a package of 10 unit claims on state
1 and 8 unit claims on state 2, while buying
stock B for $5 is equivalent to buying a package
of 7 unit claims on state 1 and 9 unit claims on
state 2. Since the unit claims comprising the two
stocks are perfect substitutes, they must sell for
the same prices in a perfect market. Hence we
can write

10C1 + 8C2 = $6

7C1 + 9C2 = $5

which can be solved to obtain

C1 = $
7

17
, C2 = $

4
17

We can use the same reasoning to find the
risk-free rate of return that must obtain in this
market. Since a risk-free instrument is one that
offers the same payoff irrespective of which
state of the world obtains, we wish to find a
combination of the two stocks that gives the
same time 1 payoff, here denoted k, in either
state of the world. That is, the following equa-
tion must be solved for α:

α

(
10
8

)
+ (1 − α)

(
7
9

)
=

(
k
k

)

We can write the payoff k as equal to either of
the following payoffs:

10α + 7(1 − α) = 8α + 9(1 − α)

which implies that

2α = 2(1 − α)

so that α = 1
2 . The riskless payoff is then

1
2 (10) + 1

2 (7) = $8.50, and this can be obtained
for a price equal to 1

2 (6) + 1
2 (5) = $5.50, since

a portfolio composed of equal proportions of
the two stocks creates the riskless investment.
Accordingly, the risk-free rate of return is

$8.50 − $5.50
$5.50

= 6
11

= 54.55%

Of course, this is not necessarily a realistic
number for a risk-free rate of interest. (Whether
it is realistic or not depends on the length of
the time period under consideration, a matter
we have left unspecified.) However, our pur-
pose here is to develop illustrative calculations
to display relations between contingent claims,
and for this purpose particular sizes of numbers
are not really important.

Another way of making a riskless investment
is to buy one of each available unit claim, that
is, one claim on state 1 and one claim on state 2.
Such a portfolio gives a certain payoff of $1 for
an investment cost of

$
4

17
+ $

7
17

= $
11
17

The rate of return on this investment is then

$1 − $
11
17

$
11
17

= 17 − 11
11

= 6
11

= 54.55%

just as before.

INVESTOR’S UTILITY
MAXIMIZATION IN
CONTINGENT CLAIMS
MARKETS
In this section, we describe how an investor may
solve the utility maximization problem when
facing risk in a market for contingent claims. For
our illustration, we shall continue with stocks
A and B from the previous section. Further, we
shall assume the investor’s initial wealth to be
$600. This scenario is summarized in Table 1.
We let w1 represent wealth if state 1 occurs and
correspondingly for w2, and we may plot these
data in (w1, w2) space, as shown in Figure 1.
Note that the previously determined riskless
position of dividing the purchases to obtain an
equal number of each security (54.5 of each) is
also shown and generates a riskless terminal
wealth position of w1 = w2 = $926.50.
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Table 1 Summary of Terminal Wealth in Two States

Terminal Wealth
No. of Shares
Purchased State 1 State 2

Purchases A only 100 $1,000 $ 800
Purchases B only 120 $ 840 $1,080

We can also use another way to calculate the
value of the claims’ combinations at time 1. We
can write the equation of the straight line in
Figure 1 as

w2 = a − bw1

so that for the time 1 price of stock A we have

$800 = a − $1,000b

while for the time 1 price of stock B we have

$1,080 = a = $840b

Solving these two simultaneous equations,
we find b = 0.175 and a = $2,550. Thus, when
w1 = 0, w2 = $2,550, while when w2 = 0, w1 =
$1,457, which are the two intercepts of the line
on their respective axes in Figure 1.
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Figure 1 Market Opportunity Line, Showing Implied Prices of Unit Claims.
Note: w1 represents wealth if state 1 occurs and correspondingly for w2.

Now if w2 = 0, we have the case of a claim
(primary security) on state 1. (The security pays
$1,457 in state 1 and nothing otherwise.) The
price of this claim can be calculated by divid-
ing initial wealth by the maximum wealth ob-
tained if state 1 occurs, or $600/$1,457 = 0.41
(= 7

17 ). Similarly, the price of primary security
2 is $600/$2,550 = 0.24 (= 4

17 ), and our earlier
results are confirmed.

Note that in Figure 1 the investor’s time 1
position is some point on the line from A to
B. How could the investor obtain a terminal
wealth position lying beyond these points? The
investor could engage in short sales, that is, sell-
ing shares not currently owned, for delivery
when the unknown future state of the world
is revealed. In this transaction the investor ob-
tains cash from the time 0 sale of one security
and uses it to buy the other. In so doing, the
investor promises later to buy the security sold
short at whatever price will be prevailing and
deliver it. Note that there is a potential for large
gains or losses in such transactions. Here the
initial wealth will be used as a constraint and
we shall require that at worst the investor will
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have zero terminal wealth if he or she guesses
incorrectly. That is, no net borrowing is permit-
ted at the end of the period so that the investor
cannot go beyond the intercepts in Figure 1.

To illustrate, consider point w1 = $1,457, w2 =
0. Let nA be the number of shares of stock A and
nB the number of shares of stock B purchased.
If state 1 occurs, the terminal wealth will be

10nA + 7nB = $1,457

while if state 2 occurs, we must have

8nA + 9nB = 0

Solving these equations simultaneously, we
find nB = 343. If the investor sells short 343
shares of stock B at the current price of $5, he
or she will receive $1,715. Combining this with
the initial wealth of $600 gives $2,315, so this
investor may buy $2,315/$6 = 386 nA at $6 per
share. If state 1 eventuates, the investor will re-
ceive $3,860 ($10 for the 386 shares) but now
must pay $2,401 ($7 for 343 shares) for stock B
shares to cover the short position. The net ter-
minal wealth is $3,860 − $2,401 = $1,459 (dif-
ference due to rounding), as required. In state 2,
the terminal wealth will be equal to $3,088 (386
shares times $8 per share) reduced by the cost
to repurchase stock B to cover the short posi-
tion, 343 shares at $9 per share or $3,087. There-
fore, the net terminal wealth is equal to zero
(the calculations show it is $1 but that is due to
rounding).

Note that none of the points we have con-
sidered will necessarily be a utility-maximizing
point. To determine this point, it is necessary
to know the investor’s utility function in (w1,
w2) space. The optimal portfolio for the investor
satisfies the tangency condition that the slope of
the wealth constraint (the ratio of the prices of
the unit claims) equals the slope of the indif-
ference curve (marginal rate of substitution of
state 1 consumption for state 2 consumption).

The point of the foregoing demonstration is
to show first that every security can be viewed
as a bundle of unit claims and thus represents
a combination of positions regarding future

states of the world. Moreover, in these circum-
stances an investor can attain any point along
the market opportunity line. If, on the other
hand, there are fewer securities than the num-
ber of distinct states, the individual’s optimal
consumption choices may not be attainable.
The significance of this will be explored in the
next section.

Although we do not discuss it here, the real
power of the contingent claim analysis is in pro-
viding the basis for valuing complex financial
instruments and financial arrangements.

INCOMPLETE MARKETS FOR
CONTINGENT CLAIMS
A market is said to be a complete market when
economic agents can structure any set of fu-
ture state payoffs by investing in a portfolio
of unit contingent claims (i.e., primary securi-
ties). A financial market is said to be incomplete
if the number of (linearly) independent secu-
rities traded in it is smaller than the number
of distinct states of the world. Clearly, market
incompleteness depends on how states of the
world are defined. However, since the number
of states of the world needed to describe a typi-
cal financial market is likely to be large, the pos-
sibility that real-world financial markets will be
incomplete is a very real one.

The importance of market incompleteness is
best introduced by an example. Let us consider
an economy with three possible states of the
world and suppose only two securities (taking
the form of unit claims for ease of exposition)
are traded in it. We describe the securities in
terms of their time 1 market value, for each
state of the world, as in Table 2. It is appar-
ent from the table that weighted averages of
the two unit claims can be used to create pack-
ages with time 1 distributions of values ranging
between zero and unity, the actual outcome de-
pending on whether state 1 or state 2 obtains.
However, an investor cannot create an income
claim of other than zero in state 3 by using
just the existing two unit claims. Moreover, no
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Table 2 Market Values of Two
Securities at Time 1

States of the World

Security 1 2 3

1 1 0 0
2 0 1 0

investor can arrange a risk-free investment in
this example, because it is not possible to guar-
antee the same return in every state of the world
by using just the available securities.

The situation is quite different if a third unit
claim worth $1 in state 3 and zero in the other
states becomes available. Now the number of
claims equals the number of distinct states, and
a risk-free investment can now be arranged.

We are now ready to discuss some practi-
cal implications of market incompleteness. It
is obvious from the foregoing example that in-
vestor choice is restricted in incomplete mar-
kets. Moreover if investor choices are restricted,
the investors will never be better off, and are
likely to be worse off, than would be the case
if markets were complete (i.e., if the restrictions
were removed). In such situations, it is to be
expected that if ways of completing the market
can be found, those possibilities are likely to
be utilized. That is, in the context of incomplete
financial markets the appearance of new instru-
ments might be regarded as attempts to provide
investors with financial opportunities not oth-
erwise available. The appearance of derivatives
(options, futures, and swaps) might be exam-
ples of such attempts. Mossin (1977) argues that
the preference existing firms show for organiz-
ing new activities as separate corporations may
be another indication of attempts to deal with
market incompleteness.

FINANCIAL INSTRUMENTS
AS CONTINGENT CLAIMS
Most financial instruments can be bought or
sold, but not all of them are actively traded in

financial markets. For example, a common form
of contingent claim (and one that is close in
concept to a unit claim) is a lottery ticket. In
its simplest form this claim results in its holder
winning either a positive prize or zero. Accord-
ingly, this lottery ticket represents a claim that
can be valued using two states of the world. Ob-
viously, if a lottery has several different prizes,
several states of the world may need to be de-
fined in order to describe it completely. But lot-
tery tickets, once issued, are rarely traded again.
The same is true of such other contingent claims
as the tickets obtained when betting on horse
races or similar contests.

An insurance policy is a contingent claim that
comes closer to our usual notions of a financial
instrument, but again it is rarely traded in the
financial markets. On the other hand, put or
call options, representing contingent claims for
selling or buying securities or financial indexes
at prespecified prices, trade actively on such
organized exchanges. Rights and warrants are
other examples of contingent claims in that they
permit, but do not require, the holder to buy
securities on prespecified terms.

There are also securities that have embed-
ded derivatives in them, derivatives that are not
traded separately from the instrument itself. For
example, a callable bond is a bond that grants the
issuer the right to redeem the bond at some time
in the future and at a specified price. That is, a
callable bond can be viewed as a straight bond
with an embedded call option granted to the
issuer. A putable bond is a bond that grants the
investor the right to sell (i.e., put) the bond to the
issuer in the future at a specified price. Hence,
the bond structure can be viewed as a straight
bond with an embedded put option. Convert-
ible securities, which include convertible bonds
or convertible preferred stocks, represent con-
tingent claims in that they typically allow the
owner to exchange the original issue for other
securities, usually common stock, and they are
callable. Some convertible securities even in-
clude an embedded put option.
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KEY POINTS
� Contingent claims analysis and contingent

strategies are tools for dealing with risk in
financial decision making.

� Contingent claims analysis uses the notion of
states of the world in assessing future risky
payoffs.

� A unit contingent claim (also known as a pri-
mary security or Arrow-Debreu security) is a
security that has a payoff of $1 if a certain state
of the world is actually realized, but nothing
in all other states.

� A contingent claim that pays off $1 if state i is
realized is also referred to as a unit claim on
state i.

� Although few unit contingent claims exist in
reality, claims represent a useful tool to em-
ploy in valuing securities and in understand-
ing relations among them.

� An investor may solve the utility maximiza-
tion problem when facing risk in a market for
contingent claims.

� Using contingent claims analysis, an investor
can obtain a terminal wealth position beyond
what can be obtained by simply buying secu-
rities with initial wealth by engaging in short
sales (i.e., selling shares not currently owned,
for delivery when the unknown future state
of the world is revealed). The outcomes in this
case are more risky than they would be in the
absence of short selling.

� Every security can be viewed as represent-
ing a bundle of unit claims and thereby fur-
ther represents a combination of positions
(long and short) regarding future states of the
world.

� If the number of (linearly) independent se-
curities traded is smaller than the number of
distinct states of the world, the financial mar-
ket is said to be incomplete.

� Because the number of states of the world
necessary to describe a well-functioning fi-
nancial market is likely to be large, the pos-
sibility that real-world financial markets will
be incomplete is a very real one.

� Although most financial instruments repre-
senting contingent claims can be bought or
sold, there are financial instruments or finan-
cial arrangements that are not actively traded
in financial markets.
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Abstract: The most popular continuous-time model for option valuation is based on the Black-
Scholes theory. Although certain drawbacks and pitfalls of the Black-Scholes option pricing model
have been understood shortly after its publication in the early 1970s, it is still by far the most
popular model for option valuation. The Black-Scholes model is based on the assumption that
the underlying follows a stochastic process called geometric Brownian motion. Besides pricing,
every option pricing model can be used to calculate sensitivity measures describing the influence
of a change in the underlying risk factors on the option price. These risk measures are called the
“Greeks” and their use will be explained and described.

In this entry, we look at the most popular model
for pricing options, the Black-Scholes model,
and look at the assumptions and their impor-
tance. We also explain the various Greeks that
provide information about the sensitivity of the
option price to changes in the factors that the
model tells us affects the value of an option.

MOTIVATION
Let us assume that the price of a certain stock
in June of Year 0 (t = 0) is given to be S0 = $100.
We want to value an option with strike price

X = $110 maturing in June of Year 1 (t = T). As
additional information we are given the contin-
uously compounded one-year risk-free interest
rate r = 5%. Figure 1 visualizes potential paths
of the stock between t = 0 and t = T. How can
we define a reasonable model for the stock price
evolution?

It is clear that the daily changes or the change
between the current and the next quotes cannot
be predicted and can consequently be seen as
realizations of random variables. However, we
know that if we are investing in stocks then we
can expect a rate of return in the long run which
is higher than the risk-free rate. Let us denote

465
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Figure 1 Possible Paths of the Stock Price Evo-
lution over One Year with S0 = $100 and X = $110

that unknown expected rate of return as μ. Here
and in the rest of this entry, we assume that the
stock pays no dividend.

Furthermore, we know that stock returns ex-
hibit random fluctuations called volatility. Let
σ denote the unknown yearly rate of volatility.
Here and below we have implicitly assumed
that the expected return and the volatility of
the stock are time independent. This assump-
tion might be violated in practice. Formalizing
our ideas about the stock price we come up
with the following equation for the return of
the stock in a small time interval of length �t:

St+�t − St

St︸ ︷︷ ︸
= Return in period [t,t+�t]

= μ · �t + σ · ε�t
t︸ ︷︷ ︸

“Stochastic noise′′

The stochastic noise σ · ε�t
t should have the

following properties:

� No systematic influence: E(ε�t
t ) = 0.

� No dependence between the noise of differ-
ent dates: The random variables εt and εs are
independent for s �= t.

� The variance of the noise is proportional to
the length of the time interval �t.

One possible model for the noise process is
provided by a stochastic process called Brown-
ian motion. A detailed discussion of Brownian
motion is beyond the scope of this entry, but

we provide a brief discussion of its defining
properties.

Brownian motion is a stochastic process
(Wt)t ≥ 0 in continuous time that has the follow-
ing four properties:

1. W0 = 0, that is, Brownian motion starts at
zero.

2. (Wt)t ≥ 0 is a process with homogeneous and
independent increments.

3. Any increment Wt + h – Wt is normally dis-
tributed with mean zero and variance h.

4. The paths of (Wt)t ≥ 0 are continuous.

The increments of Brownian motion are an
appropriate candidate for the stochastic noise
in our stock price model and we define:

ε�t
t = Wt+�t − Wt

From its defining properties, we know that the
increments of the Brownian motion are inde-
pendent and that the variance of the increments
is proportional to the length of the considered
time interval. Additionally, the expectation of
the increments is zero.

With this definition, it is possible to write the
equation for the return process in the following
form:

St+�t − St

St
= μ�t + σ (Wt+�t − Wt)

If we decrease the length �t of the time inter-
val over which the increment is considered con-
stant, then we can switch to a “differential type”
notation:

d St

St
= μ · dt + σ · dWt, t ≥ 0

The process defined in the above equation
is called geometric Brownian motion. In explicit
notation the geometric Brownian motion pos-
sesses the following form

St = S0e

(
μ− 1

2 σ 2
)

t + σ Wt

and St is lognormally distributed. This pro-
cess is used in the Black-Scholes model to de-
scribe the stock price dynamic. Additionally,
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the model assumes the existence of a risk-
free asset—called money market account or
bond—with the following dynamic:

d Bt

Bt
= r · dt, t ≥ 0 ⇔ Bt = B0ert · t ≥ 0 (1)

BLACK-SCHOLES FORMULA
Black and Scholes (1973) have shown that it is
possible—under some assumptions discussed
in this section—to duplicate the payoff of a
European call option with a continuously re-
balanced portfolio consisting of the two assets
S and B. This means that the price of the call
option equals the initial costs for starting the
hedging strategy.

The Black-Scholes option pricing model com-
putes the fair (or theoretical) price of a European
call option on a nondividend-paying stock with
the following formula:

C = S�(d1) − Xe−rT�(d2) (2)

where

d1 = ln(S/X) + (r + 0.5σ 2T)

σ
√

T
(3)

d2 = d1 − σ
√

T (4)

where

ln(·) = natural logarithm
C = call option price
S = current stock price
X = strike price
r = short-term risk-free interest rate in

percent per annum
e = 2.718 (natural antilog of 1)
T = time remaining to the expiration date

(measured as a fraction of a year)
σ = expected return volatility for the stock

(standard deviation of the stock’s re-
turn in percent per annum)

�(·) = the cumulative distribution function
of a standard normal distribution

The option price derived from the Black-
Scholes option pricing model is “fair” in the
sense that if any other price existed in a market

where all the assumptions of the Black-Scholes
model are fulfilled, it would be possible to earn
riskless arbitrage profits by taking an offsetting
position in the underlying stock. That is, if the
price of the call option in the market is higher
than that derived from the Black-Scholes op-
tion pricing model, an investor could sell the
call option and buy a certain number of shares
in the underlying stock. If the reverse is true,
that is, the market price of the call option is less
than the “fair” price derived from the model,
the investor could buy the call option and sell
short a certain number of shares in the under-
lying stock. This process of hedging by taking a
position in the underlying stock allows the in-
vestor to lock in the riskless arbitrage profit. The
number of shares necessary to hedge the posi-
tion changes as the factors that affect the option
price change, so the hedged position must be
changed constantly.

COMPUTING A CALL
OPTION PRICE
To illustrate the Black-Scholes option pricing
formula, assume the following values:

Strike price = $45
Time remaining to expiration = 183 days
Current stock price = $47
Expected return volatility = Standard deviation

= 25% per annum
Risk-free rate = 10% per annum

In terms of the values in the formula:

S = 47
X = 45
T = 0.5 (183 days/365, rounded)
σ = 0.25
r = 0.10

Substituting these values into equations (3)
and (4):

d1 = ln(47/45) + (0.10 + 0.5[0.25]2)0.5

0.25
√

0.5
= 0.6172

d2 = 0.6172 − 0.25
√

0.5 = 0.440443
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From a normal distribution table,

�(0.6172) = 0.7315 and �(0.4404) = 0.6702

Then

C = $47(0.7315) − $45(e−(0.10)(0.5))(0.6702) = $5.69

Table 1 shows the option value as calculated
from the Black-Scholes option pricing model for
different assumptions concerning (1) the stan-
dard deviation for the stock’s return (that is,
expected return volatility); (2) the risk-free rate;
and (3) the time remaining to expiration. Notice
that the option price varies directly with three

Table 1 Comparison of Black-Scholes Call Option
Price Varying One Factor at a Time

Base Case
Call option:
Strike price = $45
Time remaining to expiration = 183 days
Current stock price = $47
Expected return volatility = Standard deviation of a

stock’s return = 25%
Risk-free rate = 10%

Holding All Factors Constant except Expected Return
Volatility

Expected Price Volatility Call Option Price [$]

15% per annum 4.69
20 5.17
25 (base case) 5.59
30 6.26
35 6.84
40 7.42

Holding All Factors Constant Except the Risk-Free Rate

Risk-Free Interest Rate,
% per annum Call Option Price [$]

7% 5.27
8 5.41
9 5.50
10 (base case) 5.69
11 5.84
12 5.99
13 6.13

Holding All Factors Constant except Time Remaining
to Expiration

Time Remaining to
Expiration Call Option Price [$]

30 days 2.85
60 3.52
91 4.15
183 (base case) 5.69
273 6.99

variables: expected return volatility, the risk-
free rate, and time remaining to expiration. That
is: (1) the lower (higher) the expected volatility,
the lower (higher) the option price; (2) the lower
(higher) the risk-free rate, the lower (higher)
the option price; and (3) the shorter (longer) the
time remaining to expiration, the lower (higher)
the option price.

SENSITIVITY OF OPTION
PRICE TO A CHANGE IN
FACTORS: THE GREEKS
In employing options in investment strategies,
an asset manager or trader would like to know
how sensitive the price of an option is to a
change in any one of the factors that affect its
price. Sensitivity measures for assessing the
impact of a change in factors on the price of
an option are referred to as the Greeks. In this
section, we will explain these measures for the
factors in the Black-Scholes model. Specifically,
we discuss measures of the sensitivity of a
call option’s price to changes in the price of
the underlying stock, the time to expiration,
expected volatility, and interest rate. These
factors can be divided into “market factors”
and “model factors.” The underlying price
and the time to expiration are market factors,
whereas the volatility and the interest rate are
model factors. The special aspect about the
latter variables is that they are assumed to be
constant within the model. By admitting that
these parameters can change as well, we are
admitting that the model is inconsistent with
reality. Table 2 gives an overview and lists the
sensitivities of the option price with respect to
all parameters of the Black-Scholes model.

Price of a Call Option Price and
Price of the Underlying: Delta
and Gamma
In developing an option-pricing model, we
have seen the importance of understanding the
relationship between the option price and the
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Table 2 Sensitivities of the Option Price with Respect
to Each Parameter of the Black-Scholes Model

Corresponding
Parameter Greek Analytic Expression

Stock price S Delta � = ∂C
∂S

= �(d1)

Stock price S
(convexity
adjustment)

Gamma � = ∂2C
∂S2 = ϕ(d1)

Sσ
√

T

Volatility σ Vega υ = ∂C
∂σ

= S · ϕ(d1) · T

Time Theta 
 = − ∂C
∂T

= − Sϕ(d1)σ

2
√

T
− r Xe−rT�(d2)

Interest rate r Rho ρ = ∂C
∂r

= X · T · e−rT · �(d2)

price of the underlying stock. Moreover, an as-
set manager employing options for risk man-
agement wants to know how the value of an
option position will change as the price of the
underlying changes.

One way to do so is to determine the deriva-
tive of the call option price with respect to the
spot price of the underlying stock:

� = ∂C
∂S

= �(d1) (5)

This quantity is called the “delta” of the option,
and can be used in the following way to deter-
mine the expected price change in the option if
the stock increases by about $1:

�C = C(S + $x) − C(S) ≈ ∂C
∂S

�S = $x�(d1) (6)

The relation given by (6) holds true for small
changes in the price of the underlying. For large
changes the assumed linear relationship be-
tween call and option price is not valid and we
must apply a so-called convexity adjustment:

�C = C(S + $x) − C(S) ≈ ∂C
∂S

$x + 1
2

· ∂2C
∂S2
︸︷︷︸
=�

($x)2

Here, � denotes the “options gamma,” which
measures the curvature of the option price as a
function of the price of the underlying stock.
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Figure 2 Accuracy of Simple Delta Approxima-
tion and Convexity-Adjusted Approximation
Note: The example is calculated for a one-month
option with strike X = $100 and current stock price
S = $100 with an interest of 10% per annum and
volatility of 20% per annum.

Figure 2 visualizes this effect. We see that for
small variations in the stock price the “true
price” and both approximations nearly coin-
cide. But for medium-sized variations, only the
convexity-adjusted approximation is still accu-
rate. For large variations in the underlying stock
price both approximations fail.

The impact of the parameters stock price, in-
terest rate, time to maturity, and volatility on
the option’s delta is visualized in Figure 3. We
can recognize that the influence of a change in
the underlying on the option value measured
by the option’s delta increases with increasing
stock price. Intuitively, this is clear as for large
values of the underlying stock the option be-
haves like the stock itself, whereas for values
of the underlying stock near zero, the option is
virtually worthless. Also, we can see that if the
option is at the money, the impact of a change in
the value of the underlying stock increases with
increasing time to maturity and with increas-
ing interest rate, which is not as obvious. The
delta of the option that is at the money decreases
with increasing volatility. The reason is as fol-
lows. Imagine that you possess an option on
an underlying which is virtually nonrandom.



470 Derivatives Valuation

1

0.8

0.6

0.4

0.2

0
80 90 100 110 120

Stock Price S

0.6

0.58

0.56

0.54

0.52

0.5
0 5 10 15

Interest Rate [% p.a.]

0.62

0.6

0.58

0.56

0.54
10 20 30 40 50

Volatility [%p.a.]

0.65

0.6

0.55
0 5 10 15

Time to Maturity [Months]

0.75

0.7

Figure 3 Delta as a Function of the Parameters
Note: The example is calculated for a one-month option with strike X = $100 and current stock price
S = $100 with an interest of 10% per annum and a volatility of 20% per annum.

In this case, the value of the option equals its
intrinsic value and therefore a change in the un-
derlying stock price has a large impact on the
value of the option provided that the current
stock price is above the strike. In a stochastic
environment (that is, nonzero volatilty), every
movement of the stock can be immediately fol-
lowed by a movement in the opposite direction.
This is why the option price is not as sensi-
tive to stock price movements when volatility
is high (that is, delta decreases with increasing
volatility).

For gamma, it is clear that the impact of a
change in the price of the underlying is the high-
est if the option is at the money. If the option is
far out or far in the money, we have C ≈ 0 or C
≈ S and, therefore, the second derivative with
respect to S will vanish.

Below we will give a brief overview of the re-
maining sensitivity measures called theta, vega,
and rho. Figure 4 visualizes the effect of the cur-

rent stock price on the Greeks gamma, theta,
rho, and vega.

The Call Option Price and
Time to Expiration: Theta
All other factors constant, the longer the time
to expiration, the greater the option price. Since
each day the option moves closer to the expira-
tion date, the time to expiration decreases. The
theta of an option measures the change in the
option price as the time to expiration decreases,
or equivalently, it is a measure of time decay.

Assuming that the price of the underlying
stock does not change (which means that the
intrinsic value of the option does not change),
theta measures how quickly the time value of
the option changes as the option moves toward
expiration.

Buyers of options prefer a low theta so that
the option price does not decline quickly as it
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Figure 4 Variation of the Greeks with Respect to the Current Price of the Underlying Stock
Note: The example is calculated for a one-month option with strike X = $100 and spot price S = $100
with an interest of 10% per annum and a volatility of 20% per annum.

moves toward the expiration date. An option
writer benefits from an option that has a high
theta.

Option Price and Expected
Volatility: Vega
All other factors constant, a change in the ex-
pected volatility will change the option price.
The vega (also called “kappa”) of an option
measures the dollar price change in the price
of the option for a 1% change in the expected
price volatility. (Vega is not a Greek letter. Vega
is used to denote volatility, just as theta is used
for time and rho is used for interest rate.) The
option price is most sensitive with respect to
a change in volatility when the option is at or
near the money. This can be easily understood
as follows. Imagine the option is very deep out
of the money (that is, the option is virtually
worthless). In this case, any small change in the
volatility of the underlying will have no impact
on the option price. It will still be nearly zero.

The same holds true if the option is far in the
money (that is, it is nearly sure that the option
will end in the money and the price of the option
equals nearly the price of the stock). In this case,
the impact of a small change in the volatility of
the stock is negligible as well and, therefore,
vega will be small. The situation is different if
the option ranges near at the money. In this case,
the option is very sensitive to volatility changes
as they change the probability of ending in or
out of the money dramatically. That is why we
have a high vega for an option near the money.

Call Option Price and Interest
Rate: Rho
The sensitivity of the option price to a change
in the interest rate is called “rho.” The option’s
rho is the least popular among the Greeks. Nev-
ertheless, it is of practical value as it can be used
to immunize a trader’s position against interest
rate risk. An equivalent concept which might
be familiar to some readers is the duration of
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a bond. For our purposes, rho plays a minor
role, and we have introduced it for the sake of
completeness.

The Greeks and Portfolio
Applications
In practical applications, the Greeks are used
to hedge portfolios with respect to certain risk
exposures. Because a portfolio is a linear com-
bination of assets and as the derivative of a lin-
ear combination of functions equals the linear
combination of the derivatives, we can simply
calculate the Greek of a portfolio of options or
other assets as the linear combination of the
individual Greeks. When we seek to build a
portfolio in a way that one or several of the
Greeks equal zero, then the portfolio is said to
be hedged with respect to the respective risk
factor. A zero-delta portfolio, for example, is in-
sensitive with respect to small changes in the
value of S, and similarly for the other factors.

COMPUTING A PUT
OPTION PRICE
We have focused our attention on call options.
How do we value put options? This is done by
using the following put-call parity relationship,
which gives the relationship among the price of
the common stock, the call option price, and the
put option price. By simple no-arbitrage con-
siderations, it can be shown that the following
price identity must hold true for a European
call and put option with the same strike and
maturity:

Call price − Put price = Stock price

−Present value of dividends

−Present value of the strike

If we can calculate the fair value of a call op-
tion, the fair value of a put with the same strike
price and expiration on the same stock can be
calculated from the put-call parity relationship.

ASSUMPTIONS
UNDERLYING THE
BLACK-SCHOLES MODEL
AND BASIC EXTENSIONS
The Black-Scholes model is based on several re-
strictive assumptions. These assumptions were
necessary to develop the hedge to realize risk-
less arbitrage profits if the market price of the
call option deviates from the price obtained
from the model. Here, we will look at these as-
sumptions and mention some basic extensions
of the model that make pricing more realistic.

Taxes and Transactions Costs
The Black-Scholes model ignores taxes and
transactions costs. The model can be modified
to account for taxes, but the problem is that
there is not one unique tax rate. Transactions
costs include both commissions and the bid-
ask spreads for the stock and the option, as well
as other costs associated with trading options.
This assumption, together with the next two, is
the most important for the validity of the Black-
Scholes model. The derivation of the price de-
pends mainly on the existence of a replicating
portfolio. When transaction costs exist, even if
they are negligibly small, then the hedge port-
folio can no longer be built and the argument
leading to the uniqueness of the price fails.

Trading in Continuous Time,
Short Selling, and Trading
Arbitrary Fractions of Assets
One crucial assumption underlying the Black-
Scholes model is the opportunity to (1) perform
trades in continuous time; (2) buy a negative
number of all traded assets (short selling); and
(3) buy and sell arbitrary fractions of all traded
assets. Only these more or less unrealistic as-
sumptions together with the previously dis-
cussed absence of transaction costs and taxes
allow the derivation of the unique call option
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price by the hedging argument. The portfolio,
consisting of certain fractions of the bond and
the underlying stock, needs an ongoing rebal-
ancing that is only possible in a market that
allows continuous-time trading. Additionally,
the number of stocks and bonds needed in the
portfolio to replicate the option can be an arbi-
trary real number, possibly negative.

Variance of the Stock’s Return
The Black-Scholes model assumes that the vari-
ance of the stock’s return is (1) constant over
the life of the option and (2) known with cer-
tainty. If (1) does not hold, an option pricing
model can be developed that allows the vari-
ance to change. The violation of (2), however, is
more serious. As the Black-Scholes model de-
pends on the riskless hedge argument and, in
turn, the variance must be known to construct
the proper hedge, if the variance is not known,
the hedge will not be riskless.

Stochastic Process Generating
Stock Prices
To derive an option pricing model, an assump-
tion is needed about the way stock prices move.
The Black-Scholes model is based on the as-
sumption that stock prices are generated by a
geometric Brownian motion. Geometric Brown-
ian motion is a stochastic process with continu-
ous paths. In reality, one can sometimes observe
that the market exhibits large fluctuations that
cannot be explained by a continuous-time pro-
cess with constant volatility as the Brownian
motion. In theory, there are two possibilities to
overcome this problem. Either one introduces
the previously mentioned stochastic volatility
or one allows for jumps in the stock price.

Risk-Free Interest Rate
In deriving the Black-Scholes model, two as-
sumptions were made about the risk-free inter-

est rate. First, it was assumed that the interest
rates for borrowing and lending were the same.
Second, it was assumed that the interest rate
was constant and known over the life of the
option. The first assumption is unlikely to hold
because borrowing rates are higher than lend-
ing rates. The effect on the Black-Scholes model
is that the option price will be bound between
the call price derived from the model using the
two interest rates. The model can handle the sec-
ond assumption by replacing the risk-free rate
over the life of the option by the geometric aver-
age of the period returns expected over the life
of the option. Returns on short-term Treasury
bills cannot be known with certainty over the
long term. Only the expected return is known,
and there is a variance around it. The effects of
variable interest rates are considered in Merton
(1973).

BLACK-SCHOLES MODEL
APPLIED TO THE PRICING
OF OPTIONS ON BONDS:
IMPORTANCE OF
ASSUMPTIONS
While the Black-Scholes option pricing model
was developed for nondividend paying stocks,
it has been applied to options on bonds. We
conclude this entry by demonstrating the limi-
tations of applying the model to valuing options
on bonds. This allows us to appreciate the im-
portance of the assumptions on option pricing.
To do so, let us look at the values that would be
derived in a couple of examples.

We know that there are coupon-paying bonds
and zero-coupon bonds. In our illustration we
will use a zero-coupon bond. The reason is that
the original Black-Scholes model was for com-
mon stock that did not pay a dividend and so
a zero-coupon bond would be the equivalent
type of instrument. Specifically, we look at how
the Black-Scholes option pricing model would
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value a zero-coupon bond with three years to
maturity assuming the following:

Strike price = $88.00
Time remaining to expiration = 2 years
Current bond price = $83.96
Expected return volatility = Standard deviation

= 10% per annum
Risk-free rate = 6% per annum

The Black-Scholes model would give an op-
tion value of $8.116. There is no reason to sus-
pect that this value generated by the model
is incorrect. However, let us change the prob-
lem slightly. Instead of a strike price of $88,
let us make the strike price $100.25. The Black-
Scholes option pricing model would give a fair
value of $2.79. Is there any reason to believe
this is incorrect? Well, consider that this is a call
option on a zero-coupon bond that will never
have a value greater than its maturity value of
$100. Consequently, a call option with a strike
price of $100.25 must have a value of zero. Yet,
the Black-Scholes option pricing model tells us
that the value is $2.79! In fact, if we assume
a higher expected volatility, the Black-Scholes
model would give an even greater value for the
call option.

Why is the Black-Scholes model off by so
much in our illustration? The answer is that
there are three assumptions underlying the
Black-Scholes model that limit its use in pric-
ing options on fixed income instruments.

The first assumption is that the probability
distribution for the underlying asset’s prices
assumed by the Black-Scholes model permits
some probability—no matter how small—that
the price can take on any positive value. But in
the case of a zero-coupon bond, the price can-
not take on a value above $100. In the case of
a coupon bond, we know that the price can-
not exceed the sum of the coupon payments
plus the maturity value. For example, for a five-
year 10% coupon bond with a maturity value
of $100, the price cannot be greater than $150
(five coupon payments of $10 plus the maturity
value of $100). Thus, unlike stock prices, bond

prices have a maximum value. The only way
that a bond’s price can exceed the maximum
value is if negative interest rates are permitted.
While there have been instances where nega-
tive interest rates have occurred outside the
United States, users of option pricing models
assume that this outcome cannot occur. Conse-
quently, any probability distribution for prices
assumed by an option pricing model that per-
mits bond prices to be higher than the max-
imum bond value could generate nonsensical
option prices. The Black-Scholes model does al-
low bond prices to exceed the maximum bond
value (or, equivalently, assumes that interest
rates can be negative).

The second assumption of the Black-Scholes
model is that the short-term interest rate is con-
stant over the life of the option. Yet the price
of an interest rate option will change as interest
rates change. A change in the short-term inter-
est rate changes the rates along the yield curve.
Therefore, for interest rate options it is clearly
inappropriate to assume that the short-term rate
will be constant.

The third assumption is that the variance
of returns is constant over the life of the op-
tion. As a bond moves closer to maturity, its
price volatility declines and therefore its return
volatility declines. Therefore, the assumption
that variance of returns is constant over the life
of the option is inappropriate.

KEY POINTS
� The most popular option pricing model is the

Black-Scholes model.
� The factors that affect the value of an op-

tion include the current price of the asset,
the strike price, the short-term risk-free inter-
est rate, the time remaining to the expiration
date of the option, and the expected return
volatility.

� Option pricing models depend on the as-
sumption regarding the distribution of re-
turns.
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� The option price derived from the Black-
Scholes option pricing model is “fair” in the
sense that if any other price existed in a mar-
ket where all the assumptions of the Black-
Scholes model are satisfied, riskless arbitrage
profits can be realized by taking an offsetting
position in the underlying asset.

� The sensitivity of the price of an option to a
change in the value of a factor that affects the
option’s price can be computed for any option
pricing model. These sensitivity measures are
referred to as the Greeks (delta, gamma, vega,
theta, and rho).

� As with any economic model, there are
assumptions that are made. When these
assumptions are violated, the model value

can depart significantly from the true value
of the option.

� Using the Black-Scholes option pricing model
to value an option on a bond is a good
example where the model assumptions are
not consistent with the realities of the bond
market.
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Abstract: There are various models that been proposed to value financial assets in the cash market.
Models for valuing derivatives such as futures, forwards, options, swaps, caps, and floors are
valued using arbitrage principles. Basically, the price of a derivative is one that does not allow
market participants to generate riskless profits without committing any funds. In developing a
pricing model for derivatives, the model builder begins with a strategy (or trade) to exploit the
difference between the cash price of the underlying asset for a derivative. The market price for the
derivative is the cost of the package to replicate the payoff of the derivative.

Derivative instruments play an important role
in financial markets as well as commodity mar-
kets by allowing market participants to control
their exposure to different types of risk. When
using derivatives, a market participant should
understand the basic principles of how they
are valued. While there are many models that
have been proposed for valuing financial in-
struments that trade in the cash (spot) market,
the valuation of all derivative models is based
on arbitrage arguments. Basically, this involves
developing a strategy or a trade wherein a pack-
age consisting of a position in the underlying
(that is, the underlying asset or instrument for
the derivative contract) and borrowing or lend-
ing so as to generate the same cash flow profile
as the derivative. The value of the package is
then equal to the theoretical price of the deriva-

tive. If the market price of the derivative devi-
ates from the theoretical price, then the actions
of arbitrageurs will drive the market price of
the derivative toward its theoretical price until
the arbitrage opportunity is eliminated.

In developing a strategy to capture any mis-
pricing, certain assumptions are made. When
these assumptions are not satisfied in the real
world, the theoretical price can only be ap-
proximated. Moreover, a close examination of
the underlying assumptions necessary to de-
rive the theoretical price indicates how a pric-
ing formula must be modified to value specific
contracts.

In this entry, how futures, forwards, and op-
tions are valued is explained. The valuation
of other derivatives such as swaps, caps, and
floors is described in other entries.
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PRICING OF
FUTURES/FORWARD
CONTRACTS
The pricing of futures and forward contracts
is similar. If the underlying asset for both con-
tracts is the same, the difference in pricing is
due to differences in features of the contract
that must be dealt with by the pricing model.
To understand the differences, we begin with a
definition of the two contracts.

A futures contract and a forward contract are
agreements between a buyer and a seller, in
which the buyer agrees to take delivery of the
underlying at a specified price at some future
date and the seller agrees to make delivery of
the underlying at the specified price at the same
future date. The buyer and the seller of the con-
tract refers to the obligation that the party has
in the future since neither party is obligated to
transact in the underlying at the time of the
trade. The futures price in the case of a futures
contract or forward price in the case of a for-
ward contract is the price at which the parties
have agreed to transact in the future. The settle-
ment date or delivery date is the future date when
the two parties have agreed to transact (that is,
buy or sell the underlying).

Differences between Futures and
Forward Contracts
Futures contracts are standardized agreements
as to the delivery date (or month) and qual-
ity of the deliverable, and are traded on orga-
nized exchanges. Associated with every futures
exchange is a clearinghouse. The clearinghouse
plays an important function: It guarantees that
both parties to the trade will perform in the
future. In the absence of a clearinghouse, the
risk that the two parties face is that in the fu-
ture when both parties are obligated to per-
form one of the parties will default. This risk
faced in any derivative contract is referred to
as counterparty risk. The clearinghouse allows
the two parties to enter into a trade without

worrying about counterparty risk with respect
to the counterparty to the trade. The reason is
that after the trade is executed by the parties,
the relationship between the two parties is ter-
minated. The clearinghouse interposes itself as
the buyer for every sale and the seller for every
purchase. Consequently, the two parties to the
trade are free to liquidate their positions with-
out involving the original counterparty.

To protect itself against the counterparty risk
of both the buyer and seller to the trade, the ex-
change where the contract is traded requires
that when a position is first taken in a fu-
tures contract, both parties must deposit a min-
imum dollar amount per contract. This amount
is specified by the exchange and referred to as
initial margin. The parties have a choice of pro-
viding the initial margin in the form of cash or
an interest-bearing security such as a Treasury
bill. As the price of the futures contract fluctu-
ates each trading day, the value of the equity
of each party in the position changes. The eq-
uity in a futures margin account is measured
by the sum of all margins posted and all daily
gains less all daily losses to the account. To fur-
ther protect itself against counterparty risk, the
exchange specifies that the parties satisfy min-
imum equity positions. Maintenance margin is
the minimum level that the exchange specifies
that a party’s equity position may fall as a re-
sult of an unfavorable price movement before a
party is required to deposit additional margin.
Variation margin is the additional margin that a
party is required to provide in order to bring the
equity in the margin account back to its initial
margin level. If a party fails to furnish variation
margin within 24 hours, the exchange closes
the futures position out. Unlike initial margin,
variation margin must be in cash rather than an
interest-bearing security. Any excess margin in
a party’s margin account may be withdrawn.

In pricing futures contracts, the potential in-
terim cash flows of futures contracts that are
due to variation margin, in the case of ad-
verse price movements, or withdrawal of cash
for a party that experiences a favorable price
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movement that results in the margin account’s
having excess margin must be taken into
account.

We’ll now compare these characteristics of a
futures contract to a forward contact. A for-
ward contract is an over-the-counter (OTC) in-
strument. That is, it is not an exchange-traded
product. A forward contract is usually nonstan-
dardized because the terms of each contract are
negotiated individually between the parties to
the trade. Also, there is no clearinghouse for
trading forward contracts, and secondary mar-
kets are often nonexistent or extremely thin.

As just explained, futures contracts are
marked to market at the end of each trading
day. A forward contract may or may not be
marked to market, depending on the wishes of
the two parties. For example, both parties to a
forward contract may be high-credit-quality en-
tities. The parties may feel comfortable with the
counterparty risk up to some specified amount
and not require margin. Or one party may be
satisfied with the high quality of the counter-
party but the other party may not. In such cases,
the forward contract may call for the marking to
market of the position of only one of the coun-
terparties. For a forward contract that is not
marked to market, there are no interim cash-
flow effects because no additional margin is
required.

Other than these differences, which reflect the
institutional arrangements in the two markets,
most of what we say about the pricing of fu-
tures contracts applies equally to the pricing of
forward contracts.

Basic Futures Pricing Model
We will illustrate the basic model for pricing
futures contracts here. By “basic” we mean that
we are extrapolating from the nuisances of the
underlying for a specific contract. The issues as-
sociated with applying the basic pricing model
to some of the more popular futures contracts
are described in other entries. Moreover, while
the model described here is said to be a model

for pricing futures, technically, it is a model
for pricing forward contracts with no mark-to-
market requirements.

Rather than deriving the formula alge-
braically, the basic pricing model will be
demonstrated using an illustration. We make
the following six assumptions for a futures
contract that has no initial and variation margin
and which the underlying is asset U:

1. The price of asset U in the cash market is
$100.

2. There is a known cash flow for asset U over
the life of the futures contract.

3. The cash flow for asset U is $8 per year paid
quarterly ($2 per quarter).

4. The next quarterly payment is exactly three
months from now.

5. The futures contract requires delivery three
months from now.

6. The current three-month interest rate at
which funds can be lent or borrowed is 4%
per year.

The objective is to determine what the fu-
tures price of this contract should be. To do so,
suppose that the futures price in the market is
$105. Let’s see if that is the correct price. We
can check this by implementing the following
simple strategy:

� Sell the futures contract at $105.
� Purchase asset U in the cash market for $100.
� Borrow $100 for three months at 4% per year

($1 per quarter).

The purchase of asset U is accomplished with
the borrowed funds. Hence, this strategy does
not involve any initial cash outlay. At the end
of three months, the following occurs

� $2 is received from holding asset U.
� Asset U is delivered to settle the futures

contract.
� The loan is repaid.
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This strategy results in the following out-
come:

From settlement of the futures contract:

Proceeds from sale of asset U to settle
the futures contract = $105

Payment received from investing in
asset U for three months = 2
Total proceeds = $107

From the loan:

Repayment of principal of loan = $100
Interest on loan (1% for three months) = 1
Total outlay = $101

Profit from the strategy = $6

The profit of $6 from this strategy is guaran-
teed regardless of what the cash price of asset
U is three months from now. This is because
in the preceding analysis of the outcome of the
strategy, the cash price of asset U three months
from now never enters the analysis. Moreover,
this profit is generated with no investment out-
lay; the funds needed to acquire asset U are
borrowed when the strategy is executed. In fi-
nancial terms, the profit in the strategy we have
just illustrated arises from a riskless arbitrage
between the price of asset U in the cash market
and the price of asset U in the futures market.

In a well-functioning market, arbitrageurs
who could realize this riskless profit for a zero
investment would implement the strategy de-
scribed above. By selling the futures and buying
asset U in order to implement the strategy, this
would force the futures price down so that at
some price for the futures contract, the arbitrage
profit is eliminated.

This strategy that resulted in the capturing
of the arbitrage profit is referred to as a cash-
and-carry trade. The reason for this name is that
implementation of the strategy involves bor-
rowing cash to purchase the underlying and
“carrying” that underlying to the settlement
date of the futures contract.

From the cash-and-carry trade we see that the
futures price cannot be $105. Suppose instead
that the futures price is $95 rather than $105.

Let’s try the following strategy to see if that
price can be sustained in the market:
� Buy the futures contract at $95.
� Sell (short) asset U for $100.
� Invest (lend) $100 for three months at 1% per

year.

We assume once again that in this strategy
that there is no initial margin and variation mar-
gin for the futures contract. In addition, we as-
sume that there is no cost to selling the asset
short and lending the money. Given these as-
sumptions, there is no initial cash outlay for the
strategy just as with the cash-and-carry trade.
Three months from now,
� Asset U is purchased to settle the long posi-

tion in the futures contract.
� Asset U is accepted for delivery.
� Asset U is used to cover the short position in

the cash market.
� Payment is made of $2 to the lender of asset U

as compensation for the quarterly payment.
� Payment is received from the borrower of the

loan of $101 for principal and interest.

More specifically, the strategy produces the
following at the end of three months:

From settlement of the futures contract:

Price paid for purchase of asset U to
settle futures contract = $95

Proceeds to lender of asset U to borrow
the asset = 2
Total outlay = $97

From the loan:

Principal from loan = $100
Interest earned on loan ($1 for three months) = 1
Total proceeds = $101

Profit from the strategy = $4

As with the cash and trade, the $4 profit from
this strategy is a riskless arbitrage profit. This
strategy requires no initial cash outlay, but will
generate a profit whatever the price of asset U is
in the cash market at the settlement date. In real-
world markets, this opportunity would lead ar-
bitrageurs to buy the futures contract and short
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asset U. The implementation of this strategy
would be to raise the futures price until the ar-
bitrage profit disappeared.

This strategy that is implemented to capture
the arbitrage profit is known as a reverse cash-
and-carry trade. That is, with this strategy, the
underlying is sold short and the proceeds re-
ceived from the short sale are invested.

We can see that the futures price cannot be
$95 or $105. What is the theoretical futures price
given the assumptions in our illustration? It can
be shown that if the futures price is $99 there is
no opportunity for an arbitrage profit. That is,
neither the cash-and-carry trade nor the reverse
cash-and-carry trade will generate an arbitrage
profit.

In general, the formula for determining the
theoretical futures price given the assumptions
of the model is:

Theoretical futures price

= Cash market price + (Cash market price)

× (Financing cost − Cash yield) (1)

In the formula given by (1), “Financing cost”
is the interest rate to borrow funds and “Cash
yield” is the payment received from investing
in the asset as a percentage of the cash price. In
our illustration, the financing cost is 1% and the
cash yield is 2%.

In our illustration, since the cash price of asset
U is $100, the theoretical futures price is:

$100 + $100 × (1% − 2%) = $99

The future price can be above or below the
cash price depending on the difference between
the financing cost and cash yield. The difference
between these rates is called the net financing
cost. A more commonly used term for the net fi-
nancing cost is the cost of carry, or simply, carry.
Positive carry means that the cash yield exceeds
the financing cost. (Note that while the differ-
ence between the financing cost and the cash
yield is a negative value, carry is said to be pos-
itive.) Negative carry means that the financing
cost exceeds the cash yield. Below is a summary

of the effect of carry on the difference between
the futures price and the cash market price:

Positive carry Futures price will sell at a discount
to cash price.

Negative carry Futures price will sell at a premium
to cash price.

Zero Futures price will be equal to the
cash price.

Note that at the settlement date of the futures
contract, the futures price must equal the cash
market price. The reason is that a futures con-
tract with no time left until delivery is equiva-
lent to a cash market transaction. Thus, as the
delivery date approaches, the futures price will
converge to the cash market price. This fact is
evident from the formula for the theoretical fu-
tures price given by (1). The financing cost ap-
proaches zero as the delivery date approaches.
Similarly, the yield that can be earned by hold-
ing the underlying approaches zero. Hence, the
cost of carry approaches zero, and the futures
price approaches the cash market price.

A Closer Look at the Theoretical
Futures Price
In deriving theoretical futures price using the
arbitrage argument, several assumptions had
to be made. These assumptions as well as the
differences in contract specifications will result
in the futures price in the market deviating from
the theoretical futures price as given by (1). It
may be possible to incorporate these institu-
tional and contract specification differences into
the formula for the theoretical futures price. In
general, however, because it is oftentimes too
difficult to allow for these differences in build-
ing a model for the theoretical futures price,
the end result is that one can develop bands
or boundaries for the theoretical futures price.
So long as the futures price in the market re-
mains within the band, no arbitrage opportu-
nity is possible.

Next, we will look at some of the institutional
and contract specification differences that cause
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prices to deviate from the theoretical futures
price as given by the basic pricing model.

Interim Cash Flows
In the derivation of a basic pricing model, it is
assumed that no interim cash flows arise be-
cause of changes in futures prices (that is, there
is no variation margin). As noted earlier, in the
absence of initial and variation margins, the
theoretical price for the contract is technically
the theoretical price for a forward contract that
is not marked to market rather than a futures
contract.

In addition, the model assumes implicitly that
any dividends or coupon interest payments are
paid at the settlement date of the futures con-
tract rather than at any time between initiation
of the cash position and settlement of the fu-
tures contract. However, we know that interim
cash flows for the underlying for financial fu-
tures contracts do have interim cash flows. Con-
sider stock index futures contracts and bond
futures contracts.

For a stock index, there are interim cash flows.
In fact, there are many cash flows that are de-
pendent upon the dividend dates of the compo-
nent companies. To correctly price a stock index
future contract, it is necessary to incorporate the
interim dividend payments. Yet, the dividend
rate and the pattern of dividend payments are
not known with certainty. Consequently, they
must be projected from the historical dividend
payments of the companies in the index. Once
the dividend payments are projected, they can
be incorporated into the pricing model. The
only problem is that the value of the dividend
payments at the settlement date will depend
on the interest rate at which the dividend
payments can be reinvested from the time they
are projected to be received until the settlement
date. The lower the dividend, and the closer
the dividend payments to the settlement date
of the futures contract, the less important the
reinvestment income is in determining the
futures price.

In the case of a Treasury futures contract, the
underlying is a Treasury note or a Treasury
bond. Unlike a stock index futures contract,
the timing of the interest payments that will be
made by the U.S. Department of the Treasury
for a given issue that is acceptable as deliver-
able for a contract is known with certainty and
can be incorporated into the pricing model.
However, the reinvestment interest that can
be earned from the payment dates to the
settlement of the contract is unknown and
depends on prevailing interest rates at each
payment date.

Differences in Borrowing and
Lending Rates
In the formula for the theoretical futures price, it
is assumed in the cash-and-carry trade and the
reverse cash-and-carry trade that the borrow-
ing rate and lending rate are equal. Typically,
however, the borrowing rate is higher than the
lending rate. The impact of this inequality is
important and easy to quantify.

In the cash-and-carry trade, the theoretical
futures price as given by (1) becomes:

Theoretical futures price based on borrowing rate
= Cash market price + (Cash market price)

× (Borrowing rate − Cash yield) (2)

For the reverse cash-and-carry trade, it
becomes

Theoretical futures price based on lending rate

= Cash market price + (Cash market price)

× (Lending rate − Cash yield) (3)

Formulas (2) and (3) together provide a band
between which the actual futures price can exist
without allowing for an arbitrage profit. Equa-
tion (2) establishes the upper value for the band
while equation (3) provides the lower value for
the band. For example, assume that the bor-
rowing rate is 6% per year, or 1.5% for three
months, while the lending rate is 4% per year,
or 1% for three months. Using equation (2), the
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upper value for the theoretical futures price is
$99.5 and using equation (3) the lower value for
the theoretical futures price is $99.

Transaction Costs
The two strategies to exploit any price discrep-
ancies between the cash market and theoretical
price for the futures contract will require the
arbitrageur to incur transaction costs. In real-
world financial markets, the costs of entering
into and closing the cash position as well as
round-trip transaction costs for the futures con-
tract affect the futures price. As in the case of
differential borrowing and lending rates, trans-
action costs widen the bands for the theoretical
futures price.

Short Selling
The reverse cash-and-strategy trade requires
the short selling of the underlying. It is assumed
in this strategy that the proceeds from the short
sale are received and reinvested. In practice, for
individual investors, the proceeds are not re-
ceived, and, in fact, the individual investor is
required to deposit margin (securities margin
and not futures margin) to short sell. For insti-
tutional investors, the underlying may be bor-
rowed, but there is a cost to borrowing. This
cost of borrowing can be incorporated into the
model by reducing the cash yield on the un-
derlying. For strategies applied to stock index
futures, a short sale of the components stocks
in the index means that all stocks in the index
must be sold simultaneously. This may be diffi-
cult to do and therefore would widen the band
for the theoretical future price.

Known Deliverable Asset and
Settlement Date
In the two strategies to arbitrage discrepancies
between the theoretical futures price and the
cash market price, it is assumed that (1) only
one asset is deliverable and (2) the settlement
date occurs at a known, fixed point in the fu-
ture. Neither assumption is consistent with the

delivery rules for some futures contracts. For
U.S. Treasury note and bond futures contracts,
for example, the contract specifies that any one
of several Treasury issues that is acceptable for
delivery can be delivered to satisfy the contract.
Such issues are referred to as deliverable issues.
The selection of which deliverable issue to de-
liver is an option granted to the party who is
short the contract (that is, the seller). Hence, the
party that is long the contract (that is, the buyer
of the contract) does not know the specific
Treasury issue that will be delivered. How-
ever, market participants can determine the
cheapest-to-deliver issue from the issues that
are acceptable for delivery. It is this issue that is
used in obtaining the theoretical futures price.
The net effect of the short’s option to select the
issue to deliver to satisfy the contract is that it re-
duces the theoretical future price by an amount
equal to the value of the delivery option granted
to the short.

Moreover, unlike other futures contracts, the
Treasury bond and note contracts do not have a
delivery date. Instead, there is a delivery month.
The short has the right to select when in the
delivery month to make delivery. The effect of
this option granted to the short is once again to
reduce the theoretical futures price below that
given by equation (1). More specifically,

Theoretical futures price adjusted for delivery options

= Cash market price + (Cash market price)

× (Financing cost − Cash yield) − Value of the

delivery options granted to the short (4)

Deliverable as a Basket of Securities
Some futures contracts have as the underlying a
basket of assets or an index. Stock index futures
are the most obvious example. At one time, mu-
nicipal futures contracts were actively traded
and the underlying was a basket of municipal
securities. The problem in arbitraging futures
contracts in which there is a basket of assets
or an index is that it may be too expensive to
buy or sell every asset included in the basket or
index. Instead, a portfolio containing a smaller
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number of assets may be constructed to track
the basket or index (which means having price
movements that are very similar to changes in
the basket or index). Nonetheless, the two ar-
bitrage strategies involve a tracking portfolio
rather than a single asset for the underlying, and
the strategies are no longer risk-free because of
the risk that the tracking portfolio will not pre-
cisely replicate the performance of the basket
or index. For this reason, the market price of
futures contracts based on baskets of assets or
an index is likely to diverge from the theoretical
price and have wider bands.

Different Tax Treatment of Cash and Futures
Transaction
Participants in the financial market cannot ig-
nore the impact of taxes on a trade. The strate-
gies that are implemented to exploit arbitrage
opportunities between prices in the cash and fu-
tures markets and the resulting pricing model
must recognize that there are differences in the
tax treatment under the tax code for cash and
futures transactions. The impact of taxes must
be incorporated into the pricing model.

PRICING OF OPTIONS
Now we will look at the basic principles for
valuing options. There are two parties to an op-
tion contract: the buyer and the writer or seller.
The writer of the option grants the buyer of the
option the right, but not the obligation, to either
purchase from or sell to the writer something at
a specified price within a specified period of
time (or at a specified date). In exchange for
the right that the writer grants the buyer, the
buyer pays the writer a certain sum of money.
This sum is called the option price or option
premium. The price at which the underlying
may be purchased or sold is called the exercise
price or strike price. The option’s expiration date
(or maturity date) is the last date at which the
option buyer can exercise the option. After the

expiration date, the contract is void and has no
value.

There are two types of options: call options
and put options. A call option, or simply call, is
one in which the option writer grants the buyer
the right to purchase the underlying. When the
option writer grants the buyer the right to sell
the underlying, the option is called a put option,
or simply, a put.

The timing of the possible exercise of an op-
tion is an important characteristic of an option
contract. An American option allows the option
buyer to exercise the option at any time up to
and including the expiration date. A European
option allows the option buyer to exercise the
option only on the expiration date.

As with futures and forward contracts, the
theoretical price of an option is also derived
based on arbitrage arguments. However, as will
be explained, the pricing of options is not as
simple as the pricing of futures and forward
contracts.

Basic Components of the
Option Price
The theoretical price of an option is made up
of two components: the intrinsic value and a
premium over intrinsic value.

Intrinsic Value
The intrinsic value is the option’s economic
value if it is exercised immediately. If no pos-
itive economic value would result from exer-
cising immediately, the intrinsic value is zero.
An option’s intrinsic value is easy to compute
given the price of the underlying and the strike
price.

For a call option, the intrinsic value is the dif-
ference between the current market price of the
underlying and the strike price. If that differ-
ence is positive, then the intrinsic value equals
that difference; if the difference is zero or neg-
ative, then the intrinsic value is equal to zero.
For example, if the strike price for a call option
is $100 and the current price of the underlying
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is $109, the intrinsic value is $9. That is, an op-
tion buyer exercising the option and simultane-
ously selling the underlying would realize $109
from the sale of the underlying, which would
be covered by acquiring the underlying from
the option writer for $100, thereby netting a $9
gain.

An option that has a positive intrinsic value is
said to be in-the-money. When the strike price of
a call option exceeds the underlying’s market
price, it has no intrinsic value and is said to be
out-of-the-money. An option for which the strike
price is equal to the underlying’s market price
is said to be at-the-money. Both at-the-money
and out-of-the-money options have intrinsic
values of zero because it is not profitable to
exercise them. Our call option with a strike
price of $100 would be (1) in the money when
the market price of the underlying is more than
$100; (2) out of the money when the market
price of the underlying is less than $100, and
(3) at the money when the market price of the
underlying is equal to $100.

For a put option, the intrinsic value is equal to
the amount by which the underlying’s market
price is below the strike price. For example, if
the strike price of a put option is $100 and the
market price of the underlying is $95, the in-
trinsic value is $5. That is, the buyer of the put
option who simultaneously buys the underly-
ing and exercises the put option will net $5 by
exercising. The underlying will be sold to the
writer for $100 and purchased in the market for
$95. With a strike price of $100, the put option
would be (1) in the money when the underly-
ing’s market price is less than $100, (2) out of
the money when the underlying’s market price
exceeds $100, and (3) at the money when the
underlying’s market price is equal to $100.

Time Premium
The time premium of an option, also referred to
as the time value of the option, is the amount
by which the option’s market price exceeds its
intrinsic value. It is the expectation of the op-
tion buyer that at some time prior to the ex-

piration date changes in the market price of
the underlying will increase the value of the
rights conveyed by the option. Because of this
expectation, the option buyer is willing to pay
a premium above the intrinsic value. For exam-
ple, if the price of a call option with a strike
price of $100 is $12 when the underlying’s mar-
ket price is $104, the time premium of this op-
tion is $8 ($12 minus its intrinsic value of $4).
Had the underlying’s market price been $95 in-
stead of $104, then the time premium of this
option would be the entire $12 because the op-
tion has no intrinsic value. All other things be-
ing equal, the time premium of an option will
increase with the amount of time remaining to
expiration.

An option buyer has two ways to realize the
value of an option position. The first way is by
exercising the option. The second way is to sell
the option in the market. In the first example
above, selling the call for $12 is preferable to
exercising, because the exercise will realize only
$4 (the intrinsic value), but the sale will realize
$12. As this example shows, exercise causes
the immediate loss of any time premium. It is
important to note that there are circumstances
under which an option may be exercised prior
to the expiration date. These circumstances
depend on whether the total proceeds at the
expiration date would be greater by holding
the option or exercising and reinvesting any re-
ceived cash proceeds until the expiration date.

Put–Call Parity Relationship
For a European put and a European call option
with the same underlying, strike price, and ex-
piration date, there is a relationship between the
price of a call option, the price of a put option,
the price of the underlying, and the strike price.
This relationship is known as the put–call parity
relationship. The relationship is:

Put option price − Call option price = Present value

of strike price + Present value of cash distribution

−Price of underlying
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Factors That Influence the
Option Price
The factors that affect the price of an option
include the:

� Market price of the underlying.
� Strike price of the option.
� Time to expiration of the option.
� Expected volatility of the underlying over the

life of the option.
� Short-term, risk-free interest rate over the life

of the option.
� Anticipated cash payments on the underlying

over the life of the option.

The impact of each of these factors may de-
pend on whether (1) the option is a call or a
put, and (2) the option is an American option
or a European option. Table 1 summarizes how
each of the six factors listed above affects the
price of a put and call option. Here, we briefly
explain why the factors have the particular
effects.

Market Price of the Underlying Asset
The option price will change as the price of the
underlying changes. For a call option, as the
underlying’s price increases (all other factors
being constant), the option price increases. The
opposite holds for a put option: As the price
of the underlying increases, the price of a put
option decreases.

Table 1 Summary of Factors That Affect the Price of
an Option

Effect of an Increase
of Factor On

Factor Call Price Put Price

Market price of underlying Increase Decrease
Strike price Decrease Increase
Time to expiration of option Increase Increase
Expected volatility Increase Increase
Short-term, risk-free interest rate Increase Decrease
Anticipated cash payments Decrease Increase

Strike Price
The strike price is fixed for the life of the op-
tion. All other factors being equal, the lower
the strike price, the higher the price for a call
option. For put options, the higher the strike
price, the higher the option price.

Time to Expiration of the Option
After the expiration date, an option has no
value. All other factors being equal, the longer
the time to expiration of the option, the higher
the option price. This is because, as the time to
expiration decreases, less time remains for the
underlying’s price to rise (for a call buyer) or
fall (for a put buyer), and therefore the proba-
bility of a favorable price movement decreases.
Consequently, as the time remaining until ex-
piration decreases, the option price approaches
its intrinsic value.

Expected Volatility of the Underlying over the
Life of the Option
All other factors being equal, the greater the ex-
pected volatility (as measured by the standard
deviation or variance) of the underlying, the
more the option buyer would be willing to pay
for the option, and the more an option writer
would demand for it. This occurs because the
greater the expected volatility, the greater the
probability that the movement of the underly-
ing will change so as to benefit the option buyer
at some time before expiration.

Short-Term, Risk-Free Interest Rate over the
Life of the Option
Buying the underlying requires an investment
of funds. Buying an option on the same quan-
tity of the underlying makes the difference be-
tween the underlying’s price and the option
price available for investment at an interest
rate at least as high as the risk-free rate. Con-
sequently, all other factors being constant, the
higher the short-term, risk-free interest rate, the
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greater the cost of buying the underlying and
carrying it to the expiration date of the call
option. Hence, the higher the short-term, risk-
free interest rate, the more attractive the call
option will be relative to the direct purchase of
the underlying. As a result, the higher the short-
term, risk-free interest rate, the greater the price
of a call option.

Anticipated Cash Payments on the
Underlying over the Life of the Option
Cash payments on the underlying tend to de-
crease the price of a call option because the cash
payments make it more attractive to hold the
underlying than to hold the option. For put op-
tions, cash payments on the underlying tend to
increase the price.

Option Pricing Models
Earlier in this entry, it was explained how the
theoretical price of a futures contract and for-
ward contract can be determined on the ba-
sis of arbitrage arguments. An option pricing
model uses a set of assumptions and arbi-
trage arguments to derive a theoretical price
for an option. Deriving a theoretical option
price is much more complicated than deriv-
ing a theoretical futures or forward price be-
cause the option price depends on the expected
volatility of the underlying over the life of the
option.

Several models have been developed to de-
termine the theoretical price of an option. The
most popular one was developed by Fischer
Black and Myron Scholes (1973) for valuing
European call options on common stock. The
Black-Scholes model requires as input the six
factors discussed above that affect the value of
an option. Several modifications to the Black-
Scholes model followed. One such model is
the lattice model suggested by Cox, Ross, and
Rubinstein (1979), Rendleman and Bartter
(1979), and Sharpe (1981).

Basically, the idea behind the arbitrage ar-
gument is that if the payoff from owning a
call option can be replicated by (1) purchas-
ing the underlying for the call option and (2)
borrowing funds to purchase the underlying,
then the cost of creating the replicating strat-
egy (position) is the theoretical price of the
option.

KEY POINTS
� For futures and forward contracts, the theo-

retical price can be derived using arbitrage ar-
guments. Specifically, a cash-and-carry trade
can be implemented to capture the arbitrage
profit for an overpriced futures or forward
contract while a reverse cash-and-carry trade
can be implemented to capture the arbitrage
profit for an underpriced futures or forward
contract.

� The basic model states that the theoretical fu-
tures price is equal to the cash market price
plus the net financing cost. The net financing
cost, also called the cost of carry, is the differ-
ence between the financing cost and the cash
yield on the underlying.

� Because of institutional and contract specifi-
cation differences, the market price for the fu-
tures or forward contract can deviate from the
theoretical price without any arbitrage oppor-
tunities being possible. Basically, a band can
be established for the theoretical futures price
and as long as the market price for the futures
contract is not outside of the band, there is no
arbitrage opportunity.

� The two components of the price of an option
are the intrinsic value and the time premium.
The former is the economic value of the op-
tion if it is exercised immediately, while the
latter is the amount by which the option price
exceeds the intrinsic value.

� The option price is affected by six factors:
(1) the market price of the underlying; (2)
the strike price of the option; (3) the time
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remaining to the expiration of the option;
(4) the expected volatility of the underlying as
measured by the standard deviation; (5) the
short-term, risk-free interest rate over the life
of the option; and (6) the anticipated cash pay-
ments on the underlying.

� It is the uncertainty about the expected
volatility of the underlying that makes valu-
ing options more complicated than valuing
futures and forward contracts.

� There are various models for determining
the theoretical price of an option. These in-
clude the Black-Scholes model and the lattice
model.
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Abstract: Interest rate modeling has quickly become one of the main areas in financial markets. The
models have grown in sophistication in response to development of new products and structures.
Almost all pricing of securities and the risk management function, including marking-to-market,
relies on interest rate modeling of some description. The information on interest rates, usually
conveyed from the options markets, is important for other markets as well, such as the more
established credit risk, commodities, equities, and the more recent ones such as inflation derivatives
and insurance derivatives. Many models have been developed over the years, and their advantages
and disadvantages should be appreciated and understood when they are applied.

Throughout the world, interest rates serve as
instruments of control. When inflation rises to
an undesirable or politically unacceptable level,
the appropriate authorities raise interest rates to
curb expenditure. In times when economic ac-
tivity and corporate and consumer confidence
is less buoyant, the policy is to lower rates. In-
terest rate derivatives were among the first con-
tracts to be offered on derivative exchanges and
have their origins in the period following the
breakdown of the Bretton Woods Agreement. In
today’s sometimes volatile markets, they con-
tinue to be extremely useful tools for corporates,
banks, and individuals from hedging, financial
engineering, and speculative perspectives.

Two of the early prime movers in the interest
rate derivatives market were the Chicago Board

of Trade (CBOT) and the Chicago Mercantile
Exchange (CME). (In July 2007 the CBOT and
CME merged to form the CME group.) Some of
the contracts that were introduced in the 1970s
are still popular today, as evidenced by the high
volume they enjoy.

At the short end of the yield curve, the CME
has the world’s most actively traded exchange-
based interest rate option contracts: Eurodollar
options. Each Eurodollar option has as its
underlying a Eurodollar time deposit futures
contract with a principal value of $1 million,
which will be cash settled at maturity. Another
high-volume contract available on the CME
is the option on the one-month Eurodollar
futures contract. This, too, is cash settled at
maturity.

489
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CME also, has option contracts on U.S. Trea-
sury bonds and notes in its portfolio of interest
rate derivative products. There are American-
style options available on bonds with a maturity
of at least 25-years, between 15 but less than 25
years, 10-year, 5-year, 3-year and 2-year notes,
the most heavily traded of which is the 10-year
Treasury note. The option contract has as its
deliverable one U.S. Treasury 10-year note fu-
tures contract with a face value of $100,000 at
maturity. Whereas the CME futures contracts
on short-term interest rates are cash settled, the
bond/note futures require physical settlement.
The corresponding option contracts have simi-
lar settlement requirements identified in their
contract specifications. The CME Group lists
seven international data vendors who provided
quotes for call/put options across a range of
strike prices and maturities.

Although option prices are easy to read and
interpret from vendor screens, there is a mass
of academic and practitioner research literature,
which provides a platform from which bond op-
tion prices in general can be calculated with in-
tegrity. The literature on modeling interest rate
derivatives in this arena is frequently divided
into one- or two-factor (or multifactor) models.

� Calculating option prices in a one-factor
model usually proposes that the process is
driven by the short rate, often with a mean-
reversion feature linked to the short rate.
There are several popular models that fall into
this category, for example, the Vasicek model
and the Cox, Ingersoll, and Ross (CIR) model,
both of which will be discussed in more detail
later.

� Calculating option prices in a two-factor
model involves both the short- and long-term
rates linked by a mean-reversion process.

The problem with some of the preceding mod-
els is that they generate their own term struc-
tures, which, in the absence of adjustment, do
not match the term structure observed in the
market. A category of arbitrage-free models
proposed by Ho and Lee (1986); Hull and White

(1990); and Black, Derman, and Toy (1990) seeks
to eliminate this problem. For example, the
Black, Derman, and Toy model enjoys a degree
of popularity among market practitioners, since
it takes account of and matches the term struc-
ture observed in the market, it eliminates the
possibility of generating negative interest rates,
and it models the observed interest rate volatil-
ity. These models together with other proposi-
tions will be discussed in more detail in this
entry.

In order to examine some of the major de-
velopments in option/derivative pricing in the
interest rate field, it is appropriate at this point
to establish a working framework.

MODELING THE TERM
STRUCTURE AND
BOND PRICES
Let (�,�, {Ft}t≥0, Q) be a filtered probability
space modeling a financial market, where the
filtration F = {Ft}t≥0 describes the flux of in-
formation and the probability measure Q de-
notes the risk-neutral measure; the real-world
or physical measure will be denoted by P.
The starting point in modeling bond prices is
the assumption that there is a bank account
B = {B(t)}t≥0 that is linked to the bank instan-
taneous interest rate (also called short rate, spot
rate) process r = {r (t)}t≥0 through

dB(t) = r (t)B(t)dt or

B(t) = B(0) exp
[∫ t

0
r (s)ds

]
(1)

From a practical point of view, we can safely
assume that the majority of stochastic processes
representing prices of traded financial assets are
adapted to the filtration F and that the short-
rate process r = {

r (t)
}

t≥0 is a predictable pro-
cess, meaning that r(t) is Ft−1 measurable. This
implies that B(t) is also Ft−1 measurable and
this condition is automatically satisfied for con-
tinuous or left-continuous processes.
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In this entry we consider only default-free se-
curities. We shall denote by p(t, T) the price at
time t of a pure discount bond with maturity T
and obviously p(t,t) = p(T,T) =1.

The following relationships are well known
in the fixed-income area:

0 < p(t, T) ≤ 1, r (t) = ∂ ln p(t, T)
∂t

|T=t

= − ∂ ln p(t, T)
∂T

|T=t, for any t < T (2)

Let f (t, s) be the forward rate at time s > 0
calculated at time t < s. The instantaneous for-
ward rate at time t to borrow at time T can be
calculated from the bond prices using

f (t, T) = −∂ ln p(t, T)
∂T

(3)

The reverse works as well; if forward rates
are known, then bond prices can be calculated
via p(t, T) = e− ∫ T

t f (t,s)ds . The short rate is in-
trinsically related to the forward rates because
r (t) ≡ f (t, t).

Short-Rate Models of Term Interest
Rate Structure
Many models proposed for the short-rate pro-
cess r = {r (t)}t≥0 are particular cases of the gen-
eral diffusion equation:

dr(t) = a (t, r (t))dt + b(t, r (t))dW(t) (4)

where W = {W(t)}t≥0 is a standard Wiener
process defined on (�,�, {Ft}t≥0, Q). The fol-
lowing list of models describes a chronological
evolution without claiming that it is an exhaus-
tive list:

The Merton model (Merton, 1973) is

dr (t) = αdt + σdW(t) (5)

The Vasicek model (Vasicek, 1977) model is

dr (t) = (α − βr (t))dt + σdW(t) (6)

One advantage of the Vasicek model is that
the conditional distribution of r at any future
time, given the current interest rates at time t, is

normally distributed. The main moments are

Et(r (s)) = α

β
+
(

r (t) − α

β

)
e−β(s−t), t ≤ s

vart[r (s)] = σ 2

2β
(1 − e−2β(s−t)), t ≤ s (7)

covt[r (u), r (s)] = σ 2

2β
e−β(s+u−2t)(e2β(u−t) − 1),

t ≤ u ≤ s

Another advantage is that this model can
be also derived within a general equilibrium
framework as illustrated by Campbell (1986).

One disadvantage that is often discussed
in the interest rate modeling literature is that
there is a long-run possibility of negative inter-
est rates. However, Rabinovitch (1989) proved
that when the initial interest rate r(0) is posi-
tive and the parameter estimates have reason-
able values, the expected first-passage time of
the process through the origin is longer than
nine months. This result supports the use of the
Vasicek model in practice since the majority of
options traded on the organized exchanges ex-
pire in less than nine months.

The Dothan model (Dothan, 1978) is

dr (t) = αr (t)dt + σr (t)dW(t) (8)

This is the same model as Rendleman and
Bartter’s model (Rendleman and Bartter, 1980).
This model is the only lognormal single-factor
model that leads to closed formulae for pure
discount bonds. Nonetheless, there is no closed
formula for a European option on a pure dis-
count bond.

The Cox-Ingersoll-Ross (CIR) models (Cox,
Ingersoll, and Ross, 1980, 1985) are

dr (t) = β(r (t))3/2dW(t)
dr (t) = (α − βr (t))dt + σ (r (t))1/2dW(t)

(9)

CIR wrote arguably the first of several pa-
pers developing one-factor models of the term
structure of interest rates. Around the same
time models in the same spirit include the Va-
sicek, Dothan, Courtadon (1982), and Brennan
and Schwartz (1979) models. The movements of
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longer-maturity instruments are perfectly cor-
related with the instantaneous short-term rates.

The Ho-Lee model (Ho and Lee, 1986) is

dr (t) = α(t)dt + σdW(t) (10)

This is the continuous version of the origi-
nal model that was probably the first model
designed to match exactly the observable term
structure of interest rates.

The Black-Derman-Toy (BDT) model (Black,
Derman, and Toy, 1990) is

dr (t) = α(t)r (t)dt + σ (t)dW(t) (11)

The Hull-White (HW) models (Hull and White,
1990, 1994, 1996) are

dr (t) = [α(t) − β(t)r (t)]dt + σ (t)dW(t)
dr (t) = [α(t) − β(t)r (t)]dt + σ (t)(r (t))1/2dW(t)

(12)
These models are two more general families

of models incorporating the Vasicek model and
CIR model, respectively. The first one is more
often used and it can be calibrated to the ob-
servable term structure of interest rates and
the volatility term structure of spot or forward
rates. However, its implied volatility structures
may be unrealistic. Hence, it may be wise to use
a constant coefficient β(t) = β and a constant
volatility parameter σ (t) = σ and then calibrate
the model using only the term structure of mar-
ket interest rates. It is still theoretically possible
that the short rate r may go negative. The risk-
neutral probability for the occurrence of such
an event is

Q (r (t) < 0) = N

⎛

⎝−
f̃ (0, t) + σ 2

2β2 (1 − eβt)2

√
σ 2

2β2 (1 − e2βt)

⎞

⎠

(13)
where f̃ (0, t) is the market instantaneous for-
ward rate. In practice, this probability seems
to be rather small, as empirical evidence il-
lustrated by Brigo and Mercurio (2007) shows.
However, the probability is not zero, and this
may bother some analysts.

An example will provide an idea of how a
variation of one of the models proposed by Hull

and White described above by the first of (12)
models can be used to price an option on a zero-
coupon bond. If the assumptions are made that
both β, the reversion rate, and σ , volatility, are
constant, then the model can be restated as:

dr (t) = [α(t) − βr (t)]dt + σdW(t) (14)

and the function α(t) can be calculated from a
given term structure using:

α (t) = fT (0, t) + β f (0, t) + σ 2

2β

(
1 − e−2βt)

(15)
The future market price of a zero-coupon

bond in this framework can be found by defin-
ing the reversion rate, β, the volatility, and the
time period involved.

p (T0, T) = A(T0, T) e−B(T0,T)r (T0) (16)

where T0 represents the forward date at which
the bond is to be priced, T represents the bond’s
maturity date, t is a time period index typically
taken to be equal to zero (that is, representing
the current point in time)

B (T0, T) = 1
β

(
1 − e−β(T−T0)

)
(17)

ln A(T0, T) = ln
(

p (t, T)
p (t, T0)

)

−B (T0, T)
∂ ln p (t, T0)

∂T

− 1
4β3 σ 2

(
e−β(T−t) − e−β(T0−t)

)2

×
(

e2β(T0−t) − 1
)

(18)

and r(T) is the prevailing short rate at the for-
ward date.

To illustrate how this works consider the case
where we wish to find the 1-year forward price
of a bond with 4 years remaining to matu-
rity. Assume that the yield curve offers 4.00%
continuously compounded for all maturities,
volatility is 2.00%, and the reversion rate is
0.1. In this example T is 4 and T0 is 1. The
price of the bond can be found using p (1, 4) =
A(1, 4) e−B(1,4)(0.04). Clearly, A(1,4) and B(1,4)



PRICING OPTIONS ON INTEREST RATE INSTRUMENTS 493

must be evaluated. Starting with B(1,4) we have
B (1, 4) = 1

0.1

(
1 − e−0.1 (4−1)

) = 2.5918 .....

The next step requires the evaluation of A(1, 4)
and the expression for ln A(1, 4) can be broken
down into a series of relatively straightforward
calculations:

ln
(

p (t, T)
p (t, T0)

)
= ln

(
p (0, 4)
p (0, 1)

)
= ln

(
e−(4)(0.04)

e−(1)(0.04)

)

= ln
(

0.8521
0.9607

)
= −0.12

B(1, 4) has already been calculated and is
equal to 2.5918. Moreover, ∂ ln p(t,T0)

∂T0
can be ap-

proximated by
(

ln p(t,T0+�t)−ln p(t,T0−�t)
2�t

)
which, if

a time interval, �t, is assumed to be 0.1 years

yields
(

ln p(0,1+0.1)−ln p(0,1−0.1)
2(0.1)

)
= −0.04. This

leaves the expression:

1
4β3 σ 2

(
e−β(T−t) − e−β(T0−t)

)2 (
e2β(T0−t) − 1

)

= 1

4 (0.1)3 0.022
(

e−(0.1)(4) − e−(0.1)(1)
)2

×
(

e2(0.1)(1) − 1
)

= 0.001217

Combining all the above calculations we
find ln A(1, 4) = −0.01754 and then the
one-year forward bond price is p (1, 4) =
e−0.01754...e−2.5918...(0.04) = 0.8858.

The Black-Karasinski (BK) model (Black and
Karasinski, 1991) is

dr (t) = r (t)[α(t) − β(t) ln r (t)]dt + σ (t)r (t)dW(t)

(19)

The BDT, HW, and BK models extended the
Ho-Lee model to match a term structure volatil-
ity curve (e.g., the cap prices) in addition to
the term structure. The BK model is a gener-
alization of the BDT model, and it overcomes
the problem of negative interest rates, assum-
ing that the short rate r is the exponential of
an OU process having time-dependent coeffi-
cients. It is popular with practitioners because
it fits well the swaption volatility surface. Nev-
ertheless, it does not have closed formulae for
bonds or options on bonds.

The Sandmann-Sondermann model (Sand-
mann and Sondermann, 1993) is

r (t) = ln(1 + η(t))
dη(t) = η(t) (α(t)dt + σ (t)dW(t))

(20)

The Dothan model, BKi model, and the expo-
nential Vasicek model given below imply that
r is lognormally distributed. While this finding
may seem reasonable, it is the cause for the ex-
plosion of the bank account; that is, from a sin-
gle unit of money, one may be able to make in an
infinitesimal interval of time an infinite amount
of money. The Sandmann-Sondermann model
overcomes this problem by modeling the short
rates as above.

The Chen model (Chen, 1995) is

dr (t) = (α(t) − r (t))dt + (σ (t)r (t))1/2 dW1(t)

dα(t) = (α − α(t))dt + (α(t))1/2dW2(t)

dσ (t) = (γ − σ (t))dt + (σ (t))1/2dW3(t)

(21)

where α, γ are constants and W1, W2, and W3

are independent Wiener processes. This is an
example of a three-factor model.

The Schmidt model (Schmidt, 1997) is

r (t) = H[ f (t) + g(t)W(T(t))] (22)

where T = T(t) and H = H(x) are continu-
ous nonnegative strictly increasing functions of
t ≥ 0 and real x, while f = f (t) and g = g(t) > 0
are continuous functions.

The exponential Vasicek model is

dr (t) = r (t) [η − a ln r (t)] dt + σr (t)dW(t)

(23)

This model is similar to the Dothan model, be-
ing a lognormal short-rate model. This model
does not lead to explicit formulae for pure dis-
count bonds or for options contingent on them.
In addition, this is an example of a nonaffine
term-structure model.

The Mercurio-Moraleda model (Mercurio and
Moraleda, 2000) is

dr (t) = r (t)
[
η(t) −

(
λ − γ

1 + γ t

)
ln r (t)

]
dt

+σr (t)dW(t) (24)
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The CIR++ model (Brigo and Mercurio, 2007)
is

r (t) = x(t) + ϕ(t)
dx(t) = k [θ − x(t)] dt + σ

√
x(t)dW(t)

(25)

The extended exponential Vasicek model
(Brigo and Mercurio, 2007) is

r (t) = x(t) + ϕ(t)

dx(t) = x(t) [η − λ ln x(t)] dt + σ x(t)dW(t)

(26)

Two-factor models were based on a second
source of random shocks. Two-factor mod-
els were developed by Brennan and Schwartz
(1982), Fong and Vasicek (1992), and Longstaff
and Schwartz (1992a). However, Hogan (1993)
proved that the solution to the Brennan and
Schwartz model explodes, that is, reaches in-
finity in a finite amount of time with positive
probability. This shows that adding more fac-
tors may cause unseen problems. More complex
multifactor models are described by Rebonato
(1998) and by Brigo and Mercurio (1997).

Therefore, the short-rate models lead to two
main problems. Mean-reverting models such
as Vasicek or Hull and White may produce
negative interest rates. From a computational
perspective, if the risk-neutral probability of
producing such negative rates is negligible,
then those scenarios can simply be ignored in
a Monte Carlo setup. The so-called lognormal
models ensure nonnegativity of interest rates
but may become explosive due to the change
of scale in the short-rate modeling. Multifactor
short-rate models become rapidly compu-
tationally infeasible, and they may produce
volatility surfaces that do not match those
observed in the markets.

The problems signaled above for the short-
rate models led to the development of new
classes of models, more notably the LIBOR
market models or BGM developed by Brace,
Gatarek, and Musiela (1997); Jamshidian (1997);
and Musiela and Rutkowski (1997). This model
starts with a geometric Brownian motion for
the forward LIBOR rate Li (t) := L(t; Ti , Ti+1),

where 0 = T0 < T1 < · · · < Tn to acquire posi-
tivity of rates

d Li (t) = μ
Q
i (t)Li (t)dt + σi (t)Li (t)dWQ

i (t)

(27)

where Q is the martingale measure corre-
sponding to the numeraire N(t) = p(t, Tn), also
called the terminal measure because the nu-
meraire is the price of the bond with the last

tenor. Now
n−1∏
k=i

(1 + (Tk+1 − Tk)Lk(t)) = p(t,Ti )
p(t,Tn) is

the numeraire rebased price of a traded asset,
the zero-coupon bond with maturity Ti . Hence,
it should be a martingale and its drift must be
zero. Calculating the drift with Ito calculus for
all consecutive indexes i, i + 1 allows the drift
determination

μ
Q
i (t) =

∑

k≥i+1
k≤n

(Tk+1 − Tk)Lk(t)
[1 + (Tk+1 − Tk)Lk(t)]

σi (t)σk(t)ρi,k(t)

(28)

for all i ∈ {0, . . . , n − 1}.
Other numeraires are also feasible but lead

to a different style of calibration. The pricing of
interest rate derivatives is realized with Monte
Carlo simulation.

The quest for ensuring positiveness of the
short rates motivated the development of a new
class sometimes called Markov functional mod-
els. Important contributions in this area are
Flesaker and Hughston (1996), Rogers (1997),
and Rutkowski (1997), although some semi-
nal ideas are also contained in Constantinides
(1992). In a nutshell, given a strictly positive
diffusion process {D(t)}t≥0 adapted to the filtra-
tion of the probability space, the term-structure
model described by p(t, T) = E P

t [D(T)]
D(t) is arbi-

trage free, and if the diffusion process is also
a supermartingale, then the short-rate process
{r (t)}t≥0 is positive with probability P one.

MODELING IN PRACTICE
One popular way of turning theory into prac-
tice is to use a tree approach to modeling. The
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Table 1 Market Spot and Forward Rates

Time
(Months)

Implied Spot
Zero Rates

Implied
Forward Rates

6 5.0000% 5.0000%
12 5.1266% 5.2533%
18 5.2544% 5.5103%
24 5.3835% 5.7714%
30 5.5141% 6.0371%
36 5.6462% 6.3080%

tree can be either binomial or trinomial in its
construction. To illustrate the idea, consider first
the binomial approach. The tree could be set up
to reflect observed or estimated market short
rates, and the data provided in Table 1 will help
to demonstrate this idea.

The process starts from the first six-month pe-
riod where the rate is known to be 5.000%. At
the end of the six-month period, the following
six-month forward rates are treated as being the
short rates and are split, allowing interest rates
to rise with a probability of 0.5 or fall with a
probability of 0.5, but also taking into account
the short-rate volatility. For a description of how
this is achieved, see Eales (2000). Figure 1 shows
how the rates would appear in a binomial tree
once the procedure has been performed.

When the rates have been established, they
must then be calibrated. The calibration pro-
cedure is achieved using the observed mar-
ket price of a bullet government bond and
pricing the bond using the “tree” calculated
rates to obtain the appropriate discount fac-

5.000%

5.483%

5.977%

6.148%

6.686%

6.885%

7.702%5.804%

5.337%

5.189%

5.039%

5.624%

6.316%

7.082%

7.931%

8.872%

Rates risingRates falling

4.882%

4.760%

4.505%

4.374%

4.633%

Figure 1 Term Structure Evolution: Binomial Tree

tors. Consider a three-year-to-maturity govern-
ment bond trading at par and offering a coupon
of 5.625% paid semiannually as an example.
On maturity, the bond will be redeemed for
102.8125, which is made up of the bond’s face
value, say 100, and one half of the annual
coupon, 2.8125.

Figure 2 illustrates how, moving back through
the tree, the discounting process of the terminal
payment taken together with the discounted in-
terim coupons generate a bond price of 100.013.
Given that the observed bond price is 100, the
rates in the tree will need to be adjusted to en-
sure that the backward calculated price agrees
with the market price of the bond. In this exam-
ple the adjustment factor is 0.6 basis points, and
this will be added to every node in the tree with
the exception of the starting value. The result-
ing rates will then be as displayed in Figure 3.

The calibrated tree can now be used to calcu-
late corporate bond spreads as well as bond
options. The outlined procedure is close to
that advanced by Black, Derman, and Toy in
that the process fits observed market rates and
short-rate volatility. There is, however, a dan-
ger that interest rates could go negative in this
procedure.

As an alternative to this binomial approach,
Hull and White (1994) have suggested a two-
stage methodology that uses a mean-reverting
process with the short rate as the source of
uncertainty and calculated in a trinomial tree
framework. The first stage in the approach
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100.013 Coupons
RD+ last coupons

5
4
3
2
1

87.009
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2.719 2.705

94.957

2.684
2.749

94.661
2.665

93.499 92.185
2.619
2.716

2.644
2.7292.739

2.612
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Figure 2 Calibration

5.000%

4.888%

4.766%

4.639% 5.343%

5.810%

5.983%

5.489%

5.630%

6.154%

6.692%

6.321%

6.891%

7.088%

7.708%

7.937%

8.878%

Rates rising

5.195%

5.045%

4.510%

4.380%

Figure 3 Adjusted Tree to Coincide with Current Market Price

ignores the observed market rates and centers
the evolution of rates around zero and identifies
the point at which the mean-reversion process
takes effect. The second stage introduces the
observed market rates into the framework es-
tablished in stage one. The trinomial approach
gives the tree a great deal more flexibility over
its binomial counterpart, not least in relaxing
the assumption that rates can either rise or fall
with probability 0.5.

HJM METHODOLOGY

Heath, Jarrow, and Morton (1990a, 1990b, 1992)
derived both one-factor and multifactor models
for movements of the forward rates of interest.
The models were complex enough to match the
current observable term structure of forward
rate and by equivalence the spot rates. Ritchken
and Sankarasubramanian (1995) provide nec-
essary and sufficient conditions for the HJM
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models with one source of error and two state
variables such that the ex post forward premium
and the integrated variance factor are sufficient
statistics for the construction of the entire term
structure at any future point in time.

Under this methodology, the bond dynamics
are described by an Ito process:

dp(t, T) = r (t)p(t, T)dt + σ (t, T)p(t, T)dW(t)
(29)

Then

d ln p(t, T) =
[

r (t) − 1
2
σ 2(t, T)

]
dt + σ (t, T)dW(t)

(30)

The equation for the forward rate can be de-
rived now:

d f (t, T) = −d
(

∂

∂T
ln p(t, T)

)
= −

(
∂

∂T
d ln p(t, T)

)

= − ∂

∂T

{[
r (t) − 1

2
σ 2(t, T)

]
dt + σ (t, T)dW(t)

}

= σ (t, T)
∂σ (t, T)

∂T
dt − ∂σ (t, T)

∂T
dW(t) (31)

The Wiener process W = {W(t)} is symmetric,
and therefore we can safely replace W with –W,
so

d f (t, T) = σ (t, T)
∂σ (t, T)

∂T
dt + ∂σ (t, T)

∂T
dW(t)

(32)

Applying the fundamental theorem of calcu-
lus for ∂σ (t, T)/∂T leads to

σ (t, T) − σ (t, t) =
∫ T

t

∂σ (t, s)
∂s

ds (33)

It is obvious that σ (t, t) = 0 and therefore the
volatility of the forward rate determines the
drift as well. In other words, all that is needed
for the HJM methodology is the volatility of the
bond prices. The short rates are easily calcu-
lated from the forward rates. Once a model for
short rates is determined under the risk-neutral
measure Q, the bond prices are calculated from

p(t, T) = E Q
[
e− ∫ T

t r (s)ds |Ft

]
(34)

Using (3) it follows that
∫ T

t f (t, s)ds =
− ln p(t, T) = g(r (t), t, T) where

g(x, t, T) = − ln E Q
[
e− ∫ T

t r (s)ds
∣∣r (t) = x

]

(35)

The continuous variant of the Ho-Lee model
can be obtained for

g(x, t, T) = x(T − t) − 1
6
σ 2(T − t)3

+
∫ T

t
(T − s)α(s)ds (36)

where σ (t, T) = σ (T − t), which implies that
∂ f (t,T)

∂t = σ 2(T − t)dt + σdW(t) so the initial for-
ward curve is

f (0, T) = ∂g(r (0), 0, T)
∂T

= r (0) − 1
2
σ 2T2

+
∫ T

0
α(s)ds (37)

The short rate is given by

r (t) = f (0, t) + σ 2 t2

2
+ σ W(t) (38)

and the price of the pure discount bond with
maturity T is

p(t, T) = exp
[
−
∫ T

t
f (t, s)ds − σ 2t

∫ T

t

(
s − t

2

)
ds − σ (T − t)W(t)

]
(39)

Similarly, the Vasicek model is recovered for

σ (t, T) = σ e−β(T−t) and f (0, T)

= α

β
+ e−βT

(
r (0) − α

β

)
− σ 2

2β2 (1 − e−βT )2

(40)

and this leads to

r (t) = α

β
+ e−βT

(
r (0) − α

β

)
+ σ e−βt

∫ t

0
eβsdW(s)

(41)
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BOND OPTION PRICING
Formulae for bond options were found by Cox,
Ingersoll, and Ross using the CIR model (square
root process) for short rates and by Jamshidian
(1989), Rabinovitch (1989), and Chaplin (1987)
using the Vasicek model for the short-rate pro-
cess. Rabinovitch advocated the idea that the
bond follows a lognormal process (similar to
equity prices). Chen (1991) pointed out that
this assumption is grossly misleading since the
bond price is a contingent claim on the same
interest rate, so the bond option pricing model
cannot be a two-factor model as proposed by
Rabinovitch and it rather collapses onto a one-
factor model, in which case the formulas are the
same with those proved respectively by Chap-
lin (1987) and by Jamshidian (1989).

Bonds are traded generally over the counter.
Futures contracts on bonds may be more liq-
uid and may remove some of the modeling
difficulties generated by the known value at
maturity of the bonds. Hedging may be more
efficient in this context using the futures con-
tracts on pure discount bonds (provided they
are liquid) rather than the bonds themselves.
Chen (1992) provides closed-form solutions for
futures and European futures options on pure
discount bonds, under the Vasicek model.

Hull and White used a two-factor version
of the Vasicek model to price discount bond
options. Turnbull and Milne (1991) proposed
a general equilibrium model outside the HJM
framework. They provide analytical solutions for
European options on Treasury bills, interest rate
forward and futures contracts, and Treasury
bonds. In addition, a closed formula is iden-
tified for a call option written on an interest
rate cap. A two-factor model is also investi-
gated, and closed-form solutions are provided
for a European call on a Treasury bill. Chen and
Scott (1992) use a two-factor CIR model that is
essentially the same as the model analyzed by
Longstaff and Schwartz (1992), and derive so-
lutions for bond and interest rate options. The
two-factor model is used, with the first factor
having a strong mean reversion, explaining the

variation in short-term rates, while the second
factor has a very slow mean reversion, model-
ing long-term rates. The model is also used for
calculating premiums for caps on floating inter-
est rates and for European options on discount
bonds, coupon bonds, coupon bond futures,
and Eurodollar futures. These are not closed-
form solutions, but they are expressed as multi-
variate integrals. However, the calculus can be
reduced to univariate numerical integrations.

European Options on the
Money Fund
In this section we consider the pricing of a Eu-
ropean option on the money fund (this is the
same as a bank account when the initial value
B(0) =1). Thus, the payoff of a European call op-
tion with exercise price K is max[B(T) − K , 0].
The continuous version of the Ho-Lee model
is assumed for the short interest rate process.
The risk-neutral valuation methodology pro-
vides the solution as

cB(0),T,K = E Q
[
e− ∫ T

0 r (u)du max[B(T) − K , 0]
]

= B(0)N(d+) − p(0, T)K N(d−) (42)

where

d+ =
ln
(

B(0)
p(0,T)K

)
+ σ 2 T3

6

σ

√
T3

3

and

d− =
ln
(

B(0)
p(0,T)K

)
− σ 2 T3

6

σ

√
T3

3

= d+ − σ

√
T3

3

A proof of this formula is described in Epps
(2000) in Section 10.2.2.

Options on Discount Bonds
Discount bond options are not very liquid, but
they form an elementary component for pricing
other options. For example, a floating rate cap
can be decomposed into a portfolio of European
puts on discount bonds. Similarly, with the Eu-
ropean option contingent to the bank account,
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we can price European options contingent on
discount bonds.

When the short rate process r = {r(t)} fol-
lows the continuous time version of the Ho-Lee
model given above by (10), the price at time 0
of a European call option with maturity T0 with
exercise price K on a discount bond maturing at
T (T0 < T) is

c p(0,T);T0;K = E Q
[
e− ∫ T

0 r (u)du max[p(T0, T) − K , 0]
]

= p(0, T0)
p(0, T)
p(0, T0)

N(d+)

−p(0, T0)K N(d−) (43)

where

d+ =
ln
(

p(0,T)
p(0,T0)K

)
+ σ 2 (T−T0)T0

2

σ
√

(T − T0)T0
and

d− = d+ − σ
√

(T − T0)T0

A proof of this result is provided in Epps
(2000). There is a similar put-call parity for
European options contingent on a discount
bond. If pp(0,T);T0;K is the price at t = 0 of a
European put option on the discount bond with
maturity T, then for B(0) = 1,

c p(0,T);T0;K − pp(0,T);T0;K

= E Q[e− ∫ T0
0 r (s)ds(max[p(T0, T) − K , 0]

− max[K − p(T0, T), 0])]

= E Q[e− ∫ T0
0 r (s)ds[p(T0, T) − K ]]

= E Q[e− ∫ T
0 r (s)ds] − p(0, T0)K

= p(0, T) − p(0, T0)K

Put-call parity can be used to derive the price
of a European put option:

pp(0,T);T0;K = p(0, T0)K N(−d−)

−p(0, T0)
p(0, T)
p(0, T0)

N(−d+) (44)

Initially, the first formulas on pricing options
on pure discount bonds used the Vasicek model
for the term structure of interest rates. Thus,
given that r follows (6), the price of a European

call option with maturity T0 with exercise price
K on a discount bond maturing at T (T0 < T) is

c p(0,T );T0;K = p(0, T)N(d+) − K p(0, T0)N(d−)
(45)

where d+ = ln
(

p(0,T)
K p(0,T0)

)
+η2/2

η
and d− = d+ − η,

with η = σ (1−e−β(T−T0))
β

√
1−e−2βT0

2β

The put price can be obtained from put-call
parity as

pp(0,T);T0;K = K p(0, T0)N(−d−) − p(0, T)N(d+)
(46)

Example: Valuing a Zero-Coupon Bond Call
Option with the Vasicek Model
Let’s consider this model for pricing a 3-year
European call option on a 10-year zero-coupon
bond with face value $1 and exercise price K
equal to $0.5. As in Jackson and Staunton (2001),
we use for the parameters of this model the
values estimated by Chan et al. (1992) for U.S.
1-month Treasury bill yield from 1964 to 1989.
Thus, α = 0.0154, β = 0.1779, and σ = 2%. In
addition, the value of the short rate r at time
t = 0 is needed, so we take r0 = 3.75%. Feeding
this information into the above formulas, we
get the output in Table 2. Thus, the value of the
European call option is

c p(0,T);T0;K = 0.5406 × 0.9822 − 0.5 × 0.8655

× 0.9767 ∼= 0.108

A more general case is discussed by Shiryaev
(1999) for single-factor Gaussian models mod-
eling the short interest rate. These are single-
factor affine models where the short rate r is
also a Gauss-Markov process. The equation for
this short rate process is

dr (t) = [α(t) − β(t)r (t)]dt + σ (t)dW(t) (47)

Table 2 Calculations of Elements for Pricing a
European Call Option on a Zero-Coupon Bond When
Short Rates Are Following the Vasicek Model

p(0,T0) p(0,T) d+ d– N(d+) N(d–)

0.8655 0.5406 2.1013 1.9926 0.9822 0.9767



500 Derivatives Valuation

and we can easily recognize the first Hull-White
model. The price of a European call option is also

c p(0,T );T0;K = p(0, T)N(d+) − K p(0, T0)N(d−)
(48)

but where

d+ =
ln
(

p(0,T )
K p(0,T0)

)
+ 1

2η2(T0, T)B2(T0, T)

η(T0, T)B(T0, T)
and

d− = d+ − η

with

B(T0, T) =
∫ T

T0

ϕ(s)
ϕ(T0)

ds and ϕ(s) = e− ∫ s
0 β(u)du

The price of the European put option is ob-
viously again pp(0,T);T0;K = K p(0, T0)N(−d−) −
p(0, T)N(d+).

Example: Valuing a Zero-Coupon Bond Call
Option with the Hull-White Model
When considering the pricing of a forward pure
discount bond earlier in this entry, we used
a numerical example. That example can now
be expanded to demonstrate how, in practice,
European calls and puts can be estimated in a
Hull-White framework. Explicitly, the illustra-
tion will demonstrate the pricing of a one-year
European call option on a four-year-to-maturity
discount bond with a strike price set equal to the
forward price of the bond (0.8858. . .).

Breaking down (d+) into its component parts
and evaluating each individually yields:

ln
(

p (0, T)
K (p (0, T0))

)
= ln

(
0.8521

(0.8858) (0.9607)

)

= 0, B(T0, T) = 2.5918

η = σ (1 − e−β(T−T0))
β

√
1 − e−2βT0

2β

= 0.02
(
1 − e−0.1(3)

)

0.1

√
1 − e−2(0.1)(1)

2 (0.1)
= 0.0493

The expression for (d+) reduces to

η (T0, T) B (T0, T)
2

= (0.0493) (2.5918)
2

= 0.6395

The expression for d− is (d−) = (d+) − η =
0.6395 − 0.0493 = 0.0146. N (d+) is found to be
0.5255 and N (d−) = 0.5058. Substituting these

results into the call option formula gives a
premium of

c p(0,T );T0;K = (0.8521) (0.5255)

− (0.8858) (0.9608) (0.5058)

= 0.01730

or 1.73%.
One notable exception from this general class

is the CIR model. There is a closed formula for
this case, too. Following Clewlow and Strick-
land (1998), the price at time 0 of a European
pure discount bond option is

c p(0,T);T0;K =p(0, T)χ2

(
2δ[φ + ψ + B(T0, T)]; 2ω,

2φ2r (0)eθT0

φ + ψ + B(T0, T)

)

−K p(0, T0)χ2
(

2δ[φ + ψ]; 2ω,
2φ2r (0)eθT0

φ + ψ

)

(49)

where

θ =
√

β2 + 2σ 2, φ = 2θ

σ 2(e−θT − 1)
,

ψ = β + θ

σ 2
, λ = β + θ

2
, ω = 2β

σ 2
,

B(t, s) =
(

eθ(s−t) − 1
λ(eθ(s−t) − 1) + θ

)
,

δ = ω
(
λT + ln θ − ln[λ(eθT − 1) + θ ]

)− ln(K )
B(T0, T)

and χ2(.; a , b) is the noncentral chi-squared den-
sity with a degrees of freedom and noncentral-
ity parameter b.

Example: Valuing a Zero-Coupon Bond Call
Option with the CIR Model
Let’s consider the same problem as described
in the example using the Vasicek model above
and price the 3-year European call option on
a 10-year pure discount bond using the CIR
model for the short interest rates. Recall that
face value is $1 and exercise price K is equal to
$0.5. As in the example with the Vasicek model,
we consider that σ = 2% and r0 = 3.75%. The
CIR model overcomes the problem of negative
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interest rates known for the Vasicek model as
long as 2α ≥ σ 2. This is true, for example, if we
take α = 0.0189 and β = 0.24. Feeding this in-
formation into the above formulas is relatively
tedious. A spreadsheet application is provided
by Jackson and Staunton. After some work, we
get that the price of the call is

c p(0,T);T0;K = 0.5324 × 1 − 0.5 × 0.8624

× 1 ∼= 0.1012

Options on Coupon-Paying Bonds
When short rates are modeled with single-
factor models, Jamshidian (1989) proved that
an option on a coupon bond can be priced
by valuing a portfolio of options on discount
bonds. This approach does not work in mul-
tifactor models as proved by El Karoui and
Rochet (1995).

Consider a bond paying a periodic cash pay-
ment ρ at times T1, T2, . . . , Tm, and the princi-
pal at maturity T = Tm. A coupon bond can be
mapped into a portfolio of discount bonds with
corresponding maturities (under one source of
uncertainty, that is, one factor model). The value
of a coupon-bearing bond at time t < Tm is

p(t, T1, . . . , Tm; ρ) = ρ

m∑

i=i[t]

p(t, Ti ) + p(t, Tm)

(50)
where i[t] = min{ j : t < Tj }.

Under the one-factor HJM model correspond-
ing to the Ho-Lee model, a European option on
a coupon bond can be valued as a portfolio of
options contingent on zero discount bonds with
maturities T1, T2, . . . , Tm. Let T0 be the maturity
of such a European option.

Epps (2000) shows that

p(T0, Ti ) = p(0, Ti )
p(0, T0)

e

[
−σ 2 (Ti −T0)2 T0

2 −(Ti −T0)(r (T0)− f (0,T0))
]

(51)

For any strike price K, there is a value rK

of r (T0) such that when replaced in (48) with
t = T0, implies p(T0, T1, . . . , Tm) = K . Let’s de-

note by Ki the value of p(T0, Ti ) as calculated
from (49) with rK instead of r (T0). Then

ρ

m∑

i=i[T0]

Ki + Km = K (52)

Hence, the value at time 0 of a European call
option with maturity T0 and strike price K on
the coupon-bearing bond, under the one-factor
HJM model described above, is given by

c p(0,T1,...,Tm ;ρ) = E Q
{

e− ∫ T0
0 r (s)ds max[p(T0, T1, . . . , Tm; ρ)

−K , 0]
}

= ρ

K∑

i=i[T0]

E Q
{

e− ∫ T0
0 r (s)ds max[p(T0, Ti ) − Ki , 0]

}

+E Q
{

e− ∫ T0
0 r (s)ds max[p(T0, Tm) − Km, 0]

}

= ρ

m∑

i=i[T0]

c p(0,Ti );T0,Ki + c p(0,Tm),T0;Km (53)

Example: Valuing a Coupon-Bond Call Option
with the Vasicek Model
The above example is reconsidered using the
Vasicek model for the short-term interest rates.
The bond is no longer a zero-bond but now pays
an annual coupon at a 5% rate (ρ = 0.05), all the
other characteristics being the same as before.
In order to calculate the European call option
price on the coupon bond, we need to calculate
the interest rate rK such that the present value at
the maturity of the option of all later cash flows
on the bond equals the strike price. This is done
by trial and error using (48), and the value we
get here is rK = 22.30%. Next, we map the strike
price into a series of strike prices via (50) that
are then associated with coupon payments con-
sidered as zero-coupon bonds and calculate the
value of the European call options contingent
on those zero-coupon bonds as in the preced-
ing example. The calculations are described in
Table 3.

Because we started with a one-factor model
for the short interest rates, we can use
the decomposition property emphasized by
Jamshidian (1997) and calculate the required
coupon-bond European call price as the sum
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Table 3 Calculations Using the Vasicek Model for
Separate Zero-Coupon European Call Options (bond
prices shown are calculated with the estimated rK)

Year p(T0,Ti) | rK Face Value ρKi Call Option

4.0 0.8094 0.05 0.0405 0.006
5.0 0.6688 0.05 0.0334 0.009
6.0 0.5624 0.05 0.0281 0.012
7.0 0.4800 0.05 0.0240 0.013
8.0 0.4148 0.05 0.0207 0.013
9.0 0.3622 0.05 0.0181 0.013

10.0 0.3192 1.05 0.3351 0.278

of all the elements in the last column in Table 3,
which includes the coupon rate factor ρ. Thus,
the value of this option is 0.344.

Example: Valuing a Coupon-Bond Call Option
with the CIR Model
We repeat the calculation of the coupon-bond
call option when the CIR model is employed
for the short rates. The procedure is the same as
in the case discussed previously for the Vasicek
model. First, we calculate the interest rate rK

such that the present value at the maturity of
the option of all later cash flows on the bond
equals the strike price. This value is here rK =
25.05%. Next, we map the strike price into a
series of strike prices via (50) that are then
associated with coupon payments considered
as zero-coupon bonds and calculate the value
of the European call options contingent to
those zero-coupon bonds. The calculations are
described in Table 4.

Table 4 Calculations Using the CIR Model for
Separate Zero-Coupon European Call Options (bond
prices shown are calculated with the estimated rK)

Year p(T0,Ti) | rK Face Value ρKi Call Option

4.0 0.7934 0.05 0.0397 0.006
5.0 0.6503 0.05 0.0325 0.010
6.0 0.5470 0.05 0.0273 0.012
7.0 0.4694 0.05 0.0235 0.013
8.0 0.4094 0.05 0.0205 0.013
9.0 0.3615 0.05 0.0181 0.013

10.0 0.3223 1.05 0.3385 0.267

The value of the call option is 0.334, that is, the
sum of all zero-coupon bond call option prices
in the last column.

Pricing Swaptions
Swaptions options allow the buyer to obtain at
a future time one position in a swap contract. It
is elementary that an interest rate swap, fixed
for floating, can be understood as a portfolio
of bonds. Let’s consider here that the notional
principal is 1. Then the claim on the fixed pay-
ments is the same as a bond paying coupons
with the rate ρ and no principal. Let τ be the
time when the swap is conceived. The claim
on the fixed income stream is worth, at time

τ , ρ
m∑

i=1
p(τ, Ti ). The floating income stream is

made up of cash returns on holding, over the
period [Ti−1, Ti ] a discount bond with maturity
Ti, which is worth p(Ti ,Ti )

p(Ti−1,Ti )
− 1. Thus, the value

of the whole floating stream at time t = τ is

Eτ

(
m∑

i=1

e− ∫ Ti
τ

r (s)ds 1 − p(Ti−1, Ti )
p(Ti−1, Ti )

)

= Eτ

(
m∑

i=1

e− ∫ Ti−1
τ

r (s)dse− ∫ Ti
Ti−1

r (s)ds 1 − p(Ti−1, Ti )
p(Ti−1, Ti )

)

(54)

Applying the properties of conditional expec-
tations it follows that the above is equal to

Eτ

{
m∑

i=1

e− ∫ Ti−1
τ r (s)ds

(
ETi−1 e

− ∫ Ti
Ti−1

r (s)ds
[

1 − p(Ti−1, Ti )
p(Ti−1, Ti )

])}

= Eτ

{
m∑

i=1

e− ∫ Ti−1
τ r (s)ds (1 − p(Ti−1, Ti ))

}

=
m∑

i=1

[p(τ, Ti−1) − p(τ, Ti )] = 1 − p(τ, Tm) (55)

Imposing the condition that the two streams
have equal initial value leads to

ρ

m∑

i=1

p(τ, Ti ) = 1 − p(τ, Tm)
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which is equivalent to

ρ

m∑

i=1

p(τ, Ti ) + p(τ, Tm) − 1 = 0

It follows then that the value of the swap at
initialization is p(τ, T1, . . . , Tm) − 1. Thus, the
option to get a long position in the fixed leg of
the swap, with a fixed payment rate ρ, is worth
at time 0

E Q
0

{
e− ∫ τ

0 r (s)ds max [p(τ, T1, . . . , Tm) − 1, 0]
}

(56)

It is clear now that this is the same as a Eu-
ropean call option on a coupon-bearing bond
when the exercise price is equal to 1.

PRACTICAL
CONSIDERATIONS
As mentioned in the introduction, the 10-year
U.S. Treasury note option traded on the CME
is an extremely popular contract offering tight
bid/ask spreads and transparent price quotes.

The Eurodollar futures option traded on the
CME is the most actively traded short-term in-
terest rate option in the world. If the option
contracts are exercised, the buyer and the seller
of the option take positions in the Eurodollar
futures contract, which is cash-settled, and the
final price at delivery is equal to 100 minus the
three-month US dollar LIBOR.

Another liquid interest rate derivative market
is the OTC in floating rate caps. The majority of
caps are contingent on LIBOR (but can be also
on a Treasury rate), and discounted payments
are made at the beginning of each tenor. The
payments can be made either at the beginning
or the end of each reset period, and the life of
a cap may be only a few years or as long as 10
years. The starting point in pricing these Euro-
pean options is a model for future changes in
US dollar LIBOR.

Hull and White (1990) showed that the cap
can be priced as a portfolio of European puts
on discount bonds.

KEY POINTS
� One-factor short-rate models for interest rate

derivatives are easy to work with since the
majority of them lead to closed-form solu-
tions for options pricing. However, some of
them allow for negative interest rates, which
may not be acceptable in a real trading envi-
ronment.

� Two-factor models for interest rates provide
improved calibration at the expense of com-
putational simplicity.

� The two-factor Hull and White model,
falling under the general Heath-Jarrow-
Morton framework, is complex enough to
calibrate market data easily while retaining
computational simplicity through closed-
form solutions for a wide range of interest
rate derivatives.

� The need for improved calibration of forward
curves led to the development of a different
class of models called LIBOR models.

� The calibration of caps and floors, and also
swaptions, is indicative of the success of an
interest rate model.
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Basics of Currency Option
Pricing Models
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Abstract: Historically, theorists have devoted a substantial amount of work developing a mathemat-
ical model for pricing options and, hence, a number of different models exist as a result. All make
certain assumptions about market behavior, which are not totally accurate, but which give the best
solution to the price of an option. Professionals use these models to price their own options and to
give theoretical fair value; however, actual market rates will always be the overriding determinant.
In other words, an option is worth as much as someone is prepared to pay for it. Although the
formula for pricing options is complex, they are all based on the same principles.

Historically, option-pricing models have fallen
into two categories:

� Ad hoc models, which generally rely only
upon empirical observation or curve fit-
ting and, therefore, need not reflect any of
the price restrictions imposed by economic
equilibrium.

� Equilibrium models, which deduce option
prices as the result of maximizing behavior
on the part of market participants.

The acknowledged basis of modern option
pricing formulas is the often-quoted Black-
Scholes formula, devised by Black and Scholes
(1973) to produce a “fair value” for options on
equities. Of course, currency options differ be-
cause there is no dividend and both elements of
the exchange carry interest rates that can be fixed
until maturity. Therefore, various adaptations
to the original Black-Scholes formula have been
made for use in currency option pricing. The

best known of these is the Garman-Kohlhagen
adaptation, which adequately allows for the
two interest rates and the fact that a currency
can trade at a premium or at a discount forward
depending on the interest rate differential.

American-style options cause further prob-
lems in the pricing due to the probability of
early exercise. Cox, Ross, and Rubinstein (1979)
introduced a pricing model to take account of
American-style options. By using the same ba-
sics as Black-Scholes, they adopted what is now
known as the “binomial” method for pricing
such options. This same binomial model is now
used alongside the Garman-Kohlhagen version
to price currency options.

BASIC PROPERTIES
First, though, there are a few basic properties
of options, especially when looking at option
prices to consider:
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� Options cannot have a negative value to their
holders. Since options are rights and these
rights will be exercised to benefit only the
holder, the option cannot be a liability to its
holder.

� Option prices should not allow simple arbi-
trage; that is, it should not be possible to buy
an American call or put and immediately ex-
ercise the option for a profit greater than the
price paid for the option. This need not be true
for European options, since the option holder
does not have the right to exercise until the
maturity date.

� American-type options should be worth at
least as much as European-type options.
Since American options have all the rights a
European option has plus the right of early ex-
ercise, an American option will be as valuable
as a European option if the right to early ex-
ercise is worthless and more valuable than a
European option if the right of early exercise
is valuable.

In addition to the currency price, the exercise
price, and the time to maturity, option values
depend on the price volatility of the underlying
currency, the risk-free rate of interest, and any
cash distributions made by the currency during
the life of the option. For a call option, a higher
current currency price should imply a greater
value to the option holder. This is because a
higher present currency price makes it more
likely that on the expiration date, the market
price of the currency will be above the exercise
price. As this is precisely the condition under
which the option will be exercised, the value of
a call option increases as the present currency
price increases. For put options, however, the
effects of changes in the current asset price go
in the opposite direction, as it pays the holder
of the put to exercise when the currency price is
low; that is, the value of a put option decreases
as the present currency price increases.

The effect of the exercise price, X, on the value
of the call option is straightforward. Holding all

other factors constant, a higher exercise price
diminishes the profit from the exercise of the
option. An increase in the exercise price would,
therefore, lead to a decrease in the price of the
call option. In the case of put options, a higher
exercise price increases the profit from exercise
of the option. Thus, put option prices increase
with an increase in their exercise price.

The effect of an increase in time to maturity
on the value of an option depends on the nature
and type of option. There is an asymmetric na-
ture to option contracts that causes the holder to
benefit from increased uncertainty. The option
holder stands to gain by a rise in uncertainty,
and therefore the value of the call option in-
creases as its time to maturity increases. Also,
the present value of the exercise price decreases
as the time to maturity increases. Therefore, the
time left to maturity has a way of influencing
option values. An American put option cannot
logically decrease in value with an increased
time to maturity, but with a European put op-
tion, the net effect of these two influences is am-
biguous; that is, increased uncertainty increases
value, while the decreased present value of the
exercise price decreases value.

An increase in the volatility of the currency
price makes future currency prices more vari-
able and increases the probability of large gains.
Again, the asymmetry of the option contract al-
lows the option holder to benefit from increased
uncertainty since the option is effectively in-
sured against downside risk.

THEORETICAL VALUATION
The price and subsequent value of an option are
determined by a theoretical valuation based on
several known and estimated factors. The time
until maturity, the current foreign exchange
spot and forward exchange prices, the strike,
and the cost of funding the option premium are
all readily available. Meanwhile, a market has
developed that estimates the future volatility
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or, in other terms, the activity of the underlying
cash product. The greater the anticipated move-
ment, the greater the value of the option for a
given fixed set of parameters. Options also in-
crease in value the smaller the distance between
the strike price and the forward foreign exchange
rate, and the greater the time to maturity. For
European and American options, most market
participants accept the valuation put forward
by Black and Scholes, and, as such, option prices
can be agreed once the factors are entered into
the equation.

This theoretical model also calculates the risk
associated with changes in any of the variables
required for pricing the currency option. The
delta, or hedge ratio, of the option is the de-
gree to which the option value will change
with a movement in the underlying currency.
A dollar/Swiss franc option with a 20% delta
would change in value by approximately 20
franc points for every 100-point spot move.
While the delta is the first derivative of the
price, gamma is the second one, or change in
delta for every move in the spot foreign ex-
change rate. A 50-delta dollar call option with a
15% gamma would have a 65 delta if the dollar
appreciated 1%.

It is this dynamic nature of the delta that
allows an option to be a leveraged product
with limited risk and unlimited profit poten-
tial. Profitable positions effectively grow in size,
while unprofitable trades are impacted less by
adverse changes in the market.

The vega, or volatility risk, of an option is the
extent to which the valuation will change with
varying estimates of volatility. The theta, or time
decay, is the decrease in value of the option as
it approaches maturity, as an option is a con-
stantly diminishing asset. Finally, every option
has forward foreign exchange risk equivalent to
the delta and an interest rate exposure based on
changes in funding costs. The delta and interest
rate risks can be hedged easily in the relevant
markets. The dynamic nature of the other risks
is the essence of the options market.

BLACK-SCHOLES MODEL

In 1973, Black and Scholes published a paper de-
scribing an equilibrium model of stock option
pricing that is based on arbitrage. This is made
possible by their crucial insight that it is possible
to replicate the payoff to options by following
a prescribed investment strategy involving the
underlying asset and lending/borrowing.

The mathematics employed in the Black-
Scholes model is complex, but the principle is
straightforward. The model states that the stock
and the call option on the stock are two com-
parable investments. Therefore, it should be
possible to create a riskless portfolio by buying
the stock and hedging it by selling call options.
The hedge is a dynamic one because the stock
and the option will not necessarily move by the
same amount, but by continuously adjusting
the option hedge to compensate for movement
in the underlying market, the overall position
should be riskless. Therefore, the income
received from investing in the call option
premium will be offset exactly by the cost of
replicating (hedging) the position. If the option
premium is too high, the arbitrageur will make
a riskless profit by writing call options and
hedging the underlying stock. If too low, it
should be possible to profit by buying the call
option and selling sufficient stock.

Black and Scholes demonstrated that the op-
tion premium could be arrived at through an
arbitrage process in a similar manner to that in
which a currency forward rate can be derived
through a formula linking the spot rate and the
interest rate differential. Also, in the same way
that a currency forward rate is not “what the mar-
ket thinks the currency will be worth at a future
date” but simply based on an arbitrage relation-
ship, the Black-Scholes model is not influenced
by such factors as market sentiment, direction,
or apparent bias. In fact, an assumption of the
model is that the market moves in a random
fashion in that, while prices will change, the
chances of an up move against a down move are
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about even, and that future price movements
cannot be predicted from the behavior of the
past.

The Model:

C = SN(d1) − Ke(−rt)N(d2)
C = theoretical call premium
S = current stock price
t = time until option expiration

K = option striking price
r = risk-free interest rate

N = cumulative standard normal
distribution

e = exponential term (2.7183)

d1 =
ln(S/K) +

(
r + s2

2

)
t

s
√

t
d2 = d1 − s

√
t

s = standard deviation of stock returns
ln = natural logarithm

Plotted over a period of time, the distribution of
prices takes on the characteristics of the “bell-
shaped” curve. Such a distribution is a key as-
sumption of the Black-Scholes model, yet with
the foreign exchange markets in particular, it
is a questionable one. Even with its economic
liquidity and its global 24-hour structure, for-
eign exchange is by no means a perfect market.
Frequently, there are times when prices do not
behave in a normally distributed fashion. Such
occurrences as wars, central bank intervention,
and unexpected political or economic news are
all factors, which can and do disrupt the day-
to-day business of the market.

Furthermore, in order to simplify the calcula-
tion process, Black and Scholes made other as-
sumptions about market behavior, which may
vary from the real world. They assumed that
volatility was known and constant, that in-
terest rates were constant, that there were no
transaction costs or taxation effects, that trad-
ing was continuous, that there were no divi-
dends payable, and that options could only be
exercised on the expiry date.

Interest rates will vary, of course, as will
volatility, and even the foreign exchange mar-
kets have transaction cost in the bid-offer
spread. Frequently, the market will become
very thin or almost untradable during highly
volatile periods. However, most of these as-
sumptions can be relaxed without inordinately
affecting the formulations of the pricing model,
and where the assumptions are more critical,
other models have been developed.

EXAMPLES OF OTHER
MODELS
Theorists have devoted a substantial amount of
time and effort developing mathematical mod-
els for pricing options, and a number of differ-
ent models exist as a result. All make certain
assumptions about market behavior, which are
not totally accurate, but which give the best so-
lutions to the price of an option. For example,
the model formulated by Merton (1973) general-
ized the Black-Scholes formula, so it could price
European options on stocks or stock indexes
paying a known dividend yield.

Another example is the Cox, Ross, and Ru-
binstein model (1979), which could account for
the early exercise provisions in American-style
options. Using the same parameters as in the
Black-Scholes model, they adopted what is
known as a “binomial” method to evaluate the
premium. Making the assumption that the op-
tion market behaves efficiently and therefore
the holder of a call or put option will exercise if
the benefit of holding the option is outweighed
by the cost of carrying the hedge, the binomial
process involves taking a series of trial esti-
mates over the life of the option; each estimate
(or iteration) is a probability analysis of the like-
lihood of early exercise on any given day.

Garman and Kohlhagen (1983) extended the
Black-Scholes model to cover the foreign ex-
change market, where they allowed for the
fact that currency pricing involves two interest
rates, not one, and that a currency can trade
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at a premium or discount forward, depend-
ing on the interest rate differential. Like the
Merton formula, the Garman and Kohlhagen for-
mula applies only to European options.

PRICING WITHOUT A
COMPUTER MODEL
Against all the above theories, there is a way
to price an option without a computer model.
This can be obtained by the following equa-
tion, which will give a good approximation for a
European option premium. The formula is:

Price = BB × forward outright rate

This is where:

AA = square root (days to expiry/365)

× volatility × 0.19947

and

BB = ((AA + 0.5) × 2) − 1

This formula is where price is the premium
for an at-the-money European option quoted in
units per base currency.

Educated Guess
Another calculation relies heavily on probabil-
ity theory. The principal concepts are expected
value and the lognormal distribution. Since the
future is unknown, it is an “educated guess”
about where the spot market might be in order
to determine the value of that right today. Thus,
rather than trying to predict the future spot rate,
option pricing takes a systematic, mathematical
approach to the educated guess.

In this case, expected value (EV) is the payoff
of an event multiplied by the probability of it oc-
curring. For example, the probability of rolling
a six on one die is 1/6 or 16.67%. The EV of a
game in which is paid $100 for rolling a six and
nothing for any other roll is:

(1/6 × $100) + (5/6 × $0) = $16.67

where the expected value is the fair price for
playing such a game.

An options premium can be thought of in the
same way, although instead of six possible out-
comes, there are hundreds. All the spot rates
that might prevail are the options expirations.
Each outcome will have a specific value. This
will either be zero if the option is out-of-the-
money or the difference between the closing
spot and the strike price if the option is in-
the-money. Each closing spot rate can also be
thought of as having its own discrete probabil-
ity. If, for each outcome, the value of that out-
come is multiplied by its probability and then
the results are added up, the sum would be the
premium of the option. The expected value of
an option (the probability minus the weighted
sum of all its possible payoffs) is the fair price
for buying the option.

THE PRICE OF AN OPTION
The price of an option is made up of two sepa-
rate components:

Option premium = Intrinsic value + Time value

where intrinsic value is the value of an option
relative to the outright forward market price,
that is, it represents the difference between the
strike price of the option and the forward rate at
which one could transact today. Intrinsic value
can be zero but never negative.

There are six factors that contribute to this
pricing of an option:

� Prevailing spot price
� Interest rate differentials (forward rate)
� Strike price
� Time to expiry
� Volatility
� Intrinsic value

As described above, the best-known origi-
nal closed-form solution to option pricing is
the Black-Scholes model. Also, as was men-
tioned, in its simplest form, it offers a solution to
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pricing European-style options on assets with
interim cash payouts over the life of the op-
tion. The model calculates the theoretical, or
fair value for the option by constructing an in-
stantaneously riskless hedge that is one whose
performance is the mirror image of the option
payout. The portfolio of option and hedge can
then be assumed to earn the risk-free rate of
return.

Central to the model is the assumption that
markets’ returns are normally distributed (that
is, have lognormal prices), that there are no
transaction costs, that volatility and interest
rates remain constant throughout the life of the
option, and that the market follows a diffusion
process. The model has these five major inputs:

� The risk-free interest rate
� The option’s strike price
� The price of the underlying
� The option’s maturity
� The volatility assumed

Since the first four are usually determined,
markets tend to trade the implied volatility of
the option. For example, a six-month European-
style sterling put/dollar call with the spot rate
at $/£1.7500 and forward points of 515, giving
an outright forward of 1.6985 (1.7500 – 0.0515),
will have an intrinsic value of 4.15 cents per
pound.

While the Black-Scholes pricing formula looks
formidable, it is important to understand that
the formula is nothing more than the simple
two-state option-pricing model applied with an
instantaneous trading interval.

If the strike price of the option is more favor-
able than the current forward price, the option
is said to be in-the-money. If the strike price is
equal to the forward rate, it is an at-the-money
option, and if the strike price is less favorable
than the outright, the option is termed out-of-
the-money.

For American-style options, a similar defini-
tion applies except that the option’s “money-
ness” relative to the spot price also needs to be

considered. Clearly, in the example above, an
American-style option would be in-the-money
relative to the forward but not to the spot. Con-
versely, if the option had the same details except
that it was a call on sterling, it would clearly be
out-of-the-money under the European defini-
tion, but as an American style option it would
be in-the-money relative to the spot price. Nat-
urally, the cost of the option would need to be
considered in order to achieve a profitable early
exercise of an American option and this leads to
a phenomenon peculiar to American-style op-
tions known as “optimal exercise.” This is the
point at which it becomes profitable to exercise
an American-style option early, having taken
account of the premium paid.

Option Premium Profile
Figure 1 shows premium against spot at a given
point in time. It can be seen that the time value
call position is greatest when the option is at-
the-money. This is because it represents the
highest level of asymmetric risk, which is opti-
mum risk reward profile.

The time value tends to zero as spot goes deep
out-of-the-money and thus converges with the
maximum loss expiry line and also as it goes
deep in-the-money, converging with the un-
limited profit expiry line. The change in the
premium is not parallel to the change in the
underlying value. The premium will change
more rapidly when the option is near at-the-
money and less rapidly when the option is in-
the-money or out-of-the-money.

Option premium curve 

Time value
Intrinsic value line 

45 degree 

Strike Underlying market price 

Figure 1 Option Premium Profile
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Time value
premium

3 1 0
Time remaining until expiration (in months)

Figure 2 Time Value Premium Delay

Time Value and Intrinsic Value
The option premium can be split into two parts:
intrinsic value and time value. The effect of an
increase in time on an options premium is not
linear. This is because the probability of a rise or
fall in a currency’s value does not increase on a
straight-line basis. For example, all things being
equal, the premium for an at-the-money three-
month option is worth only about two-thirds
more than for a one-month option (not three
times its value). A one-year option is worth only
about one-third more than a six-month option
(instead of twice its value). As a consequence,
the premium for at-the-money options declines
at an accelerating rate towards expiry. Figure 2
demonstrates the time value premium delay.

Time value is affected by a number of factors:

� The time remaining to expiration.
� The volatility of the underlying spot market.
� The strike price of the option.
� The forward rate of the currency pair.
� The current interest rates.

Time to Expiry
The time decay of an option is related to the time
remaining in the option; in fact, it is propor-
tional to the square root of the time remaining.
The reason for this phenomenon is twofold:

1. The longer the time to maturity, the greater is
the chance that the exchange rate moves such
that the option will be exercised. The rate at
which the premium diminishes as the option
approaches expiry is called the “time decay”

and the rate of decay is exponential, that is,
the option loses time value more quickly ap-
proaching expiry than it does earlier in its
life. At expiry, the option will have only in-
trinsic value and no time value.

2. The time value can be thought of as “risk
premium” or the cost to the writer of hedging
the uncertainty of exercise.

Volatility
In essence, volatility is a measure of the vari-
ability (but not the direction) of the price of the
underlying instrument, essentially the chances
of an option’s being exercised. It is defined as
the annualized standard deviation of the natu-
ral log of the ratio of two successive prices.

Historical volatility is a measure of the stan-
dard deviation of the underlying instrument
over a past period and is calculated from actual
price movements by looking at intraday price
changes and comparing this with the average
(the standard deviation). The calculation is not
affected by the absolute exchange rates, merely
the change in price involved. Thus, for example,
the starting and finishing points for two sepa-
rate calculations could be exactly the same but
could give two very different levels of volatility
depending on how the exchange rate traded in
between. Thus, if the market has traded up and
down erratically, the reading will be high, and if
instead it has gradually moved from one point
to the other in even steps, then the reading will
be lower.

Implied volatility is the volatility implied in the
price of an option, that is, the volatility that
is used to calculate an option price. Implied
volatilities rise and fall with market forces and
tend to reflect the level of activity anticipated
in the future although supply and demand
can at times be dominant factors. In the pro-
fessional interbank market, two-way volatility
prices are traded according to market percep-
tion and these volatilities are converted into
premium using option models. Implied volatil-
ity is the only variable affecting the price of an
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option that cannot be directly observed in the
markets, thus leading to the typical variations
in price inherent in any marketplace.

Actual volatility is the actual volatility that oc-
curs during the life of an option. It is the differ-
ence between the actual volatility experienced
during delta hedging and the implied volatil-
ity used to price an option at the outset, which
determines if a trader makes or loses money on
that option.

In summary, implied volatility is a timely
measure, in that it reflects the market’s per-
ceptions today. On the other hand, historical
volatility is a retrospective measure of volatil-
ity. This implies that it reflects how volatile the
variable has been in the recent past. But it has
to be remembered that it is a highly objective
measure. Implied volatilities can be biased, es-
pecially if they are based upon options that are
traded in a market with very little liquidity.
Also, historical volatility can be calculated for
any variable for which historical data is tracked.

Volatility affects the time value or risk pre-
mium of an option, as an increase in volatility
increases the time value and thus the price of the
option. Likewise, a decrease in volatility lowers
the price of the option. For example, consider
the position of the writer of an option, whereby,
say, a bank sells an option to a client, giving
the client the right to purchase dollars and sell
Swiss francs in three months’ time. In order to
correctly hedge the position, consider what will
happen in three months’ time.

If the spot is above the strike price of the
option, the client will exercise the option and
the bank will be obliged to sell dollars and buy
francs. However, if the spot is below the strike
price, the client will allow the option to lapse.
Hence, the bank’s initial hedge for the option
will be to purchase a proportion of dollars in the
spot market against this potential short dollar
position. If the spot subsequently rises, the like-
lihood of the option’s being exercised will in-
crease and so the initial hedge will be too small.
Therefore, the bank will need to buy some more
dollars, which it does at a rate worse than the

original rate at which the option was priced,
thereby losing money. Conversely, if the spot
rate falls, this makes the option less likely to be
exercised and the bank will then find itself hold-
ing too many dollars and will have to sell them
out at a lower price than where they were pur-
chased, thus losing more money. These losses
are called “hedging costs,” and each time the
spot market moves, the rehedging required will
lose the bank money. In essence, the premium
received by the writer is effectively the best es-
timate of these hedging costs over the life of the
option.

Strike Price and Forward Rates
An option’s time value is greatest when the
strike price is at-the-money and the further
in or out-of-the-money the strike price is, the
lower the time value is. This can be explained
by again considering the hedging costs. If the
option is originally at-the-money, it is said to
have a 50 delta and therefore the initial hedge
will be to buy or sell half the principle amount
of the option. The delta of the option can be
thought of as the probability of exercise and so
a 50 delta gives a 1-in-2 chance of exercise, that
is, maximum uncertainty. As the spot moves,
the delta will change and require readjusting
of the hedge in the spot market. The change in
delta (or gamma) is greater for a 50-delta option
than for an option with a much higher or lower
delta, for example 80- or 20-delta. This is be-
cause the likelihood of exercise, and therefore
the amount of hedge required, changes more
rapidly. Thus, less readjustment is required for
these high and low delta options, and conse-
quently, fewer hedging costs are incurred for
the low and high delta options. This leads to
lower levels of risk premium or time value for
in-the-money and out-of-the-money options.

Interest Rates
The currency interest rate is another factor that
affects option premiums. As premium is usu-
ally paid up front, it must be discounted to take
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account of the interest that would be earned
by putting the premium on deposit. Thus, the
higher the domestic interest rate, the greater the
discounting effect on the premium.

The effect of interest rate differential on the
option premium is not intuitively obvious, yet
it is one of the most important components of
the premium for a currency option. If the dol-
lar interest rate rises in relation to the interest
rate of the foreign currency, the premium of
a currency call option will increase in value.
This is because holding a foreign currency and
buying a currency call option are alternative in-
vestments. On the one hand, the investor will
sell (borrow) dollars and buy (invest in) a for-
eign currency in order to take advantage of a
rise in that foreign currency. On the other hand,
the trader could just simply buy a currency call
option. If the dollar interest rate rises, the cost
of borrowing dollars will increase, which will
make the alternative of buying a currency call
option more attractive. Consequently, the pre-
mium will rise.

This can equally be explained in terms of the
forward value of a currency. If the dollar in-
terest rate rises in relation to the foreign cur-
rency interest rates, and the spot rate remains
the same (unchanged), covered interest rate ar-
bitrage will ensure that the forward rate of the
foreign currency will rise relative to the spot.
Therefore, the call option on that currency will
also rise in value. Of course, the dollar interest
rate might remain the same, but the interest rate
of the foreign currency might fall. The effect on
the interest rate differential and therefore on the
value of the currency call option will remain the
same, but the premium will rise.

The converse is true for currency put options,
because an increase in the dollar interest rate
in relation to the foreign currency interest rate
will, given no change in the spot price, result in
a rise in the forward value of the currency. Thus,
the holder of a put option on the currency will
see the premium fall. Buying a currency put op-
tion is an alternative strategy to borrowing in
that currency and investing in dollars. Hence, a

rise in the dollar interest rate or a fall in the for-
eign currency interest rate makes the put option
strategy less attractive, and the put premium
will fall.

The effect of interest rate differential changes
on currency option premiums can be summa-
rized as follows:

� Assuming the spot rate remains unchanged,
a rise in dollar interest rates relative to the
foreign currency interest rate, or a fall in the
foreign currency interest rate relative to the
dollar interest rate, will increase the premium
for a currency call option and decrease the
premium for a currency put option.

� Assuming the spot rate remains the same, a
fall in the dollar interest rate relative to the
foreign currency interest rate, or a rise in
the foreign currency interest rate relative to
the dollar interest rate, will decrease the pre-
mium for a currency call option and increase
the premium for a currency put option.

American versus European
For European options, intrinsic value is the
value of an option relative to the outright for-
ward market price; that is, it represents the
difference between the strike price of the op-
tion and the forward rate at which one could
transact today. Intrinsic value can be zero but
is never negative. If the strike price of the op-
tion is more favorable than the current forward
price, the option is in-the-money. If the strike
price is equal to the forward rate, the option is
at-the-money and if the strike price is less fa-
vorable than the outright forward, the option is
out-of-the-money.

A similar definition applies for American-
style options, except that the option’s
“moneyness” relative to the spot price also
needs to be considered. Naturally, the cost of
the option needs to be considered in order to
achieve a profitable early exercise and this leads
to a phenomenon peculiar to American options
known as optimal exercise. This is the point
at which it becomes profitable to exercise an
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American option early, having taken account of
the premium paid.

In fact, there are several occasions when it
would be better to pay extra premium and buy
a more expensive American-style option. For
example:

1. When a trader is buying an option where the
call currency has the higher interest rate and
there is an expectation that the interest rate
differential will widen significantly.

2. When a trader is buying an option where
the interest rates are close to each other and
there is an expectation that the call inter-
est rate will move above the put interest
rate.

3. When a trader is buying an out-of-the-money
option with interest rates as in both of the
above and there is an expectation for it
to move significantly into the money, then
the American-style option is more highly
leveraged and will hence produce higher
profits.

THE GREEKS
Traders extensively use the “Greeks,” a set of
factor sensitivities, to quantify the exposure of
portfolios that contain options. Each measures
how the portfolio’s market value should re-
spond to a change in some variable. For specu-
lative purposes, the value of an option needs to
be known on a continual basis, and more impor-
tantly, the factors that change an option’s value
need to be understood. In analyzing an option
risk (or value), the market norm is to use letters
of the Greek alphabet. Not surprisingly, they
are often referred to as the “Greeks,” and they
include delta, vega/kappa, theta, gamma, and
rho. However, vega is not in the Greek alpha-
bet, but is named after a star in the constellation
Lyra. Sometimes, vega has also been referred to
as kappa. Also, four of the five are risk metrics.
The exception here is theta, because the passage
of time is certain and thus entails no risk.

These major Greeks, which measure these
risks and need to be taken into account before
taking any option positions, are:

Vega/Kappa Theta Delta Gamma Rho

Measures the

impact of a

change in

volatility

Measures

the impact

of a change

in time

remaining

Measures

the impact

of a change

in the price

of the

underlying

Measures

the rate of

change in

delta

Measures

the

sensitivity

to an

applicable

interest rate

Delta
When option traders sell or buy a currency op-
tion, they will use the foreign exchange market
to hedge the exposure. The most common type
of hedging is delta hedging.

Delta is the change in premium per change
in the underlying. Technically, the underlying
is the forward outright rate but as the option-
pricing model assumes constant interest rates,
this is often calculated using spot. For example,
if an option has a delta of 25 and spot moved
100 basis points, then the option price gain/loss
would be 25 basis points. For this reason, delta is
sometimes thought of as representing the “spot-
sensitive” amount of the option.

Also, delta can be thought of as the estimated
probability of exercise of the option. As the
option-pricing model assumes an outcome pro-
file based around the forward outright rate, an
at-the-money option has a delta of 50%. It falls
for out-of-the-money options and increases for
in-the-money options, but the change is non-
linear, in that it changes much faster when the
option is close-to-the-money.

Turning to calculus for the formal definition
of delta, let 0 be the current time. Let 0 p and
0s be current values for the portfolio and un-
derlier. Delta is the first partial derivative of a
portfolio’s value with respect to the value of the
underlier:

delta = ∂0 p
∂0s
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This technical definition leads to an approxi-
mation for the behavior of a portfolio.

�0 p ≈ delta�0s

where �0s is a small change in the underlier’s
current value, and �0 p is the corresponding
change in the portfolio’s current value. This is
called the delta approximation.

An option is said to be delta hedged if a po-
sition has been taken in the underlying in pro-
portion to its delta. For example, if one is short
a call option on an underlying with a face value
of $1 million and a delta of 0.25, a long po-
sition of $250,000 in the underlying will leave
one delta neutral with no exposure to changes
in the price of the underlying, but only if these
are infinitesimally small.

As the underlying market moves throughout
the life of the option, the delta will change, thus
requiring the underlying hedge to be adjusted.
Once the initial hedge has been transacted, calls
and puts behave in precisely the same way, in
terms of the hedging required.

For example, an at-the-money sterling call/
dollar put option in £10 million, with a strike
price of 1.75, has an initial delta of 50. The op-
tion writer, therefore, buys £5 million in the
spot market to hedge the option position. If the
spot rises to 1.77, the delta will increase to, say,
60. Now, the writer needs to purchase an extra
£1 million to attain delta neutrality. If the ex-
change rate then falls back again to the origi-
nal rate, the option writer is overhedged and
requires selling back £1 million in order to re-
main delta neutral. Clearly, as the option writer
rehedges, losses will be incurred, which will in-
crease as volatility increases.

Another example could be where a trader
sells a dollar call/Swiss franc put at 1.5500 for
six months for $10 million. The trader’s risk is
that in six months, the option will be exercised
and there will be a payout of dollars and a re-
ceipt of francs. The trader’s hedge against this
risk would therefore be to buy dollars and sell
francs, thus hedging the delta amount because
this represents the likelihood of exercise. If spot

is 1.5300 and the forward outright is 1.5345, then
the trader’s hedging, ignoring time movement,
would look like that shown in the following
table, as the forward rate changes:

Forward Delta Hedge Total

1.5345 35 Buy $3.5 million +$3.5 million
1.5500 50 Buy $1.5 million +$5.0 million
1.5600 57 Buy $0.7 million +$5.7 million
1.5200 30 Sell $2.7 million +$3.0 million

Whether or not the trader loses money will de-
pend on volatility. From the preceding table, it
can be seen that hedging a short option position
loses money, as the trader would be continually
buying high and selling low. However, when
the option was first sold, the trader received
a premium for it, representing the estimated
cost of hedging to the trader. If the volatility of
the market is higher than the trader expected
and then has to hedge more frequently, then
the trader may lose more money hedging than
originally gained on the premium. If, however,
the market is less volatile than the assumption
of the option price, the trader should lose less
money hedging than received in premium and
therefore make a profit overall.

If the trader had bought the option rather than
sold it, the trader would then hope for increased
volatility because the hedging exercise would
be making money.

For example, the trader buys exactly the same
options, a dollar call/Swiss franc put at 1.5500
in $10 million. The trader’s risk is now that there
will be a long dollar position in six months, so
the hedge will be to sell dollars and buy francs.
As the forward outright rate moves, however,
the delta of the option will move in exactly the
same way as before. This follows as the option
is the same and the delta does not depend on
who owns the option. In this case, therefore, the
trader will be buying low and selling high and
making money on the hedging. Just as before,
this makes sense, as the trader originally paid
out a premium to buy the option, so the hedg-
ing is making back that premium. This time,
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the trader has bought volatility and hopes that
volatility will in fact be higher than the rate
at which the option was bought for. If it is, the
trader will make more money hedging than was
paid out in premium.

Hence, buying and selling volatility is like any
other product in that there is a wish to buy at
a low rate and sell at a higher rate to make a
profit.

As another example, consider a short sterling
call at a 1.8100 position at 342 points. The loss
profile corresponds to the loss profile on a short
sterling cash position. Thus, a hedge on a short
sterling call position would be to buy sterling
cash. The value of the option will go up with
sterling going up, but it is not a one-to-one re-
lationship.

The delta ratio indicates the increase in value
of the option for every increase in value of one
point on the cash market. Thus, the following
rules on delta can be established. On a call op-
tion, delta will range from 0% when out-of-the-
money to 50% at-the-money to 100% when deep
in-the-money. Conversely, the delta of a put op-
tion goes from 0% when out-of-the-money to
–50% at-the-money to –100% when deep in-the-
money.

In the preceding example, the delta of the op-
tion is, say, 45%, which means that to hedge the
position, an amount of sterling of 45% of the
face value of the option will have to be bought.
Therefore, if the option is for £1 million, a move
up of 50 points on the rate will result in a loss
of:

£1 million × 0.0050 × 45% = $2,250

This will be offset by the long cash position
of:

450,000 × 0.0050 = $2,250

The delta of an option does not remain con-
stant and the new delta of this position is, say,
47%. In order to maintain a delta-neutral posi-
tion, the trader will have to buy another £20,000.
Such a hedging strategy will enable the trader
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Figure 3 Delta Profile

to keep the premium received initially when
selling the option.

Figure 3 shows that delta is the gradient of the
tangent of the curve of the premium in relation
to the cash prices. This will also reveal that delta
will move more rapidly for an option with a
short remaining life than for an option with a
long remaining life.

In conclusion, basically, the delta of an option
will change if any factor which influences the
potential probability of exercise changes. These
include spot price, volatility, time, and interest
rates. Option trades use the delta as a guide to
hedging. Taken simply, if a bank is short one
option with a delta of 50%, the bank will hedge
only half of the nominal amount of the option as
it only has a 50% chance of being exercised. This
is known as “delta hedging.” This is a simplistic
example, and, in reality, banks have large option
books, which they hedge on a daily basis, but
the principal applies no matter what the size of
the portfolio.

Also, there are three points to keep in mind
with delta:

1. Delta tends to increase as it gets closer to
expiration for near or at-the-money options.

2. Delta is not a constant.
3. Delta is subject to change given changes in

implied volatility.

Gamma
The rate of change of delta is called gamma, and
it will give a measure of the amount of change
in the delta for a given change in the cash price.
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Figure 4 Gamma Profile

Therefore, it will provide an estimate of how
much it will cost to delta hedge.

The cost of rebalancing the hedge is a conse-
quence of the curvature of the premium curve
against cash prices. The curvature is greatest at-
the-money and reduces when in-the-money or
out-of-the-money. This is shown in Figure 4.

A short option position is called gamma neg-
ative. The higher the gamma, the less stable is
the delta hedge. A first conclusion is that it is
more costly to hedge a short long-dated option
position than a short position of short-dated
options.

Thus, gamma is the change in delta per
change in the underlying and is important
because the option model assumes that delta
hedging is performed on a continuous basis.
In practice, however, this is not possible, as the
market gaps and the net amounts requiring fur-
ther hedging would be too small to make it
worthwhile. The gapping effect that has to be
dealt with in hedging an option gives the risk
proportional to the gamma of the option.

For a formal definition of gamma, again turn
to calculus. Gamma is the second partial deriva-
tive of a portfolio’s value 0 p with respect to the
value 0s of the underlier:

gamma = ∂20 p
∂0s2

By incorporating gamma, there can be an im-
provement to the approximation for how the
portfolio’s value should change in response to
small changes in the underlier’s value:

�0 p ≈ gamma
2

�0s2 + delta�0s

This is called the delta-gamma approxima-
tion.

An option’s gamma is at its greatest when
an option is at-the-money and decreases as the
price of the underlying moves further away
from the strike price. Therefore, gamma is
U-shaped and is also greater for short-term op-
tions than for long-term options.

By convention, gamma can be expressed in
two ways:

1. A gamma of, say, 5.23 will mean that for
1% change in the underlying price the delta
will change by 5.23 units. That is, from 50%
to 55.23%.

2. A gamma of 3% will mean that for a one
unit change in the underlying price, the delta
will change by 3%, for example from 50% to
51.5%.

As an example of gamma hedging, as the for-
ward outright rate moves from 1.5600 to 1.5200,
the delta of the option moves from 57 to 30. The
size of movement of the delta given this move-
ment of the underlying is the gamma of the op-
tion by the definition “gamma is the change in
delta per change in the underlying.” The hedg-
ing the trader was required to do was to sell
$1.7 million. In practice, the trader sold the full
amount at a rate of 1.5200. If the trader were
able to hedge continuously as the model as-
sumes, the trader would have sold the same
amount, that is, $1.7 million, but at an average
rate of 1.5450. This would obviously have been
more profitable. From this example, it can be
seen that the gapping effect works against the
trader when there is a short options position
(and therefore short gamma), and a repetition
of the exercise would show that the gapping is
in the trader’s favor if a long options position
were being held (and gamma).

The value of gamma is, therefore, very impor-
tant in determining sensitivity to spot move-
ment and this gapping effect.

However, gamma is not the same for all op-
tions. Gamma is greater for short-term options
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than for long-term options. For example, as-
sume a dollar call/Swiss franc put option with
a strike of 1.5500 and that there is one second
to get to expiry. If the spot at the time is 1.5501,
the option is extremely likely to be exercised
and the delta will be 100. If, in that second, the
spot moved to 1.5499, the option would not,
in fact, be exercised and the delta would move
to 0. Here, it can be seen that a 0.0002 move in
spot produced a change in delta from 100 to 0.
If it were the same option but there was one
year to maturity, a movement of 0.0002 in spot
would not significantly alter the likelihood that
the option would be exercised; that is, the delta
would not change noticeably.

Gamma is greater for at-the-money options
than for options with deltas above or below 50.
Assume an extreme example to see this effect,
using the same option of a dollar call/Swiss
franc put with a strike of 1.5500, and there is a
second to go before expiry. If the spot is at 1.5500
and thus the option has a delta of 50, there
would be the same situation as before when
a 0.0001 movement in spot created a movement
of 50 in the delta. If, however, the spot were at
1.5200, the delta of the option would be 0, and
a movement even as large as 0.0200 would not
increase that delta.

In conclusion, gamma is seen as a second-
generation derivative, where the others
considered are regarded as first-generation
derivatives in the pricing of an option, in that
the others all consider the change that an ex-
ternal effect has on an option’s value, such as
change in spot. However, gamma measures the
rate of change of the delta itself. Therefore, it
is literally the delta of the delta. Since the delta
is the key pricing tool used by market partici-
pants in controlling the portfolio risk, to be able
to work out the rate of change of this risk is
very useful. Hence, gamma is a very important
part of any option portfolio and is affected by
three different factors: spot movement, time to
maturity, and volatility.

Also, the three points to keep in mind with
gamma are:

1. Gamma is smallest for deep out-of-the-
money and deep in-the-money options.

2. Gamma is highest when the option gets near-
the-money.

3. Gamma is positive for long options and neg-
ative for short options.

Theta
Theta is the depreciation of the time value el-
ement of the premium, that is, it measures the
effect on an option’s price of a one-day decrease
in the time to expiration. The more the market
and strike prices diverge, the less effect theta
has on an option’s price. Obviously, if you are
the holder of an option, this effect will dimin-
ish the value of the option over time, but if you
are the seller (the writer) of the option, the effect
will be in your favor, as the option will cost less
to purchase. Theta is nonlinear, meaning that its
value accelerates as the option approaches ma-
turity. Positive gamma is generally associated
with negative theta and vice versa.

The rate at which the time value decays with
respect to time is expressed as hundredths of a
percent per unit of time (day/week). Obviously,
the theta factor plays in favor of a short op-
tion position. Shorter-dated options have larger
thetas as do those at-the-money. This effect will
give rise to trading strategies referred to as a
calendar spread.

To determine theta, assume t denotes time,
and let tp denote the portfolio’s value at time
t. Formally, theta is the partial derivative of the
portfolio’s value with respect to time:

theta = ∂ t p
∂t

where the derivative is evaluated at time t = 0.
This technical definition leads to an approxima-
tion for the behavior of a portfolio.

�t p ≈ theta�t

where �t is a small interval of time, and �t p
is the change in the portfolio’s value that will
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occur during that interval, assuming all other
market variables remain the same.

The delta of an option does have an influence
on the time decay of an option because the time
value element of an option total value is max-
imum for at-the-money options. As the delta
increases or decreases, the time value of the
option decreases. Obviously, for options where
there is very little time value, there will be very
little time decay. If there is any doubt about
which date to choose for an option maturity, as
can be seen in Figure 5, there is little increase
in time value for days at the far end of the op-
tion. To buy a slightly longer option, therefore,
will not cost much more. However, if a trader
waits until the option expires and then has to
buy another option to cover the final period,
the additional cost could be substantially more.
For this reason, buying an option for the longest
period needed is recommended.

In actual practice, traders do not use theta,
but it is an important conceptual dimension.
However, some additional points of note are:

1. Theta can be very high for out-of-the-money
options if they contain a lot of implied
volatility.

2. Theta is typically highest for at-the-money
options.

3. Theta will increase sharply in the last few
weeks of trading and can severely under-
mine a long option holder’s position, espe-
cially if implied volatility is on the decline at
the same time.

Vega
Vega, sometimes also called kappa, quantifies
risk exposure to implied volatility changes.
Vega tells us approximately how much an
option price will increase or decrease given
an increase or decrease in the level of implied
volatility. Option sellers benefit from a fall in
implied volatility, while option buyers bene-
fit from an increase in implied volatility. Vega
is greatest for at-the-money options and in-
creases with the time to maturity. This is the
case because the longer the time to maturity, the
greater the possibility of exchange rate move-
ments and, therefore, the greater the sensitivity
of the option price to a change in volatility.

Vega is the first partial derivative of a port-
folio’s value 0 p with respect to the value 0σ

of implied volatility. This technical definition
leads to an approximation for the behavior of a
portfolio.

�0 p ≈ vega�0σ

where, here, �0σ is a small change in the im-
plied volatility from its current value, and �p
is the corresponding change in the portfolio’s
value.

Thus, the more volatile the underlying price
the more expensive the option will become
because of the uncertainty element. The ra-
tio of how much the value of the premium
changes for a 1% change in volatility is vega.
Longer-dated options have higher vegas and
at-the-money options have higher vegas. It is
expressed as a percentage change of dollars
for a 1% change of volatility. For example, a
vega of 1.0 means the option premium will
appreciate by 1% in dollar or sterling terms.

Rho
It is generally considered to be the least im-
portant of the Greeks, but nevertheless any
option, be it a single position or a large port-
folio, will be exposed to such a risk. This is
because with over-the-counter European-style
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options, the price (in part) is derived from the
forward rate. Therefore, if either of the two in-
terest rates of the currency pair in the option
should change, so the forward and hence the
price will change. This can happen without a
move in the spot price.

In formulating rho, let 0 p and 0r be current
values for the portfolio and underlier. Formally,
rho is the partial derivative of the portfolio’s
value with respect to the risk-free rate:

rho = ∂0 p
∂0r

This technical definition leads to an approxima-
tion for the behavior of a portfolio.

�0 p ≈ rho�0r

where �0r is a small change in the risk-free
rate, and �0 p is the corresponding change in
the portfolio’s value.

In summary, rho is the general term used for
interest rate risk, but it is broken down further.
Rho usually refers to the base currency inter-
est rate (usually dollars), and phi relates to the
traded currency interest rates (e.g., Swiss francs
or Japanese yen).

Beta and Omega
Some other Greek letters that are used do not
actually measure an option’s value but are more
geared to looking at the use of options or risks
associated with valuation methods. Briefly, they
include beta and omega.

Beta represents the risk involved in hedging
one currency pair against another, especially
when sometimes currency pairs have a high
correlation, for example, within the old Euro-
pean Monetary System (EMS) with the deutsch
mark and the French franc. Some traders that
had a dollar against the franc position would
have been happier hedging this exposure in the
more liquid dollar against the mark market be-
cause it fairly closely correlated to the franc. The
risk here would have been if the mark against
the franc correlation had started to weaken.

Omega measures the translation profit/loss
risk assumed by trading in currency pairs
(which result in profits/losses in those two cur-
rencies) that are not the same as the reporting
base currency for accounting purposes. An ex-
ample would be an American bank that gets
profits for its sterling against Swiss franc trades
in either sterling or francs, yet has to convert
these to dollars for the balance sheet.

KEY POINTS
� The generally accepted pricing basis for op-

tions today is the Black-Scholes formula,
which was devised in the early 1970s to pro-
vide a “fair value” for equity options. How-
ever, the foreign exchange markets needed
something to take account of interest rates
and the fact that there are no dividends due
on currencies.

� Various adaptations of the Black-Scholes
model emerged, of which the most popular
one used today is the Garman-Kohlhagen sys-
tem. This method makes allowances for the
interest rates of the respective currencies and
the fact that a currency can trade at a discount
or premium forward relative to the other
currency.

� American-style options differ due to the
possibility of early exercise. The Cox-Ross-
Rubenstein model is the generally accepted
method for these, but they do not feature
heavily in the over-the-counter market.

� Overall, the industry norm is to use the
Black-Scholes formula adapted by Garman-
Kohlhagen for valuing over-the-counter
European-style currency options.

� The factors required to price an option in-
clude: (1) currency pair; (2) call or put;
(3) strike rate; (4) amount; (5) style (European
or American); (6) expiration date and time
(New York expiry or Tokyo expiry); (7) pre-
vailing spot rate; (8) interest rates for both
currencies; (9) foreign exchange swap rate
(calculated from the information in the
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previous factor); and (10) volatility of the cur-
rency pair.

� The six factors chosen by the potential
buyer/seller of the option are the currency
pair, call or put, strike rate, amount, style,
and expiration date and time. The prevailing
spot rate, interest rates for both currencies,
and foreign exchange swap rate are given by
the market. The volatility of the currency pair
is the only unknown factor, representing the
anticipated market volatility expected for the
life of the option, and is determined using the
option pricing models discussed in this entry.
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Abstract: Credit default swaps are the most popular of all the credit derivative contracts traded.
Their purpose is to provide financial protection against losses incurred following a credit event of
a corporate or sovereign reference entity. Replication arguments attempting to link credit default
swaps to the price of the underlying credits are generally used by the market as a first estimate
for determining the price at which a credit default swap should trade. The replication argument,
however, is dependent on the existence of same maturity and same seniority floating rate bonds.
Even if such securities do exist, contractual differences between CDS and bonds can weaken the
replication relationship. Over the past decade, the increased liquidity of the CDS market has meant
that in some cases, it, and not the bond market, is the place where credit price discovery occurs.
Despite this it still necessary to have a CDS valuation model for the valuation and risk-management
of existing positions.

Credit default swaps (CDSs), or simply de-
fault swaps, provide an efficient credit-risk
transferring financial instrument. Their over-
the-counter nature also makes them infinitely
customizable, thereby overcoming many of the
limitations of the traditional credit market in-
struments such as lack of availability of instru-
ments with the required maturity or seniority.
Increasing standardization and familiarization
with the legal framework has made capital mar-
ket participants more willing to enter into de-
fault swap transactions as have developments
in credit modeling and pricing that have made

it possible to mark-to-market and hedge default
swap positions.

Bonds are the main source of liquidity in the
credit markets, especially in the United States.
In the early years of the CDS market, replication
arguments that attempted to link CDSs to bonds
were therefore generally used by the market as a
first estimate for determining the price at which
CDSs should trade Nowadays, the greater liq-
uidity of the CDS market means that it is of-
ten the place where price discovery occurs and
can at times lead the cash credit bond mar-
ket. So while the replication relationship is still
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important, it is now a two-way process with
bond traders looking at CDS prices and CDS
traders looking at bond prices, all watching to
see if the replication relationship breaks down
to the extent that any dislocation becomes arbi-
trageable, at which point they will step in and
enter into positions to profit from the disloca-
tion. If done in a material size, the effect of such
an action should be to realign the two markets.
However, the replication argument is not ex-
act, as it is based on a number of assumptions
that often break down in practice. Market par-
ticipants who wish to price CDSs and examine
relative value opportunities need to understand
replication and its assumptions. We discuss the
replication approach in this entry.

However, replication only provides a start-
ing point for quoting CDS spreads. It does not
allow traders to actually mark to market their
existing CDS positions. By definition, marking
a CDS position to market must involve pricing
it off the current market CDS spread curve—a
set of CDS spreads quoted for different maturi-
ties. The main objective of this chapter will be
to explain how to determine the CDS spread,
what factors affect its pricing, and how to mark-
to-market CDSs. We show that this requires a
model and set out the standard model that is
used by the market.

DEFAULT SWAPS
In a standard CDS contract one party pays a
regular fee to another to purchase credit pro-
tection to cover the loss of the face value of an
asset following a credit event. The company (or
sovereign) to which the triggering of the credit
event is linked is known as the reference entity.

This protection lasts until some specified ma-
turity date which falls on the 20th of either
March, June, September or December, typically
five years from the trade date. To pay for this
protection, the protection buyer makes a reg-
ular stream of payments. These are quoted in
terms of an annualized percentage known as
the CDS spread. These payments are typically
paid quarterly according to an Actual 360 ba-

sis convention and are collectively known as
the premium leg. Payments occur until matu-
rity of the contract or a credit event occurs,
whichever happens first. The protection buyer
will also pay the protection seller the fraction of
the coupon which has accrued since the previ-
ous premium payment date.

If a credit event does occur before the matu-
rity date of the contract, there is a payment by
the protection seller, known as the protection
leg. There are two ways to settle the payment of
the protection leg: physical settlement and cash
settlement. The form of settlement is specified
at the time of the ISDA organised auction used
to determine the final recovery price of the de-
liverable obligations. This can take the form of
physical or cash settlement and one of the pur-
poses of the auction is to ensure that both have
the same economic value.

� Physical settlement: Following the ISDA auc-
tion, a protection buyer who elects for physi-
cal settlement will submit a facevalue amount
of bonds into the auction and receive a pay-
ment of 100 on the same facevalue. A protec-
tion seller who elects for physical settlement
will end up receiving a deliverable obligation
and paying par. In general there is a choice of
deliverable obligations from which the pro-
tection buyer can choose. These deliverable
obligations will satisfy a certain number of
characteristics that typically include restric-
tions on the maturity of the deliverable obli-
gations and the requirement that they be pari
passu—most default swaps are linked to se-
nior unsecured debt. Typically, they include
both bonds and loans. If deliverable obliga-
tions trade with different prices following a
credit event, which they are most likely to do
if the credit event is a restructuring, the pro-
tection buyer can take advantage of this situ-
ation by buying and delivering the cheapest
deliverable. The protection buyer is therefore
long a cheapest to deliver (CTD) option.

� Cash settlement: A protection buyer who
opts for cash settlement receives par minus
the recovery price on his face value. The
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recovery price is the one determined by the
ISDA auction. The protection seller pays par
minus the same recovery price.

CDS spreads are typically quoted for a variety
of maturities with most liquidity at the five-year
maturity followed by the three-year and seven-
year maturities. The bid is the spread at which
the dealer is willing to buy protection, while the
offer is the spread at which the dealer is willing
to sell protection. Clearly, the bid spread will
be less than the offer spread. Note that this is
opposite to the convention for bonds where the
bid spread is the spread at which the dealer is
willing to buy the bond and this will be higher
than the offer spread. This is because the buyer
of a bond is selling protection, while the buyer
of a CDS is buying protection.

Illustration
Suppose a protection buyer purchases 5-year
protection on a company at a default swap
spread of 200bp. The face value of the protec-
tion is $10 million. The protection buyer there-
fore makes quarterly payments approximately
equal to $10 million × 0.02 × 0.25 = $50,000.
(The exact payment amount is a function of the
calendar and basis convention used.) After a
short period the reference entity suffers a credit
event. Assuming that the subsequent ISDA auc-
tion which takes place within 2 months of the
credit event determines a recovery price of $35
per $100 of face value, the payments are as
follows:
� The protection seller compensates the protec-

tion seller for the loss on the face value of the
asset received by the protection buyer. This
is equal to $10 million × (100% − 35%) =
$6.5 million.

� The protection buyer pays the accrued pre-
mium from the previous premium payment
date to time of the credit event. For example,
if the credit event occurs after a month then
the protection buyer pays approximately $10
million × 0.02 × 1/12 = $16,666 of premium
accrued. Note that this is the standard for cor-
porate reference entity linked default swaps.

The Mechanics of Settlement
The timeline around the physical settlement of
a CDS following a credit event consists of three
steps:

1. A CDS market participant who has previ-
ously signed up to the ISDA protocols sub-
mits a request to the ISDA determinations
committee asking whether or not a credit
event has occurred on a specified reference
entity. The event must be evidenced by at
least two sources of publicly available in-
formation (e.g., a news article on Reuters,
the Wall Street Journal, the Financial Times or
some other recognized publication or elec-
tronic information service). The determina-
tions committee, which consists of both buy
and sell-side representation then has to de-
cide whether or not the credit event has oc-
curred. An 80% supermajority is needed to
approve any decision. If it is determined that
a credit event has occurred, the process lead-
ing to the ISDA auction is then begun.

2. The ISDA then begins compiling a list of
the deliverable obligations and publishes the
details of the auction which will take place
in order to determine the recovery price. If
the credit event is a bankruptcy or a fail-
ure to pay then CDS contracts are automat-
ically triggered. However if the event is a
restructuring, CDS protection buyers can de-
cide whether to trigger their contract or not –
if they decide not to trigger then the contract
can be used later if a bankruptcy or failure
to pay occurs. In Europe, the settlement of
a restructuring event is also complicated by
the fact that standard CDS contracts with dif-
ferent maturities can have different baskets
of deliverable obligations and separate auc-
tions will be needed to determine their final
recovery price for each basket.

3. The auction takes place. CDS market partic-
ipants who have positions in the triggered
contracts need to decide whether or not to
settle physically or in cash. Buyers and sell-
ers of CDS protection can choose physical
settlement even if their trade counterparty
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chose cash settlement, and vice-versa. The
various dealers through whom market par-
ticipants trade then bring all of these posi-
tions plus their own positions into an auction
at the end of which only the net position –
the net open interest – will be transferred,
thereby averting any short squeeze which
may be caused if the gross notional of CDS
positions exceeds the outstanding notional
of deliverable obligations. Dealers can then
submit bids or offers on the net open interest
of physical obligations, which may be long or
short. At the end of this auction procedure,
a recovery price is determined. All CDS con-
tracts are then automatically settled at this
recovery price.

As a result, the maximum delay between notice
of a credit event and the actual payment of the
protection is approximately 72 calendar days.

CREDIT EVENTS
The most important section of the documenta-
tion for a default swap is what the parties to the
contract agree constitutes a credit event that will
trigger a payment by the protection seller to the
protection buyer. Definitions for credit events
are provided by the International Swap and
Derivatives Association (ISDA). First published
in 1999, there have been periodic updates and
revisions of these definitions. The most recent,
and one of the most important updates of the
ISDA documentation for credit default swaps
was the introduction of the Big Bang protocol
in 2009. These were are response to the Financial
Crisis of 2008 and were intended to streamline
the process of determing and settling a credit
event. They were also intended to enable the
migration of CDS trades to centralised counter-
parties by increasing fungibility.

ISDA Credit Event Definitions
Of the eight possible credit events referred to in
the 1999 ISDA Credit Derivative Definitions, the
ones typically used within most contracts are
listed in Table 1. In terms of which are used,

Table 1 Credit Events Typically Used within Most
CDS Contracts

Credit Event Description

Bankruptcy Corporate becomes insolvent or is
unable to pay its debts. The
bankruptcy event is of course not
relevant for sovereign issuers.

Failure to pay Failure of the reference entity to
make due payments, taking into
account some grace period to
prevent accidental, triggering due
to administrative error.

Restructuring Changes in the debt obligations of
the reference creditor but
excluding those that are not
associated with credit
deterioration such as a
renegotiation of more favorable
terms.

Obligation
acceleration/
obligation
default

Obligations have become due and
payable earlier than they would
have been due to default or similar
condition.

Obligations have become capable of
being defined due and payable
earlier than they would have been
due to default or similar condition.
This is the more encompassing
definition and so is preferred by
the protection buyer.

Repudiation/
moratorium

A reference entity or government
authority rejects or challenges the
validity of the obligations.

Source: ISDA.

the market distinguishes between corporate-
and sovereign-linked CDSs. For corporate-
linked CDSs the market standard is to use just
three credit events—bankruptcy, failure to pay,
and restructuring. For sovereign-linked CDSs,
obligation acceleration/default and repudia-
tion/moratorium are also included.

Restructuring Controversy
Restructuring means a waiver, deferral, restruc-
turing, rescheduling, standstill, moratorium,
exchange of obligations, or other adjustment
with respect to any obligation of the reference
entity such that the holders of those obligations
are materially worse off from either an eco-
nomic, credit, or risk perspective. It has been
the most controversial credit event that may be
included in a default swap.
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In bankruptcy or failure to pay, pari passu
assets trade at or close to the same recovery
value. But restructuring is different. Following
a restructuring, debt continues to trade. Short-
dated bonds trade at higher prices than longer-
dated bonds, bonds with large coupons trade
at a higher price than bonds with low coupon.
Loans, which are typically also deliverable,
tend to trade at higher prices than bonds due to
their additional covenants.

This makes the delivery option that is em-
bedded in a default swap potentially valuable.
A protection buyer hedging a short-dated high
coupon asset may find that following a restruc-
turing credit event it is trading at, say, $80 while
another longer-dated deliverable may be trad-
ing at $65. By selling the $80 asset, purchasing
the $65 asset, and delivering it into the CDS, the
protection buyer may make a $15 windfall gain
out of the delivery option. However, this gain
is made at the expense of the protection seller
who has to take ownership of the $65 asset in
return for a payment of par.

Such a situation arose in the summer of 2000
when the U.S. insurer Conseco restructured its
debt. At that time, the range of deliverable obli-
gations following a restructuring event was the
same as those used for bankruptcy or failure
to pay. This meant that bonds or loans with a
maximum maturity of 30 years could be de-
livered. Protection sellers were displeased at
being delivered long-dated low-priced bonds
in the price range 65 to 80 by banks who held
much higher-priced short-term loans. In addi-
tion, it was believed that there was a conflict
of interest—banks who exercised their default
swaps had also been party to the restructuring
of Conseco’s debt.

The results of this experience led to the mar-
ket discussing a restructuring supplement to
the standard ISDA documentation. This was
completed on May 11, 2001, and introduced a
new restructuring definition called modified re-
structuring (mod-re). The essence of this was to
reduce the range of deliverable obligations fol-
lowing a restructuring event and so limit the
value of the delivery option.

Although adopted by the North American
market between 2002 and 2009, this standard
has now become redundant for the standard
North American contract (SNAC) since restruc-
turing is no longer one of the standard trigger-
ing credit events. Europe has retained the re-
structuring credit event. However the basket of
allowed deliverable obligations is determined
by the Modified Modified Restructuring clause
which effectively limits the maturity of these
obligations to the greater of the maturity of the
CDS contract and 60 months. Credit default
swaps linked to Asian corporate credits con-
tinue to include restructuring as a credit event.
They also retain the old style rules about what
can be delivered, allowing all bonds and loans
of the appropriate seniortity and with a maxi-
mum maturity of 30 years. A summary descrip-
tion of the different standard market contracts
by geographical region is shown in Table 2.

Where the same credit trades with differ-
ent restructuring conventions, these differ-
ent contract standards should be reflected
in the quoted market spreads. For example,

Table 2 Different Restructuring Standards by
geographic region.

Region Description

North America The standard North American
contract (SNAC) now trades
without restructuring as a credit
event.

Europe Both CDS and CDS indices trade
with bankruptcy, failure to pay
and restructuring. In the case of
restructuring, the deliverable
obligations are determined
according to the Modified
Modified Restructuring clause
which limits the maturity of
deliverables to the maximum of
the maturity of the CDS and
60 months.

Asia Both CDS and CDS indices trade
with bankruptcy, failure to pay
and restructuring. Following a
restructuring event the only limit
on deliverables is the old-style
limit of a maximum maturity of
30 years.

Source: ISDA.
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modified-modified restructuring allows the
protection buyer to have a broader range of
deliverables than modified restructuring. This
means that the value of the delivery option is
greater for mod-mod-re than for mod-re and so
the protection should trade at a wider spread for
the more valuable delivery option. More gener-
ally, there should be a strict theoretical relation-
ship between these spread levels of1

SpreadOld-Re > SpreadMod-Mod-Re > SpreadMod-Re

> SpreadNo-Re

In this entry, the aim is not to determine what
the spread differences should be, but to price
contracts of a given type given the correspond-
ing curve of market spreads.

Credit Events and Implementation
of Default Swap Pricing Models
In the pricing model presented in this entry, we
refer to “default.” By this we mean any of the
credit events included in the CDS contract. This
means that the value of a contract will depend
on which credit events are included in a partic-
ular trade.

While the model presented handles any of the
credit events that may be selected by the parties
to a trade, the data required are typically drawn
from databases that collect defaults defined in a
different way than those set forth by ISDA credit
event definitions. For example, major studies
regarding default rates and recovery rates, as
well as default times, define default in terms of
the legal definition of default. In contrast, con-
sider restructuring. Suppose that full restruc-
turing is included in a trade as a credit event.
Then a reduction in a reference obligation’s in-
terest rate that is material is a credit event. In
fact, actions by lenders to modify the terms of a
reference obligation without a bankruptcy pro-
ceeding are not uncommon. Yet, they are not
included (or even known) to researchers who
compile data on defaults.

The key point is that in the implementation
stage, the inputs must be modified based on
the credit events included in a trade.

PRICING CREDIT DEFAULT
SWAPS BY STATIC
REPLICATION
There is a fundamental relationship between
the default swap market and the cash market in
the sense that a default swap can be shown as
being economically equivalent to a combina-
tion of cash bonds. This cash-CDS relationship
means that determination of the appropriate de-
fault swap spread for a particular credit usually
begins by observing the London Interbank Of-
fered Rate (LIBOR) spread at which bonds of
that issuer trade. The usual comparison is to
look at what is called the par asset swap spread
of a bond of a similar maturity to the default
swap contract. This is the spread over LIBOR
paid by a package containing a fixed-rate bond
and interest rate swap purchased at par. This
spread can easily be calculated.2

Since 2009, CDS contracts have traded with
fixed premiums. Prior to this, any new CDS
contract would have its premium set at initi-
ation so that the contract would have zero ini-
tial value In order to facilitate moves towards
a centralised counterparty for CDS, in 2009 the
market decided that all contracts on a specific
reference entity, regardless of their maturity and
when they were traded will trade with the same
fixed premium. The value of this fixed premium
is different for different reference entities. In the
US it is 100bp for investment grade credits and
500bp for high-yield credits. A similar conven-
tion exists in Europe with additional spreads
levels. The effect of this is that CDS contracts no
longer have zero value at initiation. This is actu-
ally not a radical change – it simply means that
new contracts have to be valued in the same
way that seasoned CDS contracts were valued
in the past. However, it does mean that the old
CDS-bond static replication argument becomes
less realisable.

Since it is a fixed number through time, the
premium spread on the CDS linked to some
reference entity no longer reflects the market
implied credit risk of the reference entity at
the time of the trade. That information is now
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embedded in the upfront cost of the CDS. But
this cost is not a spread measure and is difficult
to use to compare the market implied credit
risk across different credits and different ma-
turities. Instead, the market has created a new
spread measure known as the par CDS spread.
This is defined as the coupon on a fictional CDS
which would give it a zero initial value today. It
is the old CDS premium now reborn as a spread
measure. The following static replication argu-
ment is therefore based on such a fictional CDS
contract where the spread S is set so that the
contract has zero initial value. The reason for
doing this is that we wish to understand the re-
lationship between this par spread and the par
asset swap spread. Note also that the standard
model which we will describe later is the mech-
anism used to convert the upfront cost of a CDS
contract to a par spread and vice-versa.

The premium payments in a default swap
contract are defined in terms of a default swap
spread, S, which is paid periodically on the pro-
tected notional until maturity or a credit event.
It is possible to show that the default swap
spread can, to a first approximation, be prox-
ied by a par floater bond spread (the spread to
LIBOR at which the reference entity can issue a
floating rate note of the same maturity at a price
of par) or the asset swap spread of an asset of the
same maturity provided it trades close to par.

To see this, consider a strategy in which an
investor buys a par floater issued by the refer-
ence entity with maturity T. The investor can
hedge the credit risk of the par floater by pur-
chasing protection to the same maturity date.
Suppose this par floater (or asset swap on a par
asset) pays a coupon of LIBOR plus F. Default
of the par floater triggers the default swap, as
both contracts are written on the same reference
entity. With this portfolio the investor is effec-
tively holding a default-free investment, ignor-
ing counterparty risk.

The purchase of the asset for par may be
funded on balance sheet or on repo—in which
case we make the assumption that the repo rate
can be locked in to the bond’s maturity. The re-
sulting funding cost of the asset is LIBOR plus

B, assumed to be paid on the same dates as the
default swap spread S. Consider what happens
in the following scenarios:

No credit event—The hedge is unwound at the
bond maturity at no cost since the protection
buyer receives the par redemption from the
asset and uses it to repay the borrowed par
amount.

Credit event—The protection buyer delivers
the reference asset to the protection seller
in return for par. If we assume that the
credit event occurs immediately following a
coupon payment date, then the cost of clos-
ing out the funding is par, which is repaid
with this principal. The position is closed out
with no net cost.

Both scenarios are shown in Figure 1. As the
hedged investor has no credit risk within this
strategy they should not earn (or lose) any ex-
cess spread. This implies that S = F − B; that is,
the default swap spread should be equal, to the
par floater spread minus the funding cost of the
cash bond. For example, suppose the par floater
pays LIBOR plus 25 basis points and the pro-
tection buyer funds the asset on balance sheet
at LIBOR plus 10 basis points. For the protec-
tion buyer the breakeven default swap spread
equals F − B = 25 − 10 = 15 basis points.

This analysis certainly shows that there
should be a close relationship between cash and
default swap spreads. However, the argument
is not exact as it relies on several assumptions
that could result in small but observable differ-
ences. Some are listed below:

1. We have assumed the existence of a par
floater with the same maturity date as the
default swap and that the coupon on the de-
fault swap contract has been set so that it has
zero initial value.

2. We have assumed a common market-wide
funding level of LIBOR + B. In practice,
different market participants have different
funding costs which therefore imply differ-
ent spread levels.

3. We have assumed repo funding to term.
Repo funding cannot usually be locked in



532 Derivatives Valuation

Protection
Seller

Protection
Seller

100

Repay
  100

FundingFunding

Defaulted
 Asset

Defaulted
 Asset

Default
Swap
Spread S

Hedged Invester
(protection buyer)

Hedged Invester
(protection buyer) Asset

Pay
100

LIBOR
  + F

LIBOR
  + B

Borrow
  100

At credit eventBefore credit event or maturity

Figure 1 Theoretical Default Risk-Free Hedge for an Investor Who Buys Protection

to term but only for short periods of a couple
of months only. One attraction of CDS is that
unlike cash, they effectively lock in funding
at LIBOR flat to maturity.

4. We have ignored accrued coupons. If the
credit event occurs just before a coupon pay-
ment on the funding leg, the protection does
not cover the loss of par plus coupon on the
funding leg. We have also ignored the effect
of the accrued CDS premium payment from
the previous payment date.

5. We have assumed that the par floater is the
cheapest-to-deliver asset.

6. We have ignored counterparty risk on the
CDS. This is usually mitigated through the
use of collateral.

7. Due to the difficulty of shorting cash bonds,
any widespread market demand to go short a
particular credit will first impact CDS, caus-
ing spreads to widen before cash.

8. For asset swaps the initial price of the asset
must be close to par. This is because the loss
on an asset swap of a bond trading with a full
price P is about P − R. The credit risk is then
only comparable to a default swap when the
asset trades close to par.

9. We have ignored transaction costs.

Despite these assumptions, cash market
spreads usually provide the starting point for
where the default swap spreads should trade.

Empirically, there is a high correlation between
the two spread levels. The difference between
where and cash LIBOR spreads trade is known
as the default swap basis, defined as

Default swap basis = S − F

There are now a significant number of mar-
ket participants who actively trade the default
swap basis, viewing it as a new relative value
opportunity.3

PRICING OF A SINGLE-NAME
CREDIT DEFAULT SWAP
Reduced versus Structural Models
To value credit derivatives it is necessary to
be able to model the default risk, the recov-
ery rate risk and the effect of interest rates.
The two most commonly used approaches to
model credit risk are structural models and re-
duced form models. The first structural model
for credit-risky bonds was proposed by Black
and Scholes (1973) who explained how equity
owners hold a call option on the firm. After that
Merton (1973 and 1974) extended the frame-
work and analyzed the behavior of risky debt
using the model.4

The second type of credit models, known as
reduced-form models, are more recent.5 These
models, most notably the Jarrow-Turnbull
model and Duffie-Singleton model, do not look
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inside the firm. Instead, they model directly the
likelihood of a default occurring. Not only is
the current probability of default modeled, they
also attempt to model a “forward curve” of de-
fault probabilities that can be used to price in-
struments of varying maturities. Characterizing
default as an event that occurs with a modeled
probability has the effect of making default a
surprise—the default event is a random event,
which can suddenly occur at any time. All we
know is its probability.

Reduced-form models are easy to calibrate
to the term structure of CDS prices observed
in the marketplace. This is known as work-
ing in an “arbitrage-free” framework. It is
only by ensuring that a pricing model fits
the market that a trader can be sure that he
does not quote prices that expose him to any
price arbitrages. The ability to quickly and eas-
ily calibrate to the entire CDS market is the
major reason why reduced-form models are
strongly favored by real-world practitioners
in the credit derivatives markets for pricing.
Structural-based models are used more for de-
fault prediction and credit risk management.

Increasingly, investors are seeking consis-
tency between the markets that use different
modeling approaches, as the interests in seek-
ing arbitrage opportunities across various mar-
kets grows. Chen (2003) has demonstrated that
all the reduced-form models described above
can be regarded in a nonparametric framework.
This nonparametric format makes the compari-
son of various models possible. Furthermore, as
Chen contends, the nonparametric framework
focuses the difference of various models on
recovery.

The basic framework that underlies the
reduced-form model is a binomial default pro-
cess. There are two branches at each time point
on the tree: default and survival. The branches
that lead to default will terminate the contract
and incur a recovery payment. The branches
that lead to survival will continue the contract
that will then face future defaults. This is a very
general framework to describe how default oc-

curs and contract terminates. Various models
differ in how the default probabilities are de-
fined and the recovery is modeled.

Reduced form models use risk-neutral pricing
to be able to calibrate to the market. In practice,
we need to determine the risk-neutral proba-
bilities in order to reprice the market and price
other instruments not currently priced. In do-
ing so, we do not need to know or even care
about the real-world default probabilities.

Since in reality, a default can occur any time, to
accurately value a default swap, we need a con-
sistent methodology that describes the follow-
ing: (1) when defaults occur, (2) how recovery
is paid, and (3) how discounting is handled.

Survival Probability
Assume the risk-neutral probabilities exist.
Then we can identify a series of risk-neutral
default probabilities so that the weighted aver-
age of default and no-default payoffs can be
discounted at the risk-free rate. The risk-free
rate used in the pricing of CDS is LIBOR. This
is because within a derivatives framework, the
risk-free rate is close to the rate at which market
dealers fund their hedges.

Assume Q(t) to be the survival probability from
now till some future time t. Then Q(t) − Q(t +
τ ) is the default probability between t and
t + τ (that is, survive till t but default before
t + τ ). Assume defaults can only be observed
at multiples of τ . Then the total probability of
default over the life of the CDS is the sum of all
the per period default probabilities:

n∑

j=1

Q[( j − 1)τ ] − Q( jτ ) = 1−Q(nτ ) = 1−Q(T)

where Q(0) = 1.0 and nτ = T, the maturity
time of the CDS. It is no coincidence that the
sum of the all the per-period default probabil-
ities should equal one minus the total survival
probability.

The survival probabilities have a useful appli-
cation. A $1 “risky” cash flow received at time t
has a risk-neutral expected value of Q(t) and a



534 Derivatives Valuation

present value of P(t)Q(t) where P is the risk-free
discount factor.

The value of the protection leg of a CDS is
the present value of the payment of (1 − R)
at default. To take into account the timing of
the default payment (1 − R), we break the
time to maturity into n intervals which corre-
spond to the premium payment dates on the
premim leg. This is a simple numerical approx-
imation which works well given the quarterly
payment convention of CDS. However a more
exact model would break the time to maturity
into monthly or even weekly time steps. For
each time period we consider the probability of
defaulting in each. The probability of defaulting
in a forward interval [(j − 1) τ , jτ ] is given by

Q[( j − 1)τ ] − Q( jτ ) (1)

We then discount the payment of (1 − R)
back to today by multiplying it by the risk-
free discount factor P(t). We then consider the
likelihood of default occurring in all of the
intervals by summing over all intervals. We
therefore have

V = (1 − R)
n∑

j=1

P( jτ ){Q[( j − 1)τ ] − Q( jτ )}

(2)
where R(·) is the expected recovery rate deter-
mined by a CDS auction which takes place soon
after a credit event rate.

In the above equation, it is implicitly assumed
that the discount factor is independent of the
survival probability. In reality, these two may be
correlated—usually higher interest rates lead to
more defaults because businesses suffer more
from higher interest rates. To account for this
we would need to introduce a stochastic prob-
ability and interest rate model. However, the
effect of this correlation is almost negligible on
the valuation of CDS and is further reduced by
calibration. Equation (2) has no easy solution.6

Premium payments on the premium leg of a
CDS terminate as soon as a credit event occurs.
As a result the expected present value of the
premium leg of the default swap is given by dis-
counting each of the expected spread payments

by the risk-neutral discount factor weighted by
the probability of surviving to each payment
date. This is given by

S
N∑

j = 1

� j P( jτ )Q( jτ )

where �j is the corresponding year fraction in
the appropriate basis convention (typically ac-
tual 360). By definition the value of the de-
fault swap spread is the value at which the
premium and protection legs have the same
present value. Hence, we have

V = S
n∑

j = 1

� j P( jτ )Q( jτ )

giving
S = V

n∑
j=1

� j p( jτ )Q( jτ )
(3)

Figure 2 depicts the general default and re-
covery structure. The payoff upon default of a
default swap is par minus the recovery value as
determined by any future ISDA auction which
takes place after a credit event. As of today, the
value of this recovery is unknown, we do not
even know if a credit event will occur. As our
model is based on the expected value of the
protection leg, the recovery rate used has to be
the expected value of the recovery rate condi-
tional on a default and for this, market practi-
tioners refer to historical recovery rates. Mar-
ket convention is to use a 40% recovery rate as
this is close to the average historical recovery

Spread

100 - Recovery

100 - Recovery

100 - Recovery

Spread

Spread

Figure 2 Payoff and Payment Structure of a CDS
where as a simple approximation we assume that
a credit event can only occur on a CDS premium
leg payment date. In practice the credit even can
occur at any time and the market standard model
would take this into account.
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rate for senior unsecured US corporate bonds –
most CDS are linked to bonds which are senior
unsecured.

In practice the portion of the premium pay-
ment that has accrued from the previous
coupon payment date is paid by the protec-
tion buyer following the credit event. We have
ignored it in our analysis since its effect on the
calculated spread is small.7

Valuation of a Credit Default Swap
The valuation of CDS can be broken down into
two separate tasks. The first is the determina-
tion of the default swap spread, which should
be paid by a protection buyer at the initiation
of a trade. This has already been discussed. The
second is to determine the value of an existing
CDS position, which we call the mark-to-market
(MTM) or the upfront value. They are the same.

Since the recouponing of CDS contracts in
2009, we can no longer state that the MTM or
upfront of a new trade is always zero. The ef-
fect of fixing the premium leg coupon means
that the risk of the reference entity must now be
embedded in the initial cost of protection.

Once a CDS position has been established,
changes in the current market CDS spread will
mean that the MTM begins to deviate from its
initial value and must be determined by observ-
ing the current level of default swap spreads in
the market. To see how this is done, consider
the following example.

An investor sells protection on a high yield
reference entity for five years at an agreed con-
tractual spread of 500 basis points. By selling
protection the investor is assuming the credit
risk of the reference entity as though he was
buying one of the reference entity’s issued
bonds. A year later the reference entity’s credit
rating has improved and the market quoted 4-
year par CDS spread is at 100 basis points. What
is the MTM or upfront value of the position?

To begin with, the MTM value of the contract
to the investor is given by the difference be-
tween what the investor is expecting to receive

minus what they are expected to pay. As a result
we can write

MTM = + Present value of four years of risky
premium payments of 500 basis
points − Present value of protection
for the remaining four years

We can also write that the current four-year par
CDS spread of 100 basis points is the current
break-even spread. By definition, the current
value of a new four-year “par” CDS contract
with a coupon equal to the par CDS spread is
zero so we can write

Present value of four years of risky premium
payments of 100 basis points = Present
value of protection for the remaining
four years

Substituting, we write

MTM = +Present value of four years of risky
premium payments of 500 basis
points − Present value of four years
of risky premium payments
at 100 basis points

which can be rewritten as

MTM = +Present value of four years of risky

premium payments of 400 basis points

To go any further we have to compute the
expected present value of these 400-basis points
payments. However these payments are only
made until the maturity of the CDS or to the
time of a credit event, whichever occurs first. To
compute the MTM we therefore need to weight
each premium payment by the probability that
there is no credit event up until that payment
date. We therefore write

MTM = 400 basis points × RPV01

where the RPV01 is the “risky” price value of a
basis point (PV01). This is defined as the present
value of a 1 basis points payment made until the
contractual maturity date of the position or to
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the date of a credit event, whichever is sooner.
Mathematically, we can write the RPV01 as

RPV01 =
n∑

j = 1

� j p( jτ )Q( jτ )

where �j is the year fraction for the payment j
in the appropriate basis (typically Actual 360).
For quarterly paying CDS, �j is usually close to
or equal to 0.25. Bringing this all together, we
can write the MTM value of a long protection
position as

MTM = +[S(t,T) − S(0,T)] × RPV01[S(t,T),R]

and that of a short protection position as

MTM = −[S(t,T) − S(0,T)] × RPV01[S(t,T),R]

where S(0,T) is the contractual spread of the
contract, T is the contractual maturity date and
S(t,T) is the current par CDS spread to the con-
tractual maturity date. It is essential to note that
the RPV01 is a function of the market spread
S(t,T) and the assumed recovery rate R since
both are used to imply out the risk-neutral sur-
vival probabilities.

To crystallize all of this theory, we present in
Table 3 the valuation of the trade introduced
at the beginning of this section in which an in-
vestor sells $10 million of five-year protection
at 500 basis points and then wishes to mark it to
market one year later when the market has a flat
term structure at 100 basis points. For simplicity
we have assumed a flat LIBOR term structure at
2.5%. We assume a recovery rate of 40%. In par-
ticular we show the quarterly coupon payment
dates (we have ignored holidays and weekends
for simplicity) and the corresponding values of
P and Q, calibrated to reprice the term structure
of default swap spreads.

We see that the current par CDS spread is 100
basis points, and that the risky PV01 of the po-
sition is 3.7247—the present value of four years
of risky 1 basis points payments is 3.7247 basis
points. The resulting MTM value is $1,489,892.
This makes sense. The market has valued the
risk of four year protection on the reference
entity at 100bp in spread terms, but the fixed

Table 3 An Illustration of Calculation of the MTM
Value

Long or short protection Short
Notional ($) 10,000,000
Contractual Spread (bp) 500
Settlement Date 20-Mar-13
Maturity Date 20-Mar-17
Flat LIBOR 2.50%
Par CDS Spread (bp) 100
Recovery Rate 40%

Payment
Dates YearFrac

Premium
Leg Flows Q(t) P(t)

20-Mar-13 1.00000 1.00000
20-Jun-13 0.25556 127,778 0.99575 0.99372
20-Sep-13 0.25556 127,778 0.99152 0.98748
20-Dec-13 0.25278 126,389 0.98735 0.98135
20-Mar-14 0.25000 125,000 0.98324 0.97533
20-Jun-14 0.25556 127,778 0.97906 0.96920
20-Sep-14 0.25556 127,778 0.97490 0.96312
20-Dec-14 0.25278 126,389 0.97080 0.95714
20-Mar-15 0.25000 125,000 0.96677 0.95126
20-Jun-15 0.25556 127,778 0.96266 0.94529
20-Sep-15 0.25556 127,778 0.95857 0.93936
20-Dec-15 0.25278 126,389 0.95454 0.93352
20-Mar-16 0.25278 126,389 0.95053 0.92773
20-Jun-16 0.25556 127,778 0.94649 0.92190
20-Sep-16 0.25556 127,778 0.94246 0.91612
20-Dec-16 0.25278 126,389 0.93850 0.91043
20-Mar-17 0.25000 125,000 0.93460 0.90484
20-Jun-17 0.25556 127,778 0.93063 0.89916

Prot Leg PV 372,473
Risky PV01 3.7247
Replication

Spread (bp)
100.00

Contract MTM 1,489,892

coupon is 500bp. A new investor wanting to
sell four year protection is therefore being over-
compensated and to correct for this, has to pay
a large upfront cost.

CDS Risk and Sensitivities
Market practitioners using CDS usually con-
sider two risk measures. First is the Credit01 or
Spread01. This is the change in the MTM value
of a CDS position for a 1 basis points parallel
shift in the CDS curve. Then there is the Interest
Rate 01 which is the change in the MTM value
of a CDS position for a 1 basis points change
in LIBOR. In practice the LIBOR sensitivity of a
CDS is small, usually at least an order of magni-
tude less than that of the Credit01. This reflects
the fact that a CDS is almost a pure credit play.
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It is actually possible to make some simple ap-
proximations that make clear the dependence
of the MTM on these inputs. First, we can ap-
proximate the CDS spread in terms of the risk-
neutral annualized default probability p, and
assumed recovery rate R, using the equation
S = p(1 − R). The interpretation is that the an-
nualized spread received for assuming a credit
risk should equal the annualized default prob-
ability times the loss on default, which in a CDS
equals (100% − R). This approximation works
very well in practice. If we assume a flat term
structure of CDS spreads, approximate � with
1/4, then we can approximate the MTM of a long
protection position as

MTM = [S(t, T) − S(0, T)]
4

N∑

j=1

P( jτ )
[

1 − S(t, T)
1 − R

] j/4

We can immediately draw a number of con-
clusions from this mathematical expression for
the MTM value. First, the MTM value is not
a linear function of the market spread S(t,T).
In fact the MTM value of a short protection
position is convex in the market spread, just
as the price of a corporate bond is convex in
the yield. Furthermore, it is also clear that the
recovery rate sensitivity of the MTM value is
large when the market spread is large. This
means that where the market spread is below,
say, 300 basis points, one does not have to be
so precise about the recovery rate assumption.
However, if spreads become large (say, 300 basis
points and above) the recovery rate sensitivity
becomes increasingly significant and care must
be taken in making a recovery rate assumption.

Calibrating the Recovery
Rate Assumption
To be precise, the recovery rate assumption, R,
is the assumed price of the cheapest-to-deliver
asset into the CDS contract within 72 calendar
days of the notification of the credit event. This
is not known today. Nor can it be extracted from
any market prices. In theory, this would be pos-

sible given the existence of an active and liquid
digital default swap market. A digital default
swap is a contract that pays the face value in
the event of default—it is like a standard default
swap but instead assumes a fixed recovery rate
of zero. The ratio of the normal CDS spread and
the digital default swap spread would equal
(1 − R). However, the lack of liquidity of the
digital market makes this calibration approach
impractical.

The usual starting point for calibrating recov-
ery rates is to observe rating agency statistics.
Both Moody’s and S&P maintain significant
databases of U.S. corporate bond defaults. Care
must be taken to adjust any average recovery
rates for country and sector effects. Recovery
rates also have a link to the economic cycle. In
recent years, average recovery rates have fallen
well below the long-term averages computed
by rating agencies. One reason why this is so is
that Moody’s, for example, defines the recovery
rate of a bond as the price of that bond within
some short period following the default. It is
not the final value received by holders of the
bond after going through the workout process.
This means that the recovery rate is driven by
the size of the bid for the bond in the distressed
debt market. In periods of credit weakness, the
distressed debt market is unable to absorb the
oversupply of defaulted assets and the bid con-
sequently falls.

Another consideration when marking recov-
ery rate assumptions is to take into account that
following a restructuring event, which is not
a full default, the deliverable obligations may
trade at higher prices than in a full default. Since
rating agencies do not consider restructuring as
a full default, this effect is not accounted for
in their statistics. Typical recovery rates being
quoted in the market for good quality credits
vary between 30% and 45%.

When spreads are trading at very high lev-
els of 1,000 basis points and above, it is
important to look to the bond market to see
if bond prices are revealing any information
about the expected recovery rate in the event



538 Derivatives Valuation

of a default. For example, a recovery rate as-
sumption of 40% would make no sense if one
of the deliverable bonds into the CDS is trading
at 30 cents on the dollar. In this case, the recov-
ery rate assumption should clearly be moved
below 30%.

The Practicalities of Unwinding a
Credit Default Swap
A CDS is an over-the-counter (OTC) deriva-
tive contract. This means that unlike some
other derivatives contracts it is not exchange
traded. Instead it involves an agreement be-
tween two counterparties. As almost all CDS
are traded within the framework of the ISDA
Master Agreement, there is widespread stan-
dardization of the documentation of CDS and
many counterparties are happy to trade these
bilateral contracts in what is effectively a sec-
ondary market. To unwind a CDS before its
maturity date, an investor may consider one
of three courses of action:

1. Negotiate a cash upfront price with the orig-
inal counterparty. The price should be the
same as the MTM value calculated according
to the model. In practice a bid-offer spread
will have to be crossed. Part of this negotia-
tion may involve some exchange of informa-
tion as to the recovery rate assumptions used
by both counterparties.

2. If the investor is shown a better upfront price
by a counterparty different to the one with
whom the initial trade was executed, they
can ask to have the contract reassigned to
this other counterparty and then close it out
for a cash unwind value.

3. They may choose to enter into an offsetting
position. For example, an investor who has
sold protection for five years may decide a
year later to close out the contract by selling
protection for four years. The value of this
combined position should exactly equal the
model market to market.

Which one of these choices is made is usually
determined by which is showing the best price.

Prior 2009 we would have said that option 3 is
different from the others because it leaves the
CDS holder with an ongoing position consist-
ing of a future stream of risky cashflows equal to
the difference between the spread of the initial
contract and that of the new unwind contract.
However now that CDS contracts on the same
reference entity all trade with the same coupon,
option 3 actually now leaves the parties with no
net cashflows as both coupon streams will can-
cel eachother. Instead the CDS unwind value is
realised through the upfront cost of the offset-
ting position and will be the same as options 1
and 2.

The matching of coupons means there is no
economic value in retaining both positions and
both positions can be cancelled. Indeed this ef-
fect was the purpose of fixing CDS coupons
since it means that in future, major dealers in
CDS will no longer be left with many tens
of thousands of legacy partially offsetting po-
sitions and their associated counterparty risk.
This reduces the gross notional of the CDS mar-
ket and should reduce fears, unfounded or not,
about systemic risk. It may also help to facilitate
any future plans to migrate CDS contracts from
the OTC market to an exchange traded market.

KEY POINTS
� There is a fundamental no-arbitrage relation-

ship that links the pricing of credit default
swaps and the bonds which they reference.
Various market and contractual differences
mean that this relationship is not strictly
obeyed at all times. However material devia-
tions from this relationship should not persist.

� Since the recouponing of CDS contracts in
2009, CDS contracts no longer trade with zero
initial value. The valuation of a CDS contract
has become the process of determining the
upfront value of a contract.

� A pricing model for CDS contracts needs
to take into account the different factors
that drive the pricing of CDS. These include
the market implied term structure for the
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probability of survival/default, the expected
recovery price if there is a credit event, and
the level of interest rates used to discount fu-
ture cashflows.

� The role of the standard valuation model set
out in this chapter is to determine this upfront
value. As market prices are actually quoted
in the form of a term structure of CDS par
spreads, the model must be able to exactly
refit these par spreads and to then use the im-
plied survival curve plus assumptions about
the expected recovery price to determine the
upfront value of any given CDS contract.

� An implementation of the standard pricing
model has been produced by the ISDA and is
available from www.cdsmodel.com.

NOTES
1. See O’Kane, Pedersen, and Turnbull (2003).
2. See O’Kane (2001).
3. For a discussion of the driving factors behind

the basis, see O’Kane and McAdie (2001).
4. Geske (1977) extended the Black-Scholes-

Merton model to include multiple debts. See
also Geske and Johnson (1984). Many barrier
models appear as an easy solution for ana-
lyzing the risky debt problem.

5. The name “reduced-form” was first given
by Darrell Duffie to differentiate from the
structural form models of the Black-Scholes-
Merton type.

6. A continuous-time version of the equation
can be found in the appendix of Chen,
Fabozzi, and O’Kane (2003).

7. See O’Kane and Turnbull (2003).
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Abstract: A total return swap is a swap in which one party makes periodic floating rate payments
to a counterparty in exchange for the total return realized on a reference asset (or underlying asset).
The reference asset could be a credit-risky bond, a loan, a reference portfolio consisting of bonds or
loans, an index representing a sector of the bond market, or an equity index. A total return swap
can be used by asset managers for leveraging purposes and/or a transactionally efficient means
for implementing a portfolio strategy. Bank managers use a total return swap as an efficient vehicle
for transferring credit risk and as a means for reducing credit risk exposures. The Duffie-Singleton
model can be used to value total return swaps.

In this entry we explain the valuation of total
return swaps.1 We begin with an intuitive ap-
proach.

AN INTUITIVE APPROACH
A typical total return swap is to swap the re-
turn on a reference asset for a risk-free return,
usually the London Interbank Offered Rate
(LIBOR). The cash flows for the swap buyer
(that is, the total return receiver) are shown in
Figure 1. In the figure, Lt is LIBOR at time t, s is
the spread to LIBOR, and Rt is the total return
at time t. The cash outlay at time t per $1 of no-
tional amount that must be made by the swap

buyer is Lt + s; the cash inflow at time t per $1
of notional amount is Rt.

As a result, the pricing of a total return swap
is to decide the right spread, s, to pay on the
funding (that is, LIBOR) leg. Formally,

Ê0

⎧
⎪⎨

⎪⎩

n∑

j=1

exp

⎛

⎜⎝−
Tj∫

0

r (t)dt

⎞

⎟⎠ [Rj − (L j + s)]

⎫
⎪⎬

⎪⎭
= 0

where r is the risk-free discount rate.
In words, the spread should be set so that the

expected payoff of the total return swap is equal
to zero. (We employ the standard risk-neutral
pricing and discounting at the risk-free rate.)
To make the matter simple (we shall discuss
more rigorous cases later), we view r, R, and
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Figure 1 Cash Flows for the Total Return
Receiver

L as three separate random variables. We then
rearrange the above equation as

Ê0

⎧
⎪⎨

⎪⎩

n∑

j=1

exp

⎛

⎜⎝−
Tj∫

0

r (t)dt

⎞

⎟⎠ (Rj − L j )

⎫
⎪⎬

⎪⎭

= Ê0

⎧
⎪⎨

⎪⎩

n∑

j=1

exp

⎛

⎜⎝−
Tj∫

0

r (t)dt

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
s

Exchanging expectation and summation of
the right-hand side gives

Ê0

⎧
⎪⎨

⎪⎩

n∑

j=1

exp

⎛

⎜⎝−
Tj∫

0

r (t)dt

⎞

⎟⎠

⎫
⎪⎬

⎪⎭

=
n∑

j=1

Ê0

⎡

⎢⎣exp

⎛

⎜⎝−
Tj∫

0

r (t)dt

⎞

⎟⎠

⎤

⎥⎦

=
n∑

j=1

P(0, Tj )

as the sum of risk-free pure discount bond
prices. This implies

n∑

j=1

Ê0

⎡

⎢⎣exp

⎛

⎜⎝−
Tj∫

0

r (t)dt

⎞

⎟⎠ Rj − L j

⎤

⎥⎦

=
n∑

j=1

P(0, Tj )s

The next step is to use the forward mea-
sure to simplify the left-hand side of the above
equation:

n∑

j=1

P(0, Tj )E F ( j)
0 [Rj − L j ] =

n∑

j=1

P(0, Tj )s

Later, we show that the forward measure ex-
pectation of an asset gives the forward price of
the asset. Hence, the left-hand side of the above
equation gives two forward curves, one on the
asset return, R, and the other on LIBOR, L:

n∑

j=1

P(0, Tj )
[

f R
j − f L

j

] =
n∑

j=1

P(0, Tj )s

where fji is the forward rate of i (i = R or L) for
j periods ahead. Therefore, the spread can be
solved easily as

s =

n∑
j=1

P(0, Tj )
[

f R
j − f L

j

]

n∑
j=1

P(0, Tj )

The result is intuitive: the spread is a weighted
average of the expected difference between two
floating-rate indexes. The weight is

P(0, Tj )
n∑

j=1
P(0, Tj )

Note that all the weights should sum to one.

USING THE DUFFIE-
SINGLETON MODEL
The difference in two floating rates is mainly
due to their credit risk, otherwise they should
both offer identical rates and give identical for-
ward curves. As a consequence, to be rigorous
about getting the correct result, we need to in-
corporate the credit risk in one of the indexes.

Among various choices, the model by Duffie
and Singleton (1999) suits the best for this
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situation. The Duffie-Singleton model is a pop-
ular reduced-form model that is used in credit
risk modeling. In the model, the present value
of any risky cash flow is defined as

C(t) =
[

St+1 − St

St
− Lt+1

]
N

where N is the notional, L is LIBOR, and S
is the index level. As noted earlier, since both
cash flows are random, it is a floating-floating
swap. Also since the index is always higher than
LIBOR because of credit risk, this swap re-
quires a premium. As a result, the premium is
computed as the sum of all future values, dis-
counted and expected:

V =
n∑

j=1

Êt

⎡

⎢⎣exp

⎛

⎜⎝−
Tj∫

t

[r (u) + q (u)]du

⎞

⎟⎠ C(Tj )

⎤

⎥⎦

where q is the “spread” in the Duffie-Singleton
model that incorporates the recovery rate and
default probability.

THE FORWARD MEASURE
In this section, we show how the forward mea-
sure works and why a forward-adjusted expec-
tation gives the forward value. We first state
the separation principle that leads to the for-
ward measure. Based on the no-arbitrage prin-
ciple, the current value of any asset is the risk-
neutral expected value of the discounted future
payoff:

C(t) = Êt

⎡

⎣exp

⎛

⎝−
T∫

t

r (u)du

⎞

⎠ C(T)

⎤

⎦

The separation principle states that if we
adopt the forward measure, then the above
equation can be written as

C(t) = Êt

⎡

⎣exp

⎛

⎝−
T∫

t

r (u)du

⎞

⎠

⎤

⎦E F (T)
t [C(T)]

where Et
F(T) [·] is the forward measure.2 Note

that the first term is nothing but the zero-
coupon bond price:

P(t, T) = Êt

⎡

⎣exp

⎛

⎝−
T∫

t

r (u)du

⎞

⎠

⎤

⎦

and hence

C(t) = P(t, T)E F (T)
t [C(T)]

While we do not prove this result, we should
note the intuition behind it. Let C be a zero-
coupon bond expiring at time u. Then the above
result can be applied directly and gives

P(t, s) = P(t, T)E F (T)
t [P(T, u)]

or equivalently

E F (T)
t [P(T, s)] = P(t, s)

P(t, T)

This is an indirect proof that the forward-
adjusted expectation gives a forward value. The
instantaneous forward rate can be shown to be
the forward-adjusted expectation of the future
instantaneous spot rate:

f (t, T) = −d ln P(t, T)
dT

= − 1
P(t, T)

Êt

⎡

⎣ d
dT

exp

⎛
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T∫

t

r (u)du

⎞

⎠

⎤

⎦

= 1
P(t, T)

Êt

⎡

⎣exp

⎛

⎝−
T∫

t

r (u)du

⎞

⎠ r (T)

⎤

⎦

= E F (T)
t [r (T)]

The discrete forward rates, fD(t, w, T) for
all w and T, can also be shown to be the
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forward-adjusted expectations of future dis-
crete spot rates:

fD(t, w, T) = 1
�(t, w, T)

− 1

= P(t, w)
P(t, T)

− 1

= 1
P(t, T)

Êt

⎡

⎣exp

⎛

⎝−
T∫

t

r (u)du

⎞

⎠ 1
P(w, T)

⎤

⎦− 1

= E F (T)
t

[
1

P(w, T)
− 1

]

where t < w < T.

KEY POINTS
� A total return swap is a swap in which one

party makes periodic floating rate payments
to a counterparty in exchange for the total
return realized on a reference asset such as a
credit-risky bond.

� The pricing of a total return swap is to decide
the right spread to pay on the funding leg.

� Using the standard risk-neutral pricing and
discounting at the risk-free rate, the spread
should be set so that the expected payoff of
the total return swap is equal to zero.

� A reduced form model used in valuing credit
derivatives, the Duffie-Singleton model, is
employed to value total return swaps.

� The forward measure expectation of an asset
gives the forward price of the asset that is the
underlying for a total return swap.

NOTES
1. For a discussion of total return swaps and

their applications, see Anson et al. (2004).
2. The derivation of this result can be found in a

number of places. See, for example, Jamshid-
ian (1987) and Chen (1996).
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Abstract: Swaps are useful for volatility hedging and speculation. Volatility swaps are forward
contracts on future realized stock volatility, and variance swaps are similar contracts on variance,
the square of future volatility. Covariance and correlation swaps are covariance and correlation
forward contracts, respectively, of the underlying two assets. Using change of time method, one
can model and price variance, volatility, covariance, and correlation swaps.

Variance, volatility, covariance, and correlation
swaps are relatively recent financial products
that market participants can use for volatility
hedging and speculation. The market for these
types of swaps has been growing, with many
investment banks and other financial institu-
tions now actively quoting volatility swaps on
various assets: stock indexes, currencies, and
commodities.

A stock’s volatility is the simplest measure
of its riskiness or uncertainty. In this entry we
describe, model, and price variance, volatility,
covariance, and correlation swaps.

DESCRIPTION OF SWAPS
We begin with a description of the different
kinds of swaps that we will be discussing in
this entry: variance swaps, volatility swaps, co-
variance swaps, and correlation swaps. Table
1 provides a summary of studies dealing with
these swaps.

Variance and Volatility Swaps
A stock’s volatility is the simplest measure of its
riskiness or uncertainty. Formally, the volatil-
ity σR is the annualized standard deviation of
the stock’s returns during the period of interest,
where the subscript R denotes the observed or
“realized” volatility.

Why trade volatility or variance swaps? As
mentioned in Demeterfi et al. (1999, p. 9), “just
as stock investors think they know something
about the direction of the stock market so we
may think we have insight into the level of fu-
ture volatility. If we think current volatility is
low, for the right price we might want to take a
position that profits if volatility increases.”

The easiest way to trade volatility is to
use volatility swaps, sometimes called realized
volatility forward contracts, because they pro-
vide only exposure to volatility and not other
risk. Variance swaps are similar contracts on vari-
ance, the square of the future volatility. As noted
by Carr and Madan (1998), both types of swaps
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Table 1 Summary of Studies Dealing with Variance, Volatility, Covariance, and Correlation Swaps

Demeter et al. (1999) � Explained properties and theory of both variance and volatility swaps.
� Derived an analytical formula for theoretical fair value in the presence of realistic

volatility skew.
� Pointed out that volatility swaps can be replicated by dynamically trading the

more straightforward variance swap.
Javaheri et al. (2002) � Discussed the valuation and hedging of a GARCH(1,1) stochastic volatility model.

� Used a general and flexible PDE approach to determine first two moments of the
realized variance in a continuous or discrete context.

� Approximated the expected realized volatility via a convexity adjustment.
Brockhaus et al. (2000) � Provided an analytical approximation for the valuation of volatility swaps.

� Analyzed other options with volatility exposure.
Swishchuk (2004) � Priced covariance and correlation swaps in continuous time (Heston models for

two stock prices)
Cheng et al. (2002) � Priced covariance and correlation swaps in discrete time (Heston models for two

stock prices)
Elliott and Swishchuk (2007) � Studied option pricing formulae and pricing swaps for Markov-modulated

Brownian with jumps.
Carr and Lee (2009) � Provide an overview of the market of volatility derivatives and survey the early

literature.
Swishchuk (2009a) � Considered a semi-Markov modulated market consisting of a riskless asset or

bond, B; and a risky asset or stock, S; whose dynamics depend on a semi-Markov
process x:

� Using the martingale characterization of semi-Markov processes, noted the
incompleteness of semi-Markov modulated markets and found the minimal
martingale measure.

� Priced variance and volatility swaps for stochastic volatilities driven by the
semi-Markov processes.

Swishchuk et al. (2010) � Generalized results in Swishchuk (2009a) for the cases of the local current
semi-Markov and local semi-Markov volatilities.

Kallsen et al. (2009) � Priced variance and volatility swaps and options on variance in affine stochastic
volatility models.

Swishchuk et al. (2010) � Volatility and variance swaps for COGARCH(1,1).
Swishchuk (2005, 2006, 2007),
Swishchuk et al. (2007),
Swishchuk (2009a, 2010b),
Swishchuk et al. (2010)

� Priced and modeled variance swaps for many stochastic volatility models with
delay and jumps.

Swishchuk (2011) � Priced variance and volatility swaps in energy markets
Howison et al. (2004) � Considered the pricing of a range of volatility derivatives, including volatility and

variance swaps and swaptions.

provide an easy way for investors to gain expo-
sure to the future level of volatility.

A stock volatility swap’s payoff at expiration
is equal to

N(σR(S) − Kvol)
where σR(S) is the realized stock volatility

(quoted in annual terms) over the life of
contract,

σR(S) =
√

1
T

∫ T

0
σ 2

s ds

σt is a stochastic stock volatility, Kvol is the
annualized volatility delivery price, and and
N is the notional amount of the swap in dollar
per annualized volatility point.

Although options market participants talk of
volatility, it is variance, or volatility squared,
that has more fundamental significance.1 A
variance swap is a forward contract on annual-
ized variance, the square of the realized volatil-
ity. Its payoff at expiration is equal to

N(σ 2
R(S) − Kvar )

where σ 2
R(S) is the realized stock variance

(quoted in annual terms) over the life of the
contract; that is,

σ 2
R(S) = 1

T

∫ T

0
σ 2

s ds
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Kvar is the delivery price for variance, and N is
the notional amount of the swap in dollars per
annualized volatility point squared. The holder
of variance swap at expiration receives N dol-
lars for every point by which the stock’s realized
variance σ 2

R(S) has exceeded the variance deliv-
ery price Kvar. Therefore, pricing the variance
swap reduces to calculating the square of the
realized volatility.

Valuing a variance forward contract or swap
is no different from valuing any other derivative
security. The value of a forward contract P on
future realized variance with strike price Kvar is
the expected present value of the future payoff
in the risk-neutral world:

Pvar = E{e−rT (σ 2
R(S) − Kvar )}

where r is the risk-free interest rate correspond-
ing to the expiration date T, and E denotes
the expectation. Thus, for calculating variance
swaps we need to know only E{σ 2

R(S)}, namely
the mean value of the underlying variance.

To calculate volatility swaps we need more.
Using the Brockhaus and Long (2000) approx-
imation (which is the second-order Taylor ex-
pansion for function

√
x) we have2

E{
√

σ 2
R(S)} ≈

√
E{V} − Var{V}

8E{V}3/2

where V = σ 2
R(S) and Var{V}

8E{V}3/2 is the convexity
adjustment.

Thus, to calculate the value of volatility swaps

Pvol = {e−rT (E{σR(S)} − Kvol)}
we need both E{V} and Var{V}.

Later we explicitly solve the Cox-Ingersoll-
Ross3 equation for the Heston model for stochas-
tic volatility4 using the change of time method
and present the formulas for price variance and
volatility swaps for this model.

Covariance and Correlation Swaps
Options dependent on exchange rate move-
ments, such as those paying in a currency dif-
ferent from the underlying currency, have an
exposure to movements of the correlation be-

tween the asset and the exchange rate. This
risk can be eliminated by using a covariance
swap.

A covariance swap is a covariance forward con-
tract of the underlying rates S1 and S2, which
have a payoff at expiration that is equal to

N(CovR(S1, S2) − Kcov)

where Kcov is a strike price, N is the notional
amount, and CovR(S1, S2) is a covariance be-
tween two assets S1 and S2.

Logically, a correlation swap is a correlation for-
ward contract of two underlying rates S1 and S2

whose payoff at expiration is the following

N(CorrR(S1, S2) − Kcorr )

where Corr(S1, S2) is a realized correlation of
two underlying assets S1 and S2, Kcorr is a strike
price, and N is the notional amount.

Pricing covariance swaps, from a theoretical
point of view, is similar to pricing variance
swaps, since

CovR(S1, S2) = 1/4{σ 2
R(S1S2) − σ 2

R(S1/S2)}

where S1 and S2 are two underlying assets,
σ 2

R(S) is a variance swap for the underlying as-
sets, and CovR(S1, S2) is a realized covariance of
the two underlying assets S1 and S2.

Thus, we need to know the variances for S1S2

and for S1/S2. Correlation CorrR(S1, S2) is de-
fined as follows:

CorrR(S1, S2) = CovR(S1, S2)√
σ 2

R(S1)
√

σ 2
R(S2)

where CovR(S1, S2) is defined as above and
σ 2

R(S1) is the realized variance for S1.

Given two assets S1
t and S2

t with t ∈ [0, T],
sampled on days t0 = 0 < t1 < t2 < ... < tn = T
between today and maturity T, the log-return
of each asset is

R j
i = log

(
Sj

ti

S j
ti−1

)
, i = 1, 2, ..., n, j = 1, 2
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Covariance and correlation can be approxi-
mated by

Covn(S1, S2) = n
(n − 1)T

n∑

i=1

R1
i R2

i

and

Corrn(S1, S2) = Covn(S1, S2)√
Varn(S1)

√
Varn(S2)

respectively.

MODELING AND PRICING
OF VARIANCE, VOLATILITY,
COVARIANCE, AND
CORRELATION SWAPS WITH
STOCHASTIC VOLATILITY
In this section, we explicitly solve the Cox-
Ingersoll-Ross equation for the stochastic
volatility Heston model, using the change of
time method, and present the formulas for price
variance, volatility, covariance, and correlation
swaps for this model.

Stochastic Volatility: Heston Model
Let (�,F ,Ft, P) be a probability space with
filtration Ft, t ∈ [0, T]. Assume that the un-
derlying asset St in the risk-neutral world
and variance follow the following model (see
Heston, 1993):

{
d St
St

= rtdt + σtdw1
t

dσ 2
t = k(θ2 − σ 2

t )dt + γ σtdw2
t

(1)

where rt is the deterministic interest rate, σ0 and
θ are short and long volatility, k > 0 is the re-
version speed, γ > 0 is the volatility (of volatil-
ity) parameter, and w1

t and w2
t are independent

standard Wiener processes.
The Heston asset process has a variance σ 2

t
that follows a Cox-Ingersoll-Ross process, de-
scribed by the second equation in (1). If the
volatility σt follows the Ornstein-Uhlenbeck
process (see, for example, Øksendal, 1998), then

Ito’s lemma shows that the variance σ 2
t fol-

lows the process described exactly by the sec-
ond equation in (1). Note that if 2kθ2 > γ 2, then
σ 2

t > 0 with P = 1 (see Heston, 1993).
Solving the equation for variance σ 2

t in (1) ex-
plicitly using the change of time method gives

dσ 2
t = k(θ2 − σ 2

t )dt + γ σtdw2
t (2)

and takes the following form:

σ 2
t = e−kt(σ 2

0 − θ2 + w̃2(φ−1
t )) + θ2 (3)

where w̃2(t) is an Ft-measurable one-
dimensional Wiener process, and φ−1

t is an in-
verse function to φt:

φt = γ −2
∫ t

0
{ekφs (σ 2

0 − θ2 + w̃2(s)) + θ2e2kφs }−1ds

(4)
This result simply follows from the following

substitution

vt = ekt(σ 2
t − θ2) (5)

into the equation (2) instead of σ 2
t .

Note that if 2kθ2 > γ 2, then σ 2
t > 0 with P =

1 (see, for example, Heston, 1993). From (5) it
follows that

vte−kt + θ2

is strictly positive too. If we take the integrand
in the last integral we obtain

[ekφs (σ 2
0 − θ2 + w̃2(t)) + θ2e2kφs ]−1

= [e2kφs (e−kt (
σ 2

0 − θ2 + w̃2(t))) + θ2)]−1

= [ekφs

√
e−kt(σ 2

0 − θ2 + w̃2(t))) + θ2]−2

= [ekφs
√

e−ktvt + θ2]−2

since vt = σ 2
0 − θ2 + w̃2(t)). In the above inte-

grals, the expression under the square root sign
is positive and the square root is well defined.
Hence, the last expression and therefore, the
integrand in the integral in (4), are strictly pos-
itive. It means that φt is a monotone function
and there exists an inverse function φ−1

t in (3).
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Valuing of Variance and Volatility
Swaps
From previous results we get the following ex-
pression for the price of a variance and volatility
swap.

The value (or price) Pvar of a variance swap is

Pvar = e−rT
[

1 − e−kT

kT
(σ 2

0 − θ2) + θ2 − Kvar

]

(6)

and the value (or price) Pvol of volatility swap is
approximately

Pvol ≈ e−rT

{(
1 − e−kT

kT
(σ 2

0 − θ2) + θ2
)1/2

−
(
γ 2e−2kT

2k3T2 [(2e2kT− 4ekT kT − 2)(σ 2
0 − θ2)

+(2e2kT kT − 3e2kT + 4ekT − 1)θ2]
)

/

[
8
(

1 − e−kT

kT
(σ 2

0 − θ2) + θ2
)3/2

]
− Kvol

}

(7)

The same expressions for E[V] and for Var[V]
also may be found in Brockhaus and Long
(2000).

Valuing of Covariance and
Correlation Swaps
To value a covariance swap the following must
be calculated

P = e−rT (ECov(S1, S2) − Kcov) (8)

To calculate ECov(S1, S2) we need to calculate
E{σ 2

R(S1S2) − σ 2
R(S1/S2)} for the two underlying

assets S1 and S2.

Let Si
t , i = 1, 2, be two strictly positive Ito’s

processes given by the following model
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dSi
t

Si
t

= μi
tdt + σ i

t dwi
t

d(σ i )2
t = ki (θ2

i − (σ i )2
t )dt + γ iσ i

t dw j
t , i = 1,

2, j = 3, 4

where μi
t, i = 1, 2, are deterministic functions,

ki , θ i , γ i , i = 1, 2, are defined in a similar way
as in (1), standard Wiener processes w

j
t , j =

3, 4, are independent, [w1
t , w

2
t ] = ρtdt,ρt is de-

terministic function of time, [, ] means the
quadratic covariance, and standard Wiener
processes wi

t , i = 1, 2, and w
j
t , j = 3, 4, are

independent.
We note that

d ln Si
t = mi

tdt + σ i
t dwi

t

where

mi
t :=

(
μi

t − (σ i
t )2

2

)

and

CovR(S1
T , S2

T ) = 1
T

[ln S1
T , ln S2

T ]

= 1
T

[∫ T

0
σ 1

t dw1
t ,

∫ T

0
σ 2

t dw2
t

]

= 1
T

∫ T

0
ρtσ

1
t σ 2

t dt

Let us show that

[ln S1
T , ln S2

T ] = 1
4

([ln(S1
T S2

T )] − [ln(S1
T/S2

T )])

(9)
First, note that

d ln(S1
t S2

t ) = (m1
t + m2

t )dt + σ+
t dw+

t

and

d ln(S1
t /S2

t ) = (m1
t − m2

t )dt + σ−
t dw−

t

where

(σ±
t )2 := (σ 1

t )2 ± 2ρtσ
1
t σ 2

t + (σ 2
t )2

and

dw±
t := 1

σ±
t

(σ 1
t dw1

t ± σ 2
t dw2

t )

Processes w±
t above are standard Wiener pro-

cesses by the Levi-Kunita-Watanabe theorem
and σ±

t are defined above.
In this way, we obtain that

[ln(S1
t S2

t )] =
∫ t

0
(σ+

s )2ds =
∫ t

0
((σ 1

s )2 + 2ρtσ
1
s σ 2

s

+(σ 2
s )2)ds (10)
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and

[ln(S1
t /S2

t )] =
∫ t

0
(σ−

s )2ds =
∫ t

0
((σ 1

s )2 − 2ρtσ
1
s σ 2

s

+(σ 2
s )2)ds (11)

From (9)–(11) we have directly formula (8):

[ln S1
T , ln S2

T ] = 1
4

([ln(S1
T S2

T )] − [ln(S1
T/S2

T )])

(12)
Thus, from (12) we obtain that

CovR(S1, S2) = 1/4(σ 2
R(S1S2) − σ 2

R(S1/S2))

Returning to the valuation of the covariance
swap in (8) we have

P = E{e−rT (Cov(S1, S2) − Kcov} = 1
4

e−rT (Eσ 2
R

(S1S2) − Eσ 2
R(S1/S2) − 4Kcov)

The problem now has reduced to the same
problem as above, but instead of σ 2

t we need to
take (σ+

t )2 for S1S2 and (σ−
t )2 for S1/S2 (with

(σ±
t )2 = (σ 1

t )2 ± 2ρtσ
1
t σ 2

t + (σ 2
t )2), and proceed

with similar calculations as for the variance and
volatility swaps.

NUMERICAL EXAMPLE:
VOLATILITY SWAP FOR
S&P60 CANADA INDEX
In this section, we apply the analytical solutions
provided above to price a swap on the volatil-
ity of the S&P60 Canada Index for five years
(January 1997–February 2002).5

Suppose that at the end of February 2002 we
wanted to price the fixed leg of a volatility swap
based on the volatility of the S&P60 Canada
Index. The statistics on log returns for the
S&P60 Canada Index for the five years covering
January 1997–February 2002 are presented in
Table 2.

From the statistical data for the S&P60 Canada
Index log returns for the 5-year historical pe-
riod (1,300 observations from January 1997 to
February 2002) it may be seen that the data

Table 2 Statistics on Log Returns S&P60 Canada
Index

Series:
LOG RETURNS S&P60
CANADA INDEX

Sample: 1 1300
Observations: 1300
Mean 0.000235
Median 0.000593
Maximum 0.051983
Minimum −0.101108
Std. Dev. 0.013567
Skewness −0.665741
Kurtosis 7.787327

exhibit leptokurtosis. If we take a look at the
S&P60 Canada Index log returns for the 5-year
historical period, we observe volatility cluster-
ing in the return series. These facts indicate
the presence of conditional heteroscedasticity.
A GARCH(1,1) regression is applied to the se-
ries and the results are obtained as in Table 3.
This table allows one to generate different input
variables for the volatility swap model.

We use the following relationships: θ =
V
dt , k = 1−α−β

dt , γ = α

√
ξ−1
dt , to calculate the

following discrete GARCH(1,1) parameters:

� ARCH(1,1) coefficient α = 0.060445
� GARCH(1,1) coefficient β = 0.927264
� The Pearson kurtosis (fourth moment of the

drift-adjusted stock return) ξ = 7.787327
� Long volatility θ = 0.05289724; k = 3.09733
� γ = 2.499827486
� Short volatility σ0 = 0.01

Parameter V may be found from the expres-
sion V = C

1−α−β
, where C = 2.58 × 10−6 is de-

fined in Table 3. Thus, V = 0.00020991; dt =
1/252 = 0.003968254.

Applying the analytical solutions (6) and (7)
for a swap maturity T of 0.91 years, we find the
following values:

E{V} = 1 − e−kT

kT
(σ 2

0 − θ2) + θ2 = 0.3364100835
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Table 3 Estimation of the GARCH(1,1) Process

Dependent Variable: Log returns of S&P60 Canada Index Prices
Method: ML-ARCH
Included Observations: 1,300
Convergence achieved after 28 observations

Coefficient Std. error z-statistic Prob.

C 0.000617 0.000338 1.824378 0.0681

Variance Equation

C 2.58E-06 3.91E-07 6.597337 0
ARCH(1) 0.060445 0.007336 8.238968 0
GARCH(1) 0.927264 0.006554 141.4812 0
R-squared −0.000791 Mean dependent var − 0.000235
Adjusted R-squared −0.003108 S.D. dependent var − 0.013567
S.E. of regression 0.013588 Akaike info criterion − −5.928474
Sum squared resid 0.239283 Schwartz criterion − −5.912566
Log likelihood 3857.508 Durbin-Watson stat − 1.886028

and

Var(V) = γ 2e−2kT

2k3T2 [(2e2kT − 4ekT kT − 2)(σ 2
0 − θ2)

+ (2e2kT kT − 3e2kT + 4ekT − 1)θ2]
= 0.0005516049969

The convexity adjustment Var{V}
8E{V}3/2 is equal to

0.0003533740855.

Figure 1 Convexity Adjustment

If the nonadjusted strike is equal to 18.7751%,

then the adjusted strike is equal to

18.7751% − 0.03533740855% = 18.73976259%

This is the fixed leg of the volatility swap for a
maturity T = 0.91.

Repeating this approach for a series of matu-
rities up to 10 years, we obtain the result shown
in Figure 2 for the S&P60 Canada Index Volatil-
ity Swap. Figure 1 illustrates the nonadjusted

Figure 2 S&P60 Canada Index Volatility Swap
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and adjusted volatility for the same series of
maturities (see formula (7)).

KEY POINTS
� Variance, volatility, covariance, and correla-

tion swaps are useful for volatility hedging
and speculation.

� Volatility swaps are forward contracts on fu-
ture realized stock volatility.

� Variance swaps are similar contracts on vari-
ance, the square of the future volatility.

� Covariance and correlation swaps are covari-
ance and correlation forward contracts, re-
spectively, of the underlying two assets.

� Using change of time one can model and price
variance, volatility, covariance, and correla-
tion swaps for the stochastic volatility Heston
model.

NOTES
1. See Demeterfi, Derman, Kamal, and Zou

(1999).
2. See also Javaheri et al. (2002, p. 16).
3. See Cox, Ingersoll, and Ross (1985).
4. See Heston (1993).
5. These data were supplied by Raymond

Théoret (Université du Québec à Montréal,
Montréal, Québec, Canada) and Pierre
Rostan (Analyst at the R&D Department
of Bourse de Montréal and Université
du Québec à Montréal, Montréal, Québec,
Canada). They calibrated the GARCH pa-
rameters from five years of daily historic
S&P60 Canada Index from January 1997
to February 2002. See Théoret, Zabré, and
Rostan (2002).
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à Montréal, Document 17-2002.





Modeling, Pricing, and Risk
Management of Assets and
Derivatives in Energy and Shipping
PAUL D. SCLAVOUNOS, PhD
Professor of Mechanical Engineering, Massachusetts Institute of Technology

Abstract: Derivatives are financial contingent claims designed for the pricing, transfer, and manage-
ment of risk embedded in underlying securities in the fixed income, equity, and foreign exchange
markets. Their rapid growth spurred their introduction to the energy commodity and shipping
markets where the underlying assets are real commodities, crude oil, refined products, natural
gas, electricity, and shipping tonnage. Risk-neutral pricing and stochastic models developed for
financial derivatives have been extended to energy derivatives for the modeling of correlated com-
modity and shipping forward curves and for the pricing of their contingent claims. This has enabled
the valuation and risk management of a wide range of assets and derivatives in the energy and
shipping markets. They include storage for natural gas, floating storage of crude oil, products and
liquefied natural gas in tankers, refineries, power plants and utility scale wind farms, shipping
structured securities, cargo vessels, and shipping derivatives portfolios.

Investments in energy and shipping assets are
exposed to interest rate, commodity price,
and freight rate risks. The management of
these risks has led to the introduction and
widespread use of derivatives, which have
experienced explosive growth over the past
several decades. In the fixed income market,
interest rate futures and futures options emerged
in the 1980s in response to the need to hedge
interest rate swap risk. This led to the develop-
ment of financial models for the arbitrage-free
evolution of the term structure of interest
rates and the pricing of a wide range of fixed
income derivatives, laying the foundation for
the development of analogous models for the

arbitrage-free evolution of the forward curves
of physical commodities including crude oil,
its refined products, natural gas, and recently
shipping freight rates.

Commodity futures settle physically against
the price of a spot commodity that must be
delivered at the contract expiration or in cash
against a spot commodity index. The latter
is the case in shipping where forward freight
agreements (FFAs) and freight rate futures set-
tle against shipping indexes composed of a
basket of freight rates. The first generation of
commodity futures models was based on the
development of stochastic models for the
spot index and the use of the principles of
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risk-neutral pricing for the valuation of deriva-
tives written on the spot. Recent models are
based on the insight that in the absence of arbi-
trage futures prices with daily credits and deb-
its into a margin account are martingales. This
has enabled the modeling of the evolution of fu-
tures prices of any tenor as lognormal diffusions
with zero drift in a Gaussian setting. The pri-
mary unknown in this model of futures prices is
the volatility term structure, which may be esti-
mated from market prices of liquid futures and
futures options. The arbitrage-free price process
for the spot commodity or underlying index fol-
lows from this martingale representation of the
entire commodity forward curve in the limit of
small tenors.

The martingale representation of the com-
modity forward curve lends itself to a
parsimonious modeling using the powerful
statistical techniques of principal components
analysis in the case of a single futures curve
and of canonical correlation analysis in the case
of multiple correlated forward curves. In both
cases a small number of statistical factors may
be derived, which are shown to follow mean
reverting log-Ornstein-Uhlenbeck diffusions.
This financial modeling and statistical inference
framework of cross-correlated energy com-
modity and shipping forward curves allows the
pricing of a wide range of vanilla, spread, and
exotic derivatives written on futures contracts.
Moreover, the model of the forward curve in
terms of a small number of statistical factors
enables the explicit valuation and hedging of a
wide range of energy and shipping assets with
cash flow exposures that may be replicated by
the prices of traded futures contracts.

This entry reviews the fundamental develop-
ments that led to the introduction of financial
and commodity derivatives, their stochastic
modeling, and risk-neutral pricing. Pricing
in Gaussian and non-Gaussian settings is
addressed and shown in most cases to lead to
closed-form results even when the underlying
is represented by an advanced stochastic
model. The martingale modeling of forward

curves and their estimation by a principal
components analysis is discussed for the crude
oil market, its refined products, natural gas,
and the shipping market.

The valuation of real assets and financial
claims of energy and shipping entities is dis-
cussed. The parsimonious form of the arbitrage-
free factor models of the pertinent forward
curves enable the pricing of these assets and se-
curities by risk-neutral pricing. Their risk man-
agement is also addressed, drawing upon the
explicit form of the underlying factor model
and the techniques of stochastic optimal control,
which have found widespread use for the man-
agement of portfolios of financial securities.

ENERGY COMMODITY
PRICE MODELS
The past several decades have witnessed the
emergence and rapid development of the fields
of financial engineering and derivatives. Grown
out of Paul Samuelson’s foundational insights
on the relationship between informationally ef-
ficient markets and the random walk and his
introduction of the lognormal diffusion model
of security prices, a wide range of stochastic
models of security prices and arbitrage-free val-
uation methods were developed for the pricing
of derivatives written on financial securities,
real assets, and other variables (see Samuel-
son, 1965). The use of these models and pric-
ing methods in the fixed income, equity, foreign
exchange, and credit markets is growing as is
the complexity of the mathematical, economet-
ric, and filtering methods necessary for their
implementation. More recently, these methods
have been adapted to the energy and shipping
sectors in order to control the high volatility of
energy prices and freight rates and spur new
investment.

Spot Price Models
Energy commodity prices are characterized
by idiosyncrasies not encountered in the
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financial markets. The volatility of the price
of oil, natural gas, and especially electricity
is a lot larger than that of currencies, interest
rates, and equities. Energy prices often exhibit
mean reversion, seasonality, and sharp and
asymmetric spikes, which require the develop-
ment of advanced price models and derivative
valuation methods, extensions of the Black-
Scholes-Merton stock option pricing formula.
Moreover, a complex interaction often exists
between the attributes of the spot physical
commodity and its forward contracts and other
derivatives that is not present for financial
securities and their derivatives, which settle
electronically and do not require the delivery
of a physical asset. This requires the use of
the extended risk-neutral valuation method of
derivatives written on real assets and other
variables that are not tradable (Ross, 1976).

Standard reduced form stochastic models for
the spot price of crude oil and natural gas are
diffusions that account for mean reversion and
seasonality and depend on hidden economic
factors. They include a stochastic convenience
yield—the implied dividend received by the
owner of the commodity held in storage—and a
long-term stochastic equilibrium price to which
the spot price mean reverts. The two-factor spot
price models of Gibson and Schwartz (1990),
Schwartz (1997), and Schwartz and Smith (2000)
model the spot price and its factors as diffusions
and permit the explicit valuation of futures
and forward contracts and their options writ-
ten on the spot commodity using the extended
risk-neutral valuation of derivatives written on
real assets (Hull, 2003). More general spot price
models that may include stochastic volatility
and jumps are discussed in Clewlow and Strick-
land (2000) and London (2007). In the study
of Cortazar and Naranjo (2006) the entire oil
futures curve and its volatility term structure
are shown to be very well modeled by a four-
factor spot price Gaussian model, which was
estimated by Kalman filtering.

Stochastic models for the evolution of the elec-
tricity prices must account for sharp and asym-

metric spikes, strong mean reversion, jumps,
and a dependence on structural factors af-
fecting the electricity market. Reduced form
stochastic models of electricity prices are usu-
ally jump-diffusions and Levy processes. An
example is the jump-diffusion model of Kou
(2002), which permits the independent para-
metric adjustment of the tail thicknesses of its
probability distribution and allows the explicit
pricing of electricity derivatives. Other models
are discussed in Eydeland and Wolyniec (2003),
London (2007), and Bength, Bength, and Koeke-
bakker (2008). Analogous models apply to the
modeling of the spot price process of shipping
freight rates.

Forward Curve Models
Crude oil and natural gas have liquid futures
contracts trading on the New York Mercantile
Exchange (NYMEX) and the Intercontinental
Exchange (ICE) with tenors of several years.
For these commodities arbitrage-free forward
curve models have been developed by Mil-
tersen and Schwartz (1998), which accept as in-
put the market prices of liquid futures and lead
to the pricing of a number of other derivatives.
The arbitrage-free evolution of the spot price
follows from futures contracts of small tenors.

The modeling of the oil and natural gas
futures curve is based on the Heath-Jarrow-
Morton (HJM) framework developed for the
arbitrage-free modeling of the term structure
of interest rates. A principal task of the HJM
framework is the parameterization of the
volatility and correlation structure of the
futures curve by a small number of indepen-
dent factors using a principal components
analysis. This was carried out by Sclavounos
and Ellefsen (2009), where it was shown that
three principal components capture most of the
fluctuations of the forward curve. In the same
paper the arbitrage-free evolution of the spot
price was derived as implied in equilibrium by
the forward curve and was shown to be driven
by three independent factors that follow mean
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reverting logarithmic Ornstein-Uhlenbeck
(log-OU) processes with stochastic drifts. Calls,
puts, swaps, caps, and their options written on
futures contracts may then be valued explicitly
as in the interest rate markets for use in energy
risk management applications (Hull, 2003;
Musiela and Rutkowski, 2005).

Energy Derivatives
In addition to the standard derivatives dis-
cussed above, more complex derivatives have
been introduced in the energy markets reflect-
ing the economics of energy assets. In partic-
ular, power plants are exposed to the spot/
futures price difference of two energy commodi-
ties, for example, natural gas/electricity, coal/
electricity; refineries are exposed to the price
differentials of two fuels—crude oil/gasoline,
crude oil/jet fuel; and oil and natural gas
pipelines and electricity transmission lines are
exposed to the price differentials of the same
spot commodity at two different geographical
locations.

A partial list of exotic derivatives used for
the valuation, hedging, and risk management of
energy assets include options on the spread be-
tween two futures contracts with different expi-
rations written on the same commodity, options
on the price difference of two futures contracts
with the same expiration written on two sepa-
rate commodities, options to exchange two spot
commodities or their futures, average-price and
average-strike Asian options, barrier options—
which are exercised when the commodity price
crosses a threshold—and American swing op-
tions for the delivery of an uncertain amount
of the commodity. A discussion of these and
other exotic energy derivatives is presented in
Clewlow and Strickland (2000), Eydeland and
Wolyniec (2003), and Geman (2005).

Exotic energy derivatives are complex to price
and hedge for advanced commodity price mod-
els. Furthermore, spread derivatives depend
not only on the volatility but also on the corre-
lation between various spot/futures contracts,

which may be challenging to model and cali-
brate to market prices. Consequently, the de-
velopment of accurate stochastic price models
and pricing methods for exotic derivatives and
spread options may be particularly helpful for
the valuation and hedging of energy assets. Ac-
curate analytical approximations of spread op-
tions prices and their hedge ratios are derived
by Li, Deng, and Zhou (2008) for two assets that
follow correlated log-OU diffusions. Extensions
to multiasset spread option pricing and hedg-
ing are presented in Li, Zhou, and Deng (2010).

Shipping Derivatives
The success and rapid growth of derivatives
in the energy commodity markets has spurred
their introduction in the shipping markets.
Shipping derivatives—forward freight agree-
ments (FFAs) and freight futures—were intro-
duced in 1985 and are widely used by the dry
bulk and tanker shipping markets as discussed
by Alizadeh and Nomikos (2009). Freight rate
swaps were also recently introduced in the con-
tainer ship markets. The growth of shipping
derivatives is also motivated by the correla-
tion of the supply and demand for shipping
ton-miles with that of the bulk commodities
transported by cargo vessels—crude oil, refined
products, iron ore, and coal. An example is the
recent introduction of over-the-counter iron ore
swaps following the initiation of quarterly pric-
ing of that bulk commodity. Therefore the need
arises for the robust statistical modeling of the
correlated forward curves of shipping and com-
modity markets and the pricing of shipping
derivatives for use in risk management.

VALUATION AND HEDGING
OF DERIVATIVES
The pricing of derivatives written on a finan-
cial security, a spot commodity, or another
variable—the underlying—may be carried out
by using the fundamental principles of risk-
neutral valuation. When the underlying is a
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nontradable—for example, temperature—an
associated market price of risk process enters
in the derivative price, which must be esti-
mated from the prices of traded instruments.
Otherwise, the fundamental economic insight
of risk-neutral pricing and the associated
mathematical techniques apply over a wide
range of assets and stochastic models used for
the modeling of the underlying process.

Vanilla Derivatives for
Jump-Diffusions
A standard derivative pricing method for the
wide class of jump-diffusion processes is based
on the derivation of a risk-neutral probabil-
ity measure under which European derivative
prices may be expressed as conditional expecta-
tions of a payoff at a specified horizon (Duffie,
2001; Hull, 2003; Shreve, 2004; Musiela and
Rutkowski, 2005). Derivative prices expressed
as conditional expectations may be evaluated
explicitly in the form of Fourier integrals of
the complex characteristic function of the jump-
diffusion by using the methods developed by
Heston (1993), Carr and Madan (1998), Duffie,
Pan, and Singleton (2000), and Lewis (2005).
The use of this derivative pricing method in
practice for the modeling of the equity-implied
volatility surface and the calibration of a wide
range of jump-diffusion models are discussed
in Gatheral (2006).

Derivative prices expressed in the form of
Fourier integrals allow the explicit evaluation
of the derivative sensitivities known as the
Greeks. They permit the analytical derivation of
the stochastic process followed by the deriva-
tive price itself by using the Ito-Doeblin for-
mula and often allow the explicit pricing of
European derivatives with more general pay-
offs. The evaluation of Fourier integrals may be
carried out efficiently by complex contour in-
tegration, numerical integration, or fast Fourier
transform techniques.

The valuation of American options for jump-
diffusions and the optimal stopping problems

that arise when early exercise is permitted is dis-
cussed in Oksendal and Sulem (2005). When the
use of analytical techniques is not possible for
the evaluation of American options and the de-
termination of the early exercise boundary, the
approximate method of Longstaff and Schwartz
(2001), the quasi-analytical method described
in Albanese and Campolieti (2006), and Monte
Carlo simulation methods described in Glasser-
man (2004) may be used.

Exotic Derivatives for
Jump-Diffusions
The valuation of a number of exotic derivatives
is considerably more complex than their vanilla
counterparts because their price depends on the
path of the underlying process. Typical exam-
ples are barrier and Asian options. Therefore,
the price of exotic derivatives is more sensitive
on the structure of the underlying stochastic
process than is the price of vanilla calls and
puts. Consequently, the choice of the under-
lying process and the subsequent pricing and
hedging of exotic derivatives may be a task of
considerable complexity, a topic discussed for
equities by Gatheral (2006).

For the geometric Brownian motion with con-
stant drift and volatility, explicit prices of a
number of exotic derivatives are derived in
Shreve (2004). When the underlying process
follows a jump-diffusion, the pricing of ex-
otic derivatives by Fourier methods leads to
Wiener-Hopf problems in the complex plane,
the factorization of which is often possible ana-
lytically. This is the case for the jump-diffusion
model of Kou (2002), which leads to the explicit
valuation of barrier options. These analytical re-
sults are developed in Cont and Tankov (2004),
where the class of Levy stochastic processes is
also studied.

The extension of these Fourier methods to
the valuation of options on spread contracts
and other complex energy derivatives is dis-
cussed in London (2007). In the same reference
the derivation of the characteristic functions of
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a number of jump diffusion models of energy
prices is presented along with the valuation of
weather derivatives.

Statistical Inference of Asset
Price Models
Asset price models usually contain a number
of parameters that need to be estimated upon
calibration of the model against market prices.
This may be carried out by using the economet-
ric techniques presented in Campbell, Lo, and
MacKinlay (1997), Greene (2000), and Singleton
(2006).

Stochastic models of commodity prices of-
ten contain hidden factors—stochastic trends,
volatilities, and the convenience yield—which
are usually modeled as diffusions. The estima-
tion of the models may be carried out by cast-
ing the time series obtained upon discretization
in state space form by using the methods pre-
sented by Durbin and Koopman (2001). The si-
multaneous inference of the model parameters
and hidden factors may then be carried out by
using dual Kalman filters and the expectations
maximization algorithm presented in Haykin
(2001). These statistical inference techniques
may also be used for the estimation of non-
linear structural form models of power prices
and shipping freight rates, which are known
to depend on nonlinearities in the supply and
demand schedules of the underlying markets.

Stochastic Optimal Control Methods
The availability of analytical models governing
the evolution of spot commodity prices and
their derivatives allows the formulation and
solution of a wide range of valuation and
hedging problems involving energy assets
and their derivatives. The resulting stochastic
dynamic programming problems are often
possible to treat analytically by using the
stochastic optimal control methods presented
in Yong and Zhou (1999) for diffusions with

time-dependent deterministic coefficients.
These results follow from the solution of the
Hamilton-Jacobi-Belman (HJB) partial differ-
ential equation or the Pontryagin stochastic
maximum principle and its connection to
backwards stochastic differential equations.
Extensions of these stochastic optimal control
methods for underlying processes that follow
diffusions with stochastic coefficients are
discussed in Lewis (2005). Stochastic control
methods for jump-diffusions and the treatment
of the associated integro-differential equations
are discussed in Oksendal and Sulem (2005).

APPLICATIONS
The stochastic price models, derivative val-
uation methods, and stochastic optimal con-
trol algorithms presented above have found
widespread use in the securities markets. A
number of applications drawn from the energy
and shipping sectors are discussed below.

Valuation of Natural Gas and
Oil Storage
Storage facilities for natural gas and oil are
assets that enable the transfer of power gen-
eration capacity between two time periods
in response to supply and demand fluctua-
tions. Such fluctuations are affected by the dif-
ferent seasonal variations of the natural gas
and electricity prices, the former usually being
higher and more volatile during the winter and
the latter often being a lot higher during the
summer.

The availability of inexpensive gas storage fa-
cilities and the need to invest in new capacity
allows the low-cost shifting of cheap summer
production and storage of gas into the win-
ter season. Moreover, the availability of gas
storage facilities allows the quick delivery of
natural gas when demand peaks, circumvent-
ing the need for expensive new production.
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These economic drivers call for the valuation
and optimal operation of storage facilities for
natural gas and other fuels, in the face of
stochastic gas prices, which are assumed to be
unaffected by the availability of storage.

The storage valuation problem may be cast
in a stochastic dynamic programming frame-
work that relies on the analytical modeling of
the commodity spot prices, futures curve, and
their derivatives as outlined above. In its gen-
erality, this valuation problem reduces to the
determination of optimal storage in/out-flows
given the commodity seasonal price dynam-
ics. The analytical framework for this valuation
problem is presented in Eydeland and Wolyniec
(2003) and discussed below in the context of the
valuation of crude oil floating storage using a prin-
cipal components factor model for the forward
curve.

Valuation of Flexible Hydrocarbon
Reservoirs
The optimal dynamic management of proven
but undeveloped hydrocarbon reservoirs and
flexible oil fields leads to a sequence of deci-
sions analogous to those described above for
above-ground storage facilities. When signifi-
cant irreversible investments with option-like
value are necessary for the development of flex-
ible hydrocarbon fields, the extended valuation
framework of real options is needed. Its de-
velopment is presented in Dixit and Pindyck
(1994), and a number of applications are dis-
cussed in Brennan and Trigeorgis (2000) and
Copeland and Antikarov (2001). Given an HJM
model for the oil and natural gas futures curve
and its derivatives, the operation of flexible hy-
drocarbon fields may be reduced to a stochastic
dynamic programming problem leading to the
determination of optimal investment and hy-
drocarbon extraction flows. A number of real
projects where these valuation methods are ap-
plicable are presented in Ronn (2002).

Hedging of Fuel Costs
The risk management of fuel costs in the
transportation and energy sectors entails the
hedging of commitments to purchase or deliver
energy commodities—crude oil, natural gas,
aviation jet fuel, gasoline, heating oil, and ship-
ping bunker fuels by various entities—refiner-
ies, utilities, airlines, and shipping companies.
An objective of such hedging programs is the
minimization of the variance of the commodity
price exposures over a given horizon. Variance-
minimizing quadratic hedges of complex
derivative exposures using simpler securities
is common in the financial markets and may be
reduced to the solution of a stochastic dynamic
programming problem (Yong and Zhou, 1999;
Jouini, Cvitanic, and Musiela, 2001).

A fuel cost hedging program may be imple-
mented by using a combination of physical
storage and the futures market. Such a hedg-
ing task faces a number of challenges, includ-
ing commodity price and volume uncertainty,
a decreasing liquidity of futures contracts of in-
creasing tenor, an increasing volatility of futures
contracts of decreasing tenor that need to be
rolled over, and exposure to basis risk when
liquid futures contracts for the fuel of inter-
est do not exist. The solution of the resulting
dynamic optimization problem may be car-
ried out by taking advantage of the analyti-
cal modeling, pricing, and optimal control tech-
niques outlined above. The complexity of such
hedging programs is considerable as is high-
lighted by the collapse of the stacked hedges of
Mettalgeshellschaft studied in Culp and Miller
(1999).

Valuation of Seaborne
Energy Cargoes
Crude oil and other liquid energy cargoes trans-
ported in tanker fleets may be traded while the
cargo is in transit. This is akin to the optimal fi-
nancial management of energy commodities in
movable storage. Here, the location and speed
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of the tankers enter as controls in a stochastic
dynamic programming framework, which may
be treated with the analytical techniques de-
scribed above. The timing, sales price, and port
of delivery of the energy cargo are variables that
may be selected in a value-maximizing manner
while the commodity is in transit. These deci-
sions must take into consideration the shape
of the oil futures curve, which may be trading
in contango, backwardation, or in a composite
formation, as well as the tanker freight rate for-
ward curve. Moreover, since a large portion of
the above-ground crude oil is in transit, the ag-
gregate tonnage and average speed of crude oil
tanker fleets may have a material impact upon
the crude oil convenience yield, the shape of
its futures term structure, and its impact on the
valuation of seaborne oil.

The principal components model of the crude
oil forward curve developed by Sclavounos and
Ellefsen (2009) was applied by Ellefsen (2010) to
the valuation of crude oil floating storage. The
value of a crude oil cargo carried by a very large
crude carrier (VLCC) is shown to be that of an
American option with an embedded early ex-
ercise premium. The valuation of this option is
carried out in a semianalytical form by virtue of
the explicit form of the Ornstein-Uhlenbeck dif-
fusions and their transition densities that gov-
ern the independent factors that drive the crude
oil forward curve, using the method presented
in Albanese and Campolieti (2006). It is shown
that the value of the early exercise premium
can be significant, particularly in volatile mar-
kets and even if the forward curve is not trad-
ing in extreme contango. The returns of crude
oil floating storage investments are also stud-
ied and shown to be significant. Their hedging
using crude oil futures is also addressed.

The valuation methodology developed for
crude oil floating storage extends with minor
modifications to land-based storage of crude
oil, products, bunker fuels, natural gas, and
other commodities. The necessary analytical
machinery lies in the development of the prin-
cipal component analysis of the forward curve

of the commodity under consideration and the
analytical derivation of the diffusions govern-
ing a small number of independent factors that
drive the evolution of the respective forward
curves.

Analogous considerations apply to the trans-
portation of liquefied natural gas in LNG carri-
ers. The LNG market is not as liquid or global
as the oil market, yet it is likely to mature in
the future in light of the growing demand for
natural gas for the generation of electricity.

Fuel-Efficient Navigation and
Optimal Chartering of
Shipping Fleets
The shipping industry consumes approxi-
mately 5% of the world oil production in the
form of bunker fuels. Assuming a daily world
oil production of 87 million barrels and a long-
term price of oil of $100 per barrel, the daily
bunker fuel costs for the shipping industry are
estimated at $400 million. The long-term daily
average freight rate revenue is harder to esti-
mate and is assumed to be over twice the daily
bunker fuel costs.

The selection of the optimal speed and route
of cargo vessels exposed to stochastic freight
rates and subject to the constraints imposed
by the charter contract, cargo loading sched-
ules, and port and other fees leads to a stochas-
tic dynamic programming problem. The ship
resistance and propulsion characteristics may
be supplied by the shipowner, estimated from
models or inferred from real-time measure-
ments of the ship speed, propeller revolutions,
engine performance, and the weather using the
inference methods described in Haykin (2001).
Using a reduced form or structural stochas-
tic price model for the shipping freight rate
forward curve, optimal routing and chartering
strategies may be derived analytically aiming to
minimize the fuel consumption and maximize
freight rate revenue over single or consecutive
voyages. A cumulative 5% reduction in bunker
fuel costs and increase in freight rate revenue
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would translate into a $50 million increase in
the daily net income of the shipping industry.
The promise of these advanced dynamic op-
timization algorithms is underscored by their
adoption by the aviation industry for the op-
timal routing of commercial jets (“Calculating
Costs in the Clouds,” The Wall Street Journal,
March 6, 2007).

Valuation and Hedging of Power
Plants and Refineries
The optimal economic dispatch of power plants
presents a challenging problem that depends
in part on the price differential of two en-
ergy commodities. The input commodity is usu-
ally a fuel—natural gas or oil—which may be
traded in the spot and forward markets. The
output commodity is electricity, which cannot
be stored. It trades into a spot cash market and
may not have liquid forward contracts, as dis-
cussed by Joskow (2006).

In simple cases, the valuation of power gen-
erating units may be reduced to the pricing of a
strip of options written on the price differentials
of electricity and the input fuel, for example nat-
ural gas. Given analytical price models for the
price of the input fuel and electricity, the power
plant valuation and hedging problem may be
based on the pricing of these spark-spread op-
tions, which may be available explicitly. In more
general settings where operational constraints
apply, the valuation problem may be cast in a
stochastic dynamic programming framework,
which may benefit from the use of the analyt-
ical modeling and hedging methods outlined
above. A similar set of issues arise in the val-
uation and hedging of refineries that process
crude oil, which has a well-developed spot and
futures market, into products—gasoline, heat-
ing oil, jet fuel, bunker fuel—which often do not
have actively traded forward contracts. The use
of this general valuation and hedging method-
ology in practice is presented in Eydeland and
Wolyniec (2003).

Valuation of Wind Farms and
Electricity Storage Facilities

Wind is an ample, clean, renewable energy
source, yet its availability is variable. Conse-
quently the electricity generated from a wind
farm varies stochastically and is a function of
the statistical properties of the wind speed aver-
aged over a certain time interval. The volatility
of the annual mean wind speed is typically
about 10%. The development of onshore wind
farms is growing at a 25–35% rate worldwide.
Offshore wind energy is the next frontier with
high expected growth rates over the next
several decades from the development of vast
expanses of sea areas with high winds and
capacity factors of 40–45% using innovative
low-cost floating wind turbine technologies
that may be deployed in water depths ranging
from 30 to several hundred meters. An offshore
wind farm with a rated capacity of 1 GW and a
lifespan of 25 years is on an energy-equivalent
basis comparable to a 100 million barrel oil
reservoir. Moreover, this energy resource is
available just 100 meters above sea level as
opposed to thousands of meters below it.

The valuation of a utility scale onshore or
offshore wind farm as an energy asset may be
carried out using the standard weighted av-
erage cost of capital (WACC) discounted cash
flow method for a constant capital structure.
Alternatively the adjusted present value (APV)
method may be used for a varying leverage
ratio and when tax shields and other incentives
available to wind farm investments must be val-
ued separately. Wind turbines are high-value
capital assets that generate steady cash flows
with an annualized volatility of about 10%.
Utility-scale wind farm investments may there-
fore be structured using nonrecourse project
finance with a leverage that may reach 70–80%.
The risk embedded in debt and equity securities
used to finance utility-scale wind farm invest-
ments depends on technical, environmental,
and market factors. Their rational modeling
permits the pricing of debt and equity financial
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claims at various levels of leverage. Moreover,
the availability of robust long-term statistical
models of the mean wind speed and shorter
term jump-diffusion models of wind speed fluc-
tuations and of the market prices of electricity
discussed above allows the pricing of structured
securities like convertible debt and other deriva-
tives that may be used to design an optimal
capital structure, hedge financial exposures of
wind farms as energy assets, and determine the
optimal mix between fixed PPA versus fluctu-
ating market price contracts for the delivery of
electricity.

Investments in large-scale storage facilities
for electricity generated by wind farms may
be economically attractive since they would
permit the storage of kilowatt-hours when
electricity prices are low and wind speeds are
high and the sale of electricity when prices are
attractive. Such large-scale storage facilities in-
clude pumped water storage in large reservoirs
above ground or below sea level, compressed
air storage in large underground caverns, high-
capacity batteries, and compressed hydrogen in
tanks following the electrolysis of seawater by
onshore or offshore wind farms. The valuation
and optimal operation of such storage depends
on the short-term volatility and longer term
fluctuations of wind speeds and electricity
prices. Therefore its value is analogous to that
derived from natural gas storage. The availabil-
ity of a stochastic price model for the spot and
forward electricity prices allows the explicit
valuation of such storage facilities using the
methods presented above. This analysis would
suggest the merits, size, and optimal manage-
ment of utility-scale electricity storage facilities
and would guide investments in these assets.

Canonical Correlation of
Commodity and Shipping
Forward Curves
The principal components analysis of the term
structure of interest rates and of the forward
curves in the commodities markets is a pow-

erful method for the parsimonious modeling
of the evolution of a large number of highly
correlated spot and forward securities in the re-
spective market. Examples of the application of
this statistical modeling method were discussed
above.

The forward curves of distinct energy com-
modities, for example, crude oil, gasoline, and
gasoil, are often correlated. The same applies to
the FFA forward curves of distinct routes in the
dry bulk and tanker shipping markets. There-
fore the development of parsimonious and
robust statistical models of the correlation struc-
ture of two or more forward curves is often
necessary for the valuation of assets exposed
to multiple commodities. This may be accom-
plished by carrying out a canonical correlation
analysis of the block covariance matrix of the
commodity forward curves of interest. The di-
agonal blocks are the intracommodity covari-
ance matrices, which may be treated by the
principal component analysis discussed above.
The off-diagonal blocks are the intercommodity
covariance matrices, which may be reduced by
the canonical correlation analysis described in
Basilevsky (1994) and Anderson (2003).

In a principal components analysis a small
number of dominant factors is derived for each
commodity forward curve, linear combinations
of the traded futures contracts of varying tenors.
In a canonical correlation analysis, for exam-
ple of two commodity forward curves, portfo-
lios of futures trading on each forward curve
may be derived that are maximally correlated.
The maximum correlation coefficient between
the two curves is a summary metric that is
independent of the tenor of the futures con-
tracts used to derive each portfolio. The ex-
tension of this method to multiple commodity
forward curves is straightforward. A canonical
correlation analysis allows an in-depth study of
the cross-correlation structure of multiple com-
modity and shipping markets and may be used
in the development of cross hedging strate-
gies, in the valuation of assets, and for risk
management.
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The canonical correlation of the forward
curves of distinct routes in the dry bulk and
tanker shipping markets was carried out by
Hatziyiannis (2010). This study revealed vari-
ous degrees of maximal correlations between
shipping routes and a surprisingly large max-
imal correlation between the dry bulk and
tanker markets. This suggests that there exist
portfolios of FFAs trading on major routes in
the dry bulk market that are highly correlated
with FFA portfolios in the tanker market. The
composition of these portfolios follows from the
canonical correlation analysis. The implication
is that a few liquid forward curves in shipping
may be used for the hedging of exposures in
routes with less liquid derivatives. Moreover,
maximally correlated portfolios of spot and for-
ward contracts may be used for the design of
broad shipping indexes across shipping sectors
and routes that may spur the liquidity of ship-
ping derivatives.

The shipping forward curve principal com-
ponents and canonical correlation analysis
described above may be extended to include
cross-correlated energy and other bulk com-
modity forward curves. Combined with the
powerful methods of conditional multivariate
statistics coupled with robust Bayesian Stein
estimators of drifts, risk management strate-
gies of energy and shipping assets may be
developed and trading strategies involving
paper assets may be derived.

Pricing of Shipping Options
The arbitrage-free pricing of shipping options
is carried out along lines similar to those in the
energy markets. A technical complexity of ship-
ping derivatives is that shipping options settle
against the arithmetic average of the underly-
ing spot index. Shipping options may be priced
either by modeling the evolution of the under-
lying index, or by modeling the evolution of the
underlying futures contract. The first method is
prevalent to date and is discussed in Alizadeh
and Nomikos (2009). Yet, the second method

has a number of advantages. By modeling the
underlying futures or FFA contract as a lognor-
mal diffusion, the pricing of calls and puts may
be carried out readily by using the Black for-
mula. Moreover, the underlying futures or FFA
contracts may be used for delta, gamma, and
vega hedging of options exposures.

This approach of pricing shipping options
has been adopted in the multifactor principal
components model of the forward curve
developed by Sclavounos and Ellefsen (2009).
It leads to explicit expressions of the option
prices and their Greeks and also allows for a
volatility term structure, which is the result of
the mean reversion of the factors driving the
shipping forward curves. The explicit form of
the Ornstein-Uhlenbeck diffusions governing
the evolution of the factors leads to explicit
algebraic expressions for the options and their
sensitivities discussed in Ellefsen (2010).

Pricing of Credit Risk and
Structured Securities in Shipping
Shipping fleets are primarily financed by debt
issued by banks and other lending institutions,
followed by equity raised by shipping firms
in private placements or on public exchanges.
The underlying assets financed by this capital
are cargo ships, which have observable prices
quoted by shipping brokers. Credit derivatives
and other structured securities analogous to
those in widespread use in other asset markets
are not yet as widely traded in the shipping
sector.

The pricing of credit risk is based on the fun-
damental structural form firm value method
of Merton (1974) and the reduced form haz-
ard rate method of Duffie and Singleton (2003).
These valuation methods have enabled the
pricing of derivatives written on individual
credits—for example, credit default swaps—as
well as derivatives written on baskets of cred-
its. The values of the underlying entities in a
basket and their default probabilities are cor-
related, and this dependency structure may be
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modeled in its generality by using multivari-
ate Gaussian statistics and in non-Gaussian set-
tings copulae functions. This financial technol-
ogy has enabled the design and pricing of an ar-
ray of structured financial securities discussed
in Duffie and Singleton (2003), Lando (2004),
London (2007), and Cherubini and Della Lunga
(2007).

Shipping credit risk may be modeled and
priced using a hybrid model, which blends the
structural and reduced form valuation methods
discussed in Ammann (2001). The price of the
assets of a shipping firm—the cargo vessels—is
stochastic but observable, therefore recovery at
default is known. The price of equity of pub-
lic shipping firms is also observable and may
be used to model the hazard rate, the probabil-
ity of default, and hence the pricing of ship-
ping debt by calibrating a hybrid credit risk
model as described by Overhaus et al. (2007).
Cargo ship prices within and across shipping
sectors are correlated, and this dependency may
be modeled by identifying common underlying
factors via a principal components and canon-
ical correlation analysis. The above attributes
of the shipping sector may be introduced to
price loans, convertible bonds, equity and credit
linked notes, and other structured securities,
which may be used to better manage shipping
risk, reduce bank regulatory risk capital, and
make available new and innovative sources of
financing to shipowners.

KEY POINTS
� Producers of energy commodities and owners

of shipping tonnage may take short positions
in futures and freight forward agreements
(FFAs) in order to hedge their forward deliv-
ery commitments against a decrease of prices.

� Consumers of energy commodities and ship-
pers who charter cargo vessels may take long
positions in futures and FFAs in order to
hedge their forward commodity and freight
rate exposures against rising prices.

� Power plants and refineries that transform an
input commodity into an output commodity,
for example, natural gas to electricity, crude
oil to gasoline, may go long the futures of the
input commodity and short the futures of the
output commodity in order to protect their
profit margins against adverse moves of the
input/output commodity price spread.

� Liquid energy commodity forward curves
convey information about the stochastic evo-
lution of the spot price of the commodity.

� The stochastic dynamics of individual energy
commodity and shipping forward curves
may be modeled by a small number of in-
dependent statistical factors using a princi-
pal components analysis (PCA). The factors
are portfolios of traded futures contracts, and
their stochastic dynamics are governed by dif-
fusions that may be derived in explicit form.

� The joint stochastic dynamics of cross-
correlated commodity and shipping forward
curves may be modeled by a small number
of statistical factors using an intracommodity
PCA curve and an intercommodity canonical
correlation analysis (CCA).

� The parsimonious statistical factor model-
ing of the commodity and shipping forward
curves may be used for the valuation and
risk management of energy assets, structured
securities, and portfolios of commodity and
shipping derivatives.
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usefulness of, III:325
use of, I:223, III:408

Borel functions, III:508–509
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Borrowers, III:5, III:70–71, III:74–75,
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bounds of, III:473–474
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III:480f
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usefulness of, III:495–496
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Burnout effect, III:17–18, III:24, III:74
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Calculus, stochastic, I:94–97
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of derivatives, I:494
effect of, III:619
under GIG model, II:524
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need for, III:604
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Callable bonds, I:462
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European-style, I:440–441,

I:448–449, I:448t
Canonical correlation analysis, I:556
Capital asset pricing model (CAPM).

See CAPM (capital asset pricing
model)
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See also Roy CAPM; SL-CAPM
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net cost of carry
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Cash flows
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cash flow at risk (CFaR), III:376–378
classification of, II:567
defined, I:209–210, II:539, III:4
direct vs. indirect reporting method,

II:567

discounted, I:225
discrete, I:429
distribution analysis vs. benchmark,

III:310
estimation of, I:209–210, II:21–23
expected, I:211
factors in, III:31–32, III:377
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III:62
futures vs. forwards, I:431t
future value of, II:603f
influences on, III:44
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in OAS analysis, I:259
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in state dependent models,
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statement of, II:539–541, II:566–567
time patterns of, II:607–611
and time value of money, II:595–596
time value of series of, II:602–607
for total return receivers, I:542
for Treasuries, I:219, III:564–565
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III:378
use of information on, II:576–577
valuation of, II:618–619
vs. free cash flow, II:22–23
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example of, II:541
form of, II:26t
information from, II:577–578
reformatting of, II:569t
restructuring of, II:568
sample, II:547t
use of, II:24–26

Cash flow-to-debt ratio, II:576
Cash-out refinancing, III:66, III:69
Cash payments, I:486–487, III:377
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usefulness of, II:335
Cauchy, Augustin, II:655
Cauchy initial value problem, II:655,

II:656, II:656f, II:657
CAViaR (conditional autoregressive

value at risk), II:366
CDOs (collateralized debt

obligations), I:299, I:525, III:553,
III:645

CDRs (conditional default rates)
in cash flow calculators, III:34
defaults measured by, III:58–59

defined, III:30–31
monthly, III:62t
projections for, III:35f
in transition matrices, III:35f

CDSs (credit default swaps)
basis, I:232
bids on, I:527
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discussion of, I:230–232
fixed premiums of, I:530–531
hedging with, I:418
illustration of, I:527
initial value of, I:538
maturity dates, I:526
payoff and payment structure of,

I:534f
premium payments, I:231f,

I:533–535
pricing models for, I:538–539
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I:530–532
pricing of single-name, I:532–538
quotations for, I:413
risk and sensitivities of, I:536–537
spread of, I:526
unwinding of, I:538
use of, I:403, I:413, II:284
valuation of, I:535–536
volume of market, I:414

Central limit theorem
defined, I:149n, III:209–210, III:640
and the law of large numbers,

III:263–264
and random number generation,

III:646
and random variables, II:732–733

Central tendencies, II:353, II:354, II:355
Certainty equivalents, II:723–724,

II:724–725
CEV (constant elasticity of variance),

III:550, III:551f, III:654–655
Chambers-Mallows-Stuck generator,

II:743–744
Change of measures, III:509–517,

III:516t
Change of time methods (CTM)

applications of, III:522–527
discussion of, III:519–522
general theory of, III:520–521
main idea of, III:519–520, III:527
in martingale settings, III:522–523
in stochastic differential equation

setting, III:523
Chaos, defined, II:653
Chaos: Making a New Science (Gleick),

II:714
Characteristic function

vs. probability density function,
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Characteristic lines, II:316, II:318t,
II:344–348, II:345–347t

Chebychev inequalities, III:210, III:225
Chen model, I:493
Chi-square distributions, I:388–389,

III:212–213
Cholesky factor, I:380
Chow test, II:336, II:343, II:344, II:350
CID (conditionally independent

defaults) models, I:320,
I:321–322, I:333

CIR model, I:498, I:500–501, I:502
Citigroup, I:302, I:408f, I:409f
CLA (critical line algorithm), I:73
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criteria for, II:494
Classical tempered stable (CTS)

distribution, II:741–742, II:741f,
II:742f, II:743–744, III:512

Classification, and Bayes’ Theorem,
I:145

Classification and regression trees
(CART). See CART
(classification and regression
trees)

Classing, procedure for, II:494–498
Clearinghouses, I:478
CME Group, I:489–490
CMOs (collateralized mortgage

obligations), III:598, III:645
Coconut markets, I:70
Coefficients

binomial, III:171, III:187–191
of determination, II:315
estimated, II:336–337

Coherent risk measures, III:327–329
and VaR, III:329

Coins, fair/unfair, III:169, III:326–327
Cointegrated models, II:503
Cointegration

analysis of, II:381t
defined, II:383
empirical illustration of, II:388–393
technique of, II:384–385
testing for, II:386–387
test of, II:394t, II:396t
use of, II:397

Collateralized debt obligations
(CDOs), I:299, I:525, III:553,
III:645

Collateralized mortgage obligations
(CMOs), III:598, III:645

Collinearity, II:329–330
Commodities, I:279, I:556, I:566
Companies. See firms
Comparison principals, II:676
Comparisons vs. testing, I:156
Complete markets, I:103–104, I:119,

I:133, I:461

Complexity, profiting from, II:57–58
Complexity (Waldrop), II:699
Complex numbers, II:591–592, II:592f
Compounding. See also interest

and annual percentage rates, II:616
continuous, II:599, II:617
determining number of periods,

II:602
discrete vs. continuous, III:570–571
formula for growth rate, II:8
more than once per year, II:598–599
and present value, II:618

Comprehensive Capital Analysis and
Review, I:300

Comprehensive Capital Assessment
Review, I:412

Computational burden, III:643–644
Computers. See also various software

applications
increased use of, III:137–138
introduction of into finance, II:480
modeling with, I:511, II:695
random walk generation of, II:708
in stochastic programing, III:124,

III:125–126
Concordance, defined, I:327
Conditional autoregressive value at

risk (CAViaR), II:366
Conditional default rate (CDR). See

CDRs (conditional default
rates)

Conditionally independent defaults
(CID) models, I:320, I:321–322,
I:323

Conditioning/conditions, I:24,
II:307–308, II:361, II:645

Confidence, I:200, I:201, II:723, III:319
Confidence intervals, II:440, III:338t,

III:399–400, III:400f
Conglomerate discounts, II:43
Conseco, debt restructure of, I:529
Consistency, notion of, II:666–667
Constant elasticity of variance (CEV),

III:550, III:551f, III:654–655
Constant growth dividend discount

model, II:7–9
Constraints, portfolio

cardinality, II:64–65
common, III:146
commonly used, II:62–66, II:84
holding, II:62–63
minimum holding/transaction size,

II:65
nonnegativity, I:73
real world, II:224–225
round lot, II:65–66
setting, I:192
turnover, II:63
on weights of, I:191–192

Constraint sets, I:21, I:28, I:29
Consumer Price Index (CPI),

I:277–278, I:291f, I:292, I:292f
Consumption, I:59–60, II:360, III:570
Contagion, I:320, I:324, I:333
Contingent claims

financial instruments as, I:462
incomplete markets for, I:461–462
unit, I:458
use of analysis, I:463
utility maximization in markets,

I:459–461
value of, I:458–459

Continuity, formal treatment of,
II:583–584

Continuous distribution function
(c.d.f.), III:167, III:196, III:205,
III:345–346, III:345f

Continuous distribution function F(a),
III:196

Continuous time/continuous state,
III:578

Continuous-time processes, change of
measure for, III:511–512

Control flow statements in VBA,
III:458–460

Control methods, stochastic, I:560
Convenience yields, I:424, I:439
Convergence analysis, II:667–668
Conversion, I:274, I:445
Convexity

in callable bonds, III:302–303
defined, I:258–259, III:309
effective, III:13, III:300–304, III:617t
measurement of, III:13–14,

III:304–305
negative, III:14, III:49, III:303
positive, III:13
use of, III:299–300

Convex programming, I:29, I:31–32
Cootner, Paul, III:242
Copulas

advantages of, III:284
defined, III:283
mathematics of, III:284–286
usefulness of, III:287
visualization of bivariate

independence, III:285f
visualization of Gaussian, III:287f

Corner solutions, I:200
Correlation coefficients

relation to R2, II:316
and Theil-Sen regression, II:444
use of, III:286–287

Correlation matrices, II:160t, II:163t,
III:396–397

Correlations
in binomial distribution, I:118
computation of, I:92–93
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concept of, III:283
drawbacks of, III:283–284
between periodic increments,

III:540t
and portfolio risk, I:11
robust estimates of, II:443–446
serial, II:220
undesirable, I:293
use of, II:271

Costs, net financing, I:481
Cotton prices, model of, III:383
Countable additivity, III:158
Counterparts, robust, II:81
Countries, low- vs. high inflation,

I:290
Coupon payments, I:212, III:4
Coupon rates, computing of,

III:548–549
Courant-Friedrichs-Lewy (CFL)

conditions, II:657
Covariance

calculation of between assets, I:8–9
estimators for, I:38–40, I:194–195
matrix, I:38–39, I:155, I:190
relationship with correlation, I:9
reliability of sample estimates, II:77
use of, II:370–371

Covariance matrices
decisions for interest rates, III:406
eigenvectors/eigenvalues, II:160t
equally weighted moving average,

III:402–403
frequency of observations for,

III:404
graphic of, II:161t
residuals of return process of,

II:162t
of RiskMetricsTM Group, III:412–413
statistical methodology for,

III:398–399
of ten stock returns, II:159t
use of, II:158–159, II:169
using EWMA in, III:411

Coverage ratios, II:560–561
Cox-Ingersoll-Ross (CIR) model, I:260,

I:491–492, I:547, I:548,
III:546–547, III:656

Cox processes, I:315–316, II:470–471
Cox-Ross-Rubenstein model, I:510,

I:522, II:678
CPI (Consumer Price Index),

I:277–278, I:291f, I:292, I:292f
CPRs (conditional prepayment rates).

See prepayment, conditional
CPR vector, III:74. See also

prepayment, conditional
Cramer, Harald, II:470–471
Crank-Nicolson schemes, II:666,

II:669, II:674, II:680

Crank Nicolson-splitting (CN-S)
schemes, II:675

Crashmetrics, use of, III:379, III:380
Credible intervals, I:156
Credit-adjusted spread trees, I:274
Credit crises

of 2007, III:74
of 2008, III:381
data from and DTS model, I:396
in Japan, I:417

Credit curing, III:73
Credit default swaps (CDSs). See CDSs

(credit default swaps)
Credit events

and credit loss, I:379
in default swaps, I:526, I:528–530
definitions of, I:528
descriptions of most used, I:528t
exchanges/payments in, I:231f
in MBS turnover, III:66
prepayments from, III:49–50
protection against, I:230
and simultaneous defaults, I:323

Credit hedging, I:405
Credit inputs, interaction of, III:36–38
Credit loss

computation of, I:382–383
distribution of, I:369f
example of distribution of, I:386f
simulated, I:389
steps for simulation of, I:379–380

Credit models, I:300, I:302, I:303
Credit performance, evolution of,

III:32–36
Credit ratings

categories of, I:362
consumer, I:302
disadvantages of, I:300–301
implied, I:381–382
maturity of, I:301
reasons for, I:300
risks for, II:280–281, II:280t
use of, I:309

Credit risk
common, I:322
counterparty, I:413
in credit default swaps, I:535
defined, I:361
distribution of, I:377
importance of, III:81
measures for, I:386f
modeling, I:299–300, I:322, III:183
quantification of, I:369–372
reports on, II:278–281
shipping, I:566
and spread duration, I:391–392
vs. cash flow risk, III:377–378

Credit scores, I:300–302, I:301–302,
I:309, I:310n

Credit spreads
alternative models of, I:405–406
analysis with stock prices, I:305t
applications of, I:404–405
decomposition, I:401–402
drivers of, I:402
interpretation of, I:403–404
model specification, I:403
relationship with stock prices, I:304
risk in, II:279t
use of, I:222–223

Credit support, evaluation of, III:39–40
Credit value at risk (CVaR). See CVaR
Crisis situations, estimating liquidity

in, III:378–380
Critical line algorithm (CLA), I:73
Cross-trading, II:85n
Cross-validation, leave-one-out,

II:413–414
Crude oil, I:561, I:562
Cumulation, defined, III:471
Cumulative default rate (CDX), III:58
Cumulative frequency distributions,

II:493f, II:493t, II:498–499
formal presentation of, II:492–493

Currency put options, I:515
Current ratio, II:554
Curve imbalances, II:270–271
Curve options, III:553
Curve risk, II:275–278
CUSIPs/ticker symbols, changes in,

II:202–203
CVaR (credit value at risk), I:384–385,

I:385–386, II:68, II:85n, III:392t.
See also value at risk (VaR)

Daily increments of volatility, III:534
Daily log returns, II:407–408
Dark pools, II:450, II:454
Data. See also operational loss data

absolute, II:487–488
acquisition and processing of,

II:198
alignment of, II:202–203
amount of, I:196
augmentation of, I:186n
availability of, II:202, II:486
backfilling of, II:202
bias of, II:204, II:713
bid-ask aggregation techniques for,

II:457f
classification of, II:499–500
collection of, II:102, II:103f
cross-sectional, II:201, II:488, II:488f
in forecasting models, II:230
frequency of, II:113, II:368,

II:462–463, II:500
fundamental, II:246–247
generation of, II:295–296
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Data (Continued )
high-frequency (HFD) (See

high-frequency data (HFD))
historical, II:77–78, II:122, II:172
housing bubble, II:397–399
importing into MATLAB,

III:433–434
industry-specific, II:105
integrity of, II:201–203
levels and scale of, II:486–487
long-term, III:389–390
in mean-variance, I:193–194
misuse of, II:108
on operational loss, III:99
from OTC business, II:486
patterns in, II:707–708
pooling of, III:96
of precision, I:158
preliminary analysis of, III:362
problems in for operational risk,

III:97–98
qualitative vs. quantitative,

II:486
quality of, II:204, II:211, II:452–453,

II:486, II:695
reasons for classification of,

II:493–494
for relative valuation, II:34–35
restatements of, II:202
sampling of, II:459f, II:711
scarcity of, II:699–700, II:703–704,

II:718
sorting and counting of, II:488–491
standardization of, II:204, III:228
structure/sample size of, II:703
types of, II:486–488
underlying signals, II:111
univariate, defined, II:485
working with, II:201–206

Databases
Compustat Point-In-Time, II:238
Factiva, II:482
Institutional Brokers Estimate

System (IBES), II:238
structured, II:482
third-party, II:198, II:211n

Data classes, criteria for, II:500
Data generating processes (DGPs),

II:295–296, II:298f, II:502, II:702,
III:278

Data periods, length of, III:404
Data series, effect of large number of,

II:708–709
Data sets, training/test, II:710–711
Data snooping, II:700, II:710–712,

II:714, II:717, II:718
Datini, Francesco, II:479–480
Davis-Lo infectious defaults model,

I:324

Days payables outstanding (DPO),
calculation of, II:553–554

Days sales outstanding (DSO),
calculation of, II:553

DCF (discounted cash flow) models,
II:16, II:44–45

DDM (dividend discount models). See
dividend discount models
(DDM)

Debt
long-term, in financial statements,

II:542
models of risky, I:304–307
restructuring of, I:230
risky, I:307–308

Debt-to-assets ratio, II:559
Debt-to-equity ratio, II:559
Decomposition models

active/passive, III:19
Default correlation, I:317–318

contagion, I:353–354
cyclical, I:352, I:353
linear, I:320–321
measures of, I:320–321
tools for modeling, I:319–333

Default intensity, III:225
Default models, I:321–322, I:370f
Default probabilities

adjustments in real time, I:300–301
between companies, I:412–413
cyclical rise and fall, I:408f, I:409f
defined, I:299–300
effect of business cycle on, I:408
effect of rating outlooks on,

I:365–366
empirical approach to, I:362–363
five-year (Bank of America and

Citigroup), I:301f, I:302f
merits of approaches to, I:365
Merton’s approach to, I:363–365
probability of, II:727, II:727f, II:728f
and survival, I:533–535
and survival probability, I:323–324
term structure of, I:303
time span of, I:302–303
vs. ratings and credit scores,

I:300–302
for Washington Mutual, I:415f,

I:416f
of Washington Mutual, I:415f,

I:416f
Defaults

annual rates of, I:363
and Bernoulli distributions,

III:169–170
calculation of monthly, III:61t
clustering of, I:324–325
contagion, I:320
copulas for times, I:329–331

correlation of between companies,
I:411

cost of, I:401, I:404f
dollar amounts of, III:59f
effect of, I:228, III:645
event vs. liquidation, I:349
factors influencing, III:74–75
first passage model of, I:349
historical database of, I:414
intensity of, I:330, I:414
looping, I:324–325
measures of, III:58–59
in Merton approach, I:306
Moody’s definition of, I:363
predictability of, I:346–347
and prepayments, III:49–50,

III:76–77
process, relationship to recovery

rate, I:372
pseudo intensities, I:330
rates of cumulative/conditional,

III:63
recovery after, I:316–317
risk of, I:210
simulation of times, I:322–324, I:325
threshold of, I:345–346
times simulation of, I:319
triggers for, I:347–348
variables in, I:307–308

Default swaps
assumptions about, I:531–532
and credit events, I:530
digital, I:537
discussion of, I:526–528
market relationship with cash

market, I:530
and restructuring, I:528–529
value of spread, I:534

Default times, I:332
Definite covariance matrix, II:445
Deflators, I:129, I:136
Degrees, in ordinary differential

equations, II:644–645
Degrees of freedom (DOF)

across assets and time, II:735–736
in chi-square distribution, III:212
defined, II:734
for Dow Jones Industrial Average

(DJIA), II:735–737, II:737f
prior distribution for, I:177
range of, I:187n
for S&P 500 index stock returns,

II:735–736, II:736f
Delinquency measures, III:57–58
Delivery date, I:478
Delta, I:509, I:516–518, I:521
Delta-gamma approximation, I:519,

III:644–645
Delta hedging, I:413, I:416, I:418, I:517
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Delta profile, I:518f
Densities

beta, III:108f
Burr, III:110f
closed-form solutions for, III:243
exponential, III:105–106, III:105f
gamma, III:108f
Pareto, III:109f
posterior, I:170f
two-point lognormal, III:111f

Density curves, I:147f
Density functions

asymmetric, III:205f
of beta distribution, III:222f
chi-square distributions, III:213f
common means, different variances,

III:203f
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III:201
discussion of, III:197–200
of F-distribution, III:217f
histogram of, III:198f
of log-normal distribution, III:223f
and normal distribution, II:733
and probability, III:206
rectangular distributions, III:220
requirements of, III:198–200
symmetric, III:204f
of t-distribution, III:214f

Dependence, I:326–327, II:305–308
Depreciation, II:22

accumulated, II:533–534
expense vs. book value, II:539f
expense vs. carrying value, II:540f
in financial statements, II:537–539
on income statements, II:536
methods of allocation, II:537–538

Derivatives
construction of, II:586–587
described, II:585–586
embedded, I:462
energy, I:558
exotic, I:558, I:559–560
of functions, defined, II:593
and incomplete markets, I:462
interest rate, III:589–590
nonlinearity of, III:644–645
OTC, I:538
pricing of, I:58, III:594–596
pricing of financial, III:642–643
relationship with integrals, II:590
for shipping assets, I:555, I:558,

I:565–566
use of instruments, I:477
valuation and hedging of, I:558–560
vanilla, I:559

Derman, Emanuel, II:694
Descriptors, II:140, II:246–247, II:256
Determinants, II:623

Deterministic methods
usefulness of, II:685

Diagonal VEC model (DVEC), II:372
Dice, and probability, III:152, III:153,

III:155–156, III:156t
Dickey-Fuller statistic, II:386–387
Dickey-Fuller tests, II:514
Difference, notation of, I:80
Differential equations

classification of, II:657–658
defined, I:95, II:644, II:657
first-order system of, II:646
general solutions to, II:645
linear, II:647–648
linear ordinary, II:644–645
partial (PDE), II:643, II:654–657
stochastic, II:643–644
systems of ordinary, II:645–646
usefulness of, II:658

Diffusion, III:539, III:554–555
Diffusion invariance principle, I:132
Dimensionality, curse of, II:673, III:127
Dirac measures, III:271
Directional measures, II:428, II:429
Dirichlet boundary conditions, II:666
Dirichlet distribution, I:181–183,

I:186–187n
Discounted cash flow (DCF) models,

II:16, II:44–45
Discount factors, I:57–58, I:59–62, I:60,

II:600–601
Discount function

calculation of, III:571
defined, III:563
discussion of, III:563–565
forward rates from, III:566–567
graph of, III:563f
for on-the-run Treasuries,

III:564–565
Discounting, defined, II:596
Discount rates, I:211, I:212, I:215–216,

II:6
Discovery heuristics, II:711
Discrepancies, importance of small,

II:696
Discrete law, III:165–169
Discrete maximum principle, II:668
Discretization, I:265, II:669f, II:672
Disentangling, II:51–56

complexities of, II:55–56
predictive power of, II:54–55
return revelation of, II:52–54
usefulness of, II:52, II:58

Dispersion measures, III:352,
III:353–354, III:357

Dispersion parameters, III:202–205
Distress events, I:351
Distributional measures, II:428
Distribution analysis, cash flow, III:310

Distribution function, III:218f, III:224f
Distributions

application of hypergeometric,
III:177–178

beliefs about, I:152–153
Bernoulli, III:169–170, III:185t
beta, I:148, III:108
binomial, I:81f, III:170–174, III:185t,

III:363
Burr, III:109–110
categories for extreme values, II:752
common loss, III:112t
commonly used, III:225
conditional, III:219
conditional posterior, I:178–179,

I:182–183, I:184–185
conjugate prior, I:154
continuous probability, III:195–196
discrete, III:185t
discrete cumulative, III:166
discrete uniform, III:183–184,

III:185t, III:638f
empirical, II:498, III:104–105, III:105f
exponential, III:105–106
finite-dimensional, II:502
of Fréchet, Gumbel and Weibull,

III:267f
gamma, III:107–108, III:221–222
Gaussian, III:210–212
Gumbel, III:228, III:230
heavy-tailed, I:186n, II:733, III:109,

III:260
hypergeometric, III:174–178, III:185t
indicating location of, III:235
infinitely divisible, III:253–256,

III:253t
informative prior, I:152–153
inverted Wishart, I:172
light- vs. heavy-tailed, III:111–112
lognormal, III:106, III:106f,

III:538–539
mixture loss, III:110–111
for modeling applications, III:257
multinomial, III:179–182, III:185t
non-Gaussian, III:254
noninformative prior, I:153–154
normal (See normal distributions)
parametric, III:201
Poisson, I:142, III:182–183, III:185t,

III:217–218
Poisson probability, III:187t
posterior, I:147–148, I:165, I:166–167,

I:169–170, I:177, I:183–184
power-law, III:262–263
predictive, I:167
prior, I:177, I:181–182, I:196
proposal, I:183–184
representation of stable and CTS,

II:742–743
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Distributions (Continued )
spherical, II:310
stable, III:238, III:242, III:264–265,

III:384 (See also α-stable
distributions)

subexponential, III:261–262
tails of, III:112f, III:648
tempered stable, III:257, III:382
testing applied to truncated, III:367

Diversification, II:57–58
achieving, I:10
and cap weighting, I:38
and credit default swaps, I:413–414
example of, I:15
international, II:393–396
Markowitz’s work on, II:471

Diversification effect, III:321
Diversification indicators, I:192
Dividend discount models (DDM)

applied to electric utilities, II:12t
applied to stocks, II:16–17
basic, II:5
constant growth, II:7–9, II:17–18
defined, II:14
finite life general, II:5–7
free cash flow model, II:21–23
intuition behind, II:18–19
multiphase, II:9–10
non-constant growth, II:18
predictive power of, II:54
in the real world, II:19–20
stochastic, II:10–12, II:12t

Dividend payout ratio, II:4, II:20
Dividends

expected growth in, II:19
forecasting of, II:6
measurement of, II:3–4, II:14
per share, II:3–4
reasons for not paying, II:27
required rate of return, II:19
and stock prices, II:4–5

Dividend yield, II:4, II:19
Documentation

of model risk, II:696, II:697
Dothan model, I:491, I:493
Dow Jones Global Titans 500 (DJGTI),

II:490t, II:491t
Dow Jones Industrial Average (DJIA)

in comparison of risk models,
II:747–751

components of, II:489t
fitted stable tail index for, II:740f
frequency distribution in, II:489t
performance (January 2004 to June

2011), II:749f
relative frequencies, II:491t
stocks by share price, II:492t

Drawing without replacement,
III:174–177

Drawing with replacement, III:170,
III:174, III:179–180

Drift
effects of, III:537
of interest rates, I:263
in randomness calculations, III:535
in random walks, I:84, I:86
time increments of, I:83
of time series, I:80
as variable, III:536

DTS (duration times spread), I:392,
I:393–394, I:396–398

Duffie-Singleton model, I:542–543
Dupire’s formula, II:682–683, II:685
DuPont system, II:548–551, II:551f
Duration

calculations of real yield and
inflation, I:286

computing of, I:285
defined, I:284, III:309
effective, III:300–304, III:617t
effective/option adjusted, III:13
empirical, of common stock,

II:318–322, II:319–322t
estimation of, II:323t
measurement of, III:12–13,

III:304–305
models of, II:461
modified vs. effective, III:299

Duration/convexity, effective, I:255,
I:256f

Duration times spread (DTS). See DTS
(duration times spread)

Durbin-Watson test, III:647
Dynamical systems

equilibrium solution of, II:653
study of, II:651

Dynamic conditional correlation
(DCC) model, II:373

Dynamic term structures, III:576–577,
III:578–579, III:591

Early exercise, I:447, I:455. See calls,
American-style; options

Earnings before interest, taxes,
depreciation and amortization
(EBITDA), II:566

Earnings before interest and taxes
(EBIT), II:23, II:547, II:556

Earnings growth factor, II:223
Earnings per share (EPS), II:20–21,

II:38–39, II:537
Earnings revisions factor, II:207, II:209f
EBITDA/EV factor

correlations with, II:226
examples of, II:203, II:203f, II:207,

II:208f
in models, II:232, II:238–239
use of, II:222–223

Econometrics
financial, II:295, II:298–300,

II:301–303
modeling of, II:373, II:654

Economic cycles, I:537, II:42–43
Economic intuition, II:715–716
Economic laws, changes in, II:700
Economy

states of, I:49–50, II:518–519, III:476
term structures in certain,

III:567–568
time periods of, II:515–516

Economy as an Evolving Complex
System, The (Anderson, Arrow,
& Pines), II:699

Educated guesses, use of, I:511
EE (explicit Euler) scheme, II:674,

II:677–678
Effective annual rate (EAR), interest,

II:616–617
Efficiency

in estimation, III:641–642
Efficient frontier, I:13–14, I:17f, I:289f
Efficient market theory, II:396, III:92
Eggs, rotten, I:457–458
Eigenvalues, II:627–628, II:705,

II:706–707f, II:707t
Einstein, Albert, II:470
Elements, defined, III:153–154
Embedding problem, and change of

time method, III:520
Emerging markets, transaction costs

in, III:628
EM (expectation maximization)

algorithm, II:146, II:165
Empirical rule, III:210, III:225
Endogenous parameterization,

III:580–581
Energy

cargoes of, I:561–562
commodity price models, I:556–558
forward curves of, I:564–565
power plants and refineries, I:563
storage of, I:560–561, I:563–564

Engle-Granger cointegration test,
II:386–388, II:391–392, II:395

Entropy, III:354
EPS (earnings per share), II:20–21,

II:38–39, II:537
Equally weighted moving average,

III:400–402, III:406–407,
III:408–409

Equal to earnings before interest and
taxes (EBIT), II:23, II:547, II:556

Equal-variance assumption, I:164,
I:167

Equations
difference, homogenous vs.

nonhomogeneous, II:638
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difference vs. differential, II:629
diffusion, II:654–656, II:658n
error-correction, II:391, II:395t
homogeneous linear difference,

II:639–642, II:641f
homogenous difference, II:630–634,

II:631–632f, II:633–634f, II:642
linear, II:623–624
linear difference, systems of,

II:637–639
matrix characteristics of, II:628
no arbitrage, III:612, III:617–619
nonhomogeneous difference,

II:634–637, II:635f, II:637–638f
stochastic, III:478

Equilibrium
and absolute valuation models,

I:260
defined, II:385–386
dimensions of, III:601
in dynamic term structure models,

III:576
expectations for, II:112
expected returns from, II:112
modeling of, III:577, III:594
in supply and demand, III:568

Equilibrium models
use of, III:603–604

Equilibrium term structure models,
III:601

Equities, I:279
investing in, II:89–90

Equity
on the balance sheet, II:535
changes in homeowner, III:73
in homes, III:69
as option on assets, I:304–305
shareholders’, II:535

Equity markets, II:48
Equity multipliers, II:550
Equity risk factor models, II:173–178
Equivalent probability measures,

I:111, III:510–511
Ergodicity, defined, II:405
Erlang distribution, III:221–222
Errors. See also estimation error;

standard errors
absolute percentages of, II:525f,

II:526f
estimates of, II:676
in financial models, II:719
a posteriori estimates, II:672–673
sources of, II:720
terms for, II:126
in variables problem, II:220

Esscher transform, III:511, III:514
Estimates/estimation

confidence in, I:199
consensus, II:34–35

equations for, I:348–349
in EVT, III:272–274
factor models in, II:154
with GARCH models, II:364–365
in-house from firms, II:35
maximum likelihood, II:311–313
methodology for, II:174–176
and PCA, II:167f
posterior, I:176
posterior point, I:155–156
processes for, I:193, II:176
properties of for EWMA, III:410–411
robust, I:189
techniques of, II:330
use of, II:304

Estimation errors
accumulation of, II:78
in the Black-Litterman model, I:201
covariance matrix of, III:139–140
effect of, I:18
pessimism in, III:143
in portfolio optimization, II:82,

III:138–139
sensitivity to, I:191
and uncertainty sets, III:141

Estimation risk, I:193
minimizing, III:145

Estimators
bias in, III:641
efficiency in, III:641–642
equally weighted average,

III:400–402
factor-based, I:39
terms used to describe, II:314
unbiased, III:399
variance, II:313

ETL (expected tail loss), III:355–356
Euler approximation, II:649–650,

II:649f, II:650f
Euler constant, III:182
Euler schemes, explicit/implicit, II:666
Europe

common currency for, II:393
risk factors of, II:174

European call options
Black-Scholes formula for,

III:639–640
computed by different methods,

III:650–651, III:651f
explicit option pricing formula,

III:526–527
pricing by simulation in VBA,

III:465–466
pricing in Black-Scholes setting,

III:649
simulation of pricing, III:444–445,

III:462–463
and term structure models,

III:544–545

European Central Bank, I:300
Events

defined, III:85, III:162, III:508
effects of macroeconomic, II:243–244
extreme, III:245–246, III:260–261,

III:407
identification of, II:516
mutually exclusive, III:158
in probability, III:156
rare, III:645
rare vs. normal, I:262
tail, III:88n, III:111, III:118
three-δ, III:381–382

EVT (extreme value theory). See
extreme value theory (EVT)

EWMA (exponentially weighted
moving averages), III:409–413

Exceedance observations, III:362–363
Exceedances, of VaR, III:325–326,

III:339
Excel

accessing VBA in, III:477
add-ins for, I:93, III:651
data series correlation in, I:92–93
determining corresponding

probabilities in, III:646
Excel Link, III:434
Excel Solver, II:70
interactions with MATLAB, III:448
macros in, III:449, III:454–455
notations in, III:477n
random number generation in,

III:645–646
random walks with, I:83, I:85, I:87,

I:90
@RISK in, II:12t
syntax for functions in, III:456

Exchange-rate intervention, study on,
III:177–178

Exercise prices, I:452, I:484, I:508
Expectation maximization (EM)

algorithm, II:146, II:165
Expectations, conditional, I:122,

II:517–518, III:508–509
Expectations hypothesis, III:568–569,

III:601n
Expected shortfall (ES), I:385–386,

III:332. See also average value at
risk (AVaR)

Expected tail loss (ETL), III:291,
III:293f, III:345–347, III:347f,
III:355–356

Expected value (EV), I:511
Expenses, noncash, II:25
Experiments, possibility of, II:307
Explicit costs, defined, III:623
Explicit Euler (EE) scheme, II:674,

II:677–678
Exponential density function, III:218f
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Exponential distribution, III:217–219
applications in finance, III:219

Exponentially weighted moving
averages (EWMA)

discussion of, III:409–413
forecasting model of, III:411
properties of the estimates,

III:410–411
standard errors for, III:411–412
statistical methodology in, III:409
usefulness of, III:413–414
volatility estimates for, III:410f

Exposures
calculation of, II:247t
correlation between, II:186
distribution of, II:250f, II:251f, II:254
management of, II:182–183
monitoring of portfolio, II:249–250
name-specific, II:188

Extrema, characterization of local,
I:23

Extremal random variables, III:267
Extreme value distributions,

generalized, III:269
Extreme value theory (EVT),

II:744–746, III:95, III:228
defined, III:238
for IID processes, III:265–274
in IID sequences, III:275
role of in modeling, II:753n

Factor analysis
application of, II:165
based on information coefficients,

II:222
defined, II:141, II:169
discussion of, II:164–166
importance of, II:238
vs. principal component analysis,

II:166–168
Factor-based strategies

vs. risk models, II:236
Factor-based trading, II:196–197

model construction for, II:228–235
performance evaluation of,

II:225–228
Factor exposures, II:247–248,

II:275–283
Factorials, computing of, III:456
Factorization, defined, II:307
Factor mimicking portfolio (FMP),

II:214
Factor model estimation, II:142–147,

II:150
alternative approaches and

extensions, II:145–147
applied to bond returns, II:144–145
computational procedure for,

II:142–144

fixed N, II:143
large N, II:143–144

Factor models
in the Black-Litterman framework,

I:200
commonly used, II:150
considerations in, II:178
cross-sectional, II:220–221
defined, II:153
fixed income, II:271–272
in forecasting, II:230–231
linear, II:154–156, II:168
normal, II:156
predictive, II:142
static/dynamic, II:146–147,

II:155
in statistical methodology, II:141
strict, II:155–156
types of, II:138–142
usefulness of, II:154, II:503
use of, I:354, II:137, II:150, II:168,

II:219–225
Factor portfolios, II:224–225
Factor premiums, cross-sectional

methods for evaluation of,
II:214–219

Factor returns, II:191t, II:192t
calculation of, II:248

Factor risk models, II:113, II:119
Factors

adjustment of, II:205–206
analysis of data of, II:206–211
categories of, II:197
choice of, II:232–235
defined, II:196, II:211
desirable properties of, II:200
development of, II:198
estimation of types of, II:156
graph of, II:166f
known, II:138–139
K systematic, II:138–139
latent, II:140–141, II:150
loadings of, II:144, II:145t, II:155,

II:166t, II:167f, II:168t
market, II:176
orthogonalization of, II:205–206
relationship to time series, II:168f
sorting of, II:215
sources for, II:200–201
statistical, II:197
summary of well-known, II:196t
transformations applied to, II:206
use of multiple, II:141–142

Failures, probability of, II:726–727
Fair equilibrium, between multiple

accounts, II:76
Fair value

determination of, III:584–585
Fair value, assessment of, II:6–7

Fama, Eugene, II:468, II:473–474
Fama-French three-factor model,

II:139–140, II:177
Fama-MacBeth regression, II:220–221,

II:224, II:227–228, II:228f, II:237,
II:240n

Fannie Mae/Freddie Mac,
writedowns of, III:77n

Fast Fourier transform algorithm,
II:743

Fat tails
of asset return distributions,

III:242
in chaotic systems, II:653
class �, III:261–263
comparison between risk models,

II:749–750
effects of, II:354
importance of, II:524
properties of, III:260–261
in Student’s t distribution, II:734

Favorable selection, III:76–77
F-distribution, III:216–217
Federal Reserve

effects of on inflation risk premium,
I:281

study by Cleveland Bank,
III:177–178

timing of interventions of, III:178
Feynman-Kac formulas, II:661
FFAs (freight forward agreements),

I:566
Filtered probability spaces, I:314–315,

I:334n
Filtration, II:516–517, III:476–477,

III:489–490, III:508
Finance, three major revolutions in,

III:350
Finance companies, captive, I:366–369
Finance theory

development of, II:467–468
effect of computers on, II:476
in the nineteenth century,

II:468–469, II:476
in the 1960s, II:476
in the 1970s, II:476
stochastic laws in, III:472
in the twentieth century, II:476

Financial assets, price distribution of,
III:349–350

Financial crisis (2008), III:71
Financial date, pro forma, II:542–543
Financial distress, defined, I:351
Financial institutions, model risk of,

II:693
Financial leverage ratios, II:559–561,

II:563
Financial modelers, mistakes of,

II:707–710
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Financial planning, III:126–127, III:128,
III:129

Financial ratios, II:546, II:563–564
Financial statements

assumptions used in creating,
II:532

data in, II:563
information in, II:533–542, II:543
pro forma, II:22–23
time statements for, II:532
usefulness of, II:531
use of, II:204–205, II:246

Financial time series, I:79–80,
I:386–387, II:415–416, II:503–504

Financial variables, modeling of,
III:280

Find, in MATLAB, III:422
Finite difference methods, II:648–652,

II:656–657, II:665–666,
II:674–675, II:676–677, III:19

Finite element methods, II:669–670,
II:672, II:679–681

Finite element space, II:670–672
Finite life general DDM, II:5–7
Finite states, assumption of, I:100–101
Firms

assessment of, II:546–547
and capital structure, II:473
characteristics of, II:94, II:176–177,

II:201
clientele of, II:36
comparable, II:34, II:35–36
geographic location of, II:36
history vs. future prospects, II:92
phases of, II:9–10
retained earnings of, II:20
valuation of, II:26–27, II:473
value of, II:27–31, II:39
vs. characteristics of group, II:90–91

First boundary problem, II:655–656,
II:657f

First Interstate Bancorp, I:304
analysis of credit spreads, I:305t
debt ratings of, I:410

First passage models (FPMs), I:342,
I:344–348

Fischer-Tippett theorem, III:266–267
Fisher, Ronald, I:140
Fisherian, defined, I:140
Fisher’s information matrix, I:160n
Fisher’s law, II:322–323
Fixed-asset turnover ratio, II:558
Fixed-charge coverage ratio,

II:560–561
Flesaker-Hughston (FH) model,

III:548–549
Flows, discrete, I:448–453
FMP (factor mimicking portfolio),

II:214

Footnotes, in financial statements,
II:541–542

Ford Motor Company, I:408f, I:409f
Forecastability, II:132
Forecastability, concept of, II:123
Forecast encompassing

defined, II:230–231
Forecasts

of bid-ask spreads, II:456–457
comparisons of, II:420–421
contingency tables, II:429t
development of, II:110–114
directional, II:428
effect on future of, II:122–123
errors in, II:422f
evaluation of, II:428–430, III:368–370
machine-learning approach to,

II:128
measures of, II:429–430, II:430
need for, II:110–111
in neural networks, II:419–420
one-step ahead, II:421f
parametric bootstraps for,

II:428–430
response to macroeconomic shocks,

II:55f
usefulness of, II:131–132
use of models for, II:302
of volatility, III:412

Foreclosures, III:31, III:75
Forward contracts

advantages of, I:430
buying assets of, I:439
defined, I:426, I:478
equivalence to futures prices,

I:432–433
hedging with, I:429, I:429t
as OTC instruments, I:479
prepaid, I:428
price paths of, I:428t
short vs. long, I:437–438, I:438f
valuing of, I:426–430
vs. futures, I:430–431, I:433
vs. options, I:437–439

Forward curves
graph of, I:434f
modeling of, I:533, I:557–558,

I:564–565
normal vs. inverted, I:434
of physical commodities, I:555

Forward freight agreements (FFAs),
I:555, I:558, I:566

Forward measure, use of, I:543–544
Forward rates

calculation of, I:491, III:572
defined, I:509–510
from discount function, III:566–567
implied, III:565–567
models of, III:543–544

from spot yields, III:566
of term structure, III:586

Fourier integrals, II:656
Fourier methods, I:559–560
Fourier transform, III:265
FPMs (first passage models), I:342,

I:344–348
Fractals, II:653–654, III:278–280,

III:479–480
Franklin Tempelton Investment

Funds, II:496t, II:497t, II:498t
Fréchet distribution, II:754n, III:228,

III:230, III:265, III:267, III:268
Fréchet-Hoeffding copulas, I:327,

I:329
Freddie Mac, II:77n, II:754n, III:49
Free cash flow (FCF), II:21–23

analysis of, II:570–571
calculation of, II:23–24, II:571–572
defined, II:569–571, II:578
expected for XYZ, Inc., II:30t
financial adjustments to, II:25–26
statement of, direct method,

II:24–25, II:24t
statement of, indirect method,

II:24–25, II:24t
vs. cash flow, II:22–23

Freedman-Diaconis rule, II:494, II:495,
II:497

Frequencies
accumulating, II:491–492
distributions of, II:488–491, II:499f
empirical cumulative, II:492
formal presentation of, II:491

Frequentist, I:140, I:148
Frictions, costs of, II:472–473
Friedman, Milton, I:123
Frontiers, true, estimated and actual

efficient, I:190–191
F_SCORE, use of, II:230–231
F-test, II:336, II:337, II:344, II:425,

II:426
FTSE 100, volatility in, III:412–413
Fuel costs, I:561, I:562–563. See also

energy
Full disclosure, defined, II:532
Functional, defined, I:24
Functional-coefficient autoregressive

(FAR) model, II:417
Functions

affine, I:31
Archimedean, I:329, I:330–331, I:331
Bessel, of the third kind, II:591
beta, II:591
characteristic, II:591–592, II:593
choosing and calibrating of,

I:331–333
Clayton, Frank, Gumbel, and

Product, I:329
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Functions (Continued )
continuous, II:581–584, II:582f,

II:583, II:592–593
continuous/discontinuous, II:582f
convex, I:24–27, I:25, I:25f, I:26f
convex quadratic, I:26, I:31f
copula, I:320, I:325–333, I:407–408
for default times, I:329–331
defined, I:24, I:333
density, I:141
with derivatives, II:585f
elementary, III:474
elliptical, I:328–329
empirical distribution, III:270
factorial, II:590–591
gamma, II:591, II:591f, III:212
gradients of, I:23
Heaviside, II:418–419
hypergeometric, III:256, III:257
indicator, II:584–585, II:584f, II:593
likelihood function, I:141–143,

I:143f, I:144f, I:148, I:176, I:177
measurable, III:159–160, III:160f,

III:201
minimization and maximization of

values, I:22, I:22f
monotonically increasing,

II:587–588, II:588f
nonconvex quadratic, I:26–27
nondecreasing, III:154–155, III:155f
normal density, III:226f
optimization of, I:24
parameters of copulas, I:331–332
properties of quasi-convex, I:28
quasi-concave, I:27–28, I:27f
right-continuous, III:154–155,

III:155f
surface of linear, I:33f
with two local maxima, I:23f
usefulness of, I:411–412
utility, I:4–5, I:14–15, I:461

Fund management, art of, I:273
Fund separation theorems, I:36
Futures

Eurodollar, I:503
hedging with, I:433
market for housing, II:396–397
prices of, and interest rates, I:435n
telescoping positions of, I:431–432
theoretical, I:487
valuing of, I:430–433
vs. forward contracts, I:430–431

Futures contracts
defined, I:478
determining price of, I:481
pricing model for, I:479–481
theoretical price of, I:481–484
vs. forward contracts, I:433,

I:478–479

Futures options, defined, I:453
Future value, II:618

determining of money,
II:596–600

Galerkin methods, principle of,
II:671

Gamma, I:509, I:518–520
Gamma process, III:498
Gamma profile, I:519f
Gapping effect, I:509
GARCH (generalized autoregressive

conditional heteroskedastic)
models

asymmetric, II:367–368
exponential (EGARCH), II:367–368
extensions of, III:657
factor models, II:372
GARCH-M (GARCH in mean),

II:368
Markov-switching, I:180–184
time aggregation in, II:369–370
type of, II:131
usefulness of, III:414
use of, I:175–176, I:185–186, II:371,

II:733–734, III:388
and volatility, I:179
weights in, II:363–364

GARCH (1,1) model
Bayesian estimation of, I:176–180
defined, II:364
results from, II:366, II:366t
skewness of, III:390–391
strengths of, III:388–389
Student’s t, I:182
use of, I:550–551, III:656–657

GARCH (1,1) process, I:551t
Garman-Kohlhagen system, I:510–511,

I:522
Gaussian density, III:98f
Gaussian model, III:547–548
Gaussian processes, III:280, III:504
Gaussian variables, and Brownian

motion, III:480–481
Gauss-Markov theorem, II:314
GBM (geometric Brownian motion),

I:95, I:97
GDP (gross domestic product), I:278,

I:282, II:138, II:140
General inverse Gaussian (GIG)

distribution, II:523–524
Generalized autoregressive

conditional heteroskedastic
(GARCH) models. See GARCH
(generalized autoregressive
conditional heteroskedastic)
models

Generalized central limit theorem,
III:237, III:239

Generalized extreme value (GEV)
distribution, II:745, III:228–230,
III:272–273

Generalized inverse Gaussian
distribution, use of, II:521–522

Generalized least squares (GLS),
I:198–199, II:328

Generalized tempered stable (GTS)
processes, III:512

Generally accepted accounting
principles (GAAP), II:21–22,
II:531–532, II:542–543

Geometric mean reversion (GMR)
model, I:91–92

computation of, I:91
Gibbs sampler, I:172n, I:179, I:184–185
GIG models, calibration of, II:526–527
Gini index of dissimilarity (Gini

measure), III:353–354
Ginnie Mae/Fannie Mae/Freddie

Mac, actions of, III:49
Girsanov’s theorem

and Black-Scholes option pricing
formula, I:132–133

with Brownian motion, III:511
and equivalent martingale

measures, I:130–133
use of, I:263, III:517

Glivenko-Cantelli theorem, III:270,
III:272, III:348n, III:646

Global Economy Workshop, Santa Fe
Institute, II:699

Global Industry Classification
Standard (GICS R©), II:36–37,
II:248

Global minimum variance (GMV)
portfolios, I:39

GMR (geometric mean reversion)
model, I:91–92

GMV (global minimum variance)
portfolios, I:15, I:194–195

GNP, growth rate of (1947–1991),
II:410–411, II:410f

Gradient methods, use of, II:684
Granger causality, II:395–396
Graphs, in MATLAB, III:428–433
Greeks, the, I:516–522

beta and omega, I:522
delta, I:516–518
gamma, I:518–520
rho, I:521–522
theta, I:509, I:520–521
use of, I:559, II:660, III:643–644
vega, I:521

Greenspan, Alan, I:140–141
Growth, I:283f, II:239, II:597–598,

II:601–602
Gumbel distribution, III:265, III:267,

III:268–269
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Hamilton-Jacobi equations, II:675
Hankel matrices, II:512
Hansen-Jagannathan bound, I:59,

I:61–62
Harrison, Michael, II:476
Hazard, defined, III:85
Hazard (failure) rate, calculation of,

III:94–95
Heat diffusion equation, II:470
Heath-Jarrow-Morton framework,

I:503, I:557
Heavy tails, III:227, III:382
Hedge funds, and probit regression

model, II:349–350
Hedge ratios, I:416–417, I:509
Hedges

importance of, I:300
improvement using DTS, I:398
in the Merton context, I:409
rebalancing of, I:519
risk-free, I:532f

Hedge test, I:409, I:411
Hedging

costs of, I:514, II:725
and credit default swaps, I:413–414
determining, I:303–304
with forward contracts, I:429, I:429t
of fuel costs, I:561
with futures, I:433
gamma, I:519
portfolio-level, I:412–413
of positions, II:724–726
ratio for, II:725
with swaps, I:434–435
transaction-level, I:412
usefulness of, I:418
use of, I:125–126
using macroeconomic indices,

I:414–417
Hessian matrix, I:23–24, I:25, I:186n,

III:645
Heston model, I:547, I:548, I:552,

II:682
with change of time, III:522

Heteroskedasticity, II:220, II:359,
II:360, II:403

HFD (high-frequency data). See
high-frequency data (HFD)

Higham’s projection algorithm,
II:446

High-dimensional problems, II:673
High-frequency data (HFD)

and bid-ask bounce, II:454–457
defined, II:449–450
generalizations to, II:368–370
Level I, II:451–452, II:452f, II:453t
Level II, II:451
properties of, II:451, II:453t
recording of, II:450–451

time intervals of, II:457–462
use of, II:300, II:481
volume of, II:451–454

Hilbert spaces, II:683
Hill estimator, II:747, III:273–274
Historical method

drawbacks of, III:413
weighting of data in, III:397–398

Hit rate, calculation of, II:240n
HJM framework, I:498
HJM methodology, I:496–497
Holding period return, I:6
Ho-Lee model

continuous variant for, I:497
defined, I:492
in history, I:493
interest rate lattice, III:614f
as short rate model, III:23
for short rates, III:605
as single factor model, III:549

Home equity prepayment (HEP)
curve, III:55–56, III:56f

Homeowners, refinancing behavior of,
III:25

Home prices, I:412, II:397f, II:399t,
III:74–75

Homoskedasticity, II:360, II:373
Horizon prices, III:598
Housing, II:396–399, III:48
Howard algorithm (policy iteration

algorithm), II:676–677, II:680
Hull-White (HW) models

binomial lattice, III:610–611
for calibration, II:681
defined, I:492
interest rate lattice, III:614f
and short rates, III:545–546
for short rates, III:605
trinomial lattice, III:613, III:616f
usefulness of, I:503
use of, III:557, III:604
valuing zero-coupon bond calls

with, I:500
Hume, David, I:140
Hurst, Harold, II:714
Hypercubes, use of, III:648

IBM stock, log returns of, II:407f
Ignorance, prior, I:153–154
Implementation risk, II:694
Implementation shortfall approach,

III:627
Implicit costs, III:631
Implicit Euler (IE) scheme, II:674,

II:677–678
Implied forward rates, III:565–567
Impurity, measures of, II:377
Income, defined for public

corporation, II:21–22

Income statements
common-size, II:562–563, II:562t
defined, II:536
in financial statements, II:536–537
sample, II:537t, II:547t
structure of, II:536
XYZ Inc. (example), II:28t

Income taxes. See taxes
Independence, I:372–373, II:624–625,

III:363–364, III:368
Independence function, in VaR

models, III:365–366
Independently and identically

distributed (IDD) concept,
I:164, I:171, II:127, III:274–280,
III:367, III:414

Indexes
characteristics of efficient, I:42t
defined, II:67
of dissimilarity, III:353–354
equity, I:15t, II:190t, II:262–263
tail, II:740–741, II:740f, III:234
tracking of, II:64, II:180
use of weighted market cap, I:38
value weighted, I:76–77
volatility, III:550–552, III:552f

Index returns, scenarios of, II:190t,
II:191t

Indifference curves, I:4–5, I:5f, I:14
Industries, characteristics of, II:36–37,

II:39–40
Inference, I:155–158, I:169t
Inflation

effect on after-tax real returns,
I:286–287

and GDP growth, I:282
indexing for, I:278–279
in regression analysis, II:323
risk of, II:282
risk premiums for, I:280–283
seasonal factors in, I:292
shifts in, I:285f
volatility of, I:281

Information
anticipation of, III:476
from arrays in MATLAB, III:421
completeness of, I:353–354
contained in high volatility stocks,

III:629
and filtration, III:517
found in data, II:486
and information propagation,

II:515
insufficient, III:44
integration of, II:481–482
overload of, II:481
prior in Bayesian analysis,

I:151–155, I:152
propagation of, I:104
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Information (Continued )
structures of, I:106f, II:515–517
unstructured vs. semistructured,

II:481–482
Information coefficients (ICs), II:98–99,

II:221–223, II:223f, II:227f, II:234
Information ratios

defined, II:86n, II:115, II:119, II:237
determining, II:100f
for portfolio sorts, II:219
use of, II:99–100

Information sets, II:123
Information structures

defined, II:518
Information technology, role of,

II:480–481
Ingersoll models, I:271–273, I:275f
Initial conditions, fixing of, II:502
Initial margins, I:478
Initial value problems, II:639
Inner quartile range (IQR), II:494
Innovations, II:126
Insurance, credit, I:413–414
Integrals, II:588–590, II:593. See also

stochastic integrals
Integrated series, and trends,

II:512–514
Integration, stochastic, III:472, III:473,

III:483
Intelligence, general, II:154
Intensity-based frameworks, and the

Poisson process, I:315
Interarrival time, III:219, III:225
Intercepts, treatment of, II:334–335
Interest

accumulated, II:604–605, II:604f
annual vs. quarterly compounding,

II:599f
compound, II:597, II:597f
computing accrued, and clean price,

I:214–215
coverage ratio, II:560
defined, II:596
determining unknown rates,

II:601–602
effective annual rate (EAR),

II:616–617
mortgage, II:398
simple vs. compound, II:596
terms of, II:619
from TIPS, I:277

Interest rate models
binomial, III:173–174, III:174f
classes of, III:600
confusions about, III:600
importance of, III:600
properties of lattices, III:610
realistic, arbitrage-free, III:599
risk-neutral/arbitrage-free, III:597

Interest rate paths, III:6–9, III:7, III:8t
Interest rate risk, III:12–14
Interest rates

absolute vs. relative changes in,
III:533–534

approaches in determining future,
III:591

binomial model of, III:173–174
binomial trees, I:236, I:236f, I:237f,

I:240f, I:244, I:244f, III:174f
borrowing vs. lending, I:482–483
calculation of, II:613–618
calibration of, I:495
caps/caplets of, III:589–590
caps on, I:248–249
categories of term structure, III:561
computing sensitivities, III:22–23
continuous, I:428, I:439–488
derivatives of, III:589–590
determination of appropriate,

I:210–211
distribution of, III:538–539
dynamic of process, I:262
effect of, I:514–515
effect of shocks, III:23
effect on putable bonds, III:303–304
future course of, III:567, III:573
and futures prices, I:435n
importance of models, III:600
jumps of, III:539–541
jumpy and continuous, III:539f
long vs. short, III:538
market spot/forward, I:495t
mean reversion of, III:7
modeling of, I:261–265, I:267, I:318,

I:491, I:503, III:212–213
multiple, II:599–600
negative, III:538
nominal, II:615–616
and option prices, I:486–487
and prepayment risk, III:48
risk-free, I:442
shocks/shifts to, III:585–596
short-rate, I:491–494, III:595
simulation of, III:541
stochastic, I:344, I:346
structures of, III:573, III:576
use of for control, I:489
volatility of, III:405, III:533

Intermarket relations, no-arbitrage,
I:453–455

Internal consistency rule, in OAS
analysis, I:265

Internal rate of return (IRR), II:617–618
in MBSs, III:36

International Monetary Fund
Global Stability Report, I:299

International Swap and Derivatives
Association (ISDA). See ISDA

Interpolated spread (I-spread), I:227
Interrate relationship, arbitrage-free,

III:544
Intertemporal dependence, and risk,

III:351
Intertrade duration, II:460–461,

II:462t
Intertrade intervals, II:460–461
Intervals, credible, I:170
Interval scales, data on, II:487
Intrinsic value, I:441, I:511, I:513,

II:16–17
Invariance property, III:328–329
Inventory, II:542, II:557
Inverse Gaussian process, III:499
Investment, goals of, II:114–115
Investment management, III:146
Investment processes

activities of integrated, II:61
evaluation of results of, II:117–118
model creation, II:96
monitoring of performance, II:104
quantitative, II:95, II:95f
quantitative equity, II:95f, II:96f,

II:105
research, II:95–102
sell-structured, II:108
steps for equity investment, II:119
testing of, II:109

Investment risk measures, III:350–351
Investments, I:77–78n, II:50–51,

II:617–618
Investment strategies, II:66–67,

II:198
Investment styles, quantamental,

II:93–94, II:93f
Investors

behavior of, II:207, II:504
comfort with risk, I:193
completeness of information of,

I:353–354
focus of, I:299, II:90–91
fundamental vs. quantitative,

II:90–94, II:91f, II:92f, II:105
goals/objectives of, II:114–115,

II:179, III:631
individual accounts of, II:74
monotonic preferences of, I:57
number of stocks considered, II:91
preferences of, I:5, I:260, II:48, II:56,

II:92–93
prior beliefs of, II:727
real-world, II:132
risk aversion of, II:82–83, II:729
SL-CAPM assumptions about, I:66
sophistication of, II:108
in uncertain markets, II:54
views of, I:197–199

Invisible hand, notion of, II:468–469
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ISDA (International Swap and
Derivatives Association)

Credit Derivative Definitions (1999),
I:230, I:528

Master Agreement, I:538
organized auctions, I:526–527
supplement definition, I:230

I-spread (interpolated spread), I:227
Ito, Kiyosi, II:470
Ito definition, III:486–487
Ito integrals, I:122, III:475, III:481,

III:490–491
Ito isometry, III:475
Ito processes

defined, I:95
generic univariate, I:125
and Girsanov’s theorem, I:131
under HJM methodology, I:497
properties of, III:487–488
and smooth maps, III:493

Ito’s formula, I:126, III:488–489
Ito’s lemma

defined, I:98
discussion of, I:95–97
in estimation, I:348
and the Heston model, I:548

James-Stein shrinkage estimator, I:194
Japan, credit crisis in, I:417
Jarrow-Turnbull model, I:307
Jarrow-Yu propensity model, I:324–325
Jeffreys’ prior, I:153, I:160n, I:171–172
Jensen’s inequality, I:86, III:569
Jevons, Stanley, II:468
Johansen-Juselius cointegration tests,

II:391–393, II:395
Joint jumps/defaults, I:322–324
Joint survival probability, I:323–324
Jordan diagonal blocks, II:641–642
Jorion shrinkage estimator, I:194, I:202
Jump-diffusion, III:554–557, III:657
Jumps

default, I:322–324
diffusions, I:559–560
downward, I:347
idiosyncratic, I:323
incorporation of, I:93–94
in interest rates, III:539–541
joint, I:322–324
processes of, III:496
pure processes, III:497–501, III:506
size of, III:540

Kalotay-Williams-Fabozzi (KWF)
model, III:604, III:606–607,
III:615f

Kamakura Corporation, I:301, I:307,
I:308–309, I:310n

Kappa, I:521

Karush-Kuhn-Tucker conditions (KKT
conditions), I:28–29

Kendall’s tau, I:327, I:332
Kernel regression, II:403, II:412–413,

II:415
Kernels, II:412, II:413f, II:746
Kernel smoothers, II:413
Keynes, John Maynard, II:471
Key rate durations (KRD), II:276,

III:311–315, III:317
Key rates, II:276, III:311
Kim-Rachev (KR) process, III:512–513
KKT conditions (Karush-Kuhn-Tucker

conditions), I:28–29, I:31, I:32
KoBoL distribution, III:257n
Kolmogorov extension theorem,

III:477–478
Kolmogorov-Smirnov (KS) test, II:430,

III:366, III:647
Kolomogorov equation, use of, III:581
Kreps, David, II:476
Krispy Kreme Doughnuts, II:574–575,

II:574f
Kronecker product, I:172, I:173n
Kuiper test, III:366
Kurtosis, I:41, III:234

Lag operator L, II:504–506, II:507,
II:629–630

Lagrange multipliers, I:28, I:29–31,
I:30, I:32

Lag times, II:387, III:31
Laplace transforms, II:647–648
Last trades, price and size of, II:450
Lattice frameworks

bushy trees in, I:265, I:266f
calibration of, I:238–240
fair, I:235
interest rate, I:235–236, I:236–238
one-factor model, I:236f
for pricing options, I:487
usefulness of, I:235
use of, I:240, I:265–266, III:14
value at nodes, I:237–238
1-year rates, I:238f, I:239f

Law of iterated expectations, I:110,
I:122, II:308

Law of large numbers, I:267, I:270n,
III:263–264, III:275

Law of one α, II:50
Law of one price (LOP), I:52–55,

I:99–100, I:102, I:119, I:260
LCS (liquidity cost score), I:402

use of, I:403
LDIs (liability-driven investments),

I:36
LD (loss on default), I:370–371
Leases, in financial statements, II:542
Least-square methods, II:683–685

Leavens, D. H., I:10
Legal loss data

Cruz study, III:113, III:115t
Lewis study, III:117, III:117t

Lehman Brothers, bankruptcy of, I:413
Level (parallel) effect, II:145
Lévy-Khinchine formula, III:253–254,

III:257
Lévy measures, III:254, III:254t
Lévy processes

and Brownian motion, III:504
in calibration, II:682
change of measure for, III:511–512
conditions for, III:505
construction of, III:506
from Girsanov’s theorem, III:511
and Poisson process, III:496
as stochastic process, III:505–506
as subordinators, III:521
for tempered stable processes,

III:512–514, III:514t
and time change, III:527

Lévy stable distribution, III:242,
III:339, III:382–386, III:392

LGD (loss given default), I:366, I:370,
I:371

Liabilities, II:533, II:534–535, III:132
Liability-driven investments (LDIs),

I:36
Liability-hedging portfolios (LHPs),

I:36
LIBOR (London Interbank Offered

Rate)
and asset swaps, I:227
changes in, by type, III:539–540
curve of, I:226
interest rate models, I:494
market model of, III:589
spread of, I:530
in total return swaps, I:541
use of in calibration, III:7

Likelihood maximization, I:176
Likelihood ratio statistic, II:425
Limited liability rule, I:363
Limit order books, use of, III:625,

III:632n
Lintner, John, II:474
Lipschitz condition, II:658n, III:489,

III:490
Liquidation

effect of, II:186
procedures for, I:350–351
process models for, I:349–351
time of, I:350
vs. default event, I:349

Liquidity
assumption of, III:371
in backtesting, II:235
changes in, I:405
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Liquidity (Continued )
cost of, I:401
creation of, III:624–625, III:631
defined, III:372, III:380
effect of, II:284
estimating in crises, III:378–380
in financial analysis, II:551–555
and LCS, I:404
and market costs, III:624
measures of, II:554–555
premiums on, I:294, I:307
ratios for, II:555
in risk modeling, II:693
shortages in, I:347–348
and TIPS, I:293, I:294
and transaction costs, III:624–625

Liquidity-at-risk (LAR), III:376–378
Liquidity cost, III:373–374, III:375–376
Liquidity cost score (LCS), I:402, I:403
Liquidity preference hypothesis,

III:570
Liquidity ratios, II:563
Liquidity risk, II:282, III:380
Ljung-Box statistics, II:407, II:421,

II:422, II:427–428
LnMix models, calibration of,

II:526–527
Loading, standardization of, II:177
Loan pools, III:8–9
Loans

amortization of, II:606–607,
II:611–613

amortization table for, II:612t
delinquent, III:63
fixed rate, fully amortized schedule,

II:614t
floating rate, II:613
fully amortizing, II:611
modified, III:32
nonperforming, III:75
notation for delinquent, III:45n
recoverability of, III:31–32
refinancing of, III:68–69
repayment of, II:612f, II:613f
term schedule, II:615t

Loan-to-value ratios (LTVs), III:31–32,
III:69, III:73, III:74–75

Location parameters, I:160n,
III:201–202

Location-scale invariance property
(Gaussian distribution), II:732

Logarithmic Ornstein-Uhlenbeck
(log-OU) processes, I:557–558

Logarithmic returns, III:211–212,
III:225

Logistic distribution, II:350
Logistic regression, I:307, I:308, I:310
Logit regression models, II:349–350,

II:350

Log-Laplace transform, III:255–256
Lognormal distribution, III:222–225,

III:392
Lognormal mixture (LnMix)

distribution, II:524–525
Lognormal variables, I:86
Log returns, I:85–86, I:88
London Interbank Offered Rate

(LIBOR). See LIBOR
Lookback options, I:114, III:24
Lookback periods, III:402, III:407
LOP (law of one price). See law of one

price (LOP)
Lorenz, Edward, II:653
Loss distributions, conditional,

III:340–341
Losses. See also operational losses

allocation of, III:32
analysis of in backtesting, III:338
collateral vs. tranche, III:36
computation of, I:383
defined, III:85
estimation of cumulative, III:39–40
expected, I:369–370, I:373–374
expected vs. unexpected, I:369,

I:375–376
internal vs. external, III:83–84
median of conditional, III:348n
projected, III:37f
restricting severity of, I:385–386
severity of, III:44
unexpected, I:371–372, I:374–375

Loss functions, I:160n, III:369
Loss given default (LGD), I:366, I:370,

I:371
Loss matrix analysis, III:40–41
Loss on default (LD), I:370–371
Loss severity, III:30–31, III:60–62,

III:97–99
Lottery tickets, I:462
Lower partial moment risk measure,

III:356
Lundbert, Filip, II:467, II:470–471

Macroeconomic influences, defined,
II:197

Magnitude measures, II:429–430
Maintenance margins, I:478
Major indexes, modeling return

distributions for, III:388–392
Malliavin calculus, III:644
Management, active, II:115
Mandelbrot, Benoit, II:653, II:738,

III:234, III:241–242
Manufactured housing prepayment

(MHP) curve, III:56
Marginalization, II:335
Marginal rate of growth, III:197–198
Marginal rate of substitution, I:60

Margin calls, exposure to, III:377
Market cap vs. firm value, II:39
Market completeness, I:52, I:105
Market efficiency, I:68–73, II:121,

II:473–474
Market equilibrium

and investor’s views, I:198–199
Market impact

costs of, III:623–624, III:627
defined, II:69
forecasting/modeling of,

III:628–631
forecasting models for, III:632
forecasting of, III:628–629,

III:629–631
measurement of, III:626–628
between multiple accounts, II:75–76
in portfolio construction, II:116
and transaction costs, II:70

Market model regression, II:139
Market opportunity, two state, I:460f
Market portfolios, I:66–67, I:72–73
Market prices, I:57, III:372
Market risk

approaches to estimation of, III:380
in bonds, III:595
in CAPM, I:68–69, II:474
importance of, III:81
models for, III:361–362
premium for, I:203n, I:404

Markets
approach to segmented, II:48–51
arbitrage-free, I:118
complete, I:51–52, III:578
complex, II:49
effect of uncertainty in on bid-ask

spreads, II:455–456
efficiency of, II:15–16
frictionless, I:261
incomplete, I:461–462
liquidity of, III:372
models of, III:589
for options and futures, I:453–454
perfect, II:472
properties of modern, III:575–576
sensitivities to value-related

variables, II:54t
simple, I:70
systematic fluctuations in,

II:172–173
unified approach to, II:49
up/down, defined, II:347

Market sectors, defined, III:560
Market standards, I:257
Market structure, and exposure,

II:269–270
Market timing, II:260
Market transactions, upstairs,

III:630–631, III:632n
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Market weights, II:269t
Markov chain approximations, II:678
Markov chain Monte Carlo (MCMC)

methods, II:410f, II:417–418
Markov coefficients, II:506–507, II:512
Markov matrix, I:368
Markov models, I:114
Markov processes

in dynamic term structures, III:579
hidden, I:182
use of, III:509, III:517

Markov property, I:82, I:180–181, I:183,
II:661, III:193n

Markov switching (MS) models
discussion of, I:180–184
and fat tails, III:277–278
stationarity with, III:275
usefulness of, II:433
use of, II:409–411, II:411t

Markowitz, Harry M., I:38, I:140,
II:467, II:471–472, III:137,
III:351–352

Markowitz constraint sets, I:69, I:72
Markowitz diversification, I:10–11,

I:11
Markowitz efficient frontiers, I:191f
Markowitz model

in financial planning, III:126
Mark-to-market (MTM)

calculation of value, I:535–536, I:536t
defined, I:535
and telescoping futures, I:431–432

Marshall and Siegel, II:694
Marshall-Olkin copula, I:323–324,

I:329
Martingale measures, equivalent

and arbitrage, I:111–112, I:124
and complete markets, I:133
defined, I:110–111
and Girsanov’s theorem, I:130–133
and state prices, I:133–134
use of, I:130–131
working with, I:135

Martingales
with change of time methods

(CTM), III:522–523
defined, II:124, II:126, II:519
development of concept, II:469–470
equivalent, II:476
measures of, I:110–111
use of conditions, I:116
use of in forward rates, III:586

Mathematical theory, importance of
advances in, III:145

Mathworks, website of, III:418
MATLAB

array operations in, III:420–421
basic mathematical operations in,

III:419–420

construction of vectors/matrices,
III:420

control flow statements in,
III:427–428

desktop, III:419f
European call option pricing with,

III:444–445
functions built into, III:421–422
graphs in, III:428–433, III:429–430f,

III:431f
interactions with other software,

III:433–434
M-files in, III:418–419, III:423,

III:447
operations in, III:447
optimization in, III:434–444,

III:435t
Optimization Tool, III:435–436,

III:436f, III:440f, III:441f
overview of desktop and editor,

III:418–419
quadprog function, II:70
quadratic optimization with,

III:441–444
random number generation,

III:444
for simulations, III:651
Sobol sequences in, III:445–446
for stable distributions, III:344
surf function in, III:432–433
syntax of, III:426–427
toolboxes in, III:417–418
user-defined functions in,

III:423–427
Matrices

augmented, II:624
characteristic polynomial of, II:628
coefficient, II:624
companion, II:639–640
defined, II:622
diagonal, II:622–623, II:640
eigenvalues of random, II:704–705
eigenvectors of, II:640–641
in MATLAB, III:422, III:432
operations on, II:626–627
ranks of, II:623, II:628
square, II:622–623, II:626–627
symmetric, II:623
traces of, II:623
transition, III:32–33, III:32t, III:33t,

III:35f
types of, II:622, II:628

Matrix differential equations, III:492
Maturity value (lump sum), from

bonds, I:211
Maxima, III:265–269, III:266f
Maximum Description Length

principle, II:703
Maximum eigenvalue test, II:392–393

Maximum likelihood (ML)
approach, I:141, I:348
methods, II:348–349, II:737–738,

III:273
principal, II:312

Maximum principle, II:662, II:667
Max-stable distributions, III:269,

III:339–340
MBA (Mortgage Bankers Association)

refi index, III:70, III:70f
MBS (mortgage-backed securities),

I:258
agency vs. nonagency, III:48
cash flow characteristics of, III:48
default assumptions about, III:8
negative convexity of, III:49
performance of, III:74
prices of, III:26
projected long-term performance of,

III:34f
time-related factors in, III:73–74
valuation of, III:62
valuing of, III:645

MBS (mortgage-backed securities),
nonagency

analysis of, III:44–45
defined, III:48
estimation of returns, III:36–44
evaluation of, III:29
factors impacting returns of,

III:30–32
yield tables for, III:41t

Mean absolute deviation (MAD),
III:353

Mean absolute moment (MAM(q)),
III:353

Mean colog (M-colog), III:354
Mean entropy (M-entropy), III:354
Mean excess function, II:746–747
Mean/first moment, III:201–202
Mean residual life function, II:754n
Mean reversion

discussion of, I:88–92
geometric, I:91–92
in HW models, III:605
and market stability, III:537–538
models of, I:97
parameter estimation, I:90–91
risk-neutral asset model, III:526
simulation of, I:90
in spot rate models, III:580
stabilization by, III:538
within a trinomial setting, III:604

Mean-reverting asset model (MRAM),
III:525–526

Means, I:148, I:155, I:380, III:166–167
Mean-variance

efficiency, I:190–191
efficient portfolios, I:13, I:68, I:69–70
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Mean-variance (Continued )
nonrobust formulation, III:139–140
optimization, I:192

constraints on, I:191
estimation errors and, I:17–18
practical problems in, I:190–194

risk aversion formulation, II:70
Mean variance analysis, I:3, I:15f,

I:201, II:471–472, III:352
Measurement levels, in descriptive

statistics, II:486–487
Media effects, III:70
Median, I:155, I:159n, II:40
Median tail loss (MTL), III:341
Mencken, H. L., II:57
Menger, Carl, II:468
Mercurio-Moraleda model, I:493–494
Merton, Robert, I:299, I:310, II:468,

II:475, II:476
Merton model

advantages and criticisms of,
I:344

applied to probability of default,
I:363–365

with Black-Scholes approach,
I:305–306

default probabilities with, I:307–308
discussion of, I:343–344
drawbacks of, I:410
with early default, I:306
evidence on performance, I:308–309
as first modern structural model,

I:313, I:341
in history, I:491
with jumps in asset values, I:306
portfolio-level hedging with,

I:411–413
with stochastic interest rates, I:306
and transaction-level hedging,

I:408–410
usefulness of, I:410, I:411–412,

I:417–418
use of, I:304, I:305, I:510
variations on, I:306–307

Methodology, equally weighted,
III:399

Methods
quantile, II:354–356

Methods pathwise, III:643
Metropolis-Hastings (M-H) algorithm,

I:178
M-H algorithm, I:179
MIB 30, III:402–403, III:402f, III:403f
Microsoft, II:722f . See also Excel
Midsquare technique, III:647
Migration mode

calculation of expected/unexpected
losses under, I:376t

expected loss under, I:373–374

Miller, Merton, II:467, II:473
MiniMax (MM) risk measure, III:356
Minimization problems, solutions to,

II:683–684
Minimum-overall-variance portfolio,

I:69
Minority interest, on the balance

sheet, II:536
Mispricing, risk of, II:691–692
Model creep, II:694
Model diagnosis, III:367–368
Model estimation, in non-IDD

framework, III:278
Modeling

calibration of structure, III:549–550
changes in mathematical, II:480–481
discrete vs. continuous time, III:562
dynamic, II:105
issues in, II:299
nonlinear time series, II:427–428,

II:430–433
quantitative, II:481

Modeling techniques
non-parametric/nonlinear, II:375

Model risk
of agency ratings, II:728–729
awareness of, I:145, II:695–696
with computer models, II:695
consequences of, II:729–730
contribution to bond pricing,

II:727–728
defined, I:331, II:691, II:697
discussion of, II:714–715
diversification of, II:378
endogenous, II:694–695, II:697
in finical institutions, II:693
guidelines for institutions,

II:696–697
management of, II:695–697, II:697
misspecification of, II:199
and robustness, II:301
of simple portfolio, II:721–726
sources of, II:692–695

Models. See also operational risk
models

accuracy in, III:321
adjustment, II:502
advantages of reduced-form, I:533
analytical tractability of, III:549–550
APD, III:18, III:20–22, III:21f , III:26
application of, II:694
appropriate use of classes of,

III:597–598
arbitrage-free, III:600
autopredictive, II:502
averages across, II:715
bilinear, II:403–404
binomial, I:114–116, I:119
binomial stochastic, II:10–11

block maxima, II:745
choosing, III:550–552
comparison of, III:617
compatibility of, III:373
complexity of, II:704, II:717
computer, I:511, II:695
conditional normal, II:733–734
conditional parametric fat-tailed,

II:744
conditioning, II:105
construction of, II:232–235
for continuous processes, I:123
creation of, II:100–102
cross-sectional, II:174–175, II:175t
cumulative return of, II:234
defined, II:691, II:697
to describe default processes, I:313
description and estimation of,

II:256–257
designing the next, III:590–591
determining, II:299–300
disclosure of, I:410
documentation of, II:696
dynamic factor, II:128, II:131,

III:126–127
dynamic term structure, III:591
econometric, II:295, II:304
equilibrium forms of, III:599–600
equity risk, II:174, II:178–191, II:192
error correction, II:381t, II:387–388,

II:394–395
evidence of performance, I:308–309,

II:233
examples of multifactor, II:139–140
financial, I:139, II:479–480
forecasting, II:112, II:303–304
for forecasting, III:411
formulation of, III:128–131
fundamental factor, II:244, II:248
generally, II:360–362
Gordon-Shapiro, II:17–18
Heath-Jarrow-Morton, III:586–587,

III:589
hidden-variable, II:128, II:131
linear, II:264, II:310–311, II:348,

II:507–508
linear autoregressive, II:128,

II:130–131
linear regression, I:91, I:163–170,

II:360, II:414–415
liquidation process, I:342
martingale, II:127–128, III:520–521
MGARCH, II:371–372
model-vetting procedure, II:696–697
moving average, III:414
multifactor, II:231–232, III:92
multivariate extensions of,

II:370–373
no arbitrage, III:604
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nonlinear, II:402–421, II:417–418
penalty functions in, II:703
performance measurement of, II:301
predictive regressive, II:130
predictive return, II:128–131
for pricing, II:127–128
pricing errors in, I:322
principals for engineering,

II:482–483
probabilistic, II:299
properties of good, I:320
ranking alternative, III:368–370
recalibration of, II:713–714
reduced form default, I:310, I:313
regressive, II:128, II:129–130
relative valuation, I:260
return forecasting, II:119
returns of, II:233t
robustness of, II:301
selection of, I:145, II:298, II:692–693,

II:699–701
short-rate, I:494
single-index market, II:317–318
static, II:297, III:573
static regressive, II:129–130
static vs. dynamic, II:295–296, II:304
statistical, II:175, II:175t
stochastic, I:557, III:124–125
structural, I:305, I:313–314, I:341–342
structural vs. reduced, I:532–533
subordinated, II:742–743
temporal aggregation of, II:369
testing of, II:126–127, II:696–697
time horizon of, II:300–301
time-series, II:175, II:175t
tree, II:381, III:22–23
tuning of, III:580–581
two-factor, I:494
univariate regression, I:165
usefulness of, II:122
use of in practice, I:494–496, III:600t

Models, lattice
binomial, III:610, III:610f
Black-Karasinski (BK) lattice, III:611
Hull White binomial, III:610–611
Hull White trinomial, III:613
trinomial, III:610, III:610f,

III:611–612
Models, selection of

components of, II:717
generally, II:715–717
importance of, II:700
machine learning approach to,

II:701–703, II:717
uncertainty/noise in, II:716–717
use of statistical tools in, II:230

Modified Accelerated Cost Recovery
System (MACRS), II:538

Modified Restructuring clause, I:529

Modified tempered stable (MTS)
processes, III:513

Modigliani, Franco, II:467, II:473
Modigliani-Miller theorem, I:343,

I:344, II:473, II:476
Moment ratio estimators, III:274
Moments

exponential, III:255–256
first, III:201–202
of higher order, III:202–205
integration of, II:367–368
raw, II:739
second, III:202
types of, II:125

Momentum
formula for analysis of, II:239
portfolios based on, II:181

Momentum factor, II:226–227
Money, future value of, II:596–600
Money funds, European options on,

I:498–499
Money markets, I:279, I:282, I:314,

II:244
Monotonicity property, III:327
Monte Carlo methods

advantages of, II:672
approach to estimation, I:193
defined, I:273
examples of, III:637–639
foundations of, I:377–378
for interest rate structure, I:494
main ideas of, III:637–642
for nonlinear state-space modeling,

II:417–418
stochastic content of, I:378
usefulness of, I:389
use of, I:266–268, III:651
of VaR calculation, III:324–325

Monte Carlo simulations
for credit loss, I:379–380
effect of sampling process, I:384
in fixed income valuation modeling,

III:6–12
sequences in, I:378–379
speed of, III:644
use of, III:10–11, III:642

Moody’s diversity score, use of,
I:332

Moody’s Investors Service, I:362
Moody’s KMV, I:364–365
Mortgage-backed securities (MBS). See

MBS (mortgage-backed
securities)

Mortgage Bankers Association (MBA)
method, III:57–58

Mortgagee pools
composition of, III:52
defined, III:23, III:65
nonperforming loans and, III:75

population of, III:19
seasoning of, III:20, III:22

Mortgages, III:48–49, III:65, III:69,
III:71

Mosaic Company, distribution of price
changes of, II:723f

Mossin, Jan, II:468, II:474
Moving averages, infinite, II:504–508
MSCI Barra model, II:140
MSCI EM, historical distributions of,

III:391f
MSCI-Germany Index, I:143
MSCI World Index, I:15–17

analysis of 18 countries, I:16t
MS GARCH model, I:185–186

estimation of, I:182
sampling algorithm for, I:184

MSR (maximum Sharpe Ratio), I:36–37
MS-VAR models, II:131
Multiaccount optimization, II:75–77
Multicollinearity, II:221
Multilayer perceptrons, II:419
Multinomial/polynomial coefficients,

III:191–192
Multivariate normal distribution, in

MATLAB, III:432–433, III:433f
Multivariate random walks, II:124
Multivariate stationary series,

II:506–507
Multivariate t distribution, loss

simulation, I:388–389

Nadaraya-Watson estimator, II:412,
II:415

Natural conjugate priors, I:160n
Navigation, fuel-efficient, I:562–563
Near-misses, management of,

III:84–85
Net cash flow, defined, II:541
Net cost of carry, I:424–425, I:428,

I:437, I:439–440, I:455
Net free cash flow (NFCF), II:572–574,

II:578
Net profit margin, II:556
Net working capital-to-sales ratio,

II:554–555
Network investment models,

III:129–130, III:129f
Neumann boundary condition, II:666,

II:671
Neural networks, II:403, II:418–421,

II:418f, II:701–702
Newey-West corrections, II:220
NIG distribution, III:257n
9/11 attacks, effects of, III:402–403
No-arbitrage condition, in certain

economy, III:567–568
No arbitrage models, use of, III:604
No-arbitrage relations, I:423
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Noise
continuous-time, III:486
in financial models, II:721–722
in model selection, II:716–717
models for, II:726
reduction of, II:51–52

Noise, white
defined, I:82, II:297
qualities of, II:127
sequences, II:312, II:313
in stochastic differential equations,

III:486
strict, II:125
vs. colored noise, III:275

Nonlinear additive AR (NAAR)
model, II:417

Nonlinear dynamics and chaos, II:645,
II:652–654

Nonlinearity, II:433
in econometrics, II:401–403
tests of, II:421–427

Non-normal probability distributions,
II:480

Nonparametric methods, II:411–416
Normal distributions, I:81, I:82f,

I:177–178, III:638f
and AVaR, III:334
comparison with α-stable, III:234f
fundamentals of, II:731–734
inverse Gaussian, III:231–233,

III:232f, III:233f (See also
Gaussian distribution)

likelihood function, I:142–143
for logarithmic returns, III:211–212
mixtures of for downside risk

estimation, III:387–388
for modeling operational risk,

III:98–99
multivariate, and tail dependence,

I:387
properties of, II:732–733, III:209–210
relaxing assumption of, I:386–387
standard, III:208
standardized residuals from, II:751
use of, II:752n
using to approximate binomial

distribution, III:211
for various parameter values,

III:209f
vs. normal inverse Gaussian

distribution, III:232–233
Normal mean, and posterior tradeoff,

I:158–159
Normal tempered stable (NTS)

processes, III:513
Normative theory, I:3
Notes, step-up callable, I:251–252,

I:251f, I:252f
Novikov condition, I:131–132

NTS distribution, III:257n
Null hypothesis, I:157, I:170, III:362
Numeraire, change of, III:588–589
Numerical approximation, I:265
Numerical models for bonds,

I:273–275

OAS (option-adjusted spread). See
option-adjusted spread

Obligations, deliverable, I:231, I:526
Observations, frequency of, III:404
Occam’s razor, in model selection,

II:696
Odds ratio, posterior, I:157
Office of Thrift Supervision (OTS)

method, III:57–58
Oil industry, free cash flows of, II:570
OLS (ordinary least squares). See

ordinary least squares (OLS)
Open classes, II:493–494
Operating cash flow (OCF), II:23
Operating cycles, II:551–554
Operating profit margin, II:556
Operational loss data

de Fontnouvelle, Rosengren, and
Jordan study, III:116–117,
III:116t

empirical evidence with, III:112–118
Moscadelli study, III:113, III:116,

III:116t
Müller study, III:113, III:114f,

III:115t
Reynolds-Syer study, III:117–118
Rosenberg-Schuermann study,

III:118
Operational losses

and bank size, III:83
definitions of types, III:84t
direct vs. indirect, III:84–85
expected vs. unexpected, III:85
histogram of, III:104f
histogram of severity distribution,

III:95f
historical data on, III:96
near-miss, III:84–85
process of arriving at data, III:96–97
process of occurrence, III:86f
recording of, III:97
severity of, III:104f
time lags in, III:96–97
types of, III:81, III:88

Operational loss models
approaches to, III:103–104
assumptions in, III:104
nonparametric approach,

III:103–104, III:104–105, III:118
parametric approach, III:104,

III:105–110, III:118
types of, III:118

Operational risk
classifications of, III:83–88, III:87–88,

III:87f, III:88
defined, III:81–83, III:88
event types with descriptions,

III:86t
indicators of, III:83
models of, III:91–96
nature of, III:99
and reputational risk, III:88
sources of, III:82

Operational risk/event/loss types,
distinctions between, III:85–87

Operational risk models
actuarial (statistical) models, III:95
bottom-up, III:92f, III:94–96, III:99
causal, III:94
expense-based, III:93
income-based, III:93
multifactor causal models, III:95
operating leverage, III:93
process-based, III:94–95
proprietary, III:96
reliability, III:94–95
top down, III:92–94, III:99
types of, III:91–92

Operations
addition, II:625, II:626
defined, II:628
inverse and adjoint, II:626–627
multiplication, II:625–626, II:626
transpose, II:625, II:626
vector, II:625–626

Operators in sets, defined, III:154
Ophelimity, concept of, II:469
Opportunity cost, I:435, I:438, I:439,

II:596, III:623
Optimal exercise, I:515–516
Optimization

algorithms for, III:124
complexity of, II:82
constrained, I:28–34
defined, III:434–435
local vs. global, II:378
in MATLAB, III:434–444
unconstrained, I:22–28

Optimization theory, I:21
Optimization Toolbox, in MATLAB,

III:435–436, III:436f
Optimizers, using, II:115–116, II:483
Option-adjusted spread (OAS)

calculation of, I:253–255
defined, I:254, III:11
demonstrated, I:254f
determination of, I:259
implementation of, I:257
and market value, I:258
results from example, III:617t
and risk factors, III:599
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rules-of-thumb for analysis,
I:264–265

usefulness of, III:3
values of, I:267, I:268
variance between dealers, I:257–258

Option premium, I:508–509
time/intrinsic values of, I:513

Option premium profiles, I:512, I:512f
Option prices

components of, I:484–485, I:511–512
factors influencing, I:486–487, I:486t,

I:487–488, I:522–523
models for, I:490

Options
American, II:664–665, II:669–670,

II:674–679, II:679–681
American-style, I:444, I:454–455,

I:490
Asian, II:663–664, II:668–669,

III:642–643
on the average, II:663–664
barrier, II:662–663
basic properties of, I:507–508
basket, II:662, II:672
Bermudean, II:663–664, III:597
buying assets of, I:439
costs of, I:441–442, III:11–12
difference from forwards, I:437–439
early exercise of, I:442–443, I:447
Eurodollar, I:489
European, I:125, I:127–129,
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volatility of, I:488

Orders
in differential equations, II:643,
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efficient vs. optimal, I:5
examples of, II:261t, II:262t
expected returns from, I:6–7, I:7,

I:12t, I:69t, I:195
factor exposures in, II:183t, II:184t,
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risk-adjusted, I:264
risk neutral, I:58–59, I:59, I:102,

I:104, I:111–114, I:115–116,
I:117, III:594–596

Probability density function (PDF),
III:384–385

Probability distributions
binomial, III:186t
continuous, III:578

for drawing black balls, III:176–177
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Product transitions, III:66, III:71–73
Profit, riskless, I:480
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Profit margin ratios, II:555–556
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100 PSA (Public Securities Association
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of, III:647
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PSPs (performance-seeking
portfolios), I:36, I:37

Public Securities Association (PSA)
prepayment benchmark,
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Pure returns, II:51
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error on value of, II:677t, II:678t
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numerical results for, II:677–678
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arbitrage trades, I:443t
lower price bound, I:443,

I:450
Pyrrho’s lemma, II:330, II:331
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Quadratic programming, I:29, I:33–34
Quadratic variation, III:474
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development of regression, II:356
methods, II:354–356
plot (QQ-plot) of, III:272
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II:356–357
Quantitative methods, II:483
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Recoveries, in foreclosures, III:75
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dealing with, I:334n
on defaulted securities, I:367t
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threshold model, III:18
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Regression analysis
results for dummy variable

regression, II:348t
usefulness of, II:305
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Regression disturbances, I:164
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Regression function, II:309
Regression models, I:168–169,

I:170–172, II:302
Regressions

estimation of linear, II:311–314
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linear, II:310–311
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sampling distributions of, II:314
spurious, II:329

Regression theory, classical, II:237
Regressors, II:308–310, II:311, II:330
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Reg T (Treasury Regulation T), I:67
Relative valuation analysis
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coherent measures of, III:327–329
collective, II:470
common factor/specific, II:258
controlling, I:397
correlated, II:271t
correlated vs. isolated, II:271
counterparty, I:478, I:479
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Sandmann-Sondermann model,

I:493
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bubbles in, II:386
as complex system, II:47–48
1987 crash, II:521, III:585–586
dynamic relationships among,

II:393–396
effects of crises, III:233–234
variables effects on different sectors

of, II:55
Stock options, valuation of long-term,
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two-period, III:181t
Stock prices

anomalies in, II:111t
behavior of, II:58
correlation of, I:92–93
and dividends, II:4–5
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determinants of, II:245f
execution price of, III:626
fair value vs. expected return, II:13f
finding value for XYZ, Inc., II:31t
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alternate definitions of, II:67–68
defined, II:115, II:119

estimates of future, II:69
as measure of consistency, II:99–100
reduction of, II:262–263
standard definition, II:67
with TIPS, I:293

Tracking error volatility (TEV). See
TEV (tracking error volatility)

Trade optimizers, role of, II:116–117
Trades

amount needed for market impact,
III:624

cash-and-carry, I:487
crossing of, II:75
importance of execution of, III:623,

III:631
measurement of size, III:628
in portfolio construction, II:104,

II:116–117
round-trip time of, II:451
size effects of, III:372, III:630
speed of, II:105
timing of, III:628–629

Trading costs, II:118, III:627–628,
III:631–632

Trading gains, defined, I:122, I:123
Trading horizons, extending, III:624
Trading lists, II:289t
Trading strategies

backtesting of, II:236–237
categories of, II:195
in continuous-state,

continuous-time, I:122
development of factor-based,

II:197–198, II:211
factor-based, II:195, II:232–235
factor weights in, II:233f
in multiperiod settings, I:105
risk to, II:198–200
self-financing, I:126–127, I:136

Trading venues, electronic, II:57
Training windows, moving, II:713–714
Tranches, III:38, III:39t, III:45
Transaction costs

in backtesting, II:235
in benchmarking, II:67
components of, II:119
consideration of, II:64, II:85–86n
dimensions of, III:631
effect of, I:483
figuring, II:85n
fixed, II:72–73
forecasting of, II:113–114
incorporation of, II:69–73, II:84
international, III:629
linear, II:70
and liquidity, III:624–625
managing, III:146
measurement of, III:626
piecewise-linear, II:70–72, II:71f
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quadratic, II:72
in risk modeling, II:693
types of, III:623

Transformations, nonlinear,
III:630–631

Transition probabilities, I:368, I:381t
Treasuries

correlations of, III:405t
covariance matrix of, III:406t
curve risk, II:277t
discount function for, III:564–565
futures, I:482
inflation-indexed, I:286
movements of, III:403f
on-the-run, I:227, III:7, III:560
par yield curve, I:218t
spot rates, I:220
3-month, II:415–416, II:416f
volatility of, III:404–406, III:406t

Treasury bill rates, weekly data, I:89f
Treasury inflation-protected securities

(TIPS). See TIPS (Treasury
inflation-protected securities)

Treasury Regulation T (Reg T), I:67
Treasury securities, I:210–211

comparable, defined, III:5
in futures contracts, I:483
hypothetical, illustration of

duration/convexity,
III:308–310, III:308t

maturities of, I:226
options on, I:490
par rates for, I:217
prediction of 10-year yield,

II:322–328
valuation of, I:216
yield of, II:324–327t

Treasury strips, I:218t, I:220–221, I:286,
III:560

Treasury yield curves, I:226, III:561
Trees/lattices

adjusted to current market price,
I:496f

bushy trees, I:265, I:266f
calibrated, I:495
convertible bond value, I:274–275
extended pricing tree, III:23f
from historical data, III:131f
pruning of, II:377
stock price, I:274
three-period scenario, III:131f
trinomial, I:81, I:273, I:495–496
use of in modeling, I:494–496

Trees/lattices, binomial
building of, I:273
for convertible bonds, I:275f
discussion of, I:80–81
interest rate, I:244
model of, I:273–275

stock price model, III:173
term structure evolution, I:495f
use of, I:114–115, I:114f

Trends
deterministic, II:383
in financial time series, II:504
and integrated series, II:512–514
stochastic, II:383, II:384

Treynor-Black model., I:203n
Trinomial stochastic models, II:11–12
Truncated Lévy flight (TLF), III:382,

III:384–386
IDD in, III:386
time scaling of, III:385f

Truncation, III:385–386
Truth in Savings Act, II:615
T-statistic, II:240n, II:336, II:350, II:390
Tuple, defined, III:157
Turnover

assessment of, III:68
defined, III:66
in MBSs, III:48
in portfolios, II:234, II:235

Two beta trap, I:74–77
Two-factor models, III:553–554
Two-stage growth model, II:9

U.K. index-linked gilts, tax treatment
of, I:287

Uncertainties
and Bayesian statistics, I:140
in measurement processes, II:367
modeling of, II:306, III:124,

III:131–132
and model risk, II:729
quantification of, I:101
representation of, III:128
time behavior of, II:359

Uncertainty sets
effect of size of, III:143
in portfolio allocation, II:80
selection of, III:140–141
structured, III:143–144
in three dimensions, II:81f
use of, III:138, III:140

Uncertain volatility model, II:673–674
Underperformance, finding reasons

for, II:118
Underwater, on homeowner’s equity,

III:73
Unemployment rate

as an economic measure, II:398
application of TAR models to,

II:405–406
characteristics of series, II:430
forecasts from, II:433
performance of forecasting,

II:432–433, II:432t
and risk, II:292n

test of nonlinearity, II:431, II:431t
time plot of, II:406f, II:430f

Uniqueness, theorem of, III:490
Unit root series, II:385
Univariate linear regression model,

I:163–170
Univariate stationary series, II:504
U.S. Bankruptcy Code. See also

bankruptcy
Chapter 7, I:350
Chapter 11, I:342, I:350

Utility, I:56, II:469, II:471, II:719–720

Validation, out of sample, II:711
Valuation

arbitrage-free, I:216–217, I:220–222,
I:221t

and cash flows, I:223
defined, I:209
effect of business cycle on, I:303–304
fundamental principle of, I:209
with Monte Carlo simulation,

III:6–12
of natural gas/oil storage, I:560–561
of non-Treasury securities,

I:222–223
relative, I:225, II:34–40, II:44–45
risk-neutral, I:557, III:595–596,

III:601
total firm, II:21–23
uncertainty in, II:15
use of lattices for, I:240

Value
absolute vs. relative basis of,

I:259–260
analysis of relative, I:225
arbitrage-free, I:221
book vs. market of firms, II:559–560
determining present, II:600–601
formulas for analysis of, II:238–239
identification of relative, I:405
intrinsic, I:484–485
present, discounted, II:601f
relative, I:405, II:37–38
vs. price, I:455n

Value at risk (VaR). See also CVaR
(credit value at risk)

in backtesting, II:748
backtesting of, II:749f, III:325–327,

III:365–367
boxplot of, III:325f
and coherent risk measures, III:329
conditional, III:332, III:355–356,

III:382
deficiencies in, I:407, III:321,

III:331–332, III:347
defined, II:754n, III:319–322
density and distribution functions,

III:320f
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Value at risk (VaR) (Continued )
determining from simulation,

III:639f
distribution-free confidence

intervals for, III:292–293
estimation of, II:366, III:289–290,

III:373–376, III:644, III:644t
exceedances of, III:325–326
IDD in, III:290
interest rate covariance matrix in,

III:403
levels of confidence with,

III:290–291
liquidity-adjusted, III:374, III:376
in low market volatility, II:748
measurements by, II:354
methods of computation, III:323
modeling of, II:130–131, III:375–376
and model risk, II:695
normal against confidence level,

III:294f
portfolio problem, I:193
in practice, III:321–325
relative spreads between

predictions, II:750f, II:751f,
II:752f

as safety-first risk measure,
III:355

standard normal distribution of,
III:324t

use of, II:365
vs. deviation measures, III:320–321

Value of operations, process for
finding, II:30t

Values, lagged, II:130
Van der Korput sequences, III:650
Variables

antithetic, III:647–648
application of macro, II:193n
behavior of, III:152–153
categorical, II:333–334, II:350
classification, II:176
declaration of in VBL, III:457–458
dependence between, II:306–307
dependent categorical, II:348–350
dependent/independent in CAPM,

I:67
dichotomous, II:350
dummy, II:334
exogenous vs. endogenous, II:692
fat-tailed, III:280
independent and identically

distributed, II:125
independent categorical, II:333–348
interactions between, II:378
large numbers of, II:147
macroeconomic, II:54–55, II:177
in maximum likelihood

calculations, II:312–313

mixing of categorical and
quantitative, II:334–335

nonstationary, II:388–393
as observation or measurement,

II:306
random, I:159n
in regression analysis, II:330
separable, II:647
slope, III:553
split formation of, III:130f
spread, II:336
standardization of, II:205
stationary, II:385, II:386
stationary/nonstationary, II:384–386
stochastic, III:159–164
use of dummy, II:335, II:343–344

Variables, random, II:297
α-stable, III:242–244, III:244–245
Bernoulli, III:169
continuous, III:200–201, III:205–206
on countable spaces, III:160–161,

III:166
defined, III:162
discrete, III:165
infinitely divisible, III:253
in probability, III:159–164
sequences of, I:389
on uncountable spaces, III:161–162
use of, I:82

Variance gamma process, III:499,
III:504

Variance matrix, II:370–371
Variances

addressing inequality of, I:168
based on covariance matrix, II:161t,

II:163t, II:164f
conditional, I:180
conditional/unconditional, II:361
in dispersion parameters,

III:202–203
equal, I:164
as measure of risk, I:8
in probablity, III:167–169
reduction in, III:647–651
unequal, I:167–168, I:172

Variances/covariances, II:112–113,
II:302–303, III:395–396

Variance swaps, I:545–547, I:549,
I:552

Variational formulation, and finite
element space, II:670–672

Variation margins, I:478
Vasicek model

with change of time, III:523–524
for coupon-bond call options,

I:501–502
distribution of, I:493
in history, I:491
for short rates, III:545–546

use of, I:89, I:497
valuing zero-coupon bond calls

with, I:499–500
VBA (Visual Basic for Applications)

built-in numeric functions of, III:456
comments in, III:453
control flow statements, III:458–460
debugging in, III:461
debugging tools of, III:461, III:477
example programs, III:449–452,

III:461–466
in Excel, III:449, III:450f
FactorialFun1, III:455–456
functions, user-defined, III:463f
functions in, III:477
generating Brownian motion paths

in, III:463–465
If statements, III:459
For loops, III:458–459
methods (actions) in, III:452–453
modules, defined, III:455
as object-oriented language, III:452,

III:466
objects in, III:452
operators in, III:459–460
Option Explicit command, III:458
pricing European call options,

III:465–466
programing of input dialog boxes,

III:460–461
programming tips for, III:454–461
properties in, III:453
random numbers in, III:464–465
subroutines and user-defined

functions in, III:466–477
subroutines vs. user-defined

functions in, III:455–457
use of Option Explicit command,

III:458
user-defined functions, III:463f
user interaction with, III:460–461
variable declaration in, III:457–458
With/End structure in, III:453–454
writing code in, III:453–454

Vech notation, II:371–372
VEC model, II:372
Vector autoregressive (VAR) model,

II:393
Vectors, II:621–622, II:625–626, II:628
Vega, I:521
Vichara Technology, III:41–42, III:43t
Visual Basic for Applications (VBA).

See VBA
Volatilities

absolute vs. relative, III:404–405
actual, I:514
aim of models of, I:176
analysis of, II:270–272
and ARCH models, II:409
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assumptions about, III:7
calculation of, II:272, III:534t
calculation of daily, III:533–534
calibration of local, II:681–685
clustering of, II:359, II:716, III:402
confidence intervals for, III:399–400
constant, III:653
decisions for measuring, III:403–404
defined, III:533, III:653
with different mean reversions,

III:538f
of the diffusion, I:125
effect of local, III:609
effect on hedging, I:517–518
of energy commodities, I:556–557
estimation of, II:368–369
in EWMA estimates, III:410–411
exposure to, II:252f, II:252t
forecasts of, I:179–180, II:172,

II:367–368
in FTSE 100, III:412–413
historical, I:513, III:534, III:654
hypothetical modelers of, III:408
implied, I:513–514, II:282, II:662,

III:654
in interest rate structure models,

I:492
jump-diffusion, III:657
level-dependent, III:654–655,

III:656
local, II:681, II:682–683, III:655
as a measure, I:545, II:373
measurement of, I:393, III:403–406
minimization of, II:179
in models, II:302
models of, II:428
in option pricing, I:513–514
patterns in, I:395
in random walks, I:84
and risk, II:270
in risk-neutral measures, III:587
smile of, III:557
and the smoothing constant,

III:409–410
states of, I:180–181
stochastic, I:94, I:547, I:548,

III:655–658, III:656, III:658
stochastic models, II:681
time increments of, I:83
of time series, I:80
time-varying, II:733–734
types of, III:658
vs. annual standard deviation,

III:534
Volatility clustering, III:242, III:388
Volatility curves, III:534–535,

III:535t

Volatility measures, nonstochastic,
III:654–655

Volatility multiples, use of,
III:536

Volatility risk, I:509
Volatility skew, III:550, III:551f,

III:555–556, III:654
measuring, III:550

Volatility smile, II:681, III:555–557,
III:556f, III:654, III:656

Volatility swaps, I:545–547, I:552
for S&P Canada index (example),

I:550–552
valuing of, I:549

Volume-weighted average price
(VWAP), II:117, III:626–627

VPRs (voluntary prepayment rates)
calculation of, III:76
in cash flow calculators, III:34
defined, III:30
impacts of, III:38

W. T. Grant, cash flows of, II:576
Waldrop, Mitchell, II:699
Wal-Mart, II:569, II:570f
Walras, Leon, II:467, II:468–469,

II:474
Waterfalls, development of, III:8
Weak laws of large numbers (WLLN),

III:263
Wealth, I:460t, III:130
Weather, as chaotic system, II:653
Weibull density, III:107f
Weibull distributions, III:106–107,

III:112, III:229, III:262, III:265,
III:267, III:268

Weighting, efficient, I:41–42
Weights, II:115, II:185t, II:231–232,

II:724
Weirton Steel, cash flows of,

II:577f
What’s the hedge, I:300, I:303, I:306,

I:417. See also hedge test
White noise. See noise, white
Wiener processes, I:95, I:491, I:497,

III:534–535, III:579, III:581
Wilson, Kenneth, II:480
Wind farms, valuation of, I:563–564
Wold representation, II:506
Working capital, II:551

concept of, II:567

XML (eXtensible Markup Language),
development of, II:482

Yield and bond loss matrix, III:41t
Yield curve risk, III:307, III:316–317

Yield curves
horizon, III:585
initial consistency with, III:544
issuer par, I:238t, I:244t
nonparallel, III:309–310
parallel shifts in, III:308–309
par-coupon, III:585
reshaping duration, III:315–316
in scenario analysis, II:290
SEDUR/LEDUR, III:316, III:317
shifts in, III:586
slope of, III:315
in term structures, III:560
in valuation, I:235

Yields
calculation of, II:613–618
comparison across countries, I:226
dividend, II:4
on investments, II:617–618, II:619
loss-adjusted, III:36, III:40
and loss matrix analysis, III:40–41
projected, III:37f, III:38f
real, I:278–280, I:280f
rolling, I:258–259

Yield spreads
computation of, I:226
determining, I:373–374
for different rating grades, I:374t
in Merton model, I:305–306
over swap and treasury curves,

I:226–227

Zero-coupon bonds
assumptions about, I:261
calculations using CIR model, I:502t
calculations using Vasicek model,

I:502t
defaultable, I:317, I:335n
default-free, I:318
development of valuation model

for, III:582–583
equations for, III:554
future market price for, I:492–493
lattices for, I:266f
market for, I:264
and martingales, I:262
PDEs of, I:268–269n
pricing of, I:316
term structure model for, III:584
value of, III:572–573
valuing, I:213, I:499–501, I:499t

Zero coupon rates, III:546–547
Zero coupon securities, I:218
Zero one distribution, III:169–170
Zero volatility spread, III:11–12
Zipf’s law, III:263, III:269
Z-scores, II:191, II:240n
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Preface

It is often said that investment management
is an art, not a science. However, since the
early 1990s the market has witnessed a pro-
gressive shift toward a more industrial view of
the investment management process. There are
several reasons for this change. First, with
globalization the universe of investable assets
has grown many times over. Asset managers
might have to choose from among several
thousand possible investments from around
the globe. Second, institutional investors, of-
ten together with their consultants, have en-
couraged asset management firms to adopt
an increasingly structured process with docu-
mented steps and measurable results. Pressure
from regulators and the media is another fac-
tor. Finally, the sheer size of the markets makes
it imperative to adopt safe and repeatable
methodologies.

In its modern sense, financial modeling is
the design (or engineering) of financial instru-
ments and portfolios of financial instruments
that result in predetermined cash flows con-
tingent upon different events. Broadly speak-
ing, financial models are employed to manage
investment portfolios and risk. The objective
is the transfer of risk from one entity to an-
other via appropriate financial arrangements.
Though the aggregate risk is a quantity that can-
not be altered, risk can be transferred if there is
a willing counterparty.

Financial modeling came to the forefront of
finance in the 1980s, with the broad diffusion

of derivative instruments. However, the con-
cept and practice of financial modeling are quite
old. The notion of the diversification of risk
(central to modern risk management) and the
quantification of insurance risk (a requisite for
pricing insurance policies) were already under-
stood, at least in practical terms, in the 14th cen-
tury. The rich epistolary of Francesco Datini,
a 14th-century merchant, banker, and insurer
from Prato (Tuscany, Italy), contains detailed
instructions to his agents on how to diversify
risk and insure cargo.

What is specific to modern financial model-
ing is the quantitative management of risk. Both
the pricing of contracts and the optimization of
investments require some basic capabilities of
statistical modeling of financial contingencies.
It is the size, diversity, and efficiency of mod-
ern competitive markets that makes the use of
financial modeling imperative.

This three-volume encyclopedia offers not
only coverage of the fundamentals and ad-
vances in financial modeling but provides the
mathematical and statistical techniques needed
to develop and test financial models, as well as
the practical issues associated with implemen-
tation. The encyclopedia offers the following
unique features:

� The entries for the encyclopedia were writ-
ten by experts from around the world. This
diverse collection of expertise has created the
most definitive coverage of established and

xvii
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cutting-edge financial models, applications,
and tools in this ever-evolving field.

� The series emphasizes both technical and
managerial issues. This approach provides
researchers, educators, students, and practi-
tioners with a balanced understanding of the
topics and the necessary background to deal
with issues related to financial modeling.

� Each entry follows a format that includes the
author, entry abstract, introduction, body, list-
ing of key points, notes, and references. This
enables readers to pick and choose among
various sections of an entry, and creates con-
sistency throughout the entire encyclopedia.

� The numerous illustrations and tables
throughout the work highlight complex top-
ics and assist further understanding.

� Each volume includes a complete table of con-
tents and index for easy access to various
parts of the encyclopedia.

TOPIC CATEGORIES
As is the practice in the creation of an ency-
clopedia, the topic categories are presented al-
phabetically. The topic categories and a brief
description of each topic follow.

VOLUME I
Asset Allocation
A major activity in the investment management
process is establishing policy guidelines to sat-
isfy the investment objectives. Setting policy be-
gins with the asset allocation decision. That is,
a decision must be made as to how the funds
to be invested should be distributed among the
major asset classes (e.g., equities, fixed income,
and alternative asset classes). The term “asset
allocation” includes (1) policy asset allocation,
(2) dynamic asset allocation, and (3) tactical as-
set allocation. Policy asset allocation decisions
can loosely be characterized as long-term as-
set allocation decisions, in which the investor
seeks to assess an appropriate long-term “nor-
mal” asset mix that represents an ideal blend
of controlled risk and enhanced return. In dy-
namic asset allocation the asset mix (i.e., the

allocation among the asset classes) is mechanis-
tically shifted in response to changing market
conditions. Once the policy asset allocation has
been established, the investor can turn his or her
attention to the possibility of active departures
from the normal asset mix established by policy.
If a decision to deviate from this mix is based
upon rigorous objective measures of value, it
is often called tactical asset allocation. The fun-
damental model used in establishing the policy
asset allocation is the mean-variance portfolio
model formulated by Harry Markowitz in 1952,
popularly referred to as the theory of portfolio
selection and modern portfolio theory.

Asset Pricing Models
Asset pricing models seek to formalize the rela-
tionship that should exist between asset returns
and risk if investors behave in a hypothesized
manner. At its most basic level, asset pricing
is mainly about transforming asset payoffs into
prices. The two most well-known asset pricing
models are the arbitrage pricing theory and the
capital asset pricing model. The fundamental
theorem of asset pricing asserts the equivalence
of three key issues in finance: (1) absence of
arbitrage; (2) existence of a positive linear pric-
ing rule; and (3) existence of an investor who
prefers more to less and who has maximized his
or her utility. There are two types of arbitrage
opportunities. The first is paying nothing to-
day and obtaining something in the future, and
the second is obtaining something today and
with no future obligations. Although the prin-
ciple of absence of arbitrage is fundamental for
understanding asset valuation in a competitive
market, there are well-known limits to arbitrage
resulting from restrictions imposed on rational
traders, and, as a result, pricing inefficiencies
may exist for a period of time.

Bayesian Analysis and Financial
Modeling Applications
Financial models describe in mathematical
terms the relationships between financial
random variables through time and/or across
assets. The fundamental assumption is that the
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model relationship is valid independent of the
time period or the asset class under consider-
ation. Financial data contain both meaningful
information and random noise. An adequate
financial model not only extracts optimally the
relevant information from the historical data
but also performs well when tested with new
data. The uncertainty brought about by the
presence of data noise makes imperative the use
of statistical analysis as part of the process of fi-
nancial model building, model evaluation, and
model testing. Statistical analysis is employed
from the vantage point of either of the two main
statistical philosophical traditions—frequentist
and Bayesian. An important difference be-
tween the two lies with the interpretation of the
concept of probability. As the name suggests,
advocates of the frequentist approach interpret
the probability of an event as the limit of its
long-run relative frequency (i.e., the frequency
with which it occurs as the amount of data in-
creases without bound). Since the time financial
models became a mainstream tool to aid in un-
derstanding financial markets and formulating
investment strategies, the framework applied
in finance has been the frequentist approach.
However, strict adherence to this interpretation
is not always possible in practice. When study-
ing rare events, for instance, large samples of
data may not be available, and in such cases
proponents of frequentist statistics resort to
theoretical results. The Bayesian view of the
world is based on the subjectivist interpretation
of probability: Probability is subjective, a de-
gree of belief that is updated as information or
data are acquired. Only in the last two decades
has Bayesian statistics started to gain greater
acceptance in financial modeling, despite its
introduction about 250 years ago. It has been
the advancements of computing power and the
development of new computational methods
that have fostered the growing use of Bayesian
statistics in financial modeling.

Bond Valuation
The value of any financial asset is the present
value of its expected future cash flows. To value

a bond (also referred to as a fixed-income secu-
rity), one must be able to estimate the bond’s
remaining cash flows and identify the appro-
priate discount rate(s) at which to discount the
cash flows. The traditional approach to bond
valuation is to discount every cash flow with
the same discount rate. Simply put, the rele-
vant term structure of interest rate used in val-
uation is assumed to be flat. This approach,
however, permits opportunities for arbitrage.
Alternatively, the arbitrage-free valuation ap-
proach starts with the premise that a bond
should be viewed as a portfolio or package
of zero-coupon bonds. Moreover, each of the
bond’s cash flows is valued using a unique dis-
count rate that depends on the term structure
of interest rates and when in time the cash flow
is. The relevant set of discount rates (that is,
spot rates) is derived from an appropriate term
structure of interest rates and when used to
value risky bonds augmented with a suitable
risk spread or premium. Rather than model-
ing to calculate the fair value of its price, the
market price can be taken as given so as to
compute a yield measure or a spread measure.
Popular yield measures are the yield to matu-
rity, yield to call, yield to put, and cash flow
yield. Nominal spread, static (or zero-volatility)
spread, and option-adjusted spread are popu-
lar relative value measures quoted in the bond
market. Complications in bond valuation arise
when a bond has one or more embedded op-
tions such as call, put, or conversion features.
For bonds with embedded options, the finan-
cial modeling draws from options theory, more
specifically, the use of the lattice model to value
a bond with embedded options.

Credit Risk Modeling
Credit risk is a broad term used to refer to three
types of risk: default risk, credit spread risk, and
downgrade risk. Default risk is the risk that the
counterparty to a transaction will fail to satisfy
the terms of the obligation with respect to the
timely payment of interest and repayment of
the amount borrowed. The counterparty could
be the issuer of a debt obligation or an entity on
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the other side of a private transaction such as a
derivative trade or a collateralized loan agree-
ment (i.e., a repurchase agreement or a secu-
rities lending agreement). The default risk of
a counterparty is often initially gauged by the
credit rating assigned by one of the three rat-
ing companies—Standard & Poor’s, Moody’s
Investors Service, and Fitch Ratings. Although
default risk is the one that most market partici-
pants think of when reference is made to credit
risk, even in the absence of default, investors
are concerned about the decline in the market
value of their portfolio bond holdings due to
a change in credit spread or the price perfor-
mance of their holdings relative to a bond in-
dex. This risk is due to an adverse change in
credit spreads, referred to as credit spread risk,
or when it is attributed solely to the downgrade
of the credit rating of an entity, it is called down-
grade risk. Financial modeling of credit risk is
used (1) to measure, monitor, and control a port-
folio’s credit risk, and (2) to price credit risky
debt instruments. There are two general cate-
gories of credit risk models: structural models
and reduced-form models. There is consider-
able debate as to which type of model is the
best to employ.

Derivatives Valuation
A derivative instrument is a contract whose
value depends on some underlying asset. The
term “derivative” is used to describe this prod-
uct because its value is derived from the value
of the underlying asset. The underlying asset,
simply referred to as the “underlying,” can be
either a commodity, a financial instrument, or
some reference entity such as an interest rate or
stock index, leading to the classification of com-
modity derivatives and financial derivatives.
Although there are close conceptual relations
between derivative instruments and cash mar-
ket instruments such as debt and equity, the two
classes of instruments are used differently: Debt
and equity are used primarily for raising funds
from investors, while derivatives are primarily

used for dividing up and trading risks. More-
over, debt and equity are direct claims against a
firm’s assets, while derivative instruments are
usually claims on a third party. A derivative’s
value depends on the value of the underly-
ing, but the derivative instrument itself repre-
sents a claim on the “counterparty” to the trade.
Derivatives instruments are classified in terms
of their payoff characteristics: linear and nonlin-
ear payoffs. The former, also referred to as sym-
metric payoff derivatives, includes forward,
futures, and swap contracts while the latter in-
clude options. Basically, a linear payoff deriva-
tive is a risk-sharing arrangement between the
counterparties since both are sharing the risk re-
garding the price of the underlying. In contrast,
nonlinear payoff derivative instruments (also
referred to as asymmetric payoff derivatives)
are insurance arrangements because one party
to the trade is willing to insure the counter-
party of a minimum or maximum (depending
on the contract) price. The amount received by
the insuring party is referred to as the contract
price or premium. Derivative instruments are
used for controlling risk exposure with respect
to the underlying. Hedging is a special case of
risk control where a party seeks to eliminate
the risk exposure. Derivative valuation or pric-
ing is developed based on no-arbitrage price
relations, relying on the assumption that two
perfect substitutes must have the same price.

VOLUME II
Difference Equations and Differential
Equations
The tools of linear difference equations and
differential equations have found many ap-
plications in finance. A difference equation is
an equation that involves differences between
successive values of a function of a discrete
variable. A function of such a variable is
one that provides a rule for assigning values
in sequences to it. The theory of linear dif-
ference equations covers three areas: solving
difference equations, describing the behavior
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of difference equations, and identifying the
equilibrium (or critical value) and stability
of difference equations. Linear difference
equations are important in the context of dy-
namic econometric models. Stochastic models
in finance are expressed as linear difference
equations with random disturbances added.
Understanding the behavior of solutions of
linear difference equations helps develop
intuition for the behavior of these models. In
nontechnical terms, differential equations are
equations that express a relationship between
a function and one or more derivatives (or
differentials) of that function. The relationship
between difference equations and differential
equations is that the latter are invaluable for
modeling situations in finance where there is a
continually changing value. The problem is that
not all changes in value occur continuously. If
the change in value occurs incrementally rather
than continuously, then differential equations
have their limitations. Instead, a financial
modeler can use difference equations, which
are recursively defined sequences. It would
be difficult to overemphasize the importance
of differential equations in financial modeling
where they are used to express laws that govern
the evolution of price probability distributions,
the solution of economic variational problems
(such as intertemporal optimization), and
conditions for continuous hedging (such as in
the Black-Scholes option pricing model). The
two broad types of differential equations are
ordinary differential equations and partial dif-
ferential equations. The former are equations or
systems of equations involving only one inde-
pendent variable. Another way of saying this
is that ordinary differential equations involve
only total derivatives. Partial differential equa-
tions are differential equations or systems of
equations involving partial derivatives. When
one or more of the variables is a stochastic pro-
cess, we have the case of stochastic differential
equations and the solution is also a stochastic
process. An assumption must be made about
what is driving noise in a stochastic differential

equation. In most applications, it is assumed
that the noise term follows a Gaussian random
variable, although other types of random
variables can be assumed.

Equity Models and Valuation
Traditional fundamental equity analysis in-
volves the analysis of a company’s opera-
tions for the purpose of assessing its economic
prospects. The analysis begins with the finan-
cial statements of the company in order to in-
vestigate the earnings, cash flow, profitability,
and debt burden. The fundamental analyst will
look at the major product lines, the economic
outlook for the products (including existing
and potential competitors), and the industries
in which the company operates. The result of
this analysis will be the growth prospects of
earnings. Based on the growth prospects
of earnings, a fundamental analyst attempts
to determine the fair value of the stock using
one or more equity valuation models. The two
most commonly used approaches for valuing a
firm’s equity are based on discounted cash flow
and relative valuation models. The principal
idea underlying discounted cash flow models
is that what an investor pays for a share of stock
should reflect what is expected to be received
from it—return on the investor’s investment.
What an investor receives are cash dividends
in the future. Therefore, the value of a share of
stock should be equal to the present value of
all the future cash flows an investor expects to
receive from that share. To value stock, there-
fore, an investor must project future cash flows,
which, in turn, means projecting future divi-
dends. Popular discounted cash flow models in-
clude the basic dividend discount model, which
assumes a constant dividend growth, and the
multiple-phase models, which include the two-
stage dividend growth model and the stochas-
tic dividend discount models. Relative valua-
tion methods use multiples or ratios—such as
price/earnings, price/book, or price/free cash
flow—to determine whether a stock is trad-
ing at higher or lower multiples than its peers.
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There are two critical assumptions in using rela-
tive valuation: (1) the universe of firms selected
to be included in the peer group are in fact com-
parable, and (2) the average multiple across the
universe of firms can be treated as a reason-
able approximation of “fair value” for those
firms. This second assumption may be prob-
lematic during periods of market panic or eu-
phoria. Managers of quantitative equity firms
employ techniques that allow them to identify
attractive stock candidates, focusing not on a
single stock as is done with traditional funda-
mental analysis but rather on stock character-
istics in order to explain why one stock out-
performs another stock. They do so by statis-
tically identifying a group of characteristics to
create a quantitative selection model. In con-
trast to the traditional fundamental stock se-
lection, quantitative equity managers create a
repeatable process that utilizes the stock selec-
tion model to identify attractive stocks. Equity
portfolio managers have used various statistical
models for forecasting returns and risk. These
models, referred to as predictive return models,
make conditional forecasts of expected returns
using the current information set. Predictive re-
turn models include regressive models, linear
autoregressive models, dynamic factor models,
and hidden-variable models.

Factor Models and Portfolio
Construction
Quantitative asset managers typically employ
multifactor risk models for the purpose of
constructing and rebalancing portfolios and
analyzing portfolio performance. A multifactor
risk model, or simply factor model, attempts to
estimate and characterize the risk of a portfolio,
either relative to a benchmark such as a market
index or in absolute value. The model allows
the decomposition of risk factors into a sys-
tematic and an idiosyncratic component. The
portfolio’s risk exposure to broad risk factors
is captured by the systematic risk. For equity
portfolios these are typically fundamental
factors (e.g., market capitalization and value

vs. growth), technical (e.g., momentum), and
industry/sector/country. For fixed-income
portfolios, systematic risk captures a portfolio’s
exposure to broad risk factors such as the
term structure of interest rates, credit spreads,
optionality (call and prepayment), credit, and
sectors. The portfolio’s systematic risk depends
not only on its exposure to these risk factors but
also the volatility of the risk factors and how
they correlate with each other. In contrast to
systematic risk, idiosyncratic risk captures the
uncertainty associated with news affecting the
holdings of individual issuers in the portfolio.
In equity portfolios, idiosyncratic risk can be
easily diversified by reducing the importance
of individual issuers in the portfolio. Because
of the larger number of issuers in bond indexes,
however, this is a difficult task. There are dif-
ferent types of factor models depending on the
factors. Factors can be exogenous variables or
abstract variables formed by portfolios. Exoge-
nous factors (or known factors) can be identified
from traditional fundamental analysis or from
economic theory that suggests macroeconomic
factors. Abstract factors, also called unidenti-
fied or latent factors, can be determined with
the statistical tool of factor analysis or principal
component analysis. The simplest type of
factor models is where the factors are assumed
to be known or observable, so that time-series
data are those factors that can be used to
estimate the model. The four most commonly
used approaches for the evaluation of return
premiums and risk characteristics to factors are
portfolio sorts, factor models, factor portfolios,
and information coefficients. Despite its use by
quantitative asset managers, the basic building
blocks of factor models used by model builders
and by traditional fundamental analysts are
the same: They both seek to identify the drivers
of returns for the asset class being analyzed.

Financial Econometrics
Econometrics is the branch of economics that
draws heavily on statistics for testing and
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analyzing economic relationships. The eco-
nomic equivalent of the laws of physics,
econometrics represents the quantitative, math-
ematical laws of economics. Financial econo-
metrics is the econometrics of financial markets.
It is a quest for models that describe financial
time series such as prices, returns, interest rates,
financial ratios, defaults, and so on. Although
there are similarities between financial econo-
metric models and models of the physical sci-
ences, there are two important differences. First,
the physical sciences aim at finding immutable
laws of nature; econometric models model the
economy or financial markets—artifacts subject
to change. Because the economy and financial
markets are artifacts subject to change, econo-
metric models are not unique representations
valid throughout time; they must adapt to the
changing environment. Second, while basic
physical laws are expressed as differential
equations, financial econometrics uses both
continuous-time and discrete-time models.

Financial Modeling Principles
The origins of financial modeling can be traced
back to the development of mathematical equi-
librium at the end of the nineteenth century, fol-
lowed in the beginning of the twentieth century
with the introduction of sophisticated mathe-
matical tools for dealing with the uncertainty
of prices and returns. In the 1950s and 1960s,
financial modelers had tools for dealing with
probabilistic models for describing markets, the
principles of contingent claims analysis, an op-
timization framework for portfolio selection
based on mean and variance of asset returns,
and an equilibrium model for pricing capital
assets. The 1970s ushered in models for pricing
contingent claims and a new model for pricing
capital assets based on arbitrage pricing. Con-
sequently, by the end of the 1970s, the frame-
works for financial modeling were well known.
It was the advancement of computing power
and refinements of the theories to take into
account real-world market imperfections and

conventions starting in the 1980s that facilitated
implementation and broader acceptance of
mathematical modeling of financial decisions.
The diffusion of low-cost high-performance
computers has allowed the broad use of numer-
ical methods, the landscape of financial mod-
eling. The importance of finding closed-form
solutions and the consequent search for simple
models has been dramatically reduced. Com-
putationally intensive methods such as Monte
Carlo simulations and the numerical solution
of differential equations are now widely used.
As a consequence, it has become feasible to
represent prices and returns with relatively
complex models. Nonnormal probability dis-
tributions have become commonplace in many
sectors of financial modeling. It is fair to say
that the key limitation of financial modeling is
now the size of available data samples or train-
ing sets, not the computations; it is the data
that limit the complexity of estimates. Math-
ematical modeling has also undergone major
changes. Techniques such as equivalent martin-
gale methods are being used in derivative pric-
ing, and cointegration, the theory of fat-tailed
processes, and state-space modeling (including
ARCH/GARCH and stochastic volatility mod-
els) are being used in financial modeling.

Financial Statement Analysis
Much of the financial data that are used in
constructing financial models for forecasting
and valuation purposes draw from the finan-
cial statements that companies are required to
provide to investors. The four basic financial
statements are the balance sheet, the income
statement, the statement of cash flows, and
the statement of shareholders’ equity. It is im-
portant to understand these data so that the
information conveyed by them is interpreted
properly in financial modeling. The financial
statements are created using several assump-
tions that affect how to use and interpret the
financial data. The analysis of financial state-
ments involves the selection, evaluation, and



xxiv Preface

interpretation of financial data and other per-
tinent information to assist in evaluating the
operating performance and financial condition
of a company. The operating performance of a
company is a measure of how well a company
has used its resources—its assets, both tangible
and intangible—to produce a return on its in-
vestment. The financial condition of a company
is a measure of its ability to satisfy its obliga-
tions, such as the payment of interest on its
debt in a timely manner. There are many tools
available in the analysis of financial informa-
tion. These tools include financial ratio analysis
and cash flow analysis. Cash flows are essen-
tial ingredients in valuation. Therefore, under-
standing past and current cash flows may help
in forecasting future cash flows and, hence, de-
termine the value of the company. Moreover,
understanding cash flow allows the assessment
of the ability of a firm to maintain current divi-
dends and its current capital expenditure policy
without relying on external financing. Financial
modelers must understand how to use these fi-
nancial ratios and cash flow information in the
most effective manner in building models.

Finite Mathematics and Basic Functions
for Financial Modeling
The collection of mathematical tools that does
not include calculus is often referred to as
“finite mathematics.” This includes matrix
algebra, probability theory, and statistical anal-
ysis. Ordinary algebra deals with operations
such as addition and multiplication performed
on individual numbers. In financial modeling,
it is useful to consider operations performed on
ordered arrays of numbers. Ordered arrays of
numbers are called vectors and matrices while
individual numbers are called scalars. Prob-
ability theory is the mathematical approach
to formalize the uncertainty of events. Even
though a decision maker may not know which
one of the set of possible events may finally
occur, with probability theory a decision maker
has the means of providing each event with

a certain probability. Furthermore, it provides
the decision maker with the axioms to compute
the probability of a composed event in a
unique way. The rather formal environment
of probability theory translates in a reasonable
manner to the problems related to risk and
uncertainty in finance such as, for example, the
future price of a financial asset. Today, investors
may be aware of the price of a certain asset, but
they cannot say for sure what value it might
have tomorrow. To make a prudent decision,
investors need to assess the possible scenarios
for tomorrow’s price and assign to each sce-
nario a probability of occurrence. Only then can
investors reasonably determine whether the
financial asset satisfies an investment objective
included within a portfolio. Probability models
are theoretical models of the occurrence of
uncertain events. In contrast, statistics is about
empirical data and can be broadly defined as
a set of methods used to make inferences from
a known sample to a larger population that is
in general unknown. In finance, a particular
important example is making inferences from
the past (the known sample) to the future
(the unknown population). There are impor-
tant mathematical functions with which the
financial modeler should be acquainted. These
include the continuous function, the indicator
function, the derivative of a function, the
monotonic function, and the integral, as well
as special functions such as the characteristic
function of random variables and the factorial,
the gamma, beta, and Bessel functions.

Liquidity and Trading Costs
In broad terms, liquidity refers to the ability
to execute a trade or liquidate a position with
little or no cost or inconvenience. Liquidity de-
pends on the market where a financial instru-
ment is traded, the type of position traded, and
sometimes the size and trading strategy of an
individual trade. Liquidity risks are those as-
sociated with the prospect of imperfect mar-
ket liquidity and can relate to risk of loss or
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risk to cash flows. There are two main aspects
to liquidity risk measurement: the measure-
ment of liquidity-adjusted measures of mar-
ket risk and the measurement of liquidity risks
per se. Market practitioners often assume that
markets are liquid—that is, that they can liq-
uidate or unwind positions at going market
prices—usually taken to be the mean of bid
and ask prices—without too much difficulty or
cost. This assumption is very convenient and
provides a justification for the practice of mark-
ing positions to market prices. However, it is
often empirically questionable, and the failure
to allow for liquidity can undermine the mea-
surement of market risk. Because liquidity risk
is a major risk factor in its own right, port-
folio managers and traders will need to mea-
sure this risk in order to formulate effective
portfolio and trading strategies. A consider-
able amount of work has been done in the eq-
uity market in estimating liquidity risk. Because
transaction costs are incurred when buying or
selling stocks, poorly executed trades can ad-
versely impact portfolio returns and therefore
relative performance. Transaction costs are clas-
sified as explicit costs such as brokerage and
taxes, and implicit costs, which include market
impact cost, price movement risk, and opportu-
nity cost. Broadly speaking, market impact cost
is the price that a trader has to pay for obtain-
ing liquidity in the market and is a key com-
ponent of trading costs that must be modeled
so that effective trading programs for execut-
ing trades can be developed. Typical forecast-
ing models for market impact costs are based
on a statistical factor approach where the in-
dependent variables are trade-based factors or
asset-based factors.

VOLUME III
Model Risk and Selection
Model risk is the risk of error in pricing or
risk-forecasting models. In practice, model risk
arises because (1) any model involves simpli-

fication and calibration, and both of these re-
quire subjective judgments that are prone to er-
ror, and/or (2) a model is used inappropriately.
Although model risk cannot be avoided, there
are many ways in which financial modelers can
manage this risk. These include (1) recogniz-
ing model risk, (2) identifying, evaluating, and
checking the model’s key assumption, (3) se-
lecting the simplest reasonable model, (4) resist-
ing the temptation to ignore small discrepancies
in results, (5) testing the model against known
problems, (6) plotting results and employing
nonparametric statistics, (7) back-testing and
stress-testing the model, (8) estimating model
risk quantitatively, and (9) reevaluating mod-
els periodically. In financial modeling, model
selection requires a blend of theory, creativity,
and machine learning. The machine-learning
approach starts with a set of empirical data that
the financial modeler wants to explain. Data are
explained by a family of models that include
an unbounded number of parameters and are
able to fit data with arbitrary precision. There
is a trade-off between model complexity and
the size of the data sample. To implement this
trade-off, ensuring that models have forecast-
ing power, the fitting of sample data is con-
strained to avoid fitting noise. Constraints are
embodied in criteria such as the Akaike infor-
mation criterion or the Bayesian information
criterion. Economic and financial data are gen-
erally scarce given the complexity of their pat-
terns. This scarcity introduces uncertainty as
regards statistical estimates obtained by the fi-
nancial modeler. It means that the data might
be compatible with many different models with
the same level of statistical confidence. Methods
of probabilistic decision theory can be used to
deal with model risk due to uncertainty regard-
ing the model’s parameters. Probabilistic deci-
sion making starts from the Bayesian inference
process and involves computer simulations in
all realistic situations. Since a risk model is typi-
cally a combination of a probability distribution
model and a risk measure, a critical assump-
tion is the probability distribution assumed for
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the random variable of interest. Too often, the
Gaussian distribution is the model of choice.
Empirical evidence supports the use of proba-
bility distributions that exhibit fat tails such as
the Student’s t distribution and its asymmetric
version and the Pareto stable class of distribu-
tions and their tempered extensions. Extreme
value theory offers another approach for risk
modeling.

Mortgage-Backed Securities Analysis
and Valuation
Mortgage-backed securities are fixed-income
securities backed by a pool of mortgage loans.
Residential mortgage-backed securities (RMBS)
are backed by a pool of residential mortgage
loans (one-to-four family dwellings). The RMBS
market includes agency RMBS and nonagency
RMBS. The former are securities issued by
the Government National Mortgage Associa-
tion (Ginnie Mae), Fannie Mae, and Freddie
Mac. Agency RMBS include passthrough secu-
rities, collateralized mortgage obligations, and
stripped mortgage-backed securities (interest-
only and principal-only securities). The valua-
tion of RMBS is complicated due to prepayment
risk, a form of call risk. In contrast, nonagency
RMBS are issued by private entities, have no
implicit or explicit government guarantee, and
therefore require one or more forms of credit
enhancement in order to be assigned a credit
rating. The analysis of nonagency RMBS must
take into account both prepayment risk and
credit risk. The most commonly used method
for valuing RMBS is the Monte Carlo method,
although other methods have garnered favor,
in particular the decomposition method. The
analysis of RMBS requires an understanding of
the factors that impact prepayments.

Operational Risk
Operational risk has been regarded as a mere
part of a financial institution’s “other” risks.
However, failures of major financial entities

have made regulators and investors aware of
the importance of this risk. In general terms,
operational risk is the risk of loss resulting from
inadequate or failed internal processes, people,
or systems or from external events. This risk
encompasses legal risks, which includes, but is
not limited to, exposure to fines, penalties, or
punitive damages resulting from supervisory
actions, as well as private settlements. Opera-
tional risk can be classified according to several
principles: nature of the loss (internally inflicted
or externally inflicted), direct losses or indirect
losses, degree of expectancy (expected or unex-
pected), risk type, event type or loss type, and
by the magnitude (or severity) of loss and the
frequency of loss. Operational risk can be the
cause of reputational risk, a risk that can occur
when the market reaction to an operational loss
event results in reduction in the market value
of a financial institution that is greater than the
amount of the initial loss. The two principal
approaches in modeling operational loss dis-
tributions are the nonparametric approach and
the parametric approach. It is important to em-
ploy a model that captures tail events, and for
this reason in operational risk modeling, dis-
tributions that are characterized as light-tailed
distributions should be used with caution. The
models that have been proposed for assessing
operational risk can be broadly classified into
top-down models and bottom-up models. Top-
down models quantify operational risk without
attempting to identify the events or causes of
losses. Bottom-up models quantify operational
risk on a micro level, being based on identified
internal events. The obstacle hindering the im-
plementation of these models is the scarcity of
available historical operational loss data.

Optimization Tools
Optimization is an area in applied mathematics
that, most generally, deals with efficient algo-
rithms for finding an optimal solution among
a set of solutions that satisfy given constraints.
Mathematical programming, a management
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science tool that uses mathematical opti-
mization models to assist in decision making,
includes linear programming, integer program-
ming, mixed-integer programming, nonlinear
programming, stochastic programming, and
goal programming. Unlike other mathematical
tools that are available to decision makers such
as statistical models (which tell the decision
maker what occurred in the past), forecasting
models (which tell the decision maker what
might happen in the future), and simulation
models (which tell the decision maker what
will happen under different conditions),
mathematical programming models allow the
decision maker to identify the “best” solution.
Markowitz’s mean-variance model for port-
folio selection is an example of an application
of one type of mathematical programming
(quadratic programming). Traditional opti-
mization modeling assumes that the inputs
to the algorithms are certain, but there are
also branches of optimization such as robust
optimization that study the optimal decision
under uncertainty about the parameters of the
problem. Stochastic programming deals with
both the uncertainty about the parameters and
a multiperiod decision-making framework.

Probability Distributions
In financial models where the outcome of
interest is a random variable, an assumption
must be made about the random variable’s
probability distribution. There are two types
of probability distributions: discrete and
continuous. Discrete probability distributions
are needed whenever the random variable is
to describe a quantity that can assume values
from a countable set, either finite or infinite.
A discrete probability distribution (or law) is
quite intuitive in that it assigns certain values,
positive probabilities, adding up to one, while
any other value automatically has zero proba-
bility. Continuous probability distributions are
needed when the random variable of interest
can assume any value inside of one or more

intervals of real numbers such as, for example,
any number greater than zero. Asset returns,
for example, whether measured monthly,
weekly, daily, or at an even higher frequency
are commonly modeled as continuous random
variables. In contrast to discrete probability
distributions that assign positive probability to
certain discrete values, continuous probability
distributions assign zero probability to any sin-
gle real number. Instead, only entire intervals of
real numbers can have positive probability such
as, for example, the event that some asset return
is not negative. For each continuous probabil-
ity distribution, this necessitates the so-called
probability density, a function that determines
how the entire probability mass of one is dis-
tributed. The density often serves as the proxy
for the respective probability distribution. To
model the behavior of certain financial assets in
a stochastic environment, a financial modeler
can usually resort to a variety of theoretical
distributions. Most commonly, probability dis-
tributions are selected that are analytically well
known. For example, the normal distribution (a
continuous distribution)—also called the Gaus-
sian distribution—is often the distribution of
choice when asset returns are modeled. Or the
exponential distribution is applied to charac-
terize the randomness of the time between two
successive defaults of firms in a bond portfolio.
Many other distributions are related to them or
built on them in a well-known manner. These
distributions often display pleasant features
such as stability under summation—meaning
that the return of a portfolio of assets whose
returns follow a certain distribution again
follows the same distribution. However, one
has to be careful using these distributions since
their advantage of mathematical tractability
is often outweighed by the fact that the
stochastic behavior of the true asset returns
is not well captured by these distributions.
For example, although the normal distribution
generally renders modeling easy because all
moments of the distribution exist, it fails to
reflect stylized facts commonly encountered in
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asset returns—namely, the possibility of very
extreme movements and skewness. To remedy
this shortcoming, probability distributions
accounting for such extreme price changes
have become increasingly popular. Some of
these distributions concentrate exclusively on
the extreme values while others permit any real
number, but in a way capable of reflecting mar-
ket behavior. Consequently, a financial modeler
has available a great selection of probability
distributions to realistically reproduce asset
price changes. Their common shortcoming is
generally that they are mathematically difficult
to handle.

Risk Measures
The standard assumption in financial models is
that the distribution for the return on financial
assets follows a normal (or Gaussian) distri-
bution and therefore the standard deviation
(or variance) is an appropriate measure of risk
in the portfolio selection process. This is the
risk measure that is used in the well-known
Markowitz portfolio selection model (that is,
mean-variance model), which is the foundation
for modern portfolio theory. Mounting evi-
dence since the early 1960s strongly suggests
that return distributions do not follow a normal
distribution, but instead exhibit heavy tails
and, possibly, skewness. The “tails” of the dis-
tribution are where the extreme values occur,
and these extreme values are more likely than
would be predicted by the normal distribution.
This means that between periods where the
market exhibits relatively modest changes in
prices and returns, there will be periods where
there are changes that are much higher (that
is, crashes and booms) than predicted by the
normal distribution. This is of major concern to
financial modelers in seeking to generate prob-
ability estimates for financial risk assessment.
To more effectively implement portfolio se-
lection, researchers have proposed alternative
risk measures. These risk measures fall into

two disjointed categories: dispersion measures
and safety-first measures. Dispersion measures
include mean standard deviation, mean abso-
lute deviation, mean absolute moment, index
of dissimilarity, mean entropy, and mean colog.
Safety-first risk measures include classical
safety first, value-at-risk, average value-at-risk,
expected tail loss, MiniMax, lower partial
moment, downside risk, probability-weighted
function of deviations below a specified target
return, and power conditional value-at-risk.
Despite these alternative risk measures, the
most popular risk measure used in financial
modeling is volatility as measured by the
standard deviation. There are different types
of volatility: historical, implied volatility,
level-dependent volatility, local volatility,
and stochastic volatility (e.g., jump-diffusion
volatility). There are risk measures commonly
used for bond portfolio management. These
measures include duration, convexity, key rate
duration, and spread duration.

Software for Financial Modeling
The development of financial models requires
the modeler to be familiar with spreadsheets
such as Microsoft Excel and/or a platform to
implement concepts and algorithms such as
the Palisade Decision Tools Suite and other
Excel-based software (mostly @RISK1, Solver2,
VBA3), and MATLAB. Financial modelers can
choose one or the other, depending on their
level of familiarity and comfort with spread-
sheet programs and their add-ins versus pro-
gramming environments such as MATLAB.
Some tasks and implementations are easier in
one environment than in the other. MATLAB
is a modeling environment that allows for in-
put and output processing, statistical analysis,
simulation, and other types of model build-
ing for the purpose of analysis of a situa-
tion. MATLAB uses a number-array-oriented
programming language, that is, a program-
ming language in which vectors and matrices
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are the basic data structures. Reliable built-in
functions, a wide range of specialized tool-
boxes, easy interface with widespread software
like Microsoft Excel, and beautiful graphing ca-
pabilities for data visualization make imple-
mentation with MATLAB efficient and useful
for the financial modeler. Visual Basic for Appli-
cations (VBA) is a programming language en-
vironment that allows Microsoft Excel users to
automate tasks, create their own functions, per-
form complex calculations, and interact with
spreadsheets. VBA shares many of the same
concepts as object-oriented programming lan-
guages. Despite some important limitations,
VBA does add useful capabilities to spreadsheet
modeling, and it is a good tool to know because
Excel is the platform of choice for many finance
professionals.

Stochastic Processes and Tools
Stochastic integration provides a coherent way
to represent that instantaneous uncertainty (or
volatility) cumulates over time. It is thus fun-
damental to the representation of financial pro-
cesses such as interest rates, security prices, or
cash flows. Stochastic integration operates on
stochastic processes and produces random vari-
ables or other stochastic processes. Stochastic
integration is a process defined on each path as
the limit of a sum. However, these sums are dif-
ferent from the sums of the Riemann-Lebesgue
integrals because the paths of stochastic pro-
cesses are generally not of bounded variation.
Stochastic integrals in the sense of Itô are de-
fined through a process of approximation by
(1) defining Brownian motion, which is the con-
tinuous limit of a random walk, (2) defining
stochastic integrals for elementary functions as
the sums of the products of the elementary
functions multiplied by the increments of the
Brownian motion, and (3) extending this defi-
nition to any function through approximating
sequences. The major application of integra-
tion to financial modeling involves stochastic

integrals. An understanding of stochastic in-
tegrals is needed to understand an important
tool in contingent claims valuation: stochastic
differential equations. The dynamic of finan-
cial asset returns and prices can be expressed
using a deterministic process if there is no un-
certainty about its future behavior, or, with a
stochastic process, in the more likely case when
the value is uncertain. Stochastic processes in
continuous time are the most used tool to ex-
plain the dynamic of financial assets returns
and prices. They are the building blocks to con-
struct financial models for portfolio optimiza-
tion, derivatives pricing, and risk management.
Continuous-time processes allow for more ele-
gant theoretical modeling compared to discrete
time models, and many results proven in prob-
ability theory can be applied to obtain a simple
evaluation method.

Statistics
Probability models are theoretical models of
the occurrence of uncertain events. In contrast,
statistics is about empirical data and can be
broadly defined as a set of methods used to
make inferences from a known sample to a
larger population that is in general unknown. In
finance, a particular important example is mak-
ing inferences from the past (the known sam-
ple) to the future (the unknown population). In
statistics, probabilistic models are applied us-
ing data so as to estimate the parameters of
these models. It is not assumed that all param-
eter values in the model are known. Instead,
the data for the variables in the model to esti-
mate the value of the parameters are used and
then applied to test hypotheses or make infer-
ences about their estimated values. In financial
modeling, the statistical technique of regression
models is the workhorse. However, because re-
gression models are part of the field of financial
econometrics, this topic is covered in that topic
category. Understanding dependences or func-
tional links between variables is a key theme in
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financial modeling. In general terms, functional
dependencies are represented by dynamic
models. Many important models are linear
models whose coefficients are correlation coeffi-
cients. In many instances in financial modeling,
it is important to arrive at a quantitative mea-
sure of the strength of dependencies. The cor-
relation coefficient provides such a measure. In
many instances, however, the correlation coef-
ficient might be misleading. In particular, there
are cases of nonlinear dependencies that result
in a zero correlation coefficient. From the point
of view of financial modeling, this situation is
particularly dangerous as it leads to substan-
tially underestimated risk. Different measures
of dependence have been proposed, in partic-
ular copula functions. The copula overcomes
the drawbacks of the correlation as a measure
of dependency by allowing for a more general
measure than linear dependence, allowing for
the modeling of dependence for extreme events,
and being indifferent to continuously increas-
ing transformations. Another essential tool in
financial modeling, because it allows the incor-
poration of uncertainty in financial models and
consideration of additional layers of complex-
ity that are difficult to incorporate in analytical
models, is Monte Carlo simulation. The main
idea of Monte Carlo simulation is to represent
the uncertainty in market variables through sce-
narios, and to evaluate parameters of interest
that depend on these market variables in com-
plex ways. The advantage of such an approach
is that it can easily capture the dynamics of un-
derlying processes and the otherwise complex
effects of interactions among market variables.
A substantial amount of research in recent years
has been dedicated to making scenario genera-
tion more accurate and efficient, and a number
of sophisticated computational techniques are
now available to the financial modeler.

Term Structure Modeling
The arbitrage-free valuation approach to the
valuation of option-free bonds, bonds with em-

bedded options, and option-type derivative in-
struments requires that a financial instrument
be viewed as a package of zero-coupon bonds.
Consequently, in financial modeling, it is essen-
tial to be able to discount each expected cash
flow by the appropriate interest rate. That rate
is referred to as the spot rate. The term struc-
ture of interest rates provides the relationship
between spot rates and maturity. Because of its
role in valuation of cash bonds and option-type
derivatives, the estimation of the term struc-
ture of interest rates is of critical importance as
an input into a financial model. In addition to
its role in valuation modeling, term structure
models are fundamental to expressing value,
risk, and establishing relative value across the
spectrum of instruments found in the various
interest-rate or bond markets. The term struc-
ture is most often specified for a specific market
such as the U.S. Treasury market, the bond mar-
ket for double-A rated financial institutions,
the interest rate market for LIBOR, and swaps.
Static models of the term structure are char-
acterizations that are devoted to relationships
based on a given market and do not serve future
scenarios where there is uncertainty. Standard
static models include those known as the spot
yield curve, discount function, par yield curve,
and the implied forward curve. Instantiations of
these models may be found in both a discrete-
and continuous-time framework. An important
consideration is establishing how these term
structure models are constructed and how to
transform one model into another. In model-
ing the behavior of interest rates, stochastic dif-
ferential equations (SDEs) are commonly used.
The SDEs used to model interest rates must cap-
ture the market properties of interest rates such
as mean reversion and/or a volatility that de-
pends on the level of interest rates. For a one-
factor model, the SDE is used to model the
behavior of the short-term rate, referred to as
simply the “short rate.” The addition of another
factor (i.e., a two-factor model) involves extend-
ing the SDE to represent the behavior of the
short rate and a long-term rate (i.e., long rate).
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The entries can serve as material for a wide
spectrum of courses, such as the following:
� Financial engineering
� Financial mathematics
� Financial econometrics
� Statistics with applications in finance

� Quantitative asset management
� Asset and derivative pricing
� Risk management

Frank J. Fabozzi
Editor, Encyclopedia of Financial Models





Guide to the Encyclopedia of
Financial Models

The Encyclopedia of Financial Models provides
comprehensive coverage of the field of finan-
cial modeling. This reference work consists of
three separate volumes and 127 entries. Each
entry provides coverage of the selected topic
intended to inform a broad spectrum of read-
ers ranging from finance professionals to aca-
demicians to students to fiduciaries. To derive
the greatest possible benefit from the Encyclo-
pedia of Financial Models, we have provided this
guide. It explains how the information within
the encyclopedia can be located.

ORGANIZATION
The Encyclopedia of Financial Models is organized
to provide maximum ease of use for its readers.

Table of Contents
A complete table of contents for the entire en-
cyclopedia appears in the front of each volume.
This list of titles represents topics that have been
carefully selected by the editor, Frank J. Fabozzi.
The Preface includes a more detailed descrip-
tion of the volumes and the topic categories that
the entries are grouped under.

Index
A Subject Index for the entire encyclopedia is
located at the end of each volume. The sub-

jects in the index are listed alphabetically and
indicate the volume and page number where
information on this topic can be found.

Entries
Each entry in the Encyclopedia of Financial Mod-
els begins on a new page, so that the reader may
quickly locate it. The author’s name and affilia-
tion are displayed at the beginning of the entry.
All entries in the encyclopedia are organized
according to a standard format, as follows:

� Title and author
� Abstract
� Introduction
� Body
� Key points
� Notes
� References

Abstract
The abstract for each entry gives an overview of
the topic, but not necessarily the content of the
entry. This is designed to put the topic in the
context of the entire Encyclopedia, rather than
give an overview of the specific entry content.

Introduction
The text of each entry begins with an intro-
ductory section that defines the topic under
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discussion and summarizes the content. By
reading this section, the reader gets a general
idea about the content of a specific entry.

Body
The body of each entry explains the purpose,
theory, and math behind each model.

Key Points
The key points section provides in bullet point
format a review of the materials discussed in

each entry. It imparts to the reader the most
important issues and concepts discussed.

Notes
The notes provide more detailed information
and citations of further readings.

References
The references section lists the publications
cited in the entry.
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Abstract: Dividends are cash payments made by a corporation to its owners. Though cash dividends
are paid to both preferred and common shareholders, most of the focus of the attention is on the
dividends paid to the residual owners of the corporation, the common shareholders. Dividends
paid to common and preferred shareholders are not legal obligations of a corporation, and some
corporations do not pay cash dividends. But for those companies that pay dividends, changes in
dividends are noticed by investors—increases in dividends are viewed favorably and are associated
with increases in the company’s stock price, whereas decreases in dividends are viewed quite
unfavorably and are associated with decreases in the company’s stock price. Most models that use
dividends in the estimation of stock value use current dividends, some measure of historical or
projected dividend growth, and an estimate of the required rate of return. Popular models include
the basic dividend discount model that assumes a constant dividend growth, and the multiple-
phase models, which include the two-stage dividend growth model and the stochastic dividend
discount models.

In this entry, we discuss dividend discount
models and their limitations. We begin with a
review of the various ways to measure divi-
dends and then take a look at how dividends
and stock prices are related.

DIVIDEND MEASURES
Dividends are measured using three different
measures:

� Dividends per share
� Dividend yield
� Dividend payout

The value of a share of stock today is the in-
vestors’ assessment of today’s worth of future
cash flows for each share. Because future cash
flows to shareholders are dividends, we need a
measure of dividends for each share of stock to
estimate future cash flows per share. The divi-
dends per share is the dollar amount of dividends
paid out during the period per share of common
stock:

Dividends per share

= Dividends
Number of shares outstanding
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4 Equity Models and Valuation

If a company has paid $600,000 in dividends
during the period and there are 1.5 million
shares of common stock outstanding, then

Dividends per share = $600,000
1,500,000 shares

= $0.40 per share

The company paid out 40 cents in dividends
per common share during this period.

The dividend yield, the ratio of dividends to
price, is

Dividend yield

= Annual cash dividends per share
Market price per share

The dividend yield is also referred to as the
dividend-price ratio. Historically, the dividend
yield for U.S. stocks has been a little less than
5%, according to a study by Campbell and
Shiller (1998). In an exhaustive study of the re-
lation between dividend yield and stock prices,
Campbell and Shiller find that:

� There is a weak relation between the divi-
dend yield and subsequent 10-year dividend
growth.

� The dividend yield does not forecast future
dividend growth.

� The dividend yield predicts future price
changes.

The weak relation between the dividend yield
and future dividends may be attributed to
the effects of the business cycle on dividend
growth. The tendency for the dividend yield to
revert to its historical mean has been observed
by researchers.

Another way of describing dividends paid
out during a period is to state the dividends
as a portion of earnings for the period. This is
referred to as the dividend payout ratio:

Dividend payout ratio

= Dividends
Earnings available to common shareholders

If a company pays $360,000 in dividends and
has earnings available to common shareholders

of $1.2 million, the payout ratio is 30%:

Dividend payout ratio = $360,000
$1,200,000

= 0.30 or 30%

This means that the company paid out 30% of
its earnings to shareholders.

The proportion of earnings paid out in div-
idends varies by company and industry. For
example, the companies in the steel industry
typically pay out 25% of their earnings in div-
idends, whereas the electric utility companies
pay out approximately 75% of their earnings in
dividends.

If companies focus on dividends per share
in establishing their dividends (e.g., a constant
dividends per share), the dividend payout will
fluctuate along with earnings. We generally ob-
serve that companies set the dividend policy
such that dividends per share grow at a rela-
tively constant rate, resulting in dividend pay-
outs that fluctuate.

DIVIDENDS AND STOCK
PRICES
If an investor buys a common stock, he or she
has bought shares that represent an ownership
interest in the corporation. Shares of common
perpetual security—there is no maturity. The
investor who owns shares of common stock
has the right to receive a certain portion of any
dividends—but dividends are not a sure thing.
Whether or not a corporation pays dividends
is up to its board of directors—the represen-
tatives of the common shareholders. Typically,
we see some pattern in the dividends compa-
nies pay: Dividends are either constant or grow
at a constant rate. But there is no guarantee that
dividends will be paid in the future.

Preferred shareholders are in a similar situa-
tion as the common shareholders. They expect
to receive cash dividends in the future, but the
payment of these dividends is up to the board of
directors. But there are three major differences
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between the dividends of preferred and com-
mon shares. First, the dividends on preferred
stock usually are specified at a fixed rate or dol-
lar amount, whereas the amount of dividends is
not specified for common shares. Second, pre-
ferred shareholders are given preference: their
dividends must be paid before any dividends
are paid on common stock. Third, if the pre-
ferred stock has a cumulative feature, dividends
not paid in one period accumulate and are car-
ried over to the next period. Therefore, the div-
idends on preferred stock are more certain than
those on common shares.

It is reasonable to figure that what an investor
pays for a share of stock should reflect what
he or she expects to receive from it—return on
the investor’s investment. What an investor re-
ceives are cash dividends in the future. How
can we relate that return to what a share of
common stock is worth? Well, the value of a
share of stock should be equal to the present
value of all the future cash flows an investor ex-
pects to receive from that share. To value stock,
therefore, an investor must project future cash
flows, which, in turn, means projecting future
dividends. This approach to the valuation of
common stock is referred to as the discounted
cash flow approach and the models used are
referred to as dividend discount models.

Dividend discount models are not the only
approach to valuing common stock. There are
fundamental factor models, also referred to as
multifactor equity models.

BASIC DIVIDEND DISCOUNT
MODELS
As discussed above, the basis for the dividend
discount model (DDM) is simply the applica-
tion of present value analysis, which asserts that
the fair price of an asset is the present value of
the expected cash flows. This model was first
suggested by Williams (1938). In the case of
common stock, the cash flows are the expected

dividend payouts. The basic DDM model can
be expressed mathematically as:

P = D1

(1 + r1)1 + D2

(1 + r2)2 + · · · (1)

where

P = the fair value or theoretical value of the
common stock

Dt = the expected dividend for period t
rt = the appropriate discount or

capitalization rate for period t

The dividends are expected to be received
forever.

Practitioners rarely use the dividend discount
model given by equation (1). Instead, one of the
DDMs discussed below is typically used.

THE FINITE LIFE GENERAL
DIVIDEND DISCOUNT
MODEL
The DDM given by equation (1) can be modi-
fied by assuming a finite life for the expected
cash flows. In this case, the expected cash flows
are the expected dividend payouts and the ex-
pected sale price of the stock at some future
date. The expected sale price is also called the
terminal price and is intended to capture the fu-
ture value of all subsequent dividend payouts.
This model is called the finite life general DDM
and is expressed mathematically as:

P = D1

(1 + r1)1 + D2

(1 + r2)2 + · · · + DN

(1 + rN)N

+ PN

(1 + rN)N
(2)

where

PN = the expected sale price (or terminal
price) at the horizon period N

N = the number of periods in the horizon

and P, Dt, and rt are the same as defined above.
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Assuming a Constant Discount Rate
A special case of the finite life general DDM
that is more commonly used in practice is one
in which it is assumed that the discount rate
is constant. That is, it is assumed each rt is the
same for all t. Denoting this constant discount
rate by r, equation (2) becomes:

P = D1

(1 + r )1 + D2

(1 + r )2 + · · · + DN

(1 + r )N

+ PN

(1 + r )N
(3)

Equation (3) is called the constant discount rate
version of the finite life general DDM. When
practitioners use any of the DDM models pre-
sented in this entry, typically the constant dis-
count rate version form is used.

Let’s illustrate the finite life general DDM as-
suming a constant discount rate assuming each
period is a year. Suppose that the following data
are determined for stock XYZ by a financial
analyst:

D1 = $2.00 D2 = $2.20 D3 = $2.30

D4 = $2.55 D5 = $2.65

P5 = $26 N = 5 r = 0.10

Based on these data, the fair price of stock
XYZ is

P = $2.00
(1.10)1 + $2.20

(1.10)2 + $2.30
(1.10)3 + $2.55

(1.10)4

+ $2.65
(1.10)5 + $26.00

(1.10)5 = $24.895

Required Inputs
The finite life general DDM requires three fore-
casts as inputs to calculate the fair value of a
stock:

1. The expected terminal price (PN)
2. The dividends up to the assumed horizon

(D1 to DN)
3. The discount rates (r1 to rN) or r (in the case

of the constant discount rate version)

Thus the relevant question is, How accurately
can these inputs be forecasted?

The terminal price is the most difficult of the
three forecasts. According to theory, PN is the
present value of all future dividends after N;
that is, DN+1, DN+2, . . . , Dinfinity. Also, the fu-
ture discount rate (rt) must be forecasted. In
practice, forecasts are made of either dividends
(DN) or earnings (EN) first, and then the price
PN is estimated by assigning an “appropriate”
requirement for yield, price-earnings ratio, or
capitalization rate. Note that the present value
of the expected terminal price PN/(1 + r)N be-
comes very small if N is very large.

The forecasting of dividends is “somewhat”
easier. Usually, past history is available, man-
agement can be queried, and cash flows can be
projected for a given scenario. The discount rate
r is the required rate of return. Forecasting r is
more complex than forecasting dividends, al-
though not nearly as difficult as forecasting the
terminal price (which requires a forecast of fu-
ture discount rates as well). As noted above, in
practice for a given company r is assumed to be
constant for all periods and typically generated
from the capital asset pricing model (CAPM).
The CAPM provides the expected return for a
company based on its systematic risk (beta).

Assessing Fair Value
Given the fair price derived from a dividend
discount model, the assessment of the stock
proceeds along the following lines. If the mar-
ket price is below the fair price derived from
the model, the stock is undervalued or cheap.
The opposite holds for a stock whose market
price is greater than the model-derived price.
In this case, the stock is said to be overvalued
or expensive. A stock trading equal to or close
to its fair price is said to be fairly valued.

The DDM tells us the fair price but does not
tell us when the price of the stock should be
expected to move to this fair price. That is, the
model says that based on the inputs generated
by the analyst, the stock may be cheap, expen-
sive, or priced appropriately. However, it does
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not tell us that if it is mispriced how long it will
take before the market recognizes the mispric-
ing and corrects it. As a result, an investor may
hold on to a stock perceived to be cheap for an
extended period of time and may underperform
a benchmark during that period.

While a stock may be mispriced, an investor
must also consider how mispriced it is in order
to take the appropriate action (buy a cheap stock
and sell or sell short an expensive stock). This
will depend on the degree of mispricing and
transaction costs.

CONSTANT GROWTH
DIVIDEND DISCOUNT
MODEL
If future dividends are assumed to grow at a
constant rate (g) and a single discount rate (r) is
used, then the finite life general DDM assuming
a constant growth rate given by equation (3)
becomes

P = D0(1 + g)1

(1 + r )1 + D0(1 + g)2

(1 + r )2 + D0(1 + g)3

(1 + r )3 + · · ·

+ D0(1 + g)N

(1 + r )N
+ PN

(1 + r )N
(4)

and it can be shown that if N is assumed to
approach infinity, equation (4) is equal to:

P = D0(1 + g)
r − g

(5)

Equation (5) is the constant growth dividend dis-
count model (Gordon and Shapiro, 1956). An
equivalent formulation for the constant growth
DDM is

P = D1

r − g
(6)

where D1 is equal to D0(1 + g).
Consider a company that currently pays div-

idends of $3.00 per share. If the dividend is ex-
pected to grow at a rate of 3% per year and the
discount rate is 12%, what is the value of a share
of stock of this company? Using equation (5),

P = $3.00(1 + 0.03)
0.12 − 0.03

= $3.09
0.09

= $34.33

If the growth rate for this company’s dividends
is 5%, instead of 3%, the current value is $45.00:

P = $3.00(1 + 0.05)
0.12 − 0.05

= $3.15
0.07

= $45.00

Therefore, the greater the expected growth rate
of dividends, the greater the value of a share of
stock.

In this last example, if the discount rate is 14%
instead of 12% and the growth rate of dividends
is 3%, the value of a share of stock is:

P = $3.00(1 + 0.03)
0.14 − 0.03

= $3.09
0.11

= $28.09

Therefore, the greater the discount rate, the lower
the current value of a share of stock.

Let’s apply the model as given by equation
(5) to estimate the price of three companies:
Eli Lilly, Schering-Plough, and Wyeth Labora-
tories. The discount rate for each company was
estimated using the capital asset pricing model
assuming (1) a market risk premium of 5% and
(2) a risk-free rate of 4.63%. The market risk pre-
mium is based on the historical spread between
the return on the market (often proxied with the
return on the S&P 500 Index) and the risk-free
rate. Historically, this spread has been approxi-
mately 5%. The risk-free rate is often estimated
by the yield on U.S. Treasury securities. At the
end of 2006, 10-year Treasury securities were
yielding approximately 4.625%. We use 4.63%
as an estimate for the purposes of this illustra-
tion. The beta estimate for each company was
obtained from the Value Line Investment Sur-
vey: 0.9 for Eli Lilly, 1.0 for Schering-Plough and
Wyeth. The discount rate, r, for each company
based on the CAPM is:

Eli Lilly r = 0.0463 + 0.9 (0.05) = 9.125%
Schering-Plough r = 0.0463 + 1.0 (0.05) = 9.625%
Wyeth r = 0.0463 + 1.0 (0.05) = 9.625%

The dividend growth rate can be estimated by
using the compounded rate of growth of histor-
ical dividends.
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The compound growth rate, g, is found using
the following formula:

g =
(

Last dividend
Starting dividend

)1/no. of years

− 1

This formula is equivalent to calculating the ge-
ometric mean of 1 plus the percentage change
over the number of years. Using time value of
money math, the 2006 dividend is the future
value, the starting dividend is the present value,
the number of years is the number of periods;
solving for the interest rate produces the growth
rate.

Substituting the values for the starting and
ending dividend amounts and the number of
periods into the formula, we get:

1991 2006
Estimated
annual

Company dividend dividend growth rate

Eli-Lilly $0.50 $1.60 8.063%
Schering-Plough $0.16 $0.22 2.146%
Wyeth $0.60 $1.01 3.533%

The value of D0, the estimate for g, and the dis-
count rate r for each company are summarized
below:

Company

Current
dividend
D0

Estimated
annual
growth
rate g

Required
rate of
return r

Eli-Lilly $1.60 8.063% 9.125%
Schering-Plough $0.22 2.146% 9.625%
Wyeth $1.01 3.533% 9.625%

Substituting these values into equation (5), we
obtain:

Eli Lilly estimated price = $1.60 (1 + 0.08063)
0.09125 − 0.08063

= $1.729
0.0162

= $162.80

Schering-Plough estimated price

= $0.22 (1 + 0.02146)
0.09625 − 0.02146

= $0.225
0.07479

= $3.00

Wyeth estimated price = $1.01 (1 + 0.03533)
0.09625 − 0.03533

= $1.046
0.06092

= $17.16

Comparing the estimated price with the ac-
tual price, we see that this model does not do a
good job of pricing these stocks:

Estimated Actual price
price at the at the end

Company end of 2006 of 2006

Eli Lilly $162.80 $49.87
Schering-Plough $3.00 $23.44
Wyeth $17.16 $50.52

Notice that the constant growth DDM is consid-
erably off the mark for all three companies. The
reasons include: (1) the dividend growth pat-
tern for none of the three companies appears
to suggest a constant growth rate, and (2) the
growth rate of dividends in recent years has
been much slower than earlier years (and, in
fact, negative for Schering-Plough after 2003),
causing growth rates estimated from the long
time periods to overstate future growth. And
this pattern is not unique to these companies.

Another problem that arises in using the con-
stant growth rate model is that the growth rate
of dividends may exceed the discount rate, r.
Consider the following three companies and
their dividend growth over the 16-year period
from 1991 through 2006, with the estimated re-
quired rates of return:

Company
1991
dividend

2006
dividend

Estimated
growth
rate g

Estimated
required
rate of
return

Coca
Cola

$0.24 $1.24 11.70% 7.625%

Hershey $0.24 $1.03 10.198% 7.875%
Tootsie
Roll

$0.04 $0.31 14.627% 8.625%

For these three companies, the growth rate of
dividends over the prior 16 years is greater than
the discount rate. If we substitute the D0 (the
2006 dividends), the g, and the r into equation
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(5), the estimated price at the end of 2006 is
negative, which doesn’t make sense. Therefore,
there are some cases in which it is inappropriate
to use the constant rate DDM.

The potential for misvaluation using the con-
stant rate DDM is highlighted by Fogler (1988)
in his illustration using ABC prior to its be-
ing taken over by Capital Cities in 1985. He
estimated the value of ABC stock to be $53.88,
which was less than its market price at the time
(of $64) and less than the $121 paid per share by
Capital Cities.

MULTIPHASE DIVIDEND
DISCOUNT MODELS
The assumption of constant growth is unrealis-
tic and can even be misleading. Instead, most
practitioners modify the constant growth DDM
by assuming that companies will go through
different growth phases. Within a given phase,
dividends are assumed to grow at a constant
rate. Molodovsky, May, and Chattiner (1965)
were some of the pioneers in modifying the
DDM to accommodate different growth rates.

Two-Stage Growth Model
The simplest form of multi-phase DDM is the
two-stage growth model. A simple extension
of equation (4) uses two different values of g.
Referring to the first growth rate as g1 and the
second growth rate as g2 and assuming that the
first growth rate pertains to the next four years
and the second growth rate refers to all years
following, equation (4) can be modified as:

P = D0(1 + g1)1

(1 + r )1 + D0(1 + g1)2

(1 + r )2 + D0(1 + g1)3

(1 + r )3

+ D0(1 + g1)4

(1 + r )4 + D0(1 + g1)5

(1 + r )5 + D0(1 + g1)6

(1 + r )6 + · · ·

which simplifies to:

P = D0(1 + g1)1

(1 + r )1 + D0(1 + g1)2

(1 + r )2 + D0(1 + g1)3

(1 + r )3

+ D0(1 + g1)4

(1 + r )4 + P4

Because dividends following the fourth year are
presumed to grow at a constant rate g2 forever,
the value of a share at the end of the fourth year
(that is, P4) is determined by using equation (5),
substituting D0(1 + g1)4 for D0 (because period
4 is the base period for the value at end of the
fourth year) and g2 for the constant rate g:

P = D0(1 + g1)1

(1 + r )1 + D0(1 + g1)2

(1 + r )2 + D0(1 + g1)3

(1 + r )3

+ D0(1 + g1)4

(1 + r )4 +
[

1
(1 + r )4

(
D0(1 + g1)4(1 + g2)

r − g2

)]

(7)

Suppose a company’s dividends are expected
to grow at 4% rate for the next four years and
then 8% thereafter. If the current dividend is
$2.00 and the discount rate is 12%,

P = $2.08
(1 + 0.12)1 + $2.16

(1 + 0.12)2 + $2.25
(1 + 0.12)3

+ $2.34
(1 + 0.12)4 +

[
1

(1 + 0.12)4

(
$2.53

0.12 − 0.08

)]

= $46.87

If this company’s dividends are expected to
grow at the rate of 4% forever, the value of
a share is $26.00; if this company’s dividends
are expected to grow at the rate of 8% forever,
the value of a share is $52.00. But because the
growth rate of dividends is expected to increase
from 4% to 8% in four years, the value of a share
is between those two values, or $46.87.

As you can see from this example, the ba-
sic valuation model can be modified to accom-
modate different patterns of expected dividend
growth.

Three-Stage Growth Model
The most popular multiphase model employed
by practitioners appears to be the three-stage
DDM. (The formula for this model is derived in
Sorensen and Williamson [1985].) This model
assumes that all companies go through three
phases, analogous to the concept of the product
life cycle. In the growth phase, a company ex-
periences rapid earnings growth as it produces
new products and expands market share. In the
transition phase the company’s earnings begin
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to mature and decelerate to the rate of growth of
the economy as a whole. At this point, the com-
pany is in the maturity phase in which earn-
ings continue to grow at the rate of the general
economy.

Different companies are assumed to be at
different phases in the three-phase model.
An emerging growth company would have a
longer growth phase than a more mature com-
pany. Some companies are considered to have
higher initial growth rates and hence longer
growth and transition phases. Other compa-
nies may be considered to have lower current
growth rates and hence shorter growth and
transition phases.

In the typical investment management orga-
nization, analysts supply the projected earn-
ings, dividends, growth rates for earnings, and
dividend and payout ratios using fundamental
security analysis. The growth rate at maturity
for the entire economy is applied to all compa-
nies. As a generalization, approximately 25% of
the expected return from a company (projected
by the DDM) comes from the growth phase,
25% from the transition phase, and 50% from
the maturity phase. However, a company with
high growth and low dividend payouts shifts
the relative contribution toward the maturity
phase, while a company with low growth and
a high payout shifts the relative contribution
toward the growth and transition phases.

STOCHASTIC DIVIDEND
DISCOUNT MODELS
As we noted in our discussion and illustration
of the constant growth DDM, an erratic divi-
dend pattern such as that of Wyeth can lead
to quite a difference between the estimated
price and the actual price. In the case of the
pharmaceutical companies, the estimated price
overstated the actual price for Eli Lilly, but
understated the price of Schering-Plough and
Wyeth.

Hurley and Johnson (1998a, 1998b) have sug-
gested a new family of valuation model. Their

model allows for a more realistic pattern of divi-
dend payments. The basic model generates div-
idend payments based on a model that assumes
that either the firm will increase dividends for
the period by a constant amount or keep div-
idends the same. The model is referred to as
a stochastic DDM because the dividend can in-
crease or be constant based on some estimated
probability of each possibility occurring. The
dividend stream used in the stochastic DDM is
called the stochastic dividend stream.

There are two versions of the stochastic DDM.
One assumes that dividends either increase or
decrease at a constant growth rate. This ver-
sion is referred to as a binomial stochastic DDM
because there are two possibilities for divi-
dends. The second version is called a trino-
mial stochastic DDM because it allows for an
increase in dividends, no change in dividends,
and a cut in dividends. We discuss each version
below.

Binomial Stochastic Model
For both the binomial and trinomial stochastic
DDM, there are two versions of the model—the
additive growth model and the geometric
growth model. The former model assumes that
dividend growth is additive rather than geo-
metric. This means that dividends are assumed
to grow by a constant dollar amount. So, for
example, if dividends are $2.00 today and the
additive growth rate is assumed to be $0.25
per year, then next year dividends will grow
to $2.25, in two years dividends will grow to
$2.50, and so on. The second model assumes a
geometric rate of dividend growth. This is the
same growth rate assumption used in the ear-
lier DDMs presented in this entry.

Binomial Additive Stochastic Model
This formulation of the model is expressed as
follows:

Dt+1 =
{

Dt + C with probability p

Dt with probability 1 − p
for t = 1, 2, . . .



DIVIDEND DISCOUNT MODELS 11

where

Dt = dividend in period t
Dt + 1 = dividend in period t+1

C = dollar amount of the dividend increase
p = probability that the dividend will

increase
Hurley and Johnson (1998a) have shown that

the theoretical value of the stock based on the
additive stochastic DDM assuming a constant
discount rate is equal to:

P = D0

r
+

[
1
r

+ 1
r2

]
Cp (8)

For example, consider once again Wyeth. In
the illustration of the constant growth model,
we used D0 of $1.01 and a g of 3.533%. We es-
timate C by calculating the dollar increase in
dividends for each year that had a dividend in-
crease and then taking the average dollar div-
idend increase. The average of the increases is
$0.0373.

In the 15-year span 1991 through 2006,
dividends increased 11 of the 14 year-to-year
differences. Therefore, p = 11/15 = 73.3333%.
Substituting these values into equation (8), we
find the estimated price to be:

P = $1.01
0.09625

+
[(

1
0.09125

+ 1
0.091252

)
($0.03727)

(
11
15

)]

P = $10.49351+ [(118.336) ($0.3727) (0.73333)]

P = $10.49351 + $3.23682 = $13.73033

Applying this model to the other two phar-
maceutical companies, we see that the model
produces an estimated price that is closer to the
actual price than the fair value based on the
constant growth model:

Company

Actual
price at
the end
of 2006

Estimated
price at the
end of 2006
using a
constant
growth
model

Estimated
price at the
end of 2006
using the
binomial
additive
stochastic
model

Eli Lilly $49.87 $162.79 $29.94
Schering-Plough $23.44 $3.00 $11.04
Wyeth $50.52 $17.16 $13.73

Binomial Geometric Stochastic Model
Letting g be the growth rate of dividends, then
the geometric dividend stream is

Dt+1 =
{

Dt(1 + g) with probability p

Dt with probability 1 − p
for t = 1, 2, . . .

Hurley and Johnson (1998b) show that the price
of the stock in this case is:

P = D0(1 + pg)
r − pg

(9)

Equation (9) is the binomial stochastic DDM as-
suming a geometric growth rate and a constant
discount rate.

Trinomial Stochastic Models
The trinomial stochastic DDM allows for divi-
dend cuts. Within the Hurley-Johnson stochas-
tic DDM framework, Yao (1997) derived this
model that allows for a cut in dividends. He
notes that is not uncommon for a firm to cut
dividends temporarily. In fact, an examination
of the dividend record of the electric utilities
industry as published in Value Line Industry Re-
view found that in the aggregate firms cut divi-
dends three times over a 15-year period.

Trinomial Additive Stochastic Model
The additive stochastic DDM can be extended
to allow for dividend cuts as follow:

Dt+1 =

⎧
⎪⎨

⎪⎩

Dt + C with probability pU

Dt − C with probability pD

Dt with probability
1 − pC = 1 − pU − pD

for t = 1, 2, . . .

where

pU = probability that the dividend will
increase

pD = probability that the dividend will
decrease

pC = probability that the dividend will be
unchanged

The theoretical value of the stock based on
the trinomial additive stochastic DDM then



12 Equity Models and Valuation

becomes:

P = D0

r
+

[
1
r

+ 1
r2

]
C(pU − pD) (10)

Notice that when pD is zero (that is, there is no
possibility for a cut in dividends), equation (10)
reduces to equation (8).

Trinomial Geometric Stochastic Model
For the trinomial geometric stochastic DDM al-
lowing for a possibility of cuts, we have:

Dt+1 =

⎧
⎪⎨

⎪⎩

Dt(1 + g) with probability pU

Dt(1 − g) with probability pD

Dt with probability 1 − pC

= 1 − pU − pD

for t = 1, 2, . . .

and the theoretical price is:

P = D0[1 + (pU + pD)]
r − (pU − pD)g

(11)

Once again, substituting zero for pD, equation
(11) reduces to equation (9)—the binomial geo-
metric stochastic DDM.

Applications of the Stochastic DDM
Yao (1997) applied the stochastic DDMs to five
electric utility stocks that had regular dividends
from 1979 to 1994 and found that the models fit
the various utility stocks differently.

We see similar results in an updated example
using five electric utilities, as shown in Table 1.
For three of the five utilities, the binomial model
provides an estimate closest to the actual stock
price, whereas for the other two utilities, the
trinomial model offers the closest estimate. In

none of the cases, however, did the constant div-
idend growth model offer the closest approxi-
mation to the actual stock price.

Advantages of the Stochastic DDM
The stochatic DDM developed by Hurley and
Johnson is a powerful tool for the analyst
because it allows the analyst to generate a prob-
ability distribution for a stock’s value. The prob-
ability distribution can be used by an analyst
to assess whether a stock is sufficiently mis-
priced to justify a buy or sell recommenda-
tion. For example, suppose that a three-phase
DDM indicates that the value of a stock trad-
ing at $35 is $42. According to the model, the
stock is underpriced and the analyst would
recommend the purchase of this stock. How-
ever, the analyst cannot express his or her con-
fidence as to the degree to which the stock is
undervalued.

Hurley and Johnson show how the stochas-
tic DDM can be used to overcome this limita-
tion of traditional DDMs. An analyst can use
the derived probability distribution from the
stochastic DDM to assess the probability that
the stock is undervalued. For example, an an-
alyst may find from a probability distribution
that the probability that the stock is greater than
$35 (the market price) is 90%.

To employ a stochastic DDM an analyst must
be prepared to make subjective assumptions
about the uncertain nature of future dividends.
Monte Carlo simulation available on a spread
sheet (@RISK in Excel, for example) can then be
used to generate the probability distribution.

Table 1 Fit of the Different Dividend Models Applied to Five Electric Utilities

Company
Consolidated
Edison

Dominion
Resources FPL Group PPL

TECO
Energy

Actual stock price, end of 2006 $45.82 $40.73 $52.98 $34.89 $16.46

Estimated stock price given the . . .

Constant dividend growth model $33.57 $19.36 $22.14 $16.54 $7.46
Binomial stochastic dividend model $43.59 $30.51 $36.12 $28.30 $23.02
Trinomial stochastic dividend model $63.12 $25.84 $41.23 $23.71 $14.45
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EXPECTED RETURNS AND
DIVIDEND DISCOUNT
MODELS
Thus far, we have seen how to calculate the
fair price of a stock given the estimates of
dividends, discount rates, terminal prices, and
growth rates. The model-derived price is then
compared to the actual price and the appropri-
ate action is taken.

The analysis can be recast in terms of expected
return. This is found by calculating the return
that will make the present value of the expected
cash flows equal to the actual price. Mathemat-
ically, this is expressed as follows:

PA = D1

(1 + ER)1 + D2

(1 + ER)2 + · · · + DN

(1 + ER)N

+ PN

(1 + ER)N
(12)

where

PA = actual price of the stock
ER = expected return

The expected return (ER) in equation (12). For
example, consider the following inputs used at
the outset of this entry to illustrate the finite
life general DDM as given by equation (3). For
stock XYZ, the inputs assumed are:

D1 = $2.00 D2 = $2.20 D3 = $2.30
D4 = $2.55 D5 = $2.65 P5 = $26 N = 5

We calculated a fair price based on equation
(3) to be $24.90. Suppose that the actual price
is $25.89. Then the expected return is found by
solving the following equation for ER:

$25.89 = $2.00
(1 + ER)

+ $2.20
(1 + ER)2 + $2.30

(1 + ER)3

+ $2.55
(1 + ER)4 + $2.65

(1 + ER)5 + $26.00
(1 + ER)5

The expected return is 9%.
The expected return is the discount rate

that equates the present value of the expected
future cash flows with the present value of the
stock. The higher the expected return—for a
given set of future cash flows—the lower the

$40
If the stock is trading at $25.89 per share,

the expected return is 9%

If the stock is trading at $23.95,
the expected return is 11%
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Figure 1 The Relation between the Fair Value of
a Stock and the Stock’s Expected Return

current value. The relation between the fair
value of a stock and the expected return of a
stock is shown in Figure 1.

Given the expected return and the required re-
turn (that is, the value for r), any mispricing can
be identified. If the expected return exceeds the
required return, then the stock is undervalued;
if it is less than the required return then the stock
is overvalued. A stock is fairly valued if the ex-
pected return is equal to the required return. In
our illustration, the expected return (9%) is less
than the required return (10%); therefore, stock
XYZ is overvalued.

With the same set of inputs, the identifica-
tion of a stock being mispriced or fairly valued
will be the same regardless of whether the fair
value is determined and compared to the mar-
ket price or the expected return is calculated and
compared to the required return. In the case of
XYZ stock, the fair value is $24.90. If the stock is
trading at $25.89, it is overvalued. The expected
return if the stock is trading at $25.89 is 9%,
which is less than the required return of 10%.
If, instead, the stock price is $24.90, it is fairly
valued. The expected return can be shown to be
10%, which is the same as the required return.
At a price of $23.95, it can be shown that the ex-
pected return is 11%. Since the required return
is 10%, stock XYZ would be undervalued.

While the illustration above uses the basic
DDM, the expected return can be computed for
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any of the models. In some cases, the calculation
of the expected return is simple since a formula
can be derived that specifies the expected return
in terms of the other variables. For example, for
the constant growth DDM given by equation
(5), the expected return (r) can be easily solved
to give:

r = D1

P
+ g

Rearranging the constant growth model to
solve for the expected return, we see that the re-
quired rate of return can be specified as the sum
of the dividend yield and the expected growth
rate of dividends.

KEY POINTS
� Dividends are measured in a number of

ways, including dividends per share, divi-
dend yield, and dividend payout.

� The discounted cash flow approach to valu-
ing common stock requires projecting future
dividends. Hence, the model used to value
common stock is called a dividend discount
model.

� The simplest dividend discount model is the
constant growth model. More complex mod-
els include the multiphase model and stochas-
tic models.

� Stock valuation using a dividend discount
model is highly dependent on the inputs
used.

� A dividend discount model does not indicate
when the current market price will reach its
fair value.

� The output of a dividend discount model is
the fair price. However, the model can be used
to generate the expected return.

� The expected return is the interest rate that
will make the present value of the expected

dividends plus terminal price equal to the
stock’s market price. The expected return
is then compared to the required return to
assess whether a stock is fairly priced in the
market.
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Discounted Cash Flow Methods for
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Abstract: Most applied methods of valuing a firm’s equity are based on discounted cash flow and
relative valuation models. Although stock and firm valuation is very strongly tilted toward the
use of discounted cash flow methods, it is impossible to ignore the fact that many analysts use other
methods to value equity and entire firms. The primary alternative valuation method is relative
valuation. Both discounted cash flow and relative valuation methods require strong assumptions
and expectations about the future. No one single valuation model or method is perfect. All valuation
estimates are subject to model error and estimation error.

Sound investing requires that an investor does
not pay more for an asset than its worth. There
are those who argue that value is in the eyes
of the beholder, which is simply not true when
it comes to financial assets. Perceptions may be
all that matter when the asset is an art object or
antique automobile, but investors should not
buy financial assets for aesthetic or emotional
reasons; financial assets are acquired for the
cash flows expected from them in future peri-
ods. Consequently, perceptions of value have to
be backed up by reality, which implies that the
price paid for any financial asset should reflect
the cash flows that it is expected to generate.

Realize that at the end of the most careful and
detailed valuation, there will be uncertainty
about the final numbers, biased as they are by
the assumptions that we make about the future
of the company and the economy. It is unreal-
istic to expect or demand absolute certainty in
valuation, since cash flows and discount rates

are estimated with error. This also means that
you have to give yourself a reasonable margin
for error in making recommendations on the ba-
sis of valuations. Most importantly, realize that
the degree of precision in valuations is likely
to vary widely across investments. For exam-
ple, the valuation of a large and mature com-
pany, with a long financial history, will usually
be much more precise than the valuation of a
young company or of a company that is in a
sector that is in turmoil.

Implicit often in the act of valuation is the
assumption that markets make mistakes and
that we can find these mistakes, often using in-
formation that tens of thousands of other in-
vestors can access. Thus, the argument that
those who believe that markets are inefficient
should spend their time and resources on val-
uation whereas those who believe that markets
are efficient should take the market price as the
best estimate of value, seems to be reasonable.

15
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This statement, though, does not reflect the in-
ternal contradictions in both positions. Those
who believe that markets are efficient may still
feel that valuation has something to contribute,
especially when they are called upon to value
the effect of a change in the way a firm is run or
to understand why market prices change over
time.

Furthermore, it is not clear how markets
would become efficient in the first place, if in-
vestors did not attempt to find under- and over-
valued stocks and trade on these valuations.
In other words, a precondition for market effi-
ciency seems to be the existence of millions of
investors who believe that markets are not.

Stock-pricing models are not physical or
chemical laws of nature. There is, however, a
strong principle of investing that must eventu-
ally hold true for all firms over time if they are to
have a positive value. This principle is that you
should always be able, in your mind, to con-
struct some sort of logical connection between
a positive stock price today and a stream of fu-
ture cash flows to the investor. The logical chain
might be long. You might assume that years of
start-up losses (earnings are zero or negative)
will be followed by more years of all profits be-
ing reinvested. But you should be able to envi-
sion some connection between today’s positive
stock price and a stream of cash flows that will
commence someday in the future.

In this entry, we discuss practical methods of
valuing a firm’s equity based on discounted
cash flow (DCF) models. Although stock and
firm valuation is very strongly tilted toward
the use of DCF methods, it is impossible to ig-
nore the fact that many analysts use other meth-
ods to value equity and entire firms. The DCF
model is the subject of this entry. The primary
alternative valuation method is relative valua-
tion (RV). Both DCF and RV valuation methods
require strong assumptions and expectations
about the future. No one single valuation model
or method is perfect. All valuation estimates
are subject to model error and estimation er-
ror. Nevertheless, investors use these models to
help form their expectations about a fair market

price. Markets then generate an observable mar-
ket clearing price based on investor expecta-
tions, and this market clearing price constantly
changes along with investor expectations.

DIVIDEND DISCOUNT
MODEL
The dividend discount model (DDM) is the most
basic DCF stock approach to equity valua-
tion, originally formulated by Williams (1938).
It states that the stock price should equal the
present value of all expected future dividends
into perpetuity under the assumption that a
firm has an infinite life. But you may also have
ignored the DDM once you recognized how dif-
ficult it is to apply in the real world. The next
several paragraphs simply review the basic con-
cepts in order to highlight the complexities that
surround implementing the DDM in practice.

Consider an investor who buys a share of
stock, planning to hold it for one year. As you
know from previous studies, the intrinsic value
of the share is the present value, P(0), of the ex-
pected dividend to be received at the end of the
first year, ED(1), and the expected sales price,
EP(1).

P(0) = [ED(1) + EP(1)]/(1 + R) (1)

Keep in mind that since we live in a world of
uncertainty and no human can perfectly fore-
cast the future, future prices and dividends are
unknown. Specifically, we are dealing with ex-
pected values, not certain values. Under the
assumption that dividends can be predictable,
given a company’s dividend history, the ex-
pected future dividend in the next period,
ED(1), can be estimated based on historical
trends. You might ask how we can estimate
EP(1), the expected year-end price.

According to equation (1), the year-end intrin-
sic value, P(1), will be

P(1) = [ED(2) + EP(2)]/(1 + R) (2)

If we assume the stock will be selling for its
intrinsic value next year, then P(1) = EP(1), and
we can substitute equation (2) into equation (1),
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which gives

P(0) = ED(1)/(1 + R) + [ED(2)

+ EP(2)]/(1 + R)2 (3)

Equation (3) may be interpreted as the present
value of dividends plus the expected sales price
at the end of a two-year holding period. Of
course, now we need to come up with a forecast
of EP(2). Continuing in the same way, we can re-
place the expected price at the end of two years
by the intrinsic value at the end of two years.
That is, replace EP(2) by [ED(3) + E P(3)]/(1 +
R), which relates P(0) to the value of dividends
over three years plus the expected sales price at
the end of a three-year holding period.

More generally, for a holding period of T
years, we can write the stock value as the
present value of dividends over the T years dis-
counted at an appropriate discount rate, R, that
is assumed to remain constant, plus the present
value of the ultimate sales price, E P(T):

P(0) = ED(1)/(1 + R) + ED(2)/(1 + R)2 + · · ·
+ [ED(T) + EP(T)]/(1 + R)T (4)

In short, the intrinsic price of a share of stock is
the present value of a stream of payments (divi-
dends in the case of stocks) and a final payment
(the sales price of the stock at time T).

The key problems with implementing this
model are the uncertainty of future dividends,
the lack of a fixed maturity date, and the un-
known sales price at the horizon date and the
appropriate discount rate. Indeed, one can con-
tinue to substitute for a terminal price on out to
infinity (INF):

P(0) = ED(1)/(1 + R) + ED(2)/(1 + R)2 + · · ·
+ ED(INF)/(1 + R)INF (5)

Equation (5) states that the stock price should
equal the present value of all expected future
dividends in perpetuity. This formula is the
DDM in mathematical form. It is tempting, but
incorrect, to conclude from the equation that the
DDM focuses exclusively on dividends and ig-
nores capital gains as a motive for investing in
stock. Indeed, we assume explicitly in equation

(4), the finite version of the DDM, that capital
gains (as reflected in the expected sales price,
EP(T)) are part of the stock’s value. EP(T) is
the present value at time T of all dividends ex-
pected to be paid after the horizon date. That
value is then discounted back to today, time T
= 0. The DDM asserts that stock prices are de-
termined ultimately by the cash flows accruing
to stockholders, and those are dividends.

Stocks That Currently Pay
No Dividend
If investors never expected a dividend to be
paid, then this model implies that the stock
would have no value. To reconcile the fact that
stocks not paying a current dividend do have
a positive market value with this model, one
must assume that investors expect that some-
day, at some time T, the firm must pay out some
cash, even if only a liquidating dividend.

CONSTANT-GROWTH DDM
The general form of the DDM, as it stands, is
still not very useful in valuing a stock because
it requires dividend forecasts for every year into
the indefinite future. To make the DDM practi-
cal, we need to introduce some simplifying as-
sumptions. One useful and common first pass
at the problem is to assume that dividends are
trending upward at a stable or constant growth
rate, g.

For example, if g = 0.05 and the most recently
paid dividend was D(0) = 3.81, expected future
dividends are

ED(1) = D(0)(1 + g) = (3.81)(1.05) = 4.00

ED(2) = D(0)(1 + g)2 = (3.81)(1.05)2 = 4.20

ED(3) = D(0)(1 + g)3 = (3.81)(1.05)3 = 4.41

and so on. Using these dividend forecasts, we
can solve for intrinsic value as

P(0) = ED(1)/(1 + R) + ED(2)/(1 + R)2

+ ED(3)/(1 + R)3 + · · ·
Since the basic form of this equation stretches

to infinity, basic algebra allows this equation to
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be written as

P(0) = ED(1)/(R − g) (6)

Equation (6) is called the constant-growth
DDM, or the Gordon-Shapiro model, after My-
ron Gordon and Eli Shapiro, who popularized
the model [see Gordon (1962) and Gordon and
Shapiro (1956)].

Equation (6) should remind you of the for-
mula for the present value of perpetuity. If divi-
dends were expected not to grow, g = 0, then the
dividend stream would be a simple perpetuity,
and the valuation formula would be

P(0) = ED(1)/R

P(0) = ED(1)/(R − g) is a generalization of the
perpetuity formula to cover the case of a per-
petuity growing at a constant rate, g. As g in-
creases, for a given value of ED(1), the stock
price rises. The constant-growth DDM is valid
only when g is less than R. If dividends were
expected to grow forever (to infinity) at a rate
faster than R, the value of the stock would be
infinite. Further, in all of the DDM equations
presented, R is also assumed to be constant
forever.

NONCONSTANT-GROWTH
DDM
If you feel that you know the future growth
rates in each period for a firm, then you can
certainly use unique growth rates, g(T) and re-
quired rates of return, R(T), in the present value
equation and discount all unique dividends and
future selling price back to the present. The
problem becomes one of time, effort, and es-
timation risk. At some future point in time,
what you believe to be a better unique esti-
mate of a future dividend or a future discount
rate will in reality be no better than an assump-
tion of constant growth and constant discount
rate.

INTUITION BEHIND
THE DDM
In a market economy, common sense dictates
that you should go into business only if you
expect to make money. In a sole proprietor-
ship, everything left over from the revenue you
earned, minus expenses, is yours. In other forms
of a business organization, you need to be a bit
more formal because there are other owners.
In a partnership, partners draw money out of
the business. And shareholders get money out
of a corporation by receiving dividends. Using
the corporate form as an example, the value per
share is determined by the value of the divi-
dends distributed to each shareholder. That is,
the value per share is determined by the present
value of each shareholder’s expected share of
the profits.

Here is a simple example that illustrates sev-
eral of the uncertainties involved with the basic
DCF valuation process for a share of common
stock. Let’s say you consider buying shares of
a corporation. How much will you pay if the
expected annual dividend forever is $10 per
share? That depends on how much of an annual
“return” you want. If you want a 10% return,
you’ll offer $100 (that is, a $10 dividend divided
by a $100 investment equals a return of 10%).
But just because you offer to pay $100 doesn’t
mean someone will sell to you at that price.

Financial capital is subject to principles of
market supply and demand, just like commodi-
ties. Suppose market conditions are such that
prevailing rates of return for corporate shares
in this particular risk class are in the 5% range.
If I’m selling stock that commands a $10 per
share dividend I can demand a price of $200,
and someone will give it to me. Suppose this
corporation is a bit riskier than most others.
A buyer may say, “If I’m willing to accept the
prevailing 5% return, there are hundreds upon
hundreds of better-quality corporations I can
invest in. So if you want me to buy your shares,
you need to give me incentive to bypass all the
others. The buyer and seller may settle on a 7%
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return, which is equivalent to a price of about
$143. The appropriate required rate of return, R,
is therefore critical, and R can vary with market
conditions.

In all cases, assuming that the life of the cor-
poration is infinite, the current price, P(0), is
computed as the constant dividend in perpetu-
ity, D, divided by the required rate of return, R,
that is, the present value of all future constant
dividends. Often, though, investors use return,
R, as the basis for comparing and pricing in-
vestments. R is often estimated from observable
information as D (dividend) divided by current
price P(0). Mathematically, it looks like this:

R = D/P(0)

You’ve seen this before. It is the dividend yield.

COMPLICATIONS IN
IMPLEMENTING THE DDM
IN THE REAL WORLD
As you can see by now, there are essentially four
major issues that complicate finding the present
value of all future dividends and, therefore, in
implementing the DDM.

Expected Growth of Dividends
As profits grow over time (as we hope they
will), dividends can be expected to grow and
not remain constant forever. If profits and divi-
dends are growing by 10% every year, the div-
idend this year may be $10, but by next year,
it will be $11. If we divide $11 by today’s $200
purchase price, next year’s yield will be 5.5%
(11/200). The year after, assuming further 10%
growth, the dividend will be $12.10. Dividing
that by the $200 purchase price produces a yield
of 6.05%. The buyer might smile, but the seller
won’t accept it. The seller wants a price that
truly is consistent with the prevailing 5% yield.
At $200, the buyer gets too much of a good deal.
If the latter holds the stock over time, he’ll wind
up with an annual return well in excess of 5%.

Appropriate Expected Required
Rate of Return
Simply stated, present value is a tool for com-
puting today’s equivalent of a cash payment to
be made tomorrow. As stated earlier, this is of-
ten referred to as DCF valuation. If I offer you
$10 today or $10 a year from now, you’ll prob-
ably choose $10 today. But if the choice is $10
today or $11.50 a year from now, you have to
pause. If you can invest today’s $10 payment
for one year at 5%, at the end of the year you’ll
have $10.50. But if you bypass the $10 for now
and wait, you can get $11.50 a year hence. That’s
a better deal. The way to decide if you should
wait is to do some mathematics that helps you
decide how much you must receive today to
allow you to invest and wind up with $11.50 a
year hence. In this example, the “present value”
of $11.50 one year from now, assuming a 5% re-
turn, is $10.95. If I take $10.95 and invest it for
one year at 5%, I’ll wind up with $11.50 at the
end of the year. If interest rates rise, to say 8%,
it’ll take less money today to generate $11.50
a year hence ($10.65 will be sufficient). So as
interest rates rise, present values fall, and vice
versa.

Expected Future Selling Price
Thus far, we have thought about a stream of
dividends stretching into the infinite future.
Even long-term investors prefer a holding pe-
riod that’s something short of infinity. So we
need to account for the fact that someday you’ll
want to sell your shares. As such, the proceeds
you expect to get when you sell are included,
along with dividends, in the stream of cash you
expect to get, and that goes into the present
value calculation.

Let’s think about a projection of the future sale
price. If you think you may sell in two years,
imagine how a prospective buyer, two years
into the future, will value the dividend stream
that he’ll get. Continuing with the preceding
example, he’ll be looking at an initial payout of
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$12.10 and a 5% return. So a price of $244 seems
a reasonable starting point. Of course, you’ll
need to make adjustments for probable growth
beyond year two. And perhaps 5% won’t be ap-
propriate as a rate of return. Market rates may
rise or fall, and/or the quality of the corpora-
tion may improve or deteriorate relative to al-
ternative investments. And two years hence, the
growth forecast may change. But in any case, we
do have a $244 starting point. The changes may
bring it up, perhaps to $275, or down, possibly
to $175. But if an exuberant analyst publishes
a target price of $1,000, you ought to raise an
eyebrow and insist that the analyst get serious
about justifying his presumably bold assump-
tions about market rates, growth, or company
quality.

Reinvestment of Profits/Internal
Financing that Support Growth
It is standard for corporations to refrain from
paying out all annual profit as dividend. Some
money is held in the business for a rainy day.
And some money is simply reinvested for fu-
ture growth. Either way, profits not paid out
as dividends are known as retained earnings.
Reinvestment is more desirable than dividend
payments if the corporation can earn a higher
return on the money than the shareholder could
get (by reinvesting the dividends). If all goes
well, the reinvestment will enable the corpo-
ration to pay a higher dividend in the future
than would otherwise have been the case. Go-
ing back to the preceding example, if reinvest-
ment gives the corporation the ability to set a
year-five payout at $18 rather than $12.10, that
raises the starting-point target price to $360.
A shareholder who accepts a forecast like that
would likely forgo all or some immediate div-
idend payments in order to get that bigger
future reward. As you can see, even if a corpo-
ration currently pays little or no dividend, we
still have to acknowledge dividends as a major
factor in our thoughts about share pricing.

For better or worse, many corporations now
see themselves as “growth” companies. And
many shareholders have accepted a situation
where these publicly traded growth companies
pay out very little of their profits, if anything,
as dividends, and reinvest most or all profits
back into the business. Many companies do not
deliver nearly as well on the growth dream as
everybody hopes. But the growth culture re-
mains alive and well, and the dividend payout
ratio has declined.

ADAPTING TO THE
COMPLICATIONS: THE
EARNINGS PER SHARE
APPROACH
As a result of the four complications listed,
modern stock prices have become uncoupled
from dividends. So, in the real world, it is dif-
ficult to compute a fair price through the basic
dividend formulas presented.

Here is one solution. It involves substituting
earnings per share (EPS) for dividends. This
doesn’t really work in a theoretical DDM sense,
but it does work within the context of a growth
culture. Shareholders have so thoroughly ac-
cepted and adopted growth that they act as if
all corporate EPS (whether paid as dividends
or reinvested back into the business) is in their
hands. So, instead of working with a dividend
yield as presented earlier, we can substitute
an earnings (E) yield, which is computed as
follows:

Earnings Yield = E/P

Does the E/P ratio look familiar? It should. Turn
it upside down and we get something you see
all the time: the P/E (price/earnings) ratio.

It is important to emphasize that P/E ratios
are not just one of those things we use for the
heck of it. They have a serious and solid in-
tellectual underpinning. They are equivalent
to earnings yields, which are the modern-day
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substitute for dividend yields—the true basis
for valuing ownership of corporate stock. So
when somebody states that P/E ratios are no
longer relevant, you’d best turn away. Buying
any stock without addressing the P/E ratio is
not sensible.

When we flip P/E back over and think of earn-
ings yield, we can understand, from the prior
discussion of dividend yield, that a bad com-
pany’s stock will have to offer a higher yield
to attract buyers. Similarly, the yield for a great
company will be low (otherwise, there would be
too many would-be buyers). Let’s see how this
works when we flip the earnings yields back to
P/Es.

If EPS equals $3.00 and the earnings yield is
5%, the price will be $60. If it’s a bad company
and the yield is higher, at 8%, the stock price
will be $37.50. If it’s a good company and the
yield is lower, say 3%, the stock price will be
$100. The starting number translates to a P/E as
follows: a $60 price divided by $3.00 EPS gives
us a P/E of 20. A bad-company stock price of
$37.50 divided by EPS of $3.00 produces a P/E
of 12.5. A good-company stock price of $100
divided by EPS of $3.00 produces a P/E of 33.3.

That’s the basis for the generally recognized
phenomenon of good stocks having higher
P/Es and bad stocks generally having lower
P/Es. So, once again, this isn’t just one of those
things. It’s an inevitable result of the basic prin-
ciples of finance and math. When evaluating
companies, good or bad is usually determined
based on growth prospects and risk.

We handled the complicating factors by treat-
ing EPS as if it were the same as a dividend.
But notwithstanding, we still have a reason-
ably rational basis for stock prices. We can ar-
gue over what the growth prospects are and
what the market return ought to be (based on
differing assessments of market conditions and
company-quality issues). So there will always
be disagreement on what, exactly, a fair stock
price ought to be. But all rational investors
should be somewhere in the same ballpark. We
may have a big ballpark and debate if a stock

that commands $25 today is worth $15 or $35.
But we are unlikely to seriously consider a price
of, say, $350.

FREE CASH FLOW DCF
MODEL—TOTAL FIRM
VALUATION
While estimating future cash flows to an indi-
vidual share of stock can seem daunting, some
investors prefer to estimate the free cash flow
to the entire firm. Doing this allows investors
to estimate the value of the entire firm and
then “back out” an estimated value of a share
of stock. This is called the free cash flow (FCF)
model. While legitimate accounting rules do
enable managers and auditors some range of
choices, at the end of the day, good companies
wind up looking good and bad companies wind
up looking bad. In short, there’s no one number
in an income report that truly gives you the nec-
essary information to value a firm from a dis-
counted expected future cash flow viewpoint.
You still have to select which type of cash flow
you’re going to look at. But the choice becomes
very easy once you ask yourself the following
question: What’s my specific purpose for want-
ing to know how a company is doing?

There are many different types of users of fi-
nancial information, and each is best served by
concentrating on the information most relevant
to him/her. Let’s look at various kinds of num-
bers and consider what they say, and what types
of investors will find them most useful.

Generally accepted accounting principles
(GAAP) is a set of formal rules that produces
what most of us have come to accept as the
most official, or standard, version of income
that a public corporation can report. Novices
often believe this is the only valid number and
are perplexed to learn otherwise. Essentially,
GAAP is simple: Revenues minus costs equal
profits. But the world is a complex place. For
our convenience, we divide our activities into
time periods. In a simple world, all costs would
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be incurred in the same period as the revenues
with which they are associated. But that is often
not the case, so accountants have to find ways
to identify which expenses should be matched
against which revenues. One example is depre-
ciation, a concept used to allocate multiperiod
costs of a given expense to all the periods in
which the expense generates revenue (e.g., if
a factory can produce revenue for 10 years,
charge one-tenth of the cost to build it against
revenue in each year).

Observers correctly note that depreciation
rules are artificial, and advocate use of other
performance measures that are supposedly
more “real.” We’ll touch on this later. But for
now, it’s important to understand that depre-
ciation rules are motivated by good purpose.
They, and other GAAP rules, are designed to
paint a picture of the “economic” performance
of the business, something that is not necessar-
ily the same as a running tally of physical dol-
lars coming in and going out within a specific
period of time.

If you are looking to see how a company is
doing because you want to form an opinion
as to whether or not it has a track record of
“success” (defined however you wish), GAAP
income is very important to you.

As noted, many investors do not like GAAP
because of the artificial nature of depreciation.
Their objection is valid. GAAP is, indeed, im-
perfect. Companies have latitude to determine
how to calculate it. They don’t always use an
equal allocation for each year. It’s difficult, if not
impossible, to reliably estimate useful life, espe-
cially since assets are usually enhanced (that is,
factories modernized) as time passes, thereby
giving rise to extended life and additional de-
preciable expenses tacked on. An assumption
that at the end of the depreciation period the as-
set will be worth zero, or some predetermined
salvage value, is often untrue in the real world.
And besides, there are other kinds of “artifi-
cial” revenue-expense matching formulations
to cover other situations. But depreciation is
usually the biggest objection.

Difference between Cash Flow and
Free Cash Flow

The response is often to add depreciation back
to net income to calculate cash flow. This can be
a trap for the unwary. The phrase “cash flow”
sounds comforting. After all, how much more
reliable a gauge of performance can you seek
than cash in minus cash out? Read the warn-
ing label closely. Is the cash flow you’re seeing
truly computed by adding depreciation back
to net income? If that’s what’s happening, be
very careful. Companies spend money to en-
hance their assets every year. Because it is un-
derstood that the benefits of these expenditures
will span many years, they are not put on the in-
come statement in any single year. So, in truth,
simple cash flow understates a company’s true
cash-in minus cash-out situation. The solution
lies in the firm’s free cash flow. To arrive at a
firm’s FCF, we start with net income, add back
the noncash depreciation charge, and then sub-
tract the year’s capital-spending outlays. (There
are other adjustments, such as those relating
to dividends and changes in net working capi-
tal; but for now, these simple adjustments will
suffice.)

Once you hone in on FCF, you aren’t likely
to be misled regarding liquidity. But that
does not mean you are learning about general
corporate success or failure. Capital-spending
programs aren’t “smooth.” In some years, ex-
penditures are very large as major programs
ramp up. In other years, capital spending
shrinks as these programs wind down toward
completion. If we’re in a heavy-spending year,
FCF could be negative, even though the com-
pany may be having a great year.

DCF valuation depends on the construction
of pro forma financial statements in order to
estimate a firm’s future cash flows. Pro forma
is Latin for “as if.” This measure shows how a
company might perform in the future “as if” it
performs as it has in the past and other assump-
tions that are made by the analyst. In any event,
it is necessary to construct pro forma financial



DISCOUNTED CASH FLOW METHODS FOR EQUITY VALUATION 23

statements in order to estimate future free cash
flows that are the basis for total firm valuation.

CALCULATING FCF
Operating cash flow (OCF) is defined as be-
ing equal to earnings before interest and taxes
(EBIT) minus taxes plus depreciation. Note,
though, that cash flows cannot be maintained
over time unless depreciating fixed assets are
replaced. That is, the firm must reinvest in those
assets that are depreciating (wearing out) so
that it can stay alive. Interest paid or any other
financing costs such as dividends or principal
repaid are not subtracted because we are inter-
ested in the cash flow generated by the assets
of the firm. The particular mixture of debt and
equity a firm actually chooses to use is a man-
agerial decision and determines how the OCF
is distributed between owners (equity holders)
and creditors (debt holders). The mixture also
determines the firm’s weighted average cost of
capital (WACC), which impacts the firm’s value
through the discount rate.

OCF = EBIT − Taxes + Depreciation

Net operating profit after tax (NOPAT) is de-
fined as EBIT minus taxes.

NOPAT = EBIT − Taxes = EBIT × (1 − Tax rate)

As a result, OCF can also be written as NOPAT
plus any noncash adjustments. Where depreci-
ation is the only noncash adjustment:

OCF = NOPAT + Depreciation

Free cash flow is defined as being the cash flow
actually available for distribution to investors
after the company has made all the investments
in fixed assets and working capital necessary to
sustain ongoing operations. To be more specific,
the value of a company’s operations depends
on all the future expected FCFs, defined as OCF
minus the amount of investment in working
capital and fixed assets necessary to sustain the
business. Thus, FCF represents the cash that is
actually available for distribution to investors.

Therefore, the way for managers to make their
companies more valuable is to create a sustain-
able increase in the firm’s FCF.

FCF = OCF − Change in NWC

− Gross investment in operating capital

Let’s illustrate this. Assume a firm has NOPAT
of $170.3 million. Its OCF is NOPAT plus any
noncash adjustments as shown on the statement
of cash flows. Where depreciation is the only
noncash charge, the operating cash flow is:

OCF = NOPAT + Depreciation

= $170.3 + $100 = $270.3 million

Further, assume the firm had $1,455 million of
operating assets, or operating capital, at the end
of the year, but $1,800 million at the end of the
next year. Therefore, during the year:

Net investment in operating capital

= $1, 800 − $1, 455 = $345 million

However, the firm took $100 million of depreci-
ation. We find the gross investment in operating
capital as follows:

Gross investment in operating capital

= Net investment + Depreciation

= $345 + $100 = $445 million

FCF in the year is:

CF = OCF − Gross investment in operating capital

= $270.3 − $445 = −$174.7 million (Negative FCF)

Even though the firm had a positive OCF, its
very high investment in operating capital re-
sulted in a negative FCF. Since FCF is what is
available for distribution to investors, not only
was there nothing for investors, but investors
actually had to provide more money to the firm
to keep the business going.

Is a negative FCF always bad? It depends on
why the FCF was negative. If FCF was neg-
ative because NOPAT was negative, this is a
bad sign, because the company probably is ex-
periencing operating problems. Exceptions to
this might be start-up companies, or companies
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Table 1 Free Cash Flow Statement: Indirect Method

Net Income (Net Earnings)
+ Depreciation Depreciation is a noncash expense, and therefore is added back to

calculate cash flows.
− Increase in accounts receivable (A/R) The increase in A/R represents sales that have not yet been collected,

and therefore did not produce a cash inflow.
− Increase in inventories The increase in inventory has not been recognized as part of cost of

goods sold (COGS) but was fully paid for, and therefore is deducted
from the cash flow.

+ Increase in accounts payable (A/P) The increase in A/P represents costs that have not yet been paid, and
therefore is added back to the cash flow.

+ Increase in taxes payable Like the increase in A/P, these taxes have not yet been paid.
+ After-tax interest expense We want to evaluate the operating side of the business and its financial

side separately. The interest payment is a financial expense, and
therefore we add back the “net interest cost.”

= Operating cash flow (OCF)
− Gross investment in property, plant,

and equipment (PP&E), at cost
Some of the cash from operations must be used to buy the assets, such

as equipment and plants that will allow the firm to generate future
income. This is cash that cannot be freely used to pay dividends, to
buy back shares, to repay loans, and the like, and therefore is
deducted from the OCF to arrive at the FCF.

= Free cash flow (FCF) This is the cash that the firm can use to distribute to any and all of its
suppliers of capital, such as stockholders, debt holders, and warrant
holders.

that are incurring significant current expenses
to launch a new product line. Also, many high-
growth companies have positive NOPAT but
negative FCF due to new investment in operat-
ing assets needed to support growth. There is
nothing wrong with profitable growth, but at
some point in time FCF must turn positive in
order for a firm to have value. We will see this
later in a firm valuation example.

USING THE CASH-FLOW
STATEMENT TO ARRIVE AT
OCF AND FCF
As stated earlier, FCF is a concept that defines
the amount of cash that the firm can distribute
to security holders. There are two principal
techniques to calculate the FCF—the indirect
method and the direct method. Tables 1 and 2

Table 2 Free Cash-Flow Statement: Direct Method

Sales As recorded on the Income Statement
− COGS+SG&A Cost of goods sold (COGS) + Selling, general and administrative

expenses (SG&A)
− Increase in accounts receivable (A/R) Credit sales are recorded as income but do not generate a cash inflow.

Thus, to adjust “sales” to cash basis, we deduct the increase in A/R.
− Increase in inventory Inventory was paid for and thus represents a cash drain.
+ Increase in accounts payable (A/P) A/P are expenses not yet paid.
+ Depreciation Depreciation is not a cash expense and is netted out.
− Tax on operating income The difference between taxes on operating income and the increase in

taxes payable is the tax shield on interest, which we don’t want to
include in the OCF

+ Increase in taxes payable
= Operating cash flow (OCF)
− Gross investment in property, plant &

equipment (PP&E) at cost
= Free cash flow (FCF)
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illustrate the direct and the indirect methods of
converting accounting earnings into FCFs. The
indirect approach first converts the net income
(NI) to OCF then to FCF. The direct approach
converts each item in the income statement to
cash basis.

The indirect method of calculating cash flows
starts with the firm’s NI and makes appropriate
adjustments to arrive at a number that shows
how much cash the firm has taken in over the
period. The adjustments that have to be made to
NI are of two types—operational adjustments
and financial adjustments. When a firm pays
interest, net income is defined as

NI = EBIT − Interest − Taxes

NI = EBT − Taxes

The following adjustments must be made in or-
der to present the results of the business activity
of the firm on a cash basis as explained later in
this entry.

Adjustments for Changes in Net
Working Capital
Adjustments for changes in net working capi-
tal (ANWC) are made because not all the sales
are made in cash and because not all the firm’s
expenses are paid out in cash. The term and
notation are somewhat misleading: Not all the
firm’s working capital items are operationally
related; since we are interested in cash derived
from the ongoing business activity of the firm,
we ignore all other current items in our ANWC.
Cash and marketable securities are the best ex-
ample of working capital items that we ex-
clude from our definition of ANWC, as they
are the firm’s stock of excess liquidity. Another
working capital item that we exclude from the
adjustment is notes payable or short-term bor-
rowing. Since our aim in the FCF statement
is to calculate the cash available to the firm
from its business activities, we exclude from the
FCF statement any cash flows relating to the

firm’s financing activities—short term or long
term.

Adjustments for Investment in New
Fixed Assets
When investment in these assets is necessary
for the ongoing business activity of the firm, it
cannot be used to pay security holders and thus
must be deducted to calculate the FCF.

Adjustments for Depreciation and
Other Noncash Expenses
Although depreciation is an expense for tax
and financial reporting purposes (thus lower-
ing earnings before taxes [EBT] and hence prof-
its after taxes—[NI]), it is by itself not a cash
expense. In the FCF statement, we thus add the
depreciation back to NI. The remaining effect
of depreciation and other noncash expenses on
the FCF is the tax savings they entail.

Financial Adjustments
Financial adjustments are adjustments for fi-
nancial items included in NI. Since FCF is a
concept that relates to the ongoing business (as
opposed to financial) activities of the firm, we
want to neutralize financial items when con-
verting NI into FCF. Thus, for example, al-
though NI includes interest as an expense, we
will add back the after-tax interest expenses to
obtain the FCF.

The concept of FCF is of cash flows that are
generated by the business activities of the firm
and are available (that is, “free”) for distribu-
tion to all suppliers of capital, such as equity
holders, bondholders, convertible holders, and
preferred stockholders. The calculation of ac-
counting earnings (net income), however, is
done from the point of view of shareholders,
which is only one group of capital suppliers.

After calculating the FCFs, we consider their
uses. The FCFs can be paid to any secu-
rity holder of the firm, such as debt holders,
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Table 3 Cash Flow Statement

Periodic payments Interest
Preferred dividend
Regular dividend
And so on

These periodic payments to the capital
suppliers of the firm are after tax! (The free
cash flows [FCFs] from which we pay these
financial flows are also after-tax cash flows!)

Capital market transactions Retirement of securities
Debt retirement
Preferred stock retirement
Share repurchase
And so on
New financing
New bank loans
New bond flotation
Stock sale
Exercise of warrants
And so on

These sums represent cash paid when old
securities are retired or represent cash
received when new securities are affiliated
(privately or publicly).

Change in cash =FCF − financial cash flows

stockholders, warrant holders, and convertible
bondholders.

The cash flows paid to the security hold-
ers are the financial cash flows, which include
interest, dividends, principal repayment, share
repurchases, and funds received upon the is-
suance of new securities. Obviously, when the
FCF is negative (e.g., because growth oppor-
tunities necessitate large investments in fixed
assets), the financial cash flows must be a net
inflow of funds net new financing (of, say, the
needed investments).

The difference between the funds generated
by the firm’s business, the FCF, and the funds
distributed to the security holders of the firm,
the financial cash flows (see Table 3), is the
change in cash over the period.

Thus, the bottom line of the cash flow state-
ment is the closing link of the three accounting
statements of financial performance:

� The income statement’s bottom line-retained
earnings feeds into the closing balance sheet
as the increase in accumulated retained
earnings.

� The income statement and the beginning and
closing balance sheets are the basis for the
computation of the cash flow statements.

� The last line of the cash flow statement—
change in cash (and cash equivalents)—feeds
back into the end-of-period balance sheet’s
cash account.

The cross-reference of the three accounting
statements means that we can use accounting
methods to ensure that models of projected fi-
nancial performance are internally consistent.
The firm’s income statement and its cash flow
statement are often the basis for predictions of
its future FCFs. Note, however, that these state-
ments reflect the past performance of the firm
and are not, in themselves, necessarily predic-
tive of future firm performance.

VALUING THE TOTAL FIRM
Earlier we introduced several equations for
valuing a firm’s common stock. For example,
review the constant growth dividend discount
model and the nonconstant growth dividend
discount model. These models (equations) have
one common element: They all assume that the
firm is currently paying a dividend. However,
consider the situation of a start-up company
formed to develop and market a new prod-
uct. Such a company generally expects to have
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low sales during its first few years as it devel-
ops and begins to market its product. Then, if
the product catches on, sales will grow rapidly
for several years. Growing sales require addi-
tional assets. A company cannot grow without
increasing its assets. Moreover, increasing a lia-
bility and/or equity account must finance asset
growth.

Small firms can often obtain some bank credit,
but they must maintain a reasonable balance be-
tween debt and equity. Thus, additional bank
borrowings require increases in equity, but
small firms have limited access to the stock
market. Moreover, even if they can sell stock,
their owners are often reluctant to do so for
fear of losing voting control. Therefore, the best
source of equity for most small businesses is
from retaining earnings, so most small firms
pay no dividends during their rapid-growth
years. Eventually, most successful firms do pay
dividends, with dividends growing rapidly at
first but then slowing down as the firm ap-
proaches maturity.

Although most larger firms do pay a divi-
dend, some firms, even highly profitable ones,
have never paid a dividend. How can the value
of such a company be determined? Similarly,
suppose you start a business and someone of-
fers to buy it from you. How could you de-
termine its value, or that of any privately held
business? Alternatively, suppose you work for
a company with a number of divisions. How
could you determine the value of one partic-
ular division that the company wants to sell?
In none of these cases could you use the div-
idend growth model. However, you could use
the FCF model to estimate total firm value, then
back out the value of equity.

ESTIMATING TOTAL FIRM
VALUE USING THE FCF
MODEL
Tables 4 and 5 contain the actual 20X8 and
projected 20X9 to 20Y2 financial statements for

XYZ Inc. The negative FCF in the early years
is typical for young, high-growth companies.
Even though NOPAT is positive in all years,
FCF is negative because of the need to invest in
operating assets. The negative FCF means the
company will have to obtain new funds from in-
vestors, and the balance sheets in Table 5 show
that notes payable, long-term bonds, and pre-
ferred stock all increase from 20X8 to 20X9.

Assume that XYZ’s cost of capital is 10.84%.
To find its going-concern value, we use an
approach similar to the nonconstant dividend
growth model, proceeding as follows:

1. Assume that the firm will experience non-
constant growth for N years, after which it
will grow at some constant rate.

2. Calculate the expected FCF for each of the
N nonconstant growth years, and find the
present value (PV) of these cash flows.

3. Recognize that after Year N growth will be
constant, so we can use the constant growth
formula to find the firm’s value at Year N.
This “terminal value” is the value of the PVs
for N + 1 and all subsequent years (to in-
finity), discounted back to Year N. Then, the
Year N value must be discounted back to the
present to find its PV at Year 0.

4. Now sum all the PVs, those of the annual
free cash flows during the nonconstant pe-
riod plus the PV of the terminal value, to find
the firm’s value of operations. This going-
concern value, when added to the value of
the nonoperating assets, is the total value of
the firm.

Stockholders will also help fund XYZ’s
growth. They will receive no dividends until
20Y1, so all of the net income from 20X8 to 20Y1
will be reinvested. However, as growth slows,
FCF will become positive, and XYZ plans to use
some of its FCF to pay dividends beginning in
20Y1. A variant of the constant growth dividend
model can be used to find the value of XYZ’s
operations once its FCF stabilize and begin to
grow at a constant rate:
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Table 4 XYZ Inc.: Income Statements (in millions except for per-share data)

Projected

Actual 20X8 20X9 20Y0 20Y1 20Y2

Net sales $700.00 $850.00 $1,000 $1,100 $1,500
Costs (except depreciation) (599) (734) (911) (935) (982)
Depreciation (28) (31) (34) (36) (38)
Total operating costs (627) (765) (945) (971) (1,020)
Earnings before interest and taxes (EBIT) 73 85 55 129 135
Less “net interest” (13) (15) (16) (17) (19)
Earnings before taxes 60 70 39 112 116
Taxes (40%) (24) (28) (15.6) (44.8) (46.4)
Net income before preferred dividends 36 42 23.4 67.2 69.6
Preferred dividends (6) (7) (7.4) (8) (8.3)
Net income available for common dividends 30 35 16 59.2 61.3
Common dividends — — — 44.2 45.3
Addition to retained earnings 30 35 16 15 16
Number of shares 100 100 100 100 100
Dividends per share — — — 0.442 0.453

Notes:

1. “ ‘Net interest” is interest paid on debt less interest earned on marketable securities. Both items could be shown
separately on the income statements, but for this example we combine them and show net interest.

2. Net income is projected to decline in 20YO. This is due to a projected cost for a one-time marketing program in
that year.

3. Growth has been rapid in the past, but the market is becoming saturated, so the sales growth rate is expected to
decline from 21% in 20X9 to a sustainable rate of 5% in 20Y2 and beyond (forever). Further, the entire economy
has seldom grown more than a 4% to 6% rate on an average annual basis. If one firm were to grow faster than 6%
forever, it would most likely become the only firm in the economy! Therefore, a 5% growth rate beyond year
20Y2 is a reasonable assumption. Firms cannot grow faster than the overall economy forever. Growth must slow
down at some point in the future to a more sustainable average rate.

4. Profit margins are expected to improve as the production process becomes more efficient and because XYZ will
no longer be incurring marketing costs associated with the introduction of a major product.

5. All items on the financial statements are projected to grow at a 5% rate after the year 20Y2. Notice that the
company does not pay a dividend, but it is expected to start paying out about 75% of its earnings beginning in
20Y1.

6. A firm’s value is determined by its ability to generate cash flow, both now and in the future. Therefore, XYZ’s
value can be calculated as the present value of its expected future FCFs from operations, discounted at its cost of
capital, k, plus the value of nonoperating assets. Here is the equation for the value of operations, or the firm’s
value as a going concern:

Value of operations = Present value of expected future FCF + Present value of nonoperating assets

Based on a 10.84% cost of capital, a $49 mil-
lion FCF in 20Y2, and a 5% growth rate, the
value of XYZ’s operations as of December 31,
20Y2 (terminal value) is forecasted to be $880.99
million:

Terminal value = $49(1 + 0.05)
(0.1084 − 0.050)

= $51.45
(0.1084 − 0.05)

= $880.99

This $880.99 million figure is called the com-
pany’s terminal or horizon value, because it
is the value at the end of the forecast period.
Moreover, this is the amount that XYZ could
expect to receive if it sold its operating assets
on December 31, 20Y2.

Table 6 shows the free cash flow for each year
during the nonconstant growth period, along
with the value of operations in 20Y2, at the end
of the nonconstant growth period. To find the
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Table 5 XYZ Inc.: Balance Sheets (millions of dollars)

Projected

Actual 20X8 20X9 20Y0 20Y1 20Y2

Cash $17 $20 $22 $23 $24
Marketable securities (1) 63 70 80 84 88
Accounts receivable 85 100 110 116 121
Inventories 170 200 220 231 243
Total current assets 335 390 432 454 476
Net plant and equipment 279 310 341 358 376
Total assets 614 700 773 812 852
Liabilities and Equity
Accounts payable 17 20 22 23 24
Notes payable 123 140 160 168 176
Accruals 43 50 55 58 61
Total current liabilities 183 210 237 249 261
Long-term bonds 124 140 160 168 176
Preferred stock 62 70 80 84 88
Common stock (2) 200 200 200 200 200
Retained earnings 45 80 96 111 127
Common equity 245 280 296 311 327
Total liabilities and equity 614 700 773 812 852

Notes:
1. All assets except marketable securities are operating assets required to support sales. The marketable securities

are financial assets not required in operations.
2. Common equity is shown at par plus paid-in capital. Present value of nonoperating assets.

value of operations as of “today,” December 31,
20X8, we find the PV of each annual cash flow
in Table 7, discounting at the 10.84% cost of
capital.

The sum of the PVs (all FCFs and the terminal
value discounted at 10.84%) is approximately
$615 million. The $615.27 represents an estimate
of the price XYZ could expect to receive if it sold
its operating assets today, December 31, 20X8.
The total value of any company is the value of
its operations plus the value of its nonoperat-
ing assets. As the December 31, 20X8, balance
sheet in Table 5 shows, XYZ had $63 million of
marketable securities on that date. Unlike op-
erating assets, we do not have to calculate a
present value for marketable securities because
short-term financial assets as reported on the
balance sheet are at, or close to, their market
value.

Therefore, XYZ’s total value on December 31,
20X8, is $615.27 + $63.00 = $678.27 million.
If the company’s total value on December 31,

20X8, is $678.27 million, what is the value of its
common equity?

First, Table 5 shows that notes payable and
long-term debt total $123 + $124 = $247 mil-
lion, and these securities have the first claim
on assets and income. (Accounts payable and
accruals were netted out earlier.) Next, the pre-
ferred stock has a claim of $62 million, and it
ranks above the common.

Therefore, the value left for common
stockholders is $678.27 − $247 − $62 =
$369.27 million.

Table 8 summarizes the calculations used to
find XYZ’s stock value per share. There are
100 million shares outstanding, and their total
value is $369.27 million. Therefore, the value of
a single share is $3.69 ($369.27/100 = $3.69).

Much can be learned from the total firm valu-
ation model, so many analysts today use it for
all types of valuations. The process of project-
ing the future financial statements can reveal
quite a bit about the company’s operations and
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Table 6 Calculating XYZ’s Pro Forma Expected Free Cash Flow (in millions)

Projected

Actual 20X8 20X9 20Y0 20Y1 20Y2

Calculation of free cash flow
Required net operating working capital $212 $250 $275 $289 $303
Required net plant and equipment 279 310 341 358 376
Required net operating assets $491 $560 $616 $647 $679
Required net new investment in operating assets = change in 69 56 31 32

net operating assets from previous year
NOPAT (Net operating profit after taxes) EBIT × (1 − Tax rate) $51 $33 $77.40 $81
Less: Required investment in operating assets 69 56 31 32
Free cash flow (FCF) ($18) ($23) $46.40 $49

Notes:

1. NOPAT declines in 20Y0 because of a marketing expenditure projected for that year.
2. Table 4 calculates free cash flow for each year. Line 1, with data for 20X8 from the balance sheets in Table 5, shows

the required net operating working capital, or operating current assets minus operating current liabilities, for
20X8:

Required net operating working capital = (Cash + Accounts receivable + Inventories)
− (Accounts payable + Accruals)

= ($17.00 + $85.00 + $170.00) − ($17.00 − $43.00) = $212.00.

3. Line 2 shows required net plant and equipment, and Line 3, which is the sum of Lines 1 and 2, shows the
required net operating assets, sometimes called net operating capital. For 20X8, net operating capital is $212 +
$279 = $491 million.

4. Line 4 shows the required net annual addition to operating assets, found as the change in net operating assets
from the previous year. For 20X9, the required net investment in operating assets is $560 − $491 = $69 million.

5. Line 5 shows NOPAT, or net operating profit after taxes. Note that EBIT is operating earnings before taxes, while
NOPAT is operating earnings after taxes. Therefore, NOPAT = EBIT (I − T). With 20X9 EBIT of $85 as shown in
Table 5 and a tax rate of 40%, NOPAT as projected for 20X9 is $51 million:

NOPAT = EBIT(1 − T) = $85(1.0 − 0.4) = $51 million.

6. Although XYZ’s operating assets are projected to produce $51 million of after-tax profits in 20X9, the company
must invest $69 million in new assets in 20X9. Therefore, the FCF for 20X9, shown on Line 7, is a negative $18
million:

FCF in 20X9 = $51 − $69 = − $18.00 million (negative)
Present value of nonoperating assets

Table 7 Process for Finding the Value of Operations Assumes g = 5% (constant) for Years 12/31/Y2 in Perpetuity

Year 12/31/X8 12/31/X9 12/31/Y0 12/31/Y1 12/31/Y2

FCF (18.00) (23.00) 46.40 49.00
Terminal value (TV) 880.99
Total (18.00) (23.00) 46.40 929.99
Present value of FCF and TV

@10.84% = $615.27
$615.27 = Value of operating

assets as of 12/31/X8
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Table 8 Finding the Value of XYZ’s Stock (in millions
except for per-share data)

1. Value of operations (net of payables
and accruals)

$615.27

2. Plus value of nonoperating assets $63.00
3. Total market value of the firm $678.27
4. Less: Value of debt $247.00

Value of preferred stock $62.00
5. Value of common equity $369.27
6. Divide by number of shares 100
7. Estimated value per share $3.69

financing needs. Also, such an analysis can pro-
vide insights into actions that might be taken to
increase the company’s value.

KEY POINTS
� The two most commonly used approaches for

equity valuation are the discounted cash flow
and relative valuation models.

� Despite the fact that equity valuation is very
strongly tilted toward the use of discounted
cash flow models, it is impossible to ignore
the fact that many financial modelers employ
relative valuation techniques.

� Expected future cash flow is the true basis
for financial value. Take the firms that look

attractive based on “fundamentals” and at-
tempt to estimate their current fair value
based on the present value of all expected fu-
ture cash flows (dividends and future selling
price).

� The basic source of estimation risk when us-
ing discounted cash flow models in calculat-
ing the value of any financial asset is that
the present value depends on expected future
cash flows and the appropriate discount rates
that reflect the risk of the future cash flows.
Cash flow valuation models, therefore, rely
on assumptions (often extreme).

� With cash flow valuation, the main problem
is estimation risk. No financial modeler can
correctly and consistently forecast the future.
Estimation risk comes from not being able to
perfectly forecast future cash flows and dis-
count rates.
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Abstract: Relative valuation methods use multiples or ratios, such as price/earnings, price/book, or
price/free cash flow, to determine whether a particular firm is trading at higher or lower multiples
than its peers. Such methods require the user to choose a suitable universe of firms that are more
or less comparable, though this can become difficult for firms with unusual characteristics in terms
of product mix or geographical exposure. Relative valuation methods can be useful for portfolio
managers who expect to be fully invested at all times, as they provide a practical tool for attempting
to capture the “value premium” by which firms trading at lower multiples tend to outperform those
trading at higher multiples. Implicitly, relative valuation methods assume that the average multiple
across the universe of firms can be treated as a reasonable approximation of “fair value” for those
firms; this may be problematic during periods of market panic or euphoria.

Much research in corporate finance and sim-
ilar academic disciplines is tilted toward the
use of discounted cash flow (DCF) methods.
However, many analysts also make use of rela-
tive valuation methods, which compare several
firms by using multiples or ratios. Multiples
that are commonly used for such purposes in-
clude price/earnings, price/book, and price/free cash
flow.

∗The material discussed here does not necessarily represent the opinions, methods, or views of Delaware
Investments.

Relative valuation methods implicitly assume
that “similar” firms are likely to be valued
similarly by investors. Therefore, on average,
we would expect that firms that are generally
comparable are likely to trade at similar mul-
tiples, in terms of price/earnings, price/book,
or various other metrics. If this assumption
is approximately correct, then relative valua-
tion methods can be used to identify firms
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that look “cheap” or “expensive” relative to
their peers. When a particular firm’s multi-
ples are extremely different from the rest of
the universe, this may indicate a potential in-
vestment opportunity—though further analy-
sis will likely be required to determine whether
there are reasons why such a firm is valued dif-
ferently from other companies that otherwise
appear comparable.

The basis of relative valuation methods is to
use one or several ratios to determine whether a
firm looks “cheap” or “expensive” by compar-
ison with generally similar firms. Relative val-
uation methods do not attempt to explain why
a particular firm is trading at a particular price;
instead, they seek to measure how the market
is currently valuing multiple companies, with
the underlying assumption that the average
multiple for a group of companies is probably
a reasonable approximation to overall market
sentiment toward that particular industry. In
other words, relative valuation work assumes
that on average, the share prices of companies
in a particular universe are likely to trade at
similar multiples relative to their own financial
or operating performance. Baker and Ruback
(1999) provide a more formal presentation of
these concepts. However, it is important to re-
alize that at any particular time, some firms are
likely to be trading at higher or lower multiples
than would be justified under “fair value.”

Making effective use of relative valuation
methods does require careful selection of “sim-
ilar” companies. Sometimes this is relatively
simple, for instance when an analyst is deal-
ing with industries where there are a large
number of roughly homogeneous firms provid-
ing goods or services that are approximately
equivalent. However, sometimes there can be
considerable difficulties in identifying “simi-
lar” companies, particularly if the firms un-
der consideration are unusually idiosyncratic in
terms of their product mix, geographical focus,
or market position. In this entry, we will provide
some tentative guidance about how to build a
universe of comparable companies. However, ul-
timately this part of the process will depend on

the skill and knowledge of the individual an-
alyst; two different experts may pick different
sets of “similar” firms, and thus generate differ-
ent values from their relative valuation analysis.

BASIC PRINCIPLES OF
RELATIVE VALUATION
Analysis based on relative valuation requires
the analyst to choose a suitable universe of com-
panies that are more or less comparable with
one another. There is no standardized approach
concerning how to choose such a universe of
similar firms, and the process relies to some
extent on an analyst’s personal judgment con-
cerning the particular industry and geography
involved. However, it is possible to lay out some
general principles that combine practitioners’
insights with the results of academic inquiry.

Sources of Data
Relative valuation approaches can only be em-
ployed if there is sufficient information, pro-
duced on an approximately consistent foot-
ing, about the various companies that are the
subjects of analysis. In most countries, compa-
nies that are publicly listed on stock exchanges
are required by law and regulation to report
their historical results publicly in a timely man-
ner, or risk being delisted from the exchange.
(There may be occasional exceptions to this gen-
eral pattern, particularly for entities that are
majority owned or controlled by their home
country government. But such anomalies are
not frequently observed except during crisis
periods.) Consequently, it is almost always pos-
sible to obtain information about listed com-
panies’ historical results. However, multiples
based solely on historical data may not pro-
vide a complete picture, as most analysts would
probably agree that forward-looking estimates
are likely to provide more useful insights into
the market’s opinion of a particular company
(Valentine, 2011, p. 261).

Investment banks, rating agencies, and other
firms can provide estimates of a firm’s future
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earnings, revenues, and other metrics, typi-
cally over the next two or three years. Various
data providers such as Bloomberg or Thomson
Reuters collect such information and use it as
the basis for “consensus” estimates, which can
be viewed as representing the market’s general
opinion of a company’s future prospects. It is
also possible to use a firm’s own in-house es-
timates for the companies under coverage, as
these may incorporate insights that are not yet
reflected in current pricing. However, for pre-
cisely this reason, in-house estimates should be
used as a supplement rather than as a replace-
ment for consensus figures.

It is conventional to consider more than one
year of data, as there may be disparities in how
the market is valuing results in the immediate
future and in the slightly longer term. However,
it is often difficult or impossible to obtain con-
sensus estimates more than two or three years
into the future. Consequently, relative valua-
tion approaches generally focus on relatively
short periods into the future, rather than seek-
ing to gauge how the market is valuing ex-
pected performance five or ten years hence.
(In this respect, relative valuation analysis can
be viewed as somewhat limited by compari-
son with DCF approaches, which typically give
considerably more attention to the relatively
distant future.)

Number of Comparable Firms
In general, an analyst would like to use data
from other firms that are as similar as possi-
ble. However, if the criteria for “similarity” are
specified too stringently, then there may be too
few firms included in the universe. And if the
sample is too small, then the idiosyncrasies of
individual firms may exert an excessive influ-
ence on the average multiple, even if the ana-
lyst focuses on the median rather than the mean
when calculating the “average” multiple.

Generally speaking, we believe that it is desir-
able to have at least five or six comparable com-
panies, in order to begin drawing conclusions
about relative valuation for a particular indus-

try. Conversely, there may be few benefits from
considering more than 12 companies, particu-
larly if the larger universe contains firms that
resemble less closely the particular company
that is the focus of the analyst’s attention.1 For
most practical purposes, a group of between six
and 12 comparable firms should be sufficiently
large to produce usable results.

Basis for Selecting Comparable
Firms
In an ideal situation, a universe of comparable
companies would be similar in terms of size,
industry focus, and geography. This tends to
be easier when considering small or mid-sized
firms—say, with market caps between $100 mil-
lion and $10 billion (based on 2010 U.S. dollars).
Firms that are below this size limit, in other
words microcap stocks, may be more difficult
to use for relative valuation purposes. Even if
these firms are public, they may receive less
coverage from research analysts, who typically
are more interested in companies that are large,
liquid, and already owned by institutional in-
vestors (see Bhushan, 1989).

Conversely, it can also be difficult to perform
relative value analysis on companies with rel-
atively high market capitalization. Many large
firms are dominant players in their particular
market niches, in which case they may be more
likely to trade at a premium reflecting their
higher degree of market power. Alternatively,
large firms may be effectively a conglomerate
of numerous smaller entities, each engaged in a
specific activity, and there may be no other large
or small firm that produces an approximately
equivalent blend of goods and/or services.

When attempting to assess the relative value
of firms that are large and/or complex, it can
often be useful to assess “relative value” using
two separate approaches. The first approach is
to consider the firm as a complete entity and
try to find other firms that are at least some-
what comparable in terms of size and complex-
ity, even if their business mix is not precisely
identical. In such cases, it can often be useful
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to consider similar firms that may be located
in other countries, even though their different
geographical positioning may affect their level
of risk and thus the multiples at which they
trade. The second approach is to use a sum-
of-the-parts valuation method, which will be
discussed in more detail later in this entry.

Geography and Clientele
Differences related to geographic location can
affect the extent to which companies can be
viewed as broadly similar. For instance, in the
United States public utilities are predominantly
regulated at the state level, and the public util-
ity commissions in one state may operate quite
differently from their counterparts elsewhere.
Consequently, a public utility operating in one
state may not be directly comparable with a
public utility located in another state. In re-
cent decades, there has been a wave of acquisi-
tion activity in the U.S. utility industry, so that
now some utilities have operations in multiple
states. In such instances, the valuation placed on
a utility will presumably incorporate investors’
perceptions of the regulatory environment af-
fecting each of its state-level operations. For rel-
ative value purposes, a group of multistate pub-
lic utilities may not be very similar to a public
utility that is operating in only one state.

Regional differences in regulatory regimes
may only affect a subset of companies. How-
ever, firms in the same industry may well have
quite different client bases and geographic ex-
posures. For instance, one retailer may aim to
sell a wide range of goods to a mass-market
client base at the regional or national level,
while another retailer might instead focus on
selling a limited number of luxury products to
the most affluent members of the global popula-
tion. These two firms are likely to have substan-
tially different product quality, cost bases, profit
margins, and sensitivity to macroeconomic con-
ditions. In particular, retailers of luxury goods
to a global client base may have developed
brands that transcend national borders, and
a high proportion of their current and future

revenues and profits may come from outside
their home country. Under such conditions, it is
possible that a suitable universe of comparable
companies might include at least a few foreign
firms, particularly if they have similarly broad
geographic reach.

In past decades, analysts focusing on U.S.
firms would probably have only rarely used
foreign firms in their analysis of “comparable
companies.” However, as both U.S. and foreign
firms have become increasingly globalized, and
as accounting standards around the world have
gradually started to become more similar, we
believe that for some types of relative value
analysis, there may be benefits to including
firms that are generally comparable in terms of
size and product mix, even if their legal head-
quarters are not located in the United States. For
more insights into these issues, see Copeland,
Koller, and Murrin (2000, Chapter 18).

Many companies have “depositary receipts”
in other markets, such as ADRs. Consensus esti-
mates may be available for a firm’s local results
and/or its depositary receipts. The estimates
for the depositary receipts may be affected by
actual or expected movements between the cur-
rencies of the two countries, which may bias the
analysis. We therefore recommend that when
calculating figures for companies that are listed
in different countries, all multiples should be
consistently calculated in terms of local cur-
rency throughout, in order to ensure that an-
ticipated or historical currency fluctuations will
not affect the results. A substantial number of
non-US companies have a share price quoted in
one currency, but report their financial results in
another currency; to avoid potential mismatch-
related errors in such cases, it may be prudent
to convert all numbers into a single numéraire
such as the US dollar.

Sector and Industry Characteristics
Some academic research has examined differ-
ent ways of selecting a universe of comparable
firms. Bhojraj, Lee, and Oler (2003) compared
the effect of using four different industry
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classification methods, and concluded that at
least for a universe of U.S. securities, the Global
Industry Classification Standard (jointly devel-
oped and maintained by Standard & Poor’s
and Morgan Stanley Capital International) ap-
peared to do the best job of identifying firms
with similar valuation multiples and stock price
movements. Chan, Lakonishok, and Swami-
nathan (2007) compared the effect of using in-
dustry classification schemes with statistically
based clustering approaches, and found that ex-
amining stocks in terms of industry member-
ship seemed to give better explanatory power
than working in terms of either sectors or
subindustries. To our knowledge, there have
not been any parallel investigations into the ef-
fectiveness of different industry classification
schemes for cross-national analysis. The results
of Phylaktis and Xia (2006) suggest that the
importance of sector-level effects has been in-
creasing in recent years, while the influence of
country-level effects has waned slightly.

Technology and Intraindustry
Diversity
As discussed above, some academic research
has suggested that firms from similar indus-
tries tend to trade at similar multiples and to
experience similar stock price movements. In-
dustry membership therefore would seem to
be a useful starting point for analysis. Thus, for
instance, trucking companies and railroad com-
panies both provide transportation services, but
railroads will generally trade at different multi-
ples from trucking companies because their cost
structure and balance sheets tend to be quite
different.

In some cases, there can be substantial vari-
ation even within a particular subindustry. For
instance, “publishing” covers a wide variety
of different business models, including daily
newspapers, weekly magazines, publishers of
textbooks and professional journals, printers
of fiction or nonfiction books, and suppliers
of financial data. Each of these individual in-
dustries is likely to have different sources of

revenue, different technological requirements,
different cost structures, and different rates of
expected growth. Admittedly, the larger pub-
lishing houses may have operations spanning
several different fields, but the relative contri-
butions of each division to the firm’s overall
revenues and profits may differ substantially.
In such instances, relative value analysis may
result in a wide range of valuation multiples,
possibly with several different clusters reflect-
ing each firm’s competitive position. We con-
sider such difficulties in the next section.

There are also some industries in which tech-
nological differences are the principal basis on
which relative values are assigned. For instance,
small companies in the field of biotechnology
may have only a handful of products, each of
which could potentially be a great success or
a dismal failure. Some companies of this type
may be still at the prerevenue stage when they
go public, so that their valuation is entirely
based on the market’s expectations about the ul-
timate value of technology that has not yet gen-
erated actual sales. In such instances, relative
value analysis might require particularly care-
ful selection of companies that are truly compa-
rable in terms of the market’s perception of their
stage of development and the likelihood that
their key products will ultimately be success-
ful. Arguably, relative value analysis in such
cases may not generate particularly useful re-
sults, because the spread of potential outcomes
is so broad.

Bimodal and Multimodal Patterns
Sometimes the outcome of a relative value anal-
ysis will show that the valuation multiples are
not evenly spread between low and high, but
instead are bimodal or multimodal—in other
words, there seem to be two or more clusters
of results. We show an example of this in our
hypothetical example below, which suggests
that in a universe of seven firms, two are ex-
pected to achieve a return on equity (ROE) of
11% to 12% in FY0 and FY1, whereas the other
companies are generally projected to deliver an
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ROE of 8% to 9%. Such differences may appear
relatively minor, but if the market really does
expect these outcomes, then the two companies
with higher profitability may legitimately be ex-
pected to trade at a premium to their peers.

When a relative valuation table appears to
have bimodal or multimodal characteristics, an
analyst will generally be well advised to inves-
tigate further. In any given sector or industry,
there may well be some firms that are truly ca-
pable of producing higher returns than their
peers, perhaps as a result of better manage-
ment, a stronger market position, or a more
supportive regulatory environment. Relative
valuation methods can identify potential out-
liers of this type, but cannot test whether the
estimates themselves are reasonable.

One potentially useful approach is to extend
the analysis further back into the past, using
historical prices for valuation purposes, and
if possible also using as-was projections for
the relevant period. Such projections are now
widely available from various different data
vendors, including Bloomberg, FactSet, and
Thomson Reuters. Consider the companies that
are currently trading at a premium or a discount
to their peers—did they also trade at a discount
to their peers in the past? A logical extension of
relative value analysis based on a single period
is to gauge whether a particular firm persis-
tently tends to trade at a lower or higher mul-
tiple than its peers, and then assess whether
its current multiple is above or below what
would be expected on the basis of prior periods.
Damodaran (2006, Chapter 7, p. 244) notes that
relative valuations frequently have low persis-
tence over time. For industries in which this is
the case, then relative valuation methods may
indeed provide useful investment signals.

Choice of Valuation Multiples
Many relative valuation methods compare a
company’s share price with some measure of its
performance, such as earnings per share (EPS)
or free cash flow per share. Other relative val-

uation methods compare a company’s share
price with some measure of its size, such as
book value per share. Block (1999) has reported
that the majority of practitioners consider that
when analyzing securities, measures of earn-
ings and cash flow are somewhat more impor-
tant than measures of book value or dividends.
However, many practitioners will make use of
various metrics in their work, in the expecta-
tion that the different multiples will provide
varying perspectives. Liu, Nissim, and Thomas
(2002) compared the efficacy of six different
metrics for relative valuations of U.S. firms on a
universe-wide basis. Liu, Nissim, and Thomas
(2007) extended the analysis to seven different
metrics applied to 10 different countries and
multiple industries. Hooke (2010, Chapter 15)
presents an example using eight different met-
rics applied to the single industry of temporary
staffing companies. In a hypothetical example
below, we use three different metrics for rel-
ative valuation analysis, and we believe that
most practitioners would consider that between
three and six different metrics is probably justi-
fiable. It is certainly possible to have a much
larger number of metrics (see Damodaran,
2006, p. 650), but the results may be harder to
interpret.

A ratio such as price/earnings can be
calculated in terms of share price/EPS, or alter-
natively can be interpreted as market cap/net
income. For most purposes, these two ratios
will be the same. However, share issuance or
buyback activity may impair the comparability
of figures expressed in terms of EPS. If there
is any possibility of ambiguity, then we would
generally recommend using market cap/net
income.

For instance, a company may currently have
100 million shares outstanding, a current share
price of $40, and expected earnings of $2 in FY0
and $3 in FY1. If the P/E ratio is calculated in
terms of price/EPS, then the FY0 ratio is 20 and
the FY1 ratio is 13.3. However, analysts may
be expecting that the company will buy back
and cancel 20% of its shares during FY1. If so,
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then the projected net income in FY1 would
presumably be $240 million rather than $300
million. If the P/E ratio is calculated using
market cap and net income, then the FY1 ra-
tio would be 16.7 rather than 13.3. This hy-
pothetical example indicates the importance of
ensuring that the denominator is being calcu-
lated on a basis that reflects the historical or
projected situation for the relevant period. (An
investor might consider that if a firm’s manage-
ment is indeed strongly committed to buying
back its own shares, then this might indicate
that the firm’s management views the shares as
being undervalued. However, such considera-
tions would presumably be included as a quali-
tative overlay to the relative valuation analysis.)

Choice of Numerator: Market Cap
versus Firm Value
In some instances, the choice of numerator may
have a significant impact on the multiple. For
instance, many analysts will use price/sales ra-
tios for valuation purposes. However, a firm’s
revenues are generated from the total of its cap-
ital base, comprising both equity and debt.

Consider two companies, A and B, which both
have a current market cap of $300 million and
projected annual revenues of $600 million in
FY0, so that they both have a current price/sales
ratio of 2. But suppose that Company A has
no outstanding borrowings, whereas Company
B has net debt of $300 million. One could
argue that Company B is actually rather less
attractive than Company A, as apparently it re-
quires twice as much capital to generate the
same volume of sales. In effect, analyzing the
company in terms of “firm value/sales” rather
than price/sales would reveal that Company B
is actually making less efficient use of its capital
than Company A.

There is no single definition of “firm value”
that is generally accepted by all practitioners.
In an ideal world, one would want to have the
market value of the firm’s equity capital and
of the firm’s debt capital. However, because

corporate bonds and bank loans typically are
not traded in liquid markets, there may not be
any reliable indicator of the market value of
debt capital. Consequently, it is conventional
to use market capitalization to estimate how in-
vestors are valuing the firm’s equity capital, but
then to use figures from the firm’s most recent
balance sheet together with the notes to the fi-
nancial statements as a proxy for net debt. The
broadest definition of which we are aware is the
following:

Net Debt = Total Short-Term Debt

+ Total Long-Term Debt + Minority Interest

+ Unfunded Pension Liabilities

− Cash and Equivalents

In practice, for most firms, the biggest com-
ponents of net debt are likely to be total short-
term debt, total long-term debt, and cash and
equivalents. In most cases, using an alternative
definition of firm value will often have only a
small impact on the calculated multiple.

Conceptually, it is possible to divide the in-
come statement between the line items that
are generated on the basis of total capital, and
those that pertain solely to equity capital. For
most firms, the separator between these two
categories is Net Interest Expense or Net In-
terest Income. Analyzing relative valuation for
banks and insurance companies can be some-
what more complex, as discussed in Copeland,
Koller, and Murrin (2000, Chapters 21 and 22).
Generally speaking, it is usually desirable that
the numerator and denominator of a valuation
metric should be consistent with each other
(Damodaran, 2006, pp. 239–240).

Industry-Specific Multiples
Analysts covering some industries may make
use of information specific to that industry,
such as paid miles flown for airlines, same-
store sales for retailers, or revenue per available
room for hotel chains. Such data can provide in-
sights into how the market is valuing individual
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firms’ historical or expected operating perfor-
mance. However, we consider that they should
be viewed as a supplement to other multiples,
rather than as a replacement for them, for two
reasons: because it can be difficult to reconcile
a company’s operating performance with its fi-
nancial results, and also because there may be
little or no intuition about what would be a “rea-
sonable” estimate for long-run valuation lev-
els (Damodaran, 2006, Chapter 7, pp. 237–238).
Natural resource producers tend to be valued in
terms of both their operating efficiency and the
resources that they control, so it may be useful
to include some measure of their reserves in the
analysis (Hooke, 2010, Chapter 21). Many prac-
titioners make use of efficiency metrics when
using relative valuation approaches to assess
some types of banks and other lending institu-
tions (Hooke, 2010, Chapter 22).

HYPOTHETICAL EXAMPLE
Suppose that an analyst is seeking to gauge
whether Company A is attractive or unattrac-
tive on the basis of relative valuation methods.
Suppose that the analyst has determined that
there are six other listed companies in the same

industry which are approximately the same
size, and which are also comparable in terms
of product mix, client base, and geographical
focus.2 Based on this information, the analyst
can calculate some potentially useful multiples
for all seven companies. A hypothetical table of
such results is shown in Table 1. (For the pur-
poses of this simple hypothetical example, we
are assuming that all the firms have the same fis-
cal year. We will consider calendarization later
in this entry.)

In this hypothetical scenario, Company A is
being compared to Companies B through G,
and therefore Company A should be excluded
from the calculation of median and standard de-
viation, which would otherwise lead to double-
counting. The median is used because it tends to
be less influenced by outliers than the statistical
mean, so it is likely to be a better estimate for the
central tendency. (Similarly, the standard devia-
tion can be strongly influenced by outliers, and
it would be possible to use “median absolute
deviation” as a more robust way of gauging the
spread around the central tendency. Such ap-
proaches may be particularly appropriate when
the data contain one or a handful of extreme
outliers for certain metrics, which might be as-
sociated with company-specific idiosyncrasies.)
The table has been arranged in terms of market

Table 1 Hypothetical Relative Valuation Results

P/E P/FCF P/B

Company Share Price ($) Market Cap ($m) FY0 FY1 FY0 FY1 FY0 FY1

A 20.00 400 12.0 10.0 8.5 7.0 1.30 1.20
B 16.00 550 11.5 11.5 5.0 6.0 1.00 0.95
C 40.00 500 13.0 12.0 8.0 7.5 1.50 1.40
D 15.00 450 12.5 12.0 8.0 7.0 1.10 1.05
E 13.00 350 14.5 13.0 9.0 8.0 1.25 1.15
F 30.00 350 12.5 12.5 7.0 4.5 1.15 1.15
G 15.00 300 15.0 14.0 7.0 6.0 1.20 1.15

Median 400 12.75 12.25 7.50 6.50 1.18 1.15
Std Dev 98.3 1.33 0.89 1.37 1.26 0.17 0.15
A versus Median 0% −6% −18% 13% 8% 11% 4%

Notes: P/E refers to price/earnings before extraordinary items; P/B refers to price / book value; P/FCF refers to
price/free cash flow (defined as earnings before extraordinary items plus noncash items taken from the cash flow
statement); FY0 refers to the current fiscal year; FY1 refers to the next fiscal year; figures for FY0 and FY1 could have
been derived from consensus sell-side estimates or other sources.
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cap, from largest to smallest, which can some-
times reveal patterns associated with larger or
smaller firms, though there don’t appear to be
any particularly obvious trends in this particu-
lar set of hypothetical numbers.

The table suggests that the chosen universe
of comparable companies may be reasonably
similar to Company A in several important re-
spects. In terms of size, Companies B, C, and D
are slightly larger, while Companies E, F, and
G are slightly smaller, but the median market
cap across the six firms is the same as Company
A’s current valuation. In terms of P/E ratios,
Company A looks slightly cheap in terms of
FY0 earnings and somewhat cheaper in terms
of FY1 earnings. In terms of P/FCF ratios, Com-
pany A looks somewhat expensive in terms of
FY0 free cash flow, but only slightly expensive
in terms of FY1 free cash flow. And finally, in
terms of P/B ratios, Company A looks some-
what expensive in terms of FY0 book value, but
roughly in line with its peers in terms of FY1
book value.

Analysis of the Hypothetical
Example
So what are the implications of these results?
First, Company A looks relatively cheap com-
pared to its peer group in terms of P/E ratios,
particularly in terms of its FY1 multiples. Sec-
ond, Company A looks rather expensive com-
pared to its peer group in terms of P/FCF and
P/B ratios, particularly in terms of FY0 figures.
If an analyst were focusing solely on P/E, then
Company A would look cheap compared with
the peer group, and this might suggest that
Company A could be an attractive investment
opportunity.

However, the analyst might be concerned
that Company A looks comparatively cheap in
terms of P/E, but somewhat expensive in terms
of price/book. One way to investigate this ap-
parent anomaly is to focus on ROE, which is
defined as earnings/book value. Using the data
in the table, it is possible to calculate the ROE

for Company A and for the other six com-
panies by dividing the P/B ratio by the P/E
ratio—because this effectively cancels out the
“price” components, and thus will generate an
estimated value for EPS divided by book value
per share, which is one way to calculate ROE.

The results suggest that Company A is ex-
pected to deliver an ROE of 10.8% in FY0 and
12% in FY1, whereas the median ROE of the
other six firms is 8.7% in FY0 and 8.8% in FY1.
Most of the comparable companies are expected
to achieve an ROE of between 8% and 9% in
both FY0 and FY1, though apparently Company
C is expected to achieve an ROE of 11.5% in FY0
and 11.7% in FY1. (A similar analysis can be con-
ducted using “free cash flow to equity,” which
involves dividing the P/B ratio by the P/FCF
ratio. This indicates that Company A is slightly
below the median of Companies B through G in
FY0, but in line with its six peers during FY1.)

These results suggest that Company A is ex-
pected to deliver an ROE that is substantially
higher than most of its peers. Suppose that an
analyst is skeptical that Company A really can
deliver such a strong performance, and instead
hypothesizes that Company A’s ROE during
FY0 and FY1 may only be in line with the me-
dian ROE for the peer group in each year. Based
on the figures in Table 1, Company A’s book
value in FY0 is expected to be $15.38, and the
company is projected to deliver $1.67 of earn-
ings. Now suppose that Company A’s book
value remains the same, but that its ROE during
FY0 is only 8.7%, which is equal to the median
for its peers. Then the implied earnings during
FY0 would only be $1.35, and the “true” P/E for
Company A in FY0 would be 14.9, well above
the peer median of 12.75.

The analysis can be extended a little further,
from FY0 to FY1. The figures in the table above
suggest that Company A’s book value in FY1
will be $16.67, and that the company will gen-
erate $2.00 of earnings during FY1. But if Com-
pany A only produced $1.35 of earnings during
FY0, rather than the table’s expectation of $1.67,
then the projected FY1 book value may be too
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high. A quick way to estimate Company A’s
book value in FY1 is to use a clean surplus anal-
ysis, using the following equation:

BookFY1 = BookFY0 + Net IncomeFY1

− DividendsFY1

Based on the figures in the table above, Com-
pany A is expected to have earnings of $1.67
during FY0, and $2.00 during FY1. The implied
book value per share is $15.38 in FY0, and $16.67
during FY1. According to the clean surplus for-
mula, Company A is expected to pay a dividend
of $0.38 per share in FY1.

Assuming that the true earnings in FY0 are
indeed $1.35 rather than $1.67, and that the div-
idend payable in FY1 is still $0.38, then the ex-
pected book value for Company A in FY1 would
be $16.35 rather than $16.67. Taking this figure
and applying the median FY1 peer ROE, the ex-
pected FY1 earnings for Company A would be
$1.42 rather than $2.00, and consequently the
“true” P/E for FY1 would be 13.9 instead of the
figure of 10.0 shown in the table. At those levels,
the stock would presumably no longer appear
cheap by comparison with its peer group. In-
deed, Company A’s FY1 P/E multiple would
be roughly in line with Company G, which has
the highest FY1 P/E multiple among the com-
parable companies.

This quick analysis therefore suggests that the
analyst may want to focus on why Company A
is expected to deliver FY0 and FY1 ROE that is
at or close to the top of its peer group. As noted
previously, Company A and Company C are
apparently expected to have an ROE that is sub-
stantially stronger than those of the other com-
parable companies. Is there something special
about Companies A and C that would justify
such an expectation? Conversely, is it possible
that the estimates for Companies A and C are
reasonable, but that the projected ROE for the
other companies is too pessimistic? If the lat-
ter scenario is valid, then it’s possible that the
P/E ratios for some of the other companies in
the comparable universe are too high, and thus

that those firms could be attractively valued at
current levels.

Other Potential Issues
Multiples Involving Low or
Negative Numbers
It is conventional to calculate valuation multi-
ples with the market valuation as the numerator
and the firms’ financial or operating data as the
denominator. If the denominator is close to zero,
or negative, then the valuation multiple may be
very large or negative. The simplest example of
such problems might involve a company’s earn-
ings. Consider a company with a share price
of $10 and projected earnings of $0.10 for next
year. Such a company is effectively trading at
a P/E of 100. If consensus estimates turn more
bearish, and the company’s earnings next year
are expected to be minus $0.05, the company
will now be trading at a P/E of –200.

It is also possible for a firm to have nega-
tive shareholders’ equity, which would indicate
that the total value of its liabilities exceeds the
value of its assets. According to a normal un-
derstanding of accounting data, this would in-
dicate that the company is insolvent. However,
some companies have been able to continue
operating under such circumstances and even
to retain a stock exchange listing. Firms with
negative shareholders’ equity will also have
a negative price/book multiple. (In principle,
a firm can even report negative net revenues
during a particular period, though this would
require some rather unusual circumstances.
One would normally expect few firms to re-
port negative revenues for more than a single
quarter.)

As noted previously, averages and standard
deviations tend to be rather sensitive to out-
liers, which is one reason to favor using the
median and the median absolute deviation in-
stead. But during economic recessions at the
national or global level, many companies may
have low or negative earnings. Similarly, firms
in cyclical industries will often go through



RELATIVE VALUATION METHODS FOR EQUITY ANALYSIS 43

periods when sales or profits are unusually
low, by comparison with their average lev-
els through a complete business cycle. Un-
der such circumstances, an analyst may prefer
not to focus on conventional metrics such as
Price/Earnings, but instead to use line items
from higher up the income statement that typ-
ically will be less likely to generate negative
numbers.

Calendarization
Some of the firms involved in the relative val-
uation analysis may have fiscal years that end
in different months. Most analyst estimates are
based on a firm’s own reporting cycle. It is usu-
ally desirable to ensure that all valuation mul-
tiples are being calculated on a consistent basis,
so that calendar-based effects are not driving
the analysis.

One way to ensure that all valuation multiples
are directly comparable is to calendarize the fig-
ures. Consider a situation where at the start of
January, an analyst is creating a valuation anal-
ysis for one firm whose fiscal year ends in June,
while the other firms in the universe have fiscal
years that end in December. Calendarizing the
results for the June-end firm will require tak-
ing half of the projected number for FY0 and
adding half of the projected number for FY1.
(If quarter-by-quarter estimates are available,
then more precise adjustments can be imple-
mented by combining 3QFY0, 4QFY0, 1QFY1,
and 2QFY1.)

Calendarization is conceptually simple, but
may require some care in implementation dur-
ing the course of a year. One would expect that
after a company has reported results for a full
fiscal year, the year defined as “FY0” would im-
mediately shift forward 12 months. However,
analysts and data aggregators may not change
the definitions of “FY0” and “FY1” for a few
days or weeks. In case of doubt, it may be
worth looking at individual estimates in order
to double-check that the correct set of numbers
is being used.

Sum-of-the-Parts Analysis
When attempting to use relative valuation
methods on firms with multiple lines of busi-
ness, the analyst may not be able to identify
any company that is directly similar on all di-
mensions. In such instances, relative valuation
methods can be extended to encompass “sum-
of-the-parts” analysis, which considers each
part of a business separately and attempts to
value them individually by reference to compa-
nies that are mainly or solely in one particular
line of business (see Hooke, 2010, Chapter 18).

Relative valuation analysis based on sum-
of-the-parts approaches will involve the
same challenges as were described above—
identifying a suitable universe of companies en-
gaged in each particular industry, collecting and
collating the necessary data, and then using the
results to gauge what might be a “fair value”
for each of the individual lines of business. But
in addition to these considerations, there is an
additional difficulty, which is specific to sum-
of-the-parts analysis. This problem is whether
to apply a conglomerate discount, and if so, how
much.

Much financial theory assumes that all else
equal, investors are likely to prefer to invest
in companies that are engaged in a single line
of business, rather than to invest in conglom-
erates that have operations across multiple in-
dustries. Investing in a conglomerate effectively
means being exposed to all of that conglom-
erate’s operations, and the overall mix of in-
dustry exposures might not mimic the portfolio
that the investor would have chosen if it were
possible instead to put money into individual
companies.

A possible counterargument might be that
a conglomerate with strong and decisive cen-
tral control may achieve synergies with regard
to revenues, costs, or taxation that would not
be available to individual free-standing firms
dealing at arms’ length with one another. A
skeptical investor might wonder, on the other
hand, about whether the potential positive im-
pact of such synergies may be partly or wholly
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undermined by the negative impacts of central-
ized decision making, transfer pricing, and reg-
ulatory or reputational risk.

For these reasons, an analyst might consider
that it is reasonable to apply a discount to
the overall value that emerges from the “sum
of the parts.” Some practitioners favor a dis-
count of somewhere between 5% and 15%, for
the reasons given above. Academic research
on spinoffs has suggested that the combined
value of the surviving entity and the spun-
off firm tends to rise by an average of around
6%, though with a wide range of variation (see
Burch and Nanda, 2003). (Some analysts have
suggested that in some particular contexts, for
instance in markets where competent managers
are very scarce, then investors should be willing
to pay a premium for being able to invest in a
conglomerate that is fortunate enough to have
such executives. However, this appears not to
be a mainstream view.)

Relative Valuation versus DCF:
A Comparison
Relative valuation methods can generally be
implemented fairly fast, and the underlying
information necessary to calculate can also
be updated quickly. Even with the various
complexities discussed above, an experienced
analyst can usually create a relative valuation
table within an hour or two. And the calcu-
lated valuation multiples can adjust as market
conditions and relative prices change. In both
respects, relative valuation methods have an
advantage over DCF models, which may re-
quire hours or days of work to build or update,
and which require the analyst to provide multi-
ple judgment-based inputs about unknowable
future events. Moreover, as noted by Baker and
Ruback (1999), if a DCF model is extended to
encompass multiple possible scenarios, it may
end up generating a range of “fair value” prices
that is too wide to provide much insight into
whether the potential investment is attractive
at its current valuation.

Relative valuation methods focus on how
much a company is worth to a minority share-
holder, in other words an investor who will
have limited or zero ability to influence the
company’s management or its strategy. Such
an approach is suitable for investors who in-
tend to purchase only a small percentage of
the company’s shares and to hold those shares
until the valuation multiple moves from being
“cheap” to being “in line” or “expensive” com-
pared with the peer group. As noted above,
relative valuation methods make no attempt
to determine what is the “correct” price for a
company’s shares, but instead focus on trying
to determine whether a company looks attrac-
tive or unattractive by comparison with other
firms that appear to be approximately similar
in terms of size, geography, industry, and other
parameters.

DCF methods attempt to determine how
much a company is worth in terms of “fair
value” over a long time horizon. DCF methods
can readily incorporate a range of assumptions
about decisions in the near future or the dis-
tant future, and therefore can provide a range
of different scenarios. For this reason, most
academics and practitioners consider that DCF
methods are likely to produce greater insight
than relative valuation methods into the vari-
ous forces that may affect the fair value for a
business. More specifically, DCF methods can
be more applicable to situations where an in-
vestor will seek to influence a company’s future
direction—perhaps as an activist investor push-
ing management in new directions, or possibly
as a bidder for a controlling stake in the firm.
In such situations, relative valuation analysis is
unlikely to provide much insight because the
investor will actually be seeking to affect the
company’s valuation multiples directly, by af-
fecting the value of the denominator.

Nevertheless, even where an analyst favors
the use of DCF approaches, we consider that
relative valuation methods can still be valu-
able as a “sanity check” on the output from a
DCF-based valuation. An analyst can take the
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expected valuation from the DCF model and
compare it with the projected values for net
income, shareholders’ equity, operating cash
flow, and similar metrics. These ratios drawn
from the DCF modeling process can then be
compared with the multiples for a universe of
similar firms. If the multiples generated by the
analyst’s DCF model are approximately compa-
rable with the multiples that can be derived for
similar companies that are already being pub-
licly traded, then the analyst may conclude that
the DCF model’s assumptions appear to be rea-
sonable. However, if the multiples from the an-
alyst’s model appear to diverge considerably
from the available information concerning val-
uation multiples for apparently similar firms,
then it may be a good idea to reexamine the
model, rechecking whether the underlying as-
sumptions are truly justifiable.

Relative valuation methods can also be useful
in another way when constructing DCF models.
Most DCF models include a “terminal value,”
which represents the expected future value of
the business, discounted back to the present,
from all periods subsequent to the ones for
which the analyst has developed explicit esti-
mates. One way to calculate this terminal value
is in terms of a perpetual growth rate, but the
choice of a particular growth rate can be dif-
ficult to justify on the basis of the firm’s cur-
rent characteristics. An alternative approach is
to take current valuation multiples for similar
firms and use those values as multiples for ter-
minal value (see Damodaran, 2006, Chapter 4,
pp. 143–144).

KEY POINTS
� Relative valuation methods tend to receive

less attention from academics than DCF ap-
proaches, but such methods are widely used
by practitioners. If relative valuation ap-
proaches suggest that a company is cheap on
some metrics but expensive on others, this
may indicate that the market views that com-

pany as being an outlier for some reason, and
an analyst will probably want to investigate
further.

� Choosing an appropriate group of compa-
rable companies is perhaps the most chal-
lenging aspect of relative valuation analysis.
Where possible, an analyst should seek to
identify six to 12 companies that are similar
in terms of size, geography, and industry. If
this is not possible, then an analyst should feel
free to relax one or more of these parameters
in order to obtain a usable universe.

� Determining an appropriate set of valuation
multiples is also important. Calculating a sin-
gle set of multiples is likely to provide fewer
insights than using several different metrics
that span multiple time periods. It is conven-
tional to use consensus estimates of future fi-
nancial and operating performance, as these
presumably represent the market’s collective
opinion of each firm’s prospects.

� Most relative valuation analysis is per-
formed using standard multiples such as
price/earnings or firm value/sales. Under
some conditions, using industry-specific mul-
tiples can be valuable, though there may be
fewer consensus estimates for such data, and
there may also be less intuition about what is
the “fair” price for such ratios.

� Relative valuation methods are particularly
useful for investors who aim to take minority
stakes in individual companies when they are
“cheap” relative to their peers, and then sell
those stakes when the companies become “ex-
pensive.” Such methods are likely to be less
directly useful for investors who will seek to
influence a company’s management, or who
aim to take a controlling stake in a company.
For such investors, DCF methods are likely to
be more applicable.

NOTES
1. By contrast, in an example of how to assess a

small wine producer, the proposed universe
of comparables consisted of 15 “beverage
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firms,” including both small and large caps,
and covering specialists in beer, wine, and
soft drink production. Arguably, some of
these are unlikely to be very similar to the
proposed target of analysis. See Chapter 7 in
Damodaran (2006, pp. 249–252).

2. For further examples using real firms and
actual figures, see Damodaran (2006, Chap-
ters 7 and 8) or Hooke (2010, Chapter 15).
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Abstract: Investment approaches are determined by investors’ views of the market. For investors
who believe the market is basically efficient, so that price changes are essentially random and
unpredictable, the reasonable approach is passive investing, or indexing, which makes no attempt
to outperform the underlying market. Investors who believe there are clear-cut patterns discernible
in stock price movements may aim for above-market returns by using fairly simple approaches,
such as buying stocks with low price/earning ratios or buying small-capitalization stocks. But
what if the market is not totally efficient, but there are no simple patterns that can be exploited
for consistent excess returns? Such a complex market requires an investment approach capable of
dealing with that complexity.

Scientists classify systems into three types—
ordered, random, and complex. Ordered sys-
tems, such as the structure of diamond crystals
or the dynamics of pendulums, are definable
and predictable by relatively simple rules and
can be modeled using a relatively small number
of variables. Random systems like the Brownian
motion of gas molecules or white noise (static)
are unordered; they are the product of a large
number of variables. Their behavior cannot be
modeled and is inherently unpredictable.

Complex systems like the weather and the
workings of DNA fall somewhere between the
domains of order and randomness. Their be-
havior can be at least partly comprehended
and modeled, but only with great difficulty. The
number of variables that must be modeled and

their interactions are beyond the capacity of the
human mind alone. Only with the aid of ad-
vanced computational science can the myster-
ies of complex systems be unraveled.1

The stock market is a complex system.2 Stock
prices are not completely random, as the effi-
cient market hypothesis and random walk the-
ory would have it. Some price movements can
be predicted, and with some consistency. But
stock price behavior is not ordered. It cannot be
successfully modeled by simple rules or screens
such as low price-to-earnings ratios (P/Es) or
even by elegant theories such as the capital as-
set pricing model or arbitrage pricing theory.
Rather, stock price behavior is permeated by
a complex web of interrelated return effects. A
model of the market that is complex enough to
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disentangle these effects provides opportuni-
ties for modeling price behavior and predicting
returns.

This entry describes our approach to investing
and its application to the stock selection, portfolio
construction, and performance evaluation prob-
lems. We begin with the very basic question
of how one should approach the equity market.
Should one attempt to cover the broadest pos-
sible range of stocks, or can greater analytical
insights be garnered by focusing on a particu-
lar subset of the market or a limited number of
stocks? Each approach has its advantages and
disadvantages. However, combining the two
may offer the best promise of finding the key
to unlocking investment opportunity in a com-
plex market.

While covering the broadest possible range
of stocks, a complex approach recognizes that
there are significant differences in the ways
different types of stocks respond to changes in
both fundamentals and investor behavior. This
requires taking into account the interrelation-
ships between numerous potential sources of
price behavior. Multivariate analysis disentan-
gles the web of return-predictor relationships
that constitutes a complex market and provides
independent, additive return predictions that
are more robust than the predictions from
univariate analyses.

AN INTEGRATED APPROACH
TO A SEGMENTED MARKET
While one might think that U.S. equity markets
are fluid and fully integrated, in reality there are
barriers to the free flow of capital. Some of these
barriers are self-imposed by investors. Others
are imposed by regulatory and tax authorities
or by client guidelines.

Some funds, for example, are prohibited by
regulation or internal policy guidelines from
buying certain types of stock—non-dividend-
paying stock, or stock below a given capitaliza-

tion level. Tax laws, too, may effectively lock
investors into positions they would otherwise
trade. Such barriers to the free flow of capital
foster market segmentation.

Other barriers are self-imposed. Traditionally,
for example, managers have focused (whether
by design or default) on distinct approaches
to stock selection. Value managers have con-
centrated on buying stocks selling at prices
perceived to be low relative to the company’s
assets or earnings. Growth managers have
sought stocks with above-average earnings
growth not fully reflected in price. Small-
capitalization managers have searched for op-
portunity in stocks that have been overlooked
by most investors. The stocks that constitute the
natural selection pools for these managers tend
to group into distinct market segments.

Client preferences encourage this balkaniza-
tion of the market. Some investors, for exam-
ple, prefer to buy value stocks, while others
seek growth stocks; some invest in both, but hire
separate managers for each segment. Both in-
stitutional and individual investors generally
demonstrate a reluctance to upset the apple cart
by changing allocations to previously selected
style managers. Several periods of underperfor-
mance, however, may undermine this loyalty
and motivate a flow of capital from one seg-
ment of the market to another (often just as the
out-of-favor segment begins to benefit from a
reversion of returns back up to their historical
mean).

The actions of investment consultants have
formalized a market segmented into style
groupings. Consultants design style indexes
that define the constituent stocks of these seg-
ments and define managers in terms of their
proclivity for one segment or another. As a
manager’s performance is measured against the
given style index, managers who stray too far
from index territory are taking on extra risk.
Consequently, managers tend to stick close to
their style homes, reinforcing market segmen-
tation.
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An investment approach that focuses on in-
dividual market segments can have its ad-
vantages. Such an approach recognizes, for
example, that the U.S. equity market is nei-
ther entirely homogeneous nor entirely het-
erogeneous. All stocks do not react alike to a
given impetus, but nor does each stock exhibit
its own, totally idiosyncratic price behavior.
Rather, stocks within a given style, or sector, or
industry tend to behave similarly to each other
and somewhat differently from stocks outside
their group.

An approach to stock selection that
specializes in one market segment can op-
timize the application of talent and maximize
the potential for outperformance. This is
most likely true for traditional, fundamen-
tal analysis. The in-depth, labor-intensive
research undertaken by traditional analysts
can become positively ungainly without some
focusing lens.

An investment approach that focuses on the
individual segments of the market, however,
presents some theoretical and practical prob-
lems. Such an approach may be especially dis-
advantaged when it ignores the many forces
that work to integrate, rather than segment, the
market.

Many managers, for example, do not special-
ize in a particular market segment but are free
to choose the most attractive securities from
a broad universe of stocks. Others, such as
style rotators, may focus on a particular type of
stock, given current economic conditions, but
be poised to change their focus should condi-
tions change. Such managers make for capital
flows and price arbitrage across the boundaries
of particular segments.

Furthermore, all stocks can be defined by the
same fundamental parameters—by market cap-
italization, P/E, dividend discount model rank-
ing, and so on. All stocks can be found at some
level on the continuum of values for each pa-
rameter. Thus, growth and value stocks inhabit
the opposite ends of the continuums of P/E and

dividend yield, and small and large stocks the
opposite ends of the continuums of firm capi-
talization and analyst coverage.

As the values of the parameters for any in-
dividual stock change, so too does the stock’s
position on the continuum. An out-of-favor
growth stock may slip into value territory. A
small-cap company may grow into the large-
cap range.

Finally, while the values of these parame-
ters vary across stocks belonging to different
market segments—different styles, sectors, and
industries—and while investors may favor cer-
tain values—low P/E, say, in preference to
high P/E—arbitrage tends to counterbalance
too pronounced a predilection on the part of
investors for any one set of values. In equilib-
rium, all stocks must be owned. If too many
investors want low P/E, low-P/E stocks will be
bid up to higher P/E levels, and some investors
will step in to sell them and buy other stocks
deserving of higher P/Es. Arbitrage works to-
ward market integration and a single pricing
mechanism.

A market that is neither completely seg-
mented nor completely integrated is a com-
plex market. A complex market calls for an
investment approach that is 180 degrees re-
moved from the narrow, segment-oriented fo-
cus of traditional management. It requires
a complex, unified approach that takes into
account the behavior of stocks across the broad-
est possible selection universe, without los-
ing sight of the significant differences in price
behavior that distinguish particular market
segments.

Such an approach offers three major advan-
tages. First, it provides a coherent evaluation
framework. Second, it can benefit from all the
insights to be garnered from a wide and di-
verse range of securities. Third, because it has
both breadth of coverage and depth of analy-
sis, it is poised to take advantage of more profit
opportunities than a more narrowly defined,
segmented approach proffers.
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A Coherent Framework
To the extent that the market is integrated, an in-
vestment approach that models each industry
or style segment as if it were a universe unto
itself is not the best approach. Consider, for ex-
ample, a firm that offers both core and value
strategies. Suppose the firm runs a model on its
total universe of, say, 3,000 stocks. It then runs
the same model or a different, segment-specific
model on a 500-stock subset of large-cap value
stocks.

If different models are used for each strat-
egy, the results will differ. Even if the same
model is estimated separately for each strategy,
its results will differ because the model coeffi-
cients are bound to differ between the broader
universe and the narrower segment. What if
the core model predicts GM will outperform
Ford, while the value model shows the reverse?
Should the investor start the day with multi-
ple estimates of one stock’s alpha? This would
violate what we call the law of one alpha.3

Of course, the firm could ensure coherence
by using separate models for each market
segment—growth, value, small-cap, linking the
results via a single, overarching model that re-
lates all the subsets. But the firm then runs into
a second problem with segmented investment
approaches: To the extent that the market is inte-
grated, the pricing of securities in one segment
may contain information relevant to pricing in
other segments.

For example, within a generally well-
integrated national economy, labor market con-
ditions in the United States differ region by
region. An economist attempting to model
employment in the Northeast would proba-
bly consider economic expansion in the South-
east. Similarly, the investor who wants to model
growth stocks should not ignore value stocks.
The effects of inflation, say, on value stocks may
have repercussions for growth stocks; after all,
the two segments represent opposite ends of
the same P/E continuum.

An investment approach that concentrates on
a single market segment does not make use of

all available information. A complex, unified
approach considers all the stocks in the uni-
verse, value and growth, large and small. It thus
benefits from all the information to be gleaned
from a broad range of stock price behavior.

Of course, an increase in breadth of inquiry
will not benefit the investor if it comes at the
sacrifice of depth of inquiry. A complex ap-
proach does not ignore the significant differ-
ences across different types of stock, differences
exploitable by specialized investing. What’s
more, in examining similarities and differences
across market segments, it considers numerous
variables that may be considered to be defining.

For value, say, a complex approach does not
confine itself to a dividend discount model
measure of value, but examines also earnings,
cash flow, sales, and yield value, among other
attributes. Growth measurements to be consid-
ered include historical, expected, and sustain-
able growth, as well as the momentum and
stability of earnings. Share price, volatility, and
analyst coverage are among the elements to be
considered along with market capitalization as
measures of size.

At a deeper level of analysis, one must also
consider alternative ways of specifying such
fundamental variables as earnings or cash flow.
Over what period does one measure earnings?
If using analyst earnings expectations, which
measure provides the best estimate of future
real earnings? The consensus of all available es-
timates made over the past six months, or only
the very latest earnings estimates? Are some an-
alysts more accurate or more influential? What
if a recent estimate is not available for a given
company?4

Predictor variables are often closely corre-
lated with each other. Small-cap stocks, for ex-
ample, tend to have low P/Es; low P/E is
correlated with high yield; both low P/E and
high yield are correlated with dividend dis-
count model (DDM) estimates of value. Fur-
thermore, they may be correlated with a stock’s
industry affiliation. A simple low-P/E screen,
for example, will tend to select a large number
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of bank and utility stocks. Such correlations can
distort naı̈ve attempts to relate returns to po-
tentially relevant predictors. A true picture of
the return-predictor relationship emerges only
after disentangling the predictors.

DISENTANGLING
The effects of different sources of stock return
can overlap. In Figure 1, the lines represent con-
nections documented by academic studies; they
may appear like a ball of yarn after the cat got
to it. To unravel the connections between pre-
dictor variables and return, it is necessary to
examine all the variables simultaneously.

For instance, the low-P/E effect is widely rec-
ognized, as is the small-size effect. But stocks
with low P/Es also tend to be of small size.
Are P/E and size merely two ways of look-
ing at the same effect? Or does each variable
matter? Perhaps the excess returns to small-cap
stocks are merely a January effect, reflecting the
tendency of taxable investors to sell depressed
stocks at year-end. Answering these questions
requires disentangling return effects via multi-
variate regression.5

Common methods of measuring return
effects (such as quintiling or univariate, single-
variable, regression) are naı̈ve because they as-
sume, naı̈vely, that prices are responding only
to the single variable under consideration, low

B/P
Effect

Yield
Effect

Low P/E
Effect

Return
Reversal

Effect

Neglected
Firm

Effect
Earnings
Surprise

Effect

Small
Size

Effect

Low Price
Effect

Earnings
Revision

Effect

January
Effect

Figure 1 Return Effects Form a Tangled Web

P/E, say. But a number of related variables
may be affecting returns. As we have noted,
small-cap stocks and banking and utility indus-
try stocks tend to have low P/Es. A univariate
regression of return on low P/E will capture,
along with the effect of P/E, a great deal of
noise related to firm size, industry affiliation,
and other variables.

Simultaneous analysis of all relevant vari-
ables via multivariate regression takes into ac-
count and adjusts for such interrelationships.
The result is the return to each variable sep-
arately, controlling for all related variables. A
multivariate analysis for low P/E, for example,
will provide a measure of the excess return to
a portfolio that is market-like in all respects ex-
cept for having a lower-than-average P/E ratio.
Disentangled returns are pure returns.

Noise Reduction
Figure 2 plots naı̈ve and pure cumulative
monthly excess (relative to a 3,000-stock uni-
verse) returns to high book-to-price ratio (B/P).
(Conceptually, naı̈ve and pure returns come
from a portfolio having a B/P that is one stan-
dard deviation above the universe mean B/P;
for the pure returns, the portfolio is also con-
strained to have universe-average exposures to
all the other variables in the model, including
fundamental characteristics and industry affil-
iations.) The naı̈ve returns show a great deal of
volatility; the pure returns, by contrast, follow
a much smoother path. There is a lot of noise in
the naı̈ve returns. What causes it?

Notice the divergence between the naı̈ve and
pure return series for the 12 months starting in
March 1979. This date coincides with the crisis
at Three Mile Island nuclear power plant. Util-
ities such as GPU, operator of the Three Mile
Island power plant, tend to have high B/Ps,
and naı̈ve B/P measures will reflect the perfor-
mance of these utilities along with the perfor-
mance of other high-B/P stocks. Electric utility
prices plummeted 24% after the Three Mile Is-
land crisis. The naı̈ve B/P measure reflects this
decline.
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Figure 2 Naı̈ve and Pure Returns to High Book-to-Price Ratio

But industry-related events such as Three
Mile Island have no necessary bearing on the
B/P variable. An investor could, for example,
hold a high-B/P portfolio that does not over-
weight utilities, and such a portfolio would not
have experienced the decline reflected in the
naı̈ve B/P measure in Figure 2. The naı̈ve re-
turns to B/P reflect noise from the inclusion of
a utility industry effect. A pure B/P measure is
not contaminated by such irrelevant variables.

Disentangling distinguishes real effects from
mere proxies and thereby distinguishes be-
tween real and spurious investment opportu-
nities. As it separates high B/P and industry
affiliation, for example, it can also separate the
effects of firm size from the effects of related
variables. Disentangling shows that returns to
small firms in January are not abnormal; the
apparent January seasonal merely proxies for
year-end tax-loss selling.6 Not all small firms
will benefit from a January rebound; indiscrim-
inately buying small firms at the turn of the year
is not an optimal investment strategy. Ascer-
taining true causation leads to more profitable
strategies.

Return Revelation
Disentangling can reveal hidden opportunities.
Figure 3 plots the naı̈vely measured cumulative

monthly excess returns (relative to the 3,000-
stock universe) to portfolios that rank lower
than average in market capitalization and price
per share and higher than average in terms
of analyst neglect. These results derive from
monthly univariate regressions. The small-cap
line thus represents the cumulative excess re-
turns to a portfolio of stocks naı̈vely chosen on
the basis of their size, with no attempt made to
control for other variables.

All three return series move together. The sim-
ilarity between the small-cap and neglect series
is particularly striking. This is confirmed by the
correlation coefficients in the first column of
Table 1. Furthermore, all series show a great
deal of volatility within a broader up, down, up
pattern.

Figure 4 shows the pure cumulative monthly
excess returns to each size-related attribute over
the period. These disentangled returns adjust
for correlations not only between the three size

Table 1 Correlations Between Monthly Returns to
Size-Related Variables*

Variable Naı̈ve Pure

Small cap/low price 0.82 −0.12
Small cap/neglect 0.87 −0.22
Neglect/low price 0.66 −0.11

*A coefficient of 0.14 is significant at the 5% level.
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Figure 3 Naı̈ve Returns Can Hide Opportunities (Three Size-Related Variables)

variables, but also between each size variable
and industry affiliations and each variable and
growth and value characteristics. Two findings
are immediately apparent from Figure 4.

First, pure returns to the size variables do not
appear to be nearly as closely correlated as the
naı̈ve returns displayed in Figure 3. In fact, over
the second half of the period, the three return
series diverge substantially. This is confirmed
by the correlation coefficients in the second col-
umn of Table 1.

In particular, pure returns to small capital-
ization accumulate quite a gain over the pe-

–10%

0%

10%

20%

30%

C
um

ul
at

iv
e 

E
xc

es
s 

R
et

ur
n

40%

50%

1978
1979

1980
1983

1982
1981

1985
1984

1986
1987

1988
1989

1991
1990

1992
1993

1994
1995

1996

NeglectSmall Cap Low Price

Figure 4 Pure Returns Can Reveal Opportunities (Three Size-Related Variables)

riod; they are up 30%, versus an only 20%
gain for the naı̈ve returns to small cap. Purify-
ing returns reveals a profit opportunity not ap-
parent in the naı̈ve returns. Furthermore, pure
returns to analyst neglect amount to a sub-
stantial loss over the period. Because disen-
tangling controls for proxy effects, and thereby
avoids redundancies, these pure return effects
are additive. A portfolio could have aimed
for superior returns by selecting small-cap
stocks with a higher-than-average analyst fol-
lowing (that is, a negative exposure to analyst
neglect).
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Table 2 Pure Returns Are Less Volatile, More
Predictable: Standard Deviations of Monthly Returns
to Size-Related Variables*

Variable Naı̈ve Pure

Small cap 0.87 0.60
Neglect 0.87 0.67
Low price 1.03 0.58

*All differences between naı̈ve and pure return standard
deviations are significant at the 1% level.

Second, the pure returns appear to be much
less volatile than the naı̈ve returns. The naı̈ve re-
turns in Figure 3 display much month-to-month
volatility within their more general trends. By
contrast, the pure series in Figure 4 are much
smoother and more consistent. This is con-
firmed by the standard deviations given in
Table 2.

The pure returns in Figure 4 are smoother and
more consistent than the naı̈ve return responses
in Figure 3 because the pure returns capture
more signal and less noise. And because they
are smoother and more consistent than naı̈ve
returns, pure returns are also more predictive.

Predictive Power
Disentangling improves the predictive power
of estimated returns by providing a clearer
picture of the relationships between investor
behavior, fundamental variables, and macro-
economic conditions. For example, investors
often prefer value stocks in bearish market en-
vironments, because growth stocks are priced
more on the basis of high expectations, which
get dashed in more pessimistic eras. But the
success of such a strategy will depend on the
variables one has chosen to define value.

Table 3 displays the results of regressing both
naı̈ve and pure monthly returns to various
value-related variables on market (S&P 500)
returns over the 1978–1996 period.7 The re-
sults indicate that DDM value is a poor indi-
cator of a stock’s ability to withstand a tide of
receding market prices. The regression coeffi-

Table 3 Market Sensitivities of Monthly Returns to
Value-Related Variables

Variable Naı̈ve (t-stat.) Pure (t-stat.)

DDM 0.06 (5.4) 0.04 (5.6)
B/P −0.10 (−6.2) −0.01 (−0.8)
Yield −0.08 (−7.4) −0.03 (−3.5)

cient in the first column indicates that a portfo-
lio with a one-standard-deviation exposure to
DDM value will tend to outperform by 0.06%
when the market rises by 1.00% and to under-
perform by a similar margin when the market
falls by 1.00%. The coefficient for pure returns to
DDM is similar. Whether their returns are mea-
sured in pure or naı̈ve form, stocks with high
DDM values tend to behave procyclically.

High B/P appears to be a better indicator of a
defensive stock. It has a regression coefficient of
−0.10 in naı̈ve form. In pure form, however, B/P
is virtually uncorrelated with market move-
ments; pure B/P signals neither an aggressive
nor a defensive stock. B/P as naı̈vely measured
apparently picks up the effects of truly defen-
sive variables, such as high yield.

The value investor in search of a defensive
posture in uncertain market climates should
consider moving toward high yield. The regres-
sion coefficients for both naı̈ve and pure returns
to high yield indicate significant negative mar-
ket sensitivities. Stocks with high yields may be
expected to lag in up markets but to hold up
relatively well during general market declines.

These results make broad intuitive sense.
DDM is forward-looking, relying on estimates
of future earnings. In bull markets, investors
take a long-term outlook, so DDM explains
security pricing behavior. In bear markets, how-
ever, investors become myopic; they prefer to-
day’s tangible income to tomorrow’s promise.
Current yield is rewarded.

Pure returns respond in intuitively satisfying
ways to macroeconomic events. Figure 5 illus-
trates, as an example, the estimated effects of
changes in various macroeconomic variables on
the pure returns to small size (as measured by
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Figure 5 Forecast Response of Small Size to Macroeconomic Shocks

market capitalization). Consistent with the cap-
ital constraints on small firms and their rela-
tively greater sensitivity to the economy, pure
returns to small size may be expected to be
negative in the first four months following an
unexpected increase in the Baa corporate rate
and positive in the first month following an
unexpected increase in industrial production.8

Investors can exploit such predictable behav-
ior by moving into and out of the small-
cap market segment as economic conditions
evolve.9

These examples serve to illustrate that the
use of numerous, finely defined fundamental
variables can provide a rich representation of
the complexity of security pricing. The model
can be even more finely tuned, however, by in-
cluding variables that capture such subtleties as
the effects of investor psychology, possible non-

linearities in variable-return relationships, and
security transaction costs.

Additional Complexities
In considering possible variables for inclusion
in a model of stock price behavior, the in-
vestor should recognize that pure stock returns
are driven by a combination of economic fun-
damentals and investor psychology. That is,
economic fundamentals such as interest rates,
industrial production, and inflation can explain
much, but by no means all, of the system-
atic variation in returns. Psychology, including
investors’ tendency to overreact, their desire
to seek safety in numbers, and their selective
memories, also plays a role in security pricing.

What’s more, the modeler should realize that
the effects of different variables, fundamental
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and otherwise, can differ across different types
of stocks. The value sector, for example, in-
cludes more financial stocks than the growth
sector. Investors may thus expect value stocks in
general to be more sensitive than growth stocks
to changes in interest rate spreads.

Psychologically based variables such as short-
term overreaction and price correction also
seem to have a stronger effect on value than
on growth stocks. Earnings surprises and earn-
ings estimate revisions, by contrast, appear to
be more important for growth than for value
stocks. Thus, Google shares can take a nosedive
when earnings come in a penny under expecta-
tions, whereas Duke Energy shares remain un-
moved even by fairly substantial departures of
actual earnings from expectations.

The relationship between stock returns and
relevant variables may not be linear. The ef-
fects of positive earnings surprises, for in-
stance, tend to be arbitraged away quickly;
thus positive earnings surprises offer less
opportunity for the investor. The effects of neg-
ative earnings surprises, however, appear to be
more long-lasting. This nonlinearity may reflect
the fact that sales of stock are limited to those
investors who already own the stock (and to a
relatively small number of short-sellers).10

Risk-variable relationships may also differ
across different types of stock. In particular,
small-cap stocks generally have more idiosyn-
cratic risk than large-cap stocks. Diversification
is thus more important for small-stock than for
large-stock portfolios.

Return-variable relationships can also change
over time. Recall the difference between DDM
and yield value measures: high-DDM stocks
tend to have high returns in bull markets and
low returns in bear markets; high-yield stocks
experience the reverse. For consistency of per-
formance, return modeling must consider the
effects of market dynamics, the changing na-
ture of the overall market.

The investor may also want to decipher the
informational signals generated by informed
agents. Corporate decisions to issue or buy back

shares, split stock, or initiate or suspend divi-
dends, for example, may contain valuable in-
formation about company prospects. So, too,
may insiders’ (legal) trading in their own firms’
shares.

Finally, a complex model containing multi-
ple variables is likely to turn up a number
of promising return-variable relationships. But
are these perceived profit opportunities trans-
latable into real economic opportunities? Are
some too ephemeral? Too small to survive
frictions such as trading costs? Estimates of
expected returns must be combined with esti-
mates of the costs of trading to arrive at realistic
returns net of trading costs.

CONSTRUCTING, TRADING,
AND EVALUATING
PORTFOLIOS
To maximize implementation of the model’s
insights, the portfolio construction process
should consider exactly the same dimensions
found relevant by the stock selection model.
Failure to do so can lead to mismatches between
model insights and portfolio exposures.11

Consider a commercially available portfolio
optimizer that recognizes only a subset of the
variables in the valuation model. Risk reduc-
tion using such an optimizer will reduce the
portfolio’s exposures only along the dimen-
sions the optimizer recognizes. As a result, the
portfolio is likely to wind up more exposed to
those variables recognized by the model, but
not the optimizer, and less exposed to those
variables common to both the model and the
optimizer.

Imagine an investor who seeks low-P/E
stocks that analysts are recommending for pur-
chase, but who uses a commercial optimizer
that incorporates a P/E factor but not ana-
lyst recommendations. The investor is likely
to wind up with a portfolio that has a less-
than-optimal level of exposure to low P/E and
a greater–than-optimal level of exposure to
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analyst purchase recommendations. Optimiza-
tion using all relevant variables ensures a port-
folio whose risk and return opportunities are
balanced in accordance with the model’s in-
sights. Furthermore, the use of more numerous
variables allows portfolio risk to be more finely
tuned.

Insofar as the investment process, both stock
selection and portfolio construction, is model-
driven, it is more adaptable to electronic trading
venues. This should benefit the investor in sev-
eral ways. First, electronic trading is generally
less costly, with lower commissions, market im-
pact, and opportunity costs. Second, it allows
real-time monitoring, which can further reduce
trading costs. Third, an automated trading sys-
tem can take account of more factors, including
the urgency of a particular trade and market
conditions, than individual traders can be ex-
pected to bear in mind.

Finally, the performance attribution process
should be congruent with the dimensions of the
selection model (and portfolio optimizer). Inso-
far as performance attribution identifies sources
of return, a process that considers all the sources
identified by the selection model will be more
insightful than a commercial performance at-
tribution system applied in a one-size-fits-all
manner. Our investor who has sought exposure
to low P/E and positive analyst recommenda-
tions, for example, will want to know how each
of these factors has paid off and will be less in-
terested in the returns to factors that are not a
part of the stock selection process.

A performance evaluation process tailored
to the model also functions as a monitor
of the model’s reliability. Has portfolio per-
formance supported the model’s insights?
Should some be reexamined? Equally impor-
tant, does the model’s reliability hold up over
time? A model that performs well in today’s
economic and market environments may not
necessarily perform well in the future. A feed-
back loop between the evaluation and the re-
search/modeling processes can help ensure
that the model retains robustness over time.

PROFITING FROM
COMPLEXITY
H. L. Mencken is supposed to have noted, “For
every complex problem, there is a simple solu-
tion, and it is almost always wrong.” Complex
problems more often than not require complex
solutions.

A complex approach to stock selection, port-
folio construction, and performance evaluation
is needed to capture the complexities of the
stock market. Such an approach combines the
breadth of coverage and the depth of analy-
sis needed to maximize investment opportunity
and potential reward.

Grinold presents a formula that identi-
fies the relationships between the depth and
breadth of investment insights and investment
performance:12

IR = IC
√

BR

IR is the manager’s information ratio, a mea-
sure of the success of the investment process.
IR equals annualized excess return over an-
nualized residual risk (e.g., 2% excess return
with 4% tracking error provides 0.5 IR). IC, the
information coefficient, or correlation between
predicted and actual security returns, measures
the goodness of the manager’s insights, or the
manager’s skill. BR is the breadth of the strat-
egy, measurable as the number of independent
insights upon which investment decisions are
made.

One can increase IR by increasing IC or BR. In-
creasing IC means coming up with some means
of improving predictive accuracy. Increasing BR
means coming up with more “investable” in-
sights. A casino analogy may be apt (if anath-
ema to prudent investors).

A gambler can seek to increase IC by card
counting in blackjack or by building a computer
model to predict probable roulette outcomes.
Similarly, some investors seek to outperform
by concentrating their research efforts on a few
stocks: by learning all there is to know about
Microsoft, for example, one may be able to
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outperform all the other investors who follow
this stock. But a strategy that makes a few con-
centrated stock bets is likely to produce consis-
tent performance only if it is based on a very
high level of skill, or if it benefits from extraor-
dinary luck.

Alternatively, an investor can place a larger
number of smaller stock bets and settle for more
modest returns from a greater number of invest-
ment decisions. That is, rather than behaving
like a gambler in a casino, the investor can be-
have like the casino. A casino has only a slight
edge on any spin of the roulette wheel or roll
of the dice, but many spins of many roulette
wheels can result in a very consistent profit for
the house. Over time, the odds will strongly
favor the casino over the gambler.

A complex approach to the equity market, one
that has both breadth of inquiry and depth of fo-
cus, can enhance the number and the goodness
of investment insights. A complex approach to
the equity market requires more time, effort,
and ability, but it will be better positioned to
capture the complexities of security pricing. The
rewards are worth the effort.

KEY POINTS
� Ordered systems are definable and pre-

dictable by relatively simple rules; random
systems cannot be modeled and are inher-
ently unpredictable; complex systems can be
at least partly comprehended and modeled,
but only with difficulty.

� Stock price behavior is permeated by a com-
plex web of interrelated return effects, and it
requires a complex approach to stock selec-
tion, portfolio construction, and performance
evaluation to capture this complexity.

� A complex approach combines the breadth of
coverage and the depth of analysis needed
to maximize investment opportunity and po-
tential reward.

� Simple methods of measuring return ef-
fects (such as quintiling or univariate, single-
variable regression) are naı̈ve because they

assume that prices are responding only to the
single variable under consideration.

� Simultaneous analysis of all relevant vari-
ables via multivariate regression takes into
account and adjusts for interrelationships be-
tween effects, giving the return to each vari-
able separately.

� Disentangling distinguishes real effects from
mere proxies and thereby distinguishes be-
tween real and spurious investment opportu-
nities.

� Because disentangling controls for proxy ef-
fects, pure return effects are additive, each
having the potential to improve portfolio
performance.

� In general, disentangling enhances the pre-
dictive power of estimated returns by pro-
viding a clearer picture of the relationships
between investor behavior, fundamental vari-
ables, and macroeconomic conditions.

� To maximize implementation of insights
gained from disentangling the market’s com-
plexity, the portfolio construction process
should consider exactly the same dimensions
found relevant by the stock selection process.

� Performance attribution should be congruent
with the stock selection and portfolio con-
struction processes so that it can be used to
monitor the reliability of the stock selection
process and provide input for research.

NOTES
1. See Pagels (1988) and Wolfram (2002).
2. Jacobs and Levy (1989a).
3. See Jacobs and Levy (1995b).
4. See Jacobs, Levy, and Krask (1997).
5. See Jacobs and Levy (1988b).
6. Jacobs and Levy (1988a).
7. Jacobs and Levy (1988c).
8. See Jacobs and Levy (1989b).
9. Jacobs and Levy (1996).

10. See Jacobs and Levy (1993).
11. See Jacobs and Levy (1995a).
12. Grinold (1989).
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Abstract: Quantitative equity portfolio selection often involves extending the classical mean-
variance framework or more advanced tail-risk portfolio allocation frameworks to include dif-
ferent constraints that take specific investment guidelines and institutional features into account.
Examples of such constraints are holding constraints that set limits on the total concentration of
assets in an industry, sector, or country; turnover constraints that restrict the amount of trad-
ing; tracking error constraints that limit the difference between the performance of the port-
folio and a benchmark; and risk factor constraints that limit the exposure of the portfolio to
a risk factor such as the market. Portfolio allocation models can also account for transaction
costs, taxes, and optimization of trades across multiple client accounts. An important practi-
cal issue in quantitative equity portfolio selection is how to mitigate the effect of model and
estimation errors on the optimal allocation. Techniques that are used to address this issue in-
clude robust statistical techniques for parameter estimation, portfolio resampling, and robust
optimization.

An integrated investment process generally
involves the following activities:1

1. An investor’s objectives, preferences, and
constraints are identified and specified to de-
velop explicit investment policies.

2. Strategies are developed and implemented
through the choice of optimal combinations
of financial and real assets in the market-
place.

3. Market conditions, relative asset values, and
the investor’s circumstances are monitored.

4. Portfolio adjustments are made as appropri-
ate to reflect significant changes in any or all
of the relevant variables.

In this entry we focus on the second ac-
tivity of the investment process, developing
and implementing a portfolio strategy. The de-
velopment of the portfolio strategy itself is
typically done in two stages: First, funds are
allocated among asset classes. Then, they are
managed within the asset classes. The mean-
variance framework is used at both stages,
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but in this entry, we discuss the second stage.
Specifically, we introduce quantitative formu-
lations of portfolio allocation problems used in
equity portfolio management. Quantitative eq-
uity portfolio selection often involves extending
the classical mean-variance framework or more
advanced tail-risk portfolio allocation frame-
works to include different constraints that take
specific investment guidelines and institutional
features into account.

We begin by providing a classification of the
most common portfolio constraints used in prac-
tice. We then discuss extensions such as index
tracking formulations, the inclusion of transac-
tion costs, optimization of trades across mul-
tiple client accounts, and tax-aware strategies.
We conclude with a review of methods for
incorporating robustness in quantitative port-
folio allocation procedures by using robust
statistics, simulation, and robust optimization
techniques.

PORTFOLIO CONSTRAINTS
COMMONLY USED IN
PRACTICE
Institutional features and investment policy
specifications often lead to more complicated
requirements than simple minimization of risk
(whatever the definition of risk may be) or max-
imization of expected portfolio return. For in-
stance, there can be constraints that limit the
number of trades, the exposure to a specific in-
dustry, or the number of stocks to be kept in
the portfolio. Some of these constraints are im-
posed by the clients, while others are imposed
by regulators. For example, in the case of regu-
lated investment companies, restrictions on as-
set allocation are set forth in the prospectus and
may be changed only with the approval of the
fund’s board of directors. Pension funds must
comply with Employee Retirement Income Se-
curity Act (ERISA) requirements. The objective
of the portfolio optimization problem can also be

modified to consider specifically the trade-off
between risk and return, transactions costs, or
taxes.

In this section, we will take a single-period
view of investing, in the sense that the goal of
the portfolio allocation procedure will be to in-
vest optimally over a single predetermined pe-
riod of interest, such as one month.2 We will use
w0 to denote the vector array of stock weights
in the portfolio at the beginning of the period,
and w to denote the weights at the end of the
period (to be determined).

Many investment companies, especially insti-
tutional investors, have a long investment hori-
zon. However, in reality, they treat that horizon
as a sequence of shorter period horizons. Risk
budgets are often stated over a time period of
a year, and return performance is monitored
quarterly or monthly.

Long-Only (No-Short-Selling)
Constraints
Many funds and institutional investors face
restrictions or outright prohibitions on the
amount of short selling they can do. When short
selling is not allowed, the portfolio allocation
optimization model contains the constraints
w ≥ 0.

Holding Constraints
Diversification principles argue against invest-
ing a large proportion of the portfolio in a single
asset, or having a large concentration of assets
in a specific industry, sector, or country. Lim-
its on the holdings of a specific stock can be
imposed with the constraints

l ≤ w ≤ u

where l and u are vectors of lower and up-
per bounds of the holdings of each stock in the
portfolio.

Consider now a portfolio of 10 stocks. Sup-
pose that the issuers of assets 1, 3, and 5 are in
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the same industry, and that we would like to
limit the portfolio exposure to that industry to
be at least 20% but at most 40%. To limit expo-
sure to that industry, we add the constraint

0.20 ≤ w1 + w3 + w5 ≤ 0.40

to the portfolio allocation optimization prob-
lem.

More generally, if we have a specific set of
stocks Ij out of the investment universe I con-
sisting of stocks in the same category (such
as industry or country), we can write the
constraint

L j ≤
∑

j∈I j

w j ≤ Uj

In words, this constraint requires that the sum
of all stock weights in the particular category
of investments with indexes Ij is greater than or
equal to a lower bound Lj and less than or equal
to a maximum exposure of Uj.

Turnover Constraints
High portfolio turnover can result in large
transaction costs that make portfolio rebalanc-
ing inefficient and costly. Thus, some portfolio
managers limit the amount of turnover allowed
when trading their portfolio. (Another way to
control for transaction costs is to minimize them
explicitly; we will discuss the appropriate for-
mulations later in this entry.)

Most commonly, turnover constraints are im-
posed for each stock:

|wi − w0,i | ≤ ui ,

that is, the absolute magnitude of the difference
between the final and the initial weight of stock
i in the portfolio is restricted to be less than
some upper bound ui. Sometimes, a constraint
is imposed to minimize the portfolio turnover
as a whole:

∑

j∈I j

|w j − w0, j | ≤ Uj

that is, the total absolute difference between the
initial and the final weights of the stocks in the
portfolio is restricted to be less than or equal
to an upper bound Ui. Under this constraint,
some stock weights may deviate a lot more than
others from their initial weights, but the total
deviation is limited.

Turnover constraints are often imposed rel-
ative to the average daily volume (ADV) of a
stock.3 For example, we may want to restrict
turnover to be no more than 5% of the ADV. (In
the latter case, the upper bound ui is set to a
value equal to 5% of the ADV.) Modifications of
these constraints, such as limiting turnover in
a specific industry or sector, are also frequently
applied.

Risk Factor Constraints
In practice, it is very common for quantitatively
oriented portfolio managers to use factor mod-
els to control for risk exposures to different risk
factors. Such risk factors could include the mar-
ket return, size, and style. Let us assume that the
return on stock i has a factor structure with K
risk factors, that is, it can be expressed through
the equality

ri = αi +
K∑

k=1

βik · fk + εi

The factors fk are common to all securities. The
coefficient β ik in front of each factor fk shows
the sensitivity of the return on stock i to factor
k. The value of αi shows the expected excess
return of the return on stock i, and εi is the
idiosyncratic (called “nonsystematic”) part of
the return of stock i. The coefficients αi and β ik

are typically estimated by multiple regression
analysis.

To limit the exposure of a portfolio of N stocks
to the kth risk factor, we impose the constraint

N∑

i=1

βik · wi ≤ Uk
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To understand this constraint, note that the
total return on the portfolio can be written as

N∑

i=1

wi · ri =
N∑

i=1

wi · (αi +
K∑

k=1

βik · fk + εi )

=
N∑

i=1

wi · αi +
N∑

i=1

(
wi ·

(
K∑

k=1

βik · fk

))

+
N∑

i=1

wi · εi

The sensitivity of the portfolio to the different
factors is represented by the second term, which
can be also written as

K∑

k=1

((
N∑

i=1

wi · βik

)
· fk

)

Therefore, the exposure to a particular factor
k is the coefficient in front of fk, that is,

N∑

i=1

βik · wi

On an intuitive level, the sensitivity of the
portfolio to a factor k will be larger the larger
the presence of factor k in the portfolio through
the exposure of the individual stocks. Thus,
when we compute the total exposure of the
portfolio to factor k, we need to take into con-
sideration both how important this factor is for
determining the return on each of the securities
in the portfolio, and how much of each security
we have in the portfolio.

A commonly used version of the maximum
factor exposure constraint is

N∑

i=1

βik · wi = 0

This constraint forces the portfolio optimiza-
tion algorithm to find portfolio weights so that
the overall risk exposure to factor k is 0, that is,
so that the portfolio is neutral with respect to
changes in factor k. Portfolio allocation strate-
gies that claim to be “market-neutral” typically
employ this constraint, and the factor is in fact
the return on the market.

Cardinality Constraints
Depending on the portfolio allocation model
used, sometimes the optimization subroutine
recommends holding small amounts of a large
number of stocks, which can be costly when one
takes into consideration the transaction costs
incurred when acquiring these positions. Alter-
natively, a portfolio manager may be interested
in limiting the number of stocks used to track a
particular index. (We will discuss index track-
ing later in this entry.) To formulate the con-
straint on the number of stocks to be held in the
portfolio (called the cardinality constraint), we
introduce binary variables, one for each of the
N stocks in the portfolio. Let us call these binary
variables δ1, . . . , δN. Variable δi will take value
1 if stock i is included in the portfolio, and 0
otherwise.

Suppose that out of the N stocks in the in-
vestment universe, we would like to include a
maximum of K stocks in the final portfolio. K
here is a positive integer and is less than N.
This constraint can be formulated as

N∑

i=1

δi ≤ K

δi binary, i = 1, . . . ,N

We need to make sure, however, that if a stock
is not selected in the portfolio, then the binary
variable that corresponds to that stock is set to
0, so that the stock is not counted as one of the
K stocks left in the portfolio. When the port-
folio weights are restricted to be nonnegative,
this can be achieved by imposing the additional
constraints

0 ≤ wi ≤ δi , i = 1, . . . , N

If the optimal weight for stock i turns out to
be different from 0, then the binary variable δi

associated with stock i is forced to take value
1, and stock i will be counted as one of the K
stocks to be kept in the portfolio. If the optimal
weight for stock i is 0, then the binary vari-
able δi associated with stock i can be either 0
or 1, but that will not matter for all practical



EQUITY PORTFOLIO SELECTION MODELS IN PRACTICE 65

purposes, because the solver will set it to 0 if
there are too many other attractive stocks that
will be counted as the K stocks to be kept in the
portfolio. At the same time, since the portfolio
weights wi are between 0 and 1, and δi is 0 or 1,
the constraint wi ≤ δi does not restrict the values
that the stock weight wi can take.

The constraints are a little different if short
sales are allowed, in which case the weights
may be negative. We have

−M · δi ≤ wi ≤ M · δi , i = 1, . . . , N

where M is a “large” constant (large relative to
the size of the inputs in the problem; so in this
portfolio optimization application M = 10 can
be considered “large”). You can observe that if
the weight wi is anything but 0, the value of the
binary variable δi will be forced to be different
from 0, that is, δi will need to be 1, since it can
only take values 0 or 1.

Minimum Holding and Transaction
Size Constraints
Cardinality constraints are often used in con-
junction with minimum holding/trading con-
straints. The latter set a minimum limit on the
amount of a stock that can be held in the portfo-
lio, or the amount of a stock that can be traded,
effectively eliminating small trades. Both car-
dinality and minimum holding/trading con-
straints aim to reduce the amount of transaction
costs.

Threshold constraints on the amount of stock
i to be held in the portfolio can be imposed with
the constraint

|wi | ≥ Li · δi

where Li is the smallest holding size allowed
for stock i, and δi is a binary variable, analogous
to the binary variables δi defined in the previ-
ous section—it equals 1 if stock i is included in
the portfolio, and 0 otherwise. (All additional
constraints relating δi and wi described in the
previous section still apply.)

Similarly, constraints can be imposed on the
minimum trading amount for stock i. As we ex-

plained earlier in this section, the size of the
trade for stock i is determined by the abso-
lute value of the difference between the current
weight of the stock, w0,i, and the new weight wi

that will be found by the solver: | wi – w0,i |. The
minimum trading size constraint formulation is

|wi − w0,i | ≥ L trade
i · δi

where L trade
i is the smallest trading size allowed

for stock i.
Adding binary variables to an optimization

problem makes the problem more difficult for
the solver and can increase the computation
time substantially. That is why in practice, port-
folio managers often omit minimum holding
and transaction size constraints from the op-
timization problem formulation, selecting in-
stead to eliminate weights and/or trades that
appear too small manually, after the optimal
portfolio is determined by the optimization
solver. It is important to realize, however, that
modifying the optimal solution for the simpler
portfolio allocation problem (the optimal solu-
tion in this case is the weights/trades for the
different stocks) by eliminating small positions
manually does not necessarily produce the op-
timal solution to an optimization problem that
contained the minimum holding and transac-
tion size constraints from the beginning. In fact,
there can be pathological cases in which the so-
lution is very different from the true optimal
solution. However, for most cases in practice,
the small manual adjustments to the optimal
portfolio allocation do not cause tremendous
discrepancies or inconsistencies.

Round Lot Constraints
So far, we have assumed that stocks are in-
finitely divisible, that is, that we can trade and
invest in fractions of stocks, bonds, and so on.
This is, of course, not true—in reality, securities
are traded in multiples of minimum transaction
lots, or rounds (e.g., 100 or 500 shares).

In order to represent the condition that secu-
rities should be traded in rounds, we need to
introduce additional decision variables (let us
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call them zi, i = 1, . . . , N) that are integers and
will correspond to the number of lots of a par-
ticular security that will be purchased. Each zi

will then be linked to the corresponding port-
folio weight wi through the equality

wi = zi · fi , i = 1, . . . , N

where fi is measured in dollars, and is a fraction
of the total amount to be invested. For example,
suppose there is a total of $100 million to be
invested, and stock i trades at $50 in round lots
of 100. Then

fi = 50 · 100
100,000,000

= 5 · 10−7

All remaining constraints in the portfolio al-
location can be expressed through the weights
wi, as usual. However, we also need to specify
for the solver that the decision variables zi are
integers.

An issue with imposing round lot constraints
is that the budget constraint

w′ι = 1

which is in fact
N∑

i=1

zi · fi = 1

may not be satisfied exactly. One possibility to
handle this problem is to relax the budget con-
straint. For example, we can state the constraint
as

w′ι ≤ 1

or, equivalently,

N∑

i=1

zi · fi ≤ 1

This will ensure that we do not go over
budget.

If our objective is stated as expected return
maximization, the optimization solver will at-
tempt to make this constraint as tight as possi-
ble, that is, we will end up using up as much
of the budget as we can. Depending on the ob-
jective function and the other constraints in the
formulation, however, this may not always hap-
pen. We can try to force the solver to minimize

the slack in the budget constraint by introduc-
ing a pair of nonnegative decision variables
(let us call them ε+ and ε−) that account for
the amount that is “overinvested” or “underin-
vested.” These variables will pick up the slack
left over because of the inability to round the
amounts for the different investments. Namely,
we impose the constraints

N∑

i=1

zi · fi + ε− − ε+ = 1

ε− ≥ 0, ε+ ≥ 0

and subtract the following term from the objec-
tive function:

λrl · (ε− + ε+)

where λrl is a penalty term associated with the
amount of over- or underinvestment the port-
folio manager is willing to tolerate (selected by
the portfolio manager). In the final solution, the
violation of the budget constraint will be min-
imized. Note, however, that this formulation
technically allows for the budget to be over-
invested.

The optimal portfolio allocation we obtain af-
ter solving this optimization problem will not
be the same as the allocation we would ob-
tain if we solve an optimization problem with-
out round lot constraints, and then round the
amounts to fit the lots that can be traded in the
market.

Cardinality constraints, minimum holding/
trading constraints, and especially round lot
constraints require more sophisticated binary
and integer programming solvers, and are dif-
ficult problems to solve in the case of large
portfolios.

BENCHMARK EXPOSURE
AND TRACKING ERROR
MINIMIZATION
Expected portfolio return maximization under
the mean-variance framework or other risk
measure minimization are examples of active
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investment strategies, that is, strategies that iden-
tify a universe of attractive investments and ig-
nore inferior investments opportunities. A dif-
ferent approach, referred to as a passive invest-
ment strategy, argues that in the absence of any
superior forecasting ability, investors might as
well resign themselves to the fact that they can-
not beat the market. From a theoretical perspec-
tive, the analytics of portfolio theory tell them
to hold a broadly diversified portfolio anyway.
Many mutual funds are managed relative to a
particular benchmark or stock universe, such
as the S&P 500 or the Russell 1000. The port-
folio allocation models are then formulated in
such a way that the tracking error relative to the
benchmark is kept small.

Standard Definition of
Tracking Error
To incorporate a passive investment strategy,
we can change the objective function of the port-
folio allocation problem so that instead of min-
imizing a portfolio risk measure, we minimize
the tracking error with respect to a benchmark
that represents the market, such as the Russell
3000, or the S&P 500. Such strategies are often
referred to as indexing. The tracking error can
be defined in different ways. However, practi-
tioners typically mean a specific definition: the
variance (or standard deviation) of the differ-
ence between the portfolio return, w′r̃, and the
return on the benchmark, w′

b r̃. Mathematically,
the tracking error (TE) can be expressed as

TE = Var(w′r̃ − w′
b r̃)

= Var ((w − wb)′r̃)
= (w − wb)′Var (r̃) (w − wb)
= (w − wb)′�(w − wb)

where � is the covariance matrix of the stock re-
turns. One can observe that the formula is very
similar to the formula for the portfolio variance;
however, the portfolio weights in the formula
for the variance are replaced by differences be-
tween the weights of the stocks in the portfolio
and the weights of the stocks in the index.

Why do we need to optimize portfolio
weights in order to track a benchmark, when
technically the most effective way to track a
benchmark is by investing the portfolio in the
stocks in the benchmark portfolio in the same
proportions as the proportions of these securi-
ties in the benchmark? The problem with this
approach is that, especially with large bench-
marks like the Russell 3000, the transaction
costs of a proportional investment and the sub-
sequent rebalancing of the portfolio can be pro-
hibitive (that is, dramatically adversely impact
the performance of the portfolio relative to the
benchmark). Furthermore, in practice securities
are not infinitely divisible, so investing a port-
folio of a limited size in the same proportions
as the composition of the benchmark will still
not achieve zero tracking error. Thus, the opti-
mal formulation is to require that the portfolio
follows the benchmark as closely as possible.

While indexing has become an essential part
of many portfolio strategies, most portfolio
managers cannot resist the temptation to iden-
tify at least some securities that will outperform
others. Hence, restrictions on the tracking er-
ror are often imposed as a constraint, while the
objective function is something different from
minimizing the tracking error. The tracking er-
ror constraint takes the form

(w − wb)′�(w − wb) ≤ σ 2
TE

where σ 2
TE is a limit (imposed by the investor)

on the amount of tracking error the investor is
willing to tolerate. This is a quadratic constraint,
which is convex and computationally tractable,
but requires specialized optimization software.

Alternative Ways of Defining
Tracking Error
There are alternative ways in which tracking-
error type constraints can be imposed.

For example, we may require that the absolute
deviations of the portfolio weights (w) from the
index weights (wb) are less than or equal to a
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given vector array of upper bounds u:

|w − wb | ≤ u

where the absolute values |.| for the vector dif-
ferences are taken componentwise, that is, for
pairs of corresponding elements from the two
vector arrays. These constraints can be stated as
linear constraints by rewriting them as

w − wb ≤ u
−(w − wb) ≤ u

Similarly, we can require that for stocks within
a specific industry (whose indexes in the port-
folio belong to a subset Ij of the investment uni-
verse I), the total tracking error is less than a
given upper bound Uj:

∑

j∈I j

(w j − wb, j ) ≤ Uj

Finally, tracking error can be expressed
through risk measures other than the absolute
deviations or the variance of the deviations
from the benchmark. Rockafellar and Uryasev
(2000) suggest using conditional value-at-risk
(CVaR) to manage the tracking error. Condi-
tional value-at-risk measures the average loss
that can happen with probability less than some
small probability, that is, the average loss in the
tail of the distribution of portfolio losses. (Us-
ing CVaR as a risk measure results in computa-
tionally tractable optimization formulations for
portfolio allocation, as long as the data are pre-
sented in the form of scenarios.4) We provide
below a formulation that is somewhat different
from Rockafellar and Uryasev, but preserves the
main idea.

Suppose that we are given S scenarios for the
return of a benchmark portfolio (or an instru-
ment we are trying to replicate), bs, s = 1, . . . , S.
These scenarios can be generated by simulation
or taken from historical data. We also have N
stocks with returns r (s)

i (i = 1, . . . , N, s = 1, . . . ,
S) in each scenario. The value of the portfolio in
scenario s is

N∑

i=1

r (s)
i · wi

or, equivalently, (r(s))’w, where r(s) is the vector
of returns for the N stocks in scenario s. Con-
sider the differences between the return on the
benchmark and the return on the portfolio,

bs − (r(s))′w = −((r(s))′w − bs)

If this difference is positive, we have a loss;
if the difference is negative, we have a gain;
both gains and losses are computed relative to
the benchmark. Rationally, the portfolio man-
ager should not worry about differences that are
negative; the only cause for concern would be
if the portfolio underperforms the benchmark,
which would result in a positive difference.
Thus, it is not necessary to limit the variance of
the deviations of the portfolio returns from the
benchmark, which penalizes for positive and
negative deviations equally. Instead, we can im-
pose a limit on the amount of loss we are willing
to tolerate in terms of the CVaR of the distribu-
tion of losses relative to the benchmark.

The tracking error constraint in terms of the
CVaR can be stated as the following set of
constraints:5

ξ + 1
�ε · S� ·

S∑

s=1

ys ≤ UTE

ys ≥ −
(

(r(s))′w − bs

)
− ξ, s = 1, . . . , S

ys ≥ 0, s = 1, . . . , S

where UTE is the upper bound on the negative
deviations.

This formulation of tracking error is appeal-
ing in two ways. First, it treats positive and
negative deviations relative to the benchmark
differently, which agrees with the strategy of an
investor seeking to maximize returns overall.
Second, it results in a linear set of constraints,
which are easy to handle computationally, in
contrast to the first formulation of the tracking
error constraint in this section, which results in
a quadratic constraint.
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Actual Versus Predicted
Tracking Error
The tracking error calculation in practice is of-
ten backward-looking. For example, in comput-
ing the covariance matrix � in the standard
tracking error definition as the variance of the
deviations of the portfolio returns from the in-
dex, or in selecting the scenarios used in the
CVaR-type tracking error constraint in the pre-
vious section, we may use historical data. The
tracking error calculated in this manner is called
the ex post tracking error, backward-looking
error, or actual tracking error.

The problem with using the actual tracking
error for assessing future performance relative
to a benchmark is that the actual tracking er-
ror does not reflect the effect of the portfolio
manager’s current decisions on the future ac-
tive returns and hence the tracking error that
may be realized in the future. The actual track-
ing error has little predictive value and can be
misleading regarding portfolio risk.

Portfolio managers need forward-looking es-
timates of tracking error to reflect future port-
folio performance more accurately. In practice,
this is accomplished by using the services of a
commercial vendor that has a multifactor risk
model that has identified and defined the risks
associated with the benchmark, or by building
such a model in-house. Statistical analysis of
historical return data for the stocks in the bench-
mark is used to obtain the risk factors and to
quantify the risks. Using the manager’s current
portfolio holdings, the portfolio’s current expo-
sure to the various risk factors can be calculated
and compared to the benchmark’s exposures to
the risk factors. From the differential factor ex-
posures and the risks of the factors, a forward-
looking tracking error for the portfolio can be
computed. This tracking error is also referred to
as an ex ante tracking error or predicted track-
ing error.

There is no guarantee that the predicted track-
ing error will match exactly the tracking error
realized over the future time period of interest.
However, this calculation of the tracking error

has its use in risk control and portfolio construc-
tion. By performing a simulation analysis on the
factors that enter the calculation, the manager
can evaluate the potential performance of port-
folio strategies relative to the benchmark, and
eliminate those that result in tracking errors be-
yond the client-imposed tolerance for risk. The
actual tracking error, on the other hand, is use-
ful for assessing actual performance relative to
a benchmark.

INCORPORATING
TRANSACTION COSTS
Transaction costs can be generally divided into
two categories: (1) explicit such as bid-ask
spreads, commissions, and fees, and (2) im-
plicit such as price movement risk costs and
market impact costs. Price movement risk costs
are the costs resulting from the potential for a
change in market price between the time the
decision to trade is made and the time the trade
is actually executed. Market impact is the ef-
fect a trader has on the market price of an asset
when it sells or buys the asset. It is the extent to
which the price moves up or down in response
to the trader’s actions. For example, a trader
who tries to sell a large number of shares of
a particular stock may drive down the stock’s
market price.

The typical portfolio allocation models are
built on top of one or several forecasting mod-
els for expected returns and risk. Small changes
in these forecasts can result in reallocations that
would not occur if transaction costs are taken
into account. In practice, the effect of transac-
tion costs on portfolio performance is far from
insignificant. If transaction costs are not taken
into consideration in allocation and rebalanc-
ing decisions, they can lead to poor portfolio
performance.

This section describes some common trans-
action cost models for portfolio rebalancing.
We use the mean-variance framework as the
basis for describing the different approaches.
However, it is straightforward to extend the
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transaction cost models into other portfolio al-
location frameworks.

The earliest, and most widely used, model
for transaction costs is the mean-variance risk-
aversion formulation with transaction costs.6

The optimization problem has the following ob-
jective function:

max
w

w′μ − λ · w′�w − λTC · TC

where TC is a transaction cost penalty function
and λTC is the transaction cost aversion parame-
ter. In other words, the objective is to maximize
the expected portfolio return less the cost of
risk and transaction costs. We can imagine that
as the transaction costs increase, at some point
it becomes optimal to keep the current portfo-
lio rather than to rebalance. Variations of this
formulation exist. For example, it is common
to maximize expected portfolio return minus
transaction costs, and to impose limits on the
risk as a constraint (i.e., to move the second term
in the objective function to the constraints).

Transaction costs models can involve compli-
cated nonlinear functions. Although software
exists for general nonlinear optimization prob-
lems, the computational time required for solv-
ing such problems is often too long for realistic
investment applications, and the quality of the
solution is not guaranteed. In practice, an ob-
served complicated nonlinear transaction costs
function is often approximated with a compu-
tationally tractable function that is assumed to
be separable in the portfolio weights, that is, it
is often assumed that the transaction costs for
each individual stock are independent of the
transaction costs for another stock. For the rest
of this section, we will denote the individual
cost function for stock i by TCi.

Next, we explain several widely used models
for the transaction cost function.

Linear Transaction Costs
Let us start simple. Suppose that the transac-
tion costs are proportional, that is, they are
a percentage ci of the transaction size |t| =

| wi – w0,i |.7 Then, the portfolio allocation prob-
lem with transaction costs can be written simply
as

max
w

w′μ − λ · w′�w − λTC ·
N∑

i=1

ci ·|wi − w0,i |

The problem can be made solver-friendly by
replacing the absolute value terms with new
decision variables yi, and adding two sets of
constraints. Hence, we rewrite the objective
function as

max
w,y

w′μ − λ · w′�w − λTC ·
N∑

i=1

ci ·yi

and add the constraints

yi ≥ wi − w0,i

yi ≥ −(wi − w0,i )

This preserves the quadratic optimization
problem formulation, a formulation that can
be passed to quadratic optimization solvers
such as Excel Solver and MATLAB’s quadprog
function, because the constraints are linear ex-
pressions, and the objective function contains
only linear and quadratic terms.

In the optimal solution, the optimization
solver will in fact set the value for yi to
| wi – w0,i |. This is because this is a maxi-
mization problem and yi occurs with a nega-
tive sign in the objective function, so the solver
will try to set yi to the minimum value possible.
That minimum value will be the maximum of
(wi – w0,i) or –( wi – w0,i), which is in fact the
absolute value | wi – w0,i |.

Piecewise-Linear Transaction Costs
Taking the model in the previous section a step
further, we can introduce piecewise-linear ap-
proximations to transaction cost function mod-
els. This kind of function is more realistic than
the linear cost function, especially for large
trades. As the trading size increases, it becomes
increasingly more costly to trade because of the
market impact of the trade.

An example of a piecewise-linear function
of transaction costs for a trade of size t of a
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Trade amount (t)

TC

0
0.15·Vol 0.40·Vol 0.50·Vol

Figure 1 Example of Modeling Transaction Costs (TC) as a Piecewise-Linear Function of Trade Size t

particular security is illustrated in Figure 1.
The transaction cost function in the graph as-
sumes that the rate of increase of transaction
costs (reflected in the slope of the function)
changes at certain threshold points. For exam-
ple, it is smaller in the range 0 to 15% of daily
volume than in the range 15% to 40% of daily
volume (or some other trading volume index).
Mathematically, the transaction cost function in
Figure 1 can be expressed as
TC(t) =
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

s1t,

s1(0.15 · Vol) + s2(t − 0.15 · Vol),

s1(0.15 · Vol) + s2(0.25 · Vol)

+s3(t − 0.40 · Vol),

0 ≤ t ≤ 0.15 · Vol

0.15 · Vol ≤ t ≤ 0.40 · Vol

0.40 · Vol ≤ t ≤ 0.50 · Vol

where s1, s2, s3 are the slopes of the three linear
segments on the graph. (They are given data.)

To include piecewise-linear functions for
transaction costs in the objective function of a
mean-variance (or any general mean-risk) port-
folio optimization problem, we need to intro-
duce new decision variables that correspond
to the number of pieces in the piecewise-linear
approximation of the transaction cost function
(in this case, there are three linear segments, so

we introduce variables z1, z2, z3). We write the
penalty term in the objective function for an in-
dividual stock as8

λTC · (s1 · z1 + s2 · z2 + s3 · z3)

If there are N stocks in the portfolio, the total
transaction cost will be the sum of the transac-
tion costs for each individual stock, that is, the
penalty term that involves transaction costs in
the objective function becomes

−λTC

N∑

i=1

(s1,i · z1,i + s2,i · z2,i + s3,i · z3,i )

In addition, we specify the following con-
straints on the new decision variables:

0 ≤ z1,i ≤ 0.15 · Voli

0 ≤ z2,i ≤ 0.25 · Voli

0 ≤ z3,i ≤ 0.10 · Voli

Note that because of the increasing slopes of
the linear segments and the goal of making
that term as small as possible in the objective
function, the optimizer will never set the deci-
sion variable corresponding to the second seg-
ment, z2,i , to a number greater than 0 unless
the decision variable corresponding to the first
segment, z1,i , is at its upper bound. Similarly,
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the optimizer would never set z3,i to a number
greater than 0 unless both z1,i and z2,i are at
their upper bounds. So, this set of constraints
allows us to compute the amount of transac-
tion costs incurred in the trading of stock i as
z1,i + z2,i + z3,i .

Of course, we also need to link the amount
of transaction costs incurred in the trading of
stock i to the optimal portfolio allocation. This
can be done by adding a few more variables
and constraints. We introduce variables yi , one
for each stock in the portfolio, that would rep-
resent the amount traded (but not the direction
of the trade) and would be nonnegative. Then,
we require that

yi = z1,i + z2,i + z3,i for each stock i,

and also that yi equals the change in the portfo-
lio position of stock i. The latter condition can
be imposed by writing the constraint

yi = ∣∣wi − w0,i
∣∣

where w0,i and wi are the initial and the final
amount of stock i in the portfolio, respectively.9

Despite their apparent complexity, piecewise-
linear approximations for transaction costs are
very solver-friendly, and save time (relative to
nonlinear models) in the actual portfolio opti-
mization. Although modeling transaction costs
this way requires introducing new decision
variables and constraints, the increase in the di-
mension of the portfolio optimization problem
does not affect significantly the running time
or the performance of the optimization solver,
because the problem formulation is easy from a
computational perspective.

Quadratic Transaction Costs
The transaction cost function is often parame-
terized as a quadratic function of the form

TCi (t) = ci · |t| + di · |t|2

The coefficients ci and di are calibrated from
data–for example, by fitting a quadratic func-
tion to an observed pattern of transaction costs

realized for trading a particular stock under
normal conditions.

Including this function in the objective func-
tion of the portfolio optimization problem re-
sults in a quadratic program that can be solved
with widely available quadratic optimization
software.

Fixed Transaction Costs
In some cases, we need to model fixed trans-
action costs. Those are costs that are incurred
independently of the amount traded. To in-
clude such costs in the portfolio optimization
problem, we need to introduce binary variables
δ1, . . . , δN corresponding to each stock, where
δi equals 0 if the amount traded of stock i is 0,
and 1 otherwise. The idea is similar to the idea
we used to model the requirement that only a
given number of stocks can be included in the
portfolio.

Suppose the fixed transaction cost is ai for
stock i. Then, the transaction cost function is

TCi = ai · δi

The objective function formulation is then

max
w,δ

w′μ − λ · w′�w − λTC ·
N∑

i=1

ai ·δi

and we need to add the following constraints to
make sure that the binary variables are linked
to the trades | wi – w0,i |:

|wi − w0,i | ≤ M · δi , i = 1, . . . , N,

δi binary

where M is a “large” constant. When the trading
size | wi – w0,i | is nonzero, δi will be forced to
be 1. When the trading size is 0, then δi can be
either 0 or 1, but the optimizer will set it to 0,
since it will try to make its value the minimum
possible in the objective function.

Of course, combinations of different trading
cost models can be used in practice. For exam-
ple, if the trade involves both a fixed and a vari-
able quadratic transaction cost, then we could
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use a transaction cost function of the kind

TCi (t) = ai · δi + ci · |t| + di · |t|2

The important takeaway from this section is
that when transaction costs are included in the
portfolio rebalancing problem, the result is a re-
duced amount of trading and rebalancing, and
a different portfolio allocation than the one that
would be obtained if transaction costs are not
taken into consideration.

INCORPORATING TAXES
When stocks in a portfolio appreciate or de-
preciate in value, capital gains (respectively,
losses) accumulate. When stocks are sold, in-
vestors pay taxes on the realized net capital
gains. The taxes are computed as a percentage
of the difference between the current market
value of the stocks and their tax basis, where
the tax basis is the price at which the stocks
were bought originally.10 The percentage is less
for long-term capital gains (when stocks have
been held for more than a year) than it is for
short-term capital gains (when stocks have been
held for less than a year).11 Since shares of the
same stock could have been bought at different
points in time (in different lots), selling one lot
of the stock as opposed to another could incur
a different amount of tax. In addition to capital
gains taxes, investors who are not exempt from
taxes owe taxes on the dividends paid on stocks
in their portfolios. Those dividends are histor-
ically taxed at a higher rate than capital gains,
and may eventually be taxed as income, that is,
at the investor’s personal tax rate. The tax lia-
bility of a particular portfolio therefore depends
on the timing of the execution of trades, on the
tax basis of the portfolio, on the accumulated
short-term and long-term capital gains, and on
the tax bracket of the investor.

Over two-thirds of marketable portfolio as-
sets in the United States are held by individu-
als, insurance, and holding companies who pay
taxes on their returns. (Exceptions are, for ex-

ample, pension funds, which do not pay taxes
year-to-year.) Studies have indicated that taxes
are the greatest expense investors face—greater
than commissions and investment manage-
ment fees. To gain some intuition about the ef-
fect of taxes on the income of an investor over
the investor’s lifetime, consider a portfolio that
has a capital appreciation of 6.00% per year. Af-
ter 30 years, $1,000 invested in that portfolio will
turn into $1,000 · (1 + 0.06)30 = $5,743.49. Now
suppose that the capital gains are realized each
year, and a tax of 35% is paid on the gains (the
remainder is reinvested). After 30 years, $1,000
invested in the portfolio will turn into $1,000 ·
(1 + (1 − 0.35) · 0.06)30 = $3,151.13, about half
of the amount without taxes even when the tax
is about one third of the capital gains. In fact,
in order to provide the same return as the port-
folio with no taxes, the portfolio with annual
realized capital gains would need to generate a
capital appreciation of 9.23% per year! One can
imagine that the same logic would make bench-
mark tracking and performance measurement
very difficult on an after-tax basis.

As investors have become more aware of the
dramatic impact of taxes on their returns, there
is increasing pressure on portfolio managers
to include tax considerations in their portfolio
rebalancing decisions and to report after-tax
performance. Consequently, the demand for
computationally efficient and quantitatively
rigorous methods for taking taxes into con-
sideration in portfolio allocation decisions has
grown in recent years. The complexity of the
problem of incorporating taxes, however, is
considerable, both from a theoretical and prac-
tical perspective:

1. The presence of tax liabilities changes the
interpretation of even fundamental portfo-
lio performance summary measures such
as market value and risk. Thus, well-
established methods for evaluating portfo-
lio performance on a pretax basis do not
work well in the case of tax-aware portfo-
lio optimization. For example, in traditional
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portfolio management a loss is associated
with risk and is therefore minimized when-
ever possible. However, in the presence of
taxes, losses may be less damaging, because
they can be used to offset capital gains and re-
duce the tax burden of portfolio rebalancing
strategies. Benchmarking is also not obvious
in the presence of taxes: Two portfolios that
have exactly the same current holdings are
not equivalent if the holdings have a differ-
ent tax basis.12

2. Tax considerations are too complex to imple-
ment in a nonautomated fashion; at the same
time, their automatic inclusion in portfolio
rebalancing algorithms requires the ability to
solve very difficult, large-scale optimization
problems.

3. The best approach for portfolio manage-
ment with tax considerations is optimiza-
tion problem formulations that look at return
forecasts over several time periods (e.g.,
until the end of the year) before recommend-
ing new portfolio weights. However, the
latter multiperiod view of the portfolio op-
timization problem is very difficult to han-
dle computationally—the dimension of the
optimization problem, that is, the number of
variables and constraints, increases exponen-
tially with the number of time periods under
consideration.

We need to emphasize that while many of
the techniques described in the previous sec-
tions of this entry are widely known, there are
no standard practices for tax-aware portfolio
management that appear to be established. Dif-
ferent asset management firms interpret tax-
aware portfolio allocation and approach the
problem differently. To some firms, minimiz-
ing turnover,13 for example, by investing in
index funds, or selecting strategies that mini-
mize the portfolio dividend yield,14 qualify as
tax-aware portfolio strategies. Other asset man-
agement firms employ complex optimization
algorithms that incorporate tax considerations
directly in portfolio rebalancing decisions, so

that they can keep up with the considerable bur-
den of keeping track of thousands of managed
accounts and their tax preferences. The fact is,
even using simple rules of thumb, such as al-
ways selling stocks from the oldest lots after re-
balancing the portfolio with classical portfolio
optimization routines, can have a positive effect
on after-tax portfolio returns. The latter strategy
minimizes the likelihood that short-term gains
will be incurred, which in turn reduces taxes,
because short-term capital gains are taxed at a
higher rate than long-term capital gains.

Apelfeld, Fowler, and Gordon (1996) suggest
a tax-aware portfolio rebalancing framework
that incorporates taxes directly into the portfo-
lio optimization process. The main idea of the
approach is to treat different lots of the same
stock as different securities, and then penal-
ize for taxes as if they were different transac-
tion costs associated with the sale of each lot.
(This means, for example, that Microsoft stock
bought on Date 1 is treated as a different se-
curity from Microsoft stock bought on Date 2.)
Many tax-aware quantitative investment strate-
gies employ versions of this approach, but there
are a few issues to beware of when using it in
practice:

� The first one is a general problem for all
tax-aware approaches when they are used in
the context of active portfolio management.
For a portfolio manager who handles thou-
sands of different accounts with different tax
exposures, it is virtually impossible to pay at-
tention to the tax cost incurred by each indi-
vidual investor. While the tax-aware method
described above minimizes the overall tax
burden by reducing the amount of realized
short-term sales, it has no provisions for dif-
ferentiating between investors in different tax
brackets because it is difficult to think of
each trade as divided between all investors,
and adjusted for each individual investor’s
tax circumstances. This issue is so intractable
that in practice it is not really brought under
consideration.



EQUITY PORTFOLIO SELECTION MODELS IN PRACTICE 75

� The dimension of the problem can become
unmanageable very quickly. For example, a
portfolio of 1,000 securities, each of which has
10 different lots, is equivalent to a portfolio of
10,000 securities when each lot is treated as
a different security. Every time a new pur-
chase is realized, a new security is added to
the portfolio, since a new lot is created. One
needs to exercise care and “clean up” lots that
have been sold and therefore have holdings
of zero each time the portfolio is rebalanced.

� Practitioners typically use factor models for
forecasting returns and estimating risk. One
of the assumptions when measuring port-
folio risk through factor models is that the
specific risk of a particular security is uncorre-
lated with the specific risk of other securities.
(The only risk they share is the risk expressed
through the factors in the factor model.) This
assumption clearly does not hold when dif-
ferent “securities” are in fact different lots of
the same stock.

DiBartolomeo (2000) describes a modifica-
tion to the model used by Northfield Informa-
tion Service’s portfolio management software
that eliminates the last two problems. Instead
of treating each lot as a separate security, the
software imposes piecewise-linear transaction
costs (see Figure 1) where the break points on
the horizontal axis correspond to the current
size of different lots of the same security. The
portfolio rebalancing algorithm goes through
several iterations for the portfolio weights, and
at each iteration, only the shares in the highest
cost basis tax lot can be traded. Other shares of
the same stock can be traded in subsequent iter-
ations of the algorithm, with their appropriate
tax costs attached.

The approaches we described so far take into
consideration the short-term or long-term na-
ture of capital gains, but do not incorporate
the ability to offset capital gains and losses ac-
cumulated over the year. This is an inherent
limitation of single-period portfolio rebalanc-
ing approaches and is a strong argument in fa-

vor of adopting more realistic multiperiod port-
folio optimization approaches. The rebalancing
of the portfolio at each point in time should
be made not only by considering the immedi-
ate consequences for the market value of the
portfolio, but also the opportunity to correct for
tax liabilities by realizing other capital gains or
losses by the end of the taxable year. The scarce
theoretical literature on multiperiod tax-aware
portfolio optimization contains some character-
izations of optimal portfolio strategies under
numerous simplifying assumptions.15 How-
ever, even under such simplifying assumptions,
the dimension of the problem grows exponen-
tially with the number of stocks in a portfolio,
and it is difficult to come up with computation-
ally viable algorithms for portfolios of realistic
size.

MULTIACCOUNT
OPTIMIZATION
Portfolio managers who handle multiple ac-
counts face an important practical issue. When
individual clients’ portfolios are managed,
portfolio managers incorporate their clients’
preferences and constraints. However, on any
given trading day, the necessary trades for mul-
tiple diverse accounts are pooled and executed
simultaneously. Moreover, typically trades may
not be crossed, that is, it is not simply permis-
sible to transfer an asset that should be sold on
behalf of one client into the account of another
client for whom the asset should be bought.16

The trades should be executed in the market.
Thus, each client’s trades implicitly impact the
results for the other clients: The market impact
of the combined trades may be such that the
benefits sought for individual accounts through
trading are lost due to increased overall transac-
tion costs. A robust multiaccount management
process should ensure accurate accounting and
fair distribution of transaction costs among the
individual accounts.

One possibility to handle the effect of trad-
ing in multiple accounts is to use an iterative
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process, in which at each iteration the mar-
ket impact of the trades in previous iterations
is taken into account.17 More precisely, single
clients’ accounts are optimized as usual, and
once the optimal allocations are obtained, the
portfolio manager aggregates the trades and
computes the actual marginal transaction costs
based on the aggregate level of trading. The
portfolio manager then reoptimizes individual
accounts using these marginal transaction costs,
and aggregates the resulting trades again to
compute new marginal transaction costs, and
so on. The advantage of this approach is that
little needs to be changed in the way individual
accounts are typically handled, so the existing
single-account optimization and management
infrastructure can be reused. The disadvantage
is that most generally, this iterative approach
does not guarantee a convergence (or its con-
vergence may be slow) to a “fair equilibrium,”
in which clients’ portfolios receive an unbiased
treatment with respect to the size and the con-
straint structure of their accounts.18 The latter
equilibrium is the one that would be attained
if all clients traded independently and compet-
itively in the market for liquidity, and it is thus
the correct and fair solution to the aggregate
trading problem.

An alternative, more comprehensive ap-
proach is to optimize trades across all accounts
simultaneously. O’Cinneide, Scherer, and Xu
(2006) describe such a model and show that
it attains the fair equilibrium we mentioned
above.19 Assume that client k’s utility function
is given by uk and is in the form of a dollar
return penalized for risk. Assume also that a
transaction cost model τ gives the cost of trad-
ing in dollars, and that τ is a convex increasing
function.20 Its exact form will depend on the de-
tails of how trading is implemented. Let t be the
vector of trades. It will typically have the form(
t+
1 , . . . , t+

N, t−
1 , . . . , t−

N

)
, that is, it will specify the

aggregate buys t+
i and the aggregate sells t−

i for
each asset i=1, . . . , N, but it may also incorpo-
rate information about how the trade could be
carried out.21

The multiaccount optimization problem can
be formulated as

max
w1,...,wK ,t

E[u1(w1)] + . . . + E[uK (wK )] − τ (t)

s.t. wk ∈ Ck, k = 1, . . . , K

where wk is the N-dimensional vector of as-
set holdings (or weights) of client k, and Ck

is the collection of constraints on the portfolio
structure of client k. The objective can be inter-
preted as maximization of net expected utility,
that is, as maximization of the expected dollar
return penalized for risk and net of transaction
costs.

The problem can be simplified by making
some reasonable assumptions. For example, it
can be assumed that the transaction cost func-
tion τ is additive across different assets, that is,
that trades in one asset do not influence trad-
ing costs in another. In such a case, the trading
cost function can be split into more manageable
terms, that is,

τ (t) =
N∑

i=1

τi (t+
i ,t−

i )

where τi (t+
i , t−

i ) is the cost of trading asset i
as a function of the aggregate buys and sells
of that asset. Splitting the terms τi (t+

i , t−
i ) fur-

ther into separate costs of buying and selling,
however, is not a reasonable assumption, be-
cause simultaneous buying and selling of an
asset tends to have an offsetting effect on its
price.

To formulate the problem completely, let w0
k

be the vector of original holdings (or weights) of
client k’s portfolio, wk be the vector of decision
variables for the optimal holdings (or weights)
of client k’s portfolio, and ηk,i be constants that
convert the holdings (or weight) of each asset
i in client i’s portfolio wk,i to dollars, that is,
ηk,iwk,i is client k’s dollar holdings of asset i.22

We also introduce new variables w+
k to repre-

sent the an upper bound on the weight of each
asset client k will buy:

wk,i − w0
k,i ≤ w+

k,i , i = 1, . . . , N, k = 1, . . . , K
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The aggregate amount of asset i bought for all
clients can then be computed as

t+
i =

K∑

k=1

ηk,i · w+
k,i

The aggregate amount of asset i sold for all
clients can be easily expressed by noticing that
the difference between the amounts bought and
sold of each asset are exactly equal to the total
amount of trades needed to get from the origi-
nal position w0

k,i to the final position wk,i of that
asset:23

t+
i − t−

i =
K∑

k=1

ηk,i · (
wk,i − w0

k,i

)

Here t+
i and t−

i are nonnegative variables.
The multiaccount optimization problem then

takes the form

max
w1,...,wK ,t+,t−

E[u1(w1)] + . . . + E[uK (wK )] −
N∑

i=1

τi (t+i ,t−i )

s.t. wk ∈ Ck , k = 1, . . . , K

wk,i − w0
k,i ≤ w+

k,i , i = 1, . . . , N, k = 1, . . . , K

t+i =
K∑

k=1

ηk,i w
+
k,i , i = 1, . . . , N

t+i − t−i =
K∑

k=1

ηk,i ·
(
wk,i − w0

k,i

)
, i = 1, . . . , N

t+i ≥ 0, t−i ≥ 0, w+
k,i ≥ 0, i = 1, . . . , N, k = 1, . . . , K

O’Cinneide, Scherer, and Xu (2006) studied
the behavior of the model in simulated experi-
ments with a simple model for the transaction
cost function, namely, one in which

τ (t) = θ · tγ

where t is the trade size, and θ and γ are con-
stants satisfying θ ≥ 0 and γ ≥ 1.24 θ and γ are
specified in advance and calibrated to fit ob-
served trading costs in the market. The trans-
action costs for each client k can therefore be
expressed as

τk = θ

N∑

i=1

∣∣wk,i − w0
k,i

∣∣γ

O’Cinneide, Scherer, and Xu (2006) observed
that key portfolio performance measures, such

as the information ratio (IR),25 turnover, and to-
tal transaction costs, change under this model
relative to the traditional approach. Not surpris-
ingly, the turnover and the net information ra-
tios of the portfolios obtained with multiaccount
optimization are lower than those obtained with
single-account optimization under the assump-
tion that accounts are traded separately, while
transaction costs are higher. These results are in
fact more realistic, and they are a better repre-
sentation of the postoptimization performance
of multiple client accounts in practice.

ROBUST PARAMETER
ESTIMATION
The most commonly used approach for estimat-
ing security expected returns, covariances, and
other parameters that are inputs to portfolio
optimization models is to calculate the sample
analogues from historical data. These are sam-
ple estimates for the parameters we need. It is
important to remember that when we rely on
historical data for estimation purposes, we in
fact assume that the past provides a good rep-
resentation of the future.

It is well known, however, that expected re-
turns exhibit significant time variation (referred
to as nonstationarity). They are impacted by
changes in markets and economic conditions,
such as interest rates, the political environment,
consumer confidence, and the business cycles of
different industry sectors and geographical re-
gions. Consequently, extrapolated historical re-
turns are often poor forecasts of future returns.

Similarly, the covariance matrix is unsta-
ble over time. Moreover, sample estimates of
covariances for portfolios with thousands of
stocks are notoriously unreliable, because we
need large data sets to estimate them, and such
large data sets of relevant data are difficult
to procure. Estimates of the covariance matrix
based on factor models are often used to reduce
the number of statistical estimates needed from
a limited set of data.
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In practice, portfolio managers often alter his-
torical estimates of different parameters subjec-
tively or objectively, based on their expectations
and forecasting models for future trends. They
also use statistical methods for finding estima-
tors that are less sensitive to outliers and other
sampling errors, such as Bayesian and shrink-
age estimators. A complete review of advanced
statistical estimation topics is beyond the scope
of this entry. We provide a brief overview of the
most widely used concepts.26

Shrinkage is a form of averaging different esti-
mators. The shrinkage estimator typically con-
sists of three components: (1) an estimator with
little or no structure (like the sample mean);
(2) an estimator with a lot of structure (the
shrinkage target); and (3) a coefficient that re-
flects the shrinkage intensity. Probably the most
well-known estimator for expected returns in
the financial literature was proposed by Jorion
(1986). The shrinkage target in Jorion’s model is
a vector array with the return on the minimum
variance portfolio, and the shrinkage intensity
is determined from a specific formula.27 Shrink-
age estimators are used for estimates of the co-
variance matrix of returns as well,28 although
equally weighted portfolios of covariance ma-
trix estimators have been shown to be equally
effective as shrinkage estimators.29

Bayesian estimation approaches, named af-
ter the English mathematician Thomas Bayes,
are based on subjective interpretations of the
probability that a particular event will occur. A
probability distribution, called the prior dis-
tribution, is used to represent the investor’s
knowledge about the probability before any
data are observed. After more information is
gathered (e.g., data are observed), a formula
(known as Bayes’ rule) is used to compute the
new probability distribution, called the poste-
rior distribution.

In the portfolio parameter estimation context,
a posterior distribution of expected returns is
derived by combining the forecast from the em-
pirical data with a prior distribution. One of
the most well-known examples of the applica-

tion of the Bayesian framework in this context
is the Black-Litterman model,30 which produces
an estimate of future expected returns by com-
bining the market equilibrium returns (i.e., re-
turns that are derived from pricing models and
observable data) with the investor’s subjective
views. The investor’s views are expressed as
absolute or relative deviations from the equi-
librium together with confidence levels of the
views (as measured by the standard deviation
of the views).

The ability to incorporate exogenous insight,
such as a portfolio manager’s opinion, into
quantitative forecasting models is important;
this insight may be the most valuable input to
the model. The Bayesian framework provides
a mechanism for forecasting systems to use
both important traditional information sources
such as proprietary market data and subjective
external information sources such as analyst’s
forecasts.

It is important to realize that regardless of
how sophisticated the estimation and forecast-
ing methods are, they are always subject to
estimation error. What makes matters worse,
however, is that different estimation errors
can accumulate over the different activities of
the portfolio management process, resulting
in large aggregate errors at the final stage. It
is therefore critical that the inputs evaluated
at each stage are reliable and robust, so that
the aggregate impact of estimation errors is
minimized.

PORTFOLIO RESAMPLING
Robust parameter estimation is only one part of
ensuring that the quantitative portfolio man-
agement process as a whole is reliable. It has
been observed that portfolio allocation schemes
are very sensitive to small changes in the in-
puts that go into the optimizer. In particular,
a well-known study by Black and Litterman31

demonstrated that in the case of mean-variance
optimization, small changes in the inputs for
expected returns had a substantial impact on
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the portfolio composition. “Optimal” portfolios
constructed under conditions of uncertainty
can have extreme or nonintuitive weights for
some stocks.

With advances in computational capabilities
and new research in the area of optimization
under uncertainty, practitioners in recent years
have been able to incorporate considerations
for uncertainty not only at the estimation, but
also at the portfolio optimization stage. Meth-
ods for taking into consideration inaccuracies
in the inputs to the portfolio optimization prob-
lem include simulation (resampling) and robust
optimization. We explain portfolio resampling in
this section, and robust portfolio optimization
in the following section.

A logical approach to making portfolio alloca-
tion more robust with respect to changes in the
input parameters is to generate different sce-
narios for the values these parameters can take,
and to find weights that remain stable for small
changes in the input parameters. This method is
referred to as portfolio resampling.32 To illustrate
the resampling technique, we explain how it
is applied to portfolio mean-variance optimiza-
tion.

Suppose that we have initial estimates for the
expected stock returns, μ̂, and covariance ma-
trix, �̂, for the N stocks in the portfolio. (We use
“hat” to denote a statistical estimate.)

1. We simulate S samples of N returns from a
multivariate normal distribution with mean
μ̂ and covariance matrix �̂.

2. We use the S samples generated in (1) to com-
pute S new estimates of vectors of expected
returns μ̂1, . . . , μ̂S and covariance matrices
�̂1, . . . , �̂S.

3. We solve S portfolio optimization problems,
one for each estimated pair of expected
returns and covariances (μ̂s ,�̂s), and save
the weights for the N stocks in a vector
array w(s), where s = 1, . . . , S. (The optimiza-
tion problem itself could be any of the stan-
dard mean-variance formulations: maximize
expected return subject to constraints on

risk, minimize risk subject to constraints on
the expected return, or maximize the utility
function.)

4. To find the final portfolio weights, we aver-
age out the weight for each stock over the S
weights found for that stock in each of the S
optimization problems. In other words,

w = 1
S

S∑

s=1

w(s)

For example, stock i in the portfolio has final
weight

wi = w
(1)
i + · · · + w

(S)
i

S

5. Perhaps even more valuable than the aver-
age estimate of the weights obtained from
the simulation and optimization iterations
is the probability distribution we obtain for
the portfolio weights. If we plot the weights
for each stock obtained over the S iterations,
w

(1)
i , . . . , w

(S)
i , we can get a sense for how

variable this stock weight is in the portfolio.
A large standard deviation computed from
the distribution of portfolio weight i will
be an indication that the original portfolio
weight was not very precise due to estima-
tion error.

An important question, of course, is how large
is “large enough.” Do we have evidence that
the portfolios we obtained through resampling
are statistically different from one another? We
can evaluate that by using a test statistic. For
example, it can be shown that the test statistic

d(w∗, w) = (w∗ − w)′�(w∗ − w)

follows a chi-square (χ2) distribution with de-
grees of freedom equal to the number of securi-
ties in the portfolio. If the value of this statistic is
statistically “large,” then there will be evidence
that the portfolio weights w* and w are statisti-
cally different. This is an important insight for
the portfolio manager, and its applications ex-
tend beyond just resampling. Let us provide
some intuition as to why.
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Suppose that we are considering rebalancing
our current portfolio. Given our forecasts of ex-
pected returns and risk, we could calculate a set
of new portfolios through the resampling pro-
cedure. Using the test statistic above, we deter-
mine whether the new set of portfolio weights is
statistically different from our current weights
and, therefore, whether it would be worthwhile
to rebalance or not. If we decide that it is worth-
while to rebalance, we could choose any of the
resampled portfolios that are statistically dif-
ferent from our current portfolio. Which one
should we choose? A natural choice would be
to select the portfolio that would lead to the
lowest transaction costs. The idea of determin-
ing statistically equivalent portfolios, therefore,
has much wider implications than the ones il-
lustrated in the context of resampling.

Resampling has its drawbacks:

� Since the resampled portfolio is calculated
through a simulation procedure in which a
portfolio optimization problem needs to be
solved at each step, the approach is compu-
tationally cumbersome, especially for large
portfolios. There is a trade-off between the
number of resampling steps and the accuracy
of estimation of the effect of errors on the port-
folio composition.

� Due to the averaging in the calculation of
the final portfolio weights, it is highly likely
that all stocks will end up with nonzero
weights. This has implications for the amount
of transaction costs that will be incurred if the
final portfolio is to be attained. One possi-
bility is to include constraints that limit both
the turnover and the number of stocks with
nonzero weights. As we saw earlier, however,
the formulation of such constraints adds an-
other level of complexity to the optimization
problem and will slow down the resampling
procedure.

� Since the averaging process happens after the
optimization problems are solved, the final
weights may not actually satisfy some of the
constraints in the optimization formulation.

In general, only convex (such as linear) con-
straints are guaranteed to be satisfied by the
averaged final weights. Turnover constraints,
for example, may not be satisfied. This is a se-
rious limitation of the resampling approach
for practical applications.

Despite these limitations, resampling has
advantages and presents a good alternative
to using only point estimates of inputs to the
optimization problem.

ROBUST PORTFOLIO
OPTIMIZATION
Another way in which uncertainty about the
inputs can be modeled is by incorporating it di-
rectly into the optimization process. Robust opti-
mization is an intuitive and efficient way to deal
with uncertainty. Robust portfolio optimization
does not use the traditional forecasts, such as ex-
pected returns and covariances, but rather un-
certainty sets containing these point estimates.
An example of such an uncertainty set is a con-
fidence interval around the forecast for each ex-
pected return (“alpha”). This uncertainty shape
looks like a “box” in the space of the input
parameters. (See Figure 2(A).) We can also for-
mulate advanced uncertainty sets that incor-
porate more knowledge about the estimation
error. For instance, a widely used uncertainty
set is the ellipsoidal uncertainty set, which takes
into consideration the covariance structure of
the estimation errors. (See Figure 2(B).) We will
see examples of both uncertainty sets in this
section.

The robust optimization procedure for port-
folio allocation is as follows. First, we specify
the uncertainty sets around the input param-
eters in the problem. Then, we ask what the
optimal portfolio allocation is when the input
parameters take the worst possible value inside
these uncertainty sets. In effect, we solve an in-
ner problem that determines the worst possi-
ble realization of the uncertain parameters over
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Figure 2 (A) Box Uncertainty Set in Three Dimensions; (B) Ellipsoidal Uncertainty Set in Three Dimen-
sions

the uncertainty set before we solve the original
problem of optimal portfolio allocation.

Let us give a specific example of how the ro-
bust optimization framework can be applied
in the portfolio optimization context. Consider
the utility function formulation of the mean-
variance portfolio allocation problem:

max
w

w′μ − λ · w′�w

s.t. w′ι = 1

Suppose that we have estimates μ̂ and�̂ of the
vector of expected returns and the covariance
matrix. Instead of the estimate μ̂, however, we
will consider a set of vectors μ that are “close”
to μ̂. We define the box uncertainty set

Uδ(μ̂) = {μ| |μi − μ̂i | ≤ δi , i = 1, . . . , N}

In words, the set Uδ(μ̂) contains all vectors
μ = (μ1, . . . , μN) such that each component μi

is in the interval [μ̂i − δi , μ̂i + δi ]. We then solve
the following problem:

max
w

{
min

μ∈Uδ (μ̂)

{
μ′w

} − λ · w′�w
}

s.t. w′ι = 1

This is called the robust counterpart of the
original problem. It is a max-min problem that
searches for the optimal portfolio weights when
the estimates of the uncertain returns take their
worst-case values within the prespecified un-
certainty set in the sense that the value of the
objective function is the worst it can be over all
possible values for the expected returns in the
uncertainty set.

It can be shown33 that the max-min problem
above is equivalent to the following problem

max
w

w′μ − δ′|w| − λ · w′�w

s.t. w′ι = 1

where |w| denotes the absolute value of the en-
tries of the vector of weights w. To gain some
intuition, notice that if the weight of stock i
in the portfolio is negative, the worst-case ex-
pected return for stock i is μi + δi (we lose the
largest amount possible). If the weight of stock
i in the portfolio is positive, then the worst-case
expected return for stock i is μi − δi (we gain
the smallest amount possible). Observe that
μiwi − δi |wi | equals (μi − δi ) wi if the weight wi

is positive and (μi + δi ) wi if the weight wi is
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negative. Hence, the mathematical expression
in the objective agrees with our intuition: It min-
imizes the worst-case expected portfolio return.
In this robust version of the mean-variance for-
mulation, stocks whose mean return estimates
are less accurate (i.e., have a larger estimation
error δi ) are therefore penalized in the objective
function and will tend to have a smaller weight
in the optimal portfolio allocation.

This optimization problem has the same
computational complexity as the nonrobust
mean-variance formulation—namely, it can be
stated as a quadratic optimization problem. The
latter can be achieved by using a standard trick
that allows us to get rid of the absolute values
for the weights. The idea is to introduce an
N-dimensional vector of additional variables
ψ to replace the absolute values | w |, and to
write an equivalent version of the optimization
problem,

max
w,ψ

w′μ̂ − δ′ψ − λ · w′�w

s.t. w′ι = 1

ψi ≥ wi ; ψi ≥ −wi , i = 1, . . . , N

Therefore, incorporating considerations
about the uncertainty in the estimates of the
expected returns in this example has virtually
no computational cost.

We can view the effect of this particular “ro-
bustification” of the mean-variance portfolio
optimization formulation in two different ways.
On the one hand, we can see that the values
of the expected returns for the different stocks
have been adjusted downward in the objec-
tive function of the optimization problem. The
robust optimization model “shrinks” the ex-
pected return of stocks with large estimation
error, that is, in this case the robust formula-
tion is related to statistical shrinkage methods,
which we introduced earlier in this entry. On
the other hand, we can interpret the additional
term in the objective function as a “risk-like”
term that represents penalty for estimation er-
ror. The size of the penalty is determined by
the investor’s aversion to estimation risk and is
reflected in the magnitude of the deltas.

More complicated specifications for uncer-
tainty sets have more involved mathematical
representations, but can still be selected so that
they preserve an easy computational structure
for the robust optimization problem. For exam-
ple, we can use the ellipsoidal uncertainty set
from Figure 2(B), which can be expressed math-
ematically as

Uδ(μ̂) = {
μ| (μ − μ̂)′ �−1

μ (μ − μ̂) ≤ δ2} .

Here �μ is the covariance matrix of estima-
tion errors for the vector of expected returns μ.
This uncertainty set represents the requirement
that the sum of squares (scaled by the inverse
of the covariance matrix of estimation errors)
between all elements in the set and the point
estimates μ̂1, μ̂2, . . . , μ̂N can be no larger than
δ2. We note that this uncertainty set cannot be
interpreted as individual confidence intervals
around each point estimate. Instead, it captures
the idea of a joint confidence region. In practical
applications, the covariance matrix of estima-
tion errors is often assumed to be diagonal. In
the latter case, the set contains all vectors of ex-
pected returns that are within a certain number
of standard deviations from the point estimate
of the vector of expected returns, and the re-
sulting robust portfolio optimization problem
would protect the investor if the vector of ex-
pected returns is within that range.

It can be shown that the robust counterpart of
the mean-variance portfolio optimization prob-
lem with an ellipsoidal uncertainty set for the
expected return estimates is the following opti-
mization problem formulation:

max
w

w′μ − λ · w′�w − δ · √
w′�μw

s.t. w′ι = 1

This is a second-order cone optimization
problem and requires specialized software to
solve, but the methods for solving it are very
efficient.

Similarly to the case of the robust counter-
part with a box uncertainty set, we can inter-
pret the extra term in the objective function
(δ · √

w′�μw) as the penalty for estimation risk,
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where δ incorporates the degree of the in-
vestor’s aversion to estimation risk. Note, by
the way, that the covariance matrix in the esti-
mation error penalty term, �μ, is not necessar-
ily the same as the covariance matrix of returns
�. In fact, it is not immediately obvious how �μ

can be estimated from data. �μ is the covari-
ance matrix of the errors in the estimation of
the expected (average) returns. Thus, if a port-
folio manager forecasts 5% active return over
the next time period, but gets 1%, the manager
cannot argue that there was a 4% error in the
expected return—the actual error would con-
sist of both an estimation error in the expected
return and the inherent volatility in actual re-
alized returns. In fact, critics of the approach
such as Lee, Stefek, and Zhelenyak (2006) have
argued that the realized returns typically have
large stochastic components that dwarf the ex-
pected returns, and hence estimating �μ from
data is very hard, if not impossible.

Several approximate methods for estimating
�μ have been found to work well in practice.
For example, Stubbs and Vance (2005) observe
that simpler estimation approaches, such as
using just the diagonal matrix containing the
variances of the estimates (as opposed to the
complete error covariance matrix), often pro-
vide most of the benefit in robust portfolio opti-
mization. In addition, standard approaches for
estimating expected returns, such as Bayesian
statistics and regression-based methods, can
produce estimates for the estimation error co-
variance matrix in the process of generating the
estimates themselves.34

Among practitioners, the notion of robust
portfolio optimization is often equated with the
robust mean-variance model we discussed in
this section, with the box or the ellipsoidal un-
certainty sets for the expected stock returns.
While robust optimization applications often
involve one form or another of this model, the
actual scope of robust optimization can be much
broader. We note that the term robust optimiza-
tion refers to the technique of incorporating in-
formation about uncertainty sets for the pa-

rameters in the optimization model, and not
to the specific definitions of uncertainty sets
or the choice of parameters to model as un-
certain. For example, we can use the robust
optimization methodology to incorporate con-
siderations for uncertainty in the estimate of
the covariance matrix in addition to the un-
certainty in expected returns, and obtain a dif-
ferent robust portfolio allocation formulation.
Robust optimization can be applied also to
portfolio allocation models that are different
from the mean-variance framework, such as
Sharpe ratio optimization and value-at-risk
optimization.35 Finally, robust optimization has
the potential to provide a computationally effi-
cient way to handle portfolio optimization over
multiple stages—a problem for which so far
there have been few satisfactory solutions.36

There are numerous useful robust formulations,
but a complete review is beyond the scope of
this entry.37

Is implementing robust optimization formu-
lations worthwhile? Some tests with simulated
and real market data indicate that robust op-
timization, when inaccuracy is assumed in the
expected return estimates, outperforms classi-
cal mean-variance optimization in terms of total
excess return a large percentage (70–80%) of the
time (see, for example, Ceria and Stubbs, 2006).
Other tests have not been as conclusive (see, for
example, Lee, Stefek, and Zhelenyak, 2006). The
factor that accounts for much of the difference is
how the uncertainty in parameters is modeled.
Therefore, finding a suitable degree of robust-
ness and appropriate definitions of uncertainty
sets can have a significant impact on portfolio
performance.

Independent tests by practitioners and aca-
demics using both simulated and market data
appear to confirm that robust optimization gen-
erally results in more stable portfolio weights,
that is, that it eliminates the extreme corner
solutions resulting from traditional mean-
variance optimization. This fact has implica-
tions for portfolio rebalancing in the presence of
transaction costs and taxes, as transaction costs
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and taxes can add substantial expenses when
the portfolio is rebalanced. Depending on the
particular robust formulations employed, ro-
bust mean-variance optimization also appears
to improve worst-case portfolio performance
and results in smoother and more consistent
portfolio returns. Finally, by preventing large
swings in positions, robust optimization typi-
cally makes better use of the turnover budget
and risk constraints.

Robust optimization, however, is not a
panacea. By using robust portfolio optimization
formulations, investors are likely to trade off the
optimality of their portfolio allocation in cases
in which nature behaves as they predicted for
protection against the risk of inaccurate estima-
tion. Therefore, investors using the technique
should not expect to do better than classical
portfolio optimization when estimation errors
have little impact, or when typical scenarios oc-
cur. They should, however, expect insurance in
scenarios in which their estimates deviate from
the actual realized values by up to the amount
they have prespecified in the modeling process.

KEY POINTS
� Commonly used constraints in practice in-

clude long-only (no short-selling) constraints,
turnover constraints, holding constraints, risk
factor constraints, and tracking error con-
straints. These constraints can be handled in
a straightforward way by the same type of
optimization algorithms used for solving the
classical mean-variance portfolio allocation
problem.

� Minimum holding constraints, transaction
size constraints, cardinality constraints, and
round-lot constraints are also widely used in
practice, but their nature is such that they re-
quire binary and integer modeling, which ne-
cessitates the use of mixed-integer and other
specialized optimization solvers.

� Transaction costs can easily be incorporated
in standard portfolio allocation models. Typ-
ical functions for representing transaction

costs include linear, piecewise linear, and
quadratic.

� Taxes can have a dramatic effect on portfolio
returns; however, it is difficult to incorporate
them into the classical portfolio optimization
framework. Their importance to the individ-
ual investor is a strong argument for taking
a multiperiod view of investments, but the
computational burden of multiperiod port-
folio optimization formulations with taxes is
extremely high.

� For investment managers who handle multi-
ple accounts, increased transaction costs be-
cause of the market impact of simultaneous
trades can be an important practical issue and
should be taken into consideration when in-
dividual clients’ portfolio allocation decisions
are made to ensure fairness across accounts.

� As the use of quantitative techniques has
become widespread in the investment in-
dustry, the consideration of estimation risk
and model risk has grown in importance.
Methods for robust statistical estimation of
parameters include shrinkage and Bayesian
techniques.

� Portfolio resampling is a technique that uses
simulation to generate multiple scenarios for
possible values of the input parameters in the
portfolio optimization problem and aims to
determine portfolio weights that remain sta-
ble with respect to small changes in model
parameters.

� Robust portfolio optimization incorporates
uncertainty directly into the optimization
process. The uncertain parameters in the op-
timization problem are assumed to vary in
prespecified uncertainty sets that are selected
subjectively or based on data.

NOTES
1. See Chapter 1 in Maginn and Tuttle (1990).
2. Multiperiod portfolio optimization models

are still rarely used in practice, not be-
cause the value of multiperiod modeling is
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questioned, but because such models are
often too intractable from a computational
perspective.

3. As the term intuitively implies, the ADV
measures the total amount of a given asset
traded in a day on average, where the aver-
age is taken over a prespecified time period.

4. Another computationally tractable situa-
tion for minimizing CVaR is when the data
are normally distributed. In that case, min-
imizing CVaR is equivalent to minimizing
the standard deviation of the portfolio.

5. See Chapters 8 and 9 in Pachamanova and
Fabozzi (2010) for a more detailed explana-
tion of CVaR and a derivation of the opti-
mization formulation.

6. Versions of this model have been suggested
in Pogue (1970), Schreiner (1980), Adcock
and Meade (1994), Lobo, Fazel, and Boyd
(2000), and Mitchell and Braun (2004).

7. Here we are thinking of wi as the portfolio
weights, but in fact it may be more intuitive
to think of the transaction costs as a per-
centage of amount traded. It is easy to go
back and forth between portfolio weights
and portfolio amounts by simply multiply-
ing wi by the total amount in the portfolio.
In fact, we can switch the whole portfolio
optimization formulation around and write
it in terms of allocation of dollars, instead of
weights. We just need to replace the vector
of weights w by a vector x of dollar hold-
ings.

8. See, for example, Bertsimas, Darnell, and
Soucy (1999).

9. As we explained earlier, this constraint can
be written in an equivalent, more optimiza-
tion solver-friendly form, namely,

yi ≥ wi − w0,i

yi ≥ − (wi − w0,i )

10. The computation of the tax basis is different
for stocks and bonds. For bonds, there are
special tax rules, and the original price is
not the tax basis.

11. The exact rates vary depending on the cur-
rent version of the tax code, but the main
idea behind the preferential treatment of
long-term gains to short-term gains is to en-
courage long-term capital investments and
fund entrepreneurial activity.

12. See Stein (1998).
13. See Apelfeld, Fowler, and Gordon (1996)

who show that a manager can outperform
on an after-tax basis with high turnover as
well, as long as the turnover does not result
in net capital gains taxes. (There are other
issues with high turnover, however, such as
higher transaction costs that may result in a
lower overall portfolio return.)

14. Dividends are taxed as regular income, i.e.,
at a higher rate than capital gains, so mini-
mizing the portfolio dividend yield should
theoretically result in a lower tax burden for
the investor.

15. See Constantinides (1983), Dammon and
Spatt (1996), and Dammon, Spatt, and
Zhang (2001 and 2004).

16. The Securities and Exchange Commission
(SEC) in general prohibits cross-trading but
does provide exemptions if prior to the ex-
ecution of the cross trade the asset man-
ager can demonstrate to the SEC that a
particular cross trade benefits both parties.
Similarly, Section 406(b)(3) of the Employee
Retirement Income Security Act of 1974
(ERISA) forbids cross-trading, but there
is new cross-trading exemption in Section
408(b)(19) adopted in the Pension Protec-
tion Act of 2006.

17. Khodadadi, Tutuncu, and Zangari (2006).
18. The iterative procedure is known to con-

verge to the equilibrium, however, under
special conditions. See O’Cinneide, Scherer,
and Xu (2006).

19. The issue of considering transaction costs
in multiaccount optimization has been dis-
cussed by others as well. See, for example,
Bertsimas, Darnell, and Soucy (1999).

20. As we mentioned earlier in this entry, realis-
tic transaction costs are in fact described by
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nonlinear functions, because costs per share
traded typically increase with the size of the
trade due to market impact.

21. For example, if asset i is a euro-pound for-
ward, then a trade in that asset can also
be implemented as a euro-dollar forward
plus a dollar-forward, so there will be two
additional assets in the aggregate trade
vector t.

22. Note that ηk,i equals 1 if wk,i is the actual
dollar holdings.

23. Note that, similarly to w+
k , we could intro-

duce additional sell variables w−
k , but this is

not necessary. By expressing aggregate sales
through aggregate buys and total trades, we
reduce the dimension of the optimization
problem, because there are fewer decision
variables. This would make a difference for
the speed of obtaining a solution, especially
in the case of large portfolios and compli-
cated representation of transaction costs.

24. Note that γ = 1 defines linear transaction
costs. For linear transaction costs, multi-
account optimization produces the same
allocation as single-account optimization,
because linear transaction costs assume that
an increased aggregate amount of trading
does not have an impact on prices.

25. The information ratio is the ratio of (annu-
alized) portfolio residual return (alpha) to
(annualized) portfolio residual risk, where
risk is defined as standard deviation.

26. For further details, see Chapters 6, 7, and
8 in Fabozzi, Kolm, Pachamanova, and
Focardi (2007).

27. See Chapter 8 in Fabozzi, Kolm,
Pachamanova, and Focardi (2007).

28. See, for example, Ledoit and Wolf (2003).
29. For an overview of such models, see Disat-

nik and Benninga (2007).
30. For a step-by-step description of the Black-

Litterman model, see Chapter 8 in Fabozzi,
Kolm, Pachamanova, and Focardi (2007).

31. See Black and Litterman (1992).
32. See Michaud (1998), Jorion (1992), and

Scherer (2002).

33. For derivation, see, for example, Chapter 12
in Fabozzi, Kolm, Pachamanova, and Fo-
cardi (2007) or Chapter 9 in Pachamanova
and Fabozzi (2010).

34. For a more in-depth coverage of the topic of
estimating input parameters for robust op-
timization formulations, see Chapter 12 in
Fabozzi, Kolm, Pachamanova, and Focardi
(2007).

35. See, for example, Goldfarb and Iyengar
(2003) and Natarajan, Pachamanova, and
Sim (2008).

36. See Ben-Tal, Margalit, and Nemirovski
(2000) and Bertsimas and Pachamanova
(2008).

37. For further details, see Fabozzi, Kolm,
Pachamanova, and Focardi (2007).
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Abstract: Quantitative equity investing is one method used by investors to identify attractive stocks
and gain a competitive advantage. In contrast to fundamental investors who focus on a single
company at a time, quantitative investors focus on stock characteristics. Quantitative investors
look for sources of information or company characteristics that help to explain why one stock
outperforms another stock. They assemble a group of characteristics into a unique stock selection
model, which is the core of the quantitative investment process. The quantitative investment
process can be divided into three main phases: research, portfolio construction, and monitoring.
During the research phase, the stock selection model is created. During the portfolio construction
phase, the quantitative investor uses the stock selection model to create a live portfolio. Finally,
during the monitoring phase, the quantitative investor makes sure the portfolio is performing
as expected and modifies it as needed. While quantitative investing can be very different from
fundamental investing, they are complementary and combined can lead to a more well-rounded
overall investment approach.

The goal of this entry is to provide the basics
of quantitative equity investing and an explana-
tion of the quantitative investing process. More
specifically, I focus on the following three ques-
tions. First, how do quantitative and fundamen-
tal equity investors differ? Second, what are the
core steps in a quantitative equity investment
process? Finally, what are the basic building
blocks used by quantitative equity investors?

In answering these questions, I will pull back
the curtain on the quantitative equity invest-
ment process, showing how it is similar to
many other approaches, all searching for the
best stocks. Where it differs is in the creation of
a repeatable process that uses several key cri-

teria to find the most attractive companies—its
stock selection model. Finally, some of the most
common techniques used by quantitative eq-
uity investors are covered.

It is important to understand that this entry
is dedicated to a traditional quantitative eq-
uity investing approach. There are many other
types of investing that are quantitative in na-
ture (e.g., high-frequency trading, statistical
arbitrage, etc.), which will not be covered.

EQUITY INVESTING
Investing can take many forms, but it starts
with an investor assigning a value to a security.

89
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Figure 1 The Value of a Stock Comes from Multiple Information Sources

Whether this value exceeds or is less than
the current market price usually determines
whether the investor will buy or sell the
security. In the case of equities, the investor
often seeks to understand the specific company
under consideration, the broader economic en-
vironment, and the interplay between the two.
This encompasses a wide range of information
for the investor to consider as displayed in
Figure 1. How this information is used differ-
entiates the quantitative from the fundamental
investor.

FUNDAMENTAL VS.
QUANTITATIVE INVESTOR
Let’s start with a basic question. How do port-
folio managers select stocks from a broad uni-
verse of 1,000 or more companies?

Fundamental managers start with a basic
company screen. For instance, they may first
look for companies that satisfy conditions such
as a price-earnings (P/E) ratio that is less than
15, earnings growth greater than 10%, and profit
margins in excess of 20%. Filtering by those
characteristics may result in, say, 200 potential
candidates. Next, portfolio managers in consul-
tation with their group of stock analysts will

spend the majority of their time thoroughly
reviewing each of the potential candidates to
arrive at the best 50 to 100 stocks for their
portfolio. Quantitative managers, in contrast,
spend the bulk of their time determining the
characteristics for the initial stock screen, their
stock selection model. They will look for five
or more unique characteristics that are good at
identifying the most attractive 200 stocks of the
universe. Quantitative managers will then pur-
chase all 200 stocks for their portfolio.

So let’s expand on how these two investors—
fundamental and quantitative—differ. Figure 2
details the main attributes of the two ap-
proaches discussed further below.

Focus: Company versus Characteristic: The
fundamental investor’s primary analysis is
on a single company at a time, while the
quantitative investor’s primary analysis is
on a single characteristic at a time. For ex-
ample, a fundamental investor may analyze
a health care company to assess whether a
company’s sales prospects look strong and
whether this stronger sales growth is re-
flected in the company’s current stock price.
A quantitative investor may also invest in
a company based on its sales growth, but
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Figure 2 Fundamental vs. Quantitative Investor: Viewing Information

will start by assessing the sales growth
characteristic. The quantitative investor will
determine whether stocks within the group,
health care companies, with higher sales
growth also have higher stock returns. If they
do, then the quantitative investor will buy
health care stocks with higher sales growth.
In the end, both types of investors may buy
a stock due to its good sales prospects, but
both come at the decision from a different
point of view.

Narrow vs. Broad: Fundamental investors fo-
cus their attention narrowly on a small group
of stocks. They cover fewer companies since
they make more in-depth reviews of each
company. Fundamental investors immerse
themselves in the company, studying ev-
erything from financial information, to new
products, to meeting management. Ideally,
they are searching for exploitable differences
between their detailed assessment of the
company’s value and the market’s percep-
tion of that value. In contrast, quantitative
investors focus more broadly. Rather than re-
viewing one company at a time, they look
across a large group of companies. Quan-

titative investors focus on what separates
companies from one another; they search for
pieces of information (characteristics) that
they can use to exploit differences between
securities. Since they are dealing with a great
deal of data from a large number of compa-
nies, they employ quantitative techniques to
quickly sift through the information.

Position Concentration/Size of Bets: Another
difference in the two approaches is the size
of the positions within a portfolio; they tend
to be larger for a fundamental investor and
smaller for a quantitative investor. Funda-
mental investors perform in-depth company
analysis so they will have greater convic-
tion in taking larger positions in their se-
lected stocks. Quantitative investors perform
in-depth analysis across a group of compa-
nies, so they will tend to spread their bets
across this larger group of companies.

Risk Perspective: The fundamental investor
sees risk at the company level while the
quantitative investor is more focused at the
portfolio level. Fundamental investors will
review the risk to both their forecasts and
catalysts for the company. They understand
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Figure 3 Fundamental vs. Quantitative Investor: Process Differences

how a changing macro picture can impact
their valuation of the company. In contrast,
the quantitative investor’s broader view re-
lates to understanding the risks across the
portfolio. They understand if there are risk
characteristics in their portfolio that are
different from their chosen stock selection
model. For example, a quantitative investor
who does not believe growth prospects mat-
ter to a company’s stock performance would
want to investigate if the model had the
investor buying many very high- or low-
growth companies.

Past vs. Future: Finally, the fundamental in-
vestor often places greater emphasis on the
future prospects of the company while the
quantitative investor studies the company’s
past. Fundamental investors tend to paint
a picture of the company’s future; they will
craft a story around the company and its
prospects; and they will look for catalysts
generating future growth for a company.
They rely on their ability to predict changes
in a company. In contrast, the quantitative
investor places more emphasis on the past,
using what is known or has been reported
by a company. Quantitative investors rely
on historical accounting data as well as
historical strategy simulations, or backtests,
to search for the best company character-
istics to select stocks. For instance, they
will look at whether technology companies
with stronger profitability have performed
better than those without, or whether retail
companies with stronger inventory controls
have performed better than those without.

Quantitative investors are looking for stock
picking criteria that can be tested and
incorporated into a stock selection model.

In the end, we have two types of investors
viewing information, often the same infor-
mation, quite differently. The fundamental
investor is a journalist focused on crafting a
unique story of a company’s future prospects
and predicting the potential for gain in the
company’s stock. The quantitative investor
is a scientist, broadly focused, relying on
historical information to differentiate across
all companies, using statistical techniques to
create a stock selection model.

These two investors can and often do create
different portfolios based on their different ap-
proaches as shown in Figure 3. Fundamental
investors are more focused, with higher con-
viction in their stocks resulting in fewer, larger
positions in their portfolios. Quantitative in-
vestors, reviewing a large group of companies,
generally take a large number of smaller posi-
tions in their portfolio. Fundamental investors
are investing in a stock (or sector) and there-
fore are most concerned with how much each
of their stocks (or sectors) is contributing to
performance. Quantitative investors are invest-
ing in a characteristic and how well it differ-
entiates stocks. They want to know how each
of their characteristics is contributing to per-
formance. Finally, fundamental investors’ de-
tailed view into the company allows them to
understand the intrinsic risk of each investment
they make—the potential stumbling blocks for
each company. Quantitative investors’ goal is to
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Figure 4 Benefits of a Combined Fundamental and Quantitative Approach

understand specific characteristics across a
broad universe of stocks. They look at risks
across their entire portfolio, attempting to di-
versify away any firm-specific risks ancillary to
their strategy.

Now that you understand the basic differ-
ences between the two approaches, it might also
be clear how using both investment styles can
be very appealing. As Figure 4 shows, the two
styles are quite complementary in nature and
can provide a robust, well-rounded view of a
company or portfolio. Combining the two ap-
proaches provides the following benefits:

� Breadth and depth. In-depth analysis across a
large group of stocks selecting the best subset
of companies, which is followed by in-depth
review of the small subset of attractive com-
panies.

� Facts balanced with human insight. The sci-
entific approach reviewing large amounts of
data across many companies complemented
by personal judgment at the company level.

� Past and future perspective. A detailed his-
torical review of companies combined with a

review of future potential prospects of a com-
pany.

� Full risk analysis. A broad look at risk both
within each company owned and across the
entire portfolio.

� Clear portfolio performance. A thorough un-
derstanding of which companies, sectors, and
characteristics are driving a portfolio’s perfor-
mance.

In fact, over the years, the defining line
between the two approaches has been blurring.
Some have coined a term for this joint process:
“quantamental.” Many investment managers
are combining both approaches in one invest-
ment process, which is why whether you are
a fundamental or quantitative investor, it is
important to understand both perspectives.

Given our preceding discussion, the distinc-
tion between the quantitative and fundamental
approaches should now be better appreciated.
In the remainder of this entry we restrict our
focus to the quantitative equity investment
process, addressing the last two topics listed at
the beginning of this entry: the core steps in a
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quantitative equity investment process and
some of the basic building blocks used by
quantitative investors.

THE QUANTITATIVE STOCK
SELECTION MODEL
Before diving into the details of the quantita-
tive investment process, let’s look at what is
at its core—the stock selection model. As ex-
plained in the previous section, the quantitative
investment approach is rooted in understand-
ing what separates strong-performing stocks
from weak-performing stocks.1 The quantita-
tive investor looks for sources of information
or company characteristics (often referred to as
factors or signals)2 that help to explain why one
stock outperforms another stock. They assem-
ble these characteristics into a stock selection
model, which can be run daily to provide an
updated view on every stock in their invest-
ment universe.

The stock selection model is at the heart of
the quantitative process. To build the model,
the quantitative investor will look throughout
history and see what characteristics drive per-
formance differences between stocks in a group
such as a universe (i.e., small cap, small-cap
value, and large-cap growth) or a sector (i.e.,
technology, financials, materials).

The quantitative investor’s typical stock se-
lection methodology is buying stocks with the
most attractive attributes and not investing in
(or shorting, if permitted by investment guide-
lines) stocks with the least attractive attributes.
For instance, let’s suppose retail stocks that
have the highest profitability tend to have
higher stock returns than those with the low-
est profitability. In this case, if a retail stock had
strong profitability, there is a greater chance
a portfolio manager would purchase it. Prof-
itability is just one characteristic of a company.
The quantitative investor will look at a large
number of characteristics, from 25 to over 100,
to include in the stock selection model. In the

Retail Sector

Gross Margin

Earnings Growth

Analyst Recommendation

Inventory Management

Earnings / Price Ratio

Figure 5 Sample Stock Selection Model for the
Retail Sector

end, they will narrow their final model to a few
characteristics that are best at locating perfor-
mance differences among stocks in a particular
universe or sector.

Figure 5 is an example of a stock selection
model for the retail sector. If a stock has good
margins and positive earnings growth, sell-side
analysts like it, solid inventory management
and is attractively valued, especially as per-
tains to earnings, then the quantitative investor
would buy it. And if it did not have these char-
acteristics, a quantitative investor would not
own it, sell it, or short it. This example is for a
retail sector; a quantitative investor could also
have different models to select stocks in the
bank sector or utilities sector or among small-
cap value stocks.

So how does a quantitative investor create
and use the stock selection model? A good anal-
ogy is a professional golfer. Like a quantitative
investor, golfers create a model of their game.
First, golfers analyze all elements of their ba-
sic swing from backswing to follow through.
They then alter their swing to different con-
ditions (high winds, rain, cold), and different
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course types (links, woodlands, fast greens).
Next, golfers put their model into action. While
they are golfing, they make mental notes about
what is and isn’t working to help enhance their
game. Could they tweak their swing? What has
been effective under the current weather condi-
tions? How are they playing this type of course?

Overall, the golfers’ process is much like
quantitative investors’ process. They create a
model, implement it, and then monitor it, as-
sessing their ability to shoot below par. Like
professional golfers who go to the driving range
for countless hours to perfect their swing, quan-
titative investors will spend countless hours
perfecting their model, understanding how it
works under many different market (weather/
course) conditions.

With that analogy in mind, we now turn to
the entire quantitative investment process.

THE OVERALL
QUANTITATIVE
INVESTMENT PROCESS
The quantitative process can be divided into
the following three main phases (shown in
Figure 6):

� Research
� Portfolio construction
� Monitoring

During the research phase, the stock selec-
tion model is created. During the portfolio
construction phase, the quantitative investor

Monitoring
Portfolio 
Construction

Research

– Characteristic Testing

– Model Creation

– Data Collection 

– Create Security Weights

– Trade Portfolio

– Risk Analysis

– Portfolio Attribution

Figure 6 Three Core Phases of the Quantitative Equity Investment Process

“productionalizes” the stock selection model or
gets it ready to invest in a live portfolio. Finally,
during the monitoring phase, the quantitative
investor makes sure the portfolio is performing
as expected.

RESEARCH
Let’s start with the research phase since it is the
basic building block of the quantitative process.
It is where the fact-finding mission begins. This
is similar to when the golfer spends countless
hours at the driving range perfecting his (or
her) swing. In this phase, the quantitative in-
vestor determines what aspects of a company
make its stock attractive or unattractive. The
research phase begins by the quantitative in-
vestors testing all the characteristics they have
at their disposal, and it finishes with assembling
the chosen characteristics into a stock selection
model (see Figure 7).

1. Characteristic Testing. First, quantitative in-
vestors determine which characteristics are
good at differentiating strong-performing
from weak-performing stocks. Initially, the
quantitative investor segments the stocks.
This could be by sector, such as consumer
discretionary; industry, such as consumer
electronics; or a universe, such as small-
cap value stocks. Once the stocks have
been grouped, each of the characteristics
is tested to see if it can delineate the
strong-performing stocks from the weak-
performing stocks.
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Figure 7 Two Core Steps in the Research Phase of the Quantitative Equity Investment Process

2. Model Creation. Second, quantitative in-
vestors select the final characteristics that are
best at picking the most attractive stocks.
Then they weight each characteristic in the
stock selection model—determining which
characteristics should be more relied upon
when picking stocks, or if they all should be
treated equally.

During the research phase, the quantitative
investor tries to get a broad picture of a char-
acteristic, making sure it performs well under
a diverse set of conditions and performance
measures. For testing, the quantitative investor
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Figure 8 Characteristic Testing in the Research Phase

looks at historical information over 20 years or
more in order to cover multiple market cycles.
While testing, many performance metrics
are reviewed to get an expansive view of a
characteristic’s ability to differentiate stocks.
These metrics span the return category, risk
category, and other metrics as outlined in
Figure 8. Using an array of metrics, quanti-
tative investors are better able to confirm a
characteristic’s consistency. They make sure
that the selected characteristics score well on
more than a single metric. Before continuing
with the research process, let’s review a few of
the more commonly used metrics.
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Figure 9 Determining the Characteristic’s Quintile Spread

Characteristic Testing: Key
Quantitative Research Metrics
In this section we will review quintile returns
and information coefficients, which measure
whether a characteristic can differentiate be-
tween winning and losing stocks. Although
profitability was chosen for the examples, other
characteristics such as sales growth, P/E ratio,
or asset turnover also could have been chosen.

Quintile Returns
The quintile return is already prevalent across
most research publications, but is gaining pop-
ularity in more and more mainstream publica-
tions such as the Wall Street Journal, Barron’s, and
the like. Quintile returns measure how well a
characteristic differentiates stocks. In essence,
the stocks that are being reviewed are seg-
mented into five groups (quintiles) and then
are tested to determine if the companies in the
group with the best attributes (top quintile) out-

perform the group with the least desirable at-
tributes (bottom quintile).

Figure 9 provides an example. In this exam-
ple, we start with 20 companies that we refer
to as A through T. The first step—the left-hand
side of the exhibit—is to order the 20 compa-
nies by profitability from highest to lowest. In
the second step, this ordered list is divided into
five groups, creating a most profitable group
(top quintile) down to the least profitable group
(bottom quintile). The top and bottom quintile
groups are boxed on the right-hand chart of the
figure. Finally, the performance of the top quin-
tile is compared to the bottom quintile.

As Figure 9 shows, the stocks with highest
profitability (top quintile) returned 2.6% while
the stocks with the lowest profitability (bottom
quintile) returned only 0.6%. So the top quintile
stocks outperformed the bottom quintile stocks
by 2.0%, meaning for this month, the most prof-
itable companies outperformed the least prof-
itable companies by 2.0%. This is commonly
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Figure 10 Determining the Characteristic’s Information Coefficient

referred to as the characteristic’s quintile re-
turn or quintile spread. The higher the quintile
spread, the more attractive the characteristic is.

Information Coefficient
Another common metric used for determin-
ing if a characteristic is good at separating the
strong- from the weak-performing stocks is the
information coefficient (IC). It does so by measur-
ing the correlation between a stock’s character-
istic (i.e., profitability) and its return. The major
difference between the IC and quintile return is
that the IC looks across all of the stocks, while
the quintile return only focuses on the best and
worst stocks, ignoring those stocks in the mid-
dle. The IC is more concerned with differenti-
ating performance across all stocks rather than
the extremes.

The calculation of the IC is detailed in
Figure 10. Similar to assessing the quintile re-
turn, the sort ordering of the companies based
on profitability is done first. However, the next

step is different. In the second step, each stock
is ranked on both profitability and return. The
most profitable company is assigned a rank
of 1 all the way down to the least profitable
company, which is assigned a rank of 20. Like-
wise for stock returns: The highest returning
stock is assigned a rank of 1 down to the low-
est returning stock receiving a rank of 20. In
the third step, the rank of the company’s prof-
itability is correlated with the rank of the com-
pany’s return. The correlation of the two ranks
is the IC, which is 11% as shown in Figure 10.
The higher the correlation (i.e., IC), the more
likely companies with higher profitability also
have higher returns and the more effective the
characteristic.

When is it better to employ an IC over a quin-
tile spread? IC is a better metric when a quanti-
tative investor is considering owning a greater
number of stocks in the portfolio. The reason is
that the IC looks at the relationships across all
of the stocks in the group. The quintile return
is better suited for more concentrated bets in
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Figure 11 Determining the Characteristic’s Batting Average

fewer stocks as it places a greater emphasis on
measuring the few stocks at the extremes.

The last two examples reviewed how a char-
acteristic (profitability) was able to explain the
next month’s return for a group of stocks. In
both cases it looked effective—a quintile return
of 2.0% and an IC of 11%. However, in practice,
it is also necessary to assess whether the charac-
teristic was effective for not only one month, but
over decades of investing encompassing multi-
ple market cycles. To that end, during the re-
search process a quantitative investor will look
at the average quintile returns or ICs over an ex-
tended period of up to 20 years or more. When
looking at these longer time series, quantitative
investors use additional metrics to understand
the characteristic’s effectiveness.

Characteristic Testing: Key
Measures of Consistency
Two commonly used measures of consistency
are batting average and information ratio.

Batting Average
Batting average is a straightforward metric. In
baseball a player’s batting average is the num-
ber of hits divided by the number of times
at bat. A similar metric is used in investing.

Batting average is the number of positive per-
formance months (hits) divided by the number
of total months (at bats). The higher the batting
average, the more consistently the characteristic
generates positive performance.

As Figure 11 displays, to arrive at the bat-
ting average we take the number of months
the quintile return was positive divided by the
number of months tested. In our example, in
47 of the 72 months profitability was effective,
resulting in a positive return. This translates to
a batting average of 65%, which is quite high.
Imagine walking into a casino in Las Vegas
where you have a 65% chance of winning every
bet. That casino would not be in business very
long with you at the table.

Information Ratio
Information ratio is also used to measure con-
sistency. This measure is defined as the aver-
age return of a characteristic divided by its
volatility—basically a measure of return per
unit of risk or risk reward ratio. For volatility,
quantitative investors use tracking error, which
is the standard deviation of excess returns.

Figure 12 demonstrates the calculation of the
information ratio. In this example, there are two
characteristics. Which one should be selected?
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Figure 12 Determining the Characteristic’s Information Ratio

Based only on returns, we would choose char-
acteristic 2 since it has a higher excess return
(3.0%) than characteristic 1 (2.0%). However,
as we can see in the figure, characteristic 2 also
has much larger swings in performance than
characteristic 1 and therefore more risk. The
higher risk of characteristic 2 is confirmed by
its high tracking error of 12.0%, three times
greater than characteristic 1’s tracking error
of 4.0%. Characteristic 1 looks much better
on a risk-adjusted basis with an information
ratio of 0.50 (2.0%/4.0%) or twice characteristic
2’s information ratio of 0.25 (3.0%/12.0%). So
even though characteristic 1 has a lower return
than characteristic 2, it also has much less
risk, making it preferred since investors are
rewarded more for the risk they are taking.

Model Creation
After reviewing and selecting the best charac-
teristics, the quantitative investor then needs
to assemble them into a stock selection model.
This step of the research process is called
model creation. It usually involves two main
components:

1. Ascertaining whether the characteristics se-
lected are not measuring the same effect (i.e.,
are not highly correlated).

2. Assigning weights to the selected character-
istics, potentially placing greater emphasis
on those in which the quantitative investor
has stronger convictions.

Let us begin by discussing the first compo-
nent in model creation: measuring correlation.
When including characteristics in a stock selec-
tion model, the quantitative investor does not
want to include two characteristics that have
very similar performance since they may be
measuring similar aspects of the company. In
these cases, quantitative managers could be po-
tentially doubling their position in a stock for
the same reason. For instance, stocks with a his-
torically high sales growth may perform simi-
larly to stocks with high expected growth in the
future, or stocks with strong gross margins may
perform similarly to stocks with strong profit
margins. In either case, we would not include
both similar characteristics.

An example is provided in Figure 13, which
shows the cumulative quintile spread return
over 10 years for three characteristics (which
we have labeled A, B, and C). Characteristic
A did the best at differentiating the winners
from losers—the stocks it liked outperformed
the stocks it did not like by almost 10% over the
10-year period. Characteristic B was next with
a return slightly greater than 8%, and charac-
teristic C was the lowest with an almost 4%
cumulative 10-year return. Given that all three
characteristics have good performance, which
two should the quantitative investor retain in
the model?

Although characteristics A and B are bet-
ter at differentiating winners from losers than
characteristic C, A’s return pattern looks very
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similar to B’s. This is confirmed by Table 1
where characteristics A and B have a correla-
tion of 0.80. Since a correlation of 1.00 means
their returns move in lockstep, a correlation
of 0.80 indicates they are very similar. Rather
than keeping both A and B and potentially
doubling our positions from similar character-
istics, it would be best to keep either A or B
and combine the characteristic retained with
C. Even though characteristic C is the worst
performing of the three, for the stock selection
model C provides a good uncorrelated source of
performance.

Once the characteristics to select stocks are
identified, quantitative investors are ready to
determine the importance or weight of each
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Figure 14 Stock Selection Model: Characteristic Weightings

characteristic. They must decide whether all
characteristics should have the same weight
or whether better characteristics should have
greater weight in the stock selection model.

There are many ways to determine the
weights of the characteristics. We can simply
equal weight them or use some other process
such as creating an algorithm, performing re-
gressions, or optimizing. Figure 14 shows how
a typical stock selection model is created. In this
step, the selected characteristics are combined
to determine a target for each stock whether it
be a return forecast, rank, or a position size.

Once the combination of characteristics for
the model is selected, the quantitative investor
determines their weights and then reviews the
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model. Model review is similar to reviewing
a single characteristic. The model is looked at
from many perspectives, calculating all of the
metrics described in Figure 8. The quantitative
investor would look at how the top-quintile
stocks of the model perform versus the bot-
tom and look at information coefficients of the
stock selection model over time. In addition,
how much trading or turnover the stock selec-
tion model creates is reviewed or if there are
any biases in the stock selections (e.g., too many
small-cap stocks, or a reliance on high- or low-
beta stocks). In practice, the review is much
more extensive, covering many more metrics.
If the stock selection model does not hold up
under this final review, then the quantitative
investor will need to change the stock selection
model to eliminate the undesirable effects.

PORTFOLIO CONSTRUCTION
In the second phase of the investment process,
the quantitative investor uses the stock selec-
tion model to buy stocks. It is in this phase
that the quantitative investor puts the model
into production. Returning to our golfer anal-
ogy, this is when they travel to the course to
play a round of golf.

During the portfolio construction phase, the
model is ready to create a daily portfolio. This
phase consists of three main steps as shown in
Figure 15 and described below.

Step 1: Collect data. Data are collected on a
nightly basis, making sure the data are cor-
rect and do not contain any errors.

Step 2: Create security weights. New data are
used to both select the stocks that should be

purchased for the portfolio as well as to spec-
ify how large its position should be.

Step 3: Trade. The stock selection model that has
incorporated the most current information is
used for trading.

Data Collection
As Figure 16 shows, data come from many
different sources, such as a company’s fun-
damental, pricing, economic, and other data
(specialized data sources). All of these data are
updated nightly, so it is important to have ro-
bust systems and processes established to han-
dle large amounts of data, clean the data (check
for errors), and process it in a timely fashion.
The quantitative investor seeks to have every-
thing ready to trade at the market opening.

Creating Security Weights
After the data are collected and verified, the
next step is running all of the updated company
information through the stock selection model.
This will create final positions for every stock
in the screened universe. In this step, each stock
is ranked using the stock selection model, with
the better scoring companies making it into the
portfolio.

Figure 17 provides a simplified example of
this, showing a stock selection model with three
characteristics: gross margins, sales growth,
and earnings yield (i.e., earnings-to-price ra-
tio; the higher the ratio, the more attractively
priced the stock is). From the example, Com-
pany ABC is in the top 10% of companies based
on gross margin, in the top 30% in sales growth,
and average on earnings yield. Company ABC
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Figure 16 Data Collection Step of the Portfolio Construction Phase

may represent a company finding a profitable
market and growing into it, and the rest of the
market has not caught on to its prospects, so
it is still valued like an average stock. In this
case, the stock rates favorably by the stock selec-
tion model and would be purchased. The other
stock, the stock of Company XYZ, is not as fa-
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Figure 17 Creating Security Weights Step of the Portfolio Construction Phase

vorable and either would not be held in the
portfolio or, if permitted, could be shorted. Al-
though Company XYZ also has good margins,
its growth is slowing and it is relatively expen-
sive compared to its earnings. The company
could be one that had a profitable niche, but its
niche may be shrinking as sales are dwindling.
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Furthermore, the investment community has
not discounted the slowing growth and hence
the stock is still expensive.

Trade
The final step in the portfolio construction pro-
cess is to trade into the new positions chosen by
the stock selection model. While many invest-
ment approaches trade regularly, even daily,
quantitative investors tend not to. Quantitative
investors tend to trade monthly or longer. They
may wait for the views from their stock selec-
tion model to change significantly from their
current portfolio before trading into the new
views.

MONITORING
The third and final phase in the quantitative eq-
uity investment process is monitoring perfor-
mance and risk. This step is important to check
if any hidden biases are embedded in the port-
folio and that the portfolio is performing in line
with expectations. Returning one last time to
our golfer analogy, this is when the golfer is
making mental notes as to what is and isn’t
working during the round to improve his or
her game in the future. This step can be bro-
ken into two activities: risk management and
performance attribution.

Risk Management
In risk management, the main emphasis is on
making sure that the quantitative investor is
buying companies consistent with the stock se-
lection model. Returning to the retail model
discussed earlier in this entry, the model liked
companies with good profit margins but had no
view on the company’s beta. So the quantita-
tive investor would want to make sure that the
companies included in the portfolio have high
profit margins but average beta. If the portfolio
started to include high-beta stocks, the quan-
titative investor would want to make adjust-
ments to the process to eliminate this high-beta

bias. There are many types of risk management
software and techniques that can be used to de-
tect any hidden risks embedded in the portfolio
and provide ways to remedy those identified.

Another aspect of risk management is to make
sure that the portfolio’s risk level is consistent
with the modeling phase. The quantitative in-
vestor wants to ensure that the tracking error
is not too high or low relative to expectations.
Again, risk management techniques and soft-
ware can be used to monitor tracking error and
sources of tracking error, and to remedy any
deviations from expectations.

Performance Attribution
Performance attribution is critical in ensuring
that the actual live portfolio’s performance is
coming from the characteristics in the stock
selection model and is in line with performance
expected during the modeling stage. Perfor-
mance attribution is like monitoring a car’s gas
mileage: If the gas mileage begins to dip below
what the driver expects, or what it is known to
be, then the driver would want to look under
the car’s hood. Similarly, if the stock selection
model is not producing the desired results, or
the results have changed, then the quantitative
investor would need to look under the hood
of the stock selection model. If performance is
not being generated from the selected charac-
teristics, then the quantitative manager would
want to check out the model in more detail.
One possibility is that another characteristic
is canceling the desired characteristics, or the
model should be providing more weight to the
desired characteristic.

The monitoring phase is critical in making
sure that the stock selection model is being im-
plemented as expected.

CURRENT TRENDS
Let’s look at some recent trends in the quantita-
tive investment industry.

Many quantitative equity investors are look-
ing for additional sources of alpha by using
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alternative data sources to help select stocks.
One notable source is industry-specific data
(e.g., banking, airlines, and retail). Addition-
ally, quantitative investors are turning to the
Internet to better understand news flows for
companies through Web-based search engines.
Furthermore, quantitative investors are using
more conditioning models. Conditioning oc-
curs when two characteristics are combined
rather than choosing them side by side in a stock
selection model. Traditional models would look
for companies that have either attractive mar-
gins or growth. With conditioning models, com-
panies that have both attractive margins and
growth are sought.

Dynamic modeling is gaining renewed pop-
ularity. It consists of timing characteristics, de-
termining when they should enter or leave a
stock selection model based on business cycle
analysis, technical market indicators, or other
information. For instance, during recessionary
periods, a quantitative investor may want com-
panies with strong profitability, while in expan-
sionary periods companies with good growth
prospects are sought. A stock selection model
would contain profitability when the economy
is entering a recession, and then include the
growth characteristic once it felt that the econ-
omy is moving into an expansionary period.
This is an example of how quantitative in-
vestors are bringing more personal judgment to
the process, similar to fundamental investors.

Finally, with the advent of high-frequency
trading and more advanced trading analytics,
many quantitative investors are reviewing how
best to implement their stock selection models.
Some characteristics such as earnings surprise
may have short-lived alpha prospects, so quan-
titative investors would want to trade into these
stocks more quickly. Other characteristics are
longer term in nature, such as valuation met-
rics, so investors would not have to trade into
companies with attractive valuations as quickly.
Furthermore, trading costs are being measured
with greater granularity, allowing quantitative
investors to measure transaction cost and incor-

porate these better estimates into their research
modeling phase.

KEY POINTS
� Investing begins with processing many dif-

ferent types of information to find the most
attractively priced assets. Fundamental and
quantitative investors differ in their approach
to the available information. The fundamen-
tal investor’s primary focus is on a single
company at a time, while the quantitative in-
vestor’s primary focus is on a single charac-
teristic at a time.

� Quantitative and fundamental approaches
are complementary. By combining the two ap-
proaches you can obtain a more well-rounded
investment process including breadth and
depth in analysis, facts based on human judg-
ment, a past and future perspective of a com-
pany, and a more well-rounded view of risk
and performance of the portfolio.

� The quantitative equity investment process is
made up of three phases: research, portfolio
construction, and monitoring. During the re-
search phase, the stock selection model is cre-
ated. During the portfolio construction phase,
the quantitative investor “productionalizes”
the stock selection model or gets it ready to
invest in a live portfolio. Finally, during the
monitoring phase, the quantitative investor
makes sure the portfolio is performing as
expected.

� At the heart of the quantitative equity invest-
ment process is the stock selection model. The
model includes those characteristics that are
best at delineating the highest from lowest
returning stocks. Models can be created for
industries, sectors, or styles.

� Two common metrics used to judge a char-
acteristic’s effectiveness are quintile returns
and information coefficients. Two more met-
rics used to understand the consistency of
a characteristic’s performance over time are
batting average and information ratio.
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� During the portfolio construction phase, data
are collected from multiple sources and run
through the investor’s stock selection model
to arrive at a list of buy and sell candidates.
The buy candidates will have the strongest
characteristic values in the investor’s stock
selection model, and the sell candidates the
weakest characteristic values.

� The monitoring phase is when the investor
assures that the performance in the portfolio
is consistent with expectations. During this
phase, the investor will make sure there are
no hidden bets in the portfolio and that the
characteristics in the stock selection model are
performing as expected.

NOTES

1. Throughout the entry we discuss whether
characteristics can separate a stock with
strong future returns from one with weak
future returns. Many times reference will be
made to a “strong” characteristic that can dif-
ferentiate the strong- from weak-performing
stocks.

2. In this entry, the term “characteristic” means
the attributes that differentiate companies.
Quantitative investors often refer to these
same characteristics as factors or signals
which they typically use in their stock se-
lection model.
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Abstract: Equity portfolio management has evolved considerably since the 1950s. Portfolio theories
and asset pricing models, in conjunction with new data sources and powerful computers, have
revolutionized the way investors select stocks and create portfolios. Consequently, what was once
mostly an art is increasingly becoming a science: Loose rules of thumb are being replaced by
rigorous research and complex implementation. While greatly expanding the frontiers of finance,
these advances have not necessarily made it any easier for portfolio managers to outperform the
market. The two approaches to equity portfolio management are the traditional approach and the
quantitative approach. Despite the contrasting of these two approaches by their advocates, they
actually share many traits such as applying economic reasoning to identify a small set of key drivers
of equity values, using observable data to quantify these key drivers, using expert judgment to
develop ways to map these key drivers into the final stock-selection decision, and evaluating their
performance over time. The difference in the two approaches is how they perform these tasks.

Equity portfolio management has evolved con-
siderably since Benjamin Graham and David
Dodd published their classic text on security
analysis in 1934 (Graham and Dodd, 1934). For
one, the types of stocks available for investment
have shifted dramatically, from companies with
mostly physical assets (such as railroads and
utilities) to companies with mostly intangible
assets (such as technology stocks and pharma-

ceuticals). Moreover, theories such as the mod-
ern portfolio theory and the capital asset pricing
model, in conjunction with new data sources
and powerful computers, have revolutionized
the way investors select stocks and create port-
folios. Consequently, what was once mostly an
art is increasingly becoming a science: Loose
rules of thumb are being replaced by rigorous
research and complex implementation.
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Of course, these new advances, while greatly
expanding the frontiers of finance, have not
necessarily made it any easier for portfolio
managers to beat the market. In fact, the
increasing sophistication of the average in-
vestor has probably made it more difficult
to find—and exploit—pricing errors. Several
studies show that a majority of professional
money managers have been unable to beat the
market (see, for example, Malkiel, 1995). There
are no sure bets, and mispricings, when they
occur, are rarely both large and long lasting.
Successful managers must therefore constantly
work to improve their existing strategies and
to develop new ones. Understanding fully
the equity management process is essential to
accomplishing this challenging task.

These new advances, unfortunately, have also
allowed some market participants to stray from
a sound investment approach. It is now easier
than ever for portfolio managers to use biased,
unfamiliar, or incorrect data in a flawed strat-
egy, one developed from untested conjecture or
haphazard trial and error. Investors, too, must
be careful not to let the abundance of data and
high-tech techniques distract them when allo-
cating assets and selecting managers. In par-
ticular, investors should not allow popular but
narrow rankings of short-term performance ob-
scure important differences in portfolio man-
agers’ style exposure or investment process. To
avoid these pitfalls, it helps to have a solid grasp
of the constantly advancing science of equity
investing.

This entry provides an overview of equity
portfolio management aimed at current and po-
tential investors, analysts, investment consul-
tants, and portfolio managers. We begin with
a discussion of the two major approaches to
equity portfolio management: the traditional ap-
proach and the quantitative approach. The remain-
ing sections of the entry are organized around
four major steps in the investment process:
(1) forecasting the unknown quantities needed
to manage equity portfolios—returns, risks,
and transaction costs; (2) constructing portfo-

lios that maximize expected risk-adjusted re-
turn net of transaction costs; (3) trading stocks
efficiently; and (4) evaluating results and up-
dating the process.

These four steps should be closely integrated:
The return, risk, and transaction cost forecasts,
the approach used to construct portfolios, the
way stocks are traded, and performance evalu-
ation should all be consistent with one another.
A process that produces highly variable, fast-
moving return forecasts, for example, should
be matched with short-term risk forecasts,
relatively high transaction costs, frequent
rebalancing, aggressive trading, and short-
horizon performance evaluation. In contrast,
stable, slower-moving return forecasts can be
combined with longer term risk forecasts, lower
expected transaction costs, less frequent rebal-
ancing, more patient trading, and longer-term
evaluation. Mixing and matching incompatible
approaches to each part of the investment pro-
cess can greatly reduce a manager’s ability to
reap the full rewards of an investment strategy.

A well-structured investment process should
also be supported by sound economic logic,
diverse information sources, and careful em-
pirical analysis that together produce reliable
forecasts and effective implementation. And, of
course, a successful investment process should
be easy to explain; marketing professionals,
consultants, and investors all need to under-
stand a manager’s process before they will
invest in it.

TRADITIONAL AND
QUANTITATIVE
APPROACHES TO EQUITY
PORTFOLIO MANAGEMENT
At one level, there are as many ways to man-
age portfolios as there are portfolio managers.
After all, developing a unique and innovative
investment process is one of the ways man-
agers distinguish themselves from their peers.
Nonetheless, at a more general level, there are
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two basic approaches used by most managers:
The traditional approach and the quantitative
approach. Although these two approaches are
often sharply contrasted by their proponents,
they actually share many traits. Both apply eco-
nomic reasoning to identify a small set of key
drivers of equity values; both use observable
data to help measure these key drivers; both
use expert judgment to develop ways to map
these key drivers into the final stock-selection
decision; and both evaluate their performance
over time. What differs most between tradi-
tional and quantitative managers is how they
perform these steps.

Traditional managers conduct stock-specific
analysis to develop a subjective assessment
of each stock’s unique attractiveness. Tradi-
tional managers talk with senior management,
closely study financial statements and other
corporate disclosures, conduct detailed, stock-
specific competitive analysis, and usually build
spreadsheet models of a company’s financial
statements that provide an explicit link between
various forecasts of financial metrics and stock
prices. The traditional approach involves de-
tailed analysis of a company and is often well
equipped to cope with data errors or structural
changes at a company (e.g., restructurings or
acquisitions). However, because the traditional
approach relies heavily on the judgment of ana-
lysts, it is subject to potentially severe subjective
biases such as selective perception, hindsight
bias, stereotyping, and overconfidence that can
reduce forecast quality. (For a discussion of the
systematic errors in judgment and probability
assessment that people frequently make, see
Kahneman, Slovic, and Tversky, 1982.) More-
over, the traditional approach is costly to apply,
which makes it impracticable for a large invest-
ment universe comprising many small stocks.
The high cost and subjective nature also make
it difficult to evaluate, because it is hard to cre-
ate the history necessary for testing. Testing
an investment process is important because it
helps to distinguish factors that are reflected
in stock prices from those that are not. Only

factors that are not yet impounded in stock
prices can be used to identify profitable trad-
ing opportunities. Failure to distinguish be-
tween these two types of factors can lead to
the familiar “good company, bad stock” prob-
lem in which even a great company can be a
bad investment if the price paid for the stock is
too high.

Quantitative managers use statistical models
to map a parsimonious set of measurable
factors into objective forecasts of each stock’s
return, risk, and cost of trading. The quantita-
tive approach formalizes the relation between
the key factors and forecasts, which makes
the approach transparent and largely free of
subjective biases. Quantitative analysis can
also be highly cost effective. Although the fixed
costs of building a robust quantitative model
are high, the marginal costs of applying the
model, or extending it to a broader investment
universe, are low. Consequently, quantitative
portfolio managers can choose from a large
universe of stocks, including many small and
otherwise neglected stocks that have attractive
fundamentals. Finally, because the quantitative
approach is model-based, it can be tested his-
torically on a wide cross-section of stocks over
diverse economic environments. While quan-
titative analysis can suffer from specification
errors and overfitting, analysts can mitigate
these errors by following a well-structured and
disciplined research process.

On the negative side, quantitative models can
be misleading when there are bad data or sig-
nificant structural changes at a company (that
is, “garbage in, garbage out”). For this rea-
son, most quantitative managers like to spread
their bets across many names so that the suc-
cess of any one position will not make or break
the strategy. Traditional managers, conversely,
prefer to take fewer, larger bets given their de-
tailed hands-on knowledge of the company and
the high cost of analysis.

A summary of the major advantages of each
approach to equity portfolio management is
presented in Table 1. (Dawes, Faust, and Meehl
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Table 1 Major Advantages of the Traditional and Quantitative Approaches to Equity Portfolio Management

Traditional approach
Depth Although they have views on fewer companies, traditional managers tend to

have more in-depth knowledge of the companies they cover. Unlike a
computerized model, they should know when data are misleading or
unrepresentative.

Regime shifts Traditional managers may be better equipped to handle regime shifts and
recognize situations where past relationships might not be expected to
continue (e.g., where back-tests may be unreliable).

Signal identification Based on their greater in-depth knowledge, traditional managers can better
understand the unique data sources and factors that are important for stocks
in different countries or industries.

Qualitative factors Many important factors that may affect an investment decision are not
available in any database and are hard to evaluate quantitatively. Examples
might include management and their vision for the company; the value of
patents, brands, and other intangible assets; product quality; or the impact of
new technology.

Quantitative approach
Universe Because a computerized model can quickly evaluate thousands of securities

and can update those evaluations daily, it can uncover more opportunities.
Further, by spreading their risk across many small bets, quantitative
managers can add value with only slightly favorable odds.

Discipline While individuals often base decisions on only the most salient or distinctive
factors, a computerized model will simultaneously evaluate all specified
factors before reaching a conclusion.

Verification Before using any signal to evaluate stocks, quantitative managers will
normally backtest its historical efficacy and robustness. This provides a
framework for weighting the various signals.

Risk management By its nature, the quantitative approach builds in the notion of statistical risk
and can do a better job of controlling unintended risks in the portfolio.

Lower fees The economies of scale inherent in a quantitative process usually allow
quantitative managers to charge lower fees.

[1989] provide an excellent comparison of clin-
ical (traditional) and actuarial (quantitative)
decision analysis.) Our focus in the rest of
this entry is the process of quantitative equity
portfolio management.

FORECASTING STOCK
RETURNS, RISKS, AND
TRANSACTION COSTS
Developing good forecasts is the first and per-
haps most critical step in the investment pro-
cess. Without good forecasts, the difficult task
of forming superior portfolios becomes nearly

impossible. In this section we discuss how to
use a quantitative approach to generate forecasts
of stock returns, risks, and transaction costs. These
forecasts are then used in the portfolio construc-
tion step described in the next section.

It should be noted that some portfolio
managers do not develop explicit forecasts
of returns, risks, and transaction costs. In-
stead, they map a variety of individual stock
characteristics directly into portfolio holdings.
However, there are limitations with this abbre-
viated approach. Because the returns and risks
corresponding to the various characteristics
are not clearly identified, it is difficult to ensure
the weights placed on the characteristics
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are appropriate. Further, measuring risk at
the portfolio level is awkward without reliable
estimates of the risks of each stock, especially
the correlations between stocks. Similarly,
controlling turnover is hard when returns and
transaction costs are not expressed in consistent
units. And, of course, it is difficult to explain a
process that occurs in one magical step.

Forecasting Returns
The process of building a quantitative return-
forecasting model can be divided into four
closely linked steps: (1) identifying a set of po-
tential return forecasting variables, or signals;
(2) testing the effectiveness of each signal, by
itself and together with other signals; (3) de-
termining the appropriate weight for each sig-
nal in the model; and (4) blending the model’s
views with market equilibrium to arrive at rea-
sonable forecasts for expected returns.

Identifying a list of potential signals might
seem like an overwhelming task; the candidate
pool can seem almost endless. To narrow the
list, it is important to start with fundamental re-
lationships and sound economics. Reports pub-
lished by Wall Street analysts and books about
financial statement analysis are both good
sources for ideas. Another valuable resource is
academic research in finance and accounting.
Academics have the incentive and expertise to
identify and carefully analyze new and innova-
tive information sources. Academics have stud-
ied a large number of stock price anomalies, and
Table 2 lists several that have been adopted by
investment managers. (For evidence on the per-
formance of several well-known anomalies, see
Fama and French [2008].)

For portfolio managers intent on building a
successful investment strategy, it is not enough
to simply take the best ideas identified by others
and add them to the return-forecasting model.
Instead, each potential signal must be thor-
oughly tested to ensure it works in the con-
text of the manager’s strategy across many
stocks and during a variety of economic envi-

Table 2 Selected Stock Price Anomalies Used in
Quantitative Models

Growth/Value: Value stocks (high B/P, E/P, CF/P)
outperform growth stocks (low B/P, E/P, CF/P).

Post-earnings-announcement drift: Stocks that announce
earnings that beat expectations outperform stocks that
miss expectations.

Short-term price reversal: One-month losers outperform
one-month winners.

Intermediate-term price momentum: Six-months to
one-year winners outperform losers.

Earnings quality: Stocks with cash earnings outperform
stocks with non-cash earnings.

Stock repurchases: Companies that repurchase shares
outperform companies that issue shares.

Analyst earnings estimates and stock recommendations:
Changes in analyst stock recommendations and
earnings estimates predict subsequent stock returns.

ronments. The real challenge is winnowing the
list of potential signals to a parsimonious set
of reliable forecasting variables. When select-
ing a set of signals, it is a good idea to include
a variety of variables to capture distinct invest-
ment themes, including valuation, momentum,
and earnings quality. By diversifying over in-
formation sources and variables, there is a good
chance that if one signal fails to add value an-
other will be there to carry the load.

When evaluating a signal, it is important
to make sure the underlying data used to
compute the signal are available and largely
error free. Checking selected observations
by hand and screening for outliers or other
influential observations is a useful way to
identify data problems. It is also sometimes
necessary to transform a signal—for instance,
by subtracting the industry mean or taking the
natural logarithm—to improve the “shape” of
the distribution. To evaluate a signal properly,
both univariate and multivariate analysis is im-
portant. Univariate analysis provides evidence
on the signal’s predictive ability when the sig-
nal is used alone, whereas multivariate analysis
provides evidence on the signal’s incremental
predictive ability above and beyond other
variables considered. For both univariate and
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multivariate analysis, it is wise to examine the
returns to a variety of portfolios formed on the
basis of the signal. Sorting stocks into quintiles
or deciles is popular, as is regression analysis,
where the coefficients represent the return to
a portfolio with unit exposure to the signal.
These portfolios can be equal weighted, cap
weighted, or even risk weighted depending
on the model’s ultimate purpose. Finally, the
return forecasting model should be tested
using a realistic simulation that controls the
target level of risk, takes account of transaction
costs, and imposes appropriate constraints
(e.g., the nonnegativity constraint for long-only
portfolios). In our experience, many promising
return-forecasting signals fail to add value in re-
alistic back-tests—either because they involve
excessive trading; work only for small, illiquid
stocks; or contain information that is already
captured by other components of the model.

The third step in building a return fore-
casting model is determining each signal’s
weight. When computing expected returns,
more weight should be put on signals that, over
time, have been more stable; generated higher
and more consistent returns; and provided su-
perior diversification benefits. Maintaining ex-
posures to signals that change slowly requires
less trading, and hence lower costs, than is
the case for signals that change rapidly. Other
things being equal, a stable signal (such as the
ratio of book-to-market equity) should get more
weight than a less stable signal (such as one-
month price reversal). High, consistent returns
are essential to a profitable, low-risk investment
strategy; hence, signals that generate high re-
turns with little risk should get more weight
than signals that produce lower returns with
higher risk. Finally, signals with more diver-
sified payoffs should get more weight because
they can hedge overall performance when other
signals in the model perform poorly.

The last step in forecasting returns is to make
sure the forecasts are reasonable and internally
consistent by comparing them with equilibrium
views. Return forecasts that ignore equilibrium

expectations can create problems in the port-
folio construction step. Seemingly reasonable
return forecasts can cause an optimizer to
maximize errors rather than expected returns,
producing extreme, unbalanced portfolios. The
problem is caused by return forecasts that are
inconsistent with the assumed correlations
across stocks. If two stocks (or subportfolios)
are highly correlated, then the equilibrium
expectation is that their returns should be
similar; otherwise, the optimizer will treat the
pair of stocks as a (near) arbitrage opportunity
by going extremely long the high-return stock
and extremely short the low-return stock.
However, with hundreds of stocks, it is not
always obvious whether certain stocks, or com-
binations of stocks, are highly correlated and
therefore ought to have similar return forecasts.
The Black-Litterman model was specifically
designed to alleviate this problem. It blends a
model’s raw return forecasts with equilibrium
expected returns—which are the returns that
would make the benchmark optimal for a given
risk model—to produce internally consistent
return forecasts that reflect the manager’s
(or model’s) views yet are consistent with
the risk model. (For a discussion of how to
use the Black-Litterman model to incorporate
equilibrium views into a return-forecasting
model, see Litterman [2003].)

Forecasting Risks
In a portfolio context, the risk of a single
stock is a function of the variance of its re-
turns, as well as the covariances between its
returns and the returns of other stocks in the
portfolio. The variance-covariance matrix of
stock returns, or risk model, is used to mea-
sure the risk of a portfolio. For equity port-
folio management, investors rarely estimate
the full variance-covariance matrix directly be-
cause the number of individual elements is too
large, and for a well-behaved (that is, non-
singular) matrix, the number of observations
used to estimate the matrix must significantly
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exceed the number of stocks in the matrix.
To see this, suppose that there are N stocks.
Then the variance-covariance matrix has N(N +
1)/2 elements, consisting of N variances and
N(N − 1)/2 covariances. For an S&P 500 portfo-
lio, for instance, there are 500 × (500 + 1)/2 =
125,250 unknown parameters to estimate, 500
variances and 124,750 covariances. For this rea-
son, most equity portfolio managers use a factor
risk model in which individual variances and co-
variances are expressed as a function of a small
set of stock characteristics—such as industry
membership, size, and leverage. This greatly re-
duces the number of unknown risk parameters
that the manager needs to estimate.

When developing an equity factor risk model,
it is a good idea to include all of the variables
used to forecast returns among the (potentially
larger) set of variables used to forecast risks.
This way, the risk model “sees” all of the poten-
tial risks in an investment strategy, both those
managers are willing to accept and those they
would like to avoid. Further, a mismatch be-
tween the variables in the return and risk mod-
els can produce less efficient portfolios in the
optimizer. For instance, suppose a return model
comprises two factors, each with 50% weight:
the book-to-price ratio (B/P) and return on eq-
uity (ROE). Suppose the risk model, on the other
hand, has only one factor: B/P. When form-
ing a portfolio, the optimizer will manage risk
only for the factors in the risk model—that is,
B/P but not ROE. This inconsistency between
the return and risk models can lead to port-
folios with extreme positions and higher-than-
expected risk. The portfolio will not reflect the
original 50-50 weights on the two return factors
because the optimizer will dampen the expo-
sure to B/P, but not to ROE. In addition, the
risk model’s estimate of tracking error will be
too low because it will not capture any risk from
the portfolio’s exposure to ROE. The most ef-
fective way to avoid these two problems is to
make sure all of the factors in the return model
are also included in the risk model (although
the converse does not need to be true—that

is, there can be risk factors without expected
returns).

A final issue to consider when developing or
selecting a risk model is the frequency of data
used in the estimation process. Many popular
risk models use monthly returns, whereas some
portfolio managers have developed propri-
etary risk models that use daily returns. Clearly,
when estimating variances and covariances, the
more observations, the better. High-frequency
data produce more observations and hence
more precise and reliable estimates. Further,
by giving more weight to recent observations,
estimates can be more responsive to changing
economic conditions. As a result, risk models
that use high-frequency returns should provide
more accurate risk estimates. (For a detailed
discussion of factor risk models, see Chapter 20
of Litterman [2003]).

Forecasting Transaction Costs
Although often overlooked, accurate trade-cost
estimates are critical to the equity portfolio
management process. After all, what really mat-
ters is not the gross return a portfolio might
receive, but rather the actual return a portfolio
does receive after deducting all relevant costs,
including transaction costs. Ignoring transac-
tion costs when forming portfolios can lead
to poor performance because implementation
costs can reduce, or even eliminate, the advan-
tages achieved through superior stock selection.
Conversely, taking account of transaction costs
can help produce portfolios with gross returns
that exceed the costs of trading.

Accurate trading-cost forecasts are also im-
portant after portfolio formation, when mon-
itoring the realized costs of trading. A good
transaction-cost model can provide a bench-
mark for what realized costs “should be,”
and hence whether actual execution costs
are reasonable. Detailed trade-cost monitor-
ing can help traders and brokers achieve best
execution by driving improvements in trad-
ing methods—such as more patient trading,
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or the selective use of alternative trading
mechanisms.

Transaction costs have two components: (1)
explicit costs, such as commissions and fees;
and (2) implicit costs, or market impact. Com-
missions and fees tend to be relatively small,
and the cost per share does not depend on the
number of shares traded. In contrast, market
impact costs can be substantial. They reflect the
costs of consuming liquidity from the market,
costs that increase on a per-share basis with the
total number of shares traded.

Market impact costs arise because suppliers
of liquidity incur risk. One component of these
costs is inventory risk. The liquidity supplier
has a risk/return trade-off, and will demand a
price concession to compensate for this inven-
tory risk. The larger the trade size and the more
illiquid or volatile the stock, the larger are in-
ventory risk and market impact costs. Another
consideration is adverse selection risk. Liquid-
ity suppliers are willing to provide a better price
to uninformed than informed traders, but since
there is no reliable way to distinguish between
these two types of traders, the market maker
sets an average price, with expected gains from
trading with uninformed traders compensating
for losses incurred from trading with informed
traders. Market impact costs tend to be higher
for low-price and small-cap stocks for which
greater adverse selection risk and informational
asymmetry tend to be more severe.

Forecasting price impact is difficult. Because
researchers only observe prices for completed
trades, they cannot determine what a stock’s
price would have been without these trades.
It is therefore impossible to know for sure how
much prices moved as a result of the trade. Price
impact costs, then, are statistical estimates that
are more accurate for larger data samples.

One approach to estimating trade costs is to
directly examine the complete record of mar-
ket prices, tick by tick (see, for example, Breen,
Hodrick, and Korajczyk [2002]). These data are
noisy due to discrete prices, non-synchronous
reporting of trades and quotes, and input er-

rors. Also, the record does not show orders
placed, just those that eventually got executed
(which may have been split up from the orig-
inal, larger order). Research by Lee and Rad-
hakrishna (2000) suggests empirical analysis
should be done using aggregated samples of
trades rather than individual trades at the tick-
by-tick level.

Another approach is for portfolio managers
to estimate a proprietary transaction cost model
using their own trades and, if available, those
of comparable managers. If generating a suf-
ficient sample is feasible, this approach is
ideal because the resulting model matches the
stock characteristics, investment philosophy,
and trading strategy of the individual port-
folio manager. There is a large academic lit-
erature on measuring transaction costs. Fur-
ther, models built from actual trading records
provide a complementary source of informa-
tion on market impact costs. (For empirical evi-
dence on how transaction costs can vary across
trade characteristics and how to predict transac-
tion costs, see Chapter 23 of Litterman [2003].)

CONSTRUCTING
PORTFOLIOS
In this section we discuss how to construct port-
folios based on the forecasts described in the
last section. In particular, we compare ad hoc,
rule-based approaches to portfolio optimiza-
tion. The first step in portfolio construction,
however, is to specify the investment goals.
While having good forecasts (as described in
the previous section) is obviously important,
the investor’s goals define the portfolio man-
agement problem. These goals are usually spec-
ified by three major parameters: the benchmark,
the risk/return target, and specific restrictions
such as the maximum holdings in any single
name, industry, or sector.

The benchmark represents the starting point
for any active portfolio; it is the client’s neu-
tral position—a low-cost alternative to active
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management in that asset class. For example,
investors interested in holding large-cap U.S.
stocks might select the S&P 500 or Russell 1000
as their benchmark, while investors interested
in holding small-cap stocks might choose the
Russell 2000 or the S&P 600. Investors inter-
ested in a portfolio of non-U.S. stocks could
pick the FTSE 350 (United Kingdom), TOPIX
(Japan), or MSCI EAFE (World minus North
America) indexes. There are a large number
of published benchmarks available, or an in-
vestor might develop a customized benchmark
to represent the neutral position. In all cases,
however, the benchmark should be a reason-
ably low-cost, investable alternative to active
management.

Although some investors are content to
merely match the returns on their benchmarks,
most investors allocate at least some of their as-
sets to active managers. The allocation of risk
is done via risk budgeting. In equity portfolio
management, active management means over-
weighting attractive stocks and underweight-
ing unattractive stocks relative to their weights
in the benchmark. (The difference between a
stock’s weight in the portfolio and its weight
in the benchmark is called its active weight,
where a positive active weight corresponds to
an overweight position and a negative active
weight corresponds to an underweight posi-
tion.) Of course, there is always a chance that
these active weighting decisions will cause the
portfolio to underperform the benchmark, but
one of the basic dictums of modern finance is
that to earn higher returns, investors must ac-
cept higher risk—which is true of active returns
as well as total returns.

A portfolio’s tracking error measures its risk
relative to a benchmark. Tracking error equals
the time-series standard deviation of a port-
folio’s active return (which is the difference
between the portfolio’s return and that of
the benchmark). A portfolio’s information ratio
equals its average active return divided by its
tracking error. As a measure of return per unit
of risk, the information ratio provides a conve-

nient way to compare strategies with different
active risk levels.

An efficient portfolio is one with the highest ex-
pected return for a target level of risk—that is, it
has the highest information ratio possible given
the risk budget. In the absence of constraints, an
efficient portfolio is one in which each stock’s
marginal contribution to expected return is pro-
portional to its marginal contribution to risk.
That is, there are no unintended risks, and all
risks are compensated with additional expected
returns. How can a portfolio manager construct
such an efficient portfolio? Below we compare
two approaches: (1) a rule-based system; and
(2) portfolio optimization.

Building an efficient portfolio is a com-
plex problem. To help simplify this compli-
cated task, many portfolio managers use ad
hoc, rule-based methods that partially control
exposures to a small number of risk factors.
For example, one common approach—called
stratified sampling—ranks stocks within buck-
ets formed on the basis of a few key risk fac-
tors, such as sector and size. The manager
then invests more heavily in the highest-ranked
stocks within each bucket, while keeping the
portfolio’s total weight in each bucket close to
that of the benchmark. The resulting portfolio
is close to neutral with respect to the identified
risk factors (that is, sector and size) while over-
weighting attractive stocks and underweight-
ing unattractive stocks.

Although stratified sampling may seem
sensible, it is not very efficient. Numerous
unintended risks can creep into the portfolio,
such as an overweight in high-beta stocks,
growth stocks, or stocks in certain subsectors.
Nor does it allow the manager to explicitly
consider trading costs or investment objectives
in the portfolio construction problem. Portfolio
optimization provides a much better method
for balancing expected returns against different
sources of risk, trade costs, and investor
constraints. An optimizer uses computer algo-
rithms to find the set of weights (or holdings)
that maximize the portfolio’s expected return
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(net of trade costs) for a given level of risk.
It minimizes uncompensated sources of risk,
including sector and style biases. Fortunately,
despite the complex math, optimizers require
only the various forecasts we’ve already
described and developed in the prior section.

Chapter 23 of Litterman (2003) demonstrates
the benefits of optimization, comparing two
portfolios: one constructed using stratified sam-
pling and the other constructed using an op-
timizer. The optimized portfolio is designed to
have the same predicted tracking error as the
rule-based portfolio. The results show that (1) the
optimized portfolio is more efficient in terms
of its expected alpha and information ratio for
the same level of risk, (2) risk is spread more
broadly for the optimized portfolio compared
to the rule-based portfolio, (3) more of the risk
budget in the optimized portfolio is due to the
factors that are expected to generate positive ex-
cess returns, and (4) the forecast beta for the op-
timized portfolio is closer to 1.0, as unintended
sources of risk (such as the market timing) are
minimized.

Another benefit of optimizers is that they
can efficiently account for transaction costs,
constraints, selected restrictions, and other
account guidelines, making it much easier to
create customized client portfolios. Of course,
when using an optimizer to construct efficient
portfolios, reliable inputs are essential. Data
errors that add noise to the return, risk, and
transaction cost forecasts can lead to portfolios
in which these forecast errors are maximized.
Instead of picking stocks with the highest
actual expected returns, or the lowest actual
risks or transaction costs, the optimizer takes
the biggest positions in the stocks with the
largest errors, namely, the stocks with the great-
est overestimates of expected returns or the
greatest underestimates of risks or transaction
costs. A robust investment process will screen
major data sources for outliers that can severely
corrupt one’s forecasts. Further, as described
in the previous section, return forecasts should
be adjusted for equilibrium views using the

Black-Litterman model to produce final return
forecasts that are more consistent with risk es-
timates, and with each other. Finally, portfolio
managers should impose sensible, but simple,
constraints on the optimizer to help guard
against the effects of noisy inputs. These con-
straints could include maximum active weights
on individual stocks, industries, or sectors,
as well as limitations on the portfolio’s active
exposure to factors such as size or market beta.

TRADING
Trading is the process of executing the orders
derived in the portfolio construction step. To
trade a list of stocks efficiently, investors must
balance opportunity costs and execution price
risk against market impact costs. Trading each
stock quickly minimizes lost alpha and price
uncertainty due to delay, but impatient trad-
ing incurs maximum market impact. However,
trading more patiently over a longer period re-
duces market impact but incurs larger opportu-
nity costs and short-term execution price risk.
Striking the right balance is one of the keys to
successful trade execution.

The concept of “striking a balance” suggests
optimization. Investors can use a trade opti-
mizer to balance the gains from patient trad-
ing (e.g., lower market-impact cost) against the
risks (e.g., greater deviation between the exe-
cution price and the decision price; potentially
higher short-term tracking error). Such an op-
timizer will tend to suggest aggressive trading
for names that are liquid and/or have a large
effect on portfolio risk, while suggesting patient
trading for illiquid names that have less impact
on risk. A trade optimizer can also easily handle
most real-world trading constraints, such as the
need to balance cash in each of many accounts
across the trading period (which may last
several days).

A trade optimizer can also easily accommo-
date the time horizon of a manager’s views.
That is, if a manager is buying a stock primarily
for long-term valuation reasons, and the excess
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return is expected to accrue gradually over
time, then the optimizer will likely suggest a
patient trading strategy (all else being equal).
Conversely, if the manager is buying a stock
in expectation of a positive earnings surprise
tomorrow, the optimizer is likely to suggest
an aggressive trading strategy (again, all else
being equal). The trade optimizer can also be
programmed to consider short-term return
regularities, such as the tendency of stocks with
dramatic price moves on one day to continue
those moves on the next day before reversing
the following day (see Heston, Korajczyk,
and Sadka, 2010). Although these types of
regularities may be too small to cover trading
costs, and should not be used to initiate trades,
they can be used to help minimize trading costs
after an investor has independently decided to
trade (see Engle and Ferstenberg, 2007).

To induce traders to follow the desired strat-
egy (that is, that suggested by the trade opti-
mizer), the portfolio manager needs to give the
trader an appropriate benchmark, which pro-
vides guidance about how aggressively or pa-
tiently to trade. Two widely used benchmarks
for aggressive trades are the closing price on the
previous day and the opening price on the trade
date. Because the values of these two bench-
marks are measured prior to any trading, a
patient strategy that delays trading heightens
execution price risk by increasing the possibil-
ity of deviating significantly from the bench-
mark. Another popular execution benchmark
is the volume-weighted average price (VWAP)
for the stock over the desired trading period,
which could be a few minutes or hours for
an aggressive trade, or one or more days for
a patient trade. However, the VWAP bench-
mark should only be used for trades that are not
too large relative to total volume over the pe-
riod; otherwise, the trader may be able to influ-
ence the benchmark against which he or she is
evaluated.

Buy-side traders can increasingly make use
of algorithmic trading, or computer algorithms
that directly access market exchanges, to auto-

matically make certain trading decisions such
as the timing, price, quantity, type, and routing
of orders. These algorithms may dynamically
monitor market conditions across time and
trading venues, and reduce market impact by
breaking large orders into smaller pieces, em-
ploying either limit orders or marketable limit
orders, or selecting trading venues to submit
orders, while closely tracking trading bench-
marks. Algorithmic trading provides buy-side
traders more anonymity and greater control
over their order flow, but tends to work better
for more liquid or patient trades.

Principal package trading is another way to
lower transaction costs relative to traditional
agency methods (see Kavajecz and Keim, 2005).
Principal trades may be crossed with the princi-
pal’s existing inventory positions, or allow the
portfolio manager to benefit from the longer
trading horizon and superior trading ability of
certain intermediaries.

EVALUATING RESULTS AND
UPDATING THE PROCESS
Once an investment process is up and run-
ning, it needs to be constantly reassessed and, if
necessary, refined. The first step is to compare
actual results to expectations; if realizations dif-
fer enough from expectations, process refine-
ments may be necessary. Thus, managers need
systems to monitor realized performance, risk,
and trading costs and compare them to prior
expectations.

A good performance monitoring system
should be able to determine not only the de-
gree of over- or under-performance, but also the
sources of these excess returns. For example,
a good performance attribution system might
break excess returns down into those due to
market timing (having a different beta than
the benchmark), industry tilts, style differences,
and stock selection. Such systems are avail-
able from a variety of third-party vendors. An
even better system would allow the manager to
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further disaggregate returns to see the effects of
each of the proprietary signals used to forecast
returns, as well as the effects of constraints and
other portfolio requirements. And, of course,
any system will be more accurate if it can ac-
count for daily trading and changes in portfolio
exposures.

Investors should also compare realized risks
to expectations. For example, Goldman Sachs
has developed the concept of the green, yellow,
and red zones to compare realized and targeted
levels of risk (see Chapter 17 in Litterman, 2003).
Essentially, if realized risk is within a reasonable
band around the target (that is, the green zone),
then one can assume the risk management tech-
niques are working as intended and no action
is required. If realized risk is further from the
target (the yellow zone), the situation may re-
quire closer examination, and if realized risk is
far from the target (the red zone), some action
is usually called for.

Finally, it is important to monitor trading
costs. Are they above or below the costs as-
sumed when making trading decisions? Are
they above or below competitors’ costs? Are
they too high in an absolute sense? If so, man-
agers may need to improve their trade cost esti-
mates, trading process, or both. There are many
services that can report realized trade costs, but
most are available with a significant lag, and are
inflexible with respect to how they measure and
report these costs. With in-house systems, how-
ever, managers can compare a variety of trade
cost estimation techniques and get the feedback
in a timely enough fashion to act on the results.

The critical question, of course, is what to do
with the results of these monitoring systems:
When do variations from expectations warrant
refinements to the process? This will depend
on the size of the variations and their persis-
tence. For example, a manager probably would
not throw out a stock-selection signal after one
bad month—no matter how bad—but might
want to reconsider after many years of poor
performance, taking into consideration the eco-

nomic environment and any external factors
that might explain the results. It is also im-
portant to compare the underperformance to
historical simulations. Have similar periods oc-
curred in the past, and if so, were they followed
by improvements? In this case, the underperfor-
mance is part of the normal risk in that signal
and no changes may be called for. If not, there
may have been a structural change that might
invalidate the signal going forward—for exam-
ple, if the signal has become overly popular, it
may no longer be a source of mispricing.

Similarly, the portfolio manager needs to con-
sider the source of any differences between ex-
pectations and realizations. For example, was
underperformance due to faulty signals, port-
folio constraints, unintended risk, or random
noise? The answer will determine the proper
response. If constraints are to blame, they may
be lifted—but only if doing so would not vi-
olate any investment guidelines or incur ex-
cessive risk. Alternatively, if the signals are to
blame, the manager must decide if the devia-
tions from expectations are temporary or more
enduring. If it is just random noise, no action
is necessary. Similarly, any differences between
realized and expected risk could be due to poor
risk estimates or poor portfolio construction,
with the answer determining the response. Fi-
nally, excessive trading costs (versus expecta-
tions) could reflect poor trading or poor trade
cost estimates, again with different implications
for action.

In summary, ongoing performance, risk, and
trade cost monitoring is an integral part of
the equity portfolio management process and
should get equal billing with forecasting, port-
folio construction, and trading. Monitoring
serves as both quality control and a source
of new ideas and process improvements. The
more sophisticated the monitoring systems, the
more useful they are to the process. And al-
though the implications of monitoring involve
subtle judgments and careful analysis, better
data can lead to better solutions.
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KEY POINTS
� Two popular ways to manage equity port-

folios are the traditional, or qualitative, ap-
proach and the quantitative approach.

� The equity investment process comprises four
primary steps: (1) forecasting returns, risks,
and transaction costs; (2) constructing portfo-
lios that maximize expected risk-adjusted re-
turn net of transaction costs; (3) trading stocks
efficiently; and (4) evaluating results and up-
dating the process.

� There are four closely linked steps to build-
ing a quantitative equity return-forecasting
model: (1) identifying a set of potential re-
turn forecasting variables, or signals; (2) test-
ing the effectiveness of each signal, by itself
and together with other signals; (3) determin-
ing the appropriate weight for each signal in
the model; and (4) blending the model’s views
with market equilibrium to arrive at reason-
able forecasts for expected returns.

� Most quantitative equity portfolio managers
use a factor risk model in which individual
variances and covariances are expressed as a
function of a small set of stock characteris-
tics such as industry membership, size, and
leverage.

� Transaction costs consist of explicit costs, such
as commissions and fees, and implicit costs,
or market impact. The per-share cost of com-
missions and fees does not depend on the
number of shares traded, whereas market im-
pact costs increase on a per-share basis with
the total number of shares traded.

� Tracking error measures a portfolio’s risk rel-
ative to a benchmark. Tracking error equals
the time-series standard deviation of a port-
folio’s active return, the difference between
the portfolio’s return and that of the bench-
mark.

� Information ratio is a measure of return per
unit of risk, a portfolio’s average active return
divided by its tracking error.

� Two widely used ways to construct an effi-
cient portfolio are stratified sampling, which

is a rule-based system, and portfolio opti-
mization.

� To trade a list of stocks efficiently, investors
must balance opportunity costs and execu-
tion price risk against market impact costs.
Trading each stock quickly minimizes lost
alpha and price uncertainty due to delay, but
impatient trading incurs maximum market
impact. Trading more patiently over a longer
period reduces market impact but incurs
larger opportunity costs and short-term
execution price risk.

� Once an investment process is operational, it
should be constantly reassessed and, if neces-
sary, refined. Thus, managers need systems
to monitor realized performance, risk, and
trading costs and compare them to prior ex-
pectations.

� A good performance monitoring system
should be able to determine the degree of
over- or underperformance as well as the
sources of these excess returns, such as market
timing, industry tilts, style differences, and
stock selection.
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Abstract: One of the key tasks in seeking to generate attractive returns is producing realistic and
reasonable return expectations and forecasts. In the Markowitz mean-variance framework, an
investor’s objective is to choose a portfolio of securities that has the largest expected return for
a given level of risk (as measured by the portfolio’s variance). In the case of common stock, by
return (or expected return) of a stock, we mean the change (or expected change) in the stock price
over the period, plus any dividends paid, divided by the starting price. Of course, since we do not
know the true values of the securities’ expected returns and covariances, these must be estimated or
forecasted. Equity portfolio managers have used various statistical models for forecasting returns
and risk. These models, referred to as predictive return models, make conditional forecasts of
expected returns using the current information set. Predictive return models include regressive
models, linear autoregressive models, dynamic factor models, and hidden-variable models.

In contrast to forecasting events such as the
weather, forecasting stock prices and returns
is difficult because the predictions themselves
will produce market movements that in turn
provoke immediate changes in prices, thereby
invalidating the predictions themselves. This
leads to the concept of market efficiency:
An efficient market is a market where all
new information about the future behavior
of prices is immediately impounded in the
prices themselves and therefore exploits all
information.

Actually the debate about the predictability
of stock prices and returns has a long history.1

More than 75 years ago, Cowles (1933) asked the
question: “Can stock market forecasters fore-
cast?” Armed with the state-of-the-art econo-
metric tools at the time, Cowles analyzed the
recommendations of stock market forecasters
and concluded, “It is doubtful.” Subsequent
academic studies support Cowles’s conclusion.
However, the history goes further back. In 1900,
a French mathematician, Louis Bachelier, in his
doctoral dissertation in mathematical statistics
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titled Théorie de la Spéculation (The Theory of
Speculation), showed using mathematical tech-
niques why the stock market behaves as it
does.2 He also provided empirical evidence
based on the French capital markets at the turn
of the century. He wrote:

Past, present, and even discounted future events are
reflected in market price, but often show no appar-
ent relation to price changes. . . . [A]rtificial causes
also intervene: the Exchange reacts on itself, and
the current fluctuation is a function, not only of the
previous fluctuations, but also of the current state.
The determination of these fluctuations depends on
an infinite number of factors; it is, therefore, im-
possible to aspire to mathematical predictions of
it. . . . [T]he dynamics of the Exchange will never
be an exact science. (Bachelier, 1900)

In other words, according to Bachelier, stock
price movements are difficult to forecast and
even explain after the fact.

Despite this conclusion, the adoption of
modeling techniques by asset management
firms has greatly increased since the turn
of the century. Models to predict expected
returns are routinely used at asset manage-
ment firms. In most cases, it is a question of
relatively simple models based on factors or
predictor variables. However, more statistical
or econometric-oriented models are also being
experimented with and adopted by some asset
management firms, as well as what are referred
to as nonlinear models based on specialized
areas of statistics such as neural networks and
genetic algorithms.

Historical data are often used for forecast-
ing future returns as well as estimating risk.
For example, a portfolio manager might pro-
ceed in the following way: Observing weekly or
monthly returns, the portfolio manager might
use the past five years of historical data to es-
timate the expected return and the covariances
by the sample mean and sample covariances.
The portfolio manager would then use these as
inputs for mean-variance optimization, along
with any ad hoc adjustments to reflect any
views about expected returns on future perfor-
mance. Unfortunately this historical approach

most often leads to counterintuitive, unstable,
or merely “wrong” portfolios generated by the
mean-variance optimization model. Better fore-
casts are necessary. Statistical estimates can be
very noisy and typically depend on the quality
of the data and the particular statistical tech-
niques used to estimate the inputs. In general,
it is desirable that an estimator of expected re-
turn and risk have the following properties:

� It provides a forward-looking forecast with
some predictive power, not just a backward-
looking historical summary of past perfor-
mance.

� The estimate can be produced at a reasonable
computational cost.

� The technique used does not amplify errors
already present in the inputs used in the pro-
cess of estimation.

� The forecast should be intuitive, that is, the
portfolio manager should be able to explain
and justify them in a comprehensible manner.

In this entry, we look at the issue of whether
forecasting stock returns can be done so as to
generate trading profits and excess returns. Be-
cause the issue about predictability of stock re-
turns or prices requires an understanding of
statistical concepts, we will provide a brief de-
scription of the relevant concepts in probability
theory and statistics. We then discuss the dif-
ferent types of predictive return models that
are used by portfolio managers.

THE CONCEPT OF
PREDICTABILITY
To predict (or forecast) involves forming an
expectation of a future event or future events.
Since ancient times it has been understood that
the notion of predicting the future is subject to
potential inconsistencies. Consider what might
happen if one receives a highly reliable predic-
tion that tomorrow one will have a car accident
driving to work. This might alter one’s behav-
ior such that a decision is made not to go to
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work. Hence, one’s behavior will be influenced
by the prediction, thus potentially invalidating
the prediction. It is because of inconsistencies
of this type that two economists in the mid
1960s, Paul Samuelson and Eugene Fama,
arrived at the apparently paradoxical conclu-
sion that “properly anticipated prices fluctuate
randomly.”3

The concept of forecastability rests on how
one can forecast the future given the current
state of knowledge. In probability theory, the
state of knowledge on a given date is referred
to as the information set known at that date. Fore-
casting is the relationship between the informa-
tion set today and future events. By altering
the information set, the forecast changes. How-
ever, the relationship between the information
set and the future is fixed and immutable. Aca-
demicians and market practitioners adopt in
finance theories this concept of forecastability.
Prices or returns are said to be forecastable if the
knowledge of the past influences our forecast of
the future. For example, if the future returns of
a firm’s stock depend on the value of key finan-
cial ratios, then those returns are predictable. If
the future returns of that stock do not depend
on any variable known today, then returns are
unpredictable.

As explained in the introduction to this entry,
the merits of stock return forecasting is an on-
going debate. There are two beliefs that seem to
be held in the investment community. First, pre-
dictable processes allow investors to earn excess
returns. Second, unpredictable processes do not
allow investors to earn excess returns. Neither
belief is necessarily true. Understanding why
will shed some light on the crucial issues in
the debate regarding return modeling. The rea-
sons can be summed up as follows. First, pre-
dictable processes do not necessarily produce
excess returns if they are associated with un-
favorable risk. Second, unpredictable expecta-
tions can be profitable if the expected value is
favorable.

Because most of our knowledge is uncertain,
our forecasts are also uncertain. Probability the-

ory provides the conceptual tools to represent
and measure the level of uncertainty.4 Proba-
bility theory assigns a number—referred to as
the “probability”—to every possible event. This
number, the probability, might be interpreted in
one of two ways. The first is that a probability
is the “intensity of belief” that an event will oc-
cur, where a probability of 1 means certainty.5

The second interpretation is the one normally
used in statistics: Probability is the percentage
of times (i.e., frequency) that a particular event
is observed in a large number of observations
(or trials).6 This interpretation of probability is
the frequentist interpretation, also referred to
as the relative frequency concept of probability.
Although it is this interpretation that is used
in finance and the one adopted in this book,
there are attempts to apply the subjective inter-
pretation to financial decision making using an
approach called the Bayesian approach.7

With this background, let’s consider again the
returns of some stock. Suppose that returns are
unpredictable in the sense that future returns
do not depend on the current information set.
This does not mean that future returns are com-
pletely uncertain in the same sense in which the
outcome of throwing a die is uncertain. Clearly,
we cannot believe that every possible return on
the stock is equally likely: There are upper and
lower bounds for real returns in an economy.
More important, if we collect a series of histor-
ical returns for a stock, a distribution of returns
would be observed.

It is therefore reasonable to assume that our
uncertainty is embodied in a probability distri-
bution of returns. The absence of predictability
means that the distribution of future returns
does not change as a function of the current in-
formation set. More specifically, the distribution
of future returns does not change as a function
of the present and past values of prices and
returns. This entails that the distribution of re-
turns does not change with time. We can there-
fore state that (1) a price or return process is pre-
dictable if its probability distributions depend
on the current information set, and (2) a price or
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return process is unpredictable if its probability
distributions are time-invariant.

Given the concept of predictability as we have
just defined it, we can now discuss why prices
and returns are difficult (or perhaps impossi-
ble) to predict. The key is that any prediction
that might lead to an opportunity to generate a
trading profit or an excess return tends to make
that opportunity disappear. For example, sup-
pose that the price of a stock is predicted to
increase significantly in the next five trading
days. A large price increase is a source of trad-
ing profit or excess return. As a consequence, if
that prediction is widely shared by the invest-
ment community, investors will rush to pur-
chase that stock. But the demand thus induced
will make the stock’s price rise immediately,
thus eliminating the source of trading profit or
excess return and invalidating the forecast.

Suppose that the predictions of stock returns
were certain rather than uncertain. By a certain
prediction it is meant a prediction that leaves
no doubt about what will happen. For example,
U.S. Treasury zero-coupon securities if held to
maturity offer a known or certain prediction
of returns because the maturity value is guar-
anteed by the full faith and credit of the U.S.
government. Any forecast that leaves open
the possibility that market forces will alter
the forecast cannot be considered a certain
forecast. If stock return predictions are certain,
then simple arbitrage arguments would dictate
that all stocks should have the same return. In
fact, if stock returns could be predicted with
certainty and if there were different returns,
then investors would choose only those stocks
with the highest returns.

Stock return forecasts are not certain; as we
have seen, uncertain predictions are embod-
ied in probability distributions. Suppose that
we have a joint probability distribution of the
returns of the universe of investable stocks.
Investors will decide the rebalancing of their
portfolios depending on their probabilistic pre-
dictions and their risk-return preferences. The
problem we are discussing here is whether gen-

eral considerations of market efficiency are able
to determine the mathematical form of price or
return processes. In particular, we are interested
in understanding if stock prices or returns are
necessarily unpredictable.

The problem discussed in the literature is ex-
pressed roughly as follows. Suppose that re-
turns are a series of random variables. These
series will be fully characterized by the joint dis-
tributions of returns at any given time t and at
any given set of different times. Suppose that in-
vestors know these distributions and that they
select their portfolios according to specific rules
that depend on these distributions. Can we de-
termine the form of admissible processes, that
is, of admissible distributions?

Ultimately, the objective in solving this prob-
lem is to avoid models that allow unreasonable
inferences. Historically, three solutions have
been proposed:

1. Returns fluctuate randomly around a given
mean.

2. Returns are a fair game.
3. Returns are a fair game after adjusting for

risk.

In statistical terminology, returns fluctuating
randomly around a given mean refers to re-
turns following multivariate random walks. A fair
game means that returns are martingales. These
concepts and their differences will be explained
below. The first two proposed solutions are in-
correct; the third is too general to be useful for
asset management. Before we discuss the above
models of prices, we digress to briefly explain
some statistical concepts.

Statistical Concepts of Predictability
and Unpredictability
Because we have stressed how we must rely
on probability to understand the concepts of
predictability and unpredictability, we will first
explain the concepts of conditional probabil-
ity, conditional expectation, independent and
identically distributed random variables, strict
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white noise, martingale difference sequence,
and white noise. In addition, we have to un-
derstand the concept of an error term and an
innovation.

Conditional probability and conditional
expectation are fundamental in the prob-
abilistic description of financial markets.
A conditional probability of some random
variable X is the probability for X given a
particular value for another random variable
Y is known. Similarly, a conditional probability
distribution can be determined. For the con-
ditional probability distribution, an expected
value can be computed and is referred to as
a conditional expected value or conditional
mean or, more commonly, a conditional
expectation.

The statistical concept independent and iden-
tically distributed variables (denoted by IID
variables) means two conditions about prob-
ability distributions for random variables. First
consider “independent.” This means if we have
a time series for some random variable, then at
each time the random variable has a probability
distribution. By independently distributed, it is
meant that the probability distributions remain
the same regardless of the history of past val-
ues for the random variable. “Identically” dis-
tributed means that all returns have the same
distribution in every time period. These two
conditions entail that, over time, the mean and
the variance do not change from period to pe-
riod. In the parlance of the statistician, we have
a stationary time-series process.

A strict white noise is a sequence of IID
variables that have a mean equal to zero and
a finite variance. Hence, a strict white noise
is unpredictable in the sense that the condi-
tional probability distribution of the random
variables is fixed and independent from the
past. Because a strict white noise is unpre-
dictable, expectations and higher moments
are unpredictable. Moments are measures to
summarize the probability distribution. The
first four moments are expected value or mean
(location), variance (dispersion), skewness

(asymmetry), and kurtosis (concentration in
the tails). The higher moments of a probability
distribution are those beyond the mean and
variance, that is skewness and kurtosis.

A martingale difference sequence is a se-
quence of random variables that have a mean of
zero that are uncorrelated such that their con-
ditional expectations given the past values of
the series is always zero. Because expectations
and conditional expectations are both zero, in
a martingale difference sequence, expectations
are unpredictable. However, if higher moments
exist, they might be predictable.

A white noise is a sequence of uncorrelated
random variables with a mean of zero and
a finite variance. Since the random variables
are uncorrelated, in a white noise expecta-
tions are linearly unpredictable. Higher mo-
ments, if they exist, might be predictable. The
key here is that they are unpredictable using
a linear model. However, they may be pre-
dicted as nonlinear functions of past values. It
is for this reason that certain statistical tech-
niques that involve nonlinear functions such as
neural networks have been used by some quan-
titative asset management firms to try to predict
expectations.

Random Walks and Martingales
In the special case where the random vari-
ables are normally distributed, it can be proven
that strict white noise, martingale difference
sequence, and white noise coincide. In fact,
two uncorrelated, normally distributed random
variables are also independent.

We can now define what is meant by an arith-
metic random walk, a martingale, and a strict
arithmetic random walk that are used to de-
scribe the stochastic process for returns and
prices as follows:

� An arithmetic random walk is the sum of
white-noise terms. The mean of an arithmetic
random walk is linearly unpredictable but
might be predictable with nonlinear predic-
tors. Higher moments might be predictable.
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� A martingale is the sum of martingale dif-
ference sequence terms. The mean of a
martingale is unpredictable (linearly and
nonlinearly); that is, the expectation of a
martingale coincides with its present value.
Higher moments might be predictable.

� A strick random walk is the sum of strict
white-noise terms. A strict random walk is
unpredictable: Its mean, variance, and higher
moments are all unpredictable.

Error Terms and Innovations
Any statistical process can be broken down into
a predictable and an unpredictable component.
The first component is that which can be pre-
dicted from the past values of the process. The
second component is that which cannot be pre-
dicted. The component that cannot be predicted
is called the innovation process. Innovation is
not specifically related to a model, it is a charac-
teristic of the process. Innovations are therefore
unpredictable processes.

Now consider a model that is supposed to ex-
plain empirical data such as predicting future
returns or prices. For a given observation, the
difference between the value predicted by the
model and the observation is called the resid-
ual. In econometrics, the residual is referred to
as an error term or, simply, error of the model.
It is not necessarily true that errors are inno-
vations; that is, it is not necessarily true that
errors are unpredictable. If errors are innova-
tions, then the model offers the best possible
explanation of data. If not, errors contain resid-
ual forecastability. The previous discussion is
relevant because it makes a difference if errors
are strict white noise, martingale difference se-
quences, or simply white noise.

More specifically, a random walk whose
changes (referred to as increments) are non-
normal white noise contains a residual structure
not explained by the model both at the level of
expectations and higher moments. If data fol-
low a martingale model, then expectations are
completely explained by the model but higher
moments are not.

The Importance of the Statistical Concepts
We have covered a good number of complex
statistical concepts. What’s more, many of these
statistical concepts are not discussed in basic
statistics courses offered in business schools.
So, why are these apparently arcane statisti-
cal considerations of practical significance to
investors? The reason is that the properties of
models that are used in attempting to forecast
returns and prices depend on the assumptions
made about “noise” in the data. For example,
a linear model makes linear predictions of ex-
pectations and cannot capture nonlinear events
such as the clustering of volatility that have
been observed in real-world stock markets. It is
therefore natural to assume that errors are white
noise. In other models attempting to forecast
returns and prices, however, different assump-
tions about noise need to be made; otherwise
the properties of the model conflict with the
properties of the noise term.

Now, the above considerations have impor-
tant practical consequences when testing error
terms to examine how well the models that will
be described later in this entry perform. When
testing a model, one has to make sure that the
residuals have the properties that we assume
they have. Thus, if we use a linear model, say a
linear regression, we will have to make sure that
residuals from time-series data are white noise;
that is, that the residuals are uncorrelated over
time. The correlation between the residuals at
different times from a model based on time-
series data is referred to as autocorrelation. In
a linear regression using time-series data, the
presence of autocorrelation violates the ordi-
nary least squares assumption when estimat-
ing the parameters of the statistical model.8 In
general, it will suffice to add lags to the set of
predictor variables to remove the existence of
autocorrelation of the residuals.9 However, if
we have to check that residuals are martingale
difference sequences or strict white noise, we
will have to use more powerful tests. In ad-
dition, adding lags will not be sufficient to re-
move undesired properties of residuals. Models
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will have to be redesigned. These effects are not
marginal: They can have a significant impact on
the profitability and performance of investment
strategies.

A CLOSER LOOK AT PRICING
MODELS
Armed with these concepts from statistics, let’s
now return to a discussion of pricing models.
The first hypothesis on equity price processes
that was advanced as a solution to the problem
of forecastability was the random walk hypoth-
esis. The strongest formulation assumes that re-
turns are a sequence of IID variables, that is, a
strict random walk. This means that, over time,
the mean and the variance do not change from
period to period. If returns are IID variables, it
can be shown that the logarithms of prices fol-
low a random walk and the prices themselves
follow what is called a geometric random walk.
The IID model is clearly a model without fore-
castability as the distribution of future returns
does not depend on any information set known
at the present moment. It does, however, allow
stock prices to have a fixed drift.

There is a weaker form of the random walk
hypothesis that only requires that returns at any
two different times be uncorrelated. According
to this weaker definition, returns are a sequence
formed by a constant drift plus white noise. If
returns are a white noise, however, they are not
unpredictable. In fact, a white noise, although
uncorrelated at every lag, might be predictable
in the sense that its expectation might depend
on the present information set.

At one time, it was believed that if one as-
sumes investors make perfect forecasts, then the
strict random walk model was the only possi-
ble model. However, this conclusion was later
demonstrated to be incorrect by LeRoy (1973).
He showed that the class of admissible mod-
els is actually much broader. That is, the strict
random walk model is too restricted to be the

only possible model and proposed the use of
the martingale model (i.e., the fair game model)
that we explain next.

The idea of a martingale has a long history
in gambling. Actually the word “martingale”
originally meant a gambling strategy in which
the gambler continually doubles his or her bets.
In modern statistics, a martingale embodies the
idea of a fair game where, at every bet, the gam-
bler has exactly the same probability of win-
ning or losing. In fact, as explained earlier in
this entry, the martingale is a process where
the expected value of the process at any future
date is the actual value of the process. If a price
process or a game is represented by a martin-
gale, then the expectation of gains or losses is
zero. As from our discussion, a random walk
with uncorrelated increments is not necessarily
a martingale as its expectations are only linearly
unpredictable.

Technically, the martingale model applies to
the logarithms of prices. Returns are the differ-
ences of the logarithms of prices. The martin-
gale model requires that the expected value of
returns is not predictable because it is zero or
a fixed constant. However, there can be subtle
patterns of forecastability for higher moments
of the return distribution. Higher moments, to
repeat, are those moments of a probability dis-
tribution beyond the expected value (mean)
and variance, for example, skewness and kur-
tosis. In other words, the distribution of returns
can depend on the present information set pro-
vided that the expected value of the distribution
remains constant.

The martingale model does not fully take into
consideration risk premiums because it allows
higher moments of returns to vary while ex-
pected values remain constant. It cannot be a
general solution to the problem of what pro-
cesses are compatible with the assumptions that
investors can make perfect probabilistic fore-
casts.

The definitive answer is due to Harrison and
Kreps (1979) and Harrison and Pliska (1981,
1985). They demonstrated that stock prices
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must indeed be martingales but after multipli-
cation for a factor that takes into account risk.
The conclusion of their work (which involves
a very complicated mathematical model), how-
ever, is that a broad variety of predictable pro-
cesses are compatible with the assumption that
the market is populated by market agents capa-
ble of making perfect forecasts in a probabilistic
sense. Predictability is due to the interplay of
risk and return.

However, it is precisely due to the market be-
ing populated by market agents capable of mak-
ing perfect forecasts, it is not necessarily true
that successful predictions will lead to excess
returns. For example, it is generally accepted
that predicting volatility is easier than predict-
ing returns. The usual explanation of this fact
is that investors and portfolio managers are
more interested in returns than in volatility.
With the maturing of the quantitative meth-
ods employed by asset managers coupled with
the increased emphasis placed on risk-return,
risk and returns have become equally impor-
tant. However, this does not entail that both
risk and returns have become unpredictable. It
is now admitted that it is possible to predict
combinations of the two.

PREDICTIVE RETURN
MODELS
Equity portfolio managers have used various
statistical models for forecasting returns and
risk. These models, referred to as predictive
return models, make conditional forecasts of
expected returns using the current informa-
tion set. That information set could include
past prices, company information, and financial
market information such as economic growth or
the level of interest rates.

Most predictive return models employed in
practice are statistical models. More specifi-
cally, they use tools from the field of econo-
metrics. We will provide a nontechnical review
of econometric-based predictive return models
below.

Predictive return models can be classified into
four general types:10

1. Regressive model. This model involves the use
of regression analysis where the variables
used to predict returns (also referred to as
predictors or explanatory variables) are the
factors that are believed to impact returns.

2. Linear autoregressive model. In this model, the
variables used to predict returns are the
lagged returns (i.e., past returns).

3. Dynamic factor model. Models of this type use
a mix of prices and returns.

4. Hidden-variable model. This type of model
seeks to capture regime change.

Although these models use traditional econo-
metric techniques and are the most commonly
used in practice, in recent years other mod-
els based on the specialized area of machine
learning have been proposed. The machine-
learning approach in forecasting returns in-
volves finding a model without any theoretical
assumptions. This is done through a process
of what is referred to as progressive adapta-
tion. Machine-learning approaches, rooted in
the fields of statistics and artificial intelligence
(AI), include neural networks, decision trees,
clustering, genetic algorithms, support vector
machines, and text mining.11 We will not de-
scribe machine-learning based predictive re-
turn models. However, in the 1990s, there were
many exaggerated claims and hype about their
potential value for forecasting stock returns that
could completely revolutionize portfolio man-
agement. Consequently, they received consid-
erable attention by the investment community
and the media. It seems these claims never
panned out.12

As a prerequisite for the adoption of a predic-
tive return model, there are a number of key
questions that a portfolio manager must ad-
dress. These include:13

� What are the statistical properties of the
model?

� How many predictor (explanatory) variables
should be used in the model?
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� What is the best statistical approach to esti-
mate the model and is commercial software
available for the task?

� How does one statistically test whether the
model is valid?

� How can the consequences of errors in the
choice of a model be mitigated?

The first and last questions rely on the
statistical concepts that we described ear-
lier. These questions are addressed in more
technical-oriented equity investment manage-
ment books.14 Consequently, we will limit our
discussion in this entry to only the first ques-
tion, describing the statistical properties of the
four types of predictive return models. That
is, we describe the fundamental statistical con-
cepts behind these models and their economic
meaning, but we omit the mathematical details.

Regressive Models
Regressive models of returns are generally
based on linear regressions on factors. Factors
are also referred to as predictors. Linear
regression models are used in several aspects
of portfolio management beyond that of return
forecasting. For example, an equity analyst
may use such models to forecast future sales of
a company being analyzed.

Regressive models can be categorized as one
of two fundamental kinds. The first is static
regressive models. These models do not make
predictions about the future but regress present
returns on present factors. The second type is
predictive regressive models. In such models
future returns are regressed on present and
past factors to make predictions. For both types
of models, the statistical concepts and princi-
ples are the same. What differs is the economic
meaning of each type of model.

Static Regressive Models
Static regressive models for predicting returns
should be viewed as timeless relationships that
are valid at any moment. They are not useful for
predictive purposes because there is no time lag
between the return and the factor. For example,

consider the empirical analogue of the CAPM
as represented by the characteristic line given
by the following regression model:

rt − rft = αi + βi [rMt − rft] + eit (1)

where

rt = return on the stock in month t
rft = the risk-free rate in month t

rMt = the return on the market index (say
S&P 500) in month t

et = the error term for the stock in
month t

α and β = parameters for the stock to be esti-
mated by the regression model

t = month (t = 1, 2, . . . , T)

The above model says that the conditional ex-
pectation of a stock’s return at time t is propor-
tional to the excess return of the market index
at time t. This means that to predict the stock
return at time T + 1, the portfolio manager must
know the excess return of the market index at
time T + 1, which is, of course, unknown at
time T + 1. Predictions would be possible only
if a portfolio manager could predict the excess
return of the market index at time T + 1 (i.e.,
rMT+1 − rfT+1).

There are also static multifactor models of re-
turn where the return at time t is based on the
factor returns at time t. For example, suppose
that there are N factors. Letting Fnt (n = 1, 2, . . . ,
N; t = 1, 2, . . . , T), then a regression model for
a multifactor model for stock i (again dropping
the subscript i for stock i) would be

rt − r f t = α + βF 1[rF 1,t − r f t]

+ βF 2[rF 2,t − r f t] + · · ·
+ βFN[rFN,t − r f t] + et (2)

where

rt = return on the stock in month t
rft = the risk-free rate in month t

rFN,t = the return on factor N in
month t

et = the error term for the stock in
month t
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α and βFN’s = parameters for the stock to
be estimated by the regression
model

t = month (t = 1, 2, . . . , T)

Thus, in order for a portfolio manager to build
a portfolio or to compute portfolio risk mea-
sures using the above multifactor model for
month T + 1, just as in the case of the char-
acteristic line, some assumption about how to
forecast the excess returns (i.e., rFN,T+1 − rf,T+1)
for each factor is required.

Predictive Regressive Models
In the search for models to predict returns,
predictive regressive models have been devel-
oped. To explain predictive regressive models,
consider some stock return and an assumed
number of predictors. These predicators could
be financial measures and market measures.
A predictive linear regressive model assumes
that the stock return at any given time t is a
weighted average of its predictors at an earlier
time plus a constant and some error. Hence,
the information needed for predicting a stock’s
return does not require the forecasting of the
predictor used in the regression model.

Predictive regressive models can also be de-
fined by estimating a regression model where
there are factors used as predictors at differ-
ent lags. Such models, referred to as distributed
lag models, have the advantage that they can
capture the eventual dependence of returns not
only on factors but also on the rate of change
of factors. Here is the economic significance
of such models. Suppose that a portfolio man-
ager wants to create a predictive model based
on, among other factors, “market sentiment.”
In practice, market sentiment is typically mea-
sured as a weighted average of analysts’ fore-
casts. A reasonable assumption is that stock
returns will be sensitive to the value of mar-
ket sentiment but will be even more sensi-
tive to changes in market sentiment. Hence,
distributed lag models will be useful in this
setting.

Linear Autoregressive Models

In a linear autoregressive model, a variable is
regressed on its own past values. Past values
are referred to as lagged values and when they
are used as predictors in the model they are
referred to as lagged variables. In the case of
predictive return models, one of the lagged
variables would be the past values of the return
of the stock. If the model involves only the
lagged variable of the stock return, it is called
an autoregressive model (AR model). An AR
model prescribes that the value of a variable at
time t be a weighted average of the values of
the same variable at times t – 1, t – 2, . . . , and so
on (depending on number of lags) plus an error
term. The weighting coefficients are the model
parameters that must be estimated. If the model
includes p lags, then p parameters must be
estimated.

If there are other lagged variables in addition
to the lagged variable representing the past val-
ues of the return on the stock included in the
regression model, the model is referred to as a
vector autoregressive model (VAR model). The
model expresses each variable as a weighted av-
erage of its own lagged values plus the lagged
values of the other variables. A VAR model
with p lags is denoted by VAR(p) model. The
benefit of a VAR model is that it can capture
cross-autocorrelations; that is, a VAR model can
model how values of a variable at time t are
linked to the values of another variable at some
other time. An important question is whether
these links are causal or simply correlations.15

For a model to be useful, the number of pa-
rameters to be estimated needs to be small.
In practice, the implementation of a VAR is
complicated by the fact that such models can
only deal with a small number of series. This
is because when there is a large number of
series—for example, the return processes for the
individual stocks making up such aggregates as
the S&P 500 Index—this would require a large
number of parameters to be estimated. For ex-
ample, if one wanted to model the daily returns
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of the S&P 500 with a VAR model that included
two lags, the number of parameters to estimate
would be 500,000. To have at least as many
data points as parameters, one would need at
least four years of data, or 1,000 trading days,
for each stock return process, which is 1,000 ×
500 = 500,000 data points. Under these condi-
tions, estimates would be extremely noisy and
the estimated model would be meaningless.

Dynamic Factor Models
Unlike a VAR model, which involves regress-
ing returns on factors but does not model the
factors, a dynamic factor model assumes fac-
tors follow a VAR model and returns (or prices)
are regressed on these factors. The advantage
of such models is that unlike the large amount
of data needed to estimate the large number of
parameters in a VAR model, a dynamic factor
model can significantly reduce the number of
parameters to be estimated and therefore the
amount of data needed.

Hidden-Variable Models
Hidden-variable models attempt to repre-
sent states of the market using hidden vari-
ables. Probably the best known hidden-
variable model is the autoregressive conditional
heteroscedasticity (ARCH) and generalized
autoregressive conditional heteroscedasticity
(GARCH) family. ARCH/GARCH models use
an autoregressive process to model the volatil-
ity of another process. The result is a rich repre-
sentation of the behavior of the model volatility.

Another category of hidden-variable mod-
els is the Markov switching–vector autoregres-
sive (MS–VAR) family. These models do allow
forecasting of expected returns. The simplest
MS–VAR model is the Hamilton model.16 In
economics, this model is based on two ran-
dom walk models—one with a drift for periods
of economic expansion and the other with a
smaller drift for periods of economic recession.
The switch between the two models is governed
by a probability transition table that prescribes

the probability of switching from recession to
expansion, and vice versa, and the probability
of remaining in the same state.

IS FORECASTING MARKETS
WORTH THE EFFORT?
In the end, all of this discussion leads to
the question: What are the implications for
portfolio managers and investors who are
attempting or contemplating attempting build-
ing predictive return models? That is, how does
this help portfolio managers and investors to
decide if there is potentially sufficient benefit
(i.e., trading profits and/or excess returns) in
trying to extract information from market price
data through quantitative modeling? There are
three important points regarding this potential
benefit.

The first, as stated by Fabozzi, Focardi, and
Kolm (2006a, 11), is the following:

It is not true that progress in our ability to fore-
cast will necessarily lead to a simplification in price
and return processes. Even if investors were to be-
come perfect forecasters, price and return processes
might still exhibit complex patterns of forecastabil-
ity in both expected values and higher moments,
insofar as they might be martingales after dynam-
ically adjusting for risk. No simple conclusion can
be reached simply by assuming that investors are
perfect forecasters: in fact, it is not true that the
ability to forecast prices implies that prices are un-
predictable random walks.

It is noteworthy that when the random walk
hypothesis was first proposed in the academic
community, it was the belief that the task of
price forecasting efforts was a worthless exer-
cise because prices were random walks. How-
ever, it seems reasonable to conclude that price
processes will always be structured processes
simply because investors are trying to forecast
them. Modeling and sophisticated forecasting
techniques will be needed to understand the
risk-return trade-offs offered by the market.

The second point is that the idealized behav-
ior of perfect forecasters does not have much
to do with the actual behavior of real-world
investors. The behavior of markets is the result,



132 Equity Models and Valuation

not of perfectly rational market agents, but of
the action of market agents with limited intelli-
gence, limited resources, and subject to unpre-
dictable exogenous events. Consequently, the
action of market agents is a source of uncer-
tainty in itself. As a result, there is no theo-
retical reason to maintain that the multivariate
random walk is the most robust model.

Real-world investors use relatively simple
forecasting techniques such as linear regres-
sions. It is reasonable to believe that when real-
world investors employ judgment, there is the
possibility of making large forecasting errors.
As the behavioral finance camp argues, the pre-
occupation with the idealized behavior of mar-
kets populated by perfect forecasters seems to
be misguided. Theorists who defend the as-
sumption that investors in the real world are
perfect forecasters, believe that it is unreason-
able to assume that investors make system-
atic mistakes. Proponents of this assumption
claim that, on average, investors make correct
forecasts.

However, the evidence suggests that this
claim is not true. Investors can make systematic
mistakes and then hit some boundary, the con-
sequences of which can be extremely painful
in terms of wealth accumulation as we saw in
the late 1990s with the bursting of the tech-
nology, media, and telecommunications bub-
ble. As Fabozzi, Focardi, and Kolm (2006a, 11)
conclude:

A pragmatic attitude prevails. Markets are consid-
ered to be difficult to predict but to exhibit rather
complex structures that can be (and indeed are)
predicted, either qualitatively or quantitatively.

Finally, an important point is that predictabil-
ity is not the only path to profitability/excess re-
turns. Citing once again from Fabozzi, Focardi,
and Kolm (2006a, 11–12):

If prices behaved as simple models such as the
random walk model or the martingale, they
could nevertheless exhibit high levels of persistent
profitability. This is because these models are char-
acterized by a fixed structure of expected returns.
Actually, it is the time-invariance of expected re-
turns coupled with the existence of risk premiums
that makes these models unsuitable as long-term

models. . . . A model such as the geometric random
walk model of prices leads to exponentially diverg-
ing expected returns. This is unrealistic in the long
run, as it would lead to the concentration of all mar-
ket capitalization in one asset. As a consequence,
models such as the random walk model can only be
approximate models over limited periods of time.
This fact, in turn, calls attention to robust estima-
tion methods. A random walk model is not an ideal-
ization that represents the final benchmark model: It
is only a short-term approximation of what a model
able to capture the dynamic feedbacks present in
financial markets should be.

Hence, whether the random walk assumption
is in fact the benchmark model of price pro-
cesses must be addressed empirically. Yet, the
view of portfolio managers is that markets offer
patterns of predictability in returns, volatility
(variance), and, possibly, higher moments.
Because any such patterns might offer op-
portunities for realizing excess returns, a
portfolio manager who ignores these patterns
will be risking lost opportunities to enhance
performance. As Fabozzi, Focardi, and Kolm
(2006a, 24) state:

[S]imple random walk models with risk premiums
are not necessarily the safest models. The joint as-
sumptions that markets are unforecastable and that
there are risk premiums is not necessarily the safest
assumption.

KEY POINTS
� Despite the ongoing debate about the pre-

dictability of stock prices and returns, asset
management firms have adopted statistical
models of various levels of complexity for
forecasting these values.

� The concept of forecastability rests on how
one can forecast the future given the current
information set known at that date.

� Prices or returns are said to be forecastable
if the knowledge of the past influences our
forecast of the future.

� The two beliefs that seem to be held in the in-
vestment community are (1) predictable pro-
cesses allow investors to earn excess returns,
and (2) unpredictable processes do not allow
investors to earn excess returns.
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� Predictable processes do not necessarily pro-
duce excess returns if they are associated with
unfavorable risk, and unpredictable expecta-
tions can be profitable if the expected value is
favorable.

� Probability theory is used in decision making
to represent and measure the level of uncer-
tainty.

� The absence of predictability means that the
distribution of future returns does not change
as a function of the present and past values of
prices and returns.

� From this perspective, a price or return pro-
cess is said to be predictable if its probability
distributions depend on the current informa-
tion set, and a price or return process is said
to be unpredictable if its probability distribu-
tions do not vary over time. Using this con-
cept of predictability, we can understand why
prices and returns are difficult, perhaps even
impossible, to predict.

� The key is that any prediction that might lead
to an opportunity to generate a trading profit
or an excess return tends to make that oppor-
tunity disappear. If stock return predictions
are certain, then using simple arbitrage ar-
guments would dictate that all stocks should
have the same return. In fact, if stock returns
could be predicted with certainty and if there
were different returns, then investors would
choose only those stocks with the highest re-
turns.

� Because stock return forecasts are not certain,
uncertain predictions are embodied in prob-
ability distributions.

� The problem faced by investors is whether
general considerations of market efficiency
are capable of determining the mathematical
form of price or return processes. In particu-
lar, investors are interested in understanding
if stock prices or returns are necessarily un-
predictable.

� In solving this problem, the investor’s ob-
jective is to shun models that permit unrea-
sonable inferences. The following solutions
have been proposed: (1) Returns fluctuate
randomly around a given mean (i.e., returns

follow multivariate random walks); (2) re-
turns are a fair game (i.e., returns are mar-
tingales); and (3) returns are a fair game after
adjusting for risk.

� Concepts from probability theory and statis-
tics that are relevant in understanding return
forecasting models are conditional probabil-
ity, conditional expectation, independent and
identically distributed random variables,
strict white noise, martingale difference
sequence, white noise, error terms, and
innovations.

� An arithmetic random walk, a martingale,
and a strict arithmetic random walk describe
the stochastic process for returns and prices.
If stock prices or returns follow an arithmetic
random walk, the mean is linearly unpre-
dictable but higher moments might be pre-
dictable.

� In the case of a martingale, the mean is unpre-
dictable (linearly and nonlinearly), although
higher moments might be predictable.

� If stock prices or returns follow a strict ran-
dom walk, the mean, variance, and higher
moments are all unpredictable.

� The statistical-based predictive return mod-
els used by portfolio managers make condi-
tional forecasts of expected returns using the
current information set: past prices, company
information, and financial market informa-
tion. These models are classified as regres-
sive models, linear autoregressive models,
dynamic factor models, and hidden-variable
models.

NOTES
1. See Bernstein (2008).
2. The contributions of Bachelier are too ex-

haustive (and technical) to describe here.
In addition to his study of the behavior
of prices, his work in the area of random
walks predated Albert Einstein’s study of
Brownian motion in physics by five years.
His work in option pricing theory predated
the well-known Black-Scholes option pric-
ing model by 73 years.
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3. See Samuelson (1965) and Fama (1965).
4. See Bernstein (1998) for an account of the

development of the concepts of risk and un-
certainty from the beginning of civilization
to modern risk management.

5. The idea of probability as intensity of belief
was introduced by Keynes (1921).

6. The idea of probability as a relative fre-
quency was introduced by von Mises
(1921).

7. See Rachev et al. (2007).
8. More specifically, the presence of autocorre-

lation does not bias the estimated parame-
ters of the model but results in biases in the
standard errors of the estimated parame-
ters, which are used in testing the goodness
of fit of the model.

9. Statements like this are intended as ex-
emplifications but do not strictly embody
sound econometric procedures. Adding
lags has side effects, such as making esti-
mations noisier, and cannot be used indis-
criminately.

10. Fabozzi, Focardi, and Kolm (2006a, 66).
11. For a nontechnical discussion of these mod-

els, see Chapter 6 in Fabozzi, Focardi, and
Kolm (2006a). For a more technical dis-
cussion see Fabozzi, Focardi, and Kolm
(2006b).

12. For discussion of the merits and limits of AI
from a practical perspective, see Leinweber
and Beinart (1996).

13. Fabozzi, Focardi, and Kolm (2006a, 66).
14. See, for example, Fabozzi, Focardi, and

Kolm (2006b).
15. For a discussion of the analysis of causality

in VAR models, see Fabozzi, Focardi, and
Kolm (2006b).

16. Hamilton (1989).
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Abstract: Asset pricing models seek to estimate the relationship between the factors that drive asset
expected return. The factors that drive the expected returns are referred to as risk factors. Two well-
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is based on various assumptions. In practice, multifactor models are estimated from observed asset
returns and sophisticated statistical techniques are employed to estimate the exposure of an asset
to each factor.

Given a set of assets or asset classes, an im-
portant task in the practice of investment man-
agement is to understand and estimate their
expected returns and the associated risks. Fac-
tor models are widely used by investors to link
the risk exposures of the assets to a set of known
or unknown factors. The known factors can be
economic or political factors, industry factors
or country factors, and the unknown factors are
those that best describe the dynamics of the as-
set returns in the factor models, but they are
not directly observable or easily interpreted by
investors and have to be estimated from the
data.

Applications of the mean-variance analysis
and portfolio selection theories in general re-
quire the estimation of expected asset returns
and their covariance matrix. Those market par-
ticipants who can identify those true factors that

drive asset returns should have much better es-
timates of the true expected asset returns and
the covariance matrix, and hence should be able
to form a much better portfolio than otherwise
possible. Hence, a lot of research and resources
are devoted to analyzing factor models in prac-
tice by the investment community. There is an
intellectual “arms race” to find the best portfo-
lio strategies to outperform competitors.

Factor model estimation depends crucially on
whether the factors are identified (known) and
unidentified (latent), and depend on the sample
size and the number of assets. In addition, factor
models can be used not only for explaining asset
returns, but also for predicting future returns.
In this entry, we review first the factor models
in the case of known and latent factors in order
to provide a big picture, and then discuss the
details of estimation.
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ARBITRAGE PRICING
THEORY
One of the fundamental problems in finance is
to explain the cross-section differences in asset
expected returns. Specifically, what factors can
explain the observed differences? Those factors
that systematically affect the differences in ex-
pected returns are therefore the risks that in-
vestors are compensated for. Hence, the term
“factors” is interchangeable with the term “risk
factors.”

The arbitrage pricing theory (APT), formulated
by Ross (1976), posits that expected returns of
assets are linearly related to K systematic factors,
and the exposure to these factors is measured
by factor betas; that is,

E[r̃i ] = r f + γ1βi1 + · · · + γK βiK (1)

where βik is the beta or risk exposure on the
k-th factor, and γk is the factor risk premium,
for k = 1, 2, . . . , K .

Technically, the APT assumes a K-factor
model for the return-generating process, that
is, the asset returns are influenced by K factors
in the economy via linear regression equations,

r̃it − rft = αi + βi1 f̃1t + · · · + βiK f̃Kt + ε̃it (2)

where f̃1, f̃2, . . . , f̃K are the systematic factors
that affect all the asset returns on the left-hand
side, i = 1, 2, . . . , N; and ε̃it is the asset specific
risk. Note that we have placed a tilde sign (∼)
over the random asset returns, factors, and spe-
cific risks. By so doing, we distinguish between
factors (random) and their realizations (data),
which are important for understanding the es-
timation procedure below.

Theoretically, under the assumption of no ar-
bitrage, the asset pricing relation of the APT as
given by equation (1) must be true as demon-
strated by Ross. There are two important points
to note. First, the return-generating process as
given by equation (2) is fundamentally differ-
ent from the asset pricing relation. The return-
generating process is a statistical model used to
measure the risk exposures of the asset returns.
It does not require drawing any economic con-

clusion, nor does it says anything about what
the expected returns on the assets should be. In
other words, the αi’s in the return-generating
process can statistically be any numbers. Only
when the no-arbitrage assumption is imposed
can one claim the APT, which says that the αi’s
should be linearly related to their risk exposures
(betas).

Second, the APT does not provide any spe-
cific information about what the factors are. Nor
does the theory make any claims on the number
of factors. It simply assumes that if the returns
are driven by the factors, and if the smart in-
vestors know the betas (via learning or estimat-
ing), then an arbitrage portfolio, which requires
no investment but yields a positive return, can
be formed if the APT pricing relation is violated
in the market. Hence, in equilibrium if there are
no arbitrage opportunities, we should not ob-
serve deviations from the APT pricing relation.

TYPES OF FACTOR MODELS
In this section we describe the different types of
factor models.

Known Factors
The simplest case of factor models is where the
K factors are assumed known or observable,
so that we have time-series data on them. In
this case, the K -factor model for the return-
generating process as given by equation (2) is
a multiple regression for each asset and is a
multivariate regression if all of the individual
regressions are pooled together. For example,
if one believes that the gross domestic product
(GDP) is the driving force for a group of stock
returns, one would have a one-factor model,

r̃it − rft = αi + βi1G̃DPt + ε̃it

The above equation corresponds to equation
(1) with K = 1 and f1 = G̃DP . In practice, one
can obtain time-series data on both the asset
returns and GDP, and then one can estimate re-
gressions to obtain all the parameters, including
in particular the expected returns.
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Another popular one-factor model is the mar-
ket model regression

r̃it − rft = αi + βi1(r̃mt − rft) + ε̃it

where r̃mt is the return on a stock market index.
To understand the covariance matrix estima-

tion, it will be useful to write the K-factor model
in matrix form,

R̃t = α + β f̃t + ε̃t

or
⎡

⎢⎣
R̃1t
...

R̃Nt

⎤

⎥⎦ =

⎡

⎢⎣
α1
...

αN

⎤

⎥⎦ +

⎡

⎢⎣
β11 · · · β1K

...
. . .

...
βN1 · · · βNK

⎤

⎥⎦

⎡

⎢⎣
f̃1t
...

f̃Kt

⎤

⎥⎦

+

⎡

⎢⎣
ε̃1t
...

ε̃Nt

⎤

⎥⎦

where

R̃t = an N-vector of asset excess returns
α = an N-vector of the alphas
β = an N × K of betas or factor loadings
f̃t = a K-vector of the factors
ε̃ = an N-vector of the model residuals.

For example, we can write a model with
N = 3 assets and K = 2 factors as

⎡

⎣
R̃1t

R̃2t

R̃3t

⎤

⎦ =
⎡

⎣
α1

α2

α3

⎤

⎦ +
⎡

⎣
β11 β12

β21 β22

β31 β32

⎤

⎦
[

f̃1t

f̃2t

]

+
⎡

⎣
ε̃1t

ε̃2t

ε̃3t

⎤

⎦

Taking covariance on both sides of equation
(2), we have the return covariance matrix

� = β ′� f β + �ε (3)

where � f is the covariance matrix of the factors,
and �ε is the covariance matrix of the residu-
als. � f can be estimated by using the sample
covariance matrix from the historical returns.
This works for �ε too if N is small relative to
T . However, when N is large relative to T , the
sample covariance matrix of the residuals will
be poorly behaved.

Usually an additional assumption that the
residuals are uncorrelated is imposed, so that
�ε becomes a diagonal matrix and can then
be estimated by using the sample variances
of the residuals. Plugging in the estimates of
all the parameters into the right-hand side of
equation (3), we obtain the covariance matrix
needed for applying mean-variance portfolio
analysis.

In the estimation of a multifactor model, it
is implicitly assumed that the number of time
series observations T is far greater than K, the
number of factors. Otherwise, the regressions
will perform poorly. For the case in which K is
close to T, some special treatments are needed.
This will be addressed later in this entry.

Examples of Multifactor Models with Known
Factors
Before discussing latent factors, let’s briefly
describe four multifactor models where known
factors are used: (1) the Fama-French three-
factor model (Fama and French, 1993), (2) the
MSCI Barra fundamental factor model, (3) the
Burmeister-Ibbotson-Roll-Ross (BIRR) macro-
economic factor model (Burmeister, Roll, and
Ross, 1994), and (4) the Barclay Group Inc. factor
model. The first three are equity factor models
and the last is a bond factor model.

The widely used Fama-French three-factor
model is a special case of equation (1) with
K = 3,

r̃it − rft = αi + βim(r̃mt − rft) + βis S̃MBt

+ βih H̃MLt + ε̃it

where r̃mt, as before, is the return on a stock mar-
ket index, S̃MBt and H̃MLt are two additional
factors. SMBt (small minus big) is defined as
the difference between the returns on diversi-
fied portfolios of small and big stocks (where
small and big are measured in terms of stock
market capitalization), and HMLt (high minus
low) is defined as the difference between the
returns on diversified portfolios of high and
low book value-to-market value (B/M) stocks.
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The introduction of these factors by Fama and
French is to better capture the systematic varia-
tion in average return for typical portfolios than
when using a stock market index alone. These
factors are supported by empirical studies and
are consistent with classifying stocks in terms
of growth and value.

Fundamental factor models use company and
industry attributes and market data as “de-
scriptors.” Examples are price/earnings ratios,
book/price ratios, estimated earnings growth,
and trading activity. The estimation of a funda-
mental factor model begins with an analysis of
historical stock returns and descriptors about a
company. In the MSCI Barra model, for exam-
ple, the process of identifying the factors begins
with monthly returns for hundreds of stocks
that the descriptors must explain. Descriptors
are not the “r factors” but instead they are the
candidates for risk factors. The descriptors are
selected in terms of their ability to explain stock
returns. That is, all of the descriptors are po-
tential risk factors but only those that appear
to be important in explaining stock returns are
used in constructing risk factors. Once the de-
scriptors that are statistically significant in ex-
plaining stock returns are identified, they are
grouped into “risk indexes” to capture related
company attributes. For example, descriptors
such as market leverage, book leverage, debt-
to-equity ratio, and company’s debt rating are
combined to obtain a risk index referred to as
“leverage.” Thus, a risk index is a combina-
tion of descriptors that captures a particular at-
tribute of a company. For example, in the MSCI
Barra fundamental multifactor model, there are
13 risk indices and 55 industry groups. The
55 industry classifications are further classified
into sectors.

In a macroeconomic factor model, the inputs
to the model are historical stock returns and ob-
servable macroeconomic variables. In the BIRR
macroeconomic multifactor model, the macro-
economic variables that have been pervasive in
explaining excess returns and which are there-
fore included in the market are

� The business cycle: Changes in real output that
are measured by percentage changes in the
index of industrial production.

� Interest rates: Changes in investors’ expecta-
tions about future interest rates that are mea-
sured by changes in long-term government
bond yields.

� Investor confidence: Expectations about future
business conditions as measured by changes
in the yield spread between high- and low-
grade corporate bonds.

� Short-term inflation: Month-to-month jumps in
commodity prices, such as gold or oil, as mea-
sured by changes in the consumer price index.

� Inflationary expectations: Changes in expecta-
tions of inflation as measured by changes
in the short-term, risk-free nominal interest
rate.

Additional variables, such as the real GDP
growth and unemployment rates, are also
among the macroeconomic factors used by asset
managers in other macroeconomic multifactor
models. Moreover, some asset managers also
have identified technical variables, such as trad-
ing volume and market liquidity, as factors.

The Barclay Group Inc. (BGI) bond factor
model (previously the Lehman bond factor
model) uses two categories of systematic risk
factors: term structure factors and non–term
structure risk factors. The former include
changes in the level of interest and changes
in the shape of the yield curve. The non–term
structure factors are sector risk, credit risk, op-
tionality risk, and a series of risks associated
with investing in mortgage-backed securities.

The search for factors is a never-ending task of
asset managers. In practice, many popular in-
vestment software packages use dozens of fac-
tors. Some academic studies, such as Ludvigson
and Ng (2007), use hundreds of them.

Latent Factors
While some applications use observed factors,
some use entirely latent factors, that is, the view
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that the factors ft in the K-factor model,

R̃t = α + β f̃t + ε̃t

are not directly observable. An argument for
the use of latent factors is that the observed
factors may be measured with errors or have
been already anticipated by investors. Without
imposing what ft are from our likely incorrect
belief, we can statistically estimate the factors
based on the factor model and data.

It is important to understand that in the field
of statistics, there is statistical methodology
known as “factor analysis” and the model gen-
erated is referred to as a “factor model.” Factor
models as used by statisticians are statistical
models that try to explain complex phenom-
ena through a small number of basic causes
or factors with the factors being latent. Factor
models as used by statisticians serve two main
purposes: (1) They reduce the dimensionality of
models to make estimation possible, and/or (2)
they find the true causes that drive data. In our
discussion of multifactor models, we are using
the statistical tool of factor analysis to try to de-
termine the latent factors driving asset returns.

While the estimation procedures for deter-
mining the set of factors will be discussed in
the next section, it will be useful to know some
of the properties of the factor model here. The
first property is that the factors are not uniquely
defined in the model, but all sets of factors are
linear combinations of each other. This is be-
cause if f̃t is a set of factors, then, for any K × K
invertible matrix A, we have

R̃t = α + β f̃t + ε̃t = α + (β A−1)(A f̃t) + ε̃t

(4)
which says that if f̃t with regression coefficients
β (known as adding factor loadings in the con-
text of factor models) explains asset returns
well, so does f̃ ∗

t = A f̃t with loadings β A−1. The
linear transformation of f̃t, f̃ ∗

t , is also known as
a rotation of ft.

The second property is that we can assume all
the factors have zero mean (i.e., E[ f̃t] = 0). This

is because if μ f = E[ ft], then the factor model
can be written as

R̃t = α + β f̃t + ε̃t = (α − βμ f ) + β( f̃t − μ f ) + ε̃t

(5)

If we rename α − βμ f as the new alphas, and
ft − μ f as the new factors, then the new factors
will have zero means, and the new factor model
is statistically the same as the old one. Hence,
without loss of generality, we will assume that
the mean of the factors are zeros in our estima-
tion in the next section.

Note that the return covariance matrix for-
mula, equation (3) or

� = β ′� f β + �ε (6)

holds regardless of whether the factors are ob-
servable or latent. However, through factor ro-
tation, we can make a new set of factors so as to
have the identity covariance matrix. In this case
with � f = IK , we say that the factor model is
standardized, and the covariance equation then
simply becomes

� = β ′β + �ε (7)

In general, �ε can have nonzero off-diagonal
elements, implying that the residuals are corre-
lated. If we assume that the residuals are un-
correlated, then �ε becomes a diagonal matrix,
and the factor model is known as a strict fac-
tor model. If we assume further that �ε has
equal diagonal elements, i.e., �ε = σ 2 IN for
some σ > 0 with IN an N identity matrix, then
the factor model is known as a normal factor
model.

Both Types of Factors
Rather than taking the view of only observable
factors or only latent factors, we can consider
a more general factor model with both types of
factors,

R̃t = α + β f̃t + βg g̃t + ε̃t (8)
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where f̃t is a K-vector of latent factors, g̃t is
an L-vector of observable factors, and βg are
the betas associated with g̃t. This model makes
intuitive sense. If we believe a few fundamental
or macroeconomic factors are the driving forces,
they can be used to create the g̃t vector. Since
we may not account for all the possible factors,
we need to add K unknown factors, which are
to be estimated from the data.

The estimation of the above factor model
given by equation (8) usually involves two
steps. In the first step, a regression of the as-
set returns on the known factors is run in order
to obtain β̂g , an estimate of βg . This allows us to
compute the residuals,

ût = Rt − β̂ggt (9)

that is, the difference of the asset returns from
their fitted values by using the observed factors
for all the time periods. Then, in the second step,
a factor estimation approach is used to estimate
the latent factors for ût,

ũt = α + β f̃t + βg g̃t + ν̃t (10)

where ũt is the random differences whose real-
ized values are ût. The estimation method for
this model is the same as estimating a latent
factor model and will be detailed in the next
section. With the factor estimates, we can treat
the latent factors as known, and then use equa-
tion (8) to determine the expected asset returns
and covariance matrix.

Predictive Factor Models
An important feature of factor models is that
they use time t factors to explain time t returns.
This is to estimate the long-run risk exposures
of the assets, which are useful for both risk con-
trol and portfolio construction. On the other
hand, portfolio managers are also very con-
cerned about time-varying expected returns.
In this case, they often use a predictive factor
model such as the following to forecast the re-
turns,

R̃t+1 = α + β f̃t + βg g̃t + ε̃t (11)

where as before f̃t and g̃t are the latent and
observable factors, respectively. The single dif-
ference is that the earlier R̃t is now replaced by
R̃t+1. Equation (11) uses time t factors to forecast
future return R̃t+1.

Computationally, the estimation of the predic-
tive factor model is the same as for estimating
the standard factor models. However, it should
be emphasized that the regression R2, a mea-
sure of model fitting, is usually very good in
the explanatory factor models. In contrast, if a
predictive factor model is used to forecast the
expected returns of various assets, the R2 rarely
exceeds 2%. This simply reflects the fact that as-
sets returns are extremely difficult to predict in
the real world. For example, Rapach, Strauss,
Tu, and Zhou (2009) find that that the R2 are
mostly less than 1% when forecasting industry
returns using a variety of past economic vari-
ables and past industry returns.

FACTOR MODEL
ESTIMATION
In this section, we provide first a step-by-step
procedure for estimating the factor model
based on the popular and implementable
approach, principal components analysis (PCA),
to which a detailed and intuitive introduction
is provided in the last section of this entry. PCA
is a statistical tool that is used by statisticians to
determine factors with statistical learning tech-
niques when factors are not observable. That is,
given a variance-covariance matrix, a statisti-
cian can determine factors using the technique
of PCA. Then, after learning the computational
procedure, we provide an application to iden-
tify three factors for bond returns. Finally, we
outline some alternative procedures for esti-
mating the factor models and their extensions.

Computational Procedure
By our use of latent models, we need to consider
only how to estimate the latent factors f̃t from
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the K-factor model,

Ỹt = β f̃t + ε̃t (12)

where

E( f̃t) = 0, E[Ỹt] = 0

This version of the factor model is obtained in
two steps. We de-mean first the factor ft so that
the alphas are the expected returns of the assets.
Second, we de-mean again the asset returns. In
other words, we let Ỹt = R̃t − α.

In practice, suppose that we have return data
on N risky assets over T time periods. Then the
realizations of the random variable Ỹt can be
summarized by a matrix,

Y =

⎛

⎜⎝
Y11 Y21 · · · YN1

...
...

...
...

Y1T Y2T · · · YNT

⎞

⎟⎠ (13)

where each row is the N asset returns sub-
tracting from their sample means at time t for
t = 1, 2, . . . , T . Our task is to estimate the real-
izations (unobserved) on the K factors, f̃t, over
the T periods,

F =

⎛

⎜⎝
F11 F21 · · · FK 1
...

...
...

...
F1T F2T · · · FK T

⎞

⎟⎠ (14)

We will now apply PCA estimation method-
ology.

There are two important cases, each of which
calls for a different way of applying PCA. The
first case is the one of traditional factor analysis
in which N is treated as fixed, and T is allowed
to grow. We will refer to this case as the “fixed
N” below. The second case is when N is allowed
to grow but T is either fixed or allowed to grow.
We will refer to this case simply as “large N.”

Case 1: Fixed N
In the case of fixed N, we have a relatively
smaller number of assets and a relatively large
sample size. Then the covariance matrix of the
asset returns, which is the same as the covari-
ance matrix of Ỹt, can be estimated by the sam-

ple covariance matrix,

	 = Y′Y
T

(15)

which is an N by N matrix since Y is T by N.
For example, if we think there are K (say K = 5)
factors, we can use standard software to com-
pute the first K eigenvectors of 	 corresponding
to the first K largest eigenvalues of 	, each of
which is an N vector. Let β̂ be the N by K matrix
formed by these K eigenvectors. Then β̂ will be
an estimate of β. Based on this, the factors are
estimated by

F̂t = Ytβ̂, t = 1, 2, . . . , T (16)

where Yt is the t-th row of Y, and F̂t is the esti-
mate of Ft, the t-th row of F. The F̂t’s are the es-
timated realizations of the first K factors. Seber
(1984) explains why the F̂t’s are good estimates
of the true and unobserved factor realizations.
However, theoretically, they, though close, will
not necessarily converge to the true values, un-
less the factor model is normal, as T increases.
Nevertheless, despite this problem, this proce-
dure is widely used in practice.

Case 2: Large N
In the case of large N, we have a large number
of assets. We now form a new matrix based on
the product of Y with Y′,


 = YY′

T
(17)

which is a T by T matrix since Y is T by N. Given
K, we use standard software to compute the
first K eigenvectors of 
 corresponding to the
first K largest eigenvalues of 
, each of which
is a T vector. Letting F̂ be the T by K matrix
formed by these K eigenvectors, the PCA says
that F̂ is an estimate of the true and unknown
factor realizations F of equation (14), up to a
linear transformation. Connor and Korajczyk
(1986) provided the first study in the finance
literature to apply the PCA as described above.
The method is also termed “asymptotic PCA”
since it allows the number of assets to increase
without bound. In contrast, traditional PCA
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keeps N fixed, while allowing the number of
time periods, T, to be large.

Theoretically, if the true factor model is the
strict factor model or is not much too different
from it (i.e., the residual correlations are not too
strong), Bai (2003) shows that F̂ converges to F
up to a linear transformation when both T and
N increase without limit. The estimation errors
are of order the larger of 1/T or 1/

√
N, and con-

verge to zero as both T and N grow to infinity.
However, when T is fixed, we need a stronger
assumption that the the true factor model is
close to a normal model, then the estimation er-
rors are of order of 1/

√
N. Intuitively, at each

time t, given that there are only a few factors to
pricing so many assets, we should have enough
information to back out the factors accurately.

Based on the estimated factors, the factor
loadings are easily estimated from equation
(12). For example, we can obtain the loadings
for each asset by estimating the standard ordi-
nary least squares (OLS) regression of the asset
returns on the factors. Mathematically, this is
equivalent to computing all the loadings from
the formula

β̂ ′ = (F̂ ′ F̂ )−1 F̂ ′ X (18)

Under the same conditions above, β̂ also con-
verges to β up to a linear transformation.

The remaining question is how to determine
K. In practice, this may be determined by trial
and error depending on how different K’s per-
form in model fitting and in meeting the ob-
jectives where the model is applied. From an
econometrics perspective, there is a simple so-
lution in Case 2. Bai and Ng (2002) provide a
statistical criterion

IC(K ) = log(V(K )) + K
(

N + T
NT

)
log

(
NT

N + T

)

(19)

where

V(K ) =
N∑

i=1

T∑

t=1

(Yit − β̂i1 f̂1t − β̂i2 f̂2t − · · · − β̂iK f̂Kt)
2

(20)

For a given K, V(K) is the sum of the fit-
ted squared residual errors of the factor model
across both asset and time. This is a measure
of model fitting. The smaller the V(K), the bet-
ter the K-factor model in explaining the asset
returns. So we want to choose such a K that
minimizes V(K). However, the more the factors,
the smaller the V(K), but at a cost of estimat-
ing more factors with greater estimation errors.
Hence, we want to penalize too many factors.
This is the same as the case in linear regres-
sions where we also want to penalize too many
regressors. The second term in equation (19)
plays this role. It is an increasing function of K.
Therefore, the trade-off between model fitting
and estimation errors requires us to minimize
the IC(K) function. Theoretically, assuming that
the factor model is indeed true for some fixed
K*, Bai and Ng show that the K that minimizes
IC(K) will converge to K* as either N or T or
both increase to infinity.

An Application to Bond Returns
To illustrate the procedure, consider an appli-
cation of the PCA factor analysis to the excess
returns on Treasury bonds with maturities 12,
18, 24, 30, 36, 42, 48, 54, 60, 120, and beyond 120
months. Hence, there are N = 11 assets. With
monthly data from January 1980 to December
2008, available from the Center for Research in
Security Prices of the University of Chicago’s
Graduate School of Business, we have a sample
size of T = 348. Since N is small relative to T ,
this is a case of the fixed N.

Now

	 = Y′Y
348

is an 11 by 11 matrix. We can easily compute its
eigenvalues and eigenvectors. The largest three
eigenvalues are

(λ1, λ2, λ3) = 10−2(0.2403, 0133, 0012)

whose sum is more than 99% of the sum of
all the eigenvalues. Thus, it is enough to con-
sider K = 3 factors and use the first three
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Table 1 Factor Loadings and Explanatory Power

R2 R2 R2

β1 β2 β3 (F1) (F1 and F2) (all three)

12 month 0.0671 −0.1418 0.4046 0.67 0.80 0.96
18 month 0.1118 −0.2057 0.4227 0.79 0.84 0.99
24 month 0.1524 −0.2455 0.3371 0.85 0.87 1.00
32 month 0.1932 −0.2876 0.3199 0.88 0.89 1.00
38 month 0.2269 −0.2851 0.2101 0.91 0.92 1.00
42 month 0.2523 −0.2621 −0.0813 0.94 0.94 0.99
48 month 0.2837 −0.2415 −0.2531 0.95 0.96 1.00
54 month 0.3072 −0.1920 −0.3762 0.97 0.97 1.00
60 month 0.3368 −0.1819 −0.3246 0.97 0.98 0.99
120 month 0.4038 0.0426 −0.1507 0.99 0.99 0.99
Over 120 0.5966 0.7173 0.2394 0.92 0.93 1.00

eigenvectors, PCAs, as proxies for the factors.
Denote them as F1, F2 and F3.

Consider now the regression of the 11 excess
bond returns on the three factors,

Rit = αi + βi1 F1t + βi2 F2t + βi3 F3t + εit

where i = 1, 2, . . . , 11. The regression R2s of us-
ing all the factors for each of the assets are re-
ported in the last column of Table 1. All but
one is 99% or above, confirming the eigenvalue
analysis that three factors are sufficient, which
explains almost all the variations of the bond
returns. However, when only the first two are
used, the R2s are smaller, but the minimum
is still over 80%. When only the first factor
is used, the R2s range from 67% on the first
bond return to 99% on the 10th. Overall, the
PCA factors are effective in explaining the asset
returns.

The factor loadings or regression coefficients
on the factors are also reported in Table 1. It
is interesting that the loadings on the first fac-
tor are all positive. This implies that a positive
realization of F1 will have a positive effect on
the returns of all the bonds. It is, however, clear
that F1 affects long-term bonds more than short-
term bonds. As an approximation, F1 is usu-
ally interpreted as a level effect or parallel effect
that roughly shifts the returns on bonds across
maturity.

The second factor, however, has a different
pattern from the first. A positive realization

of F1 will have a negative effect on short-
term bonds and a positive effect on the long-
term ones. This is equivalent to an increase in
the slope of the bond returns across maturity
(known as yield curve). Therefore, F2 is com-
monly identified as a steepness factor.

Finally, a positive realization of F3 will have
a positive effect on both short- and long-term
bonds, but a negative effect on the intermediate
ones. Hence F3 is usually interpreted as a cur-
vature factor. Litterman and Scheinkman (1991)
appears to have been one of the first to to ap-
ply the PCA to study bond returns and to have
identified the above three factors. Although the
data we used here are different, the three fac-
tors we computed share the same properties as
those identified by them.

Alternative Approaches and
Extensions
The standard statistical approach for estimat-
ing the factor model is the maximum likelihood
(ML) method. Consider the factor model given
by equation (12) where E( f̃t) = 0, E[Ỹt] = 0.
The de-meaned returns and standardized fac-
tors are usually assumed to have normal distri-
butions.

In addition, the factors are usually standard-
ized so that � f = IK , and the residuals are as-
sumed uncorrelated so that �ε is diagonal. Then
the log likelihood function, as the log density
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function of the returns, is

log L(β,�ε) = − NT
2

log(2π ) − T
2

log |β ′β + �ε|

− 1
2

T∑

t=1

Yt′(β ′β + �ε)−1Yt (21)

The ML estimator of the parameters β and �ε

are those values that maximize the log likeli-
hood function. Since β enters into the function
in a complex nonlinear way, an analytical solu-
tion to the maximization problem is a very dif-
ficult problem. Numerically, it is still difficult if
maximizing log L(β,�ε) directly.

There is, however, a data-augmentation tech-
nique known as the expectation maximiza-
tion (EM) algorithm that can be applied (see
Lehmann and Modest, 1998). The EM algorithm
can be effective in numerically solving the ear-
lier maximization problem. The idea of the EM
algorithm is simple. The key difficulty here is
that the factors are unobserved. But conditional
on the parameters and the factor model, we can
learn them. Consider now that given the factors
f̃t, the log likelihood function conditional on ft

is

log Lc(β,�ε) = − NT
2

log(2π ) − T
2

log |�ε|

− 1
2

T∑

t=1

(Yt − β ft)′�−1
ε (Yt − β ft)

(22)

Because it is conditional on ft, the factor
model is the usual linear regression. In other
words, integrating out ft from equation (22)
yields the unconditional log L(β,�ε). The
beta estimates conditional on ft are straight-
forward. They are the usual OLS regression
coefficients, and the estimates for �ε are the
residual variances.

On the other hand, conditional on the parame-
ters, we can learn the factors by using their con-
ditional expected values obtained easily from
their joint distribution with the returns. Hence,
we can have an iterative algorithm. Starting
from an initial guess of the factors, we maximize

the conditional likelihood function to obtain the
OLS β and �ε estimates, which is the M-step of
the EM algorithm. Based on these estimates, we
update a new estimate of ft using their expected
value. This is the EM algorithm’s E-step. Using
the new ft, we learn new estimates of β and �ε

in the M-step. With the new estimates, we can
again update the ft. Iterating between the EM
steps, the limits converge to the unconditional
ML estimate and the factor estimates converge
to the true ones.

As an alternative to the ML method, Geweke
and Zhou (1996) propose a Bayesian approach,
which treats all parameters as random vari-
ables. It works in a way similar to the EM al-
gorithm. Conditional on parameters, we learn
the factors, and conditional on the factors, we
learn the parameters. Iterating after a few thou-
sand times, we learn the entire joint distribu-
tion of the factors and parameters, which are
all we need in a factor model. The advantage
of the Bayesian approach is that it can incor-
porate prior information and can provide exact
inference. In contrast, the ML method cannot
use any priors, nor can it obtain the exact stan-
dard errors of both parameters and functions
of interest due to the complexity of the fac-
tor model. Nardari and Scruggs (2007) extend
the Bayesian approach to allow a more gen-
eral model in which the covariance matrix can
vary over time and the APT restrictions can be
imposed.

Finally, we provide two important extensions
of the factor model that are useful in prac-
tice. Note that the factors we discussed thus
far assume identical and independently dis-
tributed returns and factors. These are known
as static factor models. The first extension is
dynamic factor models, which allow the fac-
tors to evolve over time according to a vector
autoregression,

f̃t = A1 f̃t−1 + A2 f̃t−2 + · · · + Am f̃t−m + ṽt

(23)
where the A’s are the regression coefficient ma-
trices, m is the order of the autoregression that
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determines how far past factor realizations still
affect today’s realizations, and vt is the resid-
ual. In practice, many economic variables are
highly persistent, and hence it will be important
to incorporate this as above. (See Amengual and
Watson [2007] for a discussion of estimation for
dynamic factor models.)

The second extension is to allow the case with
a large number of factors. Consider our earlier
factor model

R̃t = α + β f̃t + βg g̃t + ε̃t (24)

where f̃t is a K vector of latent factors, g̃t is an L
vector of observable factors. The problem now
is that L is large, about 100 or 200, for instance.
This requires at least a few hundred or more
time series observations for the regression of Rt

on gt to be well behaved, and this can cause a
problem due to the lack of long-term time series
data or due to concerns of stationarity. The idea
is to break g̃t into two sets, g̃1t and g̃2t, with the
first having a few key variables and the second
having the rest. We then consider the modified
model

R̃t = α + β f̃t + βg1g̃1t + βh h̃t + ε̃t (25)

where h̃(t) has a few variables too that repre-
sent a few major driving forces that summarize
the potentially hundreds of variables of g̃2t via
another factor model,

g̃2t = Bh̃t + ũt (26)

where ũt is the residual. This second factor
model provides a large dimension reduction
that transforms the hundreds of variables into
a few, which can be estimated by the PCA. In
the end, we have only a few factors in equa-
tion (25), making the analysis feasible based
on the methods we discussed earlier. Ludvig-
son and Ng (2007) appear to be the first to ap-
ply such a model in finance. They find that
the model can effectively incorporate a few
hundred variables so as to make a signifi-
cant difference in understanding stock market
predictability.

USE OF PRINCIPAL
COMPONENTS ANALYSIS
Principal components analysis (PCA) is a
widely used tool in finance. It is useful not only
for estimating factor models as explained in this
entry, but also for extracting a few driving vari-
ables in general out of many for the covariance
matrix of asset returns. Hence, it is important
to understand the statistical intuition behind it.
To this end, we provide a simple introduction
to it in the last section of the entry.

Perhaps the best way to understand the PCA
is to go through an example in detail. Suppose
there are two risky assets, whose returns are
denoted by r̃1 and r̃2, with covariance matrix

� =
[

σ 2
1 σ12

σ21 σ 2
2

]
=

[
2.05 1.95
1.95 2.05

]

That is, we assume that they have the same
variances of 2.05 and covariance of 1.95. Our
objective is to find a linear combination of the
two assets so that it has a large component in the
covariance matrix, which will be clear below.
For notation brevity, we assume first that the
expected returns are zeros; that is,

E[r̃1] = 0, E[r̃1] = 0

and will relax this assumption later.
Recall from linear algebra that we call any

vector (a1, a2)′ satisfying

�

(
a1

a2

)
= λ

(
a1

a2

)

an eigenvector of �, and the associated λ the
eigenvalue. In our example here, it is easy to
verify that

[
2.05 1.95
1.95 2.05

]
·
(

1
1

)
= 4 ×

(
1
1

)

and
[

2.05 1.95
1.95 2.05

]
·
(

1
−1

)
= 0.1 ×

(
1

−1

)

so 4 and 0.1 are the eigenvalues, and (1, 1)′ and
(1, −1)′ are the eigenvectors.
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In practice, computer software is available to
compute the eigenvalue and eigenvectors of
any covariance matrix. The mathematical result
is that for a covariance matrix of N assets, there
are exactly N different eigenvectors and N as-
sociated positive eigenvalues (these eigenval-
ues can be equal in some cases). Moreover, the
eigenvectors are orthogonal to each other; that
is, their inner product or vector product is zero.
In our example, it is clear that

(1, 1)′ ·
(

1
−1

)
= 1 − 1 = 0

It should be noted that the eigenvalue associ-
ated with each eigenvector is unique, but any
scale of the eigenvector remains an eigenvec-
tor. In our example, it is obvious that a double
of the first eigenvector, (2, 2)′, is also an eigen-
vector. However, the eigenvectors will be
unique if we standardize them, making the sum
of the elements 1. In our example,

A1 =
[

1/
√

2
1/

√
2

]
, A2 =

[
1/

√
2

−1/
√

2

]

are the standardized eigenvectors, which are
obtained by scaling the earlier eigenvectors by
1/

√
2. These are indeed standardized, since

A′
1 A1 = (1/

√
2)2 + (1/

√
2)2 = 1

A′
2 A2 = (1/

√
2)2 + (−1/

√
2)2 = 1

Now let us consider two linear combinations
(or portfolios without imposing the weights
summing to 1) of the two assets whose returns
are r̃1 and r̃2,

P̃1 = 1√
2

r̃1 + 1√
2

r̃2 = A′
1 R̃

P̃2 = 1√
2

r̃1 − 1√
2

r̃2 = A′
2 R̃

where R̃ = (r̃1, r̃2)′. Both P̃1 and P̃2 are called
the principal components (PCs). There are three
important and interesting mathematical facts
about the PCs.

� Fact 1. The variances of the PCs are exactly
equal to the eigenvalues corresponding to the
eigenvectors used to form the PCs.
That is,

Var(P̃1) = 4

Var(P̃2) = 1

Note that the two PCs are random variables
since they are the linear combination of random
returns. So, their variances are well defined.
The equalities to the eigenvalues can be verified
directly.

� Fact 2. The returns can also be written as linear
combinations of the PCs.

The PCs are defined as linear combinations of
the returns. Inverting them, the returns are lin-
ear functions of the PCs, too. Mathematically,
P̃ = AR̃, and so R̃ = A−1 P̃ . Since A is orthogo-
nal, A−1 = A′, thus R̃ = A′ P̃ . That is, we have

r̃1 = 1√
2

P̃1 + 1√
2

P̃2

r̃2 = 1√
2

P̃1 − 1√
2

P̃2

(26)

� Fact 3. The asset return covariance matrix can
be decomposed as the sum of the products of
eigenvalues with the cross products of eigen-
vectors.

Mathematically, it is known that

� = [A1, A2]
[

λ1 0
0 λ2

]
[A1, A2]′

= λ1 A1 A′
1 + λ2 A2 A′

2 = 4A1 A′
1 + 0.1A2 A′

2

which is also easy to verify in our example. The
economic interpretation is that the total risk
profile of the two assets, as captured by their
covariance matrix, is a sum of two components.
The first component is determined by the first
PC, and the second is determined by the second
PC. In other words, in the return linear combi-
nations, equation (26), if we ignore P2, we will
get only λ1 A1 A′

1, the first component in the co-
variance matrix decomposition, and only the
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second if we ignore P1. We obtain the entire �

if we ignore neither.
The purpose of the PCA is finally clear. Since

4 is 40 times as big as 0.1, the second compo-
nent in the � decomposition has little impact,
and hence may be ignored. Then, ignoring P̃2,
we can write the returns simply as, based on
equation (26),

r̃1 ≈ (1/
√

2)P̃1

r̃2 ≈ (1/
√

2)P̃1

This says that we can reduce the analysis of
r̃1 and r̃2 by analyzing simple functions of P̃1.
In this example, the result tells us that the two
assets are almost the same. In practice, there
may be hundreds of assets. By using PCA, we
can reduce the dimensionality of the problem
substantially to an analysis of perhaps a few,
say five, PCs.

In general, when there are N assets with
return R̃ = (r̃1, . . . r̃N)′, computer software can
be used to obtain the N eigenvalues and N
standardized eigenvectors. Let λ1 ≥ λ2 ≥ . . . ≥
λN ≥ 0 be the N eigenvalues in decreasing or-
der, and Ai = (ai1, ai2, . . . ai N)′ be the standard-
ized eigenvector associated with λi , and A be an
N × N matrix formed by the all the eigenvec-
tors. Then, the i-th PC is defined as P̃i = A′

i R̃,
all of which can be computed in matrix form,

P̃ =

⎡

⎢⎢⎢⎢⎢⎣

P̃1

P̃2
...

P̃N

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎣

A′
1 R̃

A′
2 R̃
...

A′
N R̃

⎤

⎥⎥⎥⎦ = A′ R̃ (27)

The decomposition for � is

� = [A1, . . . , AN]

⎡

⎣
λ1 0 . . . 0
0 λ2 . . . 0
0 0 · · · λN

⎤

⎦ [A1, . . . , AN]′

= λ1 A1 A′
1 + λ2 A2 A′

2 + · · · + λN AN A′
N

It is usually the case that, for some K, the first
K eigenvalues are large, and the rest are too
small and can then be ignored. In such situa-
tions, based on the first K PCs, we can approxi-

mate the asset returns by

r̃1 ≈ a11 P̃1 + a12 P̃2 + · · · + a1K P̃K ,

r̃2 ≈ a21 P̃1 + a22 P̃2 + · · · + a2K P̃K ,
...
...

...
r̃N ≈ aN1 P̃1 + aN2 P̃2 + · · · + aNK P̃K

(28)

In most studies, the K PCs may be interpreted
as K factors that (approximately) derive the
movements of all the N returns. Our earlier ex-
ample is a case with K = 1 and N = 2.

In the above PCA discussion, the expected
returns of the asset are assumed to be zero.
If they are nonzero and given by a vector
(μ1, μ2, . . . , μN)′, � will remain the same, and
so will the eigenvalues and eigenvectors. How-
ever, in this case we need to replace all the r̃i ’s
in equation (27) by r̃i − μi ’s and add μi ’s on the
right-hand side of equation (28). The interpre-
tation will be, of course, the same as before.

In Case 1 of the factor model estimation (i.e.,
known or observable factors) discussed in the
entry, the K PCs clearly provide a good approx-
imation of the first K factors since they explain
the asset variations the most given K. More-
over, in either Case 1 or Case 2 (latent factors),
the PCA is equivalent to minimizing the model
errors, as given by equation (20), by choosing
both the loadings and factors, and hence the so-
lution should be close to the true factors and
loadings.

KEY POINTS
� The arbitrage pricing theory is a general mul-

tifactor model for pricing assets. The theory
does not provide any specific information
about what the factors are. Moreover, the APT
does not make any claims on the number of
factors either.

� The APT asserts that only taking the system-
atic risks is rewarded.

� The APT simply assumes that if the returns
are driven by the factors, and if investors
know the betas for the factors, then an arbi-
trage portfolio, which requires no investment
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but yields a positive return, can be formed if
the APT pricing relation is violated in the mar-
ket. In equilibrium, therefore, if there are no
arbitrage opportunities, deviations from the
APT pricing relation should not be observed.

� In practice, factor models are widely used as a
tool for estimating expected asset returns and
their covariance matrix. The reason is that if
investors can identify the factors that drive
asset returns, they will have much better es-
timates of the true expected asset returns and
the covariance matrix, and hence will be able
to form a much better portfolio than other-
wise possible.

� Factor model estimation depends crucially on
(1) whether the factors are identified (known)
and unidentified (latent), and (2) the sample
size and the number of assets. Furthermore,
factor models can be used not only for ex-
plaining asset returns, but also for predicting
future returns.

� The simplest case of factor models is where
the factors are assumed to be known or ob-
servable, so that time-series data are those
factors can be used to estimate the model.

� In practice there are three commonly used eq-
uity multifactor models where known factors
are used: (1) the Fama-French three-factor
model, (2) the MSCI Barra fundamental factor
model, and (3) the Burmeister-Ibbotson-Roll-
Ross macroeconomic factor model. Fun-
damental factor models use company and
industry attributes and market data as de-
scriptors. In a macroeconomic factor model,
the inputs to the model are historical stock
returns and observable macroeconomic
variables.

� An argument for the use of latent factors is
that the observed factors may be measured
with errors or have been already anticipated
by investors. Without imposing what the fac-
tors are from likely incorrect beliefs, asset
managers can statistically estimate the factors
based on the factor model and data.

� Two important extensions of the static factor
model used in practice are (1) dynamic fac-

tor models, which allow the factors to evolve
over time according to a vector autoregres-
sion, and (2) allowance for a large number
of factors. This second factor model provides
a large dimension reduction that transforms
the hundreds of variables into a few, which
can be estimated by principal components
analysis.

� Principal components analysis is a sim-
ple statistical approach that can be ap-
plied to estimate a factor model easily and
effectively.

REFERENCES
Amengual, D., and Watson, M. (2007). Consistent

estimation of the number of dynamic factors in
a large N and T panel. Journal of Business and
Economic Statistics 25: 91–96.

Bai, J. (2003). Inferential theory for factor mod-
els of large dimensions. Econometrica 71: 135–
172.

Bai, J., and Ng, S. (2002). Determining the number
of factors in approximate factor models. Econo-
metrica 70: 191–221.

Burmeister, E., Roll, R., and Ross, S. A. (1994). A
practitioner’s guide to arbitrage pricing theory.
In A Practitioner’s Guide to Factor Models (pp.).
Charlottesville, VA, Institute of Chartered Fi-
nancial Analysts.

Connor, G., and Korajczyk, R. (1986). Performance
measurement with the arbitrage pricing theory:
A new framework for analysis. Journal of Finan-
cial Economics 15: 373–394.

Fama, E. F., and French, K. R. (1993). Common
risk factors in the returns on stocks and bonds.
Journal of Financial Economics 33, 1: 3–56.

Geweke, J., and Zhou, G. (1996). Measuring the
pricing error of the arbitrage pricing theory. Re-
view of Financial Studies 9: 557–587.

Lehmann, B. N., and Modest, D. M. (1998). The
empirical foundations of the arbitrage pric-
ing theory. Journal of Financial Economics 21:
213–254.

Litterman, R., and Scheinkman, J. (1991). Common
factors affecting bond returns. Journal of Fixed
Income 1: 54–61.

Ludvigson, S. C., and Ng, S. (2007). The empir-
ical risk-return relation: A factor analysis ap-
proach. Journal of Financial Economics 83: 171–
222.



FACTOR MODELS 151

Nardari, F., and Scruggs, J. T. (2007). Bayesian
analysis of linear factor models with latent
factors, multivariate stochastic volatility, and
APT pricing restrictions. Journal of Financial and
Quantitative Analysis 42: 857–892.

Rapach, D. E., Strauss, J. K., Tu, J., and Zhou, G.
(2009). Industry return predictability: Is it there

out of sample? Working paper, Washington
University, St. Louis.

Ross, S. A. (1976). The arbitrage theory of capi-
tal asset pricing. Journal of Economic Theory 13:
341–360.

Seber, G. A. F. (1984). Multivariate Observations,
Wiley.





Principal Components Analysis and
Factor Analysis
SERGIO M. FOCARDI, PhD
Partner, The Intertek Group

FRANK J. FABOZZI, PhD, CFA, CPA
Professor of Finance, EDHEC Business School

Abstract: In investment management, multifactor risk modeling is the most common application
of financial modeling. Multifactor risk models, or simply factor models, are linear regressions
over a number of variables called factors. Factors can be exogenous variables or abstract variables
formed by portfolios. Exogenous factors (or known factors) can be identified from traditional
fundamental analysis or economic theory from macroeconomic factors. Abstract factors, also called
unidentified or latent factors, can be determined with factor analysis or principal component
analysis. Principal component analysis identifies the largest eigenvalues of the variance-covariance
matrix or the correlation matrix. The largest eigenvalues correspond to eigenvectors that identify
the entire market and sectors that correspond to industry classification. Factor analysis can be used
to identify the structure of the latent factors.

Principal component analysis (PCA) and factor
analysis are statistical tools that allow a mod-
eler to (1) reduce the number of variables in a
model (i.e., to reduce the dimensionality), and
(2) identify if there is structure in the relation-
ships between variables (i.e., to classify vari-
ables). In this entry, we explain PCA and factor
analysis. We illustrate and compare both tech-
niques using a sample of stocks. Because of its
use in the estimation of factor models, we begin
with a brief discussion of factor models.

FACTOR MODELS
Factor models are statistical models that try to
explain complex phenomena through a small
number of basic causes or factors. Factor models
serve two main purposes: (1) They reduce the
dimensionality of models to make estimation
possible; and/or (2) they find the true causes
that drive data. Factor models were introduced
by Charles Spearman (1904), a leading psychol-
ogist who developed many concepts of modern
psychometrics.

153
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Spearman was particularly interested in
understanding how to measure human intel-
lectual abilities. In his endeavor to do so, he
developed the first factor model, known as
the Spearman model, a model that explains
intellectual abilities through one common fac-
tor, the famous “general intelligence” g factor,
plus another factor s, which is specific to each
distinct ability. Spearman was persuaded that
the factor g had an overwhelming importance.
That is, he thought that any mental ability can
be explained quantitatively through a common
intelligence factor. According to this theory,
outstanding achievements of, say, a painter, a
novelist, and a scientist can all be ascribed to a
common general intelligence factor plus a small
contribution from specific factors.

Some 30 years later, Louis Leon Thurstone
(1938) developed the first true multifactor
model of intelligence. Thurstone was among
the first to propose and demonstrate that there
are numerous ways in which a person can be
intelligent. Thurstone’s multiple-factors theory
identified seven primary mental abilities.

One might question whether factors are only
statistical artifacts or if they actually correspond
to any reality. In the modern operational inter-
pretation of science, a classification or a factor is
“real” if we can make useful predictions using
that classification. For example, if the Spearman
theory is correct, we can predict that a highly in-
telligent person can obtain outstanding results
in any field. Thus, a novelist could have ob-
tained outstanding results in science. However,
if many distinct mental factors are needed, peo-
ple might be able to achieve great results in
some field but be unable to excel in others.

In the early applications of factor models to
psychometrics, the statistical model was essen-
tially a conditional multivariate distribution.
The raw data were large samples of psycho-
metric tests. The objective was to explain these
tests as probability distributions conditional on
the value of one or more factors. In this way,
one can make predictions of, for example, the

future success of young individuals in different
activities.

In finance, factor models are typically applied
to time series. The objective is to explain the
behavior of a large number of stochastic pro-
cesses, typically price, returns, or rate processes,
in terms of a small number of factors. These
factors are themselves stochastic processes. In
order to simplify both modeling and estima-
tion, most factor models employed in financial
econometrics are static models. This means that
time series are assumed to be sequences of tem-
porally independent and identically distributed
(IID) random variables so that the series can be
thought of as independent samples extracted
from one common distribution.

In financial econometrics, factor models are
needed not only to explain data but to make
estimation feasible. Given the large number
of stocks presently available—in excess of
15,000—the estimation of correlations cannot
be performed without simplifications. Widely
used ensembles such as the S&P 500 or the
MSCI Europe include hundreds of stocks and
therefore hundreds of thousands of individual
correlations. Available samples are insufficient
to estimate this large number of correlations.
Hence factor models are able to explain all pair-
wise correlations in terms of a much smaller
number of correlations between factors.

Linear Factor Models Equations
Linear factor models are regression models of the
following type:

Xi = αi +
K∑

j=1

βi j f j + εi

where

Xi = a set of N random variables
fj = a set of K common factors
εi = the noise terms associated with each

variable Xi
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The β ij’s are called the factor loadings or factor
sensitivities; they express the influence of the
j-th factor on the i-th variable.

In this formulation, factor models are essen-
tially static models, where the variables and the
factors are random variables without any ex-
plicit dependence on time. It is possible to add
a dynamic to both the variables and the factors,
but that is beyond the scope of our basic intro-
duction in this entry.

As mentioned above, one of the key objectives
of factor models is to reduce the dimensionality
of the covariance matrix so that the covariances
between the variables Xi are determined only
by the covariances between factors. Suppose
that the noise terms are mutually uncorrelated,
so that

E(εiε j ) =
{

0, i �= j
σ 2

i , i �= j

and that the noise terms are uncorrelated with
the factors, that is, E(εifj) = 0, ∀i,j. Suppose also
that both factors and noise terms have a zero
mean, so that E(Xi) = αi. Factor models that
respect the above constraints are called strict
factor models.

Let’s compute the covariances of a strict factor
model:

E((Xi − αi )(Xj − α j ))

= E

(( K∑

s=1

βis fs + εi

) ( K∑

t=1

β j t ft + ε j

))

= E

(( K∑

s=1

βis fs

)( K∑

t=1

β j t ft

))
+ E

(( K∑

s=1

βis fs

)
(ε j )

)

+ E

(
(εi )

K∑

t=1

β j t ft

)
+ E(εi ε j )

=
∑

s,t

βis E( fs ft)β j t + E(εi ε j )

From this expression we can see that the vari-
ances and covariances between the variables Xi

depend only on the covariances between the
factors and the variances of the noise term.

We can express the above compactly in matrix
form. Let’s write a factor model in matrix form

as follows:

X = α + βf + ε

where

X = (X1, . . . , XN)′ = the N-vector of vari-
ables

α = (α1, . . . , αN)′ = the N-vector of means
ε = (ε1, . . . , εN)′ = the N-vector of idiosyn-

cratic noise terms
f = (f 1, . . . , fK)′ = the K-vector of factors

β =

⎡

⎢⎣
β11 · · · β1K

...
. . .

...
βN1 · · · βNK

⎤

⎥⎦

= the N × K matrix of factor loadings.

Let’s define the following:

� = the N × N variance-covariance matrix
of the variables X

� = the K × K variance-covariance matrix
of the factors

� = N × N variance-covariance matrix of
the error terms ε

If we assume that our model is a strict factor
model, the matrix � will be a diagonal matrix
with the noise variances on the diagonal, that
is,

� =

⎛

⎜⎝
ψ2

1 · · · 0
...

. . .
...

0 · · · ψ2
N

⎞

⎟⎠

Under the above assumptions, we can express
the variance-covariance matrix of the variables
in the following way:

� = β�β′ + �

In practice, the assumption of a strict factor
model might be too restrictive. In applied work,
factor models will often be approximate factor
models. (See, for example, Bai, 2003.) Approx-
imate factor models allow idiosyncratic terms
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to be weakly correlated among themselves and
with the factors.

As many different factor models have been
proposed for explaining stock returns, an im-
portant question is whether a factor model is
fully determined by the observed time series.
In a strict factor model, factors are determined
up to a nonsingular linear transformation. In
fact, the above matrix notation makes it clear
that the factors, which are hidden, nonobserv-
able variables, are not fully determined by the
above factor model. That is, an estimation pro-
cedure cannot univocally determine the hidden
factors and the factor loadings from the observ-
able variables X. In fact, suppose that we mul-
tiply the factors by any nonsingular matrix R.
We obtain other factors

g = Rf

with a covariance matrix

�g = R�R−1

and we can write a new factor model:

X = α + βf + ε = α + βR−1Rf

+ ε = α + βgg + ε

In order to solve this indeterminacy, we can
always choose the matrix R so that the factors g
are a set of orthonormal variables, that is, uncor-
related variables (the orthogonality condition)
with unit variance (the normality condition).
In order to make the model uniquely identifi-
able, we can stipulate that factors must be a set
of orthonormal variables and that, in addition,
the matrix of factor loadings is diagonal. Un-
der this additional assumption, a strict factor
model is called a normal factor model. Note ex-
plicitly that under this assumption, factors are
simply a set of standardized independent vari-
ables. The model is still undetermined under
rotation, that is multiplication by any nonsin-
gular matrix such that RR′ = I.

In summary, a set of variables has a normal
factor representation if it is represented by the
following factor model:

X = α + βf + ε

where factors are orthonormal variables and
noise terms are such that the covariance matrix
can be represented as follows:

� = ββ′ + �

where β is the diagonal matrix of factor load-
ings and � is a diagonal matrix.

How can we explain the variety of factor mod-
els proposed given that a strict factor model
could be uniquely identified up to a factor lin-
ear transformation? As mentioned, the assump-
tions underlying strict factor models are often
too restrictive and approximate factor models
have to be adopted. Approximate factor mod-
els are uniquely identifiable only in the limit of
an infinite number of series. The level of ap-
proximation is implicit in practical models of
returns.

Types of Factors and Their
Estimation
In financial econometrics, the factors used in
factor models can belong to three different cat-
egories: macroeconomic factors, fundamental
factors, and statistical factors. The first two are
factor models that deal with known factors and
will not be discussed here.

Note that factors defined through statistical
analysis are linear combinations of the vari-
ables. That is, if the variables are asset returns,
factors are portfolios of assets. They are hid-
den variables insofar as one does not know the
weights of the linear combinations. However,
once the estimation process is completed, statis-
tical factors are always linear combinations of
variables. If data have a strict factor structure,
we can always construct linear combinations of
the series (e.g., portfolios of returns) that are
perfectly correlated with a set of factors. Often
they can be given important economic interpre-
tations. In the following sections we describe
the theory and estimation methods of principal
components analysis and factor analysis.
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PRINCIPAL COMPONENTS
ANALYSIS
Principal components analysis (PCA) was intro-
duced by Harold Hotelling (1933). Hotelling
proposed PCA as a way to determine fac-
tors with statistical learning techniques when
factors are not exogenously given. Given a
variance-covariance matrix, one can determine
factors using the technique of PCA.

PCA implements a dimensionality reduction
of a set of observations. The concept of PCA
is the following. Consider a set of n stationary
time series Xi, for example the 500 series of re-
turns of the S&P 500. Consider next a linear
combination of these series, that is, a portfolio
of securities. Each portfolio P is identified by an
n-vector of weights ωP and is characterized by a
variance σ 2

p . In general, the variance σ 2
p depends

on the portfolio’s weights ωP. Lastly, consider
a normalized portfolio, which has the largest
possible variance. In this context, a normalized
portfolio is a portfolio such that the squares of
the weights sum to one.

If we assume that returns are IID sequences,
jointly normally distributed with variance-
covariance matrix σ, a lengthy direct calcula-
tion demonstrates that each portfolio’s return
will be normally distributed with variance

σ 2
p = ωT

PσωP

The normalized portfolio of maximum variance
can therefore be determined in the following
way:

Maximize ωT
PσωP

subject to the normalization condition

ωT
PωP = 1

where the product is a scalar product. It can
be demonstrated that the solution of this prob-
lem is the eigenvector ω1 corresponding to the
largest eigenvalue λ1 of the variance-covariance
matrix σ. As σ is a variance-covariance matrix,
the eigenvalues are all real.

Consider next the set of all normalized port-
folios orthogonal to ω1, that is, portfolios com-

pletely uncorrelated with ω1. These portfolios
are identified by the following relationship:

ωT
1 ωP = ωT

Pω1 = 0

We can repeat the previous reasoning. Among
this set, the portfolio of maximum variance is
given by the eigenvector ω2 corresponding to
the second largest eigenvalue λ2 of the variance-
covariance matrix σ. If there are n distinct eigen-
values, we can repeat this process n times. In
this way, we determine the n portfolios Pi of
maximum variance. The weights of these port-
folios are the orthonormal eigenvectors of the
variance-covariance matrix σ. Note that each
portfolio is a time series that is a linear combi-
nation of the original time series Xi. The coeffi-
cients are the portfolios’ weights.

These portfolios of maximum variance are all
mutually uncorrelated. It can be demonstrated
that we can recover all the original return time
series as linear combinations of these portfolios:

Xj =
n∑

i=1

α j,i Pi

Thus far we have succeeded in replacing the
original n correlated time series Xj with n un-
correlated time series Pi with the additional in-
sight that each Xj is a linear combination of
the Pi. Suppose now that only p of the port-
folios Pi have a significant variance, while the
remaining n − p have very small variances. We
can then implement a dimensionality reduction
by choosing only those portfolios whose vari-
ance is significantly different from zero. Let’s
call these portfolios factors F.

It is clear that we can approximately represent
each series Xi as a linear combination of the
factors plus a small uncorrelated noise. In fact
we can write

Xj =
p∑

i=1

α j,i Fi +
n∑

i=p+1

α j,i Pi =
p∑

i=1

α j,i Fi + ε j

where the last term is a noise term. Therefore
to implement PCA one computes the eigen-
values and the eigenvectors of the variance-
covariance matrix and chooses the eigenvalues
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significantly different from zero. The corre-
sponding eigenvectors are the weights of port-
folios that form the factors. Criteria of choice
are somewhat arbitrary.

Suppose, however, that there is a strict fac-
tor structure, which means that returns follow
a strict factor model as defined earlier in this
entry:

r = a + βf + ε

The matrix β can be obtained diagonalizing
the variance-covariance matrix. In general, the
structure of factors will not be strict and one
will try to find an approximation by choosing
only the largest eigenvalues.

Note that PCA works either on the variance-
covariance matrix or on the correlation matrix.
The technique is the same but results are gen-
erally different. PCA applied to the variance-
covariance matrix is sensitive to the units of
measurement, which determine variances and
covariances. This observation does not apply
to returns, which are dimensionless quantities.
However, if PCA is applied to prices and not
to returns, the currency in which prices are ex-
pressed matters; one obtains different results in
different currencies. In these cases, it might be
preferable to work with the correlation matrix.

We have described PCA in the case of time
series, which is the relevant case in economet-
rics. However, PCA is a generalized dimension-
ality reduction technique applicable to any set
of multidimensional observations. It admits a
simple geometrical interpretation, which can
be easily visualized in the three-dimensional
case. Suppose a cloud of points in the three-
dimensional Euclidean space is given. PCA
finds the planes that cut the cloud of points in
such a way as to obtain the maximum variance.

Illustration of Principal
Components Analysis
Let’s now show how PCA is performed. To
do so, we used monthly observations for the
following 10 stocks: Campbell Soup, General

Dynamics, Sun Microsystems, Hilton, Martin
Marietta, Coca-Cola, Northrop Grumman,
Mercury Interactive, Amazon.com, and United
Technologies for the period from December
2000 to November 2005. Figure 1 shows the
graphics of the 10 return processes.

As explained earlier, performing PCA is
equivalent to determining the eigenvalues and
eigenvectors of the covariance matrix or of
the correlation matrix. The two matrices yield
different results. We perform both exercises,
estimating the principal components using
separately the covariance and the correlation
matrices of the return processes. We estimate
the covariance with the empirical covariance
matrix. Recall that the empirical covariance
σ ij between variables (Xi,Xj) is defined as
follows:

σ̂i j = 1
T

T∑

t=1

(Xi (t) − X̄t)(Xj (t) − X̄j )

X̄i = 1
T

T∑

t=1

Xi (t), X̄j = 1
T

T∑

t=1

Xj (t)

Table 1 shows the covariance matrix.
Normalizing the covariance matrix with the

standard deviations, we obtain the correlation
matrix. Table 2 shows the correlation matrix.
Note that the diagonal elements of the correla-
tion matrix are all equal to one. In addition, a
number of entries in the covariance matrix are
close to zero. Normalization by the product of
standard deviations makes the same elements
larger.

Let’s now proceed to perform PCA using the
covariance matrix. We have to compute the
eigenvalues and the eigenvectors of the covari-
ance matrix. Table 3 shows the eigenvectors
(panel A) and the eigenvalues (panel B) of the
covariance matrix.

Each column of panel A of Table 3 represents
an eigenvector. The corresponding eigenvalue
is shown in panel B. Eigenvalues are listed in de-
scending order; the corresponding eigenvectors
go from left to right in the matrix of eigenvec-
tors. Thus the leftmost eigenvector corresponds
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Figure 1 Graphics of the 10 Stock Return Processes

to the largest eigenvalue. Eigenvectors are not
uniquely determined. In fact, multiplying any
eigenvector for a real constant yields another
eigenvector. The eigenvectors in Table 3 are nor-
malized in the sense that the sum of the squares
of each component is equal to 1. It can be eas-
ily checked that the sum of the squares of the
elements in each column is equal to 1. This still
leaves an indeterminacy, as we can change the

sign of the eigenvector without affecting this
normalization.

As explained earlier, if we form portfolios
whose weights are the eigenvectors, we can
form 10 portfolios that are orthogonal (i.e.,
uncorrelated). These orthogonal portfolios are
called principal components. The variance of each
principal component will be equal to the corre-
sponding eigenvector. Thus the first principal

Table 1 The Covariance Matrix of 10 Stock Returns

SUNW AMZN MERQ GD NOC CPB KO MLM HLT UTX

SUNW 0.02922 0.017373 0.020874 3.38E-05 −0.00256 −3.85E-05 0.000382 0.004252 0.006097 0.005467
AMZN 0.017373 0.032292 0.020262 5.03E-05 −0.00277 0.000304 0.001507 0.001502 0.010138 0.007483
MERQ 0.020874 0.020262 0.0355 −0.00027 −0.0035 −0.00011 0.003541 0.003878 0.007075 0.008557
GD 3.38E-05 5.03E-05 −0.00027 9.27E-05 0.000162 2.14E-05 −0.00015 3.03E-05 −4.03E-05 −3.32E-05
NOC −0.00256 −0.00277 −0.0035 0.000162 0.010826 3.04E-05 −0.00097 0.000398 −0.00169 −0.00205
CPB −3.85E-05 0.000304 −0.00011 2.14E-05 3.04E-05 7.15E-05 2.48E-05 −7.96E-06 −9.96E-06 −4.62E-05
KO 0.000382 0.001507 0.003541 −0.00015 −0.00097 2.48E-05 0.004008 −9.49E-05 0.001485 0.000574
MLM 0.004252 0.001502 0.003878 3.03E-05 0.000398 −7.96E-06 −9.49E-05 0.004871 0.00079 0.000407
HLT 0.006097 0.010138 0.007075 −4.03E-05 −0.00169 −9.96E-06 0.001485 0.00079 0.009813 0.005378
UTX 0.005467 0.007483 0.008557 −3.32E-05 −0.00205 −4.62E-05 0.000574 0.000407 0.005378 0.015017

Note: Sun Microsystems (SUNW), Amazon.com (AMZN), Mercury Interactive (MERQ), General Dynamics (GD),
Northrop Grumman (NOC), Campbell Soup (CPB), Coca-Cola (KO), Martin Marietta (MLM), Hilton (HLT), United
Technologies (UTX).
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Table 2 The Correlation Matrix of the Same 10 Return Processes

SUNW AMZN MERQ GD NOC CPB KO MLM HLT UTX

SUNW 1 0.56558 0.64812 0.020565 −0.14407 −0.02667 0.035276 0.35642 0.36007 0.26097
AMZN 0.56558 1 0.59845 0.029105 −0.14815 0.20041 0.1325 0.11975 0.56951 0.33983
MERQ 0.64812 0.59845 1 −0.14638 −0.17869 −0.06865 0.29688 0.29489 0.37905 0.37061
GD 0.020565 0.029105 −0.14638 1 0.16217 0.26307 −0.24395 0.045072 −0.04227 −0.02817
NOC −0.14407 −0.14815 −0.17869 0.16217 1 0.034519 −0.14731 0.054818 −0.16358 −0.16058
CPB −0.02667 0.20041 −0.06865 0.26307 0.034519 1 0.046329 −0.01349 −0.0119 −0.04457
KO 0.035276 0.1325 0.29688 −0.24395 −0.14731 0.046329 1 −0.02147 0.23678 0.07393
MLM 0.35642 0.11975 0.29489 0.045072 0.054818 −0.01349 −0.02147 1 0.11433 0.047624
HLT 0.36007 0.56951 0.37905 −0.04227 −0.16358 −0.0119 0.23678 0.11433 1 0.44302
UTX 0.26097 0.33983 0.37061 −0.02817 −0.16058 −0.04457 0.07393 0.047624 0.44302 1

Note: Sun Microsystems (SUNW), Amazon.com (AMZN), Mercury Interactive (MERQ), General Dynamics (GD),
Northrop Grumman (NOC), Campbell Soup (CPB), Coca-Cola (KO), Martin Marietta (MLM), Hilton (HLT), United
Technologies (UTX).

component (i.e., the portfolio corresponding to
the first eigenvalue), will have the maximum
possible variance and the last principal compo-
nent (i.e., the portfolio corresponding to the last
eigenvalue) will have the smallest variance. Fig-
ure 2 shows the graphics of the principal com-
ponents of maximum and minimum variance.

The 10 principal components thus obtained
are linear combinations of the original series,
X = (X1, . . . , XN)′ that is, they are obtained by
multiplying X by the matrix of the eigenvec-
tors. If the eigenvalues and the corresponding
eigenvectors are all distinct, as it is the case
in our illustration, we can apply the inverse

Table 3 Eigenvectors and Eigenvalues of the Covariance Matrix

Panel A: Eigenvectors

1 2 3 4 5 6 7 8 9 10

1 −0.50374 0.50099 0.28903 −0.59632 −0.01824 −0.01612 0.22069 −0.08226 0.002934 −0.00586
2 −0.54013 −0.53792 0.51672 0.22686 −0.06092 0.25933 −0.10967 −0.12947 0.020253 0.016624
3 −0.59441 0.32924 −0.4559 0.52998 0.051976 0.015346 0.010496 0.21483 −0.01809 −0.00551
4 0.001884 −0.00255 0.018107 −0.01185 0.013384 0.01246 −0.01398 0.01317 −0.86644 0.4981
5 0.083882 0.10993 0.28331 0.19031 0.91542 −0.06618 0.14532 −0.02762 0.011349 −0.00392
6 −0.00085 −0.01196 0.016896 0.006252 −0.00157 0.01185 −0.00607 −0.02791 −0.49795 −0.86638
7 −0.0486 −0.02839 −0.1413 0.19412 −0.08989 −0.35435 0.31808 −0.8387 −0.01425 0.027386
8 −0.07443 0.19009 0.013485 −0.06363 0.11133 −0.22666 −0.90181 −0.27739 0.010908 0.002932
9 −0.20647 −0.36078 −0.01067 −0.1424 0.038221 −0.82197 0.052533 0.35591 −0.01155 −0.01256

10 −0.20883 −0.41462 −0.5835 −0.46223 0.3649 0.27388 −0.02487 −0.14688 0.001641 −0.00174

Panel B: Eigenvalues

1 0.0783
2 0.0164
3 0.0136
4 0.0109
5 0.0101
6 0.0055
7 0.0039
8 0.0028
9 0.0001

10 0.0001
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Figure 2 Graphic of the Portfolios of Maximum and Minimum Variance Based on the Covariance
Matrix

transformation and recover the X as linear com-
binations of the principal components.

PCA is interesting if, in using only a small
number of principal components, we neverthe-
less obtain a good approximation. That is, we
use PCA to determine principal components
but we use only those principal components
that have a large variance as factors of a factor
model. Stated otherwise, we regress the origi-
nal series X onto a small number of principal
components. In this way, PCA implements a di-
mensionality reduction as it allows one to retain
only a small number of components. By choos-
ing as factors the components with the largest
variance, we can explain a large portion of the
total variance of X.

Table 4 shows the total variance explained by
a growing number of components. Thus the
first component explains 55.2784% of the to-
tal variance, the first two components explain
66.8507% of the total variance, and so on. Ob-
viously 10 components explain 100% of the

total variance. The second, third, and fourth
columns of Table 5 show the residuals of the Sun
Microsystem return process with 1, 5, and all
10 components, respectively. There is a large
gain from 1 to 5, while the gain from 5 to all 10
components is marginal.

Table 4 Percentage of the Total Variance Explained
by a Growing Number of Components Based on the
Covariance Matrix

Principal
Component

Percentage of Total
Variance Explained

1 55.2784%
2 66.8508
3 76.4425
4 84.1345
5 91.2774
6 95.1818
7 97.9355
8 99.8982
9 99.9637

10 100.0000
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Table 5 Residuals of the Sun Microsytem Return Process with 1, 5, and All Components Based on the Covariance
Matrix and the Correlation Matrix

Residuals Based on Covariance Matrix Residuals Based on Correlation Matrix

Month/Year
1 Principal
Component

5 Principal
Components

10 Principal
Components

1 Principal
Component

5 Principal
Components

10 Principal
Components

Dec. 2000 0.069044 0.018711 1.53E-16 0.31828 0.61281 −2.00E-15
Jan. 2001 −0.04723 −0.02325 1.11E-16 −0.78027 −0.81071 1.78E-15
Feb. 2001 −0.03768 0.010533 −1.11E-16 −0.47671 0.04825 2.22E-16
March 2001 −0.16204 −0.02016 2.50E-16 −0.47015 −0.82958 −2.78E-15
April 2001 −0.00819 −0.00858 −7.63E-17 −0.32717 −0.28034 −5.00E-16
May 2001 0.048814 −0.00399 2.08E-17 0.36321 0.016427 7.22E-16
June 2001 0.21834 0.025337 −2.36E-16 1.1437 1.37 7.94E-15
July 2001 −0.03399 0.02732 1.11E-16 −0.7547 0.35591 1.11E-15
Aug. 2001 0.098758 −0.00146 2.22E-16 1.0501 0.19739 −8.88E-16
Sept. 2001 0.042674 0.006381 −5.55E-17 0.40304 0.28441 2.00E-15
Oct. 2001 0.038679 −0.00813 −5.55E-17 0.50858 0.17217 4.44E-16
Nov. 2001 −0.11967 −0.01624 1.11E-16 −0.89512 −0.8765 −7.77E-16
Dec. 2001 −0.19192 0.030744 1.67E-16 −1.001 0.047784 −1.55E-15
Jan. 2002 −0.13013 −0.00591 5.55E-17 −1.1085 −0.68171 −1.33E-15
Feb. 2002 0.003304 0.017737 0 −0.05222 0.20963 −9.99E-16
March 2002 −0.07221 0.012569 5.55E-17 −0.35765 0.13344 2.22E-16
April 2002 −0.08211 −0.00916 2.78E-17 −0.38222 −0.47647 −2.55E-15
May 2002 −0.05537 −0.02103 0 −0.45957 −0.53564 4.22E-15
June 2002 −0.15461 0.004614 1.39E-16 −1.0311 −0.54064 −3.33E-15
July 2002 0.00221 0.013057 8.33E-17 0.24301 0.37431 −1.89E-15
Aug. 2002 −0.12655 0.004691 5.55E-17 −0.8143 −0.30497 2.00E-15
Sept. 2002 −0.07898 0.039666 5.55E-17 −0.25876 0.64902 −6.66E-16
Oct. 2002 0.15839 0.003346 −1.11E-16 0.98252 0.53223 −1.78E-15
Nov. 2002 −0.11377 0.013601 1.67E-16 −0.95263 −0.33884 −2.89E-15
Dec. 2002 −0.06957 0.012352 1.32E-16 −0.10309 0.029623 −4.05E-15
Jan. 2003 0.14889 −0.00118 −8.33E-17 1.193 0.73723 5.00E-15
Feb. 2003 −0.03359 −0.02719 −4.16E-17 −0.02854 −0.38331 4.05E-15
March 2003 −0.05314 −0.00859 2.78E-17 −0.38853 −0.40615 −2.22E-16
April 2003 0.10457 −0.01442 −2.22E-16 0.73075 0.097101 −1.11E-15
May 2003 0.078567 0.022227 −5.55E-17 0.52298 0.63772 −7.77E-16
June 2003 −0.1989 −0.02905 1.39E-16 −1.4213 −1.3836 −3.55E-15
July 2003 −0.0149 −0.00955 0 0.13876 −0.1059 3.44E-15
Aug. 2003 −0.12529 −0.00528 8.33E-17 −0.73819 −0.51792 9.99E-16
Sept. 2003 0.10879 −0.00645 −8.33E-17 0.69572 0.25503 −2.22E-15
Oct. 2003 0.07783 0.01089 −2.78E-17 0.36715 0.45274 −1.11E-15
Nov. 2003 0.038408 −0.01181 −5.55E-17 0.11761 −0.13271 3.33E-16
Dec. 2003 0.18203 0.012593 −1.39E-16 1.2655 0.98182 3.77E-15
Jan. 2004 0.063885 −0.00042 6.94E-18 0.33717 0.038477 0
Feb. 2004 −0.12552 −0.00225 1.11E-16 −0.70345 −0.49379 0
March 2004 −0.01747 0.016836 0 −0.1949 0.35348 −1.94E-16
April 2004 0.015742 0.013764 4.16E-17 0.2673 0.46969 −5.77E-15
May 2004 −0.03556 −0.02072 −6.94E-17 −0.60652 −0.68268 0
June 2004 0.14325 0.008155 −1.94E-16 0.54463 0.59768 3.22E-15
July 2004 0.030731 −0.00285 −4.16E-17 0.13011 0.028779 7.08E-16
Aug. 2004 0.032719 −0.00179 −5.55E-17 0.26793 0.18353 2.05E-15
Sept. 2004 0.083238 0.003664 0 0.58186 0.29544 3.77E-15
Oct. 2004 0.11722 −0.00356 −1.39E-16 0.77575 0.38959 2.22E-16
Nov. 2004 −0.04794 −0.00088 0 −0.47706 −0.35464 −3.13E-15
Dec. 2004 −0.1099 −0.01903 1.11E-16 −0.69439 −0.64663 −2.22E-16
Jan. 2005 0.0479 −0.00573 2.08E-17 0.24203 −0.04065 −4.45E-16
Feb. 2005 −0.015 0.003186 1.39E-17 −0.07198 0.054412 3.28E-15
March 2005 0.005969 −0.0092 −4.16E-17 0.035251 −0.02106 3.83E-15
April 2005 −0.00742 −0.01241 −4.16E-17 −0.09335 −0.42659 −1.67E-16
May 2005 0.14998 −0.01126 6.25E-17 1.0219 0.034585 −9.05E-15
June 2005 −0.05045 −0.00363 3.47E-17 −0.25655 −0.1229 −4.66E-15
July 2005 0.065302 −0.00421 −5.20E-17 0.56136 0.16602 3.08E-15
Aug. 2005 0.006719 −0.01174 1.39E-17 0.09319 −0.22119 −2.00E-15
Sept. 2005 0.12865 −0.00259 −8.33E-17 0.95602 0.33442 3.50E-15
Oct. 2005 −0.01782 0.011827 −8.33E-17 −0.2249 0.27675 1.53E-15
Nov. 2005 0.026312 −7.72E-05 −1.39E-17 0.26642 0.19725 1.67E-15
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Table 6 Eigenvectors and Eigenvalues of the Correlation Matrix

Panel A: Eigenvectors

1 2 3 4 5 6 7 8 9 10

1 −0.4341 0.19295 −0.26841 0.040065 −0.19761 0.29518 −0.11161 −0.11759 −0.72535 −0.14857
2 −0.45727 0.18203 0.20011 0.001184 0.013236 0.37606 0.05077 0.19402 0.47275 −0.55894
3 −0.47513 −0.03803 −0.16513 0.16372 −0.01282 0.19087 −0.08297 −0.38843 0.37432 0.61989
4 0.06606 0.63511 0.18027 −0.16941 −0.05974 −0.24149 −0.66306 −0.14342 0.092295 0.02113
5 0.17481 0.33897 −0.21337 0.14797 0.84329 0.23995 0.091628 −0.07926 −0.06105 0.001886
6 −0.00505 0.42039 0.57434 0.40236 −0.15072 −0.05018 0.48758 −0.07382 −0.15788 0.19532
7 −0.18172 −0.397 0.28037 0.58674 0.26063 −0.26864 −0.38592 −0.16286 −0.11336 −0.24105
8 −0.1913 0.26851 −0.55744 0.32448 −0.09047 −0.58736 0.20083 0.19847 0.15935 −0.13035
9 −0.40588 −0.0309 0.20884 −0.20157 0.29193 −0.16641 −0.08666 0.67897 −0.1739 0.37201

10 −0.32773 −0.05042 0.14067 −0.51858 0.24871 −0.41444 0.30906 −0.4883 −0.06781 −0.17077

Panel B: Eigenvalues

1 3.0652
2 1.4599
3 1.1922
4 0.9920
5 0.8611
6 0.6995
7 0.6190
8 0.5709
9 0.3143

10 0.2258

We can repeat the same exercise for the cor-
relation matrix. Table 6 shows the eigenvectors
(panel A) and the eigenvalues (panel B) of the
correlation matrix. Eigenvectors are normalized
as in the case of the covariance matrix.

Table 7 shows the total variance explained by
a growing number of components. Thus the
first component explains 30.6522% of the to-
tal variance, the first two components explain

Table 7 Percentage of the Total Variance Explained
by a Growing Number of Components Using the
Correlation Matrix

Principal
Component

Percentage of Total
Variance Explained

1 30.6522%
2 45.2509
3 57.1734
4 67.0935
5 75.7044
6 82.6998
7 88.8901
8 94.5987
9 97.7417

10 100.0000

45.2509% of the total variance, and so on. Ob-
viously 10 components explain 100% of the to-
tal variance. The increase in explanatory power
with the number of components is slower than
in the case of the covariance matrix.

The proportion of the total variance explained
grows more slowly in the correlation case than
in the covariance case. Figure 3 shows the
graphics of the portfolios of maximum and min-
imum variance. The ratio between the two port-
folios is smaller in this case than in the case of
the covariance.

The last three columns of Table 6 show the
residuals of the Sun Microsystem return pro-
cess with 1, 5, and all components based on the
correlation matrix. Residuals are progressively
reduced, but at a lower rate than with the co-
variance matrix.

PCA and Factor Analysis with
Stable Distributions
In the previous sections we discussed PCA
and factor analysis without making any explicit
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Figure 3 Graphic of the Portfolios of Maximum and Minimum Variance Based on the Correlation
Matrix

reference to the distributional properties of the
variables. These statistical tools can be applied
provided that all variances and covariances ex-
ist. Therefore applying them does not require,
per se, that distributions are normal, but only
that they have finite variances and covariances.
Variances and covariances are not robust but are
sensitive to outliers. Robust equivalents of vari-
ances and covariances exist. In order to make
PCA and factor analysis insensitive to outliers,
one could use robust versions of variances and
covariances and apply PCA and factor analysis
to these robust estimates.

In many cases, however, distributions might
exhibit fat tails and infinite variances. In this
case, large values cannot be trimmed but must
be taken into proper consideration. However,
if variances and covariances are not finite, the
least squares methods used to estimate fac-
tor loadings cannot be applied. In addition,
the concept of PCA and factor analysis as il-
lustrated in the previous sections cannot be

applied. In fact, if distributions have infinite
variances, it does not make sense to determine
the portfolio of maximum variance as all port-
folios will have infinite variance and it will be
impossible, in general, to determine an ordering
based on the size of variance.

Both PCA and factor analysis as well as the es-
timation of factor models with infinite-variance
error terms are at the forefront of econometric
research.

FACTOR ANALYSIS
Thus far, we have seen how factors can be de-
termined using principal components analysis.
We retained as factors those principal compo-
nents with the largest variance. In this section,
we consider an alternative technique for deter-
mining factors: factor analysis (FA). Suppose we
are given T independent samples of a random
vector X = (X1, . . . , XN)′ . In the most common
cases in financial econometrics, we will be given



PRINCIPAL COMPONENTS ANALYSIS AND FACTOR ANALYSIS 165

T samples of a multivariate time series. How-
ever, factor analysis can be applied to samples
extracted from a generic multivariate distribu-
tion. To fix these ideas, suppose we are given N
time series of stock returns at T moments, as in
the case of PCA.

Assuming that the data are described by a
strict factor model with K factors, the objective
of factor analysis (FA) consists of determining a
model of the type

X = α + βf + ε

with covariance matrix

� = ββ′ + �

The estimation procedure is performed in two
steps. In the first step, we estimate the co-
variance matrix and the factor loadings. In the
second step, we estimate factors using the co-
variance matrix and the factor loadings.

If we assume that the variables are jointly nor-
mally distributed and temporally IID, we can
estimate the covariance matrix with maximum
likelihood methods. Estimation of factor mod-
els with maximum likelihood methods is not
immediate because factors are not observable.
Iterative methods such as the expectation maxi-
mization (EM) algorithm are generally used.

After estimating the matrices β and � fac-
tors can be estimated as linear regressions. In
fact, assuming that factors are zero means (an
assumption that can always be made), we can
write the factor model as

X − α = βf + ε

which shows that, at any given time, factors can
be estimated as the regression coefficients of the
regression of (X − α) onto β. Using the standard
formulas of regression analysis, we can now
write factors, at any given time, as follows:

f̂t =
(
β̂′�̂−1

β̂
)−1

β̂′�̂−1
(Xt − α̂)

The estimation approach based on maximum
likelihood estimates implies that the number
of factors is known. In order to determine the
number of factors, a heuristic procedure con-
sists of iteratively estimating models with a

growing number of factors. The correct num-
ber of factors is determined when estimates of
q factors stabilize and cannot be rejected on the
basis of p probabilities. A theoretical method
for determining the number of factors was pro-
posed by Bai and Ng (2002).

The factor loadings matrix can also be esti-
mated with ordinary least squares (OLS) meth-
ods. The OLS estimator of the factor loadings
coincides with the principal component estima-
tor of factor loadings. However, in a strict factor
model, OLS estimates of the factor loadings are
inconsistent when the number of time points
goes to infinity but the number of series remains
finite, unless we assume that the idiosyncratic
noise terms all have the same variance.

The OLS estimators, however, remain consis-
tent if we allow both the number of processes
and the time to go to infinity. Under this as-
sumption, as explained by Bai (2003), we can
also use OLS estimators for approximate factor
models.

In a number of applications, we might want to
enforce the condition α = 0. This condition is the
condition of asset of arbitrage. OLS estimates of
factor models with this additional condition are
an instance of constrained OLS methods.

An Illustration of Factor Analysis
Let’s now show how factor analysis is per-
formed. To do so, we will use the same 10 stocks
and return data for December 2000 to Novem-
ber 2005 that we used to illustrate principal
components analysis.

As just described, to perform factor analysis,
we need estimate only the factor loadings and
the idiosyncratic variances of noise terms. We
assume that the model has three factors. Table 8
shows the factor loadings. Each row represents
the loadings of the three factors corresponding
to each stock. The last column of the table shows
the idiosyncratic variances.

The idiosyncratic variances are numbers be-
tween 0 and 1, where 0 means that the variance
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Table 8 A Factor Loadings and Idiosyncratic Variances

Factor Loadings

β1 β2 β3 Variance

SUNW 0.656940 0.434420 0.27910 0.301780
AMZN 0.959860 −0.147050 −0.00293 0.057042
MERQ 0.697140 0.499410 −0.08949 0.256570
GD 0.002596 −0.237610 0.43511 0.754220
NOC −0.174710 −0.119960 0.23013 0.902130
CPB 0.153360 −0.344400 0.13520 0.839590
KO 0.170520 0.180660 −0.46988 0.717500
MLM 0.184870 0.361180 0.28657 0.753250
HLT 0.593540 0.011929 −0.18782 0.612300
UTX 0.385970 0.144390 −0.15357 0.806590

is completely explained by common factors and
1 that common factors fail to explain variance.

The p-value turns out to be 0.6808 and there-
fore fails to reject the null of three factors. Esti-
mating the model with 1 and 2 factors we obtain
much lower p-values while we run into numer-
ical difficulties with 4 or more factors. We can
therefore accept the null of three factors. Fig-
ure 4 shows the graphics of the three factors.

0 10 20 30 40 50 60
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Figure 4 Graph of the three factors

PCA AND FACTOR ANALYSIS
COMPARED

The two illustrations of PCA and FA are rel-
ative to the same data and will help clarify
the differences between the two methods. Let’s
first observe that PCA does not imply, per se,
any specific restriction on the process. Given a
nonsingular covariance matrix, we can always
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Figure 5 Graphical Representation of Factor Loadings

perform PCA as an exact linear transforma-
tion of the series. When we consider a smaller
number of principal components, we perform
an approximation that has to be empirically jus-
tified. For example, in our PCA illustration, the
first three components explain 76% of the total
variance (based on the covariance matrix; see
Table 4).

Factor analysis, on the other hand, assumes
that the data have a strict factor structure in the
sense that the covariance matrix of the data can
be represented as a function of the covariances
between factors plus idiosyncratic variances.
This assumption has to be verified, otherwise
the estimation process might yield incorrect
results.

In other words, PCA tends to be a dimension-
ality reduction technique that can be applied
to any multivariate distribution and that yields
incremental results. This means that there is a
trade-off between the gain in estimation from
dimensionality reduction and the percentage of
variance explained. Consider that PCA is not an
estimation procedure: It is an exact linear trans-
formation of a time series. Estimation comes
into play when a reduced number of princi-

pal components is chosen and each variable is
regressed onto these principal components. At
this point, a reduced number of principal com-
ponents yields a simplified regression, which
results in a more robust estimation of the co-
variance matrix of the original series though
only a fraction of the variance is explained.

Factor analysis, on the other hand, tends to re-
veal the exact factor structure of the data. That
is, FA tends to give an explanation in terms of
what factors explain what processes. Factor ro-
tation can be useful both in the case of PCA and
FA. Consider FA. In our illustration, to make the
factor model identifiable, we applied the restric-
tion that factors are orthonormal variables. This
restriction, however, might result in a matrix of
factor loadings that is difficult to interpret.

For example, if we look at the loading ma-
trix in Table 8, there is no easily recognizable
structure, in the sense that the time series is
influenced by all factors. Figure 5 shows graph-
ically the relationship of the time series to the
factors. In this graphic, each of the 10 time series
is represented by its three loadings.

We can try to obtain a better representa-
tion through factor rotation. The objective is to
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Figure 6 Relationship of Time Series to the Factors after Rotation

create factors such that each series has only one
large loading and thus is associated primarily
with one factor. Several procedures have been
proposed for doing so. For example, if we ro-
tate factors using the “promax” method, we
obtain factors that are no longer orthogonal
but that often have a better explanatory power.
Figure 6 shows graphically the relationship of
time series to the factors after rotation. The asso-
ciation of the series to a factor is more evident.
This fact can be seen from the matrix of new
factor loadings in Table 9, which shows how
nearly each stock has one large loading.

Table 9 Factor Loadings after Rotation

F1 F2 F3

SUNW 0.214020 0.750690 0.101240
AMZN 0.943680 0.127310 0.104990
MERQ 0.218340 0.578050 −0.294340
GD 0.163360 0.073269 0.544220
NOC −0.070130 −0.003990 0.278000
CPB 0.393120 −0.178070 0.301920
KO 0.032397 −0.100020 −0.545120
MLM −0.137130 0.561640 0.123670
HLT 0.513660 0.048842 −0.168290
UTX 0.229400 0.133510 −0.204650

KEY POINTS
� Principal component analysis (PCA) and

factor analysis are statistical tools used in fi-
nancial modeling to reduce the number of
variables in a model (i.e., to reduce the di-
mensionality) and to identify a structure in
the relationships between variables.

� Factor models seek to explain complex phe-
nomena via a small number of basic causes or
factors. In finance these models are typically
applied to time series.

� The objective of a factor model in finance is
to explain the behavior of a large number of
stochastic processes typically price, returns,
or rate processes in terms of a small number of
factors (which themselves are stochastic pro-
cesses). In financial modeling, factor models
are needed not only to explain data but to
make estimation feasible.

� Linear factor models are regression models.
The coefficients are referred to as factor load-
ings or factor sensitivities, and they represent
the influence of a factor on some variable.

� Principal components analysis is a tool to
determine factors with statistical learning
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techniques when factors are not exogenously
given. PCA implements a dimensionality re-
duction of a set of observations.

� Performing PCA is equivalent to determin-
ing the eigenvalues and eigenvectors of
the covariance matrix or of the correlation
matrix.

� Factor analysis is an alternative technique for
determining factors. The estimation proce-
dure is performed in two steps: (1) estimate
the covariance matrix and the factor loadings,
and (2) estimate factors using the covariance
matrix and the factor loadings.

� The covariance matrix can be estimated with
maximum likelihood methods, assuming that
the variables are jointly normally distributed
and temporally independently and identi-
cally distributed. The estimation of models
with maximum likelihood methods is not im-
mediate because factors are not observable,
and consequently iterative methods such as

the expectation maximization (EM) algorithm
are generally used.
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Abstract: Multifactor risk models seek to estimate and characterize the risk of a portfolio, either
in absolute value or when compared against a benchmark. Risk is typically decomposed into a
systematic and an idiosyncratic component. Systematic risk captures the exposures the portfolio
has to broad risk factors. For equity portfolios these are typically countries, industries, fundamental
(e.g., size), or technical (e.g., momentum). The portfolio systematic risk depends on its exposure to
these risk factors, the volatility of the factors, and how they correlate with each other. Idiosyncratic
risk captures the uncertainty associated with news affecting only individual issuers in the portfolio.
This risk can be diversified by decreasing the importance of individual issuers in the portfolio.
Intuitive multifactor risk models can provide relevant information regarding the major sources of
risk in the portfolio. This information can be used to understand the important imbalances of the
portfolio and guide the portfolio manager in constructing or rebalancing the portfolio. It can also
be used in interpreting results from return attribution or scenario analysis.

Risk management is an integral part of the
portfolio management process. Risk models are
central to this practice, allowing managers to
quantify and analyze the risk embedded in their

The authors would like to thank Andy Sparks, Anuj Kumar, and Chris Sturhahn of Barclays for their
help and comments.

portfolios. Risk models provide managers in-
sight into the major sources of risk in a port-
folio, helping them to control their exposures
and understand the contributions of different

171
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portfolio components to total risk. They help
portfolio managers in their decision-making
process by providing answers to important
questions such as: How does my small-cap
exposure affect portfolio risk? Does my under-
weight in diversified financials hedge my over-
weight in banks? Risk models are also widely
used in various other areas such as in portfo-
lio construction, performance attribution, and
scenario analysis.

In this entry, we discuss the structure of multi-
factor equity risk models, types of factors used
in these models, and describe certain estima-
tion techniques. We also illustrate the use of eq-
uity risk factor models in various applications,
namely the analysis of portfolio risk, portfo-
lio construction, scenario analysis, and perfor-
mance attribution.

Throughout this entry, we will be using the
Barclays Global Risk Model1 for illustration
purposes. For completeness, we also refer to
other approaches one can take to construct such
a model.

MOTIVATION
In this section, we discuss the motivation be-
hind the multifactor equity risk models. Let’s
assume that a portfolio manager wants to esti-
mate and analyze the volatility of a large portfo-
lio of stocks. A straightforward idea would be to
compute the volatility of the historical returns
of the portfolio and use this measure to forecast
future volatility. However, this framework does
not provide any insight into the relationships
between different securities in the portfolio or
the major sources of risk. For instance, it does
not assist a portfolio manager interested in di-
versifying her portfolio or constructing a port-
folio that has better risk-adjusted performance.

Instead of estimating the portfolio volatility
using historical portfolio returns, one could uti-
lize a different strategy. The portfolio return
is a function of stock returns and the market
weights of these stocks in the portfolio. Us-

ing this, the forecasted volatility of the port-
folio (σ P) can be computed as a function of the
weights (w) and the covariance matrix (�s) of
stock returns in the portfolio:

σ 2
P = wT · �s · w

This covariance matrix can be decomposed
into individual stock volatilities and the corre-
lations between stock returns. Volatilities mea-
sure the riskiness of individual stock returns
and correlations represent the relationships be-
tween the returns of different stocks. Looking
into these correlations and volatilities, the port-
folio manager can gain insight into her portfo-
lio, namely the riskiness of different parts of the
portfolio or how the portfolio can be diversified.
As we outlined above, to estimate the portfolio
volatility we need to estimate the correlation
between each pair of stocks. Unfortunately, this
means that the number of parameters to be es-
timated grows quadratically with the number
of stocks in the portfolio.2 For most practical
portfolios, the relatively large number of stocks
makes it difficult to estimate the relationship be-
tween stock returns in a robust way. Moreover,
this framework uses the history of individual
stock returns to forecast future stock volatility.
However, stock characteristics are dynamic and
hence using returns from different time periods
may not produce good forecasts.3 Finally, the
analysis does not provide much insight regard-
ing the broad factors influencing the portfo-
lio. These drawbacks constitute the motivation
for the multifactor risk models detailed in this
entry.

One of the major goals of multifactor risk
models is to describe the return of a port-
folio using a smaller set of variables, called
factors. These factors should be designed to
capture broad (systematic) market fluctuations,
but should also be able to capture specific nu-
ances of individual portfolios. For instance, a
broad U.S. market factor would capture the gen-
eral movement in the equity market, but not
the varying behavior across industries. If our
portfolio is heavily biased toward particular
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industries, the broad U.S. market factor may
not allow for a good representation of our port-
folio’s return.

In the context of factor models, the total re-
turn of a stock is decomposed into a systematic
and an idiosyncratic component. Systematic re-
turn is the component of total return due to
movements in common risk factors, such as in-
dustry or size. On the other hand, idiosyncratic
return can be described as the residual compo-
nent that cannot be explained by the systematic
factors. Under these models, the idiosyncratic
return is uncorrelated across issuers. Therefore,
correlations across securities are driven by their
exposures to the systematic risk factors and the
correlation between those factors.

The following equation demonstrates the sys-
tematic and the idiosyncratic components of
total stock return:

rs = Ls · F + εs

The systematic return for security s is the prod-
uct of the loadings of that security (Ls, also
called sensitivities) to the systematic risk fac-
tors and the returns of these factors (F). The
idiosyncratic return is given by εs . Under these
models, the portfolio volatility can be estimated
as

σ 2
p = LT

p · �F · L p + wT · � · w

Models represented by equations of this form
are called linear factor models. Here Lp repre-
sents the loadings of the portfolio to the risk
factors (determined as the weighted average of
individual stock loadings), and �F is the co-
variance matrix of factor returns. w is the vec-
tor of security weights in the portfolio, and �

is the covariance matrix of idiosyncratic stock
returns. Due to the uncorrelated nature of these
returns, this covariance matrix is diagonal: all
elements outside its diagonal are zero. As a re-
sult, the idiosyncratic risk of the portfolio is di-
versified away as the number of securities in the
portfolio increases. This is the diversification
benefit attained when combining uncorrelated
exposures.

For most practical portfolios, the number of
factors is significantly smaller than the number
of stocks in the portfolio. Therefore, the num-
ber of parameters in �F is much smaller than in
�S, leading to a generally more robust estima-
tion. Moreover, the factors can be designed in a
way that they are relatively more stable than in-
dividual stock returns, leading to models with
potentially better predictability.

Another important advantage of using linear
factor models is the detailed insight they pro-
vide into the structure and properties of port-
folios. These models characterize stock returns
in terms of systematic factors that (can) have
intuitive economic interpretations. Linear fac-
tor models can provide important insights re-
garding the major systematic and idiosyncratic
sources of risk and return. This analysis can
help managers to better understand their port-
folios and can guide them through the different
tasks they perform, such as rebalancing, hedg-
ing, or the tilting of their portfolios. The Bar-
clays Global Risk Model—the model used for
illustration throughout this entry—is an exam-
ple of such a linear factor model.

EQUITY RISK FACTOR
MODELS
The design of a linear factor model usu-
ally starts with the identification of the major
sources of risk embedded in the portfolios of
interest. For an equity portfolio manager who
invests in various markets across the globe, the
major sources of risk are typically country, in-
dustry membership, and other fundamental or
technical exposures such as size, value, and
momentum. The relative significance of these
components varies across different regions. For
instance, for regional equity risk models in de-
veloped markets, industry factors tend to be
more important than country factors, although
in periods of financial distress country factors
become more significant. On the other hand, for
emerging markets models the country factor
is still considered to be the most important
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source of risk. For regional models, the rela-
tive significance of industry factors depends on
the level of financial integration across different
local markets in that region. The importance of
these factors is also time-varying, depending
on the particular time period of the analysis.
For instance, country risk used to be a large
component of total risk for European equity
portfolios. However, country factors have been
generally losing their significance in this con-
text due to financial integration in the region
as a result of the European Union and a com-
mon currency, the euro. This is particularly true
for larger European countries. Similarly, the rel-
ative importance of industry factors is higher
over the course of certain industry-led crises,
such as the dot-com bubble burst (2000–2002)
and the 2007–2009 banking and credit crisis. As
we will see, the relative importance of different
risk factors varies also with the particular de-
sign and the estimation process chosen to cali-
brate the model.

A typical global or regional equity risk model
has the following structure:

ri = βMKT
i · F MKT + βIND

i · F IND

+ βCNT
i · F CNT +

n∑

j=1

�ij · F FT
j + εi

where

ri = the rate of return for stock i
FMKT = the market factor
FIND = the industry factor corresponding to

stock i
FCNT = the country factor corresponding to

stock i
β i = the exposure (beta) of the stock to the

corresponding factor
FFT = the set of fundamental and technical

factors
�i j = the loading of stock i to factor F FT

j
εi = the residual return for stock i

There are different ways in which these
factors can be incorporated into an equity
risk model. The choice of a particular model

affects the interpretation of the factors. For in-
stance, consider a model that has only mar-
ket and industry factors. Industry factors in
such a model would represent industry-specific
moves net of the market return. On the other
hand, if we remove the market factor from
the equation, the industry factors now incor-
porate the overall market effect. Their interpre-
tation would change, with their returns now
being close to market value-weighted indus-
try indexes. Country-specific risk models are
a special case of the previous representation
where the country factor disappears and the
market factor is represented by the returns of
the countrywide market. Macroeconomic fac-
tors are also used in some equity risk models,
as discussed later.

The choice of estimation process also influ-
ences the interpretation of the factors. As an
example, consider a model that has only in-
dustry and country factors. These factors can
be estimated jointly in one step. In this case,
both factors represent their own effect net of
the other ones. On the other hand, these factors
can be estimated in a multistep process—e.g.,
industry factors estimated in the first step and
then the country factors estimated in the second
step, using residual returns from the first step.
In this case, the industry factors have an inter-
pretation close to the market value-weighted
industry index returns, while the country fac-
tors would now represent a residual country
average effect, net of industry returns. We dis-
cuss this issue in more detail in the following
section.

Model Estimation
In terms of the estimation methodology, there
are three major types of multi-factor equity risk
models: cross-sectional, time series, and statisti-
cal. All three of these methodologies are widely
used to construct linear factor models in the eq-
uity space.4 In cross-sectional models, loadings
are known and factors are estimated. Examples
of loadings used in these models are industry
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membership variables and fundamental secu-
rity characteristics (e.g., the book-to-price ratio).
Individual stock returns are regressed against
these security-level loadings in every period,
delivering estimation of factor returns for that
period. The interpretation of these estimated
factors is usually intuitive, although dependent
on the estimation procedure and on the quality
of the loadings. In time-series models, factors
are known and loadings are estimated. Exam-
ples of factors in these models are financial or
macroeconomic variables, such as market re-
turns or industrial production. Time series of
individual equity returns are regressed against
the factor returns, delivering empirical sensitiv-
ities (loadings or betas) of each stock to the risk
factors. In these models, factors are constructed
and not estimated, therefore, their interpreta-
tion is straightforward. In statistical models
(e.g., principal component analysis), both fac-
tors and loadings are estimated jointly in an
iterative fashion. The resulting factors are sta-
tistical in nature, not designed to be intuitive.
That being said, a small set of the statistical fac-
tors can be (and usually are) correlated with
broad economic factors, such as the market.
Table 1 summarizes some of the characteristics
of these models.

An important advantage of cross-sectional
models is that the number of parameters to be

estimated is generally significantly smaller as
compared to the other two types of models. On
the other hand, cross-sectional models require a
much larger set of input data (company-specific
loadings). Cross-sectional models tend to be
relatively more responsive as loadings can
adjust faster to changing market conditions.
There are also hybrid models, which combine
cross-sectional and time-series estimation in
an iterative fashion; these models allow the
combination of observed and estimated factors.
Finally, statistical models require only a history
of security returns as input to the process. They
tend to work better when economic sources of
risk are hard to identify and are primarily used
in high-frequency applications.

As we mentioned in the previous section, the
estimation process is a major determinant in the
interpretation of factors. Estimating all factors
jointly in one-step regression allows for a nat-
ural decomposition of total variance in stock
returns. However it also complicates the in-
terpretation of factors as each factor now rep-
resents its own effect net of all other factors.
Moreover, multicollinearity problems arise nat-
urally in this set-up, potentially delivering lack
of robustness to the estimation procedure and
leading to unintuitive factor realizations. This
problem can be serious when using factors that
are highly correlated.

Table 1 Cross-Sectional, Time-Series, and Statistical Factor Models

Model Cross-Sectional Time-Series Statistical

Input set Security-specific loadings
and returns

Factor and security returns Security returns

Factors and loadings Factors are estimated using
the known loadings (e.g.,
industry beta or
momentum score)

Factors are known (e.g.,
market or industrial
production) and loadings
are estimated (e.g.,
industry or momentum
betas)

Both factors and loadings
are estimated

Interpretation Clean interpretation of
loadings; generally
intuitive interpretation of
factors

Straightforward
interpretation of factors

Factors may have no
intuitive interpretation

Number of parameters (No. of factors) × (No. of
time periods)

(No. of securities) × (No. of
factors)

(No. of securities) × (No. of
factors)
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An alternative in this case is to use a mul-
tistep estimation process where different sets
of factors are estimated sequentially, in sepa-
rate regressions. In the first step, stock returns
are used in a regression to estimate a certain
set of factors, and then residual returns from
this step are used to estimate the second step
factors, and so on. The choice of the order of
factors in such estimation influences the nature
of the factors and their realizations. This choice
should be guided by the significance and the de-
sired interpretation of the resulting factors. The
first-step factors have the most straightforward
interpretation as they are estimated in isolation
from all other factors using raw stock returns.
For instance, in a country-specific equity risk
model where there are industry, fundamental
and technical factors, the return series of indus-
try factors would be close to the industry index
returns if they are estimated in isolation in the
first step. This would not be the case if all in-
dustry, fundamental, and technical factors are
estimated in the same step.

An important input to the model estimation
is the security weights used in the regressions.
There is a variety of techniques employed in
practice but generally more weight is assigned
to less volatile stocks (usually represented by
larger companies). This enhances the robust-
ness of the factor estimates as stocks from these
companies tend to have relatively more stable
return distributions.

Types of Factors
In this section, we analyze in more detail the dif-
ferent types of factors typically used in equity
risk models. These can be classified under five
major categories: market factors, classification
variables, firm characteristics, macroeconomic
variables, and statistical factors.

Market Factors
A market factor can be used as an observed
factor in a time-series setting (e.g., in the cap-

ital asset pricing model, the market factor is
the only systematic factor driving returns). As
an example, for a U.S. equity factor model,
S&P 500 can be used as a market factor and
the loading to this factor—market beta—can
be estimated by regressing individual stock
returns to the S&P 500. On the other hand,
in a cross-sectional setting, the market factor
can be estimated by regressing stock returns
to their market beta for each time period (this
beta can be empirical—estimated via statistical
techniques—or set as a dummy loading, usually
1). When incorporated into a cross-sectional re-
gression with other factors, it generally works
as an intercept, capturing the broad average re-
turn for that period. This changes the interpre-
tation of all other factors to returns relative to
that average (e.g., industry factor returns would
now represent industry-specific moves net of
market).

Classification Variables
Industry and country are the most widely used
classification variables in equity risk models.
They can be used as observed factors in time-
series models via country/industry indexes
(e.g., return series of GICS indexes5 can be
used as observed industry factors). In a cross-
sectional setting, these factors are estimated by
regressing stock returns to industry/country
betas (either estimated or represented as a 0/1
dummy loading). These factors constitute a sig-
nificant part of total risk for a majority of eq-
uity portfolios, especially for portfolios tilted
toward specific industries or countries.

Firm Characteristics
Factors that represent firm characteristics can
be classified as either fundamental or techni-
cal factors. These factors are extensively used
in equity risk models; exposures to these fac-
tors represent tilts towards major investment
themes such as size, value, and momentum.
Fundamental factors generally employ a mix of
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accounting and market variables (e.g., account-
ing ratios) and technical factors commonly use
return and volume data (e.g., price momentum
or average daily volume traded).

In a time-series setting, these factors can be
constructed as representative long-short portfo-
lios (e.g., Fama-French factors). As an example,
the value factor can be constructed by taking a
long position in stocks that have a large book
to price ratio and a short position in the stocks
that have a small book to price ratio. On the
other hand, in a cross-sectional setup, these fac-
tors can be estimated by regressing the stock
returns to observed firm characteristics. For in-
stance, a book to price factor can be estimated
by regressing stock returns to the book to price
ratios of the companies. In practice, fundamen-
tal and technical factors are generally estimated
jointly in a multivariate setting.

A popular technique in the cross-sectional set-
ting is the standardization of the characteris-
tic used as loading such that it has a mean of
zero and a standard deviation of one. This im-
plies that the loading to the corresponding fac-
tor is expressed in relative terms, making the
exposures more comparable across the differ-
ent fundamental/technical factors. Also, sim-
ilar characteristics can be combined to form
a risk index and then this index can be used
to estimate the relevant factor (e.g., different
value ratios such as earnings to price and
book to price can be combined to construct a
value index, which would be the exposure to
the value factor). The construction of an in-
dex from similar characteristics can help re-
duce the problem of multicollinearity referred
to above. Unfortunately, it can also dilute the
signal each characteristic has, potentially re-
ducing its explanatory power. This trade-off
should be taken into account while construct-
ing the model. The construction of fundamental
factors and their loadings requires careful han-
dling of accounting data. These factors tend to
become more significant for portfolios that are
hedged with respect to the market or industry
exposures.

Macroeconomic Variables
Macroeconomic factors, representing the state
of the economy, are generally used as observed
factors in time-series models. Widely used
examples include interest rates, commodity in-
dexes, and market volatility (e.g., the VIX in-
dex). These factors tend to be better suited
for models with a long horizon. For short to
medium horizons, they tend to be relatively in-
significant when included in a model that incor-
porates other standard factors such as industry.
The opposite is not true, suggesting that macro
factors are relatively less important for these
horizons. This does not mean that the macro-
economic variables are not relevant in
explaining stock returns; it means that a large
majority of macroeconomic effects can be cap-
tured through the industry factors. Moreover,
it is difficult to directly estimate stock sensitiv-
ities to slow-moving macroeconomic variables.
These considerations lead to the relatively infre-
quent use of macro variables in short to medium
horizon risk models.6

Statistical Factors
Statistical factors are very different in nature
from all the aforementioned factors as they do
not have direct economic interpretation. They
are estimated using statistical techniques such
as principal component analysis where both
factors and loadings are estimated jointly in an
iterative fashion. Their interpretation can be dif-
ficult, yet in certain cases they can be re-mapped
to well-known factors. For instance, in a prin-
cipal component analysis model for the U.S.
equity market, the first principal component
would represent the U.S. market factor. These
models tend to have a relatively high in-sample
explanatory power with a small set of factors
and the marginal contribution of each factor
tends to diminish significantly after the first few
factors. Statistical factors can also be used to
capture the residual risk in a model with eco-
nomic factors. These factors tend to work better
when there are unidentified sources of risk such
as in the case of high-frequency models.
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Other Considerations in
Factor Models
Various quantitative and qualitative measures
can be employed to evaluate the relative per-
formance of different model designs. Gener-
ically, better risk models are able to forecast
more accurately the risk of different types of
portfolios across different economic environ-
ments. Moreover, a better model allows for an
intuitive analysis of the portfolio risk along the
directions used to construct and manage the
portfolio. The relative importance of these con-
siderations should frame how we evaluate
different models.

A particular model is defined by its estima-
tion framework and the selection of its factors
and loadings. Typically, these choices are eval-
uated jointly, as the contributions of specific
components are difficult to measure in prac-
tice. Moreover, decisions on one of these com-
ponents (partially) determine the choice of the
others. For instance, if a model uses fundamen-
tal firm characteristics as loadings, it also uses
estimated factors—more generally, decisions on
the nature of the factors determine the nature
of the loadings and vice-versa.

Quantitative measures of factor selection in-
clude the explanatory power or significance of
the factor, predictability of the distribution of
the factor, and correlations between factors. On
a more qualitative perspective, portfolio man-
agers usually look for models with factors and
loadings that have clean and intuitive interpre-
tation, factors that correspond to the way they
think about the asset class, and models that re-
flect their investment characteristics (e.g., short
vs. long horizon, local vs. global investors).

Idiosyncratic Risk
Once all systematic factors and loadings are
estimated, the residual return can be computed
as the component of total stock return that
cannot be explained by the systematic factors.
Idiosyncratic return—also called residual,
nonsystematic, or name-specific return—can

be a significant component of total return for
individual stocks, but tends to become smaller
for portfolios of stocks as the number of stocks
increases and concentration decreases (the
aforementioned diversification effect). The
major input to the computation of idiosyncratic
risk is the set of historical idiosyncratic returns
of the stock. Because the nature of the company
may change fast, a good idiosyncratic risk
model should use only recent and relevant id-
iosyncratic returns. Moreover, recent research
suggests that there are other conditional vari-
ables that may help improve the accuracy of id-
iosyncratic risk estimates. For instance, there is
substantial evidence that the market value of a
company is highly correlated with its idiosyn-
cratic risk, where larger companies exhibit
relatively smaller idiosyncratic risk. The use
of such variables as an extra adjustment factor
can improve the accuracy of idiosyncratic risk
estimates.

As mentioned before, idiosyncratic returns
of different issuers are assumed to be uncor-
related. However, different securities from the
same issuer can show a certain level of co-
movement, as they are all exposed to specific
events affecting their common issuer.

Interestingly, this co-movement is not perfect
or static. Certain news can potentially affect the
different securities issued by the same company
(e.g., equity, bonds, or equity options) in differ-
ent ways. Moreover, this relationship changes
with the particular circumstances of the firm.
For instance, returns from securities with claims
to the assets of the firm should be more highly
correlated if the firm is in distress. A good
risk model should be able to capture these
phenomena.

APPLICATIONS OF EQUITY
RISK MODELS
Multifactor equity risk models are employed
in various applications such as the quantitative
analysis of portfolio risk, hedging unwanted
exposures, portfolio construction, scenario
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analysis, and performance attribution. In this
section we discuss and illustrate some of these
applications.

Portfolio managers can be divided broadly
into indexers (those that measure their returns
relative to a benchmark index) and absolute
return managers (typically hedge fund man-
agers). In between stand the enhanced index-
ers, those that are allowed to deviate from the
benchmark index in order to express views, pre-
sumably leading to superior returns. All are
typically subject to a risk budget that prescribes
how much risk they are allowed to take to
achieve their objectives: minimize transaction
costs and match the index return for the pure
indexers, maximize the net return for the en-
hanced indexers, or maximize absolute return
for absolute return managers. In all of these
cases, the manager has to merge all her views
and constraints into a final portfolio.

The investment process of a typical portfo-
lio manager involves several steps. Given the
investment universe and objective, the steps
usually consist of portfolio construction, risk
prediction, and performance evaluation. These
steps are iterated throughout the investment cy-
cle over each rebalancing period. The examples
in this section are constructed following these
steps. In particular, we start with a discussion
on the portfolio construction process for three
equity portfolio managers with different goals:
The first aims to track a benchmark, the second
to build a momentum portfolio, and the third
to implement sector views in a portfolio. We
conduct these exercises through a risk-based
portfolio optimization approach at a monthly
rebalancing frequency. For the index-tracking
portfolio example, we then conduct a careful
evaluation of its risk exposures and contribu-
tions to ensure that the portfolio manager’s
views and intuition coincide with the actual
portfolio exposures. Once comfortable with the
positions and the associated risk, the portfolio
is implemented. At the end of the monthly in-
vestment cycle, the performance of the portfolio
and return contributions of its different compo-

nents can be evaluated using performance at-
tribution.

Scenario analysis can be employed in both
the portfolio construction and the risk eval-
uation phases of the portfolio process. This
exercise allows the manager to gain additional
intuition regarding the exposures of her portfo-
lio and how it may behave under particular eco-
nomic circumstances. It usually takes the form
of stress testing the portfolio under historical
or hypothetical scenarios. It can also reveal the
sensitivity of the portfolio to particular move-
ments in economic and financial variables not
explicitly considered during the portfolio con-
struction process. The last application in this
entry illustrates this kind of analysis.

Throughout our discussion, we use a suite
of global cash equity risk models available
through POINT

R©
, the Barclays portfolio ana-

lytics and modeling platform.7

Portfolio Construction
Broadly speaking there are two main ap-
proaches to portfolio construction: a formal
quantitative optimization-based approach and
a qualitative approach that is based primarily
on manager intuition and skill. There are many
variations within and between these two ap-
proaches. In this section, we focus on risk-based
optimization using a linear factor model. We do
not discuss other more qualitative or nonrisk-
based approaches (e.g., a stratified sampling). A
common objective in a risk-based optimization
exercise is the minimization of volatility of the
portfolio, either in isolation or when evaluated
against a benchmark. In the context of multifac-
tor risk models, total volatility is composed of
a systematic and an idiosyncratic component,
as described above. Typically, both of these
components are used in the objective function
of the optimization problems. We demonstrate
three different portfolio construction exercises
and discuss how equity factor models are em-
ployed in this endeavor. The examples were
constructed using the POINT

R©
Optimizer.8 All
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optimization problems were run as of July 30,
2010.

Tracking an Index
In our first example, we study the case of a port-
folio manager whose goal is to create a port-
folio that tracks a benchmark equity index as
closely as possible, using a limited number of
stocks. This is a very common problem in the
investment industry since most assets under
management are benchmarked to broad mar-
ket indexes. Creating a benchmark-tracking
portfolio provides a good starting point for
implementing strategic views relative to that
benchmark. For example, a portfolio manager
might have a mandate to outperform a bench-
mark under particular risk constraints. One
way to implement this mandate is to dynam-
ically tilt the tracking portfolio toward certain
investment styles based on views on the future
performance of those styles at a particular point
in the business cycle.

Consider a portfolio manager who is bench-
marked to the S&P 500 index and aims to build a
tracking portfolio composed of long-only posi-
tions from the set of S&P 500 stocks. Because of
transaction cost and position management lim-
itations, the portfolio manager is restricted to a
maximum number of 50 stocks in the tracking
portfolio. Her objective is to minimize the track-
ing error volatility (TEV) between her portfo-
lio and the benchmark. Tracking error volatil-
ity can be described as the volatility of the
return differential between the portfolio and the
benchmark (i.e., measures a typical movement
in this net position). A portfolio’s TEV is com-
monly referred to as the risk or the (net) volatil-
ity of the portfolio.

As mentioned before, the total TEV is de-
composed into a systematic TEV and an id-
iosyncratic TEV. Moreover, because these two
components are assumed to be independent,

Total TEV

=
√

Systematic TEV2 + Idiosyncratic TEV2

Table 2 Total Risk of Index-Tracking Portfolio vs. the
Benchmark (bps/month)

Attribute Realized Value

Total TEV 39.6
Idiosyncratic TEV 35.8
Systematic TEV 16.9

The minimization of systematic TEV is achieved
by setting the portfolio’s factor exposures (net
of benchmark) as close to zero as possible,
while respecting other potential constraints of
the problem (e.g., maximum number of 50 se-
curities in the portfolio). The minimization of
idiosyncratic volatility is achieved through the
diversification of the portfolio holdings.

Table 2 illustrates the total risk for portfolio
versus benchmark that comes out of the opti-
mization problem. We see that total TEV of the
net position is 39.6 bps/month with 16.9 bps/
month of systematic TEV and 35.8 bps/month
of idiosyncratic TEV. If the portfolio manager
wants to reduce her exposure to name-specific
risk, she can increase the upper bound on the
number of securities picked by the optimizer to
construct the optimal portfolio (increasing the
diversification effect). Another option would
be to increase the relative weight of idiosyn-
cratic TEV compared to the systematic TEV
in the objective function. The portfolio result-
ing from this exercise would have smaller id-
iosyncratic risk but, unfortunately, would also
have higher systematic risk. This trade-off can
be managed based on the portfolio manager’s
preferences.

Figure 1 depicts the distribution of the
position amount for individual stocks in the
portfolio. We can see that the portfolio is well
diversified across the 50 constituent stocks with
no significant concentrations in any of the indi-
vidual positions. The largest stock position is
4.1%, about three times larger than the small-
est holding. Later in this entry, we analyze
the risk of this particular portfolio in more
detail.
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Figure 1 Position Amount of Individual Stocks in the Optimal Tracking Portfolio

Constructing a Factor-Mimicking
Portfolio

Factor-mimicking portfolios allow portfolio
managers to capitalize on their views on vari-
ous investment themes. For instance, the portfo-
lio manager may forecast that small-cap stocks
will outperform large-cap stocks or that value
stocks will outperform growth stocks in the
near future. By constructing long-short factor-
mimicking portfolios, managers can place
positions in line with their views on these in-
vestment themes without taking explicit direc-
tional views on the broader market.

Considering another example, suppose our
portfolio manager forecasts that recent winner
(high momentum) stocks will outperform re-
cent losers (low momentum). To implement her

views, she constructs two portfolios, one with
winner stocks and one with loser stocks (100
stocks from the S&P 500 universe in each port-
folio). She then takes a long position in the win-
ners portfolio and a short position in the losers
portfolio. While a sensible approach, a long-
short portfolio constructed in this way would
certainly have exposures to risk factors other
than momentum. For instance, the momentum
view might implicitly lead to unintended sec-
tor bets. If the portfolio manager wants to un-
derstand and potentially limit or avoid these
exposures, she needs to perform further anal-
ysis. The use of a risk model will help her
substantially.

To illustrate this point, table 3 shows one
of POINT

R©
’s risk model outputs—the 10

Table 3 Largest Risk Factor Exposures for the Momentum Winners/Losers Portfolio (bps/month)

Factor Name
Sensitivity/
Exposure

Net
Exposure

Factor
Volatility

Contribution
to TEV

EQUITIES DEVELOPED MARKETS
U.S. Equity Energy Empirical beta −0.094 651 25.3
U.S. Equity Materials Empirical beta −0.045 808 15.9
U.S. Equity CYC Media Empirical beta 0.027 759 −9.9
U.S. Equity FIN Banks Empirical beta 0.088 900 13.0
U.S. Equity FIN Diversified Financials Empirical beta −0.108 839 39.6
U.S. Equity FIN Real Estate Empirical beta 0.100 956 −19.0
U.S. Equity TEC Software Empirical beta −0.057 577 17.2
U.S. Equity TEC Semiconductors Empirical beta −0.029 809 9.9
U.S. Equity Corporate Default Probability CDP −0.440 76 23.2
U.S. Equity Momentum (9m) Momentum 1.491 73 74.9
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largest risk factor exposures by their con-
tribution to TEV (last column in the table)
for the initial long-short portfolio. While
momentum has the largest contribution to
volatility, other risk factors also play a sig-
nificant role. As a result, major moves in
risk factors other than momentum can have
a significant—and potentially unintended—
impact on the portfolio’s return.

Given this information, suppose our port-
folio manager decides to avoid these expo-
sures to the extent possible. She can do that
by setting all exposures to factors other than
momentum to zero (these type of constraints
may not always be feasible and one may need
to relax them to achieve a solution). More-
over, because she wants the portfolio to rep-
resent a pure systematic momentum effect,
she seeks to minimize idiosyncratic risk. There
are many ways to implement these additional
goals, but increasingly portfolio managers are
turning to risk models (using an optimization
engine) to construct their portfolios in a ro-
bust and convenient way. She decides to set
up an optimization problem where the objec-
tive function is the minimization of idiosyn-
cratic risk. The tradable universe is the set of
S&P 500 stocks and the portfolio is constructed
to be dollar-neutral. This problem also incor-
porates the aforementioned factor exposure
constraints.
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Figure 2 Largest 10 Positions on Long and Short Sides for the Momentum Portfolio

The resulting portfolio (not shown) has ex-
actly the risk factor exposures that were spec-
ified in the problem constraints. It exhibits a
relatively low idiosyncratic TEV. Figure 2 de-
picts the largest 10 positions on the long and
short sides of the momentum factor-mimicking
portfolio; we see that there are no significant
individual stock concentrations.

Implementing Sector Views
For our final portfolio construction example,
let’s assume we are entering a recessionary
environment. An equity portfolio manager
forecasts that the consumer staples sector will
outperform the consumer discretionary sector
in the near future, so she wants to create a
portfolio to capitalize on this view. One sim-
ple idea would be to take a long position in the
consumer staples sector (NCY: noncyclical) and
a short position in the consumer discretionary
sector (CYC: cyclical) by using, for example, sec-
tor ETFs. Similar to the previous example, this
could result in exposures to risk factors other
than the industry factors. Table 4 illustrates
the exposure of this long-short portfolio to the
risk factors in the POINT

R©
U.S. equity risk

model. As we can see in the table, the portfo-
lio has significant net exposures to certain fun-
damental and technical factors, such as share
turnover.
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Table 4 Factor Exposures and Contributions for Consumer Staples vs. Consumer Discretionary Portfolio
(bps/month)

Factor Name
Sensitivity/
Exposure

Net
Exposure

Factor
Volatility

Contribution
to TEV

CURRENCY
USD (U.S. dollar) Market weight (%) 0.00 0 0.0

EQUITIES DEVELOPED MARKETS
U.S. Equity CYC Automobiles Empirical beta −0.069 1,086 60.3
U.S. Equity CYC Consumer Durables Empirical beta −0.093 822 59.1
U.S. Equity CYC Consumer Services Empirical beta −0.140 690 71.1
U.S. Equity CYC Media Empirical beta −0.292 759 172.8
U.S. Equity CYC Retailing Empirical beta −0.317 745 185.1
U.S. Equity NCY Retailing Empirical beta 0.226 404 −44.9
U.S. Equity NCY Food Empirical beta 0.546 418 −96.4
U.S. Equity NCY Household Empirical beta 0.236 415 −55.3
U.S. Equity Total Yield Total yield 0.269 36 −3.7
U.S. Equity Corporate Default Probability CDP −0.201 76 9.0
U.S. Equity Share Turnover Rate Share turnover −0.668 59 −10.3
U.S. Equity Momentum (9m) Momentum −0.144 73 −5.6
U.S. Equity Discretionary Accruals Accruals −0.020 31 −0.2
U.S. Equity Market Value Size 0.193 111 1.7
U.S. Equity Realized Volatility Realized volatility −0.619 97 5.5
U.S. Equity Earnings to Price Earnings–Price 0.024 44 0.0
U.S. Equity Book to Price Book–Price −0.253 40 5.8
U.S. Equity Earnings Forecast Earnings forecast 0.038 67 −0.4

Suppose the portfolio manager decides to
limit exposures to fundamental and technical
factors. We can again use the optimizer to con-
struct a long-short portfolio, with an exposure
(beta) of 1 to the consumer staples sector and
a beta of −1 to the consumer discretionary sec-
tor. To limit the exposure to fundamental and
technical risk factors, we further impose the ex-
posure to each of these factors to be between
−0.2 and 0.2.9 We also restrict the portfolio to
be dollar neutral, and allow for only long po-
sitions in the consumer staples stocks and for
only short positions in consumer discretionary
stocks. Finally, we restrict the investment uni-
verse to the members of the S&P 500 index.10

The resulting portfolio consists of 69 securities
(approximately half of discretionary and sta-
ples stocks in S&P 500) with 31 long positions
in the consumer staples stocks and 38 short
positions in consumer discretionary stocks.
Table 5 depicts the factor exposures for this
portfolio. As we can see in the table, the sum

of the exposures to the industry factors is 1
for the consumer staples stocks and −1 for the
consumer discretionary stocks. Exposures to
fundamental and technical factors are gener-
ally significantly smaller when compared to
the previous table, limiting the adverse effects
of potential moves in these factors. Interest-
ingly, no stocks from the automobiles indus-
try are selected in the optimal portfolio, poten-
tially due to excessive idiosyncratic risk of firms
in that particular industry. The contribution to
volatility from the cyclical sector is higher than
that from the non-cyclical sector, due to higher
volatility of industry factors in the former.

The bounds used for the fundamental and
technical factor exposures in the portfolio con-
struction process were set to force a reduction
in the exposure to these factors. However, there
is a trade-off between having smaller expo-
sures and having smaller idiosyncratic risk in
the final portfolio. The resolution of this trade-
off depends on the preferences of the portfolio
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Table 5 Factor Exposures and Contributions for the Optimal Sector View Portfolio (bps/month)

Factor Name
Sensitivity/
Exposure

Net
Exposure

Factor
Volatility

Contribution
to TEV

EQUITIES DEVELOPED MARKETS
U.S. Equity CYC Consumer Durables Empirical beta −0.118 822 80.6
U.S. Equity CYC Consumer Services Empirical beta −0.222 690 124.9
U.S. Equity CYC Media Empirical beta −0.242 759 151.0
U.S. Equity CYC Retailing Empirical beta −0.417 745 264.2
U.S. Equity NCY Retailing Empirical beta 0.287 404 −67.9
U.S. Equity NCY Food Empirical beta 0.497 418 −112.6
U.S. Equity NCY Household Empirical beta 0.216 415 −56.2
U.S. Equity Total Yield Total yield −0.059 36 0.8
U.S. Equity Corporate Default Probability CDP −0.042 76 1.7
U.S. Equity Share Turnover Rate Share turnover −0.196 59 −3.9
U.S. Equity Momentum (9m) Momentum −0.138 73 −4.7
U.S. Equity Discretionary Accruals Accruals −0.014 31 −0.1
U.S. Equity Market Value Size −0.011 111 −0.1
U.S. Equity Realized Volatility Realized volatility −0.199 97 −0.1
U.S. Equity Earnings to Price Earnings–Price 0.027 44 0.0
U.S. Equity Book to Price Book–Price −0.070 40 1.4
U.S. Equity Earnings Forecast Earnings forecast 0.085 67 −1.1

manager. When the bounds are more restric-
tive, we are also decreasing the feasible set of
solutions available to the problem and there-
fore potentially achieving a higher idiosyncratic
risk (remember that the objective is the mini-
mization of idiosyncratic risk). In our example,
the idiosyncratic TEV of the portfolio increases
from 119 bps/month (before the optimization)
to 158 bps/month on the optimized portfolio.
This change is the price paid for the ability to
limit certain systematic risk factor exposures.

Analyzing Portfolio Risk Using
Multifactor Models
Now that we have seen examples of using mul-
tifactor equity models for portfolio construction
and briefly discussed their risk outcomes, we
take a more in-depth look at portfolio risk. Risk
analysis based on multifactor models can take
many forms, from a relatively high-level aggre-
gate approach to an in-depth analysis of the risk
properties of individual stocks and groups of
stocks. Multifactor equity risk models provide

the tools to perform the analysis of portfolio
risk in many different dimensions, including
exposures to risk factors, security factor con-
tributions to total risk, analysis at the ticker
level, and scenario analysis. In this section, we
provide an overview of such detailed analysis
using the S&P 500 index tracker example we
created in the previous section.

Recall from Table 2 that the TEV of the op-
timized S&P 500 tracking portfolio was 39.6
bps/month, composed mostly of idiosyncratic
risk (35.8 bps/month) and a relatively small
amount of systematic risk (16.9 bps/month). To
analyze further the source of these numbers,
we first compare the holdings of the portfolio
with those of the benchmark and then study the
impact of the mismatch to the risk of the net po-
sition (Portfolio–Benchmark). The first column
in Table 6 shows the net market weights (NMW)
of the portfolio at the sector level (GICS level 1).
Our portfolio appears to be well balanced with
respect to the benchmark from a net market
weight perspective. The largest market value
discrepancies are an overweight in information
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Table 6 Net Market Weights and Risk Contributions by Sector (bps/month)

Contribution to TEV (CTEV)
Net Market
Weight (%) Systematic Idiosyncratic Total

Total 0.0 7.2 32.7 39.8
Energy 1.4 1.3 4.4 5.7
Materials −2.1 1.0 1.3 2.3
Industrials 2.1 0.3 3.8 4.1
Consumer discretionary −3.6 1.7 4.7 6.3
Consumer staples −0.5 0.5 2.2 2.6
Health care −3.3 1.3 2.2 3.4
Financials 0.1 0.6 7.0 7.5
Information tech 5.2 0.6 5.5 6.1
Telecom services 2.4 0.2 0.8 1.0
Utilities −1.7 −0.1 0.9 0.8

technology (+5.2%) and an underweight in
consumer discretionary (−3.6%) and health
care (−3.3%) companies. However, the sector
with the largest contribution to overall risk
(contribution to TEV, or CTEV) is financials
(7.5 bps/month). This may seem unexpected,
given the small NMW of this sector (0.1%).
This result is explained by the fact that con-
tributions to risk (CTEV) are dependent on the
net market weight of an exposure, its risk and
also the correlation between the different ex-
posures. Looking into the decomposition of the
CTEV, the table also shows that most of the total
contribution to risk from financials is idiosyn-
cratic (7.0 bps/month). This result is due to the

small number of securities our portfolio has in
this sector and the underlying high volatility of
these stocks. In short, the diversification bene-
fits across financial stocks are small in our port-
folio: We could potentially significantly reduce
total risk by constructing our financials expo-
sure using more names. Note that this analysis
is only possible with a risk model.

Table 7 highlights additional risk measures
by sector. What we see in the first column is the
isolated TEV, that is, the risk associated with
the stocks in that particular sector only. On an
isolated basis, the information technology sec-
tor has the highest risk in the portfolio. This
top position in terms of isolated risk does not

Table 7 Additional Risk Measures by Sector

Isolated TEV
(bps/month)

Liquidation
Effect on TEV
(bps/month)

TEV Elasticity
(×100) (bps)

Systematic
Beta (bps)

Total 39.64 −39.64 100.00 1.00
Energy 13.94 −3.38 14.25 0.89
Materials 16.94 1.29 5.74 1.25
Industrials 20.99 1.41 10.27 1.20
Consumer discretionary 29.34 4.25 15.89 1.11
Consumer staples 10.70 −1.20 6.59 0.70
Health care 17.37 0.37 8.56 0.65
Financials 20.77 −2.19 18.93 1.34
Information tech 31.90 6.20 15.30 0.99
Telecom services 11.58 0.67 2.53 0.76
Utilities 10.30 0.56 1.93 0.79



186 Factor Models for Portfolio Construction

translate into the highest contribution to overall
portfolio risk, as we saw in Table 6. The discrep-
ancy between isolated risk numbers and contri-
butions to risk is explained by the correlation
between the exposures and allows us to un-
derstand the potential hedging effects present
across our portfolio. The liquidation effect re-
ported in the table represents the change in
TEV when we completely hedge that particu-
lar position, that is, enforce zero net exposure
to any stock in that particular sector. Interest-
ingly, eliminating our exposure to information
technology stocks would actually increase our
overall portfolio risk by 6.2 bps/month. This
happens because the overweight in this sec-
tor is effectively hedging out risk contributions
from other sectors. If we eliminate this expo-
sure, the portfolio balance is compromised. The
TEV elasticity reported gives an additional per-
spective regarding how the TEV in the portfo-
lio changes when we change the exposure to
that sector. Specifically, it tells us the percent-
age change in TEV for each 1% change in our
exposure to that particular sector. For example,
if we double our exposure to the energy sector,
our TEV would increase by 14.25% (from 39.6
bps/month to 45.2 bps/month). Finally, the re-
port estimates the portfolio to have a beta of
1.00 to the benchmark, which is, of course, in
line with our index tracking objective. The beta
statistic measures the comovement between the
systematic risk drivers of the portfolio and the
benchmark and should be interpreted only as
that. In particular, a low portfolio beta (relative
to the benchmark) does not imply low port-
folio risk. It signals relatively low systematic
co-movement between the two universes or a
relatively high idiosyncratic risk for the port-
folio. For example, if the sources of systematic
risk from the portfolio and the benchmark are
distinct, the portfolio beta is close to zero. The
report also provides the systematic beta associ-
ated with each sector. For instance, we see that
a movement of 1% in the benchmark leads to
a 1.34% return in the financials component of

our portfolio. As expected, consumer staples
and health care are two low beta industries, as
they tend to be more stable through the business
cycle.11

Although important, the information we
examined so far is still quite aggregated. For
instance, we know from Table 6 that a large com-
ponent of idiosyncratic risk comes from finan-
cials. But what names are contributing most?
What are the most volatile sectors? How are
systematic exposures distributed within each
sector? Risk models should be able to provide
answers to all these questions, allowing for a
detailed view of the portfolio’s risk exposures
and contributions. As an example, Table 8 dis-
plays all systematic risk factors the portfolio
or the benchmark loads onto. It also provides
the portfolio, benchmark, and net exposures for
each risk factor, the volatility of each of these
factors, and their contributions to total TEV.
The table shows that the net exposures to the
risk factors are generally low, meaning that the
tracking portfolio has small active exposures.
This finding is in line with the evidence from
Table 2, where we see that the systematic risk
is small (16.9 bps/month). If we look into the
contributions of individual factors to total TEV,
the table shows that the top contributors are the
size, share turnover, and realized volatility fac-
tors. The optimal index tracking portfolio tends
to be composed of very large-cap names within
the specified universe, and that explains the net
positive loading to the market value (size) fac-
tor. This portfolio tilt is due to the generally
low idiosyncratic risk large companies have.
This is seen favorably by the optimization en-
gine, as it tries to minimize idiosyncratic risk.
This same tilt would explain our net exposure
to both the share turnover and realized volatil-
ity factors, as larger companies tend to have
lower realized volatility and share turnover too.
Interestingly, industry factors have relatively
small contributions to TEV, even though they
exhibit significantly higher volatilities. This
results from the fact that the optimization
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engine specifically targets these factors because
of their high volatility and is successful in min-
imizing net exposure to industry factors in the
final portfolio.

Finally, remember from Table 2 that the largest
component of the portfolio risk comes from
name-specific exposures. Therefore, it is impor-
tant to be aware of which individual stocks
in our portfolio contribute the most to over-
all risk. Table 9 shows the set of stocks in our
portfolio with the largest idiosyncratic risk. The
portfolio manager can use this information as a
screening device to filter out undesirable posi-
tions with high idiosyncratic risk and to make
sure her views on individual firms translate into
risk as expected. In particular, the list in the
table should only include names about which
the portfolio manager has strong views, either
positive—expressed with positive NMW—or
negative—in which case we would expect a
short net position.

It should be clear from the above examples
that although the factors used to measure risk
are predetermined in a linear factor model,
there is a large amount of flexibility on the
way the risk numbers can be aggregated and
reported. Instead of sectors, we could have
grouped risk by any other classification of
individual stocks, for example, by regions or
market capitalization. This allows the risk to be
reported using the same investment philosophy
underlying the portfolio construction process12

regardless of the underlying factor model.

There are also many other risk analytics avail-
able, not mentioned in this example, that give
additional detail about specific risk properties
of the portfolio and the constituents. We have
only discussed total, systematic, and idiosyn-
cratic risk (which can be decomposed into risk
contributions on a flexible basis), and referred
to isolated and liquidation TEV, TEV elasticity,
and portfolio beta. Most users of multifactor
risk models will find their own preferred
approach to risk analysis through experience.

Performance Attribution
Now that we discussed portfolio construction
and risk analysis as the first steps of the
investment process, we give a brief overview
of performance attribution, an ex post analysis
of performance typically conducted at the
end of the investment horizon. Performance
attribution analysis provides an evaluation
of the portfolio manager’s performance with
respect to various decisions made throughout
the investment process. The underperformance
or outperformance of the portfolio manager
when compared to the benchmark can be due to
different reasons, including effective sector allo-
cation, security selection, or tilting the portfolio
toward certain risk factors. Attribution analysis
aims to unravel the major sources of this per-
formance differential. The exercise allows the
portfolio manager to understand how her
particular views—translated into net

Table 9 Individual Securities and Idiosyncratic Risk Exposures

Company Name
Portfolio
Weight (%)

Benchmark
Weight (%)

Net
Weight (%)

Idiosyncratic TEV
(bps/month)

Vornado Realty Trust 2.80 0.13 2.67 7.42
Kohls Corp 1.41 0.15 1.26 6.58
Bank of America Corp 2.71 1.41 1.29 6.16
Conocophillips 2.29 0.82 1.47 6.03
Roper Industries Inc 1.62 0.06 1.56 5.98
Walt Disney Co 2.26 0.66 1.60 5.48
Honeywell International Inc. 2.58 0.33 2.25 5.48
Cincinnati Financial Corp 1.88 0.05 1.83 5.35
Goldman Sachs 0.00 0.78 −0.78 5.25



MULTIFACTOR EQUITY RISK MODELS AND THEIR APPLICATIONS 189

exposures—performed during the period
and reveals whether some of the portfolio’s
performance was the result of unintended bets.

There are three basic forms of attribution anal-
ysis used for equity portfolios. These are return
decomposition, factor model–based attribution,
and style analysis. In the return decomposi-
tion approach, the performance of the portfo-
lio manager is generally attributed to top-down
allocation (e.g., currency, country, or sector
allocation) in a first step, followed by a bottom-
up security selection performance analysis. This
is a widely used technique among equity port-
folio managers.

Factor model–based analysis attributes per-
formance to exposures to risk factors such as
industry, size, and financial ratios. It is relatively
more complicated than the previous approach
and is based on a particular risk model that
needs to be well understood. For example, let’s
assume that a portfolio manager forecasts that
value stocks will outperform growth stocks in
the near future. As a result, the manager tilts
the portfolio toward value stocks as compared
to the benchmark, creating an active exposure
to the value factor. In an attribution framework
without systematic factors, such sources of
performance cannot be identified and hence
may be inadvertently attributed to other rea-
sons. Factor model–based attribution analysis
adds value by incorporating these factors (rep-
resenting major investment themes) explicitly
into the return decomposition process and by
identifying additional sources of performance
represented as active exposures to systematic
risk factors.

Style analysis, on the other hand, is based on a
regression of the portfolio return to a set of style
benchmarks. It requires very little information
(e.g., we do not need to know the contents of
the portfolio), but the outcome depends signif-
icantly on the selection of style benchmarks. It
also assumes constant loadings to these styles
across the regression period, which may be un-
realistic for managers with somewhat dynamic
allocations.

Factor–Based Scenario Analysis

The last application we review goes over the
use of equity risk factor models in the context of
scenario analysis. Many investment profession-
als utilize scenario analysis in different shapes
and forms for both risk and portfolio construc-
tion purposes. Factor-based scenario analysis
is a tool that helps portfolio managers in their
decision-making process by providing addi-
tional intuition on the behavior of their portfo-
lio under a specified scenario. A scenario can be
a historical episode, such as the equity market
crash of 1987, the war in Iraq, or the 2008 credit
crisis. Alternatively, scenarios can be defined
as a collection of hypothetical views (e.g., user-
defined scenarios) in a variety of forms such
as a view on a given portfolio or index (e.g.,
S&P 500 drops by 20%) or a factor (e.g., U.S.
equity–size factor moves by 3 standard devi-
ations) or correlation between factors (e.g., in-
creasing correlations across markets in episodes
of flight to quality). In this section, we use the
POINT

R©
Factor-Based Scenario Analysis Tool

to illustrate how we can utilize factor models to
perform scenario analysis.

Before we start describing the example, let’s
take an overview of the mechanics of the model.
It allows for the specification of user views on
returns of portfolios, indexes, or risk factors.
When the user specifies a view on a portfolio or
index, this is translated into a view on risk fac-
tor realizations, through the linear factor model
framework.13 These views are combined with
ones that are directly specified in terms of risk
factors. It is important to note that the portfolio
manager does not need to specify views on all
risk factors, and typically has views only on a
small subset of them. Once the manager speci-
fies this subset of original views, the next step
is to expand these views to the whole set of
factors. The scenario analysis engine achieves
this by estimating the most likely realization
of all other factors—given the factor realiza-
tions on which views are specified—using the
risk model covariance matrix. Once all factor
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Table 10 Index Returns under Scenario 1 (VIX jumps by 50%)

Universe Type Measure Unit Result

S&P 500 Equity index Return % −7.97
FTSE U.K. 100 Equity index Return % −9.34
DJ EURO STOXX 50 Equity index Return % −11.63
NIKKEI 225 Equity index Return % −4.99
MSCI-AC ASIA PACIFIC EX JAPAN Equity index Return % −10.33
MSCI-EMERGING MARKETS Equity index Return % −9.25

realizations are populated, the scenario out-
come for any portfolio or index can be com-
puted by multiplying their specific exposures to
the risk factors by the factor realizations under
the scenario. The tool provides a detailed analy-
sis of the portfolio behavior under the specified
scenario.

We illustrate this tool using two different sce-
narios: a 50% shift in the U.S. equity market
volatility—represented by the VIX index—
(scenario 1) and a 50% jump in the European
credit spreads (scenario 2).14 We use a set of
equity indexes from across the globe to illus-
trate the impact of these two scenarios. We run
the scenarios as of July 30, 2010, which spec-
ifies the date both for the index loadings and
the covariance matrix used. Base currency is set
to U.S. dollars (USD) and hence index returns
presented below are in USD.

Table 10 shows the returns of the chosen eq-
uity indexes under the first scenario. We see
that all indexes experience significant negative
returns with Euro Stoxx plummeting the most

and Nikkei experiencing the smallest drop. To
understand these numbers better, let’s look into
the contributions of different factors to these in-
dex returns.

Table 11 illustrates return contributions for
four of these equity indexes under scenario 1.
Specifically, for each index, it decomposes the
total scenario return into return coming from
different factors each index has exposure to. In
this example, all currency factors are defined
with respect to USD. Moreover, equity factors
are expressed in their corresponding local cur-
rencies and can be described as broad market
factors for their respective regions.

Not surprisingly, Table 11 shows that the ma-
jority of the return contributions for selected
indexes come from the reaction of equity mar-
ket factors to the scenario. However, foreign ex-
change (FX) can also be a significant portion of
total return for some indexes, such as in the case
of the Euro Stoxx (−4.8%). Nikkei experiences
a relatively smaller drop in USD terms, majorly
due to a positive contribution coming from the

Table 11 Return Contributions for Equity Indexes under Scenario 1 (in %)

Group Factor
S&P
500

FTSE
U.K. 100

DJ EURO
STOXX 50

NIKKEI
225

FX GBP −1.77
FX JPY 1.21
FX EUR −0.38 −4.80
Equity U.S. equity −7.97
Equity U.K. equity −6.67
Equity Japan equity −6.20
Equity EMG equity −0.09
Equity Continental Europe equity −0.43 −6.83
Total −7.97 −9.34 −11.63 −4.99
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Table 12 Factor Returns and Z-Scores under Scenario 1

Group Name Measure Unit Value Std. Dev. Z-Score

Equity U.K. equity Return % −7.85 4.99 −1.57
Equity U.S. equity Return % −8.61 6.06 −1.42
Equity Continental Europe equity Return % −7.12 5.04 −1.41
Equity Japan equity Return % −5.96 4.73 −1.26
Equity EMG equity Return % −8.50 6.88 −1.24
FX EUR Return % −4.80 3.93 −1.22
FX GBP Return % −1.93 3.42 −0.56
FX JPY Return % 1.21 3.39 0.36

JPY FX factor. This positive contribution is due
to the safe haven nature of Japanese yen in case
of flight to quality under increased risk aversion
in global markets.

Table 12 demonstrates the scenario-implied
factor realizations (“value”), factor volatilities,
and the Z-scores for the risk factors given in
Table 11. The Z-score of the factor quantifies
the effect of the scenario on that specific factor.
It is computed as

z = r
σr

where r is the return of the factor in the sce-
nario and σ r is the standard deviation of the
factor. Hence, the Z-score measures how many
standard deviations a factor moves in a given
scenario. Table 12 lists the factors by increasing
Z-score under scenario 1. The U.K. equity factor
experiences the largest negative move, at −1.57
standard deviations. FX factors experience rela-
tively smaller movements. JPY is the only factor
with a positive realization due to the aforemen-
tioned characteristic of the currency.

In the second scenario, we shift European
credit spreads by 50% (a 3.5-sigma event) and
explore the effect of credit market swings on
the equity markets. As we can see in Table 13,
all equity indexes experience significant re-
turns, in line with the severity of the scenario.15

The result also underpins the strong recent
co-movement between the credit and equity
markets. The exception is again the Nikkei that
realizes a relatively smaller return.

Table 14 provides the return, volatility, and
the Z-score of certain relevant factors under
scenario 2. As expected, the major mover on
the equity side is the continental Europe equity
factor, followed by the United Kingdom. Given
the recent strong correlations between equity
and credit markets across the globe, the table
suggests that a 3.5 standard deviation shift in
the European spread factor results in a 2 to 3
standard deviation movement of global equity
factors.

The two examples above illustrate the use of
factor models in performing scenario analysis
to achieve a clear understanding of how a port-
folio may react under different circumstances.

Table 13 Index Returns under Scenario 2 (EUR Credit Spread Jumps by 50%)

Universe Type Measure Unit Result

S&P 500 Equity index Return % −13.03
FTSE U.K. 100 Equity index Return % −18.62
DJ EURO STOXX 50 Equity index Return % −19.68
NIKKEI 225 Equity index Return % −8.92
MSCI-AC ASIA PACIFIC EX JAPAN Equity index Return % −18.40
MSCI-EMERGING MARKETS Equity index Return % −16.83



192 Factor Models for Portfolio Construction

Table 14 Factor Returns and Z-Scores under Scenario 2

Group Name Measure Unit Value Std. Dev. Z-Score

Equity Continental Europe equity Return % −14.02 5.04 −2.78
Equity U.K. equity Return % −13.05 4.99 −2.62
Equity Japan equity Return % −11.53 4.73 −2.44
Equity U.S. equity Return % −14.09 6.06 −2.33
Equity EMG equity Return % −15.93 6.88 −2.32
FX GBP Return % −6.54 3.42 −1.91
FX EUR Return % −6.23 3.93 −1.59
FX JPY Return % 3.07 3.39 0.90

KEY POINTS

� Multifactor equity risk models provide de-
tailed insight into the structure and proper-
ties of portfolios. These models characterize
stock returns in terms of systematic factors
and an idiosyncratic component. Systematic
factors are generally designed to have intu-
itive economic interpretation and they rep-
resent common movements across securities.
On the other hand, the idiosyncratic com-
ponent represents the residual return due to
stock-specific events.

� Systematic factors used in equity risk mod-
els can be broadly classified under five
categories: market factors, classification vari-
ables, firm characteristics, macroeconomic
variables, and statistical factors.

� Relative significance of systematic risk fac-
tors depends on various parameters such as
the model horizon, region/country for which
the model is designed, existence of other fac-
tors, and the particular time period of the
analysis. For instance, in the presence of in-
dustry factors, macroeconomic factors tend
to be insignificant for short to medium hori-
zon equity risk models whereas they tend to
be more significant for long-horizon models.
Moreover, for developed equity markets, in-
dustry factors are typically more significant
as compared to the country factors. The lat-
ter are still the dominant effect for emerging
markets.

� Choice of the model and the estimation
technique affect the interpretation of factors.
For instance, in the existence of a market
factor, industry factors represent industry-
specific movements net of market. If there
is no market factor, their interpretation is
very close to market value-weighted industry
indexes.

� Multifactor equity risk models can be clas-
sified according to how their loadings and
factors are specified. The most common eq-
uity factor models specify loadings based on
classification (e.g., industry) and fundamen-
tal or technical information, and estimate fac-
tor realizations every period. Certain other
models take factors as known (e.g., returns
on industry indexes) and estimate loadings
based on time-series information. A third
class of models is based purely on statistical
approaches without concern for economic in-
terpretation of factors and loadings. Finally, it
is possible to combine these approaches and
construct hybrid models. Each of these ap-
proaches has its own specific strengths and
weaknesses.

� A good multifactor equity risk model pro-
vides detailed information regarding the ex-
posures of a complex portfolio and can be
a valuable tool for portfolio construction
and risk management. It can help man-
agers construct portfolios tracking a partic-
ular benchmark, express views subject to a
given risk budget, and rebalance a portfolio
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while avoiding excessive transaction costs.
Further, by identifying the exposures where
the portfolio has the highest risk sensitivity
it can help a portfolio manager reduce (or in-
crease) risk in the most effective way.

� Performance attribution based on multifactor
equity risk models can give ex post insight
into how the portfolio manager’s views and
corresponding investments translated into
actual returns.

� Factor-based scenario analysis provides port-
folio managers with a powerful tool to per-
form stress testing of portfolio positions and
gain insight into the impact of specific market
events on portfolio performance.

NOTES
1. The Barclays Global Risk Model is available

through POINT
R©

, Barclays portfolio man-
agement tool. It is a multicurrency cross-
asset model that covers many different
asset classes across the fixed income and eq-
uity markets, including derivatives in these
markets. At the heart of the model is a co-
variance matrix of risk factors. The model
has more than 500 factors, many specific to a
particular asset class. The asset class mod-
els are periodically reviewed. Structure is
imposed to increase the robustness of the
estimation of such a large covariance ma-
trix. The model is estimated from histor-
ical data. It is calibrated using extensive
security-level historical data and is updated
on a monthly basis.

2. As an example, if the portfolio has 10 stocks,
we need to estimate 45 parameters, with
100 stocks we would need to estimate 4,950
parameters.

3. This is especially the case over crisis periods
where stock characteristics can change dra-
matically over very short periods of time.

4. Fixed income managers typically use cross-
sectional type of models.

5. GICS is the Global Industry Classification
Standard by Standard & Poor’s, a widely
used classification scheme by equity port-
folio managers.

6. An application of macro variables in the
context of risk factor models is as follows.
First, we get the sensitivities of the port-
folio to the model’s risk factors. Then we
project the risk factors into the macro vari-
ables. We then combine the results from
these two steps to get the indirect loadings
of the portfolio to the macro factors. There-
fore, instead of calculating the portfolio
sensitivities to macro factors by aggregating
individual stock macro sensitivities—that
are always hard to estimate—we work with
the portfolio’s macro loadings, estimated
indirectly from the portfolio’s risk factor
loadings as described above. This indirect
approach may lead to statistically more
robust relationships between portfolio re-
turns and macro variables.

7. The equity risk model suite in POINT
consists of six separate models across the
globe: the United States, United Kingdom,
Continental Europe, Japan, Asia (excluding
Japan), and global emerging markets equity
risk models (for details see Silva, Staal, and
Ural, 2009). It incorporates many unique
features related to factor choice, industry
and fundamental exposures, and risk pre-
diction.

8. See Kumar (2010).
9. The setting of these exposures and its trade-

offs are discussed later in this entry.
10. As POINT

R©
U.S. equity risk model in-

corporates industry level factors, a unit
exposure to a sector is implemented by re-
stricting exposures to different industries
within that sector to sum up to 1. Also,
note that as before, the objective in the op-
timization problem is the minimization of
idiosyncratic TEV to ensure that the result-
ing portfolio represents systematic—not
idiosyncratic—effects.
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11. Note that we can sum the sector betas into
the portfolio beta, using portfolio sector
weights (not net weights) as weights in the
summation.

12. For a detailed methodology on how to per-
form this customized analysis, see Silva
(2009).

13. Specifically, we can back out factor realiza-
tions from the portfolio or index returns by
using their risk factor loadings.

14. For reference, as of July 30, 2010, scenario 1
would imply the VIX would move from 23.5
to 35.3 and scenario 2 would imply that the
credit spread for

the Barclays European Credit Index would
change from 174 bps to 261 bps.

15. The same scenario results in a −8.12% move
in the Barclays Euro Credit Index.
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Abstract: A factor is a common character among a group of assets. In the equities market, for exam-
ple, it could be a particular financial ratio such as the price-earnings ratio or the book-price ratio.
Factors fall into three categories—macroeconomic influences, cross-sectional characteristics, and
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for a number of purposes. Those purposes could be central to managing portfolios. Within a trading
strategy, for example, factors determine when to buy and sell securities. Factors are employed in
other areas of financial theory, such as asset pricing, risk management, and performance attribution.

Common stock investment strategies can be
broadly classified into the following categories:
(1) factor-based trading strategies (also called
stock selectiont or alpha models), (2) statistical
arbitrage, (3) high-frequency strategies, and (4)
event studies. Factors and factor-based models
form the core of a major part of today’s quantita-
tive trading strategies. The focus of this entry is
on developing trading strategies based on fac-
tors constructed from common (cross-sectional)
characteristics of stocks. For this purpose, first
we provide a definition of factors. We then ex-
amine the major sources of risk associated with
trading strategies, and demonstrate how factors

are constructed from company characteristics
and market data. The quality of the data used
in this process is critical. We examine several
data cleaning and adjustment techniques to ac-
count for problems occurring with backfilling
and restatements of data, missing data, incon-
sistently reported data, as well as survivorship
and look-ahead biases. In the last section of this
entry, we discuss the analysis of the statistical
properties of factors.

In a series of examples, we show the individ-
ual steps for developing a basic trading strat-
egy. The purpose of these examples is not to
provide yet another profitable trading strategy,

195
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but rather to illustrate the process an analyst
may follow when performing research. In fact,
the factors that we use for this purpose are well
known and have for years been exploited by in-
dustry practitioners. The value added of these
examples is in the concrete illustration of the
research and development process of a factor-
based trading model.

FACTOR-BASED TRADING
Since the first version of the classic text on se-
curity analysis by Benjamin Graham and David
Dodd1—considered to be the Bible on the fun-
damental approach to security analysis—was
first published in 1934, equity portfolio man-
agement and trading strategies have developed
considerably. Graham and Dodd were early
contributors to factor-based strategies because
they extended traditional valuation approaches
by using information throughout the financial

statements2 and by presenting concrete rules of
thumb to be used to determine the attractive-
ness of securities.3

Today’s quantitative managers use factors
as fundamental building blocks for trading
strategies. Within a trading strategy, factors
determine when to buy and sell securities.
We define a factor as a common characteristic
among a group of assets. In the equities mar-
ket, it could be a particular financial ratio such
as the price–earnings (P/E) or the book–price
(B/P) ratios. Some of the most well-known fac-
tors and their underlying basic economic ratio-
nale references are provided in Table 1.

Most often this basic definition is expanded
to include additional objectives. First, factors
frequently are intended to capture some eco-
nomic intuition. For instance, a factor may help
understand the prices of assets by reference
to their exposure to sources of macroeconomic
risk, fundamental characteristics, or basic mar-
ket behavior. Second, we should recognize that

Table 1 Summary of Well-Known Factors and Their Underlying Economic Rationale

Factor Economic Rationale

Dividend yield Investors prefer to immediately receive receipt of their investment returns.
Value Investors prefer stocks with low valuations.
Size (market capitalization) Smaller companies tend to outperform larger companies.
Asset turnover This measure evaluates the productivity of assets employed by a firm.

Investors believe higher turnover correlates with higher future return.
Earnings revisions Positive analysts’ revisions indicate stronger business prospects and

earnings for a firm.
Growth of fiscal year 1 and

fiscal year 2 earnings
estimates

Investors are attracted to companies with growing earnings.

Momentum Investors prefer stocks that have had good past performance.
Return reversal Investors overreact to information, that is, stocks with the highest returns

in the current month tend to earn lower returns the following month.
Idiosyncratic risk Stocks with high idiosyncratic risk in the current month tend to have

lower returns the following month.
Earnings surprises Investors like positive earnings surprises and dislike negative earnings

surprises.
Accounting accruals Companies with earnings that have a large cash component tend to have

higher future returns.
Corporate governance Firms with better corporate governance tend to have higher firm value,

higher profits, higher sales growth, lower capital expenditures, and
fewer corporate acquisitions.

Executive compensation factors Firms that align compensation with shareholders’ interest tend to
outperform.

Accounting risk factors Companies with lower accounting risk tend to have higher future returns.
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assets with similar factors (characteristics) tend
to behave in similar ways. This attribute is crit-
ical to the success of a factor. Third, we would
like our factor to be able to differentiate across
different markets and samples. Fourth, we want
our factor to be robust across different time
periods.

Factors fall into three categories—
macroeconomic influences, cross-sectional
characteristics, and statistical factors. Macro-
economic influences are time series that mea-
sure observable economic activity. Examples
include interest rate levels, gross domestic
production, and industrial production. Cross-
sectional characteristics are observable asset
specifics or firm characteristics. Examples in-
clude dividend yield, book value, and volatility.
Statistical factors are unobservable or latent
factors common across a group of assets. These
factors make no explicit assumptions about the
asset characteristics that drive commonality in
returns. Statistical factors are not derived using
exogenous data but are extracted from other
variables such as returns. These factors are
calculated using various statistical techniques
such as principal components analysis or factor
analysis.

Within asset management firms, factors and
forecasting models are used for a number of
purposes. Those purposes could be central to
managing portfolios. For example, a portfolio
manager can directly send the model output to
the trading desk to be executed. In other uses,
models provide analytical support to analysts
and portfolio management teams. For instance,
models are used as a way to reduce the in-
vestable universe to a manageable number of
securities so that a team of analysts can per-
form fundamental analysis on a smaller group
of securities.

Factors are employed in other areas of fi-
nancial theory, such as asset pricing, risk man-
agement, and performance attribution. In asset
pricing, researchers use factors as proxies for
common, undiversifiable sources of risk in the
economy to understand the prices or values of

securities to uncertain payments. Examples in-
clude the dividend yield of the market or the
yield spread between a long-term bond yield
and a short-term bond yield.4 In risk manage-
ment, risk managers use factors in risk models
to explain and to decompose variability of re-
turns from securities, while portfolio managers
rely on risk models for covariance construction,
portfolio construction, and risk measurement.
In performance attribution, portfolio managers
explain past portfolio returns based on the port-
folio’s exposure to various factors. Within these
areas, the role of factors continues to expand.
Recent research presents a methodology for at-
tributing active return, tracking error, and the
information ratio to a set of custom factors.5

The focus in this entry is on using factors to
build equity forecasting models, also referred
to as alpha or stock selection models. The models
serve as mathematical representations of trad-
ing strategies. The mathematical representation
uses future returns as dependent variables and
factors as independent variables.

DEVELOPING
FACTOR-BASED TRADING
STRATEGIES
The development of a trading strategy has
many similarities with an engineering project.
We begin by designing a framework that is
flexible enough so that the components can be
easily modified, yet structured enough that we
remain focused on our end goal of designing a
profitable trading strategy.

Basic Framework and
Building Blocks
The typical steps in the development of a
trading strategy are:

� Defining a trading idea or investment
strategy.

� Developing factors.
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� Acquiring and processing data.
� Analyzing the factors.
� Building the strategy.
� Evaluating the strategy.
� Backtesting the strategy.
� Implementing the strategy.

In what follows, we take a closer look at each
step.

Defining a Trading Idea or Investment
Strategy
A successful trading strategy often starts as an
idea based on sound economic intuition, mar-
ket insight, or the discovery of an anomaly.
Background research can be helpful in order
to understand what others have tried or imple-
mented in the past.

We distinguish between a trading idea and
trading strategy based on the underlying eco-
nomic motivation. A trading idea has a more
short-term horizon often associated with an
event or mispricing. A trading strategy has a
longer horizon and is frequently based on the
exploitation of a premium associated with an
anomaly or a characteristic.

Developing Factors
Factors provide building blocks of the model
used to build an investment strategy. We intro-
duced a general definition of factors earlier in
this entry. After having established the trading
strategy, we move from the economic concepts
to the construction of factors that may be able to
capture our intuition. In this entry, we provide
a number of examples of factors based on the
cross-sectional characteristics of stocks.

Acquiring and Processing Data
A trading strategy relies on accurate and clean
data to build factors. There are a number of
third-party solutions and databases available
for this purpose such as Thomson MarketQA,6

Factset Research Systems,7 and Compustat
Xpressfeed.8

Analyzing the Factors
A variety of statistical and econometric
techniques must be performed on the data to
evaluate the empirical properties of factors.
This empirical research is used to understand
the risk and return potential of a factor. The
analysis is the starting point for building a
model of a trading strategy.

Building the Strategy
The model represents a mathematical specifica-
tion of the trading strategy. There are two im-
portant considerations in this specification: the
selection of which factors and how these fac-
tors are combined. Both considerations need to
be motivated by the economic intuition behind
the trading strategy. We advise against model
specification being strictly data driven because
that approach often results in overfitting the
model and consequently overestimating fore-
casting quality of the model.

Evaluating, Backtesting, and Implementing
the Strategy
The final step involves assessing the estimation,
specification, and forecast quality of the model.
This analysis includes examining the goodness
of fit (often done in sample), forecasting ability
(often done out of sample), and sensitivity and
risk characteristics of the model.

RISK TO TRADING
STRATEGIES
In investment management, risk is a primary
concern. The majority of trading strategies are
not risk free but rather subject to various risks.
It is important to be familiar with the most
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common risks in trading strategies. By under-
standing the risks in advance, we can structure
our empirical research to identify how risks will
affect our strategies. Also, we can develop tech-
niques to avoid these risks in the model con-
struction stage when building the strategy.

We describe the various risks that are com-
mon to factor trading strategies as well as other
trading strategies such as risk arbitrage. Many
of these risks have been categorized in the be-
havioral finance literature.9 The risks discussed
include fundamental risk, noise trader risk,
horizon risk, model risk, implementation risk,
and liquidity risk.

Fundamental risk is the risk of suffering ad-
verse fundamental news. For example, say our
trading strategy focuses on purchasing stocks
with high earnings-to-price ratios. Suppose that
the model shows a pharmaceutical stock main-
tains a high score. After purchasing the stock,
the company releases a news report that states
it faces class-action litigation because one of its
drugs has undocumented adverse side effects.
While during this period other stocks with high
earnings-to-price ratio may perform well, this
particular pharmaceutical stock will perform
poorly despite its attractive characteristic. We
can minimize the exposure to fundamental risk
within a trading strategy by diversifying across
many companies. Fundamental risk may not al-
ways be company specific; sometimes this risk
can be systemic. Some examples include the
exogenous market shocks of the stock market
crash in 1987, the Asian financial crisis in 1997,
and the tech bubble in 2000. In these cases,
diversification was not that helpful. Instead,
portfolio managers that were sector or market
neutral in general fared better.

Noise trader risk is the risk that a mispric-
ing may worsen in the short run. The typical
example includes companies that clearly are
undervalued (and should therefore trade at a
higher price). However, because noise traders
may trade in the opposite direction, this mis-
pricing can persist for a long time. Closely re-
lated to noise trader risk is horizon risk. The

idea here is that the premium or value takes
too long to be realized, resulting in a realized
return lower than a target rate of return.

Model risk, also referred to as misspecification
risk, refers to the risk associated with mak-
ing wrong modeling assumptions and deci-
sions. This includes the choice of variables,
methodology, and context the model operates
in. There are different sources that may re-
sult in model misspecification and there are
several remedies based on information theory,
Bayesian methods, shrinkage, and random co-
efficient models.10

Implementation risk is another risk faced by in-
vestors implementing trading strategies. This
risk category includes transaction costs and
funding risk. Transaction costs such as com-
missions, bid-ask spreads, and market impact
can adversely affect the results from a trad-
ing strategy. If the strategy involves shorting,
other implementation costs arise such as the
ability to locate securities to short and the costs
to borrow the securities. Funding risk occurs
when the portfolio manager is no longer able
to get the funding necessary to implement a
trading strategy. For example, many statisti-
cal arbitrage funds use leverage to increase
the returns of their funds. If the amount of
leverage is constrained, then the strategy will
not earn attractive returns. Khandani and Lo
(2007) confirm this example by showing that
greater competition and reduced profitability
of quantitative strategies today require more
leverage to maintain the same level of expected
return.

Liquidity risk is a concern for investors. Liq-
uidity is defined as the ability to (1) trade
quickly without significant price changes, and
(2) trade large volumes without significant price
changes. Cerniglia and Kolm (2009) discuss the
effects of liquidity risk during the “quant crisis”
in August 2007. They show how the rapid liqui-
dation of quantitative funds affected the trading
characteristics and price impact of trading indi-
vidual securities as well as various factor-based
trading strategies.
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These risks can detract or contribute to the
success of a trading strategy. It is obvious how
these risks can detract from a strategy. What
is not always clear is when any one of these
unintentional risks contributes to a strategy.
That is, sometimes when we build a trading
strategy we take on a bias that is not obvi-
ous. If there is a premium associated with this
unintended risk, then a strategy will earn ad-
ditional return. Later the premium to this un-
intended risk may disappear. For example, a
trading strategy that focuses on price momen-
tum performed strongly in the calendar years
of 1998 and 1999. What an investor might not
notice is that during this period the portfolio
became increasingly weighted toward technol-
ogy stocks, particularly Internet-related stocks.
During 2000, these stocks severely underper-
formed.

DESIRABLE PROPERTIES
OF FACTORS
Factors should be founded on sound economic
intuition, market insight, or an anomaly. In ad-
dition to the underlying economic reasoning,
factors should have other properties that make
them effective for forecasting.

It is an advantage if factors are intuitive to
investors. Many investors will only invest in a
particular fund if they understand and agree
with the basic ideas behind the trading strate-
gies. Factors give portfolio managers a tool in
communicating to investors what themes they
are investing in.

The search for the economic meaningful fac-
tors should avoid strictly relying on pure his-
torical analysis. Factors used in a model should
not emerge from a sequential process of eval-
uating successful factors while removing less
favorable ones.

Most importantly, a group of factors should
be parsimonious in its description of the trading
strategy. This requires careful evaluation of the
interaction between the different factors. For ex-

ample, highly correlated factors will cause the
inferences made in a multivariate approach to
be less reliable. Another possible problem when
using multiple factors is the possibility of over-
fitting in the modeling process.

Any data set contains outliers, that is, obser-
vations that deviate from the average proper-
ties of the data. Outliers are not always trivial
to handle and sometimes we may want to ex-
clude them and other times not. For example,
they could be erroneously reported or legiti-
mate abnormal values. Later in this entry we
discuss a few standard techniques to perform
data cleaning. The success or failure of factors
selected should not depend on a few outliers.
In most cases, it is desirable to construct factors
that are reasonably robust to outliers.

SOURCES FOR FACTORS
How do we find factors? The sources are
widespread with no one source clearly domi-
nating. Employing a variety of sources seems
to provide the best opportunity to uncover fac-
tors that will be valuable for developing a new
model.

There are a number of ways to develop factors
based on economic foundations. It may start
with thoughtful observation or study of how
market participants act. For example, we may
ask ourselves how other market participants
will evaluate the prospects of the earnings or
business of a firm. We may also want to consider
what stock characteristics investors will reward
in the future. Another common approach is to
look for inefficiencies in the way that investors
process information. For instance, research may
discover that consensus expectations of earn-
ings estimates are biased.

A good source for factors is the various
reports released by the management of com-
panies. Many reports contain valuable infor-
mation and may provide additional context
on how management interprets the company
results and financial characteristics. For
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example, quarterly earning reports (10-Qs) may
highlight particular financial metrics relevant
to the company and the competitive space they
are operating within. Other company financial
statements and SEC filings, such as the 10-K or
8-K, also provide a source of information to de-
velop factors. It is often useful to look at the fi-
nancial measures that management emphasize
in their comments.

Factors can be found through discussions
with market participants such as portfolio man-
agers and traders. Factors are uncovered by
understanding the heuristics experienced in-
vestors have used successfully. These heuristics
can be translated into factors and models.

Wall Street analyst reports—also called sell-
side reports or equity research reports—may
contain valuable information. The reader is of-
ten not interested in the final conclusions, but
rather in the methodology or metrics the an-
alysts use to forecast the future performance
of a company. It may also be useful to study
the large quantity of books written by portfolio
managers and traders that describe the process
they use in stock selection.

Academic literature in finance, account-
ing, and economics provides evidence of
numerous factors and trading strategies that
earn abnormal returns. Not all strategies will
earn abnormal profits when implemented by
practitioners, for example, because of institu-
tional constraints and transaction costs. Bushee
and Raedy (2006) find that trading strategy re-
turns are significantly decreased due to issues
such as price pressure, restrictions against short
sales, incentives to maintain an adequately di-
versified portfolio, and restrictions to hold no
more than 5% ownership in a firm.

In uncovering factors, we should put eco-
nomic intuition first and data analysis second.
This avoids performing pure data mining or
simply overfitting our models to past history.
Research and innovation is the key to finding
new factors. Today, analyzing and testing new
factors and improving upon existing ones is it-
self a big industry.

BUILDING FACTORS
FROM COMPANY
CHARACTERISTICS
The following sections focus on the techniques
for building factors from company characteris-
tics. Often we desire our factors to relate the fi-
nancial data provided by a company to metrics
that investors use when making decisions about
the attractiveness of a stock such as valuation
ratios, operating efficiency ratios, profitability
ratios, and solvency ratios. Factors should also
relate to the market data such as analysts’ fore-
casts, prices and returns, and trading volume.

WORKING WITH DATA
In this section, we discuss how to work with
data and data quality issues, including some
well-probed techniques used to improve the
quality of the data. Though the role of getting
and analyzing data can be mundane and te-
dious, we need not forget that high-quality data
are critical to the success of a trading strategy.
It is important to realize model output is only
as good as the data used to calibrate it. As the
saying goes: “Garbage in, garbage out.”

Understanding the structure of financial data
is important. We distinguish three different
categories of financial data: time series, cross-
sectional, and panel data. Time series data con-
sist of information and variables collected over
multiple time periods. Cross-sectional data con-
sist of data collected at one point in time for
many different companies (the cross-section of
companies of interest). A panel data set con-
sists of cross-sectional data collected at differ-
ent points in time. We note that a panel data
set may not be homogeneous. For instance, the
cross-section of companies may change from
one point in time to another.

Data Integrity
Quality data maintain several attributes such
as providing a consistent view of history,
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maintaining good data availability, containing
no survivorship, and avoiding look-ahead bias.
As all data sets have their limitations, it is im-
portant for the quantitative researcher to be able
to recognize the limitations and adjust the data
accordingly.

Data used in research should provide a con-
sistent view of history. Two common problems
that distort the consistency of financial data are
backfilling and restatements of data. Backfill-
ing of data happens when a company is first
entered into a database at the current period
and its historical data are also added. This pro-
cess of backfilling data creates a selection bias
because we now find historical data on this re-
cently added company when previously it was
not available. Restatements of data are preva-
lent in distorting consistency of data. For ex-
ample, if a company revises its earnings per
share numbers after the initial earnings release,
then many database companies will overwrite
the number originally recorded in the database
with the newly released figure.

A frequent and common concern with finan-
cial databases is data availability. First, data
items may only be available for a short period of
time. For example, there were many years when
stock options were granted to employees but
the expense associated with the option grant
was not required to be disclosed in financial
statements. It was not until 2005 that accounting
standards required companies to recognize di-
rectly stock options as an expense on the income
statement. Second, data items may be available
for only a subset of the cross-section of firms.
Some firms, depending on the business they
operate in, have research and development ex-
penses while others do not. For example, many
pharmaceutical companies have research and
development expenses while utilities compa-
nies do not. A third issue is that a data item
may simply not be available because it was not
recorded at certain points in time. Sometimes
this happens for just a few observations, other
times it is the case for the whole time-series for
a specific data item for a company. Fourth, dif-

ferent data items are sometimes combined. For
example, sometimes depreciation and amorti-
zation expenses are not a separate line item on
an income statement. Instead it is included in
cost of goods sold. Fifth, certain data items are
only available at certain periodicities. For in-
stance, some companies provide more detailed
financial reports quarterly while others report
more details annually. Sixth, data items may be
inconsistently reported across different compa-
nies, sectors, or industries. This may happen as
the financial data provider translates financial
measures from company reports to the specific
database items (incomplete mapping), thereby
ignoring or not correctly making the right ad-
justments.

For these issues some databases provide spe-
cific codes to identify the causes of missing data.
It is important to have procedures in place that
can distinguish among the different reasons for
the missing data and be able to make adjust-
ments and corrections.

Two other common problems with databases
are survivorship and look-ahead bias. Survivor-
ship bias occurs when companies are removed
from the database when they no longer ex-
ist. For example, companies can be removed
because of a merger or bankruptcy. This bias
skews the results because only successful firms
are included in the entire sample. Look-ahead
bias occurs when data are used in a study that
would not have been available during the ac-
tual period analyzed. For example, the use of
year-end earnings data immediately at the end
of the reporting period is incorrect because the
data are not released by the firm until several
days or weeks after the end of the reporting
period.

Data alignment is another concern when
working with multiple databases. Many
databases have different identifiers used to
identify a firm. Some databases have vendor
specific identifiers, others have common identi-
fiers such as CUSIPs or ticker symbols. Unfortu-
nately, CUSIPs and ticker symbols change over
time and are often reused. This practice makes
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it difficult to link an individual security across
multiple databases across time.

Example: The EBITDA/EV Factor
This example illustrates how the nuances of
data handling can influence the results of a
particular study. We use data from the Com-
pustat Point-In-Time database and calculate
the EBITDA/EV factor.11 This factor is defined
as earnings before interest, taxes, depreciation,
and amortization divided by enterprise value
(EBITDA/EV). Our universe of stocks is the
Russell 1000 from December 1989 to December
2008, excluding financial companies. We calcu-
late EBITDA /EV by two equivalent but differ-
ent approaches. Each approach differs by the
data items used in calculating the numerator
(EBITDA):

1. EBITDA = Sales (Compustat data item 2)
– Cost of goods sold (Compustat data item
30) – Selling and general administrative ex-
penses (Compustat data item 1).

2. EBITDA = Operating income before depre-
ciation (Compustat data item 21).
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Figure 1 Percentage of Companies in Russell 1000 with Different Ranking According to the
EBITDA/EV Factor

According to the Compustat manual, the fol-
lowing identity holds:

Operating income before depreciation

= Sales − Cost of goods sold − Selling

and general administrative expenses

However, while this mathematical identity is
true, this is not what we discover in the data.
After we calculate the two factors, we form
quintile portfolios of each factor and compare
the individual holding rankings between the
portfolio. Figure 1 displays the percentage dif-
ferences in rankings for individual companies
between the two portfolios. We observe that the
results are not identical. As a matter of fact,
there are large differences, particularly in the
early period. In other words, the two mathe-
matically equivalent approaches do not deliver
the same empirical results.

Potential Biases from Data
There are numerous potential biases that may
arise from data quality issues. It is important to
recognize the direct effects of these data issues
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are not apparent a priori. We emphasize three
important effects:12

1. Effect on average stock characteristics. When
calculating cross-sectional averages of var-
ious metrics such as book-to-price or market
capitalization, data issues can skew statis-
tics and lead to incorrect inference about the
population characteristics used in the study.

2. Effect on portfolio returns. The portfolio
return implications of data issues are not
always clear. For example, survivor bias
results in firms being removed from the sam-
ple. Typically firms are removed from the
sample for one of two reasons—mergers and
acquisitions or failure. In most cases firms
are acquired at a premium from the prevail-
ing stock price. Leaving these firms out of
the sample would have a downward bias on
returns. In cases where companies fail, the
stock price falls dramatically and removing
these firms from the sample will have an up-
ward bias on returns.

3. Effects on estimated moments of returns. A study
by Kothari, Sabino, and Zach (2005) found
that nonsurviving firms tend to be either ex-
tremely bad or extremely good performers.
Survivor bias implies truncation of such ex-
treme observations. The authors of the study
show that even a small degree of such non-
random truncation can have a strong impact
on the sample moments of stock returns.

Dealing with Common Data Issues
Most data sets are subject to some quality issues.
To work effectively, we need to be familiar with
data definitions and database design. We also
need to use processes to reduce the potential
impact of data problems as they could cause
incorrect conclusions.

The first step is to become familiar with the
data standardization process vendors use to
collect and process data. For example, many
vendors use different templates to store data.

Specifically, the Compustat US database has one
template for reporting income statement data,
while the Worldscope Global database has four
different templates depending on whether a
firm is classified as a bank, insurance company,
industrial company, or other financial company.
Other questions related to standardization a
user should be familiar with include:

� What are the sources of the data—publicly
available financial statements, regulatory fil-
ings, newswire services, or other sources?

� Is there a uniform reporting template?
� What is the delay between publication of in-

formation and its availability in the database?
� Is the data adjusted for stock splits?
� Is history available for extinct or inactive com-

panies?
� How is data handled for companies with mul-

tiple share classes?
� What is the process used to aggregate the

data?

Understanding of the accounting principles
underlying the data is critical. Here, two prin-
ciples of importance are the valuation method-
ology and data disclosure or presentation. For
the valuation, we should understand the type
of cost basis used for the various accounting
items. Specifically, are assets calculated using
historical cost basis, fair value accounting, or
another type? For accounting principles regard-
ing disclosure and presentation, we need to
know the definition of accounting terms, the
format of the accounts, and the depth of detail
provided.

Researchers creating factors that use finan-
cial statements should review the history of the
underlying accounting principles. For example,
the cash flow statement reported by companies
has changed over the years. Effective for fiscal
years ending July 15, 1988, Statement of Finan-
cial Accounting Standards No. 85 (SFAS No. 85)
requires companies to report the Statement of
Cash Flows. Prior to the adoption of that ac-
counting standard, companies could report one



FACTOR-BASED EQUITY PORTFOLIO CONSTRUCTION AND ANALYSIS 205

of three statements: Working Capital Statement,
Cash Statement by Source and Use of Funds, or
Cash Statement by Activity. Historical analysis
of any factor that uses cash flow items will re-
quire adjustments to the definition of the factor
to account for the different statements used by
companies.

Preferably, automated processes should be
used to reduce the potential impact of data
problems. We start by checking the data for
consistency and accuracy. We can perform time
series analysis on individual factors looking at
outliers and for missing data. We can use mag-
nitude tests to compare current data items with
the same items for prior periods, looking for
data that are larger than a predetermined vari-
ance. When suspicious cases are identified, the
cause of the error should be researched and any
necessary changes made.

Methods to Adjust Factors
At first, factors consist of raw data from a
database combined in an economically mean-
ingful way. After the initial setup, a factor may
be adjusted using analytical or statistical tech-
niques to be more useful for modeling. The fol-
lowing three adjustments are common.

Standardization
Standardization rescales a variable while pre-
serving its order. Typically, we choose the stan-
dardized variable to have a mean of zero and
a standard deviation of one by using the trans-
formation

xnew
i = xi − x̄

σx

where xi is the stock’s factor score, x̄ is the uni-
verse average, and σ x is the universe standard
deviation. There are several reasons to scale a
variable in this way. First, it allows one to deter-
mine a stock’s position relative to the universe
average. Second, it allows better comparison
across a set of factors since means and standard

deviations are the same. Third, it can be useful
in combining multiple variables.

Orthogonalization
Sometimes the performance of our factor might
be related to another factor. Orthogonalizing
a factor for other specified factor(s) removes
this relationship. We can orthogonalize by using
averages or running regressions.

To orthogonalize the factor using averages ac-
cording to industries or sectors, we can proceed
as follows. First, for each industry we calculate
the industry scores

sk =

n∑
i=1

xi · indi,k

n∑
i=1

indi,k

where xi is a factor and indi,k represent the
weight of stock i in industry k. Next, we subtract
the industry average of the industry scores, sk,
from each stock. We compute

xnew
i = xi −

∑

k∈Industries

indi,k · sk

where xnew
i is the new industry neutral factor.

We can use linear regression to orthogonalize
a factor. We first determine the coefficients in
the equation

xi = a + b · fi + εi

where fi is the factor to orthogonalize the factor
xi by, b is the contribution of fi to xi, and εi is the
component of the factor xi not related to fi. εi is
orthogonal to fi (that is, εi is independent of fi)
and represents the neutralized factor

xnew
i = εi

In the same fashion, we can orthogonalize our
variable relative to a set of factors by using the
multivariate linear regression

xi = a +
∑

j

b j · f j + εi

and then setting xnew
i = εi .
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Often portfolio managers use a risk model to
forecast risk and an alpha model to forecast re-
turns. The interaction between factors in a risk
model and an alpha model often concerns port-
folio managers. One possible approach to ad-
dress this concern is to orthogonalize the factors
or final scores from the alpha model against the
factors used in the risk model. Later in the entry,
we discuss this issue in more detail.

Transformation
It is common practice to apply transforma-
tions to data used in statistical and econometric
models. In particular, factors are often trans-
formed such that the resulting series is sym-
metric or close to being normally distributed.
Frequently used transformations include natu-
ral logarithms, exponentials, and square roots.
For example, a factor such as market capi-
talization has a large skew because a sample
of large-cap stocks typically includes mega-
capitalization stocks. To reduce the influence
of mega-capitalization companies, we may in-
stead use the natural logarithm of market capi-
talization in a linear regression model.

Outlier Detection and Management
Outliers are observations that seem to be in-
consistent with the other values in a data set.
Financial data contain outliers for a number of
reasons including data errors, measurement er-
rors, or unusual events. Interpretation of data
containing outliers may therefore be mislead-
ing. For example, our estimates could be biased
or distorted, resulting in incorrect conclusions.

Outliers can be detected by several methods.
Graphs such as boxplots, scatter plots, or his-
tograms can be useful to visually identify them.
Alternatively, there are a number of numerical
techniques available. One common method is to
compute the interquartile-range and then iden-
tify outliers as those values that are some mul-
tiple of the range. The interquartile-range is a

measure of dispersion and is calculated as the
difference between the third and first quartiles
of a sample. This measure represents the mid-
dle 50% of the data, removing the influence of
outliers.

After outliers have been identified, we need to
reduce their influence in our analysis. Trimming
and winsorization are common procedures for
this purpose. Trimming discards extreme val-
ues in the data set. This transformation requires
the researcher to determine the direction (sym-
metric or asymmetric) and the amount of trim-
ming to occur.

Winsorization is the process of transforming
extreme values in the data. First, we calculate
percentiles of the data. Next we define outliers
by referencing a certain percentile ranking. For
example, any data observation that is greater
than the 97.5 percentile or less than the 2.5 per-
centile could be considered an outlier. Finally,
we set all values greater or less than the refer-
ence percentile ranking to particular values. In
our example, we may set all values greater than
the 97.5 percentile to the 97.5 percentile value
and all values less than 2.5 percentile set to the
2.5 percentile value. It is important to fully in-
vestigate the practical consequences of using
either one of these procedures.

ANALYSIS OF FACTOR DATA
After constructing factors for all securities in
the investable universe, each factor is analyzed
individually. Presenting the time-series and
cross-sectional averages of the mean, standard
deviations, and key percentiles of the distribu-
tion provide useful information for understand-
ing the behavior of the chosen factors.

Although we often rely on techniques that as-
sume the underlying data generating process is
normally distributed, or at least approximately,
most financial data is not. The underlying data
generating processes that embody aggregate in-
vestor behavior and characterize the financial
markets are unknown and exhibit significant
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uncertainty. Investor behavior is uncertain be-
cause not all investors make rational decisions
or have the same goals. Analyzing the proper-
ties of data may help us better understand how
uncertainty affects our choice and calibration of
a model.

Below we provide some examples of the
cross-sectional characteristics of various fac-
tors. For ease of exposition we use histograms to
evaluate the data rather than formal statistical
tests. We let particular patterns or properties of
the histograms guide us in the choice of the ap-
propriate technique to model the factor. We rec-
ommend that an intuitive exploration should
be followed by a more formal statistical test-
ing procedure. Our approach here is to analyze
the entire sample, all positive values, all nega-
tive values, and zero values. Although omitted
here, a thorough analysis should also include
separate subsample analysis.

Example 1: EBITDA/EV
The first factor we discuss is the earnings before
interest, taxes, and amortization to enterprise
value (EBITDA/EV) factor. Enterprise value is
calculated as the market value of the capital
structure. This factor measures the price (enter-
prise value) investors pay to receive the cash
flows (EBITDA) of a company. The economic
intuition underlying this factor is that the valu-
ation of a company’s cash flow determines the
attractiveness of companies to an investor.

Figure 2(A) presents a histogram of all cross-
sectional values of the EBITDA/EV factor
throughout the entire history of the study. The
distribution is close to normal, showing there
is a fairly symmetric dispersion among the val-
uations companies receive. Figure 2(B) shows
that the distribution of all the positive values of
the factor is also almost normally distributed.
On the other hand, Figure 2(C) shows that the
distribution of the negative values is skewed to
the left. However, because there are only a small
number of negative values, it is likely that they
will not greatly influence our model.

Example 2: Revisions
We evaluate the cross-sectional distribution of
the earnings revisions factor.13 The revisions
factor we use is derived from sell-side ana-
lyst earnings forecasts from the IBES database.
The factor is calculated as the number of
analysts who revise their earnings forecast up-
ward minus the number of downward fore-
casts, divided by the total number of forecasts.
The economic intuition underlying this factor
is that there should be a positive relation to
changes in forecasts of earnings and subsequent
returns.

In Figure 3(A) we see that the distribution of
revisions is symmetric and leptokurtic around
a mean of about zero. This distribution ties with
the economic intuition behind the revisions.
Since business prospects of companies typically
do not change from month-to-month, sell-side
analysts will not revise their earnings forecast
every month. Consequently, we expect and find
the cross-sectional range to be peaked at zero.
Figure 3(B) and (C), respectively, show there is
a smaller number of both positive and negative
earnings revisions and each one of these distri-
butions are skewed.

Example 3: Share Repurchase
We evaluate the cross-sectional distribution of
the shares repurchases factor. This factor is cal-
culated as the difference of the current number
of common shares outstanding and the num-
ber of shares outstanding 12 months ago, di-
vided by the number of shares outstanding 12
months ago. The economic intuition underly-
ing this factor is that share repurchase provides
information to investors about future earnings
and valuation of the company’s stock.14 We ex-
pect there to be a positive relationship between
a reduction in shares outstanding and subse-
quent returns.

We see in Figure 4(A) that the distribution
is leptokurtic. The positive values (see Fig-
ure 4(B)) are skewed to the right and the
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Figure 2 Histograms of the Cross-Sectional Values for the EBITDA/EV Factor
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negative values (see Figure 4(C)) are clustered
in a small band. The economic intuition un-
derlying share repurchases is the following.
Firms with increasing share count indicate they
require additional sources of cash. This need
could be an early sign that the firm is experienc-
ing higher operating risks or financial distress.
We would expect these firms to have lower
future returns. Firms with decreasing share
count have excess cash and are returning value
back to shareholders. Decreasing share count
could result because management believes the
shares are undervalued. As expected, we find
the cross-sectional range to be peaked at zero
(see Figure 4(D)) since not all firms issue or re-
purchase shares on a regular basis.

KEY POINTS
� A factor is a common characteristic among a

group of assets. Factors should be founded on
sound economic intuition, market insight, or
an anomaly.

� Factors fall into three categories—
macroeconomic, cross-sectional, and sta-
tistical factors.

� The main steps in the development of a factor-
based trading strategy are (1) defining a
trading idea or investment strategy, (2) de-
veloping factors, (3) acquiring and processing
data, (4) analyzing the factors, (5) building the
strategy, (6) evaluating the strategy, (7) back-
testing the strategy, and (8) implementing the
strategy.

� Most trading strategies are exposed to risk.
The main sources of risk are fundamental risk,
noise trader risk, horizon risk, model risk, im-
plementation risk, and liquidity risk.

� Factors are often derived from company
characteristics and metrics, and market data.
Examples of company characteristics and
metrics include valuation ratios, operating ef-
ficiency ratios, profitability ratios, and sol-
vency ratios. Example of useful market data
include analysts forecasts, prices and returns,
and trading volume.

� High-quality data are critical to the success
of a trading strategy. Model output is only as
good as the data used to calibrate it.

� Some common data problems and biases are
backfilling and restatements of data, missing
data, inconsistently reported data, and sur-
vivorship and look-ahead biases.

� The ability to detect and adjust outliers is cru-
cial to a quantitative investment process.

� Common methods used for adjusting data are
standardization, orthogonalization, transfor-
mation, trimming, and winsorization.

� The statistical properties of factors need to be
carefully analyzed. Basic statistical measures
include the time-series and cross-sectional av-
erages of the mean, standard deviations, and
key percentiles.

NOTES
1. Graham and Dodd (1962).
2. Graham (1949).
3. See Bernstein (1992).
4. See Fama and French (1988).
5. See, for example, Menchero and Poduri

(2008).
6. Thomson MarketQA, http://thomson

reuters.com/products_services/financial/
financial_products/quantitative_analysis
/quantitative_analytics.

7. Factset Research Systems, http://www
.factset.com.

8. Compustat Xpressfeed, http://www
.compustat.com.

9. See Barberis and Thaler (2003).
10. For a discussion of the sources of model

misspecification and remedies, see Fabozzi,
Focardi, and Kolm (2010).

11. The ability of EBITDA/EV to forecast fu-
ture returns is discussed in, for example,
Dechow, Kothari, and Watts (1988).

12. See Nagel (2001).
13. For a representative study see, for example,

Bercel (1994).
14. See Grullon and Michaely (2004).
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Abstract: Quantitative asset managers construct and apply models that can be used for dynamic
multifactor trading strategies. These models incorporate a number of common institutional con-
straints such as turnover, transaction costs, sector, and tracking error. Approaches for the evaluation
of return premiums and risk characteristics to factors include portfolio sorts, factor models, factor
portfolios, and information coefficients. Several techniques are used to combine several factors into
a single model—a trading strategy. These techniques include data driven, factor model, heuristic,
and optimization approaches.

In the construction of factor models, factors are
constructed from company characteristics and
market data. In this entry, we explain and il-
lustrate how to include multiple factors with
the purpose of developing a dynamic multifac-
tor trading strategy that incorporates a num-
ber of common institutional constraints such
as turnover, transaction costs, sector, and track-
ing error. For this purpose, we use a combina-
tion of growth, value, quality, and momentum
factors. For the purpose of our illustration, our
universe of stocks is the Russell 1000 from
December 1989 to December 2008, and we
construct our factors by using the Compustat

Point-In-Time and IBES databases. A complete
list of the factors and data sets used is provided
in the appendix.

We begin by reviewing several approaches
for the evaluation of return premiums and risk
characteristics to factors, including portfolio
sorts, factor models, factor portfolios, and infor-
mation coefficients. We then turn to techniques
that are used to combine several factors into a
single model—a trading strategy. In particular,
we discuss the data driven, factor model,
heuristic, and optimization approaches. It is
critical to perform out-of-sample backtests of a
trading strategy to understand its performance
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and risk characteristics. We cover the split-
sample and recursive out-of-sample tests.

Throughout this entry, we provide a series of
examples, including backtests of a multifactor
trading strategy. The purpose of these examples
is not to attempt to provide a profitable trading
strategy, but rather to illustrate the process a fi-
nancial modeler may follow when performing
research. We emphasize that the factors that we
use are well known and have for years been ex-
ploited by industry practitioners. We think that
the value added of these examples is in the con-
crete illustration of the research and develop-
ment process of a factor-based trading model.

CROSS-SECTIONAL
METHODS FOR
EVALUATION OF FACTOR
PREMIUMS
There are several approaches used for the eval-
uation of return premiums and risk character-
istics to factors. In this section, we discuss the
four most commonly used approaches: portfo-
lio sorts, factor models, factor portfolios, and
information coefficients. We examine the
methodology of each approach and summarize
its advantages and disadvantages.

In practice, to determine the right approach
for a given situation there are several issues to
consider. One determinant is the structure of
the financial data. A second determinant is the
economic intuition underlying the factor. For
example, sometimes we are looking for a mono-
tonic relationship between returns and factors
while at other times we care only about extreme
values. A third determinant is whether the
underlying assumptions of each approach are
valid for the data-generating process at hand.

Portfolio Sorts
In the asset pricing literature, the use of portfolio
sorts can be traced back to the earliest tests of the
capital asset pricing model (CAPM). The goal
of this particular test is to determine whether a

factor earns a systematic premium. The portfo-
lios are constructed by grouping together se-
curities with similar characteristics (factors).
For example, we can group stocks by market
capitalization into 10 portfolios—from small-
est to largest—such that each portfolio contains
stocks with similar market capitalization. The
next step is to calculate and evaluate the returns
of these portfolios.

The return for each portfolio is calculated by
equally weighting the individual stock returns.
The portfolios provide a representation of how
returns vary across the different values of a fac-
tor. By studying the return behavior of the fac-
tor portfolios, we may assess the return and
risk profile of the factor. In some cases, we may
identify a monotonic relationship of the returns
across the portfolios. In other cases, we may
identify a large difference in returns between
the extreme portfolios. In still other cases, there
may be no relationship between the portfolio
returns. Overall, the return behavior of the port-
folios will help us conclude whether there is a
premium associated with a factor and describe
its properties.

One application of the portfolio sort is the con-
struction of a factor mimicking portfolio (FMP).
An FMP is a long-short portfolio that goes long
stocks with high values of a factor and short
stocks with low values of a factor, in equal dol-
lar amounts. An FMP is a zero-cost factor trad-
ing strategy.

Portfolio sorts have become so widespread
among practitioners and academics alike that
they elicit few econometric queries, and often
no econometric justification for the technique
is offered. While a detailed discussion of these
topics is beyond the scope of this book, we
would like to point out that asset pricing tests
used on sorted portfolios may exhibit a bias
that favors rejecting the asset pricing model
under consideration.1

The construction of portfolios sorted on a fac-
tor is straightforward:
� Choose an appropriate sorting methodology.
� Sort the assets according to the factor.
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� Group the sorted assets into N portfolios (usu-
ally N = 5, or N = 10).

� Compute average returns (and other statis-
tics) of the assets in each portfolio over sub-
sequent periods.

The standard statistical testing procedure for
portfolio sorts is to use a Student’s t-test to eval-
uate the significance of the mean return differ-
ential between the portfolios of stocks with the
highest and lowest values of the factor.

Choosing the Sorting Methodology
The sorting methodology should be consistent
with the characteristics of the distribution of the
factor and the economic motivation underlying
its premium. We list six ways to sort factors:

Method 1
� Sort stocks with factor values from the highest

to lowest.

Method 2
� Sort stocks with factor values from the lowest

to highest.

Method 3
� First allocate stocks with zero factor values

into the bottom portfolio.
� Sort the remaining stocks with nonzero factor

values into the remaining portfolios.

For example, the dividend yield factor would
be suitable for this sorting approach. This ap-
proach aligns the factor’s distributional charac-
teristics of dividend and nondividend-paying
stocks with the economic rationale. Typically,
nondividend-paying stocks maintain character-
istics that are different from dividend paying
stocks. So we group nondividend-paying stocks
into one portfolio. The remaining stocks are
then grouped into portfolios depending on the
size of their nonzero dividend yields. We dif-
ferentiate among stocks with dividend yield be-
cause of two reasons: (1) the size of the dividend
yield is related to the maturity of the company,
and (2) some investors prefer to receive their
investment return as dividends.

Method 4
� Allocate stocks with zero factor values into

the middle portfolio.
� Sort stocks with positive factor values into the

remaining higher portfolios (greater than the
middle portfolio).

� Sort stocks with negative factor values into
the remaining lower portfolios (less than the
middle portfolio).

Method 5
� Sort stocks into partitions.
� Rank assets within each partition.
� Combine assets with the same ranking from

the different partitions into portfolios.

An example will clarify this procedure. Sup-
pose we want to rank stocks according to earn-
ings growth on a sector-neutral basis. First,
we separate stocks into groups corresponding
to their sector. Within each sector, we rank
the stocks according to their earnings growth.
Lastly, we group all stocks with the same rank-
ings of earnings growth into the final portfo-
lio. This process ensures that each portfolio will
contain an equal number of stocks from every
sector, thereby the resulting portfolios are sector
neutral.

Method 6
� Separate all the stocks with negative factor

values. Split the group of stocks with negative
values into two portfolios using the median
value as the break point.

� Allocate stocks with zero factor values into
one portfolio.

� Sort the remaining stocks with nonzero factor
values into portfolios based on their factor
values.

An example of method 6 is the share repur-
chase factor. We are interested in the extreme
positive and negative values of this factor. As
we see in Figure 5(A), the distribution of these
factors is leptokurtic with the positive values
skewed to the right and the negative values
clustered in a small range. By choosing method
6 to sort this variable, we can distinguish
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between those values we view as extreme. The
negative values are clustered so we want to dis-
tinguish among the magnitudes of those values.
We accomplish this because our sorting method
separates the negative values by the median of
the negative values. The largest negative values
form the extreme negative portfolio. The posi-
tive values are skewed to the right, so we want
to differentiate between the larger and smaller
positive values. When implementing portfolio
method 6, we would also separate the zero val-
ues from the positive values.

The portfolio sort methodology has several
advantages. The approach is easy to implement
and can easily handle stocks that drop out or
enter into the sample. The resulting portfolios
diversify away idiosyncratic risk of individual
assets and provide a way of assessing how av-
erage returns differ across different magnitudes
of a factor.
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Figure 1 Portfolio Sorts Based on the EBITDA/EV Factor

The portfolio sort methodology has several
disadvantages. The resulting portfolios may be
exposed to different risks beyond the factor the
portfolio was sorted on. In those instances, it
is difficult to know which risk characteristics
have an impact on the portfolio returns. Because
portfolio sorts are nonparametric, they do not
give insight as to the functional form of the rela-
tion between the average portfolio returns and
the factor.

Next we provide three examples to illustrate
how the economic intuition of the factor and
cross-sectional statistics can help determine the
sorting methodology.

Example 1: Portfolio Sorts Based on the
EBITDA/EV Factor
Panel A of Figure 1 contains the cross-sectional
distribution of the EBITDA/EV factor. This dis-
tribution is approximately normally distributed
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around a mean of 0.1, with a slight right skew.
We use method 1 to sort the variables into five
portfolios (denoted by q1, . . ., q5) because this
sorting method aligns the cross-sectional distri-
bution of factor returns with our economic intu-
ition that there is a linear relationship between
the factor and subsequent return. In Figure 1(B),
we see that there is a large difference between
the equally weighted monthly returns of port-
folio 1 (q1) and portfolio 5 (q5). Therefore, a
trading strategy (denoted by ls in the graph)
that goes long portfolio 1 and short portfolio 5
appears to produce abnormal returns.

Example 2: Portfolio Sorts Based on the
Revisions Factor
In Figure 2(A), we see that the distribution
of earnings revisions is leptokurtic around a
mean of about zero, with the remaining val-
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Figure 2 The Revisions Factor

ues symmetrically distributed around the peak.
The pattern in this cross-sectional distribution
provides insight on how we should sort this
factor. We use method 3 to sort the variables
into five portfolios. The firms with no change
in revisions we allocate to the middle port-
folio (portfolio 3). The stocks with positive
revisions we sort into portfolios 1 and 2, accord-
ing to the size of the revisions—while we sort
stocks with negative revisions into portfolios 4
and 5, according to the size of the revisions. In
Figure 2(B), we see there is a relationship be-
tween the portfolios and subsequent monthly
returns. The positive relationship between re-
visions and subsequent returns agrees with the
factor’s underlying economic intuition: We ex-
pect that firms with improving earnings should
outperform. The trading strategy that goes long
portfolio 1 and short portfolio 5 (denoted by
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Figure 3 The Share Repurchase Factor

ls in the graph) appears to produce abnormal
returns.

Example 3: Portfolio Sorts Based on the Share
Repurchase Factor
In Figure 3(A), we see the distribution of
share repurchase is asymmetric and leptokur-
tic around a mean of zero. The pattern in this
cross-sectional distribution provides insight on
how we should sort this factor. We use method
6 to sort the variables into seven portfolios.
We group stocks with positive revisions into
portfolios 1 through 5 (denoted by q1, . . ., q5

in the graph) according to the magnitude of
the share repurchase factor. We allocate stocks
with negative repurchases into portfolios q−2
and q−1 where the median of the negative val-
ues determines their membership. We split the
negative numbers because we are interested in
large changes in the shares outstanding. In Fig-

ure 3(B), unlike the other previous factors, we
see that there is not a linear relationship be-
tween the portfolios. However, there is a large
difference in return between the extreme port-
folios (denoted by ls in the graph). This large
difference agrees with the economic intuition
of this factor. Changes in the number of shares
outstanding are a potential signal for the fu-
ture value and prospects of a firm. On the one
hand, a large increase in shares outstanding
may signal to investors (1) the need for ad-
ditional cash because of financial distress, or
(2) that the firm may be overvalued. On the
other hand, a large decrease in the number
of shares outstanding may indicate that man-
agement believes the shares are undervalued.
Finally, small changes in shares outstanding,
positive or negative, typically do not have an
impact on stock price and therefore are not
significant.
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Information Ratios for Portfolio Sorts
The information ratio (IR) is a statistic for sum-
marizing the risk-adjusted performance of an
investment strategy. It is defined as the ratio of
the average excess return to the standard devia-
tion of return. For actively managed equity long
portfolios, the IR measures the risk-adjusted
value a portfolio manager is adding relative to a
benchmark.2 IR can also be used to capture the
risk-adjusted performance of long-short portfo-
lios from portfolio sorts. When comparing port-
folios built using different factors, the IR is an
effective measure for differentiating the perfor-
mance between the strategies.

New Research on Portfolio Sorts
As we mentioned earlier in this section, the
standard statistical testing procedure for port-
folio sorts is to use a Student’s t-test to evaluate
the mean return differential between the two
portfolios containing stocks with the highest
and lowest values of the sorting factor. How-
ever, evaluating the return between these two
portfolios ignores important information about
the overall pattern of returns among the remain-
ing portfolios.

Recent research by Patton and Timmermann
(2009) provides new analytical techniques to in-
crease the robustness of inference from portfo-
lio sorts. The technique tests for the presence
of a monotonic relationship between the port-
folios and their expected returns. To find out
if there is a systematic relationship between a
factor and portfolio returns, they use the mono-
tonic relation (MR) test to reveal whether the
null hypothesis of no systematic relationship
can be rejected in favor of a monotonic re-
lationship predicted by economic theory. By
MR it is meant that the expected returns of a
factor should rise or decline monotonically in
one direction as one goes from one portfolio
to another. Moreover, Patton and Timmermann
develop separate tests to determine the direc-
tion of deviations in support of or against the
theory.

The authors emphasize several advantages in
using this approach. The test is nonparametric
and applicable to other cases of portfolios such
as two-way and three-way sorts. This test is
easy to implement via bootstrap methods. Fur-
thermore, this test does not require specifying
the functional form (e.g., linear) in relating the
sorting variable to expected returns.

FACTOR MODELS
Classical financial theory states that the average
return of a stock is the payoff to investors for
taking on risk. One way of expressing this risk-
reward relationship is through a factor model.
A factor model can be used to decompose the re-
turns of a security into factor-specific and asset-
specific returns

ri,t = αi + βi,1 f1,t + . . . + βi,K fK ,t + εi,t

where β i,1, β i,2, . . ., β i,K are the factor exposures
of stock i, f 1,t, f 2,t, . . ., fK,t are the factor returns,
αi is the average abnormal return of stock i, and
εi,t is the residual.

This factor model specification is contempo-
raneous, that is, both left- and right-hand side
variables (returns and factors) have the same
time subscript, t. For trading strategies one gen-
erally applies a forecasting specification where
the time subscript of the return and the factors
are t + h (h ≥ 1) and t, respectively. In this case,
the econometric specification becomes

ri,t+b = αi + βi,1 f1,t + . . . + βi,K fK ,t + εi,t+b

How do we interpret a trading strategy based
on a factor model? The explanatory variables
represent different factors that forecast security
returns, and each factor has an associated fac-
tor premium. Therefore, future security returns
are proportional to the stock’s exposure to the
factor premium

E(ri,t+b | f1,t, . . . , fK ,t) = αi + β′
ift
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and the variance of future stock return is
given by

Var(ri,t+b | f1,t, . . . , fK ,t) = β′
i E(ftf′

t)βi

where and βi = (βi,1, βi,2, . . . , βi,k)′ and ft =
( f1,t, f2,t, . . . , fK ,t)′.

In the next section we discuss some specific
econometric issues regarding cross-sectional re-
gressions and factor models.

Econometric Considerations for
Cross-Sectional Factor Models
In cross-sectional regressions, where the de-
pendent variable3 is a stock’s return and the
independent variables are factors, inference
problems may arise that are the result of vio-
lations of classical linear regression theory. The
three most common problems are measurement
problems, common variations in residuals, and
multicollinearity.

Measurement Problems
Some factors are not explicitly given, but need
to be estimated. These factors are estimated
with an error. This error can have an impact on
the inference from a factor model. This problem
is commonly referred to as the “errors in vari-
ables problem.” For example, a factor that is
comprised of a stock’s beta is estimated with an
error because beta is determined from a regres-
sion of stock excess returns on the excess returns
of a market index. While beyond the scope of
this entry, several approaches have been sug-
gested to deal with this problem.4

Common Variation in Residuals
The residuals from a regression often contain
a source of common variation. Sources of com-
mon variation in the residuals are heteroskedas-
ticity and serial correlation.5 We note that when
the form of heteroskedasticity and serial corre-
lation is known, we can apply generalized least
squares (GLS). If the form is not known, it has

to be estimated, for example as part of feasible
generalized least squares (FGLS). We summa-
rize some additional possibilities next.

Heteroskedasticity occurs when the variance
of the residual differs across observations and
affects the statistical inference in a linear re-
gression. In particular, the estimated stan-
dard errors will be underestimated and the
t-statistics will therefore be inflated. Ignoring
heteroskedasticity may lead the researcher to
find significant relationships where none ac-
tually exist. Several procedures have been de-
veloped to calculate standard errors that are
robust to heteroskedasticity, also known as
heteroskedasticity-consistent standard errors.

Serial correlation occurs when residuals terms
in a linear regression are correlated, violating
the assumptions of regression theory. If the se-
rial correlation is positive, then the standard
errors are underestimated and the t-statistics
will be inflated. Cochrane (2005) suggests that
the errors in cross-sectional regressions using
financial data are often off by a factor of 10. Pro-
cedures are available to correct for serial corre-
lation when calculating standard errors.

When the residuals from a regression are both
heteroskedastic and serially correlated, proce-
dures are available to correct them. One com-
monly used procedure is the one proposed
by Newey and West (1987) referred to as the
“Newey-West corrections,” and its extension by
Andrews (1991).

Petersen (2009) provides guidance on choos-
ing the appropriate method to use for correctly
calculating standard errors in panel data re-
gressions when the residuals are correlated.
He shows the relative accuracy of the differ-
ent methods depends on the structure of the
data. In the presence of firm effects, where
the residuals of a given firm may be corre-
lated across years, ordinary least squares (OLS),
Newey-West (modified for panel data sets), or
Fama-MacBeth,6 corrected for first-order auto-
correlation, all produce biased standard errors.
To correct for this, Petersen recommends using
standard errors clustered by firms. If the firm
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effect is permanent, the fixed effects and ran-
dom effects models produce unbiased standard
errors. In the presence of time effects, where
the residuals of a given period may be corre-
lated across difference firms (cross-sectional de-
pendence), Fama-MacBeth produces unbiased
standard errors. Furthermore, standard errors
clustered by time are unbiased when there are a
sufficient number of clusters. To select the cor-
rect approach he recommends determining the
form of dependence in the data and comparing
the results from several methods.

Gow, Ormazabal, and Taylor (2009) evaluate
empirical methods used in accounting research
to correct for cross-sectional and time-series de-
pendence. They review each of the methods,
including several methods from the account-
ing literature that have not previously been
formally evaluated, and discuss when each
methods produces valid inferences.

Multicollinearity
Multicollinearity occurs when two or more in-
dependent variables are highly correlated. We
may encounter several problems when this hap-
pens. First, it is difficult to determine which fac-
tors influence the dependent variable. Second,
the individual p values can be misleading—a
p value can be high even if the variable is im-
portant. Third, the confidence intervals for the
regression coefficients will be wide. They may
even include zero. This implies that we cannot
determine whether an increase in the indepen-
dent variable is associated with an increase—or
a decrease—in the dependent variable. There
is no formal solution based on theory to correct
for multicollinearity. The best way to correct for
multicollinearity is by removing one or more of
the correlated independent variables. It can also
be reduced by increasing the sample size.

Fama-MacBeth Regression
To address the inference problem caused by
the correlation of the residuals, Fama and Mac-
Beth (1973) proposed the following methodol-

ogy for estimating cross-sectional regressions
of returns on factors. For notational simplicity,
we describe the procedure for one factor. The
multifactor generalization is straightforward.

First, for each point in time t we perform a
cross-sectional regression:

ri,t = βi,t ft + εi,t, i = 1, 2, . . . , N

In the academic literature, the regressions are
typically performed using monthly or quarterly
data, but the procedure could be used at any
frequency.

The mean and standard errors of the time se-
ries of slopes and residuals are evaluated to de-
termine the significance of the cross-sectional
regression. We estimate f and εi as the average
of their cross-sectional estimates, therefore,

f̂ = 1
T

T∑

t=1

f̂t, ε̂i = 1
T

T∑

t=1

ε̂i,t

The variations in the estimates determine the
standard error and capture the effects of resid-
ual correlation without actually estimating the
correlations.7 We use the standard deviations of
the cross-sectional regression estimates to cal-
culate the sampling errors for these estimates

σ2
f̂ = 1

T2

T∑

t=1

( f̂t − f̂ )2,σ2
ε̂i

= 1
T2

T∑

t=1

(ε̂i,t − ε̂i )2

Cochrane (2005) provides a detailed anal-
ysis of this procedure and compares it to
cross-sectional OLS and pooled time-series
cross-sectional OLS. He shows that when the
factors do not vary over time and the residuals
are cross-sectionally correlated, but not corre-
lated over time, then these procedures are all
equivalent.

Information Coefficients
To determine the forecast ability of a model,
practitioners commonly use a statistic called
the information coefficient (IC). The IC is a lin-
ear statistic that measures the cross-sectional
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correlation between a factor and its subsequent
realized return:8

I Ct,t+k = corr(ft, rt,t+k)

where ft is a vector of cross sectional factor val-
ues at time t and rt,t+k is a vector of returns over
the time period t to t + k.

Just like the standard correlation coefficient,
the values of the IC range from −1 to +1. A pos-
itive IC indicates a positive relation between the
factor and return. A negative IC indicates a neg-
ative relation between the factor and return. ICs
are usually calculated over an interval, for ex-
ample, daily or monthly. We can evaluate how
a factor has performed by examining the time
series behavior of the ICs. Looking at the mean
IC tells how predictive the factor has been over
time.

An alternate specification of this measure is to
make ft the rank of a cross-sectional factor. This
calculation is similar to the Spearman rank coef-
ficient. By using the rank of the factor, we focus
on the ordering of the factor instead of its value.
Ranking the factor value reduces the undue in-
fluence of outliers and reduces the influence of
variables with unequal variances. For the same
reasons, we may also choose to rank the returns
instead of using their numerical value.

Sorensen, Qian, and Hua (2007) present a
framework for factor analysis based on ICs.
Their measure of IC is the correlation between
the factor ranks, where the ranks are the nor-
malized z-score of the factor,9 and subsequent
return. Intuitively, this IC calculation measures
the return associated with a one standard devia-
tion exposure to the factor. Their IC calculation
is further refined by risk adjusting the value.
To risk adjust, the authors remove systematic
risks from the IC and accommodate the IC for
specific risk. By removing these risks, Qian and
Hua (2004) show that the resulting ICs provide
a more accurate measure of the return forecast-
ing ability of the factor.

The subsequent realized returns to a fac-
tor typically vary over different time horizons.
For example, the return to a factor based on

price reversal is realized over short horizons,
while valuation metrics such as EBITDA/EV
are realized over longer periods. It therefore
makes sense to calculate multiple ICs for a
set of factor forecasts whereby each calculation
varies the horizon over which the returns are
measured.

The IC methodology has many of the same ad-
vantages as regression models. The procedure
is easy to implement. The functional relation-
ship between factor and subsequent returns is
known (linear).

ICs can also be used to assess the risk of fac-
tors and trading strategies. The standard devi-
ation of the time series (with respect to t) of
ICs for a particular factor (std(ICt,t+k)) can be
interpreted as the strategy risk of a factor. Ex-
amining the time series behavior of std(ICt,t+k)
over different time periods may give a better
understanding of how often a particular factor
may fail. Qian and Hua show that std(ICt,t+k)
can be used to more effectively understand the
active risk of investment portfolios. Their re-
search demonstrates that ex post tracking er-
ror often exceeds the ex ante tracking provided
by risk models. The difference in tracking error
occurs because tracking error is a function of
both ex ante tracking error from a risk model
and the variability of information coefficients,
std(ICt,t+k). They define the expected tracking
error as

σT E = std(I Ct.t+k)
√

Nσmodeldis(Rt)

where N is the number of stocks in the uni-
verse (breath), σmodel is the risk model track-
ing error, and dis(Rt) is dispersion of returns10

defined by

dis(Rt) = std(r1,t, r2,t, . . . , rN,t)

Example: Information Coefficients
Figure 4 displays the time-varying behavior of
ICs for each one of the factors EBITDA/EV,
growth of fiscal year 1 and fiscal year 2 earn-
ings estimates, revisions, and momentum. The
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Fiscal Year 2 Earnings Estimates, Revisions, and Momentum Factors

graph shows the time series average of infor-
mation coefficients:

I Ck = mean(ICt,t+k)

The graph depicts the information horizons for
each factor, showing how subsequent return is
realized over time. The vertical axis shows the
size of the average information coefficient I Ck

for k = 1, 2, . . ., 15.
Specifically, the EBITDA/EV factor starts at

almost 0.03 and monotonically increases as the
investment horizon lengthens from one month
to 15 months. At 15 months, the EBITDA/EV
factor has an IC of 0.09, the highest value among
all the factors presented in the graph. This re-
lationship suggests that the EBITDA/EV fac-
tor earns higher returns as the holding period
lengthens.

The other ICs of the factors in the graph are
also interesting. The growth of fiscal year 1
and fiscal year 2 earnings estimates factor is
defined as the growth in current fiscal year
(fy1) earnings estimates to the next fiscal year
(fy2) earnings estimates provided by sell-side
analysts.11 We call the growth of fiscal year 1
and fiscal year 2 earnings estimates factor the
earnings growth factor throughout the remainder
of the entry. The IC is negative and decreases
as the investment horizon lengthens. The mo-
mentum factor starts with a positive IC of 0.02

and increases to approximately 0.055 in the fifth
month. After the fifth month, the IC decreases.
The revisions factor starts with a positive IC
and increases slightly until approximately the
eleventh month at which time the factor begins
to decay.

Looking at the overall patterns in the graph,
we see that the return realization pattern to dif-
ferent factors varies. One notable observation
is that the returns to factors don’t necessarily
decay but sometimes grow with the holding
period. Understanding the multiperiod effects
of each factor is important when we want to
combine several factors. This information may
influence how one builds a model. For exam-
ple, we can explicitly incorporate this informa-
tion about information horizons into our model
by using a function that describes the decay or
growth of a factor as a parameter to be cali-
brated. Implicitly, we could incorporate this in-
formation by changing the holding period for a
security traded for our trading strategy. Specifi-
cally, Sneddon (2008) discusses an example that
combines one signal that has short-range pre-
dictive power with another that has long-range
power. Incorporating this information about the
information horizon often improves the return
potential of a model. Kolm (2010) describes a
general multiperiod model that combines in-
formation decay, market impact costs, and real
world constraints.
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Factor Portfolios
Factor portfolios are constructed to measure the
information content of a factor. The objective
is to mimic the return behavior of a factor and
minimize the residual risk. Similar to portfolio
sorts, we evaluate the behavior of these factor
portfolios to determine whether a factor earns
a systematic premium.

Typically, a factor portfolio has a unit expo-
sure to a factor and zero exposure to other fac-
tors. Construction of factor portfolios requires
holding both long and short positions. We can
also build a factor portfolio that has exposure
to multiple attributes, such as beta, sectors, or
other characteristics. For example, we could
build a portfolio that has a unit exposure to
book-to-price and small size stocks. Portfolios
with exposures to multiple factors provide the
opportunity to analyze the interaction of differ-
ent factors.

A Factor Model Approach
By using a multifactor model, we can build fac-
tor portfolios that control for different risks.12

We decompose return and risk at a point in time
into a systematic and specific component using
the regression:

r = Xb + u

where r is an N vector of excess returns of the
stocks considered, X is an N by K matrix of fac-
tor loadings, b is a K vector of factor returns,
and u is an N vector of firm specific returns
(residual returns). Here, we assume that factor
returns are uncorrelated with the firm specific
return. Further assuming that firm specific re-
turns of different companies are uncorrelated,
the N by N covariance matrix of stock returns
V is given by

V = XFX′ + �

where F is the K by K factor return covariance
matrix and � is the N by N diagonal matrix of
variances of the specific returns.

We can use the Fama-MacBeth procedure dis-
cussed earlier to estimate the factor returns over
time. Each month, we perform a GLS regression
to obtain

b = (X′�−1X)−1X′�−1r

OLS would give us an unbiased estimate, but
since the residuals are heteroskedastic the GLS
methodology is preferred and will deliver a
more efficient estimate. The resulting holdings
for each factor portfolio are given by the rows
of (X′�−1X)−1X�−1.

An Optimization-Based Approach
A second approach to build factor portfolios
uses mean-variance optimization. Using op-
timization techniques provides a flexible ap-
proach for implementing additional objectives
and constraints.13

Using the notation from the previous sub-
section, we denote by X the set of factors. We
would like to construct a portfolio that has max-
imum exposure to one target factor from X (the
alpha factor), zero exposure to all other factors,
and minimum portfolio risk. Let us denote the
alpha factor by Xα and all the remaining ones
by Xσ . Then the resulting optimization problem
takes the form

max
w

{
w′Xα − 1

2
λw′Vw

}

s.t w′Xσ = 0

The analytical solution to this optimization
problem is given by

h∗ = 1
λ

V−1 [
I − Xσ(X′

σV−1Xσ)−1X′
σV−1] Xα

We may want to add additional constraints to
the problem. Constraints are added to make fac-
tor portfolios easier to implement and meet ad-
ditional objectives. Some common constraints
include limitations on turnover, transaction
costs, the number of assets, and liquidity pref-
erences. These constraints14 are typically imple-
mented as linear inequality constraints. When
no analytical solution is available to solve the



CROSS-SECTIONAL FACTOR-BASED MODELS AND TRADING STRATEGIES 225

optimization with linear inequality constraints,
we have to resort to quadratic programming
(QP).15

PERFORMANCE
EVALUATION OF FACTORS
Analyzing the performance of different factors
is an important part of the development of a
factor-based trading strategy. A researcher may
construct and analyze over a hundred different
factors, so a process to evaluate and compare
these factors is needed. Most often this process
starts by trying to understand the time-series
properties of each factor in isolation and then
study how they interact with each other.

To give a basic idea of how this process may be
performed, we use the five factors introduced
earlier in this entry: EBITDA/EV, revisions,
share repurchase, momentum, and earnings
growth. These are a subset of the factors that
we use in the factor trading strategy model
discussed later in the entry. We choose a limited
number of factors for ease of exposition. In par-
ticular, we emphasize those factors that possess
more interesting empirical characteristics.

Figure 5(A) presents summary statistics of
monthly returns of long-short portfolios con-

structed from these factors. We observe that the
average monthly return ranges from −0.05%
for the earnings growth to 0.90% for the mo-
mentum factor. The t-statistics for the mean
return are significant at the 95% level for the
EBITDA/EV, share repurchase, and momen-
tum factors. The monthly volatility ranges from
3.77% for the revisions factor to 7.13% for the
momentum factor. In other words, the return
and risk characteristics among factors vary sig-
nificantly. We note that the greatest monthly
drawdown has been large to very large for
all of the factors, implying significant down-
side risk. Overall, the results suggest that there
is a systematic premium associated with the
EBITDA/EV, share repurchase, and momen-
tum factors.

Let pctPos and pctNeg denote the fraction of
positive and negative returns over time, respec-
tively. These measures offer another way of in-
terpreting the strength and consistency of the
returns to a factor. For example, EBITDA/EV
and momentum have t-statistics of 2.16 and
1.90, respectively, indicating that the former
is stronger. However, pctPos (pctNeg) are 0.55
versus 0.61 (0.45 versus 0.39) showing that pos-
itive returns to momentum occur more fre-
quently. This may provide reassurance of the

A. Summary Statistics of Monthly Returns of Long-Short Portfolios

Mean Stdev Median t-stat Max Min pctPos pctNeg

Revisions 0.29 3.77 0.77 1.17 10.43 −19.49 0.55 0.45
EBITDA/EV 0.83 5.80 0.72 2.16 31.61 −30.72 0.55 0.45
Share repurchase 0.72 3.89 0.43 2.78 22.01 −14.06 0.61 0.39
Momentum 0.90 7.13 0.97 1.90 25.43 −42.71 0.61 0.39
Earnings growth −0.05 4.34 0.25 −0.18 14.03 −23.10 0.53 0.47

B. Correlations between Long-Short Portfolios

Share Earnings
Revisions EBITDA/EV Repurchase Momentum Growth

Revisions 1.00 −0.28 0.01 0.79 0.25
EBITDA/EV −0.28 1.00 0.78 −0.12 0.01
Share repurchase 0.01 0.78 1.00 0.20 0.12
Momentum 0.79 −0.12 0.20 1.00 0.28
Earnings growth 0.25 0.01 0.12 0.28 1.00

Figure 5 Results from Portfolio Sorts
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Figure 6 Cumulative Returns of Long-Short Portfolios

usefulness of the momentum factor, despite the
fact that its t-statistic is below the 95% level.

Figure 5(B) presents unconditional correla-
tion coefficients of monthly returns for long-
short portfolios. The comovement of factor
returns varies among the factors. The lowest
correlation is −0.28 between EBITDA/EV and
revisions. The highest correlation is 0.79 be-
tween momentum and revisions. In addition,
we observe that the correlation between re-
visions and share repurchase, and between
EBITDA/EV and earnings growth are close to
zero. The broad range of correlations provides
evidence that combining uncorrelated factors
could produce a successful strategy.

Figure 6 presents the cumulative returns for
the long-short portfolios. The returns of the
long-short factor portfolios experience sub-
stantial volatility. We highlight the following
patterns of cumulative returns for the different
factors:

� The cumulative return of the revisions factor
is positive in the early periods (12/1989 to
6/1998). While it is volatile, its cumulative re-

turn is higher in the next period (7/1998 to
7/2000). It deteriorates sharply in the follow-
ing period (8/2000 to 6/2003), and levels out
in the later periods (7/2003 to 12/2008).

� The performance of the EBITDA/EV factor
is consistently positive in the early periods
(12/1989 to 9/1998), deteriorates in the next
period (10/1998 to 1/2000) and rebounds
sharply (2/2000 to 7/2002), grows at a slower
but more historically consistent rate in the
later periods (8/2002 to 4/2007), deteriorates
in the next period (5/2007 to 9/2007), and re-
turns to more historically consistent returns
in last period (10/2007 to 12/2008).

� The cumulative return of the share repurchase
factor grows at a slower pace in the early
years (12/1989 to 5/1999), falls slightly in the
middle periods (6/1999 to 1/2000), rebounds
sharply (2/2000 to 7/2002), falls then flattens
out in the next period (8/2002 to 4/2008),
and increases at a large rate late in the graph
(5/2008 to 12/2008).

� The momentum factor experiences the largest
volatility. This factor performs consistently
well in the early period (12/1989 to 12/1998),
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A. Basic Statistics for Monthly Information Coefficients

Mean Stdev Median t-stat Max Min pctPos pctNeg

Revisions 0.02 0.10 0.02 2.51 0.31 −0.29 0.58 0.42
EBITDA/EV 0.03 0.13 0.02 3.13 0.48 −0.41 0.59 0.41
Share repurchase −0.01 0.10 −0.00 −2.13 0.20 −0.45 0.48 0.52
Momentum 0.03 0.18 0.05 2.86 0.50 −0.57 0.59 0.41
Earnings growth −0.00 0.13 0.00 −0.56 0.26 −0.28 0.51 0.49

B. Correlations for Monthly Average Information Coefficients

Share Earnings
Revisions EBITDA/EV Repurchase Momentum Growth

Revisions 1.00 −0.31 0.13 0.79 −0.14
EBITDA/EV −0.31 1.00 −0.66 −0.26 −0.49
Share repurchase 0.13 −0.66 1.00 0.02 0.58
Momentum 0.79 −0.26 0.02 1.00 −0.05
Earnings growth −0.14 −0.49 0.58 −0.05 1.00

Figure 7 Summary of Monthly Factor Information Coefficients

experiences sharp volatility in the middle pe-
riod (1/1999 to 5/2003), flattens out (6/2003
to 6/2007), and grows at an accelerating rate
from (7/2007 to 12/2008).

� The performance of the earnings growth fac-
tor is flat or negative throughout the entire
period.

The overall pattern of the cumulative returns
among the factors clearly illustrates that factor
returns and correlations are time varying.

In Figure 7(A), we present summary statistics
of the monthly information coefficients of the
factors. The average monthly information coef-
ficients range from 0.03 for EBITDA/EV and
momentum, to 0.01 for the share repurchase
factor. The t-statistics for the mean ICs are sig-
nificant at the 95% level for all factors except
earnings growth. With the exception of share
repurchase and earnings growth, the fraction of
positive returns of the factors are significantly
greater than that of the negative returns.

The share repurchase factor requires some
comments. The information coefficient is neg-
ative, in contrast to the positive return in
the long-short portfolio sorts, because nega-
tive share repurchases are correlated with sub-
sequent return. The information coefficient is
lower than we would expect because there is

not a strong linear relation between the return
and the measures. As the results from the port-
folio sorts indicate, the extreme values of this
factor provide the highest returns.

Figure 7(B) displays unconditional correla-
tion coefficients of the monthly information co-
efficients. The comovement of the ICs factor
returns varies among the factors. The lowest
correlation is −0.66 between EBITDA/EV and
share repurchases. But again this should be
interpreted with caution because it is nega-
tive repurchases that we view as attractive. The
highest correlation reported in the exhibit is 0.79
between momentum and revisions. Similar to
the correlation of long-short factor portfolio re-
turns, the diverse set of correlations provides
evidence that combining uncorrelated factors
may produce a successful strategy.

In Figure 8(A), we present summary statis-
tics of the time series average of the monthly
coefficients from the Fama-MacBeth (FM) re-
gressions of the factors. The information pro-
vided by the FM coefficients differs from the
information provided by portfolio sorts. The
FM coefficients show the linear relationship be-
tween the factor and subsequent returns, while
the results from the portfolio sorts provide in-
formation on the extreme values of the factors
and subsequent returns. The difference in the
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A. Basic Statistics for Fama-MacBeth Regression Coefficients

Mean Stdev Median t-stat Max Min pctPos pctNeg

Revisions 0.09 1.11 0.22 1.22 3.36 −5.26 0.59 0.41
EBITDA/EV 0.27 1.61 0.14 2.50 8.69 −7.81 0.59 0.41
Share repurchase −0.18 0.96 −0.06 −2.90 3.21 −5.91 0.44 0.56
Momentum 0.31 2.42 0.29 1.94 9.97 −12.37 0.60 0.40
Earnings growth −0.08 0.99 −0.04 −1.20 2.83 −4.13 0.48 0.52

B. Correlations for Fama-MacBeth Regression Coefficients

Share Earnings
Revisions EBITDA/EV Repurchase Momentum Growth

Revisions 1.00 −0.27 0.05 0.77 −0.26
EBITDA/EV −0.27 1.00 −0.75 −0.18 −0.58
Share repurchase 0.05 −0.75 1.00 −0.04 0.64
Momentum 0.77 −0.18 −0.04 1.00 −0.18
Earnings growth −0.26 −0.58 0.64 −0.18 1.00

Figure 8 Summary of Monthly Fama-MacBeth Regression Coefficients

size of the mean returns between the FM coeffi-
cients and portfolio sorts exits partially because
the intercept terms from the FM regressions are
not reported in the exhibit.

The average monthly FM coefficient ranges
from −0.18 for share repurchase to 0.31 for the
momentum factor. Again the share repurchase
results should be interpreted with caution be-
cause it is negative repurchases that we view as
attractive. The t-statistics are significant at the
95% level for the EBITDA/EV and share repur-
chase factors.

Also, we compare the results of portfolio sorts
in Figure 7(A) with the FM coefficients in Fig-
ure 8(A). The rank ordering of the magnitude of
factor returns is similar between the two pan-
els. The t-statistics are slightly higher in the FM
regressions than the portfolio sorts. The correla-
tion coefficients for the portfolio sorts in Figure
7(B) are consistent with the FM coefficients in
Figure 8(B) for all the factors except for shares
repurchases. The results for share repurchases
need to be interpreted with caution because it is
negative repurchases that we view as attractive.
The portfolio sorts take that into account while
FM regressions do not.

To better understand the time variation of
the performance of these factors, we calculate
rolling 24-month mean returns and correlations

of the factors. The results are presented in Fig-
ure 9. We see that the returns and correlations to
all factors are time varying. A few of the time se-
ries experience large volatility in the rolling 24-
month returns. The EBITDA/EV factor shows
the largest variation followed by the momen-
tum and share repurchase factors. All factors
experience periods where the rolling average
returns are both positive and negative.

Figure 10 presents the rolling correlation be-
tween pairs of the factors. There is substantial
variability in many of the pairs. In most cases
the correlation moves in a wave-like pattern.
This pattern highlights the time-varying prop-
erty of the correlations among the factors. This
property will be important to incorporate in a
factor trading model. The most consistent cor-
relation is between momentum and revisions
factors and this correlation is, in general, fairly
high.

MODEL CONSTRUCTION
METHODOLOGIES FOR A
FACTOR-BASED TRADING
STRATEGY
In the previous section, we analyzed the per-
formance of each factor. The next step in
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Figure 9 Rolling 24-Month Mean Returns for the Factors

building our trading strategy is to determine
how to combine the factors into one model. The
key aspect of building this model is to (1) de-
termine what factors to use out of the universe
of factors that we have, and (2) how to weight
them.
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Figure 10 Rolling 24-Month Correlations of Monthly Returns for the Factors

We describe four methodologies to combine
and weight factors to build a model for a trad-
ing strategy. These methodologies are used to
translate the empirical work on factors into
a working model. Most of the methodologies
are flexible in their specification and there is
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some overlap between them. Though the list
is not exhaustive, we highlight those processes
frequently used by quantitative portfolio man-
agers and researchers today. The four method-
ologies are the data driven, the factor model,
the heuristic, and the optimization approaches.

It is important to be careful how each method-
ology is implemented. In particular, it is crit-
ical to balance the iterative process of finding
a robust model with good forecasting ability
versus finding a model that is a result of data
mining.

The Data Driven Approach
A data driven approach uses statistical methods
to select and weight factors in a forecasting
model. This approach uses returns as the in-
dependent variables and factors as the depen-
dent variables. There are a variety of estimation
procedures, such as neural nets, classification
trees, and principal components, that can be
used to estimate these models. Usually a statis-
tic is established to determine the criteria for a
successful model. The algorithm of the statis-
tical method evaluates the data and compares
the results against the criteria.

Many data driven approaches have no struc-
tural assumptions on potential relationships the
statistical method finds. Therefore, it is some-
times difficult to understand or even explain
the relationship among the dependent variables
used in the model.

Deistler and Hamann (2005) provide an ex-
ample of a data driven approach to model
development. The model they develop is used
for forecasting the returns to financial stocks.
To start, they split their data sample into
two parts—an in-sample part for building the
model and an out-of-sample part to validate
the model. They use three different types of fac-
tor models for forecasting stock returns: qua-
sistatic principal components, quasistatic factor
models with idiosyncratic noise, and reduced
rank regression. For model selection Deistler

and Hamann use an iterative approach where
they find the optimal mix of factors based
on the Akaike’s information criterion and the
Bayesian information criterion. A large num-
ber of different models are compared using the
out-of-sample data. They find that the reduced
rank model provides the best performance. This
model produced the highest out-of-sample R2s,
hit rates,16 and Diebold-Mariano test statistic17

among the different models evaluated.

The Factor Model Approach
In this section, we briefly address the use of fac-
tor models for forecasting. The goal of the factor
model is to develop a parsimonious model that
forecasts returns accurately. One approach is for
the researcher to predetermine the variables to
be used in the factor model based on economic
intuition. The model is estimated and then the
estimated coefficients are used to produce the
forecasts.

A second approach is to use statistical tools
for model selection. In this approach we con-
struct several models—often by varying the fac-
tors and the number of factors used—and have
them compete against each other, just like a
horse race. We then choose the best perform-
ing model.

Factor model performance can be evaluated in
three ways. We can evaluate the fit, forecast abil-
ity, and economic significance of the model. The
measure to evaluate the fit of a model is based
on statistical measures including the model’s
R2 and adjusted R2, and F- and t-statistics of the
model coefficients.

There are several methods to evaluate how
well a model will forecast. West (2004) discusses
the theory and conventions of several measures
of relative model quality. These methods use the
resulting time series of predictions and predic-
tion errors from a model. In the case where we
want to compare models, West suggests ratios
or differences of mean; mean-square or mean-
absolute prediction errors; correlation between
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one model’s prediction and another model’s re-
alization (also know as forecast encompassing);
or comparison of utility or profit-based mea-
sures of predictive ability. In other cases where
we want to assess a single model, he suggests
measuring the correlation between prediction
and realization, the serial correlation in one step
ahead prediction errors, the ability to predict
direction of change, and the model prediction
bias.

We can evaluate economic significance by
using the model to predict values and using
the predicted values to build portfolios. The
profitability of the portfolios is evaluated by ex-
amining statistics such as mean returns, infor-
mation ratios, dollar profits, and drawdown.

The Heuristic Approach
The heuristic approach is another technique used
to build trading models. Heuristics are based
on common sense, intuition, and market in-
sight and are not formal statistical or mathe-
matical techniques designed to meet a given set
of requirements. Heuristic-based models result
from the judgment of the researcher. The re-
searcher decides the factors to use, creates rules
in order to evaluate the factors, and chooses
how to combine the factors and implement the
model.

Piotroski (2000) applies a heuristic approach
in developing an investment strategy for high-
value stocks (high book-to-market firms). He
selects nine fundamental factors18 to measure
three areas of the firm’s financial condition:
profitability, financial leverage and liquidity,
and operating efficiency. Depending on the fac-
tor’s implication for future prices and prof-
itability, each factor is classified as either “good”
or “bad.” An indicator variable for the factor is
equal to one (zero) if the factor’s realization is
good (bad). The sum of the nine binary factors
is the F_SCORE. This aggregate score measures
the overall quality, or strength, of the firm’s fi-
nancial position. According to the historical re-

sults provided by Piotroski, this trading strat-
egy is very profitable. Specifically, a trading
strategy that buys expected winners and shorts
expected losers would have generated a 23%
annual return between 1976 and 1996.

There are different approaches to evaluate
a heuristic approach. Statistical analysis can
be used to estimate the probability of incor-
rect outcomes. Another approach is to evaluate
economic significance. For example, Piotroski
determines economic significance by forming
portfolios based on the firm’s aggregate score
(F_SCORE) and then evaluates the size of the
subsequent portfolio returns.

There is no theory that can provide guidance
when making modeling choices in the heuristic
approach. Consequently, the researcher has to
be careful not to fall into the data-mining trap.

The Optimization Approach
In this approach, we use optimization to select
and weight factors in a forecasting model. An
optimization approach allows us flexibility in cali-
brating the model and simultaneously optimiz-
ing an objective function specifying a desirable
investment criteria.

There is substantial overlap between opti-
mization use in forecast modeling and portfolio
construction. There is frequently an advantage
in working with the factors directly, as opposed
to all individual stocks. The factors provide a
lower dimensional representation of the com-
plete universe of the stocks considered. Besides
the dimensionality reduction, which reduces
computational time, the resulting optimization
problem is typically more robust to changes in
the inputs.

Sorensen, Hua, Qian, and Schoen (2004)
present a process that uses an optimization
framework to combine a diverse set of factors
(alpha sources) into a multifactor model. Their
procedure assigns optimal weights across the
factors to achieve the highest information ra-
tio. They show that the optimal weights are a
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function of average ICs and IC covariances.
Specifically,

w ∝ cov(IC)−1 × IC

where w is the vector of factor weights, IC is the
vector of the average of the risk-adjusted ICs,
and cov(IC)−1 is the inverse of the covariance
matrix of the ICs.

In a subsequent paper, Sorensen, Hua, and
Qian (2005) apply this optimization technique
to capture the idiosyncratic return behavior of
different security contexts. The contexts are de-
termined as a function of stock risk character-
istics (value, growth, or earnings variability).
They build a multifactor model using the histor-
ical risk-adjusted IC of the factors, determining
the weights of the multifactor model by max-
imizing the IR of the combined factors. Their
research demonstrates that the weights to fac-
tors of an alpha model (trading strategy) differ
depending on the security contexts (risk dimen-
sions). The approach improves the ex post in-
formation ratio compared to a model that uses
a one-size-fits-all approach.

Importance of Model Construction
and Factor Choice
Empirical research shows that the factors and
the weighting scheme of the factors are impor-
tant in determining the efficacy of a trading
strategy model. Using data from the stock se-
lection models of 21 major quantitative funds,
the quantitative research group at Sanford
Bernstein analyzed the degree of overlap in
rankings and factors.19 They found that the
models maintained similar exposures to many
of the same factors. Most models showed high
exposure to cash flow–based valuations (e.g.,
EV/EBITDA) and price momentum, and less
exposure to capital use, revisions, and normal-
ized valuation factors. Although they found
commonality in factor exposures, the stock
rankings and performance of the models were
substantially different. This surprising finding
indicates that model construction differs among

the various stock selection models and provides
evidence that the efficacy of common signals
has not been completely arbitraged away.

A second study by the same group showed
commonality across models among cash flow
and price momentum factors, while stock rank-
ings and realized performance were vastly
different.20 They hypothesize that the difference
between good and poor performing models
may be related to a few unique factors identified
by portfolio managers, better methodologies
for model construction (e.g., static, dynamic, or
contextual models), or good old-fashioned luck.

Example: A Factor-Based
Trading Strategy
In building this model, we hope to accomplish
the following objectives: identify stocks that
will outperform and underperform in the fu-
ture, maintain good diversification with regard
to alpha sources, and be robust to changing
market conditions such as time varying returns,
volatilities, and correlations.

We have identified 10 factors that have an
ability to forecast stock returns.21 Of the four
model construction methodologies discussed
previously, we use the optimization framework
to build the model as it offers the greatest
flexibility.

We determine the allocation to specific factors
by solving the following optimization problem:

min
w

w′∑w, w ≥ 0
∑

v∈Value
wv ≥ 0.35

∑
g∈Growth

wg ≥ 0.20

3 ≤
10∑

i=1
δi ≤ 7

with the budget constraint

w′e = 1, e = (1, . . . , 1)′

where � is the covariance matrix of factor re-
turns, Value and Growth are the sets of value
and growth factors, and δi is equal to one if
wi > 0 or zero otherwise.
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Figure 11 Factor Weights of the Trading Strategy

We constrain the minimum exposure to val-
ues factors to be greater than or equal to 35%
of the weight in the model based on the belief
that there is a systematic long-term premium to
value.

Using the returns of our factors, we perform
this optimization monthly to determine which
factors to hold and in what proportions. Figure
11 displays how the factor weights change over
time.

In the next step, we use the factor weights to
determine the attractiveness of the stocks in our
universe. We score each stock in the universe by
multiplying the standardized values of the fac-
tors by the weights provided by the optimiza-
tion of our factors. Stocks with high scores are
deemed attractive and stocks with low scores
are deemed unattractive.

To evaluate how the model performs, we sort
the scores of stocks into five equally weighted
portfolios and evaluate the returns of these
portfolios. Table 1(A) provides summary statis-
tics of the returns for each portfolio. Note that
there is a monotonic increasing relationship
among the portfolios with portfolio 1 (q1) earn-
ing the highest return and portfolio 5 (q5) earn-

ing the lowest return. Over the entire period,
the long-short portfolio (LS) that is long port-
folio 1 and short portfolio 5 averages about 1%
per month with a monthly Sharpe ratio of 0.33.
Its return is statistically significant at the 97.5%
level.

Table 1 Summary of Model Results
A. Summary Statistics of the Model Returns

q1 q2 q3 q4 q5 LS

Mean 1.06 0.98 0.83 0.65 0.12 0.94
Stdev 5.64 5.18 4.98 5.31 5.88 2.82
Median 1.61 1.61 1.58 1.55 1.11 0.71
Max 15.79 11.18 10.92 13.26 13.01 12.84
Min −23.59 −23.32 −19.45 −21.25 −24.51 −6.87
Num 169 169 169 169 169 169
t-statistic 2.44 2.45 2.17 1.59 0.27 4.33
IR 0.19 0.19 0.17 0.12 0.02 0.33

B. Summary Statistics of Turnover for Portfolio 1 (q1)
and Portfolio 5 (q5)

q1 q5

Mean 0.20 0.17
Stdev 0.07 0.06
Median 0.19 0.16
Max 0.53 0.39
Min 0.07 0.05
Num 169 169
t-statistic 36.74 39.17
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Table 1(B) shows the monthly average stock
turnover of portfolio 1 (q1) and portfolio 5
(q5). Understanding how turnover varies from
month to month for a trading strategy is im-
portant. If turnover is too high then it might
be prohibitive to implement because of execu-
tion costs. While beyond the scope of this en-
try, we could explicitly incorporate transaction
costs in this trading strategy using a market
impact model.22 Due to the dynamic nature of
our trading strategy—where active factors may
change from month to month—our turnover of
20% is a bit higher than what would be expected
using a static approach.

We evaluate the monthly information
coefficient between the model scores and sub-
sequent return. This analysis provides informa-
tion on how well the model forecasts return.
The monthly mean information coefficient of
the model score is 0.03 and is statistically sig-
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Figure 12 Cumulative Return of the Model

nificant at the 99% level. The monthly standard
deviation is 0.08. We note that both the informa-
tion coefficients and returns were stronger and
more consistent in the earlier periods.

Figure 12 displays the cumulative return to
portfolio 1 through portfolio 5. Throughout the
entire period there is a monotonic relationship
between the portfolios. To evaluate the over-
all performance of the model, we analyze the
performance of the long-short portfolio returns.
We observe that the model performs well in
December 1994 to May 2007 and April 2008
to June 2008. This is due to the fact that our
model correctly picked the factors that per-
formed well in those periods. We note that
the model performs poorly in the period July
2007–April 2008, losing an average of 1.09% a
month. The model appears to suffer from the
same problems many quantitative equity funds
and hedge funds faced during this period.23
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The worst performance in a single month was
–6.87, occurring in January 2001, and the maxi-
mum drawdown of the model was −13.7%, oc-
curring during the period from May 2006 (peak)
to June 2008 (trough).24

To more completely understand the return
and risk characteristic of the strategy, we would
have to perform a more detailed analysis, in-
cluding risk and performance attribution, and
model sensitivity analysis over the full period
as well as over subperiods. As the turnover is
on the higher side, we may also want to in-
troduce turnover constraints or use a market
impact model.

Periods of poor performance of a strategy
should be disconcerting to any analyst. The
poor performance of the model during the pe-
riod June 2007–March 2008 indicates that many
of the factors we use were not working. We need
to go back to each individual factor and analyze
them in isolation over this time frame. In addi-
tion, this highlights the importance of research
to improve existing factors and develop new
ones using unique data sources.

BACKTESTING
In the research phase of the trading strategy,
model scores are converted into portfolios and
then examined to assess how these portfolios
perform over time. This process is referred to as
backtesting a strategy. The backtest should mir-
ror as closely as possible the actual investing en-
vironment incorporating both the investment’s
objectives and the trading environment.

When it comes to mimicking the trading en-
vironment in backtests, special attention needs
to be given to transaction costs and liquid-
ity considerations. The inclusion of transaction
costs is important because they may have a ma-
jor impact on the total return. Realistic market
impact and trading costs estimates affect what
securities are chosen during portfolio construc-
tion. Liquidity is another attribute that needs
to be evaluated. The investable universe of

stocks should be limited to stocks where there
is enough liquidity to be able to get in and out
of positions.

Portfolio managers may use a number of
constraints during portfolio construction. Fre-
quently these constraints are derived from the
portfolio policy of the firm, risk management
policy, or investor objectives. Common con-
straints include upper and lower bounds for
each stock, industry, or risk factor—as well as
holding size limits, trading size limits, turnover,
and the number of assets long or short.

To ensure the portfolio construction process
is robust we use sensitivity analysis to evaluate
our results. In sensitivity analysis we vary the
different input parameters and study their im-
pact on the output parameters. If small changes
in inputs give rise to large changes in out-
puts, our process may not be robust enough.
For example, we may eliminate the five best
and worst performing stocks from the model,
rerun the optimization, and evaluate the per-
formance. The results should be similar as the
success of a trading strategy should not depend
on a handful of stocks.

We may want to determine the effect of small
changes in one or more parameters used in
the optimization. The performance of the op-
timal portfolio should in general not differ
significantly after we have made these small
changes.

Another useful test is to evaluate a model by
varying the investment objective. For example,
we may evaluate a model by building a low-
tracking-error portfolio, a high-tracking-error
portfolio, and a market-neutral portfolio. If the
returns from each of these portfolios are decent,
the underlying trading strategy is more likely
to be robust.

Understanding In-Sample and
Out-of-Sample Methodologies
There are two basic backtesting methodologies:
in-sample and out-of-sample. It is important is
to understand the nuances of each.
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We refer to a backtesting methodology as an
in-sample methodology when the researcher
uses the same data sample to specify, calibrate,
and evaluate a model.

An out-of-sample methodology is a backtest-
ing methodology where the researcher uses a
subset of the sample to specify and calibrate a
model, and then evaluates the forecasting abil-
ity of the model on a different subset of data.
There are two approaches for implementing an
out-of-sample methodology. One approach is
the split-sample method. This method splits the
data into two subsets of data where one subset
is used to build the model while the remaining
subset is used to evaluate the model.

A second method is the recursive out-of-
sample test. This approach uses a sequence of
recursive or rolling windows of past history to
forecast a future value and then evaluates that
value against the realized value. For example,
in a rolling regression–based model we will use
data up to time t to calculate the coefficients
in the regression model. The regression model
forecasts the t + h dependent values, where
h > 0. The prediction error is the difference be-
tween the realized value at t + h and the pre-
dicted value from the regression model. At t + 1
we recalculate the regression model and evalu-
ate the predicted value of t + 1 + h against real-
ized value. We continue this process throughout
the sample.

The conventional thinking among econome-
tricians is that in-sample tests tend to reject
the null hypotheses of no predictability more
often than out-of-sample tests. This view is
supported by many researchers because they
reason that in-sample tests are unreliable, of-
ten finding spurious predictability. Two reasons
given to support this view are the presence of
unmodeled structural changes in the data and
the use of techniques that result in data mining
and model overfitting.

Inoune and Kilian (2002) question this con-
ventional thinking. They use asymptotic theory
to evaluate the “trade-offs between in-sample
tests and out-of-sample tests of predictability

in terms of their size and power.” They ar-
gue strong in-sample results and weak out-of-
sample results are not necessarily evidence that
in-sample tests are not reliable. Out-of-sample
tests using sample-splitting result in a loss of
information and lower power for small sam-
ples. As a result, an out-of-sample test may fail
to detect predictability while the in-sample test
will correctly identify predictability. They also
show that out-of-sample tests are not more ro-
bust to parameter instability that results from
unmodeled structural changes.

A Comment on the Interaction
between Factor-Based Strategies and
Risk Models
Frequently, different factor models are used to
calculate the risk inputs and the expected return
forecasts in a portfolio optimization. A common
concern is the interaction between factors in the
models for risk and expected returns. Lee and
Stefek (2008) evaluate the consequences of us-
ing different factor models, and conclude that
(1) using different models for risk and alpha
can lead to unintended portfolio exposures that
may worsen performance; (2) aligning risk fac-
tors with alpha factors may improve informa-
tion ratios; and (3) modifying the risk model by
including some of the alpha factors may miti-
gate the problem.

BACKTESTING OUR FACTOR
TRADING STRATEGY
Using the model scores from the trading strat-
egy example, we build two optimized port-
folios and evaluate their performance. Unlike
the five equally weighted portfolios built only
from model scores, the models we now dis-
cuss were built to mirror as close as possible
tradable portfolios a portfolio manager would
build in real time. Our investable universe is the
Russell 1000. We assign alphas for all stock in
the Russell 1000 with our dynamic factor model.
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Table 2 Total Return Report (annualized)

From 01/1995 to 06/2008 QTD YTD 1 Year 2 Year 3 Year 5 Year 10 Year Since Inception

Portfolio: Low-tracking error −0.86 −10.46 −11.86 4.64 7.73 11.47 6.22 13.30
Portfolio: High-tracking error −1.43 −10.47 −11.78 4.15 8.29 13.24 7.16 14.35
S&P 500: Total return −2.73 −11.91 −13.12 2.36 4.41 7.58 2.88 9.79

The portfolios are long only and benchmarked
to the S&P 500. The difference between the port-
folios is in their benchmark tracking error. For
the low-tracking error portfolio the risk aver-
sion in the optimizer is set to a high value, sec-
tors are constrained to plus or minus 10% of the
sector weightings in the benchmark, and port-
folio beta is constrained to 1.00. For the high-
tracking error portfolio, the risk aversion is set
to a low value, the sectors are constrained to
plus or minus 25% of the sector weightings
in the benchmark, and portfolio beta is con-
strained to 1.00. Rebalancing is performed once
a month. Monthly turnover is limited to 10%
of the portfolio value for the low-tracking error
portfolio and 15% of the portfolio value for the
high-tracking error portfolio.

Table 2 presents the results of our backtest.
The performance numbers are gross of fees and
transaction costs. Performance over the entire
period is good and consistent throughout. The
portfolios outperform the benchmark over the
various time periods. The resulting annualized
Sharpe ratios over the full period are 0.66 for the
low-tracking error portfolio, 0.72 for the high-
tracking error portfolio, and 0.45 for the S&P
500.25

KEY POINTS
� The four most commonly used approaches for

the evaluation of return premiums and risk
characteristics to factors are portfolio sorts,
factor models, factor portfolios, and informa-
tion coefficients.

� The portfolio sorts approach ranks stocks by a
particular factor into a number of portfolios.
The sorting methodology should be consis-

tent with the characteristics of the distribution
of the factor and the economic motivation un-
derlying its premium.

� The information ratio (IR) is a statistic for
summarizing the risk-adjusted performance
of an investment strategy and is defined as
the ratio of average excess return to the stan-
dard deviation of return.

� We distinguish between contemporaneous
and forecasting factor models, dependent on
whether both left- and right-hand side vari-
ables (returns and factors) have the same time
subscript, or the time subscript of the left-
hand side variable is greater.

� The three most common violations of classical
regression theory that occur in cross-sectional
factor models are (1) the errors in variables
problem, (2) common variation in residuals
such as heteroskedasticity and serial correla-
tion, and (3) multicollinearity. There are sta-
tistical techniques that address the first two.
The third issue is best dealt with by removing
collinear variables from the regression, or by
increasing the sample size.

� The Fama-MacBeth regression addresses the
inference problem caused by the correlation
of the residuals in cross-sectional regressions.

� The information coefficient (IC) is used to
evaluate the return forecast ability of a fac-
tor. It measures the cross-sectional correlation
between a factor and its subsequent realized
return.

� Factor portfolios are used to measure the in-
formation content of a factor. The objective is
to mimic the return behavior of a factor and
minimize the residual risk. We can build fac-
tor portfolios using a factor model or an opti-
mization. An optimization is more flexible as
it is able to incorporate constraints.
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� Analyzing the performance of different fac-
tors is an important part of the develop-
ment of a factor-based trading strategy. This
process begins with understanding the time-
series properties of each factor in isolation
and then studying how they interact with
each other.

� Techniques used to combine and weight fac-
tors to build a trading strategy model include
the data driven, the factor model, the heuris-
tic, and the optimization approaches.

� An out-of-sample methodology is a backtest-
ing methodology where the researcher uses a
subset of the sample to specify a model and
then evaluates the forecasting ability of the
model on a different subset of data. There
are two approaches for implementing an out-
of-sample methodology: the split-sample ap-
proach and the recursive out-of-sample test.

� Caution should be exercised if different factor
models are used to calculate the risk inputs
and the expected return forecasts in a portfo-
lio optimization.

APPENDIX: THE COMPUSTAT
POINT-IN-TIME, IBES
CONSENSUS DATABASES
AND FACTOR DEFINITIONS
The factors used in this entry were constructed
on a monthly basis with data from the Com-
pustat Point-In-Time and IBES Consensus
databases. Our sample includes the largest
1,000 stocks by market capitalization over the
period December 31, 1989, to December 31,
2008.

The Compustat Point-In-Time database (Cap-
ital IQ, Compustat, http://www.compustat
.com) contains quarterly financial data from
the income, balance sheet, and cash flow state-
ments for active and inactive companies. This
database provides a consistent view of histori-
cal financial data, both reported data and subse-
quent restatements, the way it appeared at the

end of any month. Using these data allows the
researcher to avoid common data issues such as
survivorship and look-ahead bias. The data are
available from March 1987.

The Institutional Brokers Estimate Sys-
tem (IBES) database (Thomson Reuters,
http://www.thomsonreuters.com) provides
actual earnings from companies and estimates
of various financial measures from sell-side
analysts. The estimated financial measures
include estimates of earnings, revenue and
sales, operating profit, analyst recommenda-
tions, and other measures. The data are offered
on a summary (consensus) level or detailed
(analyst-by-analyst) basis. The U.S. data cover
reported earnings estimates and results since
January 1976.

The factors used in this entry are defined as
follows. (LTM refers to the last four reported
quarters.)

Value Factors
Operating income before depreciation to enter-
prise value = EBITDA/EV
where

EBITDA = Sales LTM (Compustat Item 2)

− Cost of goods Sales LTM

(Compustat Item 30)

− SG&A Exp (Compustat Item 1)

and

EV = [Long-term debt (Compustat

Item 51)

+ Common shares outstanding

(Computstat Item 61)

× Price (PRCCM) − Cash

(Compustat Item 36)]

Book to price = Stockholders’equity total

(Computstat Item 60)

÷ [Common shares outstanding

(Computstat Item 59)

× Price (PRCCM)]

http://www.compustat.com
http://www.thomsonreuters.com
http://www.compustat.com
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Sales to price = Sales LTM (Computstat Item 2)

÷ [Common shares outstanding

(Computstat Item 61)

× Price(PRCCM)]

Quality Factors

Share repurchase = [Common shares

outstanding (Computstat Item 61) − Common

shares outstanding (Computstat Item 61)

from 12 months ago] ÷ Common shares

outstanding (Computstat Item 61) from

12 months ago

Asset turnover=Sales LTM (Computstat Item 2)/

[(Assets (Computstat Item 44)

− Assets (Computstat Item 44)

from 12 months ago)/2]

Return on invested capital = Income/

Invested capital

where

Income = Income before extra items LTM

(Computstat Item 8)

+ Interest expense LTM

(Computstat Item 22)

+ Minority interest expense LTM

(Computstat Item 3)

and

Invested capital

= Common equity (Computstat Item 59)

+ Long-term debt (Computstat Item 51)

+ Minority interest (Computstat Item 53)

+ Preferred stock (Computstat Item 55)

Debt to equity = Total debt/Stockholders′ equity

where

Total debt = [Debt in current liabilities

(Computstat Item 45) + Long-term debt

− Total(Computstat Item 51)]

and

Stockholders′ equity = Stockholders′ equity

(Computstat Item 60)

Chg. debt to equity = (Total debt − Total debt

from 12 months ago)

÷ [(Stockholders′ equity

+ Stockholders′ equity

from 12 months ago)/2]

Growth

Revisions = [Number of up revisions

(IBES item NUMUP)

− Number of down revisions(IBES

item NUMDOWN)]

÷ Number of estimates revisions

(IBES item NUMEST)

Growth of fiscal Year 1 and fiscal Year 2

earnings estimates = Consensus mean of FY2

(IBES item MEANFY2) ÷ Consensus mean of

FY 1(IBES item MEAN FY1) − 1

Momentum

Momentum = Total return of last 11 months

excluding the most returns from

the most recent month

Summary Statistics
The following table contains monthly summary
statistics of the factors defined previously. Fac-
tor values greater than the 97.5 percentile or less
than the 2.5 percentile are considered outliers.
We set factor values greater than the 97.5 per-
centile value to the 97.5 percentile value, and
factor values less than the 2.5 percentile value
to the 2.5 percentile value, respectively.
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Standard
Mean Deviation Median 25 Percentile 75 Percentile

EBITDA/EV 0.11 0.06 0.11 0.07 0.15
Book to price 0.46 0.30 0.40 0.24 0.62
Sales to price 0.98 0.91 0.69 0.36 1.25
Share repurchase 0.03 0.09 0.00 −0.01 0.03
Asset turnover 1.83 1.89 1.46 0.64 2.56
Return on invested capital 0.13 0.11 0.11 0.07 0.17
Debt to equity 0.97 1.08 0.62 0.22 1.26
Change in debt to equity 0.10 0.31 0.01 −0.04 0.17
Revisions −0.02 0.33 0.00 −0.17 0.11
Growth of fiscal year 1 and fiscal year

2 earnings estimates
0.37 3.46 0.15 0.09 0.24

Momentum 13.86 36.03 11.00 −7.96 31.25

NOTES
1. For a good overview of the most com-

mon issues, see Berk (2000) and references
therein.

2. Grinold and Kahn (1999) discuss the dif-
ferences between the t-statistic and the in-
formation ratio. Both measures are closely
related in their calculation. The t-statistic is
the ratio of mean return of a strategy to its
standard error. Grinold and Kahn state the
related calculations should not obscure the
distinction between the two ratios. The t-
statistic measures the statistical significance
of returns while the IR measures the risk-
reward trade-off and the value added by an
investment strategy.

3. See, for example, Fama and French (2004).
4. One approach is to use the Bayesian or

model averaging techniques. For more de-
tails on the Bayesian approach, see, for
example, Rachev, Hsu, Bagasheva, and
Fabozzi (2008).

5. For a discussion of dealing with these
econometric problems, see Chapter 2 in
Fabozzi, Focardi, and Kolm (2010).

6. We cover Fama-MacBeth regression in this
section.

7. Fama and French (2004).
8. See, for example, Grinold and Kahn (1999)

and Qian, Hua, and Sorensen (2007).
9. A factor normalized z-score is given by the

formula z-score = (f − f̄)/std(f) where f is

the factor, f̄ is the mean, and std(f) is the
standard deviation of the factor.

10. We are conforming to the notation used in
Qian and Hua (2004). To avoid confusion,
Qian and Hua use dis() to describe the cross-
sectional standard deviation and std() to de-
scribe the time series standard deviation.

11. The earnings estimates come from the IBES
database. See the appendix for a more de-
tailed description of the data.

12. This derivation of factor portfolios is pre-
sented in Grinold and Kahn (1999).

13. See Melas, Suryanarayanan, and Cavaglia
(2009).

14. An exception is the constraint on the num-
ber of assets that results in integer con-
straints.

15. For a more detailed discussion on portfo-
lio optimization problems and optimization
software see, for example, Fabozzi, Kolm,
Pachamanova, and Focardi (2007).

16. The hit rate is calculated as

h = 1
T2 − T1

T2∑

t=T1+1

sign (yi
t ŷi

t|t−1)

where yi
t is one-step ahead realized value and

ŷi
t|t−1 is the one-step ahead predicted value.

17. For calculation of this measure, see Diebold
and Mariano (2005).

18. The nine factors are return on assets,
change in return on assets, cash flow from
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operations scaled by total assets, cash com-
pared to net income scaled by total assets,
change in long-term debt/assets, change in
current ratio, change in shares outstanding,
change in gross margin, and change in asset
turnover.

19. Zlotnikov, Larson, Cheung, Kalaycioglu,
Lao, and Apoian (2007).

20. Zlotnikov, Larson, Wally, Kalaycioglu, Lao,
and Apoian (2007).

21. We use a combination of growth, value,
quality, and momentum factors. The ap-
pendix to this entry contains definitions of
all of them.

22. Cerniglia and Kolm (2010).
23. See Rothman (2007) and Daniel (2007).
24. We ran additional analysis on the model by

extending the holding period of the model
from 1 to 3 months. The results were much
stronger as returns increased to 1.6% per
month for a two-month holding period and
1.9% per month for a three-month holding
period. The risk as measured by drawdown
was higher at –17.4% for a two-month hold-
ing period and –29.5% for the three-month
holding period.

25. Here we calculate the Sharpe ratio as port-
folio excess return (over the risk-free rate)
divided by the standard deviation of the
portfolio excess return.
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Abstract: Fundamental factor risk models have been used in equity portfolio management and risk
management for decades now. There persists, however, the notion that fundamental factor models
are “quantitative” models that are divorced from fundamental analysis, the realm of traditional
equity analysts. This perception is inaccurate in that the basic building blocks of analysts and factor
modelers are in fact similar; both try to identify microeconomic traits that drive the risk and returns
of individual securities. The differences between fundamental factor models and fundamental
analysis lie not in their ideology but in their objectives. The objective of the fundamental analyst is
to forecast return (or future stock values) for a particular stock. The objective of the fundamental
factor model is to forecast the fluctuation of a portfolio around its expected return. Most importantly,
the factor model captures the interaction of the firm’s microeconomic characteristics at the portfolio
level. This is important because as names are added to the portfolio, company-specific returns are
diversified away, and the common factor (systematic) portion becomes an increasingly larger part
of the portfolio risk and return. Fundamental factor models are in fact complementary as opposed
to antithetical to traditional security analysis.

Fundamental analysis is the process of determin-
ing a security’s future value by analyzing a com-
bination of macro- and microeconomic events
and company-specific characteristics. Though
fundamental analysis focuses on the valuation
of individual companies, most institutional in-
vestors recognize that there are common factors
affecting all stocks. (Common factors are shared
characteristics between firms that affect their

returns.) For example, macroeconomic events,
like sudden changes in interest rate, inflation, or
exchange rate expectations, can affect all stocks
to varying degrees, depending on the stock’s
characteristics.

Barr Rosenberg and Vinay Marathe (1976)
developed the theory that the effects of
macroeconomic events on individual securi-
ties could be captured through microeconomic
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characteristics—essentially common factors,
such as industry membership, financial struc-
ture, or growth orientation.

Rosenberg and Marathe (1976, p. 3) discuss
possible effects of a money market crisis. They
say a money market crisis would:

result in possible bankruptcy for some firms, dislo-
cation of the commercial paper market, and a dearth
of new bank lending beyond existing commitments.
Firms with high financial risk (shown in extreme
leverage, poor coverage of fixed charges, and inade-
quate liquid assets) might be driven to bankruptcy.
Almost all firms would suffer to some degree from
higher borrowing costs and worsened economic ex-
pectations: Firms with high financial risk would
be impacted most; the market portfolio, which is a
weighted average of all firms, would be somewhat
less exposed; and firms with abnormally low finan-
cial risk would suffer the least. Moreover, some in-
dustries such as construction would suffer greatly
because of their special exposure to interest rates.
Others such as liquor might be unaffected.

This early insight into the linkage between
macroeconomic events and microeconomic
characteristics has had a profound impact on
the asset management industry ever since. In
this entry, we discuss the intuition behind a
fundamental factor model based on microeco-
nomic traits, showing how it is linked to tra-
ditional fundamental analysis. When building
a fundamental factor model, we look for vari-
ables that explain return, just as fundamental
analysts do. We highlight the complementary
role of the fundamental factor model to tradi-
tional security analysis and point out the in-
sights these models can provide.

FUNDAMENTAL ANALYSIS
AND THE BARRA
FUNDAMENTAL FACTOR
MODEL
Fundamental analysts use many criteria when
researching companies; they may investigate a
firm’s financial statements, talk to senior man-
agement, visit facilities and plants, or analyze
a product pipeline. Most are seeking under-

Table 1 Main Areas of Stock Research

Qualitative Quantitative

Business Model Capital Structure
Competitive Advantage Revenue, Expenses, and

Earnings Growth
Management Quality Cash Flows
Corporate Governance

Note: Balance sheet and income statement data are read-
ily available from 10K filings while access to company
management and information about the business model
and competitor landscape will vary on a case-by-case
basis.

valued companies with good fundamentals or
companies with strong growth potential. They
typically review a range of quantitative and
qualitative information to help predict future
stock values. Table 1 summarizes key areas.

Similarly, the goal of a fundamental fac-
tor model is to identify traits that are im-
portant in forecasting security risk. These
models may analyze microeconomic character-
istics, such as industry membership, earnings
growth, cash flow, debt-to-assets, and company
specific traits. Figure 1 shows the cumulative re-
turns to Merck, GlaxoSmithKline, and Bristol-
Myers, three of the largest pharmaceutical
companies in the United States. The chart il-
lustrates the similarities in the return behavior
of these stocks, primarily because they are U.S.
large-cap equities within the same industry. We
also see that Bristol-Myers underperformed the
other two companies in recent years, indicating
that other firm-specific factors also impacted its
performance.

The first task when building a fundamen-
tal factor model is to identify microeconomic
traits. These include characteristics from indus-
try membership and financial ratios to techni-
cal indicators like price momentum and recent
volatility that explain return variation across
a relevant security universe. The next step is
to determine the impact certain events may
have on individual stocks, such as the sensi-
tivity or weight of an individual security to a
change in a given fundamental factor.1 Finally,
the remaining part of the returns needs to be
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Figure 1 Industry Membership Drives Similarities between Stocks

modeled, which is the company-specific behav-
ior of stocks.

How does the model we have described com-
pare with the way a fundamental analyst or
portfolio manager analyzes stocks? The basic
building blocks of analysts and factor mod-
elers are in fact similar; both try to identify
microeconomic traits that drive the risk and
returns of individual securities. Figure 2 com-
pares the two perspectives. In both views, there
are clearly firm-specific traits driving risk and
return. There are also sources of risk and return
from a stock’s exposure, or beta, to the overall
market, its industry, and certain financial and
technical ratios. But the objective of the funda-
mental analyst is to forecast return (or future
stock values), whereas the fundamental factor
model forecasts the fluctuation of a security
or a portfolio of securities around its expected
return.

Both the analyst and the factor model re-
searcher look at similar macro- and microe-
conomic data and events. After all, both are
seeking traits that explain the risk and re-
turns of stocks. Table 2 shows examples used

in the Barra equity models (specifically the
U.S. and Japan Equity Models). Variables like
profitability and debt loads are incorporated
in our models through factors like Earnings
Yield, Growth, and Leverage. Expectations of

Macro
News/Trends

Factor Model

Risk Modeler:
Forecast Risk

Fundamental
Analysis

Industry
News/Trends

Company
Fundamentals

Company
News

Portfolio Manager:
Forecast Return

Figure 2 Overview of Stock Determinants: Fun-
damental Analysis versus Factor Model Analysis
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Table 2 Sample Fundamental Data Used in Barra Models

Value Growth Earnings Variation Leverage
Foreign
Sensitivity

Book value Five-year payout Variability in earnings Market leverage Exchange rate
sensitivity

Analyst predicted
earnings

Variability in capital
structure

Standard deviation of
analyst-predicted
earnings

Book leverage Oil price
sensitivity

Trailing earnings Growth in total assets Variability in cash flows Debt to assets Sensitivity to
other market
indices

Forecast
operating
income

Growth in revenues Extraordinary items in
earnings

Senior debt rating Export revenue
as percentage
of total

Sales Pension liabilities
Forecast sales Historical earnings

growth
Analyst-predicted

earnings growth
Recent earnings changes

future revenue growth and cost savings are
incorporated through variables like analyst
consensus views. What about popular metrics
that aren’t included? Some factors may not be
good risk factors despite being good return fac-
tors. (A good return factor has persistent direc-
tion though not a lot of volatility; the ability
of a company to beat earnings estimates is one
of these factors). Other factors may be relevant
only for a particular sector or industry. (These
risk factors would only be included in industry
or sector risk models.)

Note that adjustments of financial statements
are incorporated in several ways. A key task for
the fundamental analyst is to adjust financial
statements—each analyst wants to get at the
“real” number rather than what is reported in
financial statements. Even under generally ac-
cepted accounting principles, management can
be aggressive with basic principles, such as rev-
enue/expense recognition; usage of unusual,
infrequent, or extraordinary items; and timing
issues that may lead to violations of the match-
ing principle. In a factor model, these types of
adjustments are accounted for through the in-
clusion of forward-looking, analyst-derived de-
scriptors.

In addition to fundamental data, techni-
cal variables such as price momentum, beta,
option-implied volatility, and so on may also
be used. For instance, price momentum has
been shown to significantly explain returns (see
Carhart, 1997).

How are the fundamental data used in a fac-
tor model? Certain factors are found to ex-
plain stock returns over time, for example,
industries and certain financial and technical
ratios. If such factors explain returns across
a broad universe of stocks, they are deemed
important. In financial theory, these factors
are “priced” across assets, for example, Fama-
French value (BTM) size (small-cap) factors
(Fama and French, 1992).

Once we have identified the factors, we
need to link each stock to each factor. For
this, we use microeconomic characteristics. We
start by identifying a set of characteristics we
call descriptors. For instance, if the factor is
growth, a few descriptors might include earn-
ings growth, revenue growth, and asset growth
(see Table 2). These include both historical
and forward-looking descriptors, such as fore-
cast earnings growth. After we identify the
important descriptors, we standardize them
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Table 3 Calculating Exposures from Raw Data (April 1, 2010)

Barra Factor Size Value Yield

Descriptor for Factor
Capitalization
(USD Bn)* Book to Price

Predicted
Dividend Yield

Microsoft 256.7 0.15 0.02
Estimation Universe Average 69.8 0.39 0.02
Estimation Universe Std Dev 21.1 0.37 0.02
Exposure 1.64 −0.62 0.06

Note: The actual descriptor for the USE3 Size factor uses the log of market capitalization. The log of market cap for
Microsoft is 12.46. The estimation universe average is 10.22 and the standard deviation 1.36. The resulting exposure
for Microsoft is 1.64.

across a universe of stocks, typically the con-
stituents of a broad market index.2 Table 3 illus-
trates how Microsoft’s exposures for the Barra
U.S. factors—size, value, and yield—are cal-
culated. We subtract the estimation universe
average3 descriptor for each factor and divide
it by the standard deviation of the universe of
stocks.

In some cases, factors reflect several charac-
teristics. This occurs when multiple descriptors
help explain the same factor. The Barra U.S.
Growth factor, for instance, reflects five-year
payouts, variability in capital structure, growth
in total assets, recent large earnings changes,
and forecast and historical earnings growth.
Table 4 shows how we calculate Microsoft’s ex-
posure to the Growth factor. Each descriptor is
first standardized and then the descriptors are
combined to form the exposure.

In addition to factors like Value, Size, Yield,
and Growth, which we call style factors, a
stock’s returns are also a function of its in-
dustry. Industry exposures are calculated in a
different way. A company like Google, for in-
stance, is engaged solely in Internet-related ac-
tivities. It has an exposure of 100% (1.0) to the
Internet industry factor in the Barra U.S. Equity
Model. Its exposure to all other industry factors
is zero. Some companies, like General Electric,
have business activities that span multiple in-
dustries. In the U.S. model, industry exposures
are based on sales, assets, and operating income
in each industry.4

What does a factor exposure mean? In the
same way the classic capital asset pricing model
beta measures how much a stock price moves
with every percentage change in the market,
a factor exposure measures how much a stock

Table 4 Calculating Exposures When There Are Multiple Characteristics (April 1, 2010)

Growth

Analyst- Earnings
Growth Rate Recent Predicted Variability Growth Rate

Factor of Total Earnings Earnings in Capital Over Last 5-Year
Descriptor Assets Change Growth Structure 5 Years Payout

Microsoft −0.01% −0.14 −0.31 25% 0% 0.69
Estimation Universe
Average

0.03% −2.76 1.44 15% −1% 0.39

Estimation Universe Std
Dev

0.04% 47.08 4.36 39% 18% 3.28

Standardized descriptor −0.95 0.06 −0.40 0.24 0.03 0.09
Weight of each descriptor −0.34 0.20 0.15 0.13 0.10 0.08
Exposure −0.33
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price moves with every percentage change in
a factor. Thus, if the value factor rises by 10%,
a stock or portfolio with an exposure of 0.5 to
the value factor will see a return of 5%, all else
equal.5

Once we have predetermined the factor expo-
sures for all stocks based on their underlying
characteristics, we estimate the factor returns
using a regression-based method.6

A stock’s return can then be described by the
returns of its subcomponents: its Size exposure
times the return of the Size factor plus its Value
exposure times the pure return of the Value fac-
tor, and so on. This process can account for a
substantial proportion of a stock’s return. The
remainder of the stock’s return is deemed com-
pany specific and unique to each security. For
example, the return to Microsoft over the last
month can be viewed as:

rMSFT = xIndustry 1rIndustry 1 + xIndustry 2rIndustry 2

+ . . . + xSizerSize + xValuerValue + . . . .rFirm-Specific

where x is the exposure of Microsoft to the
various factors and rFactordenotes returns to the
factors.

The returns to the factors are important. They
are returns to the particular style or character-
istic net of all other factors. For instance, the
Value factor is the return to stocks with low
price to book ratio with all the industry effects
and other style effects removed. Industry re-
turns have a similar interpretation and differ
from a Global Industry Classification Standard
(GICS R©) industry-based return. They are esti-
mated returns that reflect the returns to that
industry net of all other style characteristics.
They offer insight into the pure returns to the
industry.

The final building block of our fundamen-
tal factor model is the modeling of company-
specific returns. Predicting specific returns and
risk is a difficult task that has been approached
in a number of ways. The simplest approach
is to assume that specific returns and/or risk
will be the same as they have been historically.
Another approach is to use a structural model

where the predicted specific risk of a company
depends on its industry, size, and other fun-
damental characteristics. Both approaches—
simple historical and modeled—are used in the
Barra models, depending on the market. The
modeled approach has the advantage of using
fundamental data.

CRITICAL INSIGHTS FROM
THE BARRA FUNDAMENTAL
FACTOR MODEL
Fundamental analysis and fundamental factor
models may begin with the same ideology but
they offer different insights. Fundamental anal-
ysis ultimately focuses on in-depth company
research, while factor models tie the informa-
tion together at the portfolio level. The critical
value of the factor model is that it shows the
interaction of the firm’s microeconomic char-
acteristics. The value of the factor model at the
company level is magnified at the portfolio level
as the company-specific component becomes
less important. Figure 3 illustrates this princi-
ple of diversification. As names are added to the
portfolio, company-specific returns are diversi-
fied away. Because the common factor (system-
atic) portion stays roughly the same, it becomes
an increasingly larger part of the portfolio risk
and return.

This means that at the portfolio level com-
mon factors are more important than company-
specific drivers in determining a portfolio’s
return and risk. Understanding and managing
the common factor component becomes critical
to the portfolio’s performance.

The complementary character of fundamental
factor models and individual security analysis
allows managers to use factor models to analyze
portfolio characteristics. Next, we discuss the
benefits of using fundamental factor models,
including:

� Monitoring and managing portfolio expo-
sures over time
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Figure 3 The Number of Stocks and the Impact on the Risk Composition
Note: This chart shows a stylized example of adding stocks to the portfolio where all the stocks have
the same specific risk of 20%, there are two factors with risk of 10% and 5%, and correlation between
them is 0.25. Factor exposures are drawn from a random distribution. Stocks are weighted equally in the
portfolio.

� Understanding the contribution of factors
and individual stocks to portfolio risk and
tracking error relative to the relevant bench-
mark (risk decomposition)

� Attributing portfolio performance to factors
and individual stocks to understand the re-
turn contribution of intended and accidental
bets

Monitoring Portfolio Exposures
To illustrate, we use a portfolio of U.S. airline
stocks. The concepts can be applied to any sec-
tor, multisector, or multicountry portfolio.

Since the middle of 2009, airline stocks have
performed well. UAL (United), Delta, and
Southwest saw big gains in December 2009 and
February 2010. Table 5 lists the largest U.S. air-
line stocks as of April 30, 2010, with at least USD

1 billion market capitalization and their recent
performance.

For the remainder of this section, we look
at an equal-weighted portfolio of the stocks in
Table 5. Figure 4 shows how the exposures of
the airline portfolio to Barra factors evolved
over time. The figure shows the top three expo-
sures that changed the most in absolute terms
between January 1995 and May 2010. The port-
folio had an exposure to the Value factor of 1.8
in January 1995, and by May 2010 the exposure
had declined to –0.9. Essentially, the portfolio
went from being relatively cheap to relatively
expensive during this time. Airlines have also
seen a long-term decrease in exposure to cur-
rency sensitivity, most likely due to changes in
oil exposure management and global air traffic
patterns.

There can also be important differences in
the distribution of the stocks’ exposures to a
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Table 5 Largest Stocks in U.S. Airline Industry and Recent Performance

Company Ticker
Market Cap
(USD Bn)

1 year
(3/31/09–3/31/10) 2009 Return 2008 Return

DELTA AIR LINES INC DE DAL 10.4 111% −1% −23%
SOUTHWEST AIRLS CO LUV 10.2 101% 33% −29%
UAL CORP UAUA 3.6 367% 17% −67%
CONTINENTAL AIRLS [B] CAL 3.1 109% −1% −19%
AMR CORP AMR 2.8 63% −28% −24%
JETBLUE AIRWAYS CORP JBLU 1.7 32% −23% 20%
ALASKA AIR GROUP INC ALK 1.5 161% 18% 17%
ALLEGIANT TRAVEL CO ALGT 1.1 3% 97% 68%
U S AIRWAYS GROUP INC LCC 1.1 75% −37% −47%

factor. Figure 5 shows the distribution of in-
dividual stock exposures to two of the U.S.
factors—Value, which has the largest distribu-
tion, and Growth, which has among the most
narrow distributions—as of May 2010. Two
portfolios can have the same overall exposure
to a factor but very different distributions.

Monitoring unintentional risk exposures that
may not be visible on the surface can be criti-
cal. At the portfolio level, these exposures can
be unintended bets that can impact overall
performance. In addition, the distribution of
exposures may be important. For example, a
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Figure 4 Airline Portfolio Exposures over Time

portfolio of companies with a leverage expo-
sure of zero has a very different economic pro-
file than a portfolio with a barbell distribution
where half the companies are overleveraged
and potentially vulnerable to a collapse in credit
conditions.

RISK DECOMPOSITION
Factor exposures highlight how sensitive a port-
folio is to different sources of risk. However,
to truly understand how risky these exposures
are, we can use the factor model to attribute risk
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fully. The combination of exposures and factor
volatilities determines the riskiness of each po-
sition. For example, a portfolio can have a large
exposure to a factor but if the factor isn’t partic-
ularly risky, it won’t be a major contributor to
portfolio risk. Furthermore, the relationship be-
tween factors also matters. A large exposure to
two factors that are highly correlated will also
increase portfolio risk.
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Figure 6 Sources of Risk in an Airline Portfolio, April 30, 2010, Using the Barra U.S. Equity Long-Term
Model (USE3L)

Continuing with the airline portfolio, we de-
compose risk as of April 30, 2010 across the four
major sources (see Figure 6A). Since the stocks
are within a single industry, industry risk con-
tributes the most risk. Most importantly, we see
that even with just 9 names in the portfolio,
style risk far outweighs company-specific risk.
The former contributes nearly three times that
of the latter (16% versus 5.5%).
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Table 6 Exposure to Volatility of Stocks in an Airline
Portfolio, April 30, 2010, Using the Barra U.S.
Long-Term Equity Model (USE3L)

Portfolio 1.82

USAir 3.28 JetBlue 1.52
UAL Corp 3.19 Alaska 1.01
AMR 2.70 Southwest 0.49
Continental 1.95 Allegiant 0.39
Delta 1.81

Which specific style factors drive the style
risk? As seen in Figure 6B, the Volatility fac-
tor is the biggest contributor by far to risk. This
risk stems mostly from USAir and United’s high
exposure to the factor (see Table 6).

To summarize, risk decomposition provides two
critical insights. First, as we move from the
stock level to the portfolio level, style and in-
dustry risk become more important, overtaking
company-specific risk. Second, we see that cer-
tain styles contribute more risk than others at
the stock and portfolio levels. For example, the
risk of United (UAL Corp) and USAir will be
heavily impacted by the Volatility factor.

Performance Attribution
The fundamental factor model also provides in-
sight into performance attribution. Managers can
use the model to analyze past performance, at-
tributing realized portfolio return to its var-
ious sources. This can include allocations to
certain countries or sectors, or allocations to
certain segments—small-cap names, emerging
markets, or high beta names.

Table 7 shows the decomposition of realized
returns for the airline portfolio for April 2010.
The first column displays the portfolio return

attribution. The subsequent columns show the
return attribution for each individual airline
stock in isolation. The portfolio of airline stocks
returned –4.3% for the month despite a pos-
itive contribution of 4.3% coming from style
factors. JetBlue, for instance, was flat for the
month, as its gain from style factors largely off-
set losses from the industry component. Sim-
ilarly, Continental and UAL were helped by
both strong contributions from style exposures.
In contrast, positive gains from style factors
were not enough to offset the company-specific
losses suffered by USAir, Delta, AMR, and Alle-
giant. In fact, only about half the stocks realized
positive company-specific returns.

Table 8 takes the last row in Table 7 and breaks
it down into the individual styles in the model.
The main source of positive return was the
Size factor followed by the Currency Sensitivity,
Leverage, and Volatility factors. In other words,
airlines benefited from being smaller in cap size
relative to the market (exposure of –1.7 to Size).
They also benefited from the appreciation of the
U.S. dollar (exposure of –2.7 to Currency Sensi-
tivity). In addition, they were helped by being
relatively levered (exposure of 2.6 to Leverage)
and from having relatively higher overall and
higher beta to the market (exposure of 1.7 to
Volatility)

At the stock level, most of the airlines ben-
efited from being relatively small. UAL and
USAir benefited the most from the apprecia-
tion of the U.S. dollar. UAL, USAir, and AMR
benefited the most from being relatively more
levered than the other airlines. These three
stocks also benefited the most from having
relatively higher beta to the market and higher
volatility.

Table 7 Return Attribution for Airline Portfolio and Stocks, %, March 31, 2010–April 30, 2010, Barra U.S. Equity
Long-Term Model (USE3L)

Portfolio Alaska Allegiant AMR Continental Delta JetBlue South west UAL USAir

Total –4.3 0.4 –11.1 –19.0 1.7 –17.2 0.2 –0.3 10.4 –3.8
Company-Specific –4.4 2.6 –9.9 –22.6 1.5 –17.6 0.4 2.3 10.5 –6.6
Airline Industry –4.2 –4.2 –4.2 –4.2 –4.2 –4.2 –4.2 –4.2 –4.2 –4.2
Styles 4.3 2.1 3.0 7.9 4.5 4.6 4.0 1.6 4.1 7.0
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Table 8 Return Attribution for Styles Only in Percent, March 31, 2010–April 30, 2010, Barra U.S. Equity
Long-Term Model (USE3L)

Portfolio Alaska Allegiant AMR Continental Delta JetBlue Southwest UAL USAir

Size 2.3 3.0 3.2 2.2 2.2 0.9 3.1 1.1 2.2 3.2
Currency Sensitivity 1.1 0.6 1.3 1.3 1.1 1.3 0.8 –0.1 2.0 2.0
Leverage 1.0 0.6 0.2 1.6 1.3 1.2 0.9 0.0 1.4 1.8
Volatility 0.9 0.7 0.1 1.3 1.0 0.9 0.5 0.3 1.6 1.5
Earnings Yield 0.8 –0.5 –0.1 4.0 0.7 1.9 0.1 0.4 –0.7 1.3
Trading Activity 0.1 0.2 0.0 0.2 0.2 0.2 0.1 0.1 0.2 0.2
Momentum 0.0 0.0 0.0 –0.1 –0.1 0.0 0.0 0.0 –0.1 –0.1
Growth –0.1 0.0 –0.5 0.1 0.0 –0.4 0.2 0.1 –0.1 –0.1
Value –0.2 0.0 –0.1 –0.8 –0.2 –0.2 0.4 0.1 –0.7 –0.4
Yield –0.3 –0.3 –0.3 –0.3 –0.3 –0.3 –0.3 –0.3 –0.3 –0.3
Size Nonlinearity –0.3 –0.6 –0.7 –0.2 –0.2 0.1 –0.6 0.1 –0.2 –0.7
Earnings Variation –1.0 –1.6 0.0 –1.5 –1.2 –0.8 –1.2 –0.1 –1.1 –1.4

Styles can contribute significantly to a man-
ager’s performance. In our example, the U.S.
Volatility factor was the main driver. Looking
at individual factors and stocks, we can also see
that certain factors and stocks made a signifi-
cant contribution to performance due to stock-
specific performance or style contribution.

In summary, portfolio performance can be
strongly impacted by unintended bets. The
manager may be taking major risks without ad-
equate compensation. The factor model helps
uncover these issues.

KEY POINTS
� Fundamental analysis is the process of deter-

mining a security’s future value by analyzing
a combination of macro- and microeconomic
events and company-specific characteristics.

� Though fundamental analysis focuses on the
valuation of individual companies, most in-
stitutional investors recognize that there are
common factors affecting all stocks. Com-
mon factors are shared characteristics be-
tween firms that affect their returns.

� Fundamental factor models are in fact com-
plementary as opposed to antithetical to tra-
ditional security analysis. The basic building
blocks of analysts and factor modelers are
in fact similar: Both try to identify microe-
conomic traits that drive the risk and returns
of individual securities.

� The objective of the fundamental analyst is
to forecast return (or future stock values),
whereas the fundamental factor model fore-
casts the fluctuation of a security or a portfolio
of securities around its expected return. Some
factors may help managers forecast return but
not be good risk factors. A good return fac-
tor has persistent direction though not a lot
of volatility—the ability of a company to beat
earnings estimates is one of these factors. A
good risk factor may be persistent or not but
must be adequately volatile.

� Fundamental analysis and fundamental fac-
tor models may begin with the same ide-
ology but they offer different insights. The
most critical difference is that the factor model
captures the interaction of the firm’s mi-
croeconomic characteristics at the portfolio
level. This is important because as names are
added to the portfolio, company-specific re-
turns are diversified away, and the common
factor (systematic) portion becomes an in-
creasingly larger part of the portfolio risk and
return.

� There are three major benefits of using fun-
damental factor models: (1) monitoring and
managing portfolio exposures over time; (2)
understanding the contribution of factors and
individual stocks to portfolio risk and track-
ing error relative to the relevant benchmark
(risk decomposition); and (3) attributing port-
folio performance to factors and individual
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stocks to understand the return contribution
of intended and accidental bets.

� Managers can use the model to analyze past
performance, attributing realized portfolio
return to its various sources. Portfolio per-
formance can be strongly impacted by
unintended bets. The manager may be taking
major risks without adequate compensation.
The factor model helps uncover these issues.

� The distribution of exposures may be im-
portant. For example, a portfolio of compa-
nies with a leverage exposure of zero has a
very different economic profile than a portfo-
lio with a barbell distribution where half the
companies are overleveraged and potentially
vulnerable to a collapse in credit conditions.

NOTES
1. In the Barra U.S. equity model, for example,

we allow companies to be split up into five
different industries, depending on their busi-
ness structure.

2. All existing Barra models focus on a particu-
lar market, using an equity universe that in-
cludes all sectors and large to mid-caps with
some small-caps.

3. The estimation universe average is a market-
cap weighted average.

4. In effect, we build three separate valua-
tion models. The results of each valuation
model determine a set of weights, based
on fundamental information. The final in-
dustry weights are a weighted average of
the three weighting schemes. Further details
are available in the Barra U.S. Equity Model
Handbook.

5. Specifically, the effects of other factors as well
as specific returns remain the same, and the
risk-free rate is unchanged.

6. Details of the model construction are avail-
able in The Barra Risk Model Handbook or Barra
U.S. Equity Model Handbook.
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Abstract: Multifactor equity risk models are classified as statistical models, macroeconomic models,
and fundamental models. The most popular types of models used in practice are fundamental mod-
els. Many of the inputs used in a multifactor risk model are those used in traditional fundamental
analysis. There are several commercially available fundamental multifactor risk models. There are
asset management companies that develop proprietary models. Brokerage firms have developed
models that they make available to institutional clients.

Quantitative-oriented common stock portfolio
managers typically employ a multifactor equity
risk model in constructing and rebalancing a
portfolio and then for evaluating performance.
The most popular type of multifactor equity risk
model used is a fundamental factor model.1

While some asset management firms develop
their own model, most use commercially avail-
able models. In this entry we use one commer-

cially available model to illustrate the general
features of fundamental models and how they are
used to construct portfolios. In our illustration,
we will use an old version of a model devel-
oped by Barra (now MSCI Barra). Although that
model has been updated, the discussion and
illustrations provide the essential points for ap-
preciating the value of using multifactor equity
models.

255
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MODEL DESCRIPTION AND
ESTIMATION
The basic relationship to be estimated in a mul-
tifactor risk model is

Ri − Rf = βi,F 1 RF 1 + βi,F 2 RF 2 + . . .

+ βi,FH RFH + ei

where

Ri = rate of return on stock i
Rf = risk-free rate of return

β i,Fj = sensitivity of stock i to risk factor j
RFj = rate of return on risk factor j

ei = nonfactor (specific) return on
security i

The above function is referred to as a return
generating function.

Fundamental factor models use company and
industry attributes and market data as descrip-
tors. Examples are price/earnings ratios, book/
price ratios, estimated earnings growth, and
trading activity. The estimation of a fundamen-
tal factor model begins with an analysis of his-
torical stock returns and descriptors about a
company. In the Barra model, for example, the
process of identifying the risk factors begins with
monthly returns for 1,900 companies that the
descriptors must explain. Descriptors are not
the “risk factors” but instead they are the can-
didates for risk factors. The descriptors are se-
lected in terms of their ability to explain stock
returns. That is, all of the descriptors are poten-
tial risk factors but only those that appear to be
important in explaining stock returns are used
in constructing risk factors.

Once the descriptors that are statistically sig-
nificant in explaining stock returns are identi-
fied, they are grouped into risk indexes to capture
related company attributes. For example, de-
scriptors such as market leverage, book lever-
age, debt-to-equity ratio, and company’s debt
rating are combined to obtain a risk index re-
ferred to as “leverage.” Thus, a risk index is a
combination of descriptors that captures a par-
ticular attribute of a company.

The Barra fundamental multifactor risk
model, the “E3 model” being the latest version,
has 13 risk indexes and 55 industry groups.
(The descriptors are the same variables that
have been consistently found to be important in
many well-known academic studies on risk fac-
tors.) Table 1 lists the 13 risk indexes in the Barra
model.2 Also shown in the table are the descrip-
tors used to construct each risk index. The 55
industry classifications are grouped into 13 sec-
tors. For example, the following three industries
comprise the energy sector: energy reserves and
production, oil refining, and oil services. The
consumer noncyclicals sector consists of the
following five industries: food and beverages,
alcohol, tobacco, home products, and grocery
stores. The 13 sectors in the Barra model are
basic materials, energy, consumer noncylicals,
consumer cyclicals, consumer services, indus-
trials, utility, transport, health care, technology,
telecommunications, commercial services, and
financial.

Given the risk factors, information about the
exposure of every stock to each risk factor (β i,Fj)
is estimated using statistical analysis. For a
given time period, the rate of return for each
risk factor (RFj) also can be estimated using sta-
tistical analysis. The prediction for the expected
return can be obtained from equation (1) for any
stock. The nonfactor return (ei) is found by sub-
tracting the actual return for the period for a
stock from the return as predicted by the risk
factors.

Moving from individual stocks to portfolios,
the predicted return for a portfolio can be com-
puted. The exposure to a given risk factor of a
portfolio is simply the weighted average of the
exposure of each stock in the portfolio to that
risk factor. For example, suppose a portfolio has
42 stocks. Suppose further that stocks 1 through
40 are equally weighted in the portfolio at 2.2%,
stock 41 is 5% of the portfolio, and stock 42 is
7% of the portfolio. Then the exposure of the
portfolio to risk factor j is

0.022 β1, Fj + 0.022 β2, Fj + . . . + 0.022 β40, Fj

+ 0.050 β41, Fj + 0.07 β42, Fj
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Table 1 Barra E3 Model Risk Definitions

Descriptors in Risk Index Risk Index

Beta times sigma
Daily standard deviation
High-low price
Log of stock price
Cumulative range
Volume beta
Serial dependence
Option-implied standard

deviation

Volatility

Relative strength
Historical alpha

Momentum

Log of market capitalization Size

Cube of log of market
capitalization

Size Nonlinearity

Share turnover rate (annual)
Share turnover rate (quarterly)
Share turnover rate (monthly)
Share turnover rate (five years)
Indicator for forward split
Volume to variance

Trading Activity

Payout ratio over five years
Variability in capital structure
Growth rate in total assets
Earnings growth rate over the

last five years
Analyst-predicted earnings

growth
Recent earnings change

Growth

Analyst-predicted
earnings-to-price

Trailing annual earnings-to-price
Historical earnings-to-price

Earnings Yield

Book-to-price ratio Value

Variability in earnings
Variability in cash flows
Extraordinary items in earnings
Standard deviation of

analyst-predicted
earnings-to-price

Earnings Variability

Market leverage
Book leverage
Debt to total assets
Senior debt rating

Leverage

Exposure to foreign currencies Currency Sensitivity

Predicted dividend yield Dividend Yield

Indicator for firms outside US-E3
estimation universe

Non-Estimation
Universe Indicator

Adapted from Table 8-1 in Barra (1998, pp. 71–73).
Adapted with permission.

The nonfactor error term is measured in the
same way as in the case of an individual stock.
However, in a well-diversified portfolio, the
nonfactor error term will be considerably less
for the portfolio than for the individual stocks
in the portfolio.

The same analysis can be applied to a stock
market index because an index is nothing more
than a portfolio of stocks.

RISK DECOMPOSITION
The real usefulness of a linear multifactor
model lies in the ease with which the risk of a
portfolio with several assets can be estimated.
Consider a portfolio with 100 assets. Risk is
commonly defined as the variance of the port-
folio’s returns. So, in this case, we need to find
the variance–covariance matrix of the 100 as-
sets. That would require us to estimate 100 vari-
ances (one for each of the 100 assets) and 4,950
covariances among the 100 assets. That is, in all
we need to estimate 5,050 values, a very diffi-
cult undertaking. Suppose, instead, that we use
a three-factor model to estimate risk. Then, we
need to estimate (1) the three factor loadings
for each of the 100 assets (i.e., 300 values), (2)
the six values of the factor variance–covariance
matrix, and (3) the 100 residual variances (one
for each asset). That is, we need to estimate only
406 values in all. This represents a nearly 90%
reduction from having to estimate 5,050 values,
a huge improvement. Thus, with well-chosen
factors, we can substantially reduce the work
involved in estimating a portfolio’s risk.

Multifactor risk models allow a manager and
a client to decompose risk in order to assess the
exposure of a portfolio to the risk factors and
to assess the potential performance of a portfo-
lio relative to a benchmark. This is the portfolio
construction and risk control application of the
model. Also, the actual performance of a port-
folio relative to a benchmark can be assessed.
This is the performance attribution analysis ap-
plication of the model.

Barra suggests that there are various ways
that a portfolio’s total risk can be decomposed
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Figure 1 Total Risk Decomposition
Source: Figure 4.2 in Barra (1998, p. 34). Reprinted with permission.

when employing a multifactor risk model.3

Each decomposition approach can be useful
to managers depending on the equity port-
folio management that they pursue. The four
approaches are (1) total risk decomposition,
(2) systematic-residual risk decomposition,
(3) active risk decomposition, and (4) active
systematic-active residual risk decomposition.

In all of these approaches to risk decom-
position, the total return is first divided into
the risk-free return and the total excess return.
The total excess return is the difference between
the actual return realized by the portfolio and
the risk-free return. The risk associated with the
total excess return, called total excess risk, is what
is further partitioned in the four approaches.

Total Risk Decomposition
There are managers who seek to minimize to-
tal risk. For example, a manager pursuing a
long-short or market neutral strategy seeks to
construct a portfolio that minimizes total risk.
For such managers, total risk decomposition
that breaks down the total excess risk into two
components—common factor risks (e.g., capital-
ization and industry exposures) and specific
risk—is useful. This decomposition is shown

in Figure 1. There is no provision for market
risk, only risk attributed to the common factor
risks and company-specific influences (i.e., risk
unique to a particular company and therefore
uncorrelated with the specific risk of other com-
panies). Thus, the market portfolio is not a risk
factor considered in this decomposition.

Systematic-Residual Risk
Decomposition
There are managers who seek to time the mar-
ket or who intentionally make bets to create a
different exposure from that of a market port-
folio. Such managers would find it useful to
decompose total excess risk into systematic risk
and residual risk as shown in Figure 2. Unlike
in the total risk decomposition approach just
described, this view brings market risk into the
analysis. It is the type of decomposition where
systematic risk is the risk related to a portfolio’s
beta.

Residual risk in the systematic-residual risk de-
composition is defined in a different way from
residual risk in the total risk decomposition.
In the systematic-residual risk decomposition,
residual risk is risk that is uncorrelated with
the market portfolio. In turn, residual risk
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Total Risk
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Residual Risk

Residual Common
Factor Risk

Specific Risk

Figure 2 Systematic-Residual Risk Decomposition
Source: Figure 4.3 in Barra (1998, p. 34). Reprinted with permission.

is partitioned into specific risk and common
factor risk. Notice that the partitioning of risk
described here is different from that in the
arbitrage pricing theory model where all risk
factors that could not be diversified away were
referred to as “systematic risks.” In the discus-
sion here, risk factors that cannot be diversified
away are classified as market risk and common
factor risk. Systematic risk can be diversified to
a negligible level.

Total Risk

Risk-FreeTotal Excess Risk

Benchmark Risk Active Risk

Active Common
Factor Risk

Specific Risk

Figure 3 Active Risk Decomposition
Source: Figure 4.4 in Barra (1998, p. 34). Reprinted with permission.

Active Risk Decomposition

The active risk decomposition approach is use-
ful for assessing a portfolio’s risk exposure and
actual performance relative to a benchmark in-
dex. In this type of decomposition, shown in
Figure 3, the total excess return is divided into
benchmark risk and active risk. Benchmark risk
is defined as the risk associated with the bench-
mark portfolio.
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Figure 4 Active Systematic-Active Residual Risk Decomposition
Source: Figure 4.5 in Barra (1998, p. 37). Reprinted with permission.

Active risk is the risk that results from the
manager’s attempt to generate a return that
will outperform the benchmark. Another name
for active risk is tracking error. The active risk
is further partitioned into common factor risk
and specific risk. This decomposition is useful
for managers of index funds and traditionally
managed active funds.

Active Systematic-Active Residual
Risk Decomposition
There are managers who overlay a market-
timing strategy on their stock selection. That
is, they not only try to select stocks they be-
lieve will outperform but also try to time the
purchase of the acquisition. For a manager who
pursues such a strategy, it will be important in
evaluating performance to separate market risk
from common factor risks. In the active risk
decomposition approach just discussed, there
is no market risk identified as one of the risk
factors.

Since market risk (i.e., systematic risk) is an
element of active risk, its inclusion as a source
of risk is preferred by managers. When market
risk is included, we have the active systematic-
active residual risk decomposition approach
shown in Figure 4. Total excess risk is again
divided into benchmark risk and active risk.
However, active risk is further divided into ac-
tive systematic risk (i.e., active market risk) and
active residual risk. Then active residual risk is
divided into common factor risks and specific
risk.

Summary of Risk Decomposition
The four approaches to risk decomposition are
just different ways of slicing up risk to help
a manager in constructing and controlling the
risk of a portfolio and for a client to understand
how the manager performed. Figure 5 provides
an overview of the four approaches to carving
up risk into specific/common factor, system-
atic/residual, and benchmark/active risks.
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Figure 5 Risk Decomposition Overview
Source: Figure 4.6 in Barra (1998, p. 38). Reprinted
with permission.

APPLICATIONS IN
PORTFOLIO CONSTRUCTION
AND RISK CONTROL
The power of a multifactor risk model is that
given the risk factors and the risk factor sensi-
tivities, a portfolio’s risk exposure profile can
be quantified and controlled. The three exam-
ples below show how this can be done so
that a manager can avoid making unintended
bets. In the examples, we use the Barra E3
factor model.4

A fundamental multifactor risk model can be
used to assess whether the current portfolio is
consistent with a manager’s strengths. Table 2
is a list of the top 15 holdings of Portfolio ABC
as of December 31, 2008. Table 3 is a summary
risk decomposition report for the same portfo-
lio. The portfolio had a total market value of $5.4
billion, 868 holdings, and a predicted beta of
1.15. The risk report also shows that the portfo-
lio had an active risk of 6.7%. This is its tracking
error with respect to the benchmark, the S&P
500 index. Notice that nearly 93% of the active
risk variance (which is 44.8) came from common
factor variance (which is 41.6), and only a small
proportion came from stock-specific risk vari-
ance (also known as asset selection variance,
which is 3.2). Clearly, the manager of this port-
folio had placed fairly large factor bets.

The top portion of Table 4 lists the factor risk
exposures of Portfolio ABC relative to those of
the S&P 500 index, its benchmark. The first col-
umn shows the exposures of the portfolio, and
the second column shows the exposures of the
benchmark. The last column shows the active
exposure, which is the difference between the
portfolio exposure and the benchmark expo-
sure. The exposures to the risk index factors
are measured in units of standard deviation,

Table 2 Portfolio ABC’s Holdings (only the top 15 holdings shown)

Ticker Security Name Shares Price ($) Weight Beta Industry

XOM Exxon Mobil Corp. 3,080,429 79.83 4.56 0.92 Oil Refining
MSFT Microsoft Corp. 6,235,154 19.44 2.25 0.95 Computer Software
CVX Chevron Corp. 1,614,879 73.97 2.21 0.98 Energy Reserves & Production
IBM International Business

Machines Corp.
1,100,900 84.16 1.72 0.83 Computer Software

T AT&T Inc. 3,226,744 28.50 1.70 0.80 Telephone
HPQ Hewlett-Packard Co. 2,464,100 36.29 1.66 0.84 Computer Hardware & Business

Machines
INTC Intel Corp. 5,997,300 14.66 1.63 0.87 Semiconductors
COP ConocoPhillips 1,634,986 51.80 1.57 1.24 Energy Reserves & Production
CSCO Cisco Systems Inc. 5,186,400 16.30 1.57 0.95 Computer Hardware & Business

Machines
JNJ Johnson & Johnson 1,403,544 59.83 1.56 0.54 Medical Products & Supplies
OXY Occidental Petroleum Corp. 1,324,426 59.99 1.47 1.26 Energy Reserves & Production
PG Procter & Gamble Co. 1,249,446 61.82 1.43 0.57 Home Products
GE General Electric Co. 4,762,984 16.20 1.43 1.41 Heavy Electrical Equipment
PFE Pfizer Inc. 4,339,092 17.71 1.42 0.61 Drugs
TWX Time Warner Inc. 1,948,880 30.18 1.09 1.32 Media
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Table 3 Portfolio ABC’s Summary Risk
Decomposition Report

Number of Securities 868
Number of Shares 298,371,041
Average Share Price $24.91
Weighted Average Share Price $35.30
Portfolio Ending Market Value $5,396,530,668
Predicted Beta (vs. Benchmark,

S&P 500)
1.15

Barra Risk Decomposition (Variance)

Asset Selection Variance 3.2
Common Factor Variance:

Risk Indexes 22.5
Industries 11.7
Covariance × 2 7.5

Common Factor Variance 41.6
Active Variance 44.8
Benchmark Variance 749.4
Total Variance 1,016.6

Barra Risk Decomposition (Std. Dev.)

Asset Selection Risk 1.8
Common Factor Risk:

Risk Indexes 4.7
Industries 3.4
Covariance × 2

Common Factor Risk 6.5
Active Risk 6.7
Benchmark Risk 27.4
Total Risk 31.9

while the exposures to the industry factors are
measured in percentages. The portfolio had a
high active exposure to the Volatility risk index
factor. That is, the stocks in the portfolio were
far more volatile than the stocks in the bench-
mark. On the other side, the portfolio had a low
active exposure to the Size risk index. That is,
the stocks in the portfolio were smaller than the
benchmark average in terms of market capital-
ization. The lower portion of Table 4 is an ab-
breviated list of the industry factor exposures.

An important use of such risk reports is the
identification of portfolio bets, both explicit
and implicit. If, for example, the manager of
Portfolio ABC did not intend to place the large
bet on the Volatility risk index, then he has
to make appropriate changes in the portfolio
holdings until the active exposure to this factor
is closer to zero.

Risk Control against a Stock
Market Index
The objective of equity indexing is to match
the performance of some specified stock market

Table 4 Analysis of Portfolio ABC’s Factor Exposures

Risk Indexes (std. dev. units) Manageda Benchmarkb Activec

U.S. Volatility 0.321 −0.089 0.410
U.S. Value 0.199 −0.024 0.223
U.S. Earnings Variation 0.149 −0.053 0.202
U.S. Earnings Yield 0.243 0.053 0.191
U.S. Trading Activity 0.161 0.052 0.109
U.S. Leverage −0.036 −0.110 0.074
U.S. Growth 0.004 −0.069 0.073
U.S. Non-Estimation Universe 0.027 0.000 0.027
U.S. Currency Sensitivity −0.013 0.007 −0.019
U.S. Momentum −0.183 −0.043 −0.139
U.S. Yield −0.115 0.078 −0.194
U.S. Size Non-Linearity −0.107 0.123 −0.230
U.S. Size −0.244 0.356 −0.600

Top Three Industries (percentages) Managed Benchmark Active

U.S. Energy Reserves 0.098 0.064 0.033
U.S. Semiconductors 0.052 0.023 0.028
U.S. Mining and Metals 0.036 0.009 0.027
a Managed return.
b Benchmark return (S&P 500).
c Active return = Managed return – Benchmark return.
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Table 5 Factor Exposures of a 50-Stock Portfolio that Optimally Matches the S&P 500 Index

Risk Indexes (std. dev. units) Manageda Benchmarkb Activec

U.S. Volatility −0.153 −0.089 −0.063
U.S. Momentum −0.062 −0.043 −0.018
U.S. Size 0.795 0.356 0.440
U.S. Size Non-Linearity 0.164 0.123 0.041
U.S. Trading Activity −0.001 0.052 −0.053
U.S. Growth −0.052 −0.069 0.016
U.S. Earnings Yield 0.076 0.053 0.023
U.S. Value −0.019 −0.024 0.005
U.S. Earnings Variation −0.122 −0.053 −0.069
U.S. Leverage −0.176 −0.110 −0.066
U.S. Currency Sensitivity −0.048 0.007 −0.055
U.S. Yield 0.140 0.078 0.061
U.S. Non-Estimation Universe 0.000 0.000 0.000
a Managed return.
b Benchmark return (S&P 500).
c Active return = Managed return – Benchmark return.

index with little tracking error. To do this, the
risk profile of the indexed portfolio must match
the risk profile of the designated stock market
index. Put in other terms, the factor risk ex-
posure of the indexed portfolio must match as
closely as possible the exposure of the desig-
nated stock market index to the same factors.
Any differences in the factor risk exposures re-
sult in tracking error. Identification of any dif-
ferences allows the indexer to rebalance the
portfolio to reduce tracking error.

To illustrate this, suppose that an index man-
ager has constructed a portfolio of 50 stocks
to match the S&P 500 index. Table 5 lists the
exposures to the Barra risk indexes of the 50-
stock portfolio and the S&P 500 index. The last
column in the exhibit shows the difference in
exposures. The differences are very small ex-
cept for the exposures to the Size risk index
factor. Though not shown in this exhibit, there
is a similar list of exposures to the 55 industry
factors.

The illustration in Table 5 uses price data as
of December 31, 2008. It demonstrates how a
multifactor risk model can be combined with
an optimization model to construct an indexed
portfolio when a given number of holdings
are sought. Specifically, the portfolio analyzed
in the exhibit is the result of an application

in which the manager wants a portfolio con-
structed that matches the S&P 500 index with
only 50 stocks and that minimizes tracking
error. The optimization model uses the multi-
factor risk model to construct a 50-stock portfo-
lio with a tracking error versus S&P 500 index
of just 2.75%. Since this is the optimal 50-stock
portfolio to replicate the S&P 500 index with
a minimum tracking error risk, this tells the
index manager that if he seeks a lower track-
ing error, then more stocks must be held. Note,
however, that the optimal portfolio changes as
time passes and prices move.

Tilting a Portfolio
Now let’s look at how an active manager can
construct a portfolio to make intentional bets.
Suppose that a portfolio manager seeks to con-
struct a portfolio that generates superior returns
relative to the S&P 500 by tilting it toward low
P/E stocks. At the same time, the manager does
not want to increase tracking error significantly.
An obvious approach may seem to be to iden-
tify all the stocks in the universe that have a
lower than average P/E. The problem with this
approach is that it introduces unintentional bets
with respect to the other risk indexes.
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Table 6 Factor Exposures of a Portfolio Tilted Toward Earnings Yield

Risk Indexes (std. dev. units) Manageda Benchmarkb Activec

U.S. Volatility −0.050 −0.089 0.039
U.S. Momentum −0.096 −0.043 −0.052
U.S. Size 0.284 0.356 −0.072
U.S. Size Non-Linearity 0.096 0.123 −0.027
U.S. Trading Activity 0.114 0.052 0.062
U.S. Growth −0.096 −0.069 −0.027
U.S. Earnings Yield 0.553 0.053 0.500
U.S. Value 0.076 −0.024 0.100
U.S. Earnings Variation −0.091 −0.053 −0.038
U.S. Leverage −0.153 −0.110 −0.043
U.S. Currency Sensitivity 0.066 0.007 0.059
U.S. Yield 0.179 0.078 0.100
U.S. Non-Estimation Universe 0.000 0.000 0.000
a Managed return.
b Benchmark return (S&P 500).
c Active return = Managed return – Benchmark return.

Instead, an optimization method combined
with a multifactor risk model can be used
to construct the desired portfolio. The neces-
sary inputs to this process are the tilt exposure
sought and the benchmark stock market index.
Additional constraints can be placed, for ex-
ample, on the number of stocks to be included
in the portfolio. The Barra optimization model
can also handle additional specifications such
as forecasts of expected returns or alphas on
the individual stocks.

In our illustration, the tilt exposure sought
is toward low P/E stocks, that is, toward high
earnings yield stocks (since earnings yield is
the inverse of P/E). The benchmark is the S&P
500. We seek a portfolio that has an average
earnings yield that is at least 0.5 standard de-
viations more than that of the earnings yield
of the benchmark. We do not place any limit
on the number of stocks to be included in the
portfolio. We also do not want the active expo-
sure to any other risk index factor (other than
earnings yield) to be more than 0.1 standard
deviations in magnitude. This way we avoid
placing unintended bets. While we do not re-
port the holdings of the optimal portfolio here,
Table 6 provides an analysis of that portfolio by
comparing the risk exposure of the 50-stock op-
timal portfolio to that of the S&P 500. Though

not shown in Table 6, there is a similar list of
exposures to the 55 industry factors.

KEY POINTS
� There are three types of multifactor equity

risk models that are used in practice: statis-
tical, macroeconomic, and fundamental. The
most popular is the fundamental model.

� A multifactor equity risk model assumes that
stock returns (and hence portfolio returns)
can be explained by a linear model with mul-
tiple factors, consisting of “risk index” factors
such as company size, volatility, momentum,
and so on, and “industry” factors. The por-
tion of the stock return that is not explained
by this model is the stock-specific return.

� The risk index factors are measured in stan-
dard deviation units, while the industry fac-
tors are measured in percentages.

� The real usefulness of a linear multifactor
model lies in the ease with which the risk
(i.e., the volatility) of a portfolio with several
assets can be estimated. Instead of estimating
the variance-covariance matrix of its assets, it
is only necessary to estimate the portfolio’s
factor exposures and the variance-covariance
matrix of the factors, a computationally much
easier task.
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� The variance-covariance matrix of the factors
and the factor exposures of stocks are calcu-
lated based on a mix of historical and current
data and are updated periodically.

� Total risk of a portfolio can be decomposed in
several ways. The partitioning method cho-
sen is based on what is useful given the man-
ager’s strategy. The active risk decomposition
method is useful for managers of index funds
and traditionally managed active funds.

� The level of active risk of a portfolio and the
split of the tracking error variance between
the common factor portion and the stock-
specific portion are useful in assessing if the
portfolio is constructed in a way that is con-
sistent with the manager’s strengths.

� The list of active factor exposures of a portfo-
lio helps the manager identify its bets, both
explicit and implicit. If a manager discov-
ers some unintended bets, then the portfo-
lio can be rebalanced so as to minimize such
bets.

� Using a multifactor risk model and an opti-
mization model, a portfolio that has the mini-
mum active risk relative to its benchmark for
a given number of assets held can be con-
structed. This application is useful for passive
managers.

� Similarly, a manager can construct a portfolio
that tilts toward a specified factor and has no
material active exposure to any other factor.
This application is useful for active managers.

NOTES
1. For a discussion of the different types of fac-

tor models, see Connor (1995).
2. For a more detailed description of each de-

scriptor, see Appendix A in Barra (1998). A
listing of the 55 industry groups is provided
in Table 4 in this entry.

3. See Chapter 4 in Barra (1998). The discussion
to follow in this section follows that in the
Barra publication.

4. The illustrations were created by the authors
based on applications suggested in Chap-
ter 6 of Barra (1996).
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Abstract: Multifactor risk models seek to estimate and characterize the risk of a portfolio, either
in absolute value or when compared against a benchmark. Risk is typically decomposed into a
systematic and an idiosyncratic component. Systematic risk captures the exposures the portfolio
has to broad risk factors, such as interest rates or spreads. This risk is driven by the exposure
of the portfolio to these risk factors, their volatility, and the correlation between these different
sources of risk. Idiosyncratic risk captures the uncertainty associated with the particular issuers
in the portfolio. Idiosyncratic risk is diversifiable by spreading the exposure to a large number
of individual issuers. Multifactor risk models allow for the decomposition of the total risk by risk
factor (or sets of risk factors). If the factors are economically meaningful, the risk model can provide
relevant intuition regarding the major variables influencing the volatility of the portfolio and be a
useful tool in portfolio construction.

In this entry, we discuss risk modeling con-
struction and applications to fixed income
portfolios. Although they share a similar frame-
work, multifactor models in fixed income use
different building blocks and provide a differ-
ent analysis of the risk of a portfolio.

The authors would like to thank Andy Sparks for his valuable comments.

When analyzing their holdings, portfolio
managers constantly monitor their exposures,
typically net of a benchmark: What is the port-
folio net duration? How risky is the overweight
to credit? How does it relate to the exposure
to mortgages? What is the exposure to specific

267
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issuers? Even when portfolio holdings and ex-
posures are well known, portfolio managers in-
creasingly rely on quantitative techniques to
translate this information into a common risk
language. Risk models can present a coherent
view of the portfolio, its exposures, and how
they correlate to each other. They can quantify
the risk of each exposure and its contribution to
the overall risk of the portfolio.

Fixed income securities are exposed to many
different types of risk. Multifactor risk models
in this area capture these risks by first identi-
fying common sources along different dimen-
sions, the systematic risk factors. All risk not
captured by systematic factors is considered id-
iosyncratic or security-specific. Typically, fixed
income systematic risk factors are divided into
two sets: those that influence securities across
asset classes (e.g., yield curve risk) and those
specific to a particular asset class (e.g., prepay-
ment risk in securitized products).

There are many ways to define systematic risk
factors. For instance, they can be defined purely
by statistical methods, observed in the mar-
kets, or estimated from asset returns. In fixed
income, the standard approach is to use pric-
ing models to calculate the analytics that are
the natural candidates for risk factor loadings
(also called sensitivities). In this setting, the
risk factors are estimated from cross-sectional
asset returns. This is the approach taken in
the Barclays Global Risk Model,1 which is the
model used for illustration throughout this
entry.

In this risk model, the forecasted risk of the
portfolio is driven by both a systematic and
an idiosyncratic (also called specific, nonsys-
tematic, and concentration) component. The
forecasted systematic risk is a function of the
mismatch between the portfolio and the bench-
mark in the exposures to the risk factors, such
as yield curve or spreads. The exposures are
aggregated from security-level analytics. The
systematic risk is also a function of the volatility
of the risk factors, as well as the correlations
between them. In this setting, the correlation

of returns across securities is driven by the
correlation of systematic risk factors these secu-
rities load on. As the model uses security-level
returns and analytics to estimate the factors,
we can recover the idiosyncratic return for each
security. This is the return net of all systematic
factors. The model uses these idiosyncratic
returns to estimate rich specifications for the
idiosyncratic risk.

APPROACHES USED TO
ANALYZE RISK
In what follows, we turn to the analysis of
the risk of a particular portfolio, going through
the different approaches typically used. Specif-
ically, consider a portfolio manager that is
benchmarked against the Barclays US. Aggre-
gate Index. Moreover, suppose she believes in-
terest rates are coming down—so she wants to
be long duration—and that she wants some ex-
tra yield in her portfolio—meaning investing in
bonds with relatively higher spreads. Finally,
let us assume that she is mandated to keep the
difference between the returns of the portfolio
and the benchmark at around 15 basis points,
on a monthly basis. Therefore, she has to track a
benchmark, but is allowed to deviate from it up
to a point in order to express views that hope-
fully lead to superior returns. A portfolio man-
ager with such a mandate is called an enhanced
indexer. The amount of deviation allowed is
called the risk budget (15 basis points in our
example) and can be quantified using a risk
model. The risk model produces an estimate
of the volatility of the difference of the portfo-
lio and benchmark returns, called tracking error
volatility (TEV). (In this entry, we refer to TEV,
risk, and the standard deviation of the portfo-
lio net returns interchangeably.) The portfolio
manager should keep the TEV at a level equal
to or less than her risk budget. For illustration,
we construct a portfolio with 50 securities that
is consistent with the portfolio manager’s views
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Table 1 Market Weights for Portfolio and Benchmark

Asset Class Portfolio Benchmark Difference

Total 100.0 100.0 0.0
Treasury 30.2 32.1 −1.9
Government-

related
5.8 12.3 −6.5

Corporate
industrials

9.0 9.7 −0.7

Corporate utilities 2.9 2.1 0.8
Corporate

financials
18.6 6.4 12.2

MBS agency 28.4 34.1 −5.8
ABS 0.0 0.3 −0.3
CMBS 5.2 3.1 2.1

and risk budget and analyze it throughout this
entry.

Market Structure and Exposure
Contributions
The first level of analysis that any portfolio
manager usually performs is to compare the
portfolio holdings in terms of market value
with the holdings from the benchmark. For in-
stance, Table 1 shows that the composition of
the portfolio has several important mismatches
when compared with the benchmark. The
portfolio is underweighted in Treasuries and
government-related securities by 8.4%. This is
compensated with an overweight of 12.3% in
corporates, especially in the financials sector.
Other mismatches include an underweight in
mortgage-backed securities (MBS) (−5.8%) and
an overweight in commercial mortgage-backed
securities (CMBS) (+2.1%).

Interestingly, for an equity manager, this
kind of information—for example, applied
to the different industries or sectors of the
portfolio—would be of paramount importance
to the analysis of the risk of her portfolio.
For a fixed income portfolio, this is not the
case. Although important, this analysis tells us
very little about the true active exposures of a
fixed income portfolio. What if the Treasuries
in the portfolio have significantly longer dura-
tion than those in the benchmark—would we

Table 2 Aggregate Analytics

Analytics Portfolio Benchmark Difference

Duration 4.55 4.30 0.25
Spread duration 4.67 4.56 0.11
Convexity −0.15 −0.29 0.13
Vega −0.02 −0.01 −0.01
Spread 157 57 100

be really “short” in this asset class? What if
the spreads from financials in the portfolio are
much smaller than those in the benchmark—is
the weight mismatch that important?

To answer this kind of questions, we turn to
another typical dimension of analysis—the ex-
posure of the portfolio to major sources of risk.
An example of such a risk exposure is the dura-
tion of the portfolio. Other exposures typically
monitored are the spread duration, convexity,
spread level, and vega (if the portfolio has many
securities with optionality, such as mortgages or
callable bonds).

Table 2 shows these analytics at the aggre-
gate level for our portfolio, benchmark, and
the difference between the two. In particular,
we can see that the portfolio is long duration
(+0.25 years), consistent with the forecast the
manager has regarding yield curve moves. In
terms of spread duration, the mismatch is some-
what smaller. We can also see that the portfolio
has significantly lower negative convexity than
the benchmark (−0.15 versus −0.29), probably
coming from the smaller weight MBS securities
have in the portfolio. The portfolio has also a
higher negative vega, but the number is reason-
ably small for both universes. Finally, the port-
folio has significantly higher spreads (100 basis
points) than the benchmark. This mismatch is
consistent with the manager’s goal of having a
higher yield in her portfolio, when compared
with the benchmark.

The analysis in the Tables 1 and 2 can be
combined to deliver a more detailed picture of
where the different exposures are coming from.
Table 3 shows that analysis for the duration of
the portfolio. This exhibit shows that the ma-
jority of the mismatch in duration contribution
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Table 3 Duration Contribution per Asset Class

Duration
Contribution Portfolio Benchmark Difference

Total 4.55 4.30 0.25
Treasury 1.92 1.71 0.21
Government-

related
0.40 0.49 −0.09

Corporate 1.31 1.19 0.11
Securitized 0.92 0.90 0.02

(market-weighted duration exposures) comes
from the Treasury component of our portfo-
lio (+0.21). Interestingly, even though we are
short in Treasuries, we are actually long in du-
ration for that asset class. This means that our
Treasury portfolio will be negatively impacted,
when compared with the benchmark, by an in-
crease in interest rates. Because we are short in
Treasuries, this result must mean that our Trea-
sury portfolio is longer in duration than the
Treasury component of the benchmark. Con-
versely, we have a relatively small contribution
to excess duration coming from our very large
overexposure to corporates. This means that on
average the corporate bonds in the portfolio are
significantly shorter in duration than those in
the benchmark.

Adding Volatility and Correlations
into the Analysis
The analysis above gives us some basic under-
standing of our exposures to different kinds of
risk. However, it is still hard to understand how
we can compare the level of risk across these dif-
ferent exposures. What is more risky, the long
duration exposure of 0.25 years, or the extra
spread of 100 basis points? How can we quan-
tify how serious is the vega mismatch on my
portfolio? Specifically, the risk of the portfolio
is a function of the exposures to the risk factors,
but also of how volatile (how “risky”) each of
the factors is. So to enhance the analysis we
bring volatilities into the picture. Table 4 shows
the outcome of this addition to our example. In

Table 4 Isolated Risk per Category

Risk Factors Categories Risk

Curve 8.5
Volatility 1.7
Spread government-related 3.0
Spread corporate 5.1
Spread securitized 3.0

particular, it displays the risk of the different
exposures of the portfolio in isolation (that is, if
the only active imbalances were those from that
particular set of risk factors).

For example, in Table 4 one can see that if
the only active weight in the portfolio were the
mismatch in the yield curve exposures, the risk
of the portfolio would be 8.5 basis points per
month. By adding volatilities into the analy-
sis, we can now quantify that the mismatch of
+0.25 years in duration “costs” the portfolio 8.5
basis points per month of extra volatility, when
taken in isolation.2 Similarly, if the only mis-
match were the exposure to corporate spreads,
the risk of the portfolio would be 5.1 ba-
sis points. Interestingly, we also see that
both government-related and securitized sec-
tors have nontrivial risk, despite having smaller
imbalances in terms of market weights. By
bringing volatilities into the analysis, we can
now compare and quantify the impact of each
of the imbalances in the portfolio.

For future reference, consider the volatility of
the portfolio if all these sources of risk were in-
dependent (e.g., correlations were zero). That
number would be 10.9 basis points per month.3

Of course, this scenario is unrealistic, as these
sources of risk are not independent. Also, this
analysis does not allow us to understand the
interplay between the different imbalances. For
instance, we know that the isolated risk asso-
ciated with the curve is 8.5. But this value can
be achieved both by being long or short dura-
tion. So the isolated number does not allow us
to understand the impact of the curve imbal-
ance to the total risk of the portfolio. The net
impact certainly depends on the sign of the im-
balance. For instance, if the long exposure in
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Table 5 Correlated Risk per Category

Risk Factors Categories Risk

Total 9.3
Curve 5.9
Volatility 0.1
Spread government-related 0.1
Spread corporate 2.4
Spread securitized 0.7

curve is diversified away by a long exposure in
credit (due, for instance, to negative correlation
between rates and credit spreads), a symmetric
(short) curve exposure would add to the risk of
the long exposure in credit. The risk is clearly
smaller in the first case.

To alleviate these shortcomings, we bring
correlations into the picture. They allow us to
understand the net impact of the different ex-
posures to the portfolio’s total risk and to detect
potential sources of diversification among the
imbalances in the portfolio. Table 5 reports the
contribution of each of the risk factor groups
to the total risk, once all correlations are taken
into account. The total risk (9.3 bps/month)
is smaller than the zero-correlation risk calcu-
lated before (10.9 bps/month) due to generally
negative correlations between the curve and
the spread factors. The exhibit also allows us
to isolate the main sources of risk as being
curve (5.9 bps/month) and credit spreads (2.4
bps/month), in line with the evidence from the
earlier analysis. In particular, the risk of the
government-related and securitized spreads
is significantly smaller once correlations are
taken into account.

The difference in analysis between the iso-
lated and correlated risks reported in Tables 4
and 5 deserves a bit more discussion. For sim-
plicity, assume there are only two sources of risk
in the portfolio—yield curve (Y) and spreads
(S). The total systematic variance of the portfo-
lio (P) can be illustrated as follows:

VAR(P) = VAR(Y + S)
= VAR(Y) + VAR(S) + 2COV (Y, S)
= Y × Y + S × S + 2(Y × S)

where we use the product (×) to represent vari-
ances and covariances. Another way to rep-
resent this summation is using the following
matrix:

[
Y × Y Y × S
Y × S S × S

]

The sum of the four elements in the matrix
is the variance of the portfolio. The isolated
risk (in standard deviation units) reported in
Table 4 is the square root of the diagonal terms.
So the isolated risk due to spreads is repre-
sented as

Risk I solated
Spreads = √

S × S

It would be a function of the exposure to all
spread factors, the volatilities of all these fac-
tors, and the correlations among them.

The correlated risk reported in Table 5 is

RiskCorrelated
Spreads = [Y × S + S × S]/

√
VAR(P)

that is, we sum all elements in the row of
interest (row 1 for Y, row 2 for S) from the
matrix above, and normalize it by the stan-
dard deviation of the portfolio. This statis-
tic (1) takes into account correlations and (2)
ensures that the correlated risks of all fac-
tors add up to the total risk of the portfo-
lio (RiskCorrelated

Curve + RiskCorrelated
Spreads = √

VAR(P) =
STD(P )) .4

The generic analysis we just performed con-
stitutes the first step into the description of
the risk associated with a portfolio. The anal-
ysis refers to categories of risk factors (such as
“curve” or “spreads”). However, a factor-based
risk model allows for a significantly deeper
analysis of the imbalances the portfolio may
have. Each of the risk categories referred to
above can be described with a rich set of de-
tailed risk factors. Typically in a fixed income
factor model, each asset class has a specific set
of risk factors, in addition to the potential set
of factors common to all (e.g., curve factors).
These asset-specific risk factors are designed to
capture the particular sources of risk the asset
class is exposed to. In the following section, we
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go through a risk report built in such a way,
emphasizing risk factors that are common or
particular to the different asset classes. Along
the way, we demonstrate how the report offers
insights from both a risk management and a
portfolio construction perspective.

A Detailed Risk Report
In this section, we continue the analysis of the
portfolio introduced previously, a 50-bond port-
folio benchmarked against the Barclays US Ag-
gregate Index. The report package we present
was generated using POINT R©, Barclays cross-
asset portfolio analysis and construction sys-
tem, and gives a very detailed picture of the
risk embedded in the portfolio. The package
is divided into four types of reports: summary
reports, factor exposure reports, issue/issuer
level reports, and scenario analysis reports.
Some of the information we reviewed earlier
can be thought of as summary reports.

Summary Report
Table 6 illustrates a typical risk summary statis-
tics report. It shows that the portfolio has 50 po-
sitions, but from only 27 issuers. This number
implies limited ability to diversify idiosyncratic
risk, as we will see below. The report confirms
that the portfolio is long duration (OAD of 4.55
years versus 4.30 years for the benchmark) and
has higher yield (yield to worst of 3.71% versus
2.83% for the benchmark) and coupon (4.73%
versus 4.46% for the benchmark).

The table also reports that the total volatil-
ity of the portfolio (163.3 bps/month) is higher
than that of the benchmark (158.1 bps/month).
This is not surprising: longer duration, higher
spread and less diversification all tend to in-
crease the volatility of a portfolio. Because of
its higher volatility, we refer to the portfolio
as riskier than the benchmark. Looking into
the different components of the portfolio’s total
volatility, the table reports that the idiosyncratic
volatility of the portfolio is significantly smaller

Table 6 Summary Statistics Report

Portfolio Benchmark

A. Parameter

Positions 50 8,191
Issuers 27 787
Currencies 1 1
Market value

($ millions)
200 14,762

Notional
($ millions)

187 13,750

B. Analytics Portfolio Benchmark Difference

Coupon 4.73 4.46 0.27
Average life 6.63 6.35 0.27
Yield to worst 3.71 2.83 0.88
Spread 157 57 100
Duration 4.55 4.30 0.25
Vega −0.02 −0.01 −0.01
Spread duration 4.67 4.56 0.11
Convexity −0.15 −0.29 0.13

C. Volatility Portfolio Benchmark TEV

Systematic 162.9 158.0 9.3
Idiosyncratic 11.1 5.6 10.1
Total 163.3 158.1 13.7

D. Portfolio Beta 1.03

than that of the systematic (11.1 bps/month
versus 162.9 bps/month, respectively). This is
also expected from a portfolio of investment-
grade bonds. Given the fact that by construction
the systematic and idiosyncratic components of
risk are independent, we can calculate the total
volatility of the portfolio as

TEV PTF =
√

162.92 + 11.12 = 163.3

There are two interesting observations re-
garding this number: first, the total volatil-
ity is smaller than the sum of the volatilities
of the two components. This is the diversifi-
cation benefit that comes from combining in-
dependent sources of risk. Second, the total
volatility is very close to the systematic one.
This may suggest that the idiosyncratic risk is
irrelevant. That is an erroneous and danger-
ous conclusion. In particular, when managing
against a benchmark, the focus should be on
the net exposures and risk, not on their absolute
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Table 7 Factor Partition—Risk Analysis

Risk Factor Group Isolated TEV Contribution to TEV Liquidation Effect on TEV TEV Elasticity (%)

Total 13.7 13.7 −13.7 1.0
Systematic risk 9.3 6.3 −3.6 0.5

Curve 8.5 4.0 −1.5 0.3
Volatility 1.7 0.1 0.0 0.0
Government-related

spreads
3.0 0.1 0.2 0.0

Corporate spreads 5.1 1.6 −0.7 0.1
Securitized spreads 3.0 0.5 −0.2 0.1

Idiosyncratic risk 10.1 7.4 −4.4 0.5

counterparts. In Table 6 the total TEV is re-
ported as 13.7 bps/month. This means that
the model forecasts the portfolio return to be
typically no more than 14 bps/month higher
or lower than the return of the benchmark.
This number is in line with the risk budget of
our manager. The exhibit also reports idiosyn-
cratic TEV of 10.1 bps/month, which is greater
than the systematic TEV (9.3). When measured
against the benchmark, our major source of risk
is idiosyncratic, contrary to the conclusion one
could draw by looking only at the portfolio’s
volatility. The TEV of our portfolio is also big-
ger than the difference between the volatilities
of the portfolio and benchmark. Again, this is
not surprising: The volatility depends on the
absolute exposures, while the TEV measures
imbalances between these absolute exposures
from the portfolio and the benchmark. For the
TEV what matters most is the correlation be-
tween these absolute exposures. Depending on
this correlation, the TEV may be smaller or big-
ger than the difference in volatilities.

Finally, the report estimates the portfolio to
have a beta of 1.03 to the benchmark. This
statistic measures the co-movement between
the portfolio and the benchmark. We can read it
as follows: The model forecasts that a move-
ment of 10 bps in the benchmark leads to a
movement of 10.3 bps in the portfolio in the
same direction. Note that a beta of less than one
does not mean that the portfolio is less risky
than the benchmark. In the limit, if the portfo-
lio and benchmark are uncorrelated, the port-

folio beta is zero but obviously that does not
mean that the portfolio has zero risk. Finally,
one can compute many different “betas” for the
portfolio or subcomponents of it.5 A simple and
widely used one is the “duration beta,” given by
the ratio of the portfolio duration to that of the
benchmark. In our case this ratio is 4.55/4.30 =
1.06. This implies that the portfolio has a return
from yield curve movements around 1.06 times
larger than that of the benchmark. This beta
is larger than the portfolio beta (1.03), meaning
that net exposures to other factors (e.g., spreads)
“hedge” the portfolio’s curve risk.

This first summary report (Table 6) allows us
to get a glimpse into the risk of the portfolio.
However, we want to know in more detail what
the source of this risk is. To do that, we turn to
the next two summary reports. In the first, risk
is partitioned across different groups of risk fac-
tors. In the second, the partition is across groups
of securities/asset classes.

Table 7 shows four different statistics associ-
ated with each set of risk factors. The first two
were somewhat explored in Tables 4 and 5.6

The exhibit reports in the first column the iso-
lated TEV, that is, the risk associated with that
particular set of risk factors only. We see that
in an isolated analysis, the systematic and id-
iosyncratic risks are balanced, at 9.3 and 10.1
respectively. The report also shows the isolated
risk associated with the major components of
systematic risk. As discussed before, all com-
ponents of systematic risk have nontrivial iso-
lated risk, but only curve and credit spreads
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Table 8 Security Partition—Risk Analysis I

Contribution to TEV

Security Partition Bucket NMW (%) Systematic Idiosyncratic Total

Total 0.0 6.3 7.4 13.7
Treasuries −2.0 2.9 0.2 3.1
Government agencies −5.4 0.5 0.4 0.9
Government nonagencies −1.0 −1.4 0.1 −1.3
Corporates 12.4 3.4 4.3 7.7
MBS −5.8 0.9 0.8 1.7
ABS −0.3 0.0 0.0 0.0
CMBS 2.1 0.0 1.6 1.6

are significant when we look into the contribu-
tions to TEV. If we look across factors, the major
contributors are idiosyncratic risk, curve, and
credit spreads. Other systematic exposures are
relatively small.

Another look into the correlation comes when
we analyze the liquidation effect reported in
the table. This number represents the change in
TEV when we completely hedge that particular
group of risk factors. For instance, if we hedge
the curve component of our portfolio, our TEV
drops by 1.5 bps/month, from 13.7 to 12.2. One
may think that the drop is rather small, given
the magnitude of isolated risk the curve rep-
resents. However, if we hedge the curve, we
also eliminate the beneficial effect the negative
correlation between curve and spreads have on
the overall risk of the portfolio. Therefore, we
have a more limited impact when hedging the
curve risk. In fact, for this portfolio we see that
hedging any particular set of risk factors has a
limited effect in the overall risk.

The TEV elasticity reported in the last column
gives another perspective into how the TEV in
the portfolio changes when we change the risk
loadings. Specifically, it tells us what the per-
centage change in TEV would be if we changed
our exposure to that particular set of factors by
1%. We can see that if we reduce our exposure
to corporate spreads by 1%, our TEV would de-
crease by 0.1%.

We perform a similar analysis in Table 8, but
applied to a security partition. That is, instead
of looking at individual sources of risk (e.g.,

curve) across all securities, we now aggregate
all sources of risk within a security and report
analytics for different groups of these securities
(e.g., subportfolios). In particular, Table 8
reports the results by asset class. We can see
that the majority of risk (7.7 bps/month) is
coming from the corporate component of the
portfolio.7 Corporates are also the primary
contributors to the portfolio’s systematic and
idiosyncratic components of risk. This is not
surprising, given the portfolio’s large net
market weight (NMW) to this sector. There
are two other important sources of risk. The
first is the Treasuries subportfolio, with 3.1
bps/month of risk. This risk comes mainly
from the mismatch in duration. The second
comes from the idiosyncratic risk of the CMBS
component of the portfolio. Even though the
NMW and systematic risk are not significant
for this asset class, the relatively small number
of (risky) CMBS positions in the portfolio
causes it to have significant idiosyncratic risk
(three securities in the portfolio versus 1,735 in
the index). Since the portfolio manager is trying
to replicate a very large benchmark with only
50 positions, she has to be very confident in
the issuers selected. This report highlights the
significant name risk the portfolio is exposed to.

Table 9 completes the analysis, reporting
other important risk statistics about the dif-
ferent asset classes within the portfolio. These
statistics mimic the analysis done in terms of
risk factor partitions in Table 7, so we will
not repeat their definitions. We focus on the
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Table 9 Security Partition—Risk Analysis II

Security Partition
Bucket

Isolated
TEV

Liquidation
Effect on
TEV

TEV
Elasticity
(%)

Total 13.7 −13.7 1.0
Treasuries 7.4 −1.1 0.2
Government

agencies
9.1 2.0 0.1

Government
nonagencies

6.7 2.7 −0.1

Corporates 15.2 0.6 0.6
MBS 5.8 −0.5 0.1
ABS 1.1 0.1 0.0
CMBS 5.1 −0.7 0.1

numbers. In particular, the isolated TEV from
the corporate sector is 15.2 bps/month, higher
than the total risk of the portfolio. This means
that the exposures to the other asset classes, on
average, hedge our credit portfolio. The exhibit
also reports that the agencies isolated risk is
very large. This is due to the large negative net
exposure (−5.4%) we have to this asset class.
But the risk is fully hedged by the other ex-
posures of the portfolio (e.g., long exposure to
credit or long duration on Treasuries), so overall
the risk contribution of this asset class is small,
as previously discussed. We can even take the
analysis a bit further: Table 9 shows us through
the liquidation effect that if we eliminate the
imbalance the portfolio has on agencies, we ac-
tually would increase the total risk of the port-
folio by 2.0 bps/month. In short, we would
be eliminating the hedge this asset class pro-
vides to the global portfolio, therefore increas-
ing its risk. The exposures to this asset class
were clearly built to counteract other exposures
in the portfolio. Finally, Table 9 also reports the
TEV elasticity of the different components of
the portfolio. This number represents the per-
centage change in TEV if the NMW to that sub-
portfolio changes by 1%, so we need to read the
numbers with an opposite sign if the NMW is
negative. In particular, if we increase the weight
of the agency portfolio in absolute value (mak-
ing it “more short”) by 1%, we would actually
increase the TEV by 0.1%. This result shows that

the position in agencies provides hedging “on
average,” but marginally it is already increas-
ing the risk of the portfolio. In other words, the
hedging went beyond its optimal value.

This set of summary reports gives us a very
clear picture of the major sources of risk and
how they relate to each other. In what follows,
we focus on the more detailed analysis of the
individual systematic sources of risk.

Factor Exposure Reports
At the heart of a multifactor risk model is the
definition of the set of systematic factors that
drive risk across the portfolio. As described
above, there are different types of risk a fixed
income portfolio is exposed to. In what follows,
we focus on the three major types: curve, credit,
and prepayment risk. Specifically in what re-
gards the latter two, we use the credit and
MBS component of the portfolio, respectively,
to illustrate how to measure risks along these
dimensions. Moreover, to keep the example
simple, we show only a partial view of all rel-
evant factors for these sources of risk. Later in
this section we refer briefly to other sources of
risk a fixed income portfolio may be exposed to.

Curve Risk As the previous analysis shows
(e.g., Table 7), curve is the major source of risk
in our portfolio. This kind of risk is embedded
in virtually all fixed income securities (excep-
tions are, for instance, floaters and distressed
securities), therefore mismatches are very pe-
nalizing.

When analyzing curve risk, we should use
the curve of reference we are interested in. De-
pending on the portfolio and circumstances,
this is typically the government or swap curve.8

In calm periods, the behavior of the swap
curve tends to match that of the government
curve. However, during liquidity crises (e.g.,
the Russian crisis in 1998 or the credit crisis
in 2008), they can diverge significantly. To cap-
ture these different behaviors adequately, we
analyze curve risk using the following decom-
position: For government products, the curve
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risk is assessed using the government curve.
For all other products in our portfolio (that usu-
ally trade off the swap curve), this risk is mea-
sured using both the Treasury curve and swap
spreads (i.e., the spreads between the swap and
the government curve). Other decompositions
are also possible.

The risk associated with each of these curves
can be described by the exposure the portfolio
has to different points along the curve and
how volatile and correlated the movement
in these points of the curve are. A additional
convexity term is sometimes used to capture
the non-linear components of curve risk. For
a typical portfolio, a good description of the
curve can be achieved by looking at a relatively
small number of points along the curve (called
key rates), for example, 6-month, 2-year, 5-year,
10-year, 20-year, and 30-year. An alternative
set of factors used to capture yield curve risk
can be defined using statistical analysis of the
historical realizations of the various yield curve
points. The statistical method used most often
is called principal component analysis (PCA).
This method defines factors that are statistically
independent of each other. Typically three or
four such factors are sufficient to explain the
risk associated with changes of yields across
the yield curve. PCA analysis has several
shortcomings and must be used with caution.
Using a larger set of economic factors, such as
the key rate points described above, is more
intuitive and captures the risk of specialized
portfolios better. In our analysis, we follow the
key rates approach.

Table 10 details the risk in our portfolio associ-
ated with the US Treasury curve. It starts by de-
scribing all risk factors our portfolio or bench-
mark load on. As discussed above, we identify
the six key rate (KR) points in the curve plus
the convexity term as the risk factors associated
with US Treasury risk. They are described in
the first column of panel A in the exhibit. They
measure the risk associated with moves in that
particular point in the curve. Exposure to these
risk factors is measured by the key rate dura-

tions (KRD) for each of the six points. The de-
scription of the loading is in the second column
of the exhibit, while its value for the portfolio,
benchmark, and the difference is displayed in
the next columns. Key rate durations are also
called partial durations, as they add up to ap-
proximately the duration of the portfolio. Their
loadings are constructed by aggregating par-
tial durations across (virtually) all the securi-
ties. For instance, for our portfolio, the sum of
the key rate durations is 0.14 + 0.86 + 1.30 +
0.77 + 1.02 + 0.47 = 4.56, very close to the total
duration of our portfolio.

Looking at the table, we see significant
mismatches in the duration profiles between
our portfolio and its benchmark, namely at
the 10-year and 20-year points on the curve.
Specifically, we are short 0.41 years at the
10-year point and long 0.53 years at the 20-year
point. How serious is this mismatch? Looking
at the factor volatility column, it can be seen
that these points on the curve have been very
volatile at around 40 bps/month. If we inter-
pret this volatility as a typical move, the first
two columns of panel B show us the potential
impact of such a movement in the return of
our portfolio, net of benchmark. For instance,
a typical move up (+44.2 bps/month) in the
10-year point of the Treasury curve, when
considered in isolation, will deliver a positive
net return of 15.9 bp.9 In isolation, the positive
impact is expected because we are short that
point of the curve. More interesting may be
the correlated number on the exhibit. It states
the return impact but in a correlated fashion.
In the scenario under analysis, a movement in
the 10-year point will almost certainly involve
a movement of the neighboring points in
the curve. So, contrary to the positive isolated
effect documented above, the correlated impact
of a change up in the 10-year point is actually
negative, at −5.0 bps. This result is in line
with the overall positive duration exposure the
portfolio has: General (correlated) movements
up in the curve have negative impact in the
portfolio’s performance.10 Finally, and broadly
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Table 10 Treasury Curve Risk

A. Exposures and Factor Volatility

Exposure

Factor Name Units Portfolio Benchmark Net Factor Volatility

USD 6M key rate KRD (Yr) 0.14 0.15 −0.01 36.0
USD 2Y key rate KRD (Yr) 0.86 0.70 0.15 38.0
USD 5Y key rate KRD (Yr) 1.30 1.25 0.05 44.3
USD 10Y key rate KRD (Yr) 0.77 1.13 −0.36 44.2
USD 20Y key rate KRD (Yr) 1.02 0.53 0.49 39.6
USD 30Y key rate KRD (Yr) 0.47 0.53 −0.06 39.7
USD convexity OAC −0.15 −0.29 0.13 8.4

B. Other Risk Statistics

Return Impact of a Typical
Move

Marginal Contribution
Factor Name Isolated Correlated to TEV TEV Elasticity (%)

USD 6M key rate 0.5 −2.4 6.3 0.0
USD 2Y key rate −5.8 −4.5 12.2 0.1
USD 5Y key rate −2.0 −4.5 14.5 0.0
USD 10Y key rate 15.9 −5.0 15.9 −0.4
USD 20Y key rate −19.5 −5.2 14.9 0.5
USD 30Y key rate 2.5 −5.2 14.8 −0.1
USD convexity 1.1 2.0 1.2 0.0

speaking, the (negative of the) ratio of the cor-
related impact to the factor volatility gives us
the model-implied partial empirical duration
of the portfolio. For instance, if we focus on the
10-year point, we get −(−5.0/44.2) = 0.11.
This smaller empirical duration is typical in
portfolios with spread exposure. The spread
exposure tends to empirically hedge some
of the curve exposure, given the negative
correlation between these two sources of risk.
Finally, the exhibit shows the risk associated
with convexity. We can see that the benchmark
is significantly more negatively convex, so the
portfolio is less responsive than the benchmark
to higher order changes in the yield curve.

There are many other statistics of interest one
can analyze regarding the Treasury curve risk
of the portfolio. Portfolio managers frequently
have questions such as: If I want to reduce
the risk of my portfolio by manipulating
my Treasury curve exposure, what should I
change? What is the most effective move? By
how much would my risk actually change? The

statistics reported in the columns “Marginal
Contribution to TEV” and “TEV Elasticity
(%)” of panel B are typically used to answer
these questions. Regarding the marginal con-
tributions, the 10-year point has the largest
value, indicating that an increase (reduction)
of one unit of exposure (in this case one year
of duration) to the 10-year point leads to an
increase (reduction) of around 16 bps in the
TEV.11 In other words, if we want to reduce
risk by manipulating our exposure to the yield
curve, the 10-year point seems to present the
fastest track. In addition, the exhibit shows that
all Treasury risk factors are associated with
positive marginal contributions. This means
that an increase in the exposure to any of these
factors increases the risk (TEV) of the portfolio.
This conclusion holds, even for factors for
which we have negative exposure (e.g., the
10-year key rate). The reason behind this result
is our overall long duration exposure. If we
add exposure to it, regardless of the specific
point where we add it, we extend our duration
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Table 11 Swap Spread (SS) Risk

Exposure (SS-KRD)

Factor Name Portfolio Benchmark Net
Factor
Volatility

Return Impact
Correlated

Marginal
Contribution
to TEV

6M SS 0.14 0.13 0.01 39.1 −2.1 5.8
2Y SS 0.52 0.47 0.04 20.4 −2.1 3.0
5Y SS 0.84 0.75 0.09 9.6 −2.0 1.4
10Y SS 0.71 0.68 0.03 14.1 1.7 −1.8
20Y SS 0.34 0.33 0.01 17.0 2.2 −2.7
30Y SS 0.06 0.20 −0.15 20.1 2.4 −3.5

even further, increasing the mismatch our
portfolio has in terms of duration, and so
increasing its risk.12 This result holds because
we take into consideration the correlations be-
tween the different points in the Treasury curve.
Without correlations, the analysis would be
significantly less clear. The exhibit also reports
the TEV elasticity of each of the risk factors, a
concept introduced earlier. The interpretation
is similar to the marginal contribution, but with
normalized changes (percentage changes).
This normalization makes the numbers more
comparable across risk factors of very different
nature. It is also useful when considering
leveraging the entire portfolio proportionally.
In our case, if we increase the exposure to the
10-year key rate point by 10%, from −0.36 to
something around −0.40 (effectively reducing
our long duration exposure), our TEV would be
reduced by 4% (from 13.7 to 13.2 bps/month).

We now turn the analysis to the other com-
ponent of the curve risk described above: the
risk embedded into the portfolio exposure to
the swap spread, that is, the spread between
the swap and the Treasury curves. All securities
that trade against the swap curve (e.g., all typi-
cal credit and securitized bonds) are exposed to
this risk. Its analysis follows very closely that of
the Treasury curve, so we only highlight the ma-
jor risk characteristics of the portfolio along this
dimension. Table 11 shows that in general our
exposure to the swap spreads is smaller than the
exposure to the Treasury curve. Remember that
Treasuries do not load on this set of risk factors,
so the market-weighted exposures are conse-

quently smaller. Looking at the profile of factor
volatilities, one can see that its term structure of
volatilities is U-shaped, with the short end ex-
tremely volatile and the five-year point having
the lowest volatility. When comparing with the
Treasury curve volatility profile (see Table 10),
we can see significant differences, the aftermath
of a strong liquidity crisis. Regarding net expo-
sures, the exhibit shows that our largest mis-
match is at the 30-year point, where we are short
by 0.15 years. Interestingly, this is not the most
expensive mismatch in terms of risk: When
looking at the last column, we see that we would
be able to change risk the most by manipulat-
ing the short end of our exposure to the swap
spread curve, namely the six-month point.

The previous tables allow us to understand
our exposures to the different types of curve
risk and their impact both on the return and risk
of our portfolios. They also guide us regarding
what changes we can introduce to modify the
risk profile of the portfolio. We now turn our
attention to sources of risk that are more specific
to particular asset classes. In particular, we start
with the analysis of credit risk.

Credit Risk Instruments in the portfolio is-
sued by corporations or entities that may de-
fault are said to have credit risk. The holders of
these securities demand some extra yield—on
top of the risk-free yield—to compensate for
that risk. The extra yield is usually measured
as a spread to a reference curve. For instance,
for corporate bonds the reference curve is usu-
ally the swap curve. The level of credit spreads
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determines to a large extent the credit risk ex-
posure associated with the portfolio.13

There are several characteristics of credit
bonds that are naturally associated with
systematic sources of credit spread risk. For
instance, depending on the business cycle,
particular industries may be going through es-
pecially tough times. So industry membership
is a natural systematic source of risk. Similarly,
bonds with different credit ratings are usually
treated as having different levels of credit risk.
Credit rating could be another dimension we
can use to measure systematic exposure to
credit risk. Given these observations, it is com-
mon to see factor models for credit risk using
industry and rating as the major systematic risk
factors. Recent research suggests that risk mod-
els that directly use the spreads of the bonds
instead of their ratings to assess risk perform

better for relatively short/medium horizons
of analysis.14 Under this approach, the loading
of a particular bond to a credit risk factor
would be the commonly used spread duration
multiplied by the bond’s spread (the loading
is termed DTS = Duration Times Spread =
OASD × OAS). By directly using the spread
of the bond in the definition of the loading to
the credit risk factors we do not need to assign
specific risk factors to capture the rating or any
similar quality-like effect. It will be automat-
ically captured by the bond’s loading to the
credit risk factor and will adjust as the spread of
the bond changes. We use different systematic
risk factors only to distinguish among credit
risk coming from different industries.15

The results of such an approach to the anal-
ysis of our portfolio are displayed in Table 12,
which shows the typical industry risk factors

Table 12 Credit Spread Risk

Exposure (DTS)

Factor Name Portfolio Benchmark Net
Factor
Volatility

Return Impact
Correlated

Marginal
Contribution
to TEV

IND Chemicals 0.00 0.03 −0.03 15.01 −0.39 0.43
IND Metals 0.00 0.06 −0.06 20.01 −0.16 0.23
IND Paper 0.00 0.01 −0.01 17.04 −0.40 0.49
IND Capital Goods 0.00 0.05 −0.05 14.98 −0.02 0.02
IND Div. Manufacturing 0.00 0.03 −0.03 14.21 −0.62 0.64
IND Auto 0.00 0.01 −0.01 22.18 −0.53 0.85
IND Consumer Cyclical 0.10 0.05 0.06 17.05 −0.26 0.32
IND Retail 0.00 0.05 −0.05 16.95 0.14 −0.17
IND Cons. Non-cyclical 0.00 0.13 −0.13 14.62 −0.22 0.24
IND Health Care 0.00 0.02 −0.02 14.07 0.13 −0.13
IND Pharmaceuticals 0.19 0.06 0.12 15.13 −0.34 0.37
IND Energy 0.12 0.20 −0.07 16.39 −0.29 0.34
IND Technology 0.00 0.06 −0.06 15.52 −0.11 0.12
IND Transportation 0.00 0.05 −0.05 15.09 −0.26 0.29
IND Media Cable 0.24 0.06 0.18 15.83 0.51 −0.58
IND Media Non-cable 0.00 0.04 −0.04 15.94 0.20 −0.23
IND Wirelines 0.09 0.17 −0.08 15.26 0.41 −0.45
IND Wireless 0.00 0.03 −0.03 14.87 1.06 −1.13
UTI Electric 0.28 0.20 0.08 15.79 −0.16 0.18
UTI Gas 0.09 0.10 −0.01 18.51 −0.41 0.55
FIN Banking 0.88 0.56 0.32 18.61 1.19 −1.59
FIN Brokerage 0.00 0.02 −0.02 15.90 1.47 −1.68
FIN Finance Companies 0.08 0.10 −0.02 20.64 0.68 −1.01
FIN Life & Health Insurance 0.12 0.11 0.01 19.96 0.58 −0.84
FIN P&C Insurance 0.00 0.06 −0.06 11.76 0.34 −0.29
FIN Reits 0.14 0.04 0.10 17.68 0.80 −1.02
Non Corporate 0.06 0.23 −0.17 25.27 0.28 −0.50
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Table 13 Risk per Rating

TEV

Rating NMW (%) Contribution Isolated Liquidation Elasticity (%) Systematic Beta

Total 0.0 13.7 13.7 −13.7 1.0 1.03
AAA −7.2 10.9 37.4 22.2 0.8 1.12
AA1 −0.3 −0.2 1.0 0.2 0.0 0.00
AA2 0.2 0.3 3.3 0.1 0.0 1.10
AA3 −2.3 −1.3 6.7 2.6 −0.1 0.00
A1 −0.5 0.3 4.2 0.4 0.0 1.51
A2 7.1 3.6 11.2 1.0 0.3 0.77
A3 4.7 1.7 5.8 −0.5 0.1 0.65
BAA1 −0.1 0.3 3.7 0.2 0.0 1.51
BAA2 −3.3 −2.3 11.5 5.9 −0.2 0.00
BAA3 1.7 0.3 7.7 1.7 0.0 0.37

associated with credit risk. The portfolio has
net positions in 27 industries, spanning all three
major sectors: Industrials (IND), Utilities (UTI)
and Financials (FIN). We saw before that we
have a significant net exposure to financials in
terms of market weights (12.2%, see Table 1).
In terms of risk exposure, Table 12 shows that
the net DTS exposure to the Banking industry
is 0.32, clearly the highest across all sectors.16

However, the marginal contribution to TEV
that comes from that industry, although high,
is comparable to other industries, namely Bro-
kerage, for which the net exposure is close to
zero. This means that these two industries are
close substitutes in terms of the current portfo-
lio holdings. Actually, what is very interesting
is the fact that the marginal contribution is neg-
ative for these industries, even though we are
significantly overweighting them. The analysis
suggests that if we increase our risk exposure
to Banking, our risk would actually decrease.
This result is again driven by the strong neg-
ative correlation between spreads in financials
and the yield curve. Therefore, the exposure in
banking is actually helping hedge out our (more
risky) long duration position. This kind of anal-
ysis is only possible when you account for the
correlations across factors. It is of course also
dependent on the quality of the correlation es-
timations the model has.

Although the risk factors used to measure
risk are predetermined in a linear factor model,

there is extreme flexibility in the way the risk
numbers can be aggregated and reported.17 For
example, as explained above, the risk model
we use to generate the current risk reports does
not use credit ratings as drivers of systematic
credit risk. Instead, it relies on the DTS concept.
However, once generated, the risk numbers
can be reported using any portfolio partition.
As an example, Table 13 shows the risk break-
down by rating. As reported in this table,
the majority of risk is coming from our AAA
exposure (10.9 bps/month), the bucket with
the biggest mismatch in terms of net weight
(−7.2%). This bucket includes Treasury and
government-related securities, sectors that are
underweighted in the portfolio leading to sig-
nificant risk. This is even clearer when we look
into the isolated TEV numbers. If we had mis-
matches only on AAAs, the risk of our portfolio
would be 37.4 bps/month, instead of the actual
13.7: our other exposures (namely the one to
single As) hedge the risk from AAAs. This
table also reports the systematic betas asso-
ciated with each of the rating subportfolios.
These betas add up to the portfolio beta, when
we use the portfolio weights (not NMW) as
weights in the summation. Systematic betas of
zero identify buckets for which the portfolio
has (close to) no holdings. The table shows that
a movement of 10 basis points in the benchmark
leads to a 11.2 basis points return in the AAA
subcomponent of the portfolio. The beta of 0.37
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Table 14 MBS (spread) Prepayment Risk

Exposure (OASD)

Factor Name Portfolio Benchmark Net
Factor
Volatility

Return Impact
Correlated

Marginal
Contribution
to TEV

MBS New Discount 0.00 0.00 0.00 36.8 −1.2 3.3
MBS New Current 0.00 0.04 −0.04 24.5 −0.3 0.6
MBS New Premium 0.38 0.59 −0.21 29.7 −0.1 0.3
MBS Seasoned Current 0.00 0.00 0.00 25.5 −0.6 1.2
MBS Seasoned Premium 0.65 0.46 0.19 29.8 0.1 −0.2
MBS Ginnie Mae 30Y 0.31 0.21 0.10 6.1 −0.1 0.0
MBS Fannie Mae 15Y 0.00 0.11 −0.11 15.7 0.4 −0.4
MBS Ginnie Mae 15Y 0.00 0.01 −0.01 12.3 0.5 −0.4

for the BAA3 component of the portfolio does
not signal low volatility for this subportfolio. It
indicates mainly low correlation with the
benchmark. This is probably due to a larger
component of idiosyncratic risk for this set of
bonds.

Prepayment Risk Securitized products are
generally exposed to prepayment risk. The
most common of the securitized products are
the residential MBS (RMBS or simply MBS).
These securities represent pools of deals that
allow the borrower to prepay their debt before
the maturity of the loan/deal, typically when
prevailing lending rates are lower. This option
means an extra risk to the holder of the security,
the risk of holding cash exactly when reinvest-
ment rates are low. Therefore, these securities
have two major sources of risk: interest rates
(including convexity) and prepayment risk.

Some part of the prepayment risk can be
expressed as a function of interest rates via
a prepayment model. This risk will be cap-
tured as part of interest-rate risk using the key
rate durations and the convexity. These secu-
rities usually have negative convexity because
usually prepayments increase (decrease) with
decreasing (increasing) interest rates, thereby
reducing price appreciation (increase price de-
preciation). The remaining part of prepayment
risk—that is not captured by the prepayment
model—must be modeled with additional sys-
tematic risk factors. Typically, the volatility of
prepayment speeds (and therefore of risk) on
MBS securities depends on three characteristics:

program/term of the deal, if the bond is priced
at discount or premium (e.g., if the coupon on
the bond is bigger than the current mortgage
rates) and how seasoned the bond is. This anal-
ysis suggests that the systematic risk factors in
a risk model should span these three character-
istics of the securities.

Table 14 shows a potential set of risk factors
that capture the three characteristics discussed
above. Programs identified as having differ-
ent prepayment characteristics are the conven-
tional (Fannie Mae) 30-year bonds (the base case
used for the analysis), the 15-year conventional
(Fannie Mae) bonds, as well as the Ginnie Mae
30- and 15-year bonds. The age of bonds is cap-
tured by factors distinguishing between new
and aged deals. Finally, each bond is also clas-
sified by the price of the security—discount,
current, or premium. In this example there are
no seasoned discounted bonds, given the un-
precedented level of mortgage rates as of June
2010. In terms of risk exposures, the exhibit
shows that we are currently underweighting
15-year conventional bonds, and overweight-
ing 30-year Ginnie Mae bonds.

Interaction between Sources of Risk So far
we analyzed the major sources of spread risk:
credit and prepayment. To do this, we con-
veniently used two asset classes—credit and
agency RMBS, respectively—where one can ar-
gue that these sources of risk appear rela-
tively isolated. However, recent developments
have made very clear that these sources of
risk appear simultaneously in other major asset
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classes, including non-agency RMBS, home eq-
uity loans and CMBS.18 When designing a risk
model for a particular asset class, one should be
able to anticipate the nature of the risks the as-
set class exhibits currently or may encounter in
the future. The design and ability to segregate
between these two kinds of risk depends also
on the richness of the bond indicatives and an-
alytics available to the researcher. For this last
point, it is imperative that the researcher under-
stands well the pricing model and assumptions
made to generate the analytics typically used
as inputs in a risk model. This allows the user
to fully understand the output of the model, as
well as its applicability and shortcomings.

Other Sources of Risk There are other sources
of systematic risk we did not detail in this sec-
tion. They may be important sources of risk for
particular portfolios. Specific risk models can
be designed to address them. We now mention
some of them briefly.

Implied Volatility Risk Many fixed income
securities have embedded options (e.g., callable
bonds). This means that the expected future
volatility (implied volatility19) of the interest
rate or other discount curves used to price the
security plays a role in the value of that op-
tion. If expected volatility increases, options
generally become more expensive, affecting the
prices of bonds with embedded options. For ex-
ample, callable bonds will become cheaper with
increasing implied volatility since the bond
holder is short optionality (the right of the is-
suer to call the bond). Therefore, the exposure
of the portfolio to the implied volatility of the
yield curve is also a source of risk that should
be accounted for. The sensitivity of securities
to changes of implied volatilities is measured
by vega, which is calculated using the security
pricing model. Implied volatility factors can be
either calculated by the market prices of liquid
fixed income options (caps, floors, and swap-
tions), or implied by the returns of bonds with
embedded options within each asset class.

Liquidity Risk Many fixed income securities
are traded over-the-counter, in decentralized
markets. Some trade infrequently, making them
illiquid. It is therefore hard to establish their fair
price. These bonds are said to be exposed to liq-
uidity risk. The holder of illiquid bonds would
have to pay a higher price to liquidate its posi-
tion, usually meaning selling at a discount. This
discount is uncertain and varies across the busi-
ness cycle. For instance, the discount can be sig-
nificant in a liquidity crisis, such as the one we
experienced in 2008. The uncertainty about this
discount means that, everything equal, a more
illiquid bond will be riskier. This extra risk can
be captured through liquidity risk factors. For
instance, in the Treasury markets, one generally
refers to the difference in volatility between an
on-the-run and an off-the-run Treasury bond as
liquidity risk.

Inflation Risk Inflation-linked securities are
priced based on the expectation of future in-
flation. Uncertainty about this variable adds
to the volatility of the bond over and above
the volatility from other sources of risk, such
as the nominal interest rates. Expected infla-
tion is not an observed variable in the market-
place but can be extracted from the prices on
inflation-linked government bonds and infla-
tion swaps. Expected inflation risk factors can
be constructed by summarizing this informa-
tion. The sensitivity of securities to expected in-
flation is calculated using a specialized pricing
model and is usually called inflation duration.

Tax-Policy Risk Many municipal securities
are currently tax-exempt. This results in added
benefit to their holders. This benefit—incor-
porated in the price of the security—depends
on the level of exemption allowed. Uncertainty
around tax policy—tax-policy risk—adds to the
risk of these securities. Once again, tax-policy
risk factors cannot be observed in the market-
place and must be extracted from the prices of
municipal securities. The return of municipal
securities in excess of interest rates is driven
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partially by tax-policy expectations changes.
However, it is also driven by changes in the
creditworthiness of the municipal issuers as
well as other factors. In this case it is difficult to
separate tax-policy risk factors from other fac-
tors driving municipal bond spreads. Therefore,
instead of specific tax-policy factors we usually
extract factors representing the overall spread
risk of municipal securities. This exercise is per-
formed in a similar way to the credit risk model,
where securities are partitioned into groups of
“similar” risk by geography, bond-type (gen-
eral obligation versus revenue), tax-status, and
the like.20

Issue-Level Reports
The previous analysis focused on the system-
atic sources of risk. We now turn our atten-
tion to the idiosyncratic or security-specific risk
embedded in our portfolio. This risk measures
the volatility the portfolio has due to news or
demand–supply imbalances specific to the in-
dividual issues/issuers it holds. Therefore, the
idiosyncratic risk is independent across issuers
and diversifies away as the number of issues
in the portfolio increases: Negative news about
some issuers is canceled by positive news about
others. For relatively small portfolios, the id-
iosyncratic risk may be a substantial compo-

nent of the total risk. This can be seen in our
example, as our portfolio has only 27 issuers.
Table 6 shows that the idiosyncratic volatility
of our portfolio is 11.1 bps/month, more than
twice the idiosyncratic volatility of the bench-
mark (5.6 bps/month). When looking at the
tracking error volatility net of benchmark, Table
6 shows that our specific risk is 10.1 bps/month
and larger than the systematic component (9.3
bps/month). This means that, typically, a major
component of the monthly net return is driven
by events affecting only individual issues or is-
suers. Therefore, monitoring these individual
exposures is of paramount importance.

The idiosyncratic risk of each bond is a func-
tion of two variables: its net market weight and
its idiosyncratic volatility. This last parameter
depends on the nature of the bond issuer. For in-
stance, a bond from a distressed firm has much
higher idiosyncratic volatility than one from a
government-related agency.

Table 15 provides a summary of the idiosyn-
cratic risk for the top 10 positions by market
weight in our portfolio. Not surprisingly, our
top seven holdings are Treasuries and MBS
securities, in line with the constitution of
the index we are using as benchmark. More-
over, these positions have significant market
weights, given that our portfolio contains

Table 15 Issue Specific Risk

Market Weight (%)

Identifier Ticker Description Maturity
Spread
(bps) Portfolio Net

Idiosyncratic
TEV

912828KF US/T US Treasury Notes 2/28/2014 4 5.4 5.2 0.4
912828KJ US/T US Treasury Notes 3/31/2014 3 5.0 4.8 0.4
912828JW US/T US Treasury Notes 12/31/2013 1 4.7 4.5 0.4
912828KN US/T US Treasury Notes 4/30/2014 2 3.8 3.6 0.3
FNA04409 FNMA FNMA Conventional

Long T. 30yr
3/1/2039 20 3.2 1.1 0.4

FGB04409 FHLMC FHLM Gold Guar
Single F. 30yr

3/1/2039 25 2.7 1.1 0.4

912810FT US/T US Treasury Bonds 2/15/2036 −1 2.3 2.1 0.7
20029PAG CMCSA Comcast Cable

Communication
5/1/2017 222 2.2 2.2 2.4

59018YSU BAC Merrill Lynch &
Co.

2/3/2014 300 2.1 2.1 2.9

912828KV US/T US Treasury Notes 5/31/2014 1 2.1 1.9 0.2
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only 50 positions. Even though we see large
concentrations, the idiosyncratic TEV for the
top holdings is small, as they are not exposed
to significant name risk. The last column of the
table shows that from this group the largest
idiosyncratic risk comes from two corporate
bonds (issued by Comcast Cable Communi-
cation “CMCSA” and Merrill Lynch “BAC”).
This is not surprising, as these are the type of
securities with larger event risk. Even within
corporates, idiosyncratic risk can be quite
diverse. In particular, it usually depends on the
industry, duration, and level of distress of the
issuer (usually proxied by rating, but in our
model by the spread of the bond). For instance,
the net position for both the CMCSA and BAC
bonds is similar (2.2% and 2.1% respectively),
but even though the maturity of the BAC bond
is significantly shorter, its spread is higher, de-
livering a higher idiosyncratic risk (2.9 versus
2.4 bps/month). The fact that BAC is a firm
from an industry (Financials) that experienced
significant volatility in the recent past also
contributes to higher idiosyncratic volatility. To
manage the idiosyncratic risk in the portfolio
one should pay particular attention to mis-
matches between the portfolio and benchmark
for bonds with large spreads or long durations.
These would tend to affect disproportionably
the idiosyncratic risk of the portfolio.

Although important, the information in
Table 15 is not enough to fully assess the
idiosyncratic risk embedded in the portfolio.
For instance, one could buy credit protection to
BAC through a credit default swap (CDS). In
this case, our exposure to this issuer may not
be significant, even though, taken separately,
the position reported in this exhibit is relevant.
More generally, idiosyncratic risk is indepen-
dent across issuers, but what happens within
a particular issuer? A good risk model should
have the ability to account for the fact that the
idiosyncratic risk of two securities from the
same issuer is correlated, as they are both sub-
ject to the same company-specific events. This
is especially the case for corporates and emerg-

ing market securities. Moreover, it is important
to note that the correlation between issues from
the same issuer is not constant either. For an
issuer in financial distress, all claims to their
assets (bonds, equities, convertibles, etc.) tend
to move together, in the absence of specific cir-
cumstances. This means that the idiosyncratic
correlation between issues from that issuer
should be high. Therefore, adding more issues
from that issuer to the portfolio does not deliver
additional diversification. On the other end,
securities from firms that enjoy very strong
financial wealth can move quite differently,
driven by liquidity or other factors. In this case,
one can have some diversification of idiosyn-
cratic risk (although limited) even when adding
issues from that same issuer into the portfolio.

To help us understand the net effect of all
these points, we need to know the issuers that
contribute the most to idiosyncratic risk. When
aggregating risk from the issue (as shown in
Table 15) to the issuer level, the correlations re-
ferred to above should be fully taken into ac-
count. Table 16 shows the results of this exercise
for the 10 issuers with the highest idiosyncratic
TEV. Our riskiest exposure comes from Johnson
& Johnson (JNJ), with 3.7 bps/month of issuer
risk. We can also observe that idiosyncratic TEV
is not monotonic in the NMW: We have JNJ and
President & Fellows of Harvard “HARVRD”
with the same NMW, but the former is sig-
nificantly more risky (3.7 versus 2.0 bps/
month). It is possible to have important issuer
risk even for names we do not have in our port-
folio, if they have significant market weight in
the benchmark. Finally, note that because the id-
iosyncratic risk across issuers is independent,
we can easily calculate the cumulative risk of
several issuers. For example, the total idiosyn-
cratic risk of the first two issuers is given by

TEV JNJ+D
idio =

√
3.72 + 2.82 = 4.6

Another important interpretation from
Table 16 is that these are our biggest name
exposures in our portfolio. In this case, we are
overweight in all of them. Therefore, we should
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Table 16 Issuer Specific Risk

Ticker Name Sector NMW (%) Idiosyncratic TEV

JNJ Johnson & Johnson Pharmaceuticals 2.0 3.7
D Dominion Resources Inc Electric 1.8 2.8
CMCSA Comcast Cable Communication Media_cable 2.0 2.1
BBT BB&T Corporation Banking 2.0 2.1
HARVRD Pres&Fellows of Harvard Industrial_other 2.0 2.0
AXP American Express Credit Banking 1.7 1.8
MS Morgan Stanley Dean Witter Banking 1.3 1.7
C Citigroup Inc Banking 1.5 1.7
BAC Merrill Lynch & Co. Banking 1.6 1.6
RBS Charter One Bank Fsb Banking 1.6 1.4

not have negative views about any of them.
If this is not the case, then we are assuming
an unintended name risk. This risk should be
promptly taken out of the portfolio, in favor
of another issuer with similar characteristics
and for which we do not have negative views
about. This interactive exercise can easily be
performed with a good and flexible optimizer.

Scenario Analysis Report
Scenario analysis is another useful way to gain
additional perspective on the portfolio’s risk.
There are many ways to perform this exer-
cise. For instance, one may want to reprice the
whole portfolio under a particular interest rate
or spread scenario, and look at the hypothet-
ical return under that scenario. Alternatively,
one may look at the holdings of the portfolio
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and see how they would have performed under
particular stressed historical scenarios (e.g., the
1987 equity crash or the Asian crisis in 1997).
One particular problem with this approach is
the fact that, given the dynamic nature of the se-
curities, the current portfolio did not exist with
the current characteristics along all these histor-
ical episodes. A solution may be to try to price
the current securities with the market variables
at the time. Another solution is to represent the
current portfolio as the set of loadings to all sys-
tematic risk factors in the factor risk model. We
can then multiply these loadings by the histor-
ical realizations of the risk factors. The result is
a set of historical systematic simulated returns.
Figure 1 presents these returns for our portfolio
over the last five years. As expected, the largest
volatility came with the crisis of 2008, when
the portfolio registered returns between −200
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and +300 basis points. The largest underper-
formance against the benchmark appeared in
September 2008, followed by the largest out-
performance two months after, both at around
20 basis points.

This analysis has some limitations, especially
for the portfolio under consideration, where id-
iosyncratic exposure is a major source of risk.
This kind of risk is always very hard to pin
down and obviously less relevant from an his-
torical perspective, as the issuers in our current
portfolio may have not witnessed any particu-
lar major idiosyncratic event in the past. How-
ever, these and other kinds of historical scenario
analysis are very important, as they give us
some indication of the magnitude of historical
returns our portfolio might have encountered.
They are usually the starting point for any stress
testing. The researcher should always comple-
ment these with other nonhistorical scenarios
relevant for the particular portfolio under anal-
ysis. One way to use the risk model to express
such scenarios is discussed in the following
section.

APPLICATIONS OF RISK
MODELING
In this section, we illustrate several risk model
applications typically employed for portfolio
management. All applications make use of
the fact that the risk model translates into
a common, comparable set of numbers the
imbalances the portfolio may have across
many different dimensions. In some of the
applications—risk budgeting and portfolio
rebalancing—an optimizer that uses the risk
model as an input is the optimal setting to
perform the exercise.

Portfolio Construction and
Risk Budgeting
Portfolio managers can be divided broadly into
indexers (those that measure their returns rela-

tive to a benchmark index) and absolute return
managers (typically hedge fund managers). In
between stand the enhanced indexers we in-
troduced previously in the entry. All are typi-
cally subject to a risk budget that prescribes how
much risk they are allowed to take to achieve
their objectives: Minimize transaction costs and
match the index returns for the pure indexers,
maximize the net return for the enhanced index-
ers, or maximize absolute returns for absolute
return managers. In any of these cases, the man-
ager has to merge all her views and constraints
into a final portfolio. When constructing the
portfolio, how can she manage the competing
views, while respecting the risk budget? How
can the views be combined to minimize the risk?
What trade-offs can be made? Many different
techniques can be used to structure portfolios
in accordance with the manager’s views. In par-
ticular, risk models are widely used to perform
this exercise. They perform this task in a simple
and objective manner: They can measure how
risky each view is and how correlated they are.
The manager can then compare the risk with the
expected return of each of the views and decide
on the optimal allocation across her views.

An example of a portfolio construction exer-
cise using the risk model is the one we per-
formed to construct the portfolio analyzed in
the previous section.21 Figure 2 shows the ex-
act problem we asked the optimizer to solve.
We start the problem by defining an initial
portfolio (empty in our case) and a tradable
universe—the set of securities we allow the op-
timizer to buy or sell from. In our case, this is the
Barclays US Aggregate index with issues hav-
ing at least $300 million of amount outstanding
(in the Tradable Universe Options pane of the
POINT R© Optimizer window shown in Figure
2). The selection of this universe allows us to
avoid having small issues in our portfolio, po-
tentially increasing its liquidity. Pertaining to
the risk model use (in the Objectives pane of
the POINT R© Optimizer window), the objective
function used in the problem is to minimize
Total TEV. This means that we are giving
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Figure 2 Portfolio Construction Optimization Setup in the POINT R© Optimizer

leeway to the risk model to choose a portfo-
lio from the tradeable universe that minimizes
the risk relative to the benchmark, in our case
the Barclays US Aggregate index. In the Com-
mon Constraints pane, additional generic con-
straints have been imposed: a $100 million final
portfolio with a maximum number of 50 se-
curities. In the Constraints on values aggre-
gated by Buckets pane, we force the optimizer
to tilt our portfolio to respect the portfolio
manager’s views: long duration against the
benchmark between 0.25 and 0.30 years and
spreads between 100 and 150 bps higher than
the benchmark. In the Constraints on each Is-
sue/Issuer/Ticker pane, we impose a maxi-
mum under-/overweight of 2% per issuer, to
ensure proper diversification.22 The character-
istics of the portfolio resulting from this opti-
mization problem were extensively analyzed in
the previous section.

Portfolio Rebalancing
Managers need to rebalance their portfolios reg-
ularly. For instance, as time goes by, the char-
acteristics of the portfolio may drift away from
targeted levels. This may be due to the aging
of its holdings, market moves, or issuer-specific
events such as downgrades or defaults. The pe-
riodic re-alignment of a portfolio to its invest-
ment guidelines is called portfolio rebalancing.
Similar needs arise in many different contexts:
when managers receive extra cash to invest,
get small changes to their mandates, want to
tilt their views, and the like. Similar to port-
folio construction, a risk model is very use-
ful in the rebalancing exercise. During rebal-
ancing, the portfolio manager typically seeks
to sell bonds currently held and replace them
with others having properties more consistent
with the overall portfolio goals. Such buy and
sell transactions are costly, and their cost must
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Figure 3 Portfolio Rebalancing Optimization Setup in the POINT R© Optimizer

be weighted against the benefit from moving
the portfolio closer to its initial specifications.
A risk model can tell the manager how much
risk reduction (or increase) a particular set of
transactions can achieve so that she can evalu-
ate the risk adjustment benefits relative to the
transaction cost.

As an example, suppose our portfolio man-
ager wants to tone down the heavy overweight
she has on banking. She wants to cap that over-
weight to 5% and wants to do it with no more
than 10 trades. Finally, assume she wants no
change to the market value of the final portfo-
lio. We can use a setup similar to that of Figure
2, but adjusting some of the constraints. Fig-
ure 3 shows two of the constraints option panes
in the POINT R© Optimizer window, changed to
allow for the new constraints. Specifically, in
the first panel, we allow for 10 trades and, in
the second, included an extra constraint for the
banking industry.

Table 17 shows the trading list suggested
by the POINT R© Optimizer. Not surprisingly,
the biggest sells are of financial companies.
To replace them, the optimizer—using the risk
model—recommends more holdings of Trea-
sury and corporate bonds. (We need these last
to keep the net yield of the portfolio high.)
Remember that we concluded that our finan-
cial holdings were highly correlated with Trea-
suries, so the proposed swap is not surprising.

Interestingly, the extra constraint imposed on
the optimization problem did not materially

change the risk of the portfolio. Results show
that the risk actually decreased to around
13 bps/month. This is due to the extra three
positions added to the portfolio that now has
53 securities. These extra securities allowed the
portfolio to reduce both its systematic as well
as its idiosyncratic risk.

Scenario Analysis
As described in the previous section, scenario
analysis is a very popular tool both for risk
management and portfolio construction. In this
section, we illustrate another way to construct
scenarios, this time using the covariance matrix
of the risk model. In this context, users express
views on the returns of particular financial vari-
ables, indexes, securities, or risk factors, and the
scenario analysis tool (using the risk model)
calculates their impact on the portfolio’s (net)
return.

Typically in this kind of scenario analysis,
the views one has are only partial views. This
means we can have specific views on how
particular macro variables, asset classes, or risk
factors will behave; but we hardly have views
on all risk factors the portfolio under analysis
is exposed to. This is when risk models may be
useful. At the heart of the linear factor models
described in this entry is a set of risk factors
and the covariance matrix between them. They
are being increasingly used in the context
of scenario analysis as a way to “complete”
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Table 17 Proposed Trading List

BUYS

Identifier Description Position Amount Market Value

912828KV US Treasury Notes 967,403 1,000,000
126650BK CVS Corp-Global 1,696,069 1,518,408
98385XAJ XTO Energy Inc 2,097,746 2,508,567
FNA05009 FNMA Conventional Long T. 30yr 2,547,359 2,708,258
912828KF US Treasury Notes 3,786,070 3,882,263

Total 11,617,497

SELLS

Identifier Description Position Amount Market Value

16132NAV Charter One Bank FSB −3,229,847 −3,370,981
05531FAF BB&T Corporation −2,425,413 −2,499,505
0258M0BZ American Express Credit −2,021,013 −2,208,231
3133XN4B Federal Home Loan Bank −1,818,417 −2,085,812
740816AB Pres&Fellows of Harvard −1,281,616 −1,452,968

Total −11,617,497

specific partial views or scenarios, delivering
a full picture of the impact of the scenario in
the return of the portfolio. Mechanically, what
happens is the following: First, one translates
the views into realizations of a subset of risk
factors. Then the scenario is completed—using
the risk model covariance matrix—to get the
realizations of all risk factors. Finally, the
portfolio’s (net) loadings to all risk factors
are used to get its (net) return under that
scenario (by multiplying the loadings by the
factor realizations under the scenario). This
construction implies a set of assumptions that
should be carefully understood. For instance,
we assume that we can represent or translate
our views as risk factor returns. So, if we have a
view about the unemployment rate, and this is
not a risk factor,23 we cannot use this procedure
to test our scenario. Also, to “complete” the
scenario, we generally assume a stationary and
normal multivariate distribution between all
factors. These assumptions make this analysis
less appropriate for looking at extreme events
or regime shifts, for instance. But the analysis
can be very useful in many circumstances.

As an example, consider using the scenario
analysis to compute the model-implied empir-

ical durations (MED) of the portfolio we an-
alyzed in detail previously in this entry. To
do this, we express our views as changes in
the curve factors. In our risk model, these
are represented by the six key rate factors il-
lustrated in Table 10. In particular, to calcu-
late the model-implied empirical duration, we
are going to assume that all six decrease by
25 bps/month, broadly in line with our
managers’ views.

Panel a of Table 18 shows that under this
scenario, the portfolio returns 99 basis points,
against the 93 of the benchmark. As expected
given our longer duration, we outperform the
benchmark. Due to the other exposures present
in the portfolio and benchmark (e.g., spreads)
and their average negative correlation with
the curve factors, the duration implied by the
scenario (MED) for our portfolio is only 3.96
(= 99/25) against the analytical 4.55. The sce-
nario shows a similar decrease in the bench-
mark’s duration.

Another characteristic imposed while con-
structing the portfolio was a targeted higher
spread. As shown in Table 2, this resulted
in an OAS for the portfolio of 157 bps
against the 57 of the benchmark. It would be
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Table 18 Spread Analysis

a. Analytical and Model-Implied Durations

Durations

Universe Return under Scenario (bp) MED (scenario) Analytical

Portfolio 99 3.96 4.55
Benchmark 93 3.72 4.30

b. Spread Contraction of 10%

Restriction on YC movement

Universe No Movement Correlated

Portfolio 31 −3
Benchmark 32 0

interesting to evaluate the impact to the port-
folio (net) return of a credit spread contraction
of 10%. The portfolio is long spread duration
(net OASD = 0.11, see Table 2), so we may
expect our portfolio to outperform in this sce-
nario. To do so, we analyze the results under
two spread contraction scenarios: imposing no
change in the yield curve (that is, an unchanged
yield curve is part of the view) or allowing
this change to be implied by the correlation
matrix. (That is, the change in the yield curve
is not part of the scenario. We have no views
about it, but we allow it to change in a way
historically consistent with our spread view.)
Contrary to what one might expect, panel b
of Table 18 shows that the effect in the net
return is minimal under both scenarios. The
higher spreads deliver no return advantage un-
der this scenario. However, the absolute returns
are quite different across the scenarios. When
one allows the rates to move in a correlated
fashion the net return drops close to zero: All
positive return from the spread contraction is
cancelled by the probable increase in the level
of the curve and our long-duration exposure.

These very simple examples illustrate how
one can look at reasonable scenarios to study the
behavior of the portfolio or the benchmark un-
der different environments. This scenario anal-
ysis does increase significantly the intuition the
portfolio manager may have regarding the re-
sults from the risk model.

KEY POINTS

� Risk models describe the different imbalances
of a portfolio using a common language. The
imbalances are combined into a consistent
and coherent analysis reported by the risk
model.

� Risk models provide important insights re-
garding the different trade-offs existing in the
portfolio. They provide guidance regarding
how to balance them.

� Risk models in fixed income are unique in two
different ways: First, the existence of good
pricing models allows us to robustly calculate
important analytics regarding the securities.
These analytics can be used confidently as in-
puts into a risk model. Second, returns are not
typically used directly to calibrate risk factors.
Instead returns are first normalized into more
invariant series (e.g., returns normalized by
the duration of the bond).

� The fundamental systematic risk of all fixed
income securities is interest rate and term
structure risk. This is captured by factors rep-
resenting risk-free rates and swap spreads of
various maturities.

� Excess (of interest rates) systematic risk is cap-
tured by factors specific to each asset class.
The most important components of such risk
are credit risk and prepayment risk. Other
risk factors that can be important are implied
volatility, liquidity, inflation, and tax policy.
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� Idiosyncratic risk is diversified away in large
portfolios and indices but can become a very
significant component of the total risk in small
portfolios. The correlation of idiosyncratic
risk of securities of the same issuer is nonzero
and must be modeled very carefully.

� A good risk model provides detailed infor-
mation about the exposures of a complex
portfolio and can be a valuable tool for port-
folio construction and management. It can
help managers construct portfolios tracking a
particular benchmark, express views subject
to a given risk budget, and rebalance a port-
folio while avoiding excessive transaction
costs. Further, by identifying the exposures
where the portfolio has the highest risk sensi-
tivity it can help a portfolio manager reduce
(or increase) risk in the most effective way.

NOTES
1. The Barclays Global Risk Model is available

through POINT R©, Barclays portfolio man-
agement tool. It is a multi-currency cross-
asset model that covers many different
asset classes across the fixed income and eq-
uity markets, including derivatives in these
markets. At the heart of the model is a co-
variance matrix of risk factors. The model
has more than 700 factors, many specific
to a particular asset class. The asset class
models are periodically reviewed. Struc-
ture is imposed to increase the robustness
of the estimation of such large covariance
matrix. The model is estimated from his-
torical data. It is calibrated using exten-
sive security-level historical data and is
updated on a monthly basis.

2. Later in this entry, we refer to this risk num-
ber as Isolated TEV.

3. We arrive at this number by taking the
square root of the sum of squares of all the
numbers in the table: 10.9 = (8.52 + 1.72 +
3.02 + 5.12 + 3.02)0.5. Moreover, this number
would represent the total systematic risk of

the portfolio. This definition is developed
later in the entry.

4. In this example, we focus only on the sys-
tematic component of risk. Later, the nor-
malization is with respect to the total risk of
the portfolio, including idiosyncratic risk.

5. For example, see Table 13 later in this entry.
6. Note that the contribution numbers are

different from those from Table 5 be-
cause there we reported the contribution to
systematic—not total—risk.

7. This result does not contradict the findings
in Table 7, where we see that curve is the ma-
jor source of risk. Remember that the curve
risk can come from our corporate subport-
folio.

8. Other curves that can be used are, for
instance, the municipals (tax free) curve,
derivatives-based curves, and the like.

9. This number is obtained by simply mul-
tiplying the net exposure by the factor
volatility. The sign of the move depends on
the interpretation of the factor. In the case
of the yield curve movements we know
that R = –KRD × �KR. In our example
–(–0.36) × 44.2 = 15.9.

10. This reversal is clearly related to the fact that
the 10-year and the 20-year points in the
curve are usually highly correlated. In our
case, our short position on the 10-year point
is more than compensated by the positive
exposure in the 20-year. Netting out, the 20-
year effect (long duration) dominates when
all changes are taken in a correlated fashion.

11. The marginal contribution is the derivative
of the TEV with respect to the loading of
each factor, so its interpretation holds only
locally. Therefore, a more realistic reading
may be that if we reduce the exposure to
the 10-year by 0.1 years, the TEV would be
reduced by around 1.6 basis points.

12. This is a rationale very similar to the one
used before, where we see all correlated im-
pacts with the same sign.

13. Spreads are also compensation for sources
of risk other than credit (e.g., liquidity), but
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for the sake of our argument, we treat them
primarily as major indicators of credit risk.

14. For details, see Ben Dor et al. (2010).
15. The general principle of a risk model is that

the historical returns of assets contain in-
formation that can be used to estimate the
future volatility of portfolio returns. How-
ever, good risk models must have the abil-
ity to interpret the historical asset returns
in the context of the current environment.
This translation is made when designing a
particular risk model/factor and delivers
risk factors that are as invariant as possi-
ble. This invariance makes the estimation
of the factor distribution much more robust.
In the particular case of the DTS, by includ-
ing the spread in the loading (instead of
using only the typical spread duration), we
change the nature of the risk factor being
estimated. The factor now represents per-
centage change in spreads, instead of ab-
solute changes in spreads. The former has
a significantly more invariant distribution.
For more details, see Silva (2009a).

16. The DTS units used in the report are based
on an OASD stated in years and an OAS in
percentage points. Therefore, a bond with
an OASD = 5 and an OAS = 200 basis points
would have a DTS of 5 × 2 = 10. The DTS
industry exposures are the weighted sum of
the DTS of each of the securities in that in-
dustry, the weights being the market weight
of each security.

17. For a detailed methodology on how to
perform this customized analysis, Silva
(2009b).

18. For a further discussion, see Gabudean
(2009).

19. The volatility is called implied because it is
calculated from the market prices of liquid
options with the help of an option-pricing
model.

20. For more discussion, see Staal (2009).
21. The example is constructed using the

POINT R© Optimizer. For more details,
refer to Kumar (2010).

22. Another way to ensure diversification
would be to include the minimization of
the idiosyncratic TEV as a specific goal in
the objective function.

23. Unemployment rate is not used as a fac-
tor in most short- and medium-term risk
models.
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Abstract: Financial econometrics is the econometrics of financial markets. It is a quest for models
that describe financial time series such as prices, returns, interest rates, financial ratios, defaults, and
so on. The economic equivalent of the laws of physics, econometrics represents the quantitative,
mathematical laws of economics. The development of a quantitative, mathematical approach to
economics started at the end of the 19th century in a period of great enthusiasm for the achievements
of science and technology. Robert Engle and Clive Granger, two econometricians who shared
the 2003 Nobel Prize in Economics Sciences, have contributed greatly to the field of financial
econometrics.

Econometrics is the branch of economics that
draws heavily on statistics for testing and an-
alyzing economic relationships. Within econo-
metrics, there are theoretical econometricians
who analyze statistical properties of estima-
tors of models. Several recipients of the Nobel
Prize in Economic Sciences received the award
as a result of their lifetime contribution to this
branch of economics. To appreciate the impor-
tance of econometrics to the discipline of eco-
nomics, when the first Nobel Prize in Economic
Sciences was awarded in 1969, the co-recipients
were two econometricians, Jan Tinbergen and
Ragnar Frisch (who is credited with first us-

ing the term “econometrics” in the sense that it
is known today). Further specialization within
econometrics, and the subject of this entry, is
financial econometrics.

As Jianqing Fan (2004) writes, financial econo-
metrics uses statistical techniques and eco-
nomic theory to address a variety of problems
from finance. These include building financial
models, estimation and inferences of financial
models, volatility estimation, risk management,
testing financial economics theory, capital asset
pricing, derivative pricing, portfolio allocation,
risk-adjusted returns, simulating financial sys-
tems, and hedging strategies, among others.

295
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In this entry, we provide an overview of finan-
cial econometrics and the methods employed.

THE DATA GENERATING
PROCESS
The basic principles for formulating quanti-
tative laws in financial econometrics are the
same as those that have characterized the de-
velopment of quantitative science over the last
four centuries. We write mathematical models,
that is, relationships between different variables
and/or variables in different moments and dif-
ferent places. The basic tenet of quantitative sci-
ence is that there are relationships that do not
change regardless of the moment or the place
under consideration. For example, while sea
waves might look like an almost random move-
ment, in every moment and location the basic
laws of hydrodynamics hold without change.
Similarly, asset price behavior might appear
to be random, but econometric laws should
hold in every moment and for every set of
assets.

There are similarities between financial eco-
nometric models and models of the physical sci-
ences, but there are also important differences.
The physical sciences aim at finding immutable
laws of nature; econometric models model the
economy or financial markets—artifacts subject
to change. For example, financial markets in the
form of stock exchanges have been in opera-
tion for two centuries. During this period, they
have changed significantly both in the number
of stocks listed and the type of trading. And
the information available on transactions has
also changed. Consider that in the 1950s, we
had access only to daily closing prices and this
typically the day after; now we have instanta-
neous information on every single transaction.
Because the economy and financial markets are
artifacts subject to change, econometric models
are not unique representations valid through-
out time; they must adapt to the changing en-
vironment.

While basic physical laws are expressed as
differential equations, financial econometrics
uses both continuous-time and discrete-time
models. For example, continuous-time models
are used in modeling derivatives where both
the underlying and the derivative price are
represented by stochastic (i.e., random) differ-
ential equations. In order to solve stochastic
differential equations with computerized
numerical methods, derivatives are replaced
with finite differences. (Note that the stochastic
nature of differential equations introduces
fundamental mathematical complications. The
definition of stochastic differential equations
is a delicate mathematical process invented,
independently, by the mathematicians Ito
and Stratonovich. In the Ito-Stratonovich
definition, the path of a stochastic differential
equation is not the solution of a corresponding
differential equation. However, the numerical
solution procedure yields a discrete model
that holds pathwise. See Focardi and Fabozzi
[2004].) This process of discretization of time
yields discrete time models. However, discrete
time models used in financial econometrics
are not necessarily the result of a process of
discretization of continuous time models.

Let’s focus on models in discrete time, the
bread-and-butter of econometric models used
in asset management. There are two types
of discrete-time models: static and dynamic.
Static models involve different variables at the
same time. The well-known capital asset pricing
model (CAPM), for example, is a static model.
Dynamic models involve one or more variables
at two or more moments. (This is true in dis-
crete time. In continuous time, a dynamic model
might involve variables and their derivatives at
the same time.) Momentum models, for exam-
ple, are dynamic models.

In a dynamic model, the mathematical rela-
tionship between variables at different times
is called the data generating process (DGP). This
terminology reflects the fact that, if we know
the DGP of a process, we can simulate the pro-
cess recursively, starting from initial conditions.
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Consider the time series of a stock price pt, that
is, the series formed with the prices of that stock
taken at fixed points in time, say daily. Let’s now
write a simple econometric model of the prices
of a stock as follows:

pt+1 = μ + ρ pt + εt+1 (1)

This model tells us that if we consider any
time t+1, the price of that stock at time t+1 is
equal to a constant plus the price in the pre-
vious moment t multiplied by ρ plus a zero-
mean random disturbance independent from
the past, which always has the same statistical
characteristics. If we want to apply this model to
real-world price processes, the constants μ and
ρ must be estimated. The parameter μ deter-
mines the trend and ρ defines the dependence
between the prices. Typically ρ is less than but
close to 1. A random disturbance of the type
shown in the above equation is called a white
noise.

If we know the initial price p0 at time t = 0,
using a computer program to generate random
numbers, we can simulate a path of the price
process with the following recursive equations:

p1 = μ + ρ p0 + ε1

p2 = μ + ρ p1 + ε2

That is, we can compute the price at time
t = 1 from the initial price p0 and a computer-
generated random number ε1 and then use this
new price to compute the price at time t = 2,
and so on. The εi are independent and iden-
tically distributed random variables with zero
mean. Typical choices for the distribution of ε

are normal distribution, t-distribution, and sta-
ble non-Gaussian distribution. The distribution
parameters are estimated from the sample.

It is clear that if we have a DGP we can
generate any path. An econometric model that
involves two or more different times can be
regarded as a DGP. However, there is a more
general way of looking at econometric models
that encompasses both static and dynamic
models. That is, we can look at econometric
models from a perspective other than that of the

recursive generation of stochastic paths. In fact,
we can rewrite our previous model as follows:

pt+1 − μ − ρ pt = εt+1 (2)

This formulation shows that, if we consider
any two consecutive instants of time, there is
a combination of prices that behave as random
noise. More in general, an econometric model
can be regarded as a mathematical device that
reconstructs a noise sequence from empirical
data.

This concept is visualized in Figure 1, which
shows a time series of numbers pt generated
by a computer program according to the rule
given by (2) with ρ = 0.9 and μ = 1 and the
corresponding time series εt. If we choose any
pair of consecutive points in time, say (t+1,t),
the difference pt+1 – μ – ρ pt is always equal to
the series εt+1. For example, consider the points
p13 = 10.2918, p14 = 12.4065. The difference
p14 – 0.9p13 – 1 = 2.1439 has the same value
as ε14. If we move to a different pair we ob-
tain the same result, that is, if we compute
pt+1 – 1 – 0.9pt, the result will always be the
noise sequence εt+1.

To help intuition, imagine that our model is
a test instrument: Probing our time series with
our test instrument, we always obtain the same
reading. Actually, what we obtain is not a con-
stant reading but a random reading with mean
zero and fixed statistical characteristics. The ob-
jective of financial econometrics is to find pos-
sibly simple expressions of different financial
variables such as prices, returns, or financial ra-
tios in different moments that always yield, as
a result, a zero-mean random disturbance.

Static models (i.e., models that involve only
one instant) are used to express relationships
between different variables at any given time.
Static models are used, for example, to deter-
mine exposure to different risk factors. How-
ever, because they involve only one instant,
static models cannot be used to make forecasts;
forecasting requires models that link variables
in two or more instants in time.
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p(t)

ε(t)

Figure 1 DGP and Noise Terms

FINANCIAL ECONOMETRICS
AT WORK

Applying financial econometrics involves three
key steps: (1) model selection, (2) model estimation,
and (3) model testing.

In the first step, model selection, the mod-
eler chooses (or might write ex novo) a family
of models with given statistical properties. This
entails the mathematical analysis of the model
properties as well as economic theory to jus-
tify the model choice. It is in this step that the
modeler decides to use, for example, regression
on financial ratios or other variables to model
returns.

In general, models include a number of free
parameters that have to be estimated from sam-
ple data, the second step in applying financial
econometrics. Suppose that we have decided
to model returns with a regression model. This
requires the estimation of the regression coef-
ficients, performed using historical data. Esti-
mation provides the link between reality and
models. As econometric models are probabilis-
tic models, any model can in principle describe
our empirical data. We choose a family of mod-
els in the model selection phase and then de-

termine the optimal model in the estimation
phase.

As mentioned, model selection and estima-
tion are performed on historical data. As mod-
els are adapted (or fitted) to historical data
there is always the risk that the fitting process
captures ephemeral features of the data. Thus
there is the need to test the models on data
different from the data on which the models
were estimated. This is the third step in ap-
plying financial econometrics, model testing.
We assess the performance of models on fresh
data.

We can take a different approach to
model selection and estimation, namely sta-
tistical learning. Statistical learning combines
the two steps—model selection and model
estimation—insofar as it makes use of a class of
universal models that can fit any data. Neural
networks are an example of universal models.
The critical step in the statistical learning ap-
proach is estimation. This calls for methods to
restrict model complexity (i.e., the number of
parameters used in a model).

Within this basic scheme for applying finan-
cial econometrics, we can now identify a num-
ber of modeling issues, such as:
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� How do we apply statistics given that there is
only one realization of financial series?

� Given a sample of historical data, how do we
choose between linear and nonlinear models,
or the different distributional assumptions or
different levels of model complexity?

� Can we exploit more data using, for example,
high-frequency data?

� How can we make our models more robust,
reducing model risk?

� How do we measure not only model perfor-
mance but also the ability to realize profits?

Implications of Empirical Series
with Only One Realization
As mentioned, econometric models are proba-
bilistic models: Variables are random variables
characterized by a probability distribution.
Generally speaking, probability concepts can-
not be applied to single “individuals” (at least,
not if we use a frequentist concept of proba-
bility). Probabilistic models describe “popula-
tions” formed by many individuals. However,
empirical financial time series have only one
realization. For example, there is only one his-
torical series of prices for each stock—and we
have only one price at each instant of time. This
makes problematic the application of probabil-
ity concepts. How, for example, can we mean-
ingfully discuss the distribution of prices at a
specific time given that there is only one price
observation? Applying probability concepts to
perform estimation and testing would require
populations made up of multiple time series
and samples made up of different time series
that can be considered a random draw from
some distribution.

As each financial time series is unique, the so-
lution is to look at the single elements of the time
series as the individuals of our population. For
example, because there is only one realization
of each stock’s price time series, we have to look
at the price of each stock at different moments.
However, the price of a stock (or of any other
asset) at different moments is not a random in-

dependent sample. For example, it makes little
sense to consider the distribution of the prices of
a single stock in different moments because the
level of prices typically changes over time. Our
initial time series of financial quantities must be
transformed; that is, a unique time series must
be transformed into populations of individu-
als to which statistical methods can be applied.
This holds not only for prices but for any other
financial variable.

Econometrics includes transformations of
the above type as well as tests to verify that
the transformation has obtained the desired
result. The DGP is the most important of these
transformations. Recall that we can interpret a
DGP as a method for transforming a time series
into a sequence of noise terms. The DGP, as we
have seen, constructs a sequence of random
disturbances starting from the original series;
it allows one to go backwards and infer the
statistical properties of the series from the noise
terms and the DGP. However, these properties
cannot be tested independently.

The DGP is not the only transformation that
allows statistical estimates. Differencing time
series, for example, is a process that may trans-
form nonstationary time series into stationary time
series. A stationary time series has a constant
mean that, under specific assumptions, can be
estimated as an empirical average.

Determining the Model
As we have seen, econometric models are math-
ematical relationships between different vari-
ables at different times. An important question
is whether these relationships are linear or non-
linear. Consider that every econometric model
is an approximation. Thus the question is:
Which approximation—linear or nonlinear—is
better?

To answer this, it is generally necessary to con-
sider jointly the linearity of models, the distri-
butional assumptions, and the number of time
lags to introduce. The simplest models are lin-
ear models with a small number of lags under
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the assumption that variables are normal vari-
ables. A widely used example of normal linear
models are regression models where returns are
linearly regressed on lagged factors under the
assumption that noise terms are normally dis-
tributed. A model of this type can be written
as:

rt+1 = β ft + εt+1 (3)

where rt are the returns at time t and ft are
factors, that is, economic or financial variables.
Given the linearity of the model, if factors and
noise are jointly normally distributed, returns
are also normally distributed.

However, the distribution of returns, at least
at some time horizons, is not normal. If we pos-
tulate a nonlinear relationship between factors
and returns, normally distributed factors yield
a non-normal return distribution. However,
we can maintain the linearity of the regression
relationship but assume a non-normal distribu-
tion of noise terms and factors. Thus nonlinear
models transform normally distributed noise
into non-normal variables but it is not true that
non-normal distributions of variables implies
nonlinear models.

If we add lags (i.e., a time space backward),
the above model becomes sensitive to the shape
of the factor paths. For example, a regression
model with two lags will behave differently if
the factor is going up or down. Adding lags
makes models more flexible but more brittle. In
general, the optimal number of lags is dictated
not only by the complexity of the patterns that
we want to model but also by the number of
points in our sample. If sample data are abun-
dant, we can estimate a rich model.

Typically there is a trade-off between model
flexibility and the size of the data sample. By
adding time lags and nonlinearities, we make
our models more flexible, but the demands in
terms of estimation data are greater. An opti-
mal compromise has to be made between the
flexibility given by nonlinear models and/or
multiple lags and the limitations due to the size
of the data sample.

TIME HORIZON OF MODELS

There are trade-offs between model flexibility
and precision that depend on the size of sam-
ple data. To expand our sample data, we would
like to use data with small time spacing in order
to multiply the number of available samples.
High-frequency data or HFD (i.e., data on indi-
vidual transactions) have the highest possible
frequency (i.e., each individual transaction) and
are irregularly spaced. To give an idea of the ra-
tio in terms of numbers, consider that there are
approximately 2,100 ticks per day for the me-
dian stock in the Russell 3000 (see Falkenberry,
2002). Thus the size of the HDF data set of one
day for a typical stock in the Russell 3000 is
2,100 times larger than the size of closing data
for the same day!

In order to exploit all available data, we
would like to adopt models that work over
time intervals of the order of minutes and, from
these models, compute the behavior of finan-
cial quantities over longer periods. Given the
number of available sample data at high fre-
quency, we could write much more precise laws
than those established using longer time inter-
vals. Note that the need to compute solutions
over forecasting horizons much longer than the
time spacing is a general problem that applies
at any time interval. For example, in asset allo-
cation we need to understand the behavior of fi-
nancial quantities over long time horizons. The
question we need to ask is if models estimated
using daily intervals can correctly capture the
process dynamics over longer periods, such as
years.

It is not necessarily true that models estimated
on short time intervals, say minutes, offer bet-
ter forecasts at longer time horizons than mod-
els estimated on longer time intervals, say days.
This is because financial variables might have
a complex short-term dynamics superimposed
on a long-term dynamics. It might be that us-
ing high-frequency data, one captures the short-
term dynamics without any improvement in
the estimation of the long-term dynamics. That
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is, with high-frequency data it might be that
models get more complex (and thus more data-
hungry) because they describe short-term be-
havior superimposed on long-term behavior.
This possibility must be resolved for each class
of models.

Another question is if it is possible to use the
same model at different time horizons. To do so
is to imply that the behavior of financial quan-
tities is similar at different time horizons. This
conjecture was first made by Benoit Mandel-
brot (1963), who observed that long series of
cotton prices were very similar at different time
aggregations.

Model Risk and Model Robustness
Not only are econometric models probabilis-
tic models, as we have already noted; they are
only approximate models. That is, the probabil-
ity distributions themselves are only approxi-
mate and uncertain. The theory of model risk and
model robustness assumes that all parameters of
a model are subject to uncertainty and attempts
to determine the consequence of model uncer-
tainty and strategies for mitigating errors.

The growing use of models in finance has
heightened the attention to model risk and
model-risk mitigation techniques. Asset man-
agement firms are beginning to address the
need to implement methodologies that allow
both robust estimation and robust optimization
in the portfolio management process.

Performance Measurement
of Models
It is not always easy to understand ex ante just
how well (or how poorly) a forecasting model
will perform. Because performance evaluations
made on training data are not reliable, the eval-
uation of model performance requires separate
data sets for training and for testing. Models
are estimated on training data and tested on
the test data. Poor performance might be due to

model misspecification, that is, models might
not reflect the true DGP of the data (assuming
one exists), or there might simply be no DGP.

Various measures of model performance have
been proposed. For example, one can compute
the correlation coefficient between the fore-
casted variables and their actual realizations.
Each performance measure is a single number
and therefore conveys only one aspect of the
forecasting performance. Often it is crucial to
understand if errors can become individually
very large or if they might be correlated. Note
that a simple measure of model performance
does not ensure the profitability of strategies.
This can be due to a number of reasons, includ-
ing, for example, the risk inherent in appar-
ently profitable forecasts, market impact, and
transaction costs.

APPLICATIONS
There has been a greater use of econometric
models in investment management since the
turn of the century. Application areas include:

� Portfolio construction and optimization
� Risk management
� Asset and liability management

Each type of application requires different
modeling approaches.

Portfolio Construction and
Optimization
Portfolio construction and optimization require
models to forecast returns: There is no way to es-
cape the need to predict future returns. Passive
strategies apparently eschew the need to fore-
cast future returns of individual stocks by in-
vesting in broad indexes. They effectively shift
the need to forecast to a higher level of analysis
and to longer time horizons.

Until recently, the mainstream view was
that financial econometric models could per-
form dynamic forecasts of volatility but not of
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expected returns. However, volatility forecasts
are rarely used in portfolio management. With
the exception of some proprietary applications,
the most sophisticated models used in portfolio
construction until recently were factor models
where forecasts are not dynamic but consist in
estimating a drift (i.e., a constant trend) plus a
variance-covariance matrix.

Since the late 1990s, the possibility of mak-
ing dynamic forecasts of both volatility and
expected returns has gained broad acceptance.
During the same period, it became more widely
recognized that returns are not normally dis-
tributed, evidence that had been reported by
Mandelbrot (1963). Higher moments of dis-
tributions are therefore important in portfolio
management and therefore require representa-
tion and estimation of nonnormal distributions.

As observed above, the ability to correctly
forecast expected returns does not imply, per se,
that there are profit opportunities. In fact, we
have to take into consideration the interplay be-
tween expected returns, higher moments, and
transaction costs. As dynamic forecasts typi-
cally involve higher portfolio turnover, transac-
tion costs might wipe out profits. As a general
comment, portfolio management based on dy-
namic forecasts calls for a more sophisticated
framework for optimization and risk manage-
ment with respect to portfolio management
based on static forecasts.

Regression models appear to form the core of
the modeling efforts to predict future returns
at many asset management firms. Regression
models regress returns on a number of pre-
dictors. Stated otherwise, future returns are a
function of the value of present and past pre-
dictors. Predictors include financial ratios such
as earning-to-price ratio or book-to-price ratio
and other fundamental quantities; predictors
might also include behavioral variables such
as market sentiment. A typical formula of a
regressive model is the following:

ri,t+1 = αi +
∑

j=1

βi j f j,t + εi,t+1 (4)

where

ri,t+1 = Pi,t+1 − Pi,t

Pi,t

is the return at time t+1 of the i-th asset, and the
fj,t are factors observed at time t. While regres-
sions are generally linear, nonlinear models are
also used.

In general, the forecasting horizon in asset
management varies from a few days for actively
managed or hedge funds to several weeks for
more traditionally managed funds. Dynamic
models typically have a short forecasting hori-
zon as they capture short-term dynamics. This
contrasts with static models, such as the widely
used multifactor models, which tend to cap-
ture long-term trends and ignore short-term
dynamics.

The evolution of forecasting models over the
last two decades has also changed the way fore-
casts are used. A basic utilization of forecasts is
in stock picking/ranking systems, which have
been widely implemented at asset management
firms. The portfolio manager builds his or her
portfolio combining the model ranking with the
manager’s personal views and within the con-
straints established by the firm. A drawback
in using such an approach is the difficulty in
properly considering the structure of correla-
tions and the role of higher moments.

Alternatively, forecasts can be fed to an opti-
mizer that automatically computes the portfolio
weights. But because an optimizer implements
an optimal trade-off between returns and some
measure of risk, the forecasting model must
produce not only returns forecasts but also mea-
sures of risk. If risk is measured by portfolio
variance or standard deviation, the forecasting
model must be able to provide an estimated
variance-covariance matrix.

Estimating the variance-covariance matrix is
the most delicate of the estimation tasks. Here
is why. The number of entries of a variance-
covariance matrix grows with the square of the
number of stocks. As a consequence, the num-
ber of entries in a variance-covariance matrix
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rapidly becomes very large. For example, the
variance-covariance matrix of the stocks in the
S&P 500 is a symmetric matrix that includes
some 125,000 entries. If our universe were the
Russell 5000, the variance-covariance matrix
would include more than 12 million entries.
The problem with estimating matrices of this
size is that estimates are very noisy because the
number of sample data is close to the number
of parameters to estimate. For example, if we
use three years of data for estimation, we have,
on average, less than three data points per es-
timated entry in the case of the S&P 500; in the
case of the Russell 5000, the number of data
points would be one fourth of the number of
entries to estimate! Robust estimation methods
are called for.

Note that if we use forecasting mod-
els we typically have (1) an equilibrium
variance-covariance matrix that represents
the covariances of the long-run relationships
between variables, plus (2) a short-term,
time-dependent, variance-covariance matrix. If
returns are not normally distributed, optimizers
might require the matrix of higher moments.

A third utilization of forecasting models and
optimizers is to construct model portfolios. In
other words, the output of the optimizer is used
to construct not an actual but a model portfolio.
This model portfolio is used as input by portfo-
lio managers.

Risk Management
Risk management has different meanings in dif-
ferent contexts. In particular, when optimiza-
tion is used, risk management is intrinsic to the
optimization process, itself a risk-return trade-
off optimization. In this case, risk management
is an integral part of the portfolio construction
process.

However, in most cases, the process of con-
structing portfolios is entrusted to human port-
folio managers who might use various inputs
including, as noted above, ranking systems

or model portfolios. In these cases, portfolios
might not be optimal from the point of view
of risk management and it is therefore neces-
sary to ensure independent risk oversight. This
oversight might take various forms. One form is
similar to the type of risk oversight adopted by
banks. The objective is to assess potential devi-
ations from expectations. In order to perform
this task, the risk manager receives as input
the composition of portfolios and makes return
projections using static forecasting models.

Another form of risk oversight, perhaps
the most diffused in portfolio management,
assesses portfolio exposures to specific risk
factors. As portfolio management is often
performed relative to a benchmark and risk is
defined as underperformance relative to the
benchmark, it is important to understand the
sensitivity of portfolios to different risk factors.
This type of risk oversight does not entail the
forecasting of returns. The risk manager uses
various statistical techniques to estimate how
portfolios move in function of different risk fac-
tors. In most cases, linear regressions are used.
A typical model will have the following form:

ri,t = αi +
s∑

j=1

βi j f j,t + εi,t (5)

where

ri,t = Pi,t − Pi,t−1

Pi,t−1

is the return observed at time t of the i-th as-
set, and the fj,t are factors observed at time t.
Note that this model is fundamentally different
from a regressive model with time lags as given
by (4).

Asset-Liability Management
Asset-liability management (ALM) is typical of
those asset management applications that re-
quire the optimization of portfolio returns at
some fixed time horizon plus a stream of con-
sumption throughout the entire life of the port-
folio. ALM is important for managing portfolios
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of institutional investors such as pension funds
or foundations. It is also important for wealth
management, where the objective is to cover
the investor’s financial needs over an extended
period.

ALM requires forecasting models able to cap-
ture the asset behavior at short-, medium-, and
long-term time horizons. Models of the long-
term behavior of assets exist but are clearly diffi-
cult to test. Important questions related to these
long-term forecasting models include:

� Do asset prices periodically revert to one or
many common trends in the long run?

� Can we assume that the common trends (if
they exist) are deterministic trends such as
exponentials or are common trends stochastic
(i.e., random) processes?

� Can we recognize regime shifts over long pe-
riods of time?

KEY POINTS
� Financial econometrics employs the same ba-

sic principles for formulating quantitative
laws that characterized the development of
quantitative science.

� Although there are similarities between fi-
nancial econometric models and models of
the physical sciences, important differences
exist. For example, physical sciences seek
immutable laws of nature, while economet-
ric models model the economy or finan-
cial markets, which are artifacts subject to
change.

� Econometric models are mathematical rela-
tionships between different variables at dif-
ferent times, and every econometric model is
an approximation.

� Both continuous-time and discrete-time mod-
els are used in financial econometrics.

� Static models express relationships between
different variables at any given time. Because

they involve only one instant in time, static
models cannot be used to make forecasts since
to do so models that link variables in two or
more instants in time are required.

� Dynamic models involve one or more vari-
ables at two or more points in time; the data
generating process in dynamic models is the
mathematical relationship between variables
at different times.

� Applying financial econometrics involves
three key steps: (1) model selection, (2) model
estimation, and (3) model testing.

� In model selection, the modeler selects the
model based on an assessment of a model’s
properties and its fit to economic theory.

� Estimation provides the link between reality
and models. In model estimation, the mod-
eler applies financial econometric techniques
to estimate the model’s free parameters from
sample data.

� The evaluation of model performance re-
quires separate data sets for training and
for testing because performance evaluations
made on training data are not reliable.

� In investment management there has been
increased use of econometric models in
portfolio construction and optimization,
risk management, and asset and liability
management. A different modeling approach
is needed for each type of application.
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Abstract: The tools of financial econometrics play an important role in financial model building. The
most basic tool is in financial econometrics is regression analysis. The purpose in regression analysis
is to estimate the relationship between a random variable and one or more independent variables. To
understand and apply regression analysis one must understand the theory and the methodologies
for estimating the parameters of the regression model. Moreover, when the assumptions underlying
the model are violated, it is necessary to know how to remedy the problem.

Our first basic tool in econometrics is regression
analysis. In regression analysis, we estimate the
relationship between a random variable Y and
one or more variables Xi. The variables Xi can be
either deterministic variables or random vari-
ables. The variable Y is said to be the depen-
dent variable because its value is assumed to
be dependent on the value of the Xi’s. The Xi’s
are referred to as the independent variables, re-
gressor variables, or explanatory variables. Our
primary focus is on the linear regression model.
We will be more precise about what we mean
by a “linear” regression model later in this en-
try. Let’s begin with a discussion of the concept
of dependence.

THE CONCEPT OF
DEPENDENCE

Regressions are about dependence between vari-
ables. In this section we provide a brief discus-
sion of how dependence is represented in both a
deterministic setting and a probabilistic setting.
In a deterministic setting, the concept of depen-
dence is embodied in the mathematical notion
of function. A function is a correspondence be-
tween the individuals of a given domain A and
the individuals of a given range B. In particular,
numerical functions establish a correspondence
between numbers in a domain A and numbers
in a range B.

305
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In quantitative science, we work with vari-
ables obtained through a process of observation
or measurement. For example, price is the ob-
servation of a transaction, time is the reading of
a clock, position is determined with measure-
ments of the coordinates, and so on. In quan-
titative science, we are interested in numerical
functions y = f (x1, . . . , xn) that link the results of
measurements so that by measuring the inde-
pendent variables (x1, . . . , xn) we can predict the
value of the dependent variable y. Being the re-
sults of measurements, variables are themselves
functions that link a set � of unobserved “states
of the world” to observations. Different states of
the world result in different values for the vari-
ables but the link among the variables remains
constant. For example, a column of mercury in
a thermometer is a physical object that can be in
different “states.” If we measure the length and
the temperature of the column (in steady condi-
tions), we observe that the two measurements
are linked by a well-defined (approximately lin-
ear) function. Thus, by measuring the length,
we can predict the temperature.

In order to model uncertainty, we keep the
logical structure of variables as real-valued
functions defined on a set � of unknown states
of the world. However, we add to the set � the
structure of a probability space. A probability
space is a triple formed by a set of individuals
(the states of the world), a structure of events,
and a probability function: (�, �, P). Random
variables represent measurements as in the de-
terministic case, but with the addition of a prob-
ability structure that represents uncertainty. In
financial econometrics, a “state of the world”
should be intended as a complete history of the
underlying economy, not as an instantaneous
state.

Our objective is to represent dependence be-
tween random variables, as we did in the deter-
ministic case, so that we can infer the value of
one variable from the measurement of the other.
In particular, we want to infer the future values
of variables from present and past observations.
The probabilistic structure offers different pos-
sibilities. For simplicity, let’s consider only two

variables X and Y; our reasoning extends im-
mediately to multiple variables. The first case
of interest is the case when the dependent vari-
able Y is a random variable while the indepen-
dent variable X is deterministic. This situation
is typical of an experimental setting where we
can fix the conditions of the experiment while
the outcome of the experiment is uncertain.

In this case, the dependent variable Y has to
be thought of as a family of random variables
Yx, all defined on the same probability space
(�, �, P), indexed with the independent vari-
able x. Dependence means that the probability
distribution of the dependent random variable
depends on the value of the deterministic in-
dependent value. To represent this dependence
we use the notation F(y|x) to emphasize the fact
that x enters as a parameter in the distribution.
An obvious example is the dependence of a
price random variable on a time variable in a
stochastic price process.

In this setting, where the independent vari-
able is deterministic, the distributions F(y|x) can
be arbitrarily defined. Important for the discus-
sion of linear regressions in this entry is the
case when the shape of the distribution F(y|x)
remains constant and only the mean of the dis-
tribution changes as a function of x.

Consider now the case where both X and Y
are random variables. For example, Y might be
the uncertain price of IBM stock tomorrow and
X the uncertain level of the S&P 500 tomor-
row. One way to express the link between these
two variables is through their joint distribution
F(x,y) and, if it exists, their joint density f (x,y).
We define the joint and marginal distributions
as follows:

FXY(x, y) = P(X ≤ x, Y ≤ y), FX(x) = P(X ≤ x),

FY(y) = P(Y ≤ y)

FXY(x, y) =
+∞∫

−∞

+∞∫

−∞
f (x, y)dx dy

FX(x) =
x∫

−∞

−∞∫

−∞
f (u, y)du dy =

x∫

−∞

⎛

⎝
−∞∫

−∞
f (u, y)dy

⎞

⎠ du

=
x∫

−∞
fX(u)du
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FY(x) =
−∞∫

−∞

y∫

−∞
f (x, v)dx dv =

y∫

−∞

⎛

⎝
−∞∫

−∞
f (x, v)dx

⎞

⎠ dv

=
x∫

−∞
fY(v)dv

f (x|y) = f (x, y)
fY(y)

, f (y|x) = f (x, y)
fX(x)

We will also use the short notation:

fX(x) = f (x), fY(y) = f (y), fX|Y(x|y)

= f (x|y), fY|X(y|x) = f (y|x)

Given a joint density f (x,y), we can also rep-
resent the functional link between the two vari-
ables as the dependence of the distribution of
one variable on the value assumed by the other
variable. In fact, we can write the joint density
f (x,y) as the product of two factors, the condi-
tional density f (y|x) and the marginal density
fX(x):

f (x, y) = f (y|x) fX(x) (1)

This factorization—that is, expressing a joint
density as a product of a marginal density and
a conditional density—is the conceptual basis
of financial econometrics. There are significant
differences in cases where both variables X and
Y are random variables, compared to the case
where the variable X is deterministic. First, as
both variables are uncertain, we cannot fix the
value of one variable as if it were independent.
We have to adopt a framework of conditioning
where our knowledge of one variable influences
our knowledge of the other variable.

The impossibility of making experiments is
a major issue in econometrics. In the physical
sciences, the ability to create the desired ex-
perimental setting allows the scientist to isolate
the effects of single variables. The experimenter
tries to create an environment where the effects
of variables other than those under study are
minimized. In economics, however, all the vari-
ables change together and cannot be controlled.
Back in the 1950s, there were serious doubts
that econometrics was possible. In fact, it was
believed that estimation required the indepen-
dence of samples while economic samples are
never independent.

However, the framework of conditioning ad-
dresses this problem. After conditioning, the
joint densities of a process are factorized into
initial and conditional densities that behave
as independent distributions. An econometric
model is a probe that extracts independent
samples—the noise terms—from highly depen-
dent variables.

Let’s briefly see, at the heuristic level, how
conditioning works. Suppose we learn that the
random variable X has the value x, that is,
X = x. Recall that X is a random variable that
is a real-valued function defined over the set
�. If we know that X = x, we do not know the
present state of the world but we do know that
it must be in the subspace (ω ∈ �: X(ω) = x).
We call (Y|X = x) the variable Y defined on this
subspace. If we let x vary, we create a family
of random variables defined on the family of
subspaces (ω ∈ �: X(ω) = x) and indexed by the
value assumed by the variable X.

It can be demonstrated that the sets (ω ∈ �:
X(ω) = x) can be given a structure of probability
space, that the variables (Y|X = x) are indeed
random variables on these probability spaces,
and that they have (if they exist) the conditional
densities:

f (y|x) = f (x, y)
fX(x)

(2)

for f X(x) > 0. In the discrete setting we can write

f (y|x) = P(Y = y|X = x)

f (x, y) = P(X = x, Y = y)

The conditional expectation E[Y|X = x] is the
expectation of the variable (Y|X = x). Con-
sider the previous example of the IBM stock
price tomorrow and of the S&P 500 level to-
morrow. Both variables have unconditional ex-
pectations. These are the expectations of IBM’s
stock tomorrow and of S&P 500’s level tomor-
row considering every possible state of the
world. However, we might be interested in
computing the expected value of IBM’s stock
price tomorrow if we know S&P 500’s value to-
morrow. This is the case if, for example, we are
creating scenarios based on S&P 500’s value.
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If we know the level of the S&P 500, we do not
know the present state of the world but we do
know the subset of states of the world in which
the present state of the world is. If we only know
the value of the S&P 500, IBM’s stock price is not
known because it is different in each state that
belongs to this restricted set. IBM’s stock price
is a random variable on this restricted space and
we can compute its expected value.

If we consider a discrete setting, that is, if
we consider only a discrete set of possible IBM
stock prices and S&P 500 values, then the com-
putation of the conditional expectation can be
performed using the standard definition of con-
ditional probability. In particular, the condi-
tional expectation of a random variable Y given
the event B is equal to the unconditional expec-
tation of the variable Y set to zero outside of B
and divided by the probability of B: E[Y|B] =
E[1BY]/P(B), where 1B is the indicator function
of the set B, equal to 1 for all elements of B, zero
elsewhere. Thus, in this example,

E[IBM stock price|S&P 500 value = s]

= E[1(S&P 500 value=s)(IBM stock price)]/

P(S&P 500 value = s)

However, in a continuous-state setting there is
a fundamental difficulty: The set of states of
the world corresponding to any given value of
the S&P 500 has probability zero; therefore we
cannot normalize dividing by P(B). As a conse-
quence we cannot use the standard definition
of conditional probability to compute directly
the conditional expectation.

To overcome this difficulty, we define the
conditional expectation indirectly, using only
unconditional expectations. We define the con-
ditional expectation of IBM’s stock price given
the S&P 500 level as that variable that has the
same unconditional expectation as IBM’s stock
price on each set that can be identified by for the
value of the S&P 500. This is a random variable
which is uniquely defined for each state of the
world up to a set of probability zero.

If the conditional density exists, conditional
expectation is computed as follows:

E[Y|X = x] =
+∞∫

−∞
yf (y|x)dy (3)

We know from probability theory that the law
of iterated expectations holds

E[E[Y|X = x]] = E[Y] (4)

and that the following relationship also holds

E[XY] = E[XE[Y|X]] (5)

Rigorously proving all these results requires
a considerable body of mathematics and the
rather difficult language and notation of σ -alge-
bras. However, the key ideas should be suffi-
ciently clear.

What is the bearing of the above on the dis-
cussion of regressions in this entry? Regressions
have a twofold nature: They can be either (1) the
representation of dependence in terms of con-
ditional expectations and conditional distribu-
tions or (2) the representation of dependence of
random variables on deterministic parameters.
The above discussion clarifies the probabilistic
meaning of both.

REGRESSIONS AND LINEAR
MODELS
In this section we discuss regressions and, in
particular, linear regressions.

Case Where All Regressors Are
Random Variables
Let’s start our discussion of regression with the
case where all regressors are random variables.
Given a set of random variables X = (Y, X1, . . . ,
XN)′, with a joint probability density f (y, x1, . . . ,
xN), consider the conditional expectation of Y
given the other variables (X1, . . . , XN)′:

Y = E[Y|X1, . . . , XN]



REGRESSION ANALYSIS: THEORY AND ESTIMATION 309

As we saw in the previous section, the condi-
tional expectation is a random variable. We can
therefore consider the residual:

ε = Y − E[Y|X1, . . . , XN]

The residual is another random variable de-
fined over the set �. We can rewrite the above
equation as a regression equation:

Y = E[Y|X1, . . . , XN] + ε (6)

The deterministic function y = ϕ(z) where

y = ϕ(z) = E[Y|X1 = z1, . . . , XN = zN] (7)

is called the regression function.
The following properties of regression equations

hold.

Property 1. The conditional mean of the residual is
zero: E[ε|X1, . . . , XN] = 0. In fact, taking con-
ditional expectations on both sides of equation
(7), we can write

E[Y|X1, . . . , XN] = E[E[Y|X1, . . . , XN]

|X1, . . . , XN] + E[ε|X1, . . . , XN]

Because

E[E[Y|X1, . . . , XN]|X1, . . . , XN]

= E[Y|X1, . . . , XN]

is a property that follows from the law of
iterated expectations, we can conclude that
E[ε|X1, . . . , XN] = 0.

Property 2. The unconditional mean of the residual
is zero: E[ε] = 0. This property follows immedi-
ately from the multivariate formulation of the
law of iterated expectations (4): E[E[Y|X1, . . . ,
XN]] = E[Y]. In fact, taking expectation of both
sides of equation (7) we can write

E[Y] = E[E[Y|X1, . . . , XN]] + E[ε]

hence E[ε] = 0.

Property 3: The residuals are uncorrelated with
the variables X1, . . . , XN: E[εX] = 0. This follows
from equation (6) by multiplying both sides of

equation (7) by X1, . . . , XN and taking expecta-
tions. Note however, that the residuals are not
necessarily independent of the regressor X.

If the regression function is linear, we can
write the following linear regression equation:

Y = a +
N∑

i=1

bi Xi + ε (8)

and the following linear regression function:

y = a +
N∑

i=1

bi xi (9)

The rest of this entry deals with linear regres-
sions. If the vector Z = (Y, X1, . . . , XN)′ is jointly
normally distributed, then the regression func-
tion is linear. To see this, partition z, the vector
of means μ, and the covariance matrix � con-
formably in the following way:

Z =
(

Y
X

)
, z =

(
y
x

)
,μ =

(
μy

μx

)
,

� =
(

σyy σxy

σyx �xx

)

where μ is the vector of means and � is the co-
variance matrix. It can be demonstrated that the
conditional density (Y|X = x) has the following
expression:

(Y|X = x) ∼ N(α + β′x, σ 2) (10)

where

β = �−1
xx σxy

α = μy − β′μx (11)

σ 2 = σ 2
yy − σyx�

−1
xx σxy

The regression function can be written as fol-
lows:

y = α + β′x, or explicitly: y = α +
N∑

i=1

βi xi

(12)
The normal distribution is not the only

joint distribution that yields linear regressions.
Spherical and elliptical distributions also yield
linear regressions. Spherical distributions ex-
tend the multivariate normal distribution N(0,I)
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(i.e., the joint distribution of independent nor-
mal variables). Spherical distributions are char-
acterized by the property that their density is
constant on a sphere, so that their joint density
can be written as

f (x1, . . . , xN) = g(x2
1 + · · · + x2

N)

for some function g.
Spherical distributions have the property that

their marginal distributions are uncorrelated
but not independent, and can be viewed as
multivariate normal random variables, with a
random covariance matrix. An example of a
spherical distribution used in financial econo-
metrics is the multivariate t-distribution with
m degrees of freedom, whose density has the
following form:

f (x1, . . . , xN) = c
[

1 + 1
m

(x2
1 + · · · + x2

N)
]− m+N

2

The multivariate t-distribution is important
in econometrics for several reasons. First,
some sampling distributions are actually a t-
distribution entries. Second, the t-distribution
proved to be an adequate description of fat-
tailed error terms in some econometrics models
(although not as good as the stable Paretian dis-
tribution).

Elliptical distributions generalize the mul-
tivariate normal distribution N(0,�). (See
Bradley and Taqqu [2003].) Because they are
constant on an ellipsoid, their joint density can
be written as

f (x) = g((x − μ)′�(x − μ)), x′ = (x1, . . . , xN)

where μ is a vector of constants and � is a
strictly positive-definite matrix. Spherical dis-
tributions are a subset of elliptical distributions.
Conditional distributions and linear combina-
tions of elliptical distributions are also elliptical.

The fact that elliptical distributions yield lin-
ear regressions is closely related to the fact that
the linear correlation coefficient is a meaning-
ful measure of dependence only for elliptical
distributions. There are distributions that do
not factorize as linear regressions. The linear

correlation coefficient is not a meaningful mea-
sure of dependence for these distributions. The
copula function of a given random vector X =
(X1, . . . , XN)′ completely describes the depen-
dence structure of the joint distribution of ran-
dom variables Xi, i = 1, . . . , N. (See Embrechts,
McNeil, and Straumann [2002].)

Linear Models and Linear
Regressions
Let’s now discuss the relationship between lin-
ear regressions and linear models. In applied
work, we are given a set of multivariate data
that we want to explain through a model of
their dependence. Suppose we want to explain
the data through a linear model of the type:

Y = α +
N∑

i=1

βi Xi + ε

We might know from theoretical reasoning
that linear models are appropriate or we might
want to try a linear approximation to nonlin-
ear models. A linear model such as the above
is not, per se, a linear regression unless we
apply appropriate constraints. In fact, linear re-
gressions must satisfy the three properties men-
tioned above. We call linear regressions linear
models of the above type that satisfy the follow-
ing set of assumptions such that

α +
N∑

i=1

βi Xi

is the conditional expectation of Y.

Assumption 1. The conditional mean of the resid-
ual is zero: E[ε|X1, . . . , XN].

Assumption 2. The unconditional mean of the
residual is zero: E[ε] = 0.

Assumption 3: The correlation between the resid-
uals and the variables X1, . . . , XN is zero:
E[εX] = 0.

The above set of assumptions is not the full
set of assumptions used when estimating a lin-
ear model as a regression but only consistency
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conditions to interpret a linear model as a re-
gression. We will introduce additional assump-
tions relative to how the model is sampled in
the section on estimation. Note that the linear
regression equation does not fully specify the
joint conditional distribution of the dependent
variables and the regressors. (This is a rather
subtle point related to concept of exogeneity
of variables. See Hendry [1995] for a further
discussion.)

Case Where Regressors Are
Deterministic Variables
In many applications of interest to the financial
modeler, the regressors are deterministic vari-
ables. Conceptually, regressions with determin-
istic regressors are different from cases where
regressors are random variables. In particular,
as we have seen in a previous section, one
cannot consider the regression as a conditional
expectation. However, we can write a linear re-
gression equation:

Y = α +
N∑

i=1

βi xi + ε (13)

and the following linear regression function:

y = α +
N∑

i=1

βi xi (14)

where the regressors are deterministic vari-
ables. As we will see in the following section,
in both cases the least squares estimators are
the same though the variances of the regres-
sion parameters as functions of the samples are
different.

ESTIMATION OF LINEAR
REGRESSIONS
In this section, we discuss how to estimate the
linear regression parameters. We consider two
main estimation techniques: maximum likeli-
hood method and least squares method. A dis-
cussion of the sampling distributions of linear

regression parameters follow. The method
of moments and the instrumental variables
method are other methods that are used but
are not discussed in this entry.

Maximum Likelihood Estimates
Let’s reformulate the regression problem in a
matrix form that is standard in regression anal-
ysis and that we will use in the following sec-
tions. Let’s start with the case of a dependent
variable Y and one independent regressor X.
This case is referred to as the bivariate case or
the simple linear regression. Suppose that we
are empirically given T pairs of observations of
the regressor and the independent variable. In
financial econometrics these observations could
represent, for example, the returns Y of a stock
and the returns X of a factor taken at fixed inter-
vals of time t = 1, 2, . . . , T. Using a notation that
is standard in regression estimation, we place
the given data in a vector Y and a matrix X:

Y =

⎛

⎜⎝
Y1
...

YT

⎞

⎟⎠ , X =

⎛

⎜⎝
1 X1
...

...
1 XT

⎞

⎟⎠ (15)

The column of 1s represents constant terms. The
regression equation can be written as a set of T
samples from the same regression equation, one
for each moment:

Y1 = β0 + β1X1 + ε1
...
YT = β0 + β1XT + εT

that we can rewrite in matrix form,

Y = Xβ + ε

where β is the vector of regression coefficients,

β =
(

β0

β1

)

and ε are the residuals.
We now make a set of assumptions that

are standard in regression analysis and that
we will progressively relax. The assumptions
for the linear regression model with normally
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distributed residuals are:

1. The residuals are zero-mean, normally
distributed independent variables
ε ∼ N(0, σ 2

ε I), where σ 2
ε is the common

variance of the residuals and I is the
identity matrix.

2. X is distributed independently of the
residuals ε.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(16)

The regression equation can then be written:
E(Y|X) = Xβ. The residuals form a sequence of
independent variables. They can therefore be
regarded as a strict white-noise sequence. As
the residuals are independent draws from the
same normal distribution, we can compute the
log-likelihood function as follows:

log L = −T
2

log(2π ) − T
2

log(σ 2
ε )

−
T∑

t=1

[
(Yt − β0 − β1 Xt)2

2σ 2
ε

]
(17)

The maximum likelihood (ML) principle re-
quires maximization of the log-likelihood func-
tion. Maximizing the log-likelihood function
entails first solving the equations:

∂ log L
∂β0

= 0,
∂ log L

∂β1
= 0,

∂ log L
∂σ 2

ε

= 0

These equations can be explicitly written as fol-
lows:

T∑

t=1

(Yt − β0 − β1 Xt) = 0

T∑

t=1

Xt(Yt − β0 − β1 Xt) = 0

Tσ 2
ε −

T∑

t=1

[(Yt − β0 − β1 Xt)2] = 0

A little algebra shows that solving the first
two equations yields

β̂1 = XY − XY
σ 2

ε

β̂0 = (Y − β1 X) (18)

where

X = 1
T

T∑

t=1

Xt, XY = 1
T

T∑

t=1

XtYt

and where σ̄x, σ̄y are the empirical standard
deviations of the sample variables X, Y re-
spectively. Substituting these expressions in the
third equation

∂ log L
∂σ 2

ε

= 0

yields the variance of the residuals:

σ̂ 2
ε = 1

T

T∑

t=1

[(
Yt − β̂0 − β̂1 Xt

)2
]

(19)

In the matrix notation established above, we
can write the estimators as follows:

For parameters: β̂ = (X′X)−1X′Y (20)

For the variance of the regression:

σ̂ 2 = 1
T

(
Y − Xβ̂

)′ (
Y − Xβ̂

)
(21)

A comment is in order. We started with T pairs
of given data (Xi, Yi), i = 1, . . . , T and then at-
tempted to explain these data as a linear re-
gression Y = β1X + β0 + ε. We estimated the
coefficients (β1, β2) with maximum likelihood
estimation (MLE) methods. Given this estimate
of the regression coefficients, the estimated vari-
ance of the residuals is given by equation (22).
Note that equation (22) is the empirical vari-
ance of residuals computed using the estimated
regression parameters. A large variance of the
residuals indicates that the level of noise in the
process (i.e., the size of the unexplained fluctu-
ations of the process) is high.

Generalization to Multiple Independent
Variables
The above discussion of the MLE method gen-
eralizes to multiple independent variables, N.
We are empirically given a set of T observations
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that we organize in matrix form,

Y =

⎛

⎜⎝
Y1
...

YT

⎞

⎟⎠ , X =

⎛

⎜⎝
X11 . . . XN1

...
. . .

...
X1T . . . XNT

⎞

⎟⎠ (22)

and the regression coefficients and error terms
in the vectors,

β =

⎛

⎜⎝
β1
...

βN

⎞

⎟⎠ , ε =

⎛

⎜⎝
ε1
...

εT

⎞

⎟⎠ (23)

The matrix X which contains all the regressors
is called the design matrix. The regressors X
can be deterministic, the important condition
being that the residuals are independent. One
of the columns can be formed by 1s to allow for
a constant term (intercept). Our objective is to
explain the data as a linear regression:

Y = Xβ + ε

We make the same set of assumptions given
by equation (17) as we made in the case of a
single regressor. Using the above notation, the
loglikelihood function will have the form

log L = −T
2

log(2π ) − T
2

log(σ 2
ε )

− 1
2σ 2

ε

(Y − Xβ)′(Y − Xβ) (24)

The maximum likelihood conditions are writ-
ten as

∂ log L
∂β

= 0,
∂ log L

∂σ 2
ε

= 0 (25)

These equations are called normal equations.
Solving the system of normal equations gives
the same form for the estimators as in the uni-
variate case:

β̂ = (X′X)−1X′Y

σ̂ 2 = 1
T

(
Y − Xβ̂

)′ (
Y − Xβ̂

)
(26)

The variance estimator is not unbiased. It can
be demonstrated that to obtain an unbiased es-
timator we have to apply a correction that takes
into account the number of variables by replac-

ing T with T − N, assuming T > N:

σ̂ 2 = 1
T − N

(
Y − Xβ̂

)′ (
Y − Xβ̂

)
(27)

The MLE method requires that we know the
functional form of the distribution. If the dis-
tribution is known but not normal, we can still
apply the MLE method but the estimators will
be different. We will not here discuss further
MLE for nonnormal distributions.

Ordinary Least Squares Method
We now establish the relationship between the
MLE principle and the ordinary least squares
(OLS) method. OLS is a general method to ap-
proximate a relationship between two or more
variables. We use the matrix notation defined
above for MLE method; that is, we assume
that observations are described by equation (23)
while the regression coefficients and the resid-
uals are described by equation (24).

If we use the OLS method, the assumptions
of linear regressions can be weakened. In par-
ticular, we need not assume that the residuals
are normally distributed but only assume that
they are uncorrelated and have finite variance.
The residuals can therefore be regarded as a
white-noise sequence (and not a strict white-
noise sequence as in the previous section). We
summarize the linear regression assumptions
as follows:

Assumptions for the linear regression model:
1. The mean of the residuals is zero: E(ε) = 0
2. The residuals are mutually uncorrelated:

(E(εε′) = σ 2I), where σ 2 is the variance of
the residuals and I is the identity matrix.

3. X is distributed independently of the
residuals ε.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(28)

In the general case of a multivariate regres-
sion, the OLS method requires minimization of
the sum of the squared residuals. Consider the
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vector of residuals:

ε =

⎡

⎢⎣
ε1
...

εT

⎤

⎥⎦

The sum of the squared residuals (SSR) = (ε2
1 +

. . . + ε2
T ) can be written as SSR = ε′ε. As ε = Y

− Xβ, we can also write

SSR = (Y − Xβ)′(Y − Xβ)

The OLS method requires that we minimize
the SSR. To do so, we equate to zero the first
derivatives of the SSR:

∂(Y − Xβ)′(Y − Xβ)
∂β

= 0

This is a system of N equations. Solving this
system, we obtain the estimators:

β̂ = (X′X)−1X′Y

These estimators are the same estimators ob-
tained with the MLE method; they have an
optimality property. In fact, the Gauss-Markov
theorem states that the above OLS estimators
are the best linear unbiased estimators (BLUE).
“Best” means that no other linear unbiased
estimator has a lower variance. It should be
noted explicitly that OLS and MLE are con-
ceptually different methodologies: MLE seeks
the optimal parameters of the distribution of
the error terms, while OLS seeks to mini-
mize the variance of error terms. The fact that
the two estimators coincide was an important
discovery.

SAMPLING DISTRIBUTIONS
OF REGRESSIONS
Estimated regression parameters depend on the
sample. They are random variables whose dis-
tribution is to be determined. As we will see
in this section, the sampling distributions dif-
fer depending on whether the regressors are

assumed to be fixed deterministic variables or
random variables.

Let’s first assume that the regressors are fixed
deterministic variables. Thus only the error
terms and the dependent variable change from
sample to sample. The β̂ are unbiased estima-
tors and E[β̂] = β therefore holds. It can also
be demonstrated that the following expression
for the variance of β̂ holds

E[(β − β̂)(β − β̂)′] = σ 2(X′X)−1 (29)

where an estimate σ̂ 2 of σ 2 is given by (27).
Under the additional assumption that the

residuals are normally distributed, it can be
demonstrated that the regression coefficients
are jointly normally distributed as follows:

β̂ ∼ NN[β, σ 2(X′X)−1] (30)

These expressions are important because they
allow us to compute confidence intervals for the
regression parameters.

Let’s now suppose that the regressors are ran-
dom variables. Under the assumptions set forth
in (29), it can be demonstrated that the variance
of the estimators β̂ can be written as follows:

V(β̂) = E[(X′X)−1]V(X′ε)E[(X′X)−1] (31)

where the terms E[(X′X)−1 ] and V(X′ε) are the
empirical expectation of (X′X)–1 and the empir-
ical variance of (X′ε), respectively.

The following terms are used to describe this
estimator of the variance: sandwich estimator, ro-
bust estimator, and White estimator. The term
sandwich estimator is due to the fact that the
term V(X′ε) is sandwiched between the terms
E[(X’X)−1]. These estimators are robust because
they take into account not only the variabil-
ity of the dependent variables but also that
of the independent variables. Consider that if
the regressors are a large sample, the sandwich
and the classical estimators are close to each
other.



REGRESSION ANALYSIS: THEORY AND ESTIMATION 315

DETERMINING THE
EXPLANATORY POWER
OF A REGRESSION
The above computations to estimate regression
parameters were carried out under the assump-
tion that the data were generated by a linear
regression function with uncorrelated and nor-
mally distributed noise. In general, we do not
know if this is indeed the case. Though we can
always estimate a linear regression model on
any data sample by applying the estimators dis-
cussed above, we must now ask the question:
When is a linear regression applicable and how
can one establish the goodness (i.e., explanatory
power) of a linear regression?

Quite obviously, a linear regression model
is applicable if the relationship between the
variables is approximately linear. How can we
check if this is indeed the case? What happens if
we fit a linear model to variables that have non-
linear relationships, or if distributions are not
normal? A number of tests have been devised
to help answer these questions.

Intuitively, a measure of the quality of approx-
imation offered by a linear regression is given
by the variance of the residuals. Squared residu-
als are used because a property of the estimated
relationship is that the sum of the residuals is
zero. If residuals are large, the regression model
has little explanatory power. However, the size
of the average residual in itself is meaningless as
it has to be compared with the range of the vari-
ables. For example, if we regress stock prices
over a broad-based stock index, other things
being equal, the residuals will be numerically
different if the price is in the range of dollars or
in the range of hundreds of dollars.

Coefficient of Determination
A widely used measure of the quality and use-
fulness of a regression model is given by the
coefficient of determination denoted by R2 or R-
squared. The idea behind R2 is the following.

The dependent variable Y has a total variation
given by the following expression:

Total variation = S2
Y = 1

T − 1

T∑

t=1

(Yt − Y)2

(32)
where

Y = 1
T − 1

T∑

t=1

Yt

This total variation is the sum of the variation
of the variable Y due to the variation of the
regressors plus the variation of residuals S2

Y =
S2

R + S2
ε . We can therefore define the coefficient

of determination:

Coefficient of determination = R2 = S2
R

S2
Y

1 − R2 = S2
ε

S2
Y

(33)

as the portion of the total fluctuation of the de-
pendent variable, Y, explained by the regression
relation. R2 is a number between 0 and 1: R2 =
0 means that the regression has no explanatory
power, R2 = 1 means that the regression has
perfect explanatory power. The quantity R2 is
computed by software packages that perform
linear regressions.

It can be demonstrated that the coefficient
of determination R2 is distributed as the well-
known Student F distribution. This fact allows
one to determine intervals of confidence around
a measure of the significance of a regression.

Adjusted R2

The quantity R2 as a measure of the usefulness
of a regression model suffers from the prob-
lem that a regression might fit data very well
in-sample but have no explanatory power out-
of-sample. This occurs if the number of regres-
sors is too high. Therefore an adjusted R2 is
sometimes used. The adjusted R2 is defined as
R2 corrected by a penalty function that takes
into account the number p of regressors in the
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model:

Adjusted R2 = T − 1
T − N − 1

S2
R

S2
Y

(34)

Relation of R2 to Correlation
Coefficient
The R2 is the squared correlation coefficient. The
correlation coefficient is a number between −1
and +1 that measures the strength of the depen-
dence between two variables. If a linear rela-
tionship is assumed, the correlation coefficient
has the usual product-moment expression:

r =
√

XY − XY
Sy Xx

(35)

USING REGRESSION
ANALYSIS IN FINANCE
This section provides several illustrations of
regression analysis in finance as well as the
data for each illustration. However, in order to
present the data, we limit our sample size.

Characteristic Line for
Common Stocks
The characteristic line of a security is the regres-
sion of the excess returns of that security on the
market excess returns:

ri = αi + βi rM

where

ri = the security excess return of a security
over the risk-free rate

rM = the market excess return of the market
over the risk-free rate

We computed the characteristic lines of two
common stocks, Oracle and General Motors
(GM), and a randomly created portfolio con-
sisting of 20 stocks equally weighted. We used
the S&P 500 Index as a proxy for the market
returns and the 90-day Treasury rate as a proxy
for the risk-free rate. The return and excess re-
turn data are shown in Table 1. Note that there
are 60 monthly observations used to estimate
the characteristic line from December 2000 to
November 2005. The 20 stocks comprising the
portfolio are shown at the bottom of Table 1.

Table 1 Return and Excess Return Data for S&P 500, Oracle, GM, and Portfolioa: 12/1/2000–11/1/2005

Date
S&P 500
Return

Risk-
Free
Rate

S&P –
Risk Free
Rate

Oracle
Return

Oracle
Excess
Return

GM
Return

GM
Excess
Return

Portfolio
Return

Portfolio
Excess
Return

12/1/2000 0.03464 0.00473 0.02990 0.00206 −0.00267 0.05418 0.04945 0.01446 0.00973
1/1/2001 −0.09229 0.00413 −0.09642 −0.34753 −0.35165 −0.00708 −0.01120 −0.07324 −0.07736
2/1/2001 −0.06420 0.00393 −0.06813 −0.21158 −0.21550 −0.02757 −0.03149 −0.07029 −0.07421
3/1/2001 0.07681 0.00357 0.07325 0.07877 0.07521 0.05709 0.05352 0.11492 0.11135
4/1/2001 0.00509 0.00321 0.00188 −0.05322 −0.05643 0.03813 0.03492 0.01942 0.01621
5/1/2001 −0.02504 0.00302 −0.02805 0.24183 0.23881 0.13093 0.12791 −0.03050 −0.03351
6/1/2001 −0.01074 0.00288 −0.01362 −0.04842 −0.05130 −0.01166 −0.01453 −0.03901 −0.04189
7/1/2001 −0.06411 0.00288 −0.06698 −0.32467 −0.32754 −0.13915 −0.14203 −0.08264 −0.08552
8/1/2001 −0.08172 0.00274 −0.08447 0.03030 0.02756 −0.21644 −0.21918 −0.13019 −0.13293
9/1/2001 0.01810 0.00219 0.01591 0.07790 0.07571 −0.03683 −0.03902 0.05969 0.05749
10/1/2001 0.07518 0.00177 0.07341 0.03466 0.03289 0.20281 0.20104 0.11993 0.11816
11/1/2001 0.00757 0.00157 0.00601 −0.01568 −0.01725 −0.02213 −0.02370 0.02346 0.02190
12/1/2001 −0.01557 0.00148 −0.01706 0.24982 0.24834 0.05226 0.05078 0.05125 0.04976
1/1/2002 −0.02077 0.00144 −0.02221 −0.03708 −0.03852 0.03598 0.03454 0.02058 0.01914
2/1/2002 0.03674 0.00152 0.03522 −0.22984 −0.23136 0.14100 0.13948 0.02818 0.02667
3/1/2002 −0.06142 0.00168 −0.06309 −0.21563 −0.21730 0.06121 0.05953 −0.00517 −0.00684
4/1/2002 −0.00908 0.00161 −0.01069 −0.21116 −0.21276 −0.03118 −0.03279 −0.02664 −0.02825
5/1/2002 −0.07246 0.00155 −0.07401 0.19571 0.19416 −0.13998 −0.14153 −0.04080 −0.04235
6/1/2002 −0.07900 0.00149 −0.08050 0.05702 0.05553 −0.12909 −0.13058 −0.05655 −0.05804
7/1/2002 0.00488 0.00142 0.00346 −0.04196 −0.04337 0.02814 0.02673 −0.01411 −0.01553
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Table 1 (Continued)

Date
S&P 500
Return

Risk-
Free
Rate

S&P –
Risk Free
Rate

Oracle
Return

Oracle
Excess
Return

GM
Return

GM
Excess
Return

Portfolio
Return

Portfolio
Excess
Return

8/1/2002 −0.11002 0.00133 −0.11136 −0.18040 −0.18173 −0.18721 −0.18855 −0.09664 −0.09797
9/1/2002 0.08645 0.00133 0.08512 0.29644 0.29510 −0.14524 −0.14658 0.06920 0.06787
10/1/2002 0.05707 0.00130 0.05577 0.19235 0.19105 0.19398 0.19268 0.08947 0.08817
11/1/2002 −0.06033 0.00106 −0.06139 −0.11111 −0.11217 −0.07154 −0.07259 −0.04623 −0.04729
12/1/2002 −0.02741 0.00103 −0.02845 0.11389 0.11286 −0.01438 −0.01541 −0.00030 −0.00134
1/1/2003 −0.01700 0.00100 −0.01800 −0.00582 −0.00682 −0.07047 −0.07147 −0.03087 −0.03187
2/1/2003 0.00836 0.00098 0.00737 −0.09365 −0.09463 −0.00444 −0.00543 −0.00951 −0.01049
3/1/2003 0.08104 0.00094 0.08010 0.09594 0.09500 0.07228 0.07134 0.06932 0.06838
4/1/2003 0.05090 0.00095 0.04995 0.09512 0.09417 −0.01997 −0.02092 0.06898 0.06803
5/1/2003 0.01132 0.00090 0.01042 −0.07686 −0.07776 0.01896 0.01806 0.00567 0.00477
6/1/2003 0.01622 0.00077 0.01546 −0.00167 −0.00243 0.03972 0.03896 0.03096 0.03019
7/1/2003 0.01787 0.00079 0.01708 0.07006 0.06927 0.09805 0.09726 0.03756 0.03677
8/1/2003 −0.01194 0.00086 −0.01280 −0.12315 −0.12401 −0.00414 −0.00499 −0.03145 −0.03231
9/1/2003 0.05496 0.00084 0.05412 0.06400 0.06316 0.04251 0.04167 0.07166 0.07082
10/1/2003 0.00713 0.00083 0.00630 0.00418 0.00334 0.00258 0.00174 0.00832 0.00749
11/1/2003 0.05077 0.00085 0.04992 0.10067 0.09982 0.24825 0.24740 0.06934 0.06849
12/1/2003 0.01728 0.00083 0.01645 0.04762 0.04679 −0.06966 −0.07049 0.00012 −0.00070
1/1/2004 0.01221 0.00081 0.01140 −0.07143 −0.07224 −0.03140 −0.03221 0.01279 0.01198
2/1/2004 −0.01636 0.00083 −0.01718 −0.06760 −0.06842 −0.01808 −0.01890 −0.03456 −0.03538
3/1/2004 −0.01679 0.00083 −0.01762 −0.06250 −0.06333 0.00360 0.00277 −0.00890 −0.00972
4/1/2004 0.01208 0.00091 0.01118 0.01333 0.01243 −0.04281 −0.04372 0.02303 0.02212
5/1/2004 0.01799 0.00109 0.01690 0.04649 0.04540 0.02644 0.02535 −0.00927 −0.01036
6/1/2004 −0.03429 0.00133 −0.03562 −0.11903 −0.12036 −0.07405 −0.07538 −0.05173 −0.05307
7/1/2004 0.00229 0.00138 0.00090 −0.05138 −0.05276 −0.04242 −0.04380 −0.00826 −0.00965
8/1/2004 0.00936 0.00143 0.00793 0.13139 0.12996 0.02832 0.02689 0.01632 0.01488
9/1/2004 0.01401 0.00156 0.01246 0.12234 0.12078 −0.09251 −0.09407 0.00577 0.00421
10/1/2004 0.03859 0.00167 0.03693 0.00632 0.00465 0.00104 −0.00063 0.05326 0.05159
11/1/2004 0.03246 0.00189 0.03057 0.07692 0.07503 0.03809 0.03620 0.02507 0.02318
12/1/2004 −0.02529 0.00203 −0.02732 0.00364 0.00162 −0.08113 −0.08315 −0.03109 −0.03311
1/1/2005 0.01890 0.00218 0.01673 −0.05955 −0.06172 −0.03151 −0.03369 0.01225 0.01008
2/1/2005 −0.01912 0.00231 −0.02143 −0.03629 −0.03860 −0.17560 −0.17790 −0.01308 −0.01538
3/1/2005 −0.02011 0.00250 −0.02261 −0.07372 −0.07622 −0.09221 −0.09471 −0.03860 −0.04110
4/1/2005 0.02995 0.00254 0.02741 0.10727 0.10472 0.18178 0.17924 0.04730 0.04476
5/1/2005 −0.00014 0.00257 −0.00271 0.03125 0.02868 0.07834 0.07577 −0.02352 −0.02609
6/1/2005 0.03597 0.00261 0.03336 0.02803 0.02542 0.08294 0.08033 0.04905 0.04644
7/1/2005 −0.01122 0.00285 −0.01407 −0.04274 −0.04559 −0.07143 −0.07428 −0.02185 −0.02470
8/1/2005 0.00695 0.00305 0.00390 −0.04542 −0.04847 −0.10471 −0.10776 0.00880 0.00575
9/1/2005 −0.01774 0.00306 −0.02080 0.02258 0.01952 −0.10487 −0.10793 −0.04390 −0.04696
10/1/2005 0.03519 0.00333 0.03186 −0.00631 −0.00963 −0.20073 −0.20405 0.01649 0.01316
11/1/2005 0.01009 0.00346 0.00663 −0.00714 −0.01060 0.01050 0.00704 0.01812 0.01466
aPortfolio includes the following 20 stocks: Honeywell, Alcoa, Campbell Soup, Boeing, General Dynamics, Oracle,
Sun, General Motors, Procter & Gamble, Wal-Mart, Exxon, ITT, Unilever, Hilton, Martin Marietta, Coca-Cola,
Northrop Grumman, Mercury Interact, Amazon, and United Technologies.

The estimated parameters for the two stocks
and the portfolios are reported in Table 2. As can
be seen from the table, the intercept term is not
statistically significant; however, the slope, re-
ferred to as the beta of the characteristic line, is
statistically significant. Typically for individual
stocks, the R2 ranges from 0.15 to 0.65. For Ora-
cle and GM the R2 is 0.23 and 0.26, respectively.

In contrast, for a randomly created portfolio,
the R2 is considerably higher. For our 20-stock
portfolio, the R2 is 0.79.

Note that some researchers estimate a stock’s
beta by using returns rather than excess re-
turns. The regression estimated is referred to
as the single-index market model. This model
was first suggested by Markowitz as a proxy
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Table 2 Characteristic Line of the Common Stock of
General Motors, Oracle, and Portfolio:
12/1/2000–11/1/2005

Coefficient
Coefficient
Estimate

Standard
Error t-statistic p-value

GM
α −0.005 0.015 −0.348 0.729
β 1.406 0.339 4.142 0.000
R2 0.228
p-value 0.000

Oracle
α −0.009 0.011 −0.812 0.420
β 1.157 0.257 4.501 0.000
R2 0.259
p-value 0.000

Portfolio
α 0.003 0.003 1.027 0.309
β 1.026 0.070 14.711 0.000
R2 0.787
p-value 0.000

measure of the covariance of a stock with an
index so that the full mean-variance analysis
need not be performed. While the approach was
mentioned by Markowitz (1959) in a footnote in
his book, it was Sharpe (1963) who investigated
this further. It turns out that the beta estimated
using both the characteristic line and the single-
index market model do not differ materially. For
example, for our 20-stock portfolio, the betas
differed only because of rounding off.

Empirical Duration of
Common Stock
A commonly used measure of the interest-rate
sensitivity of an asset’s value is its duration.
Duration is interpreted as the approximate per-
centage change in the value of an asset for a
100-basis-point change in interest. Duration can
be estimated by using a valuation model or em-
pirically by estimating from historical returns
the sensitivity of the asset’s value to changes
in interest rates. When duration is measured in
the latter way, it is called empirical duration.
Since it is estimated using regression analysis,
it is sometimes referred to as regression-based
duration.

A simple linear regression for computing em-
pirical duration using monthly historical data
(see Reilly, Wright, and Johnson, 2007) is

yit = αi + βi xt + eit

where

yit = the percentage change in the value of
asset i for month t

xt = the change in the Treasury yield for
month t

The estimated β i is the empirical duration for
asset i.

We will apply this linear regression to
monthly data from October 1989 to October
2003 shown in Table 31 for the following asset
indexes:

� Electric Utility sector of the S&P 500
� Commercial Bank sector of the S&P 500
� Lehman U.S. Aggregate Bond Index (now the

Barclays Capital U.S. Aggregate Bond Index)

The yield change (xt) is measured by the
Lehman Treasury Index. The regression results
are shown in Table 4. We report the empirical
duration (β i), the t-statistic, the p-value, the R2,
and the intercept term. Negative values are re-
ported for the empirical duration. In practice,
however, the duration is quoted as a positive
value. For the Electric Utility sector and the
Lehman U.S. Aggregate Bond Index, the em-
pirical duration is statistically significant at any
reasonable level of significance.

A multiple regression model to estimate the
empirical duration that has been suggested is

yit = αi + β1i x1t + β2i x2t + eit

where yit and x1t are the same as for the simple
linear regression and x2t is the return on the S&P
500. The results for this model are also shown
in Table 4.

The results of the multiple regression indicate
that the returns for the Electric Utility sector are
affected by both the change in Treasury rates
and the return on the stock market as proxied
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Table 3 Data for Empirical Duration Illustration

Monthly Returns for

Month

Change in
Lehman Bros
Treasury Yield

S&P500
Return

Electric
Utility
Sector

Commercial
Bank Sector

Lehman U.S.
Aggregate
Bond Index

Oct-89 −0.46 −2.33 2.350 −11.043 2.4600
Nov-89 −0.10 2.08 2.236 −3.187 0.9500
Dec-89 0.12 2.36 3.794 −1.887 0.2700
Jan-90 0.43 −6.71 −4.641 −10.795 −1.1900
Feb-90 0.09 1.29 0.193 4.782 0.3200
Mar-90 0.20 2.63 −1.406 −4.419 0.0700
Apr-90 0.34 −2.47 −5.175 −4.265 −0.9200
May-90 −0.46 9.75 5.455 12.209 2.9600
Jun-90 −0.20 −0.70 0.966 −5.399 1.6100
Jul-90 −0.21 −0.32 1.351 −8.328 1.3800
Aug-90 0.37 −9.03 −7.644 −10.943 −1.3400
Sep-90 −0.06 −4.92 0.435 −15.039 0.8300
Oct-90 −0.23 −0.37 10.704 −10.666 1.2700
Nov-90 −0.28 6.44 2.006 18.892 2.1500
Dec-90 −0.23 2.74 1.643 6.620 1.5600
Jan-91 −0.13 4.42 −1.401 8.018 1.2400
Feb-91 0.01 7.16 4.468 12.568 0.8500
Mar-91 0.03 2.38 2.445 5.004 0.6900
Apr-91 −0.15 0.28 −0.140 7.226 1.0800
May-91 0.06 4.28 −0.609 7.501 0.5800
Jun-91 0.15 −4.57 −0.615 −7.865 −0.0500
Jul-91 −0.13 4.68 4.743 7.983 1.3900
Aug-91 −0.37 2.35 3.226 9.058 2.1600
Sep-91 −0.33 −1.64 4.736 −2.033 2.0300
Oct-91 −0.17 1.34 1.455 0.638 1.1100
Nov-91 −0.15 −4.04 2.960 −9.814 0.9200
Dec-91 −0.59 11.43 5.821 14.773 2.9700
Jan-92 0.42 −1.86 −5.515 2.843 −1.3600
Feb-92 0.10 1.28 −1.684 8.834 0.6506
Mar-92 0.27 −1.96 −0.296 −3.244 −0.5634
Apr-92 −0.10 2.91 3.058 4.273 0.7215
May-92 −0.23 0.54 2.405 2.483 1.8871
Jun-92 −0.26 −1.45 0.492 1.221 1.3760
Jul-92 −0.41 4.03 6.394 −0.540 2.0411
Aug-92 −0.13 −2.02 −1.746 −5.407 1.0122
Sep-92 −0.26 1.15 0.718 1.960 1.1864
Oct-92 0.49 0.36 −0.778 2.631 −1.3266
Nov-92 0.26 3.37 −0.025 7.539 0.0228
Dec-92 −0.24 1.31 3.247 5.010 1.5903
Jan-93 −0.36 0.73 3.096 4.203 1.9177
Feb-93 −0.29 1.35 6.000 3.406 1.7492
Mar-93 0.02 2.15 0.622 3.586 0.4183
Apr-93 −0.10 −2.45 −0.026 −5.441 0.6955
May-93 0.25 2.70 −0.607 −0.647 0.1268
Jun-93 −0.30 0.33 2.708 4.991 1.8121
Jul-93 0.05 −0.47 2.921 0.741 0.5655
Aug-93 −0.31 3.81 3.354 0.851 1.7539
Sep-93 0.00 −0.74 −1.099 3.790 0.2746
Oct-93 0.05 2.03 −1.499 −7.411 0.3732
Nov-93 0.26 −0.94 −5.091 −1.396 −0.8502
Dec-93 0.01 1.23 2.073 3.828 0.5420

(Continued)
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Table 3 (Continued)

Monthly Returns for

Month

Change in
Lehman Bros
Treasury Yield

S&P500
Return

Electric
Utility
Sector

Commercial
Bank Sector

Lehman U.S.
Aggregate
Bond Index

Jan-94 −0.17 3.35 −2.577 4.376 1.3502
Feb-94 0.55 −2.70 −5.683 −4.369 −1.7374
Mar-94 0.55 −4.35 −4.656 −3.031 −2.4657
Apr-94 0.37 1.30 0.890 3.970 −0.7985
May-94 0.18 1.63 −5.675 6.419 −0.0138
Jun-94 0.16 −2.47 −3.989 −2.662 −0.2213
Jul-94 −0.23 3.31 5.555 2.010 1.9868
Aug-94 0.12 4.07 0.851 3.783 0.1234
Sep-94 0.43 −2.41 −2.388 −7.625 −1.4717
Oct-94 0.18 2.29 1.753 1.235 −0.0896
Nov-94 0.37 −3.67 2.454 −7.595 −0.2217
Dec-94 0.11 1.46 0.209 −0.866 0.6915
Jan-95 −0.33 2.60 7.749 6.861 1.9791
Feb-95 −0.41 3.88 −0.750 6.814 2.3773
Mar-95 0.01 2.96 −2.556 −1.434 0.6131
Apr-95 −0.18 2.91 3.038 4.485 1.3974
May-95 −0.72 3.95 7.590 9.981 3.8697
Jun-95 −0.05 2.35 −0.707 0.258 0.7329
Jul-95 0.14 3.33 −0.395 4.129 −0.2231
Aug-95 −0.10 0.27 −0.632 5.731 1.2056
Sep-95 −0.05 4.19 6.987 5.491 0.9735
Oct-95 −0.21 −0.35 2.215 −1.906 1.3002
Nov-95 −0.23 4.40 −0.627 7.664 1.4982
Dec-95 −0.18 1.85 6.333 0.387 1.4040
Jan-96 −0.13 3.44 2.420 3.361 0.6633
Feb-96 0.49 0.96 −3.590 4.673 −1.7378
Mar-96 0.31 0.96 −1.697 2.346 −0.6954
Apr-96 0.25 1.47 −4.304 −1.292 −0.5621
May-96 0.18 2.58 1.864 2.529 −0.2025
Jun-96 −0.14 0.41 5.991 −0.859 1.3433
Jul-96 0.08 −4.45 −7.150 0.466 0.2736
Aug-96 0.15 2.12 1.154 4.880 −0.1675
Sep-96 −0.23 5.62 0.682 6.415 1.7414
Oct-96 −0.35 2.74 4.356 8.004 2.2162
Nov-96 −0.21 7.59 1.196 10.097 1.7129
Dec-96 0.30 −1.96 −0.323 −4.887 −0.9299
Jan-97 0.06 6.21 0.443 8.392 0.3058
Feb-97 0.11 0.81 0.235 5.151 0.2485
Mar-97 0.36 −4.16 −4.216 −7.291 −1.1083
Apr-97 −0.18 5.97 −2.698 5.477 1.4980
May-97 −0.07 6.14 4.240 3.067 0.9451
Jun-97 −0.11 4.46 3.795 4.834 1.1873
Jul-97 −0.43 7.94 2.627 12.946 2.6954
Aug-97 0.30 −5.56 −2.423 −6.205 −0.8521
Sep-97 −0.19 5.48 5.010 7.956 1.4752
Oct-97 −0.21 −3.34 1.244 −2.105 1.4506
Nov-97 0.06 4.63 8.323 3.580 0.4603
Dec-97 −0.11 1.72 7.902 3.991 1.0063
Jan-98 −0.25 1.11 −4.273 −4.404 1.2837
Feb-98 0.17 7.21 2.338 9.763 −0.0753
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Table 3 (Continued)

Monthly Returns for

Month

Change in
Lehman Bros
Treasury Yield

S&P500
Return

Electric
Utility
Sector

Commercial
Bank Sector

Lehman U.S.
Aggregate
Bond Index

Mar-98 0.05 5.12 7.850 7.205 0.3441
Apr-98 0.00 1.01 −3.234 2.135 0.5223
May-98 −0.08 −1.72 −0.442 −3.200 0.9481
Jun-98 −0.09 4.06 3.717 2.444 0.8483
Jul-98 0.03 −1.06 −4.566 0.918 0.2122
Aug-98 −0.46 −14.46 7.149 −24.907 1.6277
Sep-98 −0.53 6.41 5.613 2.718 2.3412
Oct-98 0.05 8.13 −2.061 9.999 −0.5276
Nov-98 0.17 6.06 1.631 5.981 0.5664
Dec-98 0.02 5.76 2.608 2.567 0.3007
Jan-99 −0.01 4.18 −6.072 −0.798 0.7143
Feb-99 0.55 −3.11 −5.263 0.524 −1.7460
Mar-99 −0.05 4.00 −2.183 1.370 0.5548
Apr-99 0.05 3.87 6.668 7.407 0.3170
May-99 0.31 −2.36 7.613 −6.782 −0.8763
Jun-99 0.11 5.55 −4.911 5.544 −0.3194
Jul-99 0.11 −3.12 −2.061 −7.351 −0.4248
Aug-99 0.10 −0.50 1.508 −4.507 −0.0508
Sep-99 −0.08 −2.74 −5.267 −6.093 1.1604
Oct-99 0.11 6.33 1.800 15.752 0.3689
Nov-99 0.16 2.03 −8.050 −7.634 −0.0069
Dec-99 0.24 5.89 −0.187 −9.158 −0.4822
Jan-00 0.19 −5.02 5.112 −2.293 −0.3272
Feb-00 −0.13 −1.89 −10.030 −12.114 1.2092
Mar-00 −0.20 9.78 1.671 18.770 1.3166
Apr-00 0.17 −3.01 14.456 −5.885 −0.2854
May-00 0.07 −2.05 2.985 11.064 −0.0459
Jun-00 −0.26 2.47 −5.594 −14.389 2.0803
Jul-00 −0.08 −1.56 6.937 6.953 0.9077
Aug-00 −0.17 6.21 13.842 12.309 1.4497
Sep-00 −0.03 −5.28 12.413 1.812 0.6286
Oct-00 −0.06 −0.42 −3.386 −1.380 0.6608
Nov-00 −0.31 −7.88 3.957 −3.582 1.6355
Dec-00 −0.33 0.49 4.607 12.182 1.8554
Jan-01 −0.22 3.55 −11.234 3.169 1.6346
Feb-01 −0.16 −9.12 6.747 −3.740 0.8713
Mar-01 −0.08 −6.33 1.769 0.017 0.5018
Apr-01 0.22 7.77 5.025 −1.538 −0.4151
May-01 0.00 0.67 0.205 5.934 0.6041
Jun-01 0.01 −2.43 −7.248 0.004 0.3773
Jul-01 −0.40 −0.98 −5.092 2.065 2.2357
Aug-01 −0.14 −6.26 −0.149 −3.940 1.1458
Sep-01 −0.41 −8.08 −10.275 −4.425 1.1647
Oct-01 −0.39 1.91 1.479 −7.773 2.0930
Nov-01 0.41 7.67 −0.833 7.946 −1.3789
Dec-01 0.21 0.88 3.328 3.483 −0.6357
Jan-02 0.00 −1.46 −3.673 1.407 0.8096
Feb-02 −0.08 −1.93 −2.214 −0.096 0.9690
Mar-02 0.56 3.76 10.623 7.374 −1.6632
Apr-02 −0.44 −6.06 1.652 2.035 1.9393

(Continued)



322 Financial Econometrics

Table 3 (Continued)

Monthly Returns for

Month

Change in
Lehman Bros
Treasury Yield

S&P500
Return

Electric
Utility
Sector

Commercial
Bank Sector

Lehman U.S.
Aggregate
Bond Index

May-02 −0.06 −0.74 −3.988 1.247 0.8495
Jun-02 −0.23 −7.12 −4.194 −3.767 0.8651
Jul-02 −0.50 −7.80 −10.827 −4.957 1.2062
Aug-02 −0.17 0.66 2.792 3.628 1.6882
Sep-02 −0.45 −10.87 −8.677 −10.142 1.6199
Oct-02 0.11 8.80 −2.802 5.143 −0.4559
Nov-02 0.34 5.89 1.620 0.827 −0.0264
Dec-02 −0.45 −5.88 5.434 −2.454 2.0654
Jan-03 0.11 −2.62 −3.395 −0.111 0.0855
Feb-03 −0.21 −1.50 −2.712 −1.514 1.3843
Mar-03 0.05 0.97 4.150 −3.296 −0.0773
Apr-03 −0.03 8.24 5.438 9.806 0.8254
May-03 −0.33 5.27 10.519 5.271 1.8645
Jun-03 0.08 1.28 1.470 1.988 −0.1986
Jul-03 0.66 1.76 −5.649 3.331 −3.3620
Aug-03 0.05 1.95 1.342 −1.218 0.6637
Sep-03 −0.46 −1.06 4.993 −0.567 2.6469
Oct-03 0.33 5.66 0.620 8.717 −0.9320
Nov-03 0.13 0.88 0.136 1.428 0.2391
Dec-03 −0.14 5.24 NA NA NA

by the S&P 500. For the Commercial Bank sec-
tor, the coefficient of the changes in Treasury
rates is not statistically significant, however the
coefficient of the return on the S&P 500 is sta-
tistically significant. The opposite is the case
for the Lehman U.S. Aggregate Bond Index. It
is interesting to note that the duration for the
Lehman U.S. Aggregate Bond Index as reported
by Lehman Brothers was about 4.55 in Novem-
ber 2003. The empirical duration is 4.1. While
the sign of the coefficient that is an estimate
of duration is negative (which means the price
moves in the opposite direction to the change in
interest rates), mar ket participants talk in terms
of the positive value of duration for a bond that
has this characteristic.

Predicting the 10-Year
Treasury Yield2

The U.S. Department of the Treasury issues two
types of securities: zero-coupon securities and

coupon securities. Securities issued with one
year or less to maturity are called Treasury
bills; they are issued as zero-coupon instru-
ments. Treasury securities with more than one
year to maturity are issued as coupon-bearing
securities. Treasury securities from more than
one year up to 10 years of maturity are called
Treasury notes; Treasury securities with a ma-
turity in excess of 10 years are called Treasury
bonds. The U.S. Treasury auctions securities of
specified maturities on a regular calendar basis.
The Treasury currently issues 30-year Treasury
bonds but had stopped issuance of them from
October 2001 to January 2006.

An important Treasury coupon bond is the
10-year Treasury note. In this illustration we
will try to forecast this rate based on two in-
dependent variables suggested by economic
theory. A well-known theory of interest rates
is that the interest rate in any economy con-
sists of two components. This relationship is
known as Fisher’s law. The first is the expected
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Table 4 Estimation of Regression Parameters for Empirical Duration

Electric
Utility
Sector

Commercial
Bank Sector

Lehman U.S.
Aggregate
Bond Index

a. Simple Linear Regression
Intercept

αi 0.6376 1.1925 0.5308
t-statistic 1.8251 2.3347 21.1592
p-value 0.0698 0.0207 0.0000

Change in the Treasury yield
β i −4.5329 −2.5269 −4.1062
t-statistic −3.4310 −1.3083 −43.2873
p-value 0.0008 0.1926 0.0000
R2 0.0655 0.0101 0.9177

F-value 11.7717 1.7116 1873.8000
p-value 0.0007 0.1926 0.0000

b. Multiple Linear Regression
Intercept

αi 0.3937 0.2199 0.5029
t-statistic 1.1365 0.5835 21.3885
p-value 0.2574 0.5604 0.0000

Change in the Treasury yield
β1i −4.3780 −1.9096 −4.0885
t-statistic −3.4143 −1.3686 −46.9711
p-value 0.0008 0.1730 0.0000

Return on the S&P 500
β2i 0.2664 1.0620 0.0304
t-statistic 3.4020 12.4631 5.7252
p-value 0.0008 0.0000 0.0000
R2 0.1260 0.4871 0.9312
F-value 12.0430 79.3060 1130.5000
p-value 0.00001 0.00000 0.00000

rate of inflation. The second is the real rate
of interest. We use regression analysis to pro-
duce a model to forecast the yield on the
10-year Treasury note (simply, the 10-year
Treasury yield)—the dependent variable—and
the expected rate of inflation (simply, expected
inflation) and the real rate of interest (simply,
real rate).

The 10-year Treasury yield is observable, but
we need a proxy for the two independent vari-
ables (i.e., the expected rate of inflation and the
real rate of interest at the time) as they are not
observable at the time of the forecast. Keep in
mind that since we are forecasting, we do not
use as our independent variable information
that is unavailable at the time of the forecast.
Consequently, we need a proxy available at the
time of the forecast.

The inflation rate is available from the U.S.
Department of Commerce. However, we need
a proxy for expected inflation. We can use some
type of average of past inflation as a proxy. In
our model, we use a 5-year moving average.
There are more sophisticated methodologies for
calculating expected inflation, but the 5-year
moving average is sufficient for our illustra-
tion. For example, one can use an exponential
smoothing of actual inflation, a methodology
used by the OECD. For the real rate, we use the
rate on 3-month certificates of deposit (CDs).
Again, we use a 5-year moving average.

The monthly data for the three variables from
November 1965 to December 2005 (482 obser-
vations) are provided in Table 5. The regression
results are reported in Table 6. As can be seen,
the coefficients of both independent variables
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Table 5 Monthly Data for 10-Year Treasury Yield, Expected Inflation, and Real Rate: November 1965–December
2005

Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate

1965
Nov 4.45 1.326 2.739
Dec 4.62 1.330 2.757
1966
Jan 4.61 1.334 2.780
Feb 4.83 1.348 2.794
Mar 4.87 1.358 2.820
Apr 4.75 1.372 2.842
May 4.78 1.391 2.861
June 4.81 1.416 2.883
July 5.02 1.440 2.910
Aug 5.22 1.464 2.945
Sept 5.18 1.487 2.982
Oct 5.01 1.532 2.997
Nov 5.16 1.566 3.022
Dec 4.84 1.594 3.050
1967
Jan 4.58 1.633 3.047
Feb 4.63 1.667 3.050
Mar 4.54 1.706 3.039
Apr 4.59 1.739 3.027
May 4.85 1.767 3.021
June 5.02 1.801 3.015
July 5.16 1.834 3.004
Aug 5.28 1.871 2.987
Sept 5.3 1.909 2.980
Oct 5.48 1.942 2.975
Nov 5.75 1.985 2.974
Dec 5.7 2.027 2.972
1968
Jan 5.53 2.074 2.959
Feb 5.56 2.126 2.943
Mar 5.74 2.177 2.937
Apr 5.64 2.229 2.935
May 5.87 2.285 2.934
June 5.72 2.341 2.928
July 5.5 2.402 2.906
Aug 5.42 2.457 2.887
Sept 5.46 2.517 2.862
Oct 5.58 2.576 2.827
Nov 5.7 2.639 2.808
Dec 6.03 2.697 2.798
1969
Jan 6.04 2.745 2.811
Feb 6.19 2.802 2.826
Mar 6.3 2.869 2.830
Apr 6.17 2.945 2.827
May 6.32 3.016 2.862
June 6.57 3.086 2.895
July 6.72 3.156 2.929
Aug 6.69 3.236 2.967
Sept 7.16 3.315 3.001
Oct 7.1 3.393 3.014
Nov 7.14 3.461 3.045
Dec 7.65 3.539 3.059

1970
Jan 7.80 3.621 3.061
Feb 7.24 3.698 3.064
Mar 7.07 3.779 3.046
Apr 7.39 3.854 3.035
May 7.91 3.933 3.021
June 7.84 4.021 3.001
July 7.46 4.104 2.981
Aug 7.53 4.187 2.956
Sept 7.39 4.264 2.938
Oct 7.33 4.345 2.901
Nov 6.84 4.436 2.843
Dec 6.39 4.520 2.780
1971
Jan 6.24 4.605 2.703
Feb 6.11 4.680 2.627
Mar 5.70 4.741 2.565
Apr 5.83 4.793 2.522
May 6.39 4.844 2.501
June 6.52 4.885 2.467
July 6.73 4.921 2.436
Aug 6.58 4.947 2.450
Sept 6.14 4.964 2.442
Oct 5.93 4.968 2.422
Nov 5.81 4.968 2.411
Dec 5.93 4.964 2.404
1972
Jan 5.95 4.959 2.401
Feb 6.08 4.959 2.389
Mar 6.07 4.953 2.397
Apr 6.19 4.953 2.403
May 6.13 4.949 2.398
June 6.11 4.941 2.405
July 6.11 4.933 2.422
Aug 6.21 4.924 2.439
Sept 6.55 4.916 2.450
Oct 6.48 4.912 2.458
Nov 6.28 4.899 2.461
Dec 6.36 4.886 2.468
1973
Jan 6.46 4.865 2.509
Feb 6.64 4.838 2.583
Mar 6.71 4.818 2.641
Apr 6.67 4.795 2.690
May 6.85 4.776 2.734
June 6.90 4.752 2.795
July 7.13 4.723 2.909
Aug 7.40 4.699 3.023
Sept 7.09 4.682 3.110
Oct 6.79 4.668 3.185
Nov 6.73 4.657 3.254
Dec 6.74 4.651 3.312

1974
Jan 6.99 4.652 3.330
Feb 6.96 4.653 3.332
Mar 7.21 4.656 3.353
Apr 7.51 4.657 3.404
May 7.58 4.678 3.405
June 7.54 4.713 3.419
July 7.81 4.763 3.421
Aug 8.04 4.827 3.401
Sept 8.04 4.898 3.346
Oct 7.9 4.975 3.271
Nov 7.68 5.063 3.176
Dec 7.43 5.154 3.086
1975
Jan 7.5 5.243 2.962
Feb 7.39 5.343 2.827
Mar 7.73 5.431 2.710
Apr 8.23 5.518 2.595
May 8.06 5.585 2.477
June 7.86 5.639 2.384
July 8.06 5.687 2.311
Aug 8.4 5.716 2.271
Sept 8.43 5.738 2.241
Oct 8.15 5.753 2.210
Nov 8.05 5.759 2.200
Dec 8 5.761 2.186
1976
Jan 7.74 5.771 2.166
Feb 7.79 5.777 2.164
Mar 7.73 5.800 2.138
Apr 7.56 5.824 2.101
May 7.9 5.847 2.060
June 7.86 5.870 2.034
July 7.83 5.900 1.988
Aug 7.77 5.937 1.889
Sept 7.59 5.981 1.813
Oct 7.41 6.029 1.753
Nov 7.29 6.079 1.681
Dec 6.87 6.130 1.615
1977
Jan 7.21 6.176 1.573
Feb 7.39 6.224 1.527
Mar 7.46 6.272 1.474
Apr 7.37 6.323 1.427
May 7.46 6.377 1.397
June 7.28 6.441 1.340
July 7.33 6.499 1.293
Aug 7.4 6.552 1.252
Sept 7.34 6.605 1.217
Oct 7.52 6.654 1.193
Nov 7.58 6.710 1.154
Dec 7.69 6.768 1.119
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Table 5 (Continued)

Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate

1978
Jan 7.96 6.832 1.068
Feb 8.03 6.890 0.995
Mar 8.04 6.942 0.923
Apr 8.15 7.003 0.854
May 8.35 7.063 0.784
June 8.46 7.124 0.716
July 8.64 7.191 0.598
Aug 8.41 7.263 0.482
Sept 8.42 7.331 0.397
Oct 8.64 7.400 0.365
Nov 8.81 7.463 0.322
Dec 9.01 7.525 0.284
1979
Jan 9.1 7.582 0.254
Feb 9.1 7.645 0.224
Mar 9.12 7.706 0.174
Apr 9.18 7.758 0.108
May 9.25 7.797 0.047
June 8.91 7.821 −0.025
July 8.95 7.834 −0.075
Aug 9.03 7.837 −0.101
Sept 9.33 7.831 −0.085
Oct 10.3 7.823 0.011
Nov 10.65 7.818 0.079
Dec 10.39 7.818 0.154
1980
Jan 10.8 7.825 0.261
Feb 12.41 7.828 0.418
Mar 12.75 7.849 0.615
Apr 11.47 7.879 0.701
May 10.18 7.926 0.716
June 9.78 7.989 0.702
July 10.25 8.044 0.695
Aug 11.1 8.109 0.716
Sept 11.51 8.184 0.740
Oct 11.75 8.269 0.795
Nov 12.68 8.356 0.895
Dec 12.84 8.446 1.004
1981
Jan 12.57 8.520 1.132
Feb 13.19 8.594 1.242
Mar 13.12 8.649 1.336
Apr 13.68 8.700 1.477
May 14.1 8.751 1.619
June 13.47 8.802 1.755
July 14.28 8.877 1.897
Aug 14.94 8.956 2.037
Sept 15.32 9.039 2.155
Oct 15.15 9.110 2.256
Nov 13.39 9.175 2.305
Dec 13.72 9.232 2.392

1982
Jan 14.59 9.285 2.497
Feb 14.43 9.334 2.612
Mar 13.86 9.375 2.741
Apr 13.87 9.417 2.860
May 13.62 9.456 2.958
June 14.3 9.487 3.095
July 13.95 9.510 3.183
Aug 13.06 9.524 3.259
Sept 12.34 9.519 3.321
Oct 10.91 9.517 3.363
Nov 10.55 9.502 3.427
Dec 10.54 9.469 3.492
1983
Jan 10.46 9.439 3.553
Feb 10.72 9.411 3.604
Mar 10.51 9.381 3.670
Apr 10.4 9.340 3.730
May 10.38 9.288 3.806
June 10.85 9.227 3.883
July 11.38 9.161 3.981
Aug 11.85 9.087 4.076
Sept 11.65 9.012 4.152
Oct 11.54 8.932 4.204
Nov 11.69 8.862 4.243
Dec 11.83 8.800 4.276
1984
Jan 11.67 8.741 4.324
Feb 11.84 8.670 4.386
Mar 12.32 8.598 4.459
Apr 12.63 8.529 4.530
May 13.41 8.460 4.620
June 13.56 8.393 4.713
July 13.36 8.319 4.793
Aug 12.72 8.241 4.862
Sept 12.52 8.164 4.915
Oct 12.16 8.081 4.908
Nov 11.57 7.984 4.919
Dec 12.5 7.877 4.928
1985
Jan 11.38 7.753 4.955
Feb 11.51 7.632 4.950
Mar 11.86 7.501 4.900
Apr 11.43 7.359 4.954
May 10.85 7.215 5.063
June 10.16 7.062 5.183
July 10.31 6.925 5.293
Aug 10.33 6.798 5.346
Sept 10.37 6.664 5.383
Oct 10.24 6.528 5.399
Nov 9.78 6.399 5.360
Dec 9.26 6.269 5.326

1986
Jan 9.19 6.154 5.284
Feb 8.7 6.043 5.249
Mar 7.78 5.946 5.225
Apr 7.3 5.858 5.143
May 7.71 5.763 5.055
June 7.8 5.673 4.965
July 7.3 5.554 4.878
Aug 7.17 5.428 4.789
Sept 7.45 5.301 4.719
Oct 7.43 5.186 4.671
Nov 7.25 5.078 4.680
Dec 7.11 4.982 4.655
1987
Jan 7.08 4.887 4.607
Feb 7.25 4.793 4.558
Mar 7.25 4.710 4.493
Apr 8.02 4.627 4.445
May 8.61 4.551 4.404
June 8.4 4.476 4.335
July 8.45 4.413 4.296
Aug 8.76 4.361 4.273
Sept 9.42 4.330 4.269
Oct 9.52 4.302 4.259
Nov 8.86 4.285 4.243
Dec 8.99 4.279 4.218
1988
Jan 8.67 4.274 4.180
Feb 8.21 4.271 4.149
Mar 8.37 4.268 4.104
Apr 8.72 4.270 4.075
May 9.09 4.280 4.036
June 8.92 4.301 3.985
July 9.06 4.322 3.931
Aug 9.26 4.345 3.879
Sept 8.98 4.365 3.844
Oct 8.8 4.381 3.810
Nov 8.96 4.385 3.797
Dec 9.11 4.384 3.787
1989
Jan 9.09 4.377 3.786
Feb 9.17 4.374 3.792
Mar 9.36 4.367 3.791
Apr 9.18 4.356 3.784
May 8.86 4.344 3.758
June 8.28 4.331 3.723
July 8.02 4.320 3.679
Aug 8.11 4.306 3.644
Sept 8.19 4.287 3.623
Oct 8.01 4.273 3.614
Nov 7.87 4.266 3.609
Dec 7.84 4.258 3.611

(Continued)
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Table 5 (Continued)

Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Trea.
Yield

Exp.
Infl.

1990
Jan 8.418 4.257 3.610
Feb 8.515 4.254 3.595
Mar 8.628 4.254 3.585
Apr 9.022 4.260 3.580
May 8.599 4.264 3.586
June 8.412 4.272 3.589
July 8.341 4.287 3.568
Aug 8.846 4.309 3.546
Sept 8.795 4.335 3.523
Oct 8.617 4.357 3.503
Nov 8.252 4.371 3.493
Dec 8.067 4.388 3.471
1991
Jan 8.007 4.407 3.436
Feb 8.033 4.431 3.396
Mar 8.061 4.451 3.360
Apr 8.013 4.467 3.331
May 8.059 4.487 3.294
June 8.227 4.504 3.267
July 8.147 4.517 3.247
Aug 7.816 4.527 3.237
Sept 7.445 4.534 3.223
Oct 7.46 4.540 3.207
Nov 7.376 4.552 3.177
Dec 6.699 4.562 3.133
1992
Jan 7.274 4.569 3.092
Feb 7.25 4.572 3.054
Mar 7.528 4.575 3.014
Apr 7.583 4.574 2.965
May 7.318 4.571 2.913
June 7.121 4.567 2.864
July 6.709 4.563 2.810
Aug 6.604 4.556 2.757
Sept 6.354 4.544 2.682
Oct 6.789 4.533 2.624
Nov 6.937 4.522 2.571
Dec 6.686 4.509 2.518
1993
Jan 6.359 4.495 2.474
Feb 6.02 4.482 2.427
Mar 6.024 4.466 2.385
Apr 6.009 4.453 2.330
May 6.149 4.439 2.272
June 5.776 4.420 2.214
July 5.807 4.399 2.152
Aug 5.448 4.380 2.084
Sept 5.382 4.357 2.020
Oct 5.427 4.333 1.958
Nov 5.819 4.309 1.885
Dec 5.794 4.284 1.812

1994
Jan 5.642 4.256 1.739
Feb 6.129 4.224 1.663
Mar 6.738 4.195 1.586
Apr 7.042 4.166 1.523
May 7.147 4.135 1.473
June 7.32 4.106 1.427
July 7.111 4.079 1.394
Aug 7.173 4.052 1.356
Sept 7.603 4.032 1.315
Oct 7.807 4.008 1.289
Nov 7.906 3.982 1.278
Dec 7.822 3.951 1.278
1995
Jan 7.581 3.926 1.269
Feb 7.201 3.899 1.261
Mar 7.196 3.869 1.253
Apr 7.055 3.840 1.240
May 6.284 3.812 1.230
June 6.203 3.781 1.222
July 6.426 3.746 1.223
Aug 6.284 3.704 1.228
Sept 6.182 3.662 1.232
Oct 6.02 3.624 1.234
Nov 5.741 3.587 1.229
Dec 5.572 3.549 1.234
1996
Jan 5.58 3.505 1.250
Feb 6.098 3.458 1.270
Mar 6.327 3.418 1.295
Apr 6.67 3.376 1.328
May 6.852 3.335 1.359
June 6.711 3.297 1.387
July 6.794 3.261 1.417
Aug 6.943 3.228 1.449
Sept 6.703 3.195 1.481
Oct 6.339 3.163 1.516
Nov 6.044 3.131 1.558
Dec 6.418 3.102 1.608
1997
Jan 6.494 3.077 1.656
Feb 6.552 3.057 1.698
Mar 6.903 3.033 1.746
Apr 6.718 3.013 1.795
May 6.659 2.990 1.847
June 6.5 2.968 1.899
July 6.011 2.947 1.959
Aug 6.339 2.926 2.016
Sept 6.103 2.909 2.078
Oct 5.831 2.888 2.136
Nov 5.874 2.866 2.189
Dec 5.742 2.847 2.247

1998
Jan 5.505 2.828
Feb 5.622 2.806
Mar 5.654 2.787
Apr 5.671 2.765
May 5.552 2.744
June 5.446 2.725
July 5.494 2.709
Aug 4.976 2.695
Sept 4.42 2.680
Oct 4.605 2.666
Nov 4.714 2.653
Dec 4.648 2.641
1999
Jan 4.651 2.631
Feb 5.287 2.621
Mar 5.242 2.605
Apr 5.348 2.596
May 5.622 2.586
June 5.78 2.572
July 5.903 2.558
Aug 5.97 2.543
Sept 5.877 2.527
Oct 6.024 2.515
Nov 6.191 2.502
Dec 6.442 2.490
2000
Jan 6.665 2.477
Feb 6.409 2.464
Mar 6.004 2.455
Apr 6.212 2.440
May 6.272 2.429
June 6.031 2.421
July 6.031 2.412
Aug 5.725 2.406
Sept 5.802 2.398
Oct 5.751 2.389
Nov 5.468 2.382
Dec 5.112 2.374
2001
Jan 5.114 2.368
Feb 4.896 2.366
Mar 4.917 2.364
Apr 5.338 2.364
May 5.381 2.362
June 5.412 2.363
July 5.054 2.363
Aug 4.832 2.365
Sept 4.588 2.365
Oct 4.232 2.366
Nov 4.752 2.368
Dec 5.051 2.370
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Table 5 (Continued)

Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate Date

10-Yr.
Trea.
Yield

Exp.
Infl.

Real
Rate

2002
Jan 5.033 2.372 2.950
Feb 4.877 2.372 2.888
Mar 5.396 2.371 2.827
Apr 5.087 2.369 2.764
May 5.045 2.369 2.699
June 4.799 2.367 2.636
July 4.461 2.363 2.575
Aug 4.143 2.364 2.509
Sept 3.596 2.365 2.441
Oct 3.894 2.365 2.374
Nov 4.207 2.362 2.302
Dec 3.816 2.357 2.234
2003
Jan 3.964 2.351 2.168
Feb 3.692 2.343 2.104
Mar 3.798 2.334 2.038
Apr 3.838 2.323 1.976
May 3.372 2.312 1.913
June 3.515 2.300 1.850
July 4.408 2.288 1.786
Aug 4.466 2.267 1.731
Sept 3.939 2.248 1.681
Oct 4.295 2.233 1.629
Nov 4.334 2.213 1.581
Dec 4.248 2.191 1.537

2004
Jan 4.134 2.172 1.492
Feb 3.973 2.157 1.442
Mar 3.837 2.149 1.385
Apr 4.507 2.142 1.329
May 4.649 2.136 1.273
June 4.583 2.134 1.212
July 4.477 2.129 1.156
Aug 4.119 2.126 1.097
Sept 4.121 2.124 1.031
Oct 4.025 2.122 0.966
Nov 4.351 2.124 0.903
Dec 4.22 2.129 0.840
2005
Jan 4.13 2.131 0.783
Feb 4.379 2.133 0.727
Mar 4.483 2.132 0.676
Apr 4.2 2.131 0.622
May 3.983 2.127 0.567
June 3.915 2.120 0.520
July 4.278 2.114 0.476
Aug 4.016 2.107 0.436
Sept 4.326 2.098 0.399
Oct 4.553 2.089 0.366
Nov 4.486 2.081 0.336
Dec 4.393 2.075 0.311

Note:
Expected Infl. (%) = expected rate of inflation as proxied by the 5-year moving average of the actual inflation rate.
Real Rate (%) = real rate of interest as proxied by the 5-year moving average of the interest rate on 3-month certificates
of deposit.

Table 6 Results of Regression for Forecasting 10-Year Treasury Yield

Regression Statistics

Multiple R2 0.908318
R2 0.825042
Adjusted R2 0.824312
Standard Error 1.033764
Observations 482

Analysis of Variance

df SS MS F Significance F

Regression 2 2413.914 1206.957 1129.404 4.8E-182
Residual 479 511.8918 1.068668
Total 481 2925.806

Standard Statistics
Coefficients Error t p-value

Intercept 1.89674 0.147593 12.85118 1.1E-32
Expected Inflation 0.996937 0.021558 46.24522 9.1E-179
Real Rate 0.352416 0.039058 9.022903 4.45E-18
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are positive (as would be predicted by economic
theory) and highly significant.

NONNORMALITY AND
AUTOCORRELATION OF THE
RESIDUALS
In the above discussion we assumed that there
is no correlation between the residual terms.
Let’s now relax these assumptions. The correla-
tion of the residuals is critical from the point of
view of estimation. Autocorrelation of residuals
is quite common in financial estimation where
we regress quantities that are time series.

A time series is said to be autocorrelated
if each term is correlated with its predeces-
sor so that the variance of each term is par-
tially explained by regressing each term on its
predecessor.

Recall from the previous section that we orga-
nized regressor data in a matrix called the de-
sign matrix. Suppose that both regressors and
the variable Y are time series data, that is, every
row of the design matrix corresponds to a mo-
ment in time. The regression equation is written
as follows:

Y = Xβ + ε

Suppose that residuals are correlated. This
means that in general E[εiεj] = σ ij �= 0. Thus
the variance-covariance matrix of the residuals
{σ ij} will not be a diagonal matrix as in the
case of uncorrelated residuals, but will exhibit
nonzero off-diagonal terms. We assume that we
can write

{σij} = σ 2�

where � is a positive definite symmetric matrix
and σ is a parameter to be estimated.

If residuals are correlated, the regression pa-
rameters can still be estimated without biases
using the formula given by (26). However, this
estimate will not be optimal in the sense that
there are other estimators with lower variance
of the sampling distribution. An optimal linear

unbiased estimator has been derived. It is called
Aitken’s generalized least squares (GLS) estimator
and is given by

β̂ = (X′�−1X)−1X′�−1Y (36)

where � is the residual correlation matrix.
The GLS estimators vary with the sampling

distribution. It can also be demonstrated that
the variance of the GLS estimator is also given
by the following “sandwich” formula:

V(β̂) = E((β − β̂)(β − β̂)′) = σ 2(X′�−1X)−1

(37)

This expression is similar to equation (28)
with the exception of the sandwiched term �−1.
Unfortunately, (37) cannot be estimated with-
out first knowing the regression coefficients.
For this reason, in the presence of correlation
of residuals, it is common practice to replace
static regression models with models that ex-
plicitly capture autocorrelations and produce
uncorrelated residuals.

The key idea here is that autocorrelated resid-
uals signal that the modeling exercise has not
been completed. If residuals are autocorrelated,
this signifies that the residuals at a generic time
t can be predicted from residuals at an earlier
time. For example, suppose that we are lin-
early regressing a time series of returns rt on N
factors:

rt = α1 f1,t−1 + · · · + αN fN,t−1 + εt

Suppose that the residual terms εt are auto-
correlated and that we can write regressions of
the type

εt = ϕεt−1 + ηt

where ηt are now uncorrelated variables. If we
ignore this autocorrelation, valuable forecasting
information is lost. Our initial model has to be
replaced with the following model:

rt = α1 f1,t−1 + · · · + αN fN,t−1 + εt

εt = ϕεt−1 + ηt

with the initial conditions ε0.
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Detecting Autocorrelation
How do we detect the autocorrelation of resid-
uals? Suppose that we believe that there is
a reasonable linear relationship between two
variables, for instance stock returns and some
fundamental variable. We then perform a lin-
ear regression between the two variables and
estimate regression parameters using the OLS
method. After estimating the regression param-
eters, we can compute the sequence of residu-
als. At this point, we can apply tests such as the
Durbin-Watson test or the Dickey-Fuller test to
gauge the autocorrelation of residuals. If resid-
uals are auto-correlated, we should modify the
model.

PITFALLS OF REGRESSIONS
It is important to understand when regressions
are correctly applicable and when they are not.
In addition to the autocorrelation of residuals,
there are other situations where it would be in-
appropriate to use regressions. In particular, we
analyze the following cases, which represent
possible pitfalls of regressions:

� Spurious regressions with integrated vari-
ables

� Collinearity
� Increasing the number of regressors

Spurious Regressions
The phenomenon of spurious regressions, ob-
served by Yule in 1927, led to the study of coin-
tegration. We encounter spurious regressions
when we perform an apparently meaningful
regression between variables that are indepen-
dent. A typical case is a regression between two
independent random walks. Regressing two in-
dependent random walks, one might find very
high values of R2 even if the two processes are
independent. More in general, one might find
high values of R2 in the regression of two or
more integrated variables, even if residuals are
highly correlated.

Testing for regressions implies testing for
cointegration. Anticipating what will be dis-
cussed there, it is always meaningful to per-
form regressions between stationary variables.
When variables are integrated, regressions are
possible only if variables are cointegrated. This
means that residuals are a stationary (though
possibly autocorrelated) process. As a rule of
thumb, Granger and Newbold (1974) observe
that if the R2 is greater than the Durbin-Watson
statistics, it is appropriate to investigate if cor-
relations are spurious.

Collinearity
Collinearity, also referred to as multicollinear-
ity, occurs when two or more regressors have a
linear deterministic relationship. For example,
there is collinearity if the design matrix

X =

⎛

⎜⎝
X11 · · · XN1

...
. . .

...
X1T · · · XNT

⎞

⎟⎠

exhibits two or more columns that are perfectly
proportional. Collinearity is essentially a nu-
merical problem. Intuitively, it is clear that it cre-
ates indeterminacy as we are regressing twice
on the same variable. In particular, the stan-
dard estimators given by (26) and (27) cannot
be used because the relative formulas become
meaningless.

In principle, collinearity can be easily re-
solved by eliminating one or more regressors.
The problem with collinearity is that some vari-
ables might be very close to collinearity, thus
leading to numerical problems and indetermi-
nacy of results. In practice, this might happen
for many different numerical artifacts. Detect-
ing and analyzing collinearity is a rather del-
icate problem. In principle one could detect
collinearity by computing the determinant of
X’X. The difficulty resides in analyzing situa-
tions where this determinant is very small but
not zero. One possible strategy for detecting
and removing collinearity is to go through a
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process of orthogonalization of variables. (See
Hendry [1995].)

Increasing the Number of
Regressors
Increasing the number of regressors does not
always improve regressions. The econometric
theorem known as Pyrrho’s lemma relates to
the number of regressors. (See Dijkstra [1995].)
Pyrrho’s lemma states that by adding one
special regressor to a linear regression, it is
possible to arbitrarily change the size and sign
of regression coefficients as well as to obtain
an arbitrary goodness of fit. This result, rather
technical, seems artificial as the regressor is an
artificially constructed variable. It is, however,
a perfectly rigorous result; it tells us that, if
we add regressors without a proper design
and testing methodology, we risk obtaining
spurious results.

Pyrrho’s lemma is the proof that modeling re-
sults can be arbitrarily manipulated in-sample
even in the simple context of linear regressions.
In fact, by adding regressors one might obtain
an excellent fit in-sample though these regres-
sors might have no predictive power out-of-
sample. In addition, the size and even the sign
of the regression relationships can be artificially
altered in-sample.

The above observations are especially impor-
tant for those financial models that seek to
forecast prices, returns, or rates based on regres-
sions over economic or fundamental variables.
With modern computers, by trial and error, one
might find a complex structure of regressions
that give very good results in-sample but have
no real forecasting power.

KEY POINTS
� In regression analysis, the relationship

between a random variable, called the de-
pendent variable, and one or more variables
referred to as the independent variables,
regressors, or explanatory variables (which

can be random variables or deterministic
variables) is estimated.

� Factorization, which involves expressing a
joint density as a product of a marginal den-
sity and a conditional density, is the concep-
tual basis of financial econometrics.

� An econometric model is a probe that extracts
independent samples—the noise terms—
from highly dependent variables.

� Regressions have a twofold nature: they can
be either (1) the representation of dependence
in terms of conditional expectations and con-
ditional distributions or (2) the representation
of dependence of random variables on deter-
ministic parameters.

� In many applications in financial modeling,
the regressors are deterministic variables.
Therefore, on a conceptual level, regressions
with deterministic regressors are different
from cases where regressors are random
variables. In particular, a financial modeler
cannot view the regression as a conditional
expectation.

� There are two main estimation techniques
for estimating the parameters of a regression:
maximum likelihood method and ordinary
least squares method. The maximum likeli-
hood principle requires maximization of the
log-likelihood function. The ordinary least
squares method requires minimization of the
sum of the squared residuals. The ordinary
least squares estimators are the best linear un-
biased estimators.

� Because the estimated regression parameters
depend on the sample, they are random vari-
ables whose distribution is to be determined.
The sampling distributions differ depending
on whether the regressors are assumed to
be fixed deterministic variables or random
variables.

� A measure of the quality of approximation
offered by a linear regression is given by the
variance of the residuals. If residuals are large,
the regression model has little explanatory
power. However, the size of the average resid-
ual in itself is meaningless as it has to be
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compared with the range of the variables. A
widely used measure of the quality and use-
fulness of a regression model is given by the
coefficient of determination, denoted by R2 or
R-squared, that can attain a value from zero to
one. The adjusted R2 is defined as R2 corrected
by a penalty function that takes into account
the number of regressors in the model.

� Stepwise regression is a model-building
technique for regression designs. The two
methodologies for stepwise regression are the
backward stepwise method and the back-
ward removal method.

� A time series is said to be autocorrelated
if each term is correlated with its predeces-
sor so that the variance of each term is par-
tially explained by regressing each term on
its predecessor. Autocorrelation of residuals,
a violation of the regression model assump-
tions, is quite common in financial estimation
where financial modelers regress quantities
that are time series. When there is autocorre-
lation present in a time series, the generalized
least squares estimation method is used. The
Durbin-Watson test or the Dickey-Fuller test
can be utilized to gauge test for the presence
of autocorrelation for the residuals.

� Three other situations where there are pos-
sible pitfalls of using regressions are spu-
rious regressions with integrated variables,
collinearity, and increasing the number of re-
gressors. Spurious regressions occur when an
apparently meaningful regression between
variables that are independent is estimated.
Collinearity occurs when two or more regres-
sors in a regression model have a linear de-
terministic relationship.

� Pyrrho’s lemma, which relates to the number
of regressors in a regression model, states that
by adding one special regressor to a linear re-
gression, it is possible to arbitrarily change
the size and sign of regression coefficients as

well as to obtain an arbitrary goodness of
fit. Pyrrho’s lemma is the proof that model-
ing results can be arbitrarily manipulated in-
sample even in the simple context of linear
regressions.

NOTES
1. The data were supplied by David Wright of

Northern Illinois University.
2. We are grateful to Robert Scott of the Bank for

International Settlement for suggesting this
illustration and for providing the data.
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Abstract: In the application of regression analysis there are many situations where either the de-
pendent variable or one or more of the regressors are categorical variables. When one or more
categorical variables are used as regressors, a financial modeler must understand how to code the
data, test for the significance of the categorical variables, and, based on the coding, how to interpret
the estimated parameters. When the dependent variable is a categorical variable, the model is a
probability model.

There are many times in the application of
regression analysis when the financial mod-
eler will need to include a categorical variable
rather than a continuous variable as a regres-
sor. Categorical variables are variables that rep-
resent group membership. For example, given
a set of bonds, the rating is a categorical vari-
able that indicates to what category—AA, BB,
and so on—each bond belongs. A categorical
variable does not have a numerical value or a
numerical interpretation in itself. Thus the fact
that a bond is in category AA or BB does not,
in itself, measure any quantitative characteris-
tic of the bond, though quantitative attributes
such as a bond’s yield spread can be associated
with each category.

In this entry, we will discuss how to deal
with regressors that are categorical variables in
a regression model. There are also applications

where the dependent variable may be a categor-
ical variable. For example, the dependent vari-
able could be bankruptcy or nonbankruptcy of
a company over some period of time. In such
cases, the product of a regression is a proba-
bility. Probability models of this type include
linear probability, logit regression, and probit
linear models.

INDEPENDENT
CATEGORICAL VARIABLES
Categorical input variables are used to cluster
input data into different groups. That is, sup-
pose we are given a set of input-output data
and a partition of the data set in a number of
subsets Ai so that each data point belongs to
one and only one set. The Ai represent a cate-
gorical input variable. In financial econometrics
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categories might represent, for example, differ-
ent market regimes, economic states, ratings,
countries, industries, or sectors.

We cannot, per se, mix quantitative input vari-
ables and categorical variables. For example,
we cannot sum yield spreads and their ratings.
However, we can perform a transformation that
allows the mixing of categorical and quanti-
tative variables. Let’s see how. Suppose first
that there is only one categorical input variable
D, one quantitative input variable X, and one
quantitative output variable Y Consider our set
of quantitative data, that is, quantitative obser-
vations. We organize data in a matrix form as
usual:

Y =

⎡

⎢⎣
Y1
...

YT

⎤

⎥⎦ , X =

⎡

⎢⎣
1 X11
...

...
1 XT1

⎤

⎥⎦

Suppose data belong to two categories. An ex-
planatory variable that distinguishes only two
categories is called a dichotomous variable. The
key is to represent a dichotomous categorical
variable as a numerical variable D, called a
dummy variable, that can assume the two val-
ues 0,1. We can now add the variable D to the
input variables to represent membership in one
or the other group:

X =

⎡

⎢⎣
D1 1 X11
...

...
...

DT 1 XT1

⎤

⎥⎦

If Di = 0, the data Xi belong to the first cate-
gory; if Di = 1, the data Xi belong to the second
category.

Consider now the regression equation

Yi = β0 + β1 Xi + εi

In financial econometric applications, the in-
dex i will be time or a variable that identifies a
cross section of assets, such as bond issues. Con-
sider that we can write three separate regression
equations, one for those data that correspond
to D = 1, one for those data that correspond to
D = 0, and one for the fully pooled data. Sup-
pose now that the three equations differ by the

intercept term but have the same slope. Let’s ex-
plicitly write the two equations for those data
that correspond to D = 1 and for those data that
correspond to D = 0:

yi =
{

β00 + β1Xi + εi , if Di = 0
β01 + β1 Xi + εi , if Di = 1

where i defines the observations that belong to
the first category when the dummy variable D
assumes value 0 and also defines the observa-
tions that belong to the second category when
the dummy variable D assumes value 1. If the
two categories are recession and expansion, the
first equation might hold in periods of expan-
sion and the second in periods of recession. If
the two categories are investment-grade bonds
and noninvestment-grade bonds, the two equa-
tions apply to different cross sections of bonds,
as will be illustrated in an example later in this
entry.

Observe now that, under the assumption that
only the intercept term differs in the two equa-
tions, the two equations can be combined into
a single equation in the following way:

Yi = β00 + γ D(i) + β1 Xi + εi

where γ = β01 − β00 represents the difference of
the intercept for the two categories. In this way
we have defined a single regression equation
with two independent quantitative variables,
X, D, to which we can apply all the usual tools
of regression analysis, including the ordinary
least squares (OLS) estimation method and
all the tests. By estimating the coefficients of
this regression, we obtain the common slope
and two intercepts. Observe that we would
obtain the same result if the categories were
inverted. However, the interpretation of the es-
timated parameter for the categorical variable
would differ depending on which category is
omitted.

Thus far we have assumed that there is no
interaction between the categorical and the
quantitative variable, that is, the slope of the
regression is the same for the two categories.
This means that the effects of variables are ad-
ditive; that is, the effect of one variable is added
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regardless of the value taken by the other
variable. In many applications, this is an
unrealistic assumption.

Using dummy variables, the treatment is the
same as that applied to intercepts. Consider the
regression equation Yi = β0 + β1Xi + εi and
write two regression equations for the two cat-
egories as we did above:

yi =
{

β0 + β10Xi + εi , if Di = 0
β0 + β11Xi + εi , if Di = 1

We can couple these two equations in a single
equation as follows:

Yi = β0 + β10 Xi + δ(Di Xi ) + εi

where δ = β11 − β10. In fact, the above equation
is identical to the first equation for Di = 0 and
to the second for Di = 1. This regression can be
estimated with the usual LS methods.

In practice, it is rarely appropriate to consider
only interactions and not the intercept, which is
the main effect. We call marginalization the fact
that the interaction effect is marginal with re-
spect to the main effect. However, we can easily
construct a model that combines both effects.
In fact we can write the following regression
adding two variables, the dummy D and the
interaction DX:

Yi = β0 + γ Di + β1 Xi + δ(Di Xi ) + εi

This regression equation, which now includes
three regressors, combines both effects.

The above process of introducing dummy
variables can be generalized to regressions
with multiple variables. Consider the following
regression:

Yi = β0 +
N∑

j=1

β j Xij + εi

where data can be partitioned in two categories
with the use of a dummy variable:

X =

⎡

⎢⎣
D1 1 X11 · · · X1N
...

...
...

. . .
...

DT 1 XT1 · · · XTN

⎤

⎥⎦

We can introduce the dummy D as well as its
interaction with the N quantitative variable and

thus write the following equation:

Yi = β0 + γi Di +
N∑

j=1

β j Xij +
N∑

j=1

δij(Di Xij) + εi

The above discussion depends critically on
the fact that there are only two categories, a fact
that allows one to use the numerical variable
0,1 to identify the two categories. However, the
process can be easily extended to multiple cat-
egories by adding dummy variables. Suppose
there are K > 2 categories. An explanatory vari-
able that distinguishes between more than two
categories is called a polytomous variable.

Suppose there are three categories, A, B, and
C. Consider a dummy variable D1 that assumes
a value one on the elements of A and zero on
all the others. Let’s now add a second dummy
variable D2 that assumes the value one on the
elements of the category B and zero on all the
others. The three categories are now completely
identified: A is identified by the values 1,0 of
the two dummy variables, B by the values 0,1,
and C by the values 0,0. Note that the values
1,1 do not identify any category. This process
can be extended to any number of categories. If
there are K categories, we need K − 1 dummy
variables.

How can we determine if a given categoriza-
tion is useful? It is quite obvious that many
categorizations will be totally useless for the
purpose of any econometric regression. If
we categorize bonds in function of the color
of the logo of the issuer, it is quite obvious
that we obtain meaningless results. In other
cases, however, distinctions can be subtle and
important. Consider the question of market
regime shifts or structural breaks. These are
delicate questions that can be addressed only
with appropriate statistical tests.

A word of caution about statistical tests is in
order. Statistical tests typically work under the
assumptions of the model and might be mis-
leading if these assumptions are violated. If we
try to fit a linear model to a process that is in-
herently nonlinear, tests might be misleading.
It is good practice to use several tests and to
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be particularly attentive to inconsistencies be-
tween test results. Inconsistencies signal poten-
tial problems in applying tests, typically model
misspecification.

The t-statistic applied to the regression
coefficients of dummy variables offer a set of
important tests to judge which regressors are
significant. The t-statistics are the coefficients
divided by their respective squared errors.
The p-value associated with each coefficient
estimate is the probability of the hypothesis
that the corresponding coefficient is zero,
that is, that the corresponding variable is
irrelevant.

We can also use the F-test to test the signifi-
cance of each specific dummy variable. To do
so we can run the regression with and with-
out that variable and form the corresponding
F-test. The Chow test is the F-test to gauge if all
the dummy variables are collectively irrelevant
(see Chow, 1960). The Chow test is an F-test of
mutual exclusion, written as follows:

F = [SSR − (SSR1 + SSR2)]
SSR1 + SSR2

[n − 2(k + 1)]
k + 1

where

SSR1 = the squared sum of residuals of
the regression run with data in
the first category without dummy
variables

SSR2 = the squared sum of residuals of
the regression run with data in the
second category without dummy
variables

SSR = the squared sum of residuals of the
regression run with fully pooled
data without dummy variables

Observe that SSR1 + SSR2 is equal to the
squared sum of residuals of the regression run
on fully pooled data but with dummy variables.
Thus the Chow test is the F-test of the unre-
stricted regressions with and without dummy
variables.

Illustration: Predicting Corporate
Bond Yield Spreads
To illustrate the use of dummy variables, we
will estimate a model to predict corporate bond
spreads.1 The regression is relative to a cross
section of bonds. The regression equation is the
following:

Spreadi = β0 + β1Couponi + β2CoverageRatioi

+ β3LoggedEBITi + εi

where

Spreadi = option-adjusted spread (in
basis points) for the bond
issue of company i

Couponi = coupon rate for the bond of
company i, expressed with-
out considering percentage
sign (i.e., 7.5% = 7.5)

CoverageRatioi = earnings before interest,
taxes, depreciation and
amortization (EBITDA) di-
vided by interest expense
for company i

LoggedEBITi = logarithm of earnings
(earnings before interest
and taxes, EBIT, in millions
of dollars) for company i

The dependent variable, Spread, is not mea-
sured by the typically nominal spread but by the
option-adjusted spread. This spread measure
adjusts for any embedded options in a bond
(see Chapter 6 in Fabozzi, 2006).

Theory would suggest the following proper-
ties for the estimated coefficients:

� The higher the coupon rate, the greater the is-
suer’s default risk and hence the larger the
spread. Therefore, a positive coefficient for
the coupon rate is expected.

� A coverage ratio is a measure of a com-
pany’s ability to satisfy fixed obligations,
such as interest, principal repayment, or
lease payments. There are various coverage
ratios. The one used in this illustration is the
ratio of the earnings before interest, taxes,
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depreciation, and amortization (EBITDA)
divided by interest expense. Since the higher
the coverage ratio the lower the default risk,
an inverse relationship is expected between
the spread and the coverage ratio; that is, the
estimated coefficient for the coverage ratio is
expected to be negative.

� There are various measures of earnings re-
ported in financial statements. Earnings in
this illustration is defined as the trailing
12-months earnings before interest and taxes
(EBIT). Holding other factors constant, it is
expected that the larger the EBIT, the lower
the default risk and therefore an inverse rela-
tionship (negative coefficient) is expected.

We used 100 observations at two different
dates, 6/6/05 and 11/28/05; thus there are 200
observations in total. This will allow us to test
if there is a difference in the spread regression
for investment-grade and noninvestment grade
bonds using all observations. We will then test
to see if there is any structural break between
the two dates. We organize the data in matrix
form as usual. Data are shown in Table 1. The
second column indicates that data belong to two
categories and suggests the use of one dummy
variable. Another dummy variable is used later
to distinguish between the two dates. Let’s first
estimate the regression equation for the fully
pooled data, that is, all data without any distinc-
tion in categories. The estimated coefficients for
the model and their corresponding t-statistics
are shown below:

Coefficient
Estimated
Coefficient

Standard
Error t-statistic p-value

β0 157.01 89.56 1.753 0.081
β1 61.27 8.03 7.630 9.98E-13
β2 −13.20 2.27 −5.800 2.61E-08
β3 −90.88 16.32 −5.568 8.41E-08

Other regression results are:

SSR: 2.3666e + 006
F -statistic: 89.38
p-value: 0
R2: 0.57

Given the high value of the F-statistic and the
p-value close to zero, the regression is signif-
icant. The coefficient for the three regressors
is statistically significant and has the expected
sign. However, the intercept term is not statisti-
cally significant. The residuals are given in the
first column of Table 2.

Let’s now analyze if we obtain a better fit if
we consider the two categories of investment-
grade and below investment-grade bonds.
It should be emphasized that this is only an
exercise to show the application of regression
analysis. The conclusions we reach are not
meaningful from an econometric point of view
given the small size of the database. The new
equation is written as follows:

Spreadi = β0 + β1 D1i + β2Couponi

+ β3 D1i Couponi + β4CoverageRatioi

+ β5 D1i CoverageRatioi + β6LoggedEBITi

+ β7 D1i LoggedEBITi + εi

There are now seven variables and eight pa-
rameters to estimate. The estimated model co-
efficients and the t-statistics are shown below:

Coefficient
Estimated
Coefficient

Standard
Error t-statistic p-value

β0 284.52 73.63 3.86 0.00
β1 597.88 478.74 1.25 0.21
β2 37.12 7.07 5.25 3.96E-07
β3 −45.54 38.77 −1.17 0.24
β4 −10.33 1.84 −5.60 7.24E-08
β5 50.13 40.42 1.24 0.22
β6 −83.76 13.63 −6.15 4.52E-09
β7 −0.24 62.50 −0.00 1.00

Other regression results are:

SSR: 1.4744e + 006
F -statistic: 76.83
p-value: 0
R2: 0.73

The Chow test has the value 16.60. The
F-statistic and the Chow test suggest that the
use of dummy variables has greatly improved
the goodness of fit of the regression, even after
compensating for the increase in the number of
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Table 1 Regression Data for the Bond Spread Application: 11/28/2005 and 06/06/2005

Issue #
Spread,
11/28/05

CCC+
and
Below Coupon

Coverage
Ratio

Logged
EBIT

Spread,
6/6/05

CCC+
and
Below Coupon

Coverage
Ratio

Logged
EBIT

1 509 0 7.400 2.085 2.121 473 0 7.400 2.087 2.111
2 584 0 8.500 2.085 2.121 529 0 8.500 2.087 2.111
3 247 0 8.375 9.603 2.507 377 0 8.375 5.424 2.234
4 73 0 6.650 11.507 3.326 130 0 6.650 9.804 3.263
5 156 0 7.125 11.507 3.326 181 0 7.125 9.804 3.263
6 240 0 7.250 2.819 2.149 312 0 7.250 2.757 2.227
7 866 1 9.000 1.530 2.297 852 1 9.000 1.409 1.716
8 275 0 5.950 8.761 2.250 227 0 5.950 11.031 2.166
9 515 0 8.000 2.694 2.210 480 0 8.000 2.651 2.163

10 251 0 7.875 8.289 1.698 339 0 7.875 8.231 1.951
11 507 0 9.375 2.131 2.113 452 0 9.375 2.039 2.042
12 223 0 7.750 4.040 2.618 237 0 7.750 3.715 2.557
13 71 0 7.250 7.064 2.348 90 0 7.250 7.083 2.296
14 507 0 8.000 2.656 1.753 556 0 8.000 2.681 1.797
15 566 1 9.875 1.030 1.685 634 1 9.875 1.316 1.677
16 213 0 7.500 11.219 3.116 216 0 7.500 10.298 2.996
17 226 0 6.875 11.219 3.116 204 0 6.875 10.298 2.996
18 192 0 7.750 11.219 3.116 201 0 7.750 10.298 2.996
19 266 0 6.250 3.276 2.744 298 0 6.250 3.107 2.653
20 308 0 9.250 3.276 2.744 299 0 9.250 3.107 2.653
21 263 0 7.750 2.096 1.756 266 0 7.750 2.006 3.038
22 215 0 7.190 7.096 3.469 259 0 7.190 6.552 3.453
23 291 0 7.690 7.096 3.469 315 0 7.690 6.552 3.453
24 324 0 8.360 7.096 3.469 331 0 8.360 6.552 3.453
25 272 0 6.875 8.612 1.865 318 0 6.875 9.093 2.074
26 189 0 8.000 4.444 2.790 209 0 8.000 5.002 2.756
27 383 0 7.375 2.366 2.733 417 0 7.375 2.375 2.727
28 207 0 7.000 2.366 2.733 200 0 7.000 2.375 2.727
29 212 0 6.900 4.751 2.847 235 0 6.900 4.528 2.822
30 246 0 7.500 19.454 2.332 307 0 7.500 16.656 2.181
31 327 0 6.625 3.266 2.475 365 0 6.625 2.595 2.510
32 160 0 7.150 3.266 2.475 237 0 7.150 2.595 2.510
33 148 0 6.300 3.266 2.475 253 0 6.300 2.595 2.510
34 231 0 6.625 3.266 2.475 281 0 6.625 2.595 2.510
35 213 0 6.690 3.266 2.475 185 0 6.690 2.595 2.510
36 350 0 7.130 3.266 2.475 379 0 7.130 2.595 2.510
37 334 0 6.875 4.310 2.203 254 0 6.875 5.036 2.155
38 817 1 8.625 1.780 1.965 635 0 8.625 1.851 1.935
39 359 0 7.550 2.951 3.078 410 0 7.550 2.035 3.008
40 189 0 6.500 8.518 2.582 213 0 6.500 13.077 2.479
41 138 0 6.950 25.313 2.520 161 0 6.950 24.388 2.488
42 351 0 9.500 3.242 1.935 424 0 9.500 2.787 1.876
43 439 0 8.250 2.502 1.670 483 0 8.250 2.494 1.697
44 347 0 7.700 4.327 3.165 214 0 7.700 4.276 3.226
45 390 0 7.750 4.327 3.165 260 0 7.750 4.276 3.226
46 149 0 8.000 4.327 3.165 189 0 8.000 4.276 3.226
47 194 0 6.625 4.430 3.077 257 0 6.625 4.285 2.972
48 244 0 8.500 4.430 3.077 263 0 8.500 4.285 2.972
49 566 1 10.375 2.036 1.081 839 1 10.375 2.032 1.014
50 185 0 6.300 7.096 3.469 236 0 6.300 6.552 3.453
51 196 0 6.375 7.096 3.469 221 0 6.375 6.552 3.453
52 317 0 6.625 3.075 2.587 389 0 6.625 2.785 2.551
53 330 0 8.250 3.075 2.587 331 0 8.250 2.785 2.551
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Table 1 (Continued)

Issue #
Spread,
11/28/05

CCC+
and
Below Coupon

Coverage
Ratio

Logged
EBIT

Spread,
6/6/05

CCC+
and
Below Coupon

Coverage
Ratio

Logged
EBIT

54 159 0 6.875 8.286 3.146 216 0 6.875 7.210 3.098
55 191 0 7.125 8.286 3.146 257 0 7.125 7.210 3.098
56 148 0 7.375 8.286 3.146 117 0 7.375 7.210 3.098
57 112 0 7.600 8.286 3.146 151 0 7.600 7.210 3.098
58 171 0 7.650 8.286 3.146 221 0 7.650 7.210 3.098
59 319 0 7.375 3.847 1.869 273 0 7.375 4.299 1.860
60 250 0 7.375 12.656 2.286 289 0 7.375 8.713 2.364
61 146 0 5.500 5.365 3.175 226 0 5.500 5.147 3.190
62 332 0 6.450 5.365 3.175 345 0 6.450 5.147 3.190
63 354 0 6.500 5.365 3.175 348 0 6.500 5.147 3.190
64 206 0 6.625 7.140 2.266 261 0 6.625 5.596 2.091
65 558 0 7.875 2.050 2.290 455 0 7.875 2.120 2.333
66 190 0 6.000 2.925 3.085 204 0 6.000 3.380 2.986
67 232 0 6.750 2.925 3.085 244 0 6.750 3.380 2.986
68 913 1 11.250 2.174 1.256 733 0 11.250 2.262 1.313
69 380 0 9.750 4.216 1.465 340 0 9.750 4.388 1.554
70 174 0 6.500 4.281 2.566 208 0 6.500 4.122 2.563
71 190 0 7.450 10.547 2.725 173 0 7.450 8.607 2.775
72 208 0 7.125 2.835 3.109 259 0 7.125 2.813 3.122
73 272 0 6.500 5.885 2.695 282 0 6.500 5.927 2.644
74 249 0 6.125 5.133 2.682 235 0 6.125 6.619 2.645
75 278 0 8.750 6.562 2.802 274 0 8.750 7.433 2.785
76 252 0 7.750 2.822 2.905 197 0 7.750 2.691 2.908
77 321 0 7.500 2.822 2.905 226 0 7.500 2.691 2.908
78 379 0 7.750 4.093 2.068 362 0 7.750 4.296 2.030
79 185 0 6.875 6.074 2.657 181 0 6.875 5.294 2.469
80 307 0 7.250 5.996 2.247 272 0 7.250 3.610 2.119
81 533 0 10.625 1.487 1.950 419 0 10.625 1.717 2.081
82 627 0 8.875 1.487 1.950 446 0 8.875 1.717 2.081
83 239 0 8.875 2.994 2.186 241 0 8.875 3.858 2.161
84 240 0 7.375 8.160 2.225 274 0 7.375 8.187 2.075
85 634 0 8.500 2.663 2.337 371 0 8.500 2.674 2.253
86 631 1 7.700 2.389 2.577 654 1 7.700 2.364 2.632
87 679 1 9.250 2.389 2.577 630 1 9.250 2.364 2.632
88 556 1 9.750 1.339 1.850 883 1 9.750 1.422 1.945
89 564 1 9.750 1.861 2.176 775 1 9.750 1.630 1.979
90 209 0 6.750 8.048 2.220 223 0 6.750 7.505 2.092
91 190 0 6.500 4.932 2.524 232 0 6.500 4.626 2.468
92 390 0 6.875 6.366 1.413 403 0 6.875 5.033 1.790
93 377 0 10.250 2.157 2.292 386 0 10.250 2.057 2.262
94 143 0 5.750 11.306 2.580 110 0 5.750 9.777 2.473
95 207 0 7.250 2.835 3.109 250 0 7.250 2.813 3.122
96 253 0 6.500 4.918 2.142 317 0 6.500 2.884 1.733
97 530 1 8.500 0.527 2.807 654 1 8.500 1.327 2.904
98 481 0 6.750 2.677 1.858 439 0 6.750 3.106 1.991
99 270 0 7.625 2.835 3.109 242 0 7.625 2.813 3.122

100 190 0 7.125 9.244 3.021 178 0 7.125 7.583 3.138

Notes:
Spread = option-adjusted spread (in basis points)
Coupon = coupon rate, expressed without considering percentage sign (i.e., 7.5% = 7.5)
Coverage Ratio = EBITDA divided by interest expense for company
Logged EBIT = logarithm of earnings (EBIT in millions of dollars)
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Table 2 Illustration of Residuals and Leverage for Corporate Bond Spread

Residuals Residuals
Issue # Residuals Dummy 1 Dummy 2

1 118.79930 148.931400 162.198700
2 126.39350 183.097400 200.622000
3 −68.57770 −39.278100 −26.716500
4 −37.26080 −60.947500 −71.034400
5 16.63214 4.419645 −3.828890
6 −128.76600 −104.569000 −92.122000
7 386.42330 191.377200 217.840000
8 73.53972 48.516800 56.58778
9 104.15990 146.400600 160.438900

10 −124.78700 −98.020100 −71.374300
11 −4.28874 73.473220 94.555400
12 −117.58200 −88.168700 −82.883100
13 −223.61800 −213.055000 −202.748000
14 54.13075 99.735710 123.153000
15 −29.42160 −132.755000 −179.955000
16 27.74192 26.913670 24.308960
17 79.04072 63.114850 58.091160
18 −8.57759 −3.366800 −5.003930
19 18.62462 13.109110 9.664499
20 −123.21000 −56.256500 −48.090100
21 −181.64800 −140.494000 −118.369000
22 26.43157 27.457990 14.487850
23 71.79254 84.897050 73.862080
24 63.73623 93.025400 84.583560
25 −23.09740 −22.603200 −3.106990
26 −146.00700 −112.938000 −110.018000
27 53.72288 78.075810 78.781050
28 −99.29780 −84.003500 −84.749600
29 −46.31030 −41.105600 −43.489200
30 98.22006 79.285040 96.588250
31 32.05062 37.541930 41.075430
32 −167.12000 −148.947000 −143.382000
33 −127.03400 −129.393000 −127.118000
34 −63.94940 −58.458100 −54.924600
35 −85.93250 −78.871000 −75.085900
36 24.10520 41.795380 47.283410
37 12.86740 23.326060 33.884440
38 333.53890 101.376800 173.584400
39 58.02881 82.472150 77.040360
40 −19.14100 −32.550700 −29.298900
41 118.41190 67.990200 81.986050
42 −169.48100 −90.625700 −64.883800
43 −38.74030 13.936980 39.950520
44 62.91014 86.397490 80.392250
45 102.84620 127.541400 121.729700
46 −153.47300 −122.739000 −127.583000
47 −30.81510 −32.968700 −41.285200
48 −95.711400 −52.572300 −53.631800
49 −101.678000 −219.347000 −237.977000
50 50.969050 30.496460 14.081700
51 57.373200 38.712320 22.587840
52 29.717770 34.958870 36.101100
53 −56.859100 −12.364200 −4.932630
54 −23.959100 −31.659900 −38.650000
55 −7.278620 −8.940330 −14.962800
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Table 2 (Continued)

Residuals Residuals
Issue # Residuals Dummy 1 Dummy 2

56 −65.598100 −61.220800 −66.275700
57 −115.386000 −105.573000 −109.757000
58 −59.449600 −48.429300 −52.419900
59 −69.299000 −43.044000 −23.885700
60 15.946800 13.880220 28.513500
61 11.362190 −21.353800 −35.607900
62 139.148000 129.380400 118.803100
63 158.084100 149.524300 139.140600
64 −56.785300 −60.952000 −51.339900
65 153.651800 194.149900 205.750200
66 −15.653600 −28.630900 −40.227500
67 −19.612200 −14.472300 −23.166100
68 209.488200 144.261600 67.891100
69 −185.659000 −100.217000 −63.396000
70 −91.541800 −92.646100 −91.015000
71 −36.623800 −33.937000 −29.003400
72 −65.586300 −51.301800 −59.080100
73 39.294110 32.661770 32.391920
74 28.197460 14.759650 12.952710
75 −73.910000 −28.902200 −22.353300
76 −78.608000 −47.733800 −48.902600
77 5.711553 30.546620 28.410290
78 −10.926100 22.258560 38.888810
79 −71.611400 −69.462200 −67.416900
80 −10.848000 3.505179 15.383910
81 −78.195700 32.775440 61.748590
82 123.041000 191.738700 213.938800
83 −223.662000 −160.978000 −142.925000
84 −58.977600 −47.671100 −33.850800
85 203.727300 257.223800 270.556600
86 267.904600 −65.208100 89.636310
87 220.923600 −4.162260 42.473790
88 −12.621600 −142.213000 −168.474000
89 31.862060 −127.616000 −134.267000
90 −53.593800 −57.028600 −45.579800
91 −70.794900 −73.470000 −70.669700
92 24.164780 34.342730 62.098550
93 −171.291000 −73.744300 −52.943000
94 17.439710 −22.092800 −20.420000
95 −74.246100 −56.942100 −64.236600
96 −42.690600 −42.602900 −31.958300
97 114.168900 −66.109500 −66.049500
98 114.578500 129.177300 145.600600
99 −34.225400 −7.862790 −13.705900

100 −6.958960 −10.488100 −13.508000
101 81.920940 112.117900 101.420600
102 70.515070 127.283800 120.844000
103 −18.587600 24.683610 20.132390
104 −8.443100 −26.784100 −28.884400
105 13.449820 6.582981 6.321103
106 −50.430600 −26.617000 −36.781100
107 318.056000 133.403000 130.828300
108 47.876010 16.919350 5.068270
109 64.341610 107.038200 99.281600
110 −14.573200 10.557760 3.393970

(Continued)
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Table 2 (Continued)

Residuals Residuals
Issue # Residuals Dummy 1 Dummy 2

111 −66.995600 11.539420 7.987728
112 −113.425000 −82.640800 −88.147800
113 −209.054000 −198.177000 −205.892000
114 107.522000 152.737700 142.464600
115 41.638860 −76.825800 −145.458000
116 7.647833 10.327540 9.887700
117 33.946630 21.528710 18.669900
118 −22.671700 −13.952900 −13.425200
119 40.107630 35.729610 24.798540
120 −142.727000 −74.636000 −73.956000
121 −63.286100 −31.013100 −33.970100
122 61.774140 64.481450 64.302480
123 87.135110 101.920500 103.676700
124 62.078800 93.048860 97.398200
125 48.320900 45.935300 36.150130
126 −121.736000 −90.029000 −92.609500
127 87.253680 111.626800 105.229900
128 −106.767000 −91.452500 −99.300700
129 −28.566900 −22.540100 −29.135400
130 108.560100 98.752280 95.570570
131 64.418690 71.586810 60.886980
132 −95.752300 −75.902200 −84.570100
133 −27.665900 −28.348600 −40.306300
134 −19.581300 −12.413200 −23.113000
135 −119.564000 −110.826000 −121.274000
136 47.473260 66.840260 58.094960
137 −61.953700 −53.237800 −64.316600
138 149.786400 211.505100 204.226300
139 90.609530 118.184700 114.258300
140 55.650810 29.860840 23.239180
141 126.240500 78.712630 79.050720
142 −107.826000 −27.243600 −31.116800
143 7.614932 60.121850 50.036220
144 −65.174500 −41.979400 −42.794500
145 −22.238400 2.164489 1.542950
146 −108.558000 −78.116000 −77.769900
147 20.679750 19.696850 12.963030
148 −88.216600 −43.906700 −43.383600
149 165.253100 48.262590 −23.500200
150 93.311620 74.519920 70.896340
151 73.715770 56.735780 53.402470
152 94.629570 100.961000 90.629950
153 −62.947300 −17.362000 −21.403800
154 14.480140 10.216950 6.659433
155 40.160620 41.936480 39.346550
156 −115.159000 −107.344000 −108.966000
157 −94.946500 −81.696400 −82.447900
158 −28.010400 −13.552500 −14.110500
159 −110.127000 −85.111400 −96.632900
160 9.959282 18.682370 12.662020
161 89.889700 57.689740 48.509480
162 150.675500 141.424000 135.920500
163 150.611600 142.567900 137.258000
164 −38.040900 −36.521000 −48.754100
165 55.443990 95.437610 88.132530



CATEGORICAL AND DUMMY VARIABLES IN REGRESSION MODELS 343

Table 2 (Continued)

Residuals Residuals
Issue # Residuals Dummy 1 Dummy 2

166 −4.652580 −18.233400 −27.698600
167 −10.611100 −6.074840 −12.637200
168 35.778970 164.163000 162.921500
169 −215.328000 −131.013000 −135.422000
170 −59.986400 −60.605400 −70.729300
171 −74.693600 −66.782400 −69.716200
172 −13.734800 0.523639 −3.905600
173 45.295840 38.898770 30.164940
174 30.476800 13.024800 3.159872
175 −67.888500 −25.271900 −23.635500
176 −135.061000 −103.830000 −107.375000
177 −90.741200 −65.550000 −70.062300
178 −28.683300 4.187387 −4.706060
179 −103.027000 −97.290000 −106.078000
180 −88.975000 −66.845700 −77.367900
181 −177.281000 −67.904100 −66.493200
182 −43.044700 24.059160 18.696920
183 −212.505000 −152.131000 −155.963000
184 −38.210800 −25.916400 −34.173800
185 −66.764700 −12.702000 −17.886300
186 295.611300 −36.578800 106.036400
187 176.630300 −47.533000 −13.126100
188 324.060100 189.413000 136.666400
189 221.951100 76.029960 34.046210
190 −58.422000 −59.380500 −70.254000
191 −37.907200 −39.303500 −49.850800
192 53.841660 65.166450 51.559780
193 −166.323000 −68.275700 −66.904900
194 −45.521100 −79.888400 −90.959200
195 −30.394500 −13.116600 −17.062000
196 −42.709500 −33.855500 −50.285700
197 257.550200 34.224540 70.337910
198 90.307160 102.727000 89.148700
199 −61.373800 −35.037300 −37.531400
200 −30.310400 −29.889500 −32.034600

Notes:
Residuals: residuals from the pooled regression without dummy variables for investment grade.
Residuals Dummy 1: inclusion of dummy variable for investment grade.
Residuals Dummy 2: inclusion of dummy variable to test for regime shift.

parameters. The residuals of the model without
and with dummy variable D1 are shown, re-
spectively, in the second and third columns of
Table 2.

Now let’s use dummy variables to test if there
is a regime shift between the two dates. This is
a common use for dummy variables in practice.
To this end we create a new dummy variable
that has the value 0 for the first date 11/28/05

and 1 for the second date 6/6/05. The new
equation is written as follows:

Spreadi = β0 + β1 D2i + β2Couponi

+ β3 D2i Couponi + β4CoverageRatioi

+ β5 D2i CoverageRatioi + β6LoggedEBITi

+ β7 D2i LoggedEBITi + εi

as in the previous case but with a different
dummy variable. There are seven independent
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variables and eight parameters to estimate. The
estimated model coefficients and t-statistics are
shown below:

Coefficient
Estimated
Coefficient

Standard
Error t-statistic p-value

β0 257.26 79.71 3.28 0.00
β1 82.17 61.63 1.33 0.18
β2 33.25 7.11 4.67 5.53E-06
β3 28.14 2.78 10.12 1.45E-19
β4 −10.79 2.50 −4.32 2.49E-05
β5 0.00 3.58 0.00 1.00
β6 −63.20 18.04 −3.50 0.00
β7 −27.48 24.34 −1.13 0.26

Other regression statistics are:

SSR: 1.5399e + 006
F -statistic: 72.39
p-value: 0
R2: 0.71

The Chow test has the value 14.73. The
F-statistics and the Chow test suggest that there
is indeed a regime shift and that the spread re-
gressions at the two different dates are different.
Again, the use of dummy variables has greatly
improved the goodness of fit of the regression,
even after compensating for the increase in the
number of parameters. The residuals of the
model with dummy variables D2 are shown in
the next-to-the-last column of Table 2.

Illustration: Testing the Mutual
Fund Characteristic Lines in
Different Market Environments
The characteristic line of a mutual fund is the
regression of the excess returns of a mutual fund
on the market’s excess returns:

yit = αi + βi xt

where

yit = mutual fund i’s excess return over
the risk-free rate

xt = market excess return over the risk-
free rate

αi and β i = the regression parameters to be es-
timated for mutual fund i

We will first estimate the characteristic line
for two large-cap mutual funds. Since we would
prefer not to disclose the name of each fund, we
simply refer to them as A and B. (Neither mu-
tual fund selected is an index fund.) Because
the two mutual funds are large-cap funds, the
S&P 500 was used as the benchmark. The risk-
free rate used was the 90-day Treasury bill rate.
Ten years of monthly data were used from Jan-
uary 1, 1995 to December 31, 2004. The data
are reported in Table 3. The first column in the
table shows the month. The second and third
columns give the return on the market return
(rMt) and risk-free rate (rft), respectively. The
fifth column is the excess market return, which
is xt in the regression equation. The seventh and
eighth columns show the returns for mutual
funds A and B, respectively. The excess returns
for the two mutual funds (yit) are given in the
last two columns. The other columns will be
explained shortly.

The results of the above regression for both
mutual funds are shown in Table 4. The esti-
mated β for both mutual funds is statistically
significantly different from zero.

Let’s now perform a simple application of the
use of dummy variables by determining if the
slope (beta) of the two mutual funds is differ-
ent in a rising stock market (“up market”) and
a declining stock market (“down market”). To
test this, we can write the following multiple
regression model:

yit = αi + β1i xt + β2i (Dtxt) + eit

where Dt is the dummy variable that can take
on a value of 1 or 0. We will let

Dt = 1 if period t is classified as an up market
Dt = 0 if period t is classified as a down market

The coefficient for the dummy variable is β2i.
If that coefficient is statistically significant, then
for the mutual fund:

In an up market: βi = β1i + β2i

In a down market: βi = β1i
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Table 3 Data for Estimating Mutual Fund Characteristic Line with a Dummy Variable

Mutual Fund

Month Dummy rM − fft A B A B
Ended rM rft Dt xt Dtxt rt rt yt yt

01/31/1995 2.60 0.42 0 2.18 0 0.65 1.28 0.23 0.86
02/28/1995 3.88 0.40 0 3.48 0 3.44 3.16 3.04 2.76
03/31/1995 2.96 0.46 1 2.50 2.5 2.89 2.58 2.43 2.12
04/30/1995 2.91 0.44 1 2.47 2.47 1.65 1.81 1.21 1.37
05/31/1995 3.95 0.54 1 3.41 3.41 2.66 2.96 2.12 2.42
06/30/1995 2.35 0.47 1 1.88 1.88 2.12 2.18 1.65 1.71
07/31/1995 3.33 0.45 1 2.88 2.88 3.64 3.28 3.19 2.83
08/31/1995 0.27 0.47 1 −0.20 −0.2 −0.40 0.98 −0.87 0.51
09/30/1995 4.19 0.43 1 3.76 3.76 3.06 3.47 2.63 3.04
10/31/1995 −0.35 0.47 1 −0.82 −0.82 −1.77 −0.63 −2.24 −1.10
11/30/1995 4.40 0.42 1 3.98 3.98 4.01 3.92 3.59 3.50
12/31/1995 1.85 0.49 1 1.36 1.36 1.29 1.73 0.80 1.24
01/31/1996 3.44 0.43 1 3.01 3.01 3.36 2.14 2.93 1.71
02/29/1996 0.96 0.39 1 0.57 0.57 1.53 1.88 1.14 1.49
03/31/1996 0.96 0.39 1 0.57 0.57 0.59 1.65 0.20 1.26
04/30/1996 1.47 0.46 1 1.01 1.01 1.46 1.83 1.00 1.37
05/31/1996 2.58 0.42 1 2.16 2.16 2.17 2.20 1.75 1.78
06/30/1996 0.41 0.40 1 0.01 0.01 −0.63 0.00 −1.03 −0.40
07/31/1996 −4.45 0.45 1 −4.90 −4.9 −4.30 −3.73 −4.75 −4.18
08/31/1996 2.12 0.41 0 1.71 0 2.73 2.24 2.32 1.83
09/30/1996 5.62 0.44 0 5.18 0 5.31 4.49 4.87 4.05
10/31/1996 2.74 0.42 1 2.32 2.32 1.42 1.34 1.00 0.92
11/30/1996 7.59 0.41 1 7.18 7.18 6.09 5.30 5.68 4.89
12/31/1996 −1.96 0.46 1 −2.42 −2.42 −1.38 −0.90 −1.84 −1.36
01/31/1997 6.21 0.45 1 5.76 5.76 4.15 5.73 3.70 5.28
02/28/1997 0.81 0.39 1 0.42 0.42 1.65 −1.36 1.26 −1.75
03/31/1997 −4.16 0.43 1 −4.59 −4.59 −4.56 −3.75 −4.99 −4.18
04/30/1997 5.97 0.43 1 5.54 5.54 4.63 3.38 4.20 2.95
05/31/1997 6.14 0.49 1 5.65 5.65 5.25 6.05 4.76 5.56
06/30/1997 4.46 0.37 1 4.09 4.09 2.98 2.90 2.61 2.53
07/31/1997 7.94 0.43 1 7.51 7.51 6.00 7.92 5.57 7.49
08/31/1997 −5.56 0.41 1 −5.97 −5.97 −4.40 −3.29 −4.81 −3.70
09/30/1997 5.48 0.44 1 5.04 5.04 5.70 4.97 5.26 4.53
10/31/1997 −3.34 0.42 1 −3.76 −3.76 −2.76 −2.58 −3.18 −3.00
11/30/1997 4.63 0.39 0 4.24 0 3.20 2.91 2.81 2.52
12/31/1997 1.72 0.48 1 1.24 1.24 1.71 2.41 1.23 1.93
01/31/1998 1.11 0.43 1 0.68 0.68 −0.01 −0.27 −0.44 −0.70
02/28/1998 7.21 0.39 1 6.82 6.82 5.50 6.84 5.11 6.45
03/31/1998 5.12 0.39 1 4.73 4.73 5.45 3.84 5.06 3.45
04/30/1998 1.01 0.43 1 0.58 0.58 −0.52 1.07 −0.95 0.64
05/31/1998 −1.72 0.40 1 −2.12 −2.12 −1.25 −1.30 −1.65 −1.70
06/30/1998 4.06 0.41 1 3.65 3.65 3.37 4.06 2.96 3.65
07/31/1998 −1.06 0.40 1 −1.46 −1.46 0.10 −1.75 −0.30 −2.15
08/31/1998 −14.46 0.43 1 −14.89 −14.89 −15.79 −13.44 −16.22 −13.87
09/30/1998 6.41 0.46 0 5.95 0 5.00 4.86 4.54 4.40
10/31/1998 8.13 0.32 0 7.81 0 5.41 4.56 5.09 4.24
11/30/1998 6.06 0.31 0 5.75 0 5.19 5.56 4.88 5.25
12/31/1998 5.76 0.38 1 5.38 5.38 7.59 7.18 7.21 6.80
01/31/1999 4.18 0.35 1 3.83 3.83 2.60 3.11 2.25 2.76
02/28/1999 −3.11 0.35 1 −3.46 −3.46 −4.13 −3.01 −4.48 −3.36
03/31/1999 4.00 0.43 1 3.57 3.57 3.09 3.27 2.66 2.84
04/30/1999 3.87 0.37 1 3.50 3.5 2.26 2.22 1.89 1.85

(Continued)
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Table 3 (Continued)

Mutual Fund

Month Dummy rM − fft A B A B
Ended rM rft Dt xt Dtxt rt rt yt yt

05/31/1999 −2.36 0.34 1 −2.70 −2.7 −2.12 −1.32 −2.46 −1.66
06/30/1999 5.55 0.40 1 5.15 5.15 4.43 5.36 4.03 4.96
07/31/1999 −3.12 0.38 1 −3.50 −3.5 −3.15 −1.72 −3.53 −2.10
08/31/1999 −0.50 0.39 0 −0.89 0 −1.05 −2.06 −1.44 −2.45
09/30/1999 −2.74 0.39 1 −3.13 −3.13 −2.86 −1.33 −3.25 −1.72
10/31/1999 6.33 0.39 0 5.94 0 5.55 2.29 5.16 1.90
11/30/1999 2.03 0.36 1 1.67 1.67 3.23 3.63 2.87 3.27
12/31/1999 5.89 0.44 1 5.45 5.45 8.48 7.09 8.04 6.65
01/31/2000 −5.02 0.41 1 −5.43 −5.43 −4.09 −0.83 −4.50 −1.24
02/29/2000 −1.89 0.43 1 −2.32 −2.32 1.43 2.97 1.00 2.54
03/31/2000 9.78 0.47 0 9.31 0 6.84 5.86 6.37 5.39
04/30/2000 −3.01 0.46 1 −3.47 −3.47 −4.04 −4.55 −4.50 −5.01
05/31/2000 −2.05 0.50 1 −2.55 −2.55 −2.87 −4.47 −3.37 −4.97
06/30/2000 2.46 0.40 1 2.06 2.06 0.54 6.06 0.14 5.66
07/31/2000 −1.56 0.48 0 −2.04 0 −0.93 1.89 −1.41 1.41
08/31/2000 6.21 0.50 0 5.71 0 7.30 6.01 6.80 5.51
09/30/2000 −5.28 0.51 1 −5.79 −5.79 −4.73 −4.81 −5.24 −5.32
10/31/2000 −0.42 0.56 0 −0.98 0 −1.92 −4.84 −2.48 −5.40
11/30/2000 −7.88 0.51 0 −8.39 0 −6.73 −11.00 −7.24 −11.51
12/31/2000 0.49 0.50 0 −0.01 0 2.61 3.69 2.11 3.19
01/31/2001 3.55 0.54 0 3.01 0 0.36 5.01 −0.18 4.47
02/28/2001 −9.12 0.38 0 −9.50 0 −5.41 −8.16 −5.79 −8.54
03/31/2001 −6.33 0.42 0 −6.75 0 −5.14 −5.81 −5.56 −6.23
04/30/2001 7.77 0.39 0 7.38 0 5.25 4.67 4.86 4.28
05/31/2001 0.67 0.32 0 0.35 0 0.47 0.45 0.15 0.13
06/30/2001 −2.43 0.28 1 −2.71 −2.71 −3.48 −1.33 −3.76 −1.61
07/31/2001 −0.98 0.30 1 −1.28 −1.28 −2.24 −1.80 −2.54 −2.10
08/31/2001 −6.26 0.31 0 −6.57 0 −4.78 −5.41 −5.09 −5.72
09/30/2001 −8.08 0.28 0 −8.36 0 −6.46 −7.27 −6.74 −7.55
10/31/2001 1.91 0.22 0 1.69 0 1.01 2.30 0.79 2.08
11/30/2001 7.67 0.17 0 7.50 0 4.49 5.62 4.32 5.45
12/31/2001 0.88 0.15 1 0.73 0.73 1.93 2.14 1.78 1.99
01/31/2002 −1.46 0.14 1 −1.60 −1.6 −0.99 −3.27 −1.13 −3.41
02/28/2002 −1.93 0.13 1 −2.06 −2.06 −0.84 −2.68 −0.97 −2.81
03/31/2002 3.76 0.13 0 3.63 0 3.38 4.70 3.25 4.57
04/30/2002 −6.06 0.15 0 −6.21 0 −4.38 −3.32 −4.53 −3.47
05/31/2002 −0.74 0.14 0 −0.88 0 −1.78 −0.81 −1.92 −0.95
06/30/2002 −7.12 0.13 0 −7.25 0 −5.92 −5.29 −6.05 −5.42
07/31/2002 −7.80 0.15 0 −7.95 0 −6.37 −7.52 −6.52 −7.67
08/31/2002 0.66 0.14 0 0.52 0 −0.06 1.86 −0.20 1.72
09/30/2002 −10.87 0.14 0 −11.01 0 −9.38 −6.04 −9.52 −6.18
10/31/2002 8.80 0.14 0 8.66 0 3.46 5.10 3.32 4.96
11/30/2002 5.89 0.12 0 5.77 0 3.81 1.73 3.69 1.61
12/31/2002 −5.88 0.11 1 −5.99 −5.99 −4.77 −2.96 −4.88 −3.07
01/31/2003 −2.62 0.10 1 −2.72 −2.72 −1.63 −2.34 −1.73 −2.44
02/28/2003 −1.50 0.09 0 −1.59 0 −0.48 −2.28 −0.57 −2.37
03/31/2003 0.97 0.10 0 0.87 0 1.11 1.60 1.01 1.50
04/30/2003 8.24 0.10 0 8.14 0 6.67 5.44 6.57 5.34
05/31/2003 5.27 0.09 1 5.18 5.18 4.96 6.65 4.87 6.56
06/30/2003 1.28 0.10 1 1.18 1.18 0.69 1.18 0.59 1.08
07/31/2003 1.76 0.07 1 1.69 1.69 1.71 3.61 1.64 3.54
08/31/2003 1.95 0.07 1 1.88 1.88 1.32 1.13 1.25 1.06
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Table 3 (Continued)

Mutual Fund

Month Dummy rM − fft A B A B
Ended rM rft Dt xt Dtxt rt rt yt yt

09/30/2003 −1.06 0.08 1 −1.14 −1.14 −1.34 −1.12 −1.42 −1.20
10/31/2003 5.66 0.07 1 5.59 5.59 5.30 4.21 5.23 4.14
11/30/2003 0.88 0.07 1 0.81 0.81 0.74 1.18 0.67 1.11
12/31/2003 5.24 0.08 1 5.16 5.16 4.87 4.77 4.79 4.69
01/31/2004 1.84 0.07 1 1.77 1.77 0.87 2.51 0.80 2.44
02/29/2004 1.39 0.06 1 1.33 1.33 0.97 1.18 0.91 1.12
03/31/2004 −1.51 0.09 1 −1.60 −1.6 −0.89 −1.79 −0.98 −1.88
04/30/2004 −1.57 0.08 1 −1.65 −1.65 −2.59 −1.73 −2.67 −1.81
05/31/2004 1.37 0.06 0 1.31 0 0.66 0.83 0.60 0.77
06/30/2004 1.94 0.08 0 1.86 0 1.66 1.56 1.58 1.48
07/31/2004 −3.31 0.10 1 −3.41 −3.41 −2.82 −4.26 −2.92 −4.36
08/31/2004 0.40 0.11 0 0.29 0 −0.33 0.00 −0.44 −0.11
09/30/2004 1.08 0.11 0 0.97 0 1.20 1.99 1.09 1.88
10/31/2004 1.53 0.11 0 1.42 0 0.33 1.21 0.22 1.10
11/30/2004 4.05 0.15 1 3.90 3.9 4.87 5.68 4.72 5.53
12/31/2004 3.40 0.16 1 3.24 3.24 2.62 3.43 2.46 3.27

Notes:
1. The following information is used for determining the value of the dummy variable for the first three months:

rm r f rm − r f

Sep-94 −2.41 0.37 −2.78
Oct-94 2.29 0.38 1.91
Nov-94 −3.67 0.37 −4.04
Dec-94 1.46 0.44 1.02

2. The dummy variable is defined as follows:

Dt xt = xt if (rM − rft) for the prior three months > 0
Dt xt = 0 otherwise

If β2i is not statistically significant, then there
is no difference in β i for up and down markets.

In our illustration, we have to define what we
mean by an up and a down market. We will

Table 4 Characteristic Line for Mutual Funds A and B

Coefficient
Coefficient
Estimate

Standard
Error t-statistica p-value

Mutual Fund A
α 0.206 0.102 −2.014 0.046
β 0.836 0.022 37.176 0.000
R2 0.92
p-value 0.000

Mutual Fund B
α 0.010 0.140 0.073 0.942
β 0.816 0.031 26.569 0.000
R2 0.86
p-value 0.000

aNull hypothesis is that β is equal to zero.

define an up market precisely as one where the
average excess return (market return over the
risk-free rate or (rMt − rft)) for the prior three
months is greater than zero. Then

Dt = 1 if the average (rMt − rft) for the prior
three months > 0

Dt = 0 otherwise

The regressor will then be

Dtxt = xt if (rMt − rft) for the prior
three months > 0

Dtxt = 0 otherwise

The data are presented in Table 3. The fourth
column provides the coding for the dummy
variable, Dt, and the sixth column shows the
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Table 5 Regression Results for Dummy Variable
Regression for Mutual Funds A and B

Coefficient
Coefficient
Estimate

Standard
Error t-statistic p-value

Fund A
α −0.23 0.10 −2.36 0.0198
β1 0.75 0.03 25.83 4E-50
β2 0.18 0.04 4.29 4E-05

Fund B
α 0.00 0.14 −0.03 0.9762
β1 0.75 0.04 18.02 2E-35
β2 0.13 0.06 2.14 0.0344

product of Dt and xt.The regression results for
the two mutual funds are shown in Table 5. The
adjusted R2 is 0.93 and 0.83 for mutual funds A
and B, respectively.

For both funds, β2i is statistically significantly
different from zero. Hence, for these two mu-
tual funds, there is a difference in the β i for up
and down markets. From the results reported
previously, we would find that:

Mutual Fund A Mutual Fund B

Down market
β i (= β1i)

0.75 0.75

Up market
β i (= β1i + β2i)

0.93
(= 0.75 + 0.18)

0.88
(= 0.75 + 0.13)

DEPENDENT CATEGORICAL
VARIABLES
Thus far we have discussed models where the
independent variables can be either quantita-
tive or categorical while the dependent variable
is quantitative. Let’s now discuss models where
the dependent variable is categorical. Recall that
a regression model can be interpreted as a con-
ditional probability distribution. Suppose that
the dependent variable is a categorical variable
Y that can assume two values, which we repre-
sent conventionally as 0 and 1. The probability
distribution of the dependent variable is then a
discrete function:

{
P(Y = 1) = p
P(Y = 0) = q = 1 − p

A regression model where the dependent
variable is a categorical variable is therefore a
probability model; that is, it is a model of the
probability p given the values of the indepen-
dent variables X:

P(Y = 1|X) = f (X)

In the following sections we will discuss
three probability models: the linear probabil-
ity model, the probit regression model, and the
logit regression model.

Linear Probability Model
The linear probability model assumes that the
function f (X) is linear. For example, a linear
probability model of default assumes that there
is a linear relationship between the probabil-
ity of default and the factors that determine
default.

P(Y = 1|X) = f (X)

The parameters of the model can be obtained
by using ordinary least squares applying the es-
timation methods of multiple regression mod-
els entry. Once the parameters of the model are
estimated, the predicted value for P(Y) can be
interpreted as the event probability such as the
probability of default in our previous example.
Note, however, that when using a linear prob-
ability model, in this entry the R2 is used only
if all the independent variables are also binary
variables.

A major drawback of the linear probabil-
ity model is that the predicted value may be
negative. In the probit regression and logit re-
gression models described below, the predicted
probability is forced to be between 0 and 1.

Probit Regression Model
The probit regression model is a nonlinear regres-
sion model where the dependent variable is
a binary variable. Due to its nonlinearity, one
cannot estimate this model with least squares
methods. We have to use maximum like-
lihood (ML) methods as described below.
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Because what is being predicted is the standard
normal cumulative probability distribution, the
predicted values are between 0 and 1.

The general form for the probit regression
model is

P(Y = 1|X1, X2, . . . , XK )

= N(a + b1 X1 + b2 X2 + · · · + bK XK )

where N is the cumulative standard normal dis-
tribution function.

To see how ML methods work, consider a
model of the probability of corporate bond de-
faults. Suppose that there are three factors that
have been found to historically explain corpo-
rate bond defaults. The probit regression model
is then

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

P(Y = 1|X1 X2, X3)
= N(β0 + β1 X1 + β2 X2 + β3 X3)

P(Y = 0|X1, X2, X3)
= 1 − N(β0 + β1 X1 + β2 X2 + β3 X3)

The likelihood function is formed from the
products

∏

i

N(β0 + β1 X1i + β2 X2i + β3 X3i )Yi

(1 − N(β0 + β1 X1i + β2 X2i + β3 X3i ))1−Yi

extended to all the samples, where the variable
Y assumes a value of 0 for defaulted companies
and 1 for nondefaulted companies. Parameters
are estimated by maximizing the likelihood.

Suppose that the following parameters are
estimated:

β = −2.1 β1 = 1.9 β2 = 0.3 β3 = 0.8

Then

N(a + b1 X1 + b2 X2 + b3 X3)

= N(−2.1 + 1.9X1 + 0.3X2 + 0.8X3)

Now suppose that the probability of default
of a company with the following values for the

independent variables is sought:

X1 = 0.2 X2 = 0.9 X3 = 1.0

Substituting these values we get

N(−2.1 + 1.9(0.2) + 0.3(0.9) + 0.8(1.0)) = N(−0.65)

The standard normal cumulative probability for
N(−0.65) is 25.8%. Therefore, the probability of
default for a company with this characteristic is
25.8%.

Application to Hedge Fund Survival
An illustration of the probit regression model is
provided by Malkiel and Saha (2005) who use
it to calculate the probability of the demise of a
hedge fund. The dependent variable in the re-
gression is 1 if a fund is defunct (did not survive)
and 0 if it survived. The explanatory variables,
their estimated coefficient, and the standard er-
ror of the coefficient using hedge fund data from
1994 to 2003 are given below:

Explanatory Variable Coefficient
Standard
Deviation

1. Return for the first
quarter before the end of
fund performance

−1.47 0.36

2. Return for the second
quarter before the end of
fund performance

−4.93 0.32

3. Return for the third
quarter before the end of
fund performance

−2.74 0.33

4. Return for the fourth
quarter before the end of
fund performance

−3.71 0.35

5. Standard deviation for
the year prior to the end
of fund performance

17.76 0.92

6. Number of times in the
final three months the
fund’s monthly return
fell below the monthly
median of all funds in
the same primary
category

0.00 0.33

7. Assets of the fund (in
billions of dollars)
estimated at the end of
performance

−1.30 −7.76

Constant term −0.37 0.07
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For only one explanatory variable, the sixth
one, the coefficient is not statistically signifi-
cant from zero. That explanatory variable is a
proxy for peer comparison of the hedge fund
versus similar hedge funds. The results suggest
that there is a lower probability of the demise
of a hedge fund if there is good recent per-
formance (the negative coefficient of the first
four variables above) and the more assets un-
der management (the negative coefficient for
the last variable above). The greater the hedge
fund performance return variability, the higher
the probability of demise (the positive coeffi-
cient for the fifth variable above).

Logit Regression Model
As with the probit regression model, the logit
regression model is a nonlinear regression model
where the dependent variable is a binary vari-
able and the predicted values are between 0
and 1. The predicted value is also a cumula-
tive probability distribution. However, rather
than being a standard normal cumulative prob-
ability distribution, it is a standard cumulative
probability distribution of a distribution called
the logistic distribution.

The general formula for the logit regression
model is

P(Y = 1|X1, X2, . . . , XN)

= F (a + b1 X1 + b2 X2 + . . . + bN XN)

= −1/1 + e−W

where W = a + b1X1 + b2X2 + . . . + bNXN.
As with the probit regression model, the

logit regression model is estimated with ML
methods.

Using our previous illustration, W = −0.65.
Therefore

1/[1 + e−W] = 1/[1 + e−(−0.65)] = 34.3%

The probability of default for the company
with these characteristics is 34.3%.

KEY POINTS
� Categorical variables are variables that rep-

resent group membership and can appear in
a regression equation as a regressor or as an
independent variable.

� A dichotomous variable is an explanatory
variable that distinguishes only two cate-
gories; the key is to represent a dichotomous
categorical variable as a numerical variable,
referred to as a dummy variable, that can as-
sume the two values 0,1.

� When a dummy variable is a regressor, the
t-statistic can be used to determine if that vari-
able is statistically significant. The Chow test
can also be used to test if all the dummy vari-
ables in a regression model are collectively
relevant.

� A regression model where the dependent
variable is a categorical variable is a prob-
ability model, and there are three types of
such models: the probability model, the pro-
bit regression model, and the logit regression
model.

� The linear probability model assumes that the
probability model to be estimated is linear
and can be estimated using least squares.

� The probit regression model is a nonlinear
regression model where the dependent vari-
able is a binary variable. The model cannot
be estimated using least squares because it is
a nonlinear model and is instead estimated
using maximum likelihood methods.

� The logit regression model is a nonlinear re-
gression model where the dependent variable
is a binary variable and the predicted values
are between 0 and 1 and represent a cumula-
tive probability distribution. Rather than be-
ing a standard normal cumulative probability
distribution, it is a standard cumulative prob-
ability of a logit.
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NOTE
1. The model presented in this illustration was

developed by FridsonVision and is described
in “Focus Issues Methodology,” Leverage
World (May 30, 2003). The data for this illus-
tration were provided by Greg Braylovskiy
of FridsonVision. The firm uses about 650
companies in its analysis. Only 100 observa-
tions were used in this illustration.
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Quantile Regression
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Abstract: Many of the statistical methods that are most commonly used by researchers and practi-
tioners in finance are mainly focused on identifying the central tendency within a data set. However,
there are numerous situations where it may be equally or more important to understand the disper-
sion between outcomes that are higher or lower than the central tendency. One statistical method
that can be useful in such investigations is quantile regression, which conceptually can be viewed
as a logical extension of ordinary least squares methods.

Many investors use regression methods to
gauge the relative attractiveness of different
firms, the risks inherent in active or passive
portfolios, the historical performance of invest-
ment factors, and similar topics. Such research
often focuses on understanding the “central
tendency” within a data set, and for this pur-
pose perhaps the most commonly used tool is
regression based on ordinary least squares (OLS)
approaches. OLS methods are designed to find
the “line of best fit” by minimizing the sum
of squared errors from individual data points.
OLS analysis generally does a good job of de-
scribing the central tendency within a data set,
but typically will be much less effective at de-
scribing the behavior of data points that are
distant from the line of best fit. Quantile re-
gressions, however, can be useful in such in-
vestigations. This statistical approach can be
viewed conceptually as a logical extension of or-
dinary least squares methods. We present a brief

The material discussed here does not necessarily represent the opinions, methods, or views of
Delaware Investments.

overview of quantile regression approaches,
together with some examples of how such
methods can be applied in practical situations.

COMPARING QUANTILE
AND OLS APPROACHES
Conceptually, OLS statistical analysis can be
summarized by the following equation, as ex-
pressed in a univariate context where a single
independent variable is being used to explain
or predict a single dependent variable:

Yi = α +
N∑

i=1

β Xi + ε

where Y represents the dependent variable,
X represents the observed value of an indepen-
dent variable, i = 1, . . . , N data points, α rep-
resents the intercept (in other words, the value
on the vertical axis when the horizontal axis is
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zero), β represents the slope of the relationship
between X and Y, and ε is an error term with
an expected mean value of zero.

As a hypothetical example, suppose that X
reflects the expected dividend in dollars for a
universe of firms, and Y represents the stock
price for each of those firms. Then the value of
β will reflect the value that the market is assign-
ing to each $1 of dividend payment, while the
value of α will reflect the expected price of a
stock that does not pay a dividend. (Please note
that we are not proposing that such an equation
would provide a usable investment thesis.) It is
possible to adapt this simple OLS equation to a
multivariate context, in which several different
independent variables are being used together
to explain or predict the value of the dependent
variable.

Similarly, quantile regression approaches can
be summarized by the following equation,
again in a univariate context:

Yi = α p +
N∑

i=1

β p Xi + ε p

where αp represents the intercept for a spec-
ified quantile, βp represents the slope of the
relationship between X and Y for a specified
quantile, and εp similarly represents the error
term for that specified quantile. (The specific
form for these two equations has been adapted
from Meligkotsidou, Vrontos, and Vrontos,
2007; other authors might use different termi-
nology, but the underlying concepts are the
same.) And just as OLS methods can be used in
both univariate and multivariate contexts, the
same is true for quantile regression approaches.

In this context, what is a quantile? It is a gen-
eralized form of a percentile, in other words
a measure of spread between the highest and
lowest values in a particular range. A quantile
can conveniently be expressed in terms of per-
centages, so that the median will be the 50th
quantile. But the same method can be used for
any quantile, not just the 50th quantile. In this
sense, quantile methods are somewhat similar

to value-at-risk (VaR) approaches, which seek
to measure the “95th percentile” or “99th per-
centile” of potential losses in a portfolio.

REASONS FOR USING
QUANTILE METHODS
If a data set is distributed in an approximately
normal fashion, and if the analysis focuses
specifically on the 50th quantile, then the re-
sults will often be quite similar to those derived
from conventional OLS analysis. However, OLS
methods tend to provide unreliable results if a
data set is skewed, has “fat tails,” or has some
extreme outliers—any or all of which can exist
when the relevant data are drawn from eco-
nomics or finance (Koenker and Hallock, 2001).
In such circumstances, quantile regression fo-
cusing on the 50th quantile will often provide
a more robust estimate of the central tendency
than would be available from OLS approaches.
Figure 1 provides a hypothetical example of a
situation where quantile regression might be
useful.

Figure 1 shows a scatter plot of a hypothet-
ical relationship that has three main traits: (1)
positive slope, (2) higher dispersion of results
when the independent variable is small, and (3)
a single outlier toward the top end of the range.
The graph shows that the outlier exerts consid-
erable influence on the OLS analysis by tending
to skew the relationship upward. A conven-
tional OLS approach might decide to exclude
the outlier, but this would effectively mean
throwing away the information contained in
that data point. By contrast, the quantile anal-
ysis includes the outlier, but is less affected by
its presence. As a consequence, quantile regres-
sion does a better job of identifying the “central
tendency” within this data set—in exactly the
same way as an analyst might choose to use the
median rather than the mean when describing a
distribution that has a heavy weight in the left
or right tail.

The above analysis shows that quantile re-
gression is more robust than OLS methods in
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Figure 1 Effect of Outliers on OLS and Quantile Analysis
Note: Data are hypothetical and based on a simulated relationship.

the presence of outliers and other potentially
distorting influences. Another useful feature of
quantile approaches is that they allow analy-
sis of areas away from the middle of the dis-
tribution. Conventional regression techniques
focus on the “central tendency” of the data, and
thus tend to prioritize describing the relation-
ship that is most representative of the average.
However, from the perspective of an active in-
vestor or a risk manager, the most interesting
information may well be in the tails of the dis-
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Figure 2 Effect of Outliers on OLS and Quantile Analysis: Estimated Lines for the 10th and 90th
Quantiles
Note: Data are hypothetical and based on a simulated relationship.

tribution, where the standard OLS approaches
are not generally very informative, but where
quantile methods can be readily applied.

Figure 2 shows the same scatter plot as Fig-
ure 1, but instead of showing the quantile me-
dian, it shows estimated lines for the 10th and
90th quantiles. The lines form a funnel-like
shape, indicating that there is greater variation
on the left of the distribution than the right.
From the perspective of an investor, this sug-
gests that the range of possible outcomes from
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investing in companies on the left of the dis-
tribution may be larger, and thus require more
careful analysis. From the perspective of a risk
manager, the difference in slope between the
10th and 90th percentiles might suggest that
greater provisioning would be appropriate if a
portfolio tends to have greater weight in the
left of the distribution. Once again, the outlier
is included in the analysis, but its impact on
the estimated intercept and slope for the 10th
and 90th percentiles is considerably muted by
comparison with what would be expected us-
ing OLS-like methods.

BACKGROUND AND
FURTHER EXAMPLES
Quantile regression methods were first devel-
oped in the 1970s in the discipline of statis-
tics (Koenker and Bassett, 1978). Koenker (2005)
provides a comprehensive overview of quan-
tile regression in general, with numerous exam-
ples drawn from finance and from other subject
areas. The statistical packages R, S-Plus, Stata,
SAS, and SPSS all have quantile regression ca-
pabilities, either as part of their base distribu-
tion or as separate modules. These packages
typically focus on linear quantile regression,
but extensions to nonlinear applications are also
feasible (Koenker and Hallock, 2001).

In recent years, quantile regression methods
have become increasingly popular in finance
and economics. Chernozhukov and Umantsev
(2000) applied quantile methods to estimate
VaR, noting that the basic structure could be ap-
plied to various possible modeling approaches.
Wu and Xiao (2002) also used quantile meth-
ods to estimate VaR and provided an exam-
ple of how such approaches could be used in
the context of an index fund. Engle and Man-
ganelli (2004) provided an example of how to
use quantile regression approaches in calculat-
ing a conditional VaR measure. Kuester, Mit-
tnik, and Paolella (2006) proposed extending
the conditional VaR approach by incorporating
some additional autoregressive elements.

An important area of research for academics
and practitioners has been the influence of in-
vestment style on portfolio returns. One way
to perform such analysis is through the analy-
sis of portfolio holdings, but these are typically
only available periodically and with a consid-
erable lag. Another approach has been to focus
on portfolio returns, which may be available
at higher frequency and with a smaller delay.
Early work in this area, such as Sharpe (1992)
and Carhart (1997), generally relied on OLS
approaches, which led to a focus on a portfo-
lio’s “central tendency” relative to its bench-
mark. Bassett and Chen (2001) extended this
earlier work by applying quantile methods, and
showed that this permits examination of active
performance during periods when the portfolio
and/or its benchmark are far away from their
central tendency.

As shown above, quantile regression provides
a more complete picture than OLS approaches
of the conditional relationship among financial
variables. Landajo, de Andrés, and Lorca (2008)
used quantile methods to gauge the relation-
ship between size and profitability for publish-
ing firms in Spain, and showed that the patterns
for small firms were rather different from those
for their larger peers. Similarly, Lee, Chan, Yeh,
and Chan (2010) used quantile methods on a
sample of firms from Taiwan in order to assess
how increasing internationalization affects rel-
ative valuation.

Quantile methods can also be used to test
whether the quantile-specific parameters are
stable over different quantiles and over time,
as noted by Koenker and Xiao (2006). Quan-
tile models can thus demonstrate how different
variables affect the location, scale, and shape
of the conditional distribution of the response.
Such methods therefore constitute a significant
extension of classical constant coefficient time
series models, in which the effect of condition-
ing is typically confined to a shift of the intercept
and/or the slope of the central tendency. Fat-
touh, Scaramozzino, and Harris (2005) used
quantile methods to analyze how the capi-
tal structure of firms in Korea had changed
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over time. Billett and Xue (2008) used quan-
tile approaches to analyze the motivations be-
hind open market share repurchases, and found
that firms are generally more likely to repur-
chase shares when they are at higher risk of
being taken over. Pires, Pereira, and Martins
(2010) use quantile methods to analyze the
determinants of credit default swap spreads
over time, and report that some previously re-
ported anomalous results may have occurred
due to the emphasis on the conditional mean of
the distribution, rather than on the upper and
lower tails.

KEY POINTS
� Quantile regression methods are well estab-

lished in the statistical literature, and are in-
creasingly being used in finance.

� Quantile regression methods are more robust
than conventional OLS approaches to skewed
distributions, fat tails, and the presence of
outliers—all of which are frequently encoun-
tered in real-world financial data.

� Quantile regression approaches can be used
to assess the central tendency of a data
set, and in this sense can be viewed as a
regression-based analogue of the median of
a distribution. The same approaches can also
be used to examine the upper or lower reaches
of a data set, which is not possible using con-
ventional OLS methods.

� For active investors and risk managers, the
upper or lower tails of a distribution may well
be more interesting than the central tendency,
and quantile regression is an appropriate tool
for such work.

� Quantile regression methods can be applied
to data from a single period, but can also be
applied in a time-series context. Such meth-
ods can help in analyzing how relationships
may have changed over time.
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Abstract: Volatility is a key parameter used in many financial applications, from derivatives valua-
tion to asset management and risk management. Volatility measures the size of the errors made in
modeling returns and other financial variables. It was discovered that, for vast classes of models, the
average size of volatility is not constant but changes with time and is predictable. Autoregressive
conditional heteroskedasticity (ARCH), generalized autoregressive conditional heteroskedasticity
(GARCH) models, and stochastic volatility models are the main tools used to model and forecast
volatility. Moving from single assets to portfolios made of multiple assets, not only are there id-
iosyncratic volatilities but also correlations and covariances between assets that are time varying
and predictable. Multivariate ARCH/GARCH models and dynamic factor models, eventually in a
Bayesian framework, are the basic tools used to forecast correlations and covariances.

In this entry we discuss the modeling of the
time behavior of the uncertainty related to
many econometric models when applied to
financial data. Finance practitioners know that
errors made in predicting markets are not of a
constant magnitude. There are periods when
unpredictable market fluctuations are larger
and periods when they are smaller. This behav-
ior, known as heteroskedasticity, refers to the fact
that the size of market volatility tends to cluster
in periods of high volatility and periods of

low volatility. The discovery that it is possible
to formalize and generalize this observation
was a major breakthrough in econometrics.
In fact, we can describe many economic and
financial data with models that predict, si-
multaneously, the economic variables and the
average magnitude of the squared prediction
error.

In this entry, we show how the average error
size can be modeled as an autoregressive pro-
cess. Given their autoregressive nature, these

359



360 Financial Econometrics

models are called autoregressive conditional het-
eroskedasticity (ARCH) or generalized autoregres-
sive conditional heteroskedasticity (GARCH). This
discovery is particularly important in financial
econometrics, where the error size is, in itself, a
variable of great interest.

REVIEW OF LINEAR
REGRESSION AND
AUTOREGRESSIVE MODELS
Let’s first discuss two examples of basic econo-
metric models, the linear regression model and
the autoregressive model, and illustrate the mean-
ing of homoskedasticity or heteroskedasticity in
each case.

The linear regression model is the workhorse
of economic modeling. A univariate linear re-
gression represents a proportionality relation-
ship between two variables:

y = α + βx + ε

The preceding linear regression model states
that the expectation of the variable y is β times
the expectation of the variable x plus a constant
α. The proportionality relationship between y
and x is not exact but subject to an error ε.

In standard regression theory, the error ε is
assumed to have a zero mean and a constant
standard deviation σ . The standard deviation is
the square root of the variance, which is the ex-
pectation of the squared error: σ 2 = E

(
ε2

)
. It is

a positive number that measures the size of the
error. We call homoskedasticity the assumption
that the expected size of the error is constant
and does not depend on the size of the vari-
able x. We call heteroskedasticity the assumption
that the expected size of the error term is not
constant.

The assumption of homoskedasticity is con-
venient from a mathematical point of view and
is standard in regression theory. However, it
is an assumption that must be verified empir-
ically. In many cases, especially if the range
of variables is large, the assumption of homo-

skedasticity might be unreasonable. For exam-
ple, assuming a linear relationship between
consumption and household income, we can
expect that the size of the error depends on the
size of household income. In fact, high-income
households have more freedom in the alloca-
tion of their income.

In the preceding household-income example,
the linear regression represents a cross-sectional
model without any time dimension. However,
in finance and economics in general, we deal
primarily with time series, that is, sequences
of observations at different moments of time.
Let’s call Xt the value of an economic time se-
ries at time t. Since the groundbreaking work
of Haavelmo (1944), economic time series are
considered to be realizations of stochastic pro-
cesses. That is, each point of an economic time
series is considered to be an observation of a
random variable.

We can look at a stochastic process as a
sequence of variables characterized by joint-
probability distributions for every finite set of
different time points. In particular, we can con-
sider the distribution ft of each variable Xt at
each moment. Intuitively, we can visualize a
stochastic process as a very large (infinite) num-
ber of paths. A process is called weakly station-
ary if all of its second moments are constant. In
particular this means that the mean and vari-
ance are constants μt = μ and σ 2

t = σ 2 that do
not depend on the time t. A process is called
strictly stationary if none of its finite distribu-
tions depends on time. A strictly stationary pro-
cess is not necessarily weakly stationary as its
finite distributions, though time-independent,
might have infinite moments.

The terms μt and σ 2
t are the unconditional

mean and variance of a process. In finance
and economics, however, we are typically in-
terested in making forecasts based on past and
present information. Therefore, we consider
the distribution ft2

(
x

∣∣It1

)
of the variable Xt2

at time t2 conditional on the information It1

known at time t1. Based on information avail-
able at time t − 1, It−1, we can also define the
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conditional mean and the conditional variance
(μt |It−1 ) ,

(
σ 2

t |It−1
)
.

A process can be weakly stationary but have
time-varying conditional variance. If the condi-
tional mean is constant, then the unconditional
variance is the unconditional expectation of the
conditional variance. If the conditional mean is
not constant, the unconditional variance is not
equal to the unconditional expectation of the
conditional variance; this is due to the dynam-
ics of the conditional mean.

In describing ARCH/GARCH behavior, we
focus on the error process. In particular, we as-
sume that the errors are an innovation process,
that is, we assume that the conditional mean of
the errors is zero. We write the error process as:
εt = σtzt where σt is the conditional standard
deviation and the z terms are a sequence of in-
dependent, zero-mean, unit-variance, normally
distributed variables. Under this assumption,
the unconditional variance of the error process
is the unconditional mean of the conditional
variance. Note, however, that the unconditional
variance of the process variable does not, in gen-
eral, coincide with the unconditional variance
of the error terms.

In financial and economic models, condition-
ing is often stated as regressions of the future
values of the variables on the present and past
values of the same variable. For example, if we
assume that time is discrete, we can express
conditioning as an autoregressive model:

Xt+1 = α0 + β0 Xt + · · · + βn Xt−n + εt+1

The error term εi is conditional on the infor-
mation Ii that, in this example, is represented
by the present and the past n values of the
variable X. The simplest autoregressive model
is the random walk model of the logarithms of
prices pi :

pt+1 = μt + pt + εt

In terms of returns, the random walk model
is simply:

rt = �pt = μ + εt

A major breakthrough in econometric model-
ing was the discovery that, for many families of
econometric models, linear and nonlinear alike,
it is possible to specify a stochastic process for
the error terms and predict the average size of
the error terms when models are fitted to empir-
ical data. This is the essence of ARCH modeling
introduced by Engle (1982).

Two observations are in order. First, we have
introduced two different types of heteroskedas-
ticity. In the first example, regression errors are
heteroskedastic because they depend on the
value of the independent variables: The average
error is larger when the independent variable
is larger. In the second example, however, error
terms are conditionally heteroskedastic because
they vary with time and do not necessarily de-
pend on the value of the process variables. Later
in this entry we will describe a variant of the
ARCH model where the size of volatility is cor-
related with the level of the variable. However,
in the basic specification of ARCH models, the
level of the variables and the size of volatility
are independent.

Second, let’s observe that the volatility (or the
variance) of the error term is a hidden, nonob-
servable variable. Later in this entry, we will
describe realized volatility models that treat
volatility as an observed variable. Theoretically,
however, time-varying volatility can be only in-
ferred, not observed. As a consequence, the er-
ror term cannot be separated from the rest of
the model. This occurs both because we have
only one realization of the relevant time se-
ries and because the volatility term depends
on the model used to forecast expected returns.
The ARCH/GARCH behavior of the error term
depends on the model chosen to represent the
data. We might use different models to repre-
sent data with different levels of accuracy. Each
model will be characterized by a different spec-
ification of heteroskedasticity.

Consider, for example, the following model
for returns:

rt = m + εt
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In this simple model, the clustering of volatil-
ity is equivalent to the clustering of the squared
returns (minus their constant mean). Now
suppose that we discover that returns are
predictable through a regression on some
predictor f :

rt = m + ft−1 + εt

As a result of our discovery, we can expect
that the model will be more accurate, the size of
the errors will decrease, and the heteroskedastic
behavior will change.

Note that in the model rt = m + εt, the er-
rors coincide with the fluctuations of returns
around their unconditional mean. If errors are
an innovation process, that is, if the conditional
mean of the errors is zero, then the variance of
returns coincides with the variance of errors,
and ARCH behavior describes the fluctuations
of returns. However, if we were able to make
conditional forecasts of returns, then the ARCH
model describes the behavior of the errors and it
is no longer true that the unconditional variance
of errors coincides with the unconditional vari-
ance of returns. Thus, the statement that ARCH
models describe the time evolution of the vari-
ance of returns is true only if returns have a
constant expectation.

ARCH/GARCH effects are important be-
cause they are very general. It has been found
empirically that most model families presently
in use in econometrics and financial economet-
rics exhibit conditionally heteroskedastic errors
when applied to empirical economic and finan-
cial data. The heteroskedasticity of errors has
not disappeared with the adoption of more so-
phisticated models of financial variables. The
ARCH/GARCH specification of errors allows
one to estimate models more accurately and to
forecast volatility.

ARCH/GARCH MODELS
In this section, we discuss univariate ARCH and
GARCH models. Because in this entry we fo-
cus on financial applications, we will use finan-

cial notation. Let the dependent variable, which
might be the return on an asset or a portfolio,
be labeled rt. The mean value m and the vari-
ance h will be defined relative to a past informa-
tion set. Then the return r in the present will be
equal to the conditional mean value of r (that is,
the expected value of r based on past informa-
tion) plus the conditional standard deviation of
r (that is, the square root of the variance) times
the error term for the present period:

rt = mt +
√

htzt

The econometric challenge is to specify how
the information is used to forecast the mean and
variance of the return conditional on the past
information. While many specifications have
been considered for the mean return and used
in efforts to forecast future returns, rather sim-
ple specifications have proven surprisingly suc-
cessful in predicting conditional variances.

First, note that if the error terms were strict
white noise (that is, zero-mean, independent
variables with the same variance), the condi-
tional variance of the error terms would be con-
stant and equal to the unconditional variance of
errors. We would be able to estimate the error
variance with the empirical variance:

h =

n∑
i=1

ε2
i

n

using the largest possible available sample.
However, it was discovered that the residuals of
most models used in financial econometrics ex-
hibit a structure that includes heteroskedastic-
ity and autocorrelation of their absolute values
or of their squared values.

The simplest strategy to capture the time de-
pendency of the variance is to use a short
rolling window for estimates. In fact, before
ARCH, the primary descriptive tool to cap-
ture time-varying conditional standard devia-
tion and conditional variance was the rolling
standard deviation or the rolling variance. This
is the standard deviation or variance calcu-
lated using a fixed number of the most recent
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observations. For example, a rolling standard
deviation or variance could be calculated ev-
ery day using the most recent month (22 busi-
ness days) of data. It is convenient to think of
this formulation as the first ARCH model; it as-
sumes that the variance of tomorrow’s return
is an equally weighted average of the squared
residuals of the last 22 days.

The idea behind the use of a rolling window
is that the variance changes slowly over time,
and it is therefore approximately constant on a
short rolling-time window. However, given that
the variance changes over time, the assumption
of equal weights seems unattractive: It is rea-
sonable to consider that more recent events are
more relevant and should therefore have higher
weights. The assumption of zero weights for
observations more than one month old is also
unappealing.

In the ARCH model proposed by Engle (1982),
these weights are parameters to be estimated.
Engle’s ARCH model thereby allows the data to
determine the best weights to use in forecasting
the variance. In the original formulation of the
ARCH model, the variance is forecasted as a
moving average of past error terms:

ht = ω +
p∑

i=1

αiε
2
t−i

where the coefficients αi must be estimated
from empirical data. The errors themselves will
have the form

εt =
√

htzt

where the z terms are independent, standard
normal variables (that is, zero-mean, unit-
variance, normal variables). In order to ensure
that the variance is nonnegative, the constants

(ω, αi ) must be nonnegative. If
p∑

i=1
αi < 1, the

ARCH process is weakly stationary with con-
stant unconditional variance:

σ 2 = ω

1 −
p∑

i=1
αi

Two remarks should be made. First, ARCH is
a forecasting model insofar as it forecasts the
error variance at time t on the basis of informa-
tion known at time t − 1. Second, forecasting is
conditionally deterministic, that is, the ARCH
model does not leave any uncertainty on the ex-
pectation of the squared error at time t knowing
past errors. This must always be true of a fore-
cast, but, of course, the squared error that occurs
can deviate widely from this forecast value.

A useful generalization of this model is
the GARCH parameterization introduced by
Bollerslev (1986). This model is also a weighted
average of past squared residuals, but it has
declining weights that never go completely to
zero. In its most general form, it is not a Marko-
vian model, as all past errors contribute to fore-
cast volatility. It gives parsimonious models
that are easy to estimate and, even in its sim-
plest form, has proven surprisingly successful
in predicting conditional variances.

The most widely used GARCH specification
asserts that the best predictor of the variance
in the next period is a weighted average of
the long-run average variance, the variance
predicted for this period, and the new infor-
mation in this period that is captured by the
most recent squared residual. Such an updat-
ing rule is a simple description of adaptive or
learning behavior and can be thought of as
Bayesian updating. Consider the trader who
knows that the long-run average daily stan-
dard deviation of the Standard and Poor’s 500
is 1%, that the forecast he made yesterday was
2%, and the unexpected return observed to-
day is 3%. Obviously, this is a high-volatility
period, and today is especially volatile, sug-
gesting that the volatility forecast for tomorrow
could be even higher. However, the fact that the
long-term average is only 1% might lead the
forecaster to lower his forecast. The best strat-
egy depends on the dependence between days.
If these three numbers are each squared and
weighted equally, then the new forecast would
be 2.16 = √

(1 + 4 + 9) /3. However, rather than
weighting these equally, for daily data it is
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generally found that weights such as those
in the empirical example of (0.02, 0.9, 0.08)
are much more accurate. Hence, the forecast
is 2.08 = √

0.02 × 1 + 0.9 × 4 + 0.08 × 9. To be
precise, we can use ht to define the variance of
the residuals of a regression rt = mt + √

htεt. In
this definition, the variance of εt is one. There-
fore, a GARCH(1,1) model for variance looks
like this:

ht+1 = ω + α (rt − mt)
2 + βht = ω + αhtε

2
t + βht

This model forecasts the variance of date t
return as a weighted average of a constant, yes-
terday’s forecast, and yesterday’s squared error.
If we apply the previous formula recursively,
we obtain an infinite weighted moving aver-
age. Note that the weighting coefficients are
different from those of a standard exponentially
weighted moving average (EWMA). The econo-
metrician must estimate the constants ω, α, β;
updating simply requires knowing the previ-
ous forecast h and the residual.

The weights are (1 − α − β, β, α) and the

long-run average variance is
√

ω
/

(1 − α − β). It
should be noted that this works only if α + β <

1 and it really makes sense only if the weights
are positive, requiring α > 0, β > 0, ω > 0. In
fact, the GARCH(1,1) process is weakly station-
ary if α + β < 1. If E[log(β + αz2)] < 0, the pro-
cess is strictly stationary. The GARCH model
with α + β = 1 is called an integrated GARCH
or IGARCH. It is a strictly stationary process
with infinite variance.

The GARCH model described above and typ-
ically referred to as the GARCH(1,1) model
derives its name from the fact that the 1,1 in
parentheses is a standard notation in which the
first number refers to the number of autoregres-
sive lags (or ARCH terms) that appear in the
equation and the second number refers to the
number of moving average lags specified (often
called the number of GARCH terms). Models
with more than one lag are sometimes needed
to find good variance forecasts. Although this
model is directly set up to forecast for just one

period, it turns out that, based on the one-
period forecast, a two-period forecast can be
made. Ultimately, by repeating this step, long-
horizon forecasts can be constructed. For the
GARCH(1,1), the two-step forecast is a little
closer to the long-run average variance than
is the one-step forecast, and, ultimately, the
distant-horizon forecast is the same for all time
periods as long as α + β < 1. This is just the
unconditional variance. Thus, GARCH mod-
els are mean reverting and conditionally het-
eroskedastic but have a constant unconditional
variance.

Let’s now address the question of how the
econometrician can estimate an equation like
the GARCH(1,1) when the only variable on
which there are data is rt. One possibility is to
use maximum likelihood by substituting ht for
σ 2 in the normal likelihood and then maximiz-
ing with respect to the parameters. GARCH
estimation is implemented in commercially
available software such as EViews, GAUSS,
Matlab, RATS, SAS, or TSP. The process is quite
straightforward: For any set of parameters
ω, α, β and a starting estimate for the variance
of the first observation, which is often taken
to be the observed variance of the residuals,
it is easy to calculate the variance forecast for
the second observation. The GARCH updating
formula takes the weighted average of the un-
conditional variance, the squared residual for
the first observation, and the starting variance
and estimates the variance of the second obser-
vation. This is input into the forecast of the third
variance, and so forth. Eventually, an entire
time series of variance forecasts is constructed.

Ideally, this series is large when the residu-
als are large and small when the residuals are
small. The likelihood function provides a sys-
tematic way to adjust the parameters ω, α, β to
give the best fit. Of course, it is possible that
the true variance process is different from the
one specified by the econometrician. In order to
check this, a variety of diagnostic tests are avail-
able. The simplest is to construct the series of
{εt}, which are supposed to have constant mean
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Figure 1 Nasdaq, Dow Jones, and Bond Returns

and variance if the model is correctly specified.
Various tests, such as tests for autocorrelation
in the squares, can detect model failures. The
Ljung-Box test with 15 lagged autocorrelations
is often used.

Application to Value at Risk
Applications of the ARCH/GARCH approach
are widespread in situations where the volatil-
ity of returns is a central issue. Many banks
and other financial institutions use the idea of
value at risk (VaR) as a way to measure the risks
in their portfolios. The 1% VaR is defined as
the number of dollars that one can be 99% cer-
tain exceeds any losses for the next day. Let’s
use the GARCH(1,1) tools to estimate the 1%
VaR of a $1 million portfolio on March 23, 2000.
This portfolio consists of 50% Nasdaq, 30% Dow

Jones, and 20% long bonds. We chose this date
because, with the fall of equity markets in the
spring of 2000, it was a period of high volatil-
ity. First, we construct the hypothetical histor-
ical portfolio. (All calculations in this example
were done with the EViews software program.)
Figure 1 shows the pattern of the Nasdaq, Dow
Jones, and long Treasury bonds. In Table 1,
we present some illustrative statistics for each
of these three investments separately and, in

Table 1 Portfolio Data

Sample: 3/23/1990 3/23/2000

NQ DJ RATE PORT

Mean 0.0009 0.0005 0.0001 0.0007
Std. Dev. 0.0115 0.0090 0.0073 0.0083
Skewness −0.5310 −0.3593 −0.2031 −0.4738
Kurtosis 7.4936 8.3288 4.9579 7.0026
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Table 2 GARCH(1,1)

Dependent Variable: PORT
Sample (adjusted): 3/26/1990 3/23/2000
Convergence achieved after 16 iterations
Bollerslev-Wooldrige robust standard errors and covariance

Variance Equation

C 0.0000 0.0000 3.1210 0.0018
ARCH(1) 0.0772 0.0179 4.3046 0.0000
GARCH(1) 0.9046 0.0196 46.1474 0.0000

S.E. of regression 0.0083 Akaike info criterion −6.9186
Sum squared resid 0.1791 Schwarz criterion −6.9118
Log likelihood 9028.2809 Durbin-Watson stat 1.8413

the final column, for the portfolio as a whole.
Then we forecast the standard deviation of the
portfolio and its 1% quantile. We carry out this
calculation over several different time frames:
the entire 10 years of the sample up to March 23,
2000, the year before March 23, 2000, and from
January 1, 2000 to March 23, 2000.

Consider first the quantiles of the historical
portfolio at these three different time horizons.
Over the full 10-year sample, the 1% quantile
times $1 million produces a VaR of $22,477.
Over the last year, the calculation produces a
VaR of $24,653—somewhat higher, but not sig-
nificantly so. However, if the first quantile is cal-
culated based on the data from January 1, 2000,
to March 23, 2000, the VaR is $35,159. Thus, the
level of risk has increased significantly over the
last quarter.

The basic GARCH(1,1) results are given in
Table 2. Notice that the coefficients sum up to
a number slightly less than one. The forecasted
standard deviation for the next day is 0.014605,
which is almost double the average standard
deviation of 0.0083 presented in the last col-
umn of Table 1. If the residuals were normally
distributed, then this would be multiplied by
2.326348, giving a VaR equal to $33,977. As it
turns out, the standardized residuals, which are
the estimated values of {εt}, have a 1% quantile
of 2.8437, which is well above the normal quan-
tile. The estimated 1% VaR is $39,996. Notice
that this VaR has risen to reflect the increased
risk in 2000.

Finally, the VaR can be computed based solely
on estimation of the quantile of the forecast dis-
tribution. This has been proposed by Engle and
Manganelli (2001), adapting the quantile regres-
sion methods of Koenker and Basset (1978).
Application of their method to this dataset de-
livers a VaR of $38,228. Instead of assuming the
distribution of return series, Engle and Man-
ganelli (2004) propose a new VaR modeling
approach, conditional autoregressive value at risk
(CAViaR), to directly compute the quantile of
an individual financial asset. On a theoretical
level, due to structural changes of the return
series, the constant-parameter CAViaR model
can be extended. Huang et al. (2010) formulate
a time-varying CAViaR model, which they call
an index-exciting time-varying CAViaR model.
The model incorporates the market index infor-
mation to deal with the unobservable structural
break points for the individual risky asset.

WHY ARCH/GARCH?
The ARCH/GARCH framework proved to be
very successful in predicting volatility changes.
Empirically, a wide range of financial and eco-
nomic phenomena exhibit the clustering of
volatilities. As we have seen, ARCH/GARCH
models describe the time evolution of the av-
erage size of squared errors, that is, the evolu-
tion of the magnitude of uncertainty. Despite
the empirical success of ARCH/GARCH mod-
els, there is no real consensus on the economic
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reasons why uncertainty tends to cluster. That
is why models tend to perform better in some
periods and worse in other periods.

It is relatively easy to induce ARCH behavior
in simulated systems by making appropriate
assumptions on agent behavior. For example,
one can reproduce ARCH behavior in artificial
markets with simple assumptions on agent
decision-making processes. The real economic
challenge, however, is to explain ARCH/
GARCH behavior in terms of features of agents
behavior and/or economic variables that could
be empirically ascertained.

In classical physics, the amount of uncer-
tainty inherent in models and predictions can
be made arbitrarily low by increasing the preci-
sion of initial data. This view, however, has been
challenged in at least two ways. First, quan-
tum mechanics has introduced the notion that
there is a fundamental uncertainty in any mea-
surement process. The amount of uncertainty
is prescribed by the theory at a fundamental
level. Second, the theory of complex systems
has shown that nonlinear complex systems are
so sensitive to changes in initial conditions that,
in practice, there are limits to the accuracy of
any model. ARCH/GARCH models describe
the time evolution of uncertainty in a complex
system.

In financial and economic models, the future
is always uncertain but over time we learn
new information that helps us forecast this
future. As asset prices reflect our best fore-
casts of the future profitability of companies
and countries, these change whenever there
is news. ARCH/GARCH models can be inter-
preted as measuring the intensity of the news
process. Volatility clustering is most easily un-
derstood as news clustering. Of course, many
things influence the arrival process of news and
its impact on prices. Trades convey news to
the market and the macroeconomy can mod-
erate the importance of the news. These can
all be thought of as important determinants
of the volatility that is picked up by ARCH/
GARCH.

GENERALIZATIONS OF THE
ARCH/GARCH MODELS
Thus far, we have described the fundamental
ARCH and GARCH models and their applica-
tion to VaR calculations. The ARCH/GARCH
framework proved to be a rich framework and
many different extensions and generalizations
of the initial ARCH/GARCH models have been
proposed. We will now describe some of these
generalizations and extensions. We will focus
on applications in finance and will continue to
use financial notation assuming that our vari-
ables represent returns of assets or of portfolios.

Let’s first discuss why we need to general-
ize the ARCH/GARCH models. There are three
major extensions and generalizations:

1. Integration of first, second, and higher mo-
ments

2. Generalization to high-frequency data
3. Multivariate extensions

Integration of First, Second, and
Higher Moments
In the ARCH/GARCH models considered thus
far, returns are assumed to be normally dis-
tributed and the forecasts of the first and sec-
ond moments independent. These assumptions
can be generalized in different ways, either al-
lowing the conditional distribution of the error
terms to be non-normal and/or integrating the
first and second moments.

Let’s first consider asymmetries in volatil-
ity forecasts. There is convincing evidence that
the direction does affect volatility. Particularly
for broad-based equity indexes and bond mar-
ket indexes, it appears that market declines
forecast higher volatility than do comparable
market increases. There are now a variety of
asymmetric GARCH models, including the ex-
ponential GARCH (EGARCH) model of Nelson
(1991), the threshold ARCH (TARCH) model at-
tributed to Rabemananjara and Zakoian (1993)
and Glosten, Jagannathan, and Runkle (1993),
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and a collection and comparison by Engle and
Ng (1993).

In order to illustrate asymmetric GARCH,
consider, for example, the asymmetric
GARCH(1,1) model of Glosten, Jagannathan,
and Runkle (1993). In this model, we add a
term γ (I{εt<0}) ε2

t to the basic GARCH:

ht+1 = ω + αhtε
2
t + γ (I{εt<0}) ε2

t + βht.

The term (I{εt<0}) is an indicator function that
is zero when the error is positive and 1 when
it is negative. If γ is positive, negative errors
are leveraged. The parameters of the model are
assumed to be positive. The relationship α +
β + γ /2 < 1 is assumed to hold.

In addition to asymmetries, it has been empir-
ically found that residuals of ARCH/GARCH
models fitted to empirical financial data ex-
hibit excess kurtosis. One way to handle this
problem is to consider non-normal distribu-
tions of errors. Non-normal distributions of er-
rors were considered by Bollerslev (1987), who
introduced a GARCH model where the variable
z follows a Student-t distribution.

Let’s now discuss the integration of first
and second moments through the GARCH-M
model. ARCH/GARCH models imply that the
risk inherent in financial markets varies over
time. Given that financial markets implement
a risk-return trade-off, it is reasonable to ask
whether changing risk entails changing returns.
Note that, in principle, predictability of returns
in function of predictability of risk is not a viola-
tion of market efficiency. To correlate changes in
volatility with changes in returns, Engle, Lilien,
and Robins (1987) proposed the GARCH-M
model (not to be confused with the multivariate
MGARCH model that will be described shortly).
The GARCH-M model, or GARCH in mean
model, is a complete nonlinear model of asset
returns and not only a specification of the error
behavior. In the GARCH-M model, returns are
assumed to be a constant plus a term propor-
tional to the conditional variance:

rt+1 = μt + σtzt, μt = μ0 + μ1σ
2
t

where σ 2
t follows a GARCH process and the

z terms are independent and identically dis-
tributed (IID) normal variables. Alternatively,
the GARCH-M process can be specified mak-
ing the mean linear in the standard deviation
but not in the variance.

The integration of volatilities and expected re-
turns, that is the integration of risk and returns,
is a difficult task. The reason is that not only
volatilities but also correlations should play a
role. The GARCH-M model was extended by
Bollerslev (1986) in a multivariate context. The
key challenge of these extensions is the explo-
sion in the number of parameters to estimate;
we will see this when discussing multivariate
extensions in the following sections.

Generalizations to High-Frequency
Data
With the advent of electronic trading, a growing
amount of data has become available to practi-
tioners and researchers. In many markets, data
at transaction level, called tick-by-tick data or
ultra-high-frequency data, are now available. The
increase of data points in moving from daily
data to transaction data is significant. For exam-
ple, the average number of daily transactions
for U.S. stocks in the Russell 1000 is in the order
of 2,000. Thus, we have a 2,000-fold increase in
data going from daily data to tick-by-tick data.

The interest in high-frequency data is twofold.
First, researchers and practitioners want to find
events of interest. For example, the measure-
ment of intraday risk and the discovery of trad-
ing profit opportunities at short time horizons
are of interest to many financial institutions.
Second, researchers and practitioners would
like to exploit high-frequency data to obtain
more precise forecasts at the usual forecasting
horizon. Let’s focus on the latter objective.

As observed by Merton (1980), while in diffu-
sive processes the estimation of trends requires
long stretches of data, the estimation of volatil-
ity can be done with arbitrary precision us-
ing data extracted from arbitrarily short time
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periods provided that the sampling rate is arbi-
trarily high. In other words, in diffusive mod-
els, the estimation of volatility greatly profits
from high-frequency data. It therefore seems
tempting to use data at the highest possible
frequency, for example spaced at a few min-
utes, to obtain better estimates of volatility at
the frequency of practical interest, say daily or
weekly. As we will see, the question is not so
straightforward and the answer is still being
researched.

We will now give a brief account of the main
modeling strategies and the main obstacles in
using high-frequency data for volatility esti-
mates. We will first assume that the return
series are sampled at a high but fixed fre-
quency. In other words, we initially assume
that data are taken at fixed intervals of time.
Later, we will drop this assumption and con-
sider irregularly spaced tick-by-tick data, what
Engle (2000) refers to as “ultra-high-frequency
data.”

Let’s begin by reviewing some facts about
the temporal aggregation of models. The ques-
tion of temporal aggregation is the question of
whether models maintain the same form when
used at different time scales. This question has
two sides: empirical and theoretical. From the
empirical point of view, it is far from being obvi-
ous that econometric models maintain the same
form under temporal aggregation. In fact, pat-
terns found at some time scales might disap-
pear at another time scale. For example, at very
short time horizons, returns exhibit autocorre-
lations that disappear at longer time horizons.
Note that it is not a question of the precision
and accuracy of models. Given the uncertainty
associated with financial modeling, there are
phenomena that exist at some time horizon and
disappear at other time horizons.

Time aggregation can also be explored from
a purely theoretical point of view. Suppose that
a time series is characterized by a given data-
generating process (DGP). We want to inves-
tigate what DGPs are closed under temporal
aggregation; that is, we want to investigate

what DGPs, eventually with different param-
eters, can represent the same series sampled at
different time intervals.

The question of time aggregation for GARCH
processes was explored by Drost and Nijman
(1993). Consider an infinite series {xt} with
given fixed-time intervals �xt = xt+1 − xt. Sup-
pose that the series {xt} follows a GARCH(p,q)
process. Suppose also that we sample this series
at intervals that are multiples of the basic inter-
vals: �yt = h�xt = xt+h − xt. We obtain a new
series {yt}. Drost and Nijman found that the new
series {yt} does not, in general, follow another
GARCH(p’,q’) process. The reason is that, in the
standard GARCH definition presented in the
previous sections, the series {xt = σtzt} is sup-
posed to be a martingale difference sequence
(that is, a process with zero conditional mean).
This property is not conserved at longer time
horizons.

To solve this problem, Drost and Nijman in-
troduced weak GARCH processes, processes
that do not assume the martingale difference
condition. They were able to show that weak
GARCH(p,q) models are closed under tempo-
ral aggregation and established the formulas to
obtain the parameters of the new process after
aggregation. One consequence of their formu-
las is that the fluctuations of volatility tend to
disappear when the time interval becomes very
large. This conclusion is quite intuitive given
that conditional volatility is a mean-reverting
process.

Christoffersen, Diebold, and Schuerman
(1998) use the Drost and Nijman formula to
show that the usual scaling of volatility, which
assumes that volatility scales with the square
root of time as in the random walk, can be seri-
ously misleading. In fact, the usual scaling mag-
nifies the GARCH effects when the time horizon
increases while the Drost and Nijman analysis
shows that the GARCH effect tends to disap-
pear with growing time horizons. If, for exam-
ple, we fit a GARCH model to daily returns
and then scale to monthly volatility multiply-
ing by the square root of the number of days in
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a month, we obtain a seriously biased estimate
of monthly volatility.

Various proposals to exploit high-frequency
data to estimate volatility have been made.
Meddahi and Renault (2004) proposed a class
of autoregressive stochastic volatility models—
the SR-SARV model class—that are closed un-
der temporal aggregation; they thereby avoid
the limitations of the weak GARCH models.
Andersen and Bollerslev (1998) proposed real-
ized volatility as a virtually error-free measure
of instantaneous volatility. To compute real-
ized volatility using their model, one simply
sums intraperiod high-frequency squared
returns.

Thus far, we have briefly described models
based on regularly spaced data. However, the
ultimate objective in financial modeling is us-
ing all the available information. The maximum
possible level of information on returns is con-
tained in tick-by-tick data. Engle and Russell
(1998) proposed the autoregressive conditional du-
ration (ACD) model to represent sequences of
random times subject to clustering phenomena.
In particular, the ACD model can be used to
represent the random arrival of orders or the
random time of trade execution.

The arrival of orders and the execution of
trades are subject to clustering phenomena in-
sofar as there are periods of intense trading
activity with frequent trading followed by pe-
riods of calm. The ACD model is a point pro-
cess. The simplest point process is likely the
Poisson process, where the time between point
events is distributed as an exponential vari-
able independent of the past distribution of
points. The ACD model is more complex than a
Poisson process because it includes an autore-
gressive effect that induces the point process
equivalent of ARCH effects. As it turns out, the
ACD model can be estimated using standard
ARCH/GARCH software. Different extensions
of the ACD model have been proposed. In par-
ticular, Bauwens and Giot (1997) introduced the
logarithmic ACD model to represent the bid-
ask prices in the Nasdaq stock market.

Ghysel and Jasiak (1997) introduced a class
of approximate ARCH models of returns se-
ries sampled at the time of trade arrivals. This
model class, called ACD-GARCH, uses the ACD
model to represent the arrival times of trades.
The GARCH parameters are set as a function
of the duration between transactions using in-
sight from the Drost and Nijman weak GARCH.
The model is bivariate and can be regarded as
a random coefficient GARCH model.

Multivariate Extensions
The models described thus far are models of
single assets. However, in finance, we are also
interested in the behavior of portfolios of assets.
If we want to forecast the returns of portfolios
of assets, we need to estimate the correlations
and covariances between individual assets. We
are interested in modeling correlations not only
to forecast the returns of portfolios but also to
respond to important theoretical questions. For
example, we are interested in understanding if
there is a link between the magnitude of correla-
tions and the magnitude of variances and how
correlations propagate between different mar-
kets. Questions like these have an important
bearing on investment and risk management
strategies.

Conceptually, we can address covariances
in the same way as we addressed variances.
Consider a vector of N return processes: rt ={
ri,t

}
, i = 1, . . . , N, t = 1, . . . , T . At every mo-

ment t, the vector rt can be represented as:
rt = mt (ϑ) + εt, where mt (ϑ) is the vector of
conditional means that depend on a finite vec-
tor of parameters ϑ and the term εt is written
as:

εt = H
1/2
t (ϑ) zt

where H
1/2
t (ϑ) is a positive definite matrix that

depends on the finite vector of parameters
ϑ . We also assume that the N-vector zt has
the following moments: E (zt) = 0, Var (zt) = IN

where IN is the N × N identity matrix.
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To explain the nature of the matrix H
1/2
t (ϑ),

consider that we can write:

Var (rt|It−1) = Vart−1 (rt) = Vart−1 (εt)

= H
1/2
t Vart−1 (zt) H1/2′

t = Ht

where It−1 is the information set at time t − 1.
For simplicity, we left out in the notation the
dependence on the parameters ϑ . Thus H

1/2
t is

any positive definite N × N matrix such that
Ht is the conditional covariance matrix of the
process rt. The matrix H

1/2
t could be obtained by

Cholesky factorization of Ht. Note the formal
analogy with the definition of the univariate
process.

Consider that both the vector mt (ϑ) and the
matrix H

1/2
t (ϑ) depend on the vector of param-

eters ϑ . If the vector ϑ can be partitioned into
two subvectors, one for the mean and one for
the variance, then the mean and the variance are
independent. Otherwise, there will be an inte-
gration of mean and variance as was the case in
the univariate GARCH-M model. Let’s abstract
from the mean, which we assume can be mod-
eled through some autoregressive process, and
focus on the process εt = H

1/2
t (ϑ) zt.

We will now define a number of specifica-
tions for the variance matrix Ht. In principle,
we might consider the covariance matrix het-
eroskedastic and simply extend the ARCH/
GARCH modeling to the entire covariance
matrix. There are three major challenges in
MGARCH models:

1. Determining the conditions that ensure that
the matrix Ht is positive definite for every t.

2. Making estimates feasible by reducing the
number of parameters to be estimated.

3. Stating conditions for the weak stationarity
of the process.

In a multivariate setting, the number of
parameters involved makes the (conditional)
covariance matrix very noisy and virtually
impossible to estimate without appropriate
restrictions. Consider, for example, a large
aggregate such as the S&P 500. Due to symme-

tries, there are approximately 125,000 entries
in the conditional covariance matrix of the S&P
500. If we consider each entry as a separate
GARCH(1,1) process, we would need to esti-
mate a minimum of three GARCH parameters
per entry. Suppose we use three years of data
for estimation, that is, approximately 750 data
points for each stock’s daily returns. In total,
there are then 500 × 750 = 375,000 data points
to estimate 3 × 125,000 = 375,000 parameters.
Clearly, data are insufficient and estimation
is therefore very noisy. To solve this problem,
the number of independent entries in the
covariance matrix has to be reduced.

Consider that the problem of estimating large
covariance matrices is already severe if we want
to estimate the unconditional covariance matrix
of returns. Using the theory of random matrices,
Potter, Bouchaud, Laloux, and Cizeau (1999)
show that only a small number of the eigenval-
ues of the covariance matrix of a large aggregate
carry information, while the vast majority of
the eigenvalues cannot be distinguished from
the eigenvalues of a random matrix. Techniques
that impose constraints on the matrix entries,
such as factor analysis or principal components
analysis, are typically employed to make
less noisy the estimation of large covariance
matrices.

Assuming that the conditional covariance ma-
trix is time varying, the simplest estimation
technique is using a rolling window. Estimating
the covariance matrix on a rolling window suf-
fers from the same problems already discussed
in the univariate case. Nevertheless, it is one
of the two methods used in RiskMetrics. The
second method is the EWMA method. EWMA
estimates the covariance matrix using the fol-
lowing equation:

Ht = αεtε
′
t + (1 − α) Ht−1

where α is a small constant.
Let’s now turn to multivariate GARCH speci-

fications, or MGARCH, and begin by introduc-
ing the vech notation. The vech operator stacks
the lower triangular portion of an N × N matrix
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as an N (N + 1)
/

2 × 1 vector. In the vech nota-
tion, the MGARCH(1,1) model, called the VEC
model, is written as follows:

ht = ω + Aηt−1 + Bht−1

where ht = vech (Ht), ω is an N (N + 1)/2 × 1
vector, and A,B are N (N + 1)/2 × N (N + 1)/2
matrices.

The number of parameters in this model
makes its estimation impossible except in the bi-
variate case. In fact, for N = 3 we should already
estimate 78 parameters. In order to reduce the
number of parameters, Bollerslev, Engle, and
Wooldridge (1988) proposed the diagonal VEC
model (DVEC), imposing the restriction that
the matrices A, B be diagonal matrices. In the
DVEC model, each entry of the covariance ma-
trix is treated as an individual GARCH process.
Conditions to ensure that the covariance matrix
Ht is positive definite are derived in Attanasio
(1991). The number of parameters of the DVEC
model, though much smaller than the number
of parameters in the full VEC formulation, is
still very high: 3N (N + 1)

/
2.

To simplify conditions to ensure that Ht is pos-
itive definite, Engle and Kroner (1995) proposed
the BEKK model (the acronym BEKK stands
for Baba, Engle, Kraft, and Kroner). In its most
general formulation, the BEKK(1,1,K) model is
written as follows:

Ht = CC ′ +
K∑

k=1

A′
kεt−1ε

′
t−1 Ak +

K∑

k=1

B ′
k Ht−1 Bk

where C, Ak, Bk are N × N matrices and C is
upper triangular. The BEKK(1,1,1) model sim-
plifies as follows:

Ht = CC ′ + A′εt−1ε
′
t−1 A+ B ′ Ht−1 B

which is a multivariate equivalent of the
GARCH(1,1) model. The number of parameters
in this model is very large; the diagonal BEKK
was proposed to reduce the number of param-
eters.

The VEC model can be weakly (covariance)
stationary but exhibit a time-varying condi-
tional covariance matrix. The stationarity con-

ditions require that the eigenvalues of the ma-
trix A + B are less than one in modulus. Simi-
lar conditions can be established for the BEKK
model. The unconditional covariance matrix H
is the unconditional expectation of the condi-
tional covariance matrix. We can write:

H = [IN∗ − A− B]−1 , N∗ = N (N + 1) /2×
MGARCH based on factor models offers a

different modeling strategy. Standard (strict)
factor models represent returns as linear regres-
sions on a small number of common variables
called factors:

rt = m + B ft + εt

where rt is a vector of returns, ft is a vector of
K factors, B is a matrix of factor loadings, εt is
noise with diagonal covariance, so that the co-
variance between returns is accounted for only
by the covariance between the factors. In this
formulation, factors are static factors without
a specific time dependence. The unconditional
covariance matrix of returns � can be written
as:

� = B�K B ′ + �

where �K is the covariance matrix of the factors.
We can introduce a dynamics in the expec-

tations of returns of factor models by making
some or all of the factors dynamic, for example,
assuming an autoregressive relationship:

rt = m + Bft + εt

ft+1 = a + bft + ηt

We can also introduce a dynamic of volatilities
assuming a GARCH structure for factors. En-
gle, Ng, and Rothschild (1990) used the notion
of factors in a dynamic conditional covariance
context assuming that one factor, the market
factor, is dynamic. Various GARCH factor mod-
els have been proposed: the F-GARCH model
of Lin (1992); the full factor FF-GARCH model
of Vrontos, Dellaportas, and Politis (2003); the
orthogonal O-GARCH model of Kariya (1988);
and Alexander and Chibumba (1997).
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Another strategy is followed by Bollerslev
(1990) who proposed a class of GARCH mod-
els in which the conditional correlations are
constant and only the idiosyncratic variances
are time varying (CCC model). Engle (2002)
proposed a generalization of Bollerslev’s CCC
model called the dynamic conditional correla-
tion (DCC) model.

KEY POINTS
� Volatility, a key parameter used in many fi-

nancial applications, measures the size of the
errors made in modeling returns and other fi-
nancial variables. For vast classes of models,
the average size of volatility is not constant
but changes with time and is predictable.

� In standard regression theory, the assump-
tion of homoskedasticity is convenient from
a mathematical point of view. The homo-
skedasticity assumption means that the ex-
pected size of the error is constant and does
not depend on the size of the explanatory
variable. When it is assumed in regression
analysis that the expected size of the error
term is not constant, this means the error
terms are assumed to be heteroskedastic.

� A major breakthrough in econometric
modeling was the discovery that for many
families of econometric models it is possi-
ble to specify a stochastic process for the
error terms and predict the average size
of the error terms when models are fitted
to empirical data. This is the essence of
ARCH modeling. This original modeling of
conditional heteroskedasticity has developed
into a full-fledged econometric theory of the
time behavior of the errors of a large class of
univariate and multivariate models.

� The availability of more and better data and
the availability of low-cost, high-performance
computers allowed the development of a vast
family of ARCH/GARCH models. Among
these are the EGARCH, IGARCH, GARCH-
M, MGARCH, and ACD models.

� While the forecasting of expected returns
remains a rather elusive task, predicting
the level of uncertainty and the strength
of comovements between asset returns has
become a fundamental pillar of financial
econometrics.
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Abstract: Classification and regression trees (CART) are nonparametric and nonlinear modeling
techniques that do not rely upon the many stringent assumptions required by classical parametric
models. Despite the fact that researchers in many fields have regularly found trees to be an attractive
way to express underlying relationships, they are relatively unfamiliar to financial modelers where
the historical focus of financial modeling has been on parametric regression. Although the linear
type of regression analysis is convenient and sometimes intuitive, it may not fully capture the
complexity of financial markets. As the quantity and variety of financial information available
to data exploration have increased over time, there has been a commensurate need for a more
robust and versatile process to analyze these data. CART offers a valuable alternative to traditional
methods for modeling financial data.

Classification and regression trees (CART) are non-
parametric and nonlinear modeling techniques
that essentially use recursive partitioning tech-
niques to separate observations in a binary and
sequential fashion. There are two varieties: (1)
classification trees when the dependent variable
is categorical, and (2) regression trees when the
dependent variable is continuous.

Although the approach is not widely uti-
lized within the investment community, the
applications of CART to financial markets

nevertheless include the classification of finan-
cially distressed firms by Frydman, Altman,
and Kao (1985), asset allocation by Sorensen,
Mezrich, and Miller (1998), equity style timing
by Kao and Shumaker (1999), and stock selec-
tion by Sorensen, Miller, and Ooi (2000). In this
entry we provide an introduction to the CART
framework and contrast it to more traditional
modeling methods. We then illustrate the tech-
nique by applying it to stock selection across
the North American equity markets.
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TECHNICAL DETAILS
We begin by introducing the standard tree ter-
minology. The root is the top node, which
includes all observations in the learning sam-
ple. The splitting condition at each node is
expressed as an “if-then-else” rule that is de-
termined by a specific splitting criterion. The
splitting node is also called the parent and the
two descendant subnodes are called children.
A node keeps splitting until a terminal node or
leaf is reached.

The fundamental idea behind CART is to re-
cursively partition the space until all the sub-
spaces are sufficiently homogenous in order to
apply simple models to them. This is in con-
trast to linear and logistic regressions, the linear
parametric counterparts of regression and clas-
sification trees, respectively, which are global
models where a single predictive formula is
imposed over the entire data space. When the
dataset has multiple features that interact in
complicated and nonlinear ways, as is often the
case with financial data, a single global model
may inadequately capture the underlying rela-
tionships.

There are two major steps in the CART analy-
sis: (1) Build a tree using a recursive splitting of
nodes, and (2) prune the tree in order to obtain
the optimal tree size so as to prevent overfit-
ting. Each of these two steps will be discussed in
more detail below. Breiman et al. (1984) provide
a detailed overview of the theory and method-
ology of CART, including a number of exam-
ples from many disciplinary areas. There are
also many software packages that implement
the CART algorithm. Popular ones include R
packages such as rpart and tree and the Matlab
function classregtree.

Binary Recursive Partitioning
Let L be a learning sample, L = {(x1, y1), · · · ,
(xn, yn)}, where xi is a vector of attributes; yi

is the response, which can be categorical or
continuous; and n is the number of observa-
tions. The attribute vector xi belongs to X, the

tL tR

t

pL pR

s

Figure 1 A split generates two children of the
node t, denoted by tL and tR. A proportion pL of
the initial data go into the left child and a propor-
tion of pR go into the right child.

attribute space. The tree-building algorithm in-
volves repeatedly splitting subsets ofL into two
descendant subsets, beginning withL itself. For
a continuous variable xi , the allowed splits are
of the form xi < c versus xi ≥ c. For categorical
variables the levels are divided into two classes.
Therefore, for a categorical variable with K lev-
els, there are 2K−1 − 1 possible splits, disallow-
ing the empty split and ignoring the order.

In choosing the best splitting rule, CART seeks
to maximize the average purity of the two child
nodes. Hence, some criterion measuring data
homogeneity or, alternatively, impurity should
be introduced. These impurity measures are
loosely classed splitting criteria. Let us intro-
duce, for any node t, a measure i(t) that signifies
the impurity of the node. Suppose that a candi-
date split s divides the node into tL and tR such
that a proportion pL of the cases in t go into tL

and a proportion pR go into tR (see Figure 1).
Then the goodness of the split is defined to be
the decrease of impurity

�i(s, t) = i(t) − pLi(tL ) − pRi(tR)

For an arbitrary node t and a set of splitting
candidates S, the optimal split is chosen to be
the one

s∗ = max
s⊂S

�i(s, t)

In other words, the optimal split is the one
that reduces impurity by the greatest amount.

The idea for classification and regression trees
is quite similar in terms of partitioning meth-
ods, which is based on impurity reducing.
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However, they use different measures of im-
purity to decode the split.

In a classification problem, suppose that we
want to classify data into K classes. At each
node t of a classification tree we have a proba-
bility distribution ptk , k = 1, · · · , K , over all K
categories. The probabilities are conventionally
estimated from the node proportions, such that
ptk = ntk/nt, where ntk is the number of obser-
vations in the k-th class, and nt is the sample
size at node t.

The two most common measures of impurity
are the Gini index

i(t) =
∑

j �=k ptj ptk = 1 −
∑

k p2
tk

and entropy or information

i(t) = −
∑

k ptk log(ptk)

where 0 log(0) = 0.
As for regression trees, the most popular im-

purity measure is

i(t) =
∑nt

j=1
(ytj − μt)2

where the constant μt for node t is estimated
by the mean of the values of the training data
falling into node t.

TREE PRUNING
However, the use of partitioning rules alone
cannot guarantee a useful tree model. If reduc-
ing impurity is the only goal in tree induction,
we will eventually end up with a maximal tree,
which has one observation or one class in each
leaf, whichever reaches first. This kind of tree
adapts too well to the features of the learn-
ing sample and has a very high risk of being
overfitted. Tree pruning is a way to improve
the robustness of the model by trading off in-
sample fitting against out-of-sample accuracy.
This is particularly important if the model is
being used to make predictions.

The best-known procedure for tree pruning
is the cost-complexity pruning proposed by
Breiman et al. (1984). Let T be a subtree of the
maximal tree grown without pruning. Let the

size of a tree be the number of terminal nodes.
The optimal tree is the one that minimizes the
following cost-complexity measure

Rα(T) = R(T) + α size(T)

where α is a complexity parameter to penal-
ize the tree size, and R is the cost, which is
commonly taken as misclassification errors in
classification cases and deviance in regression
cases. For a given value of the complexity pa-
rameter α, an optimal tree can be determined. In
general, finding the optimal value for α would
require an independent set of data (i.e., a testing
sample). This requirement is often avoided in
practice by using a cross validation procedure.

STRENGTHS AND
WEAKNESSES OF CART
Compared to classical parametric models,
CART offers a number of benefits in data ex-
ploration. In particular, it has a very high
degree of interpretability. CART efficiently
compresses a large volume of data into an easy-
to-understand graphical form that identifies the
essential characteristics. It is also very flexible
in terms of the structure of the input variables,
as either categorical or continuous factors or
a combination can be used as inputs. Further-
more, CART is quite robust in the presence of
outliers and well suited to noisy datasets, both
of which tend to be features of financial data.

Being nonparametric it does not require any
assumptions to be made about the underlying
distribution of the variables being modeled.
The high incidences of extreme events in the
financial markets suggest that the supposition
of distributional normality is questionable in
many areas of finance. While the assumption
may in many cases be a fair approximation
to the underlying structural relationship, it
is quite rare that tests for non-normality or
nonlinearity are explicitly assessed in advance
even though this information would help to
inform the appropriate choice of modeling
technique.
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The CART approach also departs from tradi-
tional modeling methods by determining a hi-
erarchy of input variables that may be closer to
the human decision-making processes. Indeed,
a key strength of CART over classical model-
ing methods is that it allows one to represent
various types of interactions between variables,
particularly conditional relevance. Conditional
relevance occurs if a factor is relevant only when
it is conditioned upon some other factor. For ex-
ample, only if a certain condition is met by the
first high-level attribute is a second attribute
taken into consideration. The same holds for
the next attribute in the tree hierarchy, and
so on.

Another possible benefit for financial model-
ers using CART is the diversification of model
risk as argued by Philpotts et al. (2011). The
widespread use of linear modeling methodolo-
gies among quantitative asset managers, taken
together with the similarity in data sources and
risk models, may in turn have contributed to
model risk in financial markets leading to a
high degree of commonality in investment de-
cisions. As a less used technique, CART is ap-
pealing in the context of potentially offering
a degree of model diversification. Philpotts et
al. (2011) present empirical evidence highlight-
ing the favorable performance of tree-based
models compared to more traditional modeling
techniques.

One potential weakness of the recursive par-
titioning tree construction process is local op-
timization instead of global optimization. That
is, the sequential node-splitting process chooses
the next split without attempting to optimize
the performance of the whole tree. The result-
ing tree structure therefore does not guarantee
global optimization. Instability is another pos-
sible problem in CART solutions. This refers
to perturbing a small proportion of the learn-
ing sample or resampling the learning sample,
which often results in a solution with a very
different tree structure. Several alternatives to
CART have been developed to address these

problems, such as random forests (see Brieman,
2001) and a hybrid approach that combines
CART with logistic regression (see Zhu et al.,
2011).

APPLICATION OF CART IN
STOCK SELECTION
In this section, we provide a detailed example of
the CART algorithm as applied to the problem
of identifying profitable stocks. This example
was specifically chosen so as to provide a con-
trast with the vast majority of the linear model-
ing techniques used by financial practitioners.
The model was built with monthly stock data
from December 1986 to August 2010 covering
all liquid stocks listed on the North American
equity markets but excluding financial stocks
because they would require their own specific
model.1 The number of total observations is
279,188 (or 980 stocks per month on average).

At the end of each month, forward total stock
returns (price return plus dividends) were cal-
culated. Using the median return of all sample
companies in the same period as a proxy of
the market return, the excess returns were then
computed as the total returns minus the market
returns.

A broad spectrum of company valuation and
quality-based characteristics, as well as mea-
sures of investor sentiment such as price mo-
mentum and earnings revisions were selected
as reported in Table 1. Instead of using raw val-
ues, we use rank orders in order to improve
the robustness of the analyses. At each month,
the rank order for each variable was computed
by first ranking n stocks according to the corre-
sponding variable value, and then dividing the
rank by n to scale it between 0 and 1. Further-
more, in order to overcome the high correlation
among some of the explanatory variables, nine
composite factors were promoted as potential
explanatory variables, which were constructed
as an equally weighted average of multiple vari-
ables as described in Table 1.
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Table 1 Input Variables

Composite factor Description

Value
(VAL)

An equally weighted average of value metrics including dividends to price, cash flow to
price, sales to price, and book to price.

Profitability
(PROF)

An equally weighted average of profitability terms including return on equity, cash
return on equity, pretax margins, and asset turnover.

Leverage
(LEVERAGE)

An equally weighted average of financial strength terms including debt to equity and
debt to market cap.

Debt Service
(DEBT.SERVICE)

An equally weighted average of debt sustainability measures including interest cover
and free cash flow to debt.

Momentum
(MOM)

An equally weighted average of momentum terms measured over various time
horizons including 6 months and 12 months.

Stability
(STAB)

A composite term that captures the volatility in earnings, sales, and cash flows over the
previous 5 years.

Historic Growth
(HIST.GROWTH)

An equally weighted average of 3-year historic growth in earnings, sales, and cash flow.

Forward Growth
(FWD.GROWTH)

An equally weighted average of I/B/E/S forecasted earnings growth expectation for
FY1 and FY2.

Earnings Revisions
(EREV)

An equally weighted average of the 3-month change in I/B/E/S forecasted earnings
expectations for FY1 and FY2.

We built a classification tree with the pur-
pose of predicting subsequent stock perfor-
mance. Stocks were sorted into two groups,
“outperformers” for those with positive excess
returns and “underperformers” for the remain-
der. The induced categorical variable was then
used as the dependent variable in the subse-
quent modeling process. One of the benefits
of working with categorical responses instead
of raw returns lies in the fact that it alleviates
the impact of extreme returns, which may have
multiple causes. The tree model was built with
the data up to and including April 2007 while
the data between May 2007 and August 2010
were reserved for out-of-sample testing. Figure
2 graphically illustrates the hierarchical structure
of the stock selection tree.

The first observation to note is that the pri-
mary split is valuation based. More specifi-
cally, the tree makes a distinction between those
stocks that are relatively expensive (the right-
hand branch) and those that are not expensive.
One of the most attractive nodes splits again
on high value and therefore identifies cheap

stocks as having a 59.2% probability of outper-
forming the universe (Node 1). In contrast, the
worst performing stocks are characterized by
being expensive and exhibiting low profitabil-
ity (Node 14). Companies with these attributes
only have a 42% chance of outperforming.

The tree is able to identify the exception to
the rule. For example, while identifying that
value was the most important driver of stock re-
turns, the tree also suggests that more expensive
stocks still have a good chance of outperform-
ing the market providing that they are blessed
with profitability, stability in earnings, strong
momentum, and are also associated with strong
earnings revisions (Node 10).

Similarly, the decision tree framework also
highlights the nonlinear behavior of the stock
returns to the underlying predictor variables.
For example, stocks in Nodes 3 and 5 have
similar outperforming probabilities but are
of opposite preference with regard to lever-
age. Conditional on above-average debt cover,
Node 3 actually prefers some degree of lever-
age and more significantly penalizes overly
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Table 2 Out-of-Sample Performance (May 2007–
August 2010). Portfolios were rebalanced monthly and
transaction costs were not taken into account.

Portfolio

Excess
Return
(%)

Tracking
Error (%) IR

Monthly
Win
Rate

Long 2.6 2.9 0.89 0.57
Short −2.8 3.4 −0.82 0.43

conservative firms (with too low leverage).
In contrast, leverage is a characteristic to be
avoided among firms that cannot service their
debts (Node 5).

Table 2 is an out-of-sample test of the model.
Each month from May 2007 until August 2010,
we ranked all stocks based upon the predicted
outperforming probabilities by the tree model
and formed two portfolios. One portfolio is an
equal weighting of stocks with the highest half
of outperforming probabilities (long), and the
second is an equal weighting of the rest ex-
pected to underperform (short). Table 2 reports
the annualized excess return, the tracking er-
ror, the information ratio, and the monthly win
rate of the two portfolios. The long portfolio
outperformed the benchmark by 2.6% with a
similar relative risk. The short portfolio un-
derperformed by 2.8% with a slightly higher
tracking error. The monthly win rate is the
proportion of months that a portfolio outper-
formed the benchmark out-of-sample. The tree
model achieved a monthly win rate of 57%.

KEY POINTS
� CART is a flexible modeling technique that of-

fers significant potential to assist in financial
decision making.

� CART is a nonparametric modeling technique
that does not impose the stringent assump-
tions required by classical regression analysis,
and therefore sidesteps many of the known
issues associated with traditional parametric
models.

� CART is well suited to identifying nonlinear-
ities and complex interactions in the data. It

is minimally affected by missing values, out-
liers, or multicollinearity.

� Unlike many other methods, CART can be
easily visualized, which helps financial deci-
sion makers to assess the theoretical support
behind the resulting investment insights.

� The hierarchical structure of a tree model may
more closely resemble how the human brain
makes decisions. In particular, the “if-then-
else” nature of the rules in the model emulates
an expert system that is able to incorporate the
exception to the rule.

� CART also embraces the important feature of
conditional relevance, which is widespread in
financial data. In the CART framework, input
variables are allowed to interact and have dif-
ferent influences under varying conditions.

� As with any other quantitative model devel-
opment process, care must be taken to ensure
the integrity of the input data and that the
intended application makes intuitive sense.

NOTE
1. Financial stocks were excluded due to

their different accounting structure, which
makes comparisons with nonfinancials trou-
blesome, although similarly structured stock
selection models can also be applied within
the sector.
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Abstract: Financial time series data tend to exhibit stochastic trends. To uncover relationships among
financial variables it is important to model changes in stochastic trends over time. Cointegration
can be used to identify common stochastic trends among different financial variables. If financial
variables are cointegrated, it can also be shown that the variables exhibit a long-run relationship. If
this long-run relationship is severed, this may indicate the presence of a financial bubble.

The long-term relationships among economic
variables, such as short-term versus long-term
interest rates, or stock prices versus dividends,
have long interested finance practitioners. For
certain types of trends, multiple regression
analysis needs modification to uncover these
relationships. A trend represents a long-term
movement in the variable. One type of trend,
a deterministic trend, has a straightforward so-
lution. Since a deterministic trend is a function
of time, we merely include this time function
in the regression. For example, if the variables
are increasing or decreasing as a linear func-
tion of time, we may simply include time as
a variable in the regression equation. The is-
sue becomes more complex when the trend is
stochastic. A stochastic trend is defined (Stock
and Watson, 2003) as “a persistent but random
long-term movement of the variable over time.”
Thus a variable with a stochastic trend may

exhibit prolonged long-run increases followed
by prolonged long-run declines and perhaps
another period of long-term increases.

Most financial theorists believe stochastic
trends better describe the behavior of financial
variables than deterministic trends. For exam-
ple, if stock prices are rising, there is no reason
to believe they will continue to do so in the fu-
ture. Or, even if they continue to increase in the
future, they may not do so at the same rate as in
the past. This is because stock prices are driven
by a variety of economic factors and the impact
of these factors may change over time. One way
of capturing these common stochastic trends is
by using an econometric technique usually re-
ferred to as cointegration.

In this entry, we explain the concept of coin-
tegration. There are two major ways of testing
for cointegration. We outline both econometric
methods and the underlying theory for each

383
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method. We illustrate the first technique with
an example of the first type of cointegration
problem, testing market efficiency. Specifically,
we examine the present value model of stock
prices. We illustrate the second technique with
an example of the second type of cointegration
problem, examining market linkages. In partic-
ular, we test the linkage and the dynamic in-
teractions among stock market indexes of three
European countries. Finally, we also use cointe-
gration to test for the presence of an asset price
bubble. Specifically, we test for the possibility
of bubbles in the real estate markets.

STATIONARY AND
NONSTATIONARY
VARIABLES AND
COINTEGRATION
The presence of stochastic trends may lead a
researcher to conclude that two economic vari-
ables are related over time when in fact they
are not. This problem is referred to as spuri-
ous regression. For example, during the 1980s
the U.S. stock market and the Japanese stock
market were both rising. An ordinary least
squares (OLS) regression of the U.S. Morgan
Stanley Stock Index on the Japanese Morgan
Stanley Stock Index (USD) for the time period
1980–1990 using monthly data yields

Japanese Stock Index = 76.74 + 19 U.S.

Stock Index

t-statistic (−13.95) (26.51) R-square = 0.86

The t-statistic on the slope coefficient (26.51)
is quite large, indicating a strong positive rela-
tionship between the two stock markets. This
strong relationship is reinforced with a very
high R-square value. However, estimating the
same regression over a different time period,
1990–2007, reveals

Japanese Stock Index = 2905.67 − 0.29 U.S.

Stock Index

t-statistic (30.54) (−2.80) R-square = 0.04

This regression equation suggests there is a
strong negative relationship between the two
stock market indexes. Although the t-statistic
on the slope coefficient (2.80) is large, the low
R-square value suggests that the relationship is
rather weak.

The reason behind these contradictory results
is the presence of stochastic trends in both se-
ries. During the first time span, these stochastic
trends were aligned, but not during the latter
time span. Since different economic forces in-
fluence the stochastic trends and these forces
change over time, during some periods they
will line up and in some periods they will not.
In summary, when the variables have stochas-
tic trends, the OLS technique may provide
misleading results—the spurious regression
problem.

Another problem is that when the variables
contain a stochastic trend, the t-values of the
regressors no longer follow a normal distribu-
tion, even for large samples. Standard hypothe-
sis tests are no longer valid for these nonnormal
distributions.

At first, researchers attempted to deal with
these problems by removing the trend through
differencing these variables. That is, they fo-
cused on the change in these variables, Xt –
Xt−1, rather than the level of these variables,
Xt. Although this technique was successful for
univariate Box-Jenkins analysis, there are two
problems with this approach in a multivariate
scenario. First, we can only make statements
about the changes in the variables rather than
the level of the variables. This will be particu-
larly troubling if our major interest is the level
of the variable. Second, if the variables are sub-
ject to a stochastic trend, then focusing on the
changes in the variables will lead to a specifica-
tion error in our regressions.

The cointegration technique allows re-
searchers to investigate variables that share the
same stochastic trend and at the same time
avoid the spurious regression problem. Coin-
tegration analysis uses regression analysis to
study the long-run linkages among economic
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variables and allows us to consider the short-
run adjustments to deviations from the long-
run equilibrium.

The use of cointegration in finance has
grown significantly. Surveying this vast liter-
ature would take us beyond the scope of this
entry. To narrow our focus, we note that coin-
tegration analysis has been used mainly for
two types of problems in finance. First, it has
been used to evaluate the efficiency of finan-
cial markets in a wide variety of contexts. For
example, it was used to evaluate the purchas-
ing power parity theory (see Enders, 1988), the
rational expectations theory of the term struc-
ture, the present value model of stock prices
(Campbell and Shiller, 1987), and the relation-
ship between the forward and spot exchange
rates (Liu and Maddala, 1992). The second type
of cointegration study investigates market link-
ages. For example, Hendry and Juselius (2000)
examine how gasoline prices at different sta-
tions are linked to the world price of oil. Ar-
shanapalli and Doukas (1993) investigate the
linkages and dynamic interactions among stock
market indexes of several countries.

Before explaining cointegration it is first nec-
essary to distinguish between stationary and
nonstationary variables. A variable is said to be
stationary (more formally, weakly stationary) if
its mean and variance are constant and its au-
tocorrelation depends on the lag length, that
is

E(Xt) = μ, Var(Xt) = σ 2, and

Cov(Xt, Xt−l) = γ (l)

Stationary means that the variable fluctuates
about its mean with constant variation. Another
way to put it is that the variable exhibits mean
reversion and so displays no stochastic trend.
In contrast, nonstationary variables may wan-
der arbitrarily far from the mean. Thus, only
nonstationary variables exhibit a stochastic
trend.

The simplest example of a nonstationary vari-
able is a random walk. A variable is a ran-
dom walk if Xt = Xt−1 + et where et is a

random error term with mean 0 and standard
deviation σ . It can be shown that the standard
deviation σ (Xt) = tσ (see Stock and Watson,
1993), where t is time. Since the standard de-
viation depends on time, a random walk is
nonstationary.

Nonstationary time series are often referred
to as a unit root series. The unit root reflects the
coefficient of the Xt−1 term in an autoregres-
sive relationship of order one. In higher-order
autoregressive models, the condition of nonsta-
tionarity is more complex. Consider the p order
autoregressive model where the ai terms are co-
efficients and the Li is the lag operator. If the
sum of polynomial coefficients equals 1, then
the Xt series are nonstationary and again are
referred to as a unit root process.

(1 − a1 L1 − . . . − ap Lp)Xt = et + a0 (1)

If all the variables under consideration are
stationary, then there is no spurious regression
problem and standard OLS applies. If some of
the variables are stationary, and some are non-
stationary, then no economically significant re-
lationships exist. Since nonstationary variables
contain a stochastic trend, they will not exhibit
any relationship with the stationary variables
that lack this trend. The spurious regression
problem occurs only when all the variables in
the system are nonstationary.

If the variables share a common stochastic
trend, we may overcome the spurious regres-
sion problem. In this case, cointegration anal-
ysis may be used to uncover the long-term
relationship and the short-term dynamics. Two
or more nonstationary variables are cointe-
grated if there exists a linear combination of the
variables that is stationary. This suggests cointe-
grated variables share long-run links. They may
deviate in the short run but are likely to get back
to some sort of equilibrium in the long run. The
term “equilibrium” is not the same as used in
economics. To economists equilibrium means
the desired amount equals the actual amount,
and there is no inherent tendency to change. In
contrast, equilibrium in cointegration analysis
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means that if variables are apart, they show a
greater likelihood to move closer together than
further apart.

More formally, consider two-time series xt

and yt. Assume that both series are nonstation-
ary and integrated order one. (Integrated order
one means that if we difference the variable one
time, the resultant series is stationary.) These
series are cointegrated if zt = xt – ayt, zt is sta-
tionary for some value of a. In the multivariate
case, the definition is similar with vector nota-
tion. Let A and Y be vectors (a1,a2, . . . . an) and
(y1t, y2t, . . . ynt)’. Then the variables in Y are coin-
tegrated if each of the y1t . . . ynt are nonstation-
ary and Z = AY, Z is stationary. A represents a
cointegrating vector.

Cointegration represents a special case. We
should not expect most nonstationary variables
to be cointegrated. If two variables lack coin-
tegration, then they do not share a long-run
relationship or a common stochastic trend be-
cause they can move arbitrarily far away from
each other. In terms of the present value model
of stock prices, suppose stock prices and div-
idends lack cointegration. Then stock prices
could rise arbitrarily far above the level of their
dividends. This would be consistent with a
stock market bubble (see Gurkaynak, 2005, for a
more rigorous discussion of cointegration tests
of financial market bubbles) and even if it is
not a bubble, it is still inconsistent with the ef-
ficient market theory. In terms of stock market
linkages, if the stock price indexes of different
countries lack cointegration, then stock prices
can wander arbitrarily far apart from each other.
This possibility should encourage international
portfolio diversification.

TESTING FOR
COINTEGRATION
There are two popular methods of testing for
cointegration: the Engle-Granger tests and the
Johansen-Juselius tests. We discuss and illus-
trate both in the remainder of this entry.

Engle-Granger Cointegration Tests
The Engle-Granger conintegration test, devel-
oped by Engle and Granger (1987), involves the
following four-step process:

Step 1
First determine whether the time series vari-
ables under investigation are stationary. We
may consider both informal and formal meth-
ods. Informal methods entail an examination of
a graph of the variable over time and an ex-
amination of the autocorrelation function. The
autocorrelation function describes the autocor-
relation of the series for various lags. The corre-
lation coefficient between xt and xt−i is called the
lag-i autocorrelation. For nonstationary vari-
ables, the lag one autocorrelation coefficient
should be very close to one and decay slowly
as the lag length increases. Thus, examining
the autocorrelation function allows us to deter-
mine the stationarity of a variable. This method
is not perfect. For stationary series that are
very close to unit root processes, the autocor-
relation function may exhibit the slow-fading
behavior described above. If more formal meth-
ods are desired, the researcher may employ the
Dickey-Fuller statistic, the augmented Dickey-
Fuller statistic, or the Phillips-Perron statis-
tic. These statistics test the hypothesis that the
variables have a unit root, against the alterna-
tive that they do not (Dickey and Fuller, 1979,
1981; Phillips and Perron, 1988). The Phillips-
Perron test makes weaker assumptions than
both Dickey-Fuller statistics and is generally
considered more reliable (Phillips and Perron,
1988). If it is determined that the variable is
nonstationary and the differenced variable is
stationary, proceed to step 2.

Step 2
Estimate the following regression:

yt = c + dxt + zt (2)
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To make this concrete, let yt represent some
U.S. stock market index, xt represents stock div-
idends on that stock market index, and zt is
the error term. c and d are regression parame-
ters. For cointegration tests, the null hypothesis
states that the variables lack cointegration, and
the alternative claims that they are cointegrated.

Step 3
To test for cointegration, we test for stationarity
in zt . The Dickey-Fuller test is the most obvi-
ous candidate. That is, we should consider the
following autoregression of the error term:

�zt = pzt−1 + ut (3)

where zt is the estimated residual from equa-
tion (2). The test focuses on the significance of
the estimated p. If the estimate of p is statisti-
cally negative, we conclude that the residuals,
zt, are stationary and reject the hypothesis of no
cointegration.

The residuals of equation (3) should be
checked to ensure they are white noise. If
they are not, we should employ the aug-
mented Dickey-Fuller test (ADF). The aug-
mented Dickey-Fuller test is analogous to the
Dickey-Fuller test but includes additional lags
of � zt as shown in equation (4). The ADF test
for stationarity, like the Dickey-Fuller test, tests
the hypothesis of p = 0 against the alternative
hypothesis of p < 0 for the equation (4):

�zt = pzt−1 + a1�zt−1 + · · · + an�zt−n + ut

(4)

Generally, the OLS-produced residuals tend
to have as small a sample variance as possi-
ble, thereby making residuals look as station-
ary as possible. Thus, the standard t-statistic
or ADF statistic may reject the null hypoth-
esis of nonstationarity too often. Hence, it is
important to have correct statistics; fortunately,
Engle and Yoo (1987) provide the correct statis-
tics. Furthermore, if it is believed that the vari-
able under investigation has a long-run growth

component, it is appropriate to test the series for
stationarity around a deterministic time trend
for both the DF and ADF tests. This is accom-
plished by adding a time trend to equations (3)
or (4).

Step 4
The final step involves estimating the error-
correction model. Engle and Granger (1987)
showed that if two variables are cointegrated,
then these variables can be described in an error-
correction format described in the following two
equations:

�yt = b10 +
n∑

i=1

b1i�yt−i +
n∑

j=
c1 j�xt− j

+ d1(yt−1 − axt−1) + e1t (5)

�xt = b20 +
n∑

i=1

b2i�yt−i +
n∑

j=
c2 j�xt− j

+ d2(yt−1 − axt−1) + e2t (6)

Equation (5) tells us that the changes in yt

depend on its own past changes, the past
changes in xt, and the disequilibrium between
xt−1 and yt−1 (yt−1 − axt−1). The size of the error-
correction term, d1, captures the speed of ad-
justment of xt and yt to the previous period’s
disequilibrium. Equation (6) has a correspond-
ing interpretation.

The appropriate lag length is found by exper-
imenting with different lag lengths. For each
lag the Akaike information criterion (AIC), the
Bayes information criterion, or the Schwarz
information criterion is calculated and the
lag with the lowest value of the criteria is
employed.1

The value of (yt−1 – axt−1) is estimated with
the residuals from the cointegrating equation
(3), zt−1. This procedure is only legitimate if the
variables are cointegrated. The error-correction
term, zt−1, will be stationary by definition if and
only if they are cointegrated. The remaining
terms in the equation, the lag difference of each
variable, are also stationary because the levels
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Figure 1

were assumed nonstationary. This guarantees
the stationarity of all the variables in equations
(5) and (6) and justifies the use of OLS.

Empirical Illustration Using the
Dividend Growth Model
The dividend growth model of stock price val-
uation claims the fundamental value of a stock
is determined by the present value of its fu-
ture dividend stream. This model may be rep-
resented as:

P0 =
∑

di/(1 + r )

where

P0 is the current stock price
di is a dividend in period i
r is the discount rate

If the discount rate exceeds the growth rate of
dividends and the discount rate remains con-
stant over time, then one can test for cointe-
gration between stock prices and dividends. In
brief, if the present value relationship holds, one

does not expect stock prices and dividends to
meander arbitrarily far from each other.

Before starting any analysis it is useful to ex-
amine the plot of the underlying time series
variables. Figure 1 presents a plot of stock prices
and dividends for the years 1962 through 2006.
The stock prices are represented by the S&P
500 index and the dividends represent the div-
idend received by the owner of $1,000 worth of
the S&P 500 index. The plot shows that the vari-
ables move together until the early 1980s. As a
result of this visual analysis, we will entertain
the possibility that the variables were cointe-
grated until the 1980s. After that, the common
stochastic trend may have dissipated. We will
first test for cointegration in the 1962–1982 pe-
riod and then for the whole 1962–2006 period.

In accordance with the first step of the
cointegration protocol, we must first establish
the nonstationarity of the variables. To iden-
tify nonstationarity, we will use both formal
and informal methods. The first informal test
consists of analyzing the plot of the series
shown in Figure 1. Neither series exhibits mean
reversion. The dividend series wanders less
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Table 1 Auto Correlation Functions of the S&P 500 Index and Dividends

Lag Auto Correlation 1 2 3 4 5 6 7 8 9 10 11 12

S&P 500 .993 .986 .979 .973 .967 .961 .954 .948 .940 .933 .926 .918
Dividend .991 .983 .974 .966 .958 .979 .941 .933 .925 .916 .908 .900

Lag Auto Correlation 13 14 15 16 17 18 19 20 21 22 23 24

S&P 500 .911 .903 .896 .889 .881 .874 .866 .858 .851 .843 .835 .827
Dividend .891 .883 .876 .868 .860 .852 .845 .837 .830 .822 .815 .808

Lag Auto Correlation 25 26 27 28 29 30 31 32 33 34 35 36

S&P 500 .819 .811 .804 .796 .789 .782 .775 .768 .761 .754 .748 .741
Dividend .801 .794 .788 .781 .775 .769 .763 .758 .753 .747 .743 .738

from its mean than the stock prices. Neverthe-
less, neither series appears stationary.

The second informal method involves exam-
ining the autocorrelation function. We present
in Table 1 the autocorrelation function for 36
lags of the S&P 500 index and the dividends
for the 1962–2006 period using monthly data.
The autocorrelations for the early lags are quite
close to one. Furthermore, the autocorrelation
function exhibits a slow decay at higher lags.
This provides sufficient evidence to conclude
that stock prices and dividends are nonstation-
ary. When we inspect the autocorrelation func-
tion of their first differences (not shown), the
autocorrelation of the first lag is not close to
one. We may conclude the series are stationary
in the first differences.

In Table 2, we present the results of formal
tests of nonstationarity. The lag length for the
ADF test was determined by the Schwarz cri-
terion. The null hypothesis is that the S&P 500

stock index (dividends) contains a unit root; the
alternative is that it does not. For both statistics,
the ADF and the Phillips-Perron, the results in-
dicate that the S&P 500 index is nonstationary
and the changes in that index are stationary. The
results for dividends are mixed. The ADF statis-
tic supports the presence of a unit root in div-
idends, while the Phillips-Peron statistic does
not. Since both the autocorrelation function and
the ADF statistic conclude there is a unit root
process, we shall presume that the dividend se-
ries is nonstationary. In sum, our analysis sug-
gests that the S&P 500 index and dividends
series each contain a stochastic trend in the lev-
els, but not in their first differences.

In the next step of the protocol we exam-
ine whether the S&P 500 index and dividends
are cointegrated. This is accomplished by es-
timating the long-run equilibrium relation by
regressing the logarithm (log) of the S&P 500
index on the log of the dividends. We use the

Table 2 Stationarity Test for the S&P 500 Index and Dividends 1962–2006

Critical Value of Test
Augumented Dickey Statistics at 1%, 5%, 10%

Variable Fuller (ADF) Phillips-Perron Significance

S&P 500 1.22 1.12 –3.44 (1%)
� S&P 500 –19.07 –19.35 –2.87 (5%)
Dividends 1.52 4.64 –2.56 (10%)
� Dividends –2.13 –31.68

Null hypothesis: Variable is nonstationary.
The lag length for the ADF test was determined by the Schwarz Criterion. For the S&P 500 index and its first
difference, the lag length was 1. For the dividends and its first difference, the lag lengths were 12 and 11, respectively.
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Table 3 Cointegration Regression: S&P 500 and Dividends
Log S&P 500 = a + b log dividends + zt

Period Constant Coefficient of Dividends t-Stat Dividends

1962–1982 4.035 .404 17.85
1962–2006 2.871 1.336 68.54

logarithms of both variables to help smooth the
series. The results using monthly data are re-
ported in Table 3 for both the 1962–1982 period
and the 1962–2006 period. We pay little atten-
tion to the high t-statistic on the dividends vari-
able because the t-test is not appropriate unless
the variables are cointegrated. This is, of course,
the issue.

Once we estimate the regression in step 2,
the next step involves testing the residuals of
the regression, zt, for stationarity. By definition,
the residuals have a zero mean and lack a time
trend. This simplifies the test for stationarity.
This is accomplished by estimating equation (4).
The null hypothesis is that the variables lack
cointegration. If we conclude that p in equa-
tion (4) is significantly negative, then we reject
the null hypothesis and conclude that the evi-
dence is consistent with the presence of cointe-
gration between the stock index and dividends.

The appropriate lag lengths may be determined
by the Akaike information criterion or theoreti-
cal and practical considerations. We decided to
use a lag length of three periods representing
one quarter. The results are presented in Table
4. For the 1962–1982 period, we may reject the
null hypothesis of no cointegration at the 10%
level of statistical significance. For the entire pe-
riod (1962–2006), we cannot reject the null hy-
pothesis (p = 0) of no cointegration. Apparently,
the relationship between stock prices and div-
idends unraveled in the 1980s and the 1990s.
This evidence is consistent with the existence of
an Internet stock bubble in the 1990s.

Having established that the S&P 500 index
and dividends are cointegrated from 1962–1982,
in the final step of the protocol we examine the
interaction between stock prices and dividends
by estimating the error-correction model, equa-
tions (5) and (6). It is useful at this point to

Table 4 Augmented Dickey Fuller Tests of Residuals for Cointegration

Variable Coefficient t-Stat p-Value

Panel A 1962–1982 n = 248
zt −.063 −3.23 .001
�zt − 1 .272 4.32 .000
�zt − 2 −.030 −.46 .642
�zt − 3 .090 1.40 .162
t-statistic of p = −3.23; critical values (5%) −3.36 (10%) −3.06
Panel B 1962–2006 n = 536
zt −.008 −1.81 .070
�zt − 1 .265 6.13 .000
�zt − 2 −.048 −1.08 .280
�zt − 3 .031 .71 .477
t-statistic of p = −1.81; critical values (5%) 3.35 (10%) 3.05

The critical values of the Augumented Dickey Fuller (ADF) statistic are from Engle and Yoo (1987). The cointegration
equation errors used to perform the ADF test is based on the following regression:
�zt = −p zt − 1 + a�zt − 1 + b�zt-2 + c�zt-3 + et
where �zt is the change in the error term from the co-integration regression and et is a random error. If p is positive
and significantly different from zero, the z residuals from the equilibrium equation and stationary so we may accept
the null hypothesis of cointegration. In both equations the error terms are white noise, so no further stationarity tests
were performed.
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review our interpretation of equations (5) and
(6). Equation (5) claims that changes in the S&P
500 Index depend upon past changes in the S&P
500 Index and past changes in dividends and
the extent of disequilibrium between the S&P
500 index and dividends. Equation (6) has a
similar statistical interpretation. However, from
a theoretical point of view, equation (6) is mean-
ingless. Financial theory does not claim that
changes in dividends are impacted either by
past changes in stock prices or the extent of the
disequilibrium between stock prices and divi-
dends. As such, equation (6) degenerates into
an autoregressive model of dividends.

We estimated the error-correction equations
using three lags. The error term, zt−1, used in
these error-correction regressions was obtained
from OLS estimation of the cointegration equa-
tion reported in Table 3. Estimates of the error-
correction equations are reported in Table 5.
By construction, the error-correction term rep-
resents the degree to which the stock prices and
dividends deviate from long-run equilibrium.
The error-correction term is included in both
equations to guarantee that the variables do not
drift too far apart. If the variables are cointe-
grated, Engle and Granger (1987) showed that
the coefficient on the error-correction term (yt−1

− axt−1) in at least one of the equations must
be nonzero. The t value of the error-correction
term in equation (5) is statistically different

from zero. The coefficient of −0.07 is known
as the speed of adjustment coefficient. It sug-
gests that 7% of the previous month’s disequi-
librium between the stock index and dividends
is eliminated in the current month. In general,
the higher the speed of adjustment coefficient,
the faster the long-run equilibrium is restored.
Since the speed of adjustment coefficient for the
dividend equation is statistically indistinguish-
able from zero, all of the adjustment falls on the
stock price.

An interesting observation from Table 5 re-
lates to the lag structure of equation (5). The
first lag on past stock price changes is statis-
tically significant. This means that the change
in the stock index this month depends upon
the change during the last month. This is in-
consistent with the efficient market hypothesis.
On the other hand, the change in dividend lags
is not statistically different from zero. The effi-
cient market theory suggests, and the estimated
equation confirms, that past changes in divi-
dends do not affect the current changes in stock
prices.

Johansen-Juselius Cointegration Tests
The Engle-Granger method does have some
problems (see Enders, 1995). These problems
are magnified in a multivariate (three or
more variables) context. In principle, when the

Table 5 Error Correction Model: S&P 500 Index and Dividends 1962–1982

�Yt = b01 + b11�Yt−2 + b12�Yt−2 + b13�Yt−3 + c11�Xt−1 + c12 Xt−2 + c13�Xt−3 + d1(Yt−1 − a Xt−1) + e1t (5)
�Xt−1 = b20 + b21�Yt−1 + b22�Yt−2 + b23�Yt−3 + c21�Xt−1 + c22�Xt−2 + c23�Xt−3 + d2(Yt−1 − a Xt−1) + e2t (6)

Equation 5 Equation 6

Coefficient t-stat Coefficient t-stat

b01 –.009 –2.42 b20 .001 2.91
b11 .251 4.00 b21 .002 .63
b12 –.043 –.66 b22 –.003 –.88
b13 .081 1.27 B23 .004 1.07
c11 .130 .11 c21 .939 14.60
c12 –.737 –.46 c22 –.005 –.06
c13 –.78 –0.65 c23 –.006 .87
d1 –.07 –3.64 d2 .000 .30

The change in the S&P 500 index is denoted as �Yt and the change in dividends is denoted as �Xt.
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cointegrating equation is estimated (even in a
two-variable problem), we may use any vari-
able as the dependent variable. In our last ex-
ample, this would entail placing dividends on
the left-hand side of equation (2) and the S&P
500 index on the right-hand side. As the sam-
ple size approaches infinity, Engle and Granger
(1987) showed the cointegration tests produce
the same results irrespective of what variable
you use as the dependent variable. The question
then is: How large a sample is large enough?

A second problem is that the errors we use
to test for cointegration are only estimates and
not the true errors. Thus any mistakes made in
estimating the error term, zt, in equation (2) are
carried forward into the equation (3) regression.
Finally, the Engle-Granger procedure is unable
to detect multiple cointegrating relationships.

The procedures developed by Johansen and
Juselius (1990) avoid these problems. Consider
the following multivariate model:

yt = Ayt−1 + ut (7)

where

yt is an n × 1 vector (y1t, y2t,. . . . . .ynt)’
ut is an n-dimensional error term at t
A is an n × n matrix of coefficients

If the variables display a time trend, we may
wish to add the matrix A0 to equation (7). This
would reflect a deterministic time trend. The
same applies to equation (8) presented below. It
does not change the nature of our analysis.

The model (without the deterministic time
trend) can then be represented as:

�yt = (I − A)yt−1 + ut (8)

Let B = I − A. I is the identity matrix of di-
mension n. The cointegration of the system is
determined by the rank of B matrix. The high-
est rank of B one can obtain is n, the number
of variables under consideration. If the rank of
the matrix equals zero, then the B matrix is null.
This means �yt = 0 + ut, where 0 is the null vec-
tor. In this case yit will follow a random walk

(yt = yt − 1 + ut) and no linear combination of yt

will be stationary, so there are no cointegrating
vectors.

If the rank of B is n, then each yit is an autore-
gressive process. This means each yit is station-
ary and thus they cannot be cointegrated. For
any rank between 1 and n − 1, the system is
cointegrated and the rank of the matrix is the
number of cointegrating vectors.

The higher-order autoregressive representa-
tion is similar. Although it is more involved, the
Johansen and Juselius estimation procedure can
still handle it easily. Since the rank of a matrix
equals the number of distinct nonzero charac-
teristic roots of a matrix, the Johansen-Juselius
procedure attempts to determine the number of
nonzero characteristic roots of the relevant ma-
trices. The procedure estimates the matrices and
hence the characteristic roots with a maximum
likelihood method.

The Johansen-Juselius procedure employs
two statistics to test for nonzero characteristic
roots. First they order the characteristic roots
from high to low, λ1*> λ2*>. . . .λ>n*. λi* to esti-
mate nonzero characteristic roots.

The first statistic, the trace test statistic,
verifies the null hypothesis that at most i
characteristic roots are different from zero. The
alternative hypothesis is that more than i char-
acteristic roots are nonzero. The statistic em-
ployed is:

λtrace(i) = −T[ln(1 − λ∗
i ) + ln(1 − λ∗

i+1)

+ · · · + ln(1 − λ∗
n)]. (9)

where T is the number of included time periods.
If all the characteristic roots are zero since ln(1)
= 0, the statistic will equal zero. Thus low values
of the test statistic will lead us to fail to reject the
null hypothesis. The larger any characteristic
root is, the more negative 1− λi* and the larger
the test statistic and the more likely we will
reject the null hypothesis.

The alternative test is called the maximum
eigenvalue test since it is based on the largest
eigenvalue. This statistic tests the null hypothe-
sis that there are i cointegrating vectors against
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the alternative hypothesis of i + 1. This statistic
is:

λmax(i, i + 1) = −Tln(1 − λ∗
i+1) (10)

Again, if λi+1* = 0, then the test statistic will
equal zero. So low (high) values of λi+1* will
lead to a failure to reject (rejection of) the null
hypothesis.

Johansen and Juselius derive critical values
for both test statistics. The critical values are
different if there is a deterministic time trend
and an A0 matrix is included. Enders (1995) pro-
vides tables for both critical statistics with and
without the trend terms. Software programs
often provide critical values and the relevant
p-values.

Testing of the Dynamic
Relationships among Country
Stock Markets
Many portfolio managers seek international di-
versification. If stock market returns in differ-
ent countries were not highly correlated, then
portfolio managers could obtain risk reduction
without significant loss of return by investing
in different countries. But with the advent of
globalization and the simultaneous integration
of capital markets, the risk-diversifying bene-
fits of international investing have been subject
to challenge. In this section, we illustrate how
cointegration can shed light on this issue and
apply the Johansen-Juselius technique.

The idea of a common currency for the Eu-
ropean countries is to reduce transactions costs
and more closely link the economies. We shall
use cointegration to examine whether the stock
markets of France, Germany, and the Nether-
lands are linked following the introduction of
the Euro in 1999. We use monthly data for the
period 1999–2006.

The first step to test for cointegration is to es-
tablish that the three stock indexes are nonsta-
tionary in the levels and stationary in the first
differences. In testing the present value model,
we presented the autocorrelation function (the

ADF statistic), and the Phillips-Perron statis-
tic. For reasons of space, we will not repeat
this. Next we should establish the appropri-
ate lag length for equation (8). This is typically
done by estimating a traditional vector autore-
gressive (VAR) model and applying a multivari-
ate version of the Akaike information criterion
or Schwarz criterion. For our model, we use one
lag, and thus the model takes the form:

yt = A0 + A1yt−1 + ut (11)

where yt is the n × 3 vector (y1t, y2t, y3t)’ of the
logs of the stock market index for France, Ger-
many, and the Netherlands (i.e., element y1t is
the log of the French index at time t; y2t is the
log of the German index at time t; and y3t is
the log of the Netherlands index at time t). We
use logs of the stock market indexes to smooth
the series. A0 and A1 are n × n matrices of
parameters and ut is the n × n error matrix.

The next step is to estimate the model. This
means fitting equation (8). We incorporated a
linear time trend, hence the inclusion of the ma-
trix A0. Since there are restrictions across the
equations, the procedure uses a maximum like-
lihood estimation procedure and not OLS. The
focus of this estimation is not on the parame-
ters of the A matrices. Few software programs
present these estimates; rather, the emphasis
is on the characteristic roots of the matrix B,
which are estimated to determine the rank of the
matrix.

The estimates of the characteristic roots are
presented in Table 6. We want to establish
whether i indexes are cointegrated. Thus, we
test the null hypothesis that the indexes lack
cointegration. To accomplish this, the λtrace (0)
statistic is calculated. Table 6 also provides this
statistic. To ensure comprehension of this im-
portant statistic, we detail its calculation.

We have 96 usable observations.

λtrace(0) = −T[ln(1 − λ∗
i ) + ln(1 − λ∗

2)

+ ln(1 − λ∗
3)] = −96[ln(1 − 0.227)

+ ln(1 − 0.057) + ln(1 − 0.028)]

= 33.05
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Table 6 Cointegration Test

Hypothesized No.
of Cointegrating
Vectors

Characteristic
Roots

Trace
Statistics
λtrace

5% Critical
Value p-Value

Max Statistic
λmax

5% Critical
Value p-Value

None .227 33.05 29.80 .02 24.72 21.13 .01
At most 1 .057 8.32 15.49 .43 5.61 14.26 .66
At most 2 .028 2.72 3.84 .10 2.72 3.84 .10

As reported in Table 6, this exceeds the crit-
ical value for 5% significance of 29.80 and has
a p-value of 0.02. Thus, we may reject the null
hypothesis at a 5% level of significance and con-
clude that the evidence is consistent with at least
one cointegrating vector. Next we can examine
λtrace (1) to test the null hypothesis of at most 1
cointegrating vector against the alternative of 2
cointegrating vectors. Table 6 shows that λ1 at
8.33 is less than the critical value of 15.49 nec-
essary to establish statistical significance at the
5% level. We do not reject the null hypothesis.
We therefore conclude that there is at least one
cointegrating vector. There is no need to evalu-
ate λtrace (2).

The λmax statistic reinforces our conclusion.
We can use λmax (0, 1) to test the null hypothe-
sis that the variables lack cointegration against
the alternative that they are cointegrated with
one cointegrating vector. Table 6 presents the
value of λmax (0, 1). Again, for pedagogic rea-
sons we outline the calculation of λmax (0, 1).

λmax(0, 1) = (−Tln(1 − λ∗
i ) = −96 ln(1 − 0.227)

= 24.72

The computed value of 24.72 exceeds the crit-
ical value of 21.13 at the 5% significance level
and has a p-value of 0.01. Once again, this leads
us to reject the null hypothesis that the indexes
lack cointegration and conclude that there ex-
ists at least one cointegrating vector.

The next step requires a presentation of the
cointegrating equation and an analysis of the
error-correction model. Table 7 presents both.
The cointegrating equation is a multivariate
representation of zt−1 in the Engle-Granger

method. This is presented in panel A of Table 7.
The error-correction model takes the following
representation.

�yt = b10 +
n∑

i=1

b1i�yt−i +
n∑

j=
c1 j�xt− j

+d1(yt−1 − axt−1) + e1t (12)

The notation of equation (12) differs some-
what from the notation of equations (5) and
(6). The notation used in equation (12) reflects
the matrix notation adopted for the Johansen-
Juselius method in equation (8). Nevertheless,
for expositional convenience, we did not use the
matrix notation for the error-correction term.
Again, the � means the first difference of the
variable; thus �y1t−1 means the change in the
log of the French stock index in period t − 1,
(y1t−1 − y1t−2). Equation (12) claims that changes
in the log of the French stock index are due
to changes in the French stock index during
the last two (2) periods; changes in the Ger-
man stock index during the last two periods;
changes in the Netherlands stock index dur-
ing the last two periods; and finally deviations
of the French stock index from its stochastic
trend with Germany and the Netherlands. An
analogous equation could be written for both
Germany and the Netherlands.

Panel B of Table 7 presents the error-correction
model estimates for each of the three countries.
The software used a two-period lag for the past
values of the changes in the stock indexes as
indicated by the Schwarz criterion.

The error-correction term in each equation re-
flects the deviation from the long-run stochas-
tic trend of that stock index in the last period.
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Table 7 Cointegrating Equation and Error Correction Equations 1999–2007
Panel A: Cointegrating Equation
France = 4.82 + 2.13 Germany –1.71 Netherlands

[–8.41] [5.25]
Panel B: Error Correction Equations

Country �(France) �(Germany) �(Netherlands)

Zt − 1 −0.151477 −0.057454 −0.179129
[−2.21470] [−0.66835] [−2.52373]

�(France(−1)) 0.087360 0.245750 0.225357
[0.27222] [0.60927] [0.67667]

�(France(−2)) −0.200773 −0.218331 −0.324250
[−0.68179] [−0.58990] [−1.06105]

�(Germany(−1)) −0.189419 −0.024306 −0.094891
[−0.82197] [−0.08392] [−0.39680]

�(Germany(−2)) −0.155386 −0.109070 −0.127301
[−0.67237] [−0.37551] [−0.53081]

�(Netherlands(−1)) 0.079881 −0.189775 −0.188295
[0.34284] [−0.64805] [−0.77875]

�(Netherlands(−2)) 0.439569 0.446368 0.483929
[1.89288] [1.52936] [2.00810]

C 0.005967 0.002575 0.002688
[1.02860] [0.35321] [0.44641]

France (−1) represents the log return of the French stock index one month ago. Germany (−1) and Netherlands (−1)
have a similar interpretation the [ ] represent the t-statistic.

It should be noted that in contrast to the two-
step procedure of the Engle-Granger approach,
the Johansen-Juselius approach estimates the
speed of adjustment coefficient in one step. It
provides insight into the short-run dynamics.
This coefficient is insignificant (at the 5% level)
for Germany. This means that stock prices in
Germany do not change in response to devi-
ations from their stochastic trend with France
and the Netherlands. Because the variables are
cointegrated, we are guaranteed that at least
one speed of adjustment coefficient will be sig-
nificant. In fact, the speed of adjustment coeffi-
cients of both France and the Netherlands attain
statistical significance (at the 5% level) and are
about the same size. This shows that when the
economies of France and the Netherlands de-
viate from the common stochastic trend, they
adjust. In France about 15% and in the Nether-
lands about 17% of the last-period deviation is
corrected during this period.

For France, neither past changes in its own
stock index nor the past changes in Germany’s
stock index appear to affect French stock prices.

The changes in the lagged values of both in-
dexes lack statistical significance. Only the sec-
ond lag of the Netherlands stock index attained
significance. For Germany, the past changes in
its own stock prices and the past changes in the
stock indexes of the other countries failed to ob-
tain significance at the 5% level. For the Nether-
lands, its own second-period lag obtained
statistical significance. Nevertheless, the failure
of individual lags to obtain significance does
not mean that jointly the lags are insignificant.

To see this, we turn to an examination of
Granger causality in the error-correction mod-
els. Granger causality helps us to classify the
variables into dependent and independent. A
variable Granger causes another variable when
past values of that variable improve our abil-
ity to forecast the original variable. To test for
Granger causality, an F-test is employed to ver-
ify whether the lagged changes in, say, the stock
index of France jointly zero in the German equa-
tion. Table 8 reports the results of pairwise
Granger causality tests. We find that France
and Germany do not Granger cause each other
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Table 8 Cointegration Test Results 1975–2000

Cointegration between
Hypothesized
No. of CE(s) Eigenvalue Trace Statistic

0.05
Critical Value Prob. **

Home Prices vs. Household Debt
Ratio

None
At most 1

0.09
0.05

14.72
5.28

25.87
12.52

0.60
0.56

Home Prices vs. Housing
Affordability Index

None
At most 1

0.13
0.07

20.34
7.06

25.87
12.52

0.21
0.34

Home Prices vs. Mortgage Rate None
At most 1

0.10
0.08

18.16
7.73

25.87
12.52

0.33
0.27

Home Prices vs. Homebuilders
Stock Index

None
At most 1

0.15
0.09

25.69
9.49

25.87
12.52

0.05
0.15

Home Prices vs. Unemployment
Rate

None *

At most 1
0.15
0.09

25.90
9.66

25.87
12.52

0.05
0.14

Home Prices vs. Mean of Middle
Fifth of Income

None *

At most 1
0.20
0.10

32.58
9.90

25.87
12.52

0.01
0.13

Home Prices vs. Mean of Top Fifth
of Income

None *

At most 1
0.21
0.08

32.29
8.70

25.87
12.52

0.01
0.20

Source: This table is reprinted from Arshanapalli and Nelson (2008) with permission of The International Journal of
Business and Finance Research.
* Denotes rejection of the null hypothesis of no cointegration at the 0.05 level
** Denotes the p-value

at any conventional levels of significance. The
smaller Netherlands economy finds its stock
prices Granger caused by both France and Ger-
many but the Netherlands does not Granger
cause either French or German stock prices at
conventional levels of significance.

Empirical Illustration of a Test for
the Presence of a Housing Bubble
The third application demonstrates the use of
cointegration to test the possibility of a bub-
ble in the housing market. As we illustrated in
our previous examples, the beginning of any
analysis is a picture of the time series under
examination. Figure 2 shows the trend in the
U.S. housing index from 1975 to the third quar-
ter of 2007. Clearly, since 2001 the United States
has experienced several years of strong home
price increases. Also, the figure illustrates that
the rise began to slow in 2005. At this time
we know that housing prices collapsed in 2008.
This sort of evidence has led the financial and
the general press to conclude that the U.S. hous-
ing market has experienced a bubble. However,
the detection of a bubble after the fact is of little
practical use. The question is, can cointegration

provide evidence of a bubble before the bubble
bursts?

The widely accepted efficient market the-
ory claims that financial asset prices reflect all
the publicly available information at all times.
This denies the possibility of a bubble. While
some may believe prices are too high relative
to fundamental factors, according to the the-
ory they are wrong, because investors recog-
nize immediately if the price of anything is
too high (or too low) and respond by selling
(or purchasing) the asset until the over-(under)
pricing is eliminated. A mountainous body of
academic research (see Fama, 1970, for a sam-
pling) supports this view.

Nevertheless, the efficient market theory has
been subject to much serious criticism (Shiller,
2003). Furthermore, much of the research fo-
cused on financial assets. The efficient market
theory assumes that investors can sell an asset
short to eliminate overpricing. Real estate is a
real and illiquid asset. During the period of the
housing price run-up there was no mechanism
known to us for shorting a residential home.
A futures market for housing is a relatively re-
cent innovation. These markets do not function
well enough to fulfill the assumptions of the
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Figure 2 Home Prices in the United States
*The bursting of a real estate bubble has important implications for the U.S. economy. Residential real
estate is an important component of householder wealth. In 1996, it represented 39% of household
wealth. This figure is reprinted from Arshanapalli and Nelson (2008) with the permission of the Institute
for Business and Finance Research.

efficient market theory. Thus, we should not dis-
miss the possibility of a housing bubble out of
hand.

Arshanapalli and Nelson (2008) tested for
the existence of a housing bubble, examining
the stability of the underlying relationship of
home prices and the economic forces that deter-
mine them. A relationship suddenly becomes
unstable when rising home prices are not jus-
tified by the underlying economic fundamen-
tals. Cointegration is well suited to test for this.
Cointegration implies that two variables share a
common stochastic trend. A common stochastic
trend does not simply mean that they move up-
ward or downward together, but rather that the
variables may share both prolonged upward
and prolonged downward movements.

Suppose housing prices are cointegrated with
an economic variable and a bubble develops in
the housing market, then housing prices rise
without a corresponding rise in the variable.
This implies the severing of a long-term rela-
tionship between housing prices and the vari-
able. In other words, the cointegration should
cease. In summary, if there were a housing bub-
ble beginning in about 2000, then the variables,

which were cointegrated with housing prices
before 2000, will no longer remain cointegrated
after 2000.

Data
Quarterly data are used and the study covers
the period 1975Q1–2007Q2. We employ the U.S.
Office of Federal Housing Enterprise Oversight
(OFHEO) Home Price quarterly index to mea-
sure housing prices. The index is not seasonally
adjusted.

Next, we consider a series of seven variables
that reflect the fundamental economic forces
determining housing prices. The most impor-
tant of these is income. Case and Shiller (2003)
conclude that in nonbubble markets income
explains most of the rise in housing prices.
We employ two separate measures of income.
The first is the mean of the middle quintile of
the income distribution, denoted as the Mid-
dle Fifth. Second, we use the mean of the
highest quintile of the income distribution, de-
noted as the Top Fifth. This attempts to account
for the possibility that the wealthiest segment
of the population influences housing prices
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disproportionately because of their greater
mobility. The U.S. Census Bureau, Histori-
cal Income Tables-Families (all races), and the
National Association of Realtors provided these
data.

The mortgage rate represents a strong in-
fluence on consumer demand for housing.
We obtained the 30-year conventional mort-
gage rate (fixed rate, first mortgages) from the
Board of Governors of the U.S. Federal Re-
serve System. The civilian unemployment rate
measures the state of the economy. The U.S.
Bureau of Labor Statistics provided the sea-
sonally adjusted percentage of civilian unem-
ployment. We converted the monthly data for
both variables to quarterly data by a simple
mean. The Homebuilders Stock Index provides
an indication of the state of the housing market.
A capitalization-weighted, price-level index of
homebuilding stocks based on stocks included
in the S&P 500 stock index was obtained from
Merrill Lynch.

The final variables measure the ability of con-
sumers to handle mortgage debt. The house-
hold debt ratio is the ratio of household credit
market debt outstanding to annualized per-
sonal disposable income. The data also came
from the Board of Governors of the U.S. Fed-
eral Reserve System. The Housing Affordabil-
ity Index for all homebuyers (HAI) measures
whether or not a typical family could qualify
for a mortgage loan on a typical home, assum-
ing a 20% down payment. We define a typical
home as the national median-priced, existing
single–family home as calculated by NAR. In
its final form used here, the HAI is essentially
“median family income divided by qualifying
income.” The index is interpreted as follows:
A value of 100 means that a family with the
median family income (from the U.S. Bureau
of the Census and NAR) has exactly enough
income to qualify for a mortgage on a median-
priced home. National Association of Realtors
(NAR) provided the data. In this research,
the monthly HAI values result from quarterly
samples.2

Again, the first step in establishing cointe-
gration is to test the variables for stationarity.
To establish nonstationarity we employed the
ADF (augmented Dickey Fuller) test and the
Phillips-Peron test. Although we do not display
the results here, we conclude all the variables
are nonstationary.

Next, we examine whether home prices and
the seven fundamental variables are cointe-
grated. This is accomplished by examining a
cointegrating regression for each of the seven
variables with home prices. Table 8 presents
the results of these cointegration tests for the
1975Q1–2000Q4 period. The Trace Statistic Test
shows that for three of the seven variables,
top fifth, middle fifth, and the unemployment
rate, we may reject the null hypothesis of no
cointegration at a 5% level of significance. Fur-
thermore, we may reject the null hypothesis
of no cointegration at the 10% level of statisti-
cal significance for one additional variable, the
Homebuilders stock index. Thus for the period
preceding the runup in home prices there ap-
pears to have been a strong link between home
prices and both the income variables and the
unemployment rate and a marginal link with
the Homebuilders Stock Index.

Table 9 presents the results of these cointe-
gration tests for the period 1975–2007Q3. The
trace tests indicate the eigenvalues are not sta-
tistically distinguishable from zero in any equa-
tion at the 5% level. However, the P-value for
the middle fifth of income was .0502. Recog-
nizing the belief that the bubble burst in late
2005, we did the cointegration test for the pe-
riod 1975–2005Q2. The P-value (hypothesized
no. of CE(s) = none) for home prices vs. mid-
dle fifth of income was 11%. (Although we did
not display the results, we cannot reject the hy-
pothesis of no cointegration for any of the other
fundamental variables during this period. This
suggests that in the post-2005 period the normal
relationship between home prices and income
was reasserting itself. This result suggests that
the linkage between home prices and funda-
mental variables has been substantially reduced
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Table 9 Cointegration Test Results for the Whole Period: 1975–2007Q3

Cointegration between
Hypothesized
No. of CE(s) Eigenvalue Trace Statistic

0.05 Critical
Value Prob. *

Home Prices vs. Household Debt
Ratio

None
At most 1

0.07
0.00

7.68
0.29

15.49
3.84

0.50
0.59

Home Prices vs. Housing
Affordability Index

None
At most 1

0.12
0.01

13.64
0.89

15.49
3.84

0.09
0.35

Home Prices vs. Mortgage Rate None
At most 1

0.10
0.00

10.63
0.42

15.49
3.84

0.24
0.52

Home Prices vs. Homebuilders
Stock Index

None
At most 1

0.10
0.02

12.28
1.78

15.49
3.84

0.14
0.18

Home Prices vs. Unemployment
Rate

None
At most 1

0.10
0.02

12.13
1.81

15.49
3.84

0.15
1.18

Home Prices vs. Mean of Middle
Fifth of Income

None
At most 1

0.13
0.02

15.48
2.02

15.49
3.84

0.05
0.16

Home Prices vs. Mean of Top Fifth
of Income

None
At most 1

0.09
0.00

8.85
0.03

15.49
3.84

0.38
0.87

Source: This table is reprinted from Arshanapalli and Nelson (2008) with permission of The International Journal of
Business and Finance Research.
* Denotes the p-value

after 2000. The evidence is consistent with a real
estate bubble.

KEY POINTS
� Many of the variables of interest to finance

professionals are nonstationary.
� The relationships among them can be fruit-

fully analyzed if they share a common
stochastic trend. A way of capturing this com-
mon stochastic trend is the application of
cointegration.

� Cointegration analysis can reveal interesting
long-run relationships between the variables.

� It is possible that cointegrating variables may
deviate in the short run from their relation-
ship, but the error correction model shows
how these variables adjust to the long-run
equilibrium.

� Cointegration analysis can reveal interesting
short-run asset pricing adjustments.

� The error-correction models tend to have a
better forecasting performance than simple
vector autoregressive models.

� Cointegration analysis shows when funda-
mental long-run relationships are severed.

This is consistent with the presence of an asset
price bubble.

NOTES
1. For a summary of these criteria, see Chap-

ter 12 in Focardi and Fabozzi (2004).
2. For more details on the exact calculation, go

to www.realtor.org.
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Abstract: Many financial and economic data exhibit nonlinear characteristics. Prices of commodities
such as crude oil often rise quickly but decline slowly. The monthly U.S. unemployment rate exhibits
sharp increases followed by slow decreases. To model these characteristics in a satisfactory manner,
one must employ nonlinear econometric models or use nonparametric statistical methods. For most
applications, it suffices to employ simple nonlinear models. For example, the quarterly growth
rate of the U.S. gross domestic product can be adequately described by the Markov switching or
threshold autoregressive models. These models typically classify the state of the U.S. economy into
two categories corresponding roughly to expansion and contraction.

In this entry, we study nonlinearity in financial
data, discuss various nonlinear models avail-
able in the literature, and demonstrate appli-
cation of nonlinear models in finance with
real examples. The models discussed include
bilinear models, threshold autoregressive mod-
els, smooth threshold autoregressive models,
Markov switching models, and nonlinear addi-
tive autoregressive models. We also consider
nonparametric methods and neural networks, and
apply nonparametric methods to estimate in-
terest models. To detect nonlinearity in finan-
cial data, we introduce various nonlinearity tests
available in the literature and apply the tests
to some financial series. Finally, we analyze the
monthly U.S. unemployment rate and compare
out-of-sample prediction of nonlinear models
with linear ones via several criteria.

STUDY OF NONLINEARITY
IN ECONOMETRICS AND
STATISTICS
Assume, for simplicity, a univariate time series
xt is observed at equally spaced time points.
We denote the observations by {xt|t = 1, . . . , T},
where T is the sample size. A purely stochastic
time series xt is said to be linear if it can be
written as

xt = μ +
∞∑

i=0

ψi at−i (1)

where μ is a constant, ψ i are real numbers with
ψ0 = 1, and {at} is a sequence of indepen-
dent and identically distributed (IID) random
variables with a well-defined distribution func-
tion. We assume that the distribution of at is

401
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continuous and E(at) = 0. In many cases, we fur-
ther assume that Var(at) = σ 2

a or, even stronger,
that at is Gaussian. If σ 2

a
∑∞

i=1 ψ2
i < ∞, then Xt

is weakly stationary (i.e., the first two moments
of xt are time-invariant). The well-known au-
toregressive moving-average (ARMA) process
of Box et al. (2008) is linear because it has an
moving-average (MA) representation in equa-
tion (1). Any stochastic process that does not
satisfy the condition of equation (1) is said to be
nonlinear. The prior definition of nonlinearity
is for purely stochastic time series. One may ex-
tend the definition by allowing the mean of xt

to be a linear function of some exogenous vari-
ables, including the time index and some peri-
odic functions. But such a mean function can
be handled easily by using a regression model
with time series errors discussed in Tsay (2010,
Chapter 2), and we shall not consider the ex-
tension here. Mathematically, a purely stochas-
tic time series model for xt is a function of an
IID sequence consisting of the current and past
shocks—that is,

xt = f (at, at−i , . . .) (2)

The linear model in equation (1) says that f (.)
is a linear function of its arguments. Any non-
linearity in f (.) results in a nonlinear model. The
general nonlinear model in equation (2) is too
vague to be useful in practice. Further assump-
tions are needed to make the model applicable.

To put nonlinear models available in the lit-
erature in a proper perspective, we write the
model of xt in terms of its conditional mo-
ments. Let Ft−1 be the σ -field generated by
available information at time t − 1 (inclusive).
Typically, Ft−1 denotes the collection of linear
combinations of elements in {xt−1, xt−2, . . .} and
{at−1, at−2, . . .}. The conditional mean and vari-
ance of xt given Ft−1 are

μt = E( xt| Ft−i ) ≡ g(Ft−i )
σ 2

t = Var (xt |Ft−1 ) ≡ h(Ft−1)
(3)

where g(.) and h(.) are well-defined functions
with h(.) > 0. Thus, we restrict the model to

xt = g(Ft−1) +
√

h(Ft−1)et

where et = at/σ t is a standardized shock (or in-
novation). For the linear series xt in equation
(1), g(.) is a linear function of elements of Ft−1

and h(.) = σ 2
a . The development of nonlinear

models involves making extensions of the two
equations in equation (3). If g(.) is nonlinear,
xt is said to be nonlinear in mean. If h(.) is
time-variant, then xt is nonlinear in variance.
The conditional heteroscedastic models, for ex-
ample, the GARCH model of Bollerslev (1986),
are nonlinear in variance because their condi-
tional variances σ 2

t evolve over time. Based on
the well-known Wold decomposition, a weakly
stationary and purely stochastic time series can
be expressed as a linear function of uncorre-
lated shocks. For stationary volatility series,
these shocks are uncorrelated, but dependent.
The models discussed in this entry represent
another extension to nonlinearity derived from
modifying the conditional mean equation in
equation (3).

Many nonlinear time series models have
been proposed in the statistical literature,
such as the bilinear models of Granger and
Andersen (1978), the threshold autoregres-
sive (TAR) model of Tong (1978), the state-
dependent model of Priestley (1980), and the
Markov switching model of Hamilton (1989).
The basic idea underlying these nonlinear mod-
els is to let the conditional mean μt evolve
over time according to some simple paramet-
ric nonlinear function. Recently, a number of
nonlinear models have been proposed by mak-
ing use of advances in computing facilities
and computational methods. Examples of such
extensions include the nonlinear state-space
modeling of Carlin, Polson, and Stoffer (1992),
the functional-coefficient autoregressive model
of Chen and Tsay (1993a), the nonlinear addi-
tive autoregressive model of Chen and Tsay
(1993b), the multivariate adaptive regression
spline of Lewis and Stevens (1991), and the
generalized autoregressive score (GAS) model
of Creal et al. (2010). The basic idea of these
extensions is either using simulation methods
to describe the evolution of the conditional
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distribution of xt or using data-driven meth-
ods to explore the nonlinear characteristics of
a series. Finally, nonparametric and semipara-
metric methods such as kernel regression and
artificial neural networks have also been ap-
plied to explore the nonlinearity in a time series.
We discuss some nonlinear models in this entry
that are applicable to financial time series. The
discussion includes some nonparametric and
semiparametric methods.

Apart from the development of various non-
linear models, there is substantial interest in
studying test statistics that can discriminate lin-
ear series from nonlinear ones. Both paramet-
ric and nonparametric tests are available. Most
parametric tests employ either the Lagrange
multiplier or likelihood ratio statistics. Non-
parametric tests depend on either higher order
spectra of xt or the concept of dimension cor-
relation developed for chaotic time series. We
review some nonlinearity tests, discuss model-
ing and forecasting of nonlinear models, and
provide an application of nonlinear models.

NONLINEAR MODELS
Most nonlinear models developed in the sta-
tistical literature focus on the conditional mean
equation in equation (3); see Priestley (1988) and
Tong (1990) for summaries of nonlinear models.
Our goal here is to introduce some nonlinear
models that are useful in finance.

Bilinear Model
The linear model in equation (1) is simply the
first-order Taylor series expansion of the f (.)
function in equation (2). As such, a natural ex-
tension to nonlinearity is to employ the second-
order terms in the expansion to improve the
approximation. This is the basic idea of bilinear
models, which can be defined as

xt = c +
p∑

i=1
φi xt−i −

q∑
j=1

θ j at− j

+
m∑

i=1

s∑
j=1

βi j xt−i at− j + at

(4)

where p, q, m, and s are nonnegative integers.
This model was introduced by Granger and
Andersen (1978) and has been widely investi-
gated. Subba Rao and Gabr (1984) discuss some
properties and applications of the model, and
Liu and Brockwell (1988) study general bilinear
models. Properties of bilinear models such as
stationarity conditions are often derived by (a)
putting the model in a state-space form and (b)
using the state transition equation to express
the state as a product of past innovations and
random coefficient vectors. A special general-
ization of the bilinear model in equation (4)
has conditional heteroscedasticity. For example,
consider the model

xt = μ +
s∑

i=1

βi at−i at + at (5)

where {at} is a white noise series. The first two
conditional moments of xt are

E(xt |Ft−1 ) = μ

Var(xt|Ft−1) =
(

1 +
s∑

i=1
βi at−i

)2

σ 2
a

which confirm that the model has time-varying
volatility.

Example 1. Consider the monthly simple re-
turns of the CRSP equal-weighted index from
January 1926 to December 2008 for 996 observa-
tions. Denote the series by Rt. The sample par-
tial autocorrelation function (PACF) of Rt shows
significant serial correlations at lags 1 and 3 so
that an AR(3) model is used for the mean equa-
tion. The squared series of the AR(3) residuals
suggests that the conditional heteroscedasticity
might depend on lags 1, 3 and 8 of the resid-
uals. Therefore, we employ the special bilinear
model

Rt = μ + φ1 Rt−1 + φ3 Rt−3

+(1 + β1at−1 + β3at−3)at

for the series, where at = β0εt with εt being
an IID series with mean zero and variance 1.
Note that lag 8 is omitted for simplicity. As-
suming that the conditional distribution of at

is normal, we use the conditional maximum
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Figure 1 Time Plot of a Simulated 2-Regime TAR(1) Series

likelihood method and obtain the fitted model

Rt = 0.0114 + 0.167Rt−1 − 0.095Rt−3

+0.071(1 + 0.377at−1 − 0.646at−3)εt

(6)
where the standard errors of the parameters
are, in the order of appearance, 0.0023, 0.032,
0.027, 0.002, 0.147, and 0.136, respectively. All
estimates are significantly different from zero
at the 5% level. Define

ε̂t = Rt − 0.0114 − 0.167Rt−1 + 0.095Rt−3

0.071(1 + 0.377ât−1 − 0.646ât−3)

where ε̂t = 0 for t ≤ 3 as the standardized resid-
ual series of the model. The sample autocorre-
lation function (ACF) of ε̂t shows no significant
serial correlations, but the series is not indepen-
dent because the squared series ε̂2

t has signifi-
cant serial correlations. The validity of model
(6) deserves further investigation. For compari-
son, we also consider an AR(3)-ARCH(3) model
for the series and obtain

Rt = 0.013 + 0.223Rt−i + 0.006Rt−2

−0.013Rt−3 + at

σ 2
t = 0.002 + 0.185a2

t−1 + 0.301a2
t−2

+0.197a2
t−3

(7)

where all estimates but the coefficients of Rt−2

and Rt−3 are highly significant. The standard-
ized residual series of the model shows no se-
rial correlations, but the squared residuals show
Q(10) = 19.78 with a p-value of 0.031. Models (6)
and (7) appear to be similar, but the latter seems

to fit the data better. Further study shows that
an AR(1)-GARCH(1,1) model fits the data well.

Threshold Autoregressive
(TAR) Model
This model is motivated by several nonlin-
ear characteristics commonly observed in prac-
tice such as asymmetry in declining and rising
patterns of a process. It uses piecewise linear
models to obtain a better approximation of the
conditional mean equation. However, in con-
trast to the traditional piecewise linear model
that allows for model changes to occur in the
“time” space, the TAR model uses threshold
space to improve linear approximation. Let us
start with a simple 2-regime AR(1) model

xt =
{−1.5xt−1 + at if xt−1 < 0

0.5xt−1 + at if xt−1 ≥ 0
(8)

where the at are IID N(0,1). Here the threshold
variable is xt−1 and the threshold is 0.

Figure 1 shows the time plot of a simulated
series of xt with 200 observations. A horizontal
line of zero is added to the plot, which illustrates
several characteristics of TAR models. First, de-
spite the coefficient −1.5 in the first regime,
the process xt is geometrically ergodic and sta-
tionary. In fact, the necessary and sufficient
condition for model (8) to be geometrically er-
godic is φ

(1)
1 < 1, φ

(2)
1 < 1 and φ

(1)
1 φ

(2)
1 <1, where
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φ
(i)
1 is the AR coefficient of regime i; see Petruc-

celli and Woolford (1984) and Chen and Tsay
(1991).

Ergodicity is an important concept in time se-
ries analysis. For example, the statistical theory
showing that the sample mean x̄ = (

∑T
t=1 xt)/T

of xt converges to the mean of xt is referred to
as the ergodic theorem, which can be regarded
as the counterpart of the central limit theory for
the IID case. Second, the series exhibits an asym-
metric increasing and decreasing pattern. If xt−1

is negative, then xt tends to switch to a positive
value due to the negative and explosive coeffi-
cient −1.5. Yet when xt−1 is positive, it tends to
take multiple time periods for xt to reduce to a
negative value. Consequently, the time plot of xt

shows that regime 2 has more observations than
regime 1, and the series contains large upward
jumps when it becomes negative. The series is
therefore not time-reversible. Third, the model
contains no constant terms, but E(xt) is not zero.
The sample mean of the particular realization is
0.61 with a standard deviation of 0.07. In gen-
eral, E(xt) is a weighted average of the con-
ditional means of the two regimes, which are
nonzero. The weight for each regime is simply
the probability that xt is in that regime under its
stationary distribution. It is also clear from the
discussion that, for a TAR model to have zero
mean, nonzero constant terms in some of the
regimes are needed. This is very different from
a stationary linear model for which a nonzero
constant implies that the mean of xt is not zero.

A time series xt is said to follow a k-regime
self-exciting TAR (SETAR) model with thresh-
old variable xt−d if it satisfies

xt = φ
( j)
0 + φ

( j)
0 xt−1 − · · · φ( j)

p xt−p + a ( j)
t

if γ j−1 ≤ xt−d < γ j
(9)

where k and d are positive integers, j = 1, . . . ,
k, γ i are real numbers such that −∞ = γ0 <

γ1 < · · · < γk−1 < γ k = ∞, the superscript (j) is
used to signify the regime, and {a ( j)

t } are IID
sequences with mean 0 and variance σ 2

j and
are mutually independent for different j. The
parameter d is referred to as the delay pa-

rameter and γ j are the thresholds. Here it is
understood that the AR models are different
for different regimes; otherwise, the number of
regimes can be reduced. Equation (9) says that a
SETAR model is a piecewise linear AR model
in the threshold space. It is similar in spirit to
the usual piecewise linear models in regression
analysis, where model changes occur in the or-
der in which observations are taken. The SETAR
model is nonlinear provided that k > 1.

Properties of general SETAR models are hard
to obtain, but some of them can be found in
Tong (1990), Chan (1993), Chan and Tsay (1998),
and the references therein. In recent years, there
is increasing interest in TAR models and their
applications; see, for instance, Hansen (1997),
Tsay (1998), and Montgomery et al. (1998). Tsay
(1989) proposed a testing and modeling proce-
dure for univariate SETAR models. The model
in equation (9) can be generalized by using a
threshold variable zt that is measurable with re-
spect to Ft−1 (i.e., a function of elements of Ft−1).
The main requirements are that zt is stationary
with a continuous distribution function over a
compact subset of the real line and that zt−d is
known at time t. Such a generalized model is
referred to as an open-loop TAR model.

Example 2. To demonstrate the application of
TAR models, consider the U.S. monthly civilian
unemployment rate, seasonally adjusted and
measured in percentage, from January 1948 to
March 2009 for 735 observations. The data are
obtained from the Bureau of Labor Statistics,
Department of Labor, and are shown in Fig-
ure 2. The plot shows two main characteris-
tics of the data. First, there appears to be a
slow but upward trend in the overall unem-
ployment rate. Second, the unemployment rate
tends to increase rapidly and decrease slowly.
Thus, the series is not time-reversible and may
not be unit-root stationary, either.

Because the sample autocorrelation function
decays slowly, we employ the first differenced
series yt = (1−B)ut in the analysis, where
ut is the monthly unemployment rate. Using
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Figure 2 Time Plot of Monthly U.S. Civilian Unemployment Rate, Seasonally Adjusted, from January
1948 to March 2009

univariate ARIMA models, we obtain the
model

(1 − 1.13B + 0.27B2)(1 − 0.51B12)yt
= (1 − 1.12B + 0.44B2)(1 − 0.82B12)at

(10)
where σ̂a = 0.187 and all estimates but the
AR(2) coefficient are statistically significant at
the 5% level. The t-ratio of the estimate of AR(2)
coefficient is −1.66. The residuals of model (10)
give Q(12) = 12.3 and Q(24) = 25.5, respectively.
The corresponding p-values are 0.056 and 0.11,
respectively, based on χ2 distributions with 6
and 18 degrees of freedom. Thus, the fitted
model adequately describes the serial depen-
dence of the data. Note that the seasonal AR and
MA coefficients are highly significant with stan-
dard error 0.049 and 0.035, respectively, even
though the data were seasonally adjusted. The
adequacy of seasonal adjustment deserves fur-
ther study. Using model (10), we obtain the
1-step ahead forecast of 8.8 for the April 2009
unemployment rate, which is close to the actual
data of 8.9.

To model nonlinearity in the data, we employ
TAR models and obtain the model

yt =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.083yt−2 + 0.158yt−3 + 0.118yt−4

−0.180yt−12 + a1t if yt−i ≤ 0.1

0.421yt−2 + 0.239yt−3 − 0.127yt−12

+a2t if yt−i > 0.1
(11)

where the standard errors of ait are 0.180 and
0.217, respectively, the standard errors of the AR
parameters in regime 1 are 0.046, 0.043, 0.042,
and 0.037 whereas those of the AR parameters
in regime 2 are 0.054, 0.057, and 0.075, respec-
tively. The number of data points in regimes 1
and 2 are 460 and 262, respectively. The stan-
dardized residuals of model (11) only shows
some minor serial correlation at lag 12. Based on
the fitted TAR model, the dynamic dependence
in the data appears to be stronger when the
change in monthly unemployent rate is greater
than 0.1%. This is understandable because a
substantial increase in the unemployment rate
is indicative of weakening in the U.S. economy,
and policy makers might be more inclined to
take action to help the economy, which in turn
may affect the dynamics of the unemployment
rate series. Consequently, model (11) is capable
of describing the time-varying dynamics of the
U.S. unemployment rate.

The MA representation of model (10) is

ψ(B) ≈ 1 + 0.01B + 0.18B2 + 0.20B3

+0.18B4 + 0.15B5 + · · · .
It is then not surprising to see that no yt−1 term
appears in model (11).

Threshold models can be used in finance to
handle the leverage effect, that is, volatility re-
sponds differently to prior positive and nega-
tive returns. The models can also be used to
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Figure 3 Time Plot of the Daily Log Returns, in Percentages, for IBM Stock from January 2, 2001 to
December 31, 2009

study arbitrage trading in index futures and
cash prices. See Tsay (2010, chap. 8) for dis-
cussions and demonstration. Here we focus on
volatility modeling and introduce an alterna-
tive approach to parameterization of threshold
GARCH (TGARCH) models. In some applica-
tions, this new general TGARCH model fares
better than the model of Glosten et al. (1993).

Example 3. Consider the daily log returns, in
percentages and including dividends, of IBM
stock from January 2, 2001 to December 31,
2009 for 2,263 observations. Figure 3 shows the
time plot of the series. The volatility seems to
be larger at the beginning and end of the data
span. If GARCH models are entertained, we ob-
tain the following GARCH(1,1) model for the
series:

rt = 0.058 + at, at = σtεt

σ 2
t = 0.041 + 0.093a2

t−1 + 0.894σ 2
t−1

(12)

where rt is the log return, {et} is a Gaus-
sian white noise sequence with mean zero
and variance 1.0, the standard error of the
constant term in the mean equation is 0.026,
and those of the volatility equation are 0.012,
0.020, and 0.021, respectively. All estimates
are statistically significant at the 5% level.
The Ljung-Box statistics of the standardized

residuals, ε̂t= â t/σ̂ t, give Q(10) = 10.08(0.43)
and Q(20) = 23.24(0.28), where the number in
parentheses denotes p-value obtained using the
asymptotic X2

m distribution. For the squared
standardized residuals, we obtain Q(10) =
7.38(0.69) and Q(20) = 15.43(0.75). The model
is adequate in modeling the serial dependence
and conditional heteroscedasticity of the data.
But the unconditional mean for rt of model (12)
is 0.058, which is substantially larger than the
sample mean 0.024, indicating that the model
might be misspecified.

Next, we employ the TGARCH model of
Glosten et al. (1993) and obtain

rt = 0.015 + at, at = σtεt

σ 2
t = 0.032 + 0.033a2

t−1 + 0.091Nt−1a2
t−1

+0.911σ 2
t−1 (13)

where Nt−1 is the indicator for negative at−1

such that Nt−1 = 1 if at−1 < 0 and = 0 oth-
erwise, the standard error of the parameter in
the mean equation is 0.026, and those of the
volatility equation are 0.005, 0.005, 0.006, and
0.008, respectively. All estimates except the con-
stant term of the mean equation are highly
significant. Let ã t be the standardized residu-
als of model (13). We have Q(10) = 9.81(0.46)
and Q(20) = 22.17(0.33) for the {ã t} series and
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Q(10) = 22.12(0.01) and Q(20) = 31.15(0.05)
for {ã2

t }. The model fails to describe the
conditional heteroscedasticity of the data at the
5% level.

The idea of TAR models can be used to refine
the prior TGARCH model by allowing for in-
creased flexibility in modeling the asymmetric
response in volatility. More specifically, we con-
sider a TAR–GARCH(1,1) model for the series
and use the constrained optimization method
L-BFGS-B to perform estimation. The resulting
model is

rt = 0.023 + at, at = σtεt

σ 2
t = 0.086 + 0.044a2

t−1 + 0.815σ 2
t−1

+(−0.114 + 0.052a2
t−1 + 0.214σ 2

t−1)Nt−1

(14)

where all estimates are significant at the 5%
level and Nt−1 is defined in equation (13). The
estimate −0.114 is only marginally significant
because its standard error is 0.055. The coeffi-
cient of σ 2

t−1 is greater than 1 when at−1 < 0, but
it is not significantly different from 1 in view of
its standard error.

Let ât be the standardized residuals of model
(14). We obtain Q(10) = 9.10(0.52) and Q(20) =
21.82(0.35) for {â t} and Q(10) = 19.80(0.03) and
Q(20) = 27.41(0.12) for {â2

t }. Thus, model (14)
is adequate in modeling the serial correlation
and conditional heteroscedasticity of the daily
log returns of IBM stock considered. The
unconditional mean return of model (14) is
0.023, which is much closer to the sample mean
0.024 than those implied by models (12) and
(13). Comparing the fitted TAR-GARCH and
TGARCH models, we see that the asymmetric
behavior in daily IBM stock volatility is much
stronger than what is allowed in a TGARCH
model. Specifically, the coefficient of σ 2

t−1 also
depends on the sign of at−1.

Smooth Transition AR
(STAR) Model
A criticism of the SETAR model is that its con-
ditional mean equation is not continuous. The

thresholds {γ j} are the discontinuity points of
the conditional mean function μt. In response
to this criticism, smooth TAR models have
been proposed; see Chan and Tong (1986) and
Teräsvirta (1994) and the references therein. A
time series xt follows a 2-regime STAR(p) model
if it satisfies

xt = c0 +
p∑

i=1
φ0,i xt−i + F

(
xt−d − 


s

)

×
(

c1 +
p∑

i=1
φ1,i xt−i

)
+ at

(15)

where d is the delay parameter, 
 and s are pa-
rameters representing the location and scale of
model transition, and F(.) is a smooth transition
function. In practice, F(.) often assumes one of
three forms—namely, logistic, exponential, or
a cumulative distribution function. From equa-
tion (15) and with 0 ≤ F(.) ≤ 1, the conditional
mean of a STAR model is a weighted linear com-
bination between the following two equations:

μ1t = c0 +
p∑

i=1

φ0,i xt−i

μ2t = (c0 + c1) +
p∑

i=1

(φ0,i + φ1,i )xt−i

The weights are determined in a continuous
manner by F((xt−d − 
)/s). The prior two
equations also determine properties of a STAR
model. For instance, a prerequisite for the sta-
tionarity of a STAR model is that all zeros of
both AR polynomials are outside the unit circle.
An advantage of the STAR model over the TAR
model is that the conditional mean function is
differentiable. However, experience shows that
the transition parameters 
 and s of a STAR
model are hard to estimate. In particular, most
empirical studies show that standard errors of
the estimates of 
 and s are often quite large,
resulting in t-ratios about 1.0; see Teräsvirta
(1994). This uncertainty leads to various com-
plications in interpreting an estimated STAR
model.

Example 4. To illustrate the application of
STAR models in financial time series analysis,
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we consider the monthly simple stock returns
for Minnesota Mining and Manufacturing (3M)
Company from February 1946 to December
2008. If ARCH models are entertained, we ob-
tain the following ARCH(2) model

Rt = 0.013 + at, at = σtεt

σ 2
t = 0.003 + 0.088a2

t−1 + 0.109a2
t−2

(16)

where standard errors of the estimates are 0.002,
0.0003, 0.047, and 0.050, respectively. As dis-
cussed before, such an ARCH model fails to
show the asymmetric responses of stock volatil-
ity to positive and negative prior shocks. The
STAR model provides a simple alternative that
may overcome this difficulty Applying STAR
models to the monthly returns of 3M stock, we
obtain the model

Rt = 0.015 + at, at = σtεt

σ 2
t = (0.003 + 0.205a2

t−1 + 0.092a2
t−2)

+ 0.001 − 0.239a2
t−1

1 + exp(−1000at−1)

(17)

where the standard error of the constant term
in the mean equation is 0.002 and the standard
errors of the estimates in the volatility equa-
tion are 0.0002, 0.074, 0.043, 0.0004, and 0.080,
respectively. The scale parameter 1000 of the lo-
gistic transition function is fixed a priori to sim-
plify the estimation. This STAR model provides
some support for asymmetric responses to pos-
itive and negative prior shocks. For a large neg-
ative at−1, the volatility model approaches the
ARCH(2) model

σ 2
t = 0.003 + 0.205a2

t−1 + 0.092a2
t−2

Yet for a large positive at−1, the volatility pro-
cess behaves like the ARCH(2) model

σ 2
t = 0.004 − 0.034a2

t−1 + 0.092a2
t−2

The negative coefficient of a2
t−1 in the prior

model is counterintuitive, but the magnitude is
small. As a matter of fact, for a large positive
shock at−1, the ARCH effects appear to be weak
even though the parameter estimates remain
statistically significant.

Markov Switching Model
The idea of using probability switching in
nonlinear time series analysis is discussed in
Tong (1983). Using a similar idea, but em-
phasizing aperiodic transition between various
states of an economy, Hamilton (1989) consid-
ers the Markov switching autoregressive (MSA)
model. Here the transition is driven by a hid-
den two-state Markov chain. A time series xt

follows an MSA model if it satisfies{
c1 + ∑p

i=1 φ1,i xt−i + a1t if st = 1

c2 + ∑p
i=1 φ2,i xt−i + a2t if st = 2

(18)

where st assumes values in {1,2} and is
a first-order Markov chain with transition
probabilities

P(st = 2|st−i = 1) = w1, P(st = 1|st−1 = 2) = w2

The innovational series {a1t} and {a2t} are se-
quences of IID random variables with mean
zero and finite variance and are independent of
one another. A small wi means that the model
tends to stay longer in state i. In fact, 1/wi is
the expected duration of the process to stay in
state i. From the definition, an MSA model uses
a hidden Markov chain to govern the transition
from one conditional mean function to another.
This is different from that of a SETAR model
for which the transition is determined by a par-
ticular lagged variable. Consequently, a SETAR
model uses a deterministic scheme to govern
the model transition whereas an MSA model
uses a stochastic scheme.

In practice, the stochastic nature of the states
implies that one is never certain about which
state xt belongs to in an MSA model. When the
sample size is large, one can use some filtering
techniques to draw inference on the state of xt.
Yet as long as xt−d is observed, the regime of
xt is known in a SETAR model. This difference
has important practical implications in forecast-
ing. For instance, forecasts of an MSA model
are always a linear combination of forecasts
produced by submodels of individual states.
But those of a SETAR model only come from
a single regime provided that xt−d is observed.
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Figure 4 Time Plot of the Growth Rate of the U.S. Quarterly Real GNP from 1947.II to 1991.I
Note: The data are seasonally adjusted and in percentages.

Forecasts of a SETAR model also become a lin-
ear combination of those produced by models
of individual regimes when the forecast hori-
zon exceeds the delay d. It is much harder
to estimate an MSA model than other mod-
els because the states are not directly observ-
able. Hamilton (1990) uses the EM algorithm,
which is a statistical method iterating between
taking expectation and maximization. McCul-
loch and Tsay (1994) consider a Markov chain
Monte Carlo (MCMC) method to estimate gen-
eral MSA models. For applications of MCMC
methods in finance, see Tsay (2010, Chapter 12).

McCulloch and Tsay (1993) generalize the
MSA model in equation (18) by letting the tran-
sition probabilities w1 and w2 be logistic, or
probit, functions of some explanatory variables
available at time t −1. Chen, McCulloch, and
Tsay (1997) use the idea of Markov switching as
a tool to perform model comparison and selec-
tion between nonnested nonlinear time series
models (e.g., comparing bilinear and SETAR
models). Each competing model is represented
by a state. This approach to select a model is a
generalization of the odds ratio commonly used
in Bayesian analysis. Finally, the MSA model
can easily be generalized to the case of more
than two states. The computational intensity

involved increases rapidly, however. For more
discussions of Markov switching models in
econometrics, see Hamilton (1994, Chapter 22).

Example 5. Consider the growth rate, in per-
centages, of the U.S. quarterly real gross na-
tional product (GNP) from the second quarter
of 1947 to the first quarter of 1991. The data
are seasonally adjusted and shown in Figure 4,
where a horizontal line of zero growth is also
given. It is reassuring to see that a majority of
the growth rates are positive. This series has
been widely used in nonlinear analysis of eco-
nomic time series. Tiao and Tsay (1994) and
Potter (1995) use TAR models, whereas Hamil-
ton (1989) and McCulloch and Tsay (1994) em-
ploy Markov switching models.

Employing the MSA model in equation (18)
with p = 4 and using a Markov chain Monte
Carlo method, McCulloch and Tsay (1994) ob-
tain the estimates shown in Table 1. The re-
sults have several interesting findings. First, the
mean growth rate of the marginal model for
state 1 is 0.909/(1 − 0.265 − 0.029 + 0.126 +
0.11) = 0.965 and that of state 2 is −0.42/(1 −
0.216 − 0.628 + 0.073 + 0.097) = −1.288. Thus,
state 1 corresponds to quarters with positive
growth, or expansion periods, whereas state 2
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Table 1 Estimation Results of a Markov Switching Model with p = 4 for the Growth Rate of U.S. Quarterly Real
GNP, Seasonally Adjusted

State 1

Parameter ci φ1 φ2 φ3 φ4 σ i wi

Estimate 0.909 0.265 0.029 −0.126 −0.110 0.816 0.118
Std. Error 0.202 0.113 0.126 0.103 0.109 0.125 0.053

State 2

Estimate −0.420 0.216 0.628 −0.073 −0.097 1.017 0.286
Std. Error 0.324 0.347 0.377 0.364 0.404 0.293 0.064

Note: The estimates and their standard errors are posterior means and standard errors of a Gibbs sampling with 5000
iterations.

consists of quarters with negative growth, or a
contraction period. Second, the relatively large
posterior standard deviations of the parameters
in state 2 reflect that there are few observations
in that state. This is expected as Figure 4 shows
few quarters with negative growth. Third, the
transition probabilities appear to be different
for different states. The estimates indicate that
it is more likely for the U.S. GNP to get out
of a contraction period than to jump into one
−0.286 versus 0.118. Fourth, treating 1/wi as
the expected duration for the process to stay in
state i, we see that the expected durations for a
contraction period and an expansion period are
approximately 3.69 and 11.31 quarters. Thus,
on average, a contraction in the U.S. economy
lasts about a year, whereas an expansion can
last for 3 years. Finally, the estimated AR coef-
ficients of xt−2 differ substantially between the
two states, indicating that the dynamics of the
U.S. economy are different between expansion
and contraction periods.

Nonparametric Methods
In some financial applications, we may not have
sufficient knowledge to prespecify the nonlin-
ear structure between two variables Y and X.
In other applications, we may wish to take ad-
vantage of the advances in computing facili-
ties and computational methods to explore the
functional relationship between Y and X. These
considerations lead to the use of nonparametric

methods and techniques. Nonparametric meth-
ods, however, are not without cost. They are
highly data dependent and can easily result in
overfitting. Our goal here is to introduce some
nonparametric methods for financial applica-
tions and some nonlinear models that make use
of nonparametric methods and techniques. The
nonparametric methods discussed include ker-
nel regression, local least squares estimation,
and neural network.

The essence of nonparametric methods is
smoothing. Consider two financial variables Y
and X, which are related by

Yt = m(Xt) + at (19)

where m(.) is an arbitrary, smooth, but un-
known function and {at} is a white noise se-
quence. We wish to estimate the nonlinear
function m(.) from the data. For simplicity, con-
sider the problem of estimating m(.) at a par-
ticular date for which X = x. That is, we are
interested in estimating m(x). Suppose that at
X = x we have repeated independent observa-
tions y1, . . . ,yT. Then the data become

yt = m(x) + at, t = 1, . . . , T

Taking the average of the data, we have
∑T

t=1 yt

T
= m(x) +

∑T
t=1 at

T

By the law of large numbers, the average of the
shocks converges to zero as T increases. There-
fore, the average ŷ = (

∑T
T=1 yt)/T is a consistent
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estimate of m(x). That the average ȳ provides a
consistent estimate of m(x) or, alternatively, that
the average of shocks converges to zero shows
the power of smoothing.

In financial time series, we do not have re-
peated observations available at X = x. What
we observed are {(yt, xt)} for t = 1, . . . , T. But if
the function m(.) is sufficiently smooth, then the
value of Yt for which Xt ≈ x continues to pro-
vide accurate approximation of m(x). The value
of Yt for which Xt is far away from x provides
less accurate approximation for m(x). As a com-
promise, one can use a weighted average of yt

instead of the simple average to estimate m(x).
The weight should be larger for those Yt with
Xt close to x and smaller for those Yt with Xt

far away from x. Mathematically, the estimate
of m(x) for a given x can be written as

m̂(x) = 1
T

T∑

t=1

wt(x)yt (20)

where the weights wt(x) are larger for those yt

with xt close to x and smaller for those yt with
xt far away from x. In equation (20), we assume
that the weights sum to T. One can treat 1/T as
part of the weights and make the weights sum
to one.

From equation (20), the estimate m̂(x) is sim-
ply a local weighted average with weights de-
termined by two factors. The first factor is the
distance measure (i.e., the distance between xt

and x). The second factor is the assignment
of weight for a given distance. Different ways
to determine the distance between xt and x
and to assign the weight using the distance
give rise to different nonparametric methods.
In what follows, we discuss the commonly used
kernel regression and local linear regression
methods.

Kernel Regression
Kernel regression is perhaps the most com-
monly used nonparametric method in smooth-
ing. The weights here are determined by a
kernel, which is typically a probability density

function, is denoted by K(x), and satisfies

K (x) ≥ 0,

∫
K (z)dz = 1

However, to increase the flexibility in distance
measure, one often rescales the kernel using a
variable h > 0, which is referred to as the band-
width. The rescaled kernel becomes

Kh(x) = 1
h

K (x/h),
∫

Kh(z)dz = 1 (21)

The weight function can now be defined as

wt(x) = Kh(x − xt)∑T
t=1 Kh(x − xt)

(22)

where the denominator is a normalization con-
stant that makes the smoother adaptive to the
local intensity of the X variable and ensures the
weights sum to one. Plugging equation (22) into
the smoothing formula (20), we have the well-
known Nadaraya-Watson kernel estimator

m̂(x) =
T∑

t=1

wt(x)yt =
∑T

t=1 Kh(x − xt)yt∑T
t=1 Kh(x − xt)

(23)

see Nadaraya (1964) and Watson (1964). In prac-
tice, many choices are available for the kernel
K(x). However, theoretical and practical con-
siderations lead to a few choices, including the
Gaussian kernel

Kh(x) = 1

h
√

2π
exp

(
− x2

2h2

)

and the Epanechnikov kernel (Epanechnikov,
1969)

Kh(x) = 0.75
h

(
1 − x2

h2

)
I
(∣∣∣

x
h

∣∣∣≤ 1
)

where 1(A) is an indicator such that 1(A) = 1
if A holds and 1(A) = 0 otherwise. Figure 5
shows the Gaussian and Epanechnikov kernels
for h = 1.

To gain insight into the bandwidth h, we
evaluate the Nadaraya-Watson estimator with
the Epanechnikov kernel at the observed val-
ues {xt} and consider two extremes. First, if
h → 0, then

m̂(xt) → Kh(0)yt

Kh(0)
= yt
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Figure 5 Standard Normal Kernel (Solid Line) and Epanechnikov Kernel (Dashed Line) with Band-
width h = 1

indicating that small bandwidths reproduce the
data. Second, if h →∞, then

m̂(xt) →
∑T

t=1 Kh(0)yt∑T
t=1 Kh(0)

= 1
T

T∑

t=1

yt = ȳ

suggesting that large bandwidths lead to an
oversmoothed curve—the sample mean. In
general, the bandwidth function h acts as fol-
lows. If h is very small, then the weights focus
on a few observations that are in the neighbor-
hood around each xt. If h is very large, then the
weights will spread over a larger neighborhood
of xt. Consequently, the choice of h plays an
important role in kernel regression. This is the
well-known problem of bandwidth selection in
kernel regression.

Bandwidth Selection
There are several approaches for bandwidth
selection; see Härdle (1990) and Fan and Yao
(2003). The first approach is the plug-in method,
which is based on the asymptotic expansion of
the mean integrated squared error (MISE) for
kernel smoothers

MISE = E
∫ ∞

−∞
[m̂(x) − m(x)]2dx

where m(.) is the true function. The quantity
E[m̂(x) − m(x)]2 of the MISE is a pointwise mea-
sure of the mean squared error (MSE) of m̂(x)
evaluated at x.

Under some regularity conditions, one can
derive the optimal bandwidth that minimizes
the MISE. The optimal bandwidth typically de-
pends on several unknown quantities that must
be estimated from the data with some prelim-
inary smoothing. Several iterations are often
needed to obtain a reasonable estimate of the
optimal bandwidth. In practice, the choice of
preliminary smoothing can become a problem.
Fan and Yao (2003) give a normal reference
bandwidth selector as

ĥopt

{
1.06sT−1/5 for the Gaussian kernel
2.34sT−1/5 for the Epanechnikov kernel

where s is the sample standard error of the
indepenent variable, which is assumed to be
stationary.

The second approach to bandwidth selection
is the leave-one-out cross-validation. First, one
observation (xj, yj) is left out. The remaining
T − 1 data points are used to obtain the follow-
ing smoother at xj:

m̂h, j (xj ) = 1
T − 1

∑

t 	= j

wt(xj )yt
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which is an estimate of yj, where the weights
wt(xj) sum to T−1. Second, perform step-1 for
j = 1, . . . , T and define the function

CV(h) = 1
T

T∑

j=1

[yj − m̂h, j (xj )]2W(xj )

where w(.) is a nonnegative weight function
satisfying

∑n
j=1 W(xj ) = T , that can be used to

down-weight the boundary points if necessary.
Decreasing the weights assigned to data points
close to the boundary is needed because those
points often have fewer neighboring observa-
tions. The function CV(h) is called the cross-
validation function because it validates the
ability of the smoother to predict {yt}Tt=1. One
chooses the bandwidth h that minimizes the
CV(.) function.

Local Linear Regression Method
Assume that the second derivative of m(.) in
model (19) exists and is continuous at x, where
x is a given point in the support of m(.). Denote
the data available by {(yt, xt)}T

t=1. The local linear
regression method to nonparametric regression
is to find a and b that minimize

L(a , b) =
T∑

t=1
[yt − a − b(x − xt)]2 Kh(x − xt)

(24)
where Kh(.) is a kernel function defined in equa-
tion (21) and h is a bandwidth. Denote the re-
sulting value of a by â . The estimate of m(x) is
then defined as â . In practice, x assumes an ob-
served value of the independent variable. The
estimate b̂ can be used as an estimate of the first
derivative of m(.) evaluated at x.

Under the least squares theory, equation (24)
is a weighted least squares problem and one
can derive a closed-form solution for a. Specif-
ically, taking the partial derivatives of L(a, b)
with respect to both a and b and equating the
derivatives to zero, we have a system of two
equations with two unknowns:

T∑

t=1

Kh(x − xt)yt = a
T∑

t=1

Kh(x − xt)

+b
T∑

t=1

(x − xt)Kh(x − xt)

T∑

t=1

yt(x − xt)Kh(x − xt) = a
T∑

t=1

(x − xt)Kh(x − xt)

+b
T∑

t=1

(x − xt)2 Kh(x − xt)

Define

sT,� =
T∑

t=1

Kh(x − xt)(x − xt)�, � = 0, 1, 2.

The prior system of equations becomes
[

sT,0 sT,1

sT,1 sT,2

] [
a
b

]

=
[ ∑T

t=1 Kh(x − xt)yt∑T
t=1 (x − xt)Kh(x − xt)yt

]

Consequently, we have

â =
sT,2

∑T
t=1 Kh(x − xt)yt − sT,1

∑T
t=1 (x − xt)Kh(x − xt)yt

sT,0sT,2 − s2
T,1

The numerator and denominator of the prior
fraction can be further simplified as

sT,2 =
T∑

t=1
Kh(x − xt)yt

−sT,1

T∑
t=1

(x − xt)Kh(x − xt)yt

=
T∑

t=1
[Kh(x − xt)(sT,2− (x − xt)sT,1)]yt.

sT,0sT,2 − s2
T,1 =

T∑
t=1

Kh(x − xt)sT,2

−
T∑

t=1
(x − xt)Kh(x − xt)sT,1

=
T∑

t=1
Kh(x − xt)[(sT,2− (x − xt)sT,1)]

In summary, we have

â =
∑T

t=1 wt yt∑T
t=1 wt

(25)

where wt is defined as

wt = Kh(x − xt)[sT,2 − (x − xt)sT,1]

In practice, to avoid possible zero in the denom-
inator, we use m̂(x) next to estimate m(x):

m̂(x) =
∑T

t=1 wt yt∑T
t=1 wt + 1/T2

(26)
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Notice that a nice feature of equation (26) is
that the weight wt satisfies

T∑

t=1

(x − xt)wt = 0

Also, if one assumes that m(.) of equation (19)
has the first derivative and finds the minimizer
of

T∑

t=1

(yt − a )2 Kh(x − xt)

then the resulting estimator is the Nadaraya-
Watson estimator mentioned earlier. In general,
if one assumes that m(x) has a bounded kth
derivative, then one can replace the linear poly-
nomial in equation (24) by a (k − 1)-order poly-
nomial. We refer to the estimator in equation
(26) as the local linear regression smoother. Fan
(1993) shows that, under some regularity condi-
tions, the local linear regression estimator has
some important sampling properties. The se-
lection of bandwidth can be carried out via the
same methods as before.

Financial Time Series Application
In time series analysis, the explanatory vari-
ables are often the lagged values of the series.
Consider the simple case of a single explanatory
variable. Here model (19) becomes

xt = m(xt−i ) + at

and the kernel regression and local linear re-
gression method discussed before are directly
applicable. When multiple explanatory vari-
ables exist, some modifications are needed to
implement the nonparametric methods. For the
kernel regression, one can use a multivari-
ate kernel such as a multivariate normal den-
sity function with a prespecified covariance
matrix:

Kh(x) = 1

(h
√

2π )p|�|1/2
exp

(
− 1

2h2 x′−1x
)

where p is the number of explanatory variables
and  is a prespecified positive-definite ma-
trix. Alternatively, one can use the product of

univariate kernel functions as a multivariate
kernel—for example,

Kh(x) =
p∏

i=1

0.75
hi

(
1 − x2

i

h2
i

)
I
(

| xi

hi
| < 1

)

This latter approach is simple, but it over-
looks the relationship between the explanatory
variables.

Example 6. To illustrate the application of
nonparametric methods in finance, consider the
weekly 3-month Treasury bill secondary market
rate from 1970 to 1997 for 1,461 observations.
The data are obtained from the Federal Reserve
Bank of St. Louis and are shown in Figure 6.
This series has been used in the literature as
an example of estimating stochastic diffusion
equations using discretely observed data. Here
we consider a simple model

yt = μ(xt−1)dt + σ (xt−1)dwt

where xt is the 3-month Treasury bill rate, yt =
xt − xt−1, wt is a standard Brownian motion, and
μ(.) and σ (.) are smooth functions of xt−1, and
apply the local smoothing function lowess of
R or S-Plus to obtain nonparametric estimates
of μ(.) and σ (.); see Cleveland (1979). For sim-
plicity, we use |yt| as a proxy of the volatility
of xt.

For the simple model considered, μ(xt−1) is
the conditional mean of yt given xt−1, that is,
μ(xt−1) = E(yt|xt−1). Figure 7(a) shows the scat-
terplot of y(t) versus xt−1. The plot also contains
the local smooth estimate of μ(xt−1) obtained by
the method of lowess in the statistical package
R. The estimate is essentially zero. However,
to better understand the estimate, Figure 7(b)
shows the estimate μ̂(xt−1) on a finer scale. It is
interesting to see that μ̂(xt−1) is positive when
xt−1 is small, but becomes negative when xt−1

is large. This is in agreement with the common
sense that when the interest rate is high, it is ex-
pected to come down, and when the rate is low,
it is expected to increase. Figure 7(c) shows the
scatterplot of |y(t)| versus xt−1 and the estimate
of σ̂ (xt−1) via lowess. The plot confirms that the
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Figure 6 Time Plot of U.S. Weekly 3-Month Treasury Bill Rate in the Seconday Market from 1970 to
1997

higher the interest rate, the larger the volatil-
ity. Figure 7(d) shows the estimate σ̂ (xt−1) on a
finer scale. Clearly the volatility is an increasing
function of xt−1 and the slope seems to acceler-
ate when xt−1 is approaching 10%. This exam-
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Figure 7 Estimation of Conditional Mean and Volatility of Weekly 3-Month Treasury Bill Rate via a
Local Smoothing Method: (a) yt versus xt−1, where yt = xt−xt−1 and xt is the interest rate; (b) estimate of
μ(xt−1); (c) |yt| versus xt−1; and (d) estimate of σ (xt−1)

ple demonstrates that simple non-parametric
methods can be helpful in understanding the
dynamic structure of a financial time series.

The following nonlinear models are derived
with the help of nonparametric methods.
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Functional Coefficient AR Model
Recent advances in nonparametric techniques
enable researchers to relax parametric con-
straints in proposing nonlinear models. In
some cases, nonparametric methods are used
in a preliminary study to help select a para-
metric nonlinear model. This is the approach
taken by Chen and Tsay (1993a) in proposing
the functional-coefficient autoregressive (FAR)
model that can be written as

xt = f1(Xt−1)xt−1 + · · · + f p(Xt−1)xt−p + at

(27)
where Xt−1 = (xt−1, . . . , Xt−k)′ is a vector of
lagged values of xt. If necessary xt−1 may also
include other explanatory variables available at
time t−1. The functions fi(.) of equation (27) are
assumed to be continuous, even twice differen-
tiable, almost surely with respect to their argu-
ments. Most of the nonlinear models discussed
before are special cases of the FAR model. In
application, one can use nonparametric meth-
ods such as kernel regression or local linear re-
gression to estimate the functional coefficients
fi(.), especially when the dimension of Xt−1

is low (e.g., Xt−1 is a scalar). Recently, Cai,
Fan, and Yao (2000) applied the local linear re-
gression method to estimate fi(.) and showed
that substantial improvements in 1-step ahead
forecasts can be achieved by using FAR
models.

Nonlinear Additive AR Model
A major difficulty in applying nonparametric
methods to nonlinear time series analysis is
the “curse of dimensionality.” Consider a gen-
eral nonlinear AR(p) process xt = f (xt−1, . . . ,
xt−p) + at. A direct application of nonparamet-
ric methods to estimate f (.) would require p-
dimensional smoothing, which is hard to do
when p is large, especially if the number of data
points is not large. A simple, yet effective way to
overcome this difficulty is to entertain an addi-
tive model that only requires lower dimensional
smoothing. A time series xt follows a nonlinear

additive AR (NAAR) model if

xt = f0(t) +
p∑

i=1

fi (xt−i ) + at (28)

where the fi(.) are continuous functions al-
most surely. Because each function fi(.) has
a single argument, it can be estimated non-
parametrically using one-dimensional smooth-
ing techniques and hence avoids the curse of
dimensionality. In application, an iterative esti-
mation method that estimates fi(.) nonparamet-
rically conditioned on estimates of fj(.) for all
j 	= i is used to estimate a NAAR model; see
Chen and Tsay (1993b) for further details and
examples of NAAR models.

The additivity assumption is rather restric-
tive and needs to be examined carefully in
application. Chen, Liu, and Tsay (1995) con-
sider test statistics for checking the additivity
assumption.

Nonlinear State-Space Model
Making using of recent advances in MCMC
methods (Gelfand and Smith, 1990), Carlin, Pol-
son, and Stoffer (1992) propose a Monte Carlo
approach for nonlinear state-space modeling.
The model considered is

St = ft(St−1) + ut, xt = gt(St) + vt (29)

where St is the state vector, f t(.) and gt(.) are
known functions depending on some unknown
parameters, {ut} is a sequence of IID multivari-
ate random vectors with zero mean and non-
negative definite covariance matrix u, {vt} is
a sequence of IID random variables with mean
zero and variance σ 2

v , and {ut} is independent
of {vt}.

Monte Carlo techniques are employed to
handle the nonlinear evolution of the state
transition equation because the whole condi-
tional distribution function of St given St−1 is
needed for a nonlinear system. Other numerical
smoothing methods for nonlinear time series
analysis have been considered by Kitagawa
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(1998) and the references therein. MCMC
methods (or computing-intensive numerical
methods) are powerful tools for nonlinear time
series analysis. Their potential has not been
fully explored. However, the assumption of
knowing ft(.) and gt(.) in model (29) may hinder
practical use of the proposed method. A possi-
ble solution to overcome this limitation is to use
nonparametric methods such as the analyses
considered in FAR and NAAR models to specify
ft(.) and gt(.) before using nonlinear state-space
models.

Neural Networks
A popular topic in modern data analysis is
neural network, which can be classified as a
semiparametric method. The literature on neu-
ral network is enormous, and its application
spreads over many scientific areas with vary-
ing degrees of success; see Ripley (1993, Sec-
tions 2 and 10). Cheng and Titterington (1994)
provide information on neural networks from a
statistical viewpoint. In this subsection, we fo-
cus solely on the feed-forward neural networks
in which inputs are connected to one or more
neurons, or nodes, in the input layer, and these
nodes are connected forward to further layers
until they reach the output layer. Figure 8 shows
an example of a simple feed-forward network
for univariate time series analysis with one hid-
den layer. The input layer has two nodes, and
the hidden layer has three. The input nodes
are connected forward to each and every node
in the hidden layer, and these hidden nodes

I
N
P
U
T

O
U
T
P
U
T

Hidden Layer

Figure 8 A Feed-Forward Neural Network with
One Hidden Layer for Univariate Time Series
Analysis

are connected to the single node in the out-
put layer. We call the network a 2-3-1 feed-
forward network. More complicated neural
networks, including those with feedback con-
nections, have been proposed in the literature,
but the feed-forward networks are most rele-
vant to our study.

Feed-Forward Neural Networks
A neural network processes information from
one layer to the next by an “activation func-
tion.” Consider a feed-forward network with
one hidden layer. The jth node in the hidden
layer is defined as

h j = f j (α0 j +
∑

i→ j

wi j xi ) (30)

where xi is the value of the ith input node, fj(.) is
an activation function typically taken to be the
logistic function

f j (z) = exp(z)
1 + exp(z)

α0j is called the bias, the summation i → j means
summing over all input nodes feeding to j, and
wij are the weights. For illustration, the jth node
of the hidden layer of the 2-3-1 feed-forward
network in Figure 8 is

h j = exp(α0 j + w1 j x1 + w2 j x2)
1 + exp(α0 j + w1 j x1 + w2 j x2)

, j = 1, 2, 3.

(31)
For the output layer, the node is defined as

o = fo(α0o +
∑

j→o

w joh j ) (32)

where the activation function f o(.) is either lin-
ear or a Heaviside function. If f o(.) is linear, then

o = α0o +
k∑

j=1

w joh j

where k is the number of nodes in the hid-
den layer. By a Heaviside function, we mean
fo(z) = 1 if z > 0 and fo(z) = 0 otherwise. A neu-
ron with a Heaviside function is called a thresh-
old neuron, with “1” denoting that the neuron
fires its message. For example, the output of the
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2-3-1 network in Figure 8 is

o = α0o + w1oh1 + w2oh2 + w3oh3

if the activation function is linear; it is

o =
{

1 if α0o + w1oh1 + w2oh2 + w3oh3 > 0
0 if α0o + w1oh1 + w2oh2 + w3oh3 ≤ 0

if f o(.) is a Heaviside function.
Combining the layers, the output of a feed-

forward neural network can be written as

o = fo

⎡

⎣α0o +
∑

j→o

w jo f j

⎛

⎝α0 j +
∑

i→ j

wi j xi

⎞

⎠

⎤

⎦

(33)
If one also allows for direct connections from the
input layer to the output layer, then the network
becomes

o = fo

[
α0o + ∑

i→o
αio xi+

∑
j→o

w jo f j

×
(

α0 j + ∑
i→ j

wi j xi

)] (34)

where the first summation is summing over the
input nodes. When the activation function of
the output layer is linear, the direct connections
from the input nodes to the output node repre-
sent a linear function between the inputs and
output. Consequently, in this particular case
model (34) is a generalization of linear models.
For the 2-3-1 network in Figure 8, if the output
activation function is linear, then equation (33)
becomes

o = α0o +
3∑

j=1

w joh j

where hj is given in equation (31). The network
thus has 13 parameters. If equation (34) is used,
then the network becomes

o = α0o +
2∑

i=1

αio xi +
3∑

j=1

w joh j

where again hj is given in equation (31). The
number of parameters of the network increases
to 15.

We refer to the function in equation (33) or (34)
as a semiparametric function because its func-

tional form is known, but the number of nodes
and their biases and weights are unknown. The
direct connections from the input layer to the
output layer in equation (34) mean that the net-
work can skip the hidden layer. We refer to
such a network as a skip-layer feed-forward
network.

Feed-forward networks are known as mul-
tilayer percetrons in the neural network liter-
ature. They can approximate any continuous
function uniformly on compact sets by increas-
ing the number of nodes in the hidden layer; see
Hornik, Stinchcombe, and White (1989), Hornik
(1993), and Chen and Chen (1995). This prop-
erty of neural networks is the universal approx-
imation property of the multilayer percetrons.
In short, feed-forward neural networks with a
hidden layer can be seen as a way to parame-
terize a general continuous nonlinear function.

Training and Forecasting
Application of neural networks involves two
steps. The first step is to train the network (i.e.,
to build a network, including determining the
number of nodes and estimating their biases
and weights). The second step is inference, es-
pecially forecasting. The data are often divided
into two nonoverlapping subsamples in the
training stage. The first subsample is used to es-
timate the parameters of a given feed-forward
neural network. The network so built is then
used in the second subsample to perform fore-
casting and compute its forecasting accuracy. By
comparing the forecasting performance, one se-
lects the network that outperforms the others as
the “best” network for making inference. This is
the idea of cross-validation widely used in sta-
tistical model selection. Other model selection
methods are also available.

In a time series application, let {(rt, xt)|t =
1, . . . , T}be the available data for network train-
ing, where xt denotes the vector of inputs and
rt is the series of interest (e.g., log returns of an
asset). For a given network, let ot be the output
of the network with input xt; see equation (34).
Training a neural network amounts to choosing
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its biases and weights to minimize some fitting
criterion—for example, the least squares

S2 =
T∑

t=1

(rt − ot)2

This is a nonlinear estimation problem that can
be solved by several iterative methods. To en-
sure the smoothness of the fitted function, some
additional constraints can be added to the prior
minimization problem. In the neural network
literature, the back propagation (BP) learning
algorithm is a popular method for network
training. The BP method, introduced by Bryson
and Ho (1969), works backward starting with
the output layer and uses a gradient rule to
modify the biases and weights iteratively. (Ap-
pendix 2A of Ripley, 1993, provides a derivation
of back propagation.) Once a feed-forward neu-
ral network is built, it can be used to compute
forecasts in the forecasting subsample.

Example 7. To illustrate applications of the
neural network in finance, we consider the
monthly log returns, in percentages and includ-
ing dividends, for IBM stock from January 1926
to December 1999. We divide the data into two
subsamples. The first subsample consisting of
returns from January 1926 to December 1997
for 864 observations is used for modeling. Us-
ing model (34) with three inputs and two nodes
in the hidden layer, we obtain a 3-2-1 network
for the series. The three inputs are rt−1, rt−2,
and rt−3 and the biases and weights are given
next:

r̂t = 3.22 − 1.81 f1(r t−1) − 2.28 f2(r t−1)
−0.09rt−1 − 0.05rt−2 − 0.12rt−3

(35)

where rt−1 = (rt−1, rt−2, rt−3) and the two logistic
functions are

f1(r t−1) =
exp(−8.34 − 18.97rt−1 + 2.17rt−2 − 19.17rt−3)

1 + exp(−8.34 − 18.97rt−1 + 2.17rt−2 − 19.17rt−3)
f2(r t−1) =

exp(39.25 − 22.17rt−1 − 17.34rt−2 − 5.98rt−3)
1 + exp(39.25 − 22.17rt−1 − 17.34rt−2 − 5.98rt−3)

The standard error of the residuals for the prior
model is 6.56. For comparison, we also built an
AR model for the data and obtained

rt = 1.101 + 0.077rt−1 + at, σa = 6.61 (36)

The residual standard error is slightly greater
than that of the feed-forward model in equation
(35).

Forecast Comparison
The monthly returns of IBM stock in 1998 and
1999 form the second subsample and are used
to evaluate the out-of-sample forecasting per-
formance of neural networks. As a benchmark
for comparison, we use the sample mean of rt in
the first subsample as the 1-step ahead forecast
for all the monthly returns in the second sub-
sample. This corresponds to assuming that the
log monthly price of IBM stock follows a ran-
dom walk with drift. The mean squared fore-
cast error (MSFE) of this benchmark model is
91.85. For the AR(1) model in equation (36),
the MSFE of 1-step ahead forecasts is 91.70.
Thus, the AR(1) model slightly outperforms the
benchmark. For the 3-2-1 feed-forward network
in equation (35), the MSFE is 91.74, which is es-
sentially the same as that of the AR(1) model.

Example 8. Nice features of the feed-forward
network include its flexibility and wide ap-
plicability. For illustration, we use the net-
work with a Heaviside activation function for
the output layer to forecast the direction of
price movement for IBM stock considered in
Example 7. Define a direction variable as

dt =
{

1 if rt ≥ 0
0 if rt < 0

We use eight input nodes consisting of the first
four lagged values of both rt and dt and four
nodes in the hidden layer to build an 8-4-1
feed-forward network for dt in the first sub-
sample. The resulting network is then used to
compute the 1-step ahead probability of an “up-
ward movement” (i.e., a positive return) for the
following month in the second subsample.
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Figure 9 One-Step Ahead Probability Forecasts for a Positive Monthly Return for IBM Stock Using an
8-4-1 Feed-Forward Neural Network
Note: The forecasting period is from January 1998 to December 1999.

Figure 9 shows a typical output of probability
forecasts and the actual directions in the second
subsample with the latter denoted by circles. A
horizontal line of 0.5 is added to the plot. If we
take a rigid approach by letting d̂t = 1 if the
probability forecast is greater than or equal to
0.5 and d̂t = 0 otherwise, then the neural net-
work has a successful rate of 0.58. The success
rate of the network varies substantially from
one estimation to another, and the network uses
49 parameters.

To gain more insight, we did a simulation
study of running the 8-4-1 feed-forward net-
work 500 times and computed the number of
errors in predicting the upward and downward
movement using the same method as before.
The mean and median of errors over the 500
runs are 11.28 and 11, respectively, whereas the
maximum and minimum number of errors are
18 and 4. For comparison, we also did a simu-
lation with 500 runs using a random walk with
drift—that is,

d̂t =
{

1 if r̂t = 1.19 + εt ≥ 0,

0 otherwise

where 1.19 is the average monthly log return
for IBM stock from January 1926 to December

1997 and {εt} is a sequence of IID N(0,1) ran-
dom variables. The mean and median of the
number of forecast errors become 10.53 and 11,
whereas the maximum and minimum number
of errors are 17 and 5, respectively. Figure 10
shows the histograms of the number of forecast
errors for the two simulations. The results show
that the 8-4-1 feed-forward neural network does
not outperform the simple model that assumes
a random walk with drift for the monthly log
price of IBM stock.

NONLINEARITY TESTS
In this section, we discuss some nonlinearity
tests available in the literature that have decent
power against the nonlinear models considered
earlier in this entry. The tests discussed include
both parametric and nonparametric statistics.
The Ljung-Box statistics of squared residuals,
the bispectral test, and the Brock, Dechert,
and Scheinkman (BDS) test are nonparametric
methods. The RESET test (Ramsey, 1969), the F
tests of Tsay (1986, 1989), and other Lagrange
multiplier and likelihood ratio tests depend on
specific parametric functions. Because nonlin-
earity may occur in many ways, there exists no
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Figure 10 Histograms of the Number of Forecasting Errors for the Directional Movements of Monthly
Log Returns of IBM Stock
Note: The forecasting period is from January 1998 to December 1999.

single test that dominates the others in detect-
ing nonlinearity.

Nonparametric Tests
Under the null hypothesis of linearity, residu-
als of a properly specified linear model should
be independent. Any violation of independence
in the residuals indicates inadequacy of the
entertained model, including the linearity as-
sumption. This is the basic idea behind various
nonlinearity tests. In particular, some of the
nonlinearity tests are designed to check for pos-
sible violation in quadratic forms of the under-
lying time series.

Q-Statistic of Squared Residuals
McLeod and Li (1983) apply the Ljung-
Box statistics to the squared residuals of an
ARMA(p, q) model to check for model inade-
quacy. The test statistic is

Q(m) = T(T + 2)
m∑

i=1

ρ̂2
i (a2

t )
T − i

where T is the sample size, m is a properly cho-
sen number of autocorrelations used in the test,

at denotes the residual series, and ρ̂i (a2
t ) is the

lag-i ACF of a2
t . If the entertained linear model is

adequate, Q(m) is asymptotically a chi-squared
random variable with m—p—q degrees of free-
dom. The prior Q-statistic is useful in detect-
ing conditional heteroscedasticity of at and is
asymptotically equivalent to the Lagrange mul-
tiplier test statistic of Engle (1982) for ARCH
models. The null hypothesis of the statistics is
Ho : β1 = · · · = βm = 0, where β i is the coefficient
of a2

t−i in the linear regression

a2
t = β0 + β1a2

t−1 + · · · + βma2
t−m + et

for t = m + 1, . . . ,T. Because the statistic is
computed from residuals (not directly from the
observed returns), the number of degrees of
freedom is m—p—q.

Bispectral Test
This test can be used to test for linearity and
Gaussianity. It depends on the result that a
properly normalized bispectrum of a linear
time series is constant over all frequencies
and that the constant is zero under normality.
The bispectrum of a time series is the Fourier
transform of its third-order moments. For a



NONLINEARITY AND NONLINEAR ECONOMETRIC MODELS IN FINANCE 423

stationary time series xt in equation (1), the
third-order moment is defined as

c(u, v) = g
∞∑

k=−∞
ψkψk+uψk+v (37)

where u and v are integers, g = E(a3
t ), ψ0 = 1,

and ψk = 0 for k < 0. Taking Fourier transforms
of equation (37), we have

b3(w1, w2) = g
4π2 �[−(w1 + w2)]�(w1)�(w2)

(38)
where �(w) = ∑∞

u=0 ψu exp(−iwu) with i =√−1, and wi are frequencies. Yet the spectral
density function of xt is given by

p(w) = σ 2
a

2π
|�(w)|2

where w denotes the frequency. Consequently,
the function

b(w1, w2) = |b3(w1, w2)|2
p(w1)p(w2)p(w1 + w2)

= constant for all (w1, w2)
(39)

The bispectrum test makes use of the property
in equation (39). Basically, it estimates the func-
tion b(w1, w2) in equation (39) over a suitably
chosen grid of points and applies a test statistic
similar to Hotelling’s T2 statistic to check the
constancy of b(w1, w2). For a linear Gaussian
series, E(a3

t ) = g = 0 so that the bispectrum is
zero for all frequencies (w1, w2). For further de-
tails of the bispectral test, see Priestley (1988),
Subba Rao and Gabr (1984), and Hinich (1982).
Limited experience shows that the test has de-
cent power when the sample size is large.

BDS Statistic
Brock, Dechert, and Scheinkman (1987) propose
a test statistic, commonly referred to as the BDS
test, to detect the IID assumption of a time se-
ries. The statistic is, therefore, different from
other test statistics discussed because the lat-
ter mainly focus on either the second- or third-
order properties of xt. The basic idea of the BDS
test is to make use of a “correlation integral”

popular in chaotic time series analysis. Given a
k-dimensional time series Xt and observations
{Xt}Tk

t=1, define the correlation integral as

Ck(δ) = lim
Tk→∞

2
Tk(Tk − 1)

∑

i< j

Iδ(Xi , Xj ) (40)

where Iδ(u, v) is an indicator variable that equals
one if ‖u—v‖ < δ, and zero otherwise, where ‖.‖
is the supnorm. The correlation integral mea-
sures the fraction of data pairs of {Xt} that are
within a distance of δ from each other.

Consider next a time series xt. Construct k-
dimensional vectors Xk

t = (xt, xt+1, . . . , xt+k−1)′,
which are called k-histories. The idea of the BDS
test is as follows. Treat a k-history as a point in
the k-dimensional space. If {xt}T

t=1 are indeed IID
random variables, then the k-histories {Xt}Tk

t=1
should show no pattern in the k-dimensional
space. Consequently, the correlation integrals
should satisfy the relation Ck(δ) = [C1(δ)]k . Any
departure from the prior relation suggests that
xt are not IID. As a simple but informative ex-
ample, consider a sequence of IID random vari-
ables from the uniform distribution over [0, 1].
Let [a, b] be a subinterval of [0, 1] and con-
sider the “2-history” (xt, xt+1), which represents
a point in the two-dimensional space. Under
the IID assumption, the expected number of
2-histories in the subspace [a, b] × [a, b] should
equal the square of the expected number of xt

in [a, b].
This idea can be formally examined by using

sample counterparts of correlation integrals.
Define

C�(δ, T) = 2
Tk(Tk − 1)

∑

i< j

Iδ(X∗
i , X∗

j ), � = 1, k

where T� = T − � + 1 and X∗
i = xi if � = 1 and

X∗
i = Xk

i if � = k. Under the null hypothesis that
{xt} are IID with a nondegenerated distribution
function F(.), Brock, Dechert, and Scheinkman
(1987) show that

Ck(δ, T) → [C1(δ)]k with probability 1,

as T → ∞
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for any fixed k and δ. Furthermore, the statis-
tic

√
T{Ck(δ, T) − [C1(δ, T)]k} is asymptotically

distributed as normal with mean zero and
variance

σ 2
k (δ) =

4

(
Nk + 2

k−1∑
j=1

Nk− j C2 j + (k − 1)2C2k − k2 NC2k−2

)

where C = ∫
[F (z + δ) − F (z − δ)]d F (z) and

N = ∫
[F (z + δ) − F (z − δ)]2d F (z). Note that

C1{δ, T) is a consistent estimate of C, and N
can be consistently estimated by

N(δ, T) = 6
Tk(Tk − 1)(Tk − 2)
∑

t<s<u
Iδ(xt,xs)Iδ(xs, xu)

The BDS test statistic is then defined as

Dk(δ, T) =
√

T{Ck(δ, T) − [C1(δ, T)]k}/σk(δ, T)
(41)

where σ k(δ, T) is obtained from σ k(δ) when C
and N are replaced by C1(δ, T) and N(δ, T),
respectively. This test statistic has a standard
normal limiting distribution. For further dis-
cussion and examples of applying the BDS test,
see Hsieh (1989) and Brock, Hsieh, and LeBaron
(1991). In application, one should remove linear
dependence, if any, from the data before apply-
ing the BDS test. The test may be sensitive to the
choices of δ and k, especially when k is large.

Parametric Tests
Turning to parametric tests, we consider the
RESET test of Ramsey (1969) and its general-
izations. We also discuss some test statistics for
detecting threshold nonlinearity.

The RESET Test
Ramsey (1969) proposes a specification test for
linear least squares regression analysis. The test
is referred to as a RESET test and is readily ap-
plicable to linear AR models. Consider the lin-
ear AR(p) model

xt = X′
t−1φ + at (42)

where Xt−1 = (1, xt−1, . . . , xt−p)′ and φ = (φ0,
φ1, . . . , φp)’. The first step of the RESET test is to
obtain the least squares estimate φ̂ of equation
(42) and compute the fit x̂t = X′

t−1φ̂, the residual
ât = xt − x̂t, and the sum of squared residuals
SSR0 = ∑T

t=p+1 â2
t , where T is the sample size.

In the second step, consider the linear regres-
sion

ât = X′
t−1α1 + M′

t−1α2 + vt (43)

where Mt−1 = (x̂2
t , . . . , x̂s+1

t )′ for some s ≥ 1, and
compute the least squares residuals

v̂t = ât − X′
t−1α̂1 − M′

t−1α̂2

and the sum of squared residuals SSR1 =∑T
t=p+1 v̂2

t of the regression. The basic idea of
the RESET test is that if the linear AR(p) model
in equation (42) is adequate, then α1 and α2 of
equation (43) should be zero. This can be tested
by the usual F statistic of equation (43) given by

F = (SSR0 − SSR1)/g
SSR1/(T − p − g)

with g = s + p + 1

(44)
which, under the linearity and normality as-
sumption, has an F distribution with degrees of
freedom g and T − p − g.

Because x̂k
t for k = 2, . . . , s + 1 tend to be

highly correlated with Xt−1 and among them-
selves, principal components of Mt−1 that are
not colinear with Xt−1 are often used in fitting
equation (43).

Keenan (1985) proposes a nonlinearity test for
time series that uses x̂2

t only and modifies the
second step of the RESET test to avoid multi-
collinearity between x̂2

t and Xt−1. Specifically
the linear regression (43) is divided into two
steps. In step 2(a), one removes linear depen-
dence of x̂2

t on Xt−1 by fitting the regression

x̂2
t = X′

t−1β + ut

and obtaining the residual ût = x̂2
t − Xt−1β̂. In

step 2(b), consider the linear regression

ât = ûtα + vt
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and obtain the sum of squared residuals SSR1 =∑T
t=p+1 (ât − ûtα̂)2 = ∑T

t=p+1 v̂2
t to test the null

hypothesis α = 0.

The F Test
To improve the power of Keenan’s test and
the RESET test, Tsay (1986) uses a different
choice of the regressor Mt−1. Specifically, he
suggests using Mt−1 = vech(Xt−1 X′

t−1), where
vech(A) denotes the half-stacking vector of the
matrix A using elements on and below the di-
agonal only. For example, if p = 2, then Mt−1

= (x2
t−1, xt−1xt−2, x2

t−2)′. The dimension of Mt−1

is p(p + 1)/2 for an AR(p) model. In practice,
the test is simply the usual partial F statistic for
testing α = 0 in the linear least squares regres-
sion

xt = X′
t−1φ + M′

t−1α + et

where et denotes the error term. Under the
assumption that xt is a linear AR(p) process, the
partial F statistic follows an F distribution with
degrees of freedom g and T − p − g − 1, where
g = p(p + 1)/2. We refer to this F test as the
Ori-F test. Luukkonen, Saikkonen, and
Teräsvirta (1988) further extend the test by
augmenting Mt−1 with cubic terms x3

t−i for
i = 1, . . . , p.

Threshold Test
When the alternative model under study is a
SETAR model, one can derive specific test statis-
tics to increase the power of the test. One of the
specific tests is the likelihood ratio statistic. This
test, however, encounters the difficulty of unde-
fined parameters under the null hypothesis of
linearity because the threshold is undefined for
a linear AR process. Another specific test seeks
to transform testing threshold nonlinearity into
detecting model changes. It is then interesting
to discuss the differences between these two
specific tests for threshold nonlinearity.

To simplify the discussion, let us consider the
simple case that the alternative model is a 2-
regime SETAR model with threshold variable
xt−d. The null hypothesis Ho: xt follows the lin-

ear AR(p) model

xt = φ0 +
p∑

i=1

φi xt−i + at (45)

whereas the alternative hypothesis Ha : xt fol-
lows the SETAR model

xt =
{

φ
(1)
0 + ∑p

i=1 φ
(1)
i xt−i + a1t if xt−d < r1

φ
(2)
0 + ∑p

i=1 φ
(2)
i xt−i + a2t if xt−d ≥ r1

(46)
where r1 is the threshold. For a given re-
alization {xt}T

t=1 and assuming normality let
l0(φ̂, σ̂ 2

a ) be the log likelihood function evalu-
ated at the maximum likelihood estimates of φ

= (φ0, . . . ,φp)′ and σ 2
a This is easy to compute.

The likelihood function under the alternative
is also easy to compute if the threshold r1 is
given. Let l1(r1; φ̂1, σ̂

2
1 ; φ̂2, σ̂

2
2 ) be the log likeli-

hood function evaluated at the maximum like-
lihood estimates of φi = (φ(i)

0 , . . . , φ
(i)
p )′ and σ 2

i
conditioned on knowing the threshold r1. The
log likelihood ratio l(r1) defined as

l(r1) = l1(r1; φ̂1, σ̂
2
1 ; φ̂2, φ̂

2
2) − l0(φ̂, φ̂2

a )

is then a function of the threshold r1, which is
unknown. Yet under the null hypothesis, there
is no threshold and r1 is not defined. The param-
eter r1 is referred to as a nuisance parameter
under the null hypothesis. Consequently, the
asymptotic distribution of the likelihood ratio
is very different from that of the conventional
likelihood ratio statistics. (See Chan, 1991, for
further details and critical values of the test.) A
common approach is to use lmax = supv < r1 < u

l(r1) as the test statistic, where v and u are pre-
specifled lower and upper bounds of the thresh-
old. Davis (1987) and Andrews and Ploberger
(1994) provide further discussion on hypothe-
sis testing involving nuisance parameters under
the null hypothesis. Simulation is often used to
obtain empirical critical values of the test statis-
tic lmax, which depends on the choices of v and
u. The average of l(r1) over r1 ε [v, u] is also
considered by Andrews and Ploberger as a test
statistic.
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Tsay (1989) makes use of arranged autore-
gression and recursive estimation tio derive an
alternative test for threshold nonlinearity. The
arranged autoregression seeks to transfer the
SETAR model under the alternative hypothe-
sis Ha into a model change problem with the
threshold r1 serving as the change point. To
see this, the SETAR model in equation (46) says
that xt follows essentially two linear models de-
pending on whether xt−d < r1 or xt−d ≥ r1. For
a realization {xt}T

t=1, xt−d can assume values
{x1, . . . , XT−d}. Let x(1) ≤ x(2) ≤ · · · ≤ x(T−d) be
the ordered statistics of {xt}T−d

t=1 (i.e., arranging
the observations in increasing order). The SE-
TAR model can then be written as

x( j)+d = β0 +
p∑

i=1
βi x( j)+d−i + a( j)+d,

j = 1, . . . , T − d
(47)

where βi = φ
(1)
i if x(j) < r1 and βi = φ

(2)
i if x( j) ≥

r1. Consequently, the threshold r1 is a change
point for the linear regression in equation (47),
and we refer to equation (47) as an arranged au-
toregression (in increasing order of the thresh-
old xt−d). Note that the arranged autoregression
in (47) does not alter the dynamic dependence
of xt on xt−i for i = 1, . . . , p because x(j)+d still de-
pends on x(j)+d−i for i = 1, . . . , p. What is done
is simply to present the SETAR model in the
threshold space instead of in the time space.
That is, the equation with a smaller xt−d appears
before that with a larger xt−d. The threshold test
of Tsay (1989) is obtained as follows.

� Step 1. Fit equation (47) using j = 1, . . . , m,
where m is a prespecified positive integer
(e.g., 30). Denote the least squares estimates
of β i by β̂i,m, where m denotes the number of
data points used in estimation.

� Step 2. Compute the predictive residual

â(m+1)+d = x(m+1)+d − β̂0,m −
p∑

i=1

β̂i,mx(m+1)+d−i

and its standard error. Let ê(m+1)+d be the stan-
dardized predictive residual.

� Step 3. Use the recursive least squares method
to update the least squares estimates to β̂i,m+1

by incorporating the new data point x(m+1)+d.
� Step 4. Repeat steps 2 and 3 until all data

points are processed.
� Step 5. Consider the linear regression of the

standardized predictive residual

ê(m+ j)+d = α0 +
p∑

i=1
αi x(m+ j)+d−i + vt,

j = 1, . . . , T − d − m
(48)

and compute the usual F statistic for testing
αi = 0 in equation (48) for i = 0, . . . ,p. Under
the null hypothesis that xt follows a linear
AR(p) model, the F ratio has a limiting F dis-
tribution with degrees of freedom p + 1 and
T − d − m − p.

We refer to the earlier F test as a TAR-F test.
The idea behind the test is that under the null
hypothesis there is no model change in the ar-
ranged autoregression in equation (47) so that
the standardized predictive residuals should be
close to IID with mean zero and variance 1. In
this case, they should have no correlations with
the regressors x(m+j)+d−i. For further details in-
cluding formulas for a recursive least squares
method and some simulation study on perfor-
mance of the TAR-F test, see Tsay (1989). The
TAR-F test avoids the problem of nuisance pa-
rameters encountered by the likelihood ratio
test. It does not require knowing the threshold
r1. It simply tests that the predictive residuals
have no correlations with regressors if the null
hypothesis holds. Therefore, the test does not
depend on knowing the number of regimes in
the alternative model. Yet the TAR-F test is not
as powerful as the likelihood ratio test if the
true model is indeed a 2-regime SETAR model
with a known innovational distribution.

Applications
In this subsection, we apply some of the non-
linearity tests discussed previously to five time
series. For a real financial time series, an AR
model is used to remove any serial correlation
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Table 2 Nonlinearity Tests for Simulated Series and Some Log Stock Returns

Q Q BDS (δ = 1.5σ̂a )

Data (5) (10) 2 3 4 5

N(0,1) 3.2 6.5 −0.32 −0.14 −0.15 −0.33
t6 0.9 1.7 −0.87 −1.18 −1.56 −1.71
ln(ew) 2.9 4.9 9.94 11.72 12.83 13.65
ln(vw) 1.0 9.8 8.61 9.88 10.70 11.29
ln(ibm) 0.6 7.1 4.96 6.09 6.68 6.82

d = 1 BDS(δ = σ̂a )

Data Ori-F TAR-F 2 3 4 5

N(0,1) 1.13 0.87 −0.77 −0.71 −1.04 −1.27
t6 0.69 0.81 −0.35 −0.76 −1.25 −1.49
ln(ew) 5.05 6.77 10.01 11.85 13.14 14.45
ln(vw) 4.95 6.85 7.01 7.83 8.64 9.53
ln(ibm) 1.32 1.51 3.82 4.70 5.45 5.72

Note: The sample size of simulated series is 500 and that of stock returns is 864. The BDS
test uses k = 2, . . . , 5.

in the data, and the tests apply to the residual
series of the model. The five series employed
are as follows:

1. r1t: A simulated series of IID N(0,1) with 500
observations.

2. r2t: A simulated series of IID Student-t distri-
bution with 6 degrees of freedom. The sam-
ple size is 500.

3. a3t: The residual series of monthly log returns
of CRSP equal-weighted index from 1926 to
1997 with 864 observations. The linear AR
model used is

(1 − 0.180B + 0.099B3 − 0.105B9)r3t

= 0.0086 + a3t

4. a4t: The residual series of monthly log returns
of CRSP value-weighted index from 1926 to
1997 with 864 observations. The linear AR
model used is

(1 − 0.098B + 0.111B3 − 0.088B5)r4t

= 0.0078 + a4t

5. a5t: The residual series of monthly log returns
of IBM stock from 1926 to 1997 with 864 ob-
servations. The linear AR model used is

(1 − 0.077B)r5t = 0.011 + a5t

Table 2 shows the results of the nonlinearity
test. For the simulated series and IBM returns,
the F tests are based on an AR(6) model. For the
index returns, the AR order is the same as the
model given earlier. For the BDS test, we chose
δ = σ̂a and δ = 1.5σ̂a with k = 2, . . . , 5. Also
given in the table are the Ljung-Box statistics
that confirm no serial correlation in the residual
series before applying nonlinearity tests. Com-
pared with their asymptotic critical values, the
BDS test and F tests are insignificant at the 5%
level for the simulated series. However, the BDS
tests are highly significant for the real financial
time series. The F tests also show significant
results for the index returns, but they fail to
suggest nonlinearity in the IBM log returns. In
summary, the tests confirm that the simulated
series are linear and suggest that the stock re-
turns are nonlinear.

1 MODELING
Nonlinear time series modeling necessarily in-
volves subjective judgment. However, there are
some general guidelines to follow. It starts with
building an adequate linear model on which
nonlinearity tests are based. For financial time
series, the Ljung-Box statistics and Engle’s test
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are commonly used to detect conditional het-
eroscedasticity. For general series, other tests
discussed in the previous section apply. If non-
linearity is statistically significant, then one
chooses a class of nonlinear models to entertain.
The selection here may depend on the experi-
ence of the analyst and the substantive matter
of the problem under study.

For volatility models, the order of an ARCH
process can often be determined by check-
ing the partial autocorrelation function of the
squared series. For GARCH and exponential
GARCH models, only lower orders such as
(1,1), (1,2), and (2,1) are considered in most ap-
plications. Higher order models are hard to es-
timate and understand. For TAR models, one
may use the procedures given in Tong (1990)
and Tsay (1989, 1998) to build an adequate
model. When the sample size is sufficiently
large, one may apply nonparametric techniques
to explore the nonlinear feature of the data and
choose a proper nonlinear model accordingly;
see Chen and Tsay (1993a) and Cai, Fan, and
Yao (2000). The MARS procedure of Lewis and
Stevens (1991) can also be used to explore the
dynamic structure of the data.

Finally, information criteria such as the
Akaike information criterion (Akaike, 1974)
and the generalized odd ratios in Chen, McCul-
loch, and Tsay (1997) can be used to discrimi-
nate between competing nonlinear models. The
chosen model should be carefully checked be-
fore it is used for prediction.

FORECASTING
Unlike the linear model, there exist no closed-
form formulas to compute forecasts of most
nonlinear models when the forecast horizon is
greater than 1. We use parametric bootstraps to
compute nonlinear forecasts. It is understood
that the model used in forecasting has been rig-
orously checked and is judged to be adequate
for the series under study. By a model, we mean
the dynamic structure and innovational distri-

butions. In some cases, we may treat the esti-
mated parameters as given.

Parametric Bootstrap
Let T be the forecast origin and � be the forecast
horizon (� > 0). That is, we are at time index
T and interested in forecasting xT + �. The para-
metric bootstrap considered computes realiza-
tions xT + 1, , XT+� sequentially by (a) drawing a
new innovation from the specified innovational
distribution of the model, and (b) computing
xT+1 using the model, data, and previous fore-
casts xT+1, . . . , xT+i−1. This results in a realiza-
tion for xT+�. The procedure is repeated M times
to obtain M realizations of xT+� denoted by
{x( j)

T+�}M
j=1. The point forecast of XT+� is then the

sample average of x( j)
T+�. Let the forecast be xT(�).

We used M = 3000 in some applications and the
results seem fine. The realizations {x( j)

T+�}M
j=1 can

also be used to obtain an empirical distribution
of xT+�. We make use of this empirical distribu-
tion later to evaluate forecasting performance.

Forecasting Evaluation
There are many ways to evaluate the fore-
casting performance of a model, ranging from
directional measures to magnitude measures
to distributional measures. A directional
measure considers the future direction (up
or down) implied by the model. Predicting
that tomorrow’s S&P 500 index will go up or
down is an example of directional forecasts
that are of practical interest. Predicting the
year-end value of the daily S&P 500 index
belongs to the case of magnitude measure.
Finally, assessing the likelihood that the daily
S&P 500 index will go up 10% or more between
now and the year end requires knowing the
future conditional probability distribution of
the index. Evaluating the accuracy of such an
assessment needs a distributional measure.

In practice, the available data set is divided
into two subsamples. The first subsample of the
data is used to build a nonlinear model, and
the second subsample is used to evaluate the
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forecasting performance of the model. We re-
fer to the two subsamples of data as estimation
and forecasting subsamples. In some studies, a
rolling forecasting procedure is used in which
a new data point is moved from the forecast-
ing subsample into the estimation subsample
as the forecast origin advances. In what fol-
lows, we briefly discuss some measures of fore-
casting performance that are commonly used
in the literature. Keep in mind, however, that
there exists no widely accepted single measure
to compare models. A utility function based on
the objective of the forecast might be needed to
better understand the comparison.

Directional Measure
A typical measure here is to use a 2 × 2 con-
tingency table that summarizes the number of
“hits” and “misses” of the model in predict-
ing ups and downs of xT+� in the forecasting
subsample. Specifically, the contingency table
is given as

Actual Predicted

up down

up m11 m12 m10
down m21 m22 m20

m01 m02 m

where m is the total number of �-step ahead
forecasts in the forecasting subsample, m11 is the
number of “hits” in predicting upward move-
ments, m21 is the number of “misses” in predict-
ing downward movements of the market, and
so on. Larger values in m11 and m22 indicate
better forecasts. The test statistic

X2 =
2∑

i=1

2∑

j=1

(mi j − mi0m0 j/m)2

mi0m0 j/m

can then be used to evaluate the performance of
the model. A large χ2 signifies that the model
outperforms the chance of random choice. Un-
der some mild conditions, χ2 has an asymptotic
chi-squared distribution with 1 degree of free-

dom. For further discussion of this measure, see
Dahl and Hylleberg (1999).

For illustration of the directional measure,
consider the 1-step ahead probability forecasts
of the 8-4-1 feed-forward neural network shown
in Figure 9. The 2 × 2 table of “hits” and
“misses” of the network is

Actual Predicted

up down

up 12 2 14
down 8 2 10

20 4 24

The table shows that the network predicts the
upward movement well, but fares poorly in
forecasting the downward movement of the
stock. The chi-squared statistic of the table
is 0.137 with 77-value 0.71. Consequently, the
network does not significantly outperform a
random-walk model with equal probabilities
for “upward” and “downward” movements.

Magnitude Measure
Three statistics are commonly used to measure
performance of point forecasts. They are the
mean squared error (MSE), mean absolute de-
viation (MAD), and mean absolute percentage
error (MAPE). For �-step ahead forecasts, these
measures are defined as

MSE(�) = 1
m

m−1∑

j=0

[xT+�+ j − xT+ j (�)]2 (49)

MAD(�) = 1
m

m−1∑

j=0

|xT+�+ j − xT+ j (�)| (50)

MAPE(�) = 1
m

m−1∑

j=0

| xT+ j (�)
xT+ j+�

− 1| (51)

where m is the number of �-step ahead forecasts
available in the forecasting subsample.

In application, one often chooses one of the
above three measures, and the model with
the smallest magnitude on that measure is re-
garded as the best �-step ahead forecasting
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Figure 11 Time Plot of the U.S. Quarterly Unemployment Rate, Seasonally Adjusted, from 1948 to 1993

model. It is possible that different � may re-
sult in selecting different models. The measures
also have other limitations in model compar-
ison; see, for instance, Clements and Hendry
(1993).

Distributional Measure
Practitioners recently began to assess forecast-
ing performance of a model using its predictive
distributions. Strictly speaking, a predictive dis-
tribution incorporates parameter uncertainty in
forecasts. We call it conditional predictive dis-
tribution if the parameters are treated as fixed.
The empirical distribution of xT+� obtained by
the parametric bootstrap is a conditional pre-
dictive distribution. This empirical distribution
is often used to compute a distributional mea-
sure. Let uT(�) be the percentile of the observed
xT+� in the prior empirical distribution. We then
have a set of m percentiles {uT+ j (�)}m−1

j=0 , where
again m is the number of �-step ahead forecasts
in the forecasting subsample. If the model en-
tertained is adequate, {uT+j (�)} should be a
random sample from the uniform distribution
on [0, 1]. For a sufficiently large m, one can
compute the Kolmogorov-Smirnov statistic of
{uT+j (�)} with respect to uniform [0, 1]. The
statistic can be used for both model checking
and forecasting comparison.

2 APPLICATION
In this section, we illustrate nonlinear time se-
ries models by analyzing the quarterly U.S.
civilian unemployment rate, seasonally ad-
justed, from 1948 to 1993. This series was an-
alyzed in detail by Montgomery, Zarnowitz,
Tsay, and Tiao (1998). We repeat some of the
analyses here using nonlinear models. Figure 11
shows the time plot of the data. Well-known
characteristics of the series include that (a) it
tends to move countercyclically with U.S. busi-
ness cycles, and (b) the rate rises quickly but
decays slowly. The latter characteristic suggests
that the dynamic structure of the series is non-
linear.

Denote the series by xt and let 
xt = xt−xt−1

be the change in unemployment rate. The linear
model

(1 − 0.31B4)(1 − 0.65B)
xt = (1 − 0.78B4)at,

σ̂ 2
a = 0.090

(52)
was built by Montgomery et al. (1998), where
the standard errors of the three coefficients are
0.11, 0.06, and 0.07, respectively. This is a sea-
sonal model even though the data were sea-
sonally adjusted. It indicates that the seasonal
adjustment procedure used did not successfully
remove the seasonality. This model is used as a
benchmark model for forecasting comparison.
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Table 3 Nonlinearity Test for Changes in the U.S. Quarterly Unemployment Rate: 1948.II–1993.IV

Type Ori-F LST TAR(1) TAR(2) TAR(3) TAR(4)

Test 2.80 2.83 2.41 2.16 2.84 2.98
p value .0007 .0002 .0298 .0500 .0121 .0088

Note: An AR(5) model was used in the tests, where LST denotes the test of Luukkonen et al. (1988)
and TAR(d) means threshold test with delay d.

To test for nonlinearity, we apply some of the
nonlinearity tests discussed earlier in this entry
with an AR(5) model for the differenced series

xt. The results are given in Table 3. All of the
tests reject the linearity assumption. In fact, the
linearity assumption is rejected for all AR(p)
models we applied, where p = 2, . . . , 10.

Using a modeling procedure similar to that of
Tsay (1989), Montgomery et al. (1998) build the
following TAR model for the 
xt series:


xt =

⎧
⎪⎪⎨

⎪⎪⎩

0.01 + 0.73
xt−1 + 0.10
xt−2 + a1t

if 
xt−2 ≤ 0.1,

0.18 + 0.80
xt−1 − 0.56
xt−2 + a2t

otherwise
(53)

The sample variances of a1t and a2t are 0.76 and
0.165, respectively, the standard errors of the
three coefficients of regime 1 are 0.03, 0.10, and
0.12, respectively, and those of regime 2 are 0.09,
0.1, and 0.16. This model says that the change
in the U.S. quarterly unemployment rate, 
xt,
behaves like a piecewise linear model in the ref-
erence space of xt−2 − xt−3 with threshold 0.1.
Intuitively, the model implies that the dynamics
of unemployment act differently depending on
the recent change in the unemployment rate. In
the first regime, the unemployment rate has had
either a decrease or a minor increase. Here the
economy should be stable, and essentially the
change in the rate follows a simple AR(1) model
because the lag-2 coefficient is insignificant. In
the second regime, there is a substantial jump
in the unemployment rate (0.1 or larger). This
typically corresponds to the contraction phase
in the business cycle. It is also the period during
which government interventions and industrial
restructuring are likely to occur. Here 
xt fol-

lows an AR(2) model with a positive constant,
indicating an upward trend in xt. The AR(2)
polynomial contains two complex characteris-
tic roots, which indicate possible cyclical behav-
ior in 
xt. Consequently, the chance of having
a turning point in xt increases, suggesting that
the period of large increases in xt should be
short. This implies that the contraction phases
in the U.S. economy tend to be shorter than the
expansion phases.

Applying a Markov chain Monte Carlo
method, Montgomery et al. (1998) obtain the
following Markov switching model for 
xt:


xt =

⎧
⎪⎪⎨

⎪⎪⎩

−0.07 + 0.38
xt−1 − 0.05
xt−2 + ε1t

if st = 1
0.16 + 0.86
xt−1 − 0.38
xt−2 + ε2t

if st = 2
(54)

The conditional means of 
xt are −0.10 for
st = 1 and 0.31 for st = 2. Thus, the first state rep-
resents the expansionary periods in the econ-
omy, and the second state represents the con-
tractions. The sample variances of ε1t and ε2t

are 0.031 and 0.192, respectively. The standard
errors of the three parameters in state st = 1
are 0.03, 0.14, and 0.11, and those of state st

= 2 are 0.04, 0.13, and 0.14, respectively. The
state transition probabilities are P(st = 2|st−1

= 1) = 0.084(0.060) and P(st = 1|st−1 = 2) =
0.126(0.053), where the number in parentheses
is the corresponding standard error. This model
implies that in the second state the unemploy-
ment rate xt has an upward trend with an AR(2)
polynomial possessing complex characteristic
roots. This feature of the model is similar to
the second regime of the TAR model in equa-
tion (53). In the first state, the unemployment
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rate xt has a slightly decreasing trend with a
much weaker autoregressive structure.

Forecasting Performance
A rolling procedure was used by Montgomery
et al. (1998) to forecast the unemployment rate
xt. The procedure works as follows:

1. Begin with forecast origin T = 83, corre-
sponding to 1968.II, which was used in the
literature to monitor the performance of var-
ious econometric models in forecasting un-
employment rate. Estimate the linear, TAR,
and MSA models using the data from 1948.I
to the forecast origin (inclusive).

2. Perform 1-quarter to 5-quarter ahead fore-
casts and compute the forecast errors of
each model. Forecasts of nonlinear models
used are computed by using the parametric
bootstrap method explained earlier in this
entry.

3. Advance the forecast origin by 1 and repeat
the estimation and forecasting processes un-
til all data are employed.

4. Use MSE and mean forecast error to compare
performance of the models.

Table 4 shows the relative MSE of forecasts
and mean forecast errors for the linear model in
equation (52), the TAR model in equation (53),
and the MSA model in equation (54), using the
linear model as a benchmark. The comparisons
are based on overall performance as well as the
status of the U.S. economy at the forecast origin.
From the table, we make the following obser-
vations:

1. For the overall comparison, the TAR model
and the linear model are very close in MSE,
but the TAR model has smaller biases. Yet
the MSA model has the highest MSE and
smallest biases.

2. For forecast origins in economic contrac-
tions, the TAR model shows improvements
over the linear model both in MSE and bias.
The MSA model also shows some improve-
ment over the linear model, but the improve-
ment is not as large as that of the TAR model.

Table 4 Out-of-Sample Forecast Comparison Among
Linear, TAR, and MSA Models for the U.S. Quarterly
Unemployment Rate

(A) Relative MSE of Forecast

Model 1-step 2-step 3-step 4-step 5-step

(a) Overall Comparison

Linear 1.00 1.00 1.00 1.00 1.00
TAR 1.00 1.04 0.99 0.98 1.03
MSA 1.19 1.39 1.40 1.45 1.61
MSE 0.08 0.31 0.67 1.13 1.54

(b) Forecast Origins in Economic
Contractions

Linear 1.00 1.00 1.00 1.00 1.00
TAR 0.85 0.91 0.83 0.72 0.72
MSA 0.97 1.03 0.96 0.86 1.02
MSE 0.22 0.97 2.14 3.38 3.46

(c) Forecast Origins in Economic Expansions

Linear 1.00 1.00 1.00 1.00 1.00
TAR 1.06 1.13 1.10 1.15 1.17
MSA 1.31 1.64 1.73 1.84 1.87
MSE 0.06 0.21 0.45 0.78 1.24

(B) Mean of Forecast Errors
Model 1-step 2-step 3-step 4-step 5-step

(a) Overall Comparison

Linear 0.03 0.09 0.17 0.25 0.33
TAR −0.10 −0.02 −0.03 −0.03 −0.01
MSA 0.00 −0.02 −0.04 −0.07 −0.12

(b) Forecast Origins in Economic
Contractions

Linear 0.31 0.68 1.08 1.41 1.38
TAR 0.24 0.56 0.87 1.01 0.86
MSA 0.20 0.41 0.57 0.52 0.14

(c) Forecast Origins in Economic Expansions

Linear −0.01 0.00 0.03 0.08 0.17
TAR −0.05 −0.11 −0.17 −0.19 −0.14
MSA −0.03 −0.08 −0.13 −0.17 −0.16

Note: The starting forecast origin is 1968.II, where the
row marked by “MSE” shows the MSE of the benchmark
linear model.

3. For forecast origins in economic expansions,
the linear model outperforms both nonlinear
models.

The results suggest that the contributions of
nonlinear models over linear ones in forecast-
ing the U.S. quarterly unemployment rate are
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mainly in the periods when the U.S. econ-
omy is in contraction. This is not surprising
because, as mentioned before, it is during the
economic contractions that government inter-
ventions and industrial restructuring are most
likely to occur. These external events could in-
troduce nonlinearity in the U.S. unemployment
rate. Intuitively, such improvements are im-
portant because it is during the contractions
that people pay more attention to economic
forecasts.

KEY POINTS
� Nonlinearity exists in many financial data, in-

cluding log returns of widely used market in-
dexes such as CRSP equal- and value-weight
indexes.

� Nonlinearity also appears in asset volatility.
Indeed, simple threshold models such as the
threshold GARCH model can be used to bet-
ter describe the behavior of asset volatility.
The model has been used to model the lever-
age effect between return and volatility.

� Simple nonparametric methods such as the
local linear regression method can be used to
provide a deeper understanding of interest
rate dynamics.

� The unemployment rate example shows that,
even though nonlinear models may not out-
perform linear ones in all forecast origins,
they can provide more accurate forecasts
when the U.S. economy is under contraction.
This is useful because people in general pay
more attention to forecasts during economic
recession.

� Among the nonlinear models, the Markov
switching model has the smallest bias in out-
of-sample prediction. The model, however,
has a larger mean square of forecast errors
than the threshold autoregressive model. This
behavior is consistent with the structure of the
model because the true states of the economy
are never certain under the switching model.
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Abstract: The Theil-Sen estimator is an exceptionally simple and robust linear regression estimator,
affording estimates of slope and intercept that are virtually identical to their ordinary least squares
counterparts in the absence of outliers, but which do not change appreciably in the presence of
outliers. In fact, with univariate data, it improves on ordinary least squares in almost every way
imaginable, and it is therefore a striking fact that this remarkable estimator is not universally known
and used. It can be used to derive robust estimates of beta and the correlation coefficient that are
virtually identical to their classical counterparts when asset returns are normally distributed, and
which are significantly more robust when asset returns are highly skewed or contaminated with
outliers.

Point estimates of betas and correlations are
most often obtained using ordinary least squares
(OLS) and the standard maximum likelihood
estimator, respectively. While these estimators
are clearly optimal when asset returns are nor-
mally distributed, and when we hold no view
on their prior distribution, they can be far from
optimal when these conditions are not satisfied.
In this entry, a novel explanation of OLS is pro-
vided and is then used to motivate a robust uni-
variate regression algorithm due to Theil (1950)
and Sen (1968). This estimator is then used to
obtain remarkably robust (i.e., outlier resistant)
estimates of asset betas, asset correlations, and
non-negative definite correlation and covariance
matrices.

OLS REVISITED
Generations of students have learned OLS in
the way depicted pictorially in Figure 1. We are
given a set of points, each with an abscissa (or
x value) and an ordinate (or y value), and which
are displayed on a scatter plot in the X − Y
plane. All errors are assumed to be concentrated
in the ordinates. The abcissae are assumed to be
known with certainty. The i th point has coordi-
nates (xi , yi ), and the collection of points visu-
ally evidences a noisy, but linear, relationship
between the x’s and the y’s. The object of OLS
is to find a straight line, the line of best fit, with
slope βOLS and intercept αOLS, and which mini-
mizes the sum of squared vertical distances (or
errors) from the points to this line.
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(xi, yi)

ei

(xj, yj)

ej

X

Y

(0, 0)

Intercept = OLSα

Slope = OLSβ

Figure 1 Ordinary Least Squares—Classical Depiction

This pictorial representation has become so
firmly embedded in our consciousness that
we take its geometry and its formulation for
granted. But consider that the method dates
back to 1800, and the fact that it was inde-
pendently discovered by Carl Friedrich Gauss
and Joseph-Louis Lagrange, who surely rank
among the greatest mathematicians of all time,
and it should come as no surprise that this text-
book depiction of OLS hides more than one se-
cret. In this section, we expose two of its secrets.

(xi, yi) (xj, yj)

X

Y

(0, 0)

Slopeij  = ijβ

OLS Intercept = OLSα

OLS Slope = OLSβ

Intercept ij = ijα

Figure 2 Ordinary Least Squares—Alternative Depiction

We start our exploration of OLS with Figure 2,
which plots the same set of points as Figure 1,
but now, instead of drawing a single line of
best fit through the entire data set, we choose
two specific points, (xi , yi ) and

(
xj , yj

)
, draw the

unique straight line joining them and project it
back till it intersects the Y axis. This line has
slope βij and intercept αij, where βij and αij are
given by:

βij = yi − yj

xi − xj
, (1)
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and

αij = xi × yj − xj × yi

xi − xj
(2)

On comparing Figures 1 and 2, it is clear
that βOLS must necessarily lie between min

i, j
βij

and max
i, j

βij, both endpoints inclusive, and that

αOLS must likewise lie between min
i, j

αij and

max
i, j

αij. The OLS slope and intercept can there-

fore be written as weighted averages of all(
N
2

)
= N(N−1)

2 pairwise slopes and intercepts for

some nonnegative sets of weights, that is,

βOLS =
∑

i

∑

j

wijβij,
∑

i

∑

j

wij = 1, wij ≥ 0

(3)

and

αOLS =
∑

i

∑

j

vijαij,
∑

i

∑

j

vij = 1,vij ≥ 0

(4)

In any particular situation, these weights are
not unique, as equations (3) and (4) are enor-
mously overdetermined, and we therefore seek
a set of strictly positive weights that simulta-
neously solves both equations for an arbitrary
collection of points. Such a set of weights can
be identified using some clever guesswork mo-
tivated by the following observation: If (xi , yi )
and

(
xj , yj

)
are close together, then any error

in either ordinate will induce significant errors
in βij and αij. Pairs of points that are far apart
are much less susceptible to this problem. We
ought, therefore, to overweight slopes and in-
tercepts derived from pairs of points that are
far apart relative to those that are derived from
pairs of points that are close together.

Next, as all the error is concentrated in the
abscissae, and as the ordinates are known with
certainty, the weights must be a function only of(
xi − xj

)
—they cannot depend on

(
yi − yj

)
. Fi-

nally, the function must be even, because some
weights would be negative if it were odd. Some
tedious and not particularly enlightening alge-

bra shows our intuition to be correct, that is,

wij = vij =
(
xi − xj

)2

∑
k

∑
l

(xk − xl)
2 (5)

It follows that

βOLS =

∑
i

∑
j

βij
(
xi − xj

)2

∑
k

∑
l

(xk − xl )
2 (6)

and

αOLS =

∑
i

∑
j

αij
(
xi − xj

)2

∑
k

∑
l

(xk − xl )
2 (7)

Equations (6) and (7) yield OLS’ first little
secret—the line of best fit is just an appropri-
ately weighted average of all possible lines that
could be drawn using this data set! While this
argument does not readily extend to the mul-
tivariate case, it does give us a fresh perspec-
tive on OLS, which now stands exposed as a
clever and computationally efficient weighting
scheme over the set of unique straight lines
drawn through all possible pairs of points. A
proof of this result, which is usually credited to
Sen (1968), can be found in Heitman and Ord
(1985).

Its second little secret lies in its focus on
squared errors. Why should it be the second,
and not the fourth or the sixty-fourth power
of the error that is minimized? To answer this
question, recall the way in which the OLS slope
and intercept are defined:

αOLS, βOLS = arg min
∑

i
error2

i

= arg min
∑

i
(yi − αOLS − βOLS× xi )

2

(8)
Solving this minimization problem requires

us to compute the partial derivatives of the
sum of squared errors with respect to αOLS and
βOLS, and to equate the resulting expressions to
0. This results in a set of linear equations that
can be solved in closed form (the solution was
known to both Gauss and Lagrange). If, how-
ever, the error is raised to a power other than
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two, we would have to solve a set of nonlin-
ear equations, which do not, in general, admit
a closed form solution—they must be solved
numerically on a computer, a tool that neither
Gauss nor Lagrange had access to. That said,
raising the error to any even power (or even
making it the argument of any even function)
and then performing the indicated minimiza-
tion numerically will result in a line that is op-
timal under that measure, though its slope and
intercept will not, in general, equal the OLS
slope and intercept.

All of this leads to our second insight—the
mathematical formulation of OLS is driven by
thoroughly practical considerations. In 1800,
anything else simply couldn’t be (and for
that matter, still can’t be) solved analytically!
Having exposed these two little secrets of OLS,
we now describe a better way in which to
compute univariate regressions and explore its
application to the estimation of beta and the cor-
relation coefficient, as well as to the estimation
of positive definite correlation and covariance
matrices.

THEIL-SEN REGRESSION
The Theil-Sen regression algorithm (Thiel, 1950;
Sen, 1968) is a robust alternative to univariate
OLS that performs particularly well in the pres-
ence of outliers (loosely, in the presence of large,
sporadic errors that are anything but Gaussian).
It has long been known that OLS is acutely sen-
sitive to errors in its inputs, and it is immedi-
ately apparent from equations (6) and (7) that
even a single outlier can induce arbitrarily large
errors in βOLS and αOLS.

Theil (1950) and Sen (1968) propose a novel
solution to this problem—they propose using

the median of all
(

N
2

)
= N(N−1)

2 slopes to esti-

mate the slope of the regression line, and choose
the intercept to force the median error to 0. The
primary difference between their methods is
that Theil uses all available observations, while
Sen restricts attention to the subset of observa-
tions with distinct abscissae, that is, the set of

points for which xi �= xj , and replaces each set
of points that share the same abscissa with a
single point whose ordinate is the average of
their ordinates.

Formally, the Theil-Sen estimates of slope and
intercept are given by:

βTS = median
i, j

{
βij

}
(9)

and

αTS = median
i, j

{yi − βTS × xi } (10)

This regression has been widely studied.
Peng, Wang, and Wang (2008), for example,
show that it is strongly consistent and superef-
ficient, and derive its asymptotic distribution.
Interestingly, the median has long been used
as a robust estimator of the mean for symmet-
ric distributions, but this appears to be the first
known application of the median to the estima-
tion of regression coefficients.

We illustrate the superiority of Thiel-Sen re-
gression over OLS via simulations, the results
of which are displayed in Tables 1 and 2. When
the distribution of errors is normal, the distribu-
tions of βTS and αTS are almost identical to those
of βOLS and αOLS. When the errors are drawn
from a highly skewed distribution, or when the
data are contaminated with significant amounts
of noise, the distributions of βTS and αTS are far
less variable than those of βOLS and αOLS.

These results are generated as follows. Us-
ing a high-quality random number generator
(Mersenne twister), we create two independent
random vectors, X and Y, both of length 100,
and drawn from one of two distributions—unit
normal and Pareto(2). We then regress Y against
X using both OLS and the Theil-Sen regression.
As the vectors are independent, the distribu-
tion of the slope and the intercept of the re-
gression lines should be centered at 0 and E[X],
respectively.

We run 10,000 simulations to ensure that
the 99% confidence intervals on our estimates
are extremely tight (the width of the confidence
interval is inversely proportional to the square
root of the number of simulation runs), and
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Table 1 Theil-Sen Regression vs. OLS: Normally Distributed Random Variables

Percentiles 1 5 10 25 50 75 90 95 99

Theil-Sen Slope −0.26 −0.17 −0.14 −0.07 0 0.07 0.13 0.18 0.26
Least Squares Slope −0.24 −0.17 −0.13 −0.07 0 0.07 0.13 0.17 0.24
Theil-Sen Intercept −0.3 −0.21 −0.16 −0.09 0 0.08 0.16 0.21 0.3
Least Squares Intercept −0.23 −0.17 −0.13 −0.07 0 0.07 0.13 0.17 0.23
Theil-Sen Mean Square 0.69 0.77 0.81 0.89 0.98 1.08 1.17 1.24 1.35
Least Squares Mean Square Err 0.69 0.76 0.81 0.88 0.98 1.07 1.16 1.23 1.33
Theil-Sen Median 0 0 0 0 0 0 0 0 0
Least Squares Median Error −0.17 −0.12 −0.09 −0.05 0 0.05 0.09 0.12 0.18

Tables 1 and 2 display various percentiles of the
distribution of the slope, the intercept, and the
mean squared error (i.e., the sum of squared
errors divided by 100) for both OLS and the
Theil-Sen regression.

The first simulation, for normal random
variables, illustrates how close the Theil-Sen
algorithm is to OLS in the special case when
OLS is clearly optimal. The second simulation
illustrates its robustness with Pareto(2) random
variables, whose distribution is highly skewed,
and whose long tails serve as proxies for
outliers.

When X and Y are normally distributed
(Table 1), the median slope, the interquartile
range for the slope (the difference between the
75th and the 25th percentiles), and the MSE
for the two algorithms are essentially identi-
cal. The same holds true even when we look
at a 90% range (the difference between the 5th
and the 95th percentiles). However, when X
and Y are drawn from a Pareto(2) distribution
(Table 2), the performance of the two algorithms
diverges: The interquartile range for the slope
is 40% smaller for the Theil-Sen regression (0.06
vs. 0.10 for OLS) and an astonishing 60% smaller

for the 90% range (0.16 vs. 0.41), though the me-
dian MSE rises by about 12%.

The median slope remains 0 for the Theil-Sen
regression, but exhibits a slight downward bias
for OLS. The range of the intercept for the Thiel-
Sen regression is slightly larger than it is for
OLS, but this is driven entirely by the fact that
the Theil-Sen intercept is chosen to force the
median error to 0, while the OLS intercept is
chosen to minimize the sum of squared errors.

These simulations clearly show that the Theil-
Sen regression gives up nothing to OLS when
X and Y are normally distributed and is at a
significant advantage when they are not. Sim-
ilar results are obtained when either X or Y is
contaminated with outliers. In all such experi-
ments, the advantage of the Theil-Sen approach
is readily apparent. In fact, it can be shown that
as many as 29% of the data points can be cor-
rupted with errors of arbitrary size before the
Theil-Sen estimates of slope and intercept start
to break down.

Given these results, and the accompanying
fact that the vast majority of regressions run in
practice are univariate, it is surprising that the
Theil-Sen regression is not more widely used

Table 2 Theil-Sen Regression vs. OLS: Pareto(2) Distributed Random Variables

Percentiles 1 5 10 25 50 75 90 95 99

Theil-Sen Slope −0.12 −0.07 −0.05 −0.03 0 0.03 0.06 0.09 0.14
Least Squares Slope −0.35 −0.18 −0.13 −0.07 −0.02 0.03 0.13 0.23 0.65
Theil-Sen Intercept 1.17 1.24 1.28 1.34 1.41 1.49 1.57 1.62 1.74
Least Squares Intercept 0.98 1.49 1.62 1.78 1.95 2.16 2.41 2.62 3.44
Theil-Sen Mean Sqr Err 0.59 0.88 1.11 1.67 2.83 5.46 12.29 22.67 107.54
Least Squares Mean Sqr Err 0.52 0.78 0.98 1.47 2.53 4.97 11.54 21.47 104.8
Theil-Sen Median Error 0 0 0 0 0 0 0 0 0
Least Squares Median Error −1.51 −0.97 −0.83 −0.64 −0.5 −0.4 −0.32 −0.28 −0.22
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and appreciated. This may in part be driven
by the fact that Theil-Sen regression, unlike
OLS, does not generalize naturally to the case
where there are many independent variables,
as the median is inherently a one-dimensional
measure.

A number of attempts have been made to
create multivariate extensions of the Theil-Sen
regression, the two most popular ones being
the iterative Gauss-Seidel method described by
Hastie and Tibshirani (1990) and the elemen-
tal subset method of Oja and Niinimaa (1984),
which is described in Rousseeuw and Leroy
(1987). Unfortunately, neither approach is en-
tirely reliable in practice, and it is easy to find
simple examples for which they converge to the
wrong solution, particularly when the relation-
ship being modeled is nonlinear.

ROBUST ESTIMATES
OF BETA
The beta of an asset Y with respect to the mar-
ket portfolio X plays a central role in modern
finance as a result of the capital asset pricing
model (Treynor, 1961; Sharpe, 1964; Lintner,

OLS vs. Theil Sen Beta (IBM vs. SPX): 132 Day Estimation Window
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Figure 3 OLS vs. Theil-Sen Estimates of Beta: July 1, 1987, to December 31, 1987

1965; and Mossin, 1966), and is defined to be

βY|X = Cov (X, Y)
σ 2

X

(11)

This quantity is, of course, just the slope co-
efficient in a univariate regression, and is pre-
cisely what OLS estimates. The application of
the Theil-Sen regression algorithm to the esti-
mation of beta is obvious—the Theil-Sen esti-
mate of slope ought to provide us a more robust
estimate of the historical of a security than the
corresponding OLS estimate.

The advantages of the Theil-Sen estimator of
beta are made clear by the following estimate
of the beta of IBM around the crash of 1987.
Starting on July 1, 1987, and ending on Decem-
ber 31, 1987, we estimate IBM’s β by regressing
its daily return for the most recent 132 days
(or 6 months) against the corresponding daily
return of the S&P 500. As can be seen from Fig-
ure 3, the Theil-Sen estimate is far more stable
than the OLS estimate. In particular, it does not
jump sharply after the 20% drop in the S&P 500
on October 19 as does the OLS beta, just as one
would expect given its robustness.

While this is clearly an extreme example of
a single outlier corrupting an estimate of beta,
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outliers in financial data are far more common
than is usually assumed, and they are not easily
detected, as they influence many classical esti-
mators in a way that masks their presence. One
popular method of identifying and removing
outliers is to remove points that lie more than
three sample standard deviations away from
the regression line.

Unfortunately, outliers can so distort the slope
and intercept of the regression line, as well as
the sample standard deviation of the errors,
that all the points, including the outliers, will
be found to lie within three sample standard
deviations of the regression line! In general, fil-
tering data using classical estimators to identify
outliers works poorly in practice, and it proves
far more effective to use estimators that are in-
herently robust to outliers.

The Theil-Sen estimate of beta can be fur-
ther adjusted for the effects of nonsynchronous
trading using the Scholes-Williams (1977) or
Dimson (1979) corrections and can be shrunk
cross-sectionally using a Bayesian correction
as is done in Vasicek (1973). In each case, the
Theil-Sen estimates of beta will provide a more
robust point from which to start building an
enhanced estimate of beta.

The Dimson correction sums contemporane-
ous and lagged betas for the asset to create an
overall beta that accounts for the fact that an
asset may have both a contemporaneous and a
lagged response to market shocks, that is,

βDimson
Y|X =

k∑

i=0

βYt |Xt−i (12)

When using daily data, k is commonly set to 4
(i.e., one week’s data), and when using monthly
data, it is most commonly set to 1, so as not to
pick up spurious responses from shocks in the
distant past.

Vasicek’s (1973) correction is a Bayesian cor-
rection, which allows the user to reflect informa-
tion gleaned from the (known) cross-sectional
distribution of betas to enhance an uncondi-
tional estimate of beta. In particular, Vasicek
(1973) assumes that the prior distribution of

betas is normal and shows that the maximum a
posteriori estimate of beta is a linear combina-
tion of its initial estimate and its cross-sectional
mean, that is,

βVasicek
Y|X = wY × βY|X + (1 − wY) × βaverage

(13)
where

wY = σ 2
Cross-Sectional

σ 2
β(Y|X) + σ 2

Cross-Sectional

(14)

σ 2
β(Y|X) is the variance of βY|X, and σ 2

Cross-Sectional is
the cross-sectional variance of the betas of the
entire universe of securities under considera-
tion at this point in time. A particularly sim-
ple and reasonably effective implementation of
this method sets wY = 0.5 for all assets and at
all points in time. Both techniques see use in
the enhanced estimation of beta across a wide
range of asset classes in Frazzini and Pedersen
(2010).

ROBUST ESTIMATES OF
CORRELATION
To derive a robust estimate of the correlation
coefficient, we rewrite and re-interpret the ex-
pression for the correlation coefficient in a novel
way, and then show how it can be estimated
using two Theil-Sen regressions. Recall the def-
inition of the correlation between two random
variables X and Y:

ρX,Y = Cov (X, Y)
σX × σY

(15)

where Cov (X, Y) is the covariance between X
and Y, and σX and σY are the standard devia-
tions of X and Y, respectively. This expression
can be rewritten as

ρX,Y =
√

Cov(X, Y)2

σ 2
X × σ 2

Y

=
√

Cov(X, Y)
σ 2

X

× Cov(X, Y)
σ 2

Y

= √
βY|X × βX|Y

(16)
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Table 3 Distribution of Theil-Sen Estimates of Correlation vs. Standard Maximum Likelihood Estimate: Normally
Distributed Random Variables

Percentiles 1 5 10 25 50 75 90 95 99

Theil-Sen correlation −0.24 −0.17 −0.14 −0.07 0 0.07 0.13 0.18 0.25
Maximum Likelihood correlation −0.23 −0.17 −0.13 −0.07 0 0.07 0.13 0.16 0.23

Factored in this way, the correlation coeffi-
cient stands revealed as the geometric mean
of two betas and is interpreted as follows. If
a causal linear relationship runs from X to Y,
(i.e., if X causes Y), the logical quantity to focus
on is βY|X. Likewise, if a causal linear relation-
ship runs from Y to X, (i.e., if Y causes X), the
logical quantity to focus on is βX|Y.

But when we don’t know which way the cau-
sation flows, or even if the relationship is lin-
ear, we throw our hands up, take the geometric
mean of these two betas, and call this quantity
the correlation coefficient! For jointly normally
distributed random variables, the correlation
coefficient fully captures and encapsulates their
covariation. For all other distributions, it serves
merely as a useful shortcut that measures their
covariation in a standardized way, as evidenced
by the fact that its value is bounded between
−1 and 1.

The application of the Theil-Sen regression to
the robust estimation of correlation is now ob-
vious. Given two random vectors, X and Y, first
regress X on Y, and then regress Y on X, using
the Theil-Sen regression both times. The geo-
metric mean of the two slopes is a robust esti-
mate of the correlation coefficient, that is,

ρRobust
X,Y =

√
βTheil-Sen

Y|X × βTheil-Sen
X|Y (17)

When the random vectors are drawn from a
normal distribution and are not corrupted by
noise, we expect that this approach will work

just as well as the standard maximum likeli-
hood estimator. In the presence of outliers, or
if distribution of X and Y is highly skewed, it
ought to do much better. And so it is, as the data
in Tables 3 and 4 demonstrate.

Table 3 compares the performance of equation
(16) to the standard maximum likelihood esti-
mator when X and Y are drawn from a normal
distribution, while Table 4 performs an identi-
cal comparison for Pareto(2) random variables.
Both tables are created by extending the simula-
tions used to illuminate the performance of the
Theil-Sen regression to compute correlations as
well.

The results follow the pattern established in
Tables 1 and 2 for the slope coefficient. When X
and Y are drawn from a normal distribution, the
distribution of the Theil-Sen estimate of corre-
lation is essentially identical to that of the max-
imum likelihood estimate; and when they are
drawn from a Pareto(2) distribution, the Theil-
Sen estimate of correlation is far more stable
than the maximum likelihood estimate. Similar
results are obtained when either X or Y (or both)
are contaminated with noise (i.e., with outliers).

It is a short step from estimating individual
correlations to estimating correlation matrices,
and the repeated use of the Theil-Sen estima-
tor across a set of random variables gives us a
computationally inefficient but robust estimate
of a correlation matrix ρ̂, whose i,jth element
is denoted by ρ̂ij, and whose diagonal elements

Table 4 Distribution of Theil-Sen Estimates of Correlation vs. Standard Maximum Likelihood Estimate: Pareto(2)
Distributed Random Variables

Percentiles 1 5 10 25 50 75 90 95 99

Theil-Sen correlation −0.11 −0.07 −0.05 −0.03 0 0.03 0.06 0.08 0.13
Maximum Likelihood correlation −0.15 −0.11 −0.1 −0.06 −0.02 0.04 0.12 0.19 0.37
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are all 1. Unfortunately, there is no guarantee
that this correlation matrix will be nonnegative
definite.

This, however, is no cause for alarm. It is
relatively easy to transform this matrix into a
nearby nonnegative definite correlation matrix
ρ∗. Ideally, the transformation will minimally
distort ρ̂, and the many available solutions to
this problem differ largely in the metric (or
norm) that they use to measure the distance
between ρ̂ and ρ∗. In general, they solve the
following optimization problem:

Minimize
∥∥ρ∗ − ρ̂

∥∥ , s.t. ρ∗ is a nonnegative

definite correlation matrix. (18)

Lindskog (2000), Rousseeuw and Molen-
berghs (1993), and Higham (2002) describe a
number of different ways in which the nearest
correlation matrix can be identified using both
linear and nonlinear transformations of ρ̂. The
method that seems to work best in practice is the
iterative method described by Higham (2002),
which iteratively identifies the closest valid cor-
relation matrix under a Frobenius norm (the
sum of squared element by element differences)
by factoring the correlation matrix in a partic-
ular way, forcing its negative eigenvalues to
0, then recombining its constituent pieces and
forcing its diagonal elements to 1. The algo-
rithm is described here for the sake of com-
pleteness and can be found in the NAG Fortran
and C Libraries, as well as the NAG Toolbox for
Matlab.

We first define two operators, PS(A) and
PU(A) that can be applied to any symmetric ma-
trix A. As A is symmetric, it admits a spectral
decomposition A = QDQT , where Q is orthog-
onal, and D = diag (λi ) is a square matrix whose
diagonal elements are the eigenvalues of A, and
whose off-diagonal elements are 0. PS(A) and
PU(A) are defined via

PS(A) = QD∗QT , D∗
ij = max

(
Dij, 0

)
, and (19)

PU(A) = Set Dii = 1, i.e. replace all diagonal

elements of D by 1. (20)

The algorithm proceeds as follows, with both
Xk and Yk converging linearly to ρ∗:

Algorithm H (Higham, 2002)

1. �S0 = 0, X0 = I, Y0 = ρ̂, k = 0
2. While ‖Yk − Xk‖ > ε, Do

a. k = k + 1
b. Rk = Yk−1 − �Sk−1 (Dykstra’s correction

to speed convergence)
c. Xk = PS (Rk)
d. �Sk = Xk − Rk

e. Yk = PU (Xk)
3. ρ∗ = Yk

It is but a short step from estimating a robust
nonnegative definite correlation matrix to esti-
mating a similarly robust nonnegative definite
covariance matrix. Given robust estimates of the
volatility of each security, say σ Robust

i , we can
form a matrix whose diagonal elements are the
robust volatilities of the assets, and whose off-
diagonal elements are all 0, that is,

	 =

⎡

⎢⎢⎣

σ Robust
1 0 . 0

0 . . .

. . . 0
0. . 0 σ Robust

N

⎤

⎥⎥⎦ (21)

and we can then define a robust nonnegative
definite covariance matrix Ĉ via:

Ĉ = 	ρ∗	 (22)

If the correlation matrix is nonnegative defi-
nite, the covariance matrix described in equa-
tion (22) is nonnegative definite as well.
Rousseeuw and Croux (1993) describe a num-
ber of robust estimators of volatility, their pre-
ferred one being QN(X), which is defined to be
2.222 times the 25th percentile of the set of dis-
tances

{∣∣xi − xj
∣∣ , i < j

}
. They explore the prop-

erties of this estimator, which is similar in spirit
to the Hodges–Lehmann (1963) estimate of the
mean, show that its efficiency for the normal
distribution is high (82%), and that it is robust
to errors of arbitrary size in approximately half
the points.
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The robust covariance matrix defined by equa-
tion (22) can be used in a variety of applica-
tions such as mean-variance portfolio analysis
and risk budgeting. It proves remarkably useful
in practice, as it reduces and often completely
eliminates the need for various constraints to
ensure positive solutions that accord with a
thoughtful portfolio manager’s intuition.

KEY POINTS
� The Theil-Sen regression algorithm is an

extraordinarily simple, intuitive, and robust
algorithm for performing univariate regres-
sions.

� The Theil-Sen estimator should be used
routinely in place of OLS when perform-
ing univariate regressions, and in place of
the standard maximum likelihood estimator
when estimating correlations.

� The fact that the Theil-Sen estimator does not
generalize naturally to multivariate regres-
sion should not be held against it—the vast
majority of regressions that are carried out in
practice are univariate, and a wide range of
robust algorithms that work well with multi-
variate data are known.

� The Theil-Sen regression algorithm can be
used to obtain robust estimates of beta, which
can be further enhanced by the application
of Dimson’s correction for nonsynchronous
trading and Vasicek’s Bayesian adjustment.

� The robust estimates of correlation obtained
from the Theil-Sen regression algorithm can
be used as inputs to Higham’s projection
algorithm to estimate a nonnegative defi-
nite correlation matrix. This nonnegative def-
inite correlation matrix can be combined with
Rousseeuw and Croux’s robust estimator of
volatility to estimate a nonnegative definite
covariance matrix. This nonnegative definite
covariance matrix is of particular use in a
wide range of mean-variance portfolio opti-
mization and risk budgeting applications, in-
cluding, but not limited to, the construction
of minimum variance portfolios.
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Working with High-Frequency Data
IRENE ALDRIDGE
Managing Partner, Able Alpha Trading

Abstract: High-frequency trading (HFT) has exploded into the popular press as a major develop-
ment affecting securities markets around the world. Unlike more established trading approaches
that examine daily data and tactically rebalance portfolios every month or quarter, HFT parses trade-
by-trade data at the highest speeds available. This typically implies that high-frequency traders
monitor every tick of many securities concurrently and make their portfolio allocation decisions
at lightning speeds with ultra-short investment horizons in mind. In fact, hedge fund managers
consider strategies to be high frequency when their holding periods range from microseconds to
several hours, without any positions held overnight. To process reams of data and make informed
and rational decisions at such high speeds would be difficult even for the most accomplished
traders. Thankfully, computer technology has evolved to become robust and inexpensive enough
to aid any willing portfolio manager to take up the high-frequency craft.

This entry examines high-frequency data, the
particularities and opportunities they bring,
and compares these data with their low-
frequency counterparts, wherever appropriate.
High-frequency trading (HFT) strategies by their
nature use a different population of data, and
the traditional methods of data analysis need
to be adjusted accordingly. Specifically, this
entry examines the topics of volume, time-
spacing, and bid-ask-bounce inherent in the
high-frequency data.

WHAT ARE
HIGH-FREQUENCY DATA?
High-frequency data, also known as “tick data,”
are a record of live market activity. Every time
a customer, a dealer, or another entity posts a
so-called limit order to buy s units of a specific

security with ticker X at price q , a bid quote q b
tb

is logged at time tb to buy sb
tb units of X. (Market

orders are incorporated into tick data in a differ-
ent way as discussed below.) When the newly
arrived bid quote q b

tb has the highest price rel-
ative to all other previously arrived bid quotes
in force, q b

tb becomes known as “the best bid”
available at time tb . Similarly, when a trading
entity posts a limit order to sell s units of X at
price q , an ask quote q a

ta is logged at time ta to
sell sa

ta units of X. If the latest q a
ta is lower than

all other available ask quotes for security X, q a
ta

becomes known as “the best ask” at time ta .
What happens to quotes from the moment

they arrive largely depends on the venue where
the orders are posted. Best bids and asks posted
directly on an exchange will be broadcast to all
exchange participants and other parties track-
ing quote data. In situations when the new best
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bid exceeds the best ask already in force on the
exchange, q b

tb ≥ q a
ta , most exchanges will imme-

diately “match” such quotes, executing a trade
at the preexisting best ask, q a

ta at time tb . Con-
versely, should the newly arrived best ask fall
below the current best bid, q a

ta ≤ q b
tb , the trade

is executed at the preexisting best bid, q b
tb at

time ta .
Most dark pools match bids and asks “crossing

the spread,” but may not broadcast the newly
arrived quotes (hence the mysterious moniker,
the “dark pools”). Similarly, quotes destined for
the interdealer networks may or may not be
disseminated to other market participants, de-
pending on the venue.

Market orders contribute to high-frequency
data in the form of “last trade” informa-
tion. Unlike a limit order that is an order
to buy a specified quantity of a security at
a certain price, a market order is an or-
der to buy a specified quantity of a security
at the best price available at the moment the or-
der is “posted” on the trading venue. As such,
market orders are executed immediately at the
best available bid or best ask prices, with each
market buy order executed at the best ask and
each market sell matched with the best bid, and
the transaction is recorded in the quote data as
the “last trade price” and the “last trade size.”

A large market order may need to be matched
with one or several best quotes, generating sev-
eral “last trade” data points. For example, if
the newly arrived market buy order is smaller
in size than that of the best ask, the best ask
quote may still remain in force on most trading
venues, but the best ask size will be reduced to
reflect that the portion of the best ask quote has
been matched with the market order. When the
size of the incoming market buy order is big-
ger than the size of the corresponding best ask,
the market order consumes the best ask in its
entirety, and then proceeds to be matched se-
quentially with the next available best ask until
the size of the market order is fulfilled. The re-
maining lowest-priced ask quote becomes the
best ask available on the trading venue.

Most limit and market orders are placed in so-
called “lot sizes”: increments of a certain num-
ber of units, known as a lot. In foreign exchange,
a standard trading lot today is US$5 million,
a considerable reduction from a minimum of
$25 million entertained by high-profile brokers
just a few years ago. On equity exchanges, a lot
can be as low as one share, but dark pools may
still enforce a 100 share minimum requirement
for orders. An order for the amount other than
an integer increment of a lot size is called an
“odd lot.”

Small limit and market “odd lot” orders
posted through a broker-dealer may be aggre-
gated, or “packaged,” by the broker-dealer into
larger-size orders in order to obtain volume dis-
counts at the orders’ execution venue. In the
process, the brokers may “sit” on quotes with-
out transmitting them to an executing venue,
delaying execution of customers’ orders.

HOW ARE HIGH-FREQUENCY
DATA RECORDED?
The highest-frequency data are a collection of
sequential “ticks,” arrivals of the latest quote,
trade, price, order size, and volume infor-
mation. Tick data usually have the following
properties:

� A timestamp
� A financial security identification code
� An indicator of what information it carries
� Bid price
� Ask price
� Available bid size
� Available ask size
� Last trade price
� Last trade size
� Security-specific data, such as implied volatil-

ity for options
� The market value information, such as the

actual numerical value of the price, available
volume, or size

A timestamp records the date and time at
which the quote originated. It may be the time
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at which the exchange or the broker-dealer re-
leased the quote, or the time when the trad-
ing system has received the quote. At the time
this entry is written, the standard “round-trip”
travel time of an order quote from the order-
ing customer to the exchange and back to the
customer with the acknowledgement of order
receipt is 15 milliseconds or less in New York.
Brokers have been known to be fired by their
customers if they are unable to process or-
ders at this now standard speed. Sophisticated
quotation systems, therefore, include millisec-
onds and even microseconds as part of their
timestamps.

Another part of the quote is an identifier of
the financial security. In equities, the identifica-
tion code can be a ticker, or, for tickers simulta-
neously traded on multiple exchanges, a ticker
followed by the exchange symbol. For futures,
the identification code can consist of the un-
derlying security, futures expiration date, and
exchange code.

The last trade price shows the price at which
the last trade in the security cleared. Last trade
price can differ from the bid and ask. The differ-
ences can arise when a customer posts a favor-
able limit order that is immediately matched by
the broker without broadcasting the customer’s
quote. Last trade size shows the actual size of
the last executed trade.

The best bid is the highest price available for
sale of the security in the market. The best ask is
the lowest price entered for buying the security
at any particular time. In addition to the best bid
and best ask, quotation systems may dissemi-
nate “market depth” information: the bid and
ask quotes entered posted on the trading venue
at prices worse than the best bid and ask, as well
as aggregate order sizes corresponding to each
bid and ask recorded on the trading venue’s
“books.” Market depth information is some-
times referred to as the Level II data and may
be disseminated as the premium subscription
service only. In contrast, the best bid, best ask,
last trade price, and size information (“Level I
data”) is often available for a small nominal fee.

Panels (a) and (b) of Figure 1 illustrate a
30-second log of Level I high-frequency data
recorded by NYSE Arca for SPDR S&P 500 ETF
(ticker SPY) from 14:00:16:400 to 14:02:00:000
GMT on November 9, 2009. Panel (a) shows
quote data: best bid, best ask, and last trade in-
formation, while panel (b) displays correspond-
ing position sizes (best bid size, best ask size,
and last trade size).

PROPERTIES OF
HIGH-FREQUENCY DATA
High-frequency securities data have been stud-
ied for many years. Yet, the concept is still
something of a novelty to many academics and
practitioners. Unlike daily or monthly data sets
commonly used in much of financial research
and related applications, high-frequency data
have distinct properties, which simultaneously
can be advantageous and intimidating to re-
searchers. Table 1 summarizes the properties of
high-frequency data. Each property, its advan-
tages, and its disadvantages are discussed in
detail later in the entry.

HIGH-FREQUENCY DATA
ARE VOLUMINOUS
The nearly two-minute sample of tick data for
SPDR S&P 500 ETF (ticker SPY) shown in Fig-
ure 1 contained over 100 observations of Level I
data: best bid quotes and sizes, best ask quotes
and sizes, and last trade prices and sizes. Ta-
ble 2 summarizes the breakdown of the data
points provided by NYSE Arca for SPY from
14:00:16:400 to 14:02:00:000 GMT on November
9, 2009, and SPY, Japanese yen futures, and a
euro call option throughout the day on Novem-
ber 9, 2009. Other Level I data omitted from
Table 2 include cumulative daily trade volume
for SPY and Japanese yen futures, and “Greeks”
for the euro call option. The number of quotes
observed on November 9, 2009, for SPY alone
would comprise over 160 years of daily open,
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Figure 1 Level I High-Frequency Data Recorded by NYSE Arca for SPDR S&P 500 ETF (ticker SPY)
from 14:00:16:400 to 14:02:00:000 GMT on November 9, 2009

high, low, close, and volume data points, as-
suming an average of 252 trading days per year.

The quality of data does not always match its
quantity. Centralized exchanges generally pro-
vide accurate data on bids, asks, and volume of
any. The information on the limit order book is
less commonly available. In decentralized mar-

kets, such as foreign exchange and the inter-
bank money market, no market-wide quotes are
available at any given time. In such markets,
participants are aware of the current price lev-
els, but each institution quotes its own prices
adjusted for its order book. In decentralized
markets, each dealer provides his or her own
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Table 1 Summary of Properties of High-Frequency Data

Property of HF Data Description Pros Cons

Voluminous Each day of high-frequency
data contains the number
of observations
equivalent to 30 years of
daily data.

Large numbers of
observations carry lots
of information.

High-frequency data are
difficult to handle manually.

Irregularly spaced in
time

Arrival of tick data is
asynchronous.

Durations between data
arrivals carry
information.

Most traditional models require
regularly spaced data; need
to convert high-frequency
data to some regular
intervals, or “bars” of data.
Converted data is often
sparse (populated with zero
returns), once again making
traditional econometric
inferences difficult.

Subject to bid-ask
bounce

Unlike traditional data
based on just closing
prices, tick data carries
additional supply and
demand information in
the form of bid and ask
prices and offering sizes.

Bid and ask quotes can
carry valuable
information about
impending market
moves and can be
harnessed to
researcher’s advantage.

Bid and ask quotes are
separated by a spread.
Continuous movement from
bid to ask and back
introduces a jump process,
difficult to deal with through
many conventional models.

tick data to clients. As a result, a specific quote
on a given financial instrument at any given
time may vary from dealer to dealer. Reuters,
Telerate, and Knight Ridder, among others, col-
lect quotes from different dealers and dissemi-
nate them back, improving the efficiency of the
decentralized markets.

There are generally thought to be three
anomalies in interdealer quote discrepancies.
First, each dealer’s quotes reflect that dealer’s
own inventory. For example, a dealer that has
just sold a customer $100 million of USD/CAD
would be eager to diversify the risk of the posi-

tion and avoid selling any more of USD/CAD.
Most dealers are, however, obligated to trans-
act with their clients on tradable quotes. To in-
cite clients to place sell orders on USD/CAD,
the dealer temporarily raises the bid quote
on USD/CAD. At the same time, to encour-
age clients to withhold placing buy orders, the
dealer raises the ask quote on USD/CAD. Thus,
dealers tend to raise both bid and ask prices
whenever they are short in a particular financial
instrument and lower both bid and ask prices
whenever they are disproportionally long in a
financial instrument.

Table 2 Summary Statistics for Level I Quotes for Selected Securities on November 9, 2009

Quote Type
SPY, 14:00:16:400 to
14:02:00:000 GMT SPY, all day

USD/JPY Dec 2009
Futures, all day

EUR/USD Call Expiring
Dec 2009 with Strike
Price of 1.5100, all day

Best Bid Quote 4 (3%) 5,467 (3%) 6,320 (5%) 1,521 (3%)
Best Bid Size 36 (29%) 38,948 (19%) 39,070 (32%) 5,722 (11%)
Best Ask Quote 4 (3%) 4,998 (2%) 6,344 (5%) 1,515 (3%)
Best Ask Size 35 (28%) 38,721 (19%) 38,855 (32%) 5,615 (11%)
Last Trade Price 6 (5%) 9,803 (5%) 3,353 (3%) 14 (0%)
Last Trade Size 20 (16%) 27,750 (14%) 10,178 (8%) 25 (0%)
Total 125 203,792 123,216 49,982
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Figure 2 Average Hourly Bid-Ask Spread on EUR/USD Spot for the Last Two Weeks of October 2008
on a Median Transaction Size of USD 5 million
Source: Aldridge (2009).

Second, in an anonymous marketplace, such
as a dark pool, dealers as well as other market
makers may “fish” for market information by
sending indicative quotes that are much off the
previously quoted price to assess the available
demand or supply.

Third, Dacorogna et al. (2001) note that some
dealers’ quotes may lag real market prices. The
lag is thought to vary from milliseconds to a
minute. Some dealers quote moving averages
of quotes of other dealers. The dealers who
provide delayed quotes usually do so to ad-
vertise their market presence in the data feed.
This was particularly true when most order
prices were negotiated over the telephone, al-
lowing a considerable delay between quotes
and orders. Fast-paced electronic markets dis-
courage lagged quotes, improving the quality of
markets.

HIGH-FREQUENCY DATA
ARE SUBJECT TO BID-ASK
BOUNCE
In addition to trade price and volume data
long available in low-frequency formats, high-
frequency data comprise bid and ask quotes
and the associated order sizes. Bid and ask data

arrive asynchronously and introduce noise in
the quote process.

The difference between the bid quote and the
ask quote at any given time is known as the
bid-ask spread. The bid-ask spread is the cost
of instantaneously buying and selling the secu-
rity. The higher the bid-ask spread, the higher
a gain the security must produce in order to
cover the spread along with other transaction
costs. Most low-frequency price changes are
large enough to make the bid-ask spread neg-
ligible in comparison. In tick data, on the other
hand, incremental price changes can be compa-
rable or smaller than the bid-ask spread.

Bid-ask spreads usually vary throughout the
day. Figure 2 illustrates the average bid-ask
spread cycles observed in the institutional
EUR/USD market for the last two weeks of
October 2008. As Figure 2 shows, the aver-
age spread increases significantly during Tokyo
trading hours when the market is quiet. The
spread then reaches its lowest levels during the
overlap of the London and New York trading
sessions when the market has many active buy-
ers and sellers. The spike in the spread over
the weekend of October 18–19, 2008, reflects the
market concern over the subpoenas issued on
October 17, 2009, to senior Lehman executives
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Effect of the Credit Crisis on Bid-Ask Spreads of EUR/USD
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Figure 3 Comparison of Average Bid-Ask Spreads for Different Hours of the Day during Normal
Market Conditions and Crisis Conditions

in a case relating to potential securities fraud at
Lehman Brothers.

Bid-ask spreads typically increase during pe-
riods of market uncertainty or instability. Fig-
ure 3, for example, compares average bid-ask
spreads on EUR/USD in the stable market
conditions of July–August 2008 and the crisis
conditions of September–October 2008. As the
figure shows, the intraday spread pattern is per-
sistent in both crisis and normal market condi-
tions, but the spreads are significantly higher
during crisis months than during normal con-
ditions at all hours of the day. As Figure 3 also
shows, the spread increase is not uniform at all
hours of the day. The average hourly EUR/USD
spreads increased by 0.0048% (0.48 basis points
or pips) between the hours of 12 GMT and 16
GMT, when the London and New York trading
sessions overlap. From 0 to 2 GMT, during the
Tokyo trading hours, the spread increased by
0.0156 %, over three times the average increase
during the New York/London hours.

As a result of increasing bid-ask spreads
during periods of uncertainty and crises, the

profitability of high-frequency strategies de-
creases during those times. For example, high-
frequency EUR/USD strategies running over
Asian hours incurred significantly higher costs
during September and October 2008 as com-
pared with normal market conditions. A strat-
egy that executed 100 trades during Asian
hours alone resulted in 1.56 percent evaporating
from daily profits due to the increased spreads,
while the same strategy running during
London and New York hours resulted in a
smaller but still significant daily profit de-
crease of 0.48%. The situation can be even more
severe for high-frequency strategies built for
less liquid instruments. For example, bid-ask
spreads for NZD/USD (not shown) on aver-
age increased thrice during September–October
in comparison with market conditions of
July–August 2008.

While tick data carries information about
market dynamics, it is also distorted by the
same processes that make the data so valuable
in the first place. Dacorogna et al. (2001) report
that sequential trade price bounces between the



456 Financial Econometrics

bid and ask quotes during market execution of
orders introduce significant distortions into es-
timation of high-frequency parameters. Corsi,
Zumbach, Muller, and Dacorogna (2001), for ex-
ample, show that the bid-ask bounce introduces
a considerable bias into volatility estimates. The
authors calculate that the bid-ask bounce on av-
erage results in –40% negative first-order auto-
correlation of tick data. Corsi et al. (2001) as well
as Voev and Lunde (2007) propose to remedy
the bias by filtering the data from the bid-ask
noise prior to estimation.

To use standard econometric techniques in
the presence of the bid-ask bounce, many prac-
titioners convert the tick data to “mid-quote”
format: the simple average of the latest bid and
ask quotes. The mid-quote is used to approxi-
mate the price level at which the market is the-
oretically willing to trade if buyers and sellers
agreed to meet each other halfway on the price
spectrum. Mathematically, the mid-quote can
be expressed as follows:

q̂ m
tm = 1

2

(
q a

ta + q b
tb

)
where tm =

{
ta , if ta ≥ tb
tb, otherwise

(1)
The latter condition for tm reflects the contin-

uous updating of the mid-quote estimate: q̂ m
tm is

updated whenever the latest best bid, q b
tb , or best

ask quote, q a
ta , arrives, at tb or ta respectively.

Another way to sample tick quotes into a co-
hesive data series is by weighing the latest best
bid and best ask quotes by their accompanying
order sizes:

q̃ s
t = q b

tb sa
ta + q a

ta sb
tb

sa
ta + sb

tb

(2)

where q b
tb and sb

tb is the best bid quote and the
best bid available size recorded at time tb (when
q b

tb became the best bid), and q a
ta and sa

ta is the
best bid quote and the best bid available size
recorded at time ta .

Figure 5 compares the histograms of simple
returns computed from mid-quote (panel a),
size-weighted mid-quote (panel b), and trade-
price (panel c) processes for SPDR S&P 500
ETF data recorded as they arrive throughout

November 9, 2009. The data neglect the time
difference between the adjacent quotes, treat-
ing each sequential quote as an independent
observation. Figure 6 contrasts the quantile dis-
tribution plots of the same data sets with the
quantiles of a standard normal distribution.

As Figures 4 and 5 show, the basic mid-
quote distribution is constrained by the mini-
mum “step size”: The minimum changes in the
mid-quote can occur at half-tick increments (at
present, the minimum tick size is $0.01 in eq-
uities). The size-weighted mid-quote forms the
most continuous distribution among the three
distributions discussed. Figure 6 confirms this
notion further and also illustrates the fat tails
present in all three types of data distributions.

In addition to real-time adjustments to bid-
ask data, researchers deploy forecasting tech-
niques to estimate the impending bid-ask
spread and adjust for it in models ahead of time.
Future realizations of the bid-ask spread can be
estimated using the model suggested by Roll
(1984), where the price of an asset at time t,
pt, is assumed to equal an unobservable funda-
mental value, mt, offset by a value equal to half
of the bid-ask spread, s. The price offset is pos-
itive when the next market order is a buy, and
negative when the trade is a sell, as shown in
equation (3):

pt = mt + s
2

It (3)

where It =
{

1, market buy at ask
−1, market sell at bid

If either a buy or a sell order can arrive
next with equal probability, then E[It] = 0, and
E[�pt] = 0, absent changes in the fundamental
asset value, mt. The covariance of subsequent
price changes, however, is different from 0:

cov [�pt,�pt+1] = E [�pt�pt+1] = − s2

4
(4)

As a result, the future expected spread can be
estimated as follows:

E [s] = 2
√

−cov [�pt,�pt+1] whenever

cov [�pt,�pt+1] < 0
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Figure 4 Bid-Ask Aggregation Techniques on Data for SPDR S&P 500 ETF (ticker SPY) Recorded by
NYSE Arca on November 9, 2009, from 14:00:16:400 to 14:00:02:000 GMT

Numerous extensions of Roll’s model have
been developed to account for contemporary
market conditions along with numerous other
variables. Hasbrouck (2007) provides a good
summary of the models.

HIGH-FREQUENCY DATA
ARE IRREGULARLY SPACED
IN TIME
Most modern computational techniques have
been developed to work with regularly spaced
data, presented in monthly, weekly, daily,
hourly, or other consistent intervals. The tra-
ditional reliance of researchers on fixed time
intervals is due to:
� Relative availability of daily data (newspa-

pers have published daily quotes since the
1920s).

� Relative ease of processing regularly spaced
data.

� An outdated view that “whatever drove se-
curity prices and returns, it probably did not
vary significantly over short time intervals.”
(Goodhart and O’Hara, 1997, pp. 80–81)

In contrast, high-frequency observations are
separated by varying time intervals. One way
to overcome the irregularities in the data is
to sample it at certain predetermined periods
of time—for example, every hour or minute.
For example, if the data are to be converted
from tick data to minute “bars,” then under
the traditional approach, the bid or ask price
for any given minute would be determined as
the last quote that arrived during that particu-
lar minute. If no quotes arrived during a cer-
tain minute, then the previous minute’s closing
prices would be taken as the current minute’s
closing prices, and so on. Figure 7, panel (a) il-
lustrates this idea. This approach implicitly as-
sumes that in the absence of new quotes, the
prices stay constant, which does not have to be
the case.

Dacorogna et al. (2001) propose a potentially
more precise way to sample quotes—linear
time-weighted interpolation between adjacent
quotes. At the core of the interpolation tech-
nique is an assumption that at any given time,
unobserved quotes lie on a straight line that
connects two neighboring observed quotes.
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Figure 5 Histograms of Simple Returns Computed from Mid-Quote (panel a), Size-Weighted Mid-
Quote (panel b), and Trade-Price (panel c) Processes for SPDR S&P 500 ETF Data Recorded as They
Arrive Throughout November 9, 2009

Figure 7, panel (b) illustrates linear interpola-
tion sampling.

As shown in Figure 7, panels (a) and (b),
the two quote-sampling methods produce quite
different results.

Mathematically, the two sampling methods
can be expressed as follows:

Quote sampling using closing prices: q̂t = qt,last

(5)

Quote sampling using linear interpolation:

q̂t = qt,last + (qt,next − qt,last )
t − tlast

tnext − tlast
(6)

where q̂t is the resulting sampled quote, t is the
desired sampling time (start of a new minute,
for example), tlast is the timestamp of the last
observed quote prior to the sampling time t,
qt,last is the value of the last quote prior to the
sampling time t, tnext is the timestamp of the
first observed quote after the sampling time t,
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Figure 7 Data-Sampling Methodologies
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Figure 8 Mid-Quote “Closing Quotes” Sampled at 200 ms (left) and 15s Intervals

and qt,next is the value of the first quote after the
sampling time t.

Figures 8 and 9 compare histograms of the
mid-quote data sampled as closing prices and
interpolated at frequencies of 200 ms and 15s.
Figure 10 compares quantile plots of closing
prices and interpolated distributions. As Fig-
ures 8 and 9 show, often-sampled distributions
are sparse, that is, contain more 0 returns than
distributions sampled at lower frequencies. At
the same time, returns computed from interpo-
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Figure 9 Mid-Quote “Time-Interpolated Quotes” Sampled at 200 ms (left) and 15s Intervals

lated quotes are more continuous than closing
prices, as Figure 10 illustrates.

Instead of manipulating the interquote inter-
vals into the convenient regularly spaced for-
mats, several researchers have studied whether
the time distance between subsequent quote
arrivals itself carries information. For exam-
ple, most researchers agree that intertrade
intervals indeed carry information on securi-
ties for which short sales are disallowed; the
lower the intertrade duration, the more likely the
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Figure 10 Quantile Plots: Closing Prices vs. Interpolated Mid-Quotes Sampled at 200 ms

yet-to-be-observed good news and the higher
the impending price change.

Duration models are used to estimate the
factors affecting the time between any two se-
quential ticks. Such models are known as quote
processes and trade processes, respectively. Du-
ration models are also used to measure the time
elapsed between price changes of a prespeci-
fied size, as well as the time interval between
predetermined trade volume increments. The
models working with fixed price are known as
price processes; the models estimating varia-
tion in duration of fixed volume increments are
known as volume processes.

Durations are often modeled using Poisson
processes that assume that sequential events,
like quote arrivals, occur independently of one
another. The number of arrivals between any
two time points t and (t + τ ) is assumed to have
a Poisson distribution. In a Poisson process, λ

arrivals occur per unit time. In other words,
the arrivals occur at an average rate of (1/λ).
The average arrival rate may be assumed to
hold constant, or it may vary with time. If the
average arrival rate is constant, the probability
of observing exactly k arrivals between times t
and (t + τ ) is

P[(N(t + τ ) − N(t)) = k] = 1
k!

e−λτ (λτ )k,

k = 0, 1, 2, . . . (7)

Diamond and Verrecchia (1987) and Easley
and O’Hara (1992) were the first to suggest that
the duration between subsequent ticks carries
information. Their models posit that in the pres-
ence of short-sale constraints, intertrade dura-
tion can indicate the presence of good news;
in markets of securities where short selling is
disallowed, the shorter the intertrade duration,
the higher is the likelihood of unobserved good
news. The reverse also holds: In markets with
limited short selling and normal liquidity lev-
els, the longer the duration between subse-
quent trade arrivals, the higher the probabil-
ity of yet-unobserved bad news. A complete
absence of trades, however, indicates a lack
of news.

Easley and O’Hara (1992) further point out
that trades that are separated by a time interval
have a much different information content than
trades occurring in close proximity. One of the
implications of Easley and O’Hara (1992) is that
the entire price sequence conveys information
and should be used in its entirety whenever
possible, strengthening the argument for high-
frequency trading.

Table 3 shows summary statistics for a dura-
tion measure computed on all trades recorded
for S&P 500 Depository Receipts ETF (SPY) on
May 13, 2009. As Table 3 illustrates, the average
intertrade duration was the longest outside of
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Table 3 Hourly Distributions of Intertrade Duration Observed on May 13, 2009 for S&P 500 Depository Receipts
ETF (SPY)

Hour (ET) Intertrade Duration (milliseconds)

No. of Trades Average Median Std Dev Skewness Kurtosis

4–5 AM 170 19074.58 5998 47985.39 8.430986 91.11571
5–6 AM 306 11556.95 4781.5 18567.83 3.687372 21.92054
6–7 AM 288 12606.81 4251 20524.15 3.208992 16.64422
7–8 AM 514 7096.512 2995 11706.72 4.288352 29.86546
8–9 AM 767 4690.699 1997 7110.478 3.775796 23.56566
9–10 AM 1089 2113.328 1934 24702.9 3.5185 24.6587
10–11 AM 1421 2531.204 1373 3409.889 3.959082 28.53834
11–12 PM 1145 3148.547 1526 4323.262 3.240606 17.24866
12–1 PM 749 4798.666 1882 7272.774 2.961139 13.63373
1–2 PM 982 3668.247 1739.5 5032.795 2.879833 13.82796
2–3 PM 1056 3408.969 1556 4867.061 3.691909 23.90667
3–4 PM 1721 2094.206 1004 2684.231 2.9568 15.03321
4–5 PM 423 8473.593 1500 24718.41 7.264483 69.82157
5–6 PM 47 73579.23 30763 113747.8 2.281743 7.870699
6–7 PM 3 1077663 19241 1849464 0.707025 1.5

regular market hours, and the shortest during
the hour preceding the market close (3–4 P.M.
ET).

The variation in duration between subse-
quent trades may be due to several other causes.
While the lack of trading may be due to a
lack of new information, trading inactivity may
also be due to low levels of liquidity, trading
halts on exchanges, and strategic motivations
of traders. Foucault, Kadan, and Kandel (2005)
consider that patiently providing liquidity us-
ing limit orders may itself be a profitable trading
strategy, as liquidity providers should be com-
pensated for their waiting. The compensation
usually comes in the form of a bid-ask spread
and is a function of the waiting time until the
order limit is “hit” by liquidity takers; lower in-
tertrade durations induce lower spreads. How-
ever, Dufour and Engle (2000) and Saar and
Hasbrouck (2002) find that spreads are actually
higher when traders observe short durations,
contrasting the time-based limit order compen-
sation hypothesis.

In addition to durations between subsequent
trades and quotes, researchers have also been
modeling durations between fixed changes in
security prices and volumes. The time interval
between subsequent price changes of a spec-

ified magnitude is known as price duration.
Price duration has been shown to decrease with
increases in volatility. Similarly, the time inter-
val between subsequent volume changes of a
prespecified size is known as the volume du-
ration. Volume duration has been shown to de-
crease with increases in liquidity.

The information content of quote, trade, price,
and volume durations introduces biases into
the estimation process, however. If the avail-
able information determines the time between
subsequent trades, time itself ceases to be an
independent variable, introducing substantial
endogeneity bias into estimation. As a result,
traditional estimates of variance of transaction
prices are too high in comparison with the true
variance of the price series.

KEY POINTS
� High-frequency data are different from daily

or lower frequency data. Whereas low fre-
quency data typically comprise regularly
spaced open, high, low, close, and volume
information for a given financial security
recorded during a specific period of time,
high-frequency data include bid and ask
quotes, sizes, and latest trade characteristics
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that are recorded sequentially at irregular
time intervals.

� The differences affect trading strategy mod-
eling, introducing new opportunities and pit-
falls for researchers.

� Numerous data points allow researchers to
deduce statistically significant inferences on
even short samples of high-frequency data.

� Different sampling approaches have been
developed to convert high-frequency data
into a more regular format better familiar
to researchers, yet diverse sampling method-
ologies result in datasets with drastically
dissimilar statistical properties.

� Some properties of high-frequency data, like
intertrade duration, carry important market
information unavailable at lower frequencies.
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Abstract: The origins of financial modeling can be traced back to the development of mathematical
equilibrium at the end of the nineteenth century, followed in the beginning of the twentieth cen-
tury with the introduction of sophisticated mathematical tools for dealing with the uncertainty of
prices and returns. In the 1950s and 1960s, financial modelers had tools for dealing with proba-
bilistic models for describing markets, the principles of contingent claims analysis, an optimization
framework for portfolio selection based on mean and variance of asset returns, and an equilibrium
model for pricing capital assets. The 1970s ushered in models for pricing contingent claims and
a new model for pricing capital assets based on arbitrage pricing. Consequently, by the end of
the 1970s, the frameworks for financial modeling were well known. It was the advancement of
computing power and refinements of the theories to take into account real-world markets starting
in the 1980s that facilitated implementation and broader acceptance of mathematical modeling of
financial decisions.

The mathematical development of present-day
economic and finance theory began in Lau-
sanne, Switzerland at the end of the nineteenth
century, with the development of the math-
ematical equilibrium theory by Leon Walras
(1874) and Vilfredo Pareto (1906). Shortly there-
after, at the beginning of the twentieth cen-
tury, Louis Bachelier (1900) in Paris and Filip
Lundberg (1903) in Uppsala (Sweden) made
two seminal contributions: They developed
sophisticated mathematical tools to describe
uncertain price and risk processes. These de-
velopments were well in advance of their time.
Further progress was to be made only much
later in the twentieth century, thanks to the de-

velopment of digital computers. By making it
possible to compute approximate solutions to
complex problems, digital computers enabled
the large-scale application of mathematics to
business problems.

A first round of innovation occurred in the
1950s and 1960s. Kenneth Arrow and Georges
Debreu (1954) introduced a probabilistic model
of markets and the notion of contingent claims.
Harry Markowitz (1952) described mathemat-
ically the principles of the investment process
in terms of utility optimization. In 1961, Franco
Modigliani and Merton Miller (1961) clarified
the nature of economic value, working out the
implications of absence of arbitrage. Between
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1964 and 1966, William Sharpe (1964), John Lint-
ner (1965), and Jan Mossin (1966) developed
a theoretical model of market prices based on
the principles of financial decision making laid
down by Markowitz. The notion of efficient
markets was introduced by Paul Samuelson
(1965), and five years later, further developed
by Eugene Fama (1970).

The second round of innovation started at the
end of the 1970s. In 1973, Fischer Black, Myron
Scholes (1973), and Robert Merton (1973a) dis-
covered how to determine option prices using
continuous hedging. Three years later, Stephen
Ross (1976) introduced arbitrage pricing the-
ory (APT). Both were major developments that
were to result in a comprehensive mathematical
methodology for investment management and
the valuation of derivative financial products.
At about the same time, Merton introduced a
continuous-time intertemporal, dynamic opti-
mization model of asset allocation. Major re-
finements in the methodology of mathematical
optimization and new econometric tools were
to change the way investments are managed.

More recently, the diffusion of electronic
transactions has made available a huge amount
of empirical data. The availability of this data
created the hope that economics could be
given a more solid scientific grounding. A new
field—econophysics—opened with the expec-
tation that the proven methods of the physical
sciences and the newly born science of com-
plex systems could be applied with benefit to
economics. It was hypothesized that economic
systems could be studied as physical systems
with only minimal a priori economic assump-
tions. Classical econometrics is based on a sim-
ilar approach; but while the scope of classical
econometrics is limited to dynamic models of
time series, econophysics uses all the tools of
statistical physics and complex systems analy-
sis, including the theory of interacting multia-
gent systems.

In this entry, we will describe the milestones
in financial modeling.

THE PRECURSORS: PARETO,
WALRAS, AND THE
LAUSANNE SCHOOL
The idea of formulating quantitative laws of
economic behavior in ways similar to the phys-
ical sciences started in earnest at the end of
the 19th century. Though quite accurate eco-
nomic accounting on a large scale dates back to
Assyro-Babylonian times, a scientific approach
to economics is a recent endeavor.

Leon Walras and Wilfredo Pareto, founders of
the so-called Lausanne School at the University
of Lausanne in Switzerland, were among the
first to explicitly formulate quantitative princi-
ples of market economies, stating the principle
of economic equilibrium as a mathematical the-
ory. Both worked at a time of great social and
economic change. In Pareto’s work in particu-
lar, pure economics and political science occupy
a central place.

Convinced that economics should become a
mathematical science, Walras set himself the
task of writing the first mathematical gen-
eral equilibrium system. The British economist
Stanley Jevons and the Austrian economist Carl
Menger had already formulated the idea of eco-
nomic equilibrium as a situation where sup-
ply and demand match in interrelated markets.
Walras’s objective—to prove that equilibrium
was indeed possible—required the explicit
formulation of the equations of supply-and-
demand equilibrium.

Walras introduced the idea of tatonnement
(French for groping) as a process of exploration
by which a central auctioneer determines
equilibrium prices. A century before, in 1776,
Adam Smith had introduced the notion of the
“invisible hand” that coordinates the activity
of independent competitive agents to achieve
desirable global goals. In the modern parlance
of complex systems, the “invisible hand”
would be called an “emerging property” of
competitive markets. Much recent work on
complex systems and artificial life has focused
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on understanding how the local interaction of
individuals might result in complex and pur-
poseful global behavior. Walras was to make
the hand “visible” by defining the process of
price discovery.

Pareto followed Walras in the Chair of Eco-
nomics at the University of Lausanne. Pareto’s
focus was the process of economic decision
making. He replaced the idea of supply-and-
demand equilibrium with a more general idea
of the ordering of preferences through utility
functions. (Pareto used the word “ophelimity”
to designate what we would now call util-
ity. The concept of ophelimity is slightly dif-
ferent from the concept of utility insofar as
ophelimity includes constraints on people’s
preferences.) Equilibrium is reached where
marginal utilities are zero. The Pareto system
hypothesized that agents are able to order their
preferences and take into account constraints
in such a way that a numerical index—“utility”
in today’s terminology—can be associated with
each choice. Note that it was not until 1944 that
utility theory was formalized in a set of nec-
essary and sufficient axioms by von Neumann
and Morgenstern and applied to decision mak-
ing under risk and uncertainty.

Economic decision making is therefore based
on the maximization of utility. As Pareto as-
sumed utility to be a differentiable function,
global equilibrium is reached where marginal
utilities (i.e., the partial derivatives of utility)
vanish. Pareto was especially interested in the
problem of the global optimum of utility. The
Pareto optimum is a state in which nobody can
be better off without making others worse off.
A Pareto optimum does not imply the equal di-
vision of resources; quite the contrary, a Pareto
optimum might be a maximally unequal distri-
bution of wealth.

A lasting contribution of Pareto is the formu-
lation of a law of income distribution. Known
as the Pareto law, this law states that there is a
linear relationship between the logarithm of the
income I and the number N of people that earn

more than this income:
Log N = A+ s log I

where A and s are appropriate constants.
The importance of the works of Walras and

Pareto were not appreciated at the time. With-
out digital computers, the equilibrium systems
they conceived were purely abstract: There was
no way to compute solutions to economic equi-
librium problems. In addition, the climate at
the turn of the century did not allow a serene
evaluation of the scientific merit of their work.
The idea of free markets was at the center of
heated political debates; competing systems in-
cluded mercantile economies based on trade re-
strictions and privileges as well as the emerging
centrally planned Marxist economies.

PRICE DIFFUSION:
BACHELIER
In 1900, the Sorbonne University student Louis
Bachelier presented a doctoral dissertation,
Théorie de la Spéculation, that was to anticipate
much of today’s work in finance theory. Bache-
lier’s advisor was the great French mathemati-
cian Henri Poincaré. There were three notable
aspects in Bachelier’s thesis: (1) He argued that
in a purely speculative market stock prices
should be random; (2) he developed the math-
ematics of Brownian motion; and (3) he com-
puted the prices of several options.

To appreciate the importance of Bachelier’s
work, it should be remarked that at the be-
ginning of the 20th century, the notion of
probability was not yet rigorous; the formal
mathematical theory of probability was devel-
oped only in the 1930s. In particular, the pre-
cise notion of the propagation of information
essential for the definition of conditional prob-
abilities in continuous time had not yet been
formulated.

Anticipating the development of the theory
of efficient markets 60 years later, the key eco-
nomic idea of Bachelier was that asset prices in
a speculative market should be a fair game, that
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is, a martingale process such that the expected
return is zero. According to Bachelier, “The ex-
pectation of the speculator is zero.” The formal
concept of a martingale (i.e., of a process such
that its expected value at any moment coincides
with the present value) had not yet been intro-
duced in probability theory. In fact, the rigorous
notion of conditional probability and filtration
were developed only in the 1930s. In formulat-
ing his hypothesis on market behavior, Bache-
lier relied on intuition.

Bachelier actually went much further. He as-
sumed that stock prices evolve as a continuous-
time Markov process. This was a brilliant
intuition: Markov was to start working on these
problems only in 1906. Bachelier established
the differential equation for the time evolution
of the probability distribution of prices, noting
that this equation was the same as the heat dif-
fusion equation. Five years later, in 1905, Albert
Einstein used the same diffusion equation for
the Brownian motion (i.e., the motion of a small
particle suspended in a fluid). Bachelier also
made the connection with the continuous limit
of random walks, thus anticipating the work
of the Japanese mathematician Kiyosi Ito at the
end of the 1940s and the Russian mathematician
and physicist Ruslan Stratonovich on stochastic
integrals at the end of the 1950s.

By computing the extremes of Brownian mo-
tion, Bachelier computed the price of several
options. He also computed the distributions of
a number of functionals of Brownian motion.
These were remarkable mathematical results
in themselves. Formal proof was given only
much later. Even more remarkable, Bachelier
established option pricing formulas well before
the formal notion of absence of arbitrage was
formulated.

Bachelier’s work was outside the mainstream
of contemporary mathematics but was too
mathematically complex for the economists of
his time. It wasn’t until the formal development
of probability theory in 1930s that his ideas be-
came mainstream mathematics and only in the
1960s, with the development of the theory of

efficient markets, that his ideas became part of
mainstream finance theory. In an efficient mar-
ket, asset prices should, in each instant, reflect
all the information available at the time, and
any event that causes prices to move must be
unexpected (i.e., a random disturbance). As a
consequence, prices move as martingales, as ar-
gued by Bachelier. Bachelier was, in fact, the
first to give a precise mathematical structure in
continuous time to price processes subject to
competitive pressure by many agents.

THE RUIN PROBLEM IN
INSURANCE: LUNDBERG
In Uppsala, Sweden, in 1903, three years after
Bachelier defended his doctoral dissertation in
Paris, Filip Lundberg defended a thesis that was
to become a milestone in actuarial mathematics:
He was the first to define a collective theory of
risk and to apply a sophisticated probabilistic
formulation to the insurance ruin problem. The
ruin problem of an insurance company in a non-
life sector can be defined as follows. Suppose
that an insurance company receives a stream
of sure payments (premiums) and is subject to
claims of random size that occur at random
times. What is the probability that the insurer
will not be able to meet its obligations (i.e., the
probability of ruin)?

Lundberg solved the problem as a collec-
tive risk problem, pooling together the risk of
claims. To define collective risk processes, he
introduced marked Poisson processes. Marked
Poisson processes are processes where the ran-
dom time between two events is exponentially
distributed. The magnitude of events is random
with a distribution independent of the time of
the event. Based on this representation, Lund-
berg computed an estimate of the probability
of ruin.

Lundberg’s work anticipated many future
developments of probability theory, including
what was later to be known as the theory
of point processes. In the 1930s, the Swedish
mathematician and probabilist Harald Cramer
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gave a rigorous mathematical formulation
to Lundberg’s work. A more comprehensive
formal theory of insurance risk was later
developed. This theory now includes Cox
processes—point processes more general than
Poisson processes—and fat-tailed distributions
of claim size.

A strong connection between actuarial math-
ematics and asset pricing theory has since
been established. (See, for example, Embrechts,
Klüppelberg, and Mikosch, 1996). In well-
behaved, complete markets, establishing insur-
ance premiums entails principles that mirror
asset prices. In the presence of complete mar-
kets, insurance would be a risk-free business:
There is always the possibility of reinsurance.
In markets that are not complete—essentially
because they make unpredictable jumps—
hedging is not possible; risk can only be diver-
sified and options are inherently risky. Option
pricing theory again mirrors the setting of in-
surance premiums.

Lundberg’s work went unnoticed by the actu-
arial community for nearly 30 years, though this
did not stop him from enjoying a successful ca-
reer as an insurer. Both Bachelier and Lundberg
were in advance of their time; they anticipated,
and probably inspired, the subsequent devel-
opment of probability theory. But the type of
mathematics implied by their work could not
be employed in full earnest prior to the devel-
opment of digital computers. It was only with
digital computers that we were able to tackle
complex mathematical problems whose solu-
tions go beyond closed-form formulas.

THE PRINCIPLES OF
INVESTMENT: MARKOWITZ
Just how an investor should allocate his re-
sources has long been debated. Classical wis-
dom suggested that investments should be
allocated to those assets yielding the highest
returns, without the consideration of correla-
tions. Before the modern formulation of effi-
cient markets, speculators widely acted on the

belief that positions should be taken only if they
had a competitive advantage in terms of infor-
mation. A large amount of resources were there-
fore spent on analyzing financial information.
John Maynard Keynes suggested that investors
should carefully evaluate all available informa-
tion and then make a calculated bet. The idea of
diversification was anathema to Keynes, who
was actually quite a successful investor.

In 1952, Harry Markowitz, then a graduate
student at the University of Chicago, published
a seminal article on optimal portfolio selection
that upset established wisdom. He advocated
that, being risk adverse, investors should diver-
sify their portfolios. (The principles in his arti-
cle were developed further in his 1959 book.)
The idea of making risk bearable through risk
diversification was not new: It was widely
used by medieval merchants. Markowitz un-
derstood that the risk-return trade-off of in-
vestments could be improved by diversification
and cast diversification in the framework of
optimization.

Markowitz was interested in the investment
decision-making process. Along the lines set
forth by Pareto 60 years earlier, Markowitz as-
sumed that investors order their preferences ac-
cording to a utility index, with utility as a convex
function that takes into account investors’ risk-
return preferences. Markowitz assumed that
stock returns are jointly normal. As a conse-
quence, the return of any portfolio is a nor-
mal distribution, which can be characterized
by two parameters: the mean and the vari-
ance. Utility functions are therefore defined on
two variables—mean and variance—and the
Markowitz framework for portfolio selection is
commonly referred to as mean-variance analy-
sis. The mean and variance of portfolio returns
are in turn a function of a portfolio’s weights.
Given the variance-covariance matrix, utility is
a function of portfolio weights. The investment
decision-making process involves maximizing
utility in the space of portfolio weights.

The inputs to the mean-variance analysis in-
clude expected returns, variance of returns, and
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either covariance or correlation of returns be-
tween each pair of securities. For example, an
analysis that allows 200 securities as possible
candidates for portfolio selection requires 200
expected returns, 200 variances of return, and
19,900 correlations or covariances. An invest-
ment team tracking 200 securities may reason-
ably be expected to summarize their analyses
in terms of 200 means and variances, but it
is clearly unreasonable for them to produce
19,900 carefully considered correlation coeffi-
cients or covariances. It was clear to Markowitz
that some kind of model of the covariance struc-
ture was needed for the practical application of
the model. He did little more than point out the
problem and suggest some possible models of
covariance for research to large portfolios. In
1963, William Sharpe suggested the single in-
dex market model as a proxy for the covariance
structure of security returns.

Markowitz joined the Rand Corporation,
where he met George Dantzig, who introduced
him to computer-based optimization technol-
ogy. Markowitz was quick to appreciate the role
that computers would have in bringing math-
ematics to bear on business problems. Opti-
mization and simulation were on the way to
becoming the tools of the future, replacing the
quest for closed-form solutions of mathematical
problems.

In the following years, Markowitz developed
a full theory of the investment management
process based on optimization. His optimiza-
tion theory had the merit of being applicable to
practical problems, even outside of the realm of
finance. With the progressive diffusion of high-
speed computers, the practice of financial opti-
mization has found broad application.

UNDERSTANDING VALUE:
MODIGLIANI AND MILLER
At about the same time that Markowitz was
tackling the problem of how investors should
behave, taking asset price processes as a given,
other economists were trying to understand

how markets determine value. Adam Smith
had introduced the notion of perfect compe-
tition (and therefore perfect markets) in the sec-
ond half of the 18th century. In a perfect market,
there are no impediments to trading: Agents
are price takers who can buy or sell as many
units as they wish. The neoclassical economists
of the 1960s took the idea of perfect markets as a
useful idealization of real free markets. In par-
ticular, they argued that financial markets are
very close to being perfect markets. The theory
of asset pricing was subsequently developed to
explain how prices are set in a perfect market.

In general, a perfect market results when the
number of buyers and sellers is sufficiently
large, and all participants are small enough rel-
ative to the market so that no individual market
agent can influence a commodity’s price. Con-
sequently, all buyers and sellers are price takers,
and the market price is determined where there
is equality of supply and demand. This condi-
tion is more likely to be satisfied if the commod-
ity traded is fairly homogeneous (for example,
corn or wheat).

There is more to a perfect market than market
agents being price takers. It is also required that
there are no transaction costs or impediments
that interfere with the supply and demand of
the commodity. Economists refer to these vari-
ous costs and impediments as “frictions.”

The costs associated with frictions generally
result in buyers paying more than in the absence
of frictions, and/or sellers receiving less. In the
case of financial markets, frictions include:

� Commissions charged by brokers.
� Bid-ask spreads charged by dealers.
� Order handling and clearance charges.
� Taxes (notably on capital gains) and

government-imposed transfer fees.
� Costs of acquiring information about the fi-

nancial asset.
� Trading restrictions, such as exchange-

imposed restrictions on the size of a position
in the financial asset that a buyer or seller may
take.
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� Restrictions on market makers.
� Halts to trading that may be imposed by reg-

ulators where the financial asset is traded.

Modigliani-Miller Irrelevance
Theorems and the Absence
of Arbitrage
A major step was taken in 1958 when Franco
Modigliani and Merton Miller published a
then-controversial article in which they main-
tained that the value of a company does not de-
pend on the capital structure of the firm. (In a
1963 article, they corrected their analysis for the
impact of corporate taxes.) The capital structure
is the mix of debt and equity used to finance the
firm. The traditional view prior to the publica-
tion of the article by Modigliani and Miller was
that there existed a capital structure that maxi-
mized the value of the firm (i.e., there is an op-
timal capital structure). Modigliani and Miller
demonstrated that in the absence of taxes and
in a perfect capital market, the capital structure
was irrelevant (i.e., the capital structure does
not affect the value of a firm). By extension, the
irrelevance principle applies to the type of debt
a firm may select (e.g., senior, subordinated, se-
cured, and unsecured).

In 1961, Modigliani and Miller published yet
another controversial article in which they ar-
gued that the value of a company does not
depend on the dividends it pays but on its
earnings. The basis for valuing a firm—earnings
or dividends—had always attracted consider-
able attention. Because dividends provide the
hard cash that remunerates investors, they were
considered by many as key to a firm’s value.

Modigliani and Miller’s challenge to the tra-
ditional view that capital structure and divi-
dends matter when determining a firm’s value
was founded on the principle that the tradi-
tional views were inconsistent with the work-
ings of competitive markets where securities are
freely traded. In their view, the value of a com-
pany is independent of its financial structure:
From a valuation standpoint, it does not mat-

ter whether the firm keeps its earnings or dis-
tributes them to shareholders.

Known as the Modigliani-Miller theorems, these
theorems paved the way for the development
of arbitrage pricing theory. In fact, to establish
their theorems, Modigliani and Miller made use
of the notion of absence of arbitrage. Absence of
arbitrage means that there is no possibility of
making a risk-free profit without an investment.
This implies that the same stream of cash flows
should be priced in the same way across differ-
ent markets. Absence of arbitrage is the funda-
mental principle for relative asset pricing; it is
the pillar on which derivative pricing rests.

EFFICIENT MARKETS: FAMA
AND SAMUELSON
Absence of arbitrage entails market efficiency.
Shortly after the Modigliani-Miller theorems
had been established, Paul Samuelson in 1965
and Eugene Fama in 1970 developed the no-
tion of efficient markets: A market is efficient if
prices reflect all available information. Bache-
lier had argued that prices in a competitive
market should be random conditionally to the
present state of affairs. Fama and Samuelson
put this concept into a theoretical framework,
linking prices to information.

In general, an efficient market refers to a market
where prices at all times fully reflect all avail-
able information that is relevant to the valuation
of securities. That is, relevant information about
the security is quickly impounded into the price
of securities.

Fama and Samuelson define “fully reflects” in
terms of the expected return from holding a se-
curity. The expected return over some holding
period is equal to expected cash distributions
plus the expected price change, all divided by
the initial price. The price formation process
defined by Fama and Samuelson is that the ex-
pected return one period from now is a stochas-
tic variable that already takes into account the
“relevant” information set. They argued that
in a market where information is shared by
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all market participants, prices should fluctuate
randomly.

A price-efficient market has implications for
the investment strategy that investors may wish
to pursue. In an active strategy, investors seek to
capitalize on what they perceive to be the mis-
pricing of financial instruments (cash instru-
ments or derivative instruments). In a market
that is price efficient, active strategies will not
consistently generate a return after taking into
consideration transaction costs and the risks as-
sociated with a strategy that is greater than sim-
ply buying and holding securities. This has led
investors in certain sectors of the capital market
where empirical evidence suggests the sector is
price efficient to pursue a strategy of indexing,
which simply seeks to match the performance
of some financial index. However Samuelson
was careful to remark that the notion of effi-
cient markets does not make investment analy-
sis useless; rather, it is a condition for efficient
markets.

Another facet in this apparent contradiction of
the pursuit of active strategies despite empirical
evidence on market efficiency was soon to be
clarified. Agents optimize a risk-return trade-
off based on the stochastic features of price pro-
cesses. Price processes are not simply random
but exhibit a rich stochastic behavior. The ob-
jective of investment analysis is to reveal this
behavior.

CAPITAL ASSET PRICING
MODEL: SHARPE, LINTNER,
AND MOSSIN
Absence of arbitrage is a powerful economic
principle for establishing relative pricing. In it-
self, however, it is not a market equilibrium
model. William Sharpe (1964), John Lintner
(1965), and Jan Mossin (1966) developed a the-
oretical equilibrium model of market prices
called the capital asset pricing model (CAPM).
As anticipated 60 years earlier by Walras and
Pareto, Sharpe, Lintner, and Mossin developed

the consequences of Markowitz’s portfolio se-
lection into a full-fledged stochastic general
equilibrium theory.

Asset pricing models categorize risk factors
into two types. The first type is risk factors that
cannot be diversified away via the Markowitz
framework. That is, no matter what the investor
does, the investor cannot eliminate these risk
factors. These risk factors are referred to as sys-
tematic risk factors or nondiversifiable risk factors.
The second type is risk factors that can be elim-
inated via diversification. These risk factors are
unique to the asset and are referred to as unsys-
tematic risk factors or diversifiable risk factors.

The CAPM has only one systematic risk
factor—the risk of the overall movement of the
market. This risk factor is referred to as “mar-
ket risk.” This is the risk associated with hold-
ing a portfolio consisting of all assets, called the
“market portfolio.” In the market portfolio, an
asset is held in proportion to its market value.
So, for example, if the total market value of all
assets is $X and the market value of asset j is $Y,
then asset j will comprise $Y/$X of the market
portfolio.

The expected return for an asset i according
to the CAPM is equal to the risk-free rate plus a
risk premium. The risk premium is the product
of (1) the sensitivity of the return of asset i to
the return of the market portfolio, and (2) the
difference between the expected return on the
market portfolio and the risk-free rate. It mea-
sures the potential reward for taking on the risk
of the market above what can be earned by in-
vesting in an asset that offers a risk-free rate.
Taken together, the risk premium is a product
of the quantity of market risk and the poten-
tial compensation of taking on market risk (as
measured by the second component).

The CAPM was highly appealing from the
theoretical point of view. It was the first general-
equilibrium model of a market that admitted
testing with econometric tools. A critical chal-
lenge to the empirical testing of the CAPM as
pointed out by Roll (1977) is the identification
of the market portfolio.



MILESTONES IN FINANCIAL MODELING 475

THE MULTIFACTOR CAPM:
MERTON
The CAPM assumes that the only risk that an
investor is concerned with is uncertainty about
the future price of a security. Investors, how-
ever, are usually concerned with other risks that
will affect their ability to consume goods and
services in the future. Three examples would be
the risks associated with future labor income,
the future relative prices of consumer goods,
and future investment opportunities.

Recognizing these other risks that investors
face, Robert Merton (1973b) extended the
CAPM based on consumers deriving their opti-
mal lifetime consumption when they face these
“extramarket” sources of risk. These extramar-
ket sources of risk are also referred to as “fac-
tors,” hence the model derived by Merton is
called a multifactor CAPM.

The multifactor CAPM says that investors
want to be compensated for the risk associ-
ated with each source of extramarket risk, in
addition to market risk. In the case of the
CAPM, investors hedge the uncertainty asso-
ciated with future security prices by diver-
sifying. This is done by holding the market
portfolio. In the multifactor CAPM, in addition
to investing in the market portfolio, investors
will also allocate funds to something equiva-
lent to a mutual fund that hedges a particu-
lar extramarket risk. While not all investors are
concerned with the same sources of extramarket
risk, those that are concerned with a specific ex-
tramarket risk will basically hedge them in the
same way.

The multifactor CAPM is an attractive model
because it recognizes nonmarket risks. The pric-
ing of an asset by the marketplace, then, must
reflect risk premiums to compensate for these
extramarket risks. Unfortunately, it may be dif-
ficult to identify all the extramarket risks and to
value each of these risks empirically. Further-
more, when these risks are taken together, the
multifactor CAPM begins to resemble the arbi-
trage pricing theory model described next.

ARBITRAGE PRICING
THEORY: ROSS
An alternative to the equilibrium asset pricing
model just discussed, an asset pricing model
based purely on arbitrage arguments, was de-
rived by Stephen Ross (1976). The model, called
the arbitrage pricing theory (APT) model, postu-
lates that an asset’s expected return is influ-
enced by a variety of risk factors, as opposed to
just market risk as assumed by the CAPM. The
APT model states that the return on a security
is linearly related to H systematic risk factors.
However, the APT model does not specify what
the systematic risk factors are, but it is assumed
that the relationship between asset returns and
the risk factors is linear.

The APT model as given asserts that investors
want to be compensated for all the risk factors
that systematically affect the return of a security.
The compensation is the sum of the products of
each risk factor’s systematic risk and the risk
premium assigned to it by the capital market.

Proponents of the APT model argue that it has
several major advantages over the CAPM. First,
it makes less restrictive assumptions about in-
vestor preferences toward risk and return. As
explained earlier, the CAPM theory assumes
investors trade off between risk and return
solely on the basis of the expected returns
and standard deviations of prospective invest-
ments. The APT model, in contrast, simply re-
quires that some rather unobtrusive bounds be
placed on potential investor utility functions.
Second, no assumptions are made about the dis-
tribution of asset returns. Finally, since the APT
model does not rely on the identification of the
true market portfolio, the theory is potentially
testable. The model simply assumes that no ar-
bitrage is possible. That is, using no additional
funds (wealth) and without increasing risk, it is
not possible for an investor to create a portfolio
to increase return.

The APT model provides theoretical support
for an asset pricing model where there is more
than one risk factor. Consequently, models of
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this type are referred to as multifactor risk
models. These models are applied to portfolio
management.

ARBITRAGE, HEDGING, AND
OPTION THEORY: BLACK,
SCHOLES, AND MERTON
The idea of arbitrage pricing can be extended
to any price process. A general model of asset
pricing will include a number of independent
price processes plus a number of price processes
that depend on the first process by arbitrage.
The entire pricing structure may or may not be
cast in a general equilibrium framework.

Arbitrage pricing allowed derivative pricing.
With the development of derivatives trading,
the requirement of a derivative valuation and
pricing model made itself felt. The first formal
solution of the option pricing model was devel-
oped independently by Fisher Black and My-
ron Scholes (1973), working together, and in the
same year by Robert Merton (1973a).

The solution of the option pricing problem
proposed by Black, Scholes, and Merton was
simple and elegant. Suppose that a market
contains a risk-free bond, a stock, and an op-
tion. Suppose also that the market is arbitrage-
free and that stock price processes follow a
continuous-time geometric Brownian motion.
Black, Scholes, and Merton demonstrated that
it is possible to construct a portfolio made up of
the stock plus the bond that perfectly replicates
the option. The replicating portfolio can be ex-
actly determined, without anticipation, solving
a partial differential equation.

The idea of replicating portfolios has impor-
tant consequences. Whenever a financial instru-
ment (security or derivative instrument) pro-
cess can be exactly replicated by a portfolio of
other securities, absence of arbitrage requires
that the price of the original financial instru-
ment coincide with the price of the replicating
portfolio. Most derivative pricing algorithms
are based on this principle: To price a deriva-

tive instrument, one must identify a replicating
portfolio whose price is known.

Pricing by portfolio replication received a
powerful boost with the discovery that calcu-
lations can be performed in a risk-neutral prob-
ability space where processes assume a simpli-
fied form. The foundation was thus laid for the
notion of equivalent martingales, developed by
Michael Harrison and David Kreps (1979) and
Michael Harrison and Stanley Pliska (1981). Not
all price processes can be reduced in this way: If
price processes do not behave sufficiently well
(i.e., if the risk does not vanish with the van-
ishing time interval), then replicating portfolios
cannot be found. In these cases, risk can be min-
imized but not hedged.

KEY POINTS
� The development of mathematical finance be-

gan at the end of the nineteenth century with
work on general equilibrium theory by Wal-
ras and Pareto.

� At the beginning of the twentieth century,
Bachelier and Lundberg made a seminal con-
tribution, introducing respectively Brownian
motion price processes and Markov Poisson
processes for collective risk events.

� The advent of digital computers enabled the
large-scale application of advanced mathe-
matics to finance theory, ushering in opti-
mization and simulation.

� In 1952, Markowitz introduced the theory of
portfolio optimization, which advocates the
strategy of portfolio diversification.

� In 1961, Modigliani and Miller argued that the
value of a company is based not on its divi-
dends and capital structure, but on its earn-
ings; their formulation was to be called the
Modigliani-Miller theorem.

� In the 1960s, major developments included
the efficient market hypothesis (Samuelson
and Fama), the capital asset pricing model
(Sharpe, Lintner, and Mossin), and the multi-
factor CAPM (Merton).
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� In the 1970s, major developments included
the arbitrage pricing theory (Ross) that led
to multifactor models and option pricing for-
mulas (Black, Scholes, and Merton) based on
replicating portfolios, which are used to price
derivatives if the underlying price processes
are known.
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ual of Political Economy). Translated by A. S.
Schwier from the 1906 edition. New York: A.
M. Kelley.

Roll, R. R. (1977). A critique of the asset pricing
theory’s tests. Journal of Financial Economics 4:
129–176.

Ross, S. A. (1976). The arbitrage theory of capi-
tal asset pricing. Journal of Economic Theory 13:
343–362.

Samuelson, P. A. (1965). Proof that the properly an-
ticipated prices fluctuate randomly. Industrial
Management Review 6, 2: 41–50.

Sharpe, W. F. (1963). A simplified model for port-
folio analysis. Management Science 9, 2: 277–293.

Sharpe, W. F. (1964). Capital asset prices. Journal of
Finance 19, 3: 425–442.

Smith, A. (1776). An Inquiry into the Nature and
Causes of the Wealth of Nations. Reprinted, Uni-
versity of Chicago Press, 1976.

Von Neumann, J., and Morgenstern, O. (1944). The-
ory of Games and Economic Behavior. Princeton,
NJ: Princeton University Press.

Walras, L. (1874). Elements of Pure Economics.
Reprinted, Harvard University Press, 1954.





From Art to Financial Modeling
SERGIO M. FOCARDI, PhD
Partner, The Intertek Group

FRANK J. FABOZZI, PhD, CFA, CPA
Professor of Finance, EDHEC Business School

Abstract: It is often said that investment management is an art, not a science. However, since
the early 1990s the market has witnessed a progressive shift toward a more industrial view of the
investment management process. There are several reasons for this change. First, with globalization
the universe of investable assets has grown many times over. Asset managers might have to choose
from among several thousand possible investments from around the globe. The S&P 500 index
is itself chosen from a pool of 8,000 investable U.S. stocks. Second, institutional investors, often
together with their investment consultants, have encouraged asset management firms to adopt
an increasingly structured process with documented steps and measurable results. Pressure from
regulators and the media is another factor. Lastly, the sheer size of the markets makes it imperative
to adopt safe and repeatable methodologies. The volumes are staggering.

In its modern sense, financial modeling is
the design (or engineering) of contracts and
portfolios of contracts that result in prede-
termined cash flows contingent on different
events. Broadly speaking, financial models are
employed to manage investment portfolios and
risk. The objective is the transfer of risk from
one entity to another via appropriate contracts.
Though the aggregate risk is a quantity that can-
not be altered, risk can be transferred if there is
a willing counterparty.

Financial modeling came to the forefront of
finance in the 1980s with the broad diffusion
of derivative instruments. However, the con-
cept and practice of financial modeling are
quite old. Evidence of the use of sophisticated
cross-border instruments of credit and pay-

ment dating from the time of the First Crusade
(1095–1099) has come down to us from the let-
ters of Jewish merchants in Cairo. The notion
of the diversification of risk (central to modern
risk management) and the quantification of in-
surance risk (a requisite for pricing insurance
policies) were already understood, at least in
practical terms, in the 14th century. The rich
epistolary of Francesco Datini, a 14th-century
merchant, banker, and insurer from Prato
(Tuscany, Italy), contains detailed instructions
to his agents on how to diversify risk and in-
sure cargo. It also gives us an idea of insurance
costs: Datini charged 3.5% to insure a cargo of
wool from Malaga to Pisa and 8% to insure
a cargo of malmsey (sweet wine) from Genoa
to Southampton, England. These, according to
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one of Datini’s agents, were low rates: He con-
sidered 12–15% a fair insurance premium for
similar cargo.

What is specific to modern financial model-
ing is the quantitative management of risk. Both
the pricing of contracts and the optimization of
investments require some basic capabilities of
statistical modeling of financial contingencies.
It is the size, diversity, and efficiency of mod-
ern competitive markets that makes the use of
modeling imperative.

THE ROLE OF INFORMATION
TECHNOLOGY
Advances in information technology are be-
hind the widespread adoption of modeling in
finance. The most important advance has been
the enormous increase in the amount of com-
puting power, concurrent with a steep fall in
prices. Government agencies have long been
using computers for economic modeling, but
private firms found it economically justifiable
only as of the 1980s. Back then, economic mod-
eling was considered one of the “Grand Chal-
lenges” of computational science (a term coined
by Kenneth Wilson [1989], recipient of the 1982
Nobel Prize in Physics, and later adopted by
the U.S. Department of Energy in its High
Performance Communications and Computing
Program, which included economic modeling
among the grand challenges).

In the late 1980s, firms such as Merrill Lynch
began to acquire supercomputers to perform
derivative pricing computations. The overall
cost of these supercomputing facilities, in the
range of several million dollars, limited their
diffusion to the largest firms. Today, compu-
tational facilities ten times more powerful cost
only a few thousand dollars. To place today’s
computing power in perspective, consider that
a 1990 run-of-the-mill Cray supercomputer
cost several million U.S. dollars and had a
clock cycle of 4 nanoseconds (i.e., 4 billionths
of a second or 250 million cycles per second,
notated as 250 MHz). Today’s fast laptop

computers are 10 times faster with a clock cycle
of 2.5 GHz and, at a few thousand dollars, cost
only a fraction of the price. Supercomputer per-
formance has itself improved significantly, with
top computing speed in the range of several
teraflops compared to the several megaflops
of a Cray supercomputer in the 1990s. (Flops,
which stands for floating point operations per
second, is a measure of computational speed.
A teraflop computer is a computer able to
perform a trillion floating point operations
per second.) In the space of 15 years, sheer
performance has increased 1,000 times while
the price-performance ratio has decreased by a
factor of 10,000. Storage capacity has followed
similar dynamics.

The diffusion of low-cost, high-performance
computers has allowed the broad use of numer-
ical methods. Computations that were once per-
formed by supercomputers in air-conditioned
rooms are now routinely performed on desk-
top machines. This has changed the landscape
of financial modeling. The importance of find-
ing closed-form solutions and the consequent
search for simple models has been dramatically
reduced. Computationally intensive methods
such as Monte Carlo simulations and the nu-
merical solution of differential equations are
now widely used. As a consequence, it has be-
come feasible to represent prices and returns
with relatively complex models. Non-normal
probability distributions have become common-
place in many sectors of financial modeling. It
is fair to say that the key limitation of finan-
cial econometrics is now the size of available
data samples or training sets, not the compu-
tations; it is the data that limit the complexity
of estimates.

Mathematical modeling has also undergone
major changes. Techniques such as equiv-
alent martingale methods are being used
in derivative pricing and cointegration, the
theory of fat-tailed processes, and state-space
modeling (including ARCH/GARCH and
stochastic volatility models) are being used in
econometrics.
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Powerful specialized mathematical lan-
guages and vast statistical software libraries
have been developed. The ability to program
sequences of statistical operations within a sin-
gle programming language has been a big
step forward. Software firms such as Math-
ematica and Mathworks, and major suppli-
ers of statistical tools such as SAS, have
created simple computer languages for the pro-
gramming of complex sequences of statisti-
cal operations. This ability is key to financial
econometrics, which entails the analysis of large
portfolios. (Note that although a number of
highly sophisticated statistical packages are
available to economists, these packages do not
serve the needs of the financial econometrician
who has to analyze a large number of time
series.)

Presently only large or specialized firms write
complex applications from scratch; this is typ-
ically done to solve specific problems, often in
the derivatives area. The majority of financial
modelers make use of high-level software pro-
gramming tools and statistical libraries. It is dif-
ficult to overestimate the advantage brought by
these software tools; they cut development time
and costs by orders of magnitude.

In addition, there is a wide range of off-the-
shelf financial applications that can be used
directly by operators who have a general un-
derstanding of the problem but no advanced
statistical or mathematical training. For exam-
ple, powerful complete applications from firms
such as MSCI Barra and component applica-
tions from firms such as FEA make sophisti-
cated analytical methods available to a large
number of professionals.

Data have, however, remained a significant
expense. The diffusion of electronic transac-
tions has made available large amounts of data,
including high-frequency data (HFD), which
gives us information at the transaction level.
As a result, in budgeting for financial model-
ing, data have become an important factor in
deciding whether to undertake a new model-
ing effort.

A lot of data are now available free on the
Internet. If the required granularity of data is
not high, these data allow one to study the vi-
ability of models and to perform rough tun-
ing. However, real-life applications, especially
applications based on finely grained data, re-
quire data streams of a higher quality than those
typically available free on the Internet.

INTEGRATING
QUALITATIVE AND
QUANTITATIVE
INFORMATION
Textual information has remained largely out-
side the domain of quantitative modeling, having
long been considered the domain of judgment.
This is now changing as financial firms begin to
tackle the problem of what is commonly called
information overload; advances in computer tech-
nology are again behind the change (see Jonas
and Focardi, 2002). Reuters publishes the equiv-
alent of three bibles of (mostly financial) news
daily; it is estimated that five new research doc-
uments come out of Wall Street every minute;
asset managers at medium-sized firms report
receiving up to 1,000 e-mails daily and work
with as many as five screens on their desk.
Conversely, there is also a lack of “digested” in-
formation. It has been estimated that only one
third of the roughly 10,000 U.S. public com-
panies are covered by meaningful Wall Street
research; there are thousands of companies
quoted on the U.S. exchanges with no Wall
Street research at all. It is unlikely the situa-
tion is better relative to the tens of thousands
of firms quoted on other exchanges through-
out the world. Yet increasingly companies are
providing information, including press releases
and financial results, on their Web sites.

Such unstructured (textual) information is
progressively being transformed into self-
describing, semistructured information that can
be automatically categorized and searched by
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computers. A number of developments are
making this possible. These include:

� The development of XML (eXtensible
Markup Language) standards for tagging tex-
tual data. This is taking us from free text
search to queries on semistructured data.

� The development of RDF (Resource Descrip-
tion Framework) standards for appending
metadata. This provides a description of the
content of documents.

� The development of algorithms and software
that generate taxonomies and perform auto-
matic categorization and indexation.

� The development of database query functions
with a high level of expressive power.

� The development of high-level text mining
functionality that allows “discovery.”

The emergence of standards for the han-
dling of “meaning” is a major development. It
implies that unstructured textual information,
which some estimates put at 80% of all content
stored in computers, will be largely replaced by
semistructured information ready for machine
handling at a semantic level. Today’s standard
structured databases store data in a prespecified
format so that the position of all elementary in-
formation is known. For example, in a trading
transaction, the date, the amount exchanged,
the names of the stocks traded, and so on are
all stored in predefined fields. However, textual
data such as news or research reports do not al-
low such a strict structuring. To enable the com-
puter to handle such information, a descriptive
metafile is appended to each unstructured file.
The descriptive metafile is a structured file that
contains the description of the key information
stored in the unstructured data. The result is a
semistructured database made up of unstruc-
tured data plus descriptive metafiles.

Industry-specific and application-specific
standards are being developed around the
general-purpose XML. At the time of this writ-
ing, there are numerous initiatives established
with the objective of defining XML standards
for applications in finance, from time series to

analyst and corporate reports and news. While
it is not yet clear which of the competing efforts
will emerge as the de facto standards, attempts
are now being made to coordinate standardiza-
tion efforts, eventually adopting the ISO 15022
central data repository as an integration point.

Technology for handling unstructured data
has already made its way into the industry.
Factiva, a Dow Jones-Reuters company, uses
commercially available text mining software to
automatically code and categorize more than
400,000 news items daily, in real time (prior to
adopting the software, they manually coded
and categorized some 50,000 news articles
daily). Users can search the Factiva database,
which covers 118 countries and includes some
8,000 publications and more than 30,000 com-
pany reports with simple intuitive queries
expressed in a language close to the natural lan-
guage. Several firms use text mining technology
in their Web-based research portals for clients
on the buy and sell sides. Such services typ-
ically offer classification, indexation, tagging,
filtering, navigation, and search.

These technologies are helping to organize re-
search flows. They allow us to automatically
aggregate, sort, and simplify information and
provide the tools to compare and analyze the in-
formation. In serving to pull together material
from myriad sources, these technologies will
not only form the basis of an internal knowl-
edge management system but allow us to better
structure the whole investment management
process. Ultimately, the goal is to integrate data
and text mining in applications such as fun-
damental research and event analysis, linking
news, and financial time series.

PRINCIPLES FOR
ENGINEERING A SUITE
OF MODELS
Creating a suite of models to satisfy the needs of
a financial firm is engineering in full earnest. It
begins with a clear statement of the objectives.
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In the case of financial modeling, the objective is
identified by the type of decision-making pro-
cess that a firm wants to implement. The engi-
neering of a suite of financial models requires
that the process on which decisions are made
is fully specified and that the appropriate infor-
mation is supplied at every step. This statement
is not as banal as it might seem.

We have now reached the stage where, in
some markets, financial decision making can be
completely automated through optimizers. As
we will see in the following entries, one can de-
fine models able to construct a conditional prob-
ability distribution of returns. An optimizer will
then translate the forecast into a tradable port-
folio. The manager becomes a kind of high-level
supervisor of an otherwise automated process.

However, not all financial decision-making
applications are, or can be, fully automated.
In many cases, it is the human operator who
makes the decision, with models supplying the
information needed to arrive at the decision.
Building an effective suite of financial models
requires explicit decisions as to (1) what level
of automation is feasible and desirable, and (2)
what information or knowledge is required.

The integration of different models and of
qualitative and quantitative information is a
fundamental need. This calls for integration
of different statistical measures and points of
view. For example, an asset management firm
might want to complement a portfolio opti-
mization methodology based on Gaussian fore-
casting with a risk management process based
on extreme value theory. The two processes of-
fer complementary views. In many cases, how-
ever, different methodologies give different

results though they work on similar principles
and use the same data. In these cases, integra-
tion is delicate and might run against statistical
principles.

In deciding which modeling efforts to invest
in, many firms have in place a sophisticated
evaluation system. Firms evaluate a model’s re-
turn on investment and how much it will cost
to buy the data necessary to run the model.

KEY POINTS
� Key to a quantitative framework is the mea-

surement and management of uncertainty
(i.e., risk) and financial modeling.

� Modeling is the tool to achieve these objec-
tives; advances in information technology are
the enabler.

� Unstructured textual information is progres-
sively being transformed into self-describing,
semistructured information, allowing a better
structuring of the research process.

� After nearly two decades of experience with
quantitative methods, market participants
now more clearly perceive the benefits and
the limits of modeling; given today’s tech-
nology and markets, the need to better
integrate qualitative and quantitative infor-
mation is clearly felt.
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Abstract: We are confronted with data every day, constantly. Daily newspapers contain information
on stock prices, economic figures, quarterly business reports on earnings and revenues, and much
more. These data offer observed values of given quantities. The basic data types can be qualitative,
ordinal, or quantitative.

In this entry, we will present the first essentials
of data description. We describe all data types
and levels. We explain and illustrate why one
has to be careful about the permissible compu-
tations concerning each data level.1

We will restrict ourselves to univariate data,
that is, data of only one dimension. For ex-
ample, if you follow the daily returns of one
particular stock, you obtain a one-dimensional
series of observations. If you had observed two
stocks, then you would have obtained a two-
dimensional series of data, and so on. More-
over, the notion of frequency distributions,
empirical frequency distributions, and cumula-
tive frequency distributions is introduced. The
goal of this entry is to provide the first methods

necessary to begin data analysis. After reading
this entry you will learn how to formalize the
first impression you obtain from the data in or-
der to retrieve the most basic structure inherent
in the data. That is essential for any subsequent
tasks you may undertake with the data. Above
all, though, you will have to be fully aware of
what you want to learn from the data. That step
is maybe the most important task before getting
started in investigating the data. For example,
you may just want to know what the minimum
return has been of your favorite stock during
the last year before you decide to purchase. Or
you are interested in all returns from last year
to learn how this stock typically performs, that
is, which returns occur more often than others,

485



486 Financial Modeling Principles

and how often. In the latter case, you definitely
have to be more involved to obtain the neces-
sary information than in the first case.

DATA TYPES
Data are gathered by several methods. In the
financial industry, we have market data based
on regular trades recorded by the exchanges.
Theses data are directly observable. Aside from
the regular trading process, there is so-called
over-the-counter (OTC) business whose data
are less accessible. Annual reports and quar-
terly reports, on the other hand, are published
by companies themselves in print or electron-
ically. These data are available also in the
business and finance sections of most major
business oriented print media and the Internet.
The fields of marketing and the social sciences
know additional forms of data collection meth-
ods. There are telephone surveys, mail ques-
tionnaires, and even experiments.

If one does research on certain financial quan-
tities of interest, one might find the data avail-
able from either free or commercial databases.
Hence, one must be concerned with the quality
of the data. Unfortunately, very often databases
of unrestricted access such as those available on
the Internet may be of limited credibility. In con-
trast, there are many commercial purveyors of
financial data who are generally acknowledged
as providing accurate data. But, as always, qual-
ity may have its price.

Information Contained in the Data
Once the data are gathered, it is the objective
of descriptive statistics to visually and compu-
tationally convert the amount of information
given into quantities revealing the essentials in
which we are interested. Commonly in this con-
text, visual support is added since very often
that allows for a much easier grasp of the infor-
mation.

The field of descriptive statistics discerns dif-
ferent types of data. Very generally, there are
two types: qualitative and quantitative data.

If certain attributes of an item can only be
assigned to categories, these data are referred
to as qualitative. For example, stocks listed on
the New York Stock Exchange (NYSE) can be
categorized as belonging to a specific indus-
try sector such as “banking,” “energy,” “media
and telecommunications,” and so on. That way,
we assign the item stock as its attribute sector
one or possibly more values from the set con-
taining banking, energy, media and telecommu-
nications, and so on. (Instead of attribute, we
will most of the time use the term “variable.”)
Another example would be the credit ratings
assigned to debt obligations by commercial
rating companies such as Standard & Poor’s,
Moody’s, and Fitch Ratings. Except for retriev-
ing the value of an attribute, nothing more can
be done with qualitative data. One may use a
numerical code to indicate the different sectors
(e.g., 1 = banking, 2 = energy, and so on). How-
ever, we are not allowed to perform any compu-
tation with these figures since they are simply
proxies of the underlying attribute sector.

However, if an item is assigned a quantita-
tive variable, the value of this variable is nu-
merical. Generally, all real numbers are eligible.
Depending on the case, however, one will
use discrete values only, such as integers.
Stock prices or dividends, for example, are
quantitative data drawing from—up to some
digits—positive real numbers. Quantitative
data have the feature that one can perform
transformations and computations with them.
One can easily think of the average price of all
companies comprising some index on a certain
day, while it would make absolutely no sense
to do the same with qualitative data.

Data Levels and Scale
In descriptive statistics, we group data accord-
ing to measurement levels. The measurement
level gives an indication as to the sophistica-
tion of the analysis techniques that one can
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apply to the data collected. Typically, a hierar-
chy with five levels of measurement—nominal,
ordinal, interval, ratio, and absolute—is used
to group data. The latter three form the set of
quantitative data. If the data are of a certain
measurement level, they are said to be scaled
accordingly. That is, the data are referred to as
nominally scaled, and so on.

Nominally scaled data are on the bottom of the
hierarchy. Despite the low level of sophistica-
tion, this type of data are commonly used. An
example is the attribute sector of stocks. We al-
ready learned that, even though we can assign
numbers as proxies to nominal values, these
numbers have no numerical meaning whatso-
ever. We might just as well assign letters to the
individual nominal values, for example, “B =
banking,” “E = energy,” and so on.

Ordinally scaled data are one step higher in the
hierarchy. We also refer to this type as “rank
data,” since we can already perform a ranking
within the set of values. We can make use of a re-
lationship among the different values by treat-
ing them as quality grades. For example, we
can divide the stocks listed in a particular stock
index according to their market capitalization
into five groups of equal size. Let “A” denom-
inate the top 20% of the stocks. Also, let “B”
denote the next 20% below, and so on, until we
obtain the five groups: A, B, C, D, and E. After
ordinal scaling, we can make statements such
as “Group A is better than group C.” Hence,
we have a natural ranking or order among the
values. However, we cannot quantify the dif-
ference between them. Also, the credit rating of
debt obligations is ordinarily scaled.

Until now, we can summarize that while we
can test the relationship between nominal data
for equality only, we can additionally deter-
mine a greater or less than relationship between
ordinal data.

Data on an interval scale are given if they can
be reasonably transformed by a linear equation.
Suppose we are given values x. It is now feasi-
ble to express a new variable y by the relation-
ship y = a* x + b, where the x’s are our original

data. If x has a meaning, then so does y. It is
obvious that data have to possess a numerical
meaning and therefore be quantitative in or-
der to be measured on an interval scale. For
example, consider the temperature F given in
degrees Fahrenheit. Then, the corresponding
temperature in degrees Celsius, C, will result
from the equation C = (F − 32)/ 1.8. Equiva-
lently, if one is familiar with physics, the same
temperature measured in degrees Kelvin, K,
will result from K = C + 273.15. So, say it is
55◦ Fahrenheit for Americans, the same tem-
perature will mean approximately 13◦ Celsius
for Europeans, and they will not feel any cooler.
Generally, interval data allow for the calculation
of differences. For example, 70◦ − 60◦ Fahren-
heit = 10◦ Fahrenheit may reasonably express
the difference in temperature between Los An-
geles and San Francisco. But be careful—the
difference in temperature measured in Celsius
between the two cities is not the same. How
much is it?

Data measured on a ratio scale share all the
properties of interval data. In addition, ratio
data have a fixed or true zero point. This is not
the case with interval data. Their intercept, b,
can be arbitrarily changed through transforma-
tion. Since the zero point of ratio data is in-
variable, one can only transform the slope, a.
So, for example, y = a* x is always a multiple
of x. In other words, there is a relationship be-
tween y and x given by the ratio a, hence the
name used to describe this type of data. One
would not have this feature if one would per-
mit some b different from zero in the transfor-
mation. Consider, for example, the stock price,
E, of some European stock given in euro units.
The same price in U.S. dollars, D, would be D
equals E times the exchange rate between euros
and U.S. dollars. But if the company’s price af-
ter bankruptcy went to zero, the price in either
currency would be zero, even at different rates
determined by the ratio of U.S. dollar per euro.
This is a result of the invariant zero point.

Absolute data are given by quantitative data
measured on a scale even stricter than for
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ratio data. Here, along with the zero point, the
units are invariant as well. Data measured on
an absolute scale occur when transformation
would be mathematically feasible but lacks any
interpretational implication. A common exam-
ple is provided by counting numbers. Anybody
would agree on the number of stocks listed in
a certain stock index. There is no ambiguity as
to the zero point and the count increments. If
one stock is added to the index, it is immedi-
ately clear that the difference to the content of
the old index is exactly one unit of stock, as-
suming that no stock is deleted This absolute
scale is the most intuitive and needs no further
discussion.

Cross-Sectional and Time
Series Data
There is another way of classifying data. Imag-
ine collecting data from one and the same quan-
tity of interest or variable. A variable is some
quantity that can assume values from a value
set. For example, the variable “stock price” can
technically assume any nonnegative real num-
ber of currency but only one value at a time.
Each day, it assumes a certain value, which is
the day’s stock price. As another example, a
variable could be the dividend payments from
a specific company over some period of time.
In the case of dividends, the observations are
made each quarter. The accumulated data then
form what is called time series data. In contrast,
one could pick a particular time period of inter-
est such as the first quarter of the current year
and observe the dividend payments of all com-
panies listed in the Standard & Poor’s 500 index.
By doing so, one would obtain cross-sectional
data of the universe of stocks in the S&P 500
index at that particular time.

Summarizing, time series data are data re-
lated to a variable successively observed at a
sequence of points in time. Cross-sectional data
are values of a particular variable across some
universe of items observed at a unique point in
time. This is visualized in Figure 1.

Cross-Sectional

Time Series

Time

Sector

Figure 1 Relationship between Cross-Sectional
and Time Series Data

FREQUENCY
DISTRIBUTIONS
Sorting and Counting Data
One of the most important aspects when deal-
ing with data is that they are effectively orga-
nized and transformed in order to convey the
essential information contained in them. This
processing of the original data helps to display
the inherent meaning in a way that is more ac-
cessible for intuition. But before advancing to
the graphical presentation of the data, we will
first describe the methods of structuring data.

Suppose that we are interested in a particular
variable that can assume a set of either finite
or infinitely many values. These values may be
qualitative or quantitative by nature. In either
case, the initial step when obtaining a data sam-
ple for some variable is to sort the values of
each observation and then to determine the fre-
quency distribution of the dataset. This is done
simply by counting the number of observations
for each possible value of the variable. Alter-
natively, if the variable can assume values on
all or part of the real line, the frequency can be
determined by counting the number of obser-
vations that fall into nonoverlapping intervals
partitioning the real line.

In our illustration, we will begin with qual-
itative data first and then move on to the
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Table 1 DJIA Components as of December 12, 2006

Industrial Classification
Benchmark

Company (ICB) Subsector

3M Co. Diversified Industrials
Alcoa Inc. Aluminum
Altria Group Inc. Tobacco
American Express Co. Consumer Finance
American International

Group Inc.
Full Line Insurance

AT&T Inc. Fixed Line
Telecommunications

Boeing Co. Aerospace
Caterpillar Inc. Commercial Vehicles &

Trucks
Citigroup Inc. Banks
Coca-Cola Co. Soft Drinks
E.I. DuPont de Nemours &

Co.
Commodity Chemicals

Exxon Mobil Corp. Integrated Oil & Gas
General Electric Co. Diversified Industrials
General Motors Corp. Automobiles
Hewlett-Packard Co. Computer Hardware
Home Depot Inc. Home Improvement

Retailers
Honeywell International

Inc.
Diversified Industrials

Intel Corp. Semiconductors
International Business

Machines Corp.
Computer Services

Johnson & Johnson Pharmaceuticals
JPMorgan Chase & Co. Banks
McDonald’s Corp. Restaurants & Bars
Merck & Co. Inc. Pharmaceuticals
Microsoft Corp. Software
Pfizer Inc. Pharmaceuticals
Procter & Gamble Co. Nondurable Household

Products
United Technologies Corp. Aerospace
Verizon Communications

Inc.
Fixed Line

Telecommunications
Wal-Mart Stores Inc. Broadline Retailers
Walt Disney Co. Broadcasting &

Entertainment

quantitative aspects in the sequel. For exam-
ple, suppose we want to analyze the frequency
of the industry subsectors of the components
listed in the Dow Jones Industrial Average
(DJIA), an index comprised of 30 U.S. stocks.
Table 1 displays the 30 companies in the in-
dex along with their respective industry sectors
as of December 12, 2006. By counting the ob-
served number of each possible Industry Clas-

Table 2 Frequency Distribution of the Industry
Subsectors

ICB Subsector Frequency ai

Aerospace 2
Aluminum 1
Automobiles 1
Banks 2
Broadcasting & Entertainment 1
Broadline Retailers 1
Commercial Vehicles & Trucks 1
Commodity Chemicals 1
Computer Hardware 1
Computer Services 1
Consumer Finance 1
Diversified Industrials 3
Fixed Line Telecommunications 2
Full Line Insurance 1
Home Improvement Retailers 1
Integrated Oil & Gas 1
Nondurable Household Products 1
Pharmaceuticals 3
Restaurants & Bars 1
Semiconductors 1
Soft Drinks 1
Software 1
Tobacco 1

sification Benchmark (ICB) subsector, we obtain
Table 2, which shows the frequency distribu-
tion of the variable subsector. Note in the table
that many subsector values appear only once.
Hence, this might suggest employing a coarser
set for the ICB subsector values in order to re-
duce the amount of information in the data to a
necessary minimum.

Now suppose you would like to compare
this to the Dow Jones Global Titans 50 Index
(DJGTI). This index includes the 50 largest-
capitalization and best-known blue-chip
companies listed on the NYSE. The companies
contained in this index are listed in Table 3 along
with their respective ICB subsectors. The next
step would also be to sort the data according to
their values and count each hit of a value, finally
listing the respective count numbers for each
value. A problem arises now, however, when
you want to directly compare the numbers with
those obtained for the DJIA because the num-
ber of stocks contained in each index is not the
same. Hence, we cannot compare the respective
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Table 3 Dow Jones Global Titans 50 Index as of December 12, 2006

Company Name ICB Subsector

Abbott Laboratories Pharmaceuticals
Altria Group Inc. Tobacco
American International Group Inc. Full Line Insurance
Astrazeneca PLC Pharmaceuticals
AT&T Inc. Fixed Line Telecommunications
Bank of America Corp. Banks
Barclays PLC Banks
BP PLC Integrated Oil & Gas
Chevron Corp. Integrated Oil & Gas
Cisco Systems Inc. Telecommunications Equipment
Citigroup Inc. Banks
Coca-Cola Co. Soft Drinks
ConocoPhillips Integrated Oil & Gas
Dell Inc. Computer Hardware
ENI S.p.A. Integrated Oil & Gas
Exxon Mobil Corp. Integrated Oil & Gas
General Electric Co. Diversified Industrials
GlaxoSmithKline PLC Pharmaceuticals
HBOS PLC Banks
Hewlett-Packard Co. Computer Hardware
HSBC Holdings PLC (UK Reg) Banks
ING Groep N.V. Life Insurance
Intel Corp. Semiconductors
International Business Machines Corp. Computer Services
Johnson & Johnson Pharmaceuticals
JPMorgan Chase & Co. Banks
Merck & Co. Inc. Pharmaceuticals
Microsoft Corp. Software
Mitsubishi UFJ Financial Group Inc. Banks
Morgan Stanley Investment Services
Nestle S.A. Food Products
Nokia Corp. Telecommunications Equipment
Novartis AG Pharmaceuticals
PepsiCo Inc. Soft Drinks
Pfizer Inc. Pharmaceuticals
Procter & Gamble Co. Nondurable Household Products
Roche Holding AG Part. Cert. Pharmaceuticals
Royal Bank of Scotland Group PLC Banks
Royal Dutch Shell PLC A Integrated Oil & Gas
Samsung Electronics Co. Ltd. Semiconductors
Siemens AG Electronic Equipment
Telefonica S.A. Fixed Line Telecommunications
Time Warner Inc. Broadcasting & Entertainment
Total S.A. Integrated Oil & Gas
Toyota Motor Corp. Automobiles
UBS AG Banks
Verizon Communications Inc. Fixed Line Telecommunications
Vodafone Group PLC Mobile Telecommunications
Wal-Mart Stores Inc. Broadline Retailers
Wyeth Pharmaceuticals
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Table 4 Comparison of Relative Frequencies of DJIA
and DJGTI

Relative
Frequencies

ICB Subsector DJIA DJGTI

Aerospace 0.067 0.000
Aluminum 0.033 0.000
Automobiles 0.033 0.020
Banks 0.067 0.180
Broadcasting & Entertainment 0.033 0.020
Broadline Retailers 0.033 0.020
Commercial Vehicles & Trucks 0.033 0.000
Commodity Chemicals 0.033 0.000
Computer Hardware 0.033 0.040
Computer Services 0.033 0.020
Consumer Finance 0.033 0.000
Diversified Industrials 0.100 0.020
Electronic Equipment 0.000 0.020
Fixed Line Telecommunications 0.067 0.060
Food Products 0.000 0.020
Full Line Insurance 0.033 0.020
Home Improvement Retailers 0.033 0.000
Integrated Oil & Gas 0.033 0.140
Investment Services 0.000 0.020
Life Insurance 0.000 0.020
Mobile Telecommunications 0.000 0.020
Nondurable Household Products 0.033 0.020
Pharmaceuticals 0.100 0.180
Restaurants & Bars 0.033 0.000
Semiconductors 0.033 0.040
Soft Drinks 0.033 0.040
Software 0.033 0.020
Telecommunications Equipment 0.000 0.040
Tobacco 0.033 0.020

absolute frequencies. Instead, we have to resort
to something that creates comparability of the
two datasets. This is done by expressing the
number of observations of a particular value as
the proportion of the total number of observa-
tions in a specific dataset. That means we have
to compute the relative frequency. See Table 4.

Formal Presentation of Frequency
For a better formal presentation, we denote the
(absolute) frequency by a and, in particular, by
ai for the ith value of the variable. Formally, the
relative frequency fi of the ith value is, then,
defined by

fi = ai

n

where n is the total number of observations.
With k being the number of the different values,
the following holds:

n =
k∑

i=1

fi

In our illustration, let n1 = 30 be the number
of total observations in the DJIA and n2 = 50
the total number of observations in the DJGTI.
Table 4 shows the relative frequencies for all
possible values. Notice that each index has
some values that were observed with zero fre-
quency, which still have to be listed for com-
parison. When we look at the DJIA, we find
out that the sectors Diversified Industrials and
Pharmaceuticals each account for 10% of all sec-
tors and therefore are the sectors with the high-
est frequencies. Comparing these two sectors
to the DJGTI, we find out that Pharmaceuticals
play as important a role as a sector with an 18%
share, while Diversified Industrials are of mi-
nor importance. In this index, Banks are a very
important sector with 18% also. A comparison
of this sort can now be carried through for all
subsectors thanks to the relative frequencies.

Naturally, frequency (absolute and relative)
distributions can be computed for all types of
data since they do not require that the data have
a numerical value.

EMPIRICAL CUMULATIVE
FREQUENCY DISTRIBUTION
Accumulating Frequencies
In addition to the frequency distribution, there
is another quantity of interest for comparing
data that is closely related to the absolute or
relative frequency distribution. Suppose that
one is interested in the percentage of all large-
capitalization stocks in the DJIA with closing
prices of at most US $50 on a specific day. One
can sort the observed closing prices by their
numerical values in ascending order to obtain
something like the array shown in Table 5 for
market prices as of December 15, 2006. Note that
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Table 5 DJIA Stocks by Share Price in Ascending
Order as of December 15, 2006

Company Share Price

Intel Corp. 20.77
Pfizer Inc. 25.56
General Motors Corp. 29.77
Microsoft Corp. 30.07
Alcoa Inc. 30.76
Walt Disney Co. 34.72
AT&T Inc. 35.66
Verizon Communications Inc. 36.09
General Electric Co. 36.21
Hewlett-Packard Co. 39.91
Home Depot Inc. 39.97
Honeywell International Inc. 42.69
Merck & Co. Inc. 43.60
McDonald’s Corp. 43.69
Wal-Mart Stores Inc. 46.52
JPMorgan Chase & Co. 47.95
E.I. DuPont de Nemours & Co. 48.40
Coca-Cola Co. 49.00
Citigroup Inc. 53.11
American Express Co. 61.90
United Technologies Corp. 62.06
Caterpillar Inc. 62.12
Procter & Gamble Co. 63.35
Johnson & Johnson 66.25
American International Group Inc. 72.03
Exxon Mobil Corp. 78.73
3M Co. 78.77
Altria Group Inc. 84.97
Boeing Co. 89.93
International Business Machines Corp. 95.36

Source: www.dj.com/TheCompany/FactSheets.htm,
December 15, 2006.

since each value occurs once only, we have to
assign each value an absolute frequency of 1 or
a relative frequency of 1/30, respectively, since
there are 30 component stocks in the DJIA. We
start with the lowest entry ($20.77) and advance
up to the largest value still less than $50, which
is $49 (Coca-Cola). Each time we observe less
than or equal to $50, we add 1/30, accounting
for the frequency of each company to obtain an
accumulated frequency of 18/30 representing
the total share of closing prices below $50. This
accumulated frequency is called the “empirical
cumulative frequency” at the value $50. If one
computes this for all values, one obtains the em-
pirical cumulative frequency distribution. The
term “empirical” is used because the distribu-
tion is computed from observed data.

Formal Presentation of Cumulative
Frequency Distributions
Formally, the empirical cumulative frequency
distribution Femp is defined as

Femp(x) =
k∑

i=1

ai

where k is the index of the largest value ob-
served that is still less than x. In our example, k is
18. When we use relative frequencies, we obtain
the empirical relative cumulative frequency dis-
tribution defined analogously to the empirical
cumulative frequency distribution, this time us-
ing relative frequencies. Hence, we have

F f
emp(x) =

k∑

i=1

fi

In our example, F f
emp(50) = 18/30 = 0.6 =

60%.
Note that the empirical cumulative frequency

distribution can be evaluated at any real x even
though x need not be an observation. For any
value x between two successive observations
x(i) and x(i+1), the empirical cumulative fre-
quency distribution as well as the empirical cu-
mulative relative frequency distribution remain
at their respective levels at x(i); that is, they are
of constant level Femp(x(i)) and F f

emp(x(i)), respec-
tively. For example, consider the empirical rel-
ative cumulative frequency distribution for the
data shown in Table 5. We can extend the distri-
bution to a function that determines the value
of the distribution at each possible value of the
share price. The function is given in Table 6.
Notice that if no value is observed more than
once, then the empirical relative cumulative fre-
quency distribution jumps by 1/N at each ob-
served value. In our illustration, the jump size
is 1/30.

In Figure 2 the empirical relative cumulative
frequency distribution is shown as a graph.
Note that the values of the function are constant
on the extended line between two successive
observations, indicated by the solid point to the

http://www.dj.com/TheCompany/FactSheets.htm
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Table 6 Empirical Relative Cumulative Frequency
Distribution of DJIA Stocks from Table 5

F f
emp(x)

0.00 x < 20.77
0.03 20.77 ≤ x < 25.56
0.07 25.56 ≤ x < 29.77
0.10 29.77 ≤ x < 30.07
0.13 30.07 ≤ x < 30.76
0.17 30.76 ≤ x < 34.72
0.20 34.72 ≤ x < 35.66
0.23 35.66 ≤ x < 36.09
0.27 36.09 ≤ x < 36.21
0.30 36.21 ≤ x < 39.91
0.33 39.91 ≤ x < 39.97
0.37 39.97 ≤ x < 42.69
0.40 42.69 ≤ x < 43.60
0.43 43.60 ≤ x < 43.69
0.47 43.69 ≤ x < 46.52
0.50 46.52 ≤ x < 47.95
0.53 47.95 ≤ x < 48.40
0.57 48.40 ≤ x < 49.00
0.60 49.00 ≤ x < 53.11
0.63 53.11 ≤ x < 61.90
0.67 61.90 ≤ x < 62.06
0.70 62.06 ≤ x < 62.12
0.73 62.12 ≤ x < 63.35
0.77 63.35 ≤ x < 66.25
0.80 66.25 ≤ x < 72.03
0.83 72.03 ≤ x < 78.73
0.87 78.73 ≤ x < 78.77
0.90 78.77 ≤ x < 84.97
0.93 84.97 ≤ x < 89.93
0.97 89.93 ≤ x < 95.36
1.00 95.36 ≤ x

left of each horizontal line. At each observation,
the vertical distance between the horizontal line
extending to the right from the preceding obser-
vation and the value of the function is exactly
the increment 1/30.
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Figure 2 Empirical Relative Cumulative Fre-
quency Distribution of DJIA Stocks from Table 5

The computation of either form of empirical
cumulative distribution function is obviously
not intuitive for categorical data unless we as-
sign some meaningless numerical proxy to each
value such as “Sector A” = 1, “Sector B” = 2,
and so on.

DATA CLASSES
Reasons for Classifying
When quantitative variables are such that the
set of values—whether observed or theoreti-
cally possible— includes intervals or the entire
real numbers, then the variable is continuous.
This is in contrast to discrete variables, which
assume values only from a limited or count-
able set. Variables on a nominal scale cannot
be considered in this context. And because of
the difficulties with interpreting the results, we
will not attempt to explain the issue of classes
for rank data either.

When one counts the frequency of observed
values of a continuous variable, one notices
that hardly any value occurs more than once.
(Naturally, the precision given by the number
of digits rounded may result in higher occur-
rences of certain values.) Theoretically, with
100% chance, all observations will yield differ-
ent values. Thus, the method of counting the
frequency of each value is not feasible. Instead,
the continuous set of values is divided into mu-
tually exclusive intervals. Then, for each such
interval, the number of values falling within
that interval can be counted again. In other
words, one groups the data into classes for
which the frequencies can be computed. Classes
should be such that their respective lower and
upper bounds are real numbers. Also, whether
the class bounds are elements of the classes or
not must be specified. The class bounds of a
class must be bounds of the respective adjacent
classes as well, such that the classes seamlessly
cover the entire data. The width should be the
same for all classes. However, if there are ar-
eas where the data are very intensely dense
in contrast to areas of lesser density, then the
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class width can vary according to significant
changes in value density. In certain cases, most
of the data are relatively evenly scattered within
some range, while there are extreme values that
are located in isolated areas on either end of the
data array. Then, it is sometimes advisable to
specify no lower bound to the lowest class and
no upper bound to the uppermost class. Classes
of this sort are called “open classes.” Moreover,
one should consider the precision to which the
data are given. If values are rounded to the first
decimal but there is the chance that the exact
value might vary within half a decimal about
the value given, class bounds have to consider
this lack of certainty by admitting plus half a
decimal on either end of the class.

Formal Procedure of Classifying
Formally, there are four criteria that the classes
need to meet:

Criterion 1: Mutual Exclusiveness: Each value
can be placed in only one class.

Criterion 2: Completeness: The set of classes
needs to cover all values.

Criterion 3: Equidistance: If possible, form
classes of equal width.

Criterion 4: Nonemptiness: If possible, avoid
forming empty classes.

It is intuitive that the number of classes should
increase with an increasing range of values
and increasing number of data. Though there
are no stringent rules, two rules of thumb are
given here with respect to the advised number
of classes (first rule) and the best class width
(second rule). The first, the so-called Sturge’s
rule, states that for a given set of continuous
data of size n, one should use the nearest integer
figure to

1 + log2 n = 1 + 3.222 log10 n.

Here, loga n denotes the logarithm of n to the
base a, with a being either 2 or 10.

The second guideline is the so-called
Freedman-Diaconis rule for the appropriate class
width or bin size. Before turning to the second

rule of thumb in more detail, we have to intro-
duce the notion of the inner quartile range (IQR).
This quantity measures the distance between
the value where F f

emp is closest to 0.25 (that
is, the so-called 0.25-quantile), and the value
where F f

emp is closest to 0.75 (that is, the so-
called 0.75-quantile). (The term “percentile” is
used interchangeably with “quantile.”) So the
IQR range states how remote the lowest 25% of
the observations are from the highest 25%.2 As
a consequence, the IQR comprises the central
50% of a data sample. A little more attention
will be given to the determination of the above-
mentioned quantiles when we discuss sample
moments and quantiles, since formally there
might arise some ambiguity when computing
them. (Note that the IQR cannot be computed
for nominal or categorial data in a natural way.)

Now we can return to the Freedman-Diaconis
rule. It states that a good class width is given by
the nearest integer to

2 × I QR × N−1/3

where N is the number of observations in the
dataset. Note that there is an inverse relation-
ship between the class width and the number
of classes for each set of data. That is, given
that the partitioning of the values into classes
covers all observations, the number of classes n
has to be equal to the difference between largest
and smallest value divided by the class width,
if classes are all of equal size w. Mathematically,
that means

n = (xmax − xmin)/w

where xmax denotes the largest value and
xmin denotes the smallest value considered,
respectively.

One should not be intimidated by all these
rules. Generally, by mere ordering of the data
in an array, intuition produces quite a good feel-
ing of what the classes should look like. Some
thought can be given to the timing of the for-
mation of the classes. That is, when classes are
formed prior to the data-gathering process, one
does not have to store the specific values but
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rather count only the number of hits within each
class.

Example of Classing Procedures
Let’s illustrate these rules. Table 7 gives the 12-
month returns (in percent) of the 235 Franklin
Templeton Investments Funds on January 11,
2007. With this many data, it becomes obvious
that it cannot be helpful to anyone to know the
relative performance for the 235 funds. To ob-
tain an overall impression of the distribution of
the data without getting lost in detail, one has to
aggregate the information given by classifying
the data.

For the sake of a better overview, the ordered
array is given in Table 8. A quick glance at the
data sorted in ascending order gives us the low-
est (minimum) and largest (maximum) return,
respectively. Here, we have xmin = −18.3% and
xmax = 41.3%, respectively, yielding a range of
59.6% to cover.

We first classify the data according to Sturge’s
rule. For the number of classes, n, we obtain the
nearest integer to 1 + log2 235 = 8.877, which
is 9. The class width is then determined by
the range divided by the number of classes,
56.6%/9, yielding a width of roughly 6.62%.
This is not a nice number to deal with, so
we may choose 7% instead without deviat-
ing noticeably from the exact numbers given
by Sturge’s rule. We now cover a range of
9 × 7% = 63%, which is slightly larger than the
original range of the data.

Selecting a value for the lower class bound of
the lowest class slightly below our minimum,
say −20.0%, and an upper class bound of the
highest class, say 43.0%, we spread the surplus
of the range (3.4%) evenly. The resulting classes
can be viewed in Table 9, where in the first row
the index of the respective class is given. The
second row contains the class bounds. Brack-
ets indicate that the value belongs to the class,
whereas parentheses exclude given values. So,
we obtain a half-open interval for each class
containing all real numbers between the lower
bound and just below the upper bound, thus

excluding that value. In row three, we have the
number of observations that fall into the respec-
tive classes.

We can check for the compliance with the four
criteria given earlier. Because we use half-open
intervals, we guarantee that Criterion 1 is ful-
filled. Since the lowest class starts at −20%, and
the highest class ends at 43%, Criterion 2 is sat-
isfied. All nine classes are of width 7%, which
complies with Criterion 3. Finally, the compli-
ance with Criterion 4 can be checked easily.

Next, we apply the Freedman-Diaconis rule.
With our ordered array of data, we can deter-
mine the 0.25 quartile by selecting the observa-
tion whose index is the first to exceed 0.25 ×
N = .25 × 235 = 58.75. This yields the value of
observation 59, which is 4.2%. Accordingly, the
0.75-quartile is given by the value whose index
is the first to exceed 0.75 × 235 = 176.25. For
our return data, it is x177, which is 18.9%. The
IQR is computed as

18.9% − 4.2% = 14.7%

such that the bin size of the classes (or class
width) is now determined according to w =
2 × I QR × 1/3

√
235 = 4.764%. Taking the data

range of 59.6% from the previous calculation,
we obtain as the suggested number of classes
59.6%/4.764 = 12.511. Once again, this is not
a neat-looking figure. We stick with the initial
class width of w = 4.764% as closely as possi-
ble by selecting the next integer, say 5%. And,
without any loss, we extend the range artifi-
cially to 60%. So, we obtain for the number of
classes 60%/5 = 12, which is close to our origi-
nal real number, 12.511, computed according to
the Freedman-Diaconis rule but much nicer to
handle. We again spread the range surplus of
0.4% (60% − 59.6%) evenly across either end of
the range such that we begin our lowest class at
−18.5% and end our highest class at 41.5%. The
classes are given in Table 10. The first row of the
table indicates the index of the respective class,
while the second row gives the class bounds.
The number of observations that fall into each
class is shown in the last row. (One can easily
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Table 7 12-Month Returns (in %) for the 235 Franklin Templeton Investment Funds (Luxembourg) on January 11,
2007

Aggr Growth A Acc 1.9 Mut Gb Discov A Acc EUR 8.1 Asian Grth A Dis USD 21.3 Glbl Bd A Dis GBP –0.7
Aggr Growth A Dis –6.9 Mut Gb Discov A Acc USD 16.4 Asian Grth C Acc 20.6 Glbl Bd B Dis 7.5
Aggr Growth B Acc 0.9 Mut Gb Discov A Dis GBP 5.9 Asian Grth I Acc EUR 14.0 Glbl Bd C Dis 8.2
Aggr Growth I Acc 2.9 Mut Gb Discov B Acc USD 14.9 Asian Grth I Acc USD 22.6 Glbl Bd I Acc EUR 1.4
Biotech Disc A Acc –0.4 Mut Gb Discov C Acc USD 15.7 BRIC A Acc EUR 25.3 Glbl Bd I Acc USD 9.9
Biotech Disc B Acc –1.8 Mut Gb Discov I Acc EUR 9.1 BRIC A Acc USD 34.8 Glbl Bd(Euro) A Acc 1.5
Biotech Disc I Acc 0.6 Mut Gb Discov I Acc USD 17.4 BRIC A Dis GBP 22.7 Glbl Bd(Euro) A Dis 1.4
Europ Growth A Acc 20.0 T Japan A Acc EUR –18.3 BRIC B Acc USD 33.2 Glbl Bd(Euro) I Acc 2.0
Europ Growth I Acc 21.3 T Japan A Acc JPY –8.3 BRIC C Acc USD 34.1 Global Euro A Acc 11.1
EurSMidCapGr A Acc 33.1 T Japan A Acc USD –12.2 BRIC I Acc USD 36.4 Global Euro A Dis 11.1
EurSMidCapGr I Acc 33.3 T Japan C Acc USD –12.6 China A Acc 36.1 Global Euro I Acc 12.1
EurSMidCapGrBAccUSD 41.3 T Japan I Acc EUR –17.6 China A Dis 23.7 Global A Acc 20.5
Global Growth A Acc 15.5 T Japan I Acc USD –11.4 China I Acc 37.6 Global A Dis 20.4
GlblMidCapGr A Acc 10.7 T Glb Gr&Val A Acc 16.7 Eastern Europ A Acc EUR 13.3 Global B Acc 18.9
GlblMidCapGr B Acc 9.3 T Glb Gr&Val B Acc 15.3 Eastern Europ A Acc USD 21.9 Global C Acc 19.7
GlblRealEst A Acc EUR 19.7 T Glb Gr&Val C Acc 16.0 Eastern Europ A Dis EUR 13.3 Global I Acc 21.5
GlblRealEst I Acc EUR 20.7 T Glb Gr&Val I Acc 17.8 Eastern Europ A Dis GBP 11.0 Glb Eq Inc A Acc EUR 11.4
GlblRealEst A Dis GBP 17.1 Technology A Acc –0.4 Eastern Europ C Acc EUR 12.6 Glb Eq Inc A Acc USD 19.9
GlblRealEst A Acc USD 22.1 Technology B Acc –1.4 Eastern Europ C Acc USD 21.2 Glb Eq Inc A Dis 19.9
GlblRealEst A Dis USD 22.1 US Eqty A Acc EUR 0.2 Eastern Europ I Acc 14.7 Glb Eq Inc B Dis 18.4
GlblRealEst B Dis USD 20.5 US Eqty A Acc EUR Hdg 4.9 Emg Mkt A Acc 14.4 Glb Eq Inc C Dis 19.3
GlblRealEst C Dis USD 21.4 US Eqty A Acc USD 7.7 Emg Mkt A Dis 14.4 Glb Eq Inc I Acc 20.5
GlblRealEst I Acc USD 23.1 US Eqty B Acc 6.4 Emg Mkt B Acc 13.0 Glb Inc A Acc EUR 10.4
GlblRealEst I Dis USD 23.1 US Eqty C Acc 7.1 Emg Mkt C Acc 13.7 Glb Inc A Acc USD 18.7
High Yield A Acc 6.9 US Eqty I Acc EUR –5.9 Emg Mkt I Acc 15.8 Glb Inc A Dis 18.7
High Yield A Dis 7.1 US Eqty I Acc USD 8.9 EmMktBd A Dis EUR 5.2 Glb Inc B Dis 17.2
High Yield B Dis 5.6 US Gov A Dis 3.1 EmMktBd A Dis USD 13.2 Glb Inc C Dis 17.9
High Yield C Acc 6.2 US Gov B Dis 1.8 Emg Mkt Bd B Dis 11.9 Glb Inc I Acc 19.4
High Yield I Dis 7.8 US Gov B Acc 1.9 Emg Mkt Bd C Acc 12.6 Glbl Sm Co A Acc 21.3
High Yld Eur A Acc 8.3 US Gov C Acc 2.2 Emg Mkt Bd I Acc 14.3 Glbl Sm Co A Dis 21.3
High Yld Eur A Dis 8.3 US Gov I Dis 3.8 Euro Liq Res A Acc 1.9 Glbl Sm Co C Acc 12.1
High Yld Eur I Acc 9.1 US Growth A Acc 3.8 Euro Liq Res A Dis 1.9 Glbl Sm Co I Acc 22.4
High Yld Eur I Dis 9.1 US Growth B Acc 2.5 Euroland Bd A Dis –1.8 Dlbl Tot Ret A Acc 12.6
Income A Dis 12.8 US Growth C Acc 3.3 Euroland Bd I Acc –1.2 Dlbl Tot Ret A Dis 12.6
Income B Dis 11.4 US Growth I Acc 6.4 Euroland A Acc 18.5 Dlbl Tot Ret B Acc 10.9
Income C Acc 12.1 US Ultra Sh Bd A Dis 3.7 Euroland A Dis 19.8 Dlbl Tot Ret B Dis 10.9
Income C Dis 12.1 US Ultra Sh Bd B Acc 2.5 Euroland C Acc 17.8 Dlbl Tot Ret C Dis 11.8
Income I Acc 13.7 US Ultra Sh Bd B Dis 2.5 Euroland I Acc 19.6 Dlbl Tot Ret I Acc 13.1
India A Acc EUR 29.0 US Ultra Sh Bd C Dis 2.6 European A Acc USD 24.0 Dlbl Tot Ret I Dis 10.0
India A Acc USD 38.7 US Ultra Sh Bd I Acc 4.2 European A Acc EUR 15.3 Growth(Euro) A Acc 7.5
India A Dis GBP 26.2 US SmMidCapGro A Ac 2.5 European A Dis EUR 15.2 Growth(Euro) A Dis 7.4
India B Acc USD 36.9 US SmMidCapGro B Ac 1.2 European A Dis USD 24.0 Growth(Euro) I Acc 8.4
India C Acc USD 37.9 US SmMidCapGro C Ac 2.0 European C Acc EUR 14.6 Growth(Euro) I Dis 8.4
India I Acc EUR 30.2 US Tot Rtn A Acc 4.1 European I Acc 16.4 Japan A Acc –8.0
India I Acc USD 40.0 US Tot Rtn A Dis 4.2 Euro Tot Ret A Acc –0.4 Korea A Acc –3.8
Mut Beacon AAccEUR 7.4 US Tot Rtn B Acc 2.6 Euro Tot Ret A Dis EUR –0.5 Latin Amer A Acc 35.9
Mut Beacon AAccUSD 15.5 US Tot Rtn B Dis 2.7 Euro Tot Ret A Dis GBP –2.6 Latin Amer A Dis GBP 23.6
Mut Beacon ADisUSD 15.5 US Tot Rtn C Dis 3.1 Euro Tot Ret A Dis USD 7.1 Latin Amer A Dis USD 35.9
Mut Beacon Bacc 14.0 US Tot Rtn I Acc 4.8 Euro Tot Ret C Acc EUR –1.3 Latin Amer I Acc USD 37.4
Mut Beacon Cacc 14.8 Asian Bond A Acc EUR 5.9 Euro Tot Ret C Dis USD 6.2 Thailand A Acc –11.0
Mut Beacon IAcc 16.6 Asian Bond A Acc USD 14.1 Euro Tot Ret I Acc –0.3 US$ Liq Res A Acc 4.2
Mut Europ AAcc EUR 15.9 Asian Bond A Dis USD 14.0 Glbl Bal A Acc EUR 6.5 US$ Liq Res A Dis 4.1
Mut Europ AAcc USD 24.7 Asian Bond B Dis USD 12.4 Glbl Bal A Acc USD 14.6 US$ Liq Res B Dis 3.1
Mut Europ ADis EUR 15.9 Asian Bond C Dis USD 13.0 Glbl Bal A Dis 14.6 US$ Liq Res C Acc 3.2
Mut Europ ADis GBP 14.0 Asian Bond I Acc USD 14.6 Glbl Bal B Acc 13.1 US Value A Acc 14.5
Mut Europ B Acc 23.1 Asian Grth A Acc EUR 12.7 Glbl Bal C Dis 13.9 US Value B Acc 13.0
Mut Europ C Acc USD 23.9 Asian Grth A Acc USD 21.4 Glbl Bd A Dis USD 9.2 US Value C Acc 13.8
Mut Europ C Acc EUR 15.2 Asian Grth A Dis EUR 12.8 Glbl Bd A Acc EUR 1.5 US Value I Acc 15.6
Mut Europ I Acc 16.9 Asian Grth A Dis GBP 10.4 Glbl Bd A Dis EUR 1.5
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Table 8 Ordered Array of the 235 12-month Returns for the Franklin Templeton Investment Funds (Luxembourg)

Obs. (i) Value

x(1) –18.3 x(40) 2.2 x(79) 7.5 x(118) 12.7 x(157) 15.7 x(196) 21.3
x(2) –17.6 x(41) 2.5 x(80) 7.5 x(119) 12.8 x(158) 15.8 x(197) 21.3
x(3) –12.6 x(42) 2.5 x(81) 7.7 x(120) 12.8 x(159) 15.9 x(198) 21.4
x(4) –12.2 x(43) 2.5 x(82) 7.8 x(121) 13 x(160) 15.9 x(199) 21.4
x(5) –11.4 x(44) 2.5 x(83) 8.1 x(122) 13 x(161) 16 x(200) 21.5
x(6) –11 x(45) 2.6 x(84) 8.2 x(123) 13 x(162) 16.4 x(201) 21.9
x(7) –8.3 x(46) 2.6 x(85) 8.3 x(124) 13.1 x(163) 16.4 x(202) 22.1
x(8) –8 x(47) 2.7 x(86) 8.3 x(125) 13.1 x(164) 16.6 x(203) 22.1
x(9) –6.9 x(48) 2.9 x(87) 8.4 x(126) 13.2 x(165) 16.7 x(204) 22.4
x(10) –5.9 x(49) 3.1 x(88) 8.4 x(127) 13.3 x(166) 16.9 x(205) 22.6
x(11) –3.8 x(50) 3.1 x(89) 8.9 x(128) 13.3 x(167) 17.1 x(206) 22.7
x(12) –2.6 x(51) 3.1 x(90) 9.1 x(129) 13.7 x(168) 17.2 x(207) 23.1
x(13) –1.8 x(52) 3.2 x(91) 9.1 x(130) 13.7 x(169) 17.4 x(208) 23.1
x(14) –1.8 x(53) 3.3 x(92) 9.1 x(131) 13.8 x(170) 17.8 x(209) 23.1
x(15) –1.4 x(54) 3.7 x(93) 9.2 x(132) 13.9 x(171) 17.8 x(210) 23.6
x(16) –1.3 x(55) 3.8 x(94) 9.3 x(133) 14 x(172) 17.9 x(211) 23.7
x(17) –1.2 x(56) 3.8 x(95) 9.9 x(134) 14 x(173) 18.4 x(212) 23.9
x(18) –0.7 x(57) 4.1 x(96) 10 x(135) 14 x(174) 18.5 x(213) 24
x(19) –0.5 x(58) 4.1 x(97) 10.4 x(136) 14 x(175) 18.7 x(214) 24
x(20) –0.4 x(59) 4.2 x(98) 10.4 x(137) 14.1 x(176) 18.7 x(215) 24.7
x(21) –0.4 x(60) 4.2 x(99) 10.7 x(138) 14.3 x(177) 18.9 x(216) 25.3
x(22) –0.4 x(61) 4.2 x(100) 10.9 x(139) 14.4 x(178) 19.3 x(217) 26.2
x(23) –0.3 x(62) 4.8 x(101) 10.9 x(140) 14.4 x(179) 19.4 x(218) 29
x(24) 0.2 x(63) 4.9 x(102) 11 x(141) 14.5 x(180) 19.6 x(219) 30.2
x(25) 0.6 x(64) 5.2 x(103) 11.1 x(142) 14.6 x(181) 19.7 x(220) 33.1
x(26) 0.9 x(65) 5.6 x(104) 11.1 x(143) 14.6 x(182) 19.7 x(221) 33.2
x(27) 1.2 x(66) 5.9 x(105) 11.4 x(144) 14.6 x(183) 19.8 x(222) 33.3
x(28) 1.4 x(67) 5.9 x(106) 11.4 x(145) 14.6 x(184) 19.9 x(223) 34.1
x(29) 1.4 x(68) 6.2 x(107) 11.8 x(146) 14.7 x(185) 19.9 x(224) 34.8
x(30) 1.5 x(69) 6.2 x(108) 11.9 x(147) 14.8 x(186) 20 x(225) 35.9
x(31) 1.5 x(70) 6.4 x(109) 12.1 x(148) 14.9 x(187) 20.4 x(226) 35.9
x(32) 1.5 x(71) 6.4 x(110) 12.1 x(149) 15.2 x(188) 20.5 x(227) 36.1
x(33) 1.8 x(72) 6.5 x(111) 12.1 x(150) 15.2 x(189) 20.5 x(228) 36.4
x(34) 1.9 x(73) 6.9 x(112) 12.1 x(151) 15.3 x(190) 20.5 x(229) 36.9
x(35) 1.9 x(74) 7.1 x(113) 12.4 x(152) 15.3 x(191) 20.6 x(230) 37.4
x(36) 1.9 x(75) 7.1 x(114) 12.6 x(153) 15.5 x(192) 20.7 x(231) 37.6
x(37) 1.9 x(76) 7.1 x(115) 12.6 x(154) 15.5 x(193) 21.2 x(232) 37.9
x(38) 2 x(77) 7.4 x(116) 12.6 x(155) 15.5 x(194) 21.3 x(233) 38.7
x(39) 2 x(78) 7.4 x(117) 12.6 x(156) 15.6 x(195) 21.3 x(234) 40

x(235) 41.3

check that the four requirements for the classes
are met again.)

Let us next compare Tables 9 and 10. We ob-
serve a finer distribution when the Freedman-
Diaconis rule is employed because this rule
generates more classes for the same data. How-
ever, it is generally difficult to judge which
rule provides us with the better information
because, as is seen, the two rules set up com-
pletely different classes. But the choice of class
bounds is essential. By just slightly shifting the

bounds between two adjacent classes, many ob-
servations may fall from one class into the other
due to this alteration. As a result, this might
produce a totally different picture about the
data distribution. So, we have to be very careful
when we interpret the two different results.

For example, class 7, that is, [22,29) in Ta-
ble 9 contains 16 observations. Classes 9 and
10 of Table 10 cover approximately the same
range, [21.5,31.5). Together they account for 20
observations. We could now easily present two
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Table 9 Classes for the 235 Fund Returns According to Sturge’s Rule

Class Index

I 1 2 3 4 5 6 7 8 9
[ai ;bi ) [−20, −13) [−13, −6) [−6,1) [1,8) [8,15) [15,22) [22,29) [29,36) [36,43)
a I 2 7 17 56 66 53 16 9 9

scenarios that would provide rather different
conceptions about the frequency. In scenario
one, suppose one assumes that two observa-
tions are between 21.5 and 22.0. Then, there
would have to be 16 observations between 22.0
and 26.5 to add up to 18 observations in class 9
of Table 10. This, in return, would mean that the
16 observations of class 7 from Table 9 would
all have to lie between 22.0 and 26.5 as well.
Then, the two observations from class 10 of Ta-
ble 10 must lie beyond 29.0. The other scenario
could assume that we have four observations
between 21.5 and 22.0. Then, for similar rea-
sons as before, we would have 14 observations
between 22.0 and 26.5. The two observations
from class 10 of Table 10 would now have to be
between 26.5 and 29.0, so that the total of 16 ob-
servations in class 7 of Table 9 is met. See how
easily slightly different classes can lead to am-
biguous interpretation? Looking at all classes
at once, many of these puzzles can be solved.
However, some uncertainty remains. As can be
seen, the choice of the number of classes and
thus the class bounds can have a significant im-
pact on the information that the data conveys
when condensed into classes.

CUMULATIVE FREQUENCY
DISTRIBUTIONS
In contrast to the empirical cumulative fre-
quency distributions, in this section we will
introduce functions that convey basically the
same information, that is, the frequency distribu-

tion, but rely on a few more assumptions. These
cumulative frequency distributions introduced
here, however, should not be confused with the
theoretical definitions given in probability the-
ory even though the notion is akin to both.

The absolute cumulative frequency at each
class bound states how many observations have
been counted up to this particular class bound.
However, we do not exactly know how the data
are distributed within the classes. When relative
frequencies are used, though, the cumulative
relative frequency distribution states the over-
all proportion of all values up to a certain lower
or upper bound of some class.

So far, things are not much different from
the definition of the empirical cumulative fre-
quency distribution and empirical cumulative rel-
ative frequency distribution. At each bound, the
empirical cumulative frequency distribution
and cumulative frequency coincide. However,
an additional assumption is made regarding the
distribution of the values between bounds of
each class when computing the cumulative fre-
quency distribution. The data are thought of
as being continuously distributed and equally
spread between the particular bounds. (This
type of assumed behavior is defined as a “uni-
form distribution of data.”) Hence, both forms
(absolute and relative) of the cumulative fre-
quency distributions increase in a linear fash-
ion between the two class bounds. So, for both
forms of cumulative distribution functions, one
can compute the accumulated frequencies at
values inside of classes.

Table 10 Classes for the 235 Fund Returns According to the Freedman-Diaconis Rule

I 1 2 3 4 5 6 7 8 9 10 11 12
[ai ;bi ) [−18.5; −13.5) [−13.5; −8.5) [−8.5; −3.5) [−3.5;1.5) [1.5;6.5) [6.5;11.5) [11.5;16.5) [16.5;21.5) [21.5;26.5) [26.5;31.5) [31.5;36.5) [36.41.5)
a I 2 4 5 18 42 35 57 36 18 2 9 7
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For a more thorough summary of this, let’s
use a more formal presentation. Let I denote the
set of all class index i with i being some integer
value between 1 and nI = |I | (that is, the num-
ber of classes). Moreover, let aj and f j denote
the (absolute) frequency and relative frequency
of some class j, respectively. The cumulative fre-
quency distribution at some upper bound, xi

u,
of a given class i is computed as

F (xi
u) =

∑

j :x j
u≤xi

u

a j =
∑

j :x j
u≤xi

l

a j + ai (1)

In words, this means that we sum up the fre-
quencies of all classes whose upper bound is
less than xi

u plus the frequency of class i it-
self. The corresponding cumulative relative fre-
quency distribution at the same value is then

F f (xi
u) =

∑

j :x j
u≤xi

u

f j =
∑

j :x j
u≤xi

l

f j + fi (2)

This describes the same procedure as in equa-
tion (1) using relative frequencies instead of fre-
quencies. For any value x in between the bound-
aries of, say, class i, xi

l and xi
u, the cumulative

relative frequency distribution is defined by

F f (x) = F f (xi
l ) + x − xi

l

xi
u − xi

l
fi (3)

In words, this means that we compute the
cumulative relative frequency distribution at
value x as the sum of two things. First, we take
the cumulative relative frequency distribution
at the lower bound of class i. Second, we add
that share of the relative frequency of class i that
is determined by the part of the whole interval
of class i that is covered by x.

Figure 3 might appeal more to intuition. At
the bounds of class i, we have values of the
cumulative relative frequency given by F f (xi

l )
and F f (xi

u) respectively. We assume that the cu-
mulative relative frequency increases linearly
along the line connecting F f (x1

l ) and F f (xi
u).

Then, at any value x∗ inside of class i, we find
the corresponding value F f (x∗) by the inter-
section of the dashed line and the vertical axis
as shown. The dashed line is obtained by ex-

Ff (xi
u)

Ff (xi
l)

x* – xi
l

F f (x*) – F f (xi
l)

Ff (x*)

x i
l xi

u
x* x

Figure 3 Determination of Frequency Distribu-
tion within Class Bounds

tending a horizontal line through the intersec-
tion of the vertical line through x∗ and the
line connecting F f (x1

l ) and F f (xi
u) with slope

F f (x∗) − F f (xi
l )/x∗ − xi

l .

KEY POINTS
� The field of descriptive statistics discerns dif-

ferent types of data. Very generally, there are
two types: qualitative and quantitative data.
If certain attributes of an item can only be as-
signed to categories, these data are referred to
as qualitative. However, if an item is assigned
a quantitative variable, the value of this
variable is numerical. Generally, all real num-
bers are eligible.

� In descriptive statistics, data are grouped
according to measurement levels. The mea-
surement level gives an indication as to the
sophistication of the analysis techniques that
can be applied to the data collected. Typically,
a hierarchy with five levels of measurement—
nominal, ordinal, interval, ratio, and absolute
data—are used to group data. The latter three
form the set of quantitative data. If the data
are of a certain measurement level, they are
said to be scaled accordingly. That is, the data
are referred to as nominally scaled, and so on.

� Another way of classifying data is in terms
of cross-sectional and time series data.
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Cross-sectional data are values of a particu-
lar variable across some universe of items ob-
served at a unique point in time. Time series
data are data related to a variable successively
observed at a sequence of points in time.

� Frequency (absolute and relative) distribu-
tions can be computed for all types of data
since they do not require that the data have
a numerical value. The cumulative frequency
distribution is another quantity of interest for
comparing data that is closely related to the
absolute or relative frequency distribution.

� Four criteria that data classes need to sat-
isfy are (1) each value can be placed in
only one class (mutual exclusiveness), (2)
the set of classes needs to cover all val-
ues (completeness), (3) if possible, form
classes of equal width (equidistance), and

(4) if possible, avoid forming empty classes
(nonemptiness).

NOTES
1. For a more detailed discussion, see Rachev

et al. (2010).
2. The 0.75-quantile divides the data into the

lowest 75% and the highest 25%.
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Abstract: A stochastic process is a time-dependent random variable. Stochastic processes such
as Brownian motion and Ito processes develop in continuous time. This means that time
is a real variable that can assume any real value. In many financial modeling applications,
however, it is convenient to constrain time to assume only discrete values. A time series is a
discrete-time stochastic process; that is, it is a collection of random variables Xi indexed with the
integers . . .–n, . . . ,–2,–1,0,1,2, . . . ,n, . . .

In this entry, we introduce models of discrete-
time stochastic processes (that is, time series).
In financial modeling, both continuous-time
and discrete-time models are used. In many
instances, continuous-time models allow sim-
pler and more concise expressions as well as
more general conclusions, though at the ex-
pense of conceptual complication. For instance,
in the limit of continuous time, apparently sim-
ple processes such as white noise cannot be
meaningfully defined. The mathematics of as-
set management tends to prefer discrete-time
processes, while the mathematics of derivatives
tends to prefer continuous-time processes.

The first issue to address in financial econo-
metrics is the spacing of discrete points of time.
An obvious choice is regular, constant spacing.
In this case, the time points are placed at mul-
tiples of a single time interval: t = i �t. For

instance, one might consider the closing prices
at the end of each day. The use of fixed spacing
is appropriate in many applications. Spacing of
time points might also be irregular but deter-
ministic. For instance, weekends introduce ir-
regular spacing in a sequence of daily closing
prices. These questions can be easily handled
within the context of discrete-time series.

In this entry, we discuss only time series at
discrete and fixed intervals of time, introducing
concepts, representations, and models of time
series.1

CONCEPTS OF TIME SERIES
A time series is a collection of random variables
Xt indexed with a discrete time index t = . . .−2,
−1,0,1,2, . . .. The variables Xt are defined over a

501
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probability space (�, P, J), where � is the set of
states, P is a probability measure, and J is the
σ -algebra of events, equipped with a discrete
filtration {Jt} that determines the propagation
of information (see the Appendix). A realization
of a time series is a countable sequence of real
numbers, one for each time point.

The variables Xt are characterized by finite-
dimensional distributions as well as by condi-
tional distributions, Fs(xs/Jt), s > t. The latter
are the distributions of the variable x at time s
given the σ -algebra {Jt} at time t. Note that con-
ditioning is always conditioning with respect to
a σ -algebra though we will not always strictly
use this notation and will condition with respect
to the value of variables, for instance:

Fs(xs/xt), s > t

If the series starts from a given point, ini-
tial conditions must be fixed. Initial conditions
might be a set of fixed values or a set of random
variables. If the initial conditions are not fixed
values but random variables, one has to con-
sider the correlation between the initial values
and the random shocks of the series. A usual as-
sumption is that the initial conditions and the
random shocks of the series are statistically in-
dependent.

How do we describe a time series? One way to
describe a time series is to determine the math-
ematical form of the conditional distribution.
This description is called an autopredictive model
because the model predicts future values of the
series from past values. However, we can also
describe a time series as a function of another
time series. This is called an explanatory model
as one variable is explained by another. The
simplest example is a regression model where a
variable is proportional to another exogenously
given variable plus a constant term. Time series
can also be described as random fluctuations or
adjustments around a deterministic path. These
models are called adjustment models. Explana-
tory, autopredictive, and adjustment models
can be mixed in a single model. The data gen-
eration process (DGP) of a series is a mathemat-

ical process that computes the future values of
the variables given all information known at
time t.

An important concept is that of a stationary
time series. A series is stationary in the “strict
sense” if all finite dimensional distributions are
invariant with respect to a time shift. A series
is stationary in a “weak sense” if only the mo-
ments up to a given order are invariant with
respect to a time shift. In this entry, time se-
ries will be considered (weakly) stationary if
the first two moments are time-independent.
Note that a stationary series cannot have a start-
ing point but must extend over the entire infi-
nite time axis. Note also that a series can be
strictly stationary (i.e., have all distributions
time-independent, but the moments might not
exist). Thus a strictly stationary series is not nec-
essarily weakly stationary.

A time series can be univariate or multivari-
ate. A multivariate time series is a time-dependent
random vector. The principles of modeling re-
main the same but the problem of estimation
might become very difficult given the large
numbers of parameters to be estimated.

Models of time series are essential building
blocks for financial forecasting and, therefore,
for financial decision-making. In particular as-
set allocation and portfolio optimization, when
performed quantitatively, are based on some
model of financial prices and returns. This entry
lays down the basic financial econometric the-
ory for financial forecasting. We will introduce
a number of specific models of time series and
of multivariate time series, presenting the ba-
sic facts about the theory of these processes. We
will consider primarily models of financial as-
sets, though most theoretical considerations ap-
ply to macroeconomic variables as well. These
models include:

� Correlated random walks. The simplest
model of multiple financial assets is that
of correlated random walks. This model is
only a rough approximation of equity price
processes and presents serious problems of
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estimation in the case of a large number of
processes.

� Factor models. Factor models address the
problem of estimation in the case of a large
number of processes. In a factor model there
are correlations only among factors and be-
tween each factor and each time series. Fac-
tors might be exogenous or endogenously
modeled.

� Cointegrated models. In a cointegrated model
there are portfolios that are described by auto-
correlated, stationary processes. All processes
are linear combinations of common trends
that are represented by the factors.

The above models are all linear. However,
nonlinearities are at work in financial time se-
ries. One way to model nonlinearities is to break
down models into two components, the first
being a linear autoregressive model of the pa-
rameters, the second a regressive or autore-
gressive model of empirical quantities whose
parameters are driven by the first. This is the
case with most of today’s nonlinear models
(e.g., ARCH/GARCH models), Hamilton mod-
els, and Markov switching models.

There is a coherent modeling landscape, from
correlated random walks and factor models to
the modeling of factors, and, finally, the mod-
eling of nonlinearities by making the model
parameters vary. Before describing models in
detail, however, let’s present some key empiri-
cal facts about financial time series.

STYLIZED FACTS OF
FINANCIAL TIME SERIES
Most sciences are stratified in the sense that
theories are organized on different levels. The
empirical evidence that supports a theory is
generally formulated in a lower level theory. In
physics, for instance, quantum mechanics can-
not be formulated as a stand-alone theory but
needs classical physics to give meaning to mea-
surement. Economics is no exception. A basic
level of knowledge in economics is represented

by the so-called stylized facts. Stylized facts are
statistical findings of a general nature on finan-
cial and economic time series; they cannot be
considered raw data insofar as they are for-
mulated as statistical hypotheses. On the other
hand, they are not full-fledged theories.

Among the most important stylized facts
from the point of view of finance theory, we
can mention the following:

� Returns of individual stocks exhibit nearly
zero autocorrelation at every lag.

� Returns of some equity portfolios exhibit sig-
nificant autocorrelation.

� The volatility of returns exhibits hyperbolic
decay with significant autocorrelation.

� The distribution of stock returns is not nor-
mal. The exact shape is difficult to ascertain
but power law decay cannot be rejected.

� There are large stock price drops (that is, mar-
ket crashes) that seem to be outliers with re-
spect to both normal distributions and power
law distributions.

� Stock return time series exhibit significant
cross-correlation.

These findings are, in a sense, model-
dependent. For instance, the distribution of
returns, a subject that has received a lot of at-
tention, can be fitted by different distributions.
There is no firm evidence on the exact value of
the power exponent, with alternative proposals
based on variable exponents. The autocorrela-
tion is model-dependent while the exponential
decay of return autocorrelation can be inter-
preted only as absence of linear dependence.

It is fair to say that these stylized facts set the
stage for financial modeling but leave ample
room for model selection. Financial time series
seem to be nearly random processes that ex-
hibit significant cross correlations and, in some
instances, cross autocorrelations. The global
structure of auto and cross correlations, if it ex-
ists at all, must be fairly complex and there is
no immediate evidence that financial time se-
ries admit a simple DGP.
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One more important feature of financial time
series is the presence of trends. Prima facie
trends of economic and financial variables are
exponential trends. Trends are not quantities
that can be independently measured. Trends
characterize an entire stochastic model. There-
fore there is no way to arrive at an assessment of
trends independent from the model. Exponen-
tial trends are a reasonable first approximation.

Given the finite nature of world resources, ex-
ponential trends are not sustainable in the long
run. However, they might still be a good ap-
proximation over limited time horizons. An ad-
ditional insight into financial time series comes
from the consideration of investors’ behavior.
If investors are risk averse, as required by the
theory of investment, then price processes must
exhibit a trade-off between risk and returns. The
combination of this insight with the assump-
tion of exponential trends yields market models
with possibly diverging exponential trends for
prices and market capitalization.

Again, diverging exponential trends are dif-
ficult to justify in the long run as they would
imply that after a while only one entity would
dominate the entire market. Some form of
reversion to the mean or more disruptive
phenomena that prevent time series to diverge
exponentially must be at work.

In the following sections we will proceed to
describe the theory and the estimation proce-
dures of a number of market models that have
been proposed. We will present the multivari-
ate random walk model, introduce cointegra-
tion and autoregressive models.

INFINITE
MOVING-AVERAGE AND
AUTOREGRESSIVE
REPRESENTATION
OF TIME SERIES
There are several general representations (or
models) of time series. This section introduces

representations based on infinite moving av-
erages or infinite autoregressions useful from
a theoretical point of view. In the practice
of econometrics, however, more parsimonious
models such as the ARMA models (described
in the next section) are used. Representations
are different for stationary and nonstationary
time series. Let’s start with univariate station-
ary time series.

Univariate Stationary Series
The most fundamental model of a univariate
stationary time series is the infinite moving av-
erage of a white noise process. In fact, it can be
demonstrated that under mild regularity condi-
tions, any univariate stationary causal time se-
ries admits the following infinite moving-average
representation:

xt =
∞∑

i=0

hiεt−i + m

where the hi are coefficients and εt−i is a one-
dimensional zero-mean white-noise process.
This is a causal time series as the present value
of the series depends only on the present and
past values of the noise process. A more general
infinite moving-average representation would
involve a summation that extends from −∞
to +∞. Because this representation would not
make sense from an economic point of view, we
will restrict ourselves only to causal time series.

A sufficient condition for the above series to
be stationary is that the coefficients hi are abso-
lutely summable:

∞∑

i=0

|hi |2 < ∞

The Lag Operator L
Let’s now simplify the notation by introducing
the lag operator L. The lag operator L is an oper-
ator that acts on an infinite series and produces
another infinite series shifted one place to the



TIME SERIES CONCEPTS, REPRESENTATIONS, AND MODELS 505

left. In other words, the lag operator replaces
every element of a series with the one delayed
by one time lag:

L(xt) = xt−1

The n-th power of the lag operator shifts a series
by n places:

Ln(xt) = xt−n

Negative powers of the lag operator yield the
forward operator F, which shifts places to the
right. The lag operator can be multiplied by a
scalar and different powers can be added. In
this way, linear functions of different powers of
the lag operator can be formed as follows:

A(L) =
N∑

i=1

ai Li

Note that if the lag operator is applied to a series
that starts from a given point, initial conditions
must be specified.

Within the domain of stationary series, infi-
nite power series of the lag operator can also
be formed. In fact, given a stationary series, if
the coefficients hi are absolutely summable, the
series

∞∑

i=0

hi Li xt

is well defined in the sense that it converges
and defines another stationary series. It there-
fore makes sense to define the operator:

A(L) =
∞∑

i=0

hi Li

Now consider the operator I − λL. If |λ| < 1,
this operator can be inverted and its inverse is
given by the infinite power series,

(I − λL)−1 =
∞∑

i=0

λi Li

as can be seen by multiplying I − λL by the

power series
∞∑

i=1
λi Li :

(I − λL)
∞∑

i=1

λi Li = L0 = I

On the basis of this relationship, it can be
demonstrated that any operator of the type

A(L) =
N∑

i=1

ai Li

can be inverted provided that the solutions of
the equation

N∑

i=1

ai zi = 0

have absolute values strictly greater than 1. The
inverse operator is an infinite power series

A−1(L) =
∞∑

i=0

ψi Li

Given two linear functions of the operator L, it
is possible to define their product

A(L) =
M∑

i=1

ai Li

B(L) =
N∑

j=1

bi Li

P(L) = A(L)B(L) =
M+N∑

i=1

pi Li

pi =
i∑

r=1

ar bi−r

The convolution product of two infinite series
in the lag operator is defined in a similar way

A(L) =
∞∑

i=0

ai Li

B(L) =
∞∑

j=0

bi Li

C(L) = A(L) × B(L) =
∞∑

k=0

ck Lk

ck =
k∑

s=0

asbk−s
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We can define the left-inverse (right-inverse) of
an infinite series as the operator A−1 (L), such
that A−1 (L) × A(L) = I. The inverse can always
be computed solving an infinite set of recursive
equations provided that a0 �= 0. However, the
inverse series will not necessarily be stationary.
A sufficient condition for stationarity is that the
coefficients of the inverse series are absolutely
summable.

In general, it is possible to perform on the
symbolic series

H(L) =
∞∑

i=1

hi Li

the same operations that can be performed on
the series

H(z) =
∞∑

i=1

hi zi

with z complex variable. However operations
performed on a series of lag operators neither
assume nor entail convergence properties. In
fact, one can think of z simply as a symbol. In
particular, the inverse does not necessarily ex-
hibit absolutely summable coefficients.

Stationary Univariate
Moving Average
Using the lag operator L notation, the infinite
moving-average representation can be written
as follows:

xt =
( ∞∑

i=0

hi Li

)
εt + m = H(L)εt + m

Consider now the inverse series:

�(L) =
∞∑

i=0

λi Li , �(L)H(L) = I

If the coefficients λi are absolutely summable,
we can write

εt = �(L)xt =
∞∑

i=0

λi Li xt−i

and the series is said to be invertible.

Multivariate Stationary Series
The concepts of infinite moving-average rep-
resentation and of invertibility defined above
for univariate series carry over immediately to
the multivariate case. In fact, it can be demon-
strated that under mild regularity conditions,
any multivariate stationary causal time series
admits the following infinite moving-average
representation:

xt =
∞∑

i=0

Hiεt−i + m

where the Hi are n × n matrices, εt is an n-
dimensional, zero-mean, white noise process
with nonsingular variance-covariance matrix
�, and m is an n-vector of constants. The
coefficients Hi are called Markov coefficients.
This moving-average representation is called
the Wold representation. Wold representation
states that any series where only the past in-
fluences the present can be represented as an
infinite moving average of white noise terms.
Note that, as in the univariate case, the infinite
moving-average representation can be written
in more general terms as a sum that extends
from −∞ to +∞. However, a series of this type
is not suitable for financial modeling as it is not
causal (that is, the future influences the present).
Therefore we consider only moving averages
that extend to past terms.

Suppose that the Markov coefficients are an
absolutely summable series:

∞∑

i=0

||Ht|| < +∞

where ‖H‖2 indicates the largest eigenvalue of
the matrix HH′. Under this assumption, it can
be demonstrated that the series is stationary
and that the (time-invariant) first two moments
can be computed in the following way:

cov(xtxt−h) =
∞∑

i=0

Hi�H′
i−h

E[xt] = m
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with the convention Hi = 0 if i < 0. Note that the
assumption that the Markov coefficients are an
absolutely summable series is essential, other-
wise the covariance matrix would not exist. For
instance, if the Hi were identity matrices, the
variances of the series would become infinite.

As the second moments are all constants, the
series is weakly stationary. We can write the
time-independent autocovariance function of
the series, which is an n × n matrix whose en-
tries are a function of the lag h, as

	x(h) =
∞∑

i=0

Hi�H′
i−h

Under the assumption that the Markov coef-
ficients are an absolutely summable series, we
can use the lag-operator L representation and
write the operator

H(L) =
∞∑

i=0

Hi Li

so that the Wold representation of a series can
be written as

xt = H(L)ε + m

The concept of invertibility carries over to
the multivariate case. A multivariate stationary
time series is said to be invertible if it can be
represented in autoregressive form. Invertibil-
ity means that the white noise process can be
recovered as a function of the series. In order to
explain the notion of invertible processes, it is
useful to introduce the generating function of
the operator H, defined as the following matrix
power series:

H(z) =
∞∑

i=0

Hi zi

It can be demonstrated that, if H0 = I, then
H(0) = H0 and the power series H(z) is invertible
in the sense that it is possible to formally derive
the inverse series,

�(z) =
∞∑

i=0

�i zi

such that

�(z)H(z) = (� × H)(z) = I

where the product is intended as a convolution
product. If the coefficients �i are absolutely
summable, as the process xt is assumed to be
stationary, it can be represented in infinite au-
toregressive form:

�(L)(xt − m) = εt

In this case the process xt is said to be invertible.
From the above, it is clear that the infinite

moving average representation is a more gen-
eral linear representation of a stationary time
than the infinite autoregressive form. A pro-
cess that admits both representations is called
invertible.

Nonstationary Series
Let’s now look at nonstationary series. As there
is no very general model of nonstationary time
series valid for all nonstationary series, we have
to restrict somehow the family of admissible
models. Let’s consider a family of linear, moving-
average, nonstationary models of the following
type:

xt =
t∑

i=0

Hiεt−i + h(t)z−1

where the Hi are left unrestricted and do not
necessarily form an absolutely summable se-
ries, h(t) is deterministic, and z−1 is a random
vector called the initial conditions, which is sup-
posed to be uncorrelated with the white noise
process. The essential differences of this linear
model with respect to the Wold representation
of stationary series are:
� The presence of a starting point and of initial

conditions.
� The absence of restrictions on the coefficients.
� The index t, which restricts the number of

summands.

The first two moments of a linear process
are not constant. They can be computed in a
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way similar to the infinite moving average
case:

cov(xtxt−h) =
t∑

i=0

Hi�H′
i−h + h(t)var(z)h′

E[xt] = mt = h(t)E[z]

Let’s now see how a linear process can be
expressed in autoregressive form. To simplify
notation let’s introduce the processes ε̃t and
x̃t and the deterministic series h̃(t) defined as
follows:

ε̃t =
{

εt if t > 0
0 if t < 0

x̃t =
{

xt if t > 0
0 if t < 0

h̃t =
{

ht if t > 0
0 if t < 0

It can be demonstrated that, due to the initial
conditions, a linear process always satisfies the
following autoregressive equation:

�(L)x̄t = εt + �(L)h̃t × (t)z−1

A random walk model

xt = xt−1 + εt = εt +
t∑

i=1

εt−i

is an example of a linear nonstationary model.
The above linear model can also represent

processes that are nearly stationary in the sense
that they start from initial conditions but then
converge to a stationary process. A process
that converges to a stationary process is called
asymptotically stationary.

We can summarize the previous discussion
as follows. Under mild regularity conditions,
any causal stationary series can be represented
as an infinite moving average of a white noise
process. If the series can also be represented in
an autoregressive form, then the series is said to
be invertible. Nonstationary series do not have
corresponding general representations. Linear
models are a broad class of nonstationary mod-
els and of asymptotically stationary models that
provide the theoretical base for ARMA and
state-space processes that will be discussed in
the following sections.

ARMA REPRESENTATIONS
The infinite moving average or autoregres-
sive representations of the previous section are
useful theoretical tools but they cannot be
applied to estimate processes. One needs a
parsimonious representation with a finite num-
ber of coefficients. Autoregressive moving average
(ARMA) models and state-space models pro-
vide such representation; though apparently
conceptually different, they are statistically
equivalent.

Stationary Univariate
ARMA Models
Let’s start with univariate stationary processes.
An autoregressive process of order p − AR(p) is
a process of the form:

xt + a1xt−1 + . . . + a pxt−p = εt

which can be written using the lag operator as

A(L)xt = (1 + a1L + . . . + a P L p)xt

= xt + a1Lxt + . . . + a P L pxt−P = εt

Not all processes that can be written in autore-
gressive form are stationary. In order to study
the stationarity of an autoregressive process,
consider the following polynomial:

A(z) = 1 + a1z + . . . + a pzp

where z is a complex variable.
The equation

A(z) = 1 + a1z + . . . + a P zp = 0

is called the inverse characteristic equation. It
can be demonstrated that if the roots of this
equation, that is, its solutions, are all strictly
greater than 1 in modulus (that is, the roots
are outside the unit circle), then the opera-
tor A(L) is invertible and admits the inverse
representation:

xt = A−1(L)εt

=
+∞∑

i=0

λiεt−i , with
+∞∑

i=0

|λi | < +∞
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In order to avoid possible confusion, note that
the solutions of the inverse characteristic equa-
tion are the reciprocal of the solution of the char-
acteristic equation defined as

A(z) = zp + a1zp−1 + . . . + a p = 0

Therefore an autoregressive process is invert-
ible with an infinite moving average represen-
tation that only involves positive powers of the
operator L if the solutions of the characteristic
equation are all strictly smaller than 1 in abso-
lute value. This is the condition of invertibility
often stated in the literature.

Let’s now consider finite moving-average
representations. A process is called a moving
average process of order q − MA(q) if it admits
the following representation:

xt = (1 + b1L + . . . + bP Lq )εt

= εt + b1εt−1 + . . . + bPεt−q

In a way similar to the autoregressive case, if
the roots of the equation

B(z) = 1 + b1z + . . . + bq zq = 0

are all strictly greater than 1 in modulus, then
the MA(q) process is invertible and, therefore,
admits the infinite autoregressive representa-
tion:

εt = B−1(L)xt

=
+∞∑

i=0

πi xt−i , with
+∞∑

i=0

|πi | < +∞

As in the previous case, if one considers the
characteristic equation,

B(z) = zq + b1zq−1 + . . . + bq = 0

then the MA(q) process admits a causal autore-
gressive representation if the roots of the char-
acteristic equation are strictly smaller than 1 in
modulus.

Let’s now consider, more in general, an
ARMA process of order p,q. We say that a sta-
tionary process admits a minimal ARMA(p, q)
representation if it can be written as

xt + a1xt−1 + a pxt−p = b1εt + . . . + bq εt−q

or equivalently in terms of the lag operator

A(L)xt = B(L)εt

where εt is a serially uncorrelated white noise
with nonzero variance, a0 = b0 = 1, ap �= 0, bq �=
0, the polynomials A and B have roots strictly
greater than 1 in modulus and do not have any
root in common.

Generalizing the reasoning in the pure MA or
AR case, it can be demonstrated that a generic
process that admits the ARMA(p,q) representa-
tion A(L)xt = B(L)εt is stationary if both polyno-
mials A and B have roots strictly different from
1. In addition, if all the roots of the polynomial
A(z) are strictly greater than 1 in modulus, then
the ARMA(p,q) process can be expressed as a
moving average process:

xt = B(L)
A(L)

εt

Conversely, if all the roots of the polyno-
mial B(z) are strictly greater than 1, then the
ARMA(p,q) process can be expressed as an au-
toregressive process:

εt = A(L)
B(L)

xt

Note that in the above discussions every pro-
cess was centered—that is, it had zero constant
mean. As we were considering stationary pro-
cesses, this condition is not restrictive as the
eventual nonzero mean can be subtracted.

Note also that ARMA stationary processes ex-
tend through the entire time axis. An ARMA
process, which begins from some initial condi-
tions at starting time t = 0, is not stationary
even if its roots are strictly outside the unit cir-
cle. It can be demonstrated, however, that such
a process is asymptotically stationary.

Nonstationary Univariate
ARMA Models
So far we have considered only stationary pro-
cesses. However, ARMA equations can also rep-
resent nonstationary processes if some of the
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roots of the polynomial A(z) are equal to 1 in
modulus. A process defined by the equation

A(L)xt = B(L)εt

is called an autoregressive integrated moving-
average (ARIMA) process if at least one of the
roots of the polynomial A is equal to 1 in mod-
ulus. Suppose that λ be a root with multiplicity
d. In this case the ARMA representation can be
written as

A′(L)(I − λL)d xt = B(L)εt

A(L) = A′(L)(I − λL)d

However this formulation is not satisfactory
as the process A is not invertible if initial con-
ditions are not provided; it is therefore prefer-
able to offer a more rigorous definition, which
includes initial conditions. Therefore, we give
the following definition of nonstationary inte-
grated ARMA processes.

A process xt defined for t ≥ 0 is called
an autoregressive integrated moving-average pro-
cess—ARIMA(p,d,q)—if it satisfies a relationship
of the type

A(L)(I − λL)d xt = B(L)εt

where:

� The polynomials A(L) and B(L) have roots
strictly greater than 1.

� εt is a white noise process defined for t ≥ 0.
� A set of initial conditions (x−1, . . . , x−p−d,

εt, . . . , ε−q) independent from the white noise
is given.

Later in this entry we discuss the interpre-
tation and further properties of the ARIMA
condition.

Stationary Multivariate
ARMA Models
Let’s now move on to consider stationary multi-
variate processes. A stationary process that ad-
mits an infinite moving-average representation

of the type

xt =
∞∑

i=0

Hiεt−i

where εt−i is an n-dimensional, zero-mean,
white-noise process with nonsingular variance-
covariance matrix � is called an autoregressive
moving-average—ARMA(p,q)—model, if it satis-
fies a difference equation of the type

A(L)xt = B(L)εt

where A and B are matrix polynomials in the
lag operator L of order p and q respectively:

A(L) =
p∑

i=0

Ai Li , A0 = I, Ap �= 0

B(L) =
p∑

j=0

B j L j , B0 = I, Bq �= 0

If q = 0, the process is purely autoregressive of
order p; if q = 0, the process is purely a moving
average of order q. Rearranging the terms of the
difference equation, it is clear that an ARMA
process is a process where the i-th component
of the process at time t, xi,t is a linear function of
all the components at different lags plus a finite
moving average of white noise terms.

It can be demonstrated that the ARMA rep-
resentation is not unique. The nonuniqueness
of the ARMA representation is due to differ-
ent reasons, such as the existence of a com-
mon polynomial factor in the autoregressive
and the moving-average part. It entails that
the same process can be represented by mod-
els with different pairs p,q. For this reason, one
would need to determine at least a minimal
representation— that is, an ARMA(p,q) repre-
sentation such that any other ARMA(p′,q′) rep-
resentation would have p′ > p, q′ > q. With the
exception of the univariate case, these problems
are very difficult from a mathematical point of
view and we will not examine them in detail.

Let’s now explore what restrictions on the
polynomials A(L) and B(L) ensure that the rela-
tive ARMA process is stationary. Generalizing
the univariate case, the mathematical analysis
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of stationarity is based on the analysis of the
polynomial det[A(z)] obtained by formally re-
placing the lag operator L with a complex vari-
able z in the matrix A(L) whose entries are finite
polynomials in L.

It can be demonstrated that if the complex
roots of the polynomial det[A(z)], that is, the
solutions of the algebraic equation det[A(z)] =
0, which are in general complex numbers, all lie
outside the unit circle, that is, their modulus is
strictly greater than one, then the process that
satisfies the ARMA conditions,

A(L)xt= B(L)εt

is stationary. As in the univariate case, if one
would consider the equations in 1/z, the same
reasoning applies but with roots strictly inside
the unit circle.

A stationary ARMA(p,q) process is an
autocorrelated process. Its time-independent
autocorrelation function satisfies a set of linear
difference equations. Consider an ARMA(p,q)
process that satisfies the following equation:

A0xt + A1xt−1 + . . . + AP xt−P = B0εt + B1εt−1

+ . . . + Bq εt−q

where A0 = I. By expanding the expression for
the autocovariance function, it can be demon-
strated that the autocovariance function sat-
isfies the following set of linear difference
equations:

A0	h + A1	h−1 + . . . + AP	h−p

=

⎧
⎪⎨

⎪⎩

0 if h > q
q−h∑
j=0

B j+h�H′
j

where � and Hi are, respectively, the covari-
ance matrix and the Markov coefficients of the
process in its infinite moving-average represen-
tation:

xt =
∞∑

i=0

Hiεt−i

From the above representation, it is clear that
if the process is purely MA, that is, if p = 0,

then the autocovariance function vanishes for
lag h > q.

It is also possible to demonstrate the converse
of this theorem. If a linear stationary process
admits an autocovariance function that satisfies
the following equations,

A0	h + A1	h−1 + . . . + AP	h−p = 0 if h > q

then the process admits an ARMA(p,q) repre-
sentation. In particular, a stationary process is a
purely finite moving-average process MA(q), if
and only if its autocovariance functions vanish
for h > q, where q is an integer.

Nonstationary Multivariate
ARMA Models
Let’s now consider nonstationary series. Con-
sider a series defined for t ≥ 0 that satisfies the
following set of difference equations:

A0xt + A1xt−1 + . . . + AP xt−P = B0εt + B1εt−1

+ . . . + Bq εt−q

where, as in the stationary case, εt−i is an n-
dimensional zero-mean, white noise process
with nonsingular variance-covariance matrix
�, A0 = I, B0 = I, Ap �= 0, Bq �= 0. Suppose,
in addition, that initial conditions (x−1, . . . ,x–p,
εt, . . . ,ε−q) are given. Under these conditions,
we say that the process xt, which is well de-
fined, admits an ARMA representation.

A process xt is said to admit an ARIMA repre-
sentation if, in addition to the above, it satisfies
the following two conditions: (1) det[B(z)] has
all its roots strictly outside of the unit circle, and
(2) det[A(z)] has all its roots outside the unit cir-
cle but with at least one root equal to 1. In other
words, an ARIMA process is an ARMA process
that satisfies some additional conditions. Later
in this entry we will clarify the meaning of in-
tegrated processes.
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Markov Coefficients and
ARMA Models
For the theoretical analysis of ARMA processes,
it is useful to state what conditions on the
Markov coefficients ensure that the process
admits an ARMA representation. Consider a
process xt, stationary or not, which admits a
moving-average representation either as

xt =
∞∑

i=0

Hiεt−i

or as a linear model:

xt =
t∑

i=0

Hiεt−i + h(t)z

The process xi admits an ARMA representa-
tion if and only if there is an integer q and a set of
p matrices Ai, i = 0, . . . , p such that the Markov
coefficients Hi satisfy the following linear dif-
ference equation starting from q:

p∑

j=0

AJ Hl− j = 0, l > q

Therefore, any ARMA process admits an
infinite moving-average representation whose
Markov coefficients satisfy a linear differ-
ence equation starting from a certain point.
Conversely, any such linear infinite moving-
average representation can be expressed par-
simoniously in terms of an ARMA process.

Hankel Matrices and ARMA Models
For the theoretical analysis of ARMA processes
it is also useful to restate the above conditions in
terms of the Hankel infinite matrices. (A Hankel
matrix is a matrix where for each antidiagonal
the element is the same.) It can be demonstrated
that a process, stationary or not, which admits
either the infinite moving average representa-
tion

xt =
∞∑

i=0

Hiεt−i

or a linear moving average model

xt =
t∑

i=0

Hiεt−i + h(t)z

also admits an ARMA representation if and
only if the Hankel matrix formed with the
sequence of its Markov coefficients has finite
rank or, equivalently, a finite column rank or
row rank.

INTEGRATED SERIES
AND TRENDS
This section introduces the fundamental no-
tions of trend stationary series, difference sta-
tionary series, and integrated series. Consider a
one-dimensional time series. A trend stationary
series is a series formed by a deterministic trend
plus a stationary process. It can be written as

Xt = f (t) + ε(t)

A trend stationary process can be transformed
into a stationary process by subtracting the
trend. Removing the deterministic trend entails
that the deterministic trend is known. A trend
stationary series is an example of an adjustment
model.

Consider now a time series Xt. The opera-
tion of differencing a series consists of form-
ing a new series Yt = �Xt = Xt − Xt−1. The
operation of differencing can be repeated an
arbitrary number of times. For instance, differ-
encing twice the series Xt yields the following
series:

Zt = �Yt = �(�Xt)

= (Xt − Xt−1) − (Xt−2 − Xt−3)

= Xt − Xt−1 − Xt−2 + Xt−3

Differencing can be written in terms of the lag
operator as

�Xd
t = (1 − L)d Xt

A difference stationary series is a series that
is transformed into a stationary series by dif-
ferencing. A difference stationary series can be
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written as

�Xt = μ + ε(t)

Xt = Xt−1 + μ + ε(t)

where ε(t) is a zero-mean stationary process and
μ is a constant. A trend stationary series with a
linear trend is also difference stationary, if spac-
ings are regular. The opposite is not generally
true. A time series is said to be integrated of
order n if it can be transformed into a stationary
series by differencing n times.

Note that the concept of integrated series as
defined above entails that a series extends on
the entire time axis. If a series starts from a set
of initial conditions, the difference sequence can
only be asymptotically stationary.

There are a number of obvious differences be-
tween trend stationary and difference station-
ary series. A trend stationary series experiences
stationary fluctuation, with constant variance,
around an arbitrary trend. A difference station-
ary series meanders arbitrarily far from a linear
trend, producing fluctuations of growing vari-
ance. The simplest example of difference sta-
tionary series is the random walk.

An integrated series is characterized by a
stochastic trend. In fact, a difference stationary
series can be written as

Xt = μt +
[

t−1∑

s=0

ε(s)

]
+ ε(t)

The difference Xt − X∗
t between the value of

a process at time t and the best affine predic-
tion at time t − 1 is called the innovation of the
process. In the above linear equation, the sta-
tionary process ε(t) is the innovation process.
A key aspect of integrated processes is that in-
novations ε(t) never decay but keep on accu-
mulating. In a trend stationary process, on the
other hand, past innovations disappear at every
new step.

These considerations carry over immediately
in a multidimensional environment. Multi-
dimensional trend stationary series will ex-
hibit multiple trends, in principle one for

each component. Multidimensional difference-
stationary series will yield a stationary process
after differencing.

Let’s now see how these concepts fit into
the ARMA framework, starting with univari-
ate ARMA model. Recall that an ARIMA pro-
cess is defined as an ARMA process in which
the polynomial B has all roots outside the unit
circle while the polynomial A has one or more
roots equal to 1. In the latter case the process
can be written as

A′(L)�d xt = B(L)εt

A(L) = (1 − L)d A′(L)

and we say that the process is integrated of or-
der n. If initial conditions are supplied, the pro-
cess can be inverted and the difference sequence
is asymptotically stationary.

The notion of integrated processes carries
over naturally in the multivariate case but with
a subtle difference. Recall from earlier discus-
sion in this entry that an ARIMA model is an
ARMA model:

A(L)xt = B(L)εt

which satisfies two additional conditions: (1)
det[B(z)] has all its roots strictly outside of the
unit circle, and (2) det[A(z)] has all its roots out-
side the unit circle but with at least one root
equal to 1.

Now suppose that, after differencing d times,
the multivariate series �dxt can be represented
as follows:

A′(L)xt = B′(L)εt, 1 with A′(L) = A(L)�d

In this case, if (1) B′(z) is of order q and det[B′(z)]
has all its roots strictly outside of the unit circle
and (2) A′(z) is of order p and det[A′(z)] has all
its roots outside the unit circle, then the process
is called ARIMA(p,d,q). Not all ARIMA mod-
els can be put in this framework as different
components might have a different order of in-
tegration.

Note that in an ARIMA(p,d,q) model each
component series of the multivariate model is
individually integrated. A multivariate series is
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integrated of order d if every component series
is integrated of order d.

Note also that ARIMA processes are not in-
vertible as infinite moving averages, but as
discussed, they can be inverted in terms of
a generic linear moving-average model with
stochastic initial conditions. In addition, the
process in the d-differences is asymptotically
stationary.

In both trend stationary and difference sta-
tionary processes, innovations can be serially
autocorrelated. In the ARMA representations
discussed in the previous section, innovations
are serially uncorrelated white noise as all the
autocorrelations are assumed to be modeled in
the ARMA model. If there is residual autocorre-
lation, the ARMA or ARIMA model is somehow
misspecified.

The notion of an integrated process is essen-
tially linear. A process is integrated if station-
ary innovations keep on adding indefinitely.
Note that innovations could, however, cumu-
late in ways other than addition, producing
essentially nonlinear processes. In ARCH and
GARCH processes for instance, innovations do
not simply add to past innovations.

The behavior of integrated and nonintegrated
time series is quite different and the estima-
tion procedures are different as well. It is
therefore important to ascertain if a series is
integrated or not. Often a preliminary analysis
to ascertain integratedness suggests what type
of model should be used.

A number of statistical tests to ascertain if a
univariate series is integrated are available. Per-
haps the most widely used and known are the
Dickey-Fuller (DF) and the Augmented Dickey-
Fuller (ADF) tests. The DF test assumes as a null
hypothesis that the series is integrated of order
1 with uncorrelated innovations. Under this as-
sumption, the series can be written as a random
walk in the following form:

Xt+1 = ρXt + b + εt

ρ = 1

εt IID

where IID is an independent and identical se-
quence.

In a sample generated by a model of this
type, the value of ρ estimated on the sample
is stochastic. Estimation can be performed
with the ordinary least square (OLS) method.
Dickey and Fuller determined the theoretical
distribution of ρ and computed the critical
values of ρ that correspond to different confi-
dence intervals. The theoretical distribution of
ρ is determined computing a functional of the
Brownian motion.

Given a sample of a series, for instance a series
of log prices, application of the DF test entails
computing the autoregressive parameter ρ on
the given sample and comparing it with the
known critical values for different confidence
intervals. The strict hypothesis of random walk
is too strong for most econometric applications.
The DF test was extended to cover the case of
correlated residuals that are modeled as a linear
model. In the latter case, the DF test is called
the Augmented Dickey-Fuller or ADF test. The
Phillips and Perron test is the DF test in the
general case of autocorrelated residuals.

APPENDIX
We will begin with several concepts from prob-
ability theory.

Stochastic Processes
When it is necessary to emphasize the depen-
dence of the random variable from both time
t and the element ω, a stochastic process is ex-
plicitly written as a function of two variables:
X = X(t,ω). Given ω, the function X = Xt(ω) is
a function of time that is referred to as the path
of the stochastic process.

The variable X might be a single random
variable or a multidimensional random vector.
A stochastic process is therefore a function X =
X(t, ω) from the product space [0,T] × � into the
n-dimensional real space Rn. Because to each
co corresponds a time path of the process—in
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general formed by a set of functions X =
Xt(ω)—it is possible to identify the space �

with a subset of the real functions defined over
an interval [0,T].

Let’s now discuss how to represent a stochas-
tic process X = X(t,ω) and the conditions of
identity of two stochastic processes. As a stochas-
tic process is a function of two variables, we can
define equality as pointwise identity for each
couple (t, ω). However, as processes are defined
over probability spaces, pointwise identity is
seldom used. It is more fruitful to define equal-
ity modulo sets of measure zero or equality with
respect to probability distributions. In general,
two random variables X,Y will be considered
equal if the equality X(ω) = Y(ω) holds for ev-
ery ω with the exception of a set of probability
zero. In this case, it is said that the equality holds
almost everywhere (denoted a.e.).

A rather general (but not complete) represen-
tation is given by the finite dimensional prob-
ability distributions. Given any set of indices
t1, . . . , tm, consider the distributions

μt1,...,tm (H) = P[(Xt1 , . . . , Xtm ) ∈ H, H ∈ B
n]

These probability measures are, for any choice
of the ti, the finite-dimensional joint probabil-
ities of the process. They determine many, but
not all, properties of a stochastic process. For
example, the finite dimensional distributions of
a Brownian motion do not determine whether
or not the process paths are continuous.

In general, the various concepts of equality
between stochastic processes can be described
as follows:

� Property 1. Two stochastic processes are
weakly equivalent if they have the same
finite-dimensional distributions. This is the
weakest form of equality.

� Property 2. The process X = X(t,ω) is said to
be equivalent or to be a modification of the
process Y = Y(t,ω) if, for all t,

P(Xt = Yt) = 1

� Property 3. The process X = X(t, ω) is said to
be strongly equivalent to or indistinguishable
from the process Y = Y(t, ω) if

P(Xt = Yt, for all t) = 1

Property 3 implies Property 2, which in turn
implies Property 1. Implications do not hold in
the opposite direction. Two processes having
the same finite distributions might have com-
pletely different paths. However it is possible
to demonstrate that if one assumes that paths
are continuous functions of time, Properties 2
and 3 become equivalent.

Information Structures
Let’s now turn our attention to the question of
time. We must introduce an appropriate repre-
sentation of time as well as rules that describe
the evolution of information, that is, informa-
tion propagation, over time. The concepts of
information and information propagation are
fundamental in economics and finance theory.

The concept of information in finance is dif-
ferent from both the intuitive notion of infor-
mation and that of information theory in which
information is a quantitative measure related
to the a priori probability of messages. In our
context, information means the (progressive)
revelation of the set of events to which the
current state of the economy belongs. Though
somewhat technical, this concept of informa-
tion sheds light on the probabilistic structure
of finance theory. The point is the following.
Assets are represented by stochastic processes,
that is, time-dependent random variables. But
the probabilistic states on which these random
variables are defined represent entire histories
of the economy. To embed time into the prob-
abilistic structure of states in a coherent way
calls for information structures and filtrations
(a concept we explain next).

It is assumed that the economy is in one
of many possible states and that there is un-
certainty on the state that has been realized.
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Consider a time period of the economy. At the
beginning of the period, there is complete un-
certainty on the state of the economy (i.e., there
is complete uncertainty on what path the econ-
omy will take). Different events have different
probabilities, but there is no certainty. As time
passes, uncertainty is reduced as the number
of states to which the economy can belong is
progressively reduced. Intuitively, revelation of
information means the progressive reduction
of the number of possible states; at the end of
the period, the realized state is fully revealed.
In continuous time and continuous states, the
number of events is infinite at each instant. Thus
its cardinality remains the same. We cannot
properly say that the number of events shrinks.
A more formal definition is required.

The progressive reduction of the set of pos-
sible states is formally expressed in the con-
cepts of information structure and filtration.
Let’s start with information structures. Informa-
tion structures apply only to discrete probabil-
ities defined over a discrete set of states. At the
initial instant T0, there is complete uncertainty
on the state of the economy; the actual state is
known only to belong to the largest possible
event (that is, the entire space �). At the follow-
ing instant T1, assuming that instants are dis-
crete, the states are separated into a partition, a
partition being a denumerable class of disjoint
sets whose union is the space itself. The actual
state belongs to one of the sets of the partitions.
The revelation of information consists in ruling
out all sets but one. For all the states of each
partition, and only for these, random variables
assume the same values.

Suppose, to exemplify, that only two assets
exist in the economy and that each can assume
only two possible prices and pay only two pos-
sible cash flows. At every moment there are 16
possible price-cash flow combinations. We can
thus see that at the moment T1 all the states are
partitioned into 16 sets, each containing only
one state. Each partition includes all the states
that have a given set of prices and cash distri-
butions at the moment T1. The same reasoning

can be applied to each instant. The evolution of
information can thus be represented by a tree
structure in which every path represents a state
and every point a partition. Obviously the tree
structure does not have to develop as symmet-
rically as in the above example; the tree might
have a very generic structure of branches.

Filtration
The concept of information structure based
on partitions provides a rather intuitive rep-
resentation of the propagation of information
through a tree of progressively finer parti-
tions. However, this structure is not sufficient
to describe the propagation of information in
a general probabilistic context. In fact, the set
of possible events is much richer than the
set of partitions. It is therefore necessary to
identify not only partitions but also a struc-
ture of events. The structure of events used
to define the propagation of information is
called a filtration. In the discrete case, however,
the two concepts—information structure and
filtration—are equivalent.

The concept of filtration is based on identi-
fying all events that are known at any given
instant. It is assumed that it is possible to as-
sociate to each trading moment t a σ -algebra
of events Jt ⊂ J formed by all events that are
known prior to or at time t. It is assumed that
events are never “forgotten,” that is, that Jt ⊂JS,
if t < s. An ordering of time is thus created. This
ordering is formed by an increasing sequence of
σ -algebras, each associated to the time at which
all its events are known. This sequence is a fil-
tration. Indicated as {Jt}, a filtration is therefore
an increasing sequence of all σ -algebras Jt, each
associated to an instant t.

In the finite case, it is possible to create a
mutual correspondence between filtrations and
information structures. In fact, given an infor-
mation structure, it is possible to associate to
each partition the algebra generated by the
same partition. Observe that a tree informa-
tion structure is formed by partitions that create
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increasing refinement: By going from one in-
stant to the next, every set of the partition is
decomposed. One can then conclude that the
algebras generated by an information structure
form a filtration.

On the other hand, given a filtration {Jt}, it
is possible to associate a partition to each Jt.
In fact, given any element that belongs to �,
consider any other element that belongs to �

such that, for each set of Jt, both either belong to
or are outside this set. It is easy to see that classes
of equivalence are thus formed, that these create
a partition, and that the algebra generated by
each such partition is precisely the Jt that has
generated the partition.

A stochastic process is said to be adapted
to the filtration {Jt} if the variable Xt is
measurable with respect to the σ -algebra Jt. It
is assumed that the price and cash distribution
processes St(ω) and dt(ω) of every asset are
adapted to {Jt}. This means that, for each t, no
measurement of any price or cash distribution
variable can identify events not included in the
respective algebra or σ -algebra. Every random
variable is a partial image of the set of states
seen from a given point of view and at a given
moment.

The concepts of filtration and of processes
adapted to a filtration are fundamental. They
ensure that information is revealed without
anticipation. Consider the economy and asso-
ciate at every instant a partition and an al-
gebra generated by the partition. Every ran-
dom variable defined at that moment assumes
a value constant on each set of the partition. The
knowledge of the realized values of the random
variables does not allow identifying sets of
events finer than partitions.

One might well ask: Why introduce the com-
plex structure of σ -algebras as opposed to sim-
ply defining random variables? The point is
that, from a logical point of view, the primi-
tive concept is that of states and events. The
evolution of time has to be defined on the prim-
itive structure—it cannot simply be imposed
on random variables. In practice, filtrations be-

come an important concept when dealing with
conditional probabilities in a continuous envi-
ronment. As the probability that a continuous
random variable assumes a specific value is
zero, the definition of conditional probabilities
requires the machinery of filtration.

Conditional Probability and
Conditional Expectation
Conditional probabilities and conditional aver-
ages are fundamental in the stochastic descrip-
tion of financial markets. For instance, one is
generally interested in the probability distribu-
tion of the price of an asset at some date given
its price at an earlier date. The widely used re-
gression models are an example of conditional
expectation models.

The conditional probability of event A given
event B was defined earlier as

P(A|B) = P(A∩ B)
P(B)

This simple definition cannot be used in the con-
text of continuous random variables because
the conditioning event (i.e., one variable assum-
ing a given value) has probability zero. To avoid
this problem, we condition on σ -algebras and
not on single zero-probability events. In gen-
eral, as each instant is characterized by a σ -
algebra Jt, the conditioning elements are the Jt.

The general definition of conditional expecta-
tion is the following. Consider a probability
space (�, J, P) and a σ -algebra G contained in
J and suppose that X is an integrable random
variable on (�, J, P). We define the conditional
expectation of X with respect to G, written as
E[X|G], as a random variable measurable with
respect to G such that

∫

G

E[XG]d P

for every set G ∈ G. In other words, the condi-
tional expectation is a random variable whose av-
erage on every event that belongs to G is equal
to the average of X over those same events, but
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it is G-measurable while X is not. It is possible
to demonstrate that such variables exist and are
unique up to a set of measure zero.

Econometric models usually condition a ran-
dom variable given another variable. In the
previous framework, conditioning one random
variable X with respect to another random
variable Y means conditioning X given σ{Y}
(i.e., given the σ -algebra generated by Y). Thus
E[X|Y] means E[X|σ{Y}].

This notion might seem to be abstract and
to miss a key aspect of conditioning: intu-
itively, conditional expectation is a function of
the conditioning variable. For example, given
a stochastic price process, Xt, one would like
to visualize conditional expectation E[Xt | Xs],
s < t as a function of Xs that yields the expected
price at a future date given the present price.
This intuition is not wrong insofar as the con-
ditional expectation E[X| Y] of X given Y is a
random variable function of Y.

However, we need to specify how conditional
expectations are formed, given that the usual
conditional probabilities cannot be applied as
the conditioning event has probability zero.
Here is where the above definition comes into
play. The conditional expectation of a variable
X given a variable Y is defined in full generality
as a variable that is measurable with respect to
the σ -algebra σ (Y) generated by the condition-
ing variable Y and has the same expected value
of Y on each set of σ (Y). Later in this section
we will see how conditional expectations can
be expressed in terms of the joint p.d.f. of the
conditioning and conditioned variables.

One can define conditional probabilities start-
ing from the concept of conditional expecta-
tions. Consider a probability space (�, J, P),
a sub-σ -algebra G of J, and two events A ∈ J,
B ∈ J. If IA,IB are the indicator functions of the
sets A,B (the indicator function of a set assumes
value 1 on the set, 0 elsewhere), we can define
conditional probabilities of the event A, respec-
tively, given G or given the event B as

P(A|G) = E[IA|G] P(A|B) = E[IA|IB]

Using these definitions, it is possible to demon-
strate that given two random variables X and Y
with joint density f (x, y), the conditional density
of X given Y is

f (x|y) = f (x, y)
fY(y)

where the marginal density, defined as

fY(y) =
∞∫

−∞
f (x, y)dx

is assumed to be strictly positive.
In the discrete case, the conditional expecta-

tion is a random variable that takes a constant
value over the sets of the finite partition asso-
ciated to Jt. Its value for each element of � is
defined by the classical concept of conditional
probability. Conditional expectation is simply
the average over a partition assuming the clas-
sical conditional probabilities.

An important econometric concept related to
conditional expectations is that of a martingale.
Given a probability space (�,J,P) and a filtra-
tion {Jt}, a sequence of Ji-measurable random
variables Xi is called a martingale if the follow-
ing condition holds:

E[Xi+1|Ji ] = Xi

A martingale translates the idea of a “fair
game” as the expected value of the variable at
the next period is the present value of the same
value.

KEY POINTS
� Stochastic processes are time-dependent ran-

dom variables.
� An information structure is a collection of par-

titions of events associated to each instant of
time that become progressively finer with the
evolution of time. A filtration is an increasing
collection of σ -algebras associated to each in-
stant of time.

� The states of the economy, intended as full
histories of the economy, are represented as a
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probability space. The revelation of informa-
tion with time is represented by information
structures or filtrations. Prices and other fi-
nancial quantities are represented by adapted
stochastic processes.

� By conditioning is meant the change in prob-
abilities due to the acquisition of some infor-
mation. It is possible to condition with respect
to an event if the event has nonzero proba-
bility. In general terms, conditioning means
conditioning with respect to a filtration or an
information structure.

� A martingale is a stochastic process such
that the conditional expected value is always
equal to its present value. It embodies the idea
of a fair game where today’s wealth is the best
forecast of future wealth.

� A time series is a discrete-time stochastic pro-
cess, that is, a denumerable collection of ran-
dom variables indexed by integer numbers.

� Any stationary time series admits an infinite
moving average representation, that is to say,
it can be represented as an infinite sum of
white noise terms with appropriate coeffi-
cients.

� A time series is said to be invertible if it can
also be represented as an infinite autoregres-
sion, that is, an infinite sum of all past terms
with appropriate coefficients.

� ARMA models are parsimonious represen-
tations that involve only a finite number of
moving average and autoregressive terms.

� An ARMA model is stationary if all the roots
of the inverse characteristic equation of the
AR or the MA part have roots with modulus
strictly greater than one.

� A process is said to be integrated of order
p if it becomes stationary after differencing
p times.

NOTE
1. See Enders (2009), Gourieroux and Monfort

(1997), Hamilton (1994), and Tsay (2001) for
a comprehensive discussion of modern time
series econometrics.
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Abstract: Information on risk-neutral density is valuable in financial markets for a wide range of
participants. This density can be used to mark-to-market exotic options that are not very liquid on
the market, for anticipation of effects determined by new policy or possible extreme events such
as crashes, and even for designing new trading strategies. There are many models that have been
proposed in the past for estimating the risk-neutral density, each with their pros and cons.

The concept of risk-neutral density (RND) plays
an important theoretical role in asset pricing
as outlined in Cox and Ross (1976), published
very shortly after the publication of the Black-
Scholes model. Since then, the estimation of
RND has become an essential tool for central
banks in monitoring the stability of the finan-
cial system and for measuring the impact of
new policies. Investment banks also rely on the
RND calibrated from liquid European vanilla
options to determine the price of more exotic
positions on their balance sheet that are not very
liquid. Moreover, the first moments of the RND,
such as implied volatility and skewness, can be
used to design trading strategies.

One may argue that the information con-
tained in option prices is redundant to the
information provided by historical prices of

the underlying asset. However, based on the
1987 stock market crash, Jackwerth and Rubin-
stein (1996) demonstrated that this is not the
case. Prior to the crash, the RND estimated at
one-month horizon had been close to lognor-
mal but subsequently the shape of the RND
changed considerably. At the same time, they
also revealed that the historical distribution had
been lognormal and it remained like that after
the crash. In other words, the option prices in
the equity market contain different information
from the historical equity prices.

In this entry we highlight the main steps
for estimating the RND associated with an eq-
uity index. We exemplify the estimation proce-
dure by applying a model based on both the
generalized inverse Gaussian distribution that has
been advocated in the literature for financial

521
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modeling and the well-known lognormal mix-
ture model that has been widely used by in-
vestment houses and central banks. These two
models are straightforward and easy to apply
since the option pricing formulas can be derived
in closed form.

AN APPROPRIATE
PARAMETRIC MODEL
The RND is recovered from a bundle of Euro-
pean vanilla call and put option prices on the
same underlying asset X and with the same
maturity T. The options differ in the exercise
price K. Denoting with f (·) the probability den-
sity function of the underlying asset X under
the risk-neutral probability measure Q, the Eu-
ropean vanilla call price for strike K is

C(K ) = e−rT
∫ ∞

K
(XT − K ) f (XT )dXT (1)

where r is the continuous compounding risk-
free rate.

The partial derivative of 1 with respect to the
strike price K

∂C
∂K

= e−rT ∂

∂k

[∫ ∞

K
(XT − K ) f (XT )dXT

]

= −e−rT
∫ ∞

K
f (XT )dXT = −e−rT [1 − F (K )]

where F(·) is the cumulative distribution func-
tion under the risk-neutral measure. Thus

F (K ) = erT ∂C
∂K

+ 1 (2)

The RND probability function f can be obtained
by derivation of the cumulative function F

f (K ) = erT ∂2C
∂K 2 (3)

One could then try to reconstruct either F
or f from a grid of option prices using fi-
nite difference schemes. However, such numer-
ical methods are notoriously unreliable and
very sensitive to the sample of option prices
available.

Over the years, two main classes of methods
have emerged. First, parametric methods are

underpinned by univariate distributions such
as the Weibull distribution (see Savickas, 2002,
2005), the generalized beta distribution (see Mc-
Donald and Xu, 1995; Anagnou et al., 2005), the
generalized lambda distribution (see Corrado,
2001), the generalized gamma distribution (see
Albota et al., 2009), the g-and-h distribution as
proposed by Dutta and Babbel (2005); and a
mixture of univariate distributions such as that
proposed by Gemmill and Saflekos (2000) for
two lognormals, and Melick and Thomas (1997)
for three lognormals.

The second class is defined by semiparamet-
ric and nonparametric methods such as (1) ex-
pansion methods as used by Jarrow and Rudd
(1982) and Corrado and Su (1997), (2) direct fit-
ting of the implied volatility curve with splines
or other interpolation methods as described
by Shimko (1993), Anagnou et al. (2003), and
Brunner and Hafner (2003), (3) kernel methods
developed in Ait-Sahalia and Lo (1998) and Ait-
Sahalia and Duarte (2003), and (4) maximum
entropy methods as applied by Buchen and
Kelly (1996) and Avellaneda (1998).

The nonparametric approach usually requires
a large sample of data in order to achieve a good
fit. In financial markets, for many asset classes,
large samples may simply not be available. In
this entry, we focus on the fully parametric ap-
proach.

The strategy for parametric models repre-
sented by a vector of parameters θ is to
minimize some type of discrepancy measure
between the theoretical options prices and the
observed market prices.

Given the availability of N European call
options {C(Ki j )} j=1,...,N and M put options
{P(KsJ )} j=i,...,M, all with the same maturity T,
the problem that must be solved is the mini-
mization of the function

H1(θ ) =
N∑

j=1

[C(Ki j ) − Cmkt(Ki j )]
2

+
M∑

j=1

[P(Ks j ) − Pmkt(Ks j )]
2 (4)
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subject to the forward constraint E
Q[XT ] = F0,

where F0 is the forward price on the same un-
derlying asset X and the last term of the sum
accounts for the forward martingale condition
that must be satisfied for any parametric model.
The notation Cmkt, and Pmkt, relates, respectively,
to the actual option prices from the market. The
function H is a discrepancy measure between
the theoretical prices obtained under the chosen
parametric RND f (·; θ ) and the market prices.

While the H in (4) is widely used in practice, it
is sometimes useful to consider other potential
discrepancy measures such as

H2(θ ) =
N∑

j=1

[C(Ki j ) − Cmkt(Ki j )]
2

Cmkt(Ki j )

+
M∑

j=1

[P(Ks j ) − Pmkt(Ks j )]
2

Pmkt(Ks j )

H3(θ ) =
N∑

j=1

[C(Ki j ) − Cmkt(Ki j )]
2

C(Ki j )

+
M∑

j=1

[P(Ks j ) − Pmkt(Ks j )]
2

P(Ks j )

H4(θ ) =
N∑

j=1

∣∣[C(Ki j ) − Cmkt(Ki j )]
∣∣

+
M∑

j=1

∣∣[P(Ks j ) − Pmkt(Ks j )]
∣∣

Since the market option prices that do not sat-
isfy put-call parity are filtered out of the data
used for calibration, it is possible to work with
call prices only or with put prices only, if that is
more convenient numerically.

TWO PARAMETRIC MODELS
FOR RND ESTIMATION
In order to be able to reverse engineer the RND
from options prices, a pricing formula for Eu-
ropean vanilla options under the chosen distri-
bution is needed. There is a great advantage in
having the pricing formulas in closed form, oth-

erwise numerical integral approximation meth-
ods must be employed and this means that there
is a risk of introducing errors in the estimation
procedure.

Here we illustrate the RND estimation proce-
dure for two special cases, the general inverse
Gaussian (GIG) distribution and the lognormal
mixture (LnMix) distribution. For both models,
closed-form solutions for pricing European op-
tions are available.

Pricing Options with the GIG
Distribution
The GIG distribution has been advocated for
applications in financial modeling due to its
flexibility to fit heavy tails (see Bibby and
Sorensen, 2003). The probability density func-
tion of the GIG distribution is1

fGIG(x; λ, χ,ψ) = xλ−1 exp[− 1
2 (χx−1 + ψx)]

kλ(χ,ψ)
× I(0,∞)(x) (5)

where

kλ(χ,ψ) =
∫ ∞

0
xλ−1 exp

[
−1

2
(χx−1 + ψx)

]
dx

is a normalizing constant that is related to the
modified Bessel function of the third kind,

Kν(z) = 1
2

∫ ∞

0
tν−1 exp

[
− z

2
(t−1 + t)

]
dt (6)

via

kλ(χ,ψ) = 2
(

χ

ψ

)λ/2

Kλ(
√

χψ) (7)

Further technical details on this distribution can
be found in Paolella (2007).

The GIG distribution is well defined, or
“proper,” for the parameter domain

{(λ, χ,ψ) ∈ R × (0,∞) × (0,∞)}

There are also two boundary cases possible: (1)
λ > 0, χ = 0 and ψ > 0 and (2) λ < 0, χ > 0
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and ψ = 0. Applying some standard algebraic
routine leads to

P(K ) = K e−rT FG I G(K ; λ, χ,ψ)

− e−rT
∫ K

0
xFGIG(x; λ, χ,ψ)dx

= K e−rT FGIG(K ; λ, χ,ψ)

− e−rT kλ+1(χ,ψ)
kλ(χ,ψ)

×
∫ K

0
fGIG(x; λ + 1, χ, ψ)dx

= K e−rT FGIG(K ; λ, χ,ψ)

− e−rT
√

χ

ψ

Kλ+1(
√

χψ)

Kλ(
√

χψ)

× FGIG(K ; λ + 1, χ, ψ)

This formula can be rewritten in terms of the
forward price F0 = E

Q(XT ) as

P(K ) = K e−rT FGIG(K ; λ, χ,ψ)

− F0e−rT FGIG(K ; λ + 1, χ, ψ) (8)

RND Estimation with the LnMix
Distribution
The importance of fat tails and non-normal dis-
tributions in modeling equity stock and vanilla
options has become prominent in the aftermath
of the Black Monday 1987 crisis. The LnMix
model is a convex combination of several log-
normal individual models. Bahra (1997) was the
first to propose using the LnMix model for RND
estimation. An exact solution for options pric-
ing of vanilla European call and put options

can be derived as a weighted sum of standard
Black-Scholes prices. In practice, the preferred
mixture model is the one based on two individ-
ual lognormal models.

If LN(x; α, β) is the lognormal distribution
with parameters α and β, then the LnMix dis-
tribution is given by the following probability
density function

fL N(x; α1, β1, α2, β2, η) = ηL N(x; α1, β1)

+ (1 − η)L N(x; α2, β2) (9)

Bahra (1997) described the formulas for pric-
ing European vanilla call and put options

C(K ) = e−rT {η[e (α1+0.5β2
1 ) N(d1) − K N(d2)]

+ (1 − η)[e (α2+0.5β2
2 ) N(d3) − K N(d4)]}

P(K ) = e−rT {η[e (α1+0.5β2
1 ) N(d1) − K N(d2)]

+ (1 − η)[e (α2+0.5β2
2 ) N(d3) − K N(d4)]}

where

d1 = α1 + β2
1 − log(K )
β1

, d2 = d1 − β1

d3 = α2 + β2
2 − log(K )
β2

, d4 = d3 − β2

and N is the standard normal cumulative dis-
tribution function.

This model has five parameters α1, β1, α2, β2,
and η and one should expect a better fit of data
with this model compared to the GIG model
that has only three parameters. If the calibration
goodness-of-fit results are very similar between
the two models, then the model with fewer pa-
rameters should be preferred based on the prin-
ciple of parsimony.

Table 1 Call Option Prices on May 29, 1998, on the FTSE100 Index

T F0 DF 5700 5750 5800 5850 5900 5950 6000 6050

Sep-98 5915.50 0.98 418.81 385.79 354.00 323.51 294.41 266.76 240.62 216.06
Dec-98 6000.11 0.96 586.56 553.83 521.93 490.86 460.62 431.28 402.89 375.54
Mar-99 6079.46 0.95 727.12 694.31 662.15 630.57 599.56 569.19 539.56 510.77
Jun-99 6128.55 0.93 837.32 804.79 772.79 741.21 710.02 679.35 649.34 620.15
Sep-99 6195.66 0.91 950.32 917.58 885.27 853.33 821.71 790.54 759.96 730.09
Dec-99 6269.07 0.90 1061.20 1028.20 995.70 963.43 931.46 899.9 868.85 838.46
Mar-00 6341.98 0.88 1167.80 1134.70 1001.90 1069.40 1037.2 1005.40 974.12 943.36
Jun-00 6383.58 0.87 1250.20 1217.30 1184.70 1152.30 1120.30 1088.60 1057.40 1026.70

Note: Initial value X0 = 5843.32. In the second column the forward prices are reported. The third column reports the
discount factors. Strike prices range from 5700 to 6050.
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Table 2 Discrepancy Measures across Maturities for the Data in Table 1

Sep-98 Dec-98 Mar-99 Jun-99 Sep-99 Dec-99 Mar-00 Jun-00

H1 GIG 2.66E-05 3.21E-05 4.97E-05 5.32E-05 6.98E-05 8.03E-05 2.87E-04 1.41E-04
H1 LnMix 2.64E-05 3.96E-05 5.12E-05 6.75E-05 8.85E-05 1.03E-04 2.90E-04 1.36E-04
H2 GIG 5.26E-04 4.04E-04 4.82E-04 4.33E-04 4.91E-04 4.99E-04 1.58E-03 7.30E-04
H2 LnMix 5.23E-04 4.98E-04 4.94E-04 5.50E-04 6.23E-04 6.37E-04 1.61E-03 7.00E-04
H3 GIG 5.12E-04 4.93E-04 4.90E-04 5.46E-04 6.19E-04 6.34E-04 1.57E-03 6.98E-04
H3 LnMix 5.15E-04 4.00E-04 4.78E-04 4.31E-04 4.89E-04 4.97E-04 1.55E-03 7.27E-04
H4 GIG 0.0128 0.0140 0.0176 0.0181 0.0207 0.0222 0.0374 0.0294
H4 LnMix 0.0127 0.0156 0.0177 0.0203 0.0233 0.0251 0.0376 0.0288
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Figure 1 Absolute Percentage Errors for the First Four Maturities
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FITTING THE MODELS
TO DATA
For the RND estimation with a parametric
model, the main elements are (1) formulas for
pricing either European call or European put
options, together with a formula for the forward
price, (2) a minimization procedure for a non-
linear function such as H1 in the function given
by (4), and (3) a set of market option prices.
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Figure 2 Absolute Percentage Errors for the Last Four Maturities

Here we illustrate the calibration of the GIG
and LnMix models using a dataset reported in
Table 1, which is described in Rebonato (2004,
pp. 290–291), and it is a typical example for the
UK equity market.

The goodness of fit of the two models can
be assessed to some extent from the results in
Table 2, which reports the values obtained for
the sum of squared residual H1(θ̂ ; m), where
θ̂ = arg minθ H1(θ ; m) and m is the vector with
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components Kj/X0 reflecting moneyness. The
smaller the value, the better is the fit. It is inter-
esting that the GIG distribution, having three
parameters, seems to calibrate across maturi-
ties very closely and is even a superior fit than
the lognormal mixture (LnMix) model that uses
five parameters.

A more informative comparison can be done
by looking at the error structure versus mon-
eyness. The fitting error for the two models
and for each maturity are plotted in Figures 1
and 2 as the absolute percentage errors, defined
for the European call option prices as 100 ×
|C(θ̂ ; m) − Cmkt(m)|/Cmkt(m), where C(θ̂ ; m) is
the same as the theoretical prices established
in equation (1), which is calculated for the esti-
mated parameter vector θ̂ following the min-
imization procedure focused on the function
given in (4). In the neighborhood of at-the-
money prices, the absolute percentage error is
less than 1%, while out-of-the-money or in-the-
money, it may go even higher.

Which parametric model to use depends on
the task at hand. It is possible that some para-
metric models perform better for some asset
classes (such as foreign exchange), while other
models perform better for different asset classes
(such as equity). Some models may have a su-
perior fit in the tails.

KEY POINTS
� The information contained in the risk-neutral

density is useful to many participants in fi-
nancial markets. Central banks use this in-
formation in monitoring the stability of the
financial system and for assessing the impact
of new policies, and banks use it for marking
positions in exotic derivatives that they hold.

� To recover the RND, a bundle of market prices
for European vanilla call and put options on
the same underlying asset and with the same
maturity is used.

� Parameteric and nonparametric models have
been proposed for estimating the RND. For

several reasons, in practice, parametric mod-
els are better to employ. The main elements
of a parametric model to estimate RND are
an option pricing formula combined with a
forward price formula, a minimization pro-
cedure, and a database of observed option
prices.

� RND estimation can be done easily with para-
metric models for which pricing formulas are
available for European vanilla options. The
generalized inverse Gaussian model and the
lognormal mixture model are examples of
such models.

� The calibration is done by minimizing a dis-
crepancy measure between the theoretical
model prices and the observed option mar-
ket prices.

NOTE
1. IA(x) is the indicator function being equal to

1 when x ∈ A and zero otherwise.
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Abstract: Much of the financial data that is used in financial modeling is drawn from the company’s
financial statements. The four basic financial statements are the balance sheet, the income statement,
the statement of cash flows, and the statement of shareholders’ equity. It is important to understand
these data so that the information conveyed by them is interpreted properly in financial modeling.
The financial statements are created using several assumptions that affect how to use and interpret
the financial data.

Financial statements are summaries of the op-
erating, financing, and investment activities of
a business. Financial statements should pro-
vide information useful to both investors and
creditors in making credit, investment, and
other business decisions. And this usefulness
means that investors and creditors can use
these statements to predict, compare, and eval-
uate the amount, timing, and uncertainty of
future cash flows.1 In other words, financial
statements provide the information needed to
assess a company’s future earnings and, there-
fore, the cash flows expected to result from
those earnings.

Information from financial statements is typ-
ically used in financial modeling for forecast-
ing and valuation purposes. In this entry, we
discuss the general principles that guide the
preparation of financial statements (generally

accepted accounting principles), the four ba-
sic financial statements (balance sheet, income
statement, statement of cash flows, and state-
ment of shareholders’ equity), and the assump-
tions underlying the preparation of financial
statements.

ACCOUNTING PRINCIPLES
The accounting data in financial statements are
prepared by the firm’s management according
to a set of standards, referred to as generally
accepted accounting principles (GAAP). Gener-
ally accepted accounting principles consist of
the FASB Accounting Standards Codification,
and, for publicly-traded companies, the rules
and releases of the Securities and Exchange
Commission.2
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The financial statements of a company whose
stock is publicly traded must, by law, be au-
dited at least annually by independent public
accountants (i.e., accountants who are not em-
ployees of the firm). In such an audit, the ac-
countants examine the financial statements and
the data from which these statements are pre-
pared and attest—through the published audi-
tor’s opinion—that these statements have been
prepared according to GAAP. The auditor’s
opinion focuses on whether the statements con-
form to GAAP and that there is adequate dis-
closure of any material change in accounting
principles.

The financial statements are created using
several assumptions that affect how we use and
interpret the financial data:

� Transactions are recorded at historical cost. There-
fore, the values shown in the statements are
not market or replacement values, but rather
reflect the original cost (adjusted for depreci-
ation in the case of depreciable assets).

� The appropriate unit of measurement is the dollar.
While this seems logical, the effects of infla-
tion, combined with the practice of recording
values at historical cost, may cause problems
in using and interpreting these values.

� The statements are recorded for predefined periods
of time. Generally, statements are produced to
cover a chosen fiscal year or quarter, with the
income statement and the statement of cash
flows spanning a period’s time and the bal-
ance sheet and statement of shareholders’ eq-
uity as of the end of the specified period. But
because the end of the fiscal year is generally
chosen to coincide with the low point of activ-
ity in the operating cycle, the annual balance
sheet and statement of shareholders’ equity
may not be representative of values for the
year.

� Statements are prepared using accrual account-
ing and the matching principle. Most businesses
use accrual accounting, where income and
revenues are matched in timing such that in-

come is recorded in the period in which it is
earned and expenses are reported in the pe-
riod in which they are incurred in an attempt
to generate revenues. The result of the use
of accrual accounting is that reported income
does not necessarily coincide with cash flows.
Because the financial analyst is concerned ul-
timately with cash flows, he or she often must
understand how reported income relates to a
company’s cash flows.

� It is assumed that the business will continue as a
going concern. The assumption that the busi-
ness enterprise will continue indefinitely jus-
tifies the appropriateness of using historical
costs instead of current market values be-
cause these assets are expected to be used up
over time instead of sold.

� Full disclosure requires providing information
beyond the financial statements. The require-
ment that there be full disclosure means
that, in addition to the accounting num-
bers for such accounting items as revenues,
expenses, and assets, narrative and addi-
tional numerical disclosures are provided in
notes accompanying the financial statements.
An analysis of financial statements is, there-
fore, not complete without this additional
information.

� Statements are prepared assuming conservatism.
In cases in which more than one interpre-
tation of an event is possible, statements
are prepared using the most conservative
interpretation.

The financial statements and the auditors’
findings are published in the firm’s annual and
quarterly reports sent to shareholders and the
10-K and 10-Q filings with the Securities and Ex-
change Commission (SEC). Also included in the
reports, among other items, is a discussion by
management, providing an overview of com-
pany events. The annual reports are much more
detailed and disclose more financial informa-
tion than the quarterly reports.
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INFORMATION CONVEYED
BY THE BASIC FINANCIAL
STATEMENTS
In this section we will discuss the four basic
financial statements and the information that
they convey.

The Balance Sheet
The balance sheet is a report of the assets, liabili-
ties, and equity of a firm at a point in time, gen-
erally at the end of a fiscal quarter or fiscal year.
Assets are resources of the business enterprise,
which are comprised of current or long-lived
assets. How did the company finance these re-
sources? It did so with liabilities and equity.
Liabilities are obligations of the business enter-
prise that must be repaid at a future point in
time, whereas equity is the ownership inter-
est of the business enterprise. The relation be-
tween assets, liabilities and equity is simple, as
reflected in the balance of what is owned and
how it is financed, referred to as the accounting
identity:

Assets = Liabilities + Equity

Assets
Assets are anything that the company owns that
has a value. These assets may have a physical
existence or not. Examples of physical assets
include inventory items held for sale, office fur-
niture, and production equipment. If an asset
does not have a physical existence, we refer to
it as an intangible asset, such as a trademark
or a patent. You cannot see or touch an intan-
gible asset, but it still contributes value to the
company.

Assets may also be current or long-term, de-
pending on how fast the company would be
able to convert them into cash. Assets are gen-
erally reported in the balance sheet in order of
liquidity, with the most liquid asset listed first
and the least liquid listed last.

The most liquid assets of the company are
the current assets. Current assets are assets that
can be turned into cash in one operating cycle
or one year, whichever is longer. This contrasts
with the noncurrent assets, which cannot be liq-
uidated quickly.

There are different types of current assets. The
typical set of current assets is the following:

� Cash, bills, and currency are assets that are
equivalent to cash (e.g., bank account).

� Marketable securities, which are securities
that can be readily sold.

� Accounts receivable, which are amounts
due from customers arising from trade
credit.

� Inventories, which are investments in raw
materials, work-in-process, and finished
goods for sale.

A company’s need for current assets is dic-
tated, in part, by its operating cycle. The oper-
ating cycle is the length of time it takes to turn
the investment of cash into goods and services
for sale back into cash in the form of collections
from customers. The longer the operating cy-
cle, the greater a company’s need for liquidity.
Most firms’ operating cycle is less than or equal
to one year.

Noncurrent assets comprise both physical
and nonphysical assets. Plant assets are phys-
ical assets, such as buildings and equipment,
and are reflected in the balance sheet as gross
plant and equipment and net plant and equip-
ment. Gross plant and equipment, or gross
property, plant, and equipment, is the total cost
of investment in physical assets; that is, what
the company originally paid for the property,
plant, and equipment that it currently owns.
Net plant and equipment, or net property, plant,
and equipment, is the difference between gross
plant and equipment and accumulated depre-
ciation, and represents the book value of the
plant and equipment assets. Accumulated de-
preciation is the sum of depreciation taken for
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physical assets in the firm’s possession. There-
fore,

Gross plant and equipment
− Accumulated depreciation
= Net plant and equipment

Companies may present just the net plant and
equipment figure on the balance sheet, placing
the detail with respect to accumulated depreci-
ation in a footnote. Interpreting financial state-
ments requires knowing a bit about how assets
are depreciated for financial reporting pur-
poses. Depreciation is the allocation of the cost
of an asset over its useful life (or economic life).
In the case of the fictitious Sample Company,
whose balance sheet is shown in Table 1, the

Table 1 The Sample Company Balance Sheet for
Years 1 and 2 (in millions)

Year 2 Year 1

Cash $40 $30
Accounts receivable 100 90
Inventory 180 200
Other current assets 10 10

TOTAL CURRENT ASSETS $350 $330

Property, plant, and equipment $900 $800
Less accumulated depreciation 270 200

Net property, plant, and equipment 630 600

Intangible assets 20 20

TOTAL ASSETS $1,000 $950

Accounts payable $150 $140
Current maturities of long-term debt 60 40

TOTAL CURRENT LIABILITIES $180 $165

Long-term debt 300 250

TOTAL LIABILITIES $380 $325

Minority interest 30 15

Common stock 50 50
Additional paid-in capital 100 100
Retained earnings 500 400

TOTAL SHAREHOLDERS’ EQUITY 650 550

TOTAL LIABILITIES AND
SHAREHOLDERS’ EQUITY

$1,000 $950

original cost of the fixed assets (i.e., plant, prop-
erty, and equipment)—less any write-downs for
impairment—for year 2 is $900 million. The ac-
cumulated depreciation for Sample in Year 1 is
$250 million; this means that the total depreci-
ation taken on existing fixed assets over time is
$270 milion. The net property, plant, and equip-
ment account balance is $630 million. This is
also referred to as the book value or carrying
value of these assets.

Intangible assets are assets that are not finan-
cial instruments, yet have no physical existence,
such as patents, trademarks, copyrights, fran-
chises, and formulas. Intangible assets may be
amortized over some period, which is akin to
depreciation. Keep in mind that a company may
own a number of intangible assets that are not
reported on the balance sheet. A company may
only include an intangible asset’s value on its
balance sheet if (1) there are likely future bene-
fits attributable specifically to the asset, and (2)
the cost of the intangible asset can be measured.

Suppose a company has an active, ongoing
investment in research and development to de-
velop new products. It must expense what is
spent on research and development each year
because a given investment in R&D does not
likely meet the two criteria because it is not un-
til much later, after the R&D expense is made,
that the economic viability of the investment is
determined. If, on the other hand, a company
buys a patent from another company, this cost
may be capitalized and then amortized over the
remaining life of the patent. So when you look
at a company’s assets on its balance sheet, you
may not be getting the complete picture of what
it owns.

Liabilities
We generally use the terms “liability” and
“debt” as synonymous terms, though “liabil-
ity” is actually a broader term, encompassing
not only the explicit contracts that a company
has, in terms of short-term and long-term debt
obligations, but also obligations that are not
specified in a contract, such as environmental
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obligations or asset retirement obligations. Lia-
bilities may be interest-bearing, such as a bond
issue, or noninterest-bearing, such as amounts
due to suppliers.

In the balance sheet, liabilities are presented
in order of their due date and are often pre-
sented in two categories, current liabilities and
long-term liabilities. Current liabilities are obli-
gations due within one year or one operating
cycle (whichever is longer). Current liabilities
consist of:

� Accounts payable are amounts due to suppli-
ers for purchases on credit.

� Wages and salaries payable are amounts due
employees.

� Current portion of long-term indebtedness.
� Short-term bank loans.

Long-term liabilities are obligations that are
due beyond one year. There are different types
of long-term liabilities, including:

� Notes payables and bonds, which are indebt-
edness (loans) in the form of securities

� Capital leases, which are rental obligations
that are long-term, fixed commitments

� Asset retirement liability, which is the con-
tractual or statutory obligation to retire or de-
commission the asset and restore the site to
required standards at the end of the asset’s
life

� Deferred taxes, which are taxes that may have
to be paid in the future that are currently not
due, though they are expensed for financial
reporting purposes. Deferred taxes arise from
differences between accounting and tax meth-
ods (e.g., depreciation methods).

Note that although deferred income taxes are
often referred to as liabilities, some analysts
will classify them as equity if the deferral is per-
ceived to be perpetual. For example, a company
that buys new depreciable assets each year will
always have some level of deferred taxes; in

that case, an analyst will classify deferred taxes
as equity.

Equity
The equity of a company is the ownership in-
terest. The book value of equity, which for a
corporation is often referred to as sharehold-
ers’ equity or stockholders’ equity, is basically
the amount that investors paid the company
for their ownership interest, plus any earnings
(or less any losses), and minus any distribu-
tions to owners. For a corporation, equity is the
amount that investors paid the corporation for
the stock when it was initially sold, plus or mi-
nus any earnings or losses, less any dividends
paid. Keep in mind that for any company, the
reported amount of equity is an accumulation
over time since the company’s inception (or in-
corporation, in the case of a corporation).

Shareholders’ equity is the carrying or book
value of the ownership of a company. Share-
holders’ equity comprises:

+ Par value A nominal amount per share of
stock (sometimes prescribed by
law), or the stated value, which is
a nominal amount per share of
stock assigned for accounting
purposes if the stock has no par
value.

+ Additional
paid-in-capital

Also referred to as capital surplus,
the amount paid for shares of
stock by investors in excess of
par or stated value.

− Treasury stock The accounting value of shares of
the firm’s own stock bought by
the firm.

+ Retained
earnings

The accumulation of prior and
current periods’ earnings and
losses, less any prior or current
periods’ dividends.

± Accumulated
comprehensive
income or loss

The total amount of income or loss
that arises from transactions that
result in income or losses, yet are
not reported through the income
statement. Items giving rise to
this income include foreign
currency translation adjustments
and unrealized gains or losses on
available-for-sale investments.

= Shareholders’
equity
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A Note on Minority Interest
On many companies’ consolidated financial
statements, you will notice a balance sheet ac-
count titled Minority Interest. When a company
owns a substantial portion of another com-
pany, the accounting principles require that the
company consolidate that company’s financial
statements into its own. Basically what hap-
pens in consolidating the financial statements
is that the parent company will add the ac-
counts of the subsidiary to its accounts (i.e.,
subsidiary inventory + parent inventory = con-
solidated inventory).3 If the parent does not
own 100% of the subsidiary’s ownership inter-
est, an account is created, referred to as minority
interest, which reflects the amount of the sub-
sidiary’s assets not owned by the parent. This
account will be presented between liabilities
and equity on the consolidated balance sheet.
Is it a liability or an equity account? It is neither.

A similar adjustment takes place on the in-
come statement. The minority interest account
on the income statement reflects the income (or
loss) in proportion to the equity in the sub-
sidiary not owned by the parent.

Structure of the Balance Sheet
Consider a simple balance sheet for the Sam-
ple Company shown in Table 1 for fiscal years
Year 1 and Year 2. The most recent fiscal year’s
data is presented in the left-most column of
data. Notice that the accounting identity holds;
that is, total assets are equal to the sum of
the total liabilities and the total shareholders’
equity.

The Income Statement
The income statement is a summary of operating
performance over a period of time (e.g., a fis-
cal quarter or a fiscal year). We start with the
revenue of the company over a period of time
and then subtract the costs and expenses related
to that revenue. The bottom line of the income
statement consists of the owners’ earnings for
the period. To arrive at this “bottom line,” we
need to compare revenues and expenses. The

basic structure of the income statement includes
the following:

Sales or revenues ⇐ Represent the amount of
goods or services sold, in
terms of price paid by
customers

Less: Cost of goods sold
(or cost of sales)

⇐ The amount of goods or
services sold, in terms of
cost to the firm

Gross profit ⇐ The difference between
sales and cost of goods
sold

Less: Selling and general
expenditures

⇐ Salaries, administrative,
marketing expenditures,
etc.

Operating profit ⇐ Income from operations
(ignores effects of
financing decisions and
taxes); earnings before
interest and taxes (EBIT),
operating income, and
operating earnings

Less: Interest expense ⇐ Interest paid on debt
Net income before taxes ⇐ Earnings before taxes
Less: Taxes ⇐ Taxes expense for the

current period
Net income ⇐ Operating profit less

financing expenses (e.g.,
interest) and taxes

Less: Preferred stock
dividends

⇐ Dividends paid to
preferred shareholders

Earnings available to
common shareholders

⇐ Net income less
preferred stock
dividends; residual
income

Though the structure of the income statement
varies by company, the basic idea is to present
the operating results first, followed by non-
operating results. The cost of sales, also referred
to as the cost of goods sold, is deducted from
revenues, producing a gross profit; that is, a
profit without considering all other, general op-
erating costs. These general operating expenses
are those expenses related to the support of the
general operations of the company, which in-
cludes salaries, marketing costs, and research
and development. Depreciation, which is the
amortized cost of physical assets, is also de-
ducted from gross profit. The amount of the
depreciation expense represents the cost of the
wear and tear on the property, plant, and equip-
ment of the company.
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Table 2 The Sample Company Income Statement for
Year 2 (in millions)

Sales $1,000
Cost of goods sold 600

Gross profit $400
Depreciation 50
Selling, general, and administrative expenses 160

Operating profit $190
Interest expense 23

Income before taxes $167
Taxes 67

Net income $100

Once we have the operating income, we have
summarized the company’s performance with
respect to the operations of the business. But
there is generally more to a company’s per-
formance. From operating income, we deduct
interest expense and add any interest income.
Further, adjustments are made for any other in-
come or cost that is not a part of the company’s
core business.

There are a number of other items that may
appear as adjustments to arrive at net income.
One of these is extraordinary items, which are
defined as unusual and infrequent gains or
losses. Another adjustment would be for the
expense related to the write-down of an asset’s
value.

In the case of the Sample Company, whose
income statement is presented in Table 2, the
income from operations—its core business—is
$190 million, whereas the net income (i.e., the
“bottom line”) is $100 million.

Earnings Per Share
Companies provide information on earnings per
share (EPS) in their annual and quarterly finan-
cial statement information, as well as in their
periodic press releases. Generally, EPS is cal-
culated as net income, divided by the number
of shares outstanding. Companies must report
both basic and diluted earnings per share.

Basic earnings per share is net income (minus
preferred dividends), divided by the average
number of shares outstanding. Diluted earnings

per share is net income (minus preferred div-
idends), divided by the number of shares out-
standing considering all dilutive securities (e.g.,
convertible debt, options). Diluted earnings per
share, therefore, gives the shareholder informa-
tion about the potential dilution of earnings.
For companies with a large number of dilutive
securities (e.g., stock options, convertible pre-
ferred stock or convertible bonds), there can be
a significant difference between basic and di-
luted EPS. You can see the effect of dilution by
comparing the basic and diluted EPS.

More on Depreciation
There are different methods that can be used
to allocate an asset’s cost over its life. Gener-
ally, if the asset is expected to have value at the
end of its economic life, the expected value, re-
ferred to as a salvage value (or residual value),
is not depreciated; rather, the asset is depreci-
ated down to its salvage value. There are dif-
ferent methods of depreciation that we classify
as either straight-line or accelerated. Straight-
line depreciation allocates the cost (less salvage
value) in a uniform manner (equal amount per
period) throughout the asset’s life. Accelerated
depreciation allocates the asset’s cost (less sal-
vage value) such that more depreciation is taken
in the earlier years of the asset’s life. There
are alternative accelerated methods available,
including:

� Declining balance method, in which a con-
stant rate is applied to a declining amount
(the undepreciated cost)

� Sum-of-the-years’ digits method, in which a
declining rate is applied to the asset’s depre-
ciable basis

Another method is the units-of-activity
method, in which the useful life is defined in
terms of a measure of units of production or
some other metric or use (e.g., hours, miles).
The depreciation expense in any period is de-
termined as the usage in that period.
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A common declining balance method is
the double-declining balance method (DDB),
which applies the rate that is twice that of the
straight-line rate. In this case, the straight-line
rate is 10% per year; therefore, the declining
balance rate is 20% per year. We apply this rate
of 20% against the original cost of $1,000,000,
resulting in a depreciation expense in the first
year of $200,000. In the second year, we apply
this 20% against the undepreciated balance of
$1,000,000 − 200,000 = $800,000, resulting in a
depreciation of $160,000.

Because the declining balance methods result
in more depreciation sooner, relative to straight-
line, and lower depreciation in the later years,
companies may switch to straight-line in these
later years. The same amount is depreciated
over the life of the asset, but the pattern—and
depreciation’s impact on earnings—is modified
slightly. In the case of the declining balance
method, salvage value is not considered in the
calculation of depreciation until the undepreci-
ated balance reaches the salvage value.

For this same asset, the sum-of-the-years’ dig-
its (SYD) depreciation for the first year is the
rate of 10/55, or 18.18%, applied against the
depreciable basis of $1,000,000 − 100,000 =
$900,000:

SYD first year = $900,000(10/55) = $163,636

We calculate the denominator as the “sum of
the years”: 10 + 9 + 8 + 7 + 6 + 5 + 4 + 3 +
2 + 1 = 55. In the second year, the rate is 9/55
applied against the $900,000, and so on.

Accelerated methods result in higher depre-
ciation expenses in earlier years, relative to
straight-line, as can be seen in Figure 1. As
a result, accelerated methods result in lower
reported earnings in earlier years, relative to
straight-line. When comparing companies, it is
important to understand whether the compa-
nies use different methods of depreciation be-
cause the choice of depreciation method affects
both the balance sheet (through the carrying
value of the asset) and the income statement
(through the depreciation expense).

A major source of deferred income taxes and
deferred tax assets is the accounting methods
used for financial reporting purposes and tax
purposes. In the case of financial accounting
purposes, the company chooses the method
that best reflects how its assets lose value over
time, though most companies use the straight-
line method. However, for tax purposes the
company has no choice but to use the prescribed
rates of depreciation, using the Modified Ac-
celerated Cost Recovery System (MACRS). For
tax purposes, a company does not have discre-
tion over the asset’s depreciable life or the rate
of depreciation—they must use the MACRS
system.

The MACRS system does not incorporate sal-
vage value and is based on a declining balance
system. The depreciable life for tax purposes
may be longer than or shorter than that used
for financial reporting purposes. For example,
the MACRS rate for 3- and 5-year assets are as
follows:

Year 3-year 5-year

1 33.33% 20.00%
2 44.45% 32.00%
3 14.81% 19.20%
4 7.41% 11.52%
5 11.52%
6 5.76%

You’ll notice the fact that a 3-year asset is
depreciated over four years and a 5-year as-
set is depreciated over six years. That is the re-
sult of using what is referred to as a half-year
convention—using only half a year’s worth of
depreciation in the first year of an asset’s life.
This system results in a leftover amount that
must still be depreciated in the last year (i.e.,
the fourth year in the case of a 3-year asset
and the sixth year in the case of a 5-year as-
set). We provide a comparison of straight-line
and MACRS depreciation in Figure 2. You can
see that the methods produce different depre-
ciation expenses, which result in the different
income amounts for tax and financial reporting
purposes.
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Panel A: Depreciation Expense

Panel B: Book Value of the Asset

Figure 1 Comparison of Depreciation Expense and Book Value
Depreciation expense each year for an asset with an original cost of $1,000,000, a salvage value of $10,000,
and a 10-year useful life

The Statement of Cash Flows
The statement of cash flows is the summary of a
firm’s cash flows, summarized by operations,
investment activities, and financing activities.
A simplified cash flow statement is provided in
Table 3 for the fictitious Sample Company. Cash
flow from operations is cash flow from day-
to-day operations. Cash flow from operating
activities is basically net income adjusted for
(1) noncash expenditures, and (2) changes in
working capital accounts. The adjustment for

changes in working capital accounts is neces-
sary to adjust net income that is determined us-
ing the accrual method to a cash flow amount.
Increases in current assets and decreases in cur-
rent liabilities are positive adjustments to arrive
at the cash flow; decreases in current assets and
increases in current liabilities are negative ad-
justments to arrive at the cash flow.

Cash flow for/from investing is the cash flows
related to the acquisition (purchase) of plant,
equipment, and other assets, as well as the
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Panel A: Depreciation Expense

Panel B: Carrying Value

Figure 2 Depreciation for Financial Accounting Purposes versus Tax Purposes
Consider an asset that costs $200,000 and has a salvage value of $20,000. If the asset has a useful life of
8 years, but is classified as a 5-year asset for tax purposes, the depreciation and book value of the asset
will be different between the financial accounting records and the tax records

proceeds from the sale of assets. Cash flow for/
from financing activities is the cash flow from
activities related to the sources of capital funds
(e.g., buy back common stock, pay dividends,
issue bonds).

Not all of the classifications required by ac-
counting principles are consistent with the true
flow for the three types of activities. For exam-
ple, interest expense is a financing cash flow, yet
it affects the cash flow from operating activities
because it is a deduction to arrive at net income.
This inconsistency is also the case for interest

income and dividend income, both of which re-
sult from investing activities, but show up in
the cash flow from operating activities through
their contribution to net income.

The sources of a company’s cash flows can re-
veal a great deal about the company and its
prospects. For example, a financially healthy
company tends to consistently generate cash
flows from operations (that is, positive oper-
ating cash flows) and invests cash flows (that
is, negative investing cash flows). To remain vi-
able, a company must be able to generate funds
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Table 3 The Sample Company Statement of Cash
Flows, for the period ending December 31, 2006
(in millions)

Net income $100
Add depreciation 50
Subtract increase in accounts receivable −10
Add decrease in inventory 20
Add increase in accounts payable 50
Cash flow from operations $210

Retire debt −$100
Cash flow for financing −100

Purchase of equipment −$100
Cash flow for investment −100

Change in cash flow $10

from its operations; to grow, a company must
continually make capital investments.

The change in cash flow—also called net cash
flow—is the bottom line in the statement of cash
flows and is equal to the change in the cash
account as reported on the balance sheet. For
the Sample Company, shown in Table 3, the
net change in cash flow is a positive $10 mil-
lion; this is equal to the change in the cash ac-
count from $50 million in Year 1 to $60 million in
Year 2.

By studying the cash flows of a company
over time, we can gauge a company’s finan-
cial health. For example, if a company relies
on external financing to support its operations
(that is, reliant on cash flows from financing and
not from operations) for an extended period of
time, this is a warning sign of financial trouble
up ahead.

The Statement of Stockholders’
Equity
The statement of stockholders’ equity (also re-
ferred to as the statement of shareholders’ equity)
is a summary of the changes in the equity ac-
counts, including information on stock options
exercised, repurchases of shares, and Treasury
shares. The basic structure is to include a rec-
onciliation of the balance in each component
of equity from the beginning of the fiscal year
with the end of the fiscal year, detailing changes

attributed to net income, dividends, purchases
or sales of Treasury stock. The components are
common stock, additional paid-in capital, re-
tained earnings, and Treasury stock. For each
of these components, the statement begins with
the balance of each at the end of the previous
fiscal period and then adjustments are shown
to produce the balance at the end of the current
fiscal period.

In addition, there is a reconciliation of any
gains or losses that affect stockholders’ equity
but which do not flow through the income state-
ment, such as foreign-currency translation ad-
justments and unrealized gains on investments.
These items are of interest because they are part
of comprehensive income, and hence income
to owners, but they are not represented on the
company’s income statement.

Why Bother About the Footnotes?
Footnotes to the financial statements contain
additional information, supplementing or ex-
plaining financial statement data. These notes
are presented in both the annual report and the
10-K filing (with the SEC), though the latter usu-
ally provides a greater depth of information.

The footnotes to the financial statements pro-
vide information pertaining to:

� The significant accounting policies and practices
that the company uses. This helps the analyst
with the interpretation of the results, com-
parability of the results to other companies
and to other years for the same company,
and in assessing the quality of the reported
information.

� Income taxes. The footnotes tell us about
the company’s current and deferred income
taxes, breakdowns by the type of tax (e.g.,
federal versus state), and the effective tax rate
that the company is paying.

� Pension plans. The detail about pension plans,
including the pension assets and the pension
liability, is important in determining whether
a company’s pension plan is overfunded or
underfunded.
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� Leases. You can learn about both the capital
leases, which are the long-term lease obliga-
tions that are reported on the balance sheet,
and about the future commitments under op-
erating leases, which are not reflected on the
balance sheet.

� Long-term debt. You can find detailed infor-
mation about the maturity dates and interest
rates on the company’s debt obligations.

The phrase “the devil is in the details” applies
aptly to the footnotes of a company’s financial
statement. Through the footnotes, a company
is providing information that is crucial in ana-
lyzing a company’s financial health and perfor-
mance. If footnotes are vague or confusing, as
they were in the case of Enron prior to the break
in the scandal, the analyst must ask questions
to help understand this information.

ACCOUNTING FLEXIBILITY
The generally accepted accounting principles
provide some choices in the manner in which
some transactions and assets are accounted. For
example, a company may choose to account
for inventory, and hence costs of sales, using
Last-in, First-out (LIFO) or First-in, First-out
(FIFO). This is intentional because these prin-
ciples are applied to a broad set of companies
and no single set of methods offers the best rep-
resentation of a company’s condition or perfor-
mance for all companies. Ideally, a company’s
management, in consultation with the accoun-
tants, chooses those accounting methods and
presentations that are most appropriate for the
company.

A company’s management has always had
the ability to manage earnings through the ju-
dicious choice of accounting methods within
the GAAP framework. The company’s “watch-
dogs” (i.e., the accountants) should keep the
company’s management in check. However, re-
cent scandals have revealed that the watch-
dog function of the accounting firms was not
working well. Additionally, some companies’

management used manipulation of financial re-
sults and outright fraud to distort the financial
picture.

The Sarbanes-Oxley Act of 2002 offers some
comfort in terms of creating the oversight board
for the auditing accounting firms. In addi-
tion, the Securities and Exchange Commission,
the Financial Accounting Standards Board,
and the International Accounting Standards
Board are tightening some of the flexibility that
companies had in the past.

Pro Forma Financial Data
Pro forma financial information is really a
misnomer—the information is neither pro
forma (that is, forward looking), nor reliable
financial data. What is it? Creative accounting.
It started during the Internet-tech boom in the
1990s and persists today: Companies release fi-
nancial information that is prepared according
to its own liking, using accounting methods that
they create.

Why did companies start doing this? What
is wrong with generally accepted accounting
principles (GAAP)? During the Internet-tech
stock boom, many startup companies quickly
went public and then felt the pressures to gen-
erate profits. However, profits in that indus-
try were hard to come by during that period
of time. What some companies did is generate
financial data that they included in company
releases that reported earnings not calculated
using GAAP—but rather by methods of their
own. In some cases, these alternative methods
hid a lot of the ills of these companies.

The use of pro forma financial data may
be helpful, but also may be misleading to
investors. Analysts routinely adjust published
financial statement data to remove unusual,
nonrecurring items. This can give the analyst a
better predictor of the continued performance
of the company. So what is wrong with the
company itself doing this? Nothing, unless it
becomes misleading, such as a company includ-
ing its nonrecurring gains, but not including its
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nonrecurring losses. In concern for the possi-
bility of misleading information being given to
investors, the Securities and Exchange Com-
mission now requires that if companies release
pro forma financial data, they must also
reconcile this data with GAAP.4

KEY POINTS
� There are four basic financial statements: the

balance sheet, the income statement, the state-
ment of cash flows, and the statement of
stockholders’ equity.

� The balance sheet and the statement of share-
holders’ equity are statements with values of
accounts at a point in time. In the case of the
balance sheet, the company presents data as
of the end of the most recent two years; in
the case of the statement of shareholders’ eq-
uity, from the latest fiscal year to the end.
The income statement and the statement of
cash flows provide data on earnings and cash
flows over the period, whether that period is
a fiscal quarter or year.

� The information conveyed in the footnotes
is essential to the understanding of financial
statements. There is detail in these footnotes
that gives us a better idea of the financial
health of the company. The financial state-
ments and the accompanying footnotes pro-
vide the accounting principles that guide
companies in the preparation of financial
statements.

� Not only must the accounting methods that a
company uses be understood, but the choices
that a company has made among the available
accounting methods should be understood.

NOTES
1. The purpose, focus, and objectives of finan-

cial statements are detailed in Financial Ac-
counting Standards Board (1978, 1980).

2. Effective July 1, 2009, Financial Accounting
Standards Board (FASB) Accounting Stan-
dards Codification.

3. There are other adjustments made for inter-
corporate transactions, but we will not go
into these in this entry.

4. Securities and Exchange Commission
RIN3235-A169, “Conditions for Use of Non-
GAAP Financial Measures,” effective March
28, 2003.
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Abstract: Financial analysis involves the selection, evaluation, and interpretation of financial data
and other pertinent information to assist in evaluating the operating performance and financial
condition of a company. The operating performance of a company is a measure of how well a
company has used its resources—its assets, both tangible and intangible—to produce a return on its
investment. The financial condition of a company is a measure of its ability to satisfy its obligations,
such as the payment of interest on its debt in a timely manner. The analyst has many tools available
in the analysis of financial information. These tools include financial ratio analysis and quantitative
analysis. The analyst must understand how to use these tools, along with economics and accounting
information, in the most effective manner.

Financial analysis is one of the many tools
useful in valuation because it helps analysts
and investors gauge returns and risks. In
this entry, we explain and illustrate financial
ratios—one of the tools of financial analysis. In
financial ratio analysis we select the relevant
information—primarily the financial statement
data—and evaluate it. We show how to incorpo-
rate market data and economic data in the anal-
ysis of financial ratios. Finally, we show how to
interpret financial ratio analysis, identifying the
pitfalls that occur when it’s not done properly.

RATIOS AND THEIR
CLASSIFICATION
A ratio is a mathematical relation between two
quantities. Suppose you have 200 apples and

100 oranges. The ratio of apples to oranges is
200/100, which we can conveniently express
as 2:1 or 2. A financial ratio is a comparison
between one bit of financial information and
another. Consider the ratio of current assets
to current liabilities, which we refer to as the
current ratio. This ratio is a comparison be-
tween assets that can be readily turned into
cash—current assets—and the obligations that
are due in the near future—current liabilities.
A current ratio of 2 or 2:1 means that we have
twice as much in current assets as we need to
satisfy obligations due in the near future.

Ratios can be classified according to the
way they are constructed and the financial
characteristic they are describing. For exam-
ple, we will see that the current ratio is con-
structed as a coverage ratio (the ratio of current
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assets—available funds—to current liabilities—
the obligation) that we use to describe a firm’s
liquidity (its ability to meet its immediate
needs).

There are as many different financial ratios as
there are possible combinations of items ap-
pearing on the income statement, balance sheet,
and statement of cash flows. We can classify
ratios according to how they are constructed
or according to the financial characteristic that
they capture.

Ratios can be constructed in the following
four ways:

1. As a coverage ratio. A coverage ratio is a mea-
sure of a firm’s ability to “cover,” or meet, a
particular financial obligation. The denomi-
nator may be any obligation, such as interest
or rent, and the numerator is the amount of
the funds available to satisfy that obligation.

2. As a return ratio. A return ratio indicates a
net benefit received from a particular invest-
ment of resources. The net benefit is what
is left over after expenses, such as operating
earnings or net income, and the resources
may be total assets, fixed assets, inventory,
or any other investment.

3. As a turnover ratio. A turnover ratio is a mea-
sure of how much a firm gets out of its assets.
This ratio compares the gross benefit from an
activity or investment with the resources em-
ployed in it.

4. As a component percentage. A component per-
centage is the ratio of one amount in a finan-
cial statement, such as sales, to the total of
amounts in that financial statement, such as
net profit.

In addition, we can also express financial data
in terms of time—say, how many days’ worth of
inventory we have on hand—or on a per-share
basis—say, how much a firm has earned for each
share of common stock. Both are measures we
can use to evaluate operating performance or
financial condition.

When we assess a firm’s operating perfor-
mance, a concern is whether the company is

applying its assets in an efficient and profitable
manner. When an analyst assesses a firm’s fi-
nancial condition, a concern is whether the com-
pany is able to meet its financial obligations. The
analyst can use financial ratios to evaluate five
aspects of operating performance and financial
condition:

1. Return on investment
2. Liquidity
3. Profitability
4. Activity
5. Financial leverage

There are several ratios reflecting each of the
five aspects of a firm’s operating performance
and financial condition. We apply these ratios
to the Fictitious Corporation, whose balance
sheets, income statements, and statement of
cash flows for two years are shown in Tables 1,
2, and 3, respectively. We refer to the most re-
cent fiscal year for which financial statements

Table 1 Fictitious Corporation Balance Sheets for
Years Ending December 31, in Thousands

Current Prior
Year Year

ASSETS
Cash $400 $200
Marketable securities 200 0
Accounts receivable 600 800
Inventories 1,800 1,000
Total current assets $3,000 $2,000
Gross plant and equipment $11,000 $10,000
Accumulated depreciation (4,000) (3,000)
Net plant and equipment 7,000 7,000
Intangible assets 1,000 1,000
Total assets $11,000 $10,000

LIABILITIES AND SHAREHOLDERS’ EQUITY
Accounts payable $500 $400
Other current liabilities 500 200
Long-term debt 4,000 5,000
Total liabilities $5,000 $5,600
Common stock, $1 par value;

Authorized 2,000,000 shares
Issued 1,500,000 and 1,200,000
shares

1,500 1,200

Additional paid-in capital 1,500 800
Retained earnings 3,000 2,400
Total shareholders’ equity 6,000 4,400
Total liabilities and

shareholders’ equity
$11,000 $10,000
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Table 2 Fictitious Corporation Income Statements for
Years Ending December 31, in Thousands

Current Prior
Year Year

Sales $10,000 $9,000
Cost of goods sold (6,500) (6,000)
Gross profit $3,500 $3,000
Lease expense (1,000) (500)
Administrative expense (500) (500)
Earnings before interest and

taxes (EBIT)
$2,000 $2,000

Interest (400) (500)
Earnings before taxes $1,600 $1,500
Taxes (400) (500)
Net income $1,200 $1,000
Preferred dividends (100) (100)
Earnings available to common

shareholders
$1,100 $900

Common dividends (500) (400)
Retained earnings $600 $500

are available as the “current year.” The “prior
year” is the fiscal year prior to the current year.

The ratios we introduce here are by no means
the only ones that can be formed using financial
data, though they are some of the more com-
monly used. After becoming comfortable with
the tools of financial analysis, an analyst will
be able to create ratios that serve a particular
evaluation objective.

RETURN-ON-INVESTMENT
RATIOS
Return-on-investment ratios compare measures
of benefits, such as earnings or net income, with
measures of investment. For example, if an an-
alyst wants to evaluate how well the firm uses
its assets in its operations, he could calculate
the return on assets—sometimes called the basic
earning power ratio—as the ratio of earnings be-
fore interest and taxes (EBIT) (also known as
operating earnings) to total assets:

Basic earning power

=Earnings before interest and taxes
Total assets

Table 3 Fictitious Company Statement of Cash Flows,
Years Ended December 31, in Thousands

Current Prior
Year Year

Cash flow from (used for) operating
activities

Net income $1,200 $1,000
Add or deduct adjustments to cash

basis:
Change in accounts receivables $200 $(200)
Change in accounts payable 100 400
Change in marketable securities (200) 200
Change in inventories (800) (600)
Change in other current liabilities 300 0
Depreciation 1,000 1,000

600 800
Cash flow from operations $1,800 $1,800
Cash flow from (used for) investing

activities
Purchase of plant and equipment $(1,000) $0
Cash flow from (used for) investing

activities
$(1,000) $0

Cash flow from (used for) financing
activities

Sale of common stock $1,000 $0
Repayment of long-term debt (1,000) (1,500)
Payment of preferred dividends (100) (100)
Payment of common dividends (500) (400)
Cash flow from (used for) financing

activities
(600) (1,900)

Increase (decrease) in cash flow $200 $(100)
Cash at the beginning of the year 200 300
Cash at the end of the year $400 $200

For Fictitious Corporation, for the current year:

Basic earning power = $2,000,000
$11,000,000

= 0.1818 or 18.18%

For every dollar invested in assets, Fictitious
earned about 18 cents in the current year. This
measure deals with earnings from operations;
it does not consider how these operations are
financed.

Another return-on-assets ratio uses net
income—operating earnings less interest and
taxes—instead of earnings before interest and
taxes:

Return on assets = Net income
Total assets
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(In actual application the same term, return on
assets, is often used to describe both ratios. It
is only in the actual context or through an ex-
amination of the numbers themselves that we
know which return ratio is presented. We use
two different terms to describe these two return-
on-asset ratios in this entry simply to avoid any
confusion.)

For Fictitious in the current year:

Return on assets = $1,200,000
$11,000,000

= 0.1091 or 10.91%

Thus, without taking into consideration how
assets are financed, the return on assets for Fic-
titious is 18%. Taking into consideration how
assets are financed, the return on assets is 11%.
The difference is due to Fictitious financing part
of its total assets with debt, incurring interest of
$400,000 in the current year; hence, the return-
on-assets ratio excludes taxes of $400,000 in the
current year from earnings in the numerator.

If we look at Fictitious’s liabilities and equi-
ties, we see that the assets are financed in part
by liabilities ($1 million short term, $4 million
long term) and in part by equity ($800,000 pre-
ferred stock, $5.2 million common stock). In-
vestors may not be interested in the return the
firm gets from its total investment (debt plus
equity), but rather shareholders are interested
in the return the firm can generate on their in-
vestment. The return on equity is the ratio of the
net income shareholders receive to their equity
in the stock:

Return on equity

= Net income
Book value of shareholders’ equity

For Fictitious Corporation, there is only one
type of shareholder: common. For the current
year:

Return on equity = $1,200,000
$6,000,000

= 0.2000 or 20.00%

Recap: Return-on-Investment Ratios
The return-on-investment ratios for Fictitious
Corporation for the current year are:

Basic earning power = 18.18%
Return on assets = 10.91%
Return on equity = 20.00%

These return-on-investment ratios indicate:

� Fictitious earns over 18% from operations, or
about 11% overall, from its assets.

� Shareholders earn 20% from their investment
(measured in book value terms).

These ratios do not provide information on:

� Whether this return is due to the profit mar-
gins (that is, due to costs and revenues) or to
how efficiently Fictitious uses its assets.

� The return shareholders earn on their actual
investment in the firm, that is, what share-
holders earn relative to their actual invest-
ment, not the book value of their investment.
For example, $100 may be invested in the
stock, but its value according to the balance
sheet may be greater than or, more likely, less
than $100.

DuPont System
The returns on investment ratios provides a
“bottom line” on the performance of a company,
but do not tell us anything about the “why” be-
hind this performance. For an understanding of
the “why,” an analyst must dig a bit deeper into
the financial statements. A method that is useful
in examining the source of performance is the
DuPont system. The DuPont system is a method
of breaking down return ratios into their com-
ponents to determine which areas are respon-
sible for a firm’s performance. To see how it is
used, let us take a closer look at the first defini-
tion of the return on assets:

Basic earning power

= Earnings before interest and taxes
Total assets
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Suppose the return on assets changes from
20% in one period to 10% the next period. We do
not know whether this decreased return is due
to a less efficient use of the firm’s assets—that
is, lower activity—or to less effective manage-
ment of expenses (that is, lower profit margins).
A lower return on assets could be due to lower
activity, lower margins, or both. Because an an-
alyst is interested in evaluating past operating
performance to evaluate different aspects of the
management of the firm and to predict future
performance, knowing the source of these re-
turns is valuable.

Let us take a closer look at the return on assets
and break it down into its components: mea-
sures of activity and profit margin. We do this
by relating both the numerator and the denom-
inator to sales activity. Divide both the numer-
ator and the denominator of the basic earning
power by revenues:

Basic earning power

= Earnings before interest and taxes/Revenues
Revenues total assets/Revenues

which is equivalent to:

Basic earning power

=
(

Earnings before interest and taxes
Revenues

)

(
Revenues

Revenues total assets

)

This says that the earning power of the com-
pany is related to profitability (in this case, op-
erating profit) and a measure of activity (total
asset turnover).

Basic earning power

= (Operating profit margin)

(Total asset turnover)

When analyzing a change in the company’s
basic earning power, an analyst could look at
this breakdown to see the change in its compo-
nents: operating profit margin and total asset
turnover.

This method of analyzing return ratios in
terms of profit margin and turnover ratios, re-

ferred to as the DuPont System, is credited to the
E.I. DuPont Corporation, whose management
developed a system of breaking down return
ratios into their components.

Let’s look at the return on assets of Fictitious
for the two years. Its returns on assets were 20%
in the prior year and 18.18% in the current year.
We can decompose the firm’s returns on assets
for the two years to obtain:

Basic Earning Operating Total Asset
Year Power Profit Margin Turnover

Prior 20.00% 22.22% 0.9000 times
Current 18.18 20.00 0.9091 times

We see that operating profit margin declined
over the two years, yet asset turnover improved
slightly, from 0.9000 to 0.9091. Therefore, the
return-on-assets decline is attributable to lower
profit margins.

The return on assets can be broken down into
its components in a similar manner:

Return on assets =
(

Net income
Revenues

)

(
Revenues

Revenues total assets

)

or

Return on assets

= (Net profit margin)(Total asset turnover)

The basic earning power ratio relates to the
return on assets. Recognizing that:

Net income = Earnings before tax(1 − Tax rate)

then

Net income = Earnings before interest and taxes

×
(

Earnings before taxes
Earnings before interest and taxes

)

↑
equity’s share of earnings

(1 − Tax rate)
↑

tax retention %

The ratio of earnings before taxes to earn-
ings before interest and taxes reflects the inter-
est burden of the company, whereas the term
(1 − tax rate) reflects the company’s tax burden.
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Therefore,

Return on assets

=
(

Earnings before interest and taxes
Revenues

)

×
(

Revenues
Revenues total assets

)

×
(

Earnings before taxes
Earnings before interest and taxes

)

(1 − Tax rate)

or

Return on assets
= (Operating profit margin)(Total asset turnover)

×(Equity′s share of earnings)(Tax retention %)

The breakdown of a return-on-equity ratio
requires a bit more decomposition because in-
stead of total assets as the denominator, the de-
nominator in the return is shareholders’ equity.
Because activity ratios reflect the use of all of the
assets, not just the proportion financed by eq-
uity, we need to adjust the activity ratio by the
proportion that assets are financed by equity
(that is, the ratio of the book value of share-
holders’ equity to total assets):

Return on equity = (Return on assets)
Total assets

Shareholder’s equity

Return on equity

=
Net income

Revenues

Revenues

Total assets

Total assets

Shareholder’s equity
↑

Equity multiplier

The ratio of total assets to shareholders’ eq-
uity is referred to as the equity multiplier. The
equity multiplier, therefore, captures the effects
of how a company finances its assets, referred
to as its financial leverage. Multiplying the to-
tal asset turnover ratio by the equity multiplier
allows us to break down the return-on-equity
ratios into three components: profit margin, as-
set turnover, and financial leverage. For exam-
ple, the return on equity can be broken down

into three parts:

Return on equity
= (Net profit margin)(Total asset turnover)

(Equity multiplier)

Applying this breakdown to Fictitious for the
two years:

Return Net Total Total Equity
on Profit Asset Debt to Multi-

Year Equity Margin Turnover Assets plier

Prior 22.73% 11.11% 0.9000 times 56.00% 2.2727
Current 20.00 12.00 0.9091 45.45% 1.8332

The return on equity decreased over the two
years because of a lower operating profit mar-
gin and less use of financial leverage.

The analyst can decompose the return on eq-
uity further by breaking out the equity’s share
of before-tax earnings (represented by the ratio
of earnings before and after interest) and tax
retention percentage. Consider the example in
Figure 1, in which we provide a DuPont break-
down of the return on equity for Microsoft Cor-
poration for the fiscal year ending June 30, 2006,
in Panel A. The return on equity of 31.486% can
be broken down into three and then five compo-
nents, as shown in this figure. We can also use
this breakdown to compare the return on equity
for the 2005 and 2006 fiscal years, as shown in
Panel B. As you can see, the return on equity im-
proved from 2005 to 2006 and, using this break-
down, we can see that this was due primarily
to the improvement in the asset turnover and
the increased financial leverage.

This decomposition allows the analyst to take
a closer look at the factors that are control-
lable by a company’s management (e.g., asset
turnover) and those that are not controllable
(e.g., tax retention). The breakdowns lead the
analyst to information on both the balance sheet
and the income statement. And this is not the
only breakdown of the return ratios—further
decomposition is possible.
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For the fiscal year ending June 30, 2006,

Return on equity =
Net income
Total assets

= $12.599
$40.014

= 0.31486 or 31.486%

Breaking return on equity into three components:

Return on equity =
Net income
Revenues

Revenues×
Total assets

Total assets
Shareholders’ equity

×

=
$12.599
$44.282

$44.282
$69.597

$69.×× 5597
$40.014

= 0.31486 or 31.486%

Breaking the return on equity into five components:

Return on equity =

Earnings before
interest and taxes

Revenues
Earnings before taxes

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ ×

Earnings before
interest and taxes

⎛

⎝
⎜
⎜

⎞⎞

⎠
⎟
⎟

−× )( × ⎛
⎝⎜

⎞
Tax rate1

Revenues
Total assets ⎠⎠⎟

×
⎛
⎝⎜

⎞
⎠⎟

Total assets
Shareholders’ equity

Return on equity =
$18.262
$44.282

$18⎛
⎝⎜

⎞
⎠⎟

× ..262
$18.262

1 0.31010
$44.282
$69.5

⎛
⎝⎜

⎞
⎠⎟

−× )( ×
997

$69.597
$40.014

⎛
⎝⎜

⎞
⎠⎟

× ⎛
⎝⎜

⎞
⎠⎟

= 0.41240 × × ×1.0 0.68990 0.63626    1.73932 

=     0.31486 or 31.486%

×

Comparing the components between the June 30, 2006 fiscal year and the June 30, 2005 fiscal year,

Return on equity =

Earnings before
interest and taxes

Revenues
Earnings before taxes

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ ×

Earnings before
interest and taxes

⎛

⎝
⎜
⎜

⎞⎞

⎠
⎟
⎟

−× )( × ⎛
⎝⎜

⎞
Tax rate1

Revenues
Total assets ⎠⎠⎟

×
⎛
⎝⎜

⎞
⎠⎟

Total assets
Shareholders’ equity

Return on equity June 30, 2006 = 0.41240 × 1.0 × 0.68990 × 0.63626 × 1.73932 = 31.486%
Return on equity June 30, 2006 = 0.41791 × 1.0 × 0.73695 × 0.56186 × 1.47179 = 25.468%

Figure 1 The DuPont System Applied to Microsoft Corporation

LIQUIDITY
Liquidity reflects the ability of a firm to meet its
short-term obligations using those assets that
are most readily converted into cash. Assets
that may be converted into cash in a short pe-
riod of time are referred to as liquid assets; they
are listed in financial statements as current as-
sets. Current assets are often referred to as work-
ing capital, since they represent the resources
needed for the day-to-day operations of the
firm’s long-term capital investments. Current
assets are used to satisfy short-term obligations,
or current liabilities. The amount by which cur-
rent assets exceed current liabilities is referred
to as the net working capital.

Operating Cycle
How much liquidity a firm needs depends on
its operating cycle. The operating cycle is the du-
ration from the time cash is invested in goods

and services to the time that investment pro-
duces cash. For example, a firm that produces
and sells goods has an operating cycle compris-
ing four phases:

1. Purchase raw materials and produce goods,
investing in inventory.

2. Sell goods, generating sales, which may or
may not be for cash.

3. Extend credit, creating accounts receivable.
4. Collect accounts receivable, generating cash.

The four phases make up the cycle of cash
use and generation. The operating cycle would
be somewhat different for companies that pro-
duce services rather than goods, but the idea
is the same—the operating cycle is the length
of time it takes to generate cash through the
investment of cash.

What does the operating cycle have to
do with liquidity? The longer the operat-
ing cycle, the more current assets are needed
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(relative to current liabilities) since it takes
longer to convert inventories and receivables
into cash. In other words, the longer the operat-
ing cycle, the greater the amount of net working
capital required.

To measure the length of an operating cycle
we need to know:

� The time it takes to convert the investment in
inventory into sales (that is, cash → inven-
tory → sales → accounts receivable).

� The time it takes to collect sales on credit (that
is, accounts receivable → cash).

We can estimate the operating cycle for Fic-
titious Corporation for the current year, using
the balance sheet and income statement data.
The number of days Fictitious ties up funds in
inventory is determined by the total amount
of money represented in inventory and the av-
erage day’s cost of goods sold. The current in-
vestment in inventory—that is, the money “tied
up” in inventory—is the ending balance of in-
ventory on the balance sheet. The average day’s
cost of goods sold is the cost of goods sold on
an average day in the year, which can be esti-
mated by dividing the cost of goods sold (which
is found on the income statement) by the num-
ber of days in the year. The average day’s cost
of goods sold for the current year is:

Average day’s cost of goods sold

= Cost of goods sold
365 days

= $6,500,000
365 days

= $17,808 per day

In other words, Fictitious incurs, on average, a
cost of producing goods sold of $17,808 per day.

Fictitious has $1.8 million of inventory on
hand at the end of the year. How many days’
worth of goods sold is this? One way to look at
this is to imagine that Fictitious stopped buying
more raw materials and just finished produc-
ing whatever was on hand in inventory, using
available raw materials and work-in-process.

How long would it take Fictitious to run out of
inventory?

We compute the days sales in inventory (DSI),
also known as the number of days of inventory, by
calculating the ratio of the amount of inventory
on hand (in dollars) to the average day’s cost of
goods sold (in dollars per day):

Days sales in inventory

= Amount of inventory on hand
Average day’s cost of goods sold

= $1,800,000
$17,808 per day

= 101 days

In other words, Fictitious has approximately
101 days of goods on hand at the end of the cur-
rent year. If sales continued at the same price,
it would take Fictitious 101 days to run out of
inventory.

If the ending inventory is representative of
the inventory throughout the year, then it takes
about 101 days to convert the investment in
inventory into sold goods. Why worry about
whether the year-end inventory is representa-
tive of inventory at any day throughout the
year? Well, if inventory at the end of the fis-
cal year-end is lower than on any other day of
the year, we have understated the DSI. Indeed,
in practice most companies try to choose fiscal
year-ends that coincide with the slow period of
their business. That means the ending balance
of inventory would be lower than the typical
daily inventory of the year. To get a better pic-
ture of the firm, we could, for example, look
at quarterly financial statements and take aver-
ages of quarterly inventory balances. However,
here for simplicity we make a note of the prob-
lem of representatives and deal with it later in
the discussion of financial ratios.

It should be noted that as an attempt to make
the inventory figure more representative, some
suggest taking the average of the beginning and
ending inventory amounts. This does nothing
to remedy the representativeness problem be-
cause the beginning inventory is simply the
ending inventory from the previous year and,
like the ending value from the current year, is
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measured at the low point of the operating cy-
cle. A preferred method, if data are available, is
to calculate the average inventory for the four
quarters of the fiscal year.

We can extend the same logic for calculating
the number of days between a sale—when an
account receivable is created—and the time it
is collected in cash. If we assume that Fictitious
sells all goods on credit, we can first calculate
the average credit sales per day and then figure out
how many days’ worth of credit sales are rep-
resented by the ending balance of receivables.

The average credit sales per day are:

Credit sales per day = Credit sales
365 days

= $10,000,000
365 days

= $27,397 per day

Therefore, Fictitious generates $27,397 of
credit sales per day. With an ending balance
of accounts receivable of $600,000, the days sales
outstanding (DSO), also known as the number of
days of credit, in this ending balance is calculated
by taking the ratio of the balance in the accounts
receivable account to the credit sales per day:

Days sales outstanding = Accounts receivable
Credit sales per day

= $600,000
$27,397 per day

= 22 days

If the ending balance of receivables at the end
of the year is representative of the receivables
on any day throughout the year, then it takes,
on average, approximately 22 days to collect
the accounts receivable. In other words, it takes
22 days for a sale to become cash.

Using what we have determined for the in-
ventory cycle and cash cycle, we see that for
Fictitious:

Operating cycle = DSI + DSO

= 101 days + 22 days

= 123 days

We also need to look at the liabilities on the
balance sheet to see how long it takes a firm
to pay its short-term obligations. We can apply
the same logic to accounts payable as we did to
accounts receivable and inventories. How long
does it take a firm, on average, to go from cre-
ating a payable (buying on credit) to paying for
it in cash?

First, we need to determine the amount of an
average day’s purchases on credit. If we assume all
the Fictitious purchases are made on credit, then
the total purchases for the year would be the
cost of goods sold less any amounts included
in cost of goods sold that are not purchases. For
example, depreciation is included in the cost of
goods sold yet is not a purchase. Since we do
not have a breakdown on the company’s cost of
goods sold showing how much was paid for in
cash and how much was on credit, let us assume
for simplicity that purchases are equal to cost of
goods sold less depreciation. The average day’s
purchases then become:

Average day’s purchases

= Cost of goods sold − Depreciation
365 days

= $6,500,000 − $1,000,000
365 days

= $15,068 per day

The days payables outstanding (DPO), also
known as the number of days of purchases,
represented in the ending balance in accounts
payable, is calculated as the ratio of the balance
in the accounts payable account to the average
day’s purchases:

Days payables outstanding

= Accounts payable
Average day’s purchases

For Fictitious in the current year:

Days payables outstanding = $500,000
$15,065 per day

= 33 days

This means that on average Fictitious takes
33 days to pay out cash for a purchase.
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The operating cycle tells us how long it takes
to convert an investment in cash back into cash
(by way of inventory and accounts receivable).
The number of days of payables tells us how
long it takes to pay on purchases made to cre-
ate the inventory. If we put these two pieces
of information together, we can see how long,
on net, we tie up cash. The difference between
the operating cycle and the number of days of
purchases is the cash conversion cycle (CCC), also
known as the net operating cycle:

Cash conversion cycle = Operating cycle

−DPO

Or, substituting for the operating cycle,

CCC = DSI + DSO − DPO

The cash conversion cycle for Fictitious in the
current year is:

CCC = 101 + 22 − 33 = 90 days

The CCC is how long it takes for the firm
to get cash back from its investments in in-
ventory and accounts receivable, considering
that purchases may be made on credit. By not
paying for purchases immediately (that is, us-
ing trade credit), the firm reduces its liquidity
needs. Therefore, the longer the net operating
cycle, the greater the required liquidity.

Measures of Liquidity
The analyst can describe a firm’s ability to meet
its current obligations in several ways. The cur-
rent ratio indicates the firm’s ability to meet
or cover its current liabilities using its current
assets:

Current ratio = Current assets
Current liabilities

For the Fictitious Corporation, the current ra-
tio for the current year is the ratio of current
assets, $3 million, to current liabilities, the sum
of accounts payable and other current liabilities,

or $1 million.

Current ratio = $3,000,000
$1,000,000

= 3.0 times

The current ratio of 3.0 indicates that Ficti-
tious has three times as much as it needs to
cover its current obligations during the year.
However, the current ratio groups all current
asset accounts together, assuming they are all as
easily converted to cash. Even though, by def-
inition, current assets can be transformed into
cash within a year, not all current assets can be
transformed into cash in a short period of time.

An alternative to the current ratio is the quick
ratio, also called the acid-test ratio, which uses a
slightly different set of current accounts to cover
the same current liabilities as in the current ra-
tio. In the quick ratio, the least liquid of the
current asset accounts, inventory, is excluded.
Hence:

Quick ratio = Current assets − Inventory
Current liabilities

We typically leave out inventories in the quick
ratio because inventories are generally per-
ceived as the least liquid of the current assets.
By leaving out the least liquid asset, the quick
ratio provides a more conservative view of
liquidity.

For Fictitious in the current year:

Quick ratio = $3,000,000 − $1,800,000
$1,000,000

= $1,200,000
$1,000,000

= 1.2 times

Still another way to measure the firm’s abil-
ity to satisfy short-term obligations is the net
working capital–to-sales ratio, which compares
net working capital (current assets less current
liabilities) with sales:

Net working capital–to-sales ratio

= Net working capital
Sales

This ratio tells us the “cushion” available to
meet short-term obligations relative to sales.
Consider two firms with identical working cap-
ital of $100,000, but one has sales of $500,000 and
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the other sales of $1 million. If they have iden-
tical operating cycles, this means that the firm
with the greater sales has more funds flowing
in and out of its current asset investments (in-
ventories and receivables). The company with
more funds flowing in and out needs a larger
cushion to protect itself in case of a disruption in
the cycle, such as a labor strike or unexpected
delays in customer payments. The longer the
operating cycle, the more of a cushion (net
working capital) a firm needs for a given level
of sales.

For Fictitious Corporation:

Net working capital–to-sales-ratio

= $3,000,000 − 1,000,000
$10,000,000

= 0.2000 or 20%

The ratio of 0.20 tells us that for every dollar
of sales, Fictitious has 20 cents of net working
capital to support it.

Recap: Liquidity Ratios
Operating cycle and liquidity ratio information
for Fictitious using data for the current year, in
summary, is:

Days sales in inventory = 101 days
Days sales outstanding = 22 days
Operating cycle = 123 days
Days payables outstanding = 33 days
Cash conversion cycle = 90 days

Current ratio = 3.0
Quick ratio = 1.2
Net working capital–to-sales ratio= 20%

Given the measures of time related to the
current accounts—the operating cycle and the
cash conversion cycle—and the three measures
of liquidity—current ratio, quick ratio, and net
working capital–to-sales ratio—we know the
following about Fictitious Corporation’s ability
to meet its short-term obligations:

� Inventory is less liquid than accounts receiv-
able (comparing days of inventory with days
of credit).

� Current assets are greater than needed to sat-
isfy current liabilities in a year (from the cur-
rent ratio).

� The quick ratio tells us that Fictitious can
meet its short-term obligations even without
resorting to selling inventory.

� The net working capital “cushion” is 20 cents
for every dollar of sales (from the net working
capital–to-sales ratio.)

What don’t ratios tells us about liquidity?
They don’t provide us with answers to the fol-
lowing questions:

� How liquid are the accounts receivable? How
much of the accounts receivable will be col-
lectible? Whereas we know it takes, on aver-
age, 22 days to collect, we do not know how
much will never be collected.

� What is the nature of the current liabilities?
How much of current liabilities consists of
items that recur (such as accounts payable
and wages payable) each period and how
much consists of occasional items (such as in-
come taxes payable)?

� Are there any unrecorded liabilities (such as
operating leases) that are not included in
current liabilities?

PROFITABILITY RATIOS
Liquidity ratios indicate a firm’s ability to meet
its immediate obligations. Now we extend the
analysis by adding profitability ratios, which help
the analyst gauge how well a firm is managing
its expenses. Profit margin ratios compare com-
ponents of income with sales. They give the an-
alyst an idea of which factors make up a firm’s
income and are usually expressed as a portion
of each dollar of sales. For example, the profit
margin ratios we discuss here differ only in the
numerator. It is in the numerator that we can
evaluate performance for different aspects of
the business.

For example, suppose the analyst wants to
evaluate how well production facilities are
managed. The analyst would focus on gross
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profit (sales less cost of goods sold), a measure
of income that is the direct result of produc-
tion management. Comparing gross profit with
sales produces the gross profit margin:

Gross profit margin

= Revenues – Cost of goods sold
Revenues

This ratio tells us the portion of each dollar
of sales that remains after deducting produc-
tion expenses. For Fictitious Corporation for the
current year:

Gross profit margin = $10,000,000 − $6,500,000
$10,000,000

= $3,500,000
$10,000,000

= 0.3500 or 35%

For each dollar of revenues, the firm’s gross
profit is 35 cents. Looking at sales and cost of
goods sold, we can see that the gross profit mar-
gin is affected by:

� Changes in sales volume, which affect cost of
goods sold and sales.

� Changes in sales price, which affect revenues.
� Changes in the cost of production, which af-

fect cost of goods sold.

Any change in gross profit margin from one
period to the next is caused by one or more
of those three factors. Similarly, differences in
gross margin ratios among firms are the result
of differences in those factors.

To evaluate operating performance, we need
to consider operating expenses in addition to
the cost of goods sold. To do this, remove
operating expenses (e.g., selling and general
administrative expenses) from gross profit,
leaving operating profit, also referred to as earn-
ings before interest and taxes (EBIT). The oper-
ating profit margin is therefore:

Operating profit margin

= Revenues − Cost of goods sold − Operating expenses
Revenues

= Revenues earnings before interest and taxes
Revenues

For Fictitious in the current year:

Operating profit margin = $2,000,000
$10,000,000

= 0.20 or 20%

Therefore, for each dollar of revenues, Fictitious
has 20 cents of operating income. The operating
profit margin is affected by the same factors
as gross profit margin, plus operating expenses
such as:

� Office rent and lease expenses
� Miscellaneous income (e.g., income from

investments)
� Advertising expenditures
� Bad debt expense

Most of these expenses are related in some way
to revenues, though they are not included di-
rectly in the cost of goods sold. Therefore, the
difference between the gross profit margin and
the operating profit margin is due to these in-
direct items that are included in computing the
operating profit margin.

Both the gross profit margin and the operating
profit margin reflect a company’s operating per-
formance. But they do not consider how these
operations have been financed. To evaluate both
operating and financing decisions, the analyst
must compare net income (that is, earnings af-
ter deducting interest and taxes) with revenues.
The result is the net profit margin:

Net profit margin = Net income
Revenues

The net profit margin tells the analyst the net
income generated from each dollar of revenues;
it considers financing costs that the operating
profit margin does not consider. For Fictitious
for the current year:

Net profit margin = $1,200,000
$10,000,000

= 0.12 or 12%

For every dollar of revenues, Fictitious gener-
ates 12 cents in profits.
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Recap: Profitability Ratios
The profitability ratios for Fictitious in the cur-
rent year are:

Gross profit margin = 35%
Operating profit margin = 20%
Net profit margin = 12%

They indicate the following about the operat-
ing performance of Fictitious:

� Each dollar of revenues contributes 35 cents
to gross profit and 20 cents to operating profit.

� Every dollar of revenues contributes 12 cents
to owners’ earnings.

� By comparing the 20-cent operating profit
margin with the 12-cent net profit margin,
we see that Fictitious has 8 cents of financ-
ing costs for every dollar of revenues.

What these ratios do not indicate about prof-
itability is the sensitivity of gross, operating,
and net profit margins to:

� Changes in the sales price
� Changes in the volume of sales

Looking at the profitability ratios for one firm
for one period gives the analyst very little infor-
mation that can be used to make judgments re-
garding future profitability. Nor do these ratios
provide the analyst any information about why
current profitability is what it is. We need more
information to make these kinds of judgments,
particularly regarding the future profitability of
the firm. For that, turn to activity ratios, which
are measures of how well assets are being used.

ACTIVITY RATIOS
Activity ratios—for the most part, turnover
ratios—can be used to evaluate the benefits pro-
duced by specific assets, such as inventory or
accounts receivable, or to evaluate the benefits
produced by the totality of the firm’s assets.

Inventory Management
The inventory turnover ratio indicates how
quickly a firm has used inventory to generate

the goods and services that are sold. The inven-
tory turnover is the ratio of the cost of goods
sold to inventory:

Inventory turnover ratio = Cost of goods sold
Inventory

For Fictitious for the current year:

Inventory turnover ratio = $6,500,000
$1,800,000

= 3.61 times

This ratio indicates that Fictitious turns over
its inventory 3.61 times per year. On average,
cash is invested in inventory, goods and ser-
vices are produced, and these goods and ser-
vices are sold 3.6 times a year. Looking back to
the number of days of inventory, we see that this
turnover measure is consistent with the results
of that calculation: There are 101 calendar days
of inventory on hand at the end of the year; di-
viding 365 days by 101 days, or 365/101 days,
we find that inventory cycles through (from
cash to sales) 3.61 times a year.

Accounts Receivable Management
In much the same way inventory turnover can
be evaluated, an analyst can evaluate a firm’s
management of its accounts receivable and its
credit policy. The accounts receivable turnover
ratio is a measure of how effectively a firm is
using credit extended to customers. The rea-
son for extending credit is to increase sales.
The downside to extending credit is the pos-
sibility of default—customers not paying when
promised. The benefit obtained from extending
credit is referred to as net credit sales—sales on
credit less returns and refunds.

Accounts receivable turnover

= Net credit sales
Accounts receivable

Looking at the Fictitious Corporation income
statement, we see an entry for sales, but we do
not know how much of the amount stated is
on credit. In the case of evaluating a firm, an
analyst would have an estimate of the amount
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of credit sales. Let us assume that the entire
sales amount represents net credit sales. For
Fictitious for the current year:

Accounts receivable turnover = $10,000,000
$600,000

= 16.67 times

Therefore, almost 17 times in the year there is,
on average, a cycle that begins with a sale on
credit and finishes with the receipt of cash for
that sale. In other words, there are 17 cycles of
sales to credit to cash during the year.

The number of times accounts receivable cy-
cle through the year is consistent with the
days sales outstanding (22) that we calculated
earlier—accounts receivable turn over 17 times
during the year, and the average number of
days of sales in the accounts receivable balance
is 365 days/16.67 times = 22 days.

Overall Asset Management
The inventory and accounts receivable turnover
ratios reflect the benefits obtained from the use
of specific assets (inventory and accounts re-
ceivable). For a more general picture of the pro-
ductivity of the firm, an analyst can compare
the sales during a period with the total assets
that generated these revenues.

One way is with the total asset turnover ra-
tio, which indicates how many times during the
year the value of a firm’s total assets is gener-
ated in revenues:

Total assets turnover = Revenues
Total assets

For Fictitious in the current year:

Total assets turnover = $10,000,000
$11,000,000

= 0.91 times

The turnover ratio of 0.91 indicated that in the
current year, every dollar invested in total as-
sets generates 91 cents of sales. Or, stated dif-
ferently, the total assets of Fictitious turn over
almost once during the year. Because total as-

sets include both tangible and intangible assets,
this turnover indicates how efficiently all assets
were used.

An alternative is to focus only on fixed assets,
the long-term, tangible assets of the firm. The
fixed-asset turnover is the ratio of revenues to
fixed assets:

Fixed asset turnover ratio = Revenues
Fixed assets

For Fictitious in the current year:

Fixed asset turnover ratio
$10,000,000
$7,000,000

= 1.43 times

Therefore, for every dollar of fixed assets, Ficti-
tious is able to generate $1.43 of revenues.

Recap: Activity Ratios
The activity ratios for Fictitious Corporation
are:

Inventory turnover ratio = 3.61 times
Accounts receivable turnover

ratio = 16.67 times
Total asset turnover ratio = 0.91 times
Fixed-asset turnover ratio = 1.43 times

From these ratios the analyst can determine
that:

� Inventory flows in and out almost four times
a year (from the inventory turnover ratio).

� Accounts receivable are collected in cash, on
average, 22 days after a sale (from the number
of days of credit). In other words, accounts
receivable flow in and out almost 17 times
during the year (from the accounts receivable
turnover ratio).

Here is what these ratios do not indicate about
the firm’s use of its assets:

� The sales not made because credit policies are
too stringent.

� How much of credit sales is not collectible.
� Which assets contribute most to the turnover.
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FINANCIAL LEVERAGE
RATIOS
A firm can finance its assets with equity or with
debt. Financing with debt legally obligates the
firm to pay interest and to repay the principal
as promised. Equity financing does not obli-
gate the firm to pay anything because dividends
are paid at the discretion of the board of direc-
tors. There is always some risk, which we re-
fer to as business risk, inherent in any business
enterprise. But how a firm chooses to finance
its operations—the particular mix of debt and
equity—may add financial risk on top of busi-
ness risk. Financial risk is risk associated with a
firm’s ability to satisfy its debt obligations, and
is often measured using the extent to which debt
financing is used relative to equity.

Financial leverage ratios are used to assess how
much financial risk the firm has taken on. There
are two types of financial leverage ratios: com-
ponent percentages and coverage ratios. Com-
ponent percentages compare a firm’s debt with
either its total capital (debt plus equity) or its
equity capital. Coverage ratios reflect a firm’s
ability to satisfy fixed financing obligations,
such as interest, principal repayment, or lease
payments.

Component Percentage Ratios
A ratio that indicates the proportion of assets fi-
nanced with debt is the debt-to-assets ratio, which
compares total liabilities (short-term + long-
term debt) with total assets:

Total debt-to-assets ratio = Debt
Total assets

For Fictitious in the current year:

Total debt-to-assets ratio = $5,000,000
$11,000,000

= 0.4546 or 45.46%

This ratio indicates that 45% of the firm’s assets
are financed with debt (both short term and
long term).

Another way to look at the financial risk is in
terms of the use of debt relative to the use of eq-

uity. The debt-to-equity ratio indicates how the
firm finances its operations with debt relative
to the book value of its shareholders’ equity:

Debt-to-equity ratio

= Debt
Book value of shareholders’ equity

For Fictitious for the current year, using the
book-value definition:

Debt-to-equity ratio = $5,000,000
$6,000,000

= 0.8333 or 83.33%

For every $1 of book value of shareholders’
equity, Fictitious uses 83 cents of debt.

Both of these ratios can be stated in terms of
total debt, as above, or in terms of long-term
debt or even simply interest-bearing debt. And
it is not always clear in which form—total, long-
term debt, or interest-bearing—the ratio is cal-
culated. Additionally, it is often the case that the
current portion of long-term debt is excluded
in the calculation of the long-term versions of
these debt ratios.

Book Value versus Market Value
One problem with using a financial ratio based
on the book value of equity to analyze financial
risk is that there is seldom a strong relationship
between the book value and market value of a
stock. The distortion in values on the balance
sheet is obvious by looking at the book value of
equity and comparing it with the market value
of equity. The book value of equity consists of:

� The proceeds to the firm of all the stock issues
since it was first incorporated, less any stock
repurchased by the firm.

� The accumulative earnings of the firm, less
any dividends, since it was first incorporated.

Let’s look at an example of the book value ver-
sus the market value of equity. IBM was incor-
porated in 1911, so the book value of its equity
represents the sum of all its stock issued and
all its earnings, less any dividends paid since
1911. As of the end of 2006, IBM’s book value of
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equity was approximately $28.5 billion, yet its
market value was $142.8 billion.

Book value generally does not give a true pic-
ture of the investment of shareholders in the
firm because:

� Earnings are recorded according to account-
ing principles, which may not reflect the true
economics of transactions.

� Due to inflation, the earnings and proceeds
from stock issued in the past do not reflect
today’s values.

Market value, on the other hand, is the value
of equity as perceived by investors. It is what
investors are willing to pay. So why bother with
book value? For two reasons: First, it is easier to
obtain the book value than the market value of
a firm’s securities, and second, many financial
services report ratios using book value rather
than market value.

However, any of the ratios presented in this
entry that use the book value of equity can be
restated using the market value of equity. For
example, instead of using the book value of eq-
uity in the debt-to-equity ratio, the market value
of equity to measure the firm’s financial lever-
age can be used.

Coverage Ratios
The ratios that compare debt to equity or debt to
assets indicate the amount of financial leverage,
which enables an analyst to assess the financial
condition of a firm. Another way of looking at
the financial condition and the amount of finan-
cial leverage used by the firm is to see how well
it can handle the financial burdens associated
with its debt or other fixed commitments.

One measure of a firm’s ability to handle fi-
nancial burdens is the interest coverage ratio, also
referred to as the times interest-covered ratio. This
ratio tells us how well the firm can cover or meet
the interest payments associated with debt. The
ratio compares the funds available to pay inter-
est (that is, earnings before interest and taxes)

with the interest expense:

Interest coverage ratio = EBIT
Interest expense

The greater the interest coverage ratio, the bet-
ter able the firm is to pay its interest expense.
For Fictitious for the current year:

Interest coverage ratio = $2,000,000
$400,000

= 5 times

An interest coverage ratio of 5 means that the
firm’s earnings before interest and taxes are five
times greater than its interest payments.

The interest coverage ratio provides informa-
tion about a firm’s ability to cover the interest
related to its debt financing. However, there are
other costs that do not arise from debt but that
nevertheless must be considered in the same
way we consider the cost of debt in a firm’s
financial obligations. For example, lease pay-
ments are fixed costs incurred in financing op-
erations. Like interest payments, they represent
legal obligations.

What funds are available to pay debt and
debt-like expenses? Start with EBIT and add
back expenses that were deducted to arrive at
EBIT. The ability of a firm to satisfy its fixed fi-
nancial costs—its fixed charges—is referred to
as the fixed-charge coverage ratio. One definition
of the fixed-charge coverage considers only the
lease payments:

Fixed-charge coverage ratio

= EBIT + Lease expense
Interest + Lease expense

For Fictitious for the current year:

Fixed-charge coverage ratio

= $2,000,000 + $1,000,000
$400,000 + $1,000,000

= 2.14 times

This ratio tells us that Fictitious’s earnings can
cover its fixed charges (interest and lease pay-
ments) more than two times over.

What fixed charges to consider is not entirely
clear-cut. For example, if the firm is required
to set aside funds to eventually or periodically
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retire debt—referred to as sinking funds—is the
amount set aside a fixed charge? As another
example, since preferred dividends represent a
fixed financing charge, should they be included
as a fixed charge? From the perspective of the
common shareholder, the preferred dividends
must be covered either to enable the payment
of common dividends or to retain earnings for
future growth. Because debt principal repay-
ment and preferred stock dividends are paid
on an after-tax basis—paid out of dollars re-
maining after taxes are paid—this fixed charge
must be converted to before-tax dollars. The
fixed charge coverage ratio can be expanded to
accommodate the sinking funds and preferred
stock dividends as fixed charges.

Up to now we considered earnings before
interest and taxes as funds available to meet
fixed financial charges. EBIT includes noncash
items such as depreciation and amortization.
If an analyst is trying to compare funds avail-
able to meet obligations, a better measure of
available funds is cash flow from operations,
as reported in the statement of cash flows. A
ratio that considers cash flows from operations
as funds available to cover interest payments is
referred to as the cash-flow interest coverage ratio.

Cash flow interest coverage ratio

= Cash flow from operations + Interest + Taxes
Interest

The amount of cash flow from operations that
is in the statement of cash flows is net of interest
and taxes. So we have to add back interest and
taxes to cash flow from operations to arrive at
the cash flow amount before interest and taxes
in order to determine the cash flow available to
cover interest payments.

For Fictitious for the current year:

Cash flow interest coverage ratio

= $1,800,000 + $400,000 + $400,000
$400,000

= $2,600,000
$400,000

= 6.5 times

This coverage ratio indicates that, in terms of
cash flows, Fictitious has 6.5 times more cash
than is needed to pay its interest. This is a bet-
ter picture of interest coverage than the five
times reflected by EBIT. Why the difference?
Because cash flow considers not just the ac-
counting income, but noncash items as well.
In the case of Fictitious, depreciation is a non-
cash charge that reduced EBIT but not cash flow
from operations—it is added back to net income
to arrive at cash flow from operations.

Recap: Financial Leverage Ratios
Summarizing, the financial leverage ratios for
Fictitious Corporation for the current year are:

Debt-to-assets ratio = 45.45%
Debt-to-equity ratio = 83.33%
Interest coverage ratio = 5.00 times
Fixed-charge coverage ratio = 2.14 times
Cash-flow interest coverage ratio = 6.50 times

These ratios indicate that Fictitious uses its
financial leverage as follows:

� Assets are 45% financed with debt, measured
using book values.

� Long-term debt is approximately two-thirds
of equity. When equity is measured in market
value terms, long-term debt is approximately
one-sixth of equity.

These ratios do not indicate:

� What other fixed, legal commitments the firm
has that are not included on the balance sheet
(for example, operating leases).

� What the intentions of management are re-
garding taking on more debt as the existing
debt matures.

COMMON-SIZE ANALYSIS
An analyst can evaluate a company’s operating
performance and financial condition through
ratios that relate various items of information
contained in the financial statements. Another
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way to analyze a firm is to look at its financial
data more comprehensively.

Common-size analysis is a method of analysis in
which the components of a financial statement
are compared with each other. The first step in
common-size analysis is to break down a finan-
cial statement—either the balance sheet or the
income statement—into its parts. The next step
is to calculate the proportion that each item rep-
resents relative to some benchmark. This form
of common-size analysis is sometimes referred
to as vertical common-size analysis. Another form
of common-size analysis is horizontal common-
size analysis, which uses either an income
statement or a balance sheet in a fiscal year and
compares accounts to the corresponding items
in another year. In common-size analysis of the
balance sheet, the benchmark is total assets. For
the income statement, the benchmark is sales.

Let us see how it works by doing some
common-size financial analysis for the Fic-
titious Corporation. The company’s balance
sheet is restated in Table 4. This statement does
not look precisely like the balance sheet we have
seen before. Nevertheless, the data are the same
but reorganized. Each item in the original bal-
ance sheet has been restated as a proportion

Table 4 Fictitious Corporation Common-Size Balance
Sheets for Years Ending December 31

Current Year Prior Year

Asset Components
Cash 3.6% 2.0%
Marketable securities 1.8% 0.0%
Accounts receivable 5.5% 8.0%
Inventory 16.4% 10.0%
Current assets 27.3% 20.0%
Net plant and

equipment
63.5% 70.0%

Intangible assets 9.2% 10.0%
Total assets 100.0% 100.0%

Liability and shareholders’ equity components

Accounts payable 4.6% 4.0%
Other current liabilities 4.6% 2.0%
Long-term debt 36.4% 50.0%
Total liabilities 45.4% 56.0%
Shareholders’ equity 54.6% 44.0%
Total liabilities and

shareholders’ equity
100.0% 100.0%

of total assets for the purpose of common size
analysis. Hence, we refer to this as the common-
size balance sheet.

In this balance sheet, we see, for example, that
in the current year cash is 3.6% of total assets,
or $400,000/$11,000,000 = 0.036. The largest in-
vestment is in plant and equipment, which com-
prises 63.6% of total assets. On the liabilities
side, that current liabilities are a small portion
(9.1%) of liabilities and equity.

The common-size balance sheet indicates in
very general terms how Fictitious has raised
capital and where this capital has been invested.
As with financial ratios, however, the picture
is not complete until trends are examined and
compared with those of other firms in the same
industry.

In the income statement, as with the balance
sheet, the items may be restated as a propor-
tion of sales; this statement is referred to as
the common-size income statement. The common-
size income statements for Fictitious for the two
years are shown in Table 5. For the current year,
the major costs are associated with goods sold
(65%); lease expense, other expenses, interest,
taxes, and dividends make up smaller portions
of sales. Looking at gross profit, EBIT, and net
income, these proportions are the profit mar-
gins we calculated earlier. The common-size in-
come statement provides information on the
profitability of different aspects of the firm’s
business. Again, the picture is not yet complete.

Table 5 Fictitious Corporation Common-Size Income
Statement for Years Ending December 31

Current Prior
Year Year

Sales 100.0% 100.0%
Cost of goods sold 65.0% 66.7%
Gross profit 35.0% 33.3%
Lease and administrative expenses 15.0% 11.1%
Earnings before interest and taxes 20.0% 22.2%
Interest expense 4.0% 5.6%
Earnings before taxes 16.0% 16.6%
Taxes 4.0% 5.5%
Net income 12.0% 11.1%
Common dividends 6.0% 5.6%
Retained earnings 6.0% 5.5%
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For a more complete picture, the analyst must
look at trends over time and make comparisons
with other companies in the same industry.

USING FINANCIAL
RATIO ANALYSIS
Financial analysis provides information con-
cerning a firm’s operating performance and fi-
nancial condition. This information is useful
for an analyst in evaluating the performance
of the company as a whole, as well as of di-
visions, products, and subsidiaries. An analyst
must also be aware that financial analysis is also
used by analysts and investors to gauge the fi-
nancial performance of the company.

But financial ratio analysis cannot tell the
whole story and must be interpreted and used
with care. Financial ratios are useful but, as
noted in the discussion of each ratio, there is
information that the ratios do not reveal. For
example, in calculating inventory turnover, we
need to assume that the inventory shown on
the balance sheet is representative of inventory
throughout the year. Another example is in the
calculation of accounts receivable turnover. We
assumed that all sales were on credit. If we
are on the outside looking in—that is, evalu-
ating a firm based on its financial statements
only, such as the case of a financial analyst or
investor—and therefore do not have data on
credit sales, assumptions must be made that
may or may not be correct.

In addition, there are other areas of concern
that an analyst should be aware of in using fi-
nancial ratios:

� Limitations in the accounting data used to
construct the ratios.

� Selection of an appropriate benchmark firm
or firms for comparison purposes.

� Interpretation of the ratios.
� Pitfalls in forecasting future operating perfor-

mance and financial condition based on past
trends.

KEY POINTS
� The basic data for financial analysis are the fi-

nancial statement data. These data are used
to analyze relationships between different
elements of a firm’s financial statements.
Through this analysis, a picture of the operat-
ing performance and financial condition of a
firm can be developed.

� Looking at the calculated financial ratios,
in conjunction with industry and economic
data, judgments about past and future finan-
cial performance and condition can be made.

� Financial ratios can be classified by type—
coverage, return, turnover, or component
percentage—or by the financial character-
istic that we wish to measure—liquidity,
profitability activity, financial leverage, or
return.

� Liquidity ratios indicate firm’s ability to sat-
isfy short-term obligations. These ratios are
closely related to a firm’s operating cycle,
which tells us how long it takes a firm to turn
its investment in current assets back into cash.

� Profitability ratios indicate how well a firm
manages its assets, typically in terms of the
proportion of revenues that are left over after
expenses.

� Activity ratios measure how efficiently a firm
manages its assets, that is, how effectively a
firm uses its assets to generate sales.

� Financial leverage ratios indicate (1) to what
extent a firm uses debt to finance its oper-
ations and (2) its ability to satisfy debt and
debt-like obligations.

� Return-on-investment ratios provide a gauge
for how much of each dollar of an investment
is generated in a period.

� The DuPont system breaks down return ratios
into their profit margin and activity ratios,
allowing us to analyze changes in return on
investments.

� Common-size analysis expresses financial
statement data relative to some benchmark
item—usually total assets for the balance
sheet and sales for the income statement. Rep-
resenting financial data in this way allows
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an analyst to spot trends in investments and
profitability.

� Interpretation of financial ratios requires an
analyst to put the trends and comparisons
in perspective with the company’s signifi-
cant events. In addition to company-specific
events, issues that can cause the analysis of
financial ratios to become more challenging
include the use of historical accounting val-
ues, changes in accounting principles, and ac-
counts that are difficult to classify.

� Comparison of financial ratios across time
and with competitors is useful in gauging per-
formance. In comparing ratios over time, an
analyst should consider changes in account-
ing and significant company events. In com-
paring ratios with a benchmark, an analyst

must take care in the selection of the com-
panies that constitute the benchmark and the
method of calculation.
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Abstract: An objective of financial analysis is to assess a company’s operating performance and
financial condition. The information that is available for analysis includes economic, market, and
financial information. But some of the most important financial data are provided by the company
in its annual and quarterly financial statements. These choices make it quite difficult to compare
financial performance and condition across companies, and also provide an opportunity for the
management of financial numbers through judicious choice of accounting methods. Cash flows
provide a way of transforming net income based on an accrual system to a more comparable
basis. Additionally, cash flows are essential ingredients in valuation: The value of a company
today is the present value of its expected future cash flows. Therefore, understanding past and
current cash flows may help in forecasting future cash flows and, hence, determine the value of
the company. Moreover, understanding cash flow allows the assessment of the ability of a firm to
maintain current dividends and its current capital expenditure policy without relying on external
financing.

One of the key financial measures that an ana-
lyst should understand is the company’s cash
flow. This is because the cash flow aids the an-
alyst in assessing the ability of the company
to satisfy its contractual obligations and main-
tain current dividends and current capital ex-
penditure policy without relying on external
financing. Moreover, an analyst must under-
stand why this measure is important for exter-
nal parties, specifically stock analysts covering
the company. The reason is that the basic valua-
tion principle followed by stock analysts is that
the value of a company today is the present

value of its expected future cash flows. In this
entry, we discuss cash-flow analysis.

DIFFICULTIES WITH
MEASURING CASH FLOW
The primary difficulty with measuring a cash
flow is that it is a flow: Cash flows into the com-
pany (cash inflows) and cash flows out of the
company (cash outflows). At any point in time
there is a stock of cash on hand, but the stock of
cash on hand varies among companies because

565
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of the size of the company, the cash demands of
the business, and a company’s management of
working capital. So what is cash flow? Is it the
total amount of cash flowing into the company
during a period? Is it the total amount of cash
flowing out of the company during a period?
Is it the net of the cash inflows and outflows
for a period? Well, there is no specific definition
of cash flow—and that’s probably why there is
so much confusion regarding the measurement
of cash flow. Ideally, a measure of the com-
pany’s operating performance that is compa-
rable among companies is needed—something
other than net income.

A simple, yet crude method of calculating
cash flow requires simply adding noncash ex-
penses (e.g., depreciation and amortization) to
the reported net income amount to arrive at
cash flow. For example, the estimated cash flow
for Procter & Gamble (P&G) for 2002 is:

Estimated cash flow
= Net income + Depreciation and

amortization
= $4,352 million + 1,693 million
= $6,045 million

This amount is not really a cash flow, but sim-
ply earnings before depreciation and amorti-
zation. Is this a cash flow that stock analysts
should use in valuing a company? Though not
a cash flow, this estimated cash flow does allow
a quick comparison of income across firms that
may use different depreciation methods and de-
preciable lives. (As an example of the use of this
estimate of cash flow, The Value Line Investment
Survey, published by Value Line, Inc., reports a
cash flow per share amount, calculated as re-
ported earnings plus depreciation, minus any
preferred dividends, stated per share of com-
mon stock.) [Guide to Using the Value Line In-
vestment Survey (New York: Value Line, Inc.),
p. 19.]

The problem with this measure is that it ig-
nores the many other sources and uses of cash
during the period. Consider the sale of goods
for credit. This transaction generates sales for

the period. Sales and the accompanying cost
of goods sold are reflected in the period’s net
income and the estimated cash flow amount.
However, until the account receivable is col-
lected, there is no cash from this transaction.
If collection does not occur until the next pe-
riod, there is a misalignment of the income and
cash flow arising from this transaction. There-
fore, the simple estimated cash flow ignores
some cash flows that, for many companies, are
significant.

Another estimate of cash flow that is simple to
calculate is earnings before interest, taxes, de-
preciation, and amortization (EBITDA). How-
ever, this measure suffers from the same
accrual-accounting bias as the previous mea-
sure, which may result in the omission of sig-
nificant cash flows. Additionally, EBITDA does
not consider interest and taxes, which may also
be substantial cash outflows for some compa-
nies. (For a more detailed discussion of the
EBITDA measure, see Eastman [1997].)

These two rough estimates of cash flows are
used in practice not only for their simplicity, but
because they experienced widespread use prior
to the disclosure of more detailed information in
the statement of cash flows. Currently, the mea-
sures of cash flow are wide ranging, including
the simplistic cash flow measures, measures de-
veloped from the statement of cash flows, and
measures that seek to capture the theoretical
concept of free cash flow.

CASH FLOWS AND THE
STATEMENT OF CASH
FLOWS
Prior to the adoption of the statement of cash
flows, the information regarding cash flows was
quite limited. The first statement that addressed
the issue of cash flows was the statement of
financial position, which was required start-
ing in 1971 (APB Opinion No. 19, “Reporting
Changes in Financial Position”). This statement
was quite limited, requiring an analysis of the
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sources and uses of funds in a variety of for-
mats. In its earlier years of adoption, most com-
panies provided this information using what
is referred to as the working capital concept—a
presentation of working capital provided and
applied during the period. Over time, many
companies began presenting this information
using the cash concept, which is a most detailed
presentation of the cash flows provided by op-
erations, investing, and financing activities.

Consistent with the cash concept format of
the funds flow statement, the statement of cash
flows is now a required financial statement. The
requirement that companies provide a state-
ment of cash flows applies to fiscal years after
1987 (Statement of Financial Accounting Stan-
dards No. 95, “Statement of Cash Flows”). This
statement requires the company to classify cash
flows into three categories, based on the activ-
ity: operating, investing, and financing. Cash
flows are summarized by activity and within
activity by type (e.g., asset dispositions are re-
ported separately from asset acquisitions).

The reporting company may report the
cash flows from operating activities on the
statement of cash flows using either the di-
rect method—reporting all cash inflows and
outflows—or the indirect method—starting with
net income and making adjustments for de-
preciation and other noncash expenses and for
changes in working capital accounts. Though
the direct method is recommended, it is also the
most burdensome for the reporting company
to prepare. Most companies report cash flows
from operations using the indirect method. The
indirect method has the advantage of provid-
ing the financial statement user with a recon-
ciliation of the company’s net income with the
change in cash. The indirect method produces a
cash flow from operations that is similar to the
estimated cash flow measure discussed previ-
ously, yet it encompasses the changes in work-
ing capital accounts that the simple measure
does not. For example, Procter & Gamble’s cash
flow from operating activities (taken from their
2002 statement of cash flows) is $7,742 million,

which is over $1 billion more than the cash flow
that we estimated earlier. (Procter & Gamble’s
fiscal year ends June 30, 2002.)

The classification of cash flows into the three
types of activities provides useful information
that can be used by an analyst to see, for ex-
ample, whether the company is generating suf-
ficient cash flows from operations to sustain
its current rate of growth. However, the clas-
sification of particular items is not necessarily
as useful as it could be. Consider some of the
classifications:

� Cash flows related to interest expense are clas-
sified in operations, though they are clearly
financing cash flows.

� Income taxes are classified as operating cash
flows, though taxes are affected by financing
(e.g., deduction for interest expense paid on
debt) and investment activities (e.g., the re-
duction of taxes from tax credits on invest-
ment activities).

� Interest income and dividends received are
classified as operating cash flows, though
these flows are a result of investment
activities.

Whether these items have a significant ef-
fect on the analysis depends on the particular
company’s situation. Procter & Gamble, for ex-
ample, has very little interest and dividend in-
come, and its interest expense of $603 million is
not large relative to its earnings before interest
and taxes ($6,986 million). Table 1 shows that
by adjusting P&G’s cash flows for the interest
expense only (and related taxes) changes the
complexion of its cash flows slightly to re-
flect greater cash-flow generation from opera-
tions and less cash flow reliance on financing
activities.

The adjustment is for $603 million of inter-
est and other financing costs, less its tax shield
(the amount that the tax bill is reduced by the
interest deduction) of $211 (estimated from the
average tax rate of 35% of $603): adjustment =
$603 (1 – 0.35) = $392.
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Table 1 Adjusted Cash Flow for P&G (2002)

As As
(In Millions) Reported Adjusted

Cash flow from operations $7,741 $8,134
Cash flow for investing activities (6,835) (6,835)
Cash flow from (for) financing

activities
197 (195)

Source: Procter & Gamble 2002 Annual Report.

For other companies, however, this adjust-
ment may provide a less flattering view of cash
flows. Consider Amazon.com’s fiscal year re-
sults. Interest expense to financing, along with
their respective estimated tax effects, results in
more reliance on cash flow from financing as
can be seen in Table 2.

Looking at the relation among the three cash
flows in the statement provides a sense of the ac-
tivities of the company. A young, fast-growing
company may have negative cash flows from
operations, yet positive cash flows from financ-
ing activities (that is, operations may be fi-
nanced in large part with external financing).
As a company grows, it may rely to a lesser
extent on external financing. The typical, ma-
ture company generates cash from operations
and reinvests part or all of it back into the com-
pany. Therefore, cash flow related to operations
is positive (that is a source of cash) and cash
flow related to investing activities is negative
(that is, a use of cash). As a company matures,
it may seek less financing externally and may
even use cash to reduce its reliance on exter-
nal financing (e.g., repay debts). We can clas-
sify companies on the basis of the pattern of
their sources of cash flows, as shown in Table 3.

Table 2 Adjusted Cash Flow, Amazon.com (2001)

As As
(In Millions) Reported Adjusted

Cash flow from operations $(120) $(30)
Cash flow for investing activities (253) (253)
Cash flow from financing

activities
(107) 17

The adjustment is based on interest expense of
$139 million, and a tax rate of 35%.
Source: Amazon.com 2001 10-K.

Though additional information is required to
assess a company’s financial performance and
condition, examination of the sources of cash
flows, especially over time, gives us a general
idea of the company’s operations. P&G’s cash
flow pattern is consistent with that of a mature
company, whereas Amazon.com’s cash flows
are consistent with those of a fast-growing com-
pany that is reliant on outside funds for growth.

Fridson (2002) suggests reformatting the
statement of cash flows as shown in Table 4.
From the basic cash flow, the nondiscretionary
cash needs are subtracted resulting in a cash
flow referred to as discretionary cash flow. By
restructuring the statement of cash flows in this
way, it can be seen how much flexibility the
company has when it must make business de-
cisions that may adversely impact the long-run
financial health of the enterprise.

For example, consider a company with a
basic cash flow of $800 million and operating
cash flow of $500 million. Suppose that this
company pays dividends of $130 million and
that its capital expenditure is $300 million. Then
the discretionary cash flow for this company is
$200 million found by subtracting the $300 mil-
lion capital expenditure from the operating cash
flow of $500 million. This means that even after
maintaining a dividend payment of $130 mil-
lion, its cash flow is positive. Notice that asset
sales and other investing activity are not needed
to generate cash to meet the dividend payments
because in Table 4 these items are subtracted
after accounting for the dividend payments. In
fact, if this company planned to increase its cap-
ital expenditures, the format in Table 4 can be
used to assess how much that expansion can
be before affecting dividends and/or increasing
financing needs.

Though we can classify a company based
on the sources and uses of cash flows, more
data are needed to put this information in per-
spective. What is the trend in the sources and
uses of cash flows? What market, industry, or
company-specific events affect the company’s
cash flows? How does the company being
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Table 3 Patterns of Sources of Cash Flows

Financing Growth Financing Temporary
Externally and Growth Financial Financial

Cash Flow Internally Internally Mature Downturn Distress Downsizing

Operations + + + − − +
Investing activities − − − + − +
Financing activities + − + or − + − −

analyzed compare with other companies in the
same industry in terms of the sources and uses
of funds?

Let’s take a closer look at the incremental
information provided by cash flows. Consider
Wal-Mart Stores, Inc., which had growing sales
and net income from 1990 to 2005, as summa-
rized in Figure 1. We see that net income grew
each year, with the exception of 1995, and that
sales grew each year.

We get additional information by looking at
the cash flows and their sources, as graphed in
Figure 2. We see that the growth in Wal-Mart
was supported both by internally generated
funds and, to a lesser extent, through external
financing. Wal-Mart’s pattern of cash flows sug-
gests that Wal-Mart is a mature company that

Table 4 Suggested Reformatting of Cash Flow
Statement to Analyze a Company’s Flexibility

Basic cash flow
Less: Increase in adjusted working capital

Operating cash flow
Less: Capital expenditures

Discretionary cash flow
Less: Dividends
Less: Asset sales and other investing activities

Cash flow before financing
Less: Net (increase) in long-term debt
Less: Net (increase) in notes payable
Less: Net purchase of company’s common stock
Less: Miscellaneous

Cash flow

Notes:
1. The basic cash flow includes net earnings, deprecia-
tion, and deferred income taxes, less items in net income
not providing cash.
2. The increase in adjusted working capital excludes
cash and payables.
Source: This format was suggested by Fridson (1995).

has become less reliant on external financing,
funding most of its growth in recent years (with
the exception of 1999) with internally generated
funds.

FREE CASH FLOW
Cash flows without any adjustment may be mis-
leading because they do not reflect the cash
outflows that are necessary for the future ex-
istence of a firm. An alternative measure, free
cash flow, was developed by Jensen (1986) in
his theoretical analysis of agency costs and cor-
porate takeovers. In theory, free cash flow is the
cash flow left over after the company funds all
positive net present value projects. Positive net
present value projects are those capital invest-
ment projects for which the present value of
expected future cash flows exceeds the present
value of project outlays, all discounted at the
cost of capital. (The cost of capital is the cost to
the company of funds from creditors and share-
holders. The cost of capital is basically a hurdle:
If a project returns more than its cost of cap-
ital, it is a profitable project.) In other words,
free cash flow is the cash flow of the firm, less
capital expenditures necessary to stay in busi-
ness (that is, replacing facilities as necessary)
and grow at the expected rate (which requires
increases in working capital).

The theory of free cash flow was developed
by Jensen to explain behaviors of companies
that could not be explained by existing eco-
nomic theories. Jensen observed that companies
that generate free cash flow should disgorge
that cash rather than invest the funds in
less profitable investments. There are many
ways in which companies can disgorge this
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excess cash flow, including the payment of cash
dividends, the repurchase of stock, and debt
issuance in exchange for stock. The debt-for-
stock exchange, for example, increases the com-
pany’s leverage and future debt obligations,
obligating the future use of excess cash flow. If a
company does not disgorge this free cash flow,
there is the possibility that another company—a
company whose cash flows are less than its
profitable investment opportunities or a com-
pany that is willing to purchase and lever-up
the company—will attempt to acquire the free-
cash-flow-laden company.

As a case in point, Jensen observed that the
oil industry illustrates the case of wasting re-
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sources: The free cash flows generated in the
1980s were spent on low-return exploration and
development and on poor diversification at-
tempts through acquisitions. He argues that
these companies would have been better off
paying these excess cash flows to shareholders
through share repurchases or exchanges with
debt.

By itself, the fact that a company generates
free cash flow is neither good nor bad. What the
company does with this free cash flow is what
is important. And this is where it is important
to measure the free cash flow as that cash flow
in excess of profitable investment opportuni-
ties. Consider the simple numerical exercise
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with the Winner Company and the Loser
Company:

Winner Loser
Company Company

Cash flow before capital
expenditures

$1,000 $1,000

Capital expenditures, positive
net present value projects

(750) (250)

Capital expenditures, negative
net present value projects

0 (500)

Cash flow $250 $250
Free cash flow $250 $750

These two companies have identical cash
flows and the same total capital expenditures.
However, the Winner Company spends only
on profitable projects (in terms of positive net
present value projects), whereas the Loser Com-
pany spends on both profitable projects and
wasteful projects. The Winner Company has
a lower free cash flow than the Loser Com-
pany, indicating that they are using the gen-
erated cash flows in a more profitable manner.
The lesson is that the existence of a high level
of free cash flow is not necessarily good—it
may simply suggest that the company is either
a very good takeover target or the company
has the potential for investing in unprofitable
investments.

Positive free cash flow may be good or bad
news; likewise, negative free cash flow may be
good or bad news:

Good News Bad News

Positive
free
cash
flow

The company is
generating
substantial operating
cash flows, beyond
those necessary for
profitable projects.

The company is
generating more
cash flows than it
needs for
profitable projects
and may waste
these cash flows
on unprofitable
projects.

Negative
free
cash
flow

The company has more
profitable projects
than it has operating
cash flows and must
rely on external
financing to fund
these projects.

The company is
unable to generate
sufficient
operating cash
flows to satisfy its
investment needs
for future growth.

Therefore, once the free cash flow is calcu-
lated, other information (e.g., trends in prof-
itability) must be considered to evaluate the
operating performance and financial condition
of the firm.

CALCULATING FREE
CASH FLOW
There is some confusion when this theoretical
concept is applied to actual companies. The pri-
mary difficulty is that the amount of capital ex-
penditures necessary to maintain the business
at its current rate of growth is generally not
known; companies do not report this item and
may not even be able to determine how much
of a period’s capital expenditures are attributed
to maintenance and how much are attributed to
expansion.

Consider Procter & Gamble’s property, plant,
and equipment for 2002, which comprise some,
but not all, of P&G’s capital investment:

Additions to property, plant, and
equipment

$1,679 million

Dispositions of property, plant,
and equipment

(227)

Net change before depreciation $1,452 million

(In addition to the traditional capital expendi-
tures (that is, changes in property, plant, and
equipment), P&G also has cash flows related to
investment securities and acquisitions. These
investments are long-term and are hence part
of P&G’s investment activities cash outflow of
$6,835 million.)

How much of the $1,679 million is for main-
taining P&G’s current rate of growth and how
much is for expansion? Though there is a posi-
tive net change of $1,452 million, does it mean
that P&G is expanding? Not necessarily: The
additions are at current costs, whereas the dis-
positions are at historical costs. The additions
of $1,679 are less than P&G’s depreciation and
amortization expense for 2001 of $1,693 million,
yet it is not disclosed in the financial reports
how much of this latter amount reflects amor-
tization. (P&G’s depreciation and amortization

news:Good
news:Good
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are reported together as $1,693 million on the
statement of cash flows.) The amount of neces-
sary capital expenditures is therefore elusive.

Some estimate free cash flow by assuming
that all capital expenditures are necessary for
the maintenance of the current growth of the
company. Though there is little justification in
using all expenditures, this is a practical solu-
tion to an impractical calculation. This assump-
tion allows us to estimate free cash flows using
published financial statements.

Another issue in the calculation is defining
what is truly “free” cash flow. Generally, we
think of “free” cash flow as that being left over
after all necessary financing expenditures are
paid; this means that free cash flow is after in-
terest on debt is paid. Some calculate free cash
flow before such financing expenditures, others
calculate free cash flow after interest, and still
others calculate free cash flow after both interest
and dividends (assuming that dividends are a
commitment, though not a legal commitment).

There is no one correct method of calculating
free cash flow and different analysts may ar-
rive at different estimates of free cash flow for a
company. The problem is that it is impossible to
measure free cash flow as dictated by the the-
ory, so many methods have arisen to calculate
this cash flow. A simple method is to start with
the cash flow from operations and then deduct
capital expenditures. For P&G in 2002,

Cash flow from operations $7,742
Deduct capital
expenditures

(1,692)

Free cash flow $6,050

Though this approach is rather simple, the
cash flow from the operations amount includes
a deduction for interest and other financing ex-
penses. Making an adjustment for the after-tax
interest and financing expenses, as we did ear-
lier for Procter & Gamble,

Cash flow from operations (as reported) $7,742
Adjustment 392
Cash flow from operations (as adjusted) $8,134
Deduct capital expenditures (1,692)
Free cash flow $6,442

We can relate free cash flow directly to a com-
pany’s income. Starting with net income, we
can estimate free cash flow using four steps:

Step 1: Determine earnings before interest and
taxes (EBIT).

Step 2: Calculate earnings before interest but
after taxes.

Step 3: Adjust for noncash expenses (e.g., de-
preciation).

Step 4: Adjust for capital expenditures and
changes in working capital.

Using these four steps, we can calculate the
free cash flow for Procter & Gamble for 2002, as
shown in Table 5.

NET FREE CASH FLOW
There are many variations in the calculation of
cash flows that are used in analyses of com-
panies’ financial condition and operating per-
formance. As an example of these variations,
consider the alternative to free cash flow de-
veloped by Fitch, a company that rates corpo-
rate debt instruments. This cash flow measure,
referred to as net free cash flow (NFCF), is free
cash flow less interest and other financing costs
and taxes. In this approach, free cash flow is
defined as earnings before depreciation, inter-
est, and taxes, less capital expenditures. Capital
expenditures encompass all capital spending,
whether for maintenance or expansion, and no
changes in working capital are considered.

The basic difference between NFCF and free
cash flow is that the financing expenses—
interest and, in some cases, dividends—are de-
ducted. If preferred dividends are perceived
as nondiscretionary—that is, investors come to
expect the dividends—dividends may be in-
cluded with the interest commitment to arrive
at net free cash flow. Otherwise, dividends are
deducted from net free cash flow to produce
cash flow. Another difference is that NFCF does
not consider changes in working capital in the
analysis.
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Table 5 Calculation of Procter & Gamble’s Free Cash Flow for 2002, in Millions*

Step l:
Net income $4,352
Add taxes 2,031
Add interest 603
Earnings before interest and taxes $6,986

Step 2:
Earnings before interest and taxes $6,986
Deduct taxes (@35%) (2.445)
Earnings before interest $4,541

Step 3:
Earnings before interest $4,541
Add depreciation and amortization 1,693
Add increase in deferred taxes 389
Earnings before noncash expenses $6,623

Step 4:
Earnings before noncash expenses $6,623
Deduct capital expenditures (1,679)
Add decrease in receivables $96
Add decrease in inventories 159
Add cash flows from changes in accounts payable,

accrued expenses, and other liabilities
684

Deduct cash flow from changes in other operating assets
and liabilities

(98)

Cash flow from change in working capital accounts 841
Free cash flow $5,785

*Procter & Gamble’s fiscal year ended June 30, 2002. Charges in operating accounts are taken from Procter & Gamble’s
Statement of Cash Flows.

Further, cash taxes are deducted to arrive
at net free cash flow. Cash taxes are the in-
come tax expense restated to reflect the actual
cash flow related to this obligation, rather than
the accrued expense for the period. Cash taxes
are the income tax expense (from the income
statement) adjusted for the change in deferred
income taxes (from the balance sheets). For
Procter & Gamble in 2002,

Income tax expense $2,031
Deduct increase in deferred income

tax
(389)

Cash taxes $1,642

(Note that cash taxes require taking the tax
expense and either increasing this to reflect any
decrease in deferred taxes [that is, the payment
this period of tax expense recorded in a prior
period] or decreasing this amount to reflect any
increase in deferred taxes [that is, the deferment
of some of the tax expense].)

In the case of Procter & Gamble for 2002,

EBIT $6,986
Add depreciation and amortization 1,693
EBITDA $8,679
Deduct capital expenditures (1,679)
Free cash flow $7,000
Deduct interest (603)
Deduct cash taxes (1,642)
Net free cash flow $4,755
Deduct cash common dividends (2,095)
Net cash flow $2,660

The free cash flow amount per this calculation
differs from the $5,785 that we calculated ear-
lier for two reasons: Changes in working capital
and the deduction of taxes on operating earn-
ings were not considered.

Net cash flow gives an idea of the uncon-
strained cash flow of the company. This cash
flow measure may be useful from a creditor’s
perspective in terms of evaluating the com-
pany’s ability to fund additional debt. From a
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shareholder’s perspective, net cash flow (that
is, net free cash flow net of dividends) may be
an appropriate measure because this represents
the cash flow that is reinvested in the company.

USEFULNESS OF CASH
FLOWS IN FINANCIAL
ANALYSIS
The usefulness of cash flows for financial anal-
ysis depends on whether cash flows provide
unique information or provide information in a
manner that is more accessible or convenient for
the analyst. The cash flow information provided
in the statement of cash flows, for example, is
not necessarily unique because most, if not all,
of the information is available through analy-
sis of the balance sheet and income statement.
What the statement does provide is a classifi-
cation scheme that presents information in a
manner that is easier to use and, perhaps, more
illustrative of the company’s financial position.

An analysis of cash flows and the sources of
cash flows can reveal the following information:

� The sources of financing the company’s cap-
ital spending. Does the company generate in-
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Figure 3 Krispy, Kreme Doughnuts, Inc. Income, 1997–2006
Source: Krispy Kreme Doughnuts, Inc., 10-K filings, various years.

ternally (that is, from operations) a portion or
all of the funds needed for its investment ac-
tivities? If a company cannot generate cash
flow from operations, this may indicate prob-
lems up ahead. Reliance on external financing
(e.g., equity or debt issuance) may indicate
a company’s inability to sustain itself over
time.

� The company’s dependence on borrowing.
Does the company rely heavily on borrow-
ing that may result in difficulty in satisfying
future debt service?

� The quality of earnings. Large and growing
differences between income and cash flows
suggest a low quality of earnings.

Consider the financial results of Krispy Kreme
Doughnuts, Inc., a wholesaler and retailer of
donuts. Krispy Kreme grew from having fewer
than 200 stores before its initial public offering
(IPO) in 2000 to over 400 stores at the end of
its 2005 fiscal year. Accompanying this growth
in stores is the growth in operating and net in-
come, as we show in Figure 3. The growth in in-
come continued after the IPO as the number of
stores increased, but the tide in income turned
in the 2004 fiscal year and losses continued into
the 2005 fiscal year as well.
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Krispy Kreme’s growth just after its IPO was
financed by both operating activities and exter-
nal financing, as we show in Figure 4. However,
approximately half of the funds to support its
rapid growth and to purchase some of its fran-
chised stores in the 2000–2003 fiscal years came
from long-term financing. This resulted in prob-
lems as the company’s debt burden became al-
most three times its equity as revenue growth
slowed by the 2005 fiscal year. Krispy Kreme
demonstrated some ability to turn itself around
in the 2006 fiscal year, partly by slowing its ex-
pansion through new stores.

Ratio Analysis
One use of cash-flow information is in ratio
analysis, primarily with the balance sheet and
income statement information. Once such ra-
tio is the cash flow–based ratio, the cash-flow
interest coverage ratio, which is a measure of fi-
nancial risk. There are a number of other cash
flow–based ratios that an analyst may find use-
ful in evaluating the operating performance and
financial condition of a company.

A useful ratio to help further assess a com-
pany’s cash flow is the cash flow-to-capital expen-

ditures ratio, or capital expenditures coverage ratio:

Cash flow-to-capital expenditures

= Cash flow
Capital expenditures

The cash-flow measure in the numerator
should be one that has not already removed
capital expenditures; for example, including
free cash flow in the numerator would be in-
appropriate.

This ratio provides information about the fi-
nancial flexibility of the company and is par-
ticularly useful for capital-intensive firms and
utilities (see Fridson, 2002, p. 173). The larger
the ratio, the greater the financial flexibility.
However, one must carefully examine the rea-
sons why this ratio may be changing over time
and why it might be out of line with comparable
firms in the industry. For example, a declining
ratio can be interpreted in two ways. First, the
firm may eventually have difficulty adding to
capacity via capital expenditures without the
need to borrow funds. The second interpreta-
tion is that the firm may have gone through a
period of major capital expansion and therefore
it will take time for revenues to be generated
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that will increase the cash flow from operations
to bring the ratio to some normal long-run level.

Another useful cash flow ratio is the cash flow-
to-debt ratio:

Cash flow to debt = Cash flow
Debt

where debt can be represented as total debt,
long-term debt, or a debt measure that cap-
tures a specific range of maturity (e.g., debt
maturing in five years). This ratio gives a mea-
sure of a company’s ability to meet maturing
debt obligations. A more specific formulation
of this ratio is Fitch’s CFAR ratio, which com-
pares a company’s three-year average net free
cash flow to its maturing debt over the next five
years (see McConville, 1996). By comparing the
company’s average net free cash flow to the ex-
pected obligations in the near term (that is, five
years), this ratio provides information on the
company’s credit quality.

Using Cash-Flow Information
The analysis of cash flows provides information
that can be used along with other financial data
to help assess the financial condition of a com-
pany. Consider the cash flow-to-debt ratio cal-
culated using three different measures of cash
flow—EBITDA, free cash flow, and cash flow
from operations (from the statement of cash
flows)—each compared with long-term debt, as
shown in Figure 5 for Weirton Steel.

This example illustrates the need to under-
stand the differences among the cash flow mea-
sures. The effect of capital expenditures in the
1988–1991 period can be seen by the difference
between the free-cash-flow measure and the
other two measures of cash flow; both EBITDA
and cash flow from operations ignore capital
expenditures, which were substantial outflows
for this company in the earlier period.

Cash-flow information may help a stock or
bond analyst identify companies that may
encounter financial difficulties. Consider the
study by Largay and Stickney (1980) that an-

alyzed the financial statements of W. T. Grant
during the 1966–1974 period preceding its
bankruptcy in 1975 and ultimate liquidation.
They noted that financial indicators such as
profitability ratios, turnover ratios, and liq-
uidity ratios showed some downtrends, but
provided no definite clues to the company’s im-
pending bankruptcy. A study of cash flows from
operations, however, revealed that company
operations were causing an increasing drain on
cash, rather than providing cash. (For the period
investigated, a statement of changes of financial
position [on a working capital basis]) was re-
quired to be reported prior to 1988.] This neces-
sitated an increased use of external financing,
the required interest payments on which exac-
erbated the cash-flow drain. Cash-flow analy-
sis clearly was a valuable tool in this case since
W. T. Grant had been running a negative cash
flow from operations for years. Yet none of the
traditional ratios discussed above take into ac-
count the cash flow from operations. Use of the
cash flow-to-capital expenditures ratio and the
cash flow-to-debt ratio would have highlighted
the company’s difficulties.

Dugan and Samson (1996) examined the use
of operating cash flow as an early warning sig-
nal of a company’s potential financial problems.
The subject of the study was Allied Products
Corporation because for a decade this company
exhibited a significant divergence between cash
flow from operations and net income. For parts
of the period, net income was positive while
cash flow from operations was a large negative
value. In contrast to W. T. Grant, which went
into bankruptcy, the auditor’s report in the 1991
Annual Report of Allied Products Corporation
did issue a going-concern warning. Moreover,
the stock traded in the range of $2 to $3 per
share. There was then a turnaround of the com-
pany by 1995. In its 1995 annual report, net
income increased dramatically from prior pe-
riods (to $34 million) and there was a positive
cash flow from operations ($29 million). The
stock traded in the $25 range by the spring of
1996. As with the W. T. Grant study, Dugan and
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Figure 5 Cash Flow to Debt Using Alternative Estimates of Cash Flow for Weirton Steel, 1988–1996
Source: Weirton Steel’s 10-K reports, various years.

Samson (1996) found that the economic reali-
ties of a firm are better reflected in its cash flow
from operations.

The importance of cash-flow analysis in
bankruptcy prediction is supported by the
study by Foster and Ward (1997), who
compared trends in the statement of cash
flows components—cash flow from opera-
tions, cash flow for investment, and cash
flow for financing—between healthy compa-
nies and companies that subsequently sought
bankruptcy. They observe that healthy com-
panies tend to have relatively stable relations
among the cash flows for the three sources, cor-
recting any given year’s deviation from their
norm within one year. They also observe that
unhealthy companies exhibit declining cash
flows from operations and financing and declin-
ing cash flows for investment one and two years
prior to the bankruptcy. Further, unhealthy
companies tend to expend more cash flows to
financing sources than they bring in during the
year prior to bankruptcy. These studies illus-
trate the importance of examining cash flow in-
formation in assessing the financial condition
of a company.

KEY POINTS
� The term “cash flow” has many mean-

ings and the challenge is to determine the
cash-flow definition and calculation that is
appropriate. The simplest calculation of cash
flow is the sum of net income and noncash
expenses. This measure, however, does not
consider other sources and uses of cash
during the period.

� The statement of cash flows provides a use-
ful breakdown of the sources of cash flows:
operating activities, investing activities, and
financing activities. Though attention is gen-
erally focused on the cash flows from op-
erations, what the company does with the
cash flows (that is, investing or paying off fi-
nancing obligations) and what the sources of
invested funds are (that is, operations ver-
sus external financing) must be investigated.
Minor adjustments can be made to the items
classified in the statement of cash flows to im-
prove the classification.

� Examination of the different patterns of cash
flows is necessary to get a general idea of
the activities of the company. For example,
a company whose only source of cash flow is
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from investing activities, suggesting the sale
of property or equipment, may be experienc-
ing financial distress.

� Free cash flow is a company’s cash flow
that remains after making capital investments
that maintain the company’s current rate of
growth. It is not possible to calculate free
cash flow precisely, resulting in many differ-
ent variations in calculations of this measure.
A company that generates free cash flow is
not necessarily performing well or poorly; the
existence of free cash flow must be taken in
context with other financial data and infor-
mation on the company.

� One of the variations in the calculation of a
cash-flow measure is net free cash flow, which
is, essentially, free cash flow less any financing
obligations. This is a measure of the funds
available to service additional obligations to
suppliers of capital.
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Abstract: Probability theory can be understood as a particular field in mathematics. Hence, it is only
to be expected that it relies intensely on theory from analysis and algebra. For example, the fact
that the cumulative probability over all values a random variable can assume has to be equal to
one is not always feasible to check for without a profound knowledge of mathematics. Continuous
probability distributions involve a good deal of analysis and the more sophisticated a distribution
is, the more mathematics is necessary to handle it.

In this entry, we review the functions that are
used in financial modeling: continuous func-
tions, the indicator function, the derivative of
a function, monotonic functions, and the inte-
gral. Moreover, as special functions, we get to
know the factorial, the gamma, beta, and Bessel
functions as well as the characteristic function
of random variables. (For a more detailed dis-
cussion of these functions, see Khuri [2003],
MacCluer [2009], and Richardson [2008].)

CONTINUOUS FUNCTION
In this section, we introduce general continuous
functions.

General Idea
Let f (x) be a continuous function for some real-
valued variable x. The general idea behind con-
tinuity is that the graph of f (x) does not exhibit
gaps. In other words, f (x) can be thought of as
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Figure 1 Continuous Function f (x)
Note: For x ∈ [0,1), f (x) = x2 and for x ∈ [1,2), f (x) = 1 + ln(x).

being seamless. We illustrate this in Figure 1.
For increasing x, from x = 0 to x = 2, we can
move along the graph of f (x) without ever hav-
ing to jump. In the figure, the graph is generated
by the two functions f (x) = x2 for x ∈ [0,1), and
f (x) = ln(x) + 1 for x ∈ [1, 2).

Note that the function f (x) = ln (x) is the nat-
ural logarithm. It is the inverse function to the
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Figure 2 Discontinuous Function f (x)
Note: For x ∈ [0,1), f (x) = x2 and for x ∈ [1,2), f (x) = ln(x).

exponential function g(x) = ex where e = 2.7183
is the Euler constant. The inverse has the effect
that f (g(x)) = ln(ex) = x, that is, ln and e cancel
each other out.

A function f (x) is discontinuous if we have
to jump when we move along the graph of the
function. For example, consider the graph in
Figure 2. Approaching x = 1 from the left, we
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have to jump from f (x) = 1 to f (1) = 0. Thus, the
function f is discontinuous at x = 1. Here, f is
given by f (x) = x2 for x ∈ [0,1), and f (x) = ln(x)
for x ∈ [1,2).

Formal Derivation
For a formal treatment of continuity, we first
concentrate on the behavior of f at a particular
value x*.

We say that that a function f (x) is continuous
at x* if, for any positive distance δ, we obtain a
related distance ε(δ) such that

f (x∗) − δ ≤ f (x) ≤ f (x∗) + δ, for all

x ∈ (x∗ − ε(δ), x∗ + ε(δ))

What does that mean? We use Figure 3 to il-
lustrate. (The function is f (x) = sin(x) with x* =
0.2.) At x*, we have the value f (x*). Now, we
select a neighborhood around f (x*) of some ar-
bitrary distance δ as indicated by the dashed
horizontal lines through f (x*) − δ and f (x*) + δ,
respectively. From the intersections of these hor-
izontal lines and the function graph (solid line),

 x*

 f(x*)

 δ

 δ

 x* + ε(δ) x* − ε(δ)

 ε(δ)

 f(x*) − δ

 f(x*) + δ

 xL  xU ε(δ)

Figure 3 Continuity Criterion
Note: Function f = sin(x), for −1 ≤ x ≤ 1.

we extend two vertical dash-dotted lines down
to the x-axis so that we obtain the two values
xL and xU, respectively. Now, we measure the
distance between xL and x* and also the dis-
tance between xU and x*. The smaller of the two
yields the distance ε(δ). With this distance ε(δ)
on the x-axis, we obtain the environment (x* −
ε(δ), x* + ε(δ)) about x*. (Note that xL = x* −
εδ , since the distance between xL and x* is the
shorter one.) The environment is indicated by
the dashed lines extending vertically above x* −
ε(δ) and x* + ε(δ), respectively. We require that
all x that lie in (x* − ε(δ), x* + ε(δ)) yield values
f (x) inside of the environment [f (x*)−δ, f (x*) +
δ]. We can see by Figure 3 that this is satisfied.

Let us repeat this procedure for a smaller dis-
tance δ. We obtain new environments [f (x*) − δ,
f (x*) + δ] and (x* − ε(δ), x* + ε(δ)). If, for all
x in (x* − ε(δ), x*+ ε(δ)), the f (x) are inside of
[f (x*) − δ, f (x*) + δ], again, then we can take
an even smaller δ. We continue this for succes-
sively smaller values of δ just short of becoming
0 or until the condition on the f (x) is no longer
satisfied. As we can easily see in Figure 3, we
could go on forever and the condition on the f (x)
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would always be satisfied. Hence, the graph of
f is seamless or continuous at x.

Finally, we say that the function f is continuous
if it is continuous at all x for which f is defined,
that is, in the domain of f . Note that only the do-
main of f is of interest. For example, the square
root function f (x) = √

x is only defined for x
≥ 0. Thus, we do not care about whether f is
continuous for any x other than x ≥ 0.

INDICATOR FUNCTION
The indicator function acts like a switch. Often,
it is denoted by 1A(X) where A is the event of
interest and X is a random variable. So, 1A(X)
is 1 if the event A is true, that is, if X assumes a
value in A. Otherwise, 1A(X) is 0. Formally, this
is expressed as

1A(X) =
{

1 X ∈ A
0 otherwise

Usually, indicator functions are applied if we
are interested in whether a certain event has
occurred or not. For example, in a simple way,

0

0

X

V

1[0,∞)(X) ⋅ X

Figure 4 The Company Value V as a Function of the Random Variable X Using the Indicator Function
1[0,∞)(X) · X

the value V of a company may be described
by a real numbered random variable X on � =
R with a particular probability distribution P.
Now, the value V of the company may be equal
to X as long as X is greater than 0. In the case
where X assumes a negative value or 0, then
V is automatically 0, that is, the company is
bankrupt. So, the event of interest is A = [0,
∞), that is, we want to know whether X is still
positive. Using the indicator function this can
be expressed as

1[0,∞)(X) =
{

1 X ∈ [0,∞)
0 otherwise

Finally, the company value can be given as

V = 1[0,∞)(X) · X =
{

X X ∈ [0,∞)
0 otherwise

The company value V as a function is depicted
in Figure 4. We can clearly detect the kink at
x = 0 where the indicator function becomes 1
and, hence, V = X.
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Figure 5 Function f (solid) with Derivatives f ′(x) at x, for 0 < x < 0.5 (dashed), x = 1 (dash-dotted),
and x = 1.571 (dotted)

DERIVATIVES
Suppose we have some continuous function f
with the graph given by the solid line in Figure
5. We now might be interested in the growth rate
of f at some position x. That is, we might want
to know by how much f increases or decreases

Δy4

 g

fg(x+)

f(x*)

x* x+

s1

s2

s3

s4

Δy3Δy2Δy1

Δx1

Δx2

Δx3

Δx4

Δx5

Δy5

Figure 6 Functions f and g with Slopes Measured at the Points (x*, f (x*)) and (x+, g(x+)) Indicated by
the • Symbol

when we move from some x by a step of a given
size, say �x, to the right. This difference in f we
denote by �f . This � symbol is called delta.

Let us next have a look at the graphs given
by the solid lines in Figure 6. These represent
the graphs of f and g. The important difference
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between f and g is that, while g is linear, f is not,
as can be seen by f ′s curvature.

We begin the analysis of the graphs’ slopes
with function g on the top right of the figure.
Let us focus on the point (x+, g(x+)) given by the
solid circle at the lower end of graph g. Now,
when we move to the right by �x4 along the hor-
izontal dashed line, the corresponding increase
in g is given by �y4, as indicated by the vertical
dashed line. If, on the other hand, we moved
to the right by the longer distance, �x5, the ac-
cording increment of g would be given by �y5.
(This vertical increment �y5 is also indicated by
a vertical dashed line.) Since g is linear, it has
constant slope everywhere and, hence, also at
the point (x+, f (x+)). We denote that slope by
s4. This implies that the ratios representing the
relative increments (i.e., the slopes) have to be
equal. That is,

s4 = �y4

�x4
= �y5

�x5

Next, we focus on the graph of f on the lower
left of Figure 6. Suppose we measured the slope
of f at the point (x*, f (x*)). If we extended a step
along the dashed line to the right by �x1, the
corresponding increment in f would be �y1,
as indicated by the leftmost vertical dashed
line. If we moved, instead, by the longer �x2

to the right, the corresponding increment in f
would be �y2. And a horizontal increment of
�x3 would result in an increase of f by �y3.

In contrast to the graph of g, the graph of
f does not exhibit the property of a constant
increment �y in f per unit step �x to the right.
That is, there is no constant slope of f , which
results in the fact that the three ratios of the
relative increase of f are different. To be precise,
we have

�y1

�x1
>

�y2

�x2
>

�y3

�x3

as can be seen in Figure 6. So, the shorter our
step �x to the right, the steeper the slopes of
the thin solid lines through (x*, f (x*)) and the
corresponding points on the curve, (x*+�x1,
f (x*+�x1)), (x*+�x2, f (x*+�x2)), and (x*+�x2,

f (x*+�x2)), respectively. That means that, the
smaller the increment �x, the higher the relative
increment �y of f . So, finally, if we moved only
a minuscule step to the right from (x*, f (x*)), we
would obtain the steepest thin line and, conse-
quently, the highest relative increase in f given
by

�y
�x

(1)

By letting �x approach 0, we obtain the
marginal increment, in case the limit of (1) exists
(i.e., if the ratio has a finite limit). Formally,

�y
�x

�x→0−−−−−−−−→ s(x) with − ∞ < s(x) < ∞

This marginal increment s(x) is different, at any
point on the graph of f , while we have seen
that it is constant for all points on the graph
of g.

Construction of the Derivative
The limit analysis of marginal increments now
brings us to the notion of a derivative that we
discuss next. Earlier we introduced the limit
growth rate of some continuous function at
some point (x0, f (x0)). To represent the slope
of the line through (x0, f (x0)) and (x0 + �x,
f (x0 + �x)), we define the difference quotient

f (x0 + �x) − f (x0)
�x

(2)

If we let �x → 0, we obtain the limit of the
difference quotient (2). If this limit is not finite,
then we say that it does not exist. Suppose we
were not only interested in the behavior of f
when moving �x to the right but also wanted
to analyze the reaction by f to a step �x to the
left. We would then obtain two limits of (2). The
first with �x+ > 0 (i.e., a step to the right) would
be the upper limit LU

f (x0 + �x+) − f (x0)
�x+

�x+→0−−−−−−−−→ LU
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and the second with �x− < 0 (i.e., a step to the
left), would be the lower limit LL

f (x0 + �x−) − f (x0)
|�x−|

�x−→0−−−−−−−−→ LU

If LU and LL are equal, LU = LL = L, then f is said
to be differentiable at x0. The limit L is the deriva-
tive of f . We commonly write the derivative in
the fashion

f ′(x0) = d f (x)
dx

∣∣∣∣
x=x0

= dy
dx

∣∣∣∣
x=x0

(3)

On the right side of (3), we have replaced f (x)
by the variable y as we will often do, for conve-
nience. If the derivative (3) exists for all x, then
f is said to be differentiable.

Let us now return to Figure 5. Recall that the
graph of the continuous function f is given by
the solid line. We start at x = −1. Since f is
not continuous at x = −1, we omit this end
point (1,1) from our analysis. For −1 < x < 0,
we have that f is constant with slope s = −1.
Consequently, the derivative f ′(x) = −1, for
these x.

At x = 0, we observe that f is linear to the left
with f ′(x) = −1 and that it is also linear to the
right, however, with f ′(x) = 1, for 0 < x < 0.5.
So, at x = 0, LU = 1 while LL = −1. Since here LU


= LL, the derivative of f does not exist at x = 0.
For 0 < x < 0.5, we have the constant deriva-

tive f ′(x) = 1. The corresponding slope of 1
through (0,0) and (0.5,0.5) is indicated by the
dashed line. At x = 0.5, the left side limit LL = 1
while the right side limit LU = 0.8776. (This
value of cos(0.5) = 0.8776 is a result from cal-
culus.) Hence, the two limits are not equal and,
consequently, f is not differentiable at x = 0.5.

Without formal proof, we state that f is dif-
ferentiable for all 0.5 < x < 2. For example, at
x = 1, LL = LU = 0.5403 and, thus, the derivative
f ′(1) = 0.5403. The dash-dotted line indicating
this derivative is called the tangent of f at x =
1. In Figure 5, the arrow indexed f ′(1) points at
this tangent. As another example, we select x
= 1.571 where f assumes its maximum value.
Here, the derivative f ′(1.571) = 0 and, hence,

the tangent at x = 1.571 is flat as indicated by
the horizontal dotted line. In Figure 5, the arrow
indexed f ′ (1.571) points at this tangent.

MONOTONIC FUNCTION
Suppose we have some function f (x) for real-
valued x. For example, the graph of f may look
like that in Figure 7. We see that on the interval
[0,1], the graph is increasing from f (0) = 0 to
f (1) = 1. For 1 ≤ x ≤ 2, the graph remains at
the level f (1) = 1 like a platform. And, finally,
between x = 2 and x = 3, the graph is increasing,
again, from f (2) = 1 to f (3) = 2.

In contrast, we may have another function,
g(x). Its graph is given by Figure 8. It looks
somewhat similar to the graph in Figure 7,
however, without the platform. The graph of
g never remains at a level, but increases con-
stantly. Even for the smallest increments from
one value of x, say x1, to the next higher, say x2,
there is always an upward slope in the graph.

Both functions, f and g, never decrease. The
distinction is that f is monotonically increasing
since the graph can remain at some level, while
g is strictly monotonic increasing since its graph
never remains at any level. If we can differenti-
ate f and g, we can express this in terms of the
derivatives of f and g. Let f ′ be the derivative of
f and g′ the derivative of g. Then, we have the
following definitions of continuity for continu-
ous functions with existing derivatives:

Monotonically increasing functions: A continu-
ous function f with derivative f ′ is monotoni-
cally increasing if its derivative f ′ ≥ 0.

Strictly monotonic increasing functions: A con-
tinuous function g with derivative g′ is strictly
monotonic increasing if its derivative g′ > 0.

Analogously, a function f (x) is monotonically
decreasing if it behaves in the opposite manner.
That is, f never increases when moving from
some x to any higher value x1 > x. When f is
continuous with derivative f ′, then we say that
f is monotonically decreasing if f ′(x) ≤ 0 and that
it is strictly monotonic increasing if f ′(x) < 0 for all
x. For these two cases, illustrations are given by
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mirroring the graphs in Figures 7 and 8 against
their vertical axes, respectively.

INTEGRAL
Here we derive the concept of integration neces-
sary to understand the probability density and
continuous distribution function. The integral

 x

g(x)

Figure 8 Strictly Monotonic Increasing Function g

of some function over some set of values repre-
sents the area between the function values and
the horizontal axis. To sketch the idea, we start
with an intuitive graphical illustration.

We begin by analyzing the area A between
the graph (solid line) of the function f (t) and
the horizontal axis between t = 0 and t = T
in Figure 9. Looking at the graph, it appears
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t0 = 0 tn = Tti ti+1 Δt

Figure 9 Approximation of the Area A between Graph of f (t) and the Horizontal Axis, for 0 ≤ t ≤ T

quite complicated to compute this area A in
comparison to, for example, the area of a rect-
angle where we would only need to know its
width and length. However, we can approxi-
mate this area by rectangles as will be done next.

Approximation of the Area
through Rectangles
Let’s approximate the area A under the func-
tion graph in Figure 9 as follows. As a first step,
we dissect the interval between 0 and T into n
equidistant intervals of length �t = ti+1 − ti for
i = 0, 1, . . . , n − 1. For each such interval, we
consider the function value f (ti+1) at the right-
most point, ti+1. To obtain an estimate of the area
under the graph for the respective interval, we
multiply the value f (ti+1) at ti+1 by the interval
width �t yielding A (ti+1) = �t · f (ti+1), which
equals the area of the rectangle above interval
i + 1 as displayed in Figure 9. Finally, we add up
the areas A(t1), A(t2), . . . , A(T) of all rectangles
resulting in the desired estimate of the area A

n−1∑

i=0

A(ti+1) =
n−1∑

i=0

�t · f (ti+1) (4)

We repeat the just described procedure for de-
creasing interval widths �t.

Integral as the Limiting Area
To derive the perfect approximation of the area
under the curve in Figure 9, we let the inter-
val width �t gradually vanish until it almost
equals 0, proceeding as before. We denote this
infinitesimally small width by the step rate dt.
Now, the difference between the function val-
ues at either end, that is, f (ti) and f (ti+1), of the
interval i + 1 will be nearly indistinguishable
since ti and ti+1 almost coincide. Hence, the cor-
responding rectangle with area A(ti+1) will turn
into a dash with infinitesimally small base dt.

Summation as in equation (4) of the areas of
the dashes becomes infeasible. For this purpose,
the integral has been introduced as the limit of
(4) as �t → 0. (Conditions under which these
limits exist are omitted here.) It is denoted by

T∫

0

f (t)dt (5)

where the limits 0 and T indicate which interval
the integration is performed on. In our case, the
integration variable is t while the function f (t)
is called the integrand. In words, equation (5) is
the integral of the function f (t) over t from 0 to
T. It is immaterial how we denote the integra-
tion variable. The same result as in equation (5)
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would result if we wrote
T∫

0

f (y)dy

instead. The important factors are the integrand
and the integral limits.

Note that instead of using the function values
of the right boundaries of the intervals f (ti+1) in
equation (4), referred to as the right-point rule,
we might as well have taken the function values
of the left boundaries f (ti), referred to as the left-
point rule, which would have led to the same
integral. Moreover, we might have taken the
function f (0.5·(ti+1 + ti)) values evaluated at the
mid-points of the intervals and still obtained
the same interval. This latter procedure is called
the mid-point rule.

If we keep 0 as the lower limit of the integral
in equation (5) and vary T, then equation (5)
becomes a function of the variable T. We may
denote this function by

F (T) =
T∫

0

f (t)dt (6)

Relationship Between Integral
and Derivative
In equation (6) the relationship between f (t)
and F(T) is as follows. Suppose we compute
the derivative of F(T) with respect to T and as-
sume that F(T) is differentiable, for T > 0. The
result is

F ′(T) = dF(T)
dT

= f (T) (7)

Hence, from equation (7) we see that the
marginal increment of the integral at any point
(i.e., its derivative) is exactly equal to the in-
tegrand evaluated at the according value. This
need not generally be true. But in most cases,
particularly in financial modeling, this state-
ment is valid.

The implication of this discussion for proba-
bility theory is as follows. Let P be a continuous
probability measure with probability distribu-

tion function F and (probability) density func-
tion f . There is the unique link between f and P
given through

P(X ≤ x) = F (x) =
∞∫

−∞
f (x)dx (8)

Formally, the integration of f over x is always
from −∞ to ∞, even if the support is not on the
entire real line. This is no problem, however,
since the density is zero outside the support
and, hence, integration over those parts yields
0 contribution to the integral. For example, sup-
pose that some density function were

f (x) =
{

h(x), x ≥ 0
0 x < 0

(9)

where h(x) is just some function such that f sat-
isfies the requirements for a density function.
That is, the support is only on the positive part
of the real line. Substituting the function from
equation (9) into equation (8) yields the equality

∞∫

−∞
f (x)dx =

∞∫

0

f (x)dx =
∞∫

0

h(x)dx (10)

SOME FUNCTIONS
Here we introduce some functions needed in
probability theory to describe probability distri-
butions of random variables: factorials, gamma
function, beta function, Bessel function of the
third kind, and characteristic function. While
the first four are functions of very special shape,
the characteristic function is of a more general
structure. It is the function characterizing the
probability distribution of some random vari-
able and, hence, is of unique form for each ran-
dom variable.

Factorial
Let k ∈ N (i.e., k = 1, 2, . . .). Then the factorial of
this natural number k, denoted by the symbol !,
is given by

k! = k · (k − 1) · (k − 2) · . . . · 1 (11)
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A factorial is the product of this number and
all natural numbers smaller than k including 1.
By definition, the factorial of zero is one (i.e.,
0! ≡ 1). For example, the factorial of 3 is 3! =
3 · 2 · 1 = 6.

Gamma Function
The gamma function for nonnegative values x is
defined by

�(x) =
∞∫

0

e−ttx−1dt, x ≥ 0 (12)

The gamma function has the following prop-
erties. If the x correspond with a natural number
n ∈ N (i.e., n = 1, 2, . . .), then we have that equa-
tion (12) equals the factorial given by equation
(11) of n − 1. Formally, this is

�(n) = (n − 1)! = (n − 1) · (n − 2) · . . . · 1

Furthermore, for any x ≥ 0, it holds that
�(x +1) = x�(x).

In Figure 10, we have displayed part of the
gamma function for x values between 0.1 and 5.
Note that, for either x → 0 or x → ∞, �(x) goes
to infinity.
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0
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10
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Γ(x)
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Figure 10 Gamma Function �(x)

Beta Function
The beta function with parameters c and d is de-
fined as

B(c, d) =
1∫

0

uc−1(1 − u)d−1du

= �(c)�(d)
�(c + d)

where � is the gamma function from equa-
tion (12).

Bessel Function of the Third Kind
The Bessel function of the third kind is
defined as

K1(x) = 1
2

∞∫

0

exp
{
− x

2

(
y + 1

y

)}
dy

This function is often a component of other,
more complex functions such as the density
function of the NIG distribution.

Characteristic Function
Before advancing to introduce the characteristic
function, we briefly explain complex numbers.
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Figure 11 Graphical Representation of the Complex Number z = 0.8 + 0.9i

Suppose we were to take the square root of
the number −1, that is,

√−1. So far, our cal-
culus has no solution for this since the square
root of negative numbers has not yet been intro-
duced. However, by introducing the imaginary
number i, which is defined as

i = √−1

we can solve square roots of any real number.
Now, we can represent any number as the com-
bination of a real (Re) part a plus some units b of
i, which we refer to as the imaginary (Im) part.
Then, any number z will look like

z = a + i · b (13)

The number given by equation (13) is a com-
plex number. The set of complex numbers is
symbolized by C. This set contains the real num-
bers that are those complex numbers with b =
0. Graphically, we can represent the complex
numbers on a two-dimensional space as given
in Figure 11.

Now, we can introduce the characteristic func-
tion as some function φ mapping real numbers
into the complex numbers. Formally, we write
this as φ: R → C. Suppose we have some ran-

dom variable X with density function f . The
characteristic function is then defined as

φ(t) =
∞∫

−∞
eitx f (x)dx (14)

which transforms the density f into some com-
plex number at any real position t. Equation (14)
is commonly referred to as the Fourier transfor-
mation of the density.

The relationship between the characteristic
function ϕ and the density function f of some
random variable is unique. So, when we state ei-
ther one, the probability distribution of the cor-
responding random variable is unmistakably
determined.

KEY POINTS
� Continuous functions are an integral compo-

nent of mathematical analysis. They are use-
ful whenever jumps in the function values
are undesirable. This is often the case when
financial asset returns are modeled; that is,
one assumes that, in particular logarithmic
returns, they may assume any value on the
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real line such that the related probability dis-
tribution is continuous with continuous prob-
ability density.

� The indicator function is defined as a function
yielding one for certain specified argument
values and zero in any other case. It is help-
ful in expressing so-called exclusive either-or
behavior of random variables (i.e., when ran-
dom variables can only assume exactly one
of two values). For example, when one mod-
els call option prices where, at maturity, the
value of the option is equal to either zero or
the difference between the market value of the
underlying and the strike price, one resorts to
the indicator function.

� The derivative of some function expresses the
function’s rate of growth at some point for
infinitesimally small increments. In words, it
expresses by how much the function changes
if one takes a very small step. In probability
theory, a derivative is used in the context of
a continuous probability distribution to ex-
press by how much the distribution function
increases at a certain value (i.e., the marginal
rate of probability at a certain value).

� The integral is the continuous analogue of the
sum of discrete values. In probability theory,
the probability of individual outcomes is al-
ways zero when the distribution is continu-

ous. In order to express the probability of at
most a certain value, we cannot sum the in-
dividual probabilities of all values less than
or equal to the critical value. Instead, at each
value, we have the density function which we
integrate up to the critical value, yielding the
requested probability.

� The characteristic function is the unique rep-
resentation of a probability distribution. For
certain distributions, the probability density
function or the distribution function are un-
known. Instead, it is necessary to resort to
the characteristic function. Technically, the
characteristic function is a function involv-
ing complex numbers (i.e., numbers includ-
ing the square root of minus one) to express
the behavior of some function at certain fre-
quencies. It is closely linked to the Fourier
transform used in engineering.
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Abstract: Investing decisions require the valuation of investments and the determination of yields
on investments. Necessary for the valuation and yield determination are the financial mathematics
that involve the time value of money. With these mathematics, future cash flows can be translated
to a value in the present, a value today can be converted into a value at some future point in time,
and the yield on an investment can be computed.

In this entry, we introduce the mathematical
process of translating a value today into a value
at some future point in time, and then show
how this process can be reversed to determine
the value today of some future amount. We then
show how to extend the time value of money
mathematics to include multiple cash flows and
the special cases of annuities and loan amortiza-
tion. Finally, we demonstrate how these math-
ematics can be used to calculate the yield on an
investment.1

IMPORTANCE OF THE TIME
VALUE OF MONEY
The notion that money has a time value is one of
the most basic concepts in investment analysis.
Making decisions today regarding future cash
flows requires understanding that the value of
money does not remain the same throughout
time.

A dollar today is worth less than a dollar some
time in the future for two reasons:

Reason 1: Cash flows occurring at different
points in time have different values relative
to any one point in time.

One dollar one year from now is not as
valuable as one dollar today. After all, you
can invest a dollar today and earn interest so
that the value it grows to next year is greater
than the one dollar today. This means we
have to take into account the time value of
money to quantify the relation between cash
flows at different points in time.

Reason 2: Cash flows are uncertain.
Expected cash flows may not materialize.

Uncertainty stems from the nature of fore-
casts of the timing and/or the amount of
cash flows. We do not know for certain when,
whether, or how much cash flows will be
in the future. This uncertainty regarding fu-
ture cash flows must somehow be taken

595
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into account in assessing the value of an
investment.

Translating a current value into its equiva-
lent future value is referred to as compounding.
Translating a future cash flow or value into its
equivalent value in a prior period is referred
to as discounting. This entry outlines the basic
mathematical techniques used in compounding
and discounting.

Suppose someone wants to borrow $100 to-
day and promises to pay back the amount bor-
rowed in one month. Would the repayment of
only the $100 be fair? Probably not. There are
two things to consider. First, if the lender didn’t
lend the $100, what could he or she have done
with it? Second, is there a chance that the bor-
rower may not pay back the loan? So, when
considering lending money, we must consider
the opportunity cost (that is, what could have
been earned or enjoyed), as well as the uncer-
tainty associated with getting the money back
as promised.

Let’s say that someone is willing to lend the
money, but that they require repayment of the
$100 plus some compensation for the opportu-
nity cost and any uncertainty the loan will be
repaid as promised. The amount of the loan,
the $100, is the principal. The compensation re-
quired for allowing someone else to use the $100
is the interest.

Looking at this same situation from the per-
spective of time and value, the amount that you
are willing to lend today is the loan’s present
value. The amount that you require to be paid
at the end of the loan period is the loan’s fu-
ture value. Therefore, the future period’s value
is comprised of two parts:

Future value = Present value + Interest

The interest is compensation for the use of funds
for a specific period. It consists of (1) compen-
sation for the length of time the money is bor-
rowed and (2) compensation for the risk that the
amount borrowed will not be repaid exactly as
set forth in the loan agreement.

DETERMINING THE FUTURE
VALUE
Suppose you deposit $1,000 into a savings ac-
count at the Surety Savings Bank and you are
promised 10% interest per period. At the end of
one period you would have $1,100. This $1,100
consists of the return of your principal amount
of the investment (the $1,000) and the interest
or return on your investment (the $100). Let’s
label these values:
� $1,000 is the value today, the present value,

PV.
� $1,100 is the value at the end of one period,

the future value, FV.
� 10% is the rate interest is earned in one period,

the interest rate, i.

To get to the future value from the present
value:

FV = PV + (PV × i)
↑ ↑

principal interest

This is equivalent to:

FV = PV(1 + i)

In terms of our example,

FV = $1,000 + ($1,000 × 0.10)

= $1,000(1 + 0.10) = $1,100

If the $100 interest is withdrawn at the end of
the period, the principal is left to earn interest
at the 10% rate. Whenever you do this, you earn
simple interest. It is simple because it repeats it-
self in exactly the same way from one period
to the next as long as you take out the interest
at the end of each period and the principal re-
mains the same. If, on the other hand, both the
principal and the interest are left on deposit at
the Surety Savings Bank, the balance earns in-
terest on the previously paid interest, referred
to as compound interest. Earning interest on inter-
est is called compounding because the balance
at any time is a combination of the principal,
interest on principal, and interest on accumulated
interest (or simply, interest on interest).
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If you compound interest for one more period
in our example, the original $1,000 grows to
$1,210.00:

FV = Principal + First period interest

+ Second period interest

= $1,000.00 + ($1,000.00 × 0.10)

+ ($1,100.00 × 0.10)

= $1,200.00

The present value of the investment is $1,000,
the interest earned over two years is $210, and
the future value of the investment after two
years is $1,210.

The relation between the present value and
the future value after two periods, breaking out
the second period interest into interest on the
principal and interest on interest, is:

FV = PV + (PV × i) + (PV × i) + (PV × i × i)
↑ ↑ ↑ ↑

Principal First Second Second
period’s period’s period’s interest

interest on interest on on the first
the principal the principal period’s interest

or, collecting the PVs from each term and ap-
plying a bit of elementary algebra,

FV = PV(1 + 2i + i2) = PV(1 + i)2

The balance in the account two years from now,
$1,210, comprises three parts:

1. The principal, $1,000.
2. Interest on principal, $100 in the first period

plus $100 in the second period.
3. Interest on interest, 10% of the first period’s

interest, or $10.

To determine the future value with compound
interest for more than two periods, we follow
along the same lines:

FV = PV(1 + i)N (1)

The value of N is the number of compounding
periods, where a compounding period is the
unit of time after which interest is paid at the
rate i. A period may be any length of time: a
minute, a day, a month, or a year. The impor-
tant thing is to make sure the same compound-
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Figure 1 The Value of $1,000 Invested 10 Years in
an Account That Pays 10% Compounded Interest
per Year

ing period is reflected throughout the problem
being analyzed. The term “(1 + i)N” is referred
to as the compound factor. It is the rate of ex-
change between present dollars and dollars N
compounding periods into the future. Equation
(1) is the basic valuation equation—the founda-
tion of financial mathematics. It relates a value
at one point in time to a value at another point in
time, considering the compounding of interest.

The relation between present and future val-
ues for a principal of $1,000 and interest of 10%
per period through 10 compounding periods
is shown graphically in Figure 1. For example,
the value of $1,000, earning interest at 10% per
period, is $2,593.70 ten periods into the future:

FV = $1,000 (1 + 0.10)10 = $1,000 (2.5937)

= $2,593.70

As you can see in this figure the $2,593.70 bal-
ance in the account at the end of 10 periods is
comprised of three parts:

1. The principal, $1,000.
2. Interest on the principal of $1,000, which is

$100 per period for 10 periods or $1,000.
3. Interest on interest totaling $593.70.

We can express the change in the value of the
savings balance (that is, the difference between
the ending value and the beginning value) as
a growth rate. A growth rate is the rate at
which a value appreciates (a positive growth) or
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depreciates (a negative growth) over time. Our
$1,000 grew at a rate of 10% per year over the
10-year period to $2,593.70. The average an-
nual growth rate of our investment of $1,000 is
10%—the value of the savings account balance
increased 10% per year.

We could also express the appreciation in our
savings balance in terms of a return. A return is
the income on an investment, generally stated
as a change in the value of the investment over
each period divided by the amount at the in-
vestment at the beginning of the period. We
could also say that our investment of $1,000 pro-
vides an average annual return of 10% per year.
The average annual return is not calculated by
taking the change in value over the entire 10-
year period ($2,593.70 − $1,000) and dividing it
by $1,000. This would produce an arithmetic av-
erage return of 159.37% over the 10-year period,
or 15.937% per year. But the arithmetic aver-
age ignores the process of compounding. The
correct way of calculating the average annual
return is to use a geometric average return:

i = N

√
FV
PV

− 1 (2)

which is a rearrangement of equation (1) Using
the values from the example,

i = 10

√
$2,593.70
$1,000.00

− 1 =
(

$2,593.70
$1,000.00

)1/10

−1 = 1.100 − 1 = 10%

Therefore, the annual return on the invest-
ment—sometimes referred to as the compound
average annual return or the true return—is 10%
per year.

Here is another example for calculating a fu-
ture value. A common investment product of a
life insurance company is a guaranteed invest-
ment contract (GIC). With this investment, an
insurance company guarantees a specified in-
terest rate for a period of years. Suppose that
the life insurance company agrees to pay 6%
annually for a five-year GIC and the amount
invested by the policyholder is $10 million. The
amount of the liability (that is, the amount this

life insurance company has agreed to pay the
GIC policyholder) is the future value of $10 mil-
lion when invested at 6% interest for five years.
In terms of equation (1), PV = $10,000,000, i =
6%, and N = 5, so that the future value is:

FV = $10,000,000 (1 + 0.06)5 = $13,382,256

Compounding More Than One Time
per Year
An investment may pay interest more than one
time per year. For example, interest may be
paid semiannually, quarterly, monthly, weekly,
or daily, even though the stated rate is quoted
on an annual basis. If the interest is stated as,
say, 10% per year, compounded semiannually,
the nominal rate—often referred to as the annual
percentage rate (APR)—is 10%. The basic valua-
tion equation handles situations in which there
is compounding more frequently than once a
year if we translate the nominal rate into a rate
per compounding period. Therefore, an APR of
10% with compounding semiannually is 5% per
period—where a period is six months—and the
number of periods in one year is 2.

Consider a deposit of $50,000 in an account for
five years that pays 8% interest, compounded
quarterly. The interest rate per period, i, is 8%/4
= 2% and the number of compounding periods
is 5 × 4 = 20. Therefore, the balance in the ac-
count at the end of five years is:

FV = $50,000(1 + 0.02)20 = $50,000(1.4859474)

= $74,297.37

As shown in Figure 2, through 50 years with
both annual and quarterly compounding, the
investment’s value increases at a faster rate with
the increased frequency of compounding.

The last example illustrates the need to
correctly identify the “period” because this dic-
tates the interest rate per period and the number
of compounding periods. Because interest rates
are often quoted in terms of an APR, we need
to be able to translate the APR into an inter-
est rate per period and to adjust the number of
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Figure 2 Value of $50,000 Invested in the Ac-
count that Pays 8% Interest per Year: Quarterly
versus Annual Compounding

periods. To see how this works, let’s use an ex-
ample of a deposit of $1,000 in an account that
pays interest at a rate of 12% per year, with in-
terest compounded for different compounding
frequencies. How much is in the account after,
say, five years depends on the compounding
frequency:

Number FV at the
Com- Rate per of Periods End of
pounding Compound- in Five Five
Frequency Period ing Period, i Years, N Years

Annual One year 12% 5 $1,762.34
Semiannual Six months 6% 10 1,790.85
Quarterly Three months 3% 20 1,806.11
Monthly One month 1% 60 1,816.70

As you can see, both the rate per period, i,
and the number of compounding periods, N,
are adjusted and depend on the frequency of
compounding. Interest can be compounded for
any frequency, such as daily or hourly.

Let’s work through another example for com-
pounding with compounding more than once
a year. Suppose we invest $200,000 in an in-
vestment that pays 4% interest per year, com-
pounded quarterly. What will be the future
value of this investment at the end of 10 years?

The given information is i = 4%/4 = 1% and
N = 10 × 4 = 40 quarters. Therefore,

FV = $200,000(1 + 0.01)40 = $297,772.75

Continuous Compounding
The extreme frequency of compounding is con-
tinuous compounding—interest is compounded
instantaneously. The factor for compounding
continuously for one year is eAPR, where e is
2.71828 . . . , the base of the natural logarithm.
And the factor for compounding continuously
for two years is eAPR eAPR or eAPR. The future
value of an amount that is compounded contin-
uously for N years is:

FV = PVeN(APR) (3)

where APR is the annual percentage rate and
eN(APR) is the compound factor.

If $1,000 is deposited in an account for five
years with interest of 12% per year, com-
pounded continuously,

FV = $1,000e5(0.12) = $1,000(e0.60)

= $1,000(1.82212) = $1,822.12

Comparing this future value with that if interest
is compounded annually at 12% per year for
five years, $1,762.34, we see the effects of this
extreme frequency of compounding.

Multiple Rates
In our discussion thus far, we have assumed
that the investment will earn the same periodic
interest rate, i. We can extend the calculation
of a future value to allow for different inter-
est rates or growth rates for different periods.
Suppose an investment of $10,000 pays 9% dur-
ing the first year and 10% during the second
year. At the end of the first period, the value of
the investment is $10,000 (1 + 0.09), or $10,900.
During the second period, this $10,900 earns in-
terest at 10%. Therefore, the future value of this
$10,000 at the end of the second period is:

FV = $10,000(1 + 0.09)(1 + 0.10) = $11,990

We can write this more generally as:

FV = PV(1 + i1)(1 + i2)(1 + i3) . . . (1 + iN)
(4)

where iN is the interest rate for period N.
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Consider a $50,000 investment in a one-year
bank certificate of deposit (CD) today and rolled
over annually for the next two years into one-
year CDs. The future value of the $50,000 in-
vestment will depend on the one-year CD rate
each time the funds are rolled over. Assuming
that the one-year CD rate today is 5% and that
it is expected that the one-year CD rate one
year from now will be 6%, and the one-year
CD rate two years from now will be 6.5%, then
we know:

FV = $50,000(1 + 0.05)(1 + 0.06)(1 + 0.065)

= $59,267.25

Continuing this example, what is the average
annual interest rate over this period? We know
that the future value is $59,267.25, the present
value is $50,000, and N = 3:

i = 3

√
$59,267.25
$50,000.00

− 1 = 3
√

1.185345 = 5.8315%

which is also:

i = 3
√

(1 + 0.05) + (1 + 0.06)(1 + 0.065) − 1

= 5.8315%

DETERMINING THE
PRESENT VALUE
Now that we understand how to compute fu-
ture values, let’s work the process in reverse.
Suppose that for borrowing a specific amount
of money today, the Yenom Company promises
to pay lenders $5,000 two years from today.
How much should the lenders be willing to
lend Yenom in exchange for this promise? This
dilemma is different than figuring out a future
value. Here we are given the future value and
have to figure out the present value. But we can
use the same basic idea from the future value
problems to solve present value problems.

If you can earn 10% on other investments that
have the same amount of uncertainty as the
$5,000 Yenom promises to pay, then:
� The future value, FV = $5,000.
� The number of compounding periods, N = 2.
� The interest rate, i = 10%.

We also know the basic relation between the
present and future values:

FV = PV(1 + i)N

Substituting the known values into this
equation:

$5,000 = PV(1 + 0.10)2

To determine how much you are willing to lend
now, PV, to get $5,000 one year from now, FV,
requires solving this equation for the unknown
present value:

PV = $5,000
(1 + 0.10)2 = $5,000

(
1

1 + 0.10

)2

= $5,000(0.82645) = $4,132.25

Therefore, you would be willing to lend
$4,132.25 to receive $5,000 one year from to-
day if your opportunity cost is 10%. We can
check our work by reworking the problem from
the reverse perspective. Suppose you invested
$4,132.25 for two years and it earned 10% per
year. What is the value of this investment at the
end of the year?

We know: PV = $4,132.25, N = 10% or 0.10,
and i = 2.

Therefore, the future value is:

FV = PV(1 + i)N = $4,132.25 (1 + 0.10)2

= $5,000.00

Compounding translates a value in one point
in time into a value at some future point in
time. The opposite process translates future val-
ues into present values: Discounting translates
a value back in time. From the basic valuation
equation:

FV = PV(1 + i)N

we divide both sides by (1 + i)N and exchange
sides to get the present value,

PV = FV
(1 + i)N

(5)

or PV = FV
(

1
1 + i

)N

or PV = FV
[

1
(1 + i)N

]
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Figure 3 Present Value of $5,000 Discounted at 10%

The term in brackets [ ] is referred to as the
discount factor since it is used to translate a fu-
ture value to its equivalent present value. The
present value of $5,000 for discount periods
ranging from 0 to 10 is shown in Figure 3.

If the frequency of compounding is greater
than once a year, we make adjustments to the
rate per period and the number of periods as
we did in compounding. For example, if the
future value five years from today is $100,000
and the interest is 6% per year, compounded
semiannually, i = 6%/2 = 3% and N = 5 × 2 =
10, and the present value is:

PV = $100,000(1 + 0.03)10 = $100,000(1.34392)

= $134,392

Here is an example of calculating a present
value. Suppose that the goal is to have $75,000
in an account by the end of four years. And
suppose that interest on this account is paid at a
rate of 5% per year, compounded semiannually.
How much must be deposited in the account
today to reach this goal? We are given FV =
$75,000, i = 5%/2 = 2.5% per six months, and
N = 4 × 2 = 8 six-month periods. The amount
of the required deposit is therefore:

PV = $75,000
(1 + 0.025)8 = $61,555.99

DETERMINING THE
UNKNOWN INTEREST RATE
As we saw earlier in our discussion of growth
rates, we can rearrange the basic equation to
solve for i:

i = N

√
FV
PV

− 1 =
(

FV
PV

)1/N

− 1

As an example, suppose that the value of an
investment today is $100 and the expected value
of the investment in five years is expected to be
$150. What is the annual rate of appreciation
in value of this investment over the five-year
period?

i = 5

√
$150
$100

− 1

= 5
√

1.5 − 1 = 0.0845 or 8.45% per year

There are many applications in finance where
it is necessary to determine the rate of change
in values over a period of time. If values are in-
creasing over time, we refer to the rate of change
as the growth rate. To make comparisons easier,
we usually specify the growth rate as a rate per
year.

For example, if we wish to determine the rate
of growth in these values, we solve for the un-
known interest rate. Consider the growth rate of
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dividends for General Electric. General Electric
pays dividends each year. In 1996, for exam-
ple, General Electric paid dividends of $0.317
per share of its common stock, whereas in 2006
the company paid $1.03 in dividends per share.
This represents a growth rate of 12.507%:

Growth rate of dividends = 10

√
$1.03

$0.317
− 1

= 10
√

3.2492 − 1

= 12.507%

The 12.507% is the average annual rate of the
growth during this 10-year span.

DETERMINING THE
NUMBER OF
COMPOUNDING PERIODS
Given the present and future values, calculat-
ing the number of periods when we know the
interest rate is a bit more complex than calcu-
lating the interest rate when we know the num-
ber of periods. Nevertheless, we can develop
an equation for determining the number of pe-
riods, beginning with the valuation formula
given by equation (1) and rearranging to solve
for N,

N = ln FV − ln PV
ln(1 + i)

(6)

where ln indicates the natural logarithm, which
is the log of the base e. (e is approximately equal
to 2.718. The natural logarithm function can be
found on most calculators, usually indicated by
“ln”.)

Suppose that the present value of an invest-
ment is $100 and you wish to determine how
long it will take for the investment to double
in value if the investment earns 6% per year,
compounded annually:

N = ln 200 − ln 100
ln 1.06

= 5.2983 − 4.6052
0.0583

= 11.8885 or approximately 12 years

You’ll notice that we round off to the next
whole period. To see why, consider this last ex-
ample. After 11.8885 years, we have doubled
our money if interest were paid 88.85% the way
through the 12th year. But, we stated earlier that
interest is paid at the and of each period—not
part of the way through. At the end of the
11th year, our investment is worth $189.93, and
at the end of the 12th year, our investment is
worth $201.22. So, our investment’s value dou-
bles by the 12th period—with a little extra,
$1.22.

THE TIME VALUE OF A
SERIES OF CASH FLOWS
Applications in finance may require the deter-
mination of the present or future value of a se-
ries of cash flows rather than simply a single
cash flow. The principles of determining the fu-
ture value or present value of a series of cash
flows are the same as for a single cash flow, yet
the math becomes a bit more cumbersome.

Suppose that the following deposits are made
in a Thrifty Savings and Loan account paying
5% interest, compounded annually:

Time When Deposit Is Made Amount of Deposit

Today $1,000
At the end of the first year 2,000
At the end of the second year 1,500

What is the balance in the savings account at
the end of the second year if no withdrawals
are made and interest is paid annually?

Let’s simplify any problem like this by refer-
ring to today as the end of period 0, and iden-
tifying the end of the first and each successive
period as 1, 2, 3, and so on. Represent each end-
of-period cash flow as “CF” with a subscript
specifying the period to which it corresponds.
Thus, CF0 is a cash flow today, CF10 is a cash
flow at the end of period 10, and CF25 is a cash
flow at the end of period 25, and so on.
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Representing the information in our example
using cash flow and period notation:

Period Cash Flow End-of-Period Cash Flow

0 CF0 $1,000
1 CF1 $2,000
2 CF2 $1,500

The future value of the series of cash flows at
the end of the second period is calculated as
follows:

Number of
Periods

End-of-Period Interest Compounding Future
Period Cash Flow Is Earned Factor Value

0 $1,000 2 1.1025 $1,102.50
1 2,000 1 1.0500 2,100.00
2 1,500 0 1.0000 1,500.00

$4,702.50

The last cash flow, $1,500, was deposited at the
very end of the second period—the point of
time at which we wish to know the future value
of the series. Therefore, this deposit earns no
interest. In more formal terms, its future value
is precisely equal to its present value.

Today, the end of period 0, the balance in the
account is $1,000 since the first deposit is made
but no interest has been earned. At the end of
period 1, the balance in the account is $3,050,
made up of three parts:

1. The first deposit, $1,000.
2. $50 interest on the first deposit.
3. The second deposit, $2,000.

The balance in the account at the end of period
2 is $4,702.50, made up of five parts:

1. The first deposit, $1,000.
2. The second deposit, $2,000.
3. The third deposit, $1,500.
4. $102.50 interest on the first deposit, $50

earned at the end of the first period, $52.50
more earned at the end of the second period.

5. $100 interest earned on the second deposit at
the end of the second period.

These cash flows can also be represented in
a time line. A time line is used to help graph-

210End of period
Time

Cash flows CF0 = $1,000.00 CF1 = $2,000.00 CF2 = $1,500.00
          2,100.00$2,000.00(1.05) =

$1,000.00(1.05)2 =          1,102.50

FV = $4,702.50

Figure 4 Time Line for the Future Value of a Se-
ries of Uneven Cash Flows Deposited to Earn 5%
Compounded Interest per Period

ically depict and sort out each cash flow in a
series. The time line for this example is shown
in Figure 4. From this example, you can see that
the future value of the entire series is the sum of
each of the compounded cash flows comprising
the series. In much the same way, we can deter-
mine the future value of a series comprising any
number of cash flows. And if we need to, we can
determine the future value of a number of cash
flows before the end of the series.

For example, suppose you are planning to de-
posit $1,000 today and at the end of each year
for the next ten years in a savings account pay-
ing 5% interest annually. If you want to know
the future value of this series after four years,
you compound each cash flow for the number
of years it takes to reach four years. That is, you
compound the first cash flow over four years,
the second cash flow over three years, the third
over two years, the fourth over one year, and
the fifth you don’t compound at all because you
will have just deposited it in the bank at the end
of the fourth year.

To determine the present value of a series of
future cash flows, each cash flow is discounted
back to the present, where the beginning of the
first period, today, is designated as 0. As an
example, consider the Thrifty Savings & Loan
problem from a different angle. Instead of cal-
culating what the deposits and the interest on
these deposits will be worth in the future, let’s
calculate the present value of the deposits. The
present value is what these future deposits are
worth today.

In the series of cash flows of $1,000 today,
$2,000 at the end of period 1, and $1,500 at



604 Finite Mathematics for Financial Modeling

the end of period 2, each are discounted to the
present, 0, as follows:

End-of- Number of
Period Periods of Discount Present

Period Cash Flow Discounting Factor Value

0 $1,000 0 1.00000 $1,000.00
1 $2,000 1 0.95238 1,904.76
2 $1,500 2 0.90703 1,360.54

FV = $4,265.30

The present value of the series is the sum
of the present value of these three cash flows,
$4,265.30. For example, the $1,500 cash flow at
the end of period 2 is worth $1,428.57 at the end
of the first period and is worth $1,360.54 today.

The present value of a series of cash flows can
be represented in notation form as:

PV = CF0

(
1

1 + i

)0

+ CF1

(
1

1 + i

)1

+ CF2

(
1

l + i

)2

+ · · · + CFN

(
1

1 + i

)N

For example, if there are cash flows today and
at the end of periods 1 and 2, today’s cash flow
is not discounted, the first period cash flow is
discounted one period, and the second period
cash flow is discounted two periods.

We can represent the present value of a series
using summation notation as shown below:

PV =
N∑

t=0

CFt

(
1

1 + i

)t

(7)

This equation tells us that the present value of a
series of cash flows is the sum of the products of
each cash flow and its corresponding discount
factor.

Shortcuts: Annuities
There are valuation problems that require us to
evaluate a series of level cash flows—each cash
flow is the same amount as the others—received
at regular intervals. Let’s suppose you expect to
deposit $2,000 at the end of each of the next four
years in an account earning 8% compounded
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Figure 5 Balance in an Account in Which De-
posits of $2,000 Each Are Made Each Year (The
Balance in the Account Earns 8%)

interest. How much will you have available at
the end of the fourth year?

As we just did for the future value of a series of
uneven cash flows, we can calculate the future
value (as of the end of the fourth year) of each
$2,000 deposit, compounding interest at 8%:

FV = $2,000(1 + 0.08)3 + $2,000(1 + 0.08)2

+ $2,000(1 + 0.08)1 + $2,000(1 + 0.08)0

= $2,519.40 + $2,332.80 + $2,160.00

+ $2,000 = $9,012.20

Figure 5 shows the contribution of each de-
posit and the accumulated interest at the end of
each period.

� At the end of the first year, there is $2,000.00
in the account because you have just made
your first deposit.

� At the end of the second, there is $4,160.00 in
the account: two deposits of $2,000 each, plus
$160 interest (8% of $2,000).

� At the end of the third year, there is $6,492.80
in the account: three deposits of $2,000.00
each, plus accumulated interest of $492.80
[$160.00 + (0.08 × $4,000) + (0.08 × $160)].

� At the end of the fourth year, you would
have $9,012.20 available: four deposits of
$2,000 each, plus $1,012.20 accumulated in-
terest [$160.00 + $492.80 + (0.08 × $6,000) +
(0.08 × ($160.00 + 492.80)].
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Notice that in our calculations, each deposit of
$2,000 is multiplied by a factor that corresponds
to an interest rate of 8% and the number of pe-
riods that the deposit has been in the savings
account. Since the deposit of $2,000 is common
to each multiplication, we can simplify the math
a bit by multiplying the $2,000 by the sum of the
factors to get the same answer:

FV = $2,000(1.2597) + $2,000(1.1664)
+ $2,000(1.0800) + $2,000(1.0000)

= $9,012.20

A series of cash flows of equal amount occur-
ring at even intervals is referred to as an annuity.
Determining the value of an annuity, whether
compounding or discounting, is simpler than
valuing uneven cash flows. If each CFt is equal
(that is, all the cash flows are the same value)
and the first one occurs at the end of the first
period (t = 1), we can express the future value
of the series as:

FV =
N∑

t=1

CFt(1 + i)N−t

N is last and t indicates the time period corre-
sponding to a particular cash flow, starting at 1
for an ordinary annuity. Since CFt is shorthand
for: CF1, CF2, CF3, . . . , CFN, and we know that
CF1 = CF2 = CF3 = . . . CFN, let’s make things
simple by using CF to indicate the same value
for the periodic cash flows. Rearranging the fu-
ture value equation we get:

FV = CF
N∑

t=1

(1 + i)N−t (8)

This equation tells us that the future value of
a level series of cash flows, occurring at regu-
lar intervals beginning one period from today
(notice that t starts at 1), is equal to the amount
of cash flow multiplied by the sum of the com-
pound factors.

In a like manner, the equation for the present
value of a series of level cash flows beginning

after one period simplifies to:

PV =
N∑

t=1

CFt

(
1

1 + i

)t

= CF
N∑

t=1

(
1

1 + i

)t

or

PV = CF
N∑

t=1

1
(1 + i)t

(9)

This equation tells us that the present value
of an annuity is equal to the amount of one
cash flow multiplied by the sum of the discount
factors.

Equations (8) and (9) are the valuation—
future and present value—formulas for an or-
dinary annuity. An ordinary annuity is a special
form of annuity, where the first cash flow occurs
at the end of the first period.

To calculate the future value of an annuity
we multiply the amount of the annuity (that is,
the amount of one periodic cash flow) by the
sum of the compound factors. The sum of these
compounding factors for a given interest rate, i,
and number of periods, N, is referred to as the
future value annuity factor. Likewise, to calculate
the present value of an annuity we multiply
one cash flow of the annuity by the sum of the
discount factors. The sum of the discounting
factors for a given i and N is referred to as the
present value annuity factor.

Suppose you wish to determine the future
value of a series of deposits of $1,000, deposited
each year in the No Fault Vault Bank for five
years, with the first deposit made at the end of
the first year. If the NFV Bank pays 5% inter-
est on the balance in the account at the end of
each year and no withdrawals are made, what
is the balance in the account at the end of the
five years?

Each $1,000 is deposited at a different time,
so it contributes a different amount to the
future value. For example, the first deposit
accumulates interest for four periods, contribut-
ing $1,215.50 to the future value (at the end of
period 5), whereas the last deposit contributes
only $1,000 to the future value since it is de-
posited at exactly the point in time when we
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are determining the future value, hence there is
no interest on this deposit.

The future value of an annuity is the sum of
the future value of each deposit:

Number of
Amount of Periods Interest Compounding Future

Period Deposit Is Earned Factor Value

1 $1,000 4 1.2155 $1,215.50
2 1,000 3 1.1576 1,157.60
3 1,000 2 1.1025 1,102.50
4 1,000 1 1.0500 1,050.00
5 1,000 0 1.0000 1,000.00

Total 5.5256 $5,525.60

The future value of the series of $1,000 deposits,
with interest compounded at 5%, is $5,525.60.
Since we know the value of one of the level pe-
riod flows is $1,000, and the future value of the
annuity is $5,525.60, and looking at the sum of
the individual compounding factors, 5.5256, we
can see that there is an easier way to calculate
the future value of an annuity. If the sum of the
individual compounding factors for a specific
interest rate and a specific number of periods
were available, all we would have to do is mul-
tiply that sum by the value of one cash flow to
get the future value of the entire annuity.

In this example, the shortcut is multiplying
the amount of the annuity, $1,000, by the sum
of the compounding factors, 5.5256:

FV = $1,000 × 5.5256 = $5,525.60

For large numbers of periods, summing the
individual factors can be a bit clumsy—with
possibilities of errors along the way. An al-
ternative formula for the sum of the com-
pound factors—that is, the future value annuity
factor—is:

Future value annuity factor = (1 + i)N − 1
i

(10)
In the last example, N = 5 and i = 5%:

Future value annuity factor = (1 + 0.05)5 − 1
0.05

= 1.2763 − 1.000
0.05

= 5.5256

Let’s use the long method to find the present
value of the series of five deposits of $1,000 each,
with the first deposit at the end of the first pe-
riod. Then we’ll do it using the shortcut method.
The calculations are similar to the future value
of an ordinary annuity, except we are taking
each deposit back in time, instead of forward:

Amount of Discounting Discounting Present
Period Deposit Periods Factor Value

1 $1,000 1 0.9524 $952.40
2 1,000 2 0.9070 907.00
3 1,000 3 0.8638 863.80
4 1,000 4 0.8227 822.70
5 1,000 5 0.7835 783.50

Total 4.3294 $4,329,40

The present value of this series of five deposits
is $4,329.40.

This same value is obtained by multiplying
the annuity amount of $1,000 by the sum of the
discounting factors, 4.3294:

PV = $1,000 × 4.3294 = $4,329.40

Another, more convenient way of solving for
the present value of an annuity is to rewrite the
factor as:

Present value annuity factor =
1 − 1

(1 + i)N

i
(11)

If there are many discount periods, this formula
is a bit easier to calculate. In our last example,

Present value annuity factor =

[
1 − 1

(1 + 0.05)5

]

0.05

= 1 − 0.7835
0.05

= 4.3295

which is different from the sum of the factors,
4.3294, due to rounding.

We can turn this present value of an annuity
problem around to look at it from another an-
gle. Suppose you borrow $4,329.40 at an interest
rate of 5% per period and are required to pay
back this loan in five installments (N = 5): one
payment per period for five periods, starting
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one period from now. The payments are deter-
mined by equating the present value with the
product of the cash flow and the sum of the
discount factors:

PV = CF(sum of discount factors)

= CF
5∑

t=1

1
(1 + 0.05)t

= CF (0.9524 + 0.9070 + 0.8638 + 0.8227

+ 0.7835)

= CF (4.3294)

substituting the known present value,

$4,329.40 = CF (4.3294)

and rearranging to solve for the payment:

CF = $4,329.40/4.3290 = $1,000.00

We can convince ourselves that five install-
ments of $1,000 each can pay off the loan of
$4,329.40 by carefully stepping through the cal-
culation of interest and the reduction of the
principal:

Beginning Reduction in
of Periods Interest Loan Balance
Loan (Principal (Payment − End-of-Period
Balance Payment × 5%) Interest) Loan Balance

$4,329.40 $1,000.00 $216.47 $783.53 $3,545.87
3,545.87 1,000.00 177.29 822.71 2,723.16
2,723.16 1,000.00 136.16 863.84 1,859.32
1,859.32 1,000.00 92.97 907.03 952.29

952.29 1,000.00 47.61 952.29a 0
aThe small difference between calculated reduction
($952.38) and reported reduction is due to rounding
differences.

For example, the first payment of $1,000
is used to: (1) pay interest on the loan at
5% ($4,329.40 × 0.05 = $216.47) and (2) pay
down the principal or loan balance ($1,000.00 −
$216.47 = $783.53 paid off). Each successive
payment pays off a greater amount of the loan—
as the principal amount of the loan is reduced,
less of each payment goes to paying off interest
and more goes to reducing the loan principal.
This analysis of the repayment of a loan is re-
ferred to as loan amortization. Loan amortization

is the repayment of a loan with equal payments,
over a specified period of time. As we can see
from the example of borrowing $4,329.40, each
payment can be broken down into its interest
and principal components.

VALUING CASH FLOWS
WITH DIFFERENT TIME
PATTERNS
Valuing a Perpetual Stream of
Cash Flows
There are some circumstances where cash flows
are expected to continue forever. For example,
a corporation may promise to pay dividends on
preferred stock forever, or, a company may is-
sue a bond that pays interest every six months,
forever. How do you value these cash flow
streams? Recall that when we calculated the
present value of an annuity, we took the amount
of one cash flow and multiplied it by the sum of
the discount factors that corresponded to the in-
terest rate and number of payments. But what if
the number of payments extends forever—into
infinity?

A series of cash flows that occur at regular
intervals, forever, is a perpetuity. Valuing a per-
petual cash flow stream is just like valuing an
ordinary annuity. It looks like this:

PV = CF1

(
1

1 + i

)1

+ CF2

(
1

1 + i

)2

+ CF3

(
1

1 + i

)3

+ · · · + CF∞

(
1

1 + i

)∞

Simplifying, recognizing that the cash flows CFt

are the same in each period, and using summa-
tion notation,

PV = CF
∞∑

t=1

(
1

1 + i

)t

As the number of discounting periods ap-
proaches infinity, the summation approaches
1/i. To see why, consider the present value
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annuity factor for an interest rate of 10%, as
the number of payments goes from 1 to 200:

Number of Discounting Present Value
Periods, N Annuity Factor

1 0.9091
10 6.1446
40 9.7791

100 9.9993
200 9.9999

For greater numbers of payments, the factor ap-
proaches 10, or 1/0.10. Therefore, the present
value of a perpetual annuity is very close to:

PV = CF
i

(12)

Suppose you are considering an investment
that promises to pay $100 each period forever,
and the interest rate you can earn on alterna-
tive investments of similar risk is 5% per pe-
riod. What are you willing to pay today for this
investment?

PV = $100
0.05

= $2,000

Therefore, you would be willing to pay $2,000
today for this investment to receive, in return,
the promise of $100 each period forever.

Let’s look at the value of a perpetuity an-
other way. Suppose that you are given the op-
portunity to purchase an investment for $5,000
that promises to pay $50 at the end of every
period forever. What is the periodic interest
per period—the return—associated with this
investment?

We know that the present value is PV = $5,000
and the periodic, perpetual payment is CF =
$50. Inserting these values into the formula for
the present value of a perpetuity:

$5,000 = $50
i

Solving for i,

i = $50
$5,000

= 0.01 or 1% per period

Therefore, an investment of $5,000 that gener-
ates $50 per period provides 1% compounded
interest per period.

Valuing an Annuity Due
The ordinary annuity cash flow analysis as-
sumes that cash flows occur at the end of each
period. However, there is another fairly com-
mon cash flow pattern in which level cash flows
occur at regular intervals, but the first cash flow
occurs immediately. This pattern of cash flows
is called an annuity due. For example, if you win
the Florida Lottery Lotto grand prize, you will
receive your winnings in 20 installments (after
taxes, of course). The 20 installments are paid
out annually, beginning immediately. The lot-
tery winnings are therefore an annuity due.

Like the cash flows we have considered thus
far, the future value of an annuity due can be
determined by calculating the future value of
each cash flow and summing them. And, the
present value of an annuity due is determined
in the same way as a present value of any stream
of cash flows.

Let’s consider first an example of the future
value of an annuity due, comparing the val-
ues of an ordinary annuity and an annuity due,
each comprising three cash flows of $500, com-
pounded at the interest rate of 4% per period.
The calculation of the future value of both the
ordinary annuity and the annuity due at the end
of three periods is:

Ordinary annuity Annuity due

FV = $500
3∑

t=1
(1 + 0.04)3−t FVdue = $500

3∑
t=1

(1 + 0.04)3−t+1

The future value of each of the $500 payments
in the annuity due calculation is compounded
for one more period than for the ordinary annu-
ity. For example, the first deposit of $500 earns
interest for two periods in the ordinary annu-
ity situation [$500 (1 + 0.04)2], whereas the first
$500 in the annuity due case earns interest for
three periods [$500 (1 + 0.04)3].
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In general terms,

FVdue = CF
N∑

t=1

(1 + i)N−t+1 (13)

which is equal to the future value of an ordinary
annuity multiplied by a factor of 1 + i:

FVdue = CF[Future value annuity factor

(ordinary) for N and i](1 + i)

The present value of the annuity due is cal-
culated in a similar manner, adjusting the ordi-
nary annuity formula for the different number
of discount periods:

PVdue = CF
N∑

t=1

1
(1 + i)t−1 (14)

Since the cash flows in the annuity due situa-
tion are each discounted one less period than
the corresponding cash flows in the ordinary
annuity, the present value of the annuity due is
greater than the present value of the ordinary
annuity for an equivalent amount and number
of cash flows. Like the future value an annuity
due, we can specify the present value in terms
of the ordinary annuity factor:

PVdue = CF [Present value annuity factor

(ordinary) for N and i](1 + i)

Valuing a Deterred Annuity
A deferred annuity has a stream of cash flows
of equal amounts at regular periods starting at
some time after the end of the first period. When
we calculated the present value of an annuity,
we brought a series of cash flows back to the
beginning of the first period—or, equivalently
the end of the period 0. With a deferred annuity,
we determine the present value of the ordinary
annuity and then discount this present value to
an earlier period.

To illustrate the calculation of the present
value of an annuity due, suppose you deposit
$20,000 per year in an account for 10 years, start-
ing today, for a total of 10 deposits. What will

be the balance in the account at the end of 10
years if the balance in the account earns 5% per
year? The future value of this annuity due is:

FVdue,10 = $20,000
10∑

t=1
(1 + 0.05)10−t+1

= $20,000

⎛

⎝
Future value annuity
factor (ordinary) for
10 periods and 5%

⎞

⎠

× (1 + 0.05)

= $20,000(12.5779)(1 + 0.05) = $264,135.74

Suppose you want to deposit an amount to-
day in an account such that you can withdraw
$5,000 per year for four years, with the first
withdrawal occurring five years from today. We
can solve this problem in two steps:

Step 1: Solve for the present value of the with-
drawals.

Step 2: Discount this present value to the
present.

The first step requires determining the present
value of a four-cash-flow ordinary annuity of
$5,000. This calculation provides the present
value as of the end of the fourth year (one pe-
riod prior to the first withdrawal):

PV4 = $5,000
4∑

t=1

1
(1 + 0.04)t

= $5,000 (present value annuity factor

N = 4, i = 4%)

= $18,149.48

This means that there must be a balance in the
account of $18,149.48 at the end of the fourth
period to satisfy the withdrawals of $5,000 per
year for four years.

The second step requires discounting the
$18,149.48—the savings goal—to the present,
providing the deposit today that produces the
goal:

PV0 = $18,149.48
(1 + 0.04)4 = $15,514.25

The balance in the account throughout the en-
tire eight-year period is shown in Figure 6 with
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Figure 6 Balance in the Account that Requires a Deposit Today (Year 0) that Permits Withdrawals of
$5,000 Each Starting at the End of Year 5

the balance indicated both before and after the
$5,000 withdrawals.

Let’s look at a more complex deferred annuity.
Consider making a series of deposits, beginning
today, to provide for a steady cash flow begin-
ning at some future time period. If interest is
earned at a rate of 4% compounded per year,
what amount must be deposited in a savings
account each year for four years, starting today,
so that $1,000 may be withdrawn each year for
five years, beginning five years from today? As
with any deferred annuity, we need to perform
this calculation in steps:

Step 1: Calculate the present value of the $1,000
per year five-year ordinary annuity as of the
end of the fourth year:

The present value of the annuity deferred to
the end of the fourth period is

PV4 = $1,000
5∑

t=1

1
(1 + 0.04)t

= $1,000(4.4518)

= $4,451.80

Therefore, there must be $4,451.80 in the ac-
count at the end of the fourth year to permit
five $1,000 withdrawals at the end of each of
the years 5, 6, 7, 8, and 9.

Step 2: Calculate the cash flow needed to ar-
rive at the future value of that annuity due
comprising four annual deposits earning 4%
compounded interest, starting today.

The present value of the annuity at the end
of the fourth year, $4,451.80, is the future value
of the annuity due of four payments of an un-
known amount. Using the formula for the fu-
ture value of an annuity due,

$4,451.80 = CF
4∑

t=1

(1 + 0.04)4−t+1

= CF (4.2465)(1.04)

and rearranging,

CF = $4,451.80/4.4164 = $1,008.02

Therefore, by depositing $1,008.02 today and
the same amount on the same date each of the



TIME VALUE OF MONEY 611

next three years, we will have a balance in the
account of $4,451.80 at the end of the fourth pe-
riod. With this period 4 balance, we will be able
to withdraw $1,000 at the end of the following
five periods.

LOAN AMORTIZATION
There are securities backed by various types
of loans. These include asset-backed secu-
rities, residential mortgage-backed securities,
and commercial mortgage-backed securities.
Consequently, it is important to understand the
mathematics associated with loan amortization.

If an amount is loaned and then repaid in in-
stallments, we say that the loan is amortized.
Therefore, loan amortization is the process of cal-
culating the loan payments that amortize the
loaned amount. We can determine the amount
of the loan payments once we know the fre-
quency of payments, the interest rate, and the
number of payments.

Consider a loan of $100,000. If the loan is re-
paid in 24 annual installments (at the end of
each year) and the interest rate is 5% per year,
we calculate the amount of the payments by
applying the relationship:

PV =
N∑

t=1

CF
(1 + i)t

Amount loaned =
N∑

t=1

Loan payment
(1 + i)t

$100,000 =
24∑

t=1

Loan payment
(1 + 0.05)t

We want to solve for the loan payment, that
is, the amount of the annuity. Using a finan-
cial calculator or spreadsheet, the periodic loan
payment is $7,247.09 (PV = $100,000; N = 24;
i = 5%). Therefore, the monthly payments are
$7,247.09 each. In other words, if payments of
$7,247.09 are made each year for 24 years (at
the end of each year), the $100,000 loan will
be repaid and the lender earns a return that is
equivalent to a 5% interest on this loan.

We can calculate the amount of interest and
principal repayment associated with each loan

payment using a loan amortization schedule, as
shown in Table 1.

The loan payments are determined such that
after the last payment is made there is no loan
balance outstanding. Thus, the loan is referred
to as a fully amortizing loan. Even though the loan
payment each year is the same, the proportion
of interest and principal differs with each pay-
ment: The interest is 5% of the principal amount
of the loan that remains at the beginning of the
period, whereas the principal repaid with each
payment is the difference between the payment
and the interest. As the payments are made, the
remainder is applied to repayment of the princi-
pal; this is referred to as the scheduled principal
repayment or the amortization. As the principal
remaining on the loan declines, less interest is
paid with each payment. We show the decline
in the loan’s principal graphically in Figure 7.
The decline in the remaining principal is not a
linear, but is curvilinear due to the compound-
ing of interest.

Loan amortization works the same whether
this is a mortgage loan, a term loan, or any other
loan in which the interest paid is determined on
the basis of the remaining amount of the loan.
The calculation of the loan amortization can be
modified to suit different principal repayments,
such as additional lump-sum payments, known
as balloon payments. For example, if there is a
$10,000 balloon payment at the end of the loan
in the loan of $100,000 repaid over 24 years, the
calculation of the payment is modified as:

Amount loaned =
[

N∑

t=1

Loan payment
(1 + i)t

]

+ balloon payment
(1 + i)N

$100,000 =
[

24∑

t=1

Loan payment
(1 + 0.05)t

]

+ $10,000
(1 + i)24

The loan payment that solves this equation
is $7,022.38 (PV = $100,000; N = 24; i = 5%;
FV = $10,000). The last payment (that is, at the
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Table 1 Loan Amortization on a $100,000 Loan for 24 Years and an Interest Rate of 5% per Year

Loan Beginning-of-the- Interest Principal Paid Off = Remaining
Payment Payment Year Principal on Loan Payment − Interest Principal

0 $100,000.00
1 $7,247.09 $100,000.00 $5,000.00 $2,247.09 $97,752.91
2 $7,247.09 $97,752.91 $4,887.65 $2,359.44 $95,393.47
3 $7,247.09 $95,393.47 $4,769.67 $2,477.42 $92,916.05
4 $7,247.09 $92,916.05 $4,645.80 $2,601.29 $90,314.76
5 $7,247.09 $90,314.76 $4,515.74 $2,731.35 $87,583.41
6 $7,247.09 $87,583.41 $4,379.17 $2,867.92 $84,715.49
7 $7,247.09 $84,715.49 $4,235.77 $3,011.32 $81,704.17
8 $7,247.09 $81,704.17 $4,085.21 $3,161.88 $78,542.29
9 $7,247.09 $78,542.29 $3,927.11 $3,319.98 $75,222.32

10 $7,247.09 $75,222.32 $3,761.12 $3,485.97 $71,736.34
11 $7,247.09 $71,736.34 $3,586.82 $3,660.27 $68,076.07
12 $7,247.09 $68,076.07 $3,403.80 $3,843.29 $64,232.78
13 $7,247.09 $64,232.78 $3,211.64 $4,035.45 $60,197.33
14 $7,247.09 $60,197.33 $3,009.87 $4,237.22 $55,960.11
15 $7,247.09 $55,960.11 $2,798.01 $4,449.08 $51,511.03
16 $7,247.09 $51,511.03 $2,575.55 $4,671.54 $46,839.49
17 $7,247.09 $46,839.49 $2,341.97 $4,905.12 $41,934.37
18 $7,247.09 $41,934.37 $2,096.72 $5,150.37 $36,784.00
19 $7,247.09 $36,784.00 $1,839.20 $5,407.89 $31,376.11
20 $7,247.09 $31,376.11 $1,568.81 $5,678.28 $25,697.83
21 $7,247.09 $25,697.83 $1,284.89 $5,962.20 $19,735.63
22 $7,247.09 $19,735.63 $986.78 $6,260.31 $13,475.32
23 $7,247.09 $13,475.32 $673.77 $6,573.32 $6,901.99
24 $7,247.09 $6,901.99 $345.10 $6,901.99 $0.00

end of the 24th year) is the regular payment of
$7,022.38, plus the balloon payment, for a total
of $17,022.38. As you can see in Figure 8, the
loan amortization is slower when compared to
the loan without the balloon payment.
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Figure 7 Loan Amortization

The same mathematics work with term loans.
Term loans are usually repaid in installments
either monthly, quarterly, semiannually, or an-
nually. Let’s look at the typical repayment
schedule for a term loan. Suppose that BigRock
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Figure 8 Loan Amortization with Balloon Payment

Corporation seeks a four-year term loan of $100
million. Let’s assume for now that the term loan
carries a fixed interest rate of 8% and that level
payments are made monthly. If the annual in-
terest rate is 8%, the rate per month is 8% ÷ 12 =
0.6667% per month. In a typical term loan, the
payments are structured such that the loan is
fully amortizing.

For this four-year, $100 million term loan
with an 8% interest rate, the monthly payment
is $2,441,292.23 (PV = $100,000,000; N = 48;
i = 06667%). This amount is determined by
solving for the annuity payment that equates
the present value of the payments with the
amount of the loan, considering a discount
rate of 0.6667%. In Table 2 we show for each
month the beginning monthly balance, the in-
terest payment for the month, the amount of the
monthly, and the ending loan balance. Notice
that in our illustration, the ending loan balance
is zero. That is, it is a fully amortizing loan.

In the loan amortization examples so far, we
have assumed that the interest rate is fixed
throughout the loan. However, in many loans
the interest rate may change during the loan,
as in the case of a floating-rate loan. The new
loan rate at the reset date is determined by a
formula. The formula is typically composed of
two parts. The first is the reference rate. For

example, in a monthly pay loan, the loan rate
might be one-month London Interbank Offered
Rate (LIBOR). The second part is a spread that
is added to the reference rate. This spread is re-
ferred to as the quoted margin and depends on
the credit of the borrower.

A floating-rate loan requires a recalculation
of the loan payment and payment schedule at
each time the loan rate is reset. Suppose in the
case of BigRock’s term loan that the rate remains
constant for the first three years, but is reset to
9% in the fourth year. This requires BigRock to
pay off the principal remaining at the end of
three years, the $28,064,562.84, in the remain-
ing 12 payments. The revised schedule of pay-
ments and payoff for the fourth year require a
payment of $2,454,287.47 (PV = $27,064,562.84;
N = 12; i = 0.09 ÷ 12 = 0.75%), as shown in
Table 3.

THE CALCULATION OF
INTEREST RATES AND
YIELDS
The calculation of the present or future value
of a lump-sum or set of cash flows requires in-
formation on the timing of cash flows and the
compound or discount rate. However, there are
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Table 2 Term Loan Schedule: Fixed Rate, Fully Amortized

Amount of loan $100,000,000
Interest rate 8% per year
Number of years 4
Monthly payment $2,441,292.33

Monthly Beginning-of-the- Interest on Principal Paid Off = Remaining
Payment Year Principal on Loan Payment − Interest Principal

1 $100,000,000.00 $666,666.67 $1,774,625.57 $98,225,374.43
2 $98,225,374.43 $654,835.83 $1,786,456.40 $96,438,918.03
3 $96,438,918.03 $642,926.12 $1,798,366.11 $94,640,551.91
4 $94,640,551.91 $630,937.01 $1,810,355.22 $92,830,196.69
5 $92,830,196.69 $618,867.98 $1,822,424.26 $91,007,772.44
6 $91,007,772.44 $606,718.48 $1,834,573.75 $89,173,198.69
7 $89,173,198.69 $594,487.99 $1,846,804.24 $87,326,394.44
8 $87,326,394.44 $582,175.96 $1,859,116.27 $85,467,278.17
9 $85,467,278.17 $569,781.85 $1,871,510.38 $83,595,767.79

10 $83,595,767.79 $557,305.12 $1,883,987.12 $81,711,780.68
11 $81,711,780.68 $544,745.20 $1,896,547.03 $79,815,233.65
12 $79,815,233.65 $532,101.56 $1,909,190.68 $77,906,042.97
13 $77,906,042.97 $519,373.62 $1,921,918.61 $75,984,124.36
14 $75,984,124.36 $506,560.83 $1,934,731.41 $74,049,392.95
15 $74,049,392.95 $493,662.62 $1,947,629.61 $72,101,763.34
16 $72,101,763.34 $480,678.42 $1,960,613.81 $70,141,149.52
17 $70,141,149.52 $467,607.66 $1,973,684.57 $68,167,464.95
18 $68,167,464.95 $454,449.77 $1,986,842.47 $66,180,622.49
19 $66,180,622.49 $441,204.15 $2,000,088.08 $64,180,534.40
20 $64,180,534.40 $427,870.23 $2,013,422.00 $62,167,112.40
21 $62,167,112.40 $414,447.42 $2,026,844.82 $60,140,267.58
22 $60,140,267.58 $400,935.12 $2,040,357.12 $58,099,910.46
23 $58,099,910.46 $387,332.74 $2,053,959.50 $56,045,950.96
24 $56,045,950.96 $373,639.67 $2,067,652.56 $53,978,298.40
25 $53,978,298.40 $359,855.32 $2,081,436.91 $51,896,861.49
26 $51,896,861.49 $345,979.08 $2,095,313.16 $49,801,548.33
27 $49,801,548.33 $332,010.32 $2,109,281.91 $47,692,266.42
28 $47,692,266.42 $317,948.44 $2,123,343.79 $45,568,922.63
29 $45,568,922.63 $303,792.82 $2,137,499.42 $43,431,423.21
30 $43,431,423.21 $289,542.82 $2,151,749.41 $41,279,673.80
31 $41,279,673.80 $275,197.83 $2,166,094.41 $39,113,579.39
32 $39,113,579.39 $260,757.20 $2,180,535.04 $36,933,044.35
33 $36,933,044.35 $246,220.30 $2,195,071.94 $34,737,972.42
34 $34,737,972.42 $231,586.48 $2,209,705.75 $32,528,266.66
35 $32,528,266.66 $216,855.11 $2,224,437.12 $30,303,829.54
36 $30,303,829.54 $202,025.53 $2,239,266.70 $28,064,562.84
37 $28,064,562.84 $187,097.09 $2,254,195.15 $25,810,367.69
38 $25,810,367.69 $172,069.12 $2,269,223.12 $23,541,144.57
39 $23,541,144.57 $156,940.96 $2,284,351.27 $21,256,793.30
40 $21,256,793.30 $141,711.96 $2,299,580.28 $18,957,213.02
41 $18,957,213.02 $126,381.42 $2,314,910.81 $16,642,302.21
42 $16,642,302.21 $110,948.68 $2,330,343.55 $14,311,958.66
43 $14,311,958.66 $95,413.06 $2,345,879.18 $11,966,079.48
44 $11,966,079.48 $79,773.86 $2,361,518.37 $9,604,561.11
45 $9,604,561.11 $64,030.41 $2,377,261.83 $7,227,299.28
46 $7,227,299.28 $48,182.00 $2,393,110.24 $4,834,189.04
47 $4,834,189.04 $32,227.93 $2,409,064.31 $2,425,124.74
48 $2,425,124.74 $16,167.50 $2,425,124.74 $0.00
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Table 3 Term Loan Schedule: Reset Rate, Fully Amortized

Amount of loan $100,000,000
Interest rate 8% per year for the first 3 years, 9% thereafter
Number of years 4
Monthly payment $2,441,292.33 for the first 3 years, $2,454,287.47 for the fourth year and beyond

Monthly Beginning-of-the- Principal Paid Off = Remaining
Payment Year Principal Interest on Loan Payment – Interest Principal

37 $28,064,562.84 $210,484.22 $2,243,803.24 $25,820,759.59
38 $25,820,759.59 $193,655.70 $2,260,631.77 $23,560,127.82
39 $23,560,127.82 $176,700.96 $2,277,586.51 $21,282,541.32
40 $21,282,541.32 $159,619.06 $2,294,668.41 $18,987,872.91
41 $18,987,872.91 $142,409.05 $2,311,878.42 $16,675,994.49
42 $16,675,994.49 $125,069.96 $2,329,217.51 $14,346,776.99
43 $14,346,776.99 $107,600.83 $2,346,686.64 $12,000,090.35
44 $12,000,090.35 $90,000.68 $2,364,286.79 $9,635,803.56
45 $9,635,803.56 $72,268.53 $2,382,018.94 $7,253,784.62
46 $7,253,784.62 $54,403.38 $2,399,884.08 $4,853,900.54
47 $4,853,900.54 $36,404.25 $2,417,883.21 $2,436,017.33
48 $2,436,017.33 $18,270.13 $2,436,017.34 $0.00

many applications in which we are presented
with values and cash flows, and wish to calcu-
late the yield or implied interest rate associated
with these values and cash flows. By calculat-
ing the yield or implied interest rate, we can
then compare investment or financing oppor-
tunities. We first look at how interest rates are
stated and how the effective interest rate can be
calculated based on this stated rate, and then
we look at how to calculate the yield, or rate of
return, on a set of cash flows.

Annual Percentage Rate versus
Effective Annual Rate
A common problem in finance is comparing
alternative financing or investment opportuni-
ties when the interest rates are specified in a
way that makes it difficult to compare terms.
The Truth in Savings Act requires institutions
to provide the annual percentage yield for
savings accounts. As a result of this law, con-
sumers can compare the yields on different
savings arrangements. But this law does not ap-
ply beyond savings accounts. One investment
may pay 10% interest compounded semiannu-
ally, whereas another investment may pay 9%
interest compounded daily. One financing ar-

rangement may require interest compounding
quarterly, whereas another may require inter-
est compounding monthly. To compare invest-
ments or financing with different frequencies of
compounding, we must first translate the stated
interest rates into a common basis. There are
two ways to convert interest rates stated over
different time intervals so that they have a com-
mon basis: the annual percentage rate and the
effective annual interest rate.

One obvious way to represent rates stated in
various time intervals on a common basis is
to express them in the same unit of time—so
we annualize them. The annualized rate is the
product of the stated rate of interest per com-
pound period and the number of compounding
periods in a year. Let i be the rate of interest per
period and n be the number of compounding
periods in a year. The annualized rate, also re-
ferred to as the nominal interest rate or the annual
percentage rate (APR) is:

APR = i × n

Consider the following example. Suppose the
Lucky Break Loan Company has simple loan
terms: Repay the amount borrowed, plus 50%,
in six months. Suppose you borrow $10,000
from Lucky. After six months, you must pay



616 Finite Mathematics for Financial Modeling

back the $10,000 plus $5,000. The APR on fi-
nancing with Lucky is the interest rate per pe-
riod (50% for six months) multiplied by the
number of compound periods in a year (two six-
month periods in a year). For the Lucky Break
financing arrangement:

APR = 0.50 × 2 = 1.00 or 100% per year

But what if you cannot pay Lucky back after
six months? Lucky will let you off this time, but
you must pay back the following at the end of
the next six months:
� The $10,000 borrowed.
� The $5,000 interest from the first six months.
� The 50% of interest on both the unpaid

$10,000 and the unpaid $5,000 interest
($15,000 (0.50) = $7,500).

So, at the end of the year, knowing what is
good for you, you pay off Lucky:

Amount of the original loan $10,000
Interest from first six months 5,000
Interest on second six months 7,500

Total payment at end of the year $22,500

Using the Lucky Break method of financ-
ing, you have to pay $12,500 interest to bor-
row $10,000 for one year’s time. Because you
have to pay $12,500 interest to borrow $10,000
over one year’s time, you pay not 100% inter-
est, but rather 125% interest per year ($12,500/
$10,000 = 1.25 = 125%). What’s going on here? It
looks like the APR in the Lucky Break example
ignores the compounding (interest on interest)
that takes place after the first six months. And
that’s the way it is with all APRs. The APR ig-
nores the effect of compounding. Therefore, this
rate understates the true annual rate of interest
if interest is compounded at any time prior to
the end of the year. Nevertheless, APR is an ac-
ceptable method of disclosing interest on many
lending arrangements, since it is easy to un-
derstand and simple to compute. However, be-
cause it ignores compounding, it is not the best
way to convert interest rates to a common basis.

Another way of converting stated interest
rates to a common basis is the effective rate of
interest. The effective annual rate (EAR) is the
true economic return for a given time period—
it takes into account the compounding of
interest—and is also referred to as the effective
rate of interest.

Using our Lucky Break example, we see that
we must pay $12,500 interest on the loan of
$10,000 for one year. Effectively, we are paying
125% annual interest. Thus, 125% is the effec-
tive annual rate of interest. In this example, we
can easily work through the calculation of in-
terest and interest on interest. But for situations
where interest is compounded more frequently,
we need a direct way to calculate the effective
annual rate. We can calculate it by resorting
once again to our basic valuation equation:

FV = PV(1 + i)n

Next, we consider that a return is the change
in the value of an investment over a period and
an annual return is the change in value over
a year. Using our basic valuation equation, the
relative change in value is the difference be-
tween the future value and the present value,
divided by the present value:

EAR = FV − PV
PV

= PV(1 + i)n

PV

Canceling PV from both the numerator and
the denominator,

EAR = (1 + i)n − 1 (15)

Let’s look how the EAR is affected by the
compounding. Suppose that the Safe Savings
and Loan promises to pay 6% interest on ac-
counts, compounded annually. Since interest is
paid once, at the end of the year, the effective
annual return, EAR, is 6%. If the 6% interest
is paid on a semiannual basis—3% every six
months—the effective annual return is larger
than 6% since interest is earned on the 3% inter-
est earned at the end of the first six months. In
this case, to calculate the EAR, the interest rate
per compounding period—six months—is 0.03
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(that is, 0.06/2) and the number of compound-
ing periods in an annual period is 2:

EAR = (1 + 0.03)2 − 1 = 1.0609 − 1 = 0.0609

or 6.09%

Extending this example to the case of quar-
terly compounding with a nominal interest rate
of 6%, we first calculate the interest rate per
period, i, and the number of compounding pe-
riods in a year, n:

i = 0.06/4 = 0.015 per quarter
n = 4 quarters in a year

The EAR is:

EAR = (1 + 0.015)4 − 1 = 1.0614 − 1 = 0.0614

or 6.14%

As we saw earlier, the extreme frequency
of compounding is continuous compounding.
Continuous compounding is when interest is
compounded at the smallest possible increment
of time. In continuous compounding, the rate
per period becomes extremely small:

i = APR
∞

And the number of compounding periods in a
year, n, is infinite. The EAR is therefore:

EAR = eAPR − 1 (16)

where e is the natural logarithmic base.
For the stated 6% annual interest rate com-

pounded continuously, the EAR is:

EAR = e0.06 − 1 = 1.0618 − 1 = 0.0618 or 6.18%

The relation between the frequency of com-
pounding for a given stated rate and the ef-
fective annual rate of interest for this example
indicates that the greater the frequency of com-
pounding, the greater the EAR.

Frequency of Effective
Compounding Calculation Annual Rate

Annual (1 + 0.060)1 − 1 6.00%
Semiannual (1 + 0.030)2 − 1 6.09%
Quarterly (1 + 0.015)4 − 1 6.14%
Continuous e0.06 − 1 6.18%

Figuring out the effective annual rate is use-
ful when comparing interest rates for different
investments. It doesn’t make sense to compare
the APRs for different investments having a dif-
ferent frequency of compounding within a year.
But since many investments have returns stated
in terms of APRs, we need to understand how
to work with them.

To illustrate how to calculate effective annual
rates, consider the rates offered by two banks,
Bank A and Bank B. Bank A offers 9.2% com-
pounded semiannually and Bank B other offers
9% compounded daily. We can compare these
rates using the EARs. Which bank offers the
highest interest rate? The effective annual rate
for Bank A is (1 + 0.046)2 − 1 = 9.4%. The effec-
tive annual rate for Bank B is (1 + 0.000247)365 −
1 = 9.42%. Therefore, Bank B offers the higher
interest rate.

Yields on Investments
Suppose an investment opportunity requires an
investor to put up $1 million and offers cash in-
flows of $500,000 after one year and $600,000
after two years. The return on this investment,
or yield, is the discount rate that equates the
present values of the $500,000 and $600,000 cash
inflows to equal the present value of the $1 mil-
lion cash outflow. This yield is also referred to as
the internal rate of return (IRR) and is calculated
as the rate that solves the following:

$1,000,000 = $500,000
(1 + IRR)1 + $600,000

(1 + IRR)2

Unfortunately, there is no direct mathematical
solution (that is, closed-form solution) for the
IRR, but rather we must use an iterative pro-
cedure. Fortunately, financial calculators and
financial software ease our burden in this cal-
culation. The IRR that solves this equation is
6.3941%:

$1,000,000 = $500,000
(1.063941)1 + $600,000

(1.063941)2

In other words, if you invest $1 million today
and receive $500,000 in one year and $600,000



618 Finite Mathematics for Financial Modeling

in two years, the return on your investment is
6.3941%.

Another way of looking at this same yield
is to consider that an investment’s IRR is the
discount rate that makes the present value of
all expected future cash flows—both the cash
outflows for the investment and the subsequent
inflows—equal to zero. We can represent the
IRR as the rate that solves:

$0 =
N∑

t=1

CFt

(1 + IRR)t

Consider another example. Suppose an in-
vestment of $1 million produces no cash flow
in the first year but cash flows of $200,000,
$300,000, and $900,000 two, three, and four
years from now, respectively. The IRR for this
investment is the discount rate that solves:

0 = $1,000,000
(1 + IRR)0 + 0

(1 + IRR)1 + $200,000
(1 + IRR)2

+ $300,000
(1 + IRR)3 + $900,000

(1 + IRR)4

Using a calculator or a computer, we get the
precise answer of 10.172% per year.

We can use this approach to calculate the yield
on any type of investment, as long as we know
the cash flows—both positive and negative—
and the timing of these flows. Consider the
case of the yield to maturity on a bond. Most
bonds pay interest semiannually—that is, ev-
ery six months. Therefore, when calculating the
yield on a bond, we must consider the timing
of the cash flows to be such that the discount
period is six months.

Consider a bond that has a current price of
90; that is, if the par value of the bond is $1,000,
the bond’s price is 90% of $1,000 or $900. And
suppose that this bond has five years remain-
ing to maturity and an 8% coupon rate. With
five years remaining to maturity, the bond has
10 six-month periods remaining.With a coupon
rate of 8%, this means that the cash flows for

interest is $40 every six months. For a
given bond, we therefore have the following
information:

1. Present value = $900
2. Number of periods to maturity = 10
3. Cash flow every six months = $40
4. Additional cash flow at maturity = $1,000

The six-month yield, rd, is the discount rate
that solves the following:

$900 =
[

10∑

t=1

$40
(1 + rd )t

]
+ $1,000

(1 + rd )10

Using a calculator or spreadsheet, the six-
month yield is 5.315%. Bond yields are gen-
erally stated on the basis of an annualized
yield, referred to as the yield to maturity
(YTM) on a bond-equivalent basis. This YTM
is analogous to the APR with semiannual
compounding. Therefore, yield to maturity is
10.63%.

KEY POINTS
� A present value can be translated into a value

in the future through compounding. The ex-
treme frequency of compounding is continu-
ous compounding.

� A future value can be converted into an equiv-
alent value today through discounting.

� Applications in finance may require the de-
termination of the present or future value of a
series of cash flows rather than simply a sin-
gle cash flow. The principles of determining
the future value or present value of a series
of cash flows are the same as for a single cash
flow. That is, any number of cash flows can
be translated into a present or future value.

� When faced with a series of cash flows, a fi-
nancial modeler must value each cash flow
individually, and then sum these individual
values to arrive at the present value of the
series.
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� The tools of the time value of money can be
used to value many different patterns of cash
flows, including perpetuities, annuities due,
and deferred annuities. Applying the tools
to these different patterns of cash flows re-
quires specifying the timing of the various
cash flows.

� The interest on alternative investments is
stated in different terms, so these interest rates
must be placed on a common basis so that in-
vestment alternatives can be compared. Typ-
ically, an interest rate on an annual basis is
specified, using either the annual percentage
rate or the effective annual rate. The latter
method is preferred since it takes into consid-
eration the compounding of interest within a
year.

� The yield on an investment (also referred to as
internal rate of return) is the interest rate that
makes the present value of the future cash
flows equal to the cost of the investment.

NOTE
1. For a more detailed treatment of this topic,

see Drake and Fabozzi (2009). The topic is
covered in finite mathematics textbooks. See,
for example, Barnett, Ziegler, and Byleen
(2002), Mizrahi and Sullivan (1999), and Rolf
(2007).
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Abstract: Ordinary algebra deals with operations such as addition and multiplication performed on
individual numbers. In many applications, however, it is useful to consider operations performed
on ordered arrays of numbers. This is the domain of matrix algebra. Ordered arrays of numbers
are called vectors and matrices while individual numbers are called scalars.

In financial modeling, it is useful to consider
operations performed on ordered arrays of
numbers. Ordered arrays of numbers are called
vectors and matrices while individual numbers
are called scalars. In this entry, we will discuss
some concepts, operations, and results of ma-
trix algebra used in financial modeling.

VECTORS AND MATRICES
DEFINED
We begin by defining the concepts of vector and
matrix. Though vectors can be thought of as par-
ticular matrices, in many cases it is useful to
keep the two concepts—vectors and matrices—
distinct. In particular, a number of important
concepts and properties can be defined for vec-
tors but do not generalize easily to matrices.1

Vectors
An n-dimensional vector is an ordered array
of n numbers. Vectors are generally indicated

with boldface lowercase letters, although we do
not always follow that convention in this book.
Thus a vector x is an array of the form:

x = [x1, . . . , xn] .

The numbers ai are called the components of
the vector x.

A vector is identified by the set of its com-
ponents. Vectors can be row vectors or column
vectors. If the vector components appear in a
horizontal row, then the vector is called a row
vector, as for instance the vector:

x = [1, 2, 8, 7]

Here are two examples. Suppose that we let
wn be a risky asset’s weight in a portfolio. As-
sume that there are N risky assets. Then the fol-
lowing vector, w, is a row vector that represents
a portfolio’s holdings of the N risky assets:

w = [w1 w2 . . . wN]

As a second example of a row vector, sup-
pose that we let rn be the excess return for a

621
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risky asset. (The excess return is the difference
between the return on a risky asset and the risk-
free rate.) Then the following row vector is the
excess return vector:

r = [r1 r2 . . . rN]

If the vector components are arranged in a
column, then the vector is called a column
vector.

For example, we know that a portfolio’s ex-
cess return will be affected by what can be
different characteristics or attributes that affect
all asset prices. A few examples would be the
price-earnings ratio, market capitalization, and
industry. Let us denote for a particular attribute
a column vector, a, that shows the exposure of
each risky asset to that attribute, denoted an:

a =

⎡

⎢⎢⎢⎣

a1

a2
...

aN

⎤

⎥⎥⎥⎦

Matrices
An n × m matrix is a bidimensional ordered
array of n × m numbers. Matrices are usually
indicated with boldface uppercase letters. Thus,
the generic matrix A is an n × m array of the
form:

A =

⎡

⎢⎢⎢⎢⎢⎣

a1,1 · a1, j · a1,m

· · · · ·
ai,1 · ai, j · ai,m

· · · · ·
an,1 · an, j · an,m

⎤

⎥⎥⎥⎥⎥⎦

Note that the first subscript indicates rows
while the second subscript indicates columns.
The entries aij—called the elements of the ma-
trix A—are the numbers at the crossing of the
i-th row and the j-th column. The commas be-
tween the subscripts of the matrix entries are
omitted when there is no risk of confusion:
ai, j ≡ aij. A matrix A is often indicated by its
generic element between brackets:

A = {
aij

}
nm or A = [

aij
]

nm

where the subscripts nm are the dimensions of
the matrix.

There are several types of matrices. First there
is a broad classification of square and rectangu-
lar matrices. A rectangular matrix can have dif-
ferent numbers of rows and columns; a square
matrix is a rectangular matrix with the same
number n of rows as of columns. Because of the
important role that they play in applications,
we focus on square matrices in the next section.

SQUARE MATRICES
The n × n identity matrix, indicated as the matrix
In, is a square matrix whose diagonal elements
(i.e., the entries with the same row and column
suffix) are equal to one while all other entries
are zero:

In =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
· · · ·
· · · ·
· · · ·
0 0 · · · 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

A matrix whose entries are all zero is called a
zero matrix.

A diagonal matrix is a square matrix whose
elements are all zero except the ones on the di-
agonal:

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a11 0 · · · 0
0 a22 · · · 0
· · · ·
· · · ·
· · · 0
0 0 · · 0 ann

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

Given a square n × n matrix A, the matrix
dg A is the diagonal matrix extracted from A.
The diagonal matrix dg A is a matrix whose
elements are all zero except the elements on the
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diagonal that coincide with those of the matrix
A:

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · · ·
· · · ·
· · · ·

an1 an2 · · · ann

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

⇒

dgA =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a11 0 · · · 0
0 a22 · · · 0
· · · ·
· · · ·
· · · ·
0 0 · · · ann

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

The trace of a square matrix A is the sum of its
diagonal elements:

trA =
n∑

i=1

aii

A square matrix is called symmetric if the el-
ements above the diagonal are equal to the
corresponding elements below the diagonal:
aij = a ji . A matrix is said to be skew-symmetric
if the diagonal elements are zero and the ele-
ments above the diagonal are the opposite of
the corresponding elements below the diago-
nal: aij = −a ji , i �= j, aii = 0.

The most commonly used symmetric ma-
trix in financial economics and econometrics is
the covariance matrix, also referred to as the
variance-covariance matrix. For example, sup-
pose that there are N risky assets and that the
variance of the excess return for each risky asset
and the covariances between each pair of risky
assets are estimated. As the number of risky as-
sets is N, there are N2 elements, consisting of
N variances (along the diagonal) and N2 − N
covariances. Symmetry restrictions reduce the
number of independent elements. In fact, the
covariance between risky asset i and risky asset
j will be equal to the covariance between risky
asset j and risky asset i. Notice that the variance-
covariance matrix is a symmetric matrix.

DETERMINANTS
Consider a square, n × n, matrix A. The deter-
minant of A, denoted |A|, is defined as follows:

|A| =
∑

(−1)t( j1,..., jn)
n∏

i=1

aij

where the sum is extended over all permu-
tations ( j1, . . . , jn) of the set (1, 2, . . . , n) and
t( j1, . . . , jn) is the number of transpositions (or
inversions of positions) required to go from (1,
2, . . . ,n) to ( j1, . . . , jn). Otherwise stated, a de-
terminant is the sum of all products formed
taking exactly one element from each row with
each product multiplied by (−1)t( j1,..., jn). Con-
sider, for instance, the case n = 2, where there
is only one possible transposition: 1, 2 ⇒ 2, 1.
The determinant of a 2 × 2 matrix is therefore
computed as follows:

|A| = (−1)0 a11a22 + (−1)1 a12a21

= a11a22 − a12a21.

Consider a square matrix A of order n . Con-
sider the matrix Mij obtained by removing the
ith row and the jth column. The matrix Mij is
a square matrix of order (n − 1). The determi-
nant |Mij| of the matrix Mij is called the minor of
aij. The signed minor (−1)(i+ j)|Mij| is called the
cofactor of aij and is generally denoted as αij.

A square matrix A is said to be singular if its
determinant is equal to zero. An n × m matrix A
is of rank r if at least one of its (square) r-minors
is different from zero while all (r + 1)-minors,
if any, are zero. A nonsingular square matrix is
said to be of full rank if its rank r is equal to its
order n.

SYSTEMS OF LINEAR
EQUATIONS
A system of n linear equations in m unknown
variables is a set of n simultaneous equations of
the following form:

a1,1x1 + · · · + a1,mxm = b1

. . . . . . . . . . . . . . . . . . . . . . . . . .

an,1x1 + · · · + a1,mxm = bm
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The n × m matrix:

A =

⎡

⎢⎢⎢⎢⎢⎣

a1,1 · a1, j · a1,m

· · · · ·
ai,1 · ai, j · ai,m

· · · · ·
an,1 · an, j · an,m

⎤

⎥⎥⎥⎥⎥⎦

formed with the coefficients of the variables
is called the coefficient matrix. The terms bi are
called the constant terms. The augmented matrix
[A b]—formed by adding to the coefficient ma-
trix a column formed with the constant term—is
represented below:

[A b] =

⎡

⎢⎢⎢⎢⎢⎣

a1,1 · a1, j · a1,m

· · · · ·
ai,1 · ai, j · ai,m

· · · · ·
an,1 · an, j · an,m

b1

·
bi

·
bn

⎤

⎥⎥⎥⎥⎥⎦

If the constant terms on the right side of the
equations are all zero, the system is called ho-
mogeneous. If at least one of the constant terms
is different from zero, the system is said to be
nonhomogeneous. A system is said to be con-
sistent if it admits a solution, that is, if there
is a set of values of the variables that simulta-
neously satisfy all the equations. A system is
referred to as inconsistent if there is no set of
numbers that satisfy the system equations.

Let’s first consider the case of nonhomoge-
neous linear systems. The fundamental theo-
rems of linear systems state that:

Theorem 1: A system of n linear equations in m
unknown is consistent (i.e., it admits a solu-
tion) if and only if the coefficient matrix and
the augmented matrix have the same rank.

Theorem 2: If a consistent system of n equations
in m variables is of rank r < m, it is possible
to choose n − r unknowns so that the coef-
ficient matrix of the remaining r unknowns
is of rank r. When these m − r variables are
assigned any arbitrary value, the value of the
remaining variables is uniquely determined.

An immediate consequence of the two funda-
mental theorems is that (1) a system of n equa-

tions in n unknown variables admits a solution,
and (2) the solution is unique if and only if both
the coefficient matrix and the augmented ma-
trix are of rank n.

Let’s now examine homogeneous systems.
The coefficient matrix and the augmented ma-
trix of a homogeneous system always have the
same rank and thus a homogeneous system is
always consistent. In fact, the trivial solution
x1 = . . . = xm = 0 always satisfies a homoge-
neous system.

Consider now a homogeneous system of n
equations in n unknowns. If the rank of the
coefficient matrix is n, the system has only the
trivial solution. If the rank of the coefficient
matrix is r < n, then Theorem 2 ensures that
the system has a solution other than the trivial
solution.

LINEAR INDEPENDENCE
AND RANK
Consider an n × m matrix A. A set of p columns
extracted from the matrix A:

⎡

⎢⎢⎢⎢⎢⎣

· a1,i1 · a1,i p ·
· · · · ·
· · · · ·
· · · · ·
· an,i1 · an,i p ·

⎤

⎥⎥⎥⎥⎥⎦

are said to be linearly independent if it is not
possible to find p constants βs, s = 1, . . . , p such
that the following n equations are simultane-
ously satisfied:

β1a1,i1 + · · · + βpa1,i p = 0
. . . . . . . . . . . . . . . . . . . . . . . . .

β1an,i1 + · · · + βpan,i p = 0

Analogously, a set of q rows extracted from
the matrix A are said to be linearly indepen-
dent if it is not possible to find q constants λs,

s = 1, . . . , q such that the following m equations
are simultaneously satisfied:

λ1ai1,1 + · · · + λq aiq ,1 = 0
. . . . . . . . . . . . . . . . . . . . . . . . . .

λ1ai1,m + · · · + λq aiq ,m = 0
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It can be demonstrated that in any matrix the
number p of linearly independent columns is
the same as the number q of linearly indepen-
dent rows. This number is equal, in turn, to the
rank r of the matrix. Recall that a n × m matrix
A is said to be of rank r if at least one of its
(square) r-minors is different from zero while
all (r + 1)-minors, if any, are zero. The constant
p, is the same for rows and for columns. We can
now give an alternative definition of the rank
of a matrix:

Given an n × m matrix A, its rank, denoted
rank(A), is the number r of linearly independent
rows or columns as the row rank is always equal
to the column rank.

VECTOR AND MATRIX
OPERATIONS
Let’s now introduce the most common oper-
ations performed on vectors and matrices. An
operation is a mapping that operates on scalars,
vectors, and matrices to produce new scalars,
vectors, or matrices. The notion of operations
performed on a set of objects to produce an-
other object of the same set is the key concept
of algebra. Let’s start with vector operations.

Vector Operations
The following three operations are usually
defined on vectors: transpose, addition, and
multiplication.

Transpose
The transpose operation transforms a row vec-
tor into a column vector and vice versa. Given
the row vector x = [x1, . . . , xn], its transpose, de-
noted as xT or x′, is the column vector:

xT =

⎡

⎢⎢⎢⎢⎢⎣

x1

·
·
·

xn

⎤

⎥⎥⎥⎥⎥⎦
.

Clearly the transpose of the transpose is the
original vector: (xT )T = x.

Addition
Two row (or column) vectors x = [x1, . . . , xn],
y = [y1, . . . , yn] with the same number n of
components can be added. The addition of two
vectors is a new vector whose components are
the sums of the components:

x + y = [x1 + y1, . . . , xn + yn]

This definition can be generalized to any
number N of summands:

N∑

i=1

xi =
[

N∑

i=1

x1i , . . . ,

N∑

i=1

yni

]

The summands must be both column or row
vectors; it is not possible to add row vectors to
column vectors.

It is clear from the definition of addition that
addition is a commutative operation in the
sense that the order of the summands does not
matter: x + y = y + x. Addition is also an asso-
ciative operation in the sense that x + (y + z) =
(x + y) + z.

Multiplication
We define two types of multiplication:
(1) multiplication of a scalar and a vector, and
(2) scalar multiplication of two vectors (inner
product).2

The multiplication of a scalar a and a row (or
column) vector x, denoted as ax, is defined as
the multiplication of each component of the vec-
tor by the scalar:

ax = [ax1, . . . , axn] .

A similar definition holds for column vectors.
It is clear from this definition that multiplication
by a scalar is associative as:

a (x + y) = ax + ay
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The scalar product (also called the inner prod-
uct), of two vectors x, y, denoted as x · y, is
defined between a row vector and a column
vector. The scalar product between two vectors
produces a scalar according to the following
rule:

x · y =
n∑

i=1

xi yi .

Two vectors x, y are said to be orthogonal if
their scalar product is zero.

MATRIX OPERATIONS
Let’s now define operations on matrices. The
following five operations on matrices are usu-
ally defined: transpose, addition, multiplica-
tion, inverse, and adjoint.

Transpose
The definition of the transpose of a matrix is an
extension of the transpose of a vector. The trans-
pose operation consists in exchanging rows
with columns. Consider the n × m matrix A =
{aij}nm. The transpose of A, denoted AT or A′ is
the m × n matrix whose ith row is the ith column
of A:

AT = {
a ji

}
mn

The following should be clear from this defi-
nition:

(
AT)T = A

and that a matrix is symmetric if and only if

AT = A

Addition
Consider two n × m matrices A = {aij}nm and
B = {bij}nm. The sum of the matrices A and B is
defined as the n × m matrix obtained by adding
the respective elements:

A + B = {
aij + bij

}
nm .

Note that it is essential for the definition of
addition that the two matrices have the same
order n × m.

The operation of addition can be extended to
any number N of summands as follows:

N∑

s=1

Ai =
{

N∑

s=1

asij

}

nm

where asij is the generic i,j element of the sth
summand.

Multiplication
Consider a scalar c and a matrix A = {aij}nm. The
product cA = Ac is the n × m matrix obtained
by multiplying each element of the matrix by c:

cA = Ac = {
caij

}
nm .

Multiplication of a matrix by a scalar is dis-
tributive with respect to matrix addition:

c (A + B) = cA + cB.

Let’s now define the product of two ma-
trices. Consider two matrices A = {ait}np and
B = {bs j }pm. The product C = AB is defined as
follows:

C = AB = {
cij

} =
{ p∑

t=1

aitbtj

}
.

The product C = AB is therefore a matrix
whose generic element {cij} is the scalar product
of the ith row of the matrix A and the jth col-
umn of the matrix B. This definition generalizes
the definition of scalar product of vectors: The
scalar product of two n-dimensional vectors is
the product of an nx1 matrix (a row vector) for
a 1xn matrix (the column vector).

Inverse and Adjoint
Consider two square matrices of order n A and
B. If AB = BA = I, then the matrix B is called
the inverse of A and is denoted as A−1. It can be
demonstrated that the two following properties
hold:
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Property 1: A square matrix A admits an inverse
A−1 if and only if it is nonsingular, that is, if
and only if its determinant is different from
zero. Otherwise stated, a matrix A admits an
inverse if and only if it is of full rank.

Property 2: The inverse of a square matrix, if it
exists, is unique. This property is a conse-
quence of the property that, if A is nonsin-
gular, then AB = AC implies B = C.

Consider now a square matrix of order n
A = {aij} and consider its cofactors αij. Recall
that the cofactors αij are the signed minors
(−1)(i+ j)|Mij| of the matrix A. The adjoint of the
matrix A, denoted as Adj(A), is the following
matrix:

Adj (A) =

⎡

⎢⎢⎢⎢⎢⎣

α1,1 · α1, j · α1,n

· · · · ·
αi,1 · αi, j · αi,n

· · · · ·
αn,1 · αn, j · αn,n

⎤

⎥⎥⎥⎥⎥⎦

T

=

⎡

⎢⎢⎢⎢⎢⎣

α1,1 · α2,1 · αn,1

· · · · ·
α1,i · α2,i · αn,i

· · · · ·
α1,n · α2,n · αn,n

⎤

⎥⎥⎥⎥⎥⎦

The adjoint of a matrix A is therefore the trans-
pose of the matrix obtained by replacing the
elements of A with their cofactors.

If the matrix A is nonsingular, and there-
fore admits an inverse, it can be demonstrated
that:

A−1 = Adj (A)
|A|

A square matrix of order n A is said to be
orthogonal if the following property holds:

AA′ = A′A = In

Because in this case A must be of full rank,
the transpose of an orthogonal matrix coincides
with its inverse: A−1 = A′.

EIGENVALUES AND
EIGENVECTORS
Consider a square matrix A of order n and the
set of all n-dimensional vectors. The matrix A
is a linear operator on the space of vectors.
This means that A operates on each vector pro-
ducing another vector subject to the following
restriction:

A (ax + by) = aAx + bAy

Consider now the set of vectors x such that
the following property holds:

Ax = λx.

Any vector such that the above property holds
is called an eigenvector of the matrix A and the
corresponding value of λ is called an eigenvalue.

To determine the eigenvectors of a matrix and
the relative eigenvalues, consider that the equa-
tion Ax = λx can be written as:

(A − λI) x = 0

which can, in turn, be written as a system of
linear equations:

(A − λI) x =

⎡

⎢⎢⎢⎢⎢⎣

a1,1 − λ · a1, j · a1,n

· · · · ·
ai,1 · ai,i − λ · ai,n

· · · · ·
an,1 · an, j · an,n − λ

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

x1

·
xi

·
xn

⎤

⎥⎥⎥⎥⎥⎦
= 0

This system of equations has nontrivial solu-
tions only if the matrix A − λI is singular. To
determine the eigenvectors and the eigenval-
ues of the matrix A we must therefore solve the
equation:

|A − λI| =

∣∣∣∣∣∣∣∣∣∣

a1,1 − λ · a1, j · a1,n

· · · · ·
ai,1 · ai,i − λ · ai,n

· · · · ·
an,1 · an, j · an,n − λ

∣∣∣∣∣∣∣∣∣∣

= 0
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The expansion of this determinant yields a
polynomial φ(λ) of degree n known as the
characteristic polynomial of the matrix A. The
equation φ(λ) = 0 is known as the characteristic
equation of the matrix A. In general, this equa-
tion will have n roots λs which are the eigenval-
ues of the matrix A. To each of these eigenvalues
corresponds a solution of the system of linear
equations as illustrated below:

⎡

⎢⎢⎢⎢⎢⎣

a1,1 − λs · a1, j · a1,n

· · · · ·
ai,1 · ai,i − λs · ai,n

· · · · ·
an,1 · an, j · an,n − λs

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

x1s

·
xis

·
xns

⎤

⎥⎥⎥⎥⎥⎦
= 0

Each solution represents the eigenvector xs

corresponding to the eigenvector λs . The deter-
mination of eigenvalues and eigenvectors is the
basis for principal component analysis.

KEY POINTS
� An n-dimensional vector is an ordered array

of n numbers with the numbers referred to as
the components. An n × m matrix is a bidi-
mensional ordered array of n × m numbers.

� A rectangular matrix can have different num-
bers of rows and columns; a square matrix is
a rectangular matrix with the same number
of rows and columns. An identity matrix is
a square matrix whose diagonal elements are
equal to one while all other entries are zero.

A diagonal matrix is a square matrix whose
elements are all zero except the ones on the
diagonal.

� The trace of a square matrix is the sum of its
diagonal elements. A symmetric matrix is a
square matrix where the elements above the
diagonal are equal to the corresponding el-
ements below the diagonal. The most com-
monly used symmetric matrix in finance is
the covariance matrix (or variance-covariance
matrix).

� The rank of a matrix is used to determine
the number of solutions of a system of linear
equations.

� An operation is a mapping that operates on
scalars, vectors, and matrices to produce new
scalars, vectors, or matrices. The notion of op-
erations performed on a set of objects to pro-
duce another object of the same set is the key
concept of algebra. Five vector operations on
matrices are transpose, addition, multiplica-
tion, inverse, and adjoint.

NOTES
1. Vectors can be thought of as the elements of

an abstract linear space while matrices are
operators that operate on linear spaces.

2. A third type of product between vectors—
the vector (or outer) product between
vectors—produces a third vector. We do not
define it here as it is not typically used in eco-
nomics, though widely used in the physical
sciences.
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Abstract: The theory of linear difference equations has found applications in many areas in finance. A
difference equation is an equation that involves differences between successive values of a function
of a discrete variance. The theory of linear difference equations covers three areas: solving difference
equations, describing the behavior of difference equations, and identifying the equilibrium (or
critical value) and stability of difference equations.

Linear difference equations are important in
the context of dynamic econometric models.
Stochastic models in finance are expressed as
linear difference equations with random dis-
turbances added. Understanding the behav-
ior of solutions of linear difference equations
helps develop intuition about the behavior of
these models. The relationship between differ-
ence equations (the subject of this entry) and
differential equations is as follows. The latter
are great for modeling situations in finance
where there is a continually changing value.
The problem is that not all changes in value oc-
cur continuously. If the change in value occurs
incrementally rather than continuously, then
differential equations have their limitations.
Instead, a financial modeler can use differ-
ence equations, which are recursively defined
sequences.

In this entry we explain the theory of lin-
ear difference equations and describe how to

compute explicit solutions of different types of
equations.

THE LAG OPERATOR L
The lag operator L is a linear operator that acts on
doubly infinite time series by shifting positions
by one place:

Lxt = xt−1

The difference operator �xt = xt − xt−1 can be
written in terms of the lag operator as

�xt = (1 − L)xt

Products and thus powers of the lag operator
are defined as follows:

(L × L)xt = L2xt = L(Lxt) = xt−2

From the previous definition, we can see that
the i-th power of the lag operator shifts the

629
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series by i places:

Li xt = xt−i

The lag operator is linear, that is, given scalars
a and b we have

(aLi + bL j )xt = axt−i + bxt− j

Hence we can define the polynomial
operator:

A(L) = (1 − a1L − · · · − a P L p) ≡
(

1 −
p∑

i=1

ai Li

)

HOMOGENEOUS
DIFFERENCE EQUATIONS
Homogeneous difference equations are linear con-
ditions that link the values of variables at dif-
ferent time lags. Using the lag operator L, they
can be written as follows:

A(L)xt = (1 − a1 L − · · · − a P L p)xt

= (1 − λ1L) × · · · × (1 − λp L)xt = 0

where the λi, i = 1, 2, . . . , p are the solutions of
the characteristic equation:

zp − a1zp−1 − · · · − a P−1z − a P

= (z − λ1) × · · · × (z − λp) = 0

Suppose that time extends from 0 ⇒ ∞, t = 0, 1,
2, . . . and that the initial conditions (x−1, x−2, . . . ,
x−P) are given.

Real Roots
Consider first the case of real roots. In this case,
as we see later in this entry, solutions are sums of
exponentials. First suppose that the roots of the
characteristic equation are all real and distinct.
It can be verified by substitution that any series
of the form

xt = C(λi )t

where C is a constant, solves the homogeneous
difference equation. In fact, we can write

(1 − λi L)(Cλt
i ) = Cλt

i − λi Cλt−1
i = 0

In addition, given the linearity of the lag oper-
ator, any linear combination of solutions of the

homogeneous difference equation is another so-
lution. We can therefore state that the follow-
ing series solves the homogeneous difference
equation:

xt =
p∑

i=1

Ciλ
t
i

By solving the linear system

x−1 =
p∑

i=1

Ciλ
−1
i

x−p =
p∑

i=1

Ciλ
−p
i

that states that the p initial conditions are satis-
fied, we can determine the p constants Cs.

Suppose now that all m roots of the charac-
teristic equation are real and coincident. In this
case, we can represent a difference equation in
the following way:

A(L) = 1 − a1L − · · · − a P L p = (1 − λL)p

It can be demonstrated by substitution that, in
this case, the general solution of the process is
the following:

xt = C1(λ)t + C2t(λ)t + · · · + C pt p−1(λ)t

In the most general case, assuming that all
roots are real, there will be m < p distinct roots
ϕi, i = 1, 2, . . . , m each of order ni ≥ 1,

m∑

i=1

ni = p

and the general solution of the process will be

xt = C1
1 (λ1)t + C1

2 t(λ1)t + · · · + C1
n1

tn1−1(λ1)t + · · ·
+ Cm

1 (λm)t + Cm
2 t(λm)t + · · · + Cm

nm
tnm−1(λm)t

We can therefore conclude that the solutions
of a homogeneous difference equation whose
characteristic equation has only real roots is
formed by a sum of exponentials. If these
roots have modulus greater than unity, then
solutions are diverging exponentials; if they
have modulus smaller than unity, solutions are
exponentials that go to zero. If the roots are
unity, solutions are either constants or, if the
roots have multiplicity greater than 1, polyno-
mials.
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Figure 1 Solution of the Equation (1 − 0.8L)xt = 0 with Initial Condition x1 = 1

Figure 1 illustrates the simple equation

A(L)xt = (1 − 0.8L)xt = 0, λ = 0.8,

t = 1, 2, . . . , n, . . .

whose solution, with initial condition x1 = 1, is

xt = 1.25(0.8)t

Figure 2 Solution of the Equation (1 + 0.8L)xt = 0 with Initial Condition x1 = 1

The behavior of the solution is that of an expo-
nential decay.

Figure 2 illustrates the equation

A(L)xt = (1 + 0.8L)xt = 0, λ = −0.8,

t = 1, 2, . . . , n, . . .

Simulations were run for 100 time steps
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Figure 3 Solution of the Equation (1 − 1.7L + 0.72L2)xt = 0 with Initial Conditions x1 = 1, x2 = 1.5

whose solution, with initial condition x1 = 1, is

xt = −1.25(−0.8)t

The behavior of the solution is that of an expo-
nential decay with oscillations at each step. The
oscillations are due to the change in sign of the
exponential at odd and even time steps.

If the equation has more than one real root,
then the solution is a sum of exponentials.
Figure 3 illustrates the equation

A(L)xt = (1 − 1.7L + 0.72L2)xt = 0, λ1 = 0.8,

λ2 = 0.9, t = 1, 2, . . . , n, . . .

whose solution, with initial condition x1 = 1,
x2 = 1.5, is

xt = −7.5(0.8)t + 7.7778(0.9)t

The behavior of the solution is that of an expo-
nential decay after a peak.

Figure 4 illustrates the equation

A(L)xt = (1 − 1.9L + 0.88L2)xt = 0,

λ1 = 0.8, λ2 = 1.1, t = 1, 2, . . . , n, . . .

whose solution, with initial condition x1 = 1,
x2 = 1.5, is

xt = −1.6667(0.8)t + 2.1212(1.1)t

The behavior is that of exponential explosion
due to the exponential with modulus greater
than 1.

Complex Roots
Now suppose that some of the roots are com-
plex. In this case, solutions exhibit an oscillat-
ing behavior with a period that depends on the
model coefficients. For simplicity, consider ini-
tially a second-order homogeneous difference
equation:

A(L)xt = (1 − a1L − a2L2)xt

Suppose that its characteristic equation given
by

A(z) = z2 − a1z − as = 0
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Figure 4 Solution of the Equation (1 − 1.9L + 0.88L2)xt = 0 with Initial Conditions x1 = 1, x2 = 1.5

admits the two complex conjugate roots:

λ1 = a + ib, λ2 = a − ib

Let’s write the two roots in polar notation:

λ1 = reiω, λ1 = re−iω

r = √
a2 + b2, ω = arctan

b
a

It can be demonstrated that the general solu-
tion of the above difference equation has the
following form:

xt = r t(C1 cos(ωt) + C2 sin(ωt)) = Crt cos(ωt + ϑ)

where the C1 and C2 or C and ϑ are constants to
be determined in function of initial conditions.
If the imaginary part of the roots vanishes, then
ω vanishes and a = r, the two complex conjugate
roots become a real root, and we find again the
expression xt = Crt.

Consider now a homogeneous difference
equation of order 2n. Suppose that the char-
acteristic equation has only two distinct com-
plex conjugate roots with multiplicity n. We can
write the difference equation as follows:

A(L)xt = (1 − a1L − · · · − a2nL2n)xt

= [(1 − λL)n(1 − λ̄L)n]xt = 0

and its general solution as follows:

xt = r t(C1
1 cos(ωt) + C1

2 sin(ωt)) + · · ·
+ tnr t(Cn

1 cos(ωt) + Cn
2 sin(ωt))

The general solution of a homogeneous dif-
ference equation that admits both real and com-
plex roots with different multiplicities is a sum
of the different types of solutions. The above
formulas show that real roots correspond to a
sum of exponentials while complex roots cor-
respond to oscillating series with exponential
dumping or explosive behavior. The above for-
mulas confirm that in both the real and the com-
plex case, solutions decay if the modulus of the
roots of the inverse characteristic equation is
outside the unit circle and explode if it is inside
the unit circle.

Figure 5 illustrates the equation

A(L)xt = (1 − 1.2L + 1.0L2)xt = 0,

t = 1, 2, . . . , n, . . .

which has two complex conjugate roots,

λ1 = 0.6 + i0.8, λ2 = 0.6 − i0.8
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Figure 5 Solutions of the Equation (1 − 1.2L + 1.0L2)xt = 0 with Initial Conditions x1 = 1, x2 = 1.5

or in polar form,

λ1 = ei0.9273, λ2 = ei0.9273

and whose solution, with initial condition x1 =
1, x2 = 1.5, is

xt = −0.3 cos(0.9273t) + 1.475 sin(0.9273t)

The behavior of the solutions is that of un-
damped oscillations with frequency deter-
mined by the model.

Figure 6 illustrates the equation

A(L)xt = (1 − 1.0L + 0.89L2)xt = 0,

t = 1, 2, . . . , n, . . .

which has two complex conjugate roots,

λ1 = 0.5 + i0.8, λ2 = 0.5 − i0.8

or in polar form,

λ1 = 0.9434ei1.0122, λ2 = 0.9434e−i1.0122

and whose solution, with initial condition x1 =
1, x2 = 1.5, is

xt = 0.9434t(−0.5618 cos(1.0122t)

+ 1.6011 sin(1.0122t))

The behavior of the solutions is that of damped
oscillations with frequency determined by the
model.

NONHOMOGENEOUS
DIFFERENCE EQUATIONS
Consider now the following n-th order differ-
ence equation:

A(L)xt = (1 − a1 L − · · · − a P L p)xt = yt

where yt is a given sequence of real numbers.
Recall that we are in a deterministic setting,
that is, the yt are given. The general solution
of the above difference equation will be the
sum of two solutions x1,t + x2,t where x1,t is
the solution of the associated homogeneous
equation,

A(L)xt = (1 − a1L − · · · − a P L p)xt = 0

and X2,t solves the given nonhomogeneous
equation.
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Figure 6 Solutions of the Equation (1 − 1.0L + 0.89L2)xt = 0 with Initial Conditions x1 = 1, x2 = 1.5

Real Roots
To determine the general form of x2,t in the case
of real roots, we begin by considering the case
of a first-order equation:

A(L)xt = (1 − a1L)xt = yt

We can compute the solution as follows:

x2,t = 1
(1 − a1 L)

yt =
⎛

⎝
∞∑

j=0

(a1L) j

⎞

⎠ yt

which is meaningful only for |a1| < 1. If, how-
ever, yt starts at t = −1, that is, if yt = 0 for t =
−2, −3, . . . , n, we can rewrite the above formula
as

x2,t = 1
(1 − a1 L)

yt =
⎛

⎝
t+1∑

j=0

(a1L) j

⎞

⎠ yt

This latter formula, which is valid for any real
value of a1, yields

x2,0 = y0 + a1 y−1

x2,1 = y1 + a1 y0 + a2
1 y−1

x2,t = yt + a1 yt−1 + · · · + a t+1
1 y−1

and so on. These formulas can be easily verified
by direct substitution. If yt = y = constant, then

x2,t = y(1 + a2
1 + · · · + a t+1

1 )

Consider now the case of a second-order
equation:

A(L)xt = (1 − a1L − a2 L2)xt

= (1 − λ1L)(1 − λ2L)xt = yt

where λ1, λ2 are the solutions of the character-
istic equation (the reciprocal of the solutions
of the inverse characteristic equation). We can
write the solution of the above equation as

x2,t = 1
(1 − a1 L − a2 L2)

yt = 1
(1 − λ1 L)(1 − λ2 L)

yt

Recall that, if |λi| < 1, i = 1, 2, we can write:

1
(1 − λ1 L)(1 − λ2 L)

= 1
λ1 − λ2

(
λ1

(1 − λ1 L)
− λ2

(1 − λ2 L)

)

= λ1

λ1 − λ2

⎛

⎝
∞∑

j=0

(λ1 L) j

⎞

⎠ − λ2

λ1 − λ2

⎛

⎝
∞∑

j=0

(λ2 L) j

⎞

⎠
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so that the solution can be written as

x2,t = λ1

λ1 − λ2

⎛

⎝
∞∑

j=0

(λ1L) j

⎞

⎠ yt

− λ2

λ1 − λ2

⎛

⎝
∞∑

j=0

(λ2L) j

⎞

⎠ yt

If the two solutions are coincident, reason-
ing as in the homogeneous case, we can estab-
lish that the general solutions can be written as
follows:

x2,t = 1
(1 − a1L)2 yt =

⎛

⎝
∞∑

j=0

(a1L) j

⎞

⎠ yt

+ t

⎛

⎝
∞∑

j=0

(a1L) j

⎞

⎠ yt

If yt starts at t = −2, that is, if yt = 0 for t = −3,
−4, . . . , −n, . . . , we can rewrite the above for-
mula respectively as

x2,t = λ1

λ1 − λ2

⎛

⎝
t+2∑

j=0

(λ1L) j

⎞

⎠ yt

− λ2

λ1 − λ2

⎛

⎝
t+2∑

j=0

(λ2L) j

⎞

⎠ yt

if the solutions are distinct, and as

x2,t = 1
(1 − a1L)2 yt =

⎛

⎝
t+2∑

j=0

(a1L) j

⎞

⎠ yt

+ t

⎛

⎝
t+2∑

j=0

(a1L) j

⎞

⎠ yt

if the solutions are coincident. These formulas
are valid for any real value of λ1.

The above formulas can be generalized to
cover the case of an n-th order difference equa-
tion. In the most general case of an n-th order
difference equation, assuming that all roots are
real, there will be m < n distinct roots λi, i = 1,
2, . . . , m, each of order ni ≥ 1,

m∑

i=1

ni = n

and the general solution of the process will be

x2,t =
∞∑

i=0

((λ1 L)i + i(λ1 L)i + · · · + i n1−1(λ1 L)i + · · ·

+ (λm L)i + i(λm L)i + · · · + i nm−1(λm L)i )yt

if |λi| < 1, i = 1, 2, . . . , m, and

x2,t =
t+m∑

i=0

((λ1 L)i + i(λ1 L)i + · · · + i n1−1(λ1 L)i + · · ·

+ (λm L)i + i(λm L)i + · · · + i nm−1(λm L)i )yt

if yt starts at t = −n, that is, if yt = 0 for t = −(n
+ 1), −(n + 2), . . . for any real value of the λi.

Therefore, if the roots are all real, the general
solution of a difference equation is a sum of
exponentials. Figure 7 illustrates the case of the
same difference equation as in Figure 3 with the
same initial conditions x1 = 1, x2 = 1.5 but with
an exogenous forcing sinusoidal variable:

(1 − 1.7L + 0.72L2)xt = 0.1 × sin(0.4 × t)

The solution of the equation is the sum of
x1,t = −7.5(0.8)t + 7.7778(0.9)t plus

x2,t =
∑

[((0.8)i + (0.9)i )0.1 × sin(0.4 × (t − i))]

After the initial phase dominated by the solu-
tion of the homogeneous equation, the forcing
term dictates the shape of the solution.

Complex Roots
Consider now the case of complex roots. For
simplicity, consider initially a second-order dif-
ference equation:

A(L)xt = (1 − a1L − a2L2)xt = yt

Suppose that its characteristic equation,

A(z) = z2 − a1z − a2 = 0

admits the two complex conjugate roots,

λ1 = a + ib, λ2 = a − ib

We write the two roots in polar notation:

λ1 = reiω, λ2 = re−iω

r = √
a2 + b2, ω = arctan b

a



DIFFERENCE EQUATIONS 637

Figure 7 Solutions of the Equation (1 − 1.7L + 0.72L2)xt = 0.1 × sin(0.4 × t) with Initial Conditions
x1 = 1, x2 = 1.5

It can be demonstrated that the general form of
the x2,t of the above difference equation has the
following form:

x2,t =
∞∑

i=1

(r i (cos(ωi) + sin(ωi))yt−i )

which is meaningful only if |r| < 1. If yt starts
at t = −2, that is, if yt = 0 for t = −3, −4, . . . ,
−n, . . . we can rewrite the previous formula as

x2,t =
t+2∑

i=1

(r i (cos(ωi) + sin(ωi))yt−i )

This latter formula is meaningful for any real
value of r. Note that the constant ω is deter-
mined by the structure of the model while the
constants C1, C2 that appear in x1,t need to be
determined in the function of initial conditions.
If the imaginary part of the roots vanishes, then
ω vanishes and a = r, the two complex conju-
gate roots become a real root, and we again find
the expression xt = Crt.

Figure 8 illustrates the case of the same dif-
ference equation as in Figure 7 with the same
initial conditions x1 = 1, x2 = 1.5 but with an

exogenous forcing sinusoidal variable:

(1 − 1.2L + 1.0L2)xt = 0.5 × sin(0.4 × t)

The solution of the equation is the sum of
x1,t = −0.3cos(0.9273t) + 1.475 sin(0.9273t) plus

x2,t =
t−1∑

i=0

[(cos(0.9273i)

+ sin(0.9273i))0.5 sin(0.4 × (t − i))]

After the initial phase dominated by the solu-
tion of the homogeneous equation, the forcing
term dictates the shape of the solution. Note the
model produces amplification and phase shift
of the forcing term 0.1 × sin(0.4 × t) represented
by a dotted line.

SYSTEMS OF LINEAR
DIFFERENCE EQUATIONS
In this section, we discuss systems of linear dif-
ference equations of the type

x1,t = a11x1,t−1 + · · · + a1k xk,t−1 + y1,t

xk,t = ak1x1,t−1 + · · · + akk xk,t−1 + yk,t
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Figure 8 Solutions of the Equation (1 − 1.2L + 1.0L2)xt = 0.5 × sin(0.4 × t) with Initial Conditions
x1 = 1, x2 = 1.5

or in vector notation:

xt = Axt−1 + yt

Observe that we need to consider only first-
order systems, that is, systems with only one
lag. In fact, a system of an arbitrary order can be
transformed into a first-order system by adding
one variable for each additional lag. For exam-
ple, a second-order system of two difference
equations,

x1,t = a11x1,t−1 + a12x2,t−1 + b11x1,t−2

+ b12x2,t−2 + y1,t

x2,t = a21x1,t−1 + a22x2,t−1 + b21x1,t−2

+ b22x2,t−2 + y2,t

can be transformed in a first-order system
adding two variables:

x1,t = a11x1,t−1 + a12x2,t−1 + b11x1,t−1

+ b12x2,t−1 + y1,t

x2,t = a21x1,t−1 + a22x2,t−1 + b21x1,t−1

+ b22x2,t−1 + y2,t

z1,t = x1,t−1

z2,t = x2,t−1

Transformations of this type can be generalized
to systems of any order and any number of
equations.

A system of difference equations is called ho-
mogeneous if the exogenous variable yt is zero,
that is, if it can be written as

xt = Axt−1

while it is called nonhomogeneous if the exoge-
nous term is present.

There are different ways to solve first-order
systems of difference equations. One method
consists in eliminating variables as in ordinary
algebraic systems. In this way, the original first-
order system in k equations is solved by solving
a single difference equation of order k with the
methods explained above. This observation im-
plies that solutions of systems of linear differ-
ence equations are of the same nature as those
of difference equations (i.e., sums of exponen-
tial and/or sinusoidal functions). In the follow-
ing section we will show a direct method for
solving systems of linear difference equations.
This method could be used to solve equations of
any order, as they are equivalent to first-order
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systems. In addition, it gives a better insight
into vector autoregressive processes.

SYSTEMS OF
HOMOGENEOUS LINEAR
DIFFERENCE EQUATIONS
Consider a homogeneous system of the follow-
ing type:

x(t) = Ax(t − 1), t = 0, 1, . . . , n, . . .

where A is a k × k, real-valued, nonsingular
matrix of constant coefficients. Using the lag
operator notation, we can also write the above
systems in the following form:

(I − AL)xt = 0, t = 1, . . . , n, . . .

If a vector of initial conditions x(0) is given, the
above system is called an initial value problem.

Through recursive computation, that is, start-
ing at t = 0 and computing forward, we can
write

x(1) = Ax(0)
x(2) = Ax(1) = A2x(0)
x(t) = Atx(0)

The following theorem can be demonstrated:
Any homogeneous system of the type x(t) =
Ax(t − 1), where A is a k × k, real-valued, non-
singular matrix, coupled with given initial con-
ditions x(0) admits one and only one solution.

A set of k solutions xi(t), i = 1, . . . , k, t = 0, 1,
2, . . . are said to be linearly independent if

k∑

i=1

ci xi (t) = 0

t = 0, 1, 2, . . . implies ci = 0, i = 1, . . . , k. Suppose
now that k linearly independent solutions xi(t),
i = 1, . . . , k are given. Consider the matrix

�(t) = [x1(t) · · · xk(t)]

The following matrix equation is clearly satis-
fied:

�(t) = A�(t − 1)

The solutions xi(t), i = 1, . . . , n are linearly
independent if and only if the matrix �(t) is

nonsingular for every value t ≥ 0, that is, if
det[�(t)] �= 0, t = 0, 1, . . .. Any nonsingular
matrix �(t), t = 0, 1, . . . such that the matrix
equation

�(t) = A�(t − 1)

is satisfied is called a fundamental matrix of the
system x(t) = Ax(t − 1), t = 1, . . . , n, . . . and it
satisfies the equation

�(t) = At�(0)

In order to compute an explicit solution of
this system, we need an efficient algorithm to
compute the matrix sequence At. We will dis-
cuss one algorithm for this computation.1 Recall
that an eigenvalue of the k × k real valued ma-
trix A = (aij) is a real or complex number λ that
satisfies the matrix equation:

(A − λI)ξ = 0

where ξ ∈ C
k is a k-dimensional complex vector.

The above equation has a nonzero solution if
and only if

|(A − λI)| = 0

or

det

⎛

⎜⎝
a11 − λ · · · a1k

...
. . .

...
ak1 · · · akk − λ

⎞

⎟⎠ = 0

The above condition can be expressed by the
following algebraic equation:

zk + a1zk−1 + · · · + ak−1z + ak

which is called the characteristic equation of the
matrix A = (aij).

To see the relationship of this equation with
the characteristic equations of single equations,
consider the k-order equation:

(1 − a1 L − · · · − ak Lk)x(t) = 0

xt = a1x(t − 1) + · · · + ak x(t − k)

which is equivalent to the first-order system,

xt = a1xt−1 + · · · + ak zk−1
t−1

z1
t = xt−1

...
zk−1

t−1 = xt−k



640 Finite Mathematics for Financial Modeling

The matrix

A =

⎡

⎢⎢⎢⎢⎢⎢⎣

a1 a2 · · · ak−1 ak

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎤

⎥⎥⎥⎥⎥⎥⎦

is called the companion matrix. By induction,
it can be demonstrated that the characteristic
equation of the system x(t) = Ax(t − 1), t =
1, . . . , n, . . . and of the k-order equation above
coincide.

Given a system x(t) = Ax(t − 1), t = 1, . . . ,
n, . . . , we now consider separately two cases: (1)
All, possibly complex, eigenvalues of the real-
valued matrix A are distinct, and (2) two or
more eigenvalues coincide.

Recall that if λ is a complex eigenvalue with
corresponding complex eigenvector ξ , the com-
plex conjugate number λ̄ is also an eigenvalue
with corresponding complex eigenvector ξ̄ .

If the eigenvalues of the real-valued matrix A
are all distinct, then the matrix can be diagonal-
ized. This means that A is similar to a diagonal
matrix, according to the matrix equation

A = �

⎡

⎢⎣
λ1 · · · 0
...

. . .
...

0 · · · λn

⎤

⎥⎦�−1

� = [ξ1 . . . ξn]

and

At = �

⎡

⎢⎣
λt

1 · · · 0
...

. . .
...

0 · · · λt
n

⎤

⎥⎦ �−1

We can therefore write the general solution of
the system x(t) = Ax(t − 1) as follows:

x(t) = c1λ
t
1ξ1 + · · · + cnλ

n
1ξn

� =

⎡

⎢⎢⎣

0.1571 + 0.4150i 0.1571 − 0.4150i −0.1311 − 0.3436i −0.1311 + 0.3436i
−0.0924 + 0.3928i 0.0924 − 0.3928i 0.2346 + 0.5419i 0.2346 − 0.5419i

0.5920 0.5920 −0.3794 − 0.0167i −0.3794 + 0.0167i
0.5337 + 0.0702i 0.5337 − 0.0702i 0.6098 0.6098

⎤

⎥⎥⎦

The ci are complex numbers that need to be
determined for the solutions to be real and to
satisfy initial conditions. We therefore see the
parallel between the solutions of first-order sys-
tems of difference equations and the solutions
of k-order difference equations that we have
determined above. In particular, if solutions are
all real they exhibit exponential decay if their
modulus is less than 1 or exponential growth if
their modulus is greater than 1. If the solutions
of the characteristic equation are real, they
can produce oscillating damped or undamped
behavior with period equal to two time steps. If
the solutions of the characteristic equation are
complex, then solutions might exhibit damped
or undamped oscillating behavior with any
period.

To illustrate the above, consider the following
second-order system:

x1,t = 0.6x1,t−1 − 0.1x2,t−1 − 0.7x1,t−2 + 0.15x2,t−2

x2,t = −0.12x1,t−1 + 0.7x2,t−1 + 0.22x1,t−2 − 0.85x2,t−2

This system can be transformed in the follow-
ing first-order system:

x1,t = 0.6x1,t−1 − 0.1x2,t−1 − 0.7x1,t−2 + 0.15x2,t−2

x2,t = −0.12x1,t−1 + 0.7x2,t−1 + 0.22x1,t−2 − 0.85x2,t−2

z1,t = x1,t−1

z2,t = x2,t−1

with matrix

A =

⎡

⎢⎢⎣

0.6 −0.1 −0.7 0.15
−0.12 0.7 0.22 −0.8

1 0 0 0
0 1 0 0

⎤

⎥⎥⎦

The eigenvalues of the matrix A are distinct
and complex:

λ1 = 0.2654 + 0.7011i, λ2 = λ1 = 0.2654 − 0.7011i

λ3 = 0.3846 + 0.8887i, λ4 = λ3 = 0.3846 − 0.8887i

The corresponding eigenvector matrix � is
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Each column of the matrix is an eigenvector.
The solution of the system is given by

x(t) = c1λ
t
1ξ1 + c2λ

t
1ξ1 + c3λ

t
3ξ3 + c4λ

t
3ξ3

= c1(0.2654 + 0.7011i)t

⎛

⎜⎜⎝

0.1571 + 0.4150i
0.0924 + 0.3928i

0.5920
0.5337 + 0.0702i

⎞

⎟⎟⎠ ξ1

+ c2(0.2654 − 0.7011i)t

⎛

⎜⎜⎝

0.1571 − 0.4150i
0.0924 − 0.3928i

0.5920
0.5337 − 0.0702i

⎞

⎟⎟⎠

+ c3(0.3846 + 0.8887i)t

⎛

⎜⎜⎝

−0.1311 + 0.3436i
0.2346 + 0.5419i

−0.3794 + 0.0167i
0.6098

⎞

⎟⎟⎠ ξ3

+ c4(0.3846 − 0.8887i)t

⎛

⎜⎜⎝

−0.1311 − 0.3436i
0.2346 − 0.5419i

−0.3794 − 0.0167i
0.6098

⎞

⎟⎟⎠

The four constants c can be determined using
the initial conditions: (1) = 1; x(2) = 1.2;

Figure 9 Solution of the System

x1,t = 0.6x1,t−1 − 0.1x2,t−1 − 0.7x1,t−2 + 0.15x2,t−2

x2,t = −0.12x1,t−1 + 0.7x2,t−1 + 0.22x1,t−2 − 0.85x2,t−2

y(1) = 1.5; y(2) = −2. Figure 9 illustrates the
behavior of solutions.

Now consider the case in which two or more
solutions of the characteristic equation are coin-
cident. In this case, it can be demonstrated that
the matrix A can be diagonalized only if it is
normal, that is if

AT A = AAT

If the matrix A is not normal, it cannot be
diagonalized. However, it can be put in Jordan
canonical form. In fact, it can be demonstrated
that any nonsingular real-valued matrix A is
similar to a matrix in Jordan canonical form,

A = PJP−1

where the matrix J has the form J = diag[J1, . . . ,
Jk], that is, it is formed by Jordan diagonal blocks:

J =

⎡

⎢⎣
J1 · · · 0
...

. . .
...

0 · · · Jk

⎤

⎥⎦
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where each Jordan block has the form

Ji =

⎡

⎢⎢⎢⎢⎣

λ1 1 · · · 0

0 λi · · · ...
...

...
. . . 1

0 0 · · · λi

⎤

⎥⎥⎥⎥⎦

The Jordan canonical form is characterized by
two sets of multiplicity parameters, the alge-
braic multiplicity and the geometric multiplic-
ity. The geometric multiplicity of an eigenvalue
is the number of Jordan blocks corresponding
to that eigenvalue, while the algebraic multi-
plicity of an eigenvalue is the number of times
the eigenvalue is repeated. An eigenvalue that
is repeated s times can have from 1 to s Jor-
dan blocks. For example, suppose a matrix has
only one eigenvalue λ = 5 that is repeated three
times. There are four possible matrices with the
following Jordan representation:
⎛

⎝
5 0 0
0 5 0
0 0 5

⎞

⎠ ,

⎛

⎝
5 1 0
0 5 0
0 0 5

⎞

⎠ ,

⎛

⎝
5 0 0
0 5 1
0 0 5

⎞

⎠ ,

⎛

⎝
5 1 0
0 5 1
0 0 5

⎞

⎠

These four matrices have all algebraic multi-
plicity 3 but geometric multiplicity from left to
right 1, 2, 2, 3, respectively.

KEY POINTS
� Homogeneous difference equations are linear

conditions that link the values of variables at
different time lags.

� In the case of real roots, solutions are sums of
exponentials. Any linear combination of solu-

tions of the homogeneous difference equation
is another solution.

� When some of the roots are complex, the so-
lutions of a homogeneous difference equation
exhibit an oscillating behavior with a period
that depends on the model coefficients.

� The general solution of a homogeneous dif-
ference equation that admits both real and
complex roots with different multiplicities is
a sum of the different types of solutions.

� A system of difference equations is called
homogeneous if the system’s exogenous vari-
able is zero, and nonhomogeneous if the ex-
ogenous term is present.

� One method of solving first-order systems of
difference equations is by eliminating vari-
ables as in ordinary algebraic systems; an-
other way is a direct method that can be used
to solve systems of linear difference equations
of any order.

NOTE
1. This discussion of systems of difference

equations draws on Elaydi (2002).

REFERENCES
Elaydi, S. (2002). An Introduction to Difference Equa-

tions. New York: Springer Verlag.
Goldberg, S. (2010). Introduction to Difference Equa-

tions. New York: Dover Publications.
Kelley, W. G., and Peterson, A. C. (1991). Difference

Equations: An Introduction with Applications, 2nd
ed. San Diego, CA: Academic Press.



Differential Equations
SERGIO M. FOCARDI, PhD
Partner, The Intertek Group

FRANK J. FABOZZI, PhD, CFA, CPA
Professor of Finance, EDHEC Business School

Abstract: In financial modeling, the goal is to be able to represent the problem at hand as a
mathematical function. In a mathematical function, the dependent variable depends on one or
more variables that are referred to as independent variables. In standard calculus, there are two
basic operations with mathematical functions: differentiation and integration. The differentiation
operation leads to derivatives. When a mathematical function has only one independent variable,
then the derivative is referred to as an ordinary derivative. Typically in financial applications, the
independent variable is time. The derivative of a mathematical function that has more than one
independent variable (one of which is typically time) is called a partial derivative. A differential
equation is an equation that contains derivatives. When it contains only an ordinary derivative, it
is referred to as an ordinary differential equation; when the differential equation contains partial
derivatives, the differential equation is called a partial differential equation.

In nontechnical terms, differential equations are
equations that express a relationship between
a function and one or more derivatives (or dif-
ferentials) of that function. The highest order of
derivatives included in a differential equation
is referred to as its order. In financial modeling,
differential equations are used to specify the
laws governing the evolution of price distribu-
tions, deriving solutions to simple and complex
options, and estimating term structure models.
In most applications in finance, only first- and
second-order differential equations are found.

Differential equations are classified as or-
dinary differential equations and partial dif-
ferential equations depending on the type of

derivatives included in the differential equa-
tion. When there is only an ordinary derivative
(i.e., a derivative of a mathematical function
with only one independent variable), the dif-
ferential equation is called an ordinary differen-
tial equation. For differential equations where
there are partial derivatives (i.e., a derivative
of a mathematical function with more than
one independent variable), then the differential
equation is called a partial differential equation.
Typically in differential equations, one of the
independent variables is time. A differential
equation may have a derivative of a mathe-
matical function where one or more of the in-
dependent variables is a random variable or a

643
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stochastic process. In such instances, the dif-
ferential equation is referred to as a stochastic
differential equation.

The solutions to a differential equation or sys-
tem of differential equations can be as simple as
explicit formulas. When an explicit formula is
not possible to obtain, various numerical meth-
ods can be used to approximate a solution. Even
in the absence of an exact solution, properties
of solutions of a differential equation can be de-
termined. A large number of properties of dif-
ferential equations have been established over
the last three centuries. This entry provides only
a brief introduction to the concept of differen-
tial equations and their properties, limiting our
discussion to the principal concepts. We do not
cover stochastic differential equations.

DIFFERENTIAL EQUATIONS
DEFINED
A differential equation is a condition expressed
as a functional link between one or more
functions and their derivatives. It is expressed
as an equation (that is, as an equality between
two terms).

A solution of a differential equation is a func-
tion that satisfies the given condition. For ex-
ample, the condition

Y′′(x) + αY′(x) + βY(x) − b(x) = 0

equates to zero a linear relationship between
an unknown function Y(x), its first and second
derivatives Y′(x),Y′′(x), and a known function
b(x). (In some equations we will denote the first
and second derivatives by a single and dou-
ble prime, respectively.) The unknown function
Y(x) is the solution of the equation that is to be
determined.

There are two broad types of differential equa-
tions: ordinary differential equations and par-
tial differential equations. Ordinary differential
equations are equations or systems of equa-
tions involving only one independent variable.
Another way of saying this is that ordinary

differential equations involve only total deriva-
tives. In contrast, partial differential equations
are differential equations or systems of equa-
tions involving partial derivatives. That is, there
is more than one independent variable.

ORDINARY DIFFERENTIAL
EQUATIONS
In full generality, an ordinary differential equa-
tion (ODE) can be expressed as the following
relationship:

F [x, Y(x), Y1(x), . . . , Y(n)(x)] = 0

where Y(m)(x) denotes the m-th derivative of an
unknown function Y(x). If the equation can be
solved for the n-th derivative, it can be put in
the form:

Y(n)(x) = G[x, Y(x), Y(1)(x), . . . , Y(n−1)(x)]

Order and Degree of an ODE
A differential equation is classified in terms of
its order and its degree. The order of a differen-
tial equation is the order of the highest deriva-
tive in the equation. For example, the above
differential equation is of order n since the high-
est order derivative is Y(n)(x). The degree of
a differential equation is determined by look-
ing at the highest derivative in the differential
equation. The degree is the power to which that
derivative is raised.

For example, the following ordinary differen-
tial equations are first-degree differential equa-
tions of different orders:

Y(1)(x) − 10Y(x) + 40 = 0 (order 1)

4Y(3)(x) + Y(2)(x) + Y(1)(x) − 0.5Y(x) + 100 = 0
(order 3)

The following ordinary differential equations
are of order 3 and fifth degree:

4[Y(3)(x)]5 + [Y(2)(x)]2 + Y(1)(x) − 0.5Y(x)

+ 100 = 0

4[Y(3)(x)]5 + [Y(2)(x)]3 + Y(1)(x) − 0.5Y(x)

+ 100 = 0
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When an ordinary differential equation is of the
first degree, it is said to be a linear ordinary dif-
ferential equation.

Solution to an ODE
Let’s return to the general ODE. A solution of
this equation is any function y(x) such that:

F [x, y(x), y(1)(x), . . . , y(n)(x)] = 0

In general there will be not one but an infinite
family of solutions. For example, the equation

Y(1)(x) = αY(x)

admits, as a solution, all the functions of the
form

y(x) = C exp(αx)

To identify one specific solution among the
possible infinite solutions that satisfy a differ-
ential equation, additional restrictions must be
imposed. Restrictions that uniquely identify a
solution to a differential equation can be of var-
ious types. For instance, one could impose that
a solution of an n-th order differential equation
passes through n given points. A common type
of restriction—called an initial condition—is ob-
tained by imposing that the solution and some
of its derivatives assume given initial values at
some initial point.

Given an ODE of order n, to ensure the
uniqueness of solutions it will generally be
necessary to specify a starting point and the
initial value of n–1 derivatives. It can be demon-
strated, given the differential equation

F [x, Y(x), Y(1)(x), . . . , Y(n)(x)] = 0

that if the function F is continuous and all of
its partial derivatives up to order n are con-
tinuous in some region containing the values
y0, . . . , y(n−1)

0 , then there is a unique solution y(x)
of the equation in some interval I = (M ≤ x ≤
L) such that y0 = Y(x0), . . . , y(n−1)

0 = Y(n−1)(x0).1

Note that this theorem states that there is an
interval in which the solution exists. Existence
and uniqueness of solutions in a given interval

is a more delicate matter and must be examined
for different classes of equations.

The general solution of a differential equation
of order n is a function of the form

y = ϕ(x, C1, . . . , Cn)

that satisfies the following two conditions:
� Condition 1. The function y = ϕ(x, C1, . . . , Cn)

satisfies the differential equation for any n-
tuple of values (C1, . . . , Cn).

� Condition 2. Given a set of initial conditions
y(x0) = y0, . . . , y(n−1)(x0) = y(n−1)

0 that belong
to the region where solutions of the equa-
tion exist, it is possible to determine n con-
stants in such a way that the function y =
ϕ(x, C1, . . . , Cn) satisfies these conditions.

The coupling of differential equations with
initial conditions embodies the notion of uni-
versal determinism of classical physics. Given
initial conditions, the future evolution of a
system that obeys those equations is com-
pletely determined. This notion was force-
fully expressed by Pierre-Simon Laplace in the
eighteenth century: A supernatural mind who
knows the laws of physics and the initial con-
ditions of each atom could perfectly predict the
future evolution of the universe with unlimited
precision.

In the twentieth century, the notion of univer-
sal determinism was challenged twice in the
physical sciences. First in the 1920s the devel-
opment of quantum mechanics introduced the
so-called indeterminacy principle which estab-
lished explicit bounds to the precision of mea-
surements. Later, in the 1970s, the development
of nonlinear dynamics and chaos theory showed
how arbitrarily small initial differences might
become arbitrarily large: The flapping of a but-
terfly’s wings in the southern hemisphere might
cause a tornado in the northern hemisphere.

SYSTEMS OF ORDINARY
DIFFERENTIAL EQUATIONS
Differential equations can be combined to form
systems of differential equations. These are sets
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of differential conditions that must be satisfied
simultaneously. A first-order system of differential
equations is a system of the following type:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy1

dx
= f1(x, y1, . . . , yn)

dy2

dx
= f2(x, y1, . . . , yn)

.

.

.
dyn

dx
= fn(x, y1, . . . , yn)

Solving this system means finding a set of func-
tions y1, . . . ,yn that satisfy the system as well as
the initial conditions:

y1(x0) = y10, . . . , yn(x0) = yn0

Systems of orders higher than one can be re-
duced to first-order systems in a straightfor-
ward way by adding new variables defined as
the derivatives of existing variables. As a conse-
quence, an n-th order differential equation can
be transformed into a first-order system of n
equations. Conversely, a system of first-order
differential equations is equivalent to a single
n-th order equation.

To illustrate this point, let’s differentiate the
first equation to obtain

d2 y1

dx2 = ∂ f1

∂x
+ ∂ f1

∂y1

dy1

dx
+ · · · + ∂ f1

∂yn

dyn

dx

Replacing the derivatives

dy1

dx
, . . . ,

dyn

dx

with their expressions f 1, . . . ,fn from the sys-
tem’s equations, we obtain

d2 y1

dx2 = F2(x, y1, . . . , yn)

If we now reiterate this process, we arrive at the
n-th order equation:

d (n) y1

dx(n)
= Fn(x, y1, . . . , yn)

We can thus write the following system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy1

dx
= f1(x, y1, . . . , yn)

d2 y1

dx2 = F2(x, y1, . . . , yn)

.

.

.

d (n) y1

dx(n)
= Fn(x, y1, . . . , yn)

We can express y2, . . . ,yn as functions of x, y1,
y′

1, . . . , y(n−1)
1 by solving, if possible, the system

formed with the first n−1 equations:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

y2 = ϕ2(x, y1, y′
1, . . . , y(n−1)

1 )

y3 = ϕ3(x, y1, y′
1, . . . , y(n−1)

1 )
.

.

.

yn = ϕn(x, y1, y′
1, . . . , y(n−1)

1 )

Substituting these expressions into the n-th
equation of the previous system, we arrive at
the single equation:

d (n) y1

dx(n)
= �(x, y′

1, . . . , y(n−1)
1 )

Solving, if possible, this equation, we find the
general solution

y1 = y1(x, C1, . . . , Cn)

Substituting this expression for y1 into the pre-
vious system, y2, . . . ,yn can be computed.

CLOSED-FORM SOLUTIONS
OF ORDINARY
DIFFERENTIAL EQUATIONS
Let’s now consider the methods for solving two
types of common differential equations: equa-
tions with separable variables and equations of
linear type. Let’s start with equations with sep-
arable variables. Consider the equation

dy
dx

= f (x)g(y)
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This equation is said to have separable variables
because it can be written as an equality between
two sides, each depending on only y or only x.
We can rewrite our equation in the following
way:

dy
g(y)

= f (x)dx

This equation can be regarded as an equality be-
tween two differentials in y and x respectively.
Their indefinite integrals can differ only by a
constant. Integrating the left side with respect
to y and the right side with respect to x, we
obtain the general solution of the equation:

∫
dy

g(y)
=

∫
f (x)dx + C

For example, if g(y) ≡ y, the previous equation
becomes

dy
y

= f (x)dx

whose solution is
∫

dy
y

=
∫

f (x)dx + C ⇒

log y =
∫

f (x)dx + C ⇒ y = A exp(
∫

f (x)dx)

where A = exp(C).
A differential equation of this type describes

the continuous compounding of time-varying
interest rates. Consider, for example, the growth
of capital C deposited in a bank account that
earns the variable but deterministic rate r = f (t).
When interest rates Ri are constant for discrete
periods of time �ti, compounding is obtained
by purely algebraic formulas as follows:

Ri�ti = C(ti ) − C(ti−�ti )
C(ti−�ti )

Solving for C(ti):

C(ti ) = (1 + Ri�ti )C(ti−�ti )

By recursive substitution we obtain

C(ti ) = (1 + Ri�ti )(1 + Ri−1�ti−1) . . .

(1 + R1�t1)C(t0)

However, market interest rates are subject to
rapid change. In the limit of very short time
intervals, the instantaneous rate r(t) would be
defined as the limit, if it exists, of the discrete
interest rate:

r (t) = lim
�t→0

C(t + �t) − C(t)
�tC(t)

The above expression can be rewritten as a sim-
ple first-order differential equation in C:

r (t)C(t) = dC(t)
dt

In a simple intuitive way, the above equation
can be obtained considering that in the elemen-
tary time dt the bank account increments by
the amount dC = C(t)r(t)dt. In this equation,
variables are separable. It admits the family of
solutions:

C = A exp(
∫

r (t)dt)

where A is the initial capital.

Linear Differential Equation
Linear differential equations are equations of the
following type:

an(x)y(n) + an−1(x)y(n−1) + · · · + a1(x)y(1)

+ a0(x)y + b(x) = 0

If the function b is identically zero, the equation
is said to be homogeneous.

In cases where the coefficients a’s are con-
stant, Laplace transforms provide a powerful
method for solving linear differential equations.
(Laplace transforms are one of two popular
integral transforms—the other being Fourier
transforms—used in financial modeling. Inte-
gral transforms are operations that take any
function into another function of a different
variable through an improper integral.) Con-
sider, without loss of generality, the following
linear equation with constant coefficients:

an y(n) + an−1 y(n−1) + · · · + a1 y(1) + a0 y = b(x)
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together with the initial conditions: y(0) =
y0, . . . ,y(n−1)(0) = y(n−1)

0 . In cases in which the
initial point is not the origin, by a variable trans-
formation we can shift the origin.

Laplace Transform
For one-sided Laplace transforms the following
formulas hold:

L
(

d f (x)
dx

)
= sL[ f (x)] − f (0)

L
(

dn f (x)
dxn

)
= snL[ f (x)] − sn−1 f (0) − · · ·

− f (n−1)(0)

Suppose that a function y = y(x) satisfies the pre-
vious linear equation with constant coefficients
and that it admits a Laplace transform. Apply
one-sided Laplace transform to both sides of
the equation. If Y(s) = L[y(x)], the following
relationships hold:

L(an y(n) + an−1 y(n−1) + · · · + a1 y(1) + a0 y)
= L[b(x)]

an[snY(s) − sn−1 y(1)(0) − · · · − y(n−1)(0)]
+an−1[sn−1Y(s) − sn−2 y(1)(0) − · · · − y(n−2)(0)]
+ · · · + a0Y(s) = B(s)

Solving this equation for Y(s), that is, Y(s) =
g[s,y(t)(0), . . . ,y(n–1)(0)] the inverse Laplace trans-
form y(t) = L−1[Y(s)] uniquely determines the
solution of the equation.

Because inverse Laplace transforms are in-
tegrals, with this method, when applicable,
the solution of a differential equation is re-
duced to the determination of integrals. Laplace
transforms and inverse Laplace transforms are
known for large classes of functions. Because of
the important role that Laplace transforms play
in solving ordinary differential equations in en-
gineering problems, there are published refer-
ence tables. Laplace transform methods also
yield closed-form solutions of many ordinary
differential equations of interest in economics
and finance.

NUMERICAL SOLUTIONS OF
ORDINARY DIFFERENTIAL
EQUATIONS
Closed-form solutions are solutions that can be
expressed in terms of known functions such
as polynomials or exponential functions. Be-
fore the advent of fast digital computers, the
search for closed-form solutions of differential
equations was an important task. Today, thanks
to the availability of high-performance comput-
ing, most problems are solved numerically. This
section looks at methods for solving ordinary
differential equations numerically.

The Finite Difference Method
Among the methods used to numerically solve
ordinary differential equations subject to ini-
tial conditions, the most common is the fi-
nite difference method. The finite difference
method is based on replacing derivatives with
difference equations; differential equations are
thereby transformed into recursive difference
equations.

Key to this method of numerical solution is
the fact that ODEs subject to initial conditions
describe phenomena that evolve from some
starting point. In this case, the differential
equation can be approximated with a system
of difference equations that compute the next
point based on previous points. This would
not be possible should we impose boundary
conditions instead of initial conditions. In this
latter case, we have to solve a system of linear
equations.

To illustrate the finite difference method, con-
sider the following simple ordinary differential
equation and its solution in a finite interval:

f ′(x) = f (x)
d f
f

= dx

log f (x) = x + C

f (x) = exp(x + C)

As shown, the closed-form solution of the equa-
tion is obtained by separation of variables, that
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Figure 1 Numerical Solutions of the Equation f ′ = f with the Euler Approximation for Different
Step Sizes

is, by transforming the original equation into
another equation where the function f appears
only on the left side and the variable x only on
the right side.

Suppose that we replace the derivative with
its forward finite difference approximation and
solve

f (xi+1) − f (xi )
xi+1 − xi

= f (xi )

f (xi+1) = [1 + (xi+1 − xi )] f (xi )

If we assume that the step size is constant for
all i:

f (xi ) = [1 + �x]i f (x0)

The replacement of derivatives with finite dif-
ferences is often called the Euler approxima-
tion. The differential equation is replaced by
a recursive formula based on approximating
the derivative with a finite difference. The i-th
value of the solution is computed from the
i−1-th value. Given the initial value of the func-

tion f , the solution of the differential equation
can be arbitrarily approximated by choosing a
sufficiently small interval. Figure 1 illustrates
this computation for different values of �x.

In the previous example of a first-order lin-
ear equation, only one initial condition was
involved. Let’s now consider a second-order
equation:

f ′′(x) = k f (x) = 0

This equation describes oscillatory motion,
such as the elongation of a pendulum or the
displacement of a spring.

To approximate this equation we must ap-
proximate the second derivative. This could
be done, for example, by combining difference
quotients as follows:

f ′(x) ≈ f (x + �x) − f (x)
�x

f ′(x + �x) ≈ f (x + 2�x) − f (x + �x)
�x
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Figure 2 Numerical Solution of the Equation f ′′ + f = 0 with the Euler Approximation

f ′′(x) ≈ f ′(x + �x) − f ′(x)
�x

=
f (x + 2�x) − f (x − �x)

�x
− f (x + �x) − f (x)

�x
�x

= f (x + 2�x) − 2 f (x + �x) + f (x)
(�x)2

With this approximation, the original equation
becomes

f ′′(x) + k f (x) ≈
f (x + 2�x) − 2 f (x + �x) + f (x)

(�x)2 + k f (x) = 0

f (x + 2�x) − 2 f (x + �x) + (1 + k(�x)2) f (x)
= 0

We can thus write the approximation scheme:

f (x + �x) = f (x) + �x f ′(x)

f (x + 2�x) = 2 f (x + �x) − (1 + k(�x)2) f (x)

Given the increment �x and the initial values
f (0), f ′(0), using the above formulas we can re-
cursively compute f (0 + �x), f (0 + 2�x), and
so on. Figure 2 illustrates this computation.

In practice, the Euler approximation scheme
is often not sufficiently precise and more sophis-
ticated approximation schemes are used. For
example, a widely used approximation scheme
is the Runge-Kutta method. We give an exam-
ple of the Runge-Kutta method in the case of
the equation f ′′ + f = 0 which is equivalent to
the linear system:

x′ = y

y′ = −x

In this case the Runge-Kutta approximation
scheme is the following:

k1 = hy(i)

h1 = −hx(i)

k2 = h
[

y(i) + 1
2

h1

]

h2 = −h
[

x(i) + 1
2

k1

]

k3 = h
[

y(i) + 1
2

h2

]

h3 = −h
[

x(i) + 1
2

k2

]
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Figure 3 Numerical Solution of the Equation f ′ = f with the Runge-Kutta Method After 10 Steps

k4 = h[y(i) + h3]

h4 = −h[x(i) + k3]

x(i + 1) = x(i) + 1
6

(k1 + 2k2 + 2k3 + k4)

y(i + 1) = y(i) + 1
6

(h1 + 2h2 + 2h3 + h4)

Figures 3 and 4 illustrate the results of this
method in the two cases f ′ = f and f ′′ + f = 0.

As mentioned above, this numerical method
depends critically on our having as givens (1)
the initial values of the solution, and (2) its
first derivative. Suppose that instead of initial
values two boundary values were given, for
instance the initial value of the solution and
its value 1,000 steps ahead, that is, f (0) = f 0,
f (0 + 1,000�x) = f 1000. Conditions like these are
rarely used in the study of dynamical systems as
they imply foresight, that is, knowledge of the
future position of a system. However, they of-
ten appear in static systems and when trying
to determine what initial conditions should be
imposed to reach a given goal at a given date.

In the case of boundary conditions, one can-
not write a direct recursive scheme; it’s neces-

sary to solve a system of equations. For instance,
we could introduce the derivative f ′(x) = δ as
an unknown quantity. The difference quotient
that approximates the derivative becomes an
unknown. We can now write a system of linear
equations in the following way:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (�x) = f0 + δ�x
f (2�x) = 2 f (�x) − (1 + k(�x)2) f0

f (3�x) = 2 f (2�x) − (1 + k(�x)2 f (�x)
.

.

.

f1000 = 2 f (999�x) − (1 + k(�x)2) f (998�x)

This is a system of 1,000 equations in 1,000
unknowns. Solving the system we compute the
entire solution. In this system two equations,
the first and the last, are linked to boundary
values; all other equations are transfer equa-
tions that express the dynamics (or the law) of
the system. This is a general feature of bound-
ary value problems. We will encounter it again
when discussing numerical solutions of partial
differential equations.
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Figure 4 Numerical Solution of the Equation f ′′ + f = 0 with the Runge-Kutta Method

In the above example, we chose a forward
scheme where the derivative is approximated
with the forward difference quotient. One
might use a different approximation scheme,
computing the derivative in intervals centered
around the point x. When derivatives of higher
orders are involved, the choice of the approx-
imation scheme becomes critical. Recall that
when we approximated first and second deriva-
tives using forward differences, we were re-
quired to evaluate the function at two points (i, i
+ 1) and three points (i,i + 1,i + 2) ahead respec-
tively. If purely forward schemes are employed,
computing higher-order derivatives requires
many steps ahead. This fact might affect the pre-
cision and stability of numerical computations.

We saw in the examples that the accuracy of
a finite difference scheme depends on the dis-
cretization interval. In general, a finite differ-
ence scheme works, that is, it is consistent and
stable, if the numerical solution converges uni-
formly to the exact solution when the length of
the discretization interval tends to zero. Sup-
pose that the precision of an approximation

scheme depends on the length of the discretiza-
tion interval �x. Consider the difference δ f =
f̂ (x) − f (x) between the approximate and the
exact solutions. We say that δf → 0 uniformly
in the interval [a,b] when �x→ 0 if, given any ε

arbitrarily small, it is possible to find a �x such
that |δ f | < ε, ∀x ∈ [a , b].

NONLINEAR DYNAMICS
AND CHAOS
Systems of differential equations describe dy-
namical systems that evolve starting from initial
conditions. A fundamental concept in the the-
ory of dynamical systems is that of the stability
of solutions. This topic has become of paramount
importance with the development of nonlin-
ear dynamics and with the discovery of chaotic
phenomena. We can only give a brief introduc-
tory account of this subject whose role in eco-
nomics is still the subject of debate.

Intuitively, a dynamical system is consid-
ered stable if its solutions do not change much
when the system is only slightly perturbed.
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There are different ways to perturb a system:
changing parameters in its equations, changing
the known functions of the system by a small
amount, or changing the initial conditions.

Consider an equilibrium solution of a dynam-
ical system, that is, a solution that is time in-
variant. If a stable system is perturbed when it
is in a position of equilibrium, it tends to return
to the equilibrium position or, in any case, not
to diverge indefinitely from its equilibrium po-
sition. For example, a damped pendulum—if
perturbed from a position of equilibrium—will
tend to go back to an equilibrium position. If
the pendulum is not damped it will continue to
oscillate forever.

Consider a system of n equations of first or-
der. (As noted above, systems of higher orders
can always be reduced to first-order systems
by enlarging the set of variables.) Suppose that
we can write the system explicitly in the first
derivatives as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dy1

dx
= f1(x, y1, . . . , yn)

dy2

dx
= f2(x, y1, . . . , yn)

.

.

.
dyn

dx
= fn(x, y1, . . . , yn)

If the equations are all linear, a complete the-
ory of stability has been developed. Essentially,
linear dynamical systems are stable except pos-
sibly at singular points where solutions might
diverge. In particular, a characteristic of linear
systems is that they incur only small changes in
the solution as a result of small changes in the
initial conditions.

However, during the 1970s, it was discovered
that nonlinear systems have a different behav-
ior. Suppose that a nonlinear system has at least
three degrees of freedom (that is, it has three in-
dependent nonlinear equations). The dynamics
of such a system can then become chaotic in
the sense that arbitrarily small changes in ini-
tial conditions might diverge. This sensitivity

to initial conditions is one of the signatures of
chaos. Note that while discrete systems such as
discrete maps can exhibit chaos in one dimen-
sion, continuous systems require at least three
degrees of freedom (that is, three equations).

Sensitive dependence from initial conditions
was first observed in 1960 by the meteorolo-
gist Edward Lorenz of the Massachusetts In-
stitute of Technology. Lorenz remarked that
computer simulations of weather forecasts
starting, apparently, from the same meteoro-
logical data could yield very different results.
He argued that the numerical solutions of ex-
tremely sensitive differential equations such as
those he was using produced diverging results
due to rounding-off errors made by the com-
puter system. His discovery was published in
a meteorological journal where it remained un-
noticed for many years.

Fractals
While in principle deterministic chaotic sys-
tems are unpredictable because of their sensi-
tivity to initial conditions, the statistics of their
behavior can be studied. Consider, for exam-
ple, the chaos laws that describe the evolution
of weather: While the weather is basically un-
predictable over long periods of time, long-run
simulations are used to predict the statistics of
weather.

It was discovered that probability distribu-
tions originating from chaotic systems exhibit
fat tails in the sense that very large, extreme
events have nonnegligible probabilities. (See
Brock, Hsieh, and LeBaron [1991] and Hsieh
[1991].) It was also discovered that chaotic sys-
tems exhibit complex unexpected behavior. The
motion of chaotic systems is often associated
with self-similarity and fractal shapes.

Fractals were introduced in the 1960s by
Benoit Mandelbrot, a mathematician working
at the IBM research center in Yorktown Heights,
New York. Starting from the empirical observa-
tion that cotton price time-series are similar at
different time scales, Mandelbrot developed a
powerful theory of fractal geometrical objects.
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Fractals are geometrical objects that are geomet-
rically similar to part of themselves. Stock prices
exhibit this property insofar as price time-series
look the same at different time scales.

Chaotic systems are also sensitive to changes
in their parameters. In a chaotic system, only
some regions of the parameter space exhibit
chaotic behavior. The change in behavior is ab-
rupt and, in general, it cannot be predicted ana-
lytically. In addition, chaotic behavior appears
in systems that are apparently very simple.

While the intuition that chaotic systems might
exist is not new, the systematic exploration of
chaotic systems started only in the 1970s. The
discovery of the existence of nonlinear chaotic
systems marked a conceptual crisis in the phys-
ical sciences: It challenges the very notion of the
applicability of mathematics to the description
of reality. Chaos laws are not testable on a large
scale; their applicability cannot be predicted an-
alytically. Nevertheless, the statistics of chaos
theory might still prove to be meaningful.

The economy being a complex system, the ex-
pectation was that its apparently random be-
havior could be explained as a deterministic
chaotic system of low dimensionality. Despite
the fact that tests to detect low-dimensional
chaos in the economy have produced a sub-
stantially negative response, it is easy to
make macroeconomic and financial economet-
ric models exhibit chaos. (See Brock, Dechert,
Scheinkman, and LeBaron [1996] and Brock
and Hommes [1997].) As a matter of fact, most
macroeconomic models are nonlinear. Though
chaos has not been detected in economic time-
series, most economic dynamic models are non-
linear in more than three dimensions and thus
potentially chaotic. At this stage of the research,
we might conclude that if chaos exists in eco-
nomics it is not of the low-dimensional type.

PARTIAL DIFFERENTIAL
EQUATIONS
To illustrate the notion of a partial differential
equation (PDE), let’s start with equations in two

dimensions. An n-order PDE in two dimensions
x,y is an equation of the form

F
(

x, y,
∂ f
∂x

,
∂ f
∂y

, . . . ,
∂ (i) f

∂ (k)x∂ (i−k) y

)

= 0, 0 ≤ k ≤ i, 0 ≤ i ≤ n

A solution of the previous equation will be any
function that satisfies the equation.

In the case of PDEs, the notion of initial con-
ditions must be replaced with the notion of
boundary conditions or initial plus boundary
conditions. Solutions will be defined in a mul-
tidimensional domain. To identify a solution
uniquely, the value of the solution on some
subdomain must be specified. In general, this
subdomain will coincide with the boundary (or
some portion of the boundary) of the domain.

Diffusion Equation
Different equations will require and admit dif-
ferent types of boundary and initial conditions.
The question of the existence and uniqueness
of solutions of PDEs is a delicate mathematical
problem. We can only give a brief account by
way of an example.

Let’s consider the diffusion equation. This
equation describes the propagation of the
probability density of stock prices under the
random-walk hypothesis:

∂ f
∂t

= a2 ∂2 f
∂x2

The Black-Scholes equation, which describes the
evolution of option prices, can be reduced to
the diffusion equation.

The diffusion equation describes propagat-
ing phenomena. Call f (t,x) the probability
density that prices have value x at time t. In
finance theory, the diffusion equation describes
the time-evolution of the probability density
function f (t,x) of stock prices that follow a ran-
dom walk.2 It is therefore natural to impose
initial and boundary conditions on the distri-
bution of prices.

In general, we distinguish two different prob-
lems related to the diffusion equation: the first
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boundary value problem and the Cauchy initial
value problem, named after the French math-
ematician Augustin Cauchy who first formu-
lated it. The two problems refer to the same
diffusion equation but consider different do-
mains and different initial and boundary con-
ditions. It can be demonstrated that both
problems admit a unique solution.

The first boundary value problem seeks to
find in the rectangle 0 ≤ x ≤ l, 0 ≤ t ≤ T a
continuous function f (t,x) that satisfies the dif-
fusion equation in the interior Q of the rectangle
plus the following initial condition,

f (0, x) = φ(x), 0 ≤ x ≤ l

and boundary conditions,

f (t, 0) = f1(t), f (t, l) = f2(t), 0 ≤ t ≤ T

The functions f 1, f 2 are assumed to be continu-
ous and f 1(0) = φ(0), f 2(0) = φ(l).

The Cauchy problem is related to an infinite
half plane instead of a finite rectangle. It is for-
mulated as follows. The objective is to find for
any x and for t ≥ 0 a continuous and bounded
function f (t,x) that satisfies the diffusion equa-
tion and which, for t = 0, is equal to a continuous
and bounded function f (0, x) = φ(x), ∀x.

Solution of the Diffusion Equation
The first boundary value problem of the diffu-
sion equation can be solved exactly. We illus-
trate here a widely used method based on the
separation of variables, which is applicable if
the boundary conditions on the vertical sides
vanish (that is, if f 1(t) = f 2(t) = 0). The method
involves looking for a tentative solution in the
form of a product of two functions, one that de-
pends only on t and the other that depends only
on x: f (t,x) = h(t)g(x).

If we substitute the previous tentative solu-
tion in the diffusion equation

∂ f
∂t

= a2 ∂2 f
∂x2

we obtain an equation where the left side de-
pends only on t while the right side depends

only on x:

dh(t)
dt

g(x) = a2h(t)
d2g(x)

dx2

dh(t)
dt

1
h(t)

= a2 d2g(x)

dx2

1
g(x)

This condition can be satisfied only if the two
sides are equal to a constant. The original diffu-
sion equation is therefore transformed into two
ordinary differential equations:

1
a2

dh(t)
dt

= bh(t)

d2g(x)

dx2 = bg(x)

with boundary conditions g(0) = g(l) = 0. From
the above equations and boundary conditions,
it can be seen that b can assume only the nega-
tive values,

b = −k2π2

l2 , k = 1, 2, . . .

while the functions g can only be of the form

g(x) = Bk sin
kπ

l
x

Substituting for h, we obtain

h(t) = B ′
k exp

(
−a2k2π2

l2 t
)

Therefore, we can see that there are denumer-
ably infinite solutions of the diffusion equation
of the form

fx(t, x) = Ck exp
(

−a2k2π2

l2 t
)

sin
kπ

l
x

All these solutions satisfy the boundary condi-
tions f (t,0) = f (t,l) = 0. By linearity, we know
that the infinite sum

f (t, x) =
∞∑

k=1

fk(t, x)

=
∞∑

k=1

Ck exp
(

−a2k1π2

l2 t
)

sin
kπ

l
x

will satisfy the diffusion equation. Clearly f (t,x)
satisfies the boundary conditions f (t,0) = f (t,l)
= 0. In order to satisfy the initial condition,
given that φ(x) is bounded and continuous and
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that φ(0) = φ(l) = 0, it can be demonstrated
that the coefficients Cs can be uniquely deter-
mined through the following integrals, which
are called the Fourier integrals:

Ck = 2
L

L∫

0

φ(ξ ) sin
(

πk
L

ξ

)
dξ

The previous method applies to the first
boundary value problem but cannot be applied
to the Cauchy problem, which admits only an
initial condition. It can be demonstrated that
the solution of the Cauchy problem can be ex-
pressed in terms of a convolution with a Green’s
function. In particular, it can be demonstrated
that the solution of the Cauchy problem can be
written in closed form as follows:

f (t, x) = 1
2
√

π

∞∫

−∞

φ(ξ )√
t

exp
{
− (x − ξ )2

4t

}
dξ

for t > 0 and f (0,x) = φ(x). It can be demon-
strated that the Black-Scholes equation, which

Figure 5 Solution of the Cauchy Problem by the Finite Difference Method

is an equation of the form

∂ f
∂t

+ 1
2
σ 2x2 ∂2 f

∂x2 + r x
∂ f
∂x

− r f = 0

can be reduced through transformation of vari-
ables to the standard diffusion equation to be
solved with the Green’s function approach.

Numerical Solution of PDEs
There are different methods for the numerical
solution of PDEs. We illustrate the finite differ-
ence methods, which are based on approximat-
ing derivatives with finite differences. Other
discretization schemes such as finite elements
and spectral methods are possible but, being
more complex, they go beyond the scope of this
book.

Finite difference methods result in a set of re-
cursive equations when applied to initial con-
ditions. When finite difference methods are
applied to boundary problems, they require
the solution of systems of simultaneous linear
equations. PDEs might exhibit boundary con-
ditions, initial conditions, or a mix of the two.
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Figure 6 Solution of the First Boundary Problem by the Finite Difference Method

The Cauchy problem of the diffusion equation
is an example of initial conditions. The simplest
discretization scheme for the diffusion equation
replaces derivatives with their difference quo-
tients. As for ordinary differential equations,
the discretization scheme can be written as
follows:

∂ f
∂t

≈ f (t + �t, x) − f (t, x)
�t

∂2 f
∂x2 ≈ f (t, x + �x) − 2 f (t, x) + f (t, x − �x)

(�x)2

In the case of the Cauchy problem, this ap-
proximation scheme defines the forward re-
cursive algorithm. It can be proved that the
algorithm is stable only if the Courant-
Friedrichs-Lewy (CFL) conditions

�t <
(�x)2

2a2

are satisfied.

Different approximation schemes can be
used. In particular, the forward approximation
to the derivative used above could be replaced
by centered approximations. Figure 5 illustrates
the solution of a Cauchy problem for initial con-
ditions that vanish outside of a finite interval.
The simulation shows that solutions diffuse in
the entire half space.

Applying the same discretization to a first
boundary problem would require the solution
of a system of linear equations at every step.
Figure 6 illustrates this case.

KEY POINTS
� Basically, differential equations are equations

that express a relationship between a function
and one or more derivatives (or differentials)
of that function.

� The two classifications of differential equa-
tions are ordinary differential equations and
partial differential equations. The classifi-
cation depends on the type of derivatives
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included in the differential equation: ordinary
differential equation when there is only an
ordinary derivative and partial differential
equation where there are partial derivatives.

� Typically in differential equations, one of the
independent variables is time.

� The term stochastic differential equation
refers to a differential equation in which a
derivative of one or more of the independent
variables is a random variable or a stochastic
process.

� Differential equations are conditions that
must be satisfied by their solutions. Differ-
ential equations generally admit infinite so-
lutions. Initial or boundary conditions are
needed to identify solutions uniquely.

� Differential equations are the key mathe-
matical tools for the development of mod-
ern science; in finance they are used in
arbitrage pricing, to define stochastic pro-
cesses, and to compute the time evolution of
averages.

� Differential equations can be solved in closed
form or with numerical methods. Finite
difference methods approximate derivatives
with difference quotients. Initial conditions
yield recursive algorithms.

� Boundary conditions require the solution of
linear equations.

NOTES
1. The condition of existence and continuity of

derivatives is stronger than necessary. The
Lipschitz condition, which requires that the
incremental ratio be uniformly bounded in a
given interval, would suffice.

2. In physics, the diffusion equation describes
phenomena such as the diffusion of particles
suspended in some fluid. In this case, the
diffusion equation describes the density of
particles at a given moment at a given point.
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Abstract: Partial differential equations are useful in finance in various contexts, in particular for
the pricing of European and American options, for stochastic portfolio optimization, and for cal-
ibration. They can be used for simple options as well as for more exotic ones, such as Asian or
lookback options. They are particularly useful for nonlinear models. They allow for the numerical
computations of several spot prices at the same time. Numerical aspects, discretization methods,
algorithms, and analysis of the numerical schemes have been under constant development during
the last three decades. Finite difference methods are the simplest and most basic approaches. Finite
element methods allow the use of nonuniform meshes and refinement procedures can then be
applied and improve accuracy near a region of interest. Deterministic approaches based on partial
differential equation formulations can also be used for calibration of various volatility models (such
as local, stochastic, or Levy-driven volatility models) and by making use of Dupire’s formula. Cur-
rent research directions include the development of discretization methods for high-dimensional
problems.

Numerical methods based on partial differen-
tial equations (PDEs) in finance are not very
popular. Indeed, the models are usually de-
rived from probabilistic arguments and Monte
Carlo methods are therefore much more nat-
ural. Stochastic methods are also often simpler
to implement than the algorithms used for solv-
ing the related PDEs. However, when it is pos-
sible to efficiently discretize the PDE (which

is not always the case, the typical counterex-
ample being high-dimensional problems), de-
terministic methods are usually more efficient
than stochastic ones. Moreover, the solution
to the partial differential equation gives more
information. In the context of option pricing,
one obtains, for example, the price of the op-
tion for all values of the maturity and for all
spot prices, while the probabilistic formulation

659
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typically gives the value of the option for a fixed
maturity and a fixed spot price. In particular,
this is useful for computing derivatives of the
option’s price with respect to some parameters
of the model (the so-called “Greeks”).

The PDEs obtained in finance have sev-
eral characteristics. First, they are posed on a
bounded domain in time (0, T), with typically
a singular final condition at the maturity t = T ,
and very often in an unbounded domain in
the spot variable, which requires to impose
suitable “boundary conditions” at infinity to
get well-posed problems and to use appropri-
ate numerical approximations (truncation to a
bounded domain and artificial boundary condi-
tions). These PDEs are usually of parabolic type,
but often with degenerate diffusions. Because
of operational constraints, the numerical meth-
ods used for the discretization of the PDE must
be sufficiently fast and accurate to be useful in
practice. These peculiarities of PDEs in finance
explain the need for up-to-date and sometimes
involved numerical methods.

In this entry we focus on numerical issues
and try to review the main numerical meth-
ods used for solving PDEs in finance. This
presentation heavily relies on Achdou and
Pironneau (2005), as well as Lamberton and
Lapeyre (1997), Karatzas and Shreve (1991),
and Wilmott, Dewynne, and Howison (1993).

PARTIAL DIFFERENTIAL
EQUATIONS FOR OPTION
PRICING
In this section, we present the main argu-
ments to derive a PDE for the price of various
European and American options.

A Primer: The Black and Scholes
Model for European Options
The aim of this section is to recall the basic tools
needed to derive a PDE in the context of op-
tion pricing, without providing all the detailed
assumptions required on the data to perform

this derivation. Karatzas and Shreve (1991) and
Lamberton and Lapeyre (1997), for example,
provide more details on the mathematical as-
pects. We adopt the standard Black and Scholes
model (Black and Scholes, 1973; Merton, 1973)
with a risky asset whose price at time t is St and
a risk-free asset whose price at time t is S0

t , such
that:

dSt = St(μ dt + σdBt), dS0
t = rS0

t dt

The process Bt is a standard Brownian motion
defined on a probability space (�,F ,Ft, Q),
and μ (the mean rate of return), r (the interest
rate), and σ > 0 (the volatility) are three con-
stants. However, the following can be gener-
alized to the case where μ, r, and σ > 0 are
functions of t and S (under suitable smoothness
assumptions).

We introduce the stochastic process Wt = Bt +
μ−r
σ

t. Under the so-called risk-neutral probabil-
ity P defined by its Radon-Nikodym derivative
with respect to Q by

dP

dQ

∣∣∣∣∣∣
Ft

= exp

(∫ t

0

r − μ

σ
dBs − 1

2

∫ t

0

(
r − μ

σ

)2

ds

)

Wt is a Brownian motion and St/S0
t is a mar-

tingale. This is one of the fundamental prop-
erties of the stochastic process needed in the
following. The process St satisfies the following
stochastic differential equation (SDE) under P:

dSt = St(r dt + σdWt) (1)

Let us now consider a portfolio with Ht risky
assets and H0

t no-risk assets. Its value at time t
is:

Pt = Ht St + H0
t S0

t (2)

We suppose that this portfolio is self-financing
(any manipulation on this portfolio, i.e., any
change of the values of Ht or H0

t , is done with-
out any inflows or outflows of money), which
translates into

dPt = Ht dSt + H0
t dS0

t (3)

The value of a self-financing portfolio changes
if and only if the price of the risky asset changes.
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Using (3), it is possible to show that Pt/S0
t is also

a martingale.
We consider the following problem: For a

given function φ (the payoff function) and
a given time T > 0 (the maturity), is it pos-
sible to build a self-financing portfolio such
that PT = φ(ST )? Classical examples of function
φ are φ(S) = (S − K )+ (vanilla call) or φ(S) =
(S − K )− (vanilla put), where, for any real x,
x+ = max(x, 0) and x− = max(−x, 0). The an-
swer is positive (this is typically based on a
martingale representation theorem, the fact that
Pt/S0

t is a martingale, and the fact that the payoff
φ(ST ) is FT -measurable), and it is then possible
to show that such a portfolio has the following
value at time t:

Pt = E

(
exp

(
−

∫ T

t
r ds

)
φ(ST )

∣∣∣Ft

)
(4)

where here and in the following, E denotes
an expectation with respect to the risk-neutral
probability P. By the so-called arbitrage-free
principle, Pt is actually the “fair price” at time t
of the option, which enables its owner to get the
payoff φ(ST ) at time T. In the particular context
of vanilla options, the solution is analytically
known, at least if r and σ are constant: This is
the celebrated Black and Scholes formula. How-
ever, in the case when r and σ are functions of
t and S, (4) cannot be estimated without a nu-
merical method. We are interested in determin-
istic numerical methods, based on a PDE related
to (4).

The second fundamental property of the
stochastic process St required to obtain a PDE
formulation of this problem is a Markov prop-
erty. Roughly speaking, it states that the expec-
tation of any function of (St)0≤t≤T conditionally
to Ft is actually a function of the price St of the
risky asset at time t. In our context, this property
shows that Pt writes

Pt = p(t, St) (5)

where p is a function of t ∈ [0, T] and S ∈ [0,∞),
called the pricing function of the option. Notice
that even if (5) only involves the value of p at

point (t, St), the pricing function p is a deter-
ministic function defined for all values of t ≥ 0
and S ≥ 0. By the Markov property of St, we
also have the following representation formula
for p:

p(t, x) = E

(
exp

(
−

∫ T

t
r ds

)
φ(St,x

T )
)

(6)

where (St,x
θ )t≤θ≤T denotes the process solution

to (1) starting from x at time t
{

dSt,x
θ = St,x

θ (r dθ + σdWθ ), θ ≥ t,

St,x
t = x

(7)

By using Ito’s calculus and the fact that Pt/S0
t

is a martingale, we then obtain that p should
satisfy the following backward-in-time PDE:

⎧
⎪⎨

⎪⎩

∂p
∂t

+ rS
∂p
∂S

+ σ 2S2

2
∂2 p
∂S2 − rp = 0,

p(T, S) = φ(S)
(8)

Conversely, it is possible (using again a mar-
tingale representation theorem) to show that if
p satisfies (8), then p(t, St) is the value of a self-
financing portfolio with value φ(ST ) at time T.

Moreover, one can check that
∂p
∂S

(t, St) = Ht,

which shows that obtaining an accurate ap-

proximation of
∂p
∂S

is important in order to es-

timate the quantity of risky asset Ht needed
at time t to build the portfolio with value Pt

(this is the hedging strategy). Collectively, equa-
tions (4)–(5) and (8) provide an example of so-
called Feynman-Kac formulas, which are used
in many other contexts (quantum chemistry or
transport equations, for example) either to give
a probabilistic interpretation to a PDE, or to re-
cast the computation of an expectation into a
PDE problem.

For problem (8) to be well posed (i.e., for
one and only one solution to exist), one needs
to supply the system with “boundary condi-
tions” when S = 0 or S → ∞. More precisely,
one needs to make precise in which functional
space the function p is looked for. This will be
explained in the next section.
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From the PDE (8) and the so-called maxi-
mum principle, it is possible to derive many
qualitative properties and a priori bounds on
the price p (like the call-put parity, for exam-
ple; see Achdou and Pironneau, 2005). Roughly
speaking, the maximum principle states that
if the data (initial condition, boundary condi-
tions, right-hand side) for the PDE (8) are posi-
tive, then the solution is positive. This property
is definitely necessary to hold for a price. It is
also an important property to check on the nu-
merical schemes (which is then called a discrete
maximum principle as discussed below).

It is also possible to obtain the PDE with-
out introducing the risk-neutral probability (see
Wilmott, Dewynne, and Howison, 1993) by con-
sidering a portfolio containing some options
and some risky assets and by using an arbitrage-
free argument.

It is important to recall that the Black and
Scholes model for the evolution of the risky
asset (1) badly compares with experimental
data. We discuss later in this entry some pos-
sible refinements that have been introduced in
order to better fit the observations (see the dis-
cussion on calibration below). However, this
model remains very important in practice be-
cause it is used as a prototypical description of
the evolution of the asset. Moreover, for a given
observed price of a derivative, there exists a
constant volatility σ (called the implied volatil-
ity; see the section on calibration below) for
which the Black-Scholes price is the observed
price. The implied volatility is a major quantity
used in practice to compare derivatives.

Other Options
The argument presented for the Black-Scholes
model is prototypical. In particular, the deriva-
tion of a PDE satisfied by the pricing function of
an option always relies on the two fundamental
properties stressed above: the martingale and
the Markov properties of a suitable stochastic
process. In this section, we present PDEs for the
prices of various options without providing all
the details of the derivation.

Basket Options
In many cases, the payoff of the option depends
on the values of more than one asset, which typ-
ically do not evolve independently. Let us, for
example, consider the case of two assets, which
evolve following the following SDE under the
neutral risk probability

⎧
⎨

⎩
dS1

t = S1
t

(
r dt + σ1dW1

t

)

dS2
t = S2

t

(
r dt + σ2dW2

t

)

where W1
t and W2

t are possibly correlated stan-
dard Brownian motions. We call ρ the corre-
lation of W1

t and W2
t : d〈W1, W2〉t = ρdt. We

suppose that the maturity is T > 0 and the
payoff is φ(S1

T , S2
T ), where φ is a given function.

It is then possible to show that the price of the
option at time t is p(t, S1

t , S2
t ) where p satisfies

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂p
∂t

+ rS1
∂p
∂S1

+ rS2
∂p
∂S2

+ σ 2
1 S2

1

2
∂2 p
∂S2

1

+ σ 2
2 S2

2

2
∂2 p
∂S2

2

+ ρσ1σ2S1S2
∂2 p

∂S1∂S2
− rp = 0,

p(T, S1, S2) = φ(S1, S2)
(9)

Here again, r, σ1, and σ2 may be functions of t
and (S1, S2). It is possible to solve such PDEs by
standard numerical methods up to dimension
3 or 4. As discussed later, to derive appropri-
ate discretization for higher dimensions is not
an easy task and is still the subject of current
research.

Barrier Options
Again, let us consider an option on a single as-
set. For some options, the payoff becomes 0 if
there exists a time t ∈ [0, T] such that St goes
below a or above b, where a and b are two given
values, 0 < a < b (the case a = 0 or b = ∞ can
be treated similarly). Mathematically, the pay-
off is 1∀t∈[0,T], St∈[a ,b]φ(ST ) where, for any event
A ⊂ �, 1A denotes the characteristic function
of A, and St satisfies (1). In this case, the rele-
vant stochastic process for deriving the PDE is
St∧τ , where τ = inf{t ∈ [0, T], St ≥ b or St ≤ a}
is a stopping time, and, for any real x and y,
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x ∧ y = inf(x, y). It can be checked that St∧τ is a
Markov process, and that St∧τ /S0

t∧τ is a martin-
gale. It is then possible to show that the price of
the option at time t is p(t ∧ τ, St∧τ ) where p is
defined for t ∈ [0, T] and S ∈ [a , b] and satisfies:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂p
∂t

+ rS
∂p
∂S

+ σ 2S2

2
∂2 p
∂S2 − rp = 0,

p(T, S) = φ(S),
p(t, a ) = p(t, b) = 0

(10)

Here again, r and σ may be functions of t and
S. Moreover, the generalization to basket op-
tions is straightforward, as explained above.
In this case, it is possible to consider more
general barriers, namely a payoff of the form
1∀t∈[0,T], (S1

t ,S2
t ,...,Sd

t )∈Dφ(ST ), where d denotes the
number of underlying assets and D is any sim-
ple connected domain of R

d . The appropri-
ate discretization for general domains D is the
finite element method that will be discussed
later on.

Options on the Maximum
For some options (the so-called lookback op-
tions), the payoff involves the maximum of the
risky asset. For example, it writes φ(ST , MT )
where Mt = max0≤r≤t Sr and St satisfies (1).
One can check that (St, Mt) is a Markov pro-
cess. It is then possible to show that the price
of the option at time t is p(t, St, Mt) where p
is defined for t ∈ [0, T] and (S, M) ∈ {(S, M) ∈
R

2, 0 ≤ S ≤ M} and satisfies:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂p
∂t

+ σ 2

2
S2 ∂2 p

∂S2 + rS
∂p
∂S

− rp = 0,

p(T, S, M) = φ(S, M),
∂p
∂ M

(t, S, S) = 0

(11)

If the payoff is of the form φ(S, M) = Mφ̃(S/M),
it is possible to reduce the problem to a two-
dimensional one (including the time variable).
Indeed, one can check by straightforward com-
putations that p(t, S, M) = Mw(t, S/M) where
w is a function of t ∈ [0, T] and ξ ∈ [0, 1], which

satisfies:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂w

∂t
+ σ 2

2
ξ 2 ∂2w

∂ξ 2 + rξ
∂w

∂ξ
− rw = 0,

w(T, ξ ) = φ̃(ξ ),
∂w

∂ξ
(t, 1) = w(t, 1)

(12)

Notice that this reduction is not gener-
ally possible for (t, S, M)-dependent interest
rate and volatility (except for very peculiar
dependencies).

Options on the Average
Some options (the so-called Asian options) in-
volve the average of the risky asset. More pre-
cisely, the payoff writes φ(ST , AT ) where At =
1
t

∫ t
0 Sr dr and St satisfies (1). One can check that

(St, At) is a Markov process. Using this property,
it is possible to show that the price of the op-
tion at time t is p(t, St, At) where p is defined for
t ∈ [0, T] and (S, A) ∈ [0,∞)2, and p satisfies:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂p
∂t

+ σ 2S2

2
∂2 p
∂S2 + rS

∂p
∂S

+ 1
t

(S − A)
∂p
∂ A

− rV = 0,

p(T, S, A) = φ(S, A)

(13)

In some cases (see Rogers and Shi, 1995), it
is possible to reduce this problem to a one-
dimensional PDE. More precisely, for fixed
strike call (φ(S, A) = (A− K )+) or fixed strike
put (φ(S, A) = (K − A)+), we have p(t, S, A) =
Sf (t, K−t A/T

S ) where f satisfies

⎧
⎪⎨

⎪⎩

∂ f
∂t

+ σ 2ξ 2

2
∂2 f
∂ξ 2 −

(
1
T

+ rξ

)
∂ f
∂ξ

= 0,

f (T, ξ ) = φ̃(ξ )
(14)

and φ̃(ξ ) = ξ− (resp. φ̃(ξ ) = ξ+). This reduc-
tion of (13) to (14) is also possible for float-
ing strike call (φ(S, A) = (S − A)+) (resp. for
floating strike put (φ(S, A) = (A− S)+)) by set-
ting p(t, S, A) = Sf (t,− t A

T S ) and φ̃(ξ ) = (1 + ξ )+
(resp. φ̃(ξ ) = (1 + ξ )−). However, this reduction
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is generally not possible for general payoff
function or (t, S, A)-dependent interest rate and
volatility (except for very peculiar dependen-
cies).

Bermudean Options
As a transition between European and Amer-
ican options, we would like to mention that
it is very easy to price Bermudean options
with the PDE approach. For such options, the
contract can be exercised only at certain days
between the present time and the maturity.
Mathematically, for an option on a single as-
set (the spot price is called S) and if φ de-
notes the payoff, the pricing function satisfies
p(t+

i , S) = max(p(t−
i , S), φ(S)), at each exercis-

ing time ti, and (8) between the exercising times;
see Duffie (1992, p. 211).

The Case of American Options
We have so far presented so-called European
options, that is, some options that enable their
owners to get φ(ST ) at a fixed time T. On the
other hand, American options can be exercised at
any time up to the maturity. Hence the price of
an American option of payoff φ and maturity
T will be the maximum of all possible expecta-
tions such as (6) for stopping times τ between t
and T, that is, for t ∈ [0, T] and x ≥ 0,

p(t, x) = sup
τ∈T[t,T]

E

(
e− ∫ τ

t r dsφ(St,x
τ )

)
(15)

where T[t,T] denotes the set of stopping times τ

of the filtration Ft, with values in [t, T].

The PDE for American Options
We now present the main arguments to derive
a PDE on p defined by (15) (or more precisely a
system of partial differential inequalities).

Notice first that taking τ = t in (15) yields the
inequality

p(t, x) ≥ φ(x) (16)

Moreover, we clearly have from (15) p(T, x) =
φ(x).

Let t and δt be such that 0 ≤ t ≤ t + δt ≤ T .
From (15) we have:

e− ∫ t+δt
0 r ds p

(
t + δt, St,x

t+δt

)

= sup
τ∈T[t+δt,T]

E

(
e− ∫ τ

0 r dsφ
(

S
t+δt,St,x

t+δt
τ

))
,

≤ sup
τ∈T[t,T]

E

(
e− ∫ τ

0 r dsφ
(
St,x

τ

))
,

≤ e− ∫ t
0 r ds p (t, x)

where we have used the fact that: S
t+δt,St,x

t+δt
τ =

St,x
τ . By Ito’s calculus (taking the limit δt → 0),

we thus obtain

−∂p
∂t

+ Ap ≥ 0 (17)

where we have introduced the linear PDE
operator

Ap = −rS
∂p
∂S

− σ 2S2

2
∂2 p
∂S2 + rp (18)

Combined with (16), we then obtain

min
(

−∂p
∂t

+ Ap, p − φ

)
≥ 0 (19)

Our aim is now to show that the inequality
in (19) is actually an equality. This is done in
several steps, and requires us to identify an op-
timal stopping time τ ∗ for which the supremum
in (15) is obtained. For a fixed (t, x), let us intro-
duce the stopping time τ ∗ ∈ T[t,T] defined by

τ ∗ = inf
{
θ ≥ t, p

(
θ, St,x

θ

) = φ
(
St,x

θ

)}
, a.s.

(20)
(notice that τ ∗ ≤ T since p(T, x) = φ(x)). It can
be shown (see Appendix) that

p(t, x) = E

(
e− ∫ τ∗

t r dsφ
(
St,x

τ ∗
))

= E

(
e− ∫ τ∗

t r ds p(τ ∗, St,x
τ ∗ )

)
(21)

Using a decreasing property (65) proved in
the Appendix, one then obtains that for any
δt > 0,

p(t, x) = E

(
e− ∫ τ∗

δt
t r ds p

(
τ ∗
δt, St,x

τ ∗
δt

))
,

where τ ∗
δt = (t + δt) ∧ τ ∗ (22)
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This can be seen as a dynamic programming
principle (or Bellman’s principle). For a Euro-
pean option we would have more simply

p(t, x) = E

(
e− ∫ t+δt

t r ds p
(
t + δt, St,x

t+δt

))

Now if we suppose that p(t, x) > φ(x), then
for any δt > 0 we have P(τ ∗

δt > t) = 1. Consid-
ering Ito’s formula in (22), and by (17), we ob-
tain (− ∂p

∂t + Ap)(θ, St,x
θ ) = 0 for t ≤ θ ≤ τ ∗

δt, thus
leading to (− ∂p

∂t + Ap)(t, x) = 0. This shows that
the inequality in (19) is actually an equality.

Hence the PDE for the American option is
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
(

−∂p
∂t

+ Ap, p − φ

)
= 0,

t ∈ [0, T], x ≥ 0,

p(T, x) = φ(x), x ≥ 0

(23)

whereA is defined by (18). The major difference
between the PDE (23) for American options and
the PDE (8) for European options is that (23)
is a nonlinear equation. This makes the theory
of existence and uniqueness as well as the nu-
merical approximation more difficult than for
European options.

In the presentation above, we have used Ito’s
formula, which requires that p is C1 in time and
C2 in the spot variable. This is not true in gen-
eral. It is however possible, following the same
lines, to prove that p is a weak solution to (23) in
the viscosity sense. For a historical derivation
of this PDE, see Bensoussan and Lions (1978)
or El Karoui (1981) where a variational formu-
lation of (23) is derived (see (52) below). We
also refer to Oksendal and Rekvam (1998) for
an infinite horizon-related problem, Crandall,
Ishii, and Lions (1992) for general results, Pham
(1998) for an approach of optimal stopping in-
cluding jump diffusion processes, and to Barles
(1994) for the case of a discontinuous payoff φ.

PRICING EUROPEAN
OPTIONS WITH PDEs
The aim of this section is to present two classes
of methods for solving partial differential equa-

tions with some applications to the PDEs de-
rived previously. We first introduce the finite dif-
ference method, which is based on approximation
of the differential operators by Taylor expan-
sions, and then the finite element methods, which
belong to the wider class of Galerkin methods
and are based on a variational formulation of
the PDE. We try to stress the most important
aspects of the numerical methods and refer, for
example, to Achdou and Pironneau (2005 and
2009) for a more comprehensive presentation.

The Finite Difference Method for
European Options
We first present the simplest approach to dis-
cretize a PDE: the finite difference method.

Basic Schemes
Let us introduce the finite difference method
on the simple PDE (8). Let us first concentrate
on the discretization of (8) with respect to the
variable S. The principle is to divide the interval
[0, Smax] into I intervals of length δS = Smax/I
(where Smax has to be chosen large enough, see
below), and to approximate the derivatives by
finite differences. A possible semidiscretization
of (8) is: for i ∈ {0, 1, . . . , I },

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ Pi

∂t
+ rSi

Pi+1 − Pi−1

2δS

+ σ 2S2
i

2
Pi+1 − 2Pi + Pi−1

δS2 − rPi = 0,

Pi (T) = φ(Si )
(24)

where Si = iδS denotes the i-th discretization
point, and Pi (t) is intended to be an approxima-
tion of p(t, Si ). Now, (24) is a system of cou-
pled ordinary differential equations (ODEs).
The generalization to the case of a time and
spot dependent r or σ is straightforward.

Notice that for S = 0, P0 can be solved
independently (since S0 = 0): P0(t) = φ(0)
exp(− ∫ T

t r ds). In order to obtain a solution
of the whole system of ODEs, one needs to
define an appropriate boundary condition at



666 Finite Mathematics for Financial Modeling

S = Smax. Indeed, (24) taken at i = I involves
PI+1 which is a priori not defined. There are ba-
sically two methods to deal with this issue. The
first one consists of using some a priori knowl-
edge on the values of p(t,S) when S is large and
making some approximations of p(t, Smax). In
this case, the value of PI is given as a data
(this is a so-called Dirichlet boundary condi-
tion), and the unknowns are (Pi )0≤i≤I−1. For ex-
ample, in the case of a put (φ(S) = (S − K )−)
(resp. a call (φ(S) = (S − K )+)), it is known
that limS→∞ p(t, S) = 0 (resp., in the limit
S → ∞, p(t, S) ∼ S − K exp(− ∫ T

t r ds)), so that
one can set PI (t) = 0 (resp. PI (t) = Smax − K
exp(− ∫ T

t r ds)). The error introduced by these
artificial boundary conditions can be estimated.
Another method is based on some knowledge
on the asymptotic behavior of the derivatives of
p. For example, in the case of the put, one can use
the so-called homogeneous Neumann bound-
ary condition, which writes ∂p/∂S(t, Smax) = 0
at the continuous level and PI+1(t)−PI (t)

δS = 0 at
the discrete level. In this case, the unknowns
are (Pi )0≤i≤I . For both methods, Smax should be
chosen sufficiently large. In practice, the quality
of the method may be assessed by measuring
how sensitive the result is to the value of Smax.

Let us now consider the time discretization.
Here again, the idea is to divide the time interval
[0, T] into N intervals of length δt = T/N and to
replace the time derivative by a finite difference.
Three numerical methods are classically used:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Pn+1
i − Pn

i

δt
+ rSi

Pn+1
i+1 − Pn+1

i−1

2δS

+ σ 2S2
i

2
Pn+1

i+1 − 2Pn+1
i + Pn+1

i−1

δS2 − rPn+1
i = 0,

P N
i = φ(Si )

(25)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Pn+1
i − Pn

i

δt
+ rSi

Pn
i+1 − Pn

i−1

2δS

+ σ 2S2
i

2
Pn

i+1 − 2Pn
i + Pn

i−1

δS2 − rPn
i = 0,

P N
i = φ(Si )

(26)

or
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pn+1
i − Pn

i

δt
+ 1

2

(
rSi

Pn+1
i+1 − Pn+1

i−1

2δS

+ σ 2S2
i

2
Pn+1

i+1 − 2Pn+1
i + Pn+1

i−1

δS2 − rPn+1
i

+ rSi
Pn

i+1 − Pn
i−1

2δS
+ σ 2S2

i

2
Pn

i+1 − 2Pn
i + Pn

i−1

δS2

− rPn
i

)
= 0,

P N
i = φ(Si )

(27)
where Pn

i is intended to be an approximation
of p(tn, Si ), with tn = nδt. Notice that using the
discretization scheme (25) (the so-called explicit
Euler scheme), the values of (Pn

i )0≤i≤I are ex-
plicitly obtained from the values of (Pn+1

i )0≤i≤I .
On the contrary, in the two other schemes (26)
(implicit Euler scheme) or (27) (Crank-Nicolson
scheme), the values of (Pn

i )0≤i≤I are obtained
from the values of (Pn+1

i )0≤i≤I through the res-
olution of a linear system, which is more de-
manding from the computational viewpoint.
Various numerical methods can be used for
solving this linear system; here, we cannot de-
scribe them in detail. Let us simply mention
that basically, there exist two classes of meth-
ods: the direct methods, which are based on
Gaussian elimination, and the iterative meth-
ods, which consist of computing the solution
as the limit of a sequence of approximations
and which only require matrix-vector multipli-
cations. The method of choice depends on the
characteristics of the problem.

Notions of Stability and Consistency
In order to analyze the convergence of the three
discretization schemes (25), (26), and (27), and
to understand the differences between these
schemes, we need to introduce two important
notions. The first notion is the consistency. A
numerical method is said to be consistent if,
when the exact solution is plugged into the nu-
merical scheme, the error tends to zero when
the discretization parameters tend to zero. In
our context, it consists of replacing Pn

i in (25),
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(26), or (27) by p(tn, Si ), where p satisfies (8),
and to check that the remaining terms tend to
zero when δt and δS tend to zero. By using
Taylor expansions, one can check that for (25)
and (26) (resp. for (27)), the remaining terms
are bounded from above by C(δt + δS2) (resp.
by C(δt2 + δS2)), where C denotes a constant,
which depends on some norms of the deriva-
tives of p. Therefore (25) and (26) (resp. (27))
are consistent discretization schemes of order 2
in the spot variable, and of order 1 (resp. 2) in
time. The second important notion is the sta-
bility. A numerical method is said to be sta-
ble if the norm of the solution to the numerical
scheme is bounded from above by a constant
(independent of the discretization parameters)
multiplied by the norm of the data (initial con-
dition, boundary conditions, right-hand side).
This property is clearly satisfied if the numerical
method is convergent, that is, if the numerical
approximation converges to the solution of the
PDE when the discretization parameters tend
to zero. A general result states that, conversely,
a consistent and stable discretization scheme
is indeed convergent. The estimate of conver-
gence is given by the estimate of consistency
error. For example, if p is smooth enough, the er-
ror for the EI scheme is bounded from above by
C(δt + δS2). Notice that the constant C in these
estimates depends on the solution p. Higher or-
der schemes will lead to better error estimates
as soon as the solution of the continuous prob-
lem is smooth enough: The higher the order, the
more regular p must be in order to take full ad-
vantage of the scheme. For example, for some
parameters, it may happen that the results ob-
tained with the CN scheme around t = T are
not better than those obtained with an order
one scheme (IE or EE) since the solution is not
sufficiently regular in time around t = T .

To give a precise meaning to all these results
would require us to specify the norms used
to measure the errors and to prove the stabil-
ity. Let us simply mention that two norms are
used in practice: The stability in L∞-norm (the
supremum of the absolute values of the com-
ponents) is related to a discrete maximum prin-

ciple (see below); and the stability in L2-norm
(the Euclidean norm of the vector) is related to
an energy estimate on the variational formu-
lation. We refer, for example, to Achdou and
Pironneau (2005) for more details.

The discrete maximum principle is the coun-
terpart at the discrete level of the maximum
principle at the continuous level mentioned
above. It states that if the data for the numerical
schemes are positive, then the solution is posi-
tive. Such schemes are by construction stable in
L∞-norm. There exist deterministic numerical
methods based on a probabilistic representation
of the stock evolution on a binomial or a trino-
mial tree. Such methods can be interpreted as
explicit finite difference methods to solve the
PDE (8) and naturally satisfy a discrete maxi-
mum principle.

Convergence Analysis
Let us now discuss the properties of the three
discretization schemes. We already mentioned
that they are all consistent. On the other hand,
it can be shown that the explicit scheme (25)
is stable under an additional assumption (a so-
called CFL condition; see Courant, Friedrichs,
and Lewy, 1967) of the form δt ≤ CδS2, where
C denotes a positive constant. The other two
schemes (26) and (27) are unconditionally sta-
ble (in L2-norm). In conclusion, with the ex-
plicit scheme, the values of (Pn

i )0≤i≤I can be very
rapidly obtained from the values of (Pn+1

i )0≤i≤I ,
but the time step must be sufficiently small with
respect to the spot step to guarantee stability
and hence convergence. On the other hand, the
implicit schemes (26) and (27) require the res-
olution of a linear system at each time-step,
but converge without any restriction on the
time-step. This situation is very general for the
parabolic PDEs obtained in finance. In terms
of computational costs, the balance is gener-
ally in favor of the implicit schemes, since the
CFL condition appears to be very stringent in
practice. Concerning the stability in L∞-norm,
let us just mention that the implicit schemes
above do not satisfy the discrete maximum



668 Finite Mathematics for Financial Modeling

Table 1 Error on the Value of a Call in Function of the
Number of Intervals I in the Variable S, for the Implicit
Euler (IE) Scheme

N = 1000 I = 150 I = 300 I = 600 I = 1200

IE 0.165 0.0356 0.00103 0.000452

principle and are not L∞-stable as such. These
properties are, however, satisfied after a small
modification of the discretization of the advec-
tion term rS

∂p
∂S

(this is a so-called upwinding

technique), which amounts to adding a dif-
fusion term of order δS, which implies that
this modified scheme becomes only of order
1 in the spot variable. Thus, the price to pay
to get L∞-stability is a loss of one order of
convergence.

In Tables 1 and 2, we illustrate this analysis by
computing the error on the price of a call with
r = 0.1, σ = 0.01, K = 100, T = 1, S0 = 100, and
Smax = 300 for the three discretization schemes
(25), (26), and (27), and various values of the
numerical parameters I and N. The reference
value (P = 9.51625) is obtained by the analytic
Black and Scholes formula. In particular, one
can check that the rates of convergence with
respect to δt and δS are indeed those predicted
by the analysis.

Before presenting an extension of this dis-
cretization method to Asian options, we men-
tion the interest of a classical change of variable
for the spot variable. It is indeed well known
that by a change of variable x = ln S, it is pos-
sible to get rid of the dependency in S of the
advection and diffusion terms in (8). It is not
better to discretize the PDE after this change of

variable, since it corresponds to taking a grid
refined near S = 0, which is useless in this case.
As we will see below, what actually matters is
to refine the grid around the singularity of p
(i.e., around S = K ). A finite element approach
is better suited in order to implement these
refinements.

Application to Asian Options
We now present a less easy implementation
of a finite difference method for pricing Asian
options (see Dubois and Lelièvre, 2005). More
precisely, we focus on computing numerical so-
lutions to (14) for a fixed strike call:

φ̃(ξ ) = ξ− (28)

We have seen in the previous section that a
simple finite difference scheme leads to very
satisfactory results when computing the solu-
tion of the classical Black-Scholes equation (8).
On the other hand, when one uses a simple fi-
nite difference scheme on (14), very bad results
are obtained, especially when the volatility σ is
small (see Table 1 in Dubois and Lelièvre, 2005).
These bad results are due to the fact that when
ξ is close to zero, the advection term ( 1

T + rξ ) is
much larger than the diffusion term σ 2ξ 2/2 in
(14). This is known to deteriorate the stability of
the numerical scheme, particularly with respect
to the L∞-norm. In practice, the numerical solu-
tion exhibits some oscillations and does not sat-
isfy the discrete maximum principle. Moreover,
the finite difference method introduces numer-
ical diffusion, which leads to unsatisfactory re-
sults for purely advective equations.

Table 2 Error on the Value of a Call in Function of the Number of Time-Steps N

I = 500 N = 5 N = 10 N = 20 N = 40 N = 80 N = 160

EE 28.53 0.386 0.398 0.0739 0.0162 0.00714
IE 0.0892 0.0449 0.0225 0.0113 0.00554 0.00226
CN 0.0299 0.00758 0.00103 0.00169 0.00169 0.00168

Note: We observe that the Euler explicit (EE) scheme is unstable for N = 5. The
convergence in time of the Crank- Nicolson (CN) scheme is much faster than for
the implicit Euler (IE) scheme. The remaining error when N is large is due to the
discretization with respect to the variable S.
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One way to handle this problem is to use a
characteristic method (based on the solution of
dξ/dt = −1/T) in order to get rid of the term
1/T . This means that the following change of
variable is introduced:

g(t, x) = f (t, x − t/T) (29)

One can easily show that g is solution of:1
⎧
⎪⎨

⎪⎩

∂g
∂t

+ σ 2(x − t/T)2

2
∂2g
∂x2 − r (x − t/T)

∂g
∂x

= 0,

g(T, x) = φ̃(x − 1) = (1 − x)+
(30)

The PDE (30) satisfied by g is such that when
the advection term r (x − t/T) is small, the diffu-

sion term
σ 2(x − t/T)2

2
is also small. As shown

below, a finite difference scheme applied to (30)
will indeed lead to satisfactory results.

An important property of the solution to (30)
for φ̃(ξ ) = ξ− is that (see Rogers and Shi, 1995)
∀ξ ≤ 0,

f (t, ξ ) = 1
rT

(1 − e−r (T−t)) − ξe−r (T−t) (31)

and therefore, ∀x ≤ t/T ,

g(t, x) = 1
rT

(1 − e−r (T−t)) − (x − t/T)e−r (T−t)

(32)
To prove (31), one can notice that f given by (31)
is the solution to (14) with φ(ξ ) = −ξ , and that,
due to the fact that the diffusion term is null for
ξ = 0 and that the advection term is negative,
the solution to (14) for φ(ξ ) = ξ− on ξ ≤ 0 is the
same as the solution to (14) for φ(ξ ) = −ξ on
ξ ≤ 0.

To discretize (30), a Crank-Nicolson time
scheme is used, with a uniform time step δt =
T/N. In order to use the fact that g is analytically
known on x ≤ t/T (see (32)), a mesh that prop-
erly discretizes the boundary x = t/T is used.
Therefore, the space interval (0, 1) is also dis-
cretized with N space steps of length δx = 1/N
(see Figure 1). The mesh is completed by adding
J intervals on the right-hand side of x = 1, so
that x ∈ (0, xmax) with xmax = (N + J ) δx. The
value J = N/2 has been found to be sufficient

N

N J

T

t

1 xxmax

Figure 1 The Mesh and the Computational Do-
main for the Finite Difference Scheme Used to Dis-
cretize (30)

to guarantee the independence of the results on
the position of xmax.

Notice that at time tn = nδt, the number of
unknowns is (N + J − n). This means that the
dimension of the linear system to solve depends
on the time-step.

As far as boundary conditions are concerned,
we use a Dirichlet boundary condition on x =
t/T (using (32)) and an artificial zero Neumann
boundary condition on x = xmax.

Let us now give some numerical results. In
Table 3, a few comparisons of the results ob-
tained with the characteristic method and other
methods are given. The characteristic method
appears to be accurate for both small and large
volatilities. For any values of the parameters,
at least 5 digits of precision are obtained in
less than one second. Notice that the Thomp-
son bounds and the characteristic method are
implemented in Premia.2

The Finite Element Method for
European Options
We would like now to introduce the finite el-
ement method. This technique is more flexible
than the finite difference method. In particu-
lar, it allows for local refinements of the spot
grid (even in dimensions greater than one), and
possibly based on local error estimators that are
mentioned below. This is particularly important
for American options, because the pricing func-
tion is singular near the exercise boundary, and
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Table 3 Comparisons of the Prices for an Asian Fixed Call Obtained with Various Finite Difference Methods:
Characteristic Method, Zvan et al. (1998), Večeř (2001), and Thompson (1999)

σ K
Charact.
Method N: Zvan et al. Večeř

Thompson
(low)

Thompson
(up)

0.05 95 11.09409 (300) 11.094 11.094 11.094094 11.094096
100 6.7943 (1000) 6.793 6.795 6.794354 6.794465
105 2.7444 (3000) 2.748 2.744 2.744406 2.744581

0.30 90 16.512 (300) 16.514 16.516 16.512024 16.523720
100 10.209 (300) 10.210 10.215 10.208724 10.214085
110 5.730 (1000) 5.729 5.736 5.728161 5.735488

Note: Values of parameters: T = 1, r = 0.15, S0 = 100, J = N/2. For the characteristic method, the number of time-
steps N ≥ 300 needed to obtain at least 5 digits of precision is given.

this curve is not known a priori. Let us empha-
size that the use of a refined mesh around the
singularities of the solution (for example, for
vanilla option pricing problems, around t = T
and S = K ) is very important in practice to
rapidly obtain accurate results. The finite ele-
ment method can also be used in a flexible way
when the geometry of the computational do-
main becomes complex, which may be of in-
terest for barrier options in dimensions greater
than one. Finally, finite element methods are in-
teresting since they are naturally stable (in L2-
norm) and optimal error bounds (in L2-norm)
can be derived.

In the following, we first present the finite
element method on a simple example, namely
equation (8). We then show how to treat more
complex European options.

Variational Formulation and Finite Element
Space
The conforming finite element method is based
on two ingredients: a so-called variational for-
mulation of the PDE on a functional space V
and the choice of an appropriate sequence of
finite dimensional spaces Vh ⊂ V, which tends
to V when h (which is the typical diameter of
the cells of the space mesh) tends to 0. Let us
illustrate this on (8).

To derive a variational formulation of (8),
the principle is to multiply the equation by a
test function of the spot variable and to inte-
grate by parts. For these computations to be

well defined, the functions need to be suffi-
ciently smooth. We thus introduce the func-
tional spaces H = L2(R+) = {q : [0,∞) → R,∫ ∞

0 q 2 < ∞}, and V = {q ∈ L2(R+), S(∂q/∂S) ∈
L2(R+)}. Assuming that φ is square inte-
grable, a variational formulation of (8) is then
(for an S-dependent volatility σ ): Find p ∈
L2((0, T), V) ∩ C0([0, T], H) such that for all
q ∈ V,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

∫ ∞

0
pq −

∫ ∞

0

σ 2S2

2
∂p
∂S

∂q
∂S

+
∫ ∞

0

(
r − σ 2 − Sσ

∂σ

∂S

)
S

∂p
∂S

q

−r
∫ ∞

0
pq = 0,

p(T, S) = φ(S)

(33)

All the integrals are with respect to S ∈
[0,∞). This rewrites: Find p ∈ L2((0, T), V) ∩
C0([0, T], H) such that for all q ∈ V,

⎧
⎪⎨

⎪⎩

d
dt

∫ ∞

0
pq − a (p, q ) = 0,

p(T, S) = φ(S)
(34)

where a is the bilinear form

a (p, q ) =
∫ ∞

0

σ 2S2

2
∂p
∂S

∂q
∂S

−
∫ ∞

0

(
r − σ 2 − Sσ

∂σ

∂S

)
S

∂p
∂S

q

+ r
∫ ∞

0
pq (35)
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Under suitable assumptions on the data (r, σ ,
and φ), it is possible to prove that this varia-
tional problem is well posed (see Achdou and
Pironneau, 2005).

The second step is to introduce a sequence
of meshes in the spot variable indexed by the
maximal step h and related finite dimensional
functional spaces Vh ⊂ V. In the case of (33),
the problem is posed on an infinite domain,
and one needs to first localize the PDE in a fi-
nite domain [0, Smax] by using artificial bound-
ary condition at S = Smax, as already explained
for finite difference discretizations. We con-
sider, for example, a zero Neumann boundary

condition on S = Smax:
∂p
∂S

(t, Smax) = 0. Then, a

mesh of [0, Smax] consists of a finite number of
intervals (Si , Si+1) with S0 = 0 and SI = Smax.
We set h = max0≤i≤I−1(Si+1 − Si ). The intervals
(Si , Si+1) are called elements. We then need to
define a functional space Vh associated with the
mesh. A classical example is the P1 finite el-
ement space, which contains continuous and
piecewise affine functions, namely, continuous
functions, which are affine on each interval
(Si , Si+1), for 0 ≤ i ≤ I − 1. In this case, a basis
of the vector space Vh is given by the so-called
hat functions qi ∈ Vh such that for 0 ≤ i, j ≤ I ,

qi (Sj ) = δi, j =
{

0 if i �= j
1 if i = j

(δi, j is the Kronecker

symbol). Notice that higher order finite ele-
ment methods may be easily obtained by taking
continuous and element-wise polynomial func-
tions of degree k > 1.

The discretization in the spot price variable
now simply consists in replacing the functional
space V by the finite dimensional space Vh in
(33) or (34) (this is the principle of Galerkin
methods): Find ph ∈ C0([0, T], Vh) such that for
all qh ∈ Vh ,

⎧
⎪⎨

⎪⎩

d
dt

∫ Smax

0
phqh − a (ph, qh) = 0,

ph(T, S) = φh(S)
(36)

where φh is an approximation of φ in the space
Vh, and where the integrals in the bilinear form

a are here for S ∈ [0, Smax] (see (35)). One can
take, for example, φh such that

∫ Smax

0 (φ − φh)qh =
0 for all qh ∈ Vh (φh is then the L2 projection of
φ onto Vh). Problem (36) is a finite-dimensional
problem in space of the form MhdPh/dt = Ah Ph ,
where Ph(t) is a vector of dimension I contain-
ing the values of ph at the nodes of the mesh
(ph(t, x) = ∑I

j=0 Ph, j (t)q j (x)) and Mh, Ah are
I × I matrices. The matrix Mh (resp. Ah), with
(i, j)-th component

∫ Smax

0 qi q j (resp. a (q j , qi )) is
classically called the mass (resp. stiffness) ma-
trix, because the finite element method was
originally popularized by the mechanical en-
gineering community. When using the nodal
basis (hat functions), these matrices are very
sparse (tridiagonal for one-dimensional prob-
lems). Problem (36) is somewhat similar to (24)
obtained by the finite difference method; the
two problems (24) and (36) are actually equiva-
lent if a mesh with uniform space steps is used,
and if Mh is replaced by a close diagonal matrix
(mass-lumping).

A fundamental result (the Cea’s lemma) states
that the norm of (p − ph) (the discretization er-
ror) is bounded from above by a constant times
the infimum of the norm of (p − qh), over all
qh ∈ Vh (the best fit error). Using this result, if
Vh gets closer to V when h tends to 0, that is,
if the best fit error tends to 0 when h tends to
zero, so does the discretization error. In par-
ticular, the finite element discretization is thus
naturally stable in this norm. A precise mean-
ing for this statement requires us to define the
norm and study the best fit error. Let us simply
mention that the norms used in this context are
related to the L2-norm introduced for finite dif-
ference schemes. We refer to Achdou and Piron-
neau (2005) or Quarteroni and Valli (1997) for
the details. In our specific example, it is possible
to prove that, if the payoff function is regular
enough, then

‖p − ph‖L∞([0,T],H) + ‖p − ph‖L2([0,T],V) ≤ Ch

and that

‖p − ph‖L2([0,T],H) ≤ Ch2
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For the discretization in time, the situation is
exactly the same as for the finite difference
method: One can use the explicit Euler scheme,
implicit Euler scheme, or Crank-Nicolson
scheme, and the rate of convergence is O(δt)
for the Euler schemes and O(δt2) for the Crank-
Nicolson scheme.

Finite Element Methods for
Other Options
We have introduced the finite element method
in a very simple case. The aim of this section is
to explain how it applies for other options.

Let us first consider basket options, or bas-
ket options with barriers, in dimension 2 and 3.
The derivation of a variational formulation for
(9) is very similar to the one-dimensional case.
However, the construction of the mesh is much
more complicated in dimension 2 and 3, than
in dimension 1. It consists of partitioning the
domain into non-overlapping cells (elements)
whose shapes are simple and fixed (for exam-
ple, triangles or quadrilaterals in dimension 2,
or tetrahedra or hexahedra in dimension 3). The
functional spaces Vh can then be constructed
as in dimension 1, for example, by considering
continuous piecewise affine functions. One in-
terest of the finite element method in this con-
text is that it is possible to mesh any domain
D for barrier options. In the finite difference
method, to mesh nonquadrilateral (or nonhex-
ahedral) domains is complicated.

Let us now consider the case of lookback op-
tions whose prices satisfy (11). This is a natural
variational formulation of (11) (written here for
a constant volatility σ ): Find p : D → R such
that, for all q : D → R,

d
dt

∫

D
pq −

∫

D

σ 2S2

2
∂p
∂S

∂q
∂S

−
∫

D

σ 2S2

2
∂p
∂S

∂q
∂ M

+
∫

D

σ 2S2

2
∂p
∂ M

∂q
∂S

+
∫

D
σ 2S

∂p
∂ M

q

+
∫

D

(
r − σ 2) S

∂p
∂S

q − r
∫

D
pq = 0,

p(T, S, M) = φ(S, M)
(37)

where D = {(S, M) ∈ R
2, 0 ≤ S ≤ M}. The

boundary condition ∂p/∂ M(t, S, S) = 0 is natu-
rally contained in this variational formulation
since, by integration by parts over D:

−
∫

D

σ 2S2

2
∂p
∂S

∂q
∂S

−
∫

D

σ 2S2

2
∂p
∂S

∂q
∂ M

+
∫

D

σ 2S2

2
∂p
∂ M

∂q
∂S

+
∫

D
σ 2S

∂p
∂ M

q

−
∫

D
σ 2S

∂p
∂S

q =
∫

D

σ 2S2

2
∂2 p
∂S2 q

+ 1√
2

∫

{S=M}

σ 2S2

2
∂p
∂ M

q

The first term corresponds to the diffusion term
in (11). The second term is an integral over the
boundary {S = M} of D and naturally enforces
the boundary condition ∂p/∂ M(t, S, S) = 0. In
Figure 2, we represent the price of a fixed strike
call obtained using the formulation (11), an im-
plicit Euler scheme, and P1 finite elements. The
computations are made with FreeFem++.3

A Posteriori Error Estimates
A frequently mentioned advantage of the
Monte Carlo methods is that they naturally pro-
vide a posteriori error bounds through a confi-
dence interval, typically built upon the central
limit theorem. It is also possible to obtain such
a posteriori error estimates in the framework
of the finite element method (this is one addi-
tional advantage of this method compared to
finite difference methods). Moreover, these a
posteriori estimates have two very important
features:

� They depend on local error indicators.
� They can be proved to be reliable and efficient,

that is, the actual error is bounded above and
below by some fixed constants times the a
posteriori error, and these estimates can be
made local.

Therefore, in the finite element method, the a
posteriori error estimates enable us to refine
the mesh in space and time adaptively. We will
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Figure 2 Price of a Lookback Option for a Fixed Strike Call: φ(S, M) = (M − K )+
Note: The parameters are: σ = 0.3, r = 0.1, K = 100, T = 1.

give a numerical illustration for American op-
tions and refer to Ern, Villeneuve, and Zanette
(2004), Achdou and Pironneau (2005 and 2009),
or Achdou, Hecht, and Pommier (2008) for
more details.

High-Dimensional Problems
In practical problems, options often involve
more than three assets. In this case, the PDE
is posed in a space of dimension larger than
4, and the finite element or difference methods
cannot be used, since the number of unknowns
typically grows exponentially with respect to
the problem’s dimension. This is the so-called
curse of dimensionality. Let us mention that
such high-dimensional problems also appear in
other scientific fields, quantum chemistry, for
example, and that it is still a subject of current
research to build appropriate discretizations
for high-dimensional PDEs. Roughly speaking,
the problem is to find an appropriate sequence
of functional spaces Vh (whose basis is called
a Galerkin basis), such that their dimensions
do not grow too rapidly with the dimension
of the problem. One approach is the sparse
tensor product (see Bungartz and Griebel,
2004; Petersdoff and Schwab, 2004). The main
difficulty when using this approach is actually

to project the initial condition on Vh. Another
approach used in other contexts for solving
high-dimensional problems by deterministic
methods is the low separation rank method (see
Beylkin and Mohlenkamp, 2002) and the related
greedy algorithms (see Ammar et al., 2002;
Temlyakov, 2008; Le Bris, Lelièvre, and Maday,
2009; and Nouy, 2009). Let us finally mention
that another possible approach for building an
appropriate Galerkin basis would be the re-
duced basis method, where some solutions for a
given set of parameters are used to approximate
the solution for other values of the parameters.
Such methods are currently actively inves-
tigated (see, for example, Boyaval, Le Bris,
Lelièvre, Maday, Nguyen, and Patera, 2010).

The Uncertain Volatility Model: An Example
of a Nonlinear PDE
One major interest of the PDE approach is that
it can be applied for nonlinear models. This will
be the case for American options, see below, but
we would like to give here another example
of such a situation. The principle of the uncer-
tain volatility model introduced by Avellaneda,
Levy, and Paras (1995) is to give a price for a
European option, when the volatility is only
supposed to be in an interval [σmin, σmax]. The
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principle is the following. For a European op-
tion with convex payoff, it is easy to check that
the price should be the Black-Scholes price ob-
tained with the maximum volatility σmax. In this
case, the profit and loss for the hedging strategy
is indeed zero if the realized volatility is con-
stant equal to σmax. A similar reasoning holds
for concave payoffs: In this case, one should
consider the Black-Scholes price with the min-
imum volatility σmin. For a general payoff, it is
thus natural (and it can be checked that this is
indeed an approach that leads to a very good
hedging strategy, with small profit and loss, and
thus cheap price) to consider the solution p to
the PDE:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂p
∂t

+ rS
∂p
∂S

+

1
2

(
σ 2

max1 ∂2 p
∂S2 ≥0

+ σ 2
min1 ∂2 p

∂S2 <0

)
S2 ∂2 p

∂S2 − rp = 0,

p(T, S) = φ(S)
(38)

In other words, σmax (resp. σmin) is used where
the price is convex (resp. concave), as a function
of the spot. This PDE can be solved using exten-
sions of the discretization techniques presented
above; see, for instance, section 2.4 in van der
Pijl and Oosterlee (2011).

PRICING AMERICAN
OPTIONS WITH PDES
This section is devoted to the discretization of
the system (23) for the price of an American op-
tion. Notice that no closed formulas such as the
Black-Scholes formula are available for Amer-
ican put, or for American call with a dividend
rate, so that efficient discretization of this sys-
tem is needed even for these simple payoffs.

The Finite Difference Approach for
American Options
We first present the extension of the finite dif-
ference approach presented above for European
options to American options.

Some Finite Difference Schemes
We consider a regular mesh discretization Si =
iδS and a time discretization tn = nδt with
δt = T

N . As in the European case, it is natural
to consider the following three iterative nu-
merical schemes for Pn

i , an approximation of
p(tn, Si ). In all cases, the scheme is initialized by
P N

i = φ(Si ). Let A be the matrix such that

(APn+1)i = −rSi
Pn+1

i+1 − Pn+1
i−1

2δS

−σ 2S2
i

2
Pn+1

i+1 − 2Pn+1
i + Pn+1

i−1

δS2 + rPn+1
i

(39)
The explicit Euler (EE) scheme for (23) is, for
n = N − 1, N − 2, . . . , 0,

min

(
− Pn+1

i − Pn
i

δt
+ (APn+1)i , Pn

i − φ(Si )

)
= 0

(40)

The scheme computes Pn = (Pn
i )i=0,...,I−1 from

the knowledge of Pn+1 = (Pn+1
i )i=0,...,I−1. Sim-

ilarly, we can propose an implicit Euler (IE)
scheme:

min
(

− Pn+1
i − Pn

i

δt
+ (APn)i , Pn

i − φ(Si )
)

= 0

(41)
and an (implicit) Crank-Nicolson (CN) scheme

min
(

− Pn+1
i − Pn

i

δt
+

1
2

(
(APn)i + (APn+1)i

)
, Pn

i − φ(Si )
)

= 0

(42)
In the case of the EE scheme, it is easy to see
that we have the equivalent formulation

Pn
i = max

(
((Id − δt A)Pn+1)i , φ(Si )

)
(43)

where Id denotes the identity matrix.
We now have two new difficulties compared

to the European case: First, the well-posedness
of the schemes (41) or (42) is not immediate (for
European options, we obtained a linear system,
but this is no longer true for American options),
and second, studying the convergence is more
difficult.
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One way to circumvent the first difficulty is
to introduce a splitting method (see Barles and
Souganidis, 1991; Barles, Daher, and Romano,
1995; and Lions and Mercier, 1979). For (23),
it writes (a similar modification of (42) could
also be considered, yielding a Crank Nicolson-
splitting (CN-S) scheme):

compute Pn,1 s.t. − Pn+1
i − Pn,1

i

δt
+ (APn,1)i = 0

(44a)
and then compute Pn

i = max(Pn,1
i , φ(Si ))

(44b)

Hereafter, (44) will be refered to as the im-
plicit Euler-splitting (IE-S) scheme. The first
step (44a) consists of solving a linear system,
as in the European case. The second step is a
projection on the set {v = (vi ), vi ≥ φ(Si ),∀i}, as
for the EE scheme (43).

Notice that as for European options, we set
the equation on a truncated domain (0, Smax)
and use artificial boundary conditions on S =
Smax. We refer to Barles, Daher, and Romano
(1995) for error estimates between the truncated
problem on (0, Smax) and the exact problem.

An Abstract Convergence Result
Assuming for the moment that the schemes
are well posed, it is possible to study the
convergence in the general framework of
finite different schemes for Hamilton-Jacobi
equations. Possibly under some restrictions
on the mesh sizes δt and δS, we can obtain
convergence to the viscosity solution of the PDE
(23). We refer to Barles (1994) or Barles, Daher,
and Romano (1995) for a short introduction,
and Crandall, Ishii, and Lions (1992) for a more
detailed overview. To give a rough idea of the
convergence results for such schemes, we con-
sider a general Hamilton-Jacobi equation of the
form

H
(

t, S, p,
∂p
∂t

,
∂p
∂S

,
∂2 p
∂S2

)
= 0 (45)

with a terminal condition on p(T, ·), where
H is assumed to be Lipschitz continuous and

“backward parabolic” in the sense that

if ψ1 ≤ ψ2 then H(t, S, p, u, v, ψ1)

≥ H(t, S, p, u, v, ψ2) (46a)

and if u1 ≤ u2 then H(t, S, p, u1, v, ψ)

≥ H(t, S, p, u2, v, ψ) (46b)

Equation (23) is indeed of the form of
(45) with, for (t, S) ∈ (0, T) × (0, Smax),
H(t, S, p, u, v, ψ) = min(−u − rSv − 1

2σ 2S2ψ +
rp, p − φ(S)), which obviously satisfies (46).

First convergence results were given in the
fundamental work of Crandall and Lions (1984)
for Lipschitz continuous final condition φ (and
without ∂2 p

∂S2 dependence in (45)).
An abstract and general convergence result

is given by Barles and Souganidis (1991), and
we now give a simplified presentation of this
result.

We first assume that H satisfies a comparison
principle, which can be seen as an extension
of the maximum principle to some nonlinear
equations. The comparison principle is roughly
the following (see Crandall, Ishii, and Lions,
1992; Barles, 1994; or Pham, 1998): Assume that
u (resp. v) is a subsolution (resp. supersolution)
of (45), that is,

H
(

t, x, u,
∂u
∂t

,
∂u
∂x

,
∂2u
∂x2

)
≤ 0

(
resp. H

(
t, x, v,

∂v

∂t
,
∂v

∂x
,
∂2v

∂x2

)
≥ 0

)

for (t, S) ∈ (0, T) × (0, Smax), and that u ≤ v on
the boundaries S = Smax and t = T , then u ≤ v

everywhere.
Now, suppose that we can write the scheme

in the abstract form: ∀i ∈ {0, . . . , I }, ∀n ∈
{0, . . . , N},

Sρ(tn, Si , Pn
i , [P]) = 0 (47)

where ρ = (δt, δS), and [P] stands for a contin-
uous function that takes values (Pk

j )0≤k≤N,0≤ j≤I

on the corresponding grid points (tk, Sj ).4 We
suppose that (47) admits at least one solution
denoted Pρ . Then, in the limit when ρ goes to
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zero, Pρ converges to p solution to (45) if the
following conditions are satisfied:

(i) A stability condition, which reads
max0≤n≤N,0≤i≤I |Pn

i | ≤ C , for some con-
stant C independent of N and I (i.e.,
independent of ρ).

(ii) A consistency condition: for any regular
function ψ ,

lim
ξ→0, ρ→0, tn→t, Si →S

Sρ(tn, Si , ψ(tn, Si ) + ξ, ψ + ξ )

= H
(

t, S, ψ,
∂ψ

∂t
,
∂ψ

∂S
,
∂2ψ

∂S2

)
(t, S)

For a weaker statement see Barles and
Souganidis (1991).

(iii) A monotonicity condition, which reads

ϕ ≤ ψ ⇒ Sρ((t, S), P, ϕ) ≥ Sρ((t, S), P, ψ)

For most standard financial options, a com-
parison principle holds. The stability and con-
sistency conditions are close to the stability
and consistency conditions already introduced
in the case of the schemes for European op-
tions. Hence the new condition to check is the
monotonicity assumption (which is related to
the property (46a) satisfied by H). It is actually
related to a discrete maximum principle.

Error estimates can also be obtained for the
finite difference schemes (40)–(41)–(42). For ex-
ample, for the EE scheme, an error estimate of
order δS1/2 in L∞-norm can be proved under
a CFL condition and for Lipschitz initial data
(see Jackobsen, 2003). In the context of the finite
element method (see below) an error estimate
of order δS2 can be proved, but in the weaker
L2-norm.

Implementation and Convergence of the
Finite Difference Schemes
It is easy to see, in view of (43), that the EE
scheme is stable and monotone if the compo-
nents of the matrix (Id − δt A) are nonnegative.
This is exactly what is needed to prove a dis-
crete maximum principle in the European case.

This property holds under a CFL condition of
the form δt ≤ CδS2, C constant, and with an ap-
propriate discretization of the advection term.
The CN scheme is also stable and monotone un-
der a CFL-like condition. On the other hand, it
can be shown that the IE-S scheme as well as
the IE scheme are stable and monotone without
any CFL condition.

Now let us explain how to solve the implicit
schemes (41) or (42) in practice. Let us con-
sider the IE scheme (41). At each time step,
setting b = Pn+1, B = Id + δt Aand g = (φ(Si ))i ,
the problem is equivalent to finding x = Pn

such that

min((Bx − b)i , (x − g)i ) = 0, ∀i (48)

The Howard algorithm (see Howard, 1960; also
called the policy iteration algorithm) is the
method of choice to solve (48). To present this al-
gorithm, we rewrite (48) in the following form:
Find x such that,

min
α∈{0,1}I

((B(α)x − b(α))i ) = 0, ∀i (49)

where Bi, j (α) =
{

Bi, j if αi = 0
δi, j if αi = 1

(where δi, j is

again the Kronecker symbol, i.e., the (i, j)-th

component of Id) and bi (α) =
{

bi if αi = 0
gi if αi = 1

. The

i-th component of B(α)x − b(α) only depends
on the i-th component of α, so that the mini-
mum for the i-th component in (49) is indeed
taken with respect to the i-th component of α.
Thus, for a given x and α realizing the minimum
in (49), the component αi is equal to 0 (resp. to
1) if, at the i-th node, the minimum in (48) is
(Bx − b)i (resp. (x − g)i ). For an initial value5

α0 ∈ {0, 1}I , the algorithm is written as follows:
Iterate for k ≥ 0,

(i) Compute xk such that B(αk)xk = b(αk)
(ii) αk+1

i = arg minαi ∈{0,1}(B(α)xk − b(α))i

Santos and Rust (2004) and Bokanowski,
Maroso, and Zidani (2009) provide some con-
vergence results. Under suitable assumptions
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on the matrix B (which are satisfied for the
schemes considered above, which satisfy the
monotonicity condition), it can be proved that
this method converges in at most I iterations.
In practice, only a few iterations are needed for
solving (41).

This algorithm can also be seen as:

� A Newton’s method on the function F defined
by Fi (x) = min((Bx − b)i , (x − g)i ). More pre-
cisely, it is a semismooth Newton’s method
applied to the slantly differentiable function6

F.
� A primal-dual algorithm to implement the

fully implicit Euler scheme (41) as introduced
in Hintermüller, Ito, and Kunisch (2002).

Another well-known method for solving (48)
is the projected successive over relaxation
(PSOR) method, which is a modification of
the successive over relaxation (SOR) method
to solve iteratively systems of linear equations
(see Saad, 2003). In its simplest form, it consists
of decomposing B = L + U where L is a lower
triangular matrix and U is an upper triangular
matrix with zero coefficients on the diagonal.
The algorithm consists of choosing an initial
guess x0 and then computing iteratively for
n ≥ 1, for i = 1, . . . , I , xn

i = arg min
{
(Lxn −

(b − Uxn−1))i , (xn − g)i
}
. This method con-

verges only if B is a diagonal dominant matrix,
and the convergence is rather slow in practice.
However, it leads to a highly efficient method
for the finite element method discussed be-
low, when combined with a suitable splitting
scheme.

For the specific case of an American put op-
tion on a single asset, a fast algorithm was
proposed by Brennan and Schwartz (1977) for
solving (41) and proved to converge in Jaillet,
Lamberton, and Lapeyre (1990) in the finite ele-
ment setting (see also Bokanowski, Maroso, and
Zidani [2009] in the finite difference setting).
Also in this case it can be proved that the re-
gion of exercise (namely �t = {x ∈ R+, p(t, x) >

φ(x)}) is of the form �t = [γ (t),∞[ where γ is
continuous under some regularity assumption

Table 4 Error on the Value of an American Put in
Function of the Number I of Intervals in the Variable S
(and for N = 1000)

(N = 1000) I = 100 I = 200 I = 400 I = 800 I = 1600

IE-S 0.00267 0.0361 0.00180 0.00210 0.00210
IE 0.00379 0.0146 0.00011 0.00024 0.00018

of the data. Then the Howard algorithm takes
a simple form, which is known as the front-
tracking algorithm (see, for instance, Achdou
and Pironneau, 2005). However, these algo-
rithms are very specific to the one-dimensional
case and do not apply for general payoff
functions.

Numerical Results for the
American Put Option
In Table 4, we give numerical results obtained
with the IE-S and IE schemes for an Ameri-
can put option with r = 0.1, σ = 0.1, K = 100,
T = 1, S = 100, and Smax = 150. We have com-
puted all error values by taking the reference
value P = 1.63380 (obtained with a Cox-Ross-
Rubinstein algorithm with N = 105, CPU-time
= 1750 s.; see Cox, Ross, and Rubinstein [1979]
and Lamberton and Lapeyre [1997]). In this ex-
ample, the IE scheme is one digit more accurate
than the IE-S scheme. With these numerical pa-
rameters, the EE scheme would yield bad re-
sults since the CFL condition is not respected.
The IE scheme has been implemented using the
Howard algorithm. The remaining error when
I is large is due to the time discretization.

In Table 5, we compare the EE, IE-S and IE
schemes. Since the error is of order of O(δt) +
O(δS2), we have used parameters N and I such
that δt � δS2 (i.e., N � I 2), and such that the
CFL condition is satisfied. We remark that the
EE scheme gives satisfactory results in less than
a few seconds. The IE is more accurate but more
costly than IE-S. Hence in view of the CPU-time
it is more advantageous here to use simply the
EE or the IE-S scheme. This conclusion holds
for a finite difference discretization, but may be
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Table 5 Error and CPU-Times for the Value of an American Put as a Function
of the Number N of Time-Steps N and the Number I of Intervals in the Variable S

I = 100 I = 200 I = 400 I = 800 I = 1600
N = 100 N = 400 N = 1600 N = 6400 N = 25000

EE 0.00593 0.00069 0.00045 0.00003 0.00003
CPU-time (sec.) 0.01 0.10 0.5 2.6 10.7

IE-S 0.01177 0.00616 0.00098 0.00029 0.00007
CPU-time (sec.) 0.05 0.22 1.23 7.06 44.31

IE 0.00201 0.00181 0.00016 0.00004 0.00001
CPU-time (sec.) 0.2 0.9 7.3 75.0 1033.0

different for a finite element discretization, or
for another set of parameters.

Markov Chains Approximations
There exist related discretization schemes for
American options based on Markov chain
approximations. Markov chain schemes (see
Kushner and Dupuis, 2001) are based on the
approximation of the dynamic programming
principle between times t and t + δt and on
the use of a spatial interpolation over a mesh
(Sj). This leads to another class of schemes that
are also in finite difference form. Their con-
vergence can be established by showing the
convergence to the dynamic programming
equation, or by using the Barles-Souganidis
theorem (see Barles and Souganidis, 1991). Fi-
nite difference schemes enter this framework
as well as semi-Lagrangian schemes (Capuzzo-
Dolcetta and Falcone, 1989; Falcone and
Ferretti, 1994). An inversed CFL condition, typ-

ically of the form δS2/δt
δt,δS→0−→ 0 can then be

needed. Notice that the Cox-Ross-Rubinstein
algorithm (Cox, Ross, and Rubinstein, 1979) can
also be seen as a discrete Markov chain approx-
imation scheme using a very particular spatial
mesh such that no interpolation appears at the
end.

Portfolio Optimization
The techniques developed above for pricing
American options can be used in the con-
text of portfolio optimization. A portfolio op-

timization problem (or stochastic optimization
problem) is typically of the form

p(t, x) = max
α∈L∞([t,T],K )

E

(∫ T

t
e− ∫ u

t r (s) ds

× f
(
u, Xt,x,α

u , α(u)
)

du + e− ∫ T
t r (s) dsφ

(
Xt,x,α

T

) )

(50)

where K is compact, α is a progressively mea-
surable function with values in K, and with

⎧
⎪⎪⎨

⎪⎪⎩

dXt,x,α
u = b(u, Xt,x,α

u , α(u))du

+ σ (u, Xt,x,α
u , α(u))dWu, u ≥ t,

Xt,x,α
t = x

The corresponding PDE can be shown to be

min
α∈K

(
− ∂p

∂t
− 1

2
σ 2(t, S, α)

∂2 p
∂S2 − b(t, S, α)

∂p
∂S

+ rp − f (t, S, α)
)

= 0

in the viscosity sense (see Pham, 2006). Finite
difference schemes similar to those presented
above for American options can be applied. Im-
plicit schemes, if considered, can be solved by
the Howard algorithm. This can also be gen-
eralized to an optimal stopping time problem,
adding in (50) a supremum over stopping times
with values in [t, T] (as in (15)). For such general
HJB equations, a discretization by a finite ele-
ment approach is not always possible because
an appropriate variational formulation cannot
always be obtained; see Bensoussan and Lions
(1978).
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The Finite Element Approach for
American Options
As in the European case, the finite element ap-
proach requires a variational formulation of the
PDE (23). Let us consider the case of the Amer-
ican put option. Let V be the functional space
used for the variational formulation, and

K = {q ∈ V, q ≥ φ}
We first notice that (23) is equivalent to the set
of inequalities7 (together with p(T, S) = φ(S))

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p − φ ≥ 0,

−∂p
∂t

+ Ap ≥ 0,

(
−∂p

∂t
+ Ap

)
(p − φ) = 0

(51)

We can check that this is equivalent (for suf-
ficiently smooth function p) to the following
variational formulation for (23): find p ∈ L2

([0, T], K ) ∩ C0([0, T], L2(R+)) such that for all
t ∈ [0, T),

∀q ∈ K , −
∫

∂p
∂t

(q − p) + a (p, q − p) ≥ 0

(52)
where a is the bilinear form (35) defined above
(recall that for compactly supported func-
tions p and q, a (p, q ) = ∫

Ap q ), with the final
condition

p(T, S) = φ(S)

Indeed, by writing q − p = (q − φ) − (p − φ),
it is clear that (51) implies (52). Conversely,
choosing a sufficiently large q ∈ K in (52), we
obtain that − ∂p

∂t + Ap ≥ 0. Taking then q = φ

in (52), we obtain that 〈− ∂p
∂t + Ap, φ − p〉 ≥ 0,

but this inequality is actually an equality since
− ∂p

∂t + Ap ≥ 0 and φ − p ≤ 0.
Notice that if we take K = V in (52), we re-

cover the variational formulation (34) for the
European option. Precise existence and unique-
ness results for such variational inequalities can
be found in Bensoussan and Lions (1978). For
results and applications in the finance context,

we refer to Achdou and Pironneau (2005 and
2009).

Now, as in the case of the finite element
method for European options, we introduce
a sequence of finite dimensional functional
spaces Vh ⊂ V, such that the functions in V are
better and better approximated by functions in
Vh as h goes to 0. One can, for example, consider
a P1 finite element space on a mesh (Si )0≤i≤I . Re-
member that a basis of Vh is given by a set of
functions (qi )0≤i≤I . The finite element approx-
imation of (52) is obtained by replacing V by
Vh: Find ph ∈ C0([0, T], K ∩ Vh) such that for all
t ∈ [0, T),

∀qh ∈ K ∩ Vh, −
∫

∂ph

∂t
(qh − ph)

+ a (ph, qh − ph) ≥ 0 (53)

with the final condition ph(T) = φh , where
φh ∈ Vh is an approximation of φ.

For time discretization, one can again use
the schemes we have introduced in the case
of the discretization of European options. For
example, the implicit Euler scheme applied
to (53) is naturally defined as follows: Find
pN

h , pN−1
h , . . . , p0

h in Vh ∩ K such that pN
h = φh

(initialization) and, for n = N − 1, . . . , 0:

∀qh ∈ Vh ∩ K , −
∫

pn+1
h − pn

h

δt
(qh − pn

h )

+ a (pn
h , qh − pn

h ) ≥ 0 (54)

One can easily check that

qh ∈ Vh ∩ K ⇔ qh ∈ Vh and qh(Si ) ≥ φ(Si ),∀i

Denoting Ah and Mh the mass and stiffness
matrices as in the case of the finite element
method for European options, and reasoning as
for the equivalence between (23), (51), and (52),
it can be checked that (54) is equivalent to solve
in R

I :

min
(( − Mh

Pn+1 − Pn

δt
+ Ah Pn)

i ,
(
Pn − g

)
i

)

= 0, ∀i
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Figure 3 The Adapted Mesh and the Contours of P One Year to Maturity. σ1 = 0.2, σ2 = 0.1, ρ = −0.6.

where gi = φ(Si ) and Pn
i = pn

h (Si ). Equivalently,
the problem is to find Pn such that

min
((

(Mh + δt Ah)Pn − Mh Pn+1)
i ,

(
Pn − g

)
i

)

= 0, ∀i

This is a similar problem as for the IE finite
difference scheme (see (48)) where the matrix
(Id + δt A) is now replaced by (Mh + δt Ah). It
can be solved by the Howard algorithm pre-
viously presented. For the particular American
put problem under some assumptions on the
mesh steps δt and h, it can also be solved by the
Brennan and Schwartz algorithm or the front-
tracking algorithm mentioned above.
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Figure 4 The Exercise Region One Year to Maturity. Left: K = 100, σ1 = 0.2, σ2 = 0.1, ρ = −0.6.
Right: K = 50, σ1 = σ2 = 0.2, ρ = 0.

Notice that a Crank-Nicolson scheme can be
derived in a similar way. The expected error (in
L2-norm) is (as in the European case) O(h2) +
O(δt) for the IE scheme and O(h2) + O(δt2) for
the CN scheme.

We conclude this section by a numerical illus-
tration of the mesh refinement procedure (that
can be implemented by using a posteriori error
estimates) applied to the pricing of an Amer-
ican option on two assets. Such an automatic
refinement procedure is particularly useful for
American options because the pricing function
is not smooth at any given time t ∈ [0, T]. Fig-
ures 3 and 4 illustrate such a mesh refinement
for a typical two-assets American option with
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payoff φ(S1, S2) = (K − max(S1, S2))+. The arti-
ficial boundary �0 is {max(S1, S2) = S̄ = 200}.
Homogeneous Dirichlet conditions are im-
posed on �0. We have chosen two examples. In
the first example, the parameters are σ1 = 0.2,
σ2 = 0.1, r = 0.05, ρ = −0.6, and K = 100. In
the second example, the parameters are σ1 =
σ2 = 0.2, r = 0.05, ρ = 0, and K = 50. The im-
plicit Euler scheme has been used with a uni-
form time step of 1/250 year. For the variables
S1 and S2, we have used adaptive finite ele-
ments. For solving the linear complementarity
problems, we have used the Howard algorithm.
Mesh adaption in the (S1, S2) variable has been
performed every 1/10 year. In Figure 3, we have
plotted the adapted mesh (left) and the contours
of the pricing function (right) one year to ma-
turity for the first example. Note that the con-
tours exhibit right angles in the exercise region.
In Figure 4, we plot the exercise region one year
to maturity for the first example (left) and for
the second example (right). One sees that the
exercise boundary has singularities. It is also
visible that the mesh has been adapted near the
exercise boundary.

CALIBRATION
Let us now discuss the question of the deter-
mination of the parameters that appear in the
models we introduced, with an emphasis on the
calibration of the local volatility.

Limitation of the Black-Scholes
Model: The Need for Calibration
Consider a European-style option on a given
stock with a maturity T and a payoff function
φ, and assume that this option is on the mar-
ket. Call p its present price. Also, assume the
risk-free interest rate is the constant r. One may
associate with p the so-called implied volatil-
ity, that is, the volatility σimp such that the price
given by formula (4) at time t = 0 with σ = σimp

coincides with p. If the Black-Scholes model was
sharp, then the implied volatility would not de-
pend on the payoff function φ. Unfortunately,

for vanilla European puts or calls, for example,
it is often observed that the implied volatility
is far from constant. Rather, it is often a convex
function of the strike price. This phenomenon is
known as the volatility smile. A possible expla-
nation for the volatility smile is that the deeply
out-of-the-money options are less liquid, thus
relatively more expensive than the options in-
the-money.

This shows that the critical parameter in the
Black-Scholes model is the volatility σ . Assum-
ing σ constant and using (8) often leads to poor
predictions of the options’prices. The volatility
smile is the price paid for the too great simplic-
ity of Black-Scholes’ assumptions.

Let us now discuss some of the possible en-
richments of the Black-Scholes model:

� Local volatility models: The volatility is a
function of time and of the spot price, that
is, σt = σ (t, St). With suitable assumptions on
the regularity and the behavior at infinity of
the function σ , (4) holds, and Pt = p(t, St),
where p satisfies the final value problem (8),
in which σ varies with t and S. Calibrating
the model consists of tuning the function σ

in such a way that the prices computed, for
example, with the PDE coincide with the ob-
served prices. This will be discussed in detail
below.

� Stochastic volatility models: One assumes
that σt = f (yt), where yt is a continuous time
stochastic process, correlated or not to the
process driving St; see Fouque, Papanico-
laou, and Sircar (2000) for a nice presentation.
Several models have been proposed, among
which are the following:

1. Hull-White model (see Hull and White,
1987): f (y) = √

y and yt is a lognormal
process.

2. Scott model: f (y) = √
y and yt is a mean-

reverting Ornstein-Uhlenbeck process:

dyt = α(m − yt)dt + βdZt (55)

where α and β are positive constants, Zt is
a Brownian motion.
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3. Heston model (see Heston, 1993): f (y) =√
y and yt is a Cox-Ingersoll-Ross process,

dyt = κ(m − yt)dt + λ
√

ytdZt (56)

where κ , m, and λ are positive constants.
4. Stein-Stein model (see Stein and Stein,

1991): f (y) = √
y and yt is a mean-

reverting Ornstein-Uhlenbeck process.

There are two risk factors, one for the stock
price and the other for the volatility. If the two
driving processes are not completely corre-
lated, it is not possible to construct a hedged
portfolio containing simply one option and
shares of the underlying asset. One says that
the market is incomplete. Nevertheless, if one
fixes the contribution of the second source of
randomness dZt to the risk premium, that is,
the market price of the volatility risk or the
risk premium factor as a function of t, St and
yt, then it is possible to prove that the option’s
price is of the form Pt = p(t, St, yt), where the
pricing function satisfies a PDE in the vari-
ables (t, S, y). The PDE may be degenerate
for the values of y corresponding to volatility
cancellation. Calibrating the model consists
of tuning the parameters of the process yt and
the function f in order to match the observed
prices.

� Lévy-driven spot price: One may generalize
the Black-Scholes model by assuming that
the spot price is driven by a more general
stochastic process, for example, a Lévy pro-
cess (see Cont and Tankov, 2003; Merton, 1976;
and Carr, Geman, and Yor, 2002). Lévy pro-
cesses are processes with stationary and in-
dependent increments which are continuous
in probability. For a Lévy process Xτ on a fil-
tered probability space with probability P

∗,
the Lévy-Khintchine formula says that there
exists a function χ : R → C such that

E
∗(eiuXτ ) = e−τχ (u),

χ (u) = σ 2u2

2
− iβu −

∫

|z|<1
(eiuz − 1 − iuz)ν(dz)

−
∫

|z|>1
(eiuz − 1)ν(dz)

for σ ≥ 0, β ∈ R and a positive measure ν on
R\{0} such that

∫
R

min(1, z2)ν(dz) < +∞. The
measure ν is called the Lévy measure of X.
We focus on the Lévy measure with a den-
sity, ν(dz) = k(z)dz. It is assumed that the dis-
counted price of the risky asset is a square
integrable martingale under P

∗, and that it
is represented as the exponential of a Lévy
process:

e−rτ Sτ = S0e Xτ

The martingale property is that E
∗(e Xτ ) = 1,

i.e.
∫

|z|>1
ezν(dz) < ∞, and

β = −σ 2

2
−

∫

R

(ez − 1 − z1|z|≤1)k(z)(dz)

and the square integrability comes from the
condition

∫
|z|>1 e2zk(z)dz < ∞.

With such models, the pricing function for a
European option is obtained by solving a par-
tial integrodifferential equation (PIDE), with
a nonlocal term. Calibrating the model con-
sists of tuning σ and the function k in such a
way that the prices computed with the PIDE,
for example, match the observed prices (see
Cont and Tankov, 2004).

Local Volatility and Dupire’s
Formula
We consider a local volatility model and call
(t, S) �→ C(t, S, τ, x) the pricing function for a
vanilla European call with maturity τ and strike
x. It satisfies the final value problem: for t ∈
[0, τ ) and x ∈ R+,

∂C
∂t

+ σ 2(t, S)S2

2
∂2C
∂S2 + (r − q )S

∂C
∂S

− rC = 0

C(τ, S) = (S − x)+
(57)

where we have supposed that the underlying
asset yields a distributed dividend, q Stdt. By
reasoning directly on (4) or by using PDE ar-
guments, it can be proved that the function
(τ, x) �→ C(t, S, τ, x) (now t and S are fixed)
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satisfies the forward parabolic PDE:

∂C
∂τ

− 1
2
σ 2(τ, x)x2 ∂2C

∂x2 + (r − q )x
∂C
∂x

+ qC = 0

(58)

for τ > t and x ∈ R+. This observation was first
made by Dupire (1994), and the proof of (58) by
PDE arguments can be found in Achdou and
Pironneau (2005) or Pironneau (2007). We also
mention that similar partial differential equa-
tions can be derived for other options, like bi-
nary options, barrier options, options on Lévy-
driven assets, or basket options (see Pironneau,
2007).

Using (58) is useful for two reasons. First, con-
sider a family of calls on the same stock with
different maturities and strikes (τi , xi ), I ∈ I ,
where I is a finite set. Assume that the spot
price is known, that is, S = S0. In order to nu-
merically compute the prices of the calls, that
is, C(0, S0, τi , xi ), i ∈ I , one may solve (58) for
maxi∈I τi > τ > 0 and initial data C(τ = 0, x) =
(S0 − x)+ with, for example, a finite difference
or a finite element method. Only one initial
value problem is needed. On the contrary, us-
ing (8) would necessitate solving #I initial value
problems. We see that (58) may save a lot of
work.

Second, (58) may be used for local volatility
calibration. Indeed, if all the possible vanilla
options were on the market, the local volatility
in (57) could be computed:

σ 2(τ, x) = 2

∂C
∂τ

(τ, x) + (r − q )x
∂C
∂x

(τ, x) + qC(τ, x)

x2 ∂2C
∂x2

(τ, x)

(59)

This is known as Dupire’s formula for the local
volatility. In practice, (59) cannot be used di-
rectly because only a finite number of options
are on the market.

Assume that the observations are the prices
(C̄i )i∈I of a family of calls with maturity/strike
(τi , xi )i∈I . Finding a function (τ, x) �→ σ (τ, x)
such that the solution of (58) with C(0, x) =
(S0 − x)+ takes the value C̄i at (τi , xi ), i ∈ I is
called an inverse problem.

A natural idea is to somehow interpolate
the observed prices by a sufficiently smooth
function C̄ : [0, maxi∈I τi ] → R+, then use (59)
with C = C̄ . For example, bicubic splines may
be used. This approach has several serious
drawbacks:

� It is difficult to design an interpolation pro-

cess such that
∂2C̄
∂x2 does not take the value 0,

and such that the right-hand side of (59) is
nonnegative.

� There is an infinity of possible interpolations
of C̄i at (τi , xi ), i ∈ I , and for two possible
choices, the volatility obtained by (59) may
differ considerably.

We see that financially relevant additional in-
formation has to be added to the interpolation
process.

Least-Square Methods
Here, we show how (58) can be used for calibra-
tion. The first idea is to use least squares, that is,
to minimize a functional J : σ �→ ∑

i∈I ωi |C̄i −
C(τi , xi )|2 for σ in a suitable function set �,
where ωi are positive weights, and the pric-
ing function C is the solution of (58) with
C(0, x) = (S0 − x)+. The evaluation of J requires
the solution of an initial value problem. The set
� where the volatility is to be found must be
chosen in order to ensure that from a minimiz-
ing sequence one can extract at least a subse-
quence that converges in �, and that its limit is
indeed a solution of the least square problem.
For example, � may be a compact subset of a
Hilbert space W (in principle W could be a more
general Banach space but it is easier to work
in Hilbert spaces if gradients are needed) such
that the mapping J is continuous in W. In prac-
tice, W has a finite dimension and is compactly
embedded in the space of bounded and con-
tinuous functions σ such that x∂xσ is bounded.
Thus, the existence of a solution to the min-
imization problem is most often guaranteed.
What is more difficult to guarantee is unique-
ness and stability: Is there a unique solution to
the least square problem? If yes, is the solution
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insensitive to small variations of the data? The
answer to these questions is no in general, and
we say that the problem is ill-posed.

As a possible cure to ill-posedness, one usu-
ally modifies the problem by minimizing the
functional σ �→ J (σ ) + J R(σ ) instead of J, where
JR is a sufficiently large strongly convex func-
tional defined on W and containing some fi-
nancially relevant information. For example,
one may choose J R(σ ) = ω‖σ − σ̄‖2, where ω is
some positive weight, ‖.‖ is a norm in W, and σ̄

is a prior local volatility, which may come from
historical knowledge. The difficulty is that ω

must not be too large not to perturb the inverse
problem too much, but not too small to guar-
antee some stability. The art of the practitioner
lies in the choice of JR.

Once the least square problem is chosen, we
are left with proposing a strategy for the con-
struction of minimizing sequences. If J and JR

are C1 functional, then gradient methods may
be used. The drawbacks and advantages of such
methods are well known: On the one hand, they
do not guarantee convergence to the global min-
imum if the functional is not convex, because
the iterates can be trapped near a local mini-
mum. On the other hand, they are fast and accu-
rate when the initial guess is close enough to the
minimum. For these reasons, gradient methods
are often combined with techniques that permit
us to localize the global minimum but that are
slow, like simulated annealing or evolutionary
algorithms.

Anyhow, gradient methods require the eval-
uation of the functional’s gradient. Since JR

explicitly depends on σ , its gradient is easily
computed. The gradient of J is more difficult to
evaluate, because the prices C(τi , xi ) depend on
σ in an indirect way: One needs to evaluate the
variations of C(τi , xi ) caused by a small varia-
tion of σ ; calling δσ the variation of σ and δC
the induced variation of C, one sees by differ-
entiating (58) that δC(τ = 0, ·) = 0 and

∂τ δC − σ 2(τ, x)x2

2
∂2

xxδC + (r − q )x∂xδC + qδC

= σδσ x2∂2
xxC (60)

To express δ J in terms of δσ , an adjoint state
function P is introduced as the solution to the
adjoint problem: Find the function P such that
P(τ̄ , ·) = 0 and for τ < τ̄ ,

∂τ P + ∂2
xx

(
σ 2x2

2
P

)
− ∂x

(
P(r − q )x

) − qP

= 2
∑

i∈I

ωi (C(τi , xi ) − C̄i )δτi ,xi (61)

where τ̄ is an arbitrary time greater than
maxi∈I τi and in the right-hand side, the δτi ,xi de-
note Dirac functions in time and strike at (τi , xi ).
The meaning of (61) is the following:

−
∫

Q

(
∂τ v − σ 2x2

2
∂2

xxv + (r − q )x∂xv + qv

)
P

= 2
∑

i∈I

ωi (C(τi , xi ) − C̄i )v(τi , xi ) (62)

where Q = (0, τ̄ ) × R+, and v is any function
such that v ∈ L2((0, τ̄ ), V) with ∂τ v ∈ L2(Q) and
x2∂2

xxv ∈ L2(Q). Taking v = δC in (62) and using
(60), one finds

2
∑

i∈I

ωi (C(τi , xi ) − C̄i )δC(τi , xi )

= 2
∑

i∈I

ωi (C(τi , xi ) − ci )〈δτi ,xi , δC〉

= −
∫

Q

(
∂τ δC − σ x2

2
∂2

xxδC + (r − q )x∂xδC + qδC

)
P

= −
∫

Q
σδσ x2 P∂2

xxC

We have worked in a formal way, but all the
integrations above can be justified. This leads
to the estimate∣∣∣∣δ J +

∫

Q
σδσ x2 P∂2

xxC
∣∣∣∣ ≤ c‖δσ‖2

L∞(Q)

which implies that J is differentiable, and that
its differential at point σ is given by

DJ(σ ) : η �→ −
∫

Q
σηx2 P(σ )∂2

xxC(σ )

where P(σ ) satisfies (61), and C(σ ) satisfies (58).
We see that the gradient of J can be evaluated.
When (58) is discretized with, for example, fi-
nite elements, all that has been done can be re-
peated with a discrete adjoint problem, and the
gradient of the functional can be evaluated in
the same way. Let us stress that the gradient



PARTIAL DIFFERENTIAL EQUATIONS IN FINANCE 685

DJ(σ ) is computed exactly, which would not be
the case with, for example, a finite difference
method.

Local volatility can also be calibrated with
American options, but it is not possible to find
the analogue of Dupire’s equation. Thus, in the
context of a least square approach, the evalua-
tion of the cost function requires the solution of
#I variational inequalities, which is computa-
tionally expensive (see Achdou and Pironneau,
2005). In this case, it is also possible to find
the necessary optimality conditions involving
an adjoint state (see Achdou, 2005).

Appendix: Proof of (21)
First, from the definition (15) of p we have, for
any stopping time ρ ∈ T[t,T],

e− ∫ ρ

t r ds p
(
ρ, St,x

ρ

)

= ess sup
τ∈T[ρ,T]

E

(
e− ∫ τ

t r dsφ(St,x
τ )

∣∣ Fρ

)
, a.s.

(63)

where T[ρ,T] denotes the set of stopping times τ

such that ρ ≤ τ ≤ T . Then it is possible to show
that (see, for instance, Karatzas and Shreve,
2010, Eq. (D.7)), for any stopping time ρ ∈ T[t,T],

E

(
e− ∫ ρ

t r ds p(ρ, St,x
ρ )

)

= sup
τ∈T[ρ,T]

E

(
e− ∫ τ

t r dsφ(St,x
τ )

)
(64)

We obtain from (64) the decreasing property:
For all stopping times ρ1, ρ2 ∈ T[t,T], such that
ρ1 ≥ ρ2,

E

(
e− ∫ ρ1

t r ds p(ρ1, St,x
ρ1

)
)

≤ E

(
e− ∫ ρ2

t r ds p(ρ2, St,x
ρ2

)
)

(65)

We deduce from (63) that, for any τ ∈ T[τ ∗,T],

E

(
e− ∫ τ

t r dsφ
(
St,x

τ

) ∣∣ Fτ ∗
)

≤ e− ∫ τ∗
t r ds p(τ ∗, St,x

τ ∗ )

= e− ∫ τ∗
t r dsφ

(
St,x

τ ∗
)

(66)

where the last identity comes from the defi-
nition (20) of τ ∗. Then, for any stopping time

τ ∈ T[t,T], we have (by decomposing on the
events {τ < τ ∗} and {τ ≥ τ ∗}), and using (66)
for τ ≥ τ ∗):

E

(
e− ∫ τ

t r dsφ
(
St,x

τ

)) ≤ E

(
e− ∫ τ∧τ∗

t r dsφ
(
St,x

τ∧τ ∗
))

Hence, by taking the supremum over all the
stopping times τ ∈ T[t,T],

p(t, x) ≤ sup
τ∈T[t,T]

E

(
e− ∫ τ∧τ∗

t r dsφ
(
St,x

τ∧τ ∗
))

= sup
τ≤τ ∗, τ∈T[t,T]

E

(
e− ∫ τ

t r dsφ
(
St,x

τ

))
(67)

By (15), the right-hand side of (67) is bounded
from above by p(t,x), and thus we obtain the
equality

p(t, x) = sup
τ≤τ ∗, τ∈T[t,T]

E

(
e− ∫ τ

t r dsφ
(
St,x

τ

))
(68)

In fact the supremum in (68) is reached only
for τ = τ ∗ a.s.. Indeed, for τ ∈ T[t,T], if τ ≤ τ ∗

and P(τ < τ ∗) > 0, we have, by the definition of
τ ∗, E(e− ∫ τ

t r dsφ(St,x
τ )) < E(e− ∫ τ

t r ds p(τ, St,x
τ )) ≤

p(t, x). This concludes the proof of (21).

KEY POINTS
� When a deterministic method is available to

price an option, it is generally more efficient
than a brute force Monte Carlo algorithm.

� Deterministic techniques are usually more
involved to implement than stochastic ap-
proaches and typically require specific devel-
opments for each targeted pricing problem.

� Deterministic approaches are particularly
useful for nonlinear problems (including the
pricing of American options and portfolio op-
timization) and for calibration.

� Future research subjects for such approaches
include the development of efficient dis-
cretization methods for high-dimensional
problems, and the combination of deter-
ministic and stochastic approaches to take
advantage of both techniques (using
variance-reduction techniques or predictor-
corrector methods, for example).
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NOTES
1. Notice that the same equation has been con-

sidered by Vecer (2001) using some financial
arguments.

2. http://www-rocq.inria.fr/mathfi/Premia/
index.html

3. http://www.freefem.org/
4. More precisely, the interpolating operator ·

should also satisfy [P] ≤ [Q] everywhere as
soon as Pk

j ≤ Qk
j for all k, j .

5. A good initial guess is indeed the vector α

obtained at the previous time iteration.
6. F is slantly differentiable if there exist C > 0

and a matrix G(x) such that ∀x, ||G(x)−1||∞ <

C and F (x + h) = F (x) + G(x + h)h + o(h) as
h → 0. Here G(x) can be defined by G(x)ij =
Bij if (Bx − b)i ≤ (x − g)i , and G(x)ij = δij

otherwise.
7. Such a problem is called a linear complemen-

tarity problem.
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Abstract: Model risk is the risk of error in pricing or risk-forecasting (such as value at risk, or VaR)
models. It arises in part because any model involves simplification and calibration, and both of
these require subjective judgments that are inevitably open to error. Model risk can also arise where
a model is used inappropriately. Model risk is therefore an inescapable consequence of model use,
and there is abundant anecdotal and other evidence that it is a major problem, especially for VaR
models. However, there are also many ways in which risk managers and financial institutions can
manage this problem.

This entry examines the subject of model risk.
Loosely speaking, model risk is the risk of error
in the valuations produced by a pricing model
or in the estimated risk measures produced by a
risk model. The nature of model risk and its di-
verse causes and manifestations are examined.
The entry also briefly addresses the scale of the
problem and the dangers it entails, and then
goes on to discuss ways in which model risk
can be managed.

MODELS AND MODEL RISK
A model can be defined as “a simplified descrip-
tion of reality that is at least potentially use-
ful in decision-making” (Geweke, 2005, p. 7). A
model attempts to identify the key features of
whatever it is meant to represent and is, by its
very nature, a highly simplified structure. We
should therefore not expect any model to give
a perfect answer: Some degree of error is to be
expected, and we can think of this risk of error
as a form of model risk.

However, the term model risk is more subtle
than it looks, and not all output errors are due
to model inadequacy. For example, simulation
methods generally produce errors due to sam-
pling variation, so even the best simulation-
based model will produce results affected by
random noise. Conversely, models that are the-
oretically inappropriate can sometimes provide
good results. The most obvious cases in point
are the well-known “holes in Black-Scholes”:
Simple option pricing models often work well
even when some of the assumptions on which
they are based are known to be invalid. They
work well not because they are accurate, but
because those who use them are aware of their
limitations and use them discerningly.

In finance, we are concerned with both pric-
ing (or valuation) models and risk (or VaR) mod-
els. The former are models that enable us to
price a financial instrument, and with these
model risk boils down to the risk of mispric-
ing. These models are typically used on a stand-
alone basis and it is often very important that

691



692 Model Risk and Selection

they give precise answers: Mispricing can lead
to rapid and large arbitrage losses. Their ex-
posure to this risk depends on such factors as
the complexity of the position, the presence or
otherwise of unobserved variables (e.g., such
as volatilities), interactions between risk fac-
tors, the use of numerical approximations, and
so on.

Risk models are models that forecast financial
risks or probabilities. These models are exposed
to many of the same problems as pricing mod-
els, but all are often also affected by the difficul-
ties of trying to integrate risks across different
positions or business units, and this raises a
host of issues (e.g., aggregation problems, po-
tential inconsistencies across constituent posi-
tions or models, etc.) that do not (typically) arise
in stand-alone pricing models. So risk models
are exposed to more sources of model risk than
pricing models typically are. However, with
risk models there is far less need for accuracy:
Errors in risk estimates do not lead directly to
arbitrage losses, and the old engineering princi-
ple applies that the end output is only as good as
the weakest link in the system. With risk mod-
els, we therefore want to be approximate and
right, and efforts to achieve high levels of pre-
cision would be pointless because any reported
precision would be spurious.

We are particularly concerned in this entry
with how models can go wrong, and to appre-
ciate these problems it helps to understand how
our models are constructed in the first place. To
get to know our models we should:

� Understand the securities involved and the
markets in which they are traded.

� Isolate the most important variables and sep-
arate out the causal variables (or exogenous
variables) from the caused (or endogenous)
variables.

� Decide which exogenous variables are deter-
ministic and which are stochastic or random,
decide how the exogenous variables are to
be modeled, and decide how the exogenous
variables affect the endogenous ones.

� Decide which variables are observable or
measurable and which are not; decide how
the former are measured, and consider
whether and how the unobservable variables
can be proxied or implicitly solved from other
variables.

� Try to ensure that the model captures all key
features of the problem at hand, but also has
no unnecessary complexity.

� Consider how the model can be solved and
look for the simplest possible solutions. We
should also consider the possible benefits and
drawbacks of using approximations instead
of exact solutions.

� Program the model, taking account of
programming considerations, computational
time, and so on.

� Calibrate the model using suitable methods:
For example, we might estimate parameters
using maximum likelihood methods and then
adjust them using subjective judgments about
factors such as changing market conditions
that might not be fully reflected in our data
set.

� Test the model using data not used to calibrate
the model.

� Implement the model, regularly evaluate its
performance, and identify its strengths and
weaknesses.

� Keep a log of all these activities and their
outcomes.

SOURCES OF MODEL RISK
Incorrect Model Specification
One of the most important sources of model
risk is incorrect model specification, and this
can manifest itself in many ways:

� Stochastic processes might be misspecified.
We might assume that a stochastic process
follows a geometric Brownian motion when
it is in fact heavy-tailed, we might fit a sym-
metric distribution to skewed data, and so
forth. It is very easy to misspecify stochas-
tic processes, because the “true” stochastic
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process is very difficult to identify and it is
impossible in practice to distinguish between
a “true” process and a similar but false alter-
native. The misspecification of stochastic pro-
cesses can lead to major errors in estimates of
risk measures: The classic example is where
we incorrectly assume normality in the pres-
ence of heavy tails, an error that can lead to
major underestimates of VaR and other risk
measures.

� Incorrect calibration of parameters. Even if
we do manage to identify the “true” model,
the model might be calibrated with incorrect
parameter values. Parameters might be es-
timated with error, not kept up to date, es-
timated over inappropriate sample periods,
and so forth. This problem is often referred to
as parameter risk, and it arises everywhere in
risk management because it is practically im-
possible to determine “true” parameter val-
ues. Besides leading to major errors in risk
estimates, incorrect calibration can also lead
to major losses if the models are used to price
traded instruments. A good example was the
£90 million loss made by the NatWest Bank
from 1995 to 1997, where a trader had fed his
own (artificially high) estimates of volatility
into a model used to price long-dated over-
the-counter (OTC) interest rate options. We
can also get problems when correlations un-
expectedly polarize in a crisis: In such cases,
the portfolio loses much of its effective diver-
sification, and the “true” risks taken can be
much greater than estimates based on earlier
correlations might suggest.

� Missing risk factors and misspecified rela-
tionships. We might ignore stochastic volatil-
ity or fail to consider enough points across the
term structure of interest rates, ignore back-
ground risk factors such as macroeconomic
ones, or we might misspecify important rela-
tionships (e.g., by ignoring correlations).

� Ignoring of transactions costs, liquidity, and
crisis factors. Many models ignore trans-
actions costs and assume that markets are
perfectly liquid. Such assumptions are very

convenient for modelling purposes, but can
lead to major errors where transactions costs
are significant, where market liquidity is lim-
ited, or where a crisis occurs. These sorts
of problems were highlighted by the dif-
ficulties experienced by portfolio insurance
strategies in the October 1987 crash—where
strategies predicated on dynamic hedging
were unhinged by the inability to unwind
positions as the market fell. The failure to al-
low for illiquidity led to much larger losses
than the models anticipated—a classic form
of model risk.

There is empirical evidence that model mis-
specification risk is a major problem. To give a
couple of examples: Hendricks (1996) investi-
gated differences between alternative VaR esti-
mation procedures applied to 1,000 randomly
selected simple foreign exchange portfolios,
finding that these differences were sometimes
substantial; more alarmingly, a famous study
by Beder 1995 examined eight common VaR
methodologies used by a sample of commercial
institutions applied to three hypothetical port-
folios, and among other worrying results found
that alternative VaR estimates for the same port-
folio could differ by a factor of up to 14. Some
further evidence is provided by Berkowitz and
O’Brien (2001) who examined the VaR models
used by six leading U.S. financial institutions.
Their results indicated that these models can
be highly inaccurate: Banks sometimes experi-
enced high losses very much larger than their
models predicted, and this suggests that these
models are poor at dealing with heavy tails or
extreme risks. Their results also suggest that
banks’ structural models embody so many ap-
proximations and other implementation com-
promises that they lose any edge over much
simpler models such as generalized autoregres-
sive conditional heteroskedasticity (GARCH)
ones. The implication is that financial institu-
tions’ risk models are very exposed to model
risk—and one suspects many risk managers are
not aware of the extent of the problem.
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Incorrect Model Application
Model risk can also arise because a good
model is incorrectly applied. To quote Emanuel
Derman:

There are always implicit assumptions behind
a model and its solution method. But human
beings have limited foresight and great imagi-
nation, so that, inevitably, a model will be used
in ways its creator never intended. This is es-
pecially true in trading environments, where
not enough time can be spent on making inter-
faces fail-safe, but it’s also a matter of principle:
you just cannot foresee everything. So, even a
“correct” model, “correctly” solved, can lead
to problems. The more complex the model, the
greater this possibility. (Derman, 1997, p. 86)

One can give very many instances of this
problem: We might use the wrong model in a
particular context (e.g., we might use a Black-
Scholes model for pricing options when we
should have used a stochastic volatility model,
etc.); we might have initially had the right
model, but have fallen behind best market prac-
tice and not kept the model up to date, or not
replaced it when a superior model became
available; we might run Monte Carlo simula-
tions with a poor random number generator
or an insufficient number of trials, and so on.
We can also get “model creep,” where a model
is initially designed for one type of problem
and performs well on that problem, but is then
gradually applied to more diverse situations to
which it is less suited or not suited at all. A per-
fectly good model can then end up as a major
liability not because there is anything wrong
with it, but because users don’t appreciate its
limitations.

Implementation Risk
Model risk also arises from the ways in which
models are implemented. No model can pro-
vide a complete specification of model imple-
mentation in every conceivable circumstance
because of the very large number of possible
instruments and markets, and because of their

varying institutional, statistical, and other prop-
erties. However complete the model, imple-
mentation decisions still need to be made about
such factors as valuation (e.g., mark to market
versus mark to model, whether to use the mean
bid-ask spread, etc.), whether and how to clean
data, how to map instruments, how to deal with
legacy systems, and so on.

The possible extent of implementation risk is
illustrated by the results of a study by Mar-
shall and Siegel (1997). They sought to quantify
implementation risk by looking at differences
between how various commercial systems
applied the RiskMetrics variance-covariance
approach to specified positions based on a
common set of assumptions (that is, a one-
day holding period, a 95% VaR confidence
level, delta-valuation of derivatives, RiskMet-
rics mapping systems, etc.). They found that
any two sets of VaR estimates were always dif-
ferent, and that VaR estimates could vary by
up to nearly 30% depending on the instrument
class; they also found these variations were in
general positively related to complexity: The
more complex the instrument or portfolio, the
greater the range of variation of reported VaRs.
These results suggested that:

[A] naive view of risk assessment systems as
straightforward implementations of models is
incorrect. Although software is deterministic
(i.e., given a complete description of all the
inputs to the system, it has well-defined out-
puts), as software and the embedded model
become more complex, from the perspective
of the only partially knowledgeable user, they
behave stochastically. . . . Perhaps the most crit-
ical insight of our work is that as models and
their implementations become more complex,
treating them as entirely deterministic black
boxes is unwise, and leads to real implemen-
tation and model risks. (Marshall and Siegel,
1997, pp. 105–106)

Endogenous Model Risk
There is also a particularly subtle and invidious
form of model risk that arises from the ways in
which traders or asset managers respond to the
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models themselves: Traders or asset managers
will “game” against the model. Traders are
likely to have a reasonable idea of the errors in
the parameters—particularly volatility or corre-
lation parameters—used to estimate VaR, and
such knowledge will give the traders an idea
of which positions have under- and overesti-
mated risks. If traders face VaR limits or face
risk-adjusted remuneration with risks specified
in VaR terms, they will therefore have an incen-
tive to seek out such positions and trade them.
To the extent they do, they will take on more risk
than suggested by VaR estimates, which will
therefore be biased downward. Indeed, VaR es-
timates are likely to be biased even if traders
do not have superior knowledge of underlying
parameter values. The reason for this is that if
a trader uses an estimated variance-covariance
matrix to select trading positions, then he or she
will tend to select positions with low estimated
risks, and the resulting changes in position sizes
mean that the initial variance-covariance matrix
will tend to underestimate the resulting portfo-
lio risk. As Shaw nicely puts it:

[M]any factor models fail to pick up the risks
of typical trading strategies which can be the
greatest risks run by an investment bank. Ac-
cording to naı̈ve yield factor models, huge
spread positions between on-the-run bonds
and off-the-run bonds are riskless! According
to naı̈ve volatility factor models, hedging one
year (or longer dated) implied volatility with
three month implied volatility is riskless, pro-
vided it is done in the “right” proportions—i.e.,
the proportions built into the factor model! It is
the rule, not the exception, for traders to put on
spread trades which defeat factor models since
they use factor type models to identify richness and
cheapness! (Shaw, 1997, p. 215; his emphasis)

Other Sources of Model Risk
There are also other sources of model risk. Pro-
grams might have errors or bugs in them, simu-
lation methods might use poor random number
generators or suffer from discretization errors,
approximation routines might be inaccurate or
fail to converge to sensible solutions, rounding

errors might add up, and so on. We can also get
problems when programs are revised by people
who did not originally write them, when pro-
grams are not compatible with user interfaces or
other systems (e.g., datafeeds), when programs
become complex or hard to read (e.g., when
programs are rewritten to make them compu-
tationally more efficient but then become less
easy to follow). We can also get simple blun-
ders. Derman (1997, p. 87) reported the exam-
ple of a convertible bond model that was good
at pricing many of the options features embed-
ded in convertible bonds, but sometimes mis-
counted the number of coupon payments left to
maturity.

Finally, models can give incorrect answers be-
cause poor data are fed into them—”garbage
in, garbage out,” as the saying goes. Data prob-
lems can arise from many sources: from the way
data are constructed (e.g., whether we mark to
market or mark to model, whether we use ac-
tual trading data or end-of-day data, how we
deal with bid-ask spreads, etc.), from the way
time is handled (e.g., whether we use calen-
dar time, trading time, how we deal with hol-
idays, etc.), from the way in which data are
cleansed or standardized, from data being non-
synchronous, and from many other sources.

MANAGING MODEL RISK
Some Guidelines for Risk Managers
Given that risk managers can never eliminate
model risk, the only option left is to learn to live
with it and, hopefully, manage it. Practitioners
can do so in a number of ways:

� Be aware of model risk. First and foremost,
practitioners should simply be aware of it,
and be aware of the limitations of the mod-
els they use. They should also be aware of
the comparative strengths and weaknesses of
different models, be knowledgeable of which
models suit which problems, and be on the
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lookout for models that are applied inappro-
priately.

� Identify, evaluate, and check key assump-
tions. Users should explicitly set out the key
assumptions on which a model is based,
evaluate the extent to which the model’s re-
sults depend on these assumptions, and check
them as much as possible (e.g., using statisti-
cal tests).

� Choose the simplest reasonable model.
Exposure to model risk is reduced if practi-
tioners always choose the simplest reason-
able model for the task at hand. Occam’s
razor applies just as much in model selec-
tion as in anything else: Unnecessary com-
plexity is never a virtue. Whenever we choose
a more complex model over a simpler one,
we should always have a clear reason for
doing so.

� Don’t ignore small problems. Practitioners
should resist the temptation to explain away
small discrepancies in results and sweep them
under the rug. Small discrepancies are often
good warning signals of larger problems that
will manifest themselves later if they are not
sorted out.

� Test models against known problems. It is
always a good idea to check a model on sim-
ple problems to which one already knows the
answer, and many problems can be distilled
to simple special cases that have known an-
swers. If the model fails to give the correct an-
swer to a problem whose solution is already
known, then we immediately know that there
must be something wrong with it.

� Plot results and use nonparametric statis-
tics. Graphical outputs can be extremely re-
vealing, and simple histograms or plots often
show up errors that might otherwise be very
hard to detect. For example, a plot might have
the wrong slope or shape or have odd fea-
tures such as kinks that flag an underlying
problem. Summary statistics and simple non-
parametric tests can also be useful for helping
to impart a feel for data and results.

� Back-test and stress-test the model. Practi-
tioners should evaluate model adequacy us-
ing stress tests and back tests.

� Estimate model risk quantitatively. Where
feasible, practitioners should seek to estimate
model risk quantitatively (e.g., using simula-
tion methods). However, it helps to keep in
mind that any quantitative estimate of model
risk is almost certainly an underestimate be-
cause not all model risk is quantifiable.

� Reevaluate models periodically. Models
should be re-calibrated and reestimated on
a regular basis, and the methods used should
be kept up to date.

Some Institutional Guidelines
Financial institutions themselves can also com-
bat model risk through appropriate institu-
tional devices. One defense is a sound system to
vet models before they are approved for use and
then periodically review them. A good model-
vetting procedure is proposed by Crouhy et al.
(2001, pp. 607–608) and involves the following
four steps:

1. Documentation. The risk manager should
ask for a complete specification of the
model, including its mathematics, compo-
nents, computer code, and implementation
features (e.g., numerical methods and pric-
ing algormithms used). The information
should be in sufficient detail to enable the
risk manager to reproduce the model from
the information provided.

2. Soundness. The risk manager should check
that the model is a reasonable one for the
instrument(s) or portfolio concerned.

3. Benchmark modeling. The risk manager
should develop a benchmark model and test
it against well-understood approximation or
simulation methods.

4. Check results and test the proposed model.
The final stage involves the risk manager
using the benchmark model to check the
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performance of the proposed model. The
model should also be checked for zero-
arbitrage properties such as put-call parity,
and should then be stress tested to help de-
termine the range of parameter values for
which it will give reasonable estimates.

All these stages should be carried out free
of undue pressures from the front office, and
traders should not be allowed to vet their own
pricing models. It is also important to keep
good records, so each model should be fully
documented in the middle (or risk) office. Risk
managers should have full access to the model
at all times, as well as access to real trading
and other data that might be necessary to check
models and validate results. The ideal should
be to give the middle office enough informa-
tion to be able to check any model or model re-
sults at any time, and do so using appropriate
(that is, up to date) data sets. This information
set should include a log of model performance
with particular attention to any problems en-
countered and what (if anything) has been done
about them. There should also be a periodic re-
view (as well as occasional spot check) of the
models in use, to ensure that model calibration
is up to date and that models are upgraded in
line with market best practice, and to ensure
that obsolete models are identified as such and
taken out of use. Such risk audits should also
address not just the risk models, but all aspects
of the firm’s risk management. And, of course,
all these measures should take place in the con-
text of a strong and independent risk oversight
or middle office function.

KEY POINTS
� A model attempts to identify the key features

of whatever it is meant to represent and is, by
its very nature, a highly simplified structure.

� In financial modeling, the concern is with
both pricing (or valuation) models and risk
(or VaR) models. The risk of error in pric-

ing or risk-forecasting models is referred to
as model risk.

� Model risk is an inescapable consequence of
model use and affects both pricing models
and VaR models.

� The main sources of model risk include
incorrect specification, incorrect application,
implementation risk, and the problem of en-
dogenous model risk where traders “game”
against the model.

� There are ways in which practitioners can
manage model risk. These include (1) recog-
nizing model risk, (2) identifying, evaluating,
and checking the model’s key assumptions,
(3) selecting the simplest reasonable model,
(4) resisting the temptation to ignore small
discrepancies in results, (5) testing the model
against known problems, (6) plotting results
and employing nonparametric statistics, (7)
back-testing and stress-testing the model, (8)
estimating model risk quantitatively, and (9)
reevaluating models periodically.
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Abstract: Financial modelers have to solve the critical problem of selecting or perhaps building the
optimal model to represent the phenomena they seek to study. The task calls for a combination of
personal creativity, theory, and machine learning.

In this entry we discuss methods for model
selection and analyze the many pitfalls of the
model selection process.

MODEL SELECTION AND
ESTIMATION
In his book Complexity, Mitchell Waldrop (1992)
describes the 1987 Global Economy Workshop
held at The Santa Fe Institute, a research cen-
ter dedicated to the study of complex phe-
nomena and related issues. Organized by the
economist Bryan Arthur and attended by dis-
tinguished economists and physicists, the sem-
inar introduced the idea that economic laws
might be better understood applying the prin-
ciples of physics and, in particular, the newly
developed theory of complex systems. The sem-
inar proceedings were to become the influential

book The Economy as an Evolving Complex System
(Anderson, Arrow, and Pines, 1998).

An anecdote from the book is revealing of
the issues specific to economics as a scien-
tific endeavor. According to Waldrop, physi-
cists attending the seminar were surprised to
learn that economists used highly sophisticated
mathematics.

A physicist attending the seminar reportedly
asked Kenneth Arrow, the 1972 Nobel Prize
winner in economics, why, given the lack of
data to support theories, economists use such
sophisticated mathematics. Arrow replied, “It
is just because we do not have enough data
that we use sophisticated mathematics. We have
to ensure the logical consistency of our argu-
ments.” For physicists, on the other hand, ex-
plaining empirical data is the best guarantee
of the logical consistency of theories. If theories
work empirically, then mathematical details are

699
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not so important and will be amended later; if
theories do not work empirically, no logical sub-
tlety will improve them.

This anecdote is revealing of one of the
key problems that any modeler of economic
phenomena has to confront. On the one side,
economics is an empirical science based on em-
pirical facts. However, as data are scarce, many
theories and models fit the same data. One is
tempted to rely on “clear reasoning” to com-
pensate for the scarcity of data. In economics,
there is always a tension between the use of
pure reasoning to develop ex ante economic
theories and the need to conform to generally
accepted principles of empirical science. The
development of high-performance computing
has aggravated the problem, making it possible
to discover subtle patterns in data and to build
models that fit data samples with arbitrary
precision. But patterns and models selected in
this way are meaningless and reveal no true
economic feature.

Given the importance of model selection, let
us discuss this issue before actually discussing
estimation issues. It is perhaps useful to com-
pare again the methods of economics and of
physics. In physics, the process of model choice
is largely based on human creativity. Facts and
partial theories are accumulated until scien-
tists make a major leap forward, discovering
a new unifying theory. Theories are generally
expressed through differential equations and
often contain constants (i.e., numerical parame-
ters) to be empirically ascertained. Note that the
discovery of laws and the determination of con-
stants are separate moments. Theories are often
fully developed before the constants are deter-
mined; physical constants often survive major
theoretical overhauls in the sense that new theo-
ries must include the same constants plus, even-
tually, additional ones.

Physicists are not concerned with problems
of “data snooping,” that is, of fitting the data
to the same sample that one wants to predict.
In general, data are overabundant and models
are not determined through a process of fitting

and adaptation. Once a physical law that accu-
rately fits all available data is discovered, scien-
tists are confident that it will fit similar data in
the future. The key point is that physical laws
are known with a high level of precision. Cen-
turies of theoretical thinking and empirical re-
search have resulted in mathematical models
that exhibit an amazing level of correspondence
with reality. Any minor discrepancy from pre-
dictions to experiments entails a major scientific
reevaluation. Often new laws have completely
different forms but produce quite similar re-
sults. Experiments are devised to choose the
winning theory.

Now consider economics, where the concep-
tual framework is totally different. First, though
apparently many data are available, these data
come in vastly different patterns. For example,
the details of economic development are very
different from year to year and from country to
country. Asset prices seem to wander about in
random ways. Introducing a concept that plays
a fundamental role later in this entry, we can
state: From the point of view of statistical esti-
mation, economic data are always scarce given
the complexity of their patterns.

Attempts to discover simple deterministic
laws that accurately fit empirical economic data
have proved futile. Furthermore, as economic
data are the product of human artifacts, it is rea-
sonable to believe that they will not follow the
same laws for very long periods of time. Simply
put, the structure of any economy changes too
much over time to believe that economic laws
are time-invariant laws of nature. One is, there-
fore, inclined to believe that only approximate
laws can be discovered.

However the above considerations create
an additional problem: The precise meaning
of approximation must be defined. The usual
response is to have recourse to probability
theory. Here is the reasoning. Economic data
are considered one realization of stochastic (i.e.,
random) data. In particular, economic time se-
ries are considered one realization of a stochas-
tic process. The attention of the modeler has
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therefore to switch from discovering determin-
istic paths to determining the time evolution of
probability distributions. In physics, this switch
was made at the end of the 19th century, with
the introduction of statistical physics. It later be-
came an article of scientific faith that we can ar-
rive at no better than a probabilistic description
of nature.

The adoption of probability as a descriptive
framework is not without a cost: Discover-
ing probabilistic laws with confidence requires
working with very large populations (or sam-
ples). In physics, this is not a problem as we
have very large populations of particles. (Al-
though this statement needs some qualifica-
tion because physics has now reached the stage
where it is possible to experiment with small
numbers of elementary particles, it is sufficient
for our discussion here.) In economics, how-
ever, populations are too small to allow for a
safe estimate of probability laws; small changes
in the sample induce changes in the laws. We
can, therefore, make the following statement:
Economic data are too scarce to allow us to
make sure probability estimates.

For example, Gopikrishnan, Meyer, Nunes
Amaral, and Stanley (1998) conducted a study
to determine the distribution of stock returns at
short time horizons, from a few minutes to a few
days. They found that returns had a power tail
distribution with exponent α ≈ 3. One would
expect that the same measurement repeated
several times over would give the same result.
But this is not the case. Since the publication of
the aforementioned paper, the return distribu-
tion has been estimated several times, obtaining
vastly different results. Each successive mea-
surement was made in bona fide, but a slightly
different empirical setting produced different
results.

As a result of the scarcity of economic data,
many statistical models, even simple ones, can
be compatible with the same data with roughly
the same level of statistical confidence. For ex-
ample, if we consider stock price processes,
many statistical models—including the ran-

dom walk—compete to describe each process
with the same level of significance. Before dis-
cussing the many issues surrounding model se-
lection and estimation, we will briefly discuss
the subject of machine learning and the machine-
learning approach to modeling.

THE (MACHINE) LEARNING
APPROACH TO MODEL
SELECTION
There is a fundamental distinction between (1)
estimating parameters in a well-defined model
and (2) estimating models through a process of
learning. Models, as mentioned, are determined
by human modelers using their creativity. For
example, a modeler might decide that stock re-
turns in a given market are influenced by a set
of economic variables and then write a linear
model as follows:

ri,t =
K∑

k=1

βk fk,t

where the f are stochastic processes that rep-
resent a set of given economic variables. The
modeler must then estimate the βk and test the
validity of his model.

In the machine-learning approach to
modeling—ultimately a byproduct of the
diffusion of computers—the process is the
following:
� There is a set of empirical data to explain.
� Data are explained by a family of mod-

els that include an unbounded number of
parameters.

� Models fit with arbitrary precision any set of
data.

That models can fit any given set of data
with arbitrary precision is illustrated by neural
networks, one of the many machine learning
tools used to model data that includes genetic
algorithms. As first demonstrated by Cybenko
(1989), neural networks are universal func-
tion approximators. If we allow a sufficient
number of layers and nodes, a neural network
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can approximate any given function with
arbitrary precision. The idea of universal func-
tion approximators is well known in calculus.
The Taylor and Fourier series are universal
approximators for broad classes of functions.

Suppose a modeler wants to model the un-
known data generation process (DGP) of a time
series X(t) using a neural network. A DGP is
a possibly nonlinear function of the following
type:

X(t) = F (X(t − 1), . . . , X(t − k))

that links the present value of the series to its
past. A neural network will try to learn the
function F using empirical data from the se-
ries. If the number of layers and nodes is not
constrained, the network can learn F with un-
limited precision.

However, the key concept of the theory of
machine learning is that a model that can fit
any data set with arbitrary precision has no ex-
planatory power, that is, it does not capture
any true feature of the data, neither in a de-

Figure 1 Polynomial Fitting of a Trend Stationary Process Using Two Polynomials of Degree 2 and 20
Respectively on a Training Window of 200 Steps

terministic setting nor in a statistical setting.
In an economic context, machine learning per-
fectly explains sample data but has no forecast-
ing power. It is only a mathematical device; it
does not correspond to any economic property.

We can illustrate this point in a simplified set-
ting. Let us generate an autoregressive trend
stationary process according to the following
model:

X(i) = X(i − 1) + λ(Di − X(i − 1)) + σε(i)
λ = 0.1, D = 0.1, σ = 0.5

where ε(i) are normally distributed zero-mean
unit-variance random numbers generated with
a random number generator. The initial con-
dition is X = 1. This process is asymptoti-
cally trend stationary. Using the ordinary least
squares (OLS) method, let us fit to the process X
two polynomials of degree 2 and 20 respectively
on a training window of 200 steps. We con-
tinue the polynomials five steps after the train-
ing window. Figure 1 represents the process
plot and the two polynomials. Observe from the
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exhibit the different behavior of the two poly-
nomials. The polynomial of degree 2 essentially
repeats the linear trend, while the polynomial
of degree 20 follows the random fluctuations of
the process quite accurately. Immediately after,
however, the training window it diverges.

To address the problem, the theory of machine
learning suggests criteria to constrain models so
that they fit sample data only partially but, as
a trade-off, retain some forecasting power. The
intuitive meaning is the following: The struc-
ture of the data and the sample size dictate the com-
plexity of the laws that can be learned by computer
algorithms.

This is a fundamental point. If we have only a
small sample data set we can learn only simple
patterns, provided that these patterns indeed
exist. The theory of machine learning constrains
the dimensionality of models to make them
adapt to the sample size and structure.

In most practical applications, the theory
of machine learning works by introducing a
penalty function that constrains the models. The
penalty function is a function of the size of the
sample and of the complexity of the model. One
compares models by adding the penalty func-
tion to the likelihood function (a definition of
the likelihood function is provided later). In this
way one can obtain an ideal trade-off between
model complexity and forecasting ability.

Several proposals have been made as regards
the shape of the penalty function. Three criteria
are in general use:

� The Akaike Information Criterion (AIC)
� The Bayesian Information Criterion (BIC) of

Schwartz
� The Maximum Description Length principle

of Rissanen

More recently, Vapnik and Chervonenkis
(1974) have developed a full-fledged quantita-
tive theory of machine learning. While this the-
ory goes well beyond the scope of this book, the
practical implication of the theory of learning is
important to note: Model complexity must be
constrained in function of the sample.

Consider that some “learning” appears in
most financial econometric endeavors. For ex-
ample, determining the number of lags in an
autoregressive model is a problem typically
solved with methods of learning theory, that
is, by selecting the number of lags that mini-
mize the sum of the loss function of the model
plus a penalty function. Ultimately, in modern
computer-based financial econometrics, there is
no clear-cut distinction between a learning ap-
proach versus a theory-based a priori approach.

Note, however, that the theory of machine
learning offers no guarantee of success. To see
this point, let’s generate a random walk and
fit two polynomials of degree 3 and 20, respec-
tively. Figure 2 illustrates the random path and
the two polynomials. The two polynomials ap-
pear to fit the random path quite well. Fol-
lowing the above discussion, the polynomial
of order 3 seems to capture some real behav-
ior of the data. But as the data are random, the
fit is spurious. This is by no means a special
case. In general, it is often possible to fit mod-
els to sample data even if the data are basically
unpredictable.

Figures 1 and 2 are examples of the simplest
cases of model fitting. One might be tempted
to object that fitting a curve with a polynomial
is not a good modeling strategy for prices or
returns. This is true, as one should model a dy-
namic DGP. However, fitting a DGP implies a
multivariate curve fitting. For illustration pur-
poses, we chose the polynomial fitting of a uni-
variate curve: It is easy to visualize and contains
all the essential elements of model fitting.

SAMPLE SIZE AND MODEL
COMPLEXITY
The four key conclusions reached thus far are

� Economic data are generally scarce for statis-
tical estimation given the complexity of their
patterns.

� Economic data are too scarce for sure statisti-
cal estimates.
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Figure 2 Polynomial Fitting of a Random Walk Using Two Polynomials of Degree 3 and 20 Respectively
on a 100-Step Sample

� The scarcity of data means that the data might
be compatible with many different models.

� There is a trade-off between model complex-
ity and the size of the data sample.

The last two considerations are critical. To illus-
trate the quantitative trade-off between the size
of a data sample and model complexity, con-
sider an apparently straightforward case: esti-
mating a correlation matrix.

It is well known from the theory of random
matrices that the eigenvalues of the correlation
matrix of independent random walks are dis-
tributed according to the following law:

ρ(λ) = Q
2πσ 2

√
(λmax − λ)(λmin − λ)

λ

where Q is the ratio between the number N of
sample points and the number M of time series.
Figure 3 illustrates the theoretical distribution
of eigenvalues for three values of Q: Q = 1.8,
Q = 4, and Q = 16.

As can be easily predicted by examining the
above formula, the distribution of eigenvalues

is broader when Q is smaller. The correspond-
ing λmax is larger for the broader distribution.
The λmax are respectively:

λmax = 3.0463 for Q = 1.8
λmax = 2.2500 for Q = 4
λmax = 1.5625 for Q = 16

The eigenvalues of a random matrix do not
carry any true correlation information. If we
now compute the eigenvalues of an empirical
correlation matrix of asset returns with a given
Q (i.e., the ratio between number of samples and
the number of series), we find that only a few
eigenvalues carry information as they are out-
side the area of pure randomness correspond-
ing to the Q. In fact, with good approximation,
λmax is the cut-off point that separates meaning-
ful correlation information from noise. (The ap-
plication of random matrices to the estimation
of correlation and covariance matrices is devel-
oped in Plerou, Gopikrishnan, Rosenow, Nunes
Amaral, Guhr, and Stanley [2002].) Therefore, as
the ratio of sample points to the number of asset
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Figure 3 The Theoretical Distribution of Eigenvalues for Three Values of Q: Q = 1.8, Q = 4, and Q = 16

prices grows (i.e., we have more points for each
price process) the “noise area” gets smaller.

To show the effects of the ratio Q on the es-
timation of empirical correlation matrices, let’s
compute the correlation matrix for three sets of
900, 400, and 100 stock prices that appeared in
the MSCI Europe in a six-year period from De-
cember 1998 to February 2005. The return series
contain in total 1,611 sample points, each corre-
sponding to a trading day.

First we compute the correlation matrices.
The average correlation (excluding the diago-
nal) is approximately 10% for the three sets of
100, 400, and 900 stocks. Then we compute the
eigenvalues. The plot of sorted eigenvalues for
the three samples is shown in Figures 4, 5, and
6. One can see from these exhibits that when
the ratio Q is equal to 16 (i.e., we have more
sample points per stock price process), the plot
of eigenvalues decays more slowly.

Now compare the distribution of empirical
eigenvalues with the theoretical cut-off point
λmax that we computed above. The parameter Q
was chosen to approximately represent the ra-

tios between 1,611 sample points and 100, 400,
and 900 stocks. Results are tabulated in Table 1.
This exhibit shows that the percentage of mean-
ingful eigenvalues grows as the ratio between
the number of sample points and the number
of processes increases. If we hold the number
of sample points constant (i.e., 1,611) and in-
crease the number of time series from 100 to
900, a larger percentage of eigenvalues becomes
essentially noise (i.e., they do not carry infor-
mation). Obviously the number of meaningful
eigenvalues increases with the number of se-
ries, but, due to loss of information, it does so
more slowly than does the number of series due
to loss of information.

Two main conclusions can be drawn from
Table 1:

� Meaningful eigenvalues represent a small
percentage of the total, even when Q = 16.

� The ratio of meaningful eigenvalues to the
total grows with Q, but the gain is not linear.

The above considerations apply to estimating
a correlation matrix. As we will see, however,
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Figure 4 Plot of Eigenvalues for 900 Prices, Q = 1.8

Figure 5 Plot of Eigenvalues for 400 Prices, Q = 4



MODEL SELECTION AND ITS PITFALLS 707

Figure 6 Plot of Eigenvalues for 100 Prices, Q = 16

Table 1 Comparison of the Distribution of Empirical Eigenvalues with the Theoretical
Cutoff Point for Different Values of Q

Number of
processes

Average
correlation

Max
eigenvalue

Number of
meaningful
eigenvalues

Percentage of
meaningful
eigenvalues

900; Q = 1.8 10% 118 26 0.029
400; Q = 4 9.5% 50 15 0.038
100; Q = 16 9.8% 14 6 0.06

they carry over, at least qualitatively, to the esti-
mation of any linear dynamic model. In fact, the
estimation of linear dynamic models is based on
estimating correlation and covariance matrices.

DANGEROUS PATTERNS OF
BEHAVIOR
One of the most serious mistakes that a financial
modeler can make is to look for rare or unique
patterns that look profitable in-sample but pro-
duce losses out-of-sample. This mistake is made
easy by the availability of powerful computers
that can explore large amounts of data: Any

large data set contains a huge number of pat-
terns, many of which look very profitable. Oth-
erwise expressed, any large set of data, even
if randomly generated, can be represented by
models that appear to produce large profits.
To see the point, perform the following sim-
ple experiment. Using a good random number
generator, generate a large number of indepen-
dent random walks with zero drift. In sample,
these random walks exhibit large profit oppor-
tunities. There are numerous reasons for this. In
fact, if we perform a sufficiently large number of
simulations, we will generate a number of paths
that are arbitrarily close to any path we want.
Many paths will look autocorrelated and will
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be indistinguishable from trend-stationary pro-
cesses. In addition, many stochastic trends will
be indistinguishable from deterministic drifts.

There is nothing surprising in the above phe-
nomena. A stochastic process or a discrete
time series is formed by all possible paths.
For example, a trend-stationary process and a
random walk are formed by the same paths.
What makes the difference between a trend-
stationary process and a random walk are not
the paths—which are exactly the same—but the
probability assignments. Suppose processes are
discrete, for example because time is discrete
and prices move by only discrete amounts. Any
computer simulation is ultimately a discrete
process, though the granularity of the process is
very small. In this discrete case, we can assign a
discrete probability to each path. The difference
between processes is the probability assigned to
each path. In a large sample, even low proba-
bility paths will occur, albeit in small numbers.

In a very large data set, almost any path will
be approximated by some path in the sample.
If the computer generates a sufficiently large
number of random paths, we will come arbi-
trarily close to any given path, including, for
example, to any path that passes the test for
trend stationarity. In any large set of price pro-
cesses, one will therefore always find numer-
ous interesting paths, such as cointegrated pairs
and trend-stationary processes.

To avoid looking for ephemeral patterns, we
must stick rigorously to the paradigm of ma-
chine learning and statistical tests. This sounds
conceptually simple, but it is very difficult to
do in practice. It means that we have to decide
the level of confidence that we find acceptable
and then compute probability distributions for
the entire sample. This has somewhat counter-
intuitive consequences. We illustrate this point
using as an example the search for cointegrated
pairs; the same reasoning applies to any statis-
tical property.

Suppose that we have to decide whether a
given pair of time series is cointegrated or not.
We can use one of the many cointegration tests.

If the time series are short, no test will be con-
vincing; the longer the time series, the more
convincing the test. The problem with economic
data is that no test is really convincing as the
confidence level is generally in the range of 95%
or 99%. Whatever confidence level we choose,
given one or a small number of pairs, we de-
cide the cointegration properties of each pair
individually. For example, in macroeconomic
studies where only a few time series are given,
we decide if a given pair of time series is coin-
tegrated or not by looking at the cointegration
test for that pair.

Does having a large number of data series,
for example 500 price time series, require any
change in the testing methodology? The an-
swer, in fact, is that additional care is required:
In a large data set, for the reasons we outlined
above, any pattern can be approximated. One
has to look at the probability that a pattern will
appear in that data set. In the example of cointe-
gration, if one finds, say, ten cointegrated pairs
in 500 time series, the question to ask is: What
is the probability that in 500 time series 10 time
series are cointegrated? Answering this ques-
tion is not easy because the properties of pairs
are not independent. In fact, given three se-
ries a, b, and c we can form three distinct pairs
whose cointegration properties are not, how-
ever, mutually independent. This makes calcu-
lations difficult.

To illustrate the above, let us generate a
simulated random walk using the following
formula:

X(i) = X(i − 1) + ε(i)
X(1) = 1

where X(i) is a random vector with 500 ele-
ments, and the noise term is generated with
a random number generator as 500 indepen-
dent normally distributed zero-mean unitary-
variance numbers. Now run simulations for 500
steps. Next, eliminate linear trends from each
realization. (Cointegration tests can handle lin-
ear trends. We detrended for clarity of illustra-
tions.) A sample of three typical realizations of
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Figure 7 A Sample of Three Typical Realizations of a 500-Step Random Walk with Their Trends

the random walks is illustrated in Figure 7 and
the corresponding residuals after detrending in
Figure 8.

Now run the cointegration test at a 99% con-
fidence level on each possible pair. In a sample
of 10 simulation runs, we obtain the following

Figure 8 The Residuals of the Same Random Walks after Detrending

number of pairs that pass the cointegration test:
74, 75, 89, 73, 65, 91, 91, 93, 84, 62. There are in
total
(

500
2

)
= 500 × 499

2
= 124,750 distinct pairs
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If cointegration properties of pairs were inde-
pendent, given 500 random walks, on the av-
erage we should find 124 pairs that pass the
cointegration test at the 99% confidence level.
However, cointegration properties of pairs are
not independent for the reasons mentioned
above. This explains why we obtained a smaller
number of pairs than expected. This example il-
lustrates the usefulness of running Monte Carlo
experiments to determine the number of coin-
tegrated pairs found in random walks.

If, however, the patterns we are looking for
are all independent, calculations are relatively
straightforward. Suppose we are looking for
stationary series applying an appropriate test
at a 99% confidence interval. This means that
a sample random walk has a 1% probability of
passing the test (i.e., to be wrongly accepted
as stationary) and a 99% probability of being
correctly rejected. In this case, the probability
distribution of the number of paths that pass
the stationarity test given a sample of 500 gen-
erated random walks is a binomial distribution
with probabilities p = 0.01 and q = 1 − p = 0.99
and mean 5.

We apply criteria of this type very often in
our professional and private lives. For example,
suppose that an inspector has to decide whether
to accept or reject a supply of spare parts. The
inspector knows that on average one part in 100
is defective. He randomly chooses a part in a lot
of 100 parts. If the part is defective, he is likely to
ask for additional tests before accepting the lot.
Suppose now that he tests 100 parts from 100
different lots of 100 parts and finds only one
defective part. He is likely to accept the 100 lots
because the incidence of faulty parts is what he
expected it to be, that is, one in 100. The point
is that we are looking for statistical properties,
not real identifiable objects.

A profitable price time series is not a rec-
ognizable object. We find what seems to be a
profitable time series but we cannot draw any
conclusion because the level of the “authenticity
test” of each series is low. When looking at very
large data sets, we have to make data work for

us and not against us, examining the entire sam-
ple. For example, consider a strategy known
as “pair trading.” In this strategy, an investor
selects pairs from a stock universe and main-
tains a market neutral (i.e., zero beta) long-short
portfolio of several pairs of stocks with a mean-
reverting spread. When there are imbalances in
the market causing the spread to diverge, the in-
vestor seeks to determine the reason for the di-
vergence. If the investor believes that the spread
will revert, he or she takes a position in the two
stocks to capitalize on the reversion. A modeler
who would define a pair trading strategy based
on the cointegrated pair in the previous exam-
ple would be disappointed. Based on extensive
Monte Carlo simulations to compare the num-
ber of cointegrated pairs among the stocks in the
S&P 500 index for the period 2001–2004 and in
computer-generated random walks, the num-
ber of cointegrated pairs we found was slightly
larger in the real series than in the simulated
random walks.

We can conclude that it is always good prac-
tice is to test any model or pattern recognition
method against a surrogated random sample
generated with the same statistical character-
istics as the empirical ones. For example, it is
always good practice to test any model and
any strategy intended to find excess returns on
a set of computer-generated random walks. If
the proposed strategy finds profit in computer-
generated random walks, it is highly advisable
to rethink the strategy.

DATA SNOOPING
Given the scarcity of data and the basically
uncertain nature of any econometric model, it
is generally required to calibrate models on
some data set, the so-called training set, and
test them on another data set, the test set. In
other words, it is necessary to perform an out-
of-sample validation on a separate test set. The
rationale for this procedure is that any machine-
learning process—or even the calibration mech-
anism itself—is a heuristic methodology, not
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a true discovery process. Models determined
through a machine-learning process must be
checked against the reality of out-of-sample val-
idation. Failure to do so is referred to as data
snooping, that is, performing training and tests
on the same data set.

Out-of-sample validation is typical of
machine-learning methods. Learning entails
models with unbounded capabilities of ap-
proximation constrained by somewhat artificial
mechanisms such as a penalty function. This
learning mechanism is often effective but there
is no guarantee that it will produce a good
model. Therefore, the learning process is con-
sidered discovery heuristics. The true validation
test, say the experiments, has to be performed
on the test set. Needless to say, the test set
must be large and cover all possible patterns,
at least in some approximate sense. For exam-
ple, in order to test a trading strategy one would
need to test data in many different market con-
ditions: with high volatility and low volatil-
ity, in expansionary and recessionary economic
periods, under different correlation situations,
and so on.

Data snooping is not always easy to under-
stand or detect. Suppose that a modeler wants
to build the DGP of a time series. A DGP is
often embodied in a set of difference equa-
tions with parameters to be estimated. Suppose
that four years of data of a set of time series
are available. A modeler might be tempted to
use the entire four years to perform a “robust”
model calibration and to “test” the model on
the last year. This is an example of data snoop-
ing that might be difficult to recognize and to
avoid. In fact, one might (erroneously) reason
as follows. If there is a true DGP, it is more
likely that it is “discovered” on a four-year
sample than on shorter samples. If there is a
true DGP, data snooping is basically innocu-
ous and it is therefore correct to use the entire
data set. On the other hand, if there is no stable
DGP, then it does not make sense to calibrate
models as their coefficients would be basically
noise.

This reasoning is wrong. In general, there is
no guarantee that, even if a true DGP exists, a
learning algorithm will learn it. Among the rea-
sons for learning failure are (1) the slow conver-
gence of algorithms which might require more
data than that available, and (2) the possibility
of getting stuck in local optima. However, the
real danger is the possibility that no true DGP
exists. Should this be the case, the learning algo-
rithm might converge to a false solution or not
converge at all. We illustrated this fact earlier in
this entry where we showed how it is possible
to successfully fit a low dimensionality polyno-
mial to a randomly generated path.

There are other forms of data snooping. Sup-
pose that a modeling team works on a sample of
stock price data to find a profitable trading strat-
egy. Suppose that they respect all of the above
criteria of separation of the training set and the
data set. Different strategies are tried and those
that do not perform are rejected. Though sound
criteria are used, there is still the possibility that
by trial and error the team hits a strategy that
performs well in sample but poorly when ap-
plied in the real world. Another form of hidden
data snooping is when a methodology is finely
calibrated to sample data. Again, there is the
possibility that by trial and error one finds a
calibration parameterization that works well in
sample and poorly in the real world.

There is no sound theoretical way to avoid
this problem ex ante. In practice, the answer is to
separate the sets of training data and test data,
and to decide on the existence of a DGP in func-
tion of performance on the test data. However,
this type of procedure requires a lot of data.
“Resampling” techniques have been proposed
to alleviate the problem. Intuitively, the idea be-
hind resampling methods is that a stable DGP
calibrated on any portion of the data should
work on the remaining data. Widely used re-
sampling techniques include “leave-one-out”
and “bootstrapping.” The bootstrap technique
creates surrogated data from the initial sample
data. (The bootstrap is an important technique
but its description goes beyond the scope of this
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entry. For a review of bootstrapping, see Davi-
son and Hinkley [1997].)

Data snooping is a defect of training pro-
cesses which must be controlled but which is
very difficult to avoid given the size of data
samples currently available. Suppose samples
in the range of ten years are available. (Tech-
nically much longer data sets on financial mar-
kets, up to 50 years of price data, are available.
While useful for some applications, these data
are useless for most asset management appli-
cations given the changes in the structure of
the economy.) One can partition these data and
perform a single test free from data snooping bi-
ases. However, if the test fails, one has to start all
over again and design a new strategy. The pro-
cess of redesigning the modeling strategy might
have to be repeated several times over before an
acceptable solution is found. Inevitably, repeat-
ing the process on the same data includes the
risk of data snooping. The real danger in data
snooping is the possibility that by trial and er-
ror or by optimization, one hits upon a model
that casually performs well on the sample data
but that will perform poorly in real-world fore-
casts. Fabozzi, Focardi, and Ma (2005) explore
at length different ways in which data snoop-
ing and other biases might enter the model dis-
covery process and propose a methodology to
minimize the risk of biases, as will be explained
in the last section of this entry.

SURVIVORSHIP BIASES AND
OTHER SAMPLE DEFECTS
We now examine possible defects of the sample
data themselves. In addition to errors and miss-
ing data, one of the most common (and danger-
ous) defects of sample data are the so-called
survivorship biases. The survivorship bias is a
consequence of selecting time series, in particu-
lar asset price time series, based on criteria that
apply at the end of the period. For example, sup-
pose a sample contains 10 years of price data for
all stocks that are in the S&P 500 today and that
existed for the last 10 years. This sample, ap-

parently well formed, is, however, biased: The
selection, in fact, is made on the stocks of com-
panies that are in the S&P 500 today, that is,
those companies that have “survived” in suf-
ficiently good shape to still be in the S&P 500
aggregate. The bias comes from the fact that
many of the surviving companies successfully
passed through some difficult period. Surviv-
ing the difficulty is a form of reversion to the
mean that produces trading profits. However,
at the moment of the crisis it was impossible
to predict which companies in difficulty would
indeed have survived.

To gauge the importance of the survivorship
bias, consider a strategy that goes short on a
fraction of the assets with the highest price and
long on the corresponding fraction with the
lowest price. This strategy might appear highly
profitable in sample. Looking at the behavior
of this strategy, however, it becomes clear that
profits are very large in the central region of the
sample and disappear approaching the present
day. This behavior should raise flags. Although
any valid trading strategy will have good and
bad periods, profit reduction when approach-
ing the present day should command height-
ened attention.

Avoiding the survivorship bias seems simple
in principle: It might seem sufficient to base
any sample selection at the moment where the
forecast begins, so that no invalid information
enters the strategy prior to trading. However,
the fact that companies are founded, merged,
and closed plays havoc with simple models. In
fact, calibrating a simple model requires data of
assets that exist over the entire training period.
This in itself introduces a potentially substantial
training bias.

A simple model cannot handle processes that
start or end in the middle of the training pe-
riod. On the other hand, models that take into
account the foundation or closing of firms can-
not be simple. Consider, for example, a simple
linear autoregressive model. Any addition or
deletion of companies introduces a nonlinear-
ity in the model and precludes using standard
tools such as the OLS method.
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There is no ideal solution. Care is required in
estimating possible performance biases conse-
quent to sample biases. Suppose that we make
a forecast of return processes based on models
trained on the past three or four years of re-
turns data on the same processes that we want
to forecast. Clearly there is no data snooping,
as we use only information available prior to
forecasting. However, it should be understood
that we are estimating our models on data that
contain biases. If the selection of companies to
forecast is subject to strong criteria, for exam-
ple companies that belong to a major index, it
is likely that the model will suffer a loss of per-
formance. This is due to the fact that models
will be trained on spurious past performance.
If the modeler is constrained to work on a spe-
cific stock selection, for example because he
has to create an active strategy against a se-
lected benchmark, he might want to consider
Bayesian techniques to reduce the biases.

The survivorship bias is not the only pos-
sible bias of sample data. More in general,
any selection of data contains some bias. Some
of these biases are intentional. For example,
selecting large caps or small caps introduces
special behavioral biases that are intentional.
However, other selection biases are more dif-
ficult to appreciate. In general, any selec-
tion based on belonging to indexes introduces
index-specific biases in addition to the survivor-
ship bias. Consider that presently thousands of
indexes are in use—the FTSE alone has created
some 60,000. Institutional investors and their
consultants use these indexes to create asset al-
location strategies and then give the indexes to
asset managers for active management.

Anyone creating active management strate-
gies based on these indexes should be aware of
the biases inherent in the indexes when build-
ing their strategies. Data snooping applied to
carefully crafted stock selection can result in
poor performance because the asset selection
process inherent in the index formation process
can produce very good results in sample; these
results vanish out-of-sample as “snow under
the sun.”

MOVING TRAINING
WINDOWS

Thus far we assumed that the DGP exists as a
time-invariant model. Can we also assume that
the DGP varies and that it can be estimated on
a moving window? If yes, how can it be tested?
These are complex questions that do not ad-
mit an easy answer. It is often assumed that
the economy undergoes “structural breaks” or
“regime shifts” (i.e., that the economy under-
goes discrete changes at fixed or random time
points).

If the economy is indeed subject to breaks or
shifts and the time between breaks is long, mod-
els would perform well for a while and then, at
the point of the break, performance would de-
grade until a new model is learned. If regime
changes are frequent and the interval between
the changes short, one could use a model that
includes the changes. The result is typically a
nonlinear model such as the Markov-switching
models. Estimating models of this type is very
onerous given the nonlinearities inherent in the
model and the long training period required.

There is, however, another possibility that is
common in modeling. Consider a model that
has a defined structure, for example a linear
VAR model, but whose coefficients are allowed
to change in time with the moving of the train-
ing window. In practice, most models used
work in this way as they are periodically re-
calibrated. The rationale of this strategy is that
models are assumed to be approximate and suf-
ficiently stable for only short periods of time.
Clearly there is a trade-off between the advan-
tage of using long training sets and the disad-
vantage that a long training set includes too
much change.

Intuitively, if model coefficients change
rapidly, this means that the model coefficients
are noisy and do not carry genuine information.
We have seen an example above in the simple
case of estimating a correlation matrix. There-
fore, it is not sufficient to simply reestimate the
model: One must determine how to separate the
noise from the information in the coefficients.
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For example, a large VAR model used to repre-
sent prices or returns will generally be unstable.
It would not make sense to reestimate the model
frequently; one should first reduce model di-
mensionality with, for example, factor analysis.
Once model dimensionality has been reduced,
coefficients should change slowly. If they con-
tinue to change rapidly, the model structure
cannot be considered appropriate. One might,
for example, have ignored fat tails or essential
nonlinearities.

How can we quantitatively estimate an ac-
ceptable rate of change for model coefficients?
Are we introducing a special form of data
snooping in calibrating the training window?
Clearly the answer depends on the nature of the
true DGP—assuming that one exists. It is easy to
construct artificially DGPs that change slowly
in time so that the learning process can progres-
sively adapt to them. It is also easy to construct
true DGPs that will play havoc with any method
based on a moving training window. For exam-
ple, if one constructs a linear model where co-
efficients change systematically at a frequency
comparable with a minimum training window,
it will not be possible to estimate the process as
a linear model estimated on a moving window.

Calibrating a training window is clearly an
empirical question. However, it is easy to see
that calibration can introduce a subtle form of
data snooping. Suppose a rather long set of time
series is given, say six to eight years, and that
one selects a family of models to capture the
DGP of the series and to build an investment
strategy. Testing the strategy calls for calibrating
a moving window. Different moving windows
are tested. Even if training and test data are kept
separate so that forecasts are never performed
on the training data, clearly the methodology is
tested on the same data on which the models
are learned.

Other problems with data snooping stem
from the psychology of modeling. A key pre-
cept that helps to avoid biases is the following:
Modeling hunches should be based on theoret-
ical reasoning and not on looking at the data.

This statement might seem inimical to an em-
pirical enterprise, an example of the danger of
“clear reasoning” mentioned above. Still, it is
true that by looking at data too long one might
develop hunches that are sample-specific. There
is some tension between looking at empirical
data to discover how they behave and avoid-
ing to capture the idiosyncratic behavior of the
available data.

In his best-seller Chaos: Making a New Sci-
ence, James Gleick (1987) reports that one of the
initiators of chaos theory used to spend long
hours flying planes (at his own expense) just
to contemplate clouds to develop a feeling for
their chaotic movement. Obviously there is no
danger of data snooping in this case as there
are plenty of clouds on which any modeling
idea can be tested. In other cases, important
discoveries have been made working on rel-
atively small data samples. The 20th-century
English hydrologist Harold Hurst developed
his ideas of rescaled range analysis from the
yearly behavior of the Nile River, approxi-
mately 500 years of sample data, not a huge data
sample.

Clearly simplicity (i.e., having only a small
number of parameters to calibrate) is a virtue
in modeling. A simple model that works well
should be favored over a complex model that
might produce unpredictable results. Nonlin-
ear models in particular are always subject to
the danger of unpredictable chaotic behavior.
It was a surprising discovery that even simple
maps originate highly complex behavior. The
conclusion is that every step of the discovery
process has to be checked for empirical, theo-
retical, and logical consistency.

MODEL RISK
As we have seen above, any model choice
and estimation process might result in biases
and poor performance. In other words, any
model selection process is subject to model risk.
One might well ask if it is possible to mitigate
model risk. In statistics, there is a long tradition,
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initiated by the 18th-century English math-
ematician Thomas Bayes, of considering
uncertain not only individual outcomes but
the probability distribution itself. It is therefore
natural to see if ideas from Bayesian statistics
and related concepts could be applied to
mitigate model risk.

A simple idea that is widely used in practice
is to take the average of different models. This
idea can take different forms. Suppose that we
have to estimate a variance-covariance matrix.
It makes sense to take radically different esti-
mates such as noisy empirical estimates and
capital asset pricing model (CAPM) estimates
that only consider covariances with the market
portfolio and average. Averaging is done with
the principle of shrinkage, that is, one does not
form a pure average but weights the two matri-
ces with weights a and 1 − a, choosing a accord-
ing to some optimality principle. This idea can
be extended to dynamic models, weighting all
coefficients in a model with a probability distri-
bution. Here we want to make some additional
qualitative considerations that lead to strategies
in model selection.

There are two principal reasons for applying
model risk mitigation. First, we might be uncer-
tain as to which model is best, and so mitigate
risk by diversification. Second, perhaps more
cogent, we might believe that different models
will perform differently under different circum-
stances. By averaging, we hope to reduce the
volatility of our forecasts. It should be clear that
averaging model results or working to produce
an average model (i.e., averaging coefficients)
are two different techniques. The level of diffi-
culty involved is also different.

Averaging results is a simple matter. One es-
timates different models with different tech-
niques, makes forecasts and then averages the
forecasts. This simple idea can be extended to
different contexts. For example, in rating stocks
one might want to do an exponential averaging
over past ratings, so that the proposed rating
today is an exponential average of the model
rating today and model ratings in the past.

Obviously parameters must be set correctly,
which again forces a careful analysis of possible
data snooping biases. Whatever the averaging
process one uses, the methodology should be
carefully checked for statistical consistency. For
example, one obtains quite different results ap-
plying methodologies based on averaging to
stationary or nonstationary processes. The key
principle is that averaging is used to eliminate
noise, not genuine information.

Averaging models is more difficult than av-
eraging results. In this case, the final result is a
single model, which is, in a sense, the average of
other models. Shrinkage of the covariance ma-
trix is a simple example of averaging models.

MODEL SELECTION IN A
NUTSHELL
It is now time to turn all the caveats into some
positive approach to model selection. As re-
marked in Fabozzi, Focardi, and Ma (2005),
any process of model selection must start with
strong economic intuition. Data mining and
machine learning alone are unlikely to produce
significant positive results. The possibility that
scientific discovery, and any creative process
in general, can be “outsourced” to computers
is still far from today’s technological reality. A
number of experimental artificial intelligence
(AI) programs have indeed shown the ability
to “discover” scientific laws. For example, the
program KAM developed by Yip (1989) is able
to analyze nonlinear dynamic patterns and the
program TETRAD developed at Carnegie Mel-
lon is able to discover causal relationships in
data (see Glymour, Scheines, Spirtes, and Kelly,
1987). However, practical applications of ma-
chine intelligence use AI as a tool to help per-
form specific tasks.

Economic intuition clearly entails an element
of human creativity. As in any other scientific
and technological endeavor, it is inherently de-
pendent on individual abilities. Is there a body
of true, shared science that any modeler can
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use? Or do modelers have to content them-
selves with only partial and uncertain findings
reported in the literature? As of the writing of
this book, the answer is probably a bit of both.

One would have a hard time identifying eco-
nomic laws that have the status of true scientific
laws. Principles such as the absence of arbitrage
are probably what comes closest to a true sci-
entific law but are not, per se, very useful in
finding, say, profitable trading strategies. Most
economic findings are of an uncertain nature
and are conditional on the structure of the econ-
omy or the markets.

It is fair to say that economic intuition is based
on a number of broad economic principles plus
a set of findings of an uncertain and local nature.
Economic findings are statistically validated on
a limited sample and probably hold only for a
finite time span. Consider, for example, findings
such as volatility clustering. One might claim
that volatility clustering is ubiquitous and that
it holds for every market. In a broad sense this
is true. However, no volatility clustering model
can claim the status of a law of nature as all
volatility clustering models fail to explain some
essential fact.

It is often argued that profitable investment
strategies can be based only on secret propri-
etary discoveries. This is probably true but its
importance should not be exaggerated. Secrecy
is typically inimical to knowledge building. Se-
crets are also difficult to keep. Historically, the
largest secret knowledge-building endeavors
were related to military efforts. Some of these
efforts were truly gigantic, such as the Manhat-
tan Project to develop the first atomic bomb.
Industrial projects of a non-military nature are
rarely based on a truly scientific breakthrough.
They typically exploit existing knowledge.

Financial econometrics is probably no excep-
tion. Proprietary techniques are, in most cases,
the application of more or less shared knowl-
edge. There is no record of major economic
breakthroughs made in secrecy by investment
teams. Some firms have advantages in terms
of data. Custodian banks, for example, can ex-

ploit data on economic flows that are not avail-
able to (or in any case are very expensive for)
other entities. Until the recent past, availability
of computing power was also a major advan-
tage, reserved to only the biggest Wall Street
firms; however, computing power is now a
commodity.

As a consequence, it is fair to say that eco-
nomic intuition can be based on a vast amount
of shared knowledge plus some proprietary dis-
covery or interpretation. In the last 25 years, a
number of computer methodologies were ex-
perimented with in the hope of discovering po-
tentially important sources of profits. Among
the most fascinating of these were nonlinear dy-
namics and chaos theory, as well as neural net-
works and genetic algorithms. None has lived
up to initial expectations. With the maturing of
techniques, one discovers that many new pro-
posals are only a different language for exist-
ing ideas. In other cases, there is a substantial
equivalence between theories.

After using intuition to develop an ex ante
hypothesis, the process of model selection and
calibration begins in earnest. This implies se-
lecting a sample free from biases and deter-
mining a quality-control methodology. In the
production phase, an independent risk control
mechanism will be essential. A key point is
that the discovery process should be linear. If
at any point the development process does not
meet the quality standards, one should resist
the temptation of adjusting parameters and go
back to develop new economic intuition.

This process implies that there is plenty of eco-
nomic intuition to work on. The modeler must
have many ideas to develop. Ideas might range
from the intuition that certain market segments
have some specific behavior to the discovery
that there are specific patterns of behavior with
unexploited opportunities. In some cases it
will be the application of ideas that are well
known but have never been applied on a large
scale.

A special feature of the model selection pro-
cess is the level of uncertainty and noise.
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Figure 9 Process of Quantitative Research and Investment Strategy
Source: Fabozzi, Focardi, and Ma (2005, p. 73)

Models capture small amounts of informa-
tion in a vast “sea of noise.” Models are
always uncertain, and so is their potential
longevity. The psychology of discovery plays
an important role. These considerations suggest
the adoption of a rigorous objective research
methodology. Figure 9 illustrates the work
flow for a sound process of discovery of prof-
itable strategies. (For a further discussion, see
Fabozzi, Focardi, and Ma (2005).)

A modeler working in financial econometrics
is always confronted with the risk of finding an
artifact that does not, in reality, exist. And, as we
have seen, paradoxically one cannot look too
hard at the data; this risks introducing biases
formed by available but insufficient data sets.
Even trying too many possible solutions, one
risks falling into the trap of data snooping.

KEY POINTS
� Model selection in financial econometrics re-

quires a blend of theory, creativity, and ma-
chine learning.

� The machine-learning approach starts with a
set of empirical data that we want to explain.
Data are explained by a family of models that
include an unbounded number of parame-
ters and are able to fit data with arbitrary
precision.

� There is a trade-off between model complex-
ity and the size of the data sample. To im-
plement this trade-off, ensuring that models
have forecasting power, the fitting of sam-
ple data is constrained to avoid fitting noise.
Constraints are embodied in criteria such as
the Akaike Information Criterion (AIC) or the
Bayesian Information Criterion (BIC).
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� Economic data are generally scarce given the
complexity of their patterns. This scarcity in-
troduces uncertainty as regards our statisti-
cal estimates. It means that the data might be
compatible with many different models with
the same level of statistical confidence.

� A serious mistake in model selection is to
look for models that fit rare or unique pat-
terns; such patterns are purely random and
lack predictive power.

� Another mistake in model selection is data
snooping, that is, fitting models to the same
data that we want to explain. A sound
model selection approach calls for a sepa-
ration of sample data and test data: Models
are fitted to sample data and tested on test
data.

� Because data are scarce, techniques have been
devised to make optimal use of data; perhaps
the most widely used of such techniques is
bootstrapping.

� Financial data are also subject to “survivor-
ship bias,” that is, data are selected using
criteria known only a posteriori, for example
companies that are presently in the S&P 500.
Survivorship bias induces biases in models
and results in forecasting errors.

� Model risk is the risk that models are subject
to forecasting errors in real data. Techniques
to mitigate model risk include Bayesian tech-
niques, averaging/shrinkage, and random
coefficient models.

� A sound model selection methodology in-
cludes strong theoretical considerations, the

rigorous separation of sample and testing
data, and discipline to avoid data snooping.
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Abstract: Practical applications of financial models require a proper assessment of the model risk
due to uncertainty of the model parameters. Methods of the probabilistic decision theory achieve
this objective. Probabilistic decision making starts from the Bayesian inference process, which sup-
plies the posterior distribution of parameters. Bayesian incorporation of priors, or opinions, which
influence posterior confidence intervals for the model parameters, is indispensable in real-world
financial applications. Then, the utility function is used to evaluate practical implications of uncer-
tainty of parameters by comparing the relative expected values of differing decisions. Probabilistic
decision making involves computer simulations in all realistic situations. Still, a complete analytical
treatment is possible in simple cases.

Practical applications of financial models re-
quire their parameters to be given concrete
numerical values. These values are typically
fitted to empirical data to ensure that the
model predictions match historical observa-
tions. Parameter values obtained by such fitting
procedures never propagate into the future un-
changed: Tracing the model’s steps back in time,
we find that its parameters are always more or
less in error. The convention is that predictions
made by the model are better if its parameters
are known with better precision.

Thus, financial models are always in error—to
an extent. Additional variability of actual out-
comes due to models themselves, or model risks,
can be loosely associated with Knightian un-
certainty. Methods of Bayesian inference estimate

the extent of this uncertainty, whereas the utility
theory helps evaluate relative costs of decisions
made under this uncertainty. Probabilistic deci-
sion theory, which combines Bayesian inference
with the concept of utility, is the natural and
powerful tool for handling intrinsic risks of fi-
nancial models. The purpose of this chapter is
to demonstrate how it works in practice.

AN OUTLINE OF
PROBABLISTIC DECISION
THEORY
As McKay (2008) cleverly puts it, probabilistic
decision theory is trivial—apart from compu-
tational details. It has its roots in the Bayesian
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inference and in the concept of the utility, or the
loss, function. Bayesian inference with its pure
probabilistic methods is now gaining its long-
deserved position in financial applications.

The utility function U : d → V that maps the
outcomes of possible decisions d onto the value
space (or, conversely, the cost space) V is a con-
cept that embodies personal choice and indi-
vidual risk preferences. In its simplest form,
the cost space is one-dimensional. This makes
it possible to order decisions by their costs. The
decision that has a minimum cost (or a maxi-
mum value) is the best decision in the sense of
the utility function U.

We will proceed to the formulation of the
probabilistic decision-making theory according
to Jaynes (2003) and McKay (2008). If E(.) is the
expectation, d is the decision, U(d) is the utility
function of the decision, θ is the probable future
state of the world, and P(θ, d) is the probability
of θ , possibly influenced by the decision, then
the optimal decision that maximizes the expec-
tation of the utility function is

d = arg max{E(U(d)) =
∫

dθU(θ, d)P(θ, d}

In exact sciences, the states of the world θ are
represented by objective quantities such as tem-
perature, energy density, barometric pressure,
acidity, and the like. Measurements of these
quantities are subject to errors whose distribu-
tion is often fairly well known from the theory
of the underlying physical process. For exam-
ple, in electronics, the probability of an error of
a weak signal is closely linked to the ambient
temperature, which is an objective and measur-
able quantity. In engineering the contribution of
side factors can often be accounted for and con-
trolled for to a great degree. The existence of the
underlying theory capable of quantitative de-
scription of the noise and other factors greatly
simplifies decision making under uncertainty
in engineering and in other exact sciences in
comparison with financial applications.

It is customary to employ the same reasoning
in finance. When we talk about “more precise

prediction of volatility” or “an accurate correla-
tion coefficient” we implicitly assume that these
quantities and parameters in finance are objec-
tive. They are not. Not unless we supply an
underlying micro-model derived from the first
principles, as we routinely do in exact sciences.
In contrast, states of the world θ in finance are
not inexact measurements of some “true quanti-
ties” linked to natural phenomena. Rather, they
are mental constructs, which help us reason
about financial phenomena—with more or less
success. In financial observations, controlling
for other factors is not possible, so the concept of
ceteris paribus does not exist in nontrivial cases
of any practical significance. It is better to think
about states of the world in financial applica-
tions as relatively stable properties of markets
and financial instruments. Depending on cir-
cumstances, such mental concepts as volatility,
correlations, liquidity, expected time to default,
and so on can be regarded as states of the world
in finance.

States θ are functions of the model employed
θ = θ (M). Given the set of observations Y and
subjective priors I , each state θ is assigned a
probability:

P(θ, d) = P(θ (M), d
∣∣Y, I )

Being the function of the model, the data,
prior beliefs, and, possibly, the decision, the
probability of the state θ encapsulates all that
is known to be relevant about the phenomenon
under consideration.

Probabilistic inference, apart from very spe-
cial cases, is often tractable only by computer
techniques: P(θ

∣∣Y) has no analytical represen-
tation and must be ultimately sampled from the
data.

The utility function U(θ, d) introduces the cost
(or utility) of each decision in each state of
the world. In academic research, one typically
chooses a smooth and convex utility function.
This should not necessarily be the case in the
real world of financial applications where var-
ious smooth and nonsmooth constraints must
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be satisfied—such as risk tolerance, tax consider-
ations, strict and soft budget constraints.

Note that except for the observable data, all
other components in the probabilistic decision-
making process are user-dependent—the
model, the beliefs, and the utility preferences.
In the world of subjective views, there is no uni-
versal truth, there are no unconditionally good
or poor decisions. All decisions are ultimately
conditional on personal preferences.

Let’s consider how it works in two simple fi-
nancial applications: risk management of a sim-
ple portfolio and valuation of a risky bond.

MODEL RISK OF A SIMPLE
PORTFOLIO
A portfolio manager considers creating an in-
vestment vehicle based on the instrument Y.
The portfolio manager’s objective is to extract
as much idiosyncratic alpha as possible from Y
while reducing the risks associated with the fac-
tor X. Instruments highly correlated with X are
available for short selling, or instruments highly
negatively correlated with X are available for
purchase. There are costs associated with these
actions. The portfolio manager has an amount
of capital equal to C and access to an abundant
and relatively low-risk security Z, which can be
used to preserve capital. The objective is to meet
investment goals G(T), which include return on
capital and risk parameters over a definite time
horizon T .

The portfolio manager’s decisions are based
on prior beliefs and the data. The portfolio man-
ager begins splitting capital among X, Y, and Z
such that

C = CX + CY + CZ

The allocation of capital is determined by the
optimization of the utility function given by:

CX, CY, CZ = arg max (E(U(C(T) − C)))

Expectations of future returns depend on the
model parameters. In the Bayesian decision

framework, the distributions of these param-
eters are important:

1. Distribution of future returns of X.
2. Uncertainty of knowledge about how Y and

X are related.
3. Distribution of idiosyncratic risk of Y after

Y’s relationship to X is accounted for.
4. Uncertainty of expectations about future

alpha.

In the list, the first risk can be understood as
the true risk; the last three risks are the model
risks or uncertainty.

Consider the model that links contemporane-
ous data yt and xt in a linear fashion:

y1 = βxt + εt

This model is a simplification of the industry-
standard factor risk model and is akin to that
used in the capital asset pricing theory (Sharpe,
1964), where a similar relationship is defined
implicitly, or Fama and French (1992), where
several factors are used.

The probability of observing the datum yt

given the unknown parameter of the model β

is

P(yt
∣∣βxt) = P(yt − βxt) = P(εt)

It is customary to select a normal model of
the idiosyncratic noise P(εt) ∝ N(μ, σ ) as it is
a well-behaving distribution that falls off very
fast and which for this reason has all its mo-
ments well defined. This, in turn, assists in
obtaining clear analytical results with helpful
illustrative properties.

One needs to remember, however, that real fi-
nancial noise is neither normal, nor log-normal:
It has fat tails, which can be so poorly behav-
ing that the distribution may not even have its
first moment well defined. In the probabilistic
decision framework, it is almost never possi-
ble to obtain a neat analytical expression for
the final result. Consequently, the advantages
of the normally distributed noise fade in com-
parison with more realistic models. Another ad-
vantage of the probabilistic framework is that
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Figure 1 Distribution of β of Daily Price Changes over Three Years for Microsoft Corporation (MSFT)
and the S&P 500 EFT (SPY)

one can easily compare evidence in favor of or
against any conceivable model. In the presenta-
tion here, we retain the normalcy of the residual
noise, bearing in mind that it is used for the sole
purpose of illustrating the main idea.

Noise values being identically distributed
and independent, which again is not a require-
ment for the probabilistic decision theory, the
probability of observing the data set consisting
of N points x1, yt, � = 1 . . . N is

P(X
∣∣β X) =

∏
p(ε1) =

∏
P(yt − βxt)

=
∏

P(εt)

It is easier to see the properties of the likeli-
hood function by taking the logarithm:

log P(Y
∣∣β X) = −

∑
t (yt − βxt − μ)2

2σ 2

−1
2

log 2πσ 2

As a function of β, the log-likelihood attains a
maximum at the same point where the ordinary
least squares (OLS) method finds its optimum
value of β = βols. Contrary to the OLS, which
boils down all the available data to one number,
which is then taken as a real objective quan-

tity, the probabilistic framework retains more
information about the relationship between Y
and X, thereby preserving it in the distribution
P(β

∣∣XY) .
In Figure 1 we show the distribution of β,

P(β
∣∣XY) , when the dependent instrument Y is

the daily change in the price of Microsoft Cor-
poration stock and the independent instrument
X is the daily price change of the exchange-
traded fund SPY corresponding to the Standard
& Poor’s 500 index. Three years of daily data are
used in the estimates of P(β

∣∣XY) . In Figure 2
the same amount of data is used to estimate
P(β

∣∣XY) when Y is the daily change in the
price of the stock of a natural resource com-
pany, the Mosaic Company, and X is, again,
the set of contemporaneous daily price changes
in SPY.

Having obtained distributions of the model
parameters β, μ, and σ from the data, the port-
folio manager blends likelihoods with opinions
about the distribution of the residual returns.
The portfolio manager’s alpha model is that
the expectation of daily returns of Y is μ0

with the confidence band ±σ0: μ0 ∼ N(μ0, σ0).
Combined with subjective opinions, the
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Figure 2 Distribution of β of Daily Price Changes over Three Years for the Mosaic Company (MOS)
and the S&P 500 ETF

idiosyncratic distribution is again, normal:
∏

P(εt) ∝ N(μ̃, σ̃ )

μ̃ =
μ0

σ 2
0

+ μN
σ 2

1
σ 2

0
+ N

σ 2

1
σ̃ 2 = 1

σ 2
0

+ N
σ 2

In order to overcome the evidence extracted
from the data and given by μ, the portfo-
lio manager’s confidence must be greater than
the confidence range of the data: The portfo-
lio manager’s confidence is high, that is, when
σ0 � σ/N, the posterior expectation of alpha is
governed by the portfolio manager’s prognosis.
In the opposite case, the data are trusted more
than the portfolio manager’s judgment.

The portfolio manager sets risk preferences
with the utility function

U(C(T), C, η) = − exp
(

−C(T) − C
Cη

)

Taking the expectations over one period T = 1
we obtain:

E(U) = −
∫

αβ exp
(

− (μ̃ + βμx)wy + μxwx + μ2wz

η

+1/2η2(w2
yσ̃

2 + w2
xσ

2
x + σ z

x (w2
yβ

2 + 2wywxβ)
)

P(β)

Here

wx = Cx

C
, wz = Cz

C
, wy = 1 − wx − wz

First, we focus on the problem of optimum
allocation when there is no hedging: wx = 0,

μx = 0. Define the certainty equivalent (CE) of
the investment in Y and Z as such guaranteed
change in C that results in the same utility as a
risky investment in Y and Z. Mathematically, it
is defined as the inverse of the utility function:

C E(C(T), C) = U−1(E(U))

For the exponential utility function we obtain

C E(C(T), C) = −Cη log E(U(C(T), C, η))

Adopting P(β) = N(β0, 
) and integrating ex-
pected utility over the model parameter β, we
finally arrive at

C E(wy) = μ̃wy + μz(1 − wy) − 1
2η

σ̃ 2w2
y − 1

2η

β2
0σ 2

x w2
y

1 − 
2σ 2
x w2

y

η2

+ 1
2
η log

(
1 − 
2σ 2

x w2
y

η2

)

The first three terms in this equation repre-
sent the certainty equivalent of the investment
without the risk model β0 = 0 and without the
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model risk 
 = 0. The optimal fraction of the
capital invested in Y is a well-known expres-
sion (see, for example, Merton, 1969)

wy = η
μ̃ − μz

σ̃ 2

In this case, the fraction invested in the risky
instrument is proportional to the portfolio man-
ager’s risk tolerance and inversely proportional
to the instrument’s idiosyncratic risk, which, in
the absence of any model, is the total risk of the
instrument.

Introduction of the risk model without uncer-
tainty β0 �= 0, 
 = 0 results in the obvious ex-
tension:

wy = η
μ̃ − μz

σ̃ 2 + β2
0σ 2

x

Here σ̃ 2 + β2
0σ 2

x is, again, the total risk of Y as
given by the model, split into the idiosyncratic
part and the part coming from the influence
of X.

When 
 �= 0, the last two terms in the equation
for CE(wy) represent the model risk. In some
situations, the term 
2σ 2

x w2
y can be thought of

as the contribution to the expected variance due
to the model risk. Indeed, if 
2σ 2

x w2
y � η2 (i.e.,

when the risk tolerance is much greater than
possible risk associated with the factor X) in
the expression for the certainty equivalent, the
model risk is simply added to the total risk:

CE(wy) ≈ μ̃wy + μz(1 − wy)

− 1
2η

(σ̃ 2 + (β2
0 + 
2)σ 2

x )w2
y + O(σ 1

x w1
y/η

3)

In this expression, the last term is proportional
to the magnitude of the expression in parenthe-
ses and is small in comparison with the preced-
ing terms.

The contribution of the model risk is not so
obvious in a general case. Clearly, when 
2σ 2

x ∼
η2, the model risk significantly affects optimal
allocations.

Position Hedging
Now the portfolio manager aims to reduce the
influence of the factor X on the variability of
returns. The portfolio manager adds a position
in X to the portfolio. Weight wx allocated to
X is chosen to maximize C E . Positive weight
corresponds to a long position in X, whereas
a negative weight corresponds to a short posi-
tion or its equivalent. In the case when X is the
daily performance of the Standard & Poor’s 500
market index, a short position can be roughly
replicated by taking a long position in an
exchange-traded fund (ETF) whose daily re-
turns correspond by design to the inverse—up
to a constant factor—of the daily performance
of the S&P 500 index.

The certainty equivalent of the portfolio is

E(wy) = μ̃wy − 1
2η

σ̃ 2w2
y − 1

2η

σ 2
x (wx + β0wy)2

1 − 
2σ 2
x w2

y

η2

+1
2
η log

(
1 − 
2σ 2

x w2
y

η2

)

The first two terms in this expression are the
idiosyncratic alpha and risk of the instrument Y.

The third term introduces the risk associated
with the portfolio returns dependence on X.
Let’s take a closer look at it. Its structure is simi-
lar to the term describing the idiosyncratic risk:
variance of the portfolio due to X divided by the
portfolio manager’s risk tolerance. In the third
term, contribution from the risk model comes
in two forms. In the numerator wx + β0wy is the
total weight of X in the portfolio: the sum of
the weight of the position in X, wx and the es-
timate of the contribution from exposure to X
of the position in Y, β0wy. The fact that the total
contribution of X is the same as in the standard
portfolio theory is purely accidental and is due
to the choice of the model distribution of β.

In the denominator, the portfolio manager’s
risk tolerance is augmented by a factor that
depends on the uncertainty of β:

1 − 
σ 2
x w2

y

η2
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This term being less than unity, uncertainty
effectively reduces the portfolio manager’s risk
tolerance.

The fourth term is the contribution to C E from
the model risk. Terms associated with the model
risk indicate that when the uncertainty of the
model approaches a critical value 
2σ 2

x w2
y ∼ η2

the portfolio becomes unfeasible unless wy is
sufficiently small.

In the absence of a risk model β0 = 0, 
 = 0
optimal allocations maximizing CE of the port-
folio are

wx ∼ 0

wy ∼ 1
σ̃ 2

When the risk model is present, but the un-
certainty of the model is much bigger than its
prediction β0 � 
, we obtain another useful
result:

wy ∼ 1
σ̃ 2 + 
2σ 2

x

In this case the optimal allocation in Y is de-
termined by the total risk of the instrument
composed of the idiosyncratic risk and the un-
certainty of the model.

When the risk model is present and is ab-
solutely precise β0 �= 0, 
 = 0, the usual hedg-
ing ratio wx

wr
= −β completely eliminates the

dependency of portfolio returns and their CE
on X—the result conventionally obtained in the
traditional formulation of the risk management
problem.

From the probabilistic point of view, how-
ever, an absolutely precise model is nonsensi-
cal. Moreover, situations when both the model’s
optimal parameters and the uncertainty of the
parameters are of the same order of magnitude
are most likely to occur in real applications.

Contribution from the risk model and from
the uncertainty of the model become sepa-
rated and especially simple when the portfolio
manager’s risk tolerance is sufficiently large,


2σ 2
x w2

y � η2:

CE(wy, wx) ≈ μwy − 1
2η

(σ 2 − 
2σ 2
x )w2

y

− 1
2η

σ 2
x (wx − βμwy)2

Note that there is no combination of the in-
struments Y and X that can eliminate the ef-
fect of X. That the effect of the instrument X
may never be eliminated completely is a bet-
ter depiction of the everyday experience of the
portfolio manager. Probabilistic decision theory
accounting for the model risk, however, gives
a reasonable indication of what the portfolio
manager can expect from such or another com-
position of the portfolio when its components
are mutually dependent.

In more complicated settings, once the port-
folio manager introduces the costs of hedging,
the decision whether to hedge or not comes
naturally as the consequence of the interplay
between the value of hedging and the costs.
Let y

∣∣wxC
∣∣= y

∣∣β0wyC | be the cost associated
with the hedge. Then one should hedge the
position if

− 1
2η

(σ̃ 2 + 
2σ 2
x )w2

y − γ

∣∣∣∣β0wyC
∣∣∣∣> − 1

2η
σ 2

y w2
y

Hedging is justified if the model risk of the
hedge plus the cost of implementing the model
is smaller than the original risk that the hedge
is meant to reduce.

In the equation above all quantities are eval-
uated from the data and the subjective prior
beliefs using the methods of the Bayesian in-
ference. Even when the model and the model
parameters are relatively stable, the decision
whether to hedge or not to hedge depends on
the portfolio manager’s risk tolerance, which in
turn can be represented by a combination of ex-
ternal constraints, or be inferred from another
model.

A portfolio manager can readily extend the
methodology of the preceding sections to more
complicated cases of many interrelated in-
struments and many factors. The probability
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distribution of the correlation matrix, however,
will not necessarily appear in the calculations
in place of the probability distribution of β:
Noise models that have no concept of second
or higher moments completely rule out corre-
lation matrices in the calculations. Moreover,
these distributions naturally lead to decisions
being determined by a few extreme outliers.
Fortunately, even pathological noise distribu-
tions, which seem to be the norm rather than an
exception in finance, are treated equally well by
the methods of the probabilistic decision theory,
which is designed to incorporate all available
data plus the portfolio manager’s preferences
and constraints.

In the next section we will address a problem
of the model risk in an investment when the risk
profile is different from that of an investment in
an equity portfolio.

INVESTMENT IN A
RISKY BOND
Let P be the face value of the zero-coupon bond,
r the benchmark rate over the period of interest,
ρ the multiplicative spread rate for the bond, so
that

V = P
(1 + r )(1 + ρ)

is the current fair or market price of the bond,
possibly unknown. An alternative investment
vehicle Z is available as in the previous section,
the rate of return for this instrument being rz.

Let there be two possible states of the world.
In the first state the bond is redeemed at the
face value at the end of the period. In the sec-
ond state of the world the bond is redeemed
at Py. The situation when Py = 0 is possible, in
which case the investment is a total loss. If the
investor purchases N units of the risky bond
and the remainder of the capital is preserved in
the alternative vehicle, then, at the end of the
period, the investor’s capital is

C1 =
{

NP +(1 + rz)(C0 − NV), with (1 − pd )
NPr +(1 + rz)(C0 − NV), with pd

In the traditional formulation the investment
is justified if the expected return on capital
when N > 0 is greater than the expected return
when N = 0. This translates into the following
expression, which links all the input data of the
problem and the unknown value of the bond:

P(1 − pd ) + Pr pd > (1 + rz)V

This traditional approach is a reasonably
good approximation under certain conditions.
A much richer view along with the set of quan-
titative tools is required in a general case.

From the probabilistic decision theory view-
point, the probabilities and other relevant pa-
rameters entering the decision-making process
must be inferred from the model, from the
data, and from the investor’s prior beliefs, and
are best represented by distributions of pos-
sible states of the world. We consider now a
simple one-parametric risk model and show
how the model risk contributes to the decision
process.

Parameter Inference in the
Bernoulli Model
In the Bernoulli-like model, the investment ve-
hicle under consideration belongs to a class
of essentially similar bonds. They are financial
obligations issued by debtors facing essentially
the same economic (financial, market, etc.) con-
ditions. Given these conditions, it is customary
to assume that the failure of each instrument is
a random event. Failures in the class occur with
the same probability pd per unit time, which,
for simplicity, will coincide in our analysis with
the maturity time of the instrument.

The model of the random process, the em-
pirical data, and the investor’s prior beliefs
determine all that we know about the model
parameter pd .

Assume that the empirical data are the sam-
ple of n observations of the class, and m is the
number of cases when a debtor defaults. Adopt-
ing a beta-distribution of the model parameter,
we obtain the following posterior distribution
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given the data and the prior beliefs:

π (pd , α, β) = 
(α + β)

(α)
(β)

Pd−1
d (1 − pd )β−1

where

α = α0 + m
β = β0 + n − m

and α0, β0 are the parameters representing the
investor’s prior beliefs. In the prior distribu-
tion, α0 can be interpreted as number of cases
of default and β0 is the number of cases when
the bond was repaid in full. The prior distribu-
tion’s parameters can come from the investor’s
own experience, or from the consensus of ex-
perts, or be inferred from agency ratings. The
magnitude of α0, β0 versus n, m determines the
relative weight the investor assigns to prior
beliefs. Prior beliefs dominate the data when
α0 + β0 � n.

In Figure 3, the investor’s prior beliefs follow
the prior probability of default 0.1. Parameters
of the prior distribution are α0 = 2, β0 = 11. The
newly arriving data point to the probability of
default 0.2. Observe the change in the shape
of the distribution: Its mode moves from ∼ 0.1
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Figure 3 Distribution of the Probability of
Default pd
Note: Prior distribution is defined by α0 = 2, β0 =
11. Newly arriving data follow the new proba-
bility ηi

η
= 0.2.

to ∼ 0.2 as the new data gradually overcome
the investor’s prior beliefs. Note that the model
risk—the width of the distribution—remains
relatively high.

In the Bayesian perspective, the distribution
of the probability of default is a convenient vehicle
that carries all that the investor knows from
the set of observations and the investor’s prior
beliefs: what is the most probable state of the
world and what is the spread of possible states
of the world given the investor’s choice of the
model of the world.

The rich framework offered by the Bayesian
inference of the probability of default conse-
quently brings in a rich set of valuation meth-
ods that naturally account for the model risk.
In the next sections we will study the valuation
effects of the risk of models.

Model Risk Contribution to the Fair
Price of the Bond
First, we obtain an interesting estimate of the
model risk contribution to the fair price of
the bond under the assumption of the infinite
risk tolerance. This is a degenerate case most
closely resembling the traditional formulation.
The utility function is linear if the investor’s risk
tolerance is infinite.

We obtain formally:

P(1 − E(pd )) + Pr E(pd ) > (1 + rz)V

Assume that the sample size is n of which
there are m defaults. A flat prior distribu-
tion π (pd , α0, β0) = const describes an investor
who initially is ignorant. Expectation of the
probability of default is then governed by the
rule of succession (originally developed by
Laplace):

E(pd ) = m + 1
n + 2

The difference between this posterior expec-
tation and the naı̈ve probability of default pd =
m/n is the contribution of the model risk to the
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fair price of the bond:

δV = P − Pr

1 + Yz

{
E(pα) − m

n

}

For example, if the naı̈ve default rate estimate
is 0.1 and it is based on 100 observations, the
contribution of the model risk to the fair price
of the bond can be as big as 78 basis points—not
an insignificant amount: The model risk can be
a substantial contributor to the overall risk of
the investment. Thus, the sampling risk and the
prior beliefs bias yield a substantial contribu-
tion to the overall risk of the investment.

Even in the simplest Bernoulli-like model, the
contribution of the model risk to the value of
the bond is nonnegligible. This contribution is
especially pronounced when the probability of
default is small.

Now we will proceed to a case when the in-
vestor’s risk tolerance is not infinite. We will
show that average probabilities are likely in-
sufficient for making an informed investment
decision. Relying on just expected probabilities
can result in catastrophic consequences for the
investor.

Model Risk of Agency Ratings
Currently financial regulators recommend that
expected losses be quantified as the expected
probability of default times the exposure at
default (see Basel, 2008). Consequently, credit
scoring and rating agencies aim at develop-
ing models that generate expected probabili-
ties of default. These models are calibrated by
minimizing the difference between predicted
and empirically observed probabilities of de-
fault (see, for example, Korablev and Dwyer,
2007). From the preceding section, it follows
that the average rates based on thousands of
credit events used in the calibration of the
agency model alone are insufficient for making
investment decisions concerning a portfolio of
an arbitrary, possibly small, subset of instru-
ments. Moreover, the naı̈ve probability of de-
fault is likely to be useless in the valuation of a

singular derivative instrument, such as a credit
default swap (CDS). For a financial practitioner
it is important to know, however, that agencies
possess and disclose substantially more infor-
mation than ratings, scoring, or expected prob-
abilities alone. We will now discuss briefly how
this information is used in the probabilistic de-
cision framework.

Korablev and Dwyer (2007) report that for a
certain group of companies the Moody’s KMV
EDFTM model was predicting 2.5% as the mean
probability of default in 2002. The value of
1.8% was actually observed. The 10 and 90 per-
centiles of the distribution of predicted rates
were 0.5% and 5.4%. This information is suffi-
cient to reconstruct the parameters of the beta-
distribution discussed earlier. An approximate
match is α = 1.12, β = 56.35. In Figure 4 we
show the set of implied distributions for the
four years preceding 2002. The inferred distri-
bution π (pd , α, β) for the year 2002 is almost
identical to that for 2000.

We will now show how the inferred model of
the probability of default is used in the decision-
making process.

It appears from the following analysis that
due to idiosyncrasies of the distribution of the
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Figure 4 Implied Distribution of the Probability
of Default pd According to the Moody’s Data for
1998, 1999, 2000, and 2001
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probability of default, the effects of the model
risk can be profound, even catastrophic. De-
scribe the investor’s risk preferences with the
following disutility function:

U(pd ) = −e
pd
η

This function describes an investor who is
progressively reluctant to tolerate deviations
from the expected probability of default when
these deviations exceed η. Note that disutil-
ity of positive deviations from the expected
value is growing exponentially, while the beta-
distribution of pd falls off around its mode
much slower, approximately as a power func-
tion. Using a beta-distributed probability of
default π (pd , α, β), we find for the certainty
equivalent

CE(pd ) = U−1(E(U(pd ))

= η log
(


(α + β)F
(

α, α + β,
1
η

))

where F (a , b, z) is the regularized confluent
hypergeometric function F1(a , b, z)/
(b) (Weis-
stein, 2010). The certainty equivalent of CE(pd )
can be interpreted as an equivalent certain prob-
ability of default, which supplies the same value
for the investor as the uncertain probability of
default—given the investor’s risk preferences.

In the limit η → ∞

CE(pd ) → α

α + β

(
1 +

1+α
α+β+1

η

)
+ 0(η−2)

At high tolerances C E(pd ) coincides with
the mean naı̈ve probability of default. As the
investor’s risk tolerance decreases, however,
the certainty equivalent grows more and more
rapidly. A plot of the exact certainty equiv-
alent probability of default as the function
of the model risk tolerance is shown in Fig-
ure 5. The parameters of the distribution are
α = 1.45 and β = 15, and the dashed line is the
asymptote α/(α + β).

The catastrophic divergence of the certainty
equivalent probability occurs at the values of
the tolerance that are close to the width of the
distribution π (pd , α, β): At the tolerance level
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Figure 5 CE(pd ) versus Risk Tolerance η

Note: Dashed line is the asymptote value α/

(α + β), α = 1.45, β = 45

η = 0.01 the C E(pd ) is as big as 0.23, more than
seven times the naı̈ve value of the probability.
From the practical decision-making standpoint
it means that if the investor accepts the price of
the bond or associated instruments defined by
the naı̈ve probability 0.031, it is likely that the
investor is grossly mistaken about the value of
the bond given the investor’s risk tolerance and
the model risk.

KEY POINTS
� Probabilistic decision theory is a blend of the

probabilistic, also called Bayesian, inference
and the concept of utility.

� In the probabilistic decision theory optimal
decisions maximize the expected value of the
user’s utility over all possible states of the
world.

� Probabilities of the states of the world are in-
ferred from the empirical data, the model, and
the user’s beliefs.

� Uncertainty in the model parameters results
in the model risk; a financial model that is free
of the model risk is an exception.

� Practical consequences of the model risk are
evaluated using the utility function.
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� Model risk significantly augments optimal al-
locations in equity portfolios and can result in
a prospective portfolio being ruled out.

� Valuation of a risky bond is significantly af-
fected by the model risk; ratings and ex-
pected probabilities of default alone are
likely insufficient for the decision-making
process.

� Failure to account for the model risk can lead
to catastrophic consequences for the investor.

� Unhandled or unknown model risk produces
risk exposure that remains indeterminate.
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Özyeǧin University, Turkey

IVAN MITOV, PhD
Head of Quantitative Research, FinAnalytica

BORYANA RACHEVA-YOTOVA, PhD
President, FinAnalytica

Abstract: Accounting for the likelihood of observing extreme returns and for return asymmetry
is paramount in financial modeling. In addition to recognizing essential features of the returns’
temporal dynamics, such as autocorrelations, volatility clustering, and long memory, a successful
univariate model employs a distributional assumption flexible enough to accommodate various
degrees of skewness and heavy-tailedness. At the same time, a model’s usefulness depends on
its scalability and practicality—the extent to which the univariate model can be extended to a
multivariate one covering a large number of assets.

Risk models are employed in financial model-
ing to provide a measure of risk that could be
employed in portfolio construction, risk man-
agement, and derivatives pricing. A risk model
is typically a combination of a probability distri-
bution model and a risk measure. In this entry,
we discuss alternatives for building the prob-
ability distribution model, as well as the pros
and cons of various heavy-tailed distributional
choices. Our focus is univariate models; their
multivariate extensions are only briefly men-
tioned. We start with the fundamentals—the
Gaussian distribution. Then, we introduce fat-
tailed alternatives, such as the Student’s t distri-
bution and its asymmetric version and the Pareto

stable class of distributions and their tempered
extensions. Next, we discuss extreme value the-
ory’s risk modeling approach. We conclude
with a comparative empirical example to con-
trast the models’ performance over a 10-year
period.

THE FUNDAMENTALS:
NORMAL DISTRIBUTION
The use of normal (Gaussian) distribution in fi-
nancial modeling has a long and distinguished
tradition. The main reasons for its traditional
popularity are several. First, its analytical
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tractability means that deriving theoretical re-
sults and employing it in applications is (rel-
atively) straightforward; numerical methods
are widely available and implementable.1 Sec-
ond, certain central results in statistics underlie
the importance of the Gaussian distribution.2

Third, it has an intuitive appeal—random vari-
ables distributed with the Gaussian distribu-
tion tend to assume values around the average,
with the odds of deviation from the average
decreasing exponentially as one moves away
from it.

Some of the most prominent financial frame-
works built around the normal distribution are
Markowitz’s modern portfolio theory, the cap-
ital asset pricing model, and the Black-Scholes
option pricing model. All of them assume (or
imply) that asset returns follow a normal dis-
tribution and reflect a long-standing paradigm
that rational investors’ preferences can be de-
scribed exclusively in terms of expected returns
and risk as measured by the variance of the
return distribution. However, they are inher-
ently static frameworks. The underlying dy-
namic is either given exogenously or is based on
the assumption that returns have independent
and identical distributions. Such characteristics
do not fit adequately with the empirically ob-
served features of financial returns and investor
choice.

In this section, we describe the fundamentals
of a risk modeling approach based on the Gaus-
sian distribution. We start with a review of some
of its basic properties and facts.

Basics and Properties of the
Gaussian Distribution
The normal distribution is characterized by
two parameters—a location (mean) parame-
ter and a scale (volatility, standard deviation)
parameter.3 The location parameter serves to
displace (shift) the whole distribution, while
the scale parameter changes the shape of the
distribution. For small values of the scale, the

distribution is narrow and peaked, while for
(relatively) larger values, it widens and flat-
tens. Since the normal distribution is symmetric
around its mean, the location (mean) coincides
with the center of the distribution. Commonly,
the mean is denoted by μ and the standard de-
viation by σ .

Two important properties of the normal dis-
tribution are location-scale invariance and sum-
mation stability. They are directly related to the
central role of the normal distribution in tradi-
tional financial modeling.

Location-Scale Invariance Property
Let us suppose a random variable X is normally
distributed with parameters μ and σ . Now con-
sider another random variable, Y, obtained as a
linear function of X, that is, Y = a X + b. The
variable Y is also normally distributed with
parameters μY = aμ + b and σY = aσ . That is,
if a normal random variable is multiplied by
a constant and/or is shifted, it remains dis-
tributed with the normal distribution.

Summation Stability Property
Let us take n independent random variables
distributed with the Gaussian distribution with
parameters μi and σi . The sum of the variables
is normal as well. The resulting normal distri-
bution has a mean and standard deviation ob-
tained, respectively, as

μ = μ1 + μ2 + · · · μn

σ =
√

σ 2
1 + σ 2

2 + · · · + σ n
n

Location-scale invariance and summation
stability are not universal properties of sta-
tistical distributions. In financial applications,
however, they are clearly desirable properties.

The property of summation stability is often
used to justify the predominant use of normal
distributions in financial modeling. A statisti-
cal result, called the central limit theorem, states
that, under certain technical conditions, the sum
of a large number of random variables behaves
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like a normally distributed random variable.
More generally, we say that the normal distri-
bution possesses a domain of attraction. In fact,
the normal distribution is not the only distribu-
tion with this feature. As we will see later in the
entry, it is the class of stable distributions (to
which the Gaussian distribution belongs) that
is unique with that property. A large sum of
random variables can only converge to a stable
distribution.

Density Function and Fitting of the Normal
Distribution
The density function of a random variable X
distributed with the normal distribution with
mean μ and standard deviation σ is given by
the following expression

f
(
x | μ, σ

) = 1√
2πσ 2

exp
(

− (x − μ)2

2σ 2

)
(1)

We denote this distribution as N(μ, σ ). The vari-
able X and the parameter μ can take any real
value, while σ can only take positive values. A
normal random variable with zero mean and
standard deviation of one is said to be dis-
tributed with the standard normal distribution
(N(0, 1)). The presence of the exponential func-
tion in the normal density implies that the prob-
ability of events away from the mean decays at
an exponential rate. In contrast, heavy-tailed
distributions are characterized by power-law
behaviors for large (small) values of the ran-
dom variables, leading to increased chance for
extreme events relative to the Gaussian setting.

Fitting of the Gaussian distribution is usually
performed by maximizing the logarithm of the
likelihood function given by

�
(
μ, σ | x1, x2, . . . , xn

) = −n
2

log 2π − n
2

log σ 2

−1
2

n∑

i=1

(xi − μ)2

σ 2 (2)

where x1, x2, . . . , xn is the sample of observed
data used for fitting. The resulting estimators of

the mean and the standard deviation are (using
standard notation):

x̄ = 1
n

n∑

i=1

xi (3)

σ̂ 2 = 1
n

n∑

i=1

(xi − x̄)2 (4)

Unconditional models imply that returns are
independent and identically distributed (IID),
so that (among other implications) the re-
turns’ means and variances remain unchanged
through time. However, empirical evidence
abounds that financial returns exhibit time-
series properties such as autocorrelation and
volatility clustering, which make unconditional
return modeling inadequate. The time-series
properties of returns need to be modeled in a
conditional framework with appropriate time
series models. We consider conditional normal
models next.

Conditional Normal Models and
Time-Series Properties of Returns
Properly computing the risk of a portfolio de-
pends on recognizing a number of essential fea-
tures of the evolution of returns through time.
We begin with the two most commonly ac-
counted for by academics and practitioners—
autocorrelation and volatility clustering.

Sometimes, a portfolio’s past performance in-
fluences future performance. Current returns
of a financial asset may depend on its past
returns. This property of autocorrelation is
modeled by including lagged (past) values of
the return and/or lagged innovations (infor-
mational surprises). The resulting conditional
model of the expected return is called an au-
toregressive moving average (ARMA) model.

Time-varying volatility concerns the empir-
ically observed fact that large returns (of ei-
ther sign) tend to be followed by large ones
and small returns by small ones. To de-
scribe this volatility clustering effect, the class
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of autoregressive conditional heteroskedastic-
ity (ARCH) models, as well as their gener-
alized (GARCH) extensions are widely used.
GARCH models assume that volatility on a
given day depends on the volatilities and
also squared innovations of the one or more
previous days.

The typical approach to building a risk model
includes at least the elements of autoregres-
sive component and volatility clustering com-
ponent by means of a GARCH or alternative
ARCH-type processes. A conditional normal
ARMA(1,1)-GARCH(1,1) model combines the
returns’ conditional mean and volatility models
with the assumption that returns are distributed
with the Gaussian distribution. Analytically, the
model is represented as

rt = μt + εt (5)

μt = φ0 + φ1rt−1 + θ1εt−1 (6)

σ 2
t = ω + ασ 2

t−1 + βε2
t−1 (7)

where rt, μt, and σ 2
t are the return, expected re-

turn, and return variance at time t, respectively,
and εt is the innovation at time t. The innova-
tion is normally distributed with mean 0 and
variance σ 2

t .4

The standardized fitted residuals, ε̂t/σ̂t, are
the original returns with the effects of auto-
correlation and volatility clustering removed
(filtered out). Since the model innovations are
assumed to be Gaussian, if the model is cor-
rectly specified, these filtered returns must ex-
hibit the dynamics of a Gaussian white noise
with variance one. Therefore, one easy way to
determine whether the distributional assump-
tions are valid is to examine the properties of
these residuals. Indeed, numerous studies have
confirmed that in the case of financial returns
the standardized fitted residuals are not Gaus-
sian. That is, even after removing the autocorre-
lation and volatility clustering, fat tails, though
smaller in magnitude, continue to be present
in returns. Time-varying volatility then is not
sufficient to explain the extreme events observ-

able in returns.5 Therefore, a more realistic risk
model should allow for fat-tailed innovations.
In the next section, we discuss parametric fat-
tailed models, specifically, models based on the
classical Student’s t distribution and its asym-
metric version, as well as on the stable and tem-
pered stable distributions.

INCORPORATING HEAVY
TAILS AND SKEWNESS:
PARAMETRIC FAT-TAILED
MODELS
The Student’s t distribution has become the
“go to” mainstream alternative of the normal
distribution, when attempting to address asset
returns’ heavy-tailedness. Further below, we in-
troduce an extension, called the skewed Stu-
dent’s t distribution, designed to deal with data
asymmetries. First, we turn to discussing the
“classical” Student’s t distribution.

The “Classical” Student’s t
Distribution
The Student’s t distribution (or simply the t-
distribution) is symmetric and mound-shaped,
like the normal distribution. However, it is more
peaked around the center and has fatter tails.
This makes it better suited for return modeling
than the Gaussian distribution. Additionally,
numerical methods for the t-distribution are
widely available and easy to implement.

The t-distribution has a single parameter,
called degrees of freedom (DOF), that controls
the heaviness of the tails and, therefore, the
likelihood for extreme returns. The DOF takes
only positive values, with lower values signi-
fying heavier tails. Values less than 2 imply in-
finite variance, while values less than 1 imply
infinite mean. The t-distribution becomes arbi-
trarily close to the normal distribution as DOF
increases above 30.
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Density Function of the Student’s t
Distribution
A random variable X (taking any real value) dis-
tributed with the Student’s t distribution with ν

degrees of freedom has a density function given
by

f
(
x | ν) = �( ν+1

2 )
�( ν

2 )
√

νπ

(
1 + x2

ν

)−(ν+1)/2

(8)

where “�” is the Gamma function. We denote
this distribution by tν . The mean of X is zero
and its variance is given by

var(X) = ν

ν − 2
(9)

The variance exists for values of ν greater than
two and the mean—for ν greater than one.

The t-distribution above is sometimes re-
ferred to as the “standard” Student’s t
distribution.6 In financial applications, it is of-
ten necessary to define the Student’s t distri-
bution in a more general manner so that we
allow for the mean (location) and scale to be
different from zero and one, respectively. The
density function of such a “scaled” Student’s t
distribution is described by

f
(
x | ν, μ, σ

)

= �( ν+1
2 )

σ�( ν
2 )

√
νπ

(
1 + 1

ν

(
x − μ

σ

)2
)−(ν+1)/2

(10)

where the mean μ can take any real value and
σ is positive. The variance of X is then equal to
σ 2ν/(ν − 2). We denote the distribution above
by tν(μ, σ ).7

Finally, we make a note of an equivalent rep-
resentation of the Student’s t distribution which
is useful for obtaining simulations from it. The
tν(μ, σ ) distribution is equivalently expressed
as a scale mixture of the normal distribution
where the mixing variable distributed with the
inverse-gamma distribution,

X ∼ N(μ,
√

Wσ )

W ∼ Inv-Gamma
(

ν

2
,
ν

2

)

Later in this entry we will again come across
mixture representations in the context of our
discussion of the skewed Student’s t, the sta-
ble Paretian, and the classical tempered stable
distributions.

Degrees of Freedom Across Assets and Time
The typical approach to risk modeling based
on the Student’s t distribution includes build-
ing an autoregressive and volatility clustering
components, as well as assuming that DOF is
the same for all assets’ returns. This assump-
tion is essential if we want to extend the clas-
sical Student’s t model to a multivariate one.
It is, however, an empirical fact that assets are
not homogeneous with respect to the degree of
non-normality of their returns. Moreover, tail
thickness and shape are not constant through
time either.

Consider the result of an empirical study
of constituent stocks of the S&P 500 stock in-
dex during the period from January 2, 1991 to
June 30, 2011. We calibrate the Student’s t dis-
tribution after filtering the equity returns for
GARCH effects. The estimated DOF is shown
in Figure 1. It is evident that tail behavior di-
verges dramatically across stocks. Around 44%
of equity returns are very heavy tailed, with
DOF estimate below five. Around 54% of equi-
ties have an estimated DOF parameter between
five and 10. Only three stocks exhibit charac-
teristics closer to the Gaussian, with a DOF ex-
ceeding 15. Obtaining accurate DOF estimates
across assets is important in risk management,
since these estimates can form the basis of an
analysis of portfolio risk contributors and di-
versifiers.

Not only does tail behavior vary across as-
sets, it also changes through time. In rela-
tively calm periods, asset returns are almost
Gaussian, while in turbulent periods, the tails
become fatter. Figure 2 illustrates the time-
varying behavior of DOF, suggesting tempo-
ral tail dynamics for the Dow Jones Industrial
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Figure 1 Fitted Degrees-of-Freedom Parameter for S&P 500 Index Stock Returns
Note: The Student’s t distribution is calibrated on the residuals from a GARCH model fitted to the returns
of the stocks in the S&P 500 index.

Average (DJIA) returns for the period from Jan-
uary 1, 1997 to June 30, 2011. The top and middle
plots show the value and return of the DJIA,
respectively. The bottom plot shows the DOF
parameter estimates.8 In periods of “normal”
market volatility, returns are almost normally
distributed, with a fitted DOF over 30. How-
ever, when markets are unsettled, return tails
grow heavier. Accounting for that time dynam-
ics is important in risk budgeting and manage-
ment to serve as an indictor for the transition
between different market regimes—from calm
to turbulent market or vice versa.

As pointed out earlier, a major limitation of
employing the classical Student’s t distribution
for risk modeling is its symmetry. If there is
significant asymmetry in the data, it will not
be reflected in the risk estimate. There are at
least several versions of the skewed Student’s t
distribution, depending on the analytical way
in which asymmetry is introduced into the

distribution.9 Below, we consider the skewed
Student’s t distribution obtained as a mixture of
Gaussian and inverse-gamma distributions.10

The Skewed Student’s t Distribution
Suppose that a random variable X is distributed
with the skewed Student’s t distribution, ob-
tained as a mixture of a Gaussian distribution
and an inverse-gamma distribution,

X = μ + γ W + Z
√

W (11)

where

� W is an inverse-gamma random variable with
parameters ν/2, W ∼ Inv-Gamma(ν/2, ν/2).

� Z is a Gaussian random variable, Z ∼ N(0, σ ),
independent of W.

The parameters μ and γ are real-valued.
The sign and magnitude of γ control the
asymmetry in X. We say that X’s distribution
is a mean-variance mixture of the normal
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Figure 2 Fitted Degrees-of-Freedom Parameter for DJIA Returns
Note: The Student’s t distribution is calibrated on the residuals from a GARCH model fitted to the return
on the DJIA using a 500-day rolling window

distribution, since the mixing variable W
modifies both the mean and the variance of
the Gaussian Z. Notice that conditional on the
value of W, the distribution of X is normal:

X | W = w ∼ N(μ + γw, σ
√

w) (12)

X’s unconditional distribution is what is
defined as the skewed Student’s t distribution
and its density is given by the expression

f
(
x | μ, σ, γ, ν

) = A × exp
( (x−μ)γ

σ 2

)

(
1 + (x−μ)2

νσ 2

)(ν+1)/2

× K(ν+1)/2(B)
B−(ν+1)/2

where

A = 21−(ν+1)/2

�( ν
2 )(πν)1/2σ

B =
√(

ν + (x − μ)2

σ 2

)
γ 2

σ 2

and Kλ(·) is the so-called modified Bessel
function with index λ.

Fitting and Simulation of the Classical and
Skewed Student’s t Distributions
Estimation of the classical and skewed Stu-
dent’s t distributions is carried out using
the method of maximum likelihood. Simula-
tions from the two distributions make use of
their normal mixture representations. For given
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parameters μ, σ , and γ (e.g., the maximum like-
lihood estimates), generation of t and skewed t
observations consists of the steps below:

� Generate an observation w from the inverse-
gamma distribution with parameters ν/2.

� Generate an observation z from the normal
distribution with mean 0 and variance σ 2.

� Compute the corresponding observation of
the t or skewed t-distribution, respectively, as

x = μ + √
wz and y = μ + wγ + √

wz
(13)

Stable Paretian and Classical
Tempered Stable Distributions
Research on stable distributions in the field
of finance has a long history.11 In 1963, the
mathematician Benoit Mandelbrot first used the
stable distribution to model empirical distribu-
tions that have skewness and fat tails. The prac-
tical implementation of stable distributions to
risk modeling, however, has only recently been
developed. Reasons for the late penetration are
the complexity of the associated algorithms for
fitting and simulating stable models, as well as
the multivariate extensions. To distinguish be-
tween Gaussian and non-Gaussian stable dis-
tributions, the latter are commonly referred
to as stable Paretian, Lévy stable, or α-stable
distributions.

Stable Paretian tails decay more slowly than
the tails of the normal distribution and there-
fore better describe the extreme events present
in the data. Like the Student’s t distribution,
stable Paretian distributions have a parameter
responsible for the tail behavior, called tail in-
dex or index of stability.

Definition of Stable Paretian Distributions
We offer two definitions of the stable Paretian
distribution. The first one establishes the sta-
ble distribution as having a domain of attrac-
tion. That is, (properly normalized) sums of
IID random variables are distributed with the
α-stable distribution as the number of sum-
mands n goes to infinity. Formally, let

Y1, Y2, . . . , Yn be IID random variables and {an}
and {bn} be sequences of real and positive num-
bers, respectively. A variable X is said to have
the stable Paretian distribution if

∑n
i=1 Yi − an

bn

d→ X (14)

where the symbol
d→ denotes convergence in

distribution.
The density function of the stable Paretian

distribution is not available in a closed-form
expression in the general case. Therefore, the
distribution of a stable random variable X is
alternatively defined through its characteristic
function. The density function can be obtained
through a numerical method, as we explain fur-
ther below. The characteristic function of the
α-stable distribution is given by

ϕX(t)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

exp{iμt − σα|t|α (
1 − iβsign(t) tan πα

2

)},
α �= 1

exp{iμt − σ |t| (1 − iβ2/πsign(t) log (t)
)},

α = 1

(15)

where sign(t) is 1 if t > 0, 0 if t = 0, and −1 if
t < 0. The four parameters uniquely determin-
ing the α-stable distribution are:

� α: index of stability or tail index, 0 < α ≤ 2.
� β: skewness parameter, −1 ≤ β ≤ 1.
� σ : scale parameter, σ > 0.
� μ: location parameter, μ ∈ R.

We denote the distribution by Sα(σ, β, μ). The
roles of α and β are illustrated in Figure 3. The
sign of β reflects the asymmetry of the dis-
tribution. Positive (negative) β implies skew-
ness to the right (left). As noted earlier, the
index of stability controls the degree of heavy-
tailedness of the distribution. Smaller values
imply a fatter tail. The closer the tail index
is to two, the more Gaussian-like the distri-
bution is. Indeed, for α = 2, we arrive at the
Gaussian distribution—if X is distributed with
S2(σ, β, μ), then it has the normal distribution
with mean equal to μ and variance equal to 2σ 2.
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Figure 3 Stable Density: μ = 0, σ = 1, β = 0, and varying α (left); α = 1.5, μ = 0, σ = 1, and varying
β (right)

In this case, the parameter β loses its mean-
ing as a skewness parameter and becomes ir-
relevant. Nevertheless, the normal distribution
is usually associated with β = 0. Apart from
the Gaussian distribution, there are two more
special cases for which the density function of
the stable distribution is available in a closed
form: the Cauchy distribution (α = 1, β = 0)
and the completely skewed Lévy distribution
(α = 1/2, β = ±1).

Basic Properties of the Stable Distribution
We outline three basic properties of the α-stable
distribution:

� Power-tail decay. The tail of the stable distri-
bution’s density decays like a power function
(slower than the exponential decay). It is this
property that allows the stable distribution to
capture the occurrence of extreme events. For
a constant C, the property can be expressed as

P (|X| > x) ∝ Cx−α, as x → ∞ (16)

� Existence of raw moments. The magnitude of
the tail index determines the order up to
which raw moments exist:

E |X|p < ∞, for any p: 0 < p < α (17)

E |X|p = ∞, for any p: p ≥ α

This property implies that, for non-Gaussian
α-stable distributions (α < 2), the variance
(as well as higher moments such as skewness
and kurtosis) does not exist. When the index
of stability has a value less than one, the mean
is infinite as well. Since the variance does not
exist, one cannot express risk in terms of the
variance. However, the scale parameter can
play the role of a risk measure, in the same
way that the standard deviation does in the
normal distribution case.

� Stability. The property of stability charac-
terizes the preservation of the distribu-
tional form under linear transformations.
It is governed by the index of stability
α and expressed as follows. Suppose that
X1, X2, . . . , Xn are IID random variables, in-
dependent copies of a random variable X.
Then, for a positive constant Cn and a real
number Dn, X follows the stable distribution:

X1 + X2 + · · · + Xn
d= Cn X + Dn (18)

The notation d= denotes equality in distri-
bution. The constant Cn = n1/α determines
the stability property. The stability property
means that the “classical” central limit theo-
rem does not apply in the non-Gaussian case.
A large sum of appropriately standardized
IID random variables is distributed with the
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Figure 4 Fitted Stable Tail Index for DJIA Returns
Note: The Stable Paretian distribution is calibrated on the residuals from a GARCH model fitted to the
return on the DJIA using a 500-day rolling window

stable Paretian distribution as the number of
terms increases indefinitely, not with the nor-
mal distribution.

When the variables Xi, i = 1, . . . , n, are
themselves distributed with the α-stable
distribution, Xi ∼ Sα(σi , βi , μi ), the stability
property can be extended further:
1. The distribution of Y = ∑n

i=1 Xi is α-stable
with index of stability α and parameters:

β =
∑n

i=1 βiσ
α
i∑n

i=1 σα
i

,

σ =
(

n∑

i=1

σα
i

)1/α

, μ =
n∑

i=1

μi (19)

2. The distribution of Y = X1 + a for some
real constant a is α-stable with index of

stability α and parameters:

β = β1, σ = σ1, μ = μ + a (20)

3. The distribution of Y = a X1 for some real
constant a (a �= 0) is α-stable with index of
stability α and parameters:

β = sign(a )β1, σ = |a |σ1,

μ =
{

aμ1, for a �= 1
aμ1 − 2

π
a ln(a )σ1β1, for a = 1

In empirical analysis, the time-varying tail be-
havior of assets is reflected in the nonconstancy
of the tail index of the α-stable distribution,
as demonstrated in Figure 4. As in the earlier
illustration, the tail index is estimated by fit-
ting a stable distribution to the filtered returns



FAT-TAILED MODELS FOR RISK ESTIMATION 741

(after removing the volatility clustering with a
GARCH model.) The tail index of the DJIA re-
turns is very close to two in the upward market
environment from 2003 to 2005 but starts de-
creasing right before the 2008 market crash and
is smallest at the time of the crash itself. This im-
plies that tail thickness is smallest in the bullish
market from 2003 to 2005 and is largest during
the crisis period.

As noted above, the variance of non-Gaussian
stable distributions does not exist. To address
this potentially undesirable feature, smoothly
truncated stable distributions and various types
of tempered stable distributions have been pro-
posed. They are all obtained with a procedure
known as “tempering” applied to the tails of
the distribution to ensure that the variance is
finite. This procedure replaces the power decay
very far out in the tails of the distribution with
an exponential (or faster) decay. We discuss the
classical tempered stable distributions next.

Definition of Classical Tempered
Stable Distributions
The characteristic function of the classical tem-
pered stable (CTS) distribution is given by the
following expression:

ϕX(t) = exp{imt − i tC�(1 − α)(λα−1
+ − λα−1

− )

+C�(−α)((λ+ − i t)α − λα
+ + (λ− + i t)α − λα

−)}
(21)

We denote the distribution by CTS(α, C, λ+,
λ−, m). The distribution parameters are char-
acterized as follows:

� α: tail index, α ∈ (0, 1) ∪ (1, 2).
� m: location parameter, m ∈ R.
� C: scale parameter, C > 0.
� λ+ and λ−: parameters controlling the de-

cay in the right and left tail, respectively;
λ+, λ− > 0.

The relative magnitudes of λ+ and λ− de-
termine the degree of skewness of the CTS
distribution. When λ+ > λ− (λ+ < λ−), the dis-
tribution is skewed to the left (right). Symme-
try is obtained for λ+ = λ−. Tail heaviness is

Figure 5 Probability Density of the CTS Distri-
bution: Dependence on λ+ and λ−
Note: CTS Parameter Values: α = 0.8, C = 1,
m = 0, and varying λ+ and λ−

determined in a more flexible manner in the
CTS distribution than in the stable Paretian
distribution. Three parameters play a role in
that: λ+, λ−, and α. The former two have the
effect of scaling the tails (smaller values corre-
spond to heavier tails), while the latter one, of
shaping the tails (as before, small values im-
ply fatter tails). The effect of different values of
these three parameters on the CTS distribution
can be seen in Figures 5, 6, and 7.

Linear combinations of CTS-distributed ran-
dom variables are also distributed with the
CTS distribution. First, we define the standard
CTS distribution. A random variable X has the
standard CTS distribution if

C = (
�(2 − α)

(
λα−2

+ + λα−2
−

))−1
(22)

The distribution is denoted by X ∼ stdCTS
(α, λ−, λ+). Its mean and variance are zero and
one, respectively.

For a positive number σ and a real number
m, the linear combination Y = σ X + m has the
CTS distribution:

Y ∼ CTS

(
α,

σα

�(2 − α)
(
λα−2

+ + λα−2
−

) ,
λ+
σ

,
λ−
σ

, m

)

(23)



742 Model Risk and Selection

Figure 6 Probability Density of the Symmetric
CTS Distribution: Dependence on λ+ and λ−
Note: CTS Parameter Values: α = 1.1, C = 1,
m = 0, and varying λ+ and λ−

The mean and variance of Y are m and σ 2,
respectively.

Subordinated Representation of the α-Stable
and CTS Distributions
Similar to the Student’s t distribution, sta-
ble distributions can be represented as mix-
tures of other distributions. More generally,

Figure 7 Probability Density of the CTS Distri-
bution: Dependence on α

Note: CTS Parameter Values: C = 1, λ+ = 50, λ− =
50, m = 0, and varying α

(continuous) mixture representations are ana-
lyzed within the framework of intrinsic time
change and subordination. The price and return
dynamics can be considered under two differ-
ent time scales—the physical (calendar) time
and an intrinsic (also called operational, trad-
ing or market) time. The intrinsic time is best
thought of as the cumulative trading volume
process which measures the cumulative trad-
ing volume of the transactions up to a point
on the calendar-time scale. It is a measure of
market activity and a reflection of the empirical
observation that price changes are larger when
market activity is more intense. Let us denote
the intrinsic time process by T(t) and the time-
evolving random variable such as price or re-
turn by X(t). X(t) is assumed independent of
T(t). The compound process X(T(t)) is said to
be subordinated to X by the intrinsic time T(t)
and T(t) is referred to as a subordinator.12 Since
the increments of the intrinsic time �T(t) =
T(t) − T(t − �t) are non-decreasing and posi-
tive, distributions such as gamma, Poisson, and
inverse-Gaussian can be used to describe them
in probabilistic terms.13 Another distributional
alternative is the completely skewed to the right
α-stable distribution, Sα(σ, 1, 0), for 0 < α < 1,
whose support is the positive real line. There-
fore, when 0 < α < 2, the subordinator is a sta-
ble distribution given by Sα

2
(σ, 1, 0).

Subordinated models with random intrinsic
time, such as X(T(t)), are leptokurtic. They have
heavier tails and higher peaks around the mode
of zero than the normal distribution. As such,
they provide a natural way to model the tail
effects observed in prices and returns.

Subordinated representations’ usefulness is
in allowing for practical ways of simulating ran-
dom numbers from the corresponding models.
Subordinated processes are especially impor-
tant in multiasset settings, where each marginal
distribution has a different tail heaviness. This
across-asset heterogeneity can be modeled by
having subordinators with different parameters
for each asset. As noted earlier, this character-
istic of multivariate asset returns is crucially
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important for a realistic risk model able to
identify tail risk contributors and tail risk
diversifiers.

The subordinated representation of the α-
stable distribution can be expressed in the
following way. Let Z be a standard normal ran-
dom variable, Z ∼ N(0, 1), and Y be a positive
α/2-stable random variable independent of Z,
Y ∼ Sα/2(s, 1, 0), where

s = σ 2

2
cos

(πα

4

)2/α

(24)

Then, the variable

X = Y1/2 Z

is symmetric α-stable: X ∼ Sα(σ, 0, 0). This im-
plies that every symmetric stable variable
is conditionally Gaussian (conditional on the
value of the stable subordinator). Uncondi-
tionally, the symmetric α-stable distribution
is expressed as a scale mixture of normal
distributions.14

The CTS distribution has a subordinated rep-
resentation as well and can be expressed as a
mean-scale mixture of Gaussian distributions.
For details, see Madan and Yor (2005).

Fitting and Simulations of α-Stable and CTS
Distributions
Fitting techniques for the α-stable distribu-
tions can be divided into three categories:
quantile methods, characteristic function-based
methods, and maximum likelihood methods.
The quantile method is similar to the method
of moments estimation method in that it
uses predetermined empirical quantiles to es-
timate the sample parameters.15 The charac-
teristic function-based methods also resemble
the method of moments and rely on transfor-
mations of the sample characteristic function.16

Finally, the latter method involves maximiza-
tion of the likelihood function, which is com-
puted numerically. Comparative studies of the
three fitting approaches show that the method
of maximum likelihood is superior in terms of

estimation accuracy. The quantile method re-
quires the least amount of computational time
but is the least accurate one. The second cate-
gory of methods also have the benefit of compu-
tational simplicity but may have a difficulty in
estimating the skewness parameter.17 For these
reasons, here we focus on the method of maxi-
mum likelihood in some more detail.

In statistical theory, the relationship between
the probability density function (pdf) and the
characteristic function is expressed as follows:

fX(x) = 1
2π

∫ ∞

−∞
exp (−i tx) ϕX(t) dt (25)

where h > 0 and f (·) and ϕ(·) are the density
and characteristic functions, respectively. The
pdf of the α-stable and CTS distributions can
be computed by numerical evaluation of the
integral above. A fast and computationally ef-
ficient method of numerical integration is the
fast Fourier transform (FFT) algorithm.18 Con-
sider the pdf computation in (25). The main
idea of FFT is to evaluate the integral for a
grid of equally-spaced values of the random
variable X:

xk =
(

k − 1 − N
2

)
h, k = 1, . . . , N (26)

That is, equation (25) can be expressed as

fX(xk) =
∫ ∞

−∞

× exp
(

−i2πω

(
k − 1 − N

2

)
h
)

ϕX(2πω)dω

This integral can be approximated by the
so-called Riemann sum, after choosing small
enough lower and large enough upper bounds:

fX(xk) ≈ s
N∑

n=1

ϕ

(
2πs

(
n − 1 − N

2

))

× exp
{
−i2π

(
k − 1 − N

2

) (
n − 1 − N

2

)
sh

}

(27)

for k = 1, . . . , N. Here, the lower and upper
bounds equal − s N

2 and s N
2 , respectively. The

distance between the grid points n − 1 − N
2 ,
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n = 1, . . . , N is s. If s = 1
hN , we arrive at the fol-

lowing expression for the density, after some
algebraic rearrangement:

fX(xk) ≈ (−1)k−1+ N
2

hN

N∑

n=1

(−1)n−1ϕ

×
(

2π

hN

(
n − 1 − N

2

))

× exp
(

− i2π (n − 1)(k − 1)
N

)
,

k = 1, . . . , N (28)

To compute the sum above, one can use the
FFT implemented by many numerical analy-
sis software packages. The parameters of the
FFT method are N, the number of summands
in the Riemann sum, and h, the grid spacing.
Their values can be chosen appropriately, so
as to achieve a balance between approximation
accuracy and computational burden.19 Finally,
the maximum-likelihood estimates of the pa-
rameters of the α-stable and CTS distributions
are obtained by numerical maximization of the
log-likelihood function.

Simulations of α-stable distribution can be
accomplished using an algorithm called the
Chambers-Mallows-Stuck generator. To gener-
ate a random number from Sα(σ, β, μ), the steps
are as follows:

� Generate two independent random numbers
from an exponential distribution with mean 1,
E ∼ exp(1), and from a uniform distribution,
U ∼ U(−π

2 , π
2 ).

� If α �= 1, compute

Z = sα,β

sin
(
α(U + bα,β )

)

(cos U)1/α

×
(

cos
(
U − α(U + bα,β )

)

E

)(1−α)/α

,(29)

where

sα,β =
[
1 + β2 tan2 πα

2

] 1
2α

bα,β = arctan(β tan πα
2 )

α
(30)

� If α = 1, compute

Z = 2
π

[(π

2
+ βU

)
tan U

−β log
(

E cos U
π
2 + βU

)]
(31)

� The random variable Z has a standardized
stable distribution with location parameter
equal to zero and scale parameter equal to
one, Z ∼ Sα(1, β, 0). To obtain an observation
from Sα(σ, β, μ) with arbitrary values of σ and
μ, transform Z according to20

S = σ Z + μ (32)

Conditional Parametric
Fat-Tailed Models
A fat-tailed parametric model includes the fol-
lowing main components:

� An autoregressive component to capture au-
toregressive behavior.

� A volatility clustering component, usually a
GARCH-type model.

� A fat-tailed distribution (stable Paretian or
skewed Student’s t) to explain the heavy tails
and the skewness of the residuals from the
ARMA-GARCH model.

� Tail thickness changing with time and across
assets addressed.

INCORPORATING HEAVY
TAILS AND SKEWNESS:
SEMI-PARAMETRIC
FAT-TAILED MODELS
In this section, we review semi-parametric
models, which combine an empirical distribu-
tion for the body of the data distribution where
plenty of observations are available and extend
the tail by a parametric model based on extreme
value theory (EVT). EVT has a long history
of applications in modeling the occurrence
of severe weather, earthquakes, and other
extreme natural phenomena. In general terms,
extreme value distributions are the asymptotic
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distributions for the normalized largest ob-
servations of IID random variables. There are
two main categories of models for extreme
values: block maxima models and threshold
exceedances models.

In the financial applications context, block
maxima could refer to the maximal observa-
tions within certain predefined periods of time.
For example, daily return data could be divided
into quarterly (or semiannual or yearly) blocks
and the largest daily observations within these
blocks collected and analyzed. The distribution
of the maximal values is generally not known.
However, when the block size is large, so that
block maxima are independent (irrespective of
whether the underlying data are dependent),
the limit distribution is given by EVT.21 The
number of blocks determines the size of the
data sample available for analysis and fitting.
In contrast, in threshold exceedances models,
the sample size is not predetermined but, natu-
rally, depends on the a priori selected threshold
level.

The first model category is represented by the
so-called generalized extreme value (GEV) dis-
tribution. Its distribution function has the form

FX (x | ξ, μ, σ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp
(
− (

1 + ξ
x−μ

σ

)−1/ξ
)

,

ξ �= 0
exp (−e−x) ,

ξ = 0

(33)

where 1 + ξ (x − μ)/σ > 0. The parameters
ξ ∈ R, μ ∈ R, and σ > 0 are the shape, loca-
tion, and scale parameters, respectively. The
value of ξ determines the three distributions en-
compassed by the parametric form above: the
Weibull distribution (ξ < 0), the Gumbel dis-
tribution (ξ = 0), and the Fréchet distribution
(ξ > 0). Of the three, the latter one has the heavi-
est tails,22 while the first one is short-tailed, with
a finite right endpoint and, thus, not favored in
modeling financial losses.23

The block maxima method’s major drawback
is its “wastefulness” of data: all but the largest
observation within each block are discarded.
For this reason, a more common approach

to EVT modeling is the threshold exceedance
method. In it, the extreme events exceeding a
predetermined high level (that is, events in the
tail) are modeled with the generalized Pareto
distribution (GPD). Its distribution function is
given by

FX(x | ξ, σ ) =
{

1 − (
1 + ξ x

σ

)−1/ξ
, ξ �= 0

1 − exp
(− x

σ

)
, ξ = 0

(34)

where σ > 0 and x ≥ 0 when ξ ≥ 0 and 0 <
x < −σ/ξ when ξ < 0. The parameters ξ and
σ are the shape and scale parameters, respec-
tively. Like the GEV, the GPD contains several
special cases defined by the value of ξ . When
ξ > 0, we get the Pareto distribution with pa-
rameters α = 1/ξ and k = σ/ξ , whose tails ex-
hibit slow, power-law decay. The exponential
distribution is obtained for ξ = 0; its tails de-
cay at an exponential rate. A short (finite)-tailed
distribution, called Pareto type II distribution,
arises when ξ < 0. 24

Fitting and Simulations of the GPD
In empirical modeling, there is generally a per-
ceived trade-off between fitting the bulk and
the tails of the data. Data around the mode are
numerous and relatively easy to fit, while data
in the tails are sparse and present an estima-
tion challenge. Most commonly, the choice of
model is based on how well it fits the bulk of
the data, with the tails relegated to a somewhat
secondary role. The semiparametric approach
we consider in this section is to describe the
majority of the data in a nonparametric fashion
and use the GPD to fit the tails. Since the GPD
describes the excess distribution over a thresh-
old, we now define formally this concept.

For a random variable with cumulative distri-
bution function G, the excess distribution over
the threshold u is denoted by Gu and is given by

Gu(x) = P (X − u ≤ x | X > u)

= G(x + u) − G(u)
1 − G(u)

for 0 ≤ x ≤ xF − u, where xF is the right
endpoint (a finite number or infinity) of X’s
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distribution function G.25 A statistical result
known as the Pickand-Balkema-de Haan
theorem implies that the excess distributions
of a large class of underlying distributions con-
verge to a GPD as the threshold level increases.
That is, GPD is the limiting distribution as u
increases to infinity.

Denote the available data sample by
X1, . . . , XN and define an upper and a lower
threshold level uU and uL, respectively. The
data points beyond the threshold levels con-
stitute the tails of the data distribution that are
to be modeled with EVT. Naturally, separate
modeling of the two tails has the purpose of
accounting for the potential skewness in the
data distribution. Let us define the exceedances
of uU by Yk,U = Xk − uU , where Xk > uU and
the exceedances of uL by Yk,L = uL − Xk , where
Xk < uL , k = 1, . . . , K .26 The estimates of the
scale and shape parameters are most conve-
niently obtained by maximizing the GPD log-
likelihood function for each of the sets of data
Yk,U and Yk,L .27 It is written as

ln L(ξ, σ | Y1, · · · , YK ) =
K∑

k=1

ln fY(ξ, σ )

= −K ln σ −
(

1 + 1
ξ

) K∑

k=1

ln
(

1 + ξ
Yk

σ

)
(35)

where f (ξ, σ ) denotes the GPD density
function.

The empirical distribution is usually esti-
mated using kernel density estimation ap-
proach. The kernel density estimate can be
roughly thought of as a smoothed-out his-
togram. A parameter, called bandwidth or win-
dow width, controls the degree of smoothness
of the resulting density estimate. More formally,
the kernel density estimate is defined as

f (x, xi , h) = 1
hn

n∑

i=1

Kh

(
x − xi

h

)
(36)

where xi = (x1, x2, . . . , xn) is data sample com-
ing from some unspecified distribution and
assumed to be IID. The bandwidth, h, takes pos-

itive values and K is called the kernel, a symmet-
ric function that integrates to one. The normal
density is often chosen as the kernel in (36). The
bandwidth’s value can be selected in an optimal
way.28

The approach to scenario generation from a
model based on GPD is also semiparametric—
the body of the distribution is simulated from
the empirical density and GPD tails are attached
to it. Generating observations from a GPD with
a given shape parameter ξ , a scale parameter σ ,
and a threshold level u can be accomplished in
the following three steps:

� Generate an observation U from a uniform
distribution on the interval (0, 1).

� Compute the quantity

Z = U−ξ − 1
ξ

(37)

� Compute the GPD realization as

Y = ξ + σ × Z (38)

Scenarios from the body of the distribution
are generated nonparametrically, via histor-
ical simulation known as bootstrapping (or
resampling, more generally). The procedure in-
volves drawing randomly, with replacement,
from the set of historically observed data points.
The simulated tails of the distribution are then
“attached” to the scenarios from the body to ob-
tain semiparametric scenarios from the whole
data distribution.

Threshold Selection
We consider two of the most popular tools for
selection of the threshold level—the mean ex-
cess function plot and the Hill plot. Both of
them rely on visual inspection to determine the
threshold.

The mean excess function is closely related to
the concept of excess distribution. It describes
the average exceedance above a threshold u, as
a function of u.29 Formally, it is defined as

m(u) = E (X − u | X > u) (39)
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In the case of the GPD, m(u) can be shown to
equal

m(u) = σ

1 − ξ
+ ξ

1 − ξ
u

where 0 ≤ u < ∞ if 0 ≤ ξ < 1 and 0 ≤ u ≤
−β/ξ if ξ < 0. The excess mean function does
not exist for ξ ≥ 1. The mean excess function
is linear in the threshold level. This linearity
is used to motivate a graphical check that the
data conform to a GPD model: If the plot is
approximately linear for high threshold values,
the GPD may be employed to describe the dis-
tribution of the exceedances. The level above
which linearity is evident may be taken as the
threshold level.

Plots of the Hill estimator are another EVT
model selection method. The Hill approach of-
fers a way to estimate the tail index α = 1/ξ .
Denote the ith order statistics of the data sam-
ple by X(i).30 The Hill estimator of α is defined
as

Hm,n =
(

1
m

m∑

i=1

ln X(i) − ln X(m)

)−1

(40)

where 2 ≤ m ≤ n and m is a sufficiently high
number. For ξ > 0, the Hill estimator is equal to
α asymptotically, as the sample size n and the
number of extremes m increase without bound.
In practical applications, the Hill estimator is
computed for different values of m and plot-
ted against these values. The plot is expected
to stabilize above a certain value of m, so that
the Hill estimates constructed from a differ-
ent number of order statistics remain approx-
imately the same. The threshold level u is then
estimated by X(m).

The semiparametric approach described in
this section is a source of two major challenges.
First, in order to obtain a sufficiently large num-
ber of observations in the tail, a large sample of
historical data is needed. Second, even though
the plots of the Hill estimator and the mean
excess function provide a method for threshold
identification, such identification is intrinsically
subjective, as it is based on visual inspection.

Moreover, it is difficult to automate it for large-
scale applications.31

Conditional GPD Approach
The semiparametric approach described above
is unconditional, since it implicitly assumes that
the observed data is IID. A typical conditional
GPD approach involves the components:

� Autoregressive model to capture linear de-
pendencies in the data.

� GARCH-type model to capture the volatility
clustering in the data.

� Semi-parametric model applied to the stan-
dardized residuals (which are approximately
IID) to explain the data’s heavy-tailedness
and asymmetry.

COMPARISON AMONG
RISK MODELS
Using the DJIA daily returns from February
7, 1992 to June 30, 2011, we conduct a back-
testing analysis to compare the three fat-tailed
distribution models—stable Paretian, Student’s
t, and EVT—alongside the normal distribution
model. The data used in all models are first fil-
tered for autoregression and volatility cluster-
ing using ARMA-GARCH.

The particular models we use in this section
are the univariate analogs of the typical ap-
proaches to modeling in the multivariate case.
A short discussion will help clarify what this
means. Earlier we explained that, in a multi-
asset setting, taking into account the varying
tail behavior of the returns of different assets
is of principal importance for risk analysis and
management. However, employing the classi-
cal Student’s t distribution in the multivari-
ate case necessarily implies the same value of
the DOF parameter for all assets. That value
would “average out” the tail-fatness of assets,
so that the risk of some risk drivers will be
underestimated, while the risk of others, over-
estimated. To reflect this typical multivariate
application, in our backtesting analysis we
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choose to fix the DOF of the Student’s t dis-
tribution to four.

In the case of the stable Paretian model, sim-
ilar considerations about the heterogeneity of
tail behavior across risk drivers lead us to use
the subordinated representation of the α-stable
distribution. As mentioned in an earlier section,
that representation allows for modeling the in-
dividual tail behavior of assets.

The backtesting analysis in this section, there-
fore, can be understood as a comparison among
models with increasing degree of sophisti-
cation. We start with the classical paramet-
ric approach (the “Gaussian model”). Then,
a “non-sophisticated” fat-tailed model, repre-
sented by the fixed-DOF Student’s t model
(the “T-model”) is tested. Finally, a state-of-the-
art fat-tailed model—the stable subordinated
model (the “stable model”)—is considered. For
each of the four models, exceedances of value-
at-risk (VaR)—the number of times the realized
loss is larger than the predicted VaR level—are
tracked.32 We run the backtest with the follow-
ing settings:
� Backtest period: January 2, 2004, to June 30,

2011.
� VaR confidence level: 99%.
� Time window: 500 rolling days for normal,

classical Student’s t, and stable Paretian dis-
tributions and 3,000 rolling days for EVT.33

� EVT threshold: 1.02% (as suggested by Gold-
berg, Miller, and Weinstein (2008)).

The number of exceedances of the daily 99%
VaR in the backtesting analysis for the four
models is summarized below:

Model Number of Exceedances

Stable 21
Student’s t 26
Gaussian (normal) 42
EVT 1

The number of exceedances is compared us-
ing a 95% confidence interval estimated to be
[10, 27]. The results show that the Gaussian
model is too optimistic—with 42 exceedances,

its VaR forecasts are too low. In contrast, the
EVT approach is overly pessimistic: Its pre-
dicted VaR is only exceeded once in the back-
testing period. The Student’s t model and the
stable model both produce exceedances within
the confidence interval, with the latter model
being very close to the upper bound.

The DJIA performance during the backtest pe-
riod is presented in Figure 8. Figure 9 plots the
daily 99% VaR forecast produced by the Gaus-
sian model, the Student’s t model, and the stable
model against the daily DJIA returns for the full
backtest period. Since the EVT model’s VaR pre-
dictions are too conservative, we have excluded
it from the exhibit for the sake of presentation
clarity. It can be seen from the figure that in
times of low market volatility, the VaR forecasts
of the three models are almost indistinguish-
able. However, during periods of greater mar-
ket turmoil, differences in predicted risk levels
are substantial across models. This point is fur-
ther elaborated in Figure 10, which shows the
spreads between the 99% VaR forecasts for the
Student’s t Gaussian and the stable-Gaussian
model pairs, along with the values and returns
of DJIA. We observe that the stable-Gaussian
VaR spread stays at zero for the period from
2004 to late-2006, suggesting “normal” market
conditions. (The estimated tail index parame-
ter of the α-stable distribution is close or equal
to two during that period.) This is an essen-
tial feature of the stable model: Despite being
a fat-tailed approach, it does not overpenalize
the portfolio by assessing unnecessarily high
risk estimates during calm market periods. On
the other hand, even in times of severe market
circumstances the number of exceedances of the
stable VaR is within an acceptable range. For the
period from June 1, 2008 to June 1, 2009, the sta-
ble VaR has one exceedance, which is within the
95% confidence interval for the number of ex-
ceedances ([0, 4]). By comparison, the Student’s
t model’s VaR is exceeded four times, while the
Gaussian model has seven exceedances.

It is interesting to analyze whether the VaR
forecasts can anticipate the transition from a
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Figure 8 Dow Jones Industrial Average Performance: January 2, 2004–June 30, 2011

calm market regime to a turbulent one. To in-
vestigate, we “zoom in” on the VaR spread
dynamics for the two-year period leading up
to the September 2008 crash. Figure 11 shows

18/Oct/04 03/Aug/05 19/May/06 08/Mar/07 20/Dec/07 07/Oct/08 24/Jul/09 11/May/10 24/Feb/11
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Figure 9 Backtest of the 99% Daily VaR Predicted by Different Distributional Methodologies

the VaR spreads for the period September 1,
2006–September 1, 2008, relative to the Gaus-
sian VaR forecast. We notice that the stable-
Gaussian relative spread starts increasing in
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Figure 10 Spreads between 99%VaR Predictions for Student’s t Gaussian and Stable-Gaussian Model
Pairs: Full Period

late 2006. This is the result of the increased
tail-fatness estimated by the stable model (α
decreases). At the same time, the Student’s
t–Gaussian relative spread is fairly constant due
to the fact that the DOF (and, therefore, the tail-
fatness) is fixed.34 Over the two-year period,
we can see a pronounced increase in the stable-
Gaussian VaR relative spread. There are two
time segments (in spring 2007 and spring 2008)
in which the spread actually decreases. Both are
associated with periods following major nega-
tive news and market tremors.35 In these pe-
riods, the Gaussian model’s VaR “catches up”
post factum due to the increase in the estimates
of the conditional GARCH volatility.

In general, one can interpret the upward trend
of the stable-Gaussian VaR relative spread as
an indicator of markets accumulating higher
probability of extreme events before the actual
market volatility goes up. This predictive be-
havior is only possible due to the time-varying

estimates of the tail-fatness (the α parameter in
the stable model). Thus, in the fixed-DOF Stu-
dent’s t model, such a predictive trend cannot
be observed. During the two-year period, the
number of exceedances is eight for the stable
model, ten for the Student’s t model, and 16 for
the Gaussian model, while the 95% confidence
interval is [0, 9].

Finally, to test the significance of the stable-
Gaussian VaR relative spread, we build a con-
fidence interval for it. We do that by altering
the tail index α at each point in time during
the backtesting period with plus and minus
one standard deviation of α and then re-
computing the stable VaR and the associated
stable-Gaussian relative spread. The standard
deviation of α is estimated using parametric
bootstrap, based on 200 bootstrap samples of
500 random draws each generated from an
α-stable model with the corresponding α.36

Figure 12 shows the confidence bounds of the
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Figure 11 Relative Spreads between 99%VaR Predictions for Student’s t Gaussian and Stable-Gaussian
Model Pairs: September 1, 2006–September 1, 2008

stable-Gaussian VaR relative spread for the two-
year period running up to September 2008,
together with the Student’s t–Gaussian VaR rel-
ative spread. Even the lower bound of the confi-
dence interval of the stable-Gaussian VaR rela-
tive spread is more indicative than the Student’s
t–Gaussian relative spread over this time pe-
riod. Although the upward trend of the lower
confidence bound is not as strong as that of
the upper confidence bound, the results sup-
port the conclusion that the stable model’s VaR
forecasts have the ability to anticipate a switch
from a calm to a volatile market regime.

KEY POINTS
� The Gaussian distribution is not adequate

to describe the empirical features of asset

returns. The standardized residuals from a
conditional Gaussian model exhibit heavy-
tailedness and asymmetry.

� The Student’s t distribution has fatter tails
than the normal distribution. To account for
skewness, however, the “classical” Student’s
t distribution needs to be modified.

� The skewed Student’s t distribution can be
represented as a mean-scale mixture of nor-
mal distributions; that is, normal distribution
with random mean and variance.

� The tails of the stable Paretian distributions
decay more slowly than the tails of the normal
distribution and therefore better describe the
extreme events present in the data.

� In the non-Gaussian case, a large sum of ap-
propriately standardized IID random vari-
ables is distributed with the stable Paretian
distribution in the limit.
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� To address the issue of infinite variance, the
stable Paretian distribution may be modified
by tempering of the distribution’s tail. This
gives rise to the tempered stable distributions.

� There are two main categories of distributions
for extreme values—block maxima models
and threshold exceedances models. The lat-
ter category is more often employed in risk
modeling, since it is less “wasteful” of histor-
ical data than the former category.

� Selection of the threshold from where the
tail of the data distribution starts is based on
a subjective judgement and, together with
data scarcity, is the main bottleneck in EVT
applications.

� In all cases, before applying a fat-tailed
model, an ARMA-GARCH filter should be

used to remove the temporal dependence in
asset returns.

� A realistic distributional assumption for a
model should allow for tail-fatness that
changes over time and from asset to asset.
Such models can serve as early warning indi-
cators when moving to a new market regime
(from calm to turbulent and vice versa) and
can identify tail-risk contributors and tail-risk
diversifiers.

NOTES
1. The Gaussian distribution’s analytical

tractability in the multivariate setting is
an additional important factor behind its
widespread use. See, for example, Kotz,
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Johnson, and Balakrishnan (2000) for details
on the multivariate normal distribution.

2. However, later in this entry we provide an
important clarification regarding a statisti-
cal result, called the central limit theorem.

3. In general, the scale parameter does not al-
ways coincide with the standard deviation
(volatility), as we will see, for instance, in
our discussion of the scaled Student’s t dis-
tribution later in the entry.

4. See, for example, Rachev, Stoyanov,
Biglova, and Fabozzi (2005).

5. The conditional distribution of returns ac-
cording to the model above is Gaussian. The
unconditional distribution, however, is not
normal but a mixture of normal distribu-
tions (due to the time-varying mean and
variance). Its tails are fatter than those of the
normal distribution but not fat enough to
account for the empirically observed heavy
tails.

6. Note that this is not the same as “standard-
ized,” since the standard deviation of X is
not one.

7. Notice that the Student’s t distribution de-
fined in equation (8) has a location of zero
and a scale of one.

8. More precisely, we estimate a GARCH
model on a 500-day rolling window of re-
turns and then fit a t-distribution to the
(standardized) GARCH residuals.

9. Skewed Student’s t models have been pro-
posed by Fernandez and Steel (1998), Azza-
lini and Capitanio (2003), and Rachev and
Rüschendorf (1994), among others.

10. The skewed Student’s t distribution be-
longs to a more general class of dis-
tributions called generalized hyperbolic
distributions and introduced by Barndorff-
Nielsen (1978). It contains the Student’s t
and normal distributions as limiting cases.

11. See Rachev and Mittnik (2000) and
Samorodnitsky and Taqqu (1994). A de-
tailed description of the stable methodology
is available in Rachev, Martin, Racheva-
Yotova, and Stoyanov (2009).

12. For details on the statistical properties of
subordinated processes, see Feller (1966)
and Clark (1973). Rachev and Mittnik (2000)
provide discussions of subordinated pro-
cesses in financial applications.

13. More generally, the family of infinitely di-
visible distributions to which the gamma,
Poisson, inverse-Gaussian, and all stable
Paretian distributions belong is a natural
choice of distributions for the increments
of the intrinsic time process T(t).

14. In a multivariate setting, Z would be dis-
tributed with a multivariate normal dis-
tribution and Y can be a a vector whose
components are stable subordinators with
different tail-fatness. The resulting distribu-
tion is a generalization of the multivariate
sub-Gaussian stable distribution.

15. McCulloch (1986)’s estimation procedure
generalized the quantile method for sym-
metric α-stable distributions of Fama and
Roll (1971).

16. See Press (1972). Kogon and Williams
(1998) and Koutrouvelis (1980) suggested
regression-type estimator algorithms, also
based on the characteristic function.

17. Comparison among the three types of esti-
mation categories is provided in Stoyanov
and Racheva-Yotova (2004).

18. A detailed description of the stable fitting
methodology is available in Rachev and
Mittnik (2000).

19. Rachev and Mittnik (2000) show that
selecting h = 0.01 and N = 213 reduces
the approximation error in computing
the α-stable pdf to the satisfactory level
of 10−6.

20. The algorithm for simulations from the
CTS distribution is rather involved and de-
scribed in detail in Rachev, Kim, Bianchi,
and Fabozzi (2011).

21. The role of EVT in modeling maxima of
random variables is similar to the one the
central limit theorem plays in modeling the
sums of random variables. Both character-
ize the limiting distributions.
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22. The tails of the Fréchet distribution decay
like a power function at a rate α = 1/ξ ,
the tail index parameter characterizing the
α-stable distribution.

23. Comprehensive discussion of EVT is avail-
able in McNeil, Frey, and Embrechts (2005).

24. For more details on GPD, see Embrechts,
Klüppelberg, and Mikosch (1997).

25. Notice that the threshold level u is in fact the
location parameter in the GPD distribution.

26. The thresholds uL and uU are usually de-
fined in terms of symmetric empirical quan-
tiles, for example, the 5% and 95% quantiles.
In that case, the number of observed data
points in each tail is equal to K.

27. To be precise, when fitting the left tail, (35) is
maximized over the absolute values of Yk,L ,
k = 1, . . . , K .

28. See, for example, Silverman (1986).
29. m(u) is also known as mean residual life

function in survival analysis and character-
izes the expected residual lifetime of a com-
ponent that has function for u units of time
already.

30. The ith order statistic is the ith largest ob-
servation in a data sample. The first or-
der statistic is the maximum of the sample,
while the nth order statistic is the minimum
of a sample of size n.

31. See Rachev, Racheva-Yotova, and Stoyanov
(2010) for a detailed discussion of these
challenges.

32. Value-at-risk is defined as the minimum
loss at a given confidence level for a pre-
defined time horizon.

33. Goldberg, Miller, and Weinstein (2008) use
time windows ranging from approximately
1,500 to 7,600 days.

34. The small variations are due to the vari-
ability in the estimates of the Student’s t
GARCH model.

35. In February 2007, Freddie Mac announced
that it would no longer buy the most risky
subprime mortgages and mortgage-related
securities and in April 2007, New Cen-
tury Financial Corporation, a leading sub-

prime mortgage lender, filed for Chapter 11
bankruptcy protection. Then, in the spring
of 2008, we observed the collapse of Bear
Stearns and the associated events.

36. The bootstrap sample size is 500, since this
is the length of the time window used to
calibrate the model.
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discounted, I:225
discrete, I:429
distribution analysis vs. benchmark,

III:310
estimation of, I:209–210, II:21–23
expected, I:211
factors in, III:31–32, III:377
form residential mortgage loans,

III:62
futures vs. forwards, I:431t
future value of, II:603f
influences on, III:44
interest coverage ratio of, II:561,

II:575
interim, I:482
for loan pool, III:9t
measurement of, II:565–566, III:14
monthly, III:52–54, III:53t
net free (NFCF), II:572–574, II:578
in OAS analysis, I:259
perpetual stream of, II:607–608
sources of, II:540–541, II:569t
in state dependent models,

I:351–352
statement of, II:539–541, II:566–567
time patterns of, II:607–611
and time value of money, II:595–596
time value of series of, II:602–607
for total return receivers, I:542
for Treasuries, I:219, III:564–565
types of in assessing liquidity risk,

III:378
use of information on, II:576–577
valuation of, II:618–619
vs. free cash flow, II:22–23

Cash flow statements
example of, II:541
form of, II:26t
information from, II:577–578
reformatting of, II:569t
restructuring of, II:568
sample, II:547t
use of, II:24–26

Cash flow-to-debt ratio, II:576
Cash-out refinancing, III:66, III:69
Cash payments, I:486–487, III:377
Categorizations, determining

usefulness of, II:335
Cauchy, Augustin, II:655
Cauchy initial value problem, II:655,

II:656, II:656f, II:657
CAViaR (conditional autoregressive

value at risk), II:366
CDOs (collateralized debt

obligations), I:299, I:525, III:553,
III:645

CDRs (conditional default rates)
in cash flow calculators, III:34
defaults measured by, III:58–59

defined, III:30–31
monthly, III:62t
projections for, III:35f
in transition matrices, III:35f

CDSs (credit default swaps)
basis, I:232
bids on, I:527
cash basis, I:402
discussion of, I:230–232
fixed premiums of, I:530–531
hedging with, I:418
illustration of, I:527
initial value of, I:538
maturity dates, I:526
payoff and payment structure of,

I:534f
premium payments, I:231f,

I:533–535
pricing models for, I:538–539
pricing of by static replication,

I:530–532
pricing of single-name, I:532–538
quotations for, I:413
risk and sensitivities of, I:536–537
spread of, I:526
unwinding of, I:538
use of, I:403, I:413, II:284
valuation of, I:535–536
volume of market, I:414

Central limit theorem
defined, I:149n, III:209–210, III:640
and the law of large numbers,

III:263–264
and random number generation,

III:646
and random variables, II:732–733

Central tendencies, II:353, II:354, II:355
Certainty equivalents, II:723–724,

II:724–725
CEV (constant elasticity of variance),

III:550, III:551f, III:654–655
Chambers-Mallows-Stuck generator,

II:743–744
Change of measures, III:509–517,

III:516t
Change of time methods (CTM)

applications of, III:522–527
discussion of, III:519–522
general theory of, III:520–521
main idea of, III:519–520, III:527
in martingale settings, III:522–523
in stochastic differential equation

setting, III:523
Chaos, defined, II:653
Chaos: Making a New Science (Gleick),

II:714
Characteristic function

vs. probability density function,
II:743
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Characteristic lines, II:316, II:318t,
II:344–348, II:345–347t

Chebychev inequalities, III:210, III:225
Chen model, I:493
Chi-square distributions, I:388–389,

III:212–213
Cholesky factor, I:380
Chow test, II:336, II:343, II:344, II:350
CID (conditionally independent

defaults) models, I:320,
I:321–322, I:333

CIR model, I:498, I:500–501, I:502
Citigroup, I:302, I:408f, I:409f
CLA (critical line algorithm), I:73
Classes

criteria for, II:494
Classical tempered stable (CTS)

distribution, II:741–742, II:741f,
II:742f, II:743–744, III:512

Classification, and Bayes’ Theorem,
I:145

Classification and regression trees
(CART). See CART
(classification and regression
trees)

Classing, procedure for, II:494–498
Clearinghouses, I:478
CME Group, I:489–490
CMOs (collateralized mortgage

obligations), III:598, III:645
Coconut markets, I:70
Coefficients

binomial, III:171, III:187–191
of determination, II:315
estimated, II:336–337

Coherent risk measures, III:327–329
and VaR, III:329

Coins, fair/unfair, III:169, III:326–327
Cointegrated models, II:503
Cointegration

analysis of, II:381t
defined, II:383
empirical illustration of, II:388–393
technique of, II:384–385
testing for, II:386–387
test of, II:394t, II:396t
use of, II:397

Collateralized debt obligations
(CDOs), I:299, I:525, III:553,
III:645

Collateralized mortgage obligations
(CMOs), III:598, III:645

Collinearity, II:329–330
Commodities, I:279, I:556, I:566
Companies. See firms
Comparison principals, II:676
Comparisons vs. testing, I:156
Complete markets, I:103–104, I:119,

I:133, I:461

Complexity, profiting from, II:57–58
Complexity (Waldrop), II:699
Complex numbers, II:591–592, II:592f
Compounding. See also interest

and annual percentage rates, II:616
continuous, II:599, II:617
determining number of periods,

II:602
discrete vs. continuous, III:570–571
formula for growth rate, II:8
more than once per year, II:598–599
and present value, II:618

Comprehensive Capital Analysis and
Review, I:300

Comprehensive Capital Assessment
Review, I:412

Computational burden, III:643–644
Computers. See also various software

applications
increased use of, III:137–138
introduction of into finance, II:480
modeling with, I:511, II:695
random walk generation of, II:708
in stochastic programing, III:124,

III:125–126
Concordance, defined, I:327
Conditional autoregressive value at

risk (CAViaR), II:366
Conditional default rate (CDR). See

CDRs (conditional default
rates)

Conditionally independent defaults
(CID) models, I:320, I:321–322,
I:323

Conditioning/conditions, I:24,
II:307–308, II:361, II:645

Confidence, I:200, I:201, II:723, III:319
Confidence intervals, II:440, III:338t,

III:399–400, III:400f
Conglomerate discounts, II:43
Conseco, debt restructure of, I:529
Consistency, notion of, II:666–667
Constant elasticity of variance (CEV),

III:550, III:551f, III:654–655
Constant growth dividend discount

model, II:7–9
Constraints, portfolio

cardinality, II:64–65
common, III:146
commonly used, II:62–66, II:84
holding, II:62–63
minimum holding/transaction size,

II:65
nonnegativity, I:73
real world, II:224–225
round lot, II:65–66
setting, I:192
turnover, II:63
on weights of, I:191–192

Constraint sets, I:21, I:28, I:29
Consumer Price Index (CPI),

I:277–278, I:291f, I:292, I:292f
Consumption, I:59–60, II:360, III:570
Contagion, I:320, I:324, I:333
Contingent claims

financial instruments as, I:462
incomplete markets for, I:461–462
unit, I:458
use of analysis, I:463
utility maximization in markets,

I:459–461
value of, I:458–459

Continuity, formal treatment of,
II:583–584

Continuous distribution function
(c.d.f.), III:167, III:196, III:205,
III:345–346, III:345f

Continuous distribution function F(a),
III:196

Continuous time/continuous state,
III:578

Continuous-time processes, change of
measure for, III:511–512

Control flow statements in VBA,
III:458–460

Control methods, stochastic, I:560
Convenience yields, I:424, I:439
Convergence analysis, II:667–668
Conversion, I:274, I:445
Convexity

in callable bonds, III:302–303
defined, I:258–259, III:309
effective, III:13, III:300–304, III:617t
measurement of, III:13–14,

III:304–305
negative, III:14, III:49, III:303
positive, III:13
use of, III:299–300

Convex programming, I:29, I:31–32
Cootner, Paul, III:242
Copulas

advantages of, III:284
defined, III:283
mathematics of, III:284–286
usefulness of, III:287
visualization of bivariate

independence, III:285f
visualization of Gaussian, III:287f

Corner solutions, I:200
Correlation coefficients

relation to R2, II:316
and Theil-Sen regression, II:444
use of, III:286–287

Correlation matrices, II:160t, II:163t,
III:396–397

Correlations
in binomial distribution, I:118
computation of, I:92–93
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concept of, III:283
drawbacks of, III:283–284
between periodic increments,

III:540t
and portfolio risk, I:11
robust estimates of, II:443–446
serial, II:220
undesirable, I:293
use of, II:271

Costs, net financing, I:481
Cotton prices, model of, III:383
Countable additivity, III:158
Counterparts, robust, II:81
Countries, low- vs. high inflation,

I:290
Coupon payments, I:212, III:4
Coupon rates, computing of,

III:548–549
Courant-Friedrichs-Lewy (CFL)

conditions, II:657
Covariance

calculation of between assets, I:8–9
estimators for, I:38–40, I:194–195
matrix, I:38–39, I:155, I:190
relationship with correlation, I:9
reliability of sample estimates, II:77
use of, II:370–371

Covariance matrices
decisions for interest rates, III:406
eigenvectors/eigenvalues, II:160t
equally weighted moving average,

III:402–403
frequency of observations for,

III:404
graphic of, II:161t
residuals of return process of,

II:162t
of RiskMetricsTM Group, III:412–413
statistical methodology for,

III:398–399
of ten stock returns, II:159t
use of, II:158–159, II:169
using EWMA in, III:411

Coverage ratios, II:560–561
Cox-Ingersoll-Ross (CIR) model, I:260,

I:491–492, I:547, I:548,
III:546–547, III:656

Cox processes, I:315–316, II:470–471
Cox-Ross-Rubenstein model, I:510,

I:522, II:678
CPI (Consumer Price Index),

I:277–278, I:291f, I:292, I:292f
CPRs (conditional prepayment rates).

See prepayment, conditional
CPR vector, III:74. See also

prepayment, conditional
Cramer, Harald, II:470–471
Crank-Nicolson schemes, II:666,

II:669, II:674, II:680

Crank Nicolson-splitting (CN-S)
schemes, II:675

Crashmetrics, use of, III:379, III:380
Credible intervals, I:156
Credit-adjusted spread trees, I:274
Credit crises

of 2007, III:74
of 2008, III:381
data from and DTS model, I:396
in Japan, I:417

Credit curing, III:73
Credit default swaps (CDSs). See CDSs

(credit default swaps)
Credit events

and credit loss, I:379
in default swaps, I:526, I:528–530
definitions of, I:528
descriptions of most used, I:528t
exchanges/payments in, I:231f
in MBS turnover, III:66
prepayments from, III:49–50
protection against, I:230
and simultaneous defaults, I:323

Credit hedging, I:405
Credit inputs, interaction of, III:36–38
Credit loss

computation of, I:382–383
distribution of, I:369f
example of distribution of, I:386f
simulated, I:389
steps for simulation of, I:379–380

Credit models, I:300, I:302, I:303
Credit performance, evolution of,

III:32–36
Credit ratings

categories of, I:362
consumer, I:302
disadvantages of, I:300–301
implied, I:381–382
maturity of, I:301
reasons for, I:300
risks for, II:280–281, II:280t
use of, I:309

Credit risk
common, I:322
counterparty, I:413
in credit default swaps, I:535
defined, I:361
distribution of, I:377
importance of, III:81
measures for, I:386f
modeling, I:299–300, I:322, III:183
quantification of, I:369–372
reports on, II:278–281
shipping, I:566
and spread duration, I:391–392
vs. cash flow risk, III:377–378

Credit scores, I:300–302, I:301–302,
I:309, I:310n

Credit spreads
alternative models of, I:405–406
analysis with stock prices, I:305t
applications of, I:404–405
decomposition, I:401–402
drivers of, I:402
interpretation of, I:403–404
model specification, I:403
relationship with stock prices, I:304
risk in, II:279t
use of, I:222–223

Credit support, evaluation of, III:39–40
Credit value at risk (CVaR). See CVaR
Crisis situations, estimating liquidity

in, III:378–380
Critical line algorithm (CLA), I:73
Cross-trading, II:85n
Cross-validation, leave-one-out,

II:413–414
Crude oil, I:561, I:562
Cumulation, defined, III:471
Cumulative default rate (CDX), III:58
Cumulative frequency distributions,

II:493f, II:493t, II:498–499
formal presentation of, II:492–493

Currency put options, I:515
Current ratio, II:554
Curve imbalances, II:270–271
Curve options, III:553
Curve risk, II:275–278
CUSIPs/ticker symbols, changes in,

II:202–203
CVaR (credit value at risk), I:384–385,

I:385–386, II:68, II:85n, III:392t.
See also value at risk (VaR)

Daily increments of volatility, III:534
Daily log returns, II:407–408
Dark pools, II:450, II:454
Data. See also operational loss data

absolute, II:487–488
acquisition and processing of,

II:198
alignment of, II:202–203
amount of, I:196
augmentation of, I:186n
availability of, II:202, II:486
backfilling of, II:202
bias of, II:204, II:713
bid-ask aggregation techniques for,

II:457f
classification of, II:499–500
collection of, II:102, II:103f
cross-sectional, II:201, II:488, II:488f
in forecasting models, II:230
frequency of, II:113, II:368,

II:462–463, II:500
fundamental, II:246–247
generation of, II:295–296
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Data (Continued )
high-frequency (HFD) (See

high-frequency data (HFD))
historical, II:77–78, II:122, II:172
housing bubble, II:397–399
importing into MATLAB,

III:433–434
industry-specific, II:105
integrity of, II:201–203
levels and scale of, II:486–487
long-term, III:389–390
in mean-variance, I:193–194
misuse of, II:108
on operational loss, III:99
from OTC business, II:486
patterns in, II:707–708
pooling of, III:96
of precision, I:158
preliminary analysis of, III:362
problems in for operational risk,

III:97–98
qualitative vs. quantitative,

II:486
quality of, II:204, II:211, II:452–453,

II:486, II:695
reasons for classification of,

II:493–494
for relative valuation, II:34–35
restatements of, II:202
sampling of, II:459f, II:711
scarcity of, II:699–700, II:703–704,

II:718
sorting and counting of, II:488–491
standardization of, II:204, III:228
structure/sample size of, II:703
types of, II:486–488
underlying signals, II:111
univariate, defined, II:485
working with, II:201–206

Databases
Compustat Point-In-Time, II:238
Factiva, II:482
Institutional Brokers Estimate

System (IBES), II:238
structured, II:482
third-party, II:198, II:211n

Data classes, criteria for, II:500
Data generating processes (DGPs),

II:295–296, II:298f, II:502, II:702,
III:278

Data periods, length of, III:404
Data series, effect of large number of,

II:708–709
Data sets, training/test, II:710–711
Data snooping, II:700, II:710–712,

II:714, II:717, II:718
Datini, Francesco, II:479–480
Davis-Lo infectious defaults model,

I:324

Days payables outstanding (DPO),
calculation of, II:553–554

Days sales outstanding (DSO),
calculation of, II:553

DCF (discounted cash flow) models,
II:16, II:44–45

DDM (dividend discount models). See
dividend discount models
(DDM)

Debt
long-term, in financial statements,

II:542
models of risky, I:304–307
restructuring of, I:230
risky, I:307–308

Debt-to-assets ratio, II:559
Debt-to-equity ratio, II:559
Decomposition models

active/passive, III:19
Default correlation, I:317–318

contagion, I:353–354
cyclical, I:352, I:353
linear, I:320–321
measures of, I:320–321
tools for modeling, I:319–333

Default intensity, III:225
Default models, I:321–322, I:370f
Default probabilities

adjustments in real time, I:300–301
between companies, I:412–413
cyclical rise and fall, I:408f, I:409f
defined, I:299–300
effect of business cycle on, I:408
effect of rating outlooks on,

I:365–366
empirical approach to, I:362–363
five-year (Bank of America and

Citigroup), I:301f, I:302f
merits of approaches to, I:365
Merton’s approach to, I:363–365
probability of, II:727, II:727f, II:728f
and survival, I:533–535
and survival probability, I:323–324
term structure of, I:303
time span of, I:302–303
vs. ratings and credit scores,

I:300–302
for Washington Mutual, I:415f,

I:416f
of Washington Mutual, I:415f,

I:416f
Defaults

annual rates of, I:363
and Bernoulli distributions,

III:169–170
calculation of monthly, III:61t
clustering of, I:324–325
contagion, I:320
copulas for times, I:329–331

correlation of between companies,
I:411

cost of, I:401, I:404f
dollar amounts of, III:59f
effect of, I:228, III:645
event vs. liquidation, I:349
factors influencing, III:74–75
first passage model of, I:349
historical database of, I:414
intensity of, I:330, I:414
looping, I:324–325
measures of, III:58–59
in Merton approach, I:306
Moody’s definition of, I:363
predictability of, I:346–347
and prepayments, III:49–50,

III:76–77
process, relationship to recovery

rate, I:372
pseudo intensities, I:330
rates of cumulative/conditional,

III:63
recovery after, I:316–317
risk of, I:210
simulation of times, I:322–324, I:325
threshold of, I:345–346
times simulation of, I:319
triggers for, I:347–348
variables in, I:307–308

Default swaps
assumptions about, I:531–532
and credit events, I:530
digital, I:537
discussion of, I:526–528
market relationship with cash

market, I:530
and restructuring, I:528–529
value of spread, I:534

Default times, I:332
Definite covariance matrix, II:445
Deflators, I:129, I:136
Degrees, in ordinary differential

equations, II:644–645
Degrees of freedom (DOF)

across assets and time, II:735–736
in chi-square distribution, III:212
defined, II:734
for Dow Jones Industrial Average

(DJIA), II:735–737, II:737f
prior distribution for, I:177
range of, I:187n
for S&P 500 index stock returns,

II:735–736, II:736f
Delinquency measures, III:57–58
Delivery date, I:478
Delta, I:509, I:516–518, I:521
Delta-gamma approximation, I:519,

III:644–645
Delta hedging, I:413, I:416, I:418, I:517
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Delta profile, I:518f
Densities

beta, III:108f
Burr, III:110f
closed-form solutions for, III:243
exponential, III:105–106, III:105f
gamma, III:108f
Pareto, III:109f
posterior, I:170f
two-point lognormal, III:111f

Density curves, I:147f
Density functions

asymmetric, III:205f
of beta distribution, III:222f
chi-square distributions, III:213f
common means, different variances,

III:203f
computing probabilities from,

III:201
discussion of, III:197–200
of F-distribution, III:217f
histogram of, III:198f
of log-normal distribution, III:223f
and normal distribution, II:733
and probability, III:206
rectangular distributions, III:220
requirements of, III:198–200
symmetric, III:204f
of t-distribution, III:214f

Dependence, I:326–327, II:305–308
Depreciation, II:22

accumulated, II:533–534
expense vs. book value, II:539f
expense vs. carrying value, II:540f
in financial statements, II:537–539
on income statements, II:536
methods of allocation, II:537–538

Derivatives
construction of, II:586–587
described, II:585–586
embedded, I:462
energy, I:558
exotic, I:558, I:559–560
of functions, defined, II:593
and incomplete markets, I:462
interest rate, III:589–590
nonlinearity of, III:644–645
OTC, I:538
pricing of, I:58, III:594–596
pricing of financial, III:642–643
relationship with integrals, II:590
for shipping assets, I:555, I:558,

I:565–566
use of instruments, I:477
valuation and hedging of, I:558–560
vanilla, I:559

Derman, Emanuel, II:694
Descriptors, II:140, II:246–247, II:256
Determinants, II:623

Deterministic methods
usefulness of, II:685

Diagonal VEC model (DVEC), II:372
Dice, and probability, III:152, III:153,

III:155–156, III:156t
Dickey-Fuller statistic, II:386–387
Dickey-Fuller tests, II:514
Difference, notation of, I:80
Differential equations

classification of, II:657–658
defined, I:95, II:644, II:657
first-order system of, II:646
general solutions to, II:645
linear, II:647–648
linear ordinary, II:644–645
partial (PDE), II:643, II:654–657
stochastic, II:643–644
systems of ordinary, II:645–646
usefulness of, II:658

Diffusion, III:539, III:554–555
Diffusion invariance principle, I:132
Dimensionality, curse of, II:673, III:127
Dirac measures, III:271
Directional measures, II:428, II:429
Dirichlet boundary conditions, II:666
Dirichlet distribution, I:181–183,

I:186–187n
Discounted cash flow (DCF) models,

II:16, II:44–45
Discount factors, I:57–58, I:59–62, I:60,

II:600–601
Discount function

calculation of, III:571
defined, III:563
discussion of, III:563–565
forward rates from, III:566–567
graph of, III:563f
for on-the-run Treasuries,

III:564–565
Discounting, defined, II:596
Discount rates, I:211, I:212, I:215–216,

II:6
Discovery heuristics, II:711
Discrepancies, importance of small,

II:696
Discrete law, III:165–169
Discrete maximum principle, II:668
Discretization, I:265, II:669f, II:672
Disentangling, II:51–56

complexities of, II:55–56
predictive power of, II:54–55
return revelation of, II:52–54
usefulness of, II:52, II:58

Dispersion measures, III:352,
III:353–354, III:357

Dispersion parameters, III:202–205
Distress events, I:351
Distributional measures, II:428
Distribution analysis, cash flow, III:310

Distribution function, III:218f, III:224f
Distributions

application of hypergeometric,
III:177–178

beliefs about, I:152–153
Bernoulli, III:169–170, III:185t
beta, I:148, III:108
binomial, I:81f, III:170–174, III:185t,

III:363
Burr, III:109–110
categories for extreme values, II:752
common loss, III:112t
commonly used, III:225
conditional, III:219
conditional posterior, I:178–179,

I:182–183, I:184–185
conjugate prior, I:154
continuous probability, III:195–196
discrete, III:185t
discrete cumulative, III:166
discrete uniform, III:183–184,

III:185t, III:638f
empirical, II:498, III:104–105, III:105f
exponential, III:105–106
finite-dimensional, II:502
of Fréchet, Gumbel and Weibull,

III:267f
gamma, III:107–108, III:221–222
Gaussian, III:210–212
Gumbel, III:228, III:230
heavy-tailed, I:186n, II:733, III:109,

III:260
hypergeometric, III:174–178, III:185t
indicating location of, III:235
infinitely divisible, III:253–256,

III:253t
informative prior, I:152–153
inverted Wishart, I:172
light- vs. heavy-tailed, III:111–112
lognormal, III:106, III:106f,

III:538–539
mixture loss, III:110–111
for modeling applications, III:257
multinomial, III:179–182, III:185t
non-Gaussian, III:254
noninformative prior, I:153–154
normal (See normal distributions)
parametric, III:201
Poisson, I:142, III:182–183, III:185t,

III:217–218
Poisson probability, III:187t
posterior, I:147–148, I:165, I:166–167,

I:169–170, I:177, I:183–184
power-law, III:262–263
predictive, I:167
prior, I:177, I:181–182, I:196
proposal, I:183–184
representation of stable and CTS,

II:742–743
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Distributions (Continued )
spherical, II:310
stable, III:238, III:242, III:264–265,

III:384 (See also α-stable
distributions)

subexponential, III:261–262
tails of, III:112f, III:648
tempered stable, III:257, III:382
testing applied to truncated, III:367

Diversification, II:57–58
achieving, I:10
and cap weighting, I:38
and credit default swaps, I:413–414
example of, I:15
international, II:393–396
Markowitz’s work on, II:471

Diversification effect, III:321
Diversification indicators, I:192
Dividend discount models (DDM)

applied to electric utilities, II:12t
applied to stocks, II:16–17
basic, II:5
constant growth, II:7–9, II:17–18
defined, II:14
finite life general, II:5–7
free cash flow model, II:21–23
intuition behind, II:18–19
multiphase, II:9–10
non-constant growth, II:18
predictive power of, II:54
in the real world, II:19–20
stochastic, II:10–12, II:12t

Dividend payout ratio, II:4, II:20
Dividends

expected growth in, II:19
forecasting of, II:6
measurement of, II:3–4, II:14
per share, II:3–4
reasons for not paying, II:27
required rate of return, II:19
and stock prices, II:4–5

Dividend yield, II:4, II:19
Documentation

of model risk, II:696, II:697
Dothan model, I:491, I:493
Dow Jones Global Titans 500 (DJGTI),

II:490t, II:491t
Dow Jones Industrial Average (DJIA)

in comparison of risk models,
II:747–751

components of, II:489t
fitted stable tail index for, II:740f
frequency distribution in, II:489t
performance (January 2004 to June

2011), II:749f
relative frequencies, II:491t
stocks by share price, II:492t

Drawing without replacement,
III:174–177

Drawing with replacement, III:170,
III:174, III:179–180

Drift
effects of, III:537
of interest rates, I:263
in randomness calculations, III:535
in random walks, I:84, I:86
time increments of, I:83
of time series, I:80
as variable, III:536

DTS (duration times spread), I:392,
I:393–394, I:396–398

Duffie-Singleton model, I:542–543
Dupire’s formula, II:682–683, II:685
DuPont system, II:548–551, II:551f
Duration

calculations of real yield and
inflation, I:286

computing of, I:285
defined, I:284, III:309
effective, III:300–304, III:617t
effective/option adjusted, III:13
empirical, of common stock,

II:318–322, II:319–322t
estimation of, II:323t
measurement of, III:12–13,

III:304–305
models of, II:461
modified vs. effective, III:299

Duration/convexity, effective, I:255,
I:256f

Duration times spread (DTS). See DTS
(duration times spread)

Durbin-Watson test, III:647
Dynamical systems

equilibrium solution of, II:653
study of, II:651

Dynamic conditional correlation
(DCC) model, II:373

Dynamic term structures, III:576–577,
III:578–579, III:591

Early exercise, I:447, I:455. See calls,
American-style; options

Earnings before interest, taxes,
depreciation and amortization
(EBITDA), II:566

Earnings before interest and taxes
(EBIT), II:23, II:547, II:556

Earnings growth factor, II:223
Earnings per share (EPS), II:20–21,

II:38–39, II:537
Earnings revisions factor, II:207, II:209f
EBITDA/EV factor

correlations with, II:226
examples of, II:203, II:203f, II:207,

II:208f
in models, II:232, II:238–239
use of, II:222–223

Econometrics
financial, II:295, II:298–300,

II:301–303
modeling of, II:373, II:654

Economic cycles, I:537, II:42–43
Economic intuition, II:715–716
Economic laws, changes in, II:700
Economy

states of, I:49–50, II:518–519, III:476
term structures in certain,

III:567–568
time periods of, II:515–516

Economy as an Evolving Complex
System, The (Anderson, Arrow,
& Pines), II:699

Educated guesses, use of, I:511
EE (explicit Euler) scheme, II:674,

II:677–678
Effective annual rate (EAR), interest,

II:616–617
Efficiency

in estimation, III:641–642
Efficient frontier, I:13–14, I:17f, I:289f
Efficient market theory, II:396, III:92
Eggs, rotten, I:457–458
Eigenvalues, II:627–628, II:705,

II:706–707f, II:707t
Einstein, Albert, II:470
Elements, defined, III:153–154
Embedding problem, and change of

time method, III:520
Emerging markets, transaction costs

in, III:628
EM (expectation maximization)

algorithm, II:146, II:165
Empirical rule, III:210, III:225
Endogenous parameterization,

III:580–581
Energy

cargoes of, I:561–562
commodity price models, I:556–558
forward curves of, I:564–565
power plants and refineries, I:563
storage of, I:560–561, I:563–564

Engle-Granger cointegration test,
II:386–388, II:391–392, II:395

Entropy, III:354
EPS (earnings per share), II:20–21,

II:38–39, II:537
Equally weighted moving average,

III:400–402, III:406–407,
III:408–409

Equal to earnings before interest and
taxes (EBIT), II:23, II:547, II:556

Equal-variance assumption, I:164,
I:167

Equations
difference, homogenous vs.

nonhomogeneous, II:638
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difference vs. differential, II:629
diffusion, II:654–656, II:658n
error-correction, II:391, II:395t
homogeneous linear difference,

II:639–642, II:641f
homogenous difference, II:630–634,

II:631–632f, II:633–634f, II:642
linear, II:623–624
linear difference, systems of,

II:637–639
matrix characteristics of, II:628
no arbitrage, III:612, III:617–619
nonhomogeneous difference,

II:634–637, II:635f, II:637–638f
stochastic, III:478

Equilibrium
and absolute valuation models,

I:260
defined, II:385–386
dimensions of, III:601
in dynamic term structure models,

III:576
expectations for, II:112
expected returns from, II:112
modeling of, III:577, III:594
in supply and demand, III:568

Equilibrium models
use of, III:603–604

Equilibrium term structure models,
III:601

Equities, I:279
investing in, II:89–90

Equity
on the balance sheet, II:535
changes in homeowner, III:73
in homes, III:69
as option on assets, I:304–305
shareholders’, II:535

Equity markets, II:48
Equity multipliers, II:550
Equity risk factor models, II:173–178
Equivalent probability measures,

I:111, III:510–511
Ergodicity, defined, II:405
Erlang distribution, III:221–222
Errors. See also estimation error;

standard errors
absolute percentages of, II:525f,

II:526f
estimates of, II:676
in financial models, II:719
a posteriori estimates, II:672–673
sources of, II:720
terms for, II:126
in variables problem, II:220

Esscher transform, III:511, III:514
Estimates/estimation

confidence in, I:199
consensus, II:34–35

equations for, I:348–349
in EVT, III:272–274
factor models in, II:154
with GARCH models, II:364–365
in-house from firms, II:35
maximum likelihood, II:311–313
methodology for, II:174–176
and PCA, II:167f
posterior, I:176
posterior point, I:155–156
processes for, I:193, II:176
properties of for EWMA, III:410–411
robust, I:189
techniques of, II:330
use of, II:304

Estimation errors
accumulation of, II:78
in the Black-Litterman model, I:201
covariance matrix of, III:139–140
effect of, I:18
pessimism in, III:143
in portfolio optimization, II:82,

III:138–139
sensitivity to, I:191
and uncertainty sets, III:141

Estimation risk, I:193
minimizing, III:145

Estimators
bias in, III:641
efficiency in, III:641–642
equally weighted average,

III:400–402
factor-based, I:39
terms used to describe, II:314
unbiased, III:399
variance, II:313

ETL (expected tail loss), III:355–356
Euler approximation, II:649–650,

II:649f, II:650f
Euler constant, III:182
Euler schemes, explicit/implicit, II:666
Europe

common currency for, II:393
risk factors of, II:174

European call options
Black-Scholes formula for,

III:639–640
computed by different methods,

III:650–651, III:651f
explicit option pricing formula,

III:526–527
pricing by simulation in VBA,

III:465–466
pricing in Black-Scholes setting,

III:649
simulation of pricing, III:444–445,

III:462–463
and term structure models,

III:544–545

European Central Bank, I:300
Events

defined, III:85, III:162, III:508
effects of macroeconomic, II:243–244
extreme, III:245–246, III:260–261,

III:407
identification of, II:516
mutually exclusive, III:158
in probability, III:156
rare, III:645
rare vs. normal, I:262
tail, III:88n, III:111, III:118
three-δ, III:381–382

EVT (extreme value theory). See
extreme value theory (EVT)

EWMA (exponentially weighted
moving averages), III:409–413

Exceedance observations, III:362–363
Exceedances, of VaR, III:325–326,

III:339
Excel

accessing VBA in, III:477
add-ins for, I:93, III:651
data series correlation in, I:92–93
determining corresponding

probabilities in, III:646
Excel Link, III:434
Excel Solver, II:70
interactions with MATLAB, III:448
macros in, III:449, III:454–455
notations in, III:477n
random number generation in,

III:645–646
random walks with, I:83, I:85, I:87,

I:90
@RISK in, II:12t
syntax for functions in, III:456

Exchange-rate intervention, study on,
III:177–178

Exercise prices, I:452, I:484, I:508
Expectation maximization (EM)

algorithm, II:146, II:165
Expectations, conditional, I:122,

II:517–518, III:508–509
Expectations hypothesis, III:568–569,

III:601n
Expected shortfall (ES), I:385–386,

III:332. See also average value at
risk (AVaR)

Expected tail loss (ETL), III:291,
III:293f, III:345–347, III:347f,
III:355–356

Expected value (EV), I:511
Expenses, noncash, II:25
Experiments, possibility of, II:307
Explicit costs, defined, III:623
Explicit Euler (EE) scheme, II:674,

II:677–678
Exponential density function, III:218f
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Exponential distribution, III:217–219
applications in finance, III:219

Exponentially weighted moving
averages (EWMA)

discussion of, III:409–413
forecasting model of, III:411
properties of the estimates,

III:410–411
standard errors for, III:411–412
statistical methodology in, III:409
usefulness of, III:413–414
volatility estimates for, III:410f

Exposures
calculation of, II:247t
correlation between, II:186
distribution of, II:250f, II:251f, II:254
management of, II:182–183
monitoring of portfolio, II:249–250
name-specific, II:188

Extrema, characterization of local,
I:23

Extremal random variables, III:267
Extreme value distributions,

generalized, III:269
Extreme value theory (EVT),

II:744–746, III:95, III:228
defined, III:238
for IID processes, III:265–274
in IID sequences, III:275
role of in modeling, II:753n

Factor analysis
application of, II:165
based on information coefficients,

II:222
defined, II:141, II:169
discussion of, II:164–166
importance of, II:238
vs. principal component analysis,

II:166–168
Factor-based strategies

vs. risk models, II:236
Factor-based trading, II:196–197

model construction for, II:228–235
performance evaluation of,

II:225–228
Factor exposures, II:247–248,

II:275–283
Factorials, computing of, III:456
Factorization, defined, II:307
Factor mimicking portfolio (FMP),

II:214
Factor model estimation, II:142–147,

II:150
alternative approaches and

extensions, II:145–147
applied to bond returns, II:144–145
computational procedure for,

II:142–144

fixed N, II:143
large N, II:143–144

Factor models
in the Black-Litterman framework,

I:200
commonly used, II:150
considerations in, II:178
cross-sectional, II:220–221
defined, II:153
fixed income, II:271–272
in forecasting, II:230–231
linear, II:154–156, II:168
normal, II:156
predictive, II:142
static/dynamic, II:146–147,

II:155
in statistical methodology, II:141
strict, II:155–156
types of, II:138–142
usefulness of, II:154, II:503
use of, I:354, II:137, II:150, II:168,

II:219–225
Factor portfolios, II:224–225
Factor premiums, cross-sectional

methods for evaluation of,
II:214–219

Factor returns, II:191t, II:192t
calculation of, II:248

Factor risk models, II:113, II:119
Factors

adjustment of, II:205–206
analysis of data of, II:206–211
categories of, II:197
choice of, II:232–235
defined, II:196, II:211
desirable properties of, II:200
development of, II:198
estimation of types of, II:156
graph of, II:166f
known, II:138–139
K systematic, II:138–139
latent, II:140–141, II:150
loadings of, II:144, II:145t, II:155,

II:166t, II:167f, II:168t
market, II:176
orthogonalization of, II:205–206
relationship to time series, II:168f
sorting of, II:215
sources for, II:200–201
statistical, II:197
summary of well-known, II:196t
transformations applied to, II:206
use of multiple, II:141–142

Failures, probability of, II:726–727
Fair equilibrium, between multiple

accounts, II:76
Fair value

determination of, III:584–585
Fair value, assessment of, II:6–7

Fama, Eugene, II:468, II:473–474
Fama-French three-factor model,

II:139–140, II:177
Fama-MacBeth regression, II:220–221,

II:224, II:227–228, II:228f, II:237,
II:240n

Fannie Mae/Freddie Mac,
writedowns of, III:77n

Fast Fourier transform algorithm,
II:743

Fat tails
of asset return distributions,

III:242
in chaotic systems, II:653
class �, III:261–263
comparison between risk models,

II:749–750
effects of, II:354
importance of, II:524
properties of, III:260–261
in Student’s t distribution, II:734

Favorable selection, III:76–77
F-distribution, III:216–217
Federal Reserve

effects of on inflation risk premium,
I:281

study by Cleveland Bank,
III:177–178

timing of interventions of, III:178
Feynman-Kac formulas, II:661
FFAs (freight forward agreements),

I:566
Filtered probability spaces, I:314–315,

I:334n
Filtration, II:516–517, III:476–477,

III:489–490, III:508
Finance, three major revolutions in,

III:350
Finance companies, captive, I:366–369
Finance theory

development of, II:467–468
effect of computers on, II:476
in the nineteenth century,

II:468–469, II:476
in the 1960s, II:476
in the 1970s, II:476
stochastic laws in, III:472
in the twentieth century, II:476

Financial assets, price distribution of,
III:349–350

Financial crisis (2008), III:71
Financial date, pro forma, II:542–543
Financial distress, defined, I:351
Financial institutions, model risk of,

II:693
Financial leverage ratios, II:559–561,

II:563
Financial modelers, mistakes of,

II:707–710
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Financial planning, III:126–127, III:128,
III:129

Financial ratios, II:546, II:563–564
Financial statements

assumptions used in creating,
II:532

data in, II:563
information in, II:533–542, II:543
pro forma, II:22–23
time statements for, II:532
usefulness of, II:531
use of, II:204–205, II:246

Financial time series, I:79–80,
I:386–387, II:415–416, II:503–504

Financial variables, modeling of,
III:280

Find, in MATLAB, III:422
Finite difference methods, II:648–652,

II:656–657, II:665–666,
II:674–675, II:676–677, III:19

Finite element methods, II:669–670,
II:672, II:679–681

Finite element space, II:670–672
Finite life general DDM, II:5–7
Finite states, assumption of, I:100–101
Firms

assessment of, II:546–547
and capital structure, II:473
characteristics of, II:94, II:176–177,

II:201
clientele of, II:36
comparable, II:34, II:35–36
geographic location of, II:36
history vs. future prospects, II:92
phases of, II:9–10
retained earnings of, II:20
valuation of, II:26–27, II:473
value of, II:27–31, II:39
vs. characteristics of group, II:90–91

First boundary problem, II:655–656,
II:657f

First Interstate Bancorp, I:304
analysis of credit spreads, I:305t
debt ratings of, I:410

First passage models (FPMs), I:342,
I:344–348

Fischer-Tippett theorem, III:266–267
Fisher, Ronald, I:140
Fisherian, defined, I:140
Fisher’s information matrix, I:160n
Fisher’s law, II:322–323
Fixed-asset turnover ratio, II:558
Fixed-charge coverage ratio,

II:560–561
Flesaker-Hughston (FH) model,

III:548–549
Flows, discrete, I:448–453
FMP (factor mimicking portfolio),

II:214

Footnotes, in financial statements,
II:541–542

Ford Motor Company, I:408f, I:409f
Forecastability, II:132
Forecastability, concept of, II:123
Forecast encompassing

defined, II:230–231
Forecasts

of bid-ask spreads, II:456–457
comparisons of, II:420–421
contingency tables, II:429t
development of, II:110–114
directional, II:428
effect on future of, II:122–123
errors in, II:422f
evaluation of, II:428–430, III:368–370
machine-learning approach to,

II:128
measures of, II:429–430, II:430
need for, II:110–111
in neural networks, II:419–420
one-step ahead, II:421f
parametric bootstraps for,

II:428–430
response to macroeconomic shocks,

II:55f
usefulness of, II:131–132
use of models for, II:302
of volatility, III:412

Foreclosures, III:31, III:75
Forward contracts

advantages of, I:430
buying assets of, I:439
defined, I:426, I:478
equivalence to futures prices,

I:432–433
hedging with, I:429, I:429t
as OTC instruments, I:479
prepaid, I:428
price paths of, I:428t
short vs. long, I:437–438, I:438f
valuing of, I:426–430
vs. futures, I:430–431, I:433
vs. options, I:437–439

Forward curves
graph of, I:434f
modeling of, I:533, I:557–558,

I:564–565
normal vs. inverted, I:434
of physical commodities, I:555

Forward freight agreements (FFAs),
I:555, I:558, I:566

Forward measure, use of, I:543–544
Forward rates

calculation of, I:491, III:572
defined, I:509–510
from discount function, III:566–567
implied, III:565–567
models of, III:543–544

from spot yields, III:566
of term structure, III:586

Fourier integrals, II:656
Fourier methods, I:559–560
Fourier transform, III:265
FPMs (first passage models), I:342,

I:344–348
Fractals, II:653–654, III:278–280,

III:479–480
Franklin Tempelton Investment

Funds, II:496t, II:497t, II:498t
Fréchet distribution, II:754n, III:228,

III:230, III:265, III:267, III:268
Fréchet-Hoeffding copulas, I:327,

I:329
Freddie Mac, II:77n, II:754n, III:49
Free cash flow (FCF), II:21–23

analysis of, II:570–571
calculation of, II:23–24, II:571–572
defined, II:569–571, II:578
expected for XYZ, Inc., II:30t
financial adjustments to, II:25–26
statement of, direct method,

II:24–25, II:24t
statement of, indirect method,

II:24–25, II:24t
vs. cash flow, II:22–23

Freedman-Diaconis rule, II:494, II:495,
II:497

Frequencies
accumulating, II:491–492
distributions of, II:488–491, II:499f
empirical cumulative, II:492
formal presentation of, II:491

Frequentist, I:140, I:148
Frictions, costs of, II:472–473
Friedman, Milton, I:123
Frontiers, true, estimated and actual

efficient, I:190–191
F_SCORE, use of, II:230–231
F-test, II:336, II:337, II:344, II:425,

II:426
FTSE 100, volatility in, III:412–413
Fuel costs, I:561, I:562–563. See also

energy
Full disclosure, defined, II:532
Functional, defined, I:24
Functional-coefficient autoregressive

(FAR) model, II:417
Functions

affine, I:31
Archimedean, I:329, I:330–331, I:331
Bessel, of the third kind, II:591
beta, II:591
characteristic, II:591–592, II:593
choosing and calibrating of,

I:331–333
Clayton, Frank, Gumbel, and

Product, I:329
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Functions (Continued )
continuous, II:581–584, II:582f,

II:583, II:592–593
continuous/discontinuous, II:582f
convex, I:24–27, I:25, I:25f, I:26f
convex quadratic, I:26, I:31f
copula, I:320, I:325–333, I:407–408
for default times, I:329–331
defined, I:24, I:333
density, I:141
with derivatives, II:585f
elementary, III:474
elliptical, I:328–329
empirical distribution, III:270
factorial, II:590–591
gamma, II:591, II:591f, III:212
gradients of, I:23
Heaviside, II:418–419
hypergeometric, III:256, III:257
indicator, II:584–585, II:584f, II:593
likelihood function, I:141–143,

I:143f, I:144f, I:148, I:176, I:177
measurable, III:159–160, III:160f,

III:201
minimization and maximization of

values, I:22, I:22f
monotonically increasing,

II:587–588, II:588f
nonconvex quadratic, I:26–27
nondecreasing, III:154–155, III:155f
normal density, III:226f
optimization of, I:24
parameters of copulas, I:331–332
properties of quasi-convex, I:28
quasi-concave, I:27–28, I:27f
right-continuous, III:154–155,

III:155f
surface of linear, I:33f
with two local maxima, I:23f
usefulness of, I:411–412
utility, I:4–5, I:14–15, I:461

Fund management, art of, I:273
Fund separation theorems, I:36
Futures

Eurodollar, I:503
hedging with, I:433
market for housing, II:396–397
prices of, and interest rates, I:435n
telescoping positions of, I:431–432
theoretical, I:487
valuing of, I:430–433
vs. forward contracts, I:430–431

Futures contracts
defined, I:478
determining price of, I:481
pricing model for, I:479–481
theoretical price of, I:481–484
vs. forward contracts, I:433,

I:478–479

Futures options, defined, I:453
Future value, II:618

determining of money,
II:596–600

Galerkin methods, principle of,
II:671

Gamma, I:509, I:518–520
Gamma process, III:498
Gamma profile, I:519f
Gapping effect, I:509
GARCH (generalized autoregressive

conditional heteroskedastic)
models

asymmetric, II:367–368
exponential (EGARCH), II:367–368
extensions of, III:657
factor models, II:372
GARCH-M (GARCH in mean),

II:368
Markov-switching, I:180–184
time aggregation in, II:369–370
type of, II:131
usefulness of, III:414
use of, I:175–176, I:185–186, II:371,

II:733–734, III:388
and volatility, I:179
weights in, II:363–364

GARCH (1,1) model
Bayesian estimation of, I:176–180
defined, II:364
results from, II:366, II:366t
skewness of, III:390–391
strengths of, III:388–389
Student’s t, I:182
use of, I:550–551, III:656–657

GARCH (1,1) process, I:551t
Garman-Kohlhagen system, I:510–511,

I:522
Gaussian density, III:98f
Gaussian model, III:547–548
Gaussian processes, III:280, III:504
Gaussian variables, and Brownian

motion, III:480–481
Gauss-Markov theorem, II:314
GBM (geometric Brownian motion),

I:95, I:97
GDP (gross domestic product), I:278,

I:282, II:138, II:140
General inverse Gaussian (GIG)

distribution, II:523–524
Generalized autoregressive

conditional heteroskedastic
(GARCH) models. See GARCH
(generalized autoregressive
conditional heteroskedastic)
models

Generalized central limit theorem,
III:237, III:239

Generalized extreme value (GEV)
distribution, II:745, III:228–230,
III:272–273

Generalized inverse Gaussian
distribution, use of, II:521–522

Generalized least squares (GLS),
I:198–199, II:328

Generalized tempered stable (GTS)
processes, III:512

Generally accepted accounting
principles (GAAP), II:21–22,
II:531–532, II:542–543

Geometric mean reversion (GMR)
model, I:91–92

computation of, I:91
Gibbs sampler, I:172n, I:179, I:184–185
GIG models, calibration of, II:526–527
Gini index of dissimilarity (Gini

measure), III:353–354
Ginnie Mae/Fannie Mae/Freddie

Mac, actions of, III:49
Girsanov’s theorem

and Black-Scholes option pricing
formula, I:132–133

with Brownian motion, III:511
and equivalent martingale

measures, I:130–133
use of, I:263, III:517

Glivenko-Cantelli theorem, III:270,
III:272, III:348n, III:646

Global Economy Workshop, Santa Fe
Institute, II:699

Global Industry Classification
Standard (GICS R©), II:36–37,
II:248

Global minimum variance (GMV)
portfolios, I:39

GMR (geometric mean reversion)
model, I:91–92

GMV (global minimum variance)
portfolios, I:15, I:194–195

GNP, growth rate of (1947–1991),
II:410–411, II:410f

Gradient methods, use of, II:684
Granger causality, II:395–396
Graphs, in MATLAB, III:428–433
Greeks, the, I:516–522

beta and omega, I:522
delta, I:516–518
gamma, I:518–520
rho, I:521–522
theta, I:509, I:520–521
use of, I:559, II:660, III:643–644
vega, I:521

Greenspan, Alan, I:140–141
Growth, I:283f, II:239, II:597–598,

II:601–602
Gumbel distribution, III:265, III:267,

III:268–269
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Hamilton-Jacobi equations, II:675
Hankel matrices, II:512
Hansen-Jagannathan bound, I:59,

I:61–62
Harrison, Michael, II:476
Hazard, defined, III:85
Hazard (failure) rate, calculation of,

III:94–95
Heat diffusion equation, II:470
Heath-Jarrow-Morton framework,

I:503, I:557
Heavy tails, III:227, III:382
Hedge funds, and probit regression

model, II:349–350
Hedge ratios, I:416–417, I:509
Hedges

importance of, I:300
improvement using DTS, I:398
in the Merton context, I:409
rebalancing of, I:519
risk-free, I:532f

Hedge test, I:409, I:411
Hedging

costs of, I:514, II:725
and credit default swaps, I:413–414
determining, I:303–304
with forward contracts, I:429, I:429t
of fuel costs, I:561
with futures, I:433
gamma, I:519
portfolio-level, I:412–413
of positions, II:724–726
ratio for, II:725
with swaps, I:434–435
transaction-level, I:412
usefulness of, I:418
use of, I:125–126
using macroeconomic indices,

I:414–417
Hessian matrix, I:23–24, I:25, I:186n,

III:645
Heston model, I:547, I:548, I:552,

II:682
with change of time, III:522

Heteroskedasticity, II:220, II:359,
II:360, II:403

HFD (high-frequency data). See
high-frequency data (HFD)

Higham’s projection algorithm,
II:446

High-dimensional problems, II:673
High-frequency data (HFD)

and bid-ask bounce, II:454–457
defined, II:449–450
generalizations to, II:368–370
Level I, II:451–452, II:452f, II:453t
Level II, II:451
properties of, II:451, II:453t
recording of, II:450–451

time intervals of, II:457–462
use of, II:300, II:481
volume of, II:451–454

Hilbert spaces, II:683
Hill estimator, II:747, III:273–274
Historical method

drawbacks of, III:413
weighting of data in, III:397–398

Hit rate, calculation of, II:240n
HJM framework, I:498
HJM methodology, I:496–497
Holding period return, I:6
Ho-Lee model

continuous variant for, I:497
defined, I:492
in history, I:493
interest rate lattice, III:614f
as short rate model, III:23
for short rates, III:605
as single factor model, III:549

Home equity prepayment (HEP)
curve, III:55–56, III:56f

Homeowners, refinancing behavior of,
III:25

Home prices, I:412, II:397f, II:399t,
III:74–75

Homoskedasticity, II:360, II:373
Horizon prices, III:598
Housing, II:396–399, III:48
Howard algorithm (policy iteration

algorithm), II:676–677, II:680
Hull-White (HW) models

binomial lattice, III:610–611
for calibration, II:681
defined, I:492
interest rate lattice, III:614f
and short rates, III:545–546
for short rates, III:605
trinomial lattice, III:613, III:616f
usefulness of, I:503
use of, III:557, III:604
valuing zero-coupon bond calls

with, I:500
Hume, David, I:140
Hurst, Harold, II:714
Hypercubes, use of, III:648

IBM stock, log returns of, II:407f
Ignorance, prior, I:153–154
Implementation risk, II:694
Implementation shortfall approach,

III:627
Implicit costs, III:631
Implicit Euler (IE) scheme, II:674,

II:677–678
Implied forward rates, III:565–567
Impurity, measures of, II:377
Income, defined for public

corporation, II:21–22

Income statements
common-size, II:562–563, II:562t
defined, II:536
in financial statements, II:536–537
sample, II:537t, II:547t
structure of, II:536
XYZ Inc. (example), II:28t

Income taxes. See taxes
Independence, I:372–373, II:624–625,

III:363–364, III:368
Independence function, in VaR

models, III:365–366
Independently and identically

distributed (IDD) concept,
I:164, I:171, II:127, III:274–280,
III:367, III:414

Indexes
characteristics of efficient, I:42t
defined, II:67
of dissimilarity, III:353–354
equity, I:15t, II:190t, II:262–263
tail, II:740–741, II:740f, III:234
tracking of, II:64, II:180
use of weighted market cap, I:38
value weighted, I:76–77
volatility, III:550–552, III:552f

Index returns, scenarios of, II:190t,
II:191t

Indifference curves, I:4–5, I:5f, I:14
Industries, characteristics of, II:36–37,

II:39–40
Inference, I:155–158, I:169t
Inflation

effect on after-tax real returns,
I:286–287

and GDP growth, I:282
indexing for, I:278–279
in regression analysis, II:323
risk of, II:282
risk premiums for, I:280–283
seasonal factors in, I:292
shifts in, I:285f
volatility of, I:281

Information
anticipation of, III:476
from arrays in MATLAB, III:421
completeness of, I:353–354
contained in high volatility stocks,

III:629
and filtration, III:517
found in data, II:486
and information propagation,

II:515
insufficient, III:44
integration of, II:481–482
overload of, II:481
prior in Bayesian analysis,

I:151–155, I:152
propagation of, I:104
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Information (Continued )
structures of, I:106f, II:515–517
unstructured vs. semistructured,

II:481–482
Information coefficients (ICs), II:98–99,

II:221–223, II:223f, II:227f, II:234
Information ratios

defined, II:86n, II:115, II:119, II:237
determining, II:100f
for portfolio sorts, II:219
use of, II:99–100

Information sets, II:123
Information structures

defined, II:518
Information technology, role of,

II:480–481
Ingersoll models, I:271–273, I:275f
Initial conditions, fixing of, II:502
Initial margins, I:478
Initial value problems, II:639
Inner quartile range (IQR), II:494
Innovations, II:126
Insurance, credit, I:413–414
Integrals, II:588–590, II:593. See also

stochastic integrals
Integrated series, and trends,

II:512–514
Integration, stochastic, III:472, III:473,

III:483
Intelligence, general, II:154
Intensity-based frameworks, and the

Poisson process, I:315
Interarrival time, III:219, III:225
Intercepts, treatment of, II:334–335
Interest

accumulated, II:604–605, II:604f
annual vs. quarterly compounding,

II:599f
compound, II:597, II:597f
computing accrued, and clean price,

I:214–215
coverage ratio, II:560
defined, II:596
determining unknown rates,

II:601–602
effective annual rate (EAR),

II:616–617
mortgage, II:398
simple vs. compound, II:596
terms of, II:619
from TIPS, I:277

Interest rate models
binomial, III:173–174, III:174f
classes of, III:600
confusions about, III:600
importance of, III:600
properties of lattices, III:610
realistic, arbitrage-free, III:599
risk-neutral/arbitrage-free, III:597

Interest rate paths, III:6–9, III:7, III:8t
Interest rate risk, III:12–14
Interest rates

absolute vs. relative changes in,
III:533–534

approaches in determining future,
III:591

binomial model of, III:173–174
binomial trees, I:236, I:236f, I:237f,

I:240f, I:244, I:244f, III:174f
borrowing vs. lending, I:482–483
calculation of, II:613–618
calibration of, I:495
caps/caplets of, III:589–590
caps on, I:248–249
categories of term structure, III:561
computing sensitivities, III:22–23
continuous, I:428, I:439–488
derivatives of, III:589–590
determination of appropriate,

I:210–211
distribution of, III:538–539
dynamic of process, I:262
effect of, I:514–515
effect of shocks, III:23
effect on putable bonds, III:303–304
future course of, III:567, III:573
and futures prices, I:435n
importance of models, III:600
jumps of, III:539–541
jumpy and continuous, III:539f
long vs. short, III:538
market spot/forward, I:495t
mean reversion of, III:7
modeling of, I:261–265, I:267, I:318,

I:491, I:503, III:212–213
multiple, II:599–600
negative, III:538
nominal, II:615–616
and option prices, I:486–487
and prepayment risk, III:48
risk-free, I:442
shocks/shifts to, III:585–596
short-rate, I:491–494, III:595
simulation of, III:541
stochastic, I:344, I:346
structures of, III:573, III:576
use of for control, I:489
volatility of, III:405, III:533

Intermarket relations, no-arbitrage,
I:453–455

Internal consistency rule, in OAS
analysis, I:265

Internal rate of return (IRR), II:617–618
in MBSs, III:36

International Monetary Fund
Global Stability Report, I:299

International Swap and Derivatives
Association (ISDA). See ISDA

Interpolated spread (I-spread), I:227
Interrate relationship, arbitrage-free,

III:544
Intertemporal dependence, and risk,

III:351
Intertrade duration, II:460–461,

II:462t
Intertrade intervals, II:460–461
Intervals, credible, I:170
Interval scales, data on, II:487
Intrinsic value, I:441, I:511, I:513,

II:16–17
Invariance property, III:328–329
Inventory, II:542, II:557
Inverse Gaussian process, III:499
Investment, goals of, II:114–115
Investment management, III:146
Investment processes

activities of integrated, II:61
evaluation of results of, II:117–118
model creation, II:96
monitoring of performance, II:104
quantitative, II:95, II:95f
quantitative equity, II:95f, II:96f,

II:105
research, II:95–102
sell-structured, II:108
steps for equity investment, II:119
testing of, II:109

Investment risk measures, III:350–351
Investments, I:77–78n, II:50–51,

II:617–618
Investment strategies, II:66–67,

II:198
Investment styles, quantamental,

II:93–94, II:93f
Investors

behavior of, II:207, II:504
comfort with risk, I:193
completeness of information of,

I:353–354
focus of, I:299, II:90–91
fundamental vs. quantitative,

II:90–94, II:91f, II:92f, II:105
goals/objectives of, II:114–115,

II:179, III:631
individual accounts of, II:74
monotonic preferences of, I:57
number of stocks considered, II:91
preferences of, I:5, I:260, II:48, II:56,

II:92–93
prior beliefs of, II:727
real-world, II:132
risk aversion of, II:82–83, II:729
SL-CAPM assumptions about, I:66
sophistication of, II:108
in uncertain markets, II:54
views of, I:197–199

Invisible hand, notion of, II:468–469
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ISDA (International Swap and
Derivatives Association)

Credit Derivative Definitions (1999),
I:230, I:528

Master Agreement, I:538
organized auctions, I:526–527
supplement definition, I:230

I-spread (interpolated spread), I:227
Ito, Kiyosi, II:470
Ito definition, III:486–487
Ito integrals, I:122, III:475, III:481,

III:490–491
Ito isometry, III:475
Ito processes

defined, I:95
generic univariate, I:125
and Girsanov’s theorem, I:131
under HJM methodology, I:497
properties of, III:487–488
and smooth maps, III:493

Ito’s formula, I:126, III:488–489
Ito’s lemma

defined, I:98
discussion of, I:95–97
in estimation, I:348
and the Heston model, I:548

James-Stein shrinkage estimator, I:194
Japan, credit crisis in, I:417
Jarrow-Turnbull model, I:307
Jarrow-Yu propensity model, I:324–325
Jeffreys’ prior, I:153, I:160n, I:171–172
Jensen’s inequality, I:86, III:569
Jevons, Stanley, II:468
Johansen-Juselius cointegration tests,

II:391–393, II:395
Joint jumps/defaults, I:322–324
Joint survival probability, I:323–324
Jordan diagonal blocks, II:641–642
Jorion shrinkage estimator, I:194, I:202
Jump-diffusion, III:554–557, III:657
Jumps

default, I:322–324
diffusions, I:559–560
downward, I:347
idiosyncratic, I:323
incorporation of, I:93–94
in interest rates, III:539–541
joint, I:322–324
processes of, III:496
pure processes, III:497–501, III:506
size of, III:540

Kalotay-Williams-Fabozzi (KWF)
model, III:604, III:606–607,
III:615f

Kamakura Corporation, I:301, I:307,
I:308–309, I:310n

Kappa, I:521

Karush-Kuhn-Tucker conditions (KKT
conditions), I:28–29

Kendall’s tau, I:327, I:332
Kernel regression, II:403, II:412–413,

II:415
Kernels, II:412, II:413f, II:746
Kernel smoothers, II:413
Keynes, John Maynard, II:471
Key rate durations (KRD), II:276,

III:311–315, III:317
Key rates, II:276, III:311
Kim-Rachev (KR) process, III:512–513
KKT conditions (Karush-Kuhn-Tucker

conditions), I:28–29, I:31, I:32
KoBoL distribution, III:257n
Kolmogorov extension theorem,

III:477–478
Kolmogorov-Smirnov (KS) test, II:430,

III:366, III:647
Kolomogorov equation, use of, III:581
Kreps, David, II:476
Krispy Kreme Doughnuts, II:574–575,

II:574f
Kronecker product, I:172, I:173n
Kuiper test, III:366
Kurtosis, I:41, III:234

Lag operator L, II:504–506, II:507,
II:629–630

Lagrange multipliers, I:28, I:29–31,
I:30, I:32

Lag times, II:387, III:31
Laplace transforms, II:647–648
Last trades, price and size of, II:450
Lattice frameworks

bushy trees in, I:265, I:266f
calibration of, I:238–240
fair, I:235
interest rate, I:235–236, I:236–238
one-factor model, I:236f
for pricing options, I:487
usefulness of, I:235
use of, I:240, I:265–266, III:14
value at nodes, I:237–238
1-year rates, I:238f, I:239f

Law of iterated expectations, I:110,
I:122, II:308

Law of large numbers, I:267, I:270n,
III:263–264, III:275

Law of one α, II:50
Law of one price (LOP), I:52–55,

I:99–100, I:102, I:119, I:260
LCS (liquidity cost score), I:402

use of, I:403
LDIs (liability-driven investments),

I:36
LD (loss on default), I:370–371
Leases, in financial statements, II:542
Least-square methods, II:683–685

Leavens, D. H., I:10
Legal loss data

Cruz study, III:113, III:115t
Lewis study, III:117, III:117t

Lehman Brothers, bankruptcy of, I:413
Level (parallel) effect, II:145
Lévy-Khinchine formula, III:253–254,

III:257
Lévy measures, III:254, III:254t
Lévy processes

and Brownian motion, III:504
in calibration, II:682
change of measure for, III:511–512
conditions for, III:505
construction of, III:506
from Girsanov’s theorem, III:511
and Poisson process, III:496
as stochastic process, III:505–506
as subordinators, III:521
for tempered stable processes,

III:512–514, III:514t
and time change, III:527

Lévy stable distribution, III:242,
III:339, III:382–386, III:392

LGD (loss given default), I:366, I:370,
I:371

Liabilities, II:533, II:534–535, III:132
Liability-driven investments (LDIs),

I:36
Liability-hedging portfolios (LHPs),

I:36
LIBOR (London Interbank Offered

Rate)
and asset swaps, I:227
changes in, by type, III:539–540
curve of, I:226
interest rate models, I:494
market model of, III:589
spread of, I:530
in total return swaps, I:541
use of in calibration, III:7

Likelihood maximization, I:176
Likelihood ratio statistic, II:425
Limited liability rule, I:363
Limit order books, use of, III:625,

III:632n
Lintner, John, II:474
Lipschitz condition, II:658n, III:489,

III:490
Liquidation

effect of, II:186
procedures for, I:350–351
process models for, I:349–351
time of, I:350
vs. default event, I:349

Liquidity
assumption of, III:371
in backtesting, II:235
changes in, I:405
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Liquidity (Continued )
cost of, I:401
creation of, III:624–625, III:631
defined, III:372, III:380
effect of, II:284
estimating in crises, III:378–380
in financial analysis, II:551–555
and LCS, I:404
and market costs, III:624
measures of, II:554–555
premiums on, I:294, I:307
ratios for, II:555
in risk modeling, II:693
shortages in, I:347–348
and TIPS, I:293, I:294
and transaction costs, III:624–625

Liquidity-at-risk (LAR), III:376–378
Liquidity cost, III:373–374, III:375–376
Liquidity cost score (LCS), I:402, I:403
Liquidity preference hypothesis,

III:570
Liquidity ratios, II:563
Liquidity risk, II:282, III:380
Ljung-Box statistics, II:407, II:421,

II:422, II:427–428
LnMix models, calibration of,

II:526–527
Loading, standardization of, II:177
Loan pools, III:8–9
Loans

amortization of, II:606–607,
II:611–613

amortization table for, II:612t
delinquent, III:63
fixed rate, fully amortized schedule,

II:614t
floating rate, II:613
fully amortizing, II:611
modified, III:32
nonperforming, III:75
notation for delinquent, III:45n
recoverability of, III:31–32
refinancing of, III:68–69
repayment of, II:612f, II:613f
term schedule, II:615t

Loan-to-value ratios (LTVs), III:31–32,
III:69, III:73, III:74–75

Location parameters, I:160n,
III:201–202

Location-scale invariance property
(Gaussian distribution), II:732

Logarithmic Ornstein-Uhlenbeck
(log-OU) processes, I:557–558

Logarithmic returns, III:211–212,
III:225

Logistic distribution, II:350
Logistic regression, I:307, I:308, I:310
Logit regression models, II:349–350,

II:350

Log-Laplace transform, III:255–256
Lognormal distribution, III:222–225,

III:392
Lognormal mixture (LnMix)

distribution, II:524–525
Lognormal variables, I:86
Log returns, I:85–86, I:88
London Interbank Offered Rate

(LIBOR). See LIBOR
Lookback options, I:114, III:24
Lookback periods, III:402, III:407
LOP (law of one price). See law of one

price (LOP)
Lorenz, Edward, II:653
Loss distributions, conditional,

III:340–341
Losses. See also operational losses

allocation of, III:32
analysis of in backtesting, III:338
collateral vs. tranche, III:36
computation of, I:383
defined, III:85
estimation of cumulative, III:39–40
expected, I:369–370, I:373–374
expected vs. unexpected, I:369,

I:375–376
internal vs. external, III:83–84
median of conditional, III:348n
projected, III:37f
restricting severity of, I:385–386
severity of, III:44
unexpected, I:371–372, I:374–375

Loss functions, I:160n, III:369
Loss given default (LGD), I:366, I:370,

I:371
Loss matrix analysis, III:40–41
Loss on default (LD), I:370–371
Loss severity, III:30–31, III:60–62,

III:97–99
Lottery tickets, I:462
Lower partial moment risk measure,

III:356
Lundbert, Filip, II:467, II:470–471

Macroeconomic influences, defined,
II:197

Magnitude measures, II:429–430
Maintenance margins, I:478
Major indexes, modeling return

distributions for, III:388–392
Malliavin calculus, III:644
Management, active, II:115
Mandelbrot, Benoit, II:653, II:738,

III:234, III:241–242
Manufactured housing prepayment

(MHP) curve, III:56
Marginalization, II:335
Marginal rate of growth, III:197–198
Marginal rate of substitution, I:60

Margin calls, exposure to, III:377
Market cap vs. firm value, II:39
Market completeness, I:52, I:105
Market efficiency, I:68–73, II:121,

II:473–474
Market equilibrium

and investor’s views, I:198–199
Market impact

costs of, III:623–624, III:627
defined, II:69
forecasting/modeling of,

III:628–631
forecasting models for, III:632
forecasting of, III:628–629,

III:629–631
measurement of, III:626–628
between multiple accounts, II:75–76
in portfolio construction, II:116
and transaction costs, II:70

Market model regression, II:139
Market opportunity, two state, I:460f
Market portfolios, I:66–67, I:72–73
Market prices, I:57, III:372
Market risk

approaches to estimation of, III:380
in bonds, III:595
in CAPM, I:68–69, II:474
importance of, III:81
models for, III:361–362
premium for, I:203n, I:404

Markets
approach to segmented, II:48–51
arbitrage-free, I:118
complete, I:51–52, III:578
complex, II:49
effect of uncertainty in on bid-ask

spreads, II:455–456
efficiency of, II:15–16
frictionless, I:261
incomplete, I:461–462
liquidity of, III:372
models of, III:589
for options and futures, I:453–454
perfect, II:472
properties of modern, III:575–576
sensitivities to value-related

variables, II:54t
simple, I:70
systematic fluctuations in,

II:172–173
unified approach to, II:49
up/down, defined, II:347

Market sectors, defined, III:560
Market standards, I:257
Market structure, and exposure,

II:269–270
Market timing, II:260
Market transactions, upstairs,

III:630–631, III:632n
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Market weights, II:269t
Markov chain approximations, II:678
Markov chain Monte Carlo (MCMC)

methods, II:410f, II:417–418
Markov coefficients, II:506–507, II:512
Markov matrix, I:368
Markov models, I:114
Markov processes

in dynamic term structures, III:579
hidden, I:182
use of, III:509, III:517

Markov property, I:82, I:180–181, I:183,
II:661, III:193n

Markov switching (MS) models
discussion of, I:180–184
and fat tails, III:277–278
stationarity with, III:275
usefulness of, II:433
use of, II:409–411, II:411t

Markowitz, Harry M., I:38, I:140,
II:467, II:471–472, III:137,
III:351–352

Markowitz constraint sets, I:69, I:72
Markowitz diversification, I:10–11,

I:11
Markowitz efficient frontiers, I:191f
Markowitz model

in financial planning, III:126
Mark-to-market (MTM)

calculation of value, I:535–536, I:536t
defined, I:535
and telescoping futures, I:431–432

Marshall and Siegel, II:694
Marshall-Olkin copula, I:323–324,

I:329
Martingale measures, equivalent

and arbitrage, I:111–112, I:124
and complete markets, I:133
defined, I:110–111
and Girsanov’s theorem, I:130–133
and state prices, I:133–134
use of, I:130–131
working with, I:135

Martingales
with change of time methods

(CTM), III:522–523
defined, II:124, II:126, II:519
development of concept, II:469–470
equivalent, II:476
measures of, I:110–111
use of conditions, I:116
use of in forward rates, III:586

Mathematical theory, importance of
advances in, III:145

Mathworks, website of, III:418
MATLAB

array operations in, III:420–421
basic mathematical operations in,

III:419–420

construction of vectors/matrices,
III:420

control flow statements in,
III:427–428

desktop, III:419f
European call option pricing with,

III:444–445
functions built into, III:421–422
graphs in, III:428–433, III:429–430f,

III:431f
interactions with other software,

III:433–434
M-files in, III:418–419, III:423,

III:447
operations in, III:447
optimization in, III:434–444,

III:435t
Optimization Tool, III:435–436,

III:436f, III:440f, III:441f
overview of desktop and editor,

III:418–419
quadprog function, II:70
quadratic optimization with,

III:441–444
random number generation,

III:444
for simulations, III:651
Sobol sequences in, III:445–446
for stable distributions, III:344
surf function in, III:432–433
syntax of, III:426–427
toolboxes in, III:417–418
user-defined functions in,

III:423–427
Matrices

augmented, II:624
characteristic polynomial of, II:628
coefficient, II:624
companion, II:639–640
defined, II:622
diagonal, II:622–623, II:640
eigenvalues of random, II:704–705
eigenvectors of, II:640–641
in MATLAB, III:422, III:432
operations on, II:626–627
ranks of, II:623, II:628
square, II:622–623, II:626–627
symmetric, II:623
traces of, II:623
transition, III:32–33, III:32t, III:33t,

III:35f
types of, II:622, II:628

Matrix differential equations, III:492
Maturity value (lump sum), from

bonds, I:211
Maxima, III:265–269, III:266f
Maximum Description Length

principle, II:703
Maximum eigenvalue test, II:392–393

Maximum likelihood (ML)
approach, I:141, I:348
methods, II:348–349, II:737–738,

III:273
principal, II:312

Maximum principle, II:662, II:667
Max-stable distributions, III:269,

III:339–340
MBA (Mortgage Bankers Association)

refi index, III:70, III:70f
MBS (mortgage-backed securities),

I:258
agency vs. nonagency, III:48
cash flow characteristics of, III:48
default assumptions about, III:8
negative convexity of, III:49
performance of, III:74
prices of, III:26
projected long-term performance of,

III:34f
time-related factors in, III:73–74
valuation of, III:62
valuing of, III:645

MBS (mortgage-backed securities),
nonagency

analysis of, III:44–45
defined, III:48
estimation of returns, III:36–44
evaluation of, III:29
factors impacting returns of,

III:30–32
yield tables for, III:41t

Mean absolute deviation (MAD),
III:353

Mean absolute moment (MAM(q)),
III:353

Mean colog (M-colog), III:354
Mean entropy (M-entropy), III:354
Mean excess function, II:746–747
Mean/first moment, III:201–202
Mean residual life function, II:754n
Mean reversion

discussion of, I:88–92
geometric, I:91–92
in HW models, III:605
and market stability, III:537–538
models of, I:97
parameter estimation, I:90–91
risk-neutral asset model, III:526
simulation of, I:90
in spot rate models, III:580
stabilization by, III:538
within a trinomial setting, III:604

Mean-reverting asset model (MRAM),
III:525–526

Means, I:148, I:155, I:380, III:166–167
Mean-variance

efficiency, I:190–191
efficient portfolios, I:13, I:68, I:69–70
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Mean-variance (Continued )
nonrobust formulation, III:139–140
optimization, I:192

constraints on, I:191
estimation errors and, I:17–18
practical problems in, I:190–194

risk aversion formulation, II:70
Mean variance analysis, I:3, I:15f,

I:201, II:471–472, III:352
Measurement levels, in descriptive

statistics, II:486–487
Media effects, III:70
Median, I:155, I:159n, II:40
Median tail loss (MTL), III:341
Mencken, H. L., II:57
Menger, Carl, II:468
Mercurio-Moraleda model, I:493–494
Merton, Robert, I:299, I:310, II:468,

II:475, II:476
Merton model

advantages and criticisms of,
I:344

applied to probability of default,
I:363–365

with Black-Scholes approach,
I:305–306

default probabilities with, I:307–308
discussion of, I:343–344
drawbacks of, I:410
with early default, I:306
evidence on performance, I:308–309
as first modern structural model,

I:313, I:341
in history, I:491
with jumps in asset values, I:306
portfolio-level hedging with,

I:411–413
with stochastic interest rates, I:306
and transaction-level hedging,

I:408–410
usefulness of, I:410, I:411–412,

I:417–418
use of, I:304, I:305, I:510
variations on, I:306–307

Methodology, equally weighted,
III:399

Methods
quantile, II:354–356

Methods pathwise, III:643
Metropolis-Hastings (M-H) algorithm,

I:178
M-H algorithm, I:179
MIB 30, III:402–403, III:402f, III:403f
Microsoft, II:722f . See also Excel
Midsquare technique, III:647
Migration mode

calculation of expected/unexpected
losses under, I:376t

expected loss under, I:373–374

Miller, Merton, II:467, II:473
MiniMax (MM) risk measure, III:356
Minimization problems, solutions to,

II:683–684
Minimum-overall-variance portfolio,

I:69
Minority interest, on the balance

sheet, II:536
Mispricing, risk of, II:691–692
Model creep, II:694
Model diagnosis, III:367–368
Model estimation, in non-IDD

framework, III:278
Modeling

calibration of structure, III:549–550
changes in mathematical, II:480–481
discrete vs. continuous time, III:562
dynamic, II:105
issues in, II:299
nonlinear time series, II:427–428,

II:430–433
quantitative, II:481

Modeling techniques
non-parametric/nonlinear, II:375

Model risk
of agency ratings, II:728–729
awareness of, I:145, II:695–696
with computer models, II:695
consequences of, II:729–730
contribution to bond pricing,

II:727–728
defined, I:331, II:691, II:697
discussion of, II:714–715
diversification of, II:378
endogenous, II:694–695, II:697
in finical institutions, II:693
guidelines for institutions,

II:696–697
management of, II:695–697, II:697
misspecification of, II:199
and robustness, II:301
of simple portfolio, II:721–726
sources of, II:692–695

Models. See also operational risk
models

accuracy in, III:321
adjustment, II:502
advantages of reduced-form, I:533
analytical tractability of, III:549–550
APD, III:18, III:20–22, III:21f , III:26
application of, II:694
appropriate use of classes of,

III:597–598
arbitrage-free, III:600
autopredictive, II:502
averages across, II:715
bilinear, II:403–404
binomial, I:114–116, I:119
binomial stochastic, II:10–11

block maxima, II:745
choosing, III:550–552
comparison of, III:617
compatibility of, III:373
complexity of, II:704, II:717
computer, I:511, II:695
conditional normal, II:733–734
conditional parametric fat-tailed,

II:744
conditioning, II:105
construction of, II:232–235
for continuous processes, I:123
creation of, II:100–102
cross-sectional, II:174–175, II:175t
cumulative return of, II:234
defined, II:691, II:697
to describe default processes, I:313
description and estimation of,

II:256–257
designing the next, III:590–591
determining, II:299–300
disclosure of, I:410
documentation of, II:696
dynamic factor, II:128, II:131,

III:126–127
dynamic term structure, III:591
econometric, II:295, II:304
equilibrium forms of, III:599–600
equity risk, II:174, II:178–191, II:192
error correction, II:381t, II:387–388,

II:394–395
evidence of performance, I:308–309,

II:233
examples of multifactor, II:139–140
financial, I:139, II:479–480
forecasting, II:112, II:303–304
for forecasting, III:411
formulation of, III:128–131
fundamental factor, II:244, II:248
generally, II:360–362
Gordon-Shapiro, II:17–18
Heath-Jarrow-Morton, III:586–587,

III:589
hidden-variable, II:128, II:131
linear, II:264, II:310–311, II:348,

II:507–508
linear autoregressive, II:128,

II:130–131
linear regression, I:91, I:163–170,

II:360, II:414–415
liquidation process, I:342
martingale, II:127–128, III:520–521
MGARCH, II:371–372
model-vetting procedure, II:696–697
moving average, III:414
multifactor, II:231–232, III:92
multivariate extensions of,

II:370–373
no arbitrage, III:604
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nonlinear, II:402–421, II:417–418
penalty functions in, II:703
performance measurement of, II:301
predictive regressive, II:130
predictive return, II:128–131
for pricing, II:127–128
pricing errors in, I:322
principals for engineering,

II:482–483
probabilistic, II:299
properties of good, I:320
ranking alternative, III:368–370
recalibration of, II:713–714
reduced form default, I:310, I:313
regressive, II:128, II:129–130
relative valuation, I:260
return forecasting, II:119
returns of, II:233t
robustness of, II:301
selection of, I:145, II:298, II:692–693,

II:699–701
short-rate, I:494
single-index market, II:317–318
static, II:297, III:573
static regressive, II:129–130
static vs. dynamic, II:295–296, II:304
statistical, II:175, II:175t
stochastic, I:557, III:124–125
structural, I:305, I:313–314, I:341–342
structural vs. reduced, I:532–533
subordinated, II:742–743
temporal aggregation of, II:369
testing of, II:126–127, II:696–697
time horizon of, II:300–301
time-series, II:175, II:175t
tree, II:381, III:22–23
tuning of, III:580–581
two-factor, I:494
univariate regression, I:165
usefulness of, II:122
use of in practice, I:494–496, III:600t

Models, lattice
binomial, III:610, III:610f
Black-Karasinski (BK) lattice, III:611
Hull White binomial, III:610–611
Hull White trinomial, III:613
trinomial, III:610, III:610f,

III:611–612
Models, selection of

components of, II:717
generally, II:715–717
importance of, II:700
machine learning approach to,

II:701–703, II:717
uncertainty/noise in, II:716–717
use of statistical tools in, II:230

Modified Accelerated Cost Recovery
System (MACRS), II:538

Modified Restructuring clause, I:529

Modified tempered stable (MTS)
processes, III:513

Modigliani, Franco, II:467, II:473
Modigliani-Miller theorem, I:343,

I:344, II:473, II:476
Moment ratio estimators, III:274
Moments

exponential, III:255–256
first, III:201–202
of higher order, III:202–205
integration of, II:367–368
raw, II:739
second, III:202
types of, II:125

Momentum
formula for analysis of, II:239
portfolios based on, II:181

Momentum factor, II:226–227
Money, future value of, II:596–600
Money funds, European options on,

I:498–499
Money markets, I:279, I:282, I:314,

II:244
Monotonicity property, III:327
Monte Carlo methods

advantages of, II:672
approach to estimation, I:193
defined, I:273
examples of, III:637–639
foundations of, I:377–378
for interest rate structure, I:494
main ideas of, III:637–642
for nonlinear state-space modeling,

II:417–418
stochastic content of, I:378
usefulness of, I:389
use of, I:266–268, III:651
of VaR calculation, III:324–325

Monte Carlo simulations
for credit loss, I:379–380
effect of sampling process, I:384
in fixed income valuation modeling,

III:6–12
sequences in, I:378–379
speed of, III:644
use of, III:10–11, III:642

Moody’s diversity score, use of,
I:332

Moody’s Investors Service, I:362
Moody’s KMV, I:364–365
Mortgage-backed securities (MBS). See

MBS (mortgage-backed
securities)

Mortgage Bankers Association (MBA)
method, III:57–58

Mortgagee pools
composition of, III:52
defined, III:23, III:65
nonperforming loans and, III:75

population of, III:19
seasoning of, III:20, III:22

Mortgages, III:48–49, III:65, III:69,
III:71

Mosaic Company, distribution of price
changes of, II:723f

Mossin, Jan, II:468, II:474
Moving averages, infinite, II:504–508
MSCI Barra model, II:140
MSCI EM, historical distributions of,

III:391f
MSCI-Germany Index, I:143
MSCI World Index, I:15–17

analysis of 18 countries, I:16t
MS GARCH model, I:185–186

estimation of, I:182
sampling algorithm for, I:184

MSR (maximum Sharpe Ratio), I:36–37
MS-VAR models, II:131
Multiaccount optimization, II:75–77
Multicollinearity, II:221
Multilayer perceptrons, II:419
Multinomial/polynomial coefficients,

III:191–192
Multivariate normal distribution, in

MATLAB, III:432–433, III:433f
Multivariate random walks, II:124
Multivariate stationary series,

II:506–507
Multivariate t distribution, loss

simulation, I:388–389

Nadaraya-Watson estimator, II:412,
II:415

Natural conjugate priors, I:160n
Navigation, fuel-efficient, I:562–563
Near-misses, management of,

III:84–85
Net cash flow, defined, II:541
Net cost of carry, I:424–425, I:428,

I:437, I:439–440, I:455
Net free cash flow (NFCF), II:572–574,

II:578
Net profit margin, II:556
Net working capital-to-sales ratio,

II:554–555
Network investment models,

III:129–130, III:129f
Neumann boundary condition, II:666,

II:671
Neural networks, II:403, II:418–421,

II:418f, II:701–702
Newey-West corrections, II:220
NIG distribution, III:257n
9/11 attacks, effects of, III:402–403
No-arbitrage condition, in certain

economy, III:567–568
No arbitrage models, use of, III:604
No-arbitrage relations, I:423
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Noise
continuous-time, III:486
in financial models, II:721–722
in model selection, II:716–717
models for, II:726
reduction of, II:51–52

Noise, white
defined, I:82, II:297
qualities of, II:127
sequences, II:312, II:313
in stochastic differential equations,

III:486
strict, II:125
vs. colored noise, III:275

Nonlinear additive AR (NAAR)
model, II:417

Nonlinear dynamics and chaos, II:645,
II:652–654

Nonlinearity, II:433
in econometrics, II:401–403
tests of, II:421–427

Non-normal probability distributions,
II:480

Nonparametric methods, II:411–416
Normal distributions, I:81, I:82f,

I:177–178, III:638f
and AVaR, III:334
comparison with α-stable, III:234f
fundamentals of, II:731–734
inverse Gaussian, III:231–233,

III:232f, III:233f (See also
Gaussian distribution)

likelihood function, I:142–143
for logarithmic returns, III:211–212
mixtures of for downside risk

estimation, III:387–388
for modeling operational risk,

III:98–99
multivariate, and tail dependence,

I:387
properties of, II:732–733, III:209–210
relaxing assumption of, I:386–387
standard, III:208
standardized residuals from, II:751
use of, II:752n
using to approximate binomial

distribution, III:211
for various parameter values,

III:209f
vs. normal inverse Gaussian

distribution, III:232–233
Normal mean, and posterior tradeoff,

I:158–159
Normal tempered stable (NTS)

processes, III:513
Normative theory, I:3
Notes, step-up callable, I:251–252,

I:251f, I:252f
Novikov condition, I:131–132

NTS distribution, III:257n
Null hypothesis, I:157, I:170, III:362
Numeraire, change of, III:588–589
Numerical approximation, I:265
Numerical models for bonds,

I:273–275

OAS (option-adjusted spread). See
option-adjusted spread

Obligations, deliverable, I:231, I:526
Observations, frequency of, III:404
Occam’s razor, in model selection,

II:696
Odds ratio, posterior, I:157
Office of Thrift Supervision (OTS)

method, III:57–58
Oil industry, free cash flows of, II:570
OLS (ordinary least squares). See

ordinary least squares (OLS)
Open classes, II:493–494
Operating cash flow (OCF), II:23
Operating cycles, II:551–554
Operating profit margin, II:556
Operational loss data

de Fontnouvelle, Rosengren, and
Jordan study, III:116–117,
III:116t

empirical evidence with, III:112–118
Moscadelli study, III:113, III:116,

III:116t
Müller study, III:113, III:114f,

III:115t
Reynolds-Syer study, III:117–118
Rosenberg-Schuermann study,

III:118
Operational losses

and bank size, III:83
definitions of types, III:84t
direct vs. indirect, III:84–85
expected vs. unexpected, III:85
histogram of, III:104f
histogram of severity distribution,

III:95f
historical data on, III:96
near-miss, III:84–85
process of arriving at data, III:96–97
process of occurrence, III:86f
recording of, III:97
severity of, III:104f
time lags in, III:96–97
types of, III:81, III:88

Operational loss models
approaches to, III:103–104
assumptions in, III:104
nonparametric approach,

III:103–104, III:104–105, III:118
parametric approach, III:104,

III:105–110, III:118
types of, III:118

Operational risk
classifications of, III:83–88, III:87–88,

III:87f, III:88
defined, III:81–83, III:88
event types with descriptions,

III:86t
indicators of, III:83
models of, III:91–96
nature of, III:99
and reputational risk, III:88
sources of, III:82

Operational risk/event/loss types,
distinctions between, III:85–87

Operational risk models
actuarial (statistical) models, III:95
bottom-up, III:92f, III:94–96, III:99
causal, III:94
expense-based, III:93
income-based, III:93
multifactor causal models, III:95
operating leverage, III:93
process-based, III:94–95
proprietary, III:96
reliability, III:94–95
top down, III:92–94, III:99
types of, III:91–92

Operations
addition, II:625, II:626
defined, II:628
inverse and adjoint, II:626–627
multiplication, II:625–626, II:626
transpose, II:625, II:626
vector, II:625–626

Operators in sets, defined, III:154
Ophelimity, concept of, II:469
Opportunity cost, I:435, I:438, I:439,

II:596, III:623
Optimal exercise, I:515–516
Optimization

algorithms for, III:124
complexity of, II:82
constrained, I:28–34
defined, III:434–435
local vs. global, II:378
in MATLAB, III:434–444
unconstrained, I:22–28

Optimization theory, I:21
Optimization Toolbox, in MATLAB,

III:435–436, III:436f
Optimizers, using, II:115–116, II:483
Option-adjusted spread (OAS)

calculation of, I:253–255
defined, I:254, III:11
demonstrated, I:254f
determination of, I:259
implementation of, I:257
and market value, I:258
results from example, III:617t
and risk factors, III:599
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rules-of-thumb for analysis,
I:264–265

usefulness of, III:3
values of, I:267, I:268
variance between dealers, I:257–258

Option premium, I:508–509
time/intrinsic values of, I:513

Option premium profiles, I:512, I:512f
Option prices

components of, I:484–485, I:511–512
factors influencing, I:486–487, I:486t,

I:487–488, I:522–523
models for, I:490

Options
American, II:664–665, II:669–670,

II:674–679, II:679–681
American-style, I:444, I:454–455,

I:490
Asian, II:663–664, II:668–669,

III:642–643
on the average, II:663–664
barrier, II:662–663
basic properties of, I:507–508
basket, II:662, II:672
Bermudean, II:663–664, III:597
buying assets of, I:439
costs of, I:441–442, III:11–12
difference from forwards, I:437–439
early exercise of, I:442–443, I:447
Eurodollar, I:489
European, I:125, I:127–129,

II:660–664, II:665–674
European-style, I:444–445, I:454
European-style vs. American-style,

I:453t, I:455n, I:508, I:515–516
and expected volatility, I:486
expiration/maturity dates of, I:484
factors affecting value of, I:474
formulas for pricing, III:522, III:527
in/out of/at-the-money, I:485
long vs. short call, I:437–439, I:438f
lookback, II:663, II:672, II:673f
on the maximum, II:663
models of, I:510–511
no-arbitrage futures, I:453
price relations for, I:448t
pricing of, I:124–129, I:455t,

I:484–488, I:507, III:408
theoretical valuation of, I:508–509
time premiums of, I:485
time to expiration of, I:486
types of, I:484
valuing of, I:252–253, III:639
vanilla, II:661, III:655
volatility of, I:488

Orders
in differential equations, II:643,

II:644–645
fleeting limit, III:625

limit, III:625, III:631
market, III:625, III:631

Order statistics, III:269–270
bivariate, III:293–295
joint probability distributions for,

III:291–292
use of, III:289
for VaR and ETL, III:292t
in VaR calculations, III:291

Ordinary differential equations
(ODE), II:644–645, II:646–648,
II:648–652, II:649f

Ordinary least squares (OLS)
alternate weighting of, II:438–439
estimation of factor loadings matrix

with, II:165
in maximum likelihood estimates,

II:313–314
pictorial representations of,

II:437–438, II:438f
squared errors in, II:439–440
use of, I:165, I:172n, II:353
vs. Theil-Sen estimates of beta,

II:442f
vs. Theil-Sen regression, II:441t

Ornstein-Uhlenbeck process
with change of time, III:523
and mean reversion, I:263, I:264f
solutions to, III:492
use of, I:89, I:95
and volatility, III:656

Outcomes, identification and
evaluation of worst-case,
III:379–380

Outliers
in data sets, II:200
detection and management of, II:206
effect of, II:355f, II:442–443
and market crashes, II:503
in OLS methods, II:354
in quantile methods, II:355–356
and the Thiel-Sen regression

algorithm, II:440
Out-of-sample methodology, II:238

Pair trading, II:710
P-almost surely (P-a.s.) occurring

events, III:158
Parallel yield curve shift assumption,

III:12–13
Parameters

calibration of, II:693
density functions for values, III:229f,

III:230f, III:231f
distributions of, II:721
estimation of for random walk, I:83
robust estimation of, II:77–78
stable, III:246f

Parametric methods, use of, II:522

Parametric models, II:522–523,
II:526–527

Par asset swap spreads, I:530, I:531
Par CDS spread, I:531
Par-coupon curve, III:561
Pareto, Vilfredo, II:467, II:468–469,

II:474
Pareto(2) distribution, II:441
Pareto distributions

density function of, II:738
generalized (GPD), II:745–746,

II:747, III:230–231
in loss distributions, III:108–109
parameters for determining, II:738
stable, II:738–741
stable/varying density, II:739f
tails of, II:751

Pareto law, II:469
Pareto-Lévy stable distribution,

III:242
Partial differential equations (PDEs)

for American options, II:664–665
equations for option pricing,

II:660–665
framework for, I:261, I:265, II:675,

III:555
pricing European options with,

II:665–674
usefulness of, II:659–660
use of, III:18–19

Partitioning, binary recursive,
II:376–377, II:376f

Paths
in Brownian motion, III:501, III:502f
dependence, III:18–19
stochastic, II:297

Payments, I:229, II:611–612
Payment shock, III:72
Payoff-rate process, I:121–122
Payoffs, III:466, III:638–639
PCA (principal components analysis).

See principal component
analysis (PCA)

Pearson skewness, III:204–205
Pension funds, constraints of, II:62
Pension plans, II:541, III:132
P/E (price/earnings) ratio, II:20–21,

II:38
Percentage rates, annual vs. effective,

II:615–617
Percolation models, III:276
Performance attribution, II:57, II:58,

II:104, II:188–189, II:252–253,
II:253t

Performance-seeking portfolios
(PSPs), I:36, I:37

Perpetuities, II:607–608
Pharmaceutical companies, II:7–8,

II:11, II:244
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Phillips-Perron statistic, II:386, II:398
Pickand-Balkema-de Haan theorem,

II:746
Pickand estimator, III:273
Pliska, Stankey, II:476
Plot function, in MATLAB, III:428–432
P-null sets, III:197
Pochhammer symbol, III:256
Poincaré, Henri, II:469
POINT R©

features of, II:193n, II:291n
modeling with, II:182
screen shot of, II:287f, II:288f
use of, II:179, II:189, II:286–287

Point processes, III:270–272
Poisson-Merton jump process,

distribution tails for,
III:540–541

Poisson-Merton jump variable,
III:540

Poisson processes
compounded, III:497
homogeneous, III:270–271
and jumps, I:93, III:498, III:540
for modeling durations, II:461
as stochastic process, III:496, III:497,

III:506
use of, I:262, I:315–316

Poisson variables, distribution of,
III:271f

Policy iteration algorithm (Howard
algorithm), II:676–677

Polyhedral sets, I:33, I:33f
Polynomial fitting of trend stationary

process, II:702–703, II:702f
Population profiles, in transition

matrices, III:32–34
Portfolio allocation, example using

MATLAB, III:436–441
Portfolio management

approaches to, II:108–110
checklist for robust, III:144
for credit risk, I:416–417
of large portfolios, III:325
and mean-variance framework,

I:196
real world, I:190
software for, II:75 (See also Excel)
tax-aware, II:74–75
using Bayesian techniques, I:196

Portfolio managers, III:444–445
approaches used by, II:108–109
enhanced indexers, II:268
example of, III:436–441, III:437t
questions considered by, II:277
specialization of, II:48–49
traditional vs. quantitative, II:109,

II:110t
types of, II:179, II:286

Portfolio optimization
for American options, II:678
classical mean-variance problem,

III:441–444
constraints on, II:62
defined, I:36
formulation of theory, II:476
max-min problem, III:139
models of, II:84–85n
robust, III:146
techniques of, II:115–116
uncertainty in, I:192–193, II:82–83

Portfolios. See constraints, portfolio
allocation of, I:192–193, II:72
assessment of risk factors of,

III:637–638
benchmark, I:41–42, II:180
building efficient, II:115
bullet vs. barbell, III:308t, III:309t
bullet vs. barbell (hypothetical),

III:308
cap-weighted, I:38f
centering optimal, I:199
considerations for rebalancing of,

II:75
construction of, I:37–38, II:56–57,

II:102–104, II:102f, II:114–116,
II:179–184, II:261–264,
II:286–287, II:301–303

cor-plus, and DTS, I:398
credit bond, hedging of, I:405
data on, II:365t
diversification of, I:10–12
efficient, I:12, I:77, I:288f, I:289f,

I:290f
efficient set of, I:13
efficient vs. feasible, I:13
efficient vs. optimal, I:5
examples of, II:261t, II:262t
expected returns from, I:6–7, I:7,

I:12t, I:69t, I:195
factor exposures in, II:183t, II:184t,

II:263t, II:264t
factor model approach to, II:224
feasible and efficient, I:12–14
feasible set of, I:12–13, I:13f
index-tracking, II:186
information content of, I:192
long-short, II:181–182, II:226f
management of fixed-income, I:391
and market completeness, I:50–52
mean-variance efficient, I:66, I:69f
mean-variance optimization of,

II:79
momentum, II:182f
monitoring of, II:106
MSR (maximum Sharpe Ratio),

I:36–37
normalized, II:157

optimal, I:14–15, I:14f, I:15–17,
II:181t

optimization-based approach to,
II:224–225

optimization of, I:17–18, I:40,
II:56–57, II:301–303

optimized, II:116
performance-seeking, I:36
quadratic approximation for value,

III:644–645
rebalancing of, II:287–288
replication of, II:476
resampling of, I:189, II:78–80, II:84
returns of, I:6–7
risk control in, II:181–182
riskless, I:509
with risky assets, I:12–17
robust optimization of, II:80–84
rule-based, II:116
selection of, I:3–19, III:351–353,

III:356
self-financing, II:660–661
stress tests for, I:412
tangency, I:36–37
tilting of, II:263–264
tracking, II:187t
weighting in, I:50–51, II:64–65
weights of, I:191–192
yield simulations of, I:284–285

Portfolio sorts
based on EBITDA/EV factor,

II:216–217, II:216f
based on revisions factor, II:217–218,

II:217f
based on share repurchase factor,

II:218, II:218f
information ratios for, II:219
results from, II:225f
use of, II:214–219

Portfolio trades, arbitrage, I:440t
Position distribution and likelihood

function, I:142–143
Positive homogeneity property,

III:327–328
Posterior distribution, I:159, I:165
Posterior odds ratio, I:157
Posterior tradeoff, and normal mean,

I:158–159
Power conditional value at risk

measure, III:356
Power law, III:234–235
Power plants/refineries, valuation

and hedging of, I:563
Power sets, III:156, III:156t
Precision, I:158, II:702
Predictability, II:122–127
Predictions, I:167, II:124
Predictive return modes, adoption of,

II:128–129
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Preferred habitat hypothesis,
III:569–570

Prepayments
burnout, III:19
calculating speeds of, III:50–56
in cash-flow yields, III:4
conditional rate of (CPR), III:30,

III:50–51, III:58–59
defaults and involuntary, III:59,

III:74–77
defined, III:50
disincentives for, III:7–8
drivers of, III:77
effect of time on rates of, III:73–74
evaluation of, III:62
factors influencing speeds of,

III:69–74
fundamentals of, III:66–69
for home equity securities, III:55–56
interactions with defaults, III:76–77
interest rate path dependency of,

III:6
lag in, III:24–25
levels of analysis, III:50
lock-ins, III:73
modeling of, I:258, I:267, I:268,

III:63n, III:598–600
practical interpretations of, III:20
rates of, III:74
reasons for, III:48
risk of, II:281, II:281t
S-curves for, III:67–68, III:67f
sources of, III:23–24
voluntary, III:38
voluntary vs. involuntary, III:30,

III:75–76
Prepay modeling, III:19–20

rational exercise, III:25
Present value, I:268n, II:19, II:603–604,

II:609, III:9–10
Price/earnings (P/E) ratio, II:20–21,

II:38
Price patterns, scaling in, III:279
Price processes, bonds, I:128
Prices

bid/ask, III:625
Black-Scholes, II:673–674
changes in, II:722f, II:723f, II:742,

III:305–306, III:305t
compression of, III:303
computing clean, I:214–215
dirty, I:382
distribution of, I:510
estimating changes in bond,

I:373–374
flexible and sticky in CPI basket,

I:292
formula for discounted, I:110
marked-to-market, I:430

modeling realistic, I:93–94
natural logarithm of, I:85
path-dependent, III:193n
strike, I:484–485, I:486
truncation of, III:304
vs. value, I:455n

Price time series, autocorrelation in,
III:274

Pricing
backward induction, III:18
formulas for relationships, I:105–110
grids for, III:18–19
linear, I:52–55
models for, II:127–128
rational, I:53
risk-neutral, I:533, I:544
rule representation, I:260–261
use of trees, III:22–23

Principal component analysis (PCA)
compared to factor analysis,

II:166–168
concept of, II:157
defined, II:147, II:276
discussed, II:157–164
illustration of, II:158–163
with stable distributions, II:163–164
usefulness of, II:158
use of, I:39–40, II:142, II:168–169

Principal components, defined, II:148,
II:159

Principal components analysis (PCA),
I:556

Prior elicitation, informative,
I:152–153, I:159

Prior precision, I:158
Priors, I:153, I:165–167, I:168, I:171–172
Probabilistic decision theory,

II:719–721, II:729
Probabilities

in Bayesian framework, I:140, I:144,
I:146–148

conditional, I:117, II:517–518, III:477
formulas for conditional, I:108t
interpretation of, II:123
in models, II:299
posterior, I:140, I:144
prior, I:140, I:144
prior beliefs about, I:147
realistic, III:596–597
as relative frequencies, III:152
risk-adjusted, I:264
risk neutral, I:58–59, I:59, I:102,

I:104, I:111–114, I:115–116,
I:117, III:594–596

Probability density function (PDF),
III:384–385

Probability distributions
binomial, III:186t
continuous, III:578

for drawing black balls, III:176–177
inverting the cumulating, III:646
for prepayment models, III:598
for rate of return, I:7t, I:9t
use of, III:638, III:645–646

Probability-integral transformation
(PIT), III:365

Probability law, III:161
Probability measures, III:157–159,

III:594–597
Probability of default (PD). See default

probabilities
Probability theory, II:133, II:700–701
Probit regression models, II:348–349,

II:350
Processes

absolute volatility of, III:474
exponential, III:498
martingale, I:119, I:262–263, III:509,

III:517
non-decreasing, III:503–505
normal tempered stable, III:504–505
predictable, II:132–133
subordinated, III:387–388
weakly stationary, II:360–361

Process maps, III:94
Proctor & Gamble, cash flows of,

II:567–568, II:568t, II:571–573,
II:573t

Product transitions, III:66, III:71–73
Profit, riskless, I:480
Profitability ratios, II:555–557, II:563
Profit margin ratios, II:555–556
Profit opportunities, I:261
Programming, linear, I:29, I:32–33
Programming, stochastic

defined, III:123–124
in finance, III:125–126
general multistage model for

financial planning, III:128–132
use of scenario trees in, III:131–132
vs. continuous-time models,

III:127–128
vs. other methods in finance,

III:126–128
Projected successive over relaxation

(PSOR) method, II:677
Projections, as-was, usefulness of,

II:38
Propagation effect, III:351
Prospectus prepayment curve (PPC),

III:54–55, III:56
Protection, buying/selling of,

I:230–231
100 PSA (Public Securities Association

prepayment benchmark),
III:51–52, III:55

Pseudo-random numbers, generation
of, III:647
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PSPs (performance-seeking
portfolios), I:36, I:37

Public Securities Association (PSA)
prepayment benchmark,
III:51–55, III:51f, III:62–63

Pull to par value, I:216
Pure returns, II:51
Put-call parity, I:437

for American-style options,
I:446–448, I:452–453, I:452t

for European options, I:499
for European-style options,

I:444–446, I:445t, I:451, I:451t
perfect substitutes in

European-style, I:445t
relations of, I:446

Put-call parity relationship, I:445,
I:446, I:485

Put options, I:439
Puts, American-style

early exercise of, I:444, I:450–451
error on value of, II:677t, II:678t
lower price bound, I:443–444, I:450
numerical results for, II:677–678

Puts, European-style
arbitrage trades, I:443t
lower price bound, I:443,

I:450
Pyrrho’s lemma, II:330, II:331

Q-statistic of squared residuals,
II:422

Quadratic objective, two-dimensional,
I:29f

Quadratic programming, I:29, I:33–34
Quadratic variation, III:474
Quantiles

development of regression, II:356
methods, II:354–356
plot (QQ-plot) of, III:272
use of regression, II:353–354,

II:356–357
Quantitative methods, II:483
Quantitative portfolio allocation, use

of, I:17–18
Quantitative strategies, backtesting of,

I:201
Quintile returns, II:97–98
Quotes

delayed, II:454
discrepancies in, II:453–454
histograms from simple returns,

II:458f
methods for sampling, II:457–460
mid-quote closing, II:460f
mid-quote format, II:456
mid-quote time-interpolated,

II:460f
quantile plots of, II:459f, II:461f

R2, adjusted, II:315–316
Radon-Nikodym derivative, I:111,

I:130, I:133–134, III:510–511,
III:515

Ramp, loans on, III:52
Randomized operational time, III:521
Randomness, I:164, III:534–537,

III:580
Random numbers

clusters in, III:649–650
generation of, III:645–647
practicality of, III:647
reproducing series of, III:646
simulations of, III:650f

Random walks
advanced models of, I:92–94
arithmetic, I:82–84, I:97, II:125
for Brownian motion, III:478–479
computation of, I:83, I:85, I:87, I:90
correlated, I:92–93, II:502–503
defined, III:486
in forecastability, II:127
generation of, I:85
geometric, I:84–88, I:89, I:97
and linear nonstationary models,

II:508
multivariate, I:93
parameters of, I:87–88
polynomial fitting of, II:704f
simulation of, I:87
and standard deviation, II:385
500-step samples, II:708f
strict, II:126
use of, II:132, III:474
variables in, I:83–84

Range notes, valuing, I:252
RAS Asset Management, III:624
Rate-and-term refinancing, III:66
Rating agencies, I:300, III:44

effect of actions of, I:367–369
role of, I:362

Rating migration, I:362, I:367–369
Rating outlooks, I:365–366
Ratings

maturity of, I:301
Ratings-based step-ups, I:352
Rating transitions, I:368, I:368t, I:381
Ratios

analysis of, II:575–576
classification of, II:545–546
defined, II:545
quick (acid test), II:554
scales of, II:487

Real estate prices, effect of, III:44
Real yield duration, calculation of,

I:286
Receipts, depositary, II:36
Recoveries, in foreclosures, III:75
Recovery percentages, III:30–31

Recovery rates
calibration of assumption, I:537–538
for captive finance companies,

I:366–367
and credit risk, I:362
dealing with, I:334n
on defaulted securities, I:367t
drivers of, I:372
modeling of, I:316–317
random, I:383
relationship to default process,

I:372, I:376
time dimension to, I:366–377

Rectangular distribution, III:219–221
Recursive out-of-sample test, II:236
Recursive valuation process, I:244
Reduced form models, usefulness of,

I:412
Redundant assets/securities, I:51
Reference entities, I:526
Reference priors, I:159–160n
Refinancing

and ARMs, III:72
categories of, III:48
discussion of, III:68–69
rate-and-term, III:68
speed of, III:25–26
threshold model, III:18

Refinancing, paths of rates, III:8t
RefiSMM(Price) function, III:25–26
Regime switching, I:173n
Regression

binary, III:364
properties of, II:309–310
spurious, II:384, II:385
stepwise, II:331

Regression analysis
results for dummy variable

regression, II:348t
usefulness of, II:305
use in finance, II:316–328
variables in, II:330

Regression coefficients, testing of,
I:170

Regression disturbances, I:164
Regression equations, II:309–310
Regression function, II:309
Regression models, I:168–169,

I:170–172, II:302
Regressions

estimation of linear, II:311–314
explanatory power of, II:315–316
linear, II:310–311
and linear models, II:308–311
pitfalls of, II:329–330
sampling distributions of, II:314
spurious, II:329

Regression theory, classical, II:237
Regressors, II:308–310, II:311, II:330
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Reg T (Treasury Regulation T), I:67
Relative valuation analysis

hypothetical example of, II:40–45
hypothetical results, II:40t
implications of hypothetical,

II:41–42
low or negative numbers in, II:42–43

Relative valuation methods
choice of valuation multiples in,

II:38–39
usefulness of, II:45
use of, II:33–34, II:45

Replication, I:526
Reports, II:200–201, II:283–286
Research, process of quantitative,

II:717f
Residuals, II:220, II:328–329
Restructuring, I:528–530, I:529, I:529t,

I:530, I:537
Return covariance matrix formula,

II:141
Return distributions, III:333f,

III:388–392
Return effects, II:47–48, II:51, II:51f
Return generating function, II:256
Return on assets, II:547–548, II:548–550
Return on equity (ROE), II:37–38,

II:41–42, II:548, II:550
Return on investment ratios,

II:547–551, II:548, II:563
Returns

active, II:115
arithmetic vs. geometric average,

II:598
defined, II:598
estimated moments of, II:204
estimates of expected, I:190–191
ex ante, I:7
excess, I:66, I:67, I:74
expected, I:71–72, II:13–14, II:112
ex post, I:6
fat tails of conditional distribution,

II:753n
finite variance of, III:383–384
forecasting of, II:111–112, II:362
historical, II:285f, III:389t
monthly vs. size-related variables,

II:52t
naı̈ve, II:51, II:53f
naı̈ve vs. pure, II:52f, II:53–54
Nasdaq, Dow Jones, bond, II:365f
pure, II:51, II:53f, II:54t
robust estimators for, I:40–41
rolling 24-month, II:229f
systematic vs. idiosyncratic, II:173
time-series properties of, II:733–734

Returns to factors, II:248
Return to maturity expectations

hypothesis, III:569

Return volatility, excess and DTS,
I:396–397

Reverse optimization, I:203n
Riemann-Lebesgue integrals, III:483
Riemann-Stieltjes integrals, I:122,

III:473–474, III:487
Riemann sum, II:743–744
Risk. See also operational risk

alternative definitions of, III:350
analyzing with multifactor models,

II:184–188
assessment of, III:640–641
asymmetry of, III:350–351
budgeting of, II:115, II:286–287
of CAPM investors, I:73–74
changes in, II:368, III:351
coherent measures of, III:327–329
collective, II:470
common factor/specific, II:258
controlling, I:397
correlated, II:271t
correlated vs. isolated, II:271
counterparty, I:478, I:479
decomposition of, II:250–253,

II:257–261, II:265
and descriptors, II:140
downside, III:382
effect of correlation of asset returns

on portfolio, I:11–12
effect of number of stocks on,

II:249f
estimation of, I:40
in financial assets, I:369
forecasting of, II:112–113
fundamental, II:199
funding, II:199
horizon, II:199
idiosyncratic, II:178, II:188, II:188t,

II:283, II:285t, II:291
idiosyncratic vs. systematic, I:40–41
implementation, II:199
including spread in estimation of,

I:399
indexes of, II:140, II:256
interest rate, I:521–522, III:4
issue specific, II:283t
liquidity, II:199
main sources of, II:211
market price of, III:579, III:588,

III:591
model (See model risk)
modeling, III:11
momentum, II:181t
as multidimensional phenomenon,

III:350
noise trader, II:199
perspective on, II:91–92
portfolio, I:7–10, I:9–10, I:11, II:180t
prepayment, III:48

price movement costs, II:69
quantification of, I:4, I:7–8
realized, II:118
reinvestment, III:4–5
relativity of, III:350
residual, II:258–259
by sector, II:185t
in securities, I:73
sources of, II:173–174, II:251f, II:274,

II:281–282
systematic, II:186
tail, I:384, I:385
true vs. uncertainty, II:721
in a two-asset portfolio, I:8
in wind farm investments, I:563–564

Risk analysis, II:268–286, II:273t,
II:274t, II:275t

Risk aversion, I:404
in analysis, III:570
coefficient for, I:59
functions, III:339f
of investors, I:191
and portfolio management, I:37

Risk-based pricing, III:70
Risk decomposition

active, II:259–260, II:259f
active systematic-active residual,

II:260, II:260f
insights of, II:252
overview of, II:261f
summary of, II:260–261
systematic-residual, II:258–259,

II:259f
total risk, II:258, II:258f

Risk exposures, I:394, I:521
Risk factors

allocation of, I:398
constraints on, II:63–64
identification of, II:256
macroeconomic, I:415–416
missing, II:693
systematic, II:268, II:474
unsystematic, II:474

Riskiness, determining, I:145
Risk management

internal models of, III:289–290
in investment process, II:104
portfolio, III:643–644
in portfolio construction, II:303
and quasi-convex functions, I:28

Risk measures, safety-first, III:352,
III:354–356, III:357

RiskMetricsTM Group
approach of, III:322–323
comparison with FTSE100 volatility,

III:413f
methodology of, III:412–413
software of, III:413
website of, III:412
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Risk models
applications of, II:286–290
comparisons among, II:747–751
defined, II:692
equity, II:172–173, II:192–193, II:255,

II:264
indicator, III:93–94
and market volatility, II:748
multifactor, II:257–258
principal of, II:292n
and uncertainty, II:724
use of, II:171–172, II:268, II:290

Risk neutral, use of term, III:593–594
Risk neutral density (RND)

concept of, II:521
fitting data to models of, II:526–527
generally, II:527
parametric models for, II:523–525

Risk oversight, II:303
Risk premiums

for default, III:599
importance of, III:587
quantifying, III:580–581
of time value, I:513
as a variable in discount bond

prices, III:581
variables, I:403, I:405

Risk reports
credit risk, II:278–281
detailed, II:272–286
factor exposure, II:275–283
implied volatility, II:282
inflation, II:282
issue-level, II:283–285
liquidity, II:282
prepayment risk, II:281
risk source interaction, II:281–282
scenario analysis, II:285–286
summary, II:272–275
tax-policy, II:282–283

Risk tolerance, II:720–721, II:725,
II:729f

Risky bonds, investment in, II:726–729
Robot analogy, III:594
Robust covariance matrix, II:446
Robust optimization, II:83, III:141–142
Robust portfolio optimization, I:17–18,

I:193, III:138–142
effect on performance, III:144
need for research in, III:145–146
practical considerations for,

III:144–145
in practice, III:142–144

Rolling windows, use of, II:371
Roots

complex, II:632–634, II:636–637
in homogenous difference

equations, II:642
real, II:630–632, II:635–636

Ross, Stephen, II:468, II:475
Rounding, impact of, III:306n
Roy CAPM, I:67, I:69, I:70
Ruin problem, development of,

II:470–471
Runge-Kutta method, II:650–652,

II:651f, II:652f
Russell 1000, II:213, II:236–237

Saddle points, I:23, I:23f, I:30
Sales, net credit, II:557–558
Samples

effect of size, I:158–159, I:159f, III:407
importance of size, III:152
and model complexity, II:703–707
in probability, III:153
selection of, II:716

Sampling
antithetic, I:383
importance, I:384, III:648–649
stratified, II:115, III:648

Sampling error, III:396
Samuelson, Paul, I:556, II:468,

II:473–474
Sandmann-Sondermann model,

I:493
Sarbanes-Oxley Act (2002), II:542
Scalar products, II:625–626
Scale parameters, I:160n
Scaling laws, use of, III:280
Scaling vs. self-similarity, III:278–280
Scenario analysis

constraints on, III:130
factor-based, II:189–192, II:193
for operational risk, III:93
usefulness of, II:179
use of, II:288–290, III:378

Scenarios
defined, III:128
defining, II:189
generation of, III:128–132
network representation of, III:129f
number needed of, III:640–641

Scholes, Myron, II:468, II:476
Schönbucher-Schubert (SS) approach,

I:329–331
Schwarz criterion, II:387, II:389
Scorecard Approach, III:100n
Scott model, II:681–682
SDMs (state dependent models), I:342,

I:351–352
Secrecy, in economics, II:716
Sector views, implementation of,

II:182–184
Securities

alteration of cash flows of, I:210
arbitrage-free value of, I:261
baskets of, I:483–484
convertible, I:462

creating weights for, II:102–104,
II:103f

evaluation of, I:50
fixed income, I:209–210, II:268
formula for prices, I:107
non-Treasury, I:222–223, I:223t
of other countries, I:226
payoffs of, I:49–50, I:116–117,

I:121–122
pricing European-style, III:642
primary, I:458
primitive, I:51
private label (See MBS

(mortgage-backed securities),
nonagency)

ranking of, I:200–201
redundant, I:124
risk-free, I:115
selection of, I:225–226
structured, I:564, I:565–566
supply and demand schedule of,

III:626f
valuing credit-risky, III:645
variables on losses, I:370

Securities and Exchange Commission
(SEC)

filings with, II:532
Security levels, two-bond portfolio,

I:382t
Selection, adverse vs. favorable,

III:76–77
Self-exciting TAR (SETAR) model,

II:405
Self-similarity, III:278–280
Selling price, expected future, II:19–20
Semimartingales, settings in change of

time, III:520–521
Semi-parametric models

tail in, II:744–747
Semiparametric/nonparametric

methods, use of, II:522
Semivariance, as alternative to

variance, III:352
Sensitivity, III:643–644
Sensitivity analysis, I:192, II:235
Sequences, I:378, III:649–651, III:650
Series, II:299, II:386, II:507–508, II:512
SETAR model, II:425–426
Set of feasible points, I:28, I:31
Set operations, defined, III:153–154
Sets, III:154
Settlement date, I:478
Settlements, I:526–528
Shareholders

common, II:4
equity of, II:535
negative equity of, II:42
preferred, II:4–5
statement of equity, II:541
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Shares, repurchases of, II:207, II:210f,
II:211, II:215–216, II:227

Sharpe, William, I:75, II:468, II:474
Sharpe-Lintner CAPM (SL-CAPM),

I:66–67, I:75, I:78n
Sharpe ratios, I:40, I:62, I:193
Sharpe’s single-index model, I:74–75
Shipping options, pricing of, I:565
Shortfall, expected, I:385–386
Short positions, I:67
Short rate models, III:543–545,

III:545–550, III:552–554, III:557,
III:604–610

Short rates, III:212–213, III:541, III:549,
III:595–596

Short selling
constraints on, I:67
effect of constraints on, I:17,

I:191–192, II:461
effect of on efficient frontiers, I:17f
example, I:480–481
as hedging route, I:409
in inefficient markets, I:71f
and market efficiency, I:70–71
net portfolio value, I:433t
and OAS, I:259
and real estate, II:396–397
in reverse cash-and-carry trade,

I:483
for terminal wealth positions,

I:460–461
using futures, I:432–433

Shrinkage
estimation of, I:192, I:194–195,

I:201–202, III:142
optimal intensity of, I:202n–203n
use of estimators, II:78

δ-algebra, III:15, III:157
δ-fields

defined, III:508
Signals (forecasting variables), use of

in forecasting returns,
II:111–112

evaluation of, II:111–112
Similarity, selecting criteria for, II:35
Simulated average life, III:12
Simulations

credit loss, I:378–380
defined, III:637
efficiency of, I:384
financial applications of, III:642–645
process of, III:638
technique of, III:444–445

Single firm models, I:343–352
Single monthly mortality rate (SMM),

III:50–51, III:58
Skewness

defined, III:238–239
and density function, III:204–205

indicating, III:235
and the Student’s t-distribution,

III:387
treatment of stocks with, I:41

Sklar’s theorem, I:326, III:288
Skorokhod embedding problem,

III:504
Slackness conditions, complementary,

I:32
SL-CAPM (Sharpe-Lintner CAPM),

I:66–67, I:75, I:78n
Slope elasticity measure, III:315, III:317
Smith, Adam, II:468, II:472
Smoothing, in nonparametric

methods, II:411–412
Smoothing constant, III:409–410
Smoothly truncated stable distribution

(STS distribution), III:245–246
Smooth transition AR (STAR) model,

II:408–409
Sobol sequences, pricing European

call options with, III:445–446
Software

case sensitivity of, III:434
comments in MATLAB code, III:427
developments in, II:481–482
macros in, III:450–452, III:450f,

III:460, III:466
pseudo-random number

generation, III:646–647
random number generation

commands, III:645–647
RiskMetrics Group, III:413, III:644
simulation, III:651f
for stable distributions, III:344,

III:383
stochastic programming

applications, III:126
use of third party, II:481

Solutions, stability of, II:652–653
Solvers, in MATLAB, III:435
Space in probability, III:156, III:157
Sparse tensor product, II:673
S&P 60 Canada index, I:550–552,

I:550t, I:553f
Spearman, Charles, II:153–154
Spearman model, II:153–154
Spearman’s rho, I:327, I:332, I:336n
Splits, in recursive partitioning,

II:376–377
Spot curves, with key rate shifts,

III:313f, III:314f
Spot price models, energy

commodities, I:556–557
Spot rates

arbitrage-free evolution of,
I:557–558

bootstrapping of curve, I:217–220
calculation of, III:581

and cash flows in OAS analysis,
I:259

changes in, III:311, III:312f, III:312t
computing, I:219–220
under continuous compounding,

III:571
defined, III:595
effect of changes in, I:514,

III:313–314, III:314t
and forward rates, III:572
models of, III:579–581
paths of monthly, III:9–10, III:10t
theoretical, I:217
Treasury, I:217
uses for, I:222

Spot yields, III:565, III:566, III:571
Spread analysis, II:290t

table of, II:290t
Spread duration, beta-adjusted, I:394
Spreads

absolute and relative change
volatility, I:396f

change in, I:392, I:393, I:394f, I:399
determining for asset swaps,

I:227–228
level vs. volatility of, I:397
measurement of, II:336–337
measure of exposure to change in,

I:397
nominal, use of, III:5
option-adjusted, I:253–255, I:254f
reasons for, I:210–211
relative vs. absolute modeling,

I:393
volatility vs. level, I:394–396,

I:395f
zero-volatility, III:5

Squared Gaussian (SqG) model,
III:547–548

Square-root rule, III:534
SR-SARV model class, II:370
St. Petersburg paradox, III:480
Stability

notion of, II:667
in Paretian distribution, II:739–741
property of, II:740–741, III:236–237,

III:244–245
Stable density functions, III:236f
Stable Paretian model, α -stable

distribution in, II:748
Standard Default Assumption (SDA)

convention, III:59–60, III:60f
Standard deviations

and covariance, I:9
defined, III:168
mean, III:353
posterior, I:155
related to variance, III:203–204
rolling, II:362–363
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Standard deviations (Continued )
and scale of possible outcomes,

III:168f
for tail, III:341

Standard errors. See also errors
for average estimators, III:400–402
defined, III:399
estimation of, III:640
of the estimator, III:400
for exponentially weighted moving

averages (EWMA), III:411–412
reduction of, III:648

Standard normality, testing for,
III:366–367

Standard North American contract
(SNAC), I:529

Standard & Poors 500
auto correlation functions of, II:389t
cointegration regression, II:390t
daily close, III:402f
daily returns (2003), III:326f
distributions of, III:384f
error correction model, II:391t
historical distributions of, III:390f
index and dividends (1962–2006),

II:388f
parameter estimates of, III:385t,

III:387t, III:388t
return and excess return data

(2005), II:316–317t
stationarity test for, II:389t
time scaling of, III:383f
worst returns for, III:382t

State dependent models (SDMs), I:342,
I:351–352

Statement of stockholders’ equity,
II:541

State price deflators
defined, I:103, I:129–130
determining, I:118–119, I:124
formulas for, I:107–108, I:109–110
in multiperiod settings, I:105
and trading strategy, I:106

State prices
and arbitrage, I:55–56
condition, I:54
defined, I:101–102
and equivalent martingale

measures, I:133–134
vectors, I:53–55, I:58, I:119

States, probabilities of, I:115
States of the world, I:457–458, I:459,

II:306, II:308, II:720
State space, I:269n
Static factor models, II:150
Stationary series, trend vs. difference,

II:512–513
Stationary univariate moving average,

II:506

Statistical concepts, importance of,
II:126–127

Statistical factors, II:177
Statistical learning, II:298
Statistical methodology, EWMA,

III:409
Statistical tests, inconsistencies in,

II:335–336
Statistics, II:387, II:499
Stein paradox, I:194
Stein-Stein model, II:682
Step-up callable notes, valuing of,

I:251–252
Stochastic, defined, III:162
Stochastic control (SC), III:124
Stochastic differential equations

(SDEs)
binomial/trinomial solutions to,

III:610–613
with change of time methods,

III:523
defined, II:658
examples of, III:523–524
generalization to several

dimensions with, III:490–491
intuition behind, III:486–487
modeling states of the world with,

III:127
for MRAM equation, III:525–526
setting of change of time, III:521
solution of, III:491–493
steps to definition, III:487
usefulness of, III:493
use of, II:295, III:485–486,

III:489–490, III:536, III:603,
III:619

Stochastic discount factor, I:57–58
Stochastic integrals

defined, III:481–482
intuition behind, III:473–475
in Ito processes, III:487
properties of, III:482–483
steps in defining, III:474–475

Stochastic processes
behavior of, I:262
characteristic function of, III:496
characteristics of, II:360
continuous-time, III:496, III:506
defined, I:263–264, I:269n, II:518,

III:476, III:496
discrete time, II:501
properties of, II:515
representation of, II:514–515
and scaling, III:279
specification of, II:692–693

Stochastic programs
features of, III:124, III:132

Stochastic time series, linear,
II:401–402

Stochastic volatility models (SVMs)
with change of time, III:520
continuous-time, III:656
discrete, III:656–657
importance of, III:658
for modeling derivatives,

III:655–656
multifactor models for, III:657–658
and subordinators, III:521–522
use of, III:653, III:656

Stock indexes
interim cash flows in, I:482
risk control against, II:262–263

Stock markets
bubbles in, II:386
as complex system, II:47–48
1987 crash, II:521, III:585–586
dynamic relationships among,

II:393–396
effects of crises, III:233–234
variables effects on different sectors

of, II:55
Stock options, valuation of long-term,

I:449
Stock price models

binomial, III:161, III:171–173, III:173f
multinomial, III:180–182, III:181f,

III:184
probability distribution of

two-period, III:181t
Stock prices

anomalies in, II:111t
behavior of, II:58
correlation of, I:92–93
and dividends, II:4–5
lognormal, III:655–656
processes of, I:125

Stock research, main areas of, II:244t
Stock returns, II:56, II:159f
Stocks

batting average of, II:99, II:99f
characteristics of, II:204
common, II:4, II:316–322
cross-sectional, II:197
defined, II:106
defining parameters of, II:49
determinants of, II:245f
execution price of, III:626
fair value vs. expected return, II:13f
finding value for XYZ, Inc., II:31t
information coefficient of, II:98f
information sources for, II:90f
measures of consistency, II:99–100
mispriced, II:6–7
quantitative research metrics tests,

II:97–99
quintile spread of, II:97f
relative ranking of, I:196–197
review of correlations, II:101f
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sale/terminal price of, II:5
short selling of, I:432–433
similarities between, II:245f
sorting of, II:215
testing of, II:95, II:96f
that pay no dividend, II:17
use of, II:90
valuation of, II:6, II:8–9, II:14,

II:18–19
weightings of, II:101f

Stock selection
models for, II:197
in quantitative equity investment

process, II:105
quantitative model, II:94–95
for retail sector, II:94f
strategies for, II:195
tree for, II:379–381, II:380f

Stopping times, II:685
Straontonovich, Ruslan, II:470
Strategies, backtesting of, II:235–236
Stress tests, I:412, I:417, I:418, III:93,

III:596–597
Strike price, I:509, I:514
Strong Law of Large Numbers

(SLLN), I:270n, III:263–264
Structural breaks, I:167, III:274–275
Student’s t distribution

applications to stock returns,
III:215–216

and AVaR, III:334–335
classical, II:734–738
density function of, II:735
discussion of, III:213–216
distribution function of, III:215f
for downside risk estimation,

III:386–387
fitting and simulation of, II:737–738
heavy tails of, I:160n, I:176,

II:747–748, II:751, III:227–228
limitations of, II:736
in modeling credit risk, I:387–388
normals representation in,

I:177–178
skewed, II:736–737, II:753n
skewness of, III:390
standard deviation of, I:173n
symmetry of, III:387
tails of, III:392
use of, I:153–154, I:172n, III:234

Student’s t-test, II:219
Sturge’s rule, II:495
Style analysis, II:189
Style factors, II:247
Style indexes, II:48
Stylized facts, II:503–504
Subadditivity property, III:328
Subordinated processes, I:186n,

III:277, III:521–522

Successive over relaxation (SOR)
method, II:677

Summation stability property
(Gaussian distribution),
II:732–733

Supervisory Capital Assessment
Program, I:300, I:412

Support, defined, III:200
Survey bias, I:293
Survival probability, I:533–535
Swap agreements, I:434, I:435–436n
Swap curves, I:226, II:275–276
Swap rates, I:226, III:536f
Swaps

with change of time method, III:522
covariance/correlation, I:547–548,

I:549–550, I:552
duration-matched, I:285
freight rate, I:558
modeling and pricing of, I:548–550
summary of studies on, I:546t
valuing of, I:434–435

Swap spread (SS) risk, II:278, II:278t
Swaptions, I:502–503, III:550
Synergies, in conglomerates, II:43–44
Systematic risk, II:290
Systems

homogenous, II:624
linear, II:624
types of, II:47, II:58

Tailing the hedge, defined, I:433
Tail losses

in loss functions, III:369–370
Tail probability, III:320
Tail risk, I:377, I:385, II:752
Tails

across assets through time,
II:735–736

behavior of in operational losses,
III:111–112

in density functions, III:203
dependence, I:327–328, I:387
Gaussian, III:98–99, III:260
heavy, II:734–744, III:238
modeling heaviness of, II:742–743
for normal and STS distributions,

III:246t
power tail decay property, II:739,

III:244
properties of, III:261–262
tempering of, II:741

Takeovers, probability of, I:144–145
Tangential contour lines, I:29–30, I:30f,

I:32f
Tanker market, I:565
TAR-F test, II:426
TAR(1) series, simulated time plot of,

II:404f

Tatonnement, concept of, II:468
Taxes

and bonds, I:226
capital gains, II:73
cash, II:573
for cash/futures transactions, I:484
complexity of, II:73–74
deferred income, II:535, II:538
effect on returns, II:83–84, II:84,

II:85n
in financial statements, II:541
impact of, I:286–287
incorporating expense of, II:73–75
managing implications of, III:146
and Treasury strips, I:218

Tax policy risk, II:282–283
Technology, effect of on relative

values, II:37
Telescoping futures strategy, I:433
Tempered stable distributions

discussions of, III:246–252,
III:384–386

generalized (GTS), III:249
Kim-Rachev (KRTS), III:251–252
modified (MTS), III:249–250
normal (NTS), III:250–251
probability densities of, III:247f,

III:248f, III:250f, III:252f
rapidly decreasing (RDTS), III:252
tempering function in, III:254,

III:258n
Tempered stable processes,

III:499–501, III:500t, III:512–517
Tempering functions, III:254, III:255t
Templates, for data storage, II:204
Terminal profit, options and forwards,

I:438f, I:439f
Terminal values, II:45
Terminology

of delinquency, default and loss,
III:56

of prepayment, III:49–50
standard, of tree models, II:376

Term structure
in contiguous time, III:572–573
continuous time models of,

III:570–571
defined, III:560
eclectic theory of, III:570
of forward rates, III:586
mathematical relationships of,

III:562
modeling of, I:490–494, III:560
of partial differential equations,

III:583–584
in real world, III:568–570

Term structure modeling
applications of, III:584–586
arbitrage-free, III:594
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Term structure modeling (Continued )
calibration of, III:580–581
discount function in, III:565
discussion of, III:560–561

Term structure models
approaches to, III:603–604
defined, I:262, I:263
discrete time, III:562–563
discussion of, III:561–562
of interest rates, I:314
internal consistency checks for,

III:581
with no mean reversion, III:613–616
for OAS, I:265–267
quantitative, III:563
static vs. dynamic, III:561–562

Term structures, III:567–568, III:570,
III:579, III:587

Tests
Anderson-Darling (AD), III:112–113
BDS statistic, II:423–424, II:427
bispectral, II:422–423
cointegration, II:708–710
Kolmogorov-Smirnov (KS),

III:112–113
monotonic relation (MR), II:219
nonlinearity, II:426–427, II:427t
nonparametric, II:422–424
out-of-sample vs. in-sample,

II:236
parametric, II:424–426
RESET, II:424–425
run tests, III:364
threshold, II:425–426
for uniformity, III:366

TEV (tracking error volatility), II:180,
II:186, II:272–274, II:286–287

Theil-Sen regression algorithm,
II:440–442, II:443–446,
II:444t

The Internal Measurement Approach
(BIS), III:100n

Theoretical value, determination of,
III:10–11

Théorie de la Spéculation (The Theory of
Speculation) (Bachelier),
II:121–122, II:469

Theory of point processes, II:470–471
Three Mile Island power plant crisis,

II:51–52
Three-stage growth model, II:9–10
Threshold autoregressive (TAR)

models, II:404–408
Thresholds, II:746–747
Through the cycle, defined, I:302–303,

I:309–310
Thurstone, Louis Leon, II:154
Tick data. See high-frequency data

(HFD)

Time
in differential equations, II:643–644
physical vs. intrinsic scales of, II:742
use of for financial data, II:546–547

Time aggregation, II:369
Time decay, I:509, I:513, I:521f
Time dependency, capture of,

II:362–363
Time discretization, II:666, II:679
Time increments

models of, I:79
in parameter estimation, I:83

Time intervals, size of, II:300–301
Time lags, II:299–300
Time points, spacing of, II:501
Time premiums, I:485
Time series

autocorrelation of, II:331
causal, II:504
concepts of, II:501–503
continuity of, I:80
defined, II:501–502, II:519
fractal nature of, III:480
importance of, II:360
multivariate, II:502
stationary, II:502
stationary/nonstationary, II:299
for stock prices, II:296

Time to expiry, I:513
Time value, I:513, I:513f, II:595–596
TIPS (Treasury inflation-protected

securities)
and after-tax inflation risk, I:287
apparent real yield premium, I:293f
effect of inflation and flexible price

CPI, I:292f
features of, I:277
and flexible price CPI, I:291f
and inflation, I:290, I:294
performance link with short-term

inflation, I:291–292
real yields on, I:278
spread to nominal yield curve,

I:281f
volatility of, I:288–290, I:294
vs. real yield, I:293–294
10-year data, I:279–280
yield of, I:284
yields from, I:278

TLF model, strengths of, III:388–389
Total asset turnover ratio, II:558
Total return reports, II:237t
Total return swaps, I:540–542,

I:541–542
Trace test statistic, II:392
Tracking error

actual vs. predicted, II:69
alternate definitions of, II:67–68
defined, II:115, II:119

estimates of future, II:69
as measure of consistency, II:99–100
reduction of, II:262–263
standard definition, II:67
with TIPS, I:293

Tracking error volatility (TEV). See
TEV (tracking error volatility)

Trade optimizers, role of, II:116–117
Trades

amount needed for market impact,
III:624

cash-and-carry, I:487
crossing of, II:75
importance of execution of, III:623,

III:631
measurement of size, III:628
in portfolio construction, II:104,

II:116–117
round-trip time of, II:451
size effects of, III:372, III:630
speed of, II:105
timing of, III:628–629

Trading costs, II:118, III:627–628,
III:631–632

Trading gains, defined, I:122, I:123
Trading horizons, extending, III:624
Trading lists, II:289t
Trading strategies

backtesting of, II:236–237
categories of, II:195
in continuous-state,

continuous-time, I:122
development of factor-based,

II:197–198, II:211
factor-based, II:195, II:232–235
factor weights in, II:233f
in multiperiod settings, I:105
risk to, II:198–200
self-financing, I:126–127, I:136

Trading venues, electronic, II:57
Training windows, moving, II:713–714
Tranches, III:38, III:39t, III:45
Transaction costs

in backtesting, II:235
in benchmarking, II:67
components of, II:119
consideration of, II:64, II:85–86n
dimensions of, III:631
effect of, I:483
figuring, II:85n
fixed, II:72–73
forecasting of, II:113–114
incorporation of, II:69–73, II:84
international, III:629
linear, II:70
and liquidity, III:624–625
managing, III:146
measurement of, III:626
piecewise-linear, II:70–72, II:71f
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quadratic, II:72
in risk modeling, II:693
types of, III:623

Transformations, nonlinear,
III:630–631

Transition probabilities, I:368, I:381t
Treasuries

correlations of, III:405t
covariance matrix of, III:406t
curve risk, II:277t
discount function for, III:564–565
futures, I:482
inflation-indexed, I:286
movements of, III:403f
on-the-run, I:227, III:7, III:560
par yield curve, I:218t
spot rates, I:220
3-month, II:415–416, II:416f
volatility of, III:404–406, III:406t

Treasury bill rates, weekly data, I:89f
Treasury inflation-protected securities

(TIPS). See TIPS (Treasury
inflation-protected securities)

Treasury Regulation T (Reg T), I:67
Treasury securities, I:210–211

comparable, defined, III:5
in futures contracts, I:483
hypothetical, illustration of

duration/convexity,
III:308–310, III:308t

maturities of, I:226
options on, I:490
par rates for, I:217
prediction of 10-year yield,

II:322–328
valuation of, I:216
yield of, II:324–327t

Treasury strips, I:218t, I:220–221, I:286,
III:560

Treasury yield curves, I:226, III:561
Trees/lattices

adjusted to current market price,
I:496f

bushy trees, I:265, I:266f
calibrated, I:495
convertible bond value, I:274–275
extended pricing tree, III:23f
from historical data, III:131f
pruning of, II:377
stock price, I:274
three-period scenario, III:131f
trinomial, I:81, I:273, I:495–496
use of in modeling, I:494–496

Trees/lattices, binomial
building of, I:273
for convertible bonds, I:275f
discussion of, I:80–81
interest rate, I:244
model of, I:273–275

stock price model, III:173
term structure evolution, I:495f
use of, I:114–115, I:114f

Trends
deterministic, II:383
in financial time series, II:504
and integrated series, II:512–514
stochastic, II:383, II:384

Treynor-Black model., I:203n
Trinomial stochastic models, II:11–12
Truncated Lévy flight (TLF), III:382,

III:384–386
IDD in, III:386
time scaling of, III:385f

Truncation, III:385–386
Truth in Savings Act, II:615
T-statistic, II:240n, II:336, II:350, II:390
Tuple, defined, III:157
Turnover

assessment of, III:68
defined, III:66
in MBSs, III:48
in portfolios, II:234, II:235

Two beta trap, I:74–77
Two-factor models, III:553–554
Two-stage growth model, II:9

U.K. index-linked gilts, tax treatment
of, I:287

Uncertainties
and Bayesian statistics, I:140
in measurement processes, II:367
modeling of, II:306, III:124,

III:131–132
and model risk, II:729
quantification of, I:101
representation of, III:128
time behavior of, II:359

Uncertainty sets
effect of size of, III:143
in portfolio allocation, II:80
selection of, III:140–141
structured, III:143–144
in three dimensions, II:81f
use of, III:138, III:140

Uncertain volatility model, II:673–674
Underperformance, finding reasons

for, II:118
Underwater, on homeowner’s equity,

III:73
Unemployment rate

as an economic measure, II:398
application of TAR models to,

II:405–406
characteristics of series, II:430
forecasts from, II:433
performance of forecasting,

II:432–433, II:432t
and risk, II:292n

test of nonlinearity, II:431, II:431t
time plot of, II:406f, II:430f

Uniqueness, theorem of, III:490
Unit root series, II:385
Univariate linear regression model,

I:163–170
Univariate stationary series, II:504
U.S. Bankruptcy Code. See also

bankruptcy
Chapter 7, I:350
Chapter 11, I:342, I:350

Utility, I:56, II:469, II:471, II:719–720

Validation, out of sample, II:711
Valuation

arbitrage-free, I:216–217, I:220–222,
I:221t

and cash flows, I:223
defined, I:209
effect of business cycle on, I:303–304
fundamental principle of, I:209
with Monte Carlo simulation,

III:6–12
of natural gas/oil storage, I:560–561
of non-Treasury securities,

I:222–223
relative, I:225, II:34–40, II:44–45
risk-neutral, I:557, III:595–596,

III:601
total firm, II:21–23
uncertainty in, II:15
use of lattices for, I:240

Value
absolute vs. relative basis of,

I:259–260
analysis of relative, I:225
arbitrage-free, I:221
book vs. market of firms, II:559–560
determining present, II:600–601
formulas for analysis of, II:238–239
identification of relative, I:405
intrinsic, I:484–485
present, discounted, II:601f
relative, I:405, II:37–38
vs. price, I:455n

Value at risk (VaR). See also CVaR
(credit value at risk)

in backtesting, II:748
backtesting of, II:749f, III:325–327,

III:365–367
boxplot of, III:325f
and coherent risk measures, III:329
conditional, III:332, III:355–356,

III:382
deficiencies in, I:407, III:321,

III:331–332, III:347
defined, II:754n, III:319–322
density and distribution functions,

III:320f



790 Index

Value at risk (VaR) (Continued )
determining from simulation,

III:639f
distribution-free confidence

intervals for, III:292–293
estimation of, II:366, III:289–290,

III:373–376, III:644, III:644t
exceedances of, III:325–326
IDD in, III:290
interest rate covariance matrix in,

III:403
levels of confidence with,

III:290–291
liquidity-adjusted, III:374, III:376
in low market volatility, II:748
measurements by, II:354
methods of computation, III:323
modeling of, II:130–131, III:375–376
and model risk, II:695
normal against confidence level,

III:294f
portfolio problem, I:193
in practice, III:321–325
relative spreads between

predictions, II:750f, II:751f,
II:752f

as safety-first risk measure,
III:355

standard normal distribution of,
III:324t

use of, II:365
vs. deviation measures, III:320–321

Value of operations, process for
finding, II:30t

Values, lagged, II:130
Van der Korput sequences, III:650
Variables

antithetic, III:647–648
application of macro, II:193n
behavior of, III:152–153
categorical, II:333–334, II:350
classification, II:176
declaration of in VBL, III:457–458
dependence between, II:306–307
dependent categorical, II:348–350
dependent/independent in CAPM,

I:67
dichotomous, II:350
dummy, II:334
exogenous vs. endogenous, II:692
fat-tailed, III:280
independent and identically

distributed, II:125
independent categorical, II:333–348
interactions between, II:378
large numbers of, II:147
macroeconomic, II:54–55, II:177
in maximum likelihood

calculations, II:312–313

mixing of categorical and
quantitative, II:334–335

nonstationary, II:388–393
as observation or measurement,

II:306
random, I:159n
in regression analysis, II:330
separable, II:647
slope, III:553
split formation of, III:130f
spread, II:336
standardization of, II:205
stationary, II:385, II:386
stationary/nonstationary, II:384–386
stochastic, III:159–164
use of dummy, II:335, II:343–344

Variables, random, II:297
α-stable, III:242–244, III:244–245
Bernoulli, III:169
continuous, III:200–201, III:205–206
on countable spaces, III:160–161,

III:166
defined, III:162
discrete, III:165
infinitely divisible, III:253
in probability, III:159–164
sequences of, I:389
on uncountable spaces, III:161–162
use of, I:82

Variance gamma process, III:499,
III:504

Variance matrix, II:370–371
Variances

addressing inequality of, I:168
based on covariance matrix, II:161t,

II:163t, II:164f
conditional, I:180
conditional/unconditional, II:361
in dispersion parameters,

III:202–203
equal, I:164
as measure of risk, I:8
in probablity, III:167–169
reduction in, III:647–651
unequal, I:167–168, I:172

Variances/covariances, II:112–113,
II:302–303, III:395–396

Variance swaps, I:545–547, I:549,
I:552

Variational formulation, and finite
element space, II:670–672

Variation margins, I:478
Vasicek model

with change of time, III:523–524
for coupon-bond call options,

I:501–502
distribution of, I:493
in history, I:491
for short rates, III:545–546

use of, I:89, I:497
valuing zero-coupon bond calls

with, I:499–500
VBA (Visual Basic for Applications)

built-in numeric functions of, III:456
comments in, III:453
control flow statements, III:458–460
debugging in, III:461
debugging tools of, III:461, III:477
example programs, III:449–452,

III:461–466
in Excel, III:449, III:450f
FactorialFun1, III:455–456
functions, user-defined, III:463f
functions in, III:477
generating Brownian motion paths

in, III:463–465
If statements, III:459
For loops, III:458–459
methods (actions) in, III:452–453
modules, defined, III:455
as object-oriented language, III:452,

III:466
objects in, III:452
operators in, III:459–460
Option Explicit command, III:458
pricing European call options,

III:465–466
programing of input dialog boxes,

III:460–461
programming tips for, III:454–461
properties in, III:453
random numbers in, III:464–465
subroutines and user-defined

functions in, III:466–477
subroutines vs. user-defined

functions in, III:455–457
use of Option Explicit command,

III:458
user-defined functions, III:463f
user interaction with, III:460–461
variable declaration in, III:457–458
With/End structure in, III:453–454
writing code in, III:453–454

Vech notation, II:371–372
VEC model, II:372
Vector autoregressive (VAR) model,

II:393
Vectors, II:621–622, II:625–626, II:628
Vega, I:521
Vichara Technology, III:41–42, III:43t
Visual Basic for Applications (VBA).

See VBA
Volatilities

absolute vs. relative, III:404–405
actual, I:514
aim of models of, I:176
analysis of, II:270–272
and ARCH models, II:409
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assumptions about, III:7
calculation of, II:272, III:534t
calculation of daily, III:533–534
calibration of local, II:681–685
clustering of, II:359, II:716, III:402
confidence intervals for, III:399–400
constant, III:653
decisions for measuring, III:403–404
defined, III:533, III:653
with different mean reversions,

III:538f
of the diffusion, I:125
effect of local, III:609
effect on hedging, I:517–518
of energy commodities, I:556–557
estimation of, II:368–369
in EWMA estimates, III:410–411
exposure to, II:252f, II:252t
forecasts of, I:179–180, II:172,

II:367–368
in FTSE 100, III:412–413
historical, I:513, III:534, III:654
hypothetical modelers of, III:408
implied, I:513–514, II:282, II:662,

III:654
in interest rate structure models,

I:492
jump-diffusion, III:657
level-dependent, III:654–655,

III:656
local, II:681, II:682–683, III:655
as a measure, I:545, II:373
measurement of, I:393, III:403–406
minimization of, II:179
in models, II:302
models of, II:428
in option pricing, I:513–514
patterns in, I:395
in random walks, I:84
and risk, II:270
in risk-neutral measures, III:587
smile of, III:557
and the smoothing constant,

III:409–410
states of, I:180–181
stochastic, I:94, I:547, I:548,

III:655–658, III:656, III:658
stochastic models, II:681
time increments of, I:83
of time series, I:80
time-varying, II:733–734
types of, III:658
vs. annual standard deviation,

III:534
Volatility clustering, III:242, III:388
Volatility curves, III:534–535,

III:535t

Volatility measures, nonstochastic,
III:654–655

Volatility multiples, use of,
III:536

Volatility risk, I:509
Volatility skew, III:550, III:551f,

III:555–556, III:654
measuring, III:550

Volatility smile, II:681, III:555–557,
III:556f, III:654, III:656

Volatility swaps, I:545–547, I:552
for S&P Canada index (example),

I:550–552
valuing of, I:549

Volume-weighted average price
(VWAP), II:117, III:626–627

VPRs (voluntary prepayment rates)
calculation of, III:76
in cash flow calculators, III:34
defined, III:30
impacts of, III:38

W. T. Grant, cash flows of, II:576
Waldrop, Mitchell, II:699
Wal-Mart, II:569, II:570f
Walras, Leon, II:467, II:468–469,

II:474
Waterfalls, development of, III:8
Weak laws of large numbers (WLLN),

III:263
Wealth, I:460t, III:130
Weather, as chaotic system, II:653
Weibull density, III:107f
Weibull distributions, III:106–107,

III:112, III:229, III:262, III:265,
III:267, III:268

Weighting, efficient, I:41–42
Weights, II:115, II:185t, II:231–232,

II:724
Weirton Steel, cash flows of,

II:577f
What’s the hedge, I:300, I:303, I:306,

I:417. See also hedge test
White noise. See noise, white
Wiener processes, I:95, I:491, I:497,

III:534–535, III:579, III:581
Wilson, Kenneth, II:480
Wind farms, valuation of, I:563–564
Wold representation, II:506
Working capital, II:551

concept of, II:567

XML (eXtensible Markup Language),
development of, II:482

Yield and bond loss matrix, III:41t
Yield curve risk, III:307, III:316–317

Yield curves
horizon, III:585
initial consistency with, III:544
issuer par, I:238t, I:244t
nonparallel, III:309–310
parallel shifts in, III:308–309
par-coupon, III:585
reshaping duration, III:315–316
in scenario analysis, II:290
SEDUR/LEDUR, III:316, III:317
shifts in, III:586
slope of, III:315
in term structures, III:560
in valuation, I:235

Yields
calculation of, II:613–618
comparison across countries, I:226
dividend, II:4
on investments, II:617–618, II:619
loss-adjusted, III:36, III:40
and loss matrix analysis, III:40–41
projected, III:37f, III:38f
real, I:278–280, I:280f
rolling, I:258–259

Yield spreads
computation of, I:226
determining, I:373–374
for different rating grades, I:374t
in Merton model, I:305–306
over swap and treasury curves,

I:226–227

Zero-coupon bonds
assumptions about, I:261
calculations using CIR model, I:502t
calculations using Vasicek model,

I:502t
defaultable, I:317, I:335n
default-free, I:318
development of valuation model

for, III:582–583
equations for, III:554
future market price for, I:492–493
lattices for, I:266f
market for, I:264
and martingales, I:262
PDEs of, I:268–269n
pricing of, I:316
term structure model for, III:584
value of, III:572–573
valuing, I:213, I:499–501, I:499t

Zero coupon rates, III:546–547
Zero coupon securities, I:218
Zero one distribution, III:169–170
Zero volatility spread, III:11–12
Zipf’s law, III:263, III:269
Z-scores, II:191, II:240n
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Preface

It is often said that investment management
is an art, not a science. However, since the
early 1990s the market has witnessed a pro-
gressive shift toward a more industrial view of
the investment management process. There are
several reasons for this change. First, with
globalization the universe of investable assets
has grown many times over. Asset managers
might have to choose from among several
thousand possible investments from around
the globe. Second, institutional investors, of-
ten together with their consultants, have en-
couraged asset management firms to adopt
an increasingly structured process with docu-
mented steps and measurable results. Pressure
from regulators and the media is another fac-
tor. Finally, the sheer size of the markets makes
it imperative to adopt safe and repeatable
methodologies.

In its modern sense, financial modeling is
the design (or engineering) of financial instru-
ments and portfolios of financial instruments
that result in predetermined cash flows con-
tingent upon different events. Broadly speak-
ing, financial models are employed to manage
investment portfolios and risk. The objective
is the transfer of risk from one entity to an-
other via appropriate financial arrangements.
Though the aggregate risk is a quantity that can-
not be altered, risk can be transferred if there is
a willing counterparty.

Financial modeling came to the forefront of
finance in the 1980s, with the broad diffusion

of derivative instruments. However, the con-
cept and practice of financial modeling are quite
old. The notion of the diversification of risk
(central to modern risk management) and the
quantification of insurance risk (a requisite for
pricing insurance policies) were already under-
stood, at least in practical terms, in the 14th cen-
tury. The rich epistolary of Francesco Datini,
a 14th-century merchant, banker, and insurer
from Prato (Tuscany, Italy), contains detailed
instructions to his agents on how to diversify
risk and insure cargo.

What is specific to modern financial model-
ing is the quantitative management of risk. Both
the pricing of contracts and the optimization of
investments require some basic capabilities of
statistical modeling of financial contingencies.
It is the size, diversity, and efficiency of mod-
ern competitive markets that makes the use of
financial modeling imperative.

This three-volume encyclopedia offers not
only coverage of the fundamentals and ad-
vances in financial modeling but provides the
mathematical and statistical techniques needed
to develop and test financial models, as well as
the practical issues associated with implemen-
tation. The encyclopedia offers the following
unique features:

� The entries for the encyclopedia were writ-
ten by experts from around the world. This
diverse collection of expertise has created the
most definitive coverage of established and

xvii
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cutting-edge financial models, applications,
and tools in this ever-evolving field.

� The series emphasizes both technical and
managerial issues. This approach provides
researchers, educators, students, and practi-
tioners with a balanced understanding of the
topics and the necessary background to deal
with issues related to financial modeling.

� Each entry follows a format that includes the
author, entry abstract, introduction, body, list-
ing of key points, notes, and references. This
enables readers to pick and choose among
various sections of an entry, and creates con-
sistency throughout the entire encyclopedia.

� The numerous illustrations and tables
throughout the work highlight complex top-
ics and assist further understanding.

� Each volume includes a complete table of con-
tents and index for easy access to various
parts of the encyclopedia.

TOPIC CATEGORIES
As is the practice in the creation of an ency-
clopedia, the topic categories are presented al-
phabetically. The topic categories and a brief
description of each topic follow.

VOLUME I
Asset Allocation
A major activity in the investment management
process is establishing policy guidelines to sat-
isfy the investment objectives. Setting policy be-
gins with the asset allocation decision. That is,
a decision must be made as to how the funds
to be invested should be distributed among the
major asset classes (e.g., equities, fixed income,
and alternative asset classes). The term “asset
allocation” includes (1) policy asset allocation,
(2) dynamic asset allocation, and (3) tactical as-
set allocation. Policy asset allocation decisions
can loosely be characterized as long-term as-
set allocation decisions, in which the investor
seeks to assess an appropriate long-term “nor-
mal” asset mix that represents an ideal blend
of controlled risk and enhanced return. In dy-
namic asset allocation the asset mix (i.e., the

allocation among the asset classes) is mechanis-
tically shifted in response to changing market
conditions. Once the policy asset allocation has
been established, the investor can turn his or her
attention to the possibility of active departures
from the normal asset mix established by policy.
If a decision to deviate from this mix is based
upon rigorous objective measures of value, it
is often called tactical asset allocation. The fun-
damental model used in establishing the policy
asset allocation is the mean-variance portfolio
model formulated by Harry Markowitz in 1952,
popularly referred to as the theory of portfolio
selection and modern portfolio theory.

Asset Pricing Models
Asset pricing models seek to formalize the rela-
tionship that should exist between asset returns
and risk if investors behave in a hypothesized
manner. At its most basic level, asset pricing
is mainly about transforming asset payoffs into
prices. The two most well-known asset pricing
models are the arbitrage pricing theory and the
capital asset pricing model. The fundamental
theorem of asset pricing asserts the equivalence
of three key issues in finance: (1) absence of
arbitrage; (2) existence of a positive linear pric-
ing rule; and (3) existence of an investor who
prefers more to less and who has maximized his
or her utility. There are two types of arbitrage
opportunities. The first is paying nothing to-
day and obtaining something in the future, and
the second is obtaining something today and
with no future obligations. Although the prin-
ciple of absence of arbitrage is fundamental for
understanding asset valuation in a competitive
market, there are well-known limits to arbitrage
resulting from restrictions imposed on rational
traders, and, as a result, pricing inefficiencies
may exist for a period of time.

Bayesian Analysis and Financial
Modeling Applications
Financial models describe in mathematical
terms the relationships between financial
random variables through time and/or across
assets. The fundamental assumption is that the
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model relationship is valid independent of the
time period or the asset class under consider-
ation. Financial data contain both meaningful
information and random noise. An adequate
financial model not only extracts optimally the
relevant information from the historical data
but also performs well when tested with new
data. The uncertainty brought about by the
presence of data noise makes imperative the use
of statistical analysis as part of the process of fi-
nancial model building, model evaluation, and
model testing. Statistical analysis is employed
from the vantage point of either of the two main
statistical philosophical traditions—frequentist
and Bayesian. An important difference be-
tween the two lies with the interpretation of the
concept of probability. As the name suggests,
advocates of the frequentist approach interpret
the probability of an event as the limit of its
long-run relative frequency (i.e., the frequency
with which it occurs as the amount of data in-
creases without bound). Since the time financial
models became a mainstream tool to aid in un-
derstanding financial markets and formulating
investment strategies, the framework applied
in finance has been the frequentist approach.
However, strict adherence to this interpretation
is not always possible in practice. When study-
ing rare events, for instance, large samples of
data may not be available, and in such cases
proponents of frequentist statistics resort to
theoretical results. The Bayesian view of the
world is based on the subjectivist interpretation
of probability: Probability is subjective, a de-
gree of belief that is updated as information or
data are acquired. Only in the last two decades
has Bayesian statistics started to gain greater
acceptance in financial modeling, despite its
introduction about 250 years ago. It has been
the advancements of computing power and the
development of new computational methods
that have fostered the growing use of Bayesian
statistics in financial modeling.

Bond Valuation
The value of any financial asset is the present
value of its expected future cash flows. To value

a bond (also referred to as a fixed-income secu-
rity), one must be able to estimate the bond’s
remaining cash flows and identify the appro-
priate discount rate(s) at which to discount the
cash flows. The traditional approach to bond
valuation is to discount every cash flow with
the same discount rate. Simply put, the rele-
vant term structure of interest rate used in val-
uation is assumed to be flat. This approach,
however, permits opportunities for arbitrage.
Alternatively, the arbitrage-free valuation ap-
proach starts with the premise that a bond
should be viewed as a portfolio or package
of zero-coupon bonds. Moreover, each of the
bond’s cash flows is valued using a unique dis-
count rate that depends on the term structure
of interest rates and when in time the cash flow
is. The relevant set of discount rates (that is,
spot rates) is derived from an appropriate term
structure of interest rates and when used to
value risky bonds augmented with a suitable
risk spread or premium. Rather than model-
ing to calculate the fair value of its price, the
market price can be taken as given so as to
compute a yield measure or a spread measure.
Popular yield measures are the yield to matu-
rity, yield to call, yield to put, and cash flow
yield. Nominal spread, static (or zero-volatility)
spread, and option-adjusted spread are popu-
lar relative value measures quoted in the bond
market. Complications in bond valuation arise
when a bond has one or more embedded op-
tions such as call, put, or conversion features.
For bonds with embedded options, the finan-
cial modeling draws from options theory, more
specifically, the use of the lattice model to value
a bond with embedded options.

Credit Risk Modeling
Credit risk is a broad term used to refer to three
types of risk: default risk, credit spread risk, and
downgrade risk. Default risk is the risk that the
counterparty to a transaction will fail to satisfy
the terms of the obligation with respect to the
timely payment of interest and repayment of
the amount borrowed. The counterparty could
be the issuer of a debt obligation or an entity on
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the other side of a private transaction such as a
derivative trade or a collateralized loan agree-
ment (i.e., a repurchase agreement or a secu-
rities lending agreement). The default risk of
a counterparty is often initially gauged by the
credit rating assigned by one of the three rat-
ing companies—Standard & Poor’s, Moody’s
Investors Service, and Fitch Ratings. Although
default risk is the one that most market partici-
pants think of when reference is made to credit
risk, even in the absence of default, investors
are concerned about the decline in the market
value of their portfolio bond holdings due to
a change in credit spread or the price perfor-
mance of their holdings relative to a bond in-
dex. This risk is due to an adverse change in
credit spreads, referred to as credit spread risk,
or when it is attributed solely to the downgrade
of the credit rating of an entity, it is called down-
grade risk. Financial modeling of credit risk is
used (1) to measure, monitor, and control a port-
folio’s credit risk, and (2) to price credit risky
debt instruments. There are two general cate-
gories of credit risk models: structural models
and reduced-form models. There is consider-
able debate as to which type of model is the
best to employ.

Derivatives Valuation
A derivative instrument is a contract whose
value depends on some underlying asset. The
term “derivative” is used to describe this prod-
uct because its value is derived from the value
of the underlying asset. The underlying asset,
simply referred to as the “underlying,” can be
either a commodity, a financial instrument, or
some reference entity such as an interest rate or
stock index, leading to the classification of com-
modity derivatives and financial derivatives.
Although there are close conceptual relations
between derivative instruments and cash mar-
ket instruments such as debt and equity, the two
classes of instruments are used differently: Debt
and equity are used primarily for raising funds
from investors, while derivatives are primarily

used for dividing up and trading risks. More-
over, debt and equity are direct claims against a
firm’s assets, while derivative instruments are
usually claims on a third party. A derivative’s
value depends on the value of the underly-
ing, but the derivative instrument itself repre-
sents a claim on the “counterparty” to the trade.
Derivatives instruments are classified in terms
of their payoff characteristics: linear and nonlin-
ear payoffs. The former, also referred to as sym-
metric payoff derivatives, includes forward,
futures, and swap contracts while the latter in-
clude options. Basically, a linear payoff deriva-
tive is a risk-sharing arrangement between the
counterparties since both are sharing the risk re-
garding the price of the underlying. In contrast,
nonlinear payoff derivative instruments (also
referred to as asymmetric payoff derivatives)
are insurance arrangements because one party
to the trade is willing to insure the counter-
party of a minimum or maximum (depending
on the contract) price. The amount received by
the insuring party is referred to as the contract
price or premium. Derivative instruments are
used for controlling risk exposure with respect
to the underlying. Hedging is a special case of
risk control where a party seeks to eliminate
the risk exposure. Derivative valuation or pric-
ing is developed based on no-arbitrage price
relations, relying on the assumption that two
perfect substitutes must have the same price.

VOLUME II
Difference Equations and Differential
Equations
The tools of linear difference equations and
differential equations have found many ap-
plications in finance. A difference equation is
an equation that involves differences between
successive values of a function of a discrete
variable. A function of such a variable is
one that provides a rule for assigning values
in sequences to it. The theory of linear dif-
ference equations covers three areas: solving
difference equations, describing the behavior
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of difference equations, and identifying the
equilibrium (or critical value) and stability
of difference equations. Linear difference
equations are important in the context of dy-
namic econometric models. Stochastic models
in finance are expressed as linear difference
equations with random disturbances added.
Understanding the behavior of solutions of
linear difference equations helps develop
intuition for the behavior of these models. In
nontechnical terms, differential equations are
equations that express a relationship between
a function and one or more derivatives (or
differentials) of that function. The relationship
between difference equations and differential
equations is that the latter are invaluable for
modeling situations in finance where there is a
continually changing value. The problem is that
not all changes in value occur continuously. If
the change in value occurs incrementally rather
than continuously, then differential equations
have their limitations. Instead, a financial
modeler can use difference equations, which
are recursively defined sequences. It would
be difficult to overemphasize the importance
of differential equations in financial modeling
where they are used to express laws that govern
the evolution of price probability distributions,
the solution of economic variational problems
(such as intertemporal optimization), and
conditions for continuous hedging (such as in
the Black-Scholes option pricing model). The
two broad types of differential equations are
ordinary differential equations and partial dif-
ferential equations. The former are equations or
systems of equations involving only one inde-
pendent variable. Another way of saying this
is that ordinary differential equations involve
only total derivatives. Partial differential equa-
tions are differential equations or systems of
equations involving partial derivatives. When
one or more of the variables is a stochastic pro-
cess, we have the case of stochastic differential
equations and the solution is also a stochastic
process. An assumption must be made about
what is driving noise in a stochastic differential

equation. In most applications, it is assumed
that the noise term follows a Gaussian random
variable, although other types of random
variables can be assumed.

Equity Models and Valuation
Traditional fundamental equity analysis in-
volves the analysis of a company’s opera-
tions for the purpose of assessing its economic
prospects. The analysis begins with the finan-
cial statements of the company in order to in-
vestigate the earnings, cash flow, profitability,
and debt burden. The fundamental analyst will
look at the major product lines, the economic
outlook for the products (including existing
and potential competitors), and the industries
in which the company operates. The result of
this analysis will be the growth prospects of
earnings. Based on the growth prospects
of earnings, a fundamental analyst attempts
to determine the fair value of the stock using
one or more equity valuation models. The two
most commonly used approaches for valuing a
firm’s equity are based on discounted cash flow
and relative valuation models. The principal
idea underlying discounted cash flow models
is that what an investor pays for a share of stock
should reflect what is expected to be received
from it—return on the investor’s investment.
What an investor receives are cash dividends
in the future. Therefore, the value of a share of
stock should be equal to the present value of
all the future cash flows an investor expects to
receive from that share. To value stock, there-
fore, an investor must project future cash flows,
which, in turn, means projecting future divi-
dends. Popular discounted cash flow models in-
clude the basic dividend discount model, which
assumes a constant dividend growth, and the
multiple-phase models, which include the two-
stage dividend growth model and the stochas-
tic dividend discount models. Relative valua-
tion methods use multiples or ratios—such as
price/earnings, price/book, or price/free cash
flow—to determine whether a stock is trad-
ing at higher or lower multiples than its peers.
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There are two critical assumptions in using rela-
tive valuation: (1) the universe of firms selected
to be included in the peer group are in fact com-
parable, and (2) the average multiple across the
universe of firms can be treated as a reason-
able approximation of “fair value” for those
firms. This second assumption may be prob-
lematic during periods of market panic or eu-
phoria. Managers of quantitative equity firms
employ techniques that allow them to identify
attractive stock candidates, focusing not on a
single stock as is done with traditional funda-
mental analysis but rather on stock character-
istics in order to explain why one stock out-
performs another stock. They do so by statis-
tically identifying a group of characteristics to
create a quantitative selection model. In con-
trast to the traditional fundamental stock se-
lection, quantitative equity managers create a
repeatable process that utilizes the stock selec-
tion model to identify attractive stocks. Equity
portfolio managers have used various statistical
models for forecasting returns and risk. These
models, referred to as predictive return models,
make conditional forecasts of expected returns
using the current information set. Predictive re-
turn models include regressive models, linear
autoregressive models, dynamic factor models,
and hidden-variable models.

Factor Models and Portfolio
Construction
Quantitative asset managers typically employ
multifactor risk models for the purpose of
constructing and rebalancing portfolios and
analyzing portfolio performance. A multifactor
risk model, or simply factor model, attempts to
estimate and characterize the risk of a portfolio,
either relative to a benchmark such as a market
index or in absolute value. The model allows
the decomposition of risk factors into a sys-
tematic and an idiosyncratic component. The
portfolio’s risk exposure to broad risk factors
is captured by the systematic risk. For equity
portfolios these are typically fundamental
factors (e.g., market capitalization and value

vs. growth), technical (e.g., momentum), and
industry/sector/country. For fixed-income
portfolios, systematic risk captures a portfolio’s
exposure to broad risk factors such as the
term structure of interest rates, credit spreads,
optionality (call and prepayment), credit, and
sectors. The portfolio’s systematic risk depends
not only on its exposure to these risk factors but
also the volatility of the risk factors and how
they correlate with each other. In contrast to
systematic risk, idiosyncratic risk captures the
uncertainty associated with news affecting the
holdings of individual issuers in the portfolio.
In equity portfolios, idiosyncratic risk can be
easily diversified by reducing the importance
of individual issuers in the portfolio. Because
of the larger number of issuers in bond indexes,
however, this is a difficult task. There are dif-
ferent types of factor models depending on the
factors. Factors can be exogenous variables or
abstract variables formed by portfolios. Exoge-
nous factors (or known factors) can be identified
from traditional fundamental analysis or from
economic theory that suggests macroeconomic
factors. Abstract factors, also called unidenti-
fied or latent factors, can be determined with
the statistical tool of factor analysis or principal
component analysis. The simplest type of
factor models is where the factors are assumed
to be known or observable, so that time-series
data are those factors that can be used to
estimate the model. The four most commonly
used approaches for the evaluation of return
premiums and risk characteristics to factors are
portfolio sorts, factor models, factor portfolios,
and information coefficients. Despite its use by
quantitative asset managers, the basic building
blocks of factor models used by model builders
and by traditional fundamental analysts are
the same: They both seek to identify the drivers
of returns for the asset class being analyzed.

Financial Econometrics
Econometrics is the branch of economics that
draws heavily on statistics for testing and
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analyzing economic relationships. The eco-
nomic equivalent of the laws of physics,
econometrics represents the quantitative, math-
ematical laws of economics. Financial econo-
metrics is the econometrics of financial markets.
It is a quest for models that describe financial
time series such as prices, returns, interest rates,
financial ratios, defaults, and so on. Although
there are similarities between financial econo-
metric models and models of the physical sci-
ences, there are two important differences. First,
the physical sciences aim at finding immutable
laws of nature; econometric models model the
economy or financial markets—artifacts subject
to change. Because the economy and financial
markets are artifacts subject to change, econo-
metric models are not unique representations
valid throughout time; they must adapt to the
changing environment. Second, while basic
physical laws are expressed as differential
equations, financial econometrics uses both
continuous-time and discrete-time models.

Financial Modeling Principles
The origins of financial modeling can be traced
back to the development of mathematical equi-
librium at the end of the nineteenth century, fol-
lowed in the beginning of the twentieth century
with the introduction of sophisticated mathe-
matical tools for dealing with the uncertainty
of prices and returns. In the 1950s and 1960s,
financial modelers had tools for dealing with
probabilistic models for describing markets, the
principles of contingent claims analysis, an op-
timization framework for portfolio selection
based on mean and variance of asset returns,
and an equilibrium model for pricing capital
assets. The 1970s ushered in models for pricing
contingent claims and a new model for pricing
capital assets based on arbitrage pricing. Con-
sequently, by the end of the 1970s, the frame-
works for financial modeling were well known.
It was the advancement of computing power
and refinements of the theories to take into
account real-world market imperfections and

conventions starting in the 1980s that facilitated
implementation and broader acceptance of
mathematical modeling of financial decisions.
The diffusion of low-cost high-performance
computers has allowed the broad use of numer-
ical methods, the landscape of financial mod-
eling. The importance of finding closed-form
solutions and the consequent search for simple
models has been dramatically reduced. Com-
putationally intensive methods such as Monte
Carlo simulations and the numerical solution
of differential equations are now widely used.
As a consequence, it has become feasible to
represent prices and returns with relatively
complex models. Nonnormal probability dis-
tributions have become commonplace in many
sectors of financial modeling. It is fair to say
that the key limitation of financial modeling is
now the size of available data samples or train-
ing sets, not the computations; it is the data
that limit the complexity of estimates. Math-
ematical modeling has also undergone major
changes. Techniques such as equivalent martin-
gale methods are being used in derivative pric-
ing, and cointegration, the theory of fat-tailed
processes, and state-space modeling (including
ARCH/GARCH and stochastic volatility mod-
els) are being used in financial modeling.

Financial Statement Analysis
Much of the financial data that are used in
constructing financial models for forecasting
and valuation purposes draw from the finan-
cial statements that companies are required to
provide to investors. The four basic financial
statements are the balance sheet, the income
statement, the statement of cash flows, and
the statement of shareholders’ equity. It is im-
portant to understand these data so that the
information conveyed by them is interpreted
properly in financial modeling. The financial
statements are created using several assump-
tions that affect how to use and interpret the
financial data. The analysis of financial state-
ments involves the selection, evaluation, and
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interpretation of financial data and other per-
tinent information to assist in evaluating the
operating performance and financial condition
of a company. The operating performance of a
company is a measure of how well a company
has used its resources—its assets, both tangible
and intangible—to produce a return on its in-
vestment. The financial condition of a company
is a measure of its ability to satisfy its obliga-
tions, such as the payment of interest on its
debt in a timely manner. There are many tools
available in the analysis of financial informa-
tion. These tools include financial ratio analysis
and cash flow analysis. Cash flows are essen-
tial ingredients in valuation. Therefore, under-
standing past and current cash flows may help
in forecasting future cash flows and, hence, de-
termine the value of the company. Moreover,
understanding cash flow allows the assessment
of the ability of a firm to maintain current divi-
dends and its current capital expenditure policy
without relying on external financing. Financial
modelers must understand how to use these fi-
nancial ratios and cash flow information in the
most effective manner in building models.

Finite Mathematics and Basic Functions
for Financial Modeling
The collection of mathematical tools that does
not include calculus is often referred to as
“finite mathematics.” This includes matrix
algebra, probability theory, and statistical anal-
ysis. Ordinary algebra deals with operations
such as addition and multiplication performed
on individual numbers. In financial modeling,
it is useful to consider operations performed on
ordered arrays of numbers. Ordered arrays of
numbers are called vectors and matrices while
individual numbers are called scalars. Prob-
ability theory is the mathematical approach
to formalize the uncertainty of events. Even
though a decision maker may not know which
one of the set of possible events may finally
occur, with probability theory a decision maker
has the means of providing each event with

a certain probability. Furthermore, it provides
the decision maker with the axioms to compute
the probability of a composed event in a
unique way. The rather formal environment
of probability theory translates in a reasonable
manner to the problems related to risk and
uncertainty in finance such as, for example, the
future price of a financial asset. Today, investors
may be aware of the price of a certain asset, but
they cannot say for sure what value it might
have tomorrow. To make a prudent decision,
investors need to assess the possible scenarios
for tomorrow’s price and assign to each sce-
nario a probability of occurrence. Only then can
investors reasonably determine whether the
financial asset satisfies an investment objective
included within a portfolio. Probability models
are theoretical models of the occurrence of
uncertain events. In contrast, statistics is about
empirical data and can be broadly defined as
a set of methods used to make inferences from
a known sample to a larger population that is
in general unknown. In finance, a particular
important example is making inferences from
the past (the known sample) to the future
(the unknown population). There are impor-
tant mathematical functions with which the
financial modeler should be acquainted. These
include the continuous function, the indicator
function, the derivative of a function, the
monotonic function, and the integral, as well
as special functions such as the characteristic
function of random variables and the factorial,
the gamma, beta, and Bessel functions.

Liquidity and Trading Costs
In broad terms, liquidity refers to the ability
to execute a trade or liquidate a position with
little or no cost or inconvenience. Liquidity de-
pends on the market where a financial instru-
ment is traded, the type of position traded, and
sometimes the size and trading strategy of an
individual trade. Liquidity risks are those as-
sociated with the prospect of imperfect mar-
ket liquidity and can relate to risk of loss or



PREFACE xxv

risk to cash flows. There are two main aspects
to liquidity risk measurement: the measure-
ment of liquidity-adjusted measures of mar-
ket risk and the measurement of liquidity risks
per se. Market practitioners often assume that
markets are liquid—that is, that they can liq-
uidate or unwind positions at going market
prices—usually taken to be the mean of bid
and ask prices—without too much difficulty or
cost. This assumption is very convenient and
provides a justification for the practice of mark-
ing positions to market prices. However, it is
often empirically questionable, and the failure
to allow for liquidity can undermine the mea-
surement of market risk. Because liquidity risk
is a major risk factor in its own right, port-
folio managers and traders will need to mea-
sure this risk in order to formulate effective
portfolio and trading strategies. A consider-
able amount of work has been done in the eq-
uity market in estimating liquidity risk. Because
transaction costs are incurred when buying or
selling stocks, poorly executed trades can ad-
versely impact portfolio returns and therefore
relative performance. Transaction costs are clas-
sified as explicit costs such as brokerage and
taxes, and implicit costs, which include market
impact cost, price movement risk, and opportu-
nity cost. Broadly speaking, market impact cost
is the price that a trader has to pay for obtain-
ing liquidity in the market and is a key com-
ponent of trading costs that must be modeled
so that effective trading programs for execut-
ing trades can be developed. Typical forecast-
ing models for market impact costs are based
on a statistical factor approach where the in-
dependent variables are trade-based factors or
asset-based factors.

VOLUME III
Model Risk and Selection
Model risk is the risk of error in pricing or
risk-forecasting models. In practice, model risk
arises because (1) any model involves simpli-

fication and calibration, and both of these re-
quire subjective judgments that are prone to er-
ror, and/or (2) a model is used inappropriately.
Although model risk cannot be avoided, there
are many ways in which financial modelers can
manage this risk. These include (1) recogniz-
ing model risk, (2) identifying, evaluating, and
checking the model’s key assumption, (3) se-
lecting the simplest reasonable model, (4) resist-
ing the temptation to ignore small discrepancies
in results, (5) testing the model against known
problems, (6) plotting results and employing
nonparametric statistics, (7) back-testing and
stress-testing the model, (8) estimating model
risk quantitatively, and (9) reevaluating mod-
els periodically. In financial modeling, model
selection requires a blend of theory, creativity,
and machine learning. The machine-learning
approach starts with a set of empirical data that
the financial modeler wants to explain. Data are
explained by a family of models that include
an unbounded number of parameters and are
able to fit data with arbitrary precision. There
is a trade-off between model complexity and
the size of the data sample. To implement this
trade-off, ensuring that models have forecast-
ing power, the fitting of sample data is con-
strained to avoid fitting noise. Constraints are
embodied in criteria such as the Akaike infor-
mation criterion or the Bayesian information
criterion. Economic and financial data are gen-
erally scarce given the complexity of their pat-
terns. This scarcity introduces uncertainty as
regards statistical estimates obtained by the fi-
nancial modeler. It means that the data might
be compatible with many different models with
the same level of statistical confidence. Methods
of probabilistic decision theory can be used to
deal with model risk due to uncertainty regard-
ing the model’s parameters. Probabilistic deci-
sion making starts from the Bayesian inference
process and involves computer simulations in
all realistic situations. Since a risk model is typi-
cally a combination of a probability distribution
model and a risk measure, a critical assump-
tion is the probability distribution assumed for



xxvi Preface

the random variable of interest. Too often, the
Gaussian distribution is the model of choice.
Empirical evidence supports the use of proba-
bility distributions that exhibit fat tails such as
the Student’s t distribution and its asymmetric
version and the Pareto stable class of distribu-
tions and their tempered extensions. Extreme
value theory offers another approach for risk
modeling.

Mortgage-Backed Securities Analysis
and Valuation
Mortgage-backed securities are fixed-income
securities backed by a pool of mortgage loans.
Residential mortgage-backed securities (RMBS)
are backed by a pool of residential mortgage
loans (one-to-four family dwellings). The RMBS
market includes agency RMBS and nonagency
RMBS. The former are securities issued by
the Government National Mortgage Associa-
tion (Ginnie Mae), Fannie Mae, and Freddie
Mac. Agency RMBS include passthrough secu-
rities, collateralized mortgage obligations, and
stripped mortgage-backed securities (interest-
only and principal-only securities). The valua-
tion of RMBS is complicated due to prepayment
risk, a form of call risk. In contrast, nonagency
RMBS are issued by private entities, have no
implicit or explicit government guarantee, and
therefore require one or more forms of credit
enhancement in order to be assigned a credit
rating. The analysis of nonagency RMBS must
take into account both prepayment risk and
credit risk. The most commonly used method
for valuing RMBS is the Monte Carlo method,
although other methods have garnered favor,
in particular the decomposition method. The
analysis of RMBS requires an understanding of
the factors that impact prepayments.

Operational Risk
Operational risk has been regarded as a mere
part of a financial institution’s “other” risks.
However, failures of major financial entities

have made regulators and investors aware of
the importance of this risk. In general terms,
operational risk is the risk of loss resulting from
inadequate or failed internal processes, people,
or systems or from external events. This risk
encompasses legal risks, which includes, but is
not limited to, exposure to fines, penalties, or
punitive damages resulting from supervisory
actions, as well as private settlements. Opera-
tional risk can be classified according to several
principles: nature of the loss (internally inflicted
or externally inflicted), direct losses or indirect
losses, degree of expectancy (expected or unex-
pected), risk type, event type or loss type, and
by the magnitude (or severity) of loss and the
frequency of loss. Operational risk can be the
cause of reputational risk, a risk that can occur
when the market reaction to an operational loss
event results in reduction in the market value
of a financial institution that is greater than the
amount of the initial loss. The two principal
approaches in modeling operational loss dis-
tributions are the nonparametric approach and
the parametric approach. It is important to em-
ploy a model that captures tail events, and for
this reason in operational risk modeling, dis-
tributions that are characterized as light-tailed
distributions should be used with caution. The
models that have been proposed for assessing
operational risk can be broadly classified into
top-down models and bottom-up models. Top-
down models quantify operational risk without
attempting to identify the events or causes of
losses. Bottom-up models quantify operational
risk on a micro level, being based on identified
internal events. The obstacle hindering the im-
plementation of these models is the scarcity of
available historical operational loss data.

Optimization Tools
Optimization is an area in applied mathematics
that, most generally, deals with efficient algo-
rithms for finding an optimal solution among
a set of solutions that satisfy given constraints.
Mathematical programming, a management
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science tool that uses mathematical opti-
mization models to assist in decision making,
includes linear programming, integer program-
ming, mixed-integer programming, nonlinear
programming, stochastic programming, and
goal programming. Unlike other mathematical
tools that are available to decision makers such
as statistical models (which tell the decision
maker what occurred in the past), forecasting
models (which tell the decision maker what
might happen in the future), and simulation
models (which tell the decision maker what
will happen under different conditions),
mathematical programming models allow the
decision maker to identify the “best” solution.
Markowitz’s mean-variance model for port-
folio selection is an example of an application
of one type of mathematical programming
(quadratic programming). Traditional opti-
mization modeling assumes that the inputs
to the algorithms are certain, but there are
also branches of optimization such as robust
optimization that study the optimal decision
under uncertainty about the parameters of the
problem. Stochastic programming deals with
both the uncertainty about the parameters and
a multiperiod decision-making framework.

Probability Distributions
In financial models where the outcome of
interest is a random variable, an assumption
must be made about the random variable’s
probability distribution. There are two types
of probability distributions: discrete and
continuous. Discrete probability distributions
are needed whenever the random variable is
to describe a quantity that can assume values
from a countable set, either finite or infinite.
A discrete probability distribution (or law) is
quite intuitive in that it assigns certain values,
positive probabilities, adding up to one, while
any other value automatically has zero proba-
bility. Continuous probability distributions are
needed when the random variable of interest
can assume any value inside of one or more

intervals of real numbers such as, for example,
any number greater than zero. Asset returns,
for example, whether measured monthly,
weekly, daily, or at an even higher frequency
are commonly modeled as continuous random
variables. In contrast to discrete probability
distributions that assign positive probability to
certain discrete values, continuous probability
distributions assign zero probability to any sin-
gle real number. Instead, only entire intervals of
real numbers can have positive probability such
as, for example, the event that some asset return
is not negative. For each continuous probabil-
ity distribution, this necessitates the so-called
probability density, a function that determines
how the entire probability mass of one is dis-
tributed. The density often serves as the proxy
for the respective probability distribution. To
model the behavior of certain financial assets in
a stochastic environment, a financial modeler
can usually resort to a variety of theoretical
distributions. Most commonly, probability dis-
tributions are selected that are analytically well
known. For example, the normal distribution (a
continuous distribution)—also called the Gaus-
sian distribution—is often the distribution of
choice when asset returns are modeled. Or the
exponential distribution is applied to charac-
terize the randomness of the time between two
successive defaults of firms in a bond portfolio.
Many other distributions are related to them or
built on them in a well-known manner. These
distributions often display pleasant features
such as stability under summation—meaning
that the return of a portfolio of assets whose
returns follow a certain distribution again
follows the same distribution. However, one
has to be careful using these distributions since
their advantage of mathematical tractability
is often outweighed by the fact that the
stochastic behavior of the true asset returns
is not well captured by these distributions.
For example, although the normal distribution
generally renders modeling easy because all
moments of the distribution exist, it fails to
reflect stylized facts commonly encountered in
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asset returns—namely, the possibility of very
extreme movements and skewness. To remedy
this shortcoming, probability distributions
accounting for such extreme price changes
have become increasingly popular. Some of
these distributions concentrate exclusively on
the extreme values while others permit any real
number, but in a way capable of reflecting mar-
ket behavior. Consequently, a financial modeler
has available a great selection of probability
distributions to realistically reproduce asset
price changes. Their common shortcoming is
generally that they are mathematically difficult
to handle.

Risk Measures
The standard assumption in financial models is
that the distribution for the return on financial
assets follows a normal (or Gaussian) distri-
bution and therefore the standard deviation
(or variance) is an appropriate measure of risk
in the portfolio selection process. This is the
risk measure that is used in the well-known
Markowitz portfolio selection model (that is,
mean-variance model), which is the foundation
for modern portfolio theory. Mounting evi-
dence since the early 1960s strongly suggests
that return distributions do not follow a normal
distribution, but instead exhibit heavy tails
and, possibly, skewness. The “tails” of the dis-
tribution are where the extreme values occur,
and these extreme values are more likely than
would be predicted by the normal distribution.
This means that between periods where the
market exhibits relatively modest changes in
prices and returns, there will be periods where
there are changes that are much higher (that
is, crashes and booms) than predicted by the
normal distribution. This is of major concern to
financial modelers in seeking to generate prob-
ability estimates for financial risk assessment.
To more effectively implement portfolio se-
lection, researchers have proposed alternative
risk measures. These risk measures fall into

two disjointed categories: dispersion measures
and safety-first measures. Dispersion measures
include mean standard deviation, mean abso-
lute deviation, mean absolute moment, index
of dissimilarity, mean entropy, and mean colog.
Safety-first risk measures include classical
safety first, value-at-risk, average value-at-risk,
expected tail loss, MiniMax, lower partial
moment, downside risk, probability-weighted
function of deviations below a specified target
return, and power conditional value-at-risk.
Despite these alternative risk measures, the
most popular risk measure used in financial
modeling is volatility as measured by the
standard deviation. There are different types
of volatility: historical, implied volatility,
level-dependent volatility, local volatility,
and stochastic volatility (e.g., jump-diffusion
volatility). There are risk measures commonly
used for bond portfolio management. These
measures include duration, convexity, key rate
duration, and spread duration.

Software for Financial Modeling
The development of financial models requires
the modeler to be familiar with spreadsheets
such as Microsoft Excel and/or a platform to
implement concepts and algorithms such as
the Palisade Decision Tools Suite and other
Excel-based software (mostly @RISK1, Solver2,
VBA3), and MATLAB. Financial modelers can
choose one or the other, depending on their
level of familiarity and comfort with spread-
sheet programs and their add-ins versus pro-
gramming environments such as MATLAB.
Some tasks and implementations are easier in
one environment than in the other. MATLAB
is a modeling environment that allows for in-
put and output processing, statistical analysis,
simulation, and other types of model build-
ing for the purpose of analysis of a situa-
tion. MATLAB uses a number-array-oriented
programming language, that is, a program-
ming language in which vectors and matrices
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are the basic data structures. Reliable built-in
functions, a wide range of specialized tool-
boxes, easy interface with widespread software
like Microsoft Excel, and beautiful graphing ca-
pabilities for data visualization make imple-
mentation with MATLAB efficient and useful
for the financial modeler. Visual Basic for Appli-
cations (VBA) is a programming language en-
vironment that allows Microsoft Excel users to
automate tasks, create their own functions, per-
form complex calculations, and interact with
spreadsheets. VBA shares many of the same
concepts as object-oriented programming lan-
guages. Despite some important limitations,
VBA does add useful capabilities to spreadsheet
modeling, and it is a good tool to know because
Excel is the platform of choice for many finance
professionals.

Stochastic Processes and Tools
Stochastic integration provides a coherent way
to represent that instantaneous uncertainty (or
volatility) cumulates over time. It is thus fun-
damental to the representation of financial pro-
cesses such as interest rates, security prices, or
cash flows. Stochastic integration operates on
stochastic processes and produces random vari-
ables or other stochastic processes. Stochastic
integration is a process defined on each path as
the limit of a sum. However, these sums are dif-
ferent from the sums of the Riemann-Lebesgue
integrals because the paths of stochastic pro-
cesses are generally not of bounded variation.
Stochastic integrals in the sense of Itô are de-
fined through a process of approximation by
(1) defining Brownian motion, which is the con-
tinuous limit of a random walk, (2) defining
stochastic integrals for elementary functions as
the sums of the products of the elementary
functions multiplied by the increments of the
Brownian motion, and (3) extending this defi-
nition to any function through approximating
sequences. The major application of integra-
tion to financial modeling involves stochastic

integrals. An understanding of stochastic in-
tegrals is needed to understand an important
tool in contingent claims valuation: stochastic
differential equations. The dynamic of finan-
cial asset returns and prices can be expressed
using a deterministic process if there is no un-
certainty about its future behavior, or, with a
stochastic process, in the more likely case when
the value is uncertain. Stochastic processes in
continuous time are the most used tool to ex-
plain the dynamic of financial assets returns
and prices. They are the building blocks to con-
struct financial models for portfolio optimiza-
tion, derivatives pricing, and risk management.
Continuous-time processes allow for more ele-
gant theoretical modeling compared to discrete
time models, and many results proven in prob-
ability theory can be applied to obtain a simple
evaluation method.

Statistics
Probability models are theoretical models of
the occurrence of uncertain events. In contrast,
statistics is about empirical data and can be
broadly defined as a set of methods used to
make inferences from a known sample to a
larger population that is in general unknown. In
finance, a particular important example is mak-
ing inferences from the past (the known sam-
ple) to the future (the unknown population). In
statistics, probabilistic models are applied us-
ing data so as to estimate the parameters of
these models. It is not assumed that all param-
eter values in the model are known. Instead,
the data for the variables in the model to esti-
mate the value of the parameters are used and
then applied to test hypotheses or make infer-
ences about their estimated values. In financial
modeling, the statistical technique of regression
models is the workhorse. However, because re-
gression models are part of the field of financial
econometrics, this topic is covered in that topic
category. Understanding dependences or func-
tional links between variables is a key theme in
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financial modeling. In general terms, functional
dependencies are represented by dynamic
models. Many important models are linear
models whose coefficients are correlation coeffi-
cients. In many instances in financial modeling,
it is important to arrive at a quantitative mea-
sure of the strength of dependencies. The cor-
relation coefficient provides such a measure. In
many instances, however, the correlation coef-
ficient might be misleading. In particular, there
are cases of nonlinear dependencies that result
in a zero correlation coefficient. From the point
of view of financial modeling, this situation is
particularly dangerous as it leads to substan-
tially underestimated risk. Different measures
of dependence have been proposed, in partic-
ular copula functions. The copula overcomes
the drawbacks of the correlation as a measure
of dependency by allowing for a more general
measure than linear dependence, allowing for
the modeling of dependence for extreme events,
and being indifferent to continuously increas-
ing transformations. Another essential tool in
financial modeling, because it allows the incor-
poration of uncertainty in financial models and
consideration of additional layers of complex-
ity that are difficult to incorporate in analytical
models, is Monte Carlo simulation. The main
idea of Monte Carlo simulation is to represent
the uncertainty in market variables through sce-
narios, and to evaluate parameters of interest
that depend on these market variables in com-
plex ways. The advantage of such an approach
is that it can easily capture the dynamics of un-
derlying processes and the otherwise complex
effects of interactions among market variables.
A substantial amount of research in recent years
has been dedicated to making scenario genera-
tion more accurate and efficient, and a number
of sophisticated computational techniques are
now available to the financial modeler.

Term Structure Modeling
The arbitrage-free valuation approach to the
valuation of option-free bonds, bonds with em-

bedded options, and option-type derivative in-
struments requires that a financial instrument
be viewed as a package of zero-coupon bonds.
Consequently, in financial modeling, it is essen-
tial to be able to discount each expected cash
flow by the appropriate interest rate. That rate
is referred to as the spot rate. The term struc-
ture of interest rates provides the relationship
between spot rates and maturity. Because of its
role in valuation of cash bonds and option-type
derivatives, the estimation of the term struc-
ture of interest rates is of critical importance as
an input into a financial model. In addition to
its role in valuation modeling, term structure
models are fundamental to expressing value,
risk, and establishing relative value across the
spectrum of instruments found in the various
interest-rate or bond markets. The term struc-
ture is most often specified for a specific market
such as the U.S. Treasury market, the bond mar-
ket for double-A rated financial institutions,
the interest rate market for LIBOR, and swaps.
Static models of the term structure are char-
acterizations that are devoted to relationships
based on a given market and do not serve future
scenarios where there is uncertainty. Standard
static models include those known as the spot
yield curve, discount function, par yield curve,
and the implied forward curve. Instantiations of
these models may be found in both a discrete-
and continuous-time framework. An important
consideration is establishing how these term
structure models are constructed and how to
transform one model into another. In model-
ing the behavior of interest rates, stochastic dif-
ferential equations (SDEs) are commonly used.
The SDEs used to model interest rates must cap-
ture the market properties of interest rates such
as mean reversion and/or a volatility that de-
pends on the level of interest rates. For a one-
factor model, the SDE is used to model the
behavior of the short-term rate, referred to as
simply the “short rate.” The addition of another
factor (i.e., a two-factor model) involves extend-
ing the SDE to represent the behavior of the
short rate and a long-term rate (i.e., long rate).
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The entries can serve as material for a wide
spectrum of courses, such as the following:
� Financial engineering
� Financial mathematics
� Financial econometrics
� Statistics with applications in finance

� Quantitative asset management
� Asset and derivative pricing
� Risk management

Frank J. Fabozzi
Editor, Encyclopedia of Financial Models





Guide to the Encyclopedia of
Financial Models

The Encyclopedia of Financial Models provides
comprehensive coverage of the field of finan-
cial modeling. This reference work consists of
three separate volumes and 127 entries. Each
entry provides coverage of the selected topic
intended to inform a broad spectrum of read-
ers ranging from finance professionals to aca-
demicians to students to fiduciaries. To derive
the greatest possible benefit from the Encyclo-
pedia of Financial Models, we have provided this
guide. It explains how the information within
the encyclopedia can be located.

ORGANIZATION
The Encyclopedia of Financial Models is organized
to provide maximum ease of use for its readers.

Table of Contents
A complete table of contents for the entire en-
cyclopedia appears in the front of each volume.
This list of titles represents topics that have been
carefully selected by the editor, Frank J. Fabozzi.
The Preface includes a more detailed descrip-
tion of the volumes and the topic categories that
the entries are grouped under.

Index
A Subject Index for the entire encyclopedia is
located at the end of each volume. The sub-

jects in the index are listed alphabetically and
indicate the volume and page number where
information on this topic can be found.

Entries
Each entry in the Encyclopedia of Financial Mod-
els begins on a new page, so that the reader may
quickly locate it. The author’s name and affilia-
tion are displayed at the beginning of the entry.
All entries in the encyclopedia are organized
according to a standard format, as follows:

� Title and author
� Abstract
� Introduction
� Body
� Key points
� Notes
� References

Abstract
The abstract for each entry gives an overview of
the topic, but not necessarily the content of the
entry. This is designed to put the topic in the
context of the entire Encyclopedia, rather than
give an overview of the specific entry content.

Introduction
The text of each entry begins with an intro-
ductory section that defines the topic under
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discussion and summarizes the content. By
reading this section, the reader gets a general
idea about the content of a specific entry.

Body
The body of each entry explains the purpose,
theory, and math behind each model.

Key Points
The key points section provides in bullet point
format a review of the materials discussed in

each entry. It imparts to the reader the most
important issues and concepts discussed.

Notes
The notes provide more detailed information
and citations of further readings.

References
The references section lists the publications
cited in the entry.
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Valuing Mortgage-Backed and
Asset-Backed Securities
FRANK J. FABOZZI, PhD, CFA, CPA
Professor of Finance, EDHEC School of Business

MARK B. WICKARD
Senior Vice President/Corporate Cash Investment Advisor, Morgan Stanley Smith Bamey

Abstract: The valuing (or pricing) of a bond without an embedded option (that is, an option-free
bond) is straightforward. The value is equal to the present value of the expected cash flows.
Ignoring defaults, for an option-free bond the cash flows are known and consist of the periodic
interest payments and principal at the maturity date. The interest or discount rates for computing
the present value of the cash flows begin with the spot rates for a benchmark security and to those
rates an appropriate spread is added. Moving from valuing option-free bonds to corporate bonds
and agency debentures with embedded options is not simple. The interest rate–sensitive options
that can be embedded into these bonds are call options, put options, accelerated sinking provisions,
and, for floating-rate securities, caps on the interest rate. The reason valuation is complicated is
that the embedded options must be taken into account and the theoretical option-free value of the
bond must be adjusted accordingly. The technique typically used for valuing corporate bonds and
agency debentures with embedded options is the lattice method. Mortgage-backed securities also
have embedded options: the right of the borrowers in a loan pool to prepay their mortgage loan.
However, because future cash flows for a loan pool are sensitive to not only the current interest
rate but the history of rates since the loans were originated, the lattice method which is solved
using backward induction cannot be employed. Instead, the most common methodology used
for valuing mortgage-backed securities and mortgage-related asset-backed securities is the Monte
Carlo simulation model. Other types of asset-backed securities are straightforward to value. In
addition to the complications in valuing mortgage-backed securities and mortgage-related asset-
backed securities, there is the difficulty in estimating their price sensitivity to changes in interest
rates (that is, duration and convexity). The Monte Carlo simulation model can be used to compute
the effective duration of these securities. This duration measure takes into consideration how a
change in interest rates can impact a security’s cash flow.

In this entry we will explain the methodology
for valuing asset-backed securities (ABS) and
mortgage-backed securities (MBS) and mea-
sures of relative value.1 We begin by review-
ing cash-flow yield analysis and the limitations

of the spread measure that is a result of that
analysis—the nominal spread. We then look at a
better spread measure called the zero-volatility
spread, but point out its limitation as a mea-
sure of relative value for MBS products because

3
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of the borrower’s prepayment option and for
ABS products where the prepayment option has
value. Finally, we look at the methodology for
valuing MBS and for ABS products where the
prepayment option has value—the Monte Carlo
simulation model. A by-product of this model
is a spread measure called the option-adjusted
spread (OAS). This measure is superior to the
nominal spread and the zero-volatility spread
for ABS products where the prepayment op-
tion has a value because it takes into account
how cash flows may change when interest rates
change. That is, it recognizes the borrower’s
prepayment option and how that affects pre-
payments when interest rates may change in
the future. While the OAS is superior to the two
other spread measures, it is based on assump-
tions that must be understood by an investor
and the sensitivity of the security’s value and
OAS to changes in those assumptions must be
investigated.

CASH-FLOW YIELD
ANALYSIS
The yield on any financial instrument is the
interest rate that makes the present value of
the expected cash flow equal to its market
price plus accrued interest. For ABS and MBS,
the yield calculated is called a cash-flow yield.
The problem in calculating the cash-flow yield
of MBS and ABS is that because of prepayments
the cash flow is unknown. A prepayment is the
amount of the payment made by the obligor
in the loan pool that is in excess of the sched-
uled principal payment. Prepayments can be
voluntary such as for refinancing the loan or in-
voluntary such as for a default by the obligor.
Consequently, to determine a cash-flow yield
some assumption about the prepayment rate
and recovery rate in the case of defaults must
be made.2

The cash flow for MBS and ABS is typically
monthly. The convention is to compare the yield
on MBS and ABS to that of a Treasury coupon
security by calculating the security’s bond-

equivalent yield. The bond-equivalent yield for
a Treasury coupon security is found by dou-
bling the semiannual yield. However, it is in-
correct to do this for MBS and ABS because
the investor has the opportunity to generate
greater interest by reinvesting the more fre-
quent cash flows. The market practice is to
calculate a yield so as to make it comparable
to the yield to maturity on a bond-equivalent
yield basis. The formula for annualizing the
monthly cash-flow yield for MBS and ABS is
as follows:

Bond-equivalent yield = 2[(1 + iM)6 − 1]

where iM is the monthly interest rate that
will equate the present value of the projected
monthly cash flow to the market price (plus ac-
crued interest) of the security.

All yield measures suffer from problems that
limit their use in assessing a security’s poten-
tial return. The yield to maturity for a Trea-
sury, agency, or corporate bond has two major
shortcomings as a measure of a bond’s poten-
tial return. To realize the stated yield to matu-
rity, the investor must: (1) reinvest the coupon
payments at a rate equal to the yield to maturity
and (2) hold the bond to the maturity date. The
reinvestment of the coupon payments is critical
and for long-term bonds can comprise as much
as 80% of the bond’s return. The risk of having
to reinvest the interest payments at less than
the computed yield is called reinvestment risk.
The risk associated with a decline in the value
of a security due to a rise in interest rates is
called interest rate risk and in practice is quanti-
fied by computing the security’s duration and
convexity.

These shortcomings are equally applicable to
the cash-flow yield measure for ABS and MBS:
(1) the projected cash flows are assumed to be
reinvested at the computed cash-flow yield and
(2) the security is assumed to be held until the fi-
nal payout based on some prepayment assump-
tion. The importance of reinvestment risk—the
risk that the cash flow will be reinvested at a
rate less than the calculated cash-flow yield—is
particularly important for amortizing MBS and



VALUING MORTGAGE-BACKED AND ASSET-BACKED SECURITIES 5

ABS products, because payments are monthly
and both interest and principal must be rein-
vested. Moreover, an additional assumption is
that the projected cash flow is actually realized.
If the prepayment experience and the recovery
rate realized differ from that assumed, the cash-
flow yield will not be realized.

Given the computed cash-flow yield and the
average life for a security based on some pre-
payment assumption and default/recovery as-
sumption, the next step is to compare the yield
to the yield for a comparable Treasury security.
“Comparable” is typically defined as a Trea-
sury security with the same maturity as the
(weighted) average life or the duration of the
security. The difference between the cash-flow
yield and the yield on a comparable Treasury
security is called the nominal spread.

Unfortunately, it is the nominal spread that
investors will too often use as a measure of rel-
ative value for ABS and MBS. However, this
spread masks the fact that a portion of the nom-
inal spread may be compensation for accepting
prepayment risk. Instead of nominal spread, in-
vestors need a measure that indicates the com-
pensation after adjusting for prepayment risk
for all MBS and for ABS where the prepay-
ment option has value. This measure is called
the option-adjusted spread. Before discussing
this measure, we describe another spread mea-
sure commonly quoted for MBS and ABS called
the zero-volatility spread. This measure takes
into account another problem with the nomi-
nal spread. Specifically, the nominal spread is
computed assuming that all the cash flows for
a security should be discounted at only one in-
terest rate. That is, it fails to recognize the term
structure of interest rates.

ZERO-VOLATILITY SPREAD
The proper procedure to compare ABS and MBS
to a Treasury is to compare it to a portfolio of
Treasury securities that have the same cash flow.
The value of the security is then equal to the
present value of all of the cash flows. The secu-

rity’s value, assuming the cash flows are default
free, will equal the present value of the repli-
cating portfolio of Treasury securities. In turn,
these cash flows are valued at the Treasury spot
rates.

The zero-volatility spread is a measure of the
spread that the investor would realize over
the entire Treasury spot rate curve if the non-
Treasury security being analyzed is held to
maturity. It is not a spread off one point on the
Treasury yield curve, as is the nominal spread.
The zero-volatility spread (also called the Z-
spread and the static spread) is the spread that will
make the present value of the cash flows from
the non-Treasury security when discounted
at the Treasury spot rate plus the spread equal
to the market price plus accrued interest of the
non-Treasury security. A trial-and-error proce-
dure (or search algorithm) is required to deter-
mine the zero-volatility spread.

In general, the shorter the average life of
the ABS/MBS, the less the zero-volatility
spread will deviate from the nominal spread.
The magnitude of the difference between the
nominal spread and the zero-volatility spread
also depends on the shape of the yield curve.
The steeper the yield curve, the greater the
difference.

If borrowers in the underlying loan pool have
the right to prepay but do not typically take ad-
vantage of a decline in interest rates below the
loan’s rate to refinance, then the zero-volatility
spread is the appropriate measure of relative
value and it should be used in valuing cash
flows to determine the value of ABS. This is
the case, for example, for automobile loan ABS.
While borrowers have the right to refinance
when rates decline below the loan rate, they
typically do not. In contrast, for standard resi-
dential mortgage loans, home equity loan ABS,
and manufactured housing ABS, the borrowers
in the underlying pool do refinance when inter-
est rates decline below the loan rate. The next
methodology and spread measure are used for
products with this characteristic. Basically, they
are used for all residential MBS and mortgage-
related ABS.
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VALUATION USING MONTE
CARLO SIMULATION AND
OAS ANALYSIS
In fixed income valuation modeling, there are
two methodologies commonly used to value
securities with embedded options—the Monte
Carlo simulation model and the lattice model.
The Monte Carlo simulation model involves
simulating a large number of potential inter-
est rate paths in order to assess the value of a
security on those different paths. This model is
the most flexible of the two valuation method-
ologies for valuing interest rate–sensitive in-
struments where the history of interest rates
is important. MBS and mortgage-related ABS
are commonly valued using this model. As
explained below, a by-product of this valua-
tion model is the OAS. (An alternative model
for valuing agency passthrough securities that
does not require a prepayment model is pro-
vided in Kalotay, Yang, and Fabozzi, 2004.)

A lattice model is used to value callable
agency debentures and corporate bonds. This
valuation model accommodates securities in
which the decision to exercise a call option is not
dependent on how interest rates evolved over
time. That is, the decision of an issuer to call a
bond will depend on the prevailing interest rate
at which the issue can be refunded relative to
the issue’s coupon rate and the costs associated
with refunding, and not the path interest rates
took to get to that rate. MBS and mortgage-
related ABS which allow prepayments have
periodic cash flows that are interest rate path
dependent. This means that the cash flow re-
ceived in one period is determined not only by
the current interest rate level, but also by the
path that interest rates took to get to the current
level.

Prepayments for MBS and mortgage-related
ABS are interest rate path dependent because
this month’s prepayment rate depends on
whether there have been prior opportunities to
refinance since the underlying loans were orig-
inated. Moreover, the cash flows to be received

in the current month by investors in a bond
class of MBS and mortgage-related ABS transac-
tion depend on the outstanding balances of the
other bond classes in the transaction. For exam-
ple, in the case of a planned amortization class
(PAC) bond in a collateralized mortgage obli-
gation structure, all prepayments from the time
the security was issued up to the valuation date
affect the amount of support bonds outstand-
ing and therefore the cash flow at the valuation
date for the PAC bond.3 Thus, we need the his-
tory of prepayments to calculate the balances of
bond classes in a structure.

Conceptually, valuation using the Monte
Carlo simulation model is simple. In practice,
however, it is very complex. The simulation
involves generating a set of cash flows based
on simulated future refinancing rates, which in
turn imply simulated prepayment and default/
recovery rates. The objective is to figure out how
the value of the collateral gets transmitted to the
bond classes in the structure. More specifically,
modeling is used to identify where the value in
a transaction has been allocated and where the
risk (prepayment risk and credit risk) has been
distributed in order to identify the bond classes
with low risk and high value.

Simulating Interest Rate Paths and
Cash Flows
Monte Carlo simulation is a management sci-
ence/operations research technique that is com-
monly employed in finance.4 The purpose of
Monte Carlo simulation is to generate a proba-
bility distribution for the outcome of some ran-
dom variable of interest. In its application to
valuing securities, it is used to generate interest
rate paths so that potential cash flows on those
paths can be determined and then each path is
valued. (In the parlance of simulation, an inter-
est rate path is referred to as a trial.) The value
for the security on each of those interest rate
paths is then one value in determining the esti-
mated probability distribution for the security’s
value.
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The procedure for generating the interest rate
paths begins with a benchmark term struc-
ture of interest rates and associated with this
benchmark are market prices for benchmark se-
curities. Given the benchmark term structure
of interest rates, the interest rate paths are ad-
justed (that is, calibrated) so that the average
price produced by the model for each bench-
mark security will equal the market price for
the benchmark security.

Most models use the on-the-run Treasury is-
sues in this calibration process. Other model
developers use off-the-run Treasury issues as
well. The argument for using off-the-run Trea-
sury issues is that the price/yield of on-the-run
Treasury issues will not reflect their true eco-
nomic value because the market price reflects
their value for financing purposes (that is, an is-
sue may be on special in the repo market). Some
models use the London Interbank Offered Rate
(LIBOR) curve instead of the Treasury curve.
The reason is that some investors are interested
in spreads that they can earn relative to their
funding costs and LIBOR, for many investors,
is a better proxy for that cost than Treasury rates.

To generate the interest rate paths, an assump-
tion about the evolution of future interest rates
is required. Most Monte Carlo simulation mod-
els use some form of one-factor interest rate
model. The one factor used is the short-term in-
terest rate. When using a particular one-factor
interest rate model, several further assumptions
must be made. The first, and the most impor-
tant, is the assumption about the volatility of
the short-term interest rate. The volatility as-
sumption determines the dispersion of future
interest rates in the simulation. Many model
developers do not use one volatility number
for the yield volatility of all maturities for the
benchmark curve. Instead, they use either a
short/long yield volatility or a term structure
of yield volatility. A short/long yield volatil-
ity means that volatility is specified for matu-
rities up to a certain number of years (short
yield volatility) and a different yield volatility
for greater maturities (long yield volatility). The

short yield volatility is assumed to be greater
than the long yield volatility. A term structure
of yield volatilities means that a yield volatil-
ity is assumed for each maturity. (In practice,
interest rate volatility is extracted from inter-
est rate cap market prices.) From these prices,
a term structure of yield volatility is obtained.
Differences in the assumption about volatility
of short-term interest rates can have a material
impact on the resulting value derived for the
security.

Another assumption relates to the speed of
mean reversion of the short-term interest rate.
Mean reversion in an interest rate model has to
do with not allowing interest rates to fall below
a lower barrier and not exceed an upper barrier
before rates revert back to some average interest
rate specified by the model developer or user.

The random paths of interest rates should be
generated from an arbitrage-free model of the
future term structure of interest rates. By arbi-
trage free it is meant that the model replicates
today’s term structure of interest rates, an input
of the model, and that for all future dates there
is no possible arbitrage within the model.

The simulation works by generating many
scenarios of future interest rate paths. In each
month of a given scenario (that is, path), a
monthly interest rate and a refinancing rate are
generated. The monthly interest rates are used
to discount the projected cash flows in the sce-
nario. The refinancing rate is needed to deter-
mine the cash flows because it represents the
opportunity cost the borrower is facing at that
time.

If the refinancing rates are high relative to the
borrower’s loan rate, the borrower will have no
incentive to refinance. For MBS and mortgage-
related ABS, there is a disincentive to prepay
(that is, the homeowner may avoid moving in
order to avoid refinancing). If the refinancing
rate is low relative to the borrower’s loan rate,
the borrower has an incentive to refinance.

Prepayments (voluntary and involuntary)
and recoveries are projected by feeding the re-
financing rate and loan characteristics into a
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Table 1 Simulated Paths of One-Month Future Interest Rates

Interest Rate Path Number

Month 1 2 3 . . . n . . . N

1 f 1(1) f 1(2) f 1(3) . . . f 1(n) . . . f 1(N)
2 f 2(1) f 2(2) f 2(3) . . . f 2(n) . . . f 2(N)
3 f 3(1) f 3(2) f 3(3) . . . f 3(n) . . . f 3(N)
. . . . . . . . . . . . . . . . . . . . . . . .

t ft(1) ft(2) ft(3) . . . ft(n) . . . ft(N)
. . . . . . . . . . . . . . . . . . . . . . . .

M–2 fM–2(1) f M–2(2) fM–2(3) . . . f M–2(n) . . . f M–2(N)
M–1 fM–1(1) f M–1(2) fM–1(3) . . . f M–1(n) . . . fM–1(N)
M fM(1) f M(2) fM(3) . . . fM(n) . . . fM(N)

Notation: ft(n) = one-month future interest rate for month t on path n, N = total number of interest rate paths;
M = number of months for the loan pool.

prepayment model and default model. (In the
case of agency MBS [Ginnie Mae, Fannie Mae,
and Freddie Mac] no assumption about defaults
is required.) Given the projected prepayments,
the cash flows along an interest rate path can
be determined. To be able to do this, the entire
deal must be reverse engineered. That is, the
deal’s waterfall (that is, the rules for distribu-
tion of interest, principal repayment, and loss
allocation) must be specified so that the cash
flow for the bond class being valued can be de-
termined. Model developers do not reverse en-
gineer the deals. Rather, there are vendors who
provide the waterfall for deals that are used in
conjunction with the Monte Carlo simulation
model.

To make this more concrete, consider a newly
issued loan pool with a maturity of M months

that is the collateral for an MBS or mortgage-
related ABS. Table 1 shows N simulated inter-
est rate path scenarios. Each scenario consists
of a path of M simulated 1-month future
interest rates. (The determination of the num-
ber of paths generated is based on a variance-
reduction method.5) So, the first assumption
made to generate the short-term interest rate
paths in Table 1 is the volatility of short-term
interest rates.

Table 2 shows the paths of simulated refinanc-
ing rates corresponding to the scenarios shown
in Table 1. In going from Table 1 to Table 2, an as-
sumption must be made about the relationship
between the benchmark short-term interest rate
and the refinancing rate. The assumption is that
there is a constant spread relationship between
the refinancing rate and the interest rate for a

Table 2 Simulated Paths of Refinancing Rates

Interest Rate Path Number

Month 1 2 3 . . . n . . . N

1 r1(1) r1(2) r1(3) . . . r1(n) . . . r1(N)
2 r2(1) r2(2) r2(3) . . . r2(n) . . . n2(N)
3 r3(1) r3(2) r3(3) . . . r3(n) . . . r3(N)
. . . . . . . . . . . . . . . . . . . . . . . .

t r1(1) rt(2) rt(3) . . . rt(n) . . . rt(N)
. . . . . . . . . . . . . . . . . . . . . . . .

M–2 rM–2(1) rM–2(2) rM–2(3) . . . rM–2(n) . . . rM–2(N)
M–1 rM–1(1) rM–1(2) rM–1(3) . . . rM–1(n) . . . rM–1(N)
M rM(1) rM(2) rM(3) . . . rM(n) . . . rM(N)

Notation: rt(n) = refinancing rate for month t on path n; N = total number of interest rate paths; M = number of
months for the loan pool.
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Table 3 Simulated Cash Flows for the Loan Pool

Interest Rate Path Number

Month 1 2 3 . . . n . . . N

1 C1(1) C1(2) C1(3) . . . C1(n) . . . C1(N)
2 C2(1) C2(2) C2(3) . . . C2(n) . . . C2(N)
3 C3(1) C3(2) C3(3) . . . C3(n) . . . C3(N)
. . . . . . . . . . . . . . . . . . . . . . . .

t Ct(1) Ct(2) Ct(3) . . . Ct(n) . . . Ct(N)
. . . . . . . . . . . . . . . . . . . . . . . .

M–2 CM–2(1) CM–2(2) CM–2(3) . . . CM–2(n) . . . CM–2(N)
M–1 CM–1(1) CM–1(2) CM–1(3) . . . CM–1(n) . . . CM–1(N)
M CM(1) CM(2) CM(3) . . . CM(n) . . . CM(N)

Notation: Ct(n) = loan pool’s cash flow for month t on path n; N = total number of interest rate paths; M = number
of months for the loan pool.

maturity that is the best proxy for the borrow-
ing rate. Typically, it is the 10-year rate that is
used as a proxy.

Given the refinancing rates, the collateral’s
cash flows on each interest rate path can be
generated. This requires a prepayment and de-
fault/recovery model. So our next assumption
is that the prepayment and default/recovery
models used to generate the loan pool’s cash
flows are correct. The resulting cash flows are
depicted in Table 3.

Given the loan pool’s cash flow for each
month on each interest rate path, the next step
is to use the waterfall for the structure to deter-
mine how the cash flow is distributed to the
bond class being valued. Let us use BCC to
denote the cash flow for that bond class. Ta-
ble 4 shows the simulated cash flows on each of

the interest rate paths for the bond class being
valued.

Calculating the Present Value of a
Bond Class for a Scenario Interest
Rate Path
Given the cash flows for the bond class on an
interest rate path, the path’s present value can
be calculated. The discount rate for determining
the present value is the simulated spot rate for
each month on the interest rate path plus an ap-
propriate spread. The spot rate on a path can be
determined from the simulated future monthly
rates. The relationship that holds between the
simulated spot rate for month t on path n and
the simulated future one-month rates is:

zt(n) = {[1+ f1(n)][1+ f2(n)] · · · [1+ ft(n)]}1/t −1

Table 4 Simulated Cash Flows for the Bond Class Being Valued

Interest Rate Path Number

Month 1 2 3 . . . n . . . N

1 BCC1(1) BCC1(2) BCC1(3) . . . BCC1(n) . . . BCC1(N)
2 BCC2(1) BCC2(2) BCC2(3) . . . BCC2(n) . . . BCC2(N)
3 BCC3(1) BCC3(2) BCC3(3) . . . BCC3(n) . . . BCC3(N)
. . . . . . . . . . . . . . . . . . . . . . . .

t BCCt(1) BCC2(2) BCCt(3) . . . BCCt(n) . . . BCCt(N)
. . . . . . . . . . . . . . . . . . . . . . . .

M–2 BCCM–2(1) BCCM–2(2) BCCM–2(3) . . . BCCM–2(n) . . . BCCM–2(N)
M–1 BCCM–1(1) BCCM–1(2) BCCM–1(3) . . . BCCM–1(n) . . . BCCM–1(N)
M BCCM(1) BCCM(2) BCCM(3) . . . BCCM(n) . . . BCCM(N)

Notation: BCCt(n) = bond class’s cash flow for month t on path n; N = total number of interest rate paths; M =
number of months for the loan pool.
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Table 5 Simulated Paths of Monthly Spot Rates

Interest Rate Path Number

Month 1 2 3 . . . n . . . N

1 z1(1) z1(2) z1(3) . . . z1(n) . . . z1(N)
2 z2(1) z2(2) z2(3) . . . z2(n) . . . z2(N)
3 z3(1) z3(2) z3(3) . . . z3(n) . . . z3(N)
. . . . . . . . . . . . . . . . . . . . . . . .

t zt(1) zt(2) zt(3) . . . zt(n) . . . zt(N)
. . . . . . . . . . . . . . . . . . . . . . . .

M–2 zM–2(1) zM–2(2) zM–2(3) . . . zM–2(n) . . . zM–2(N)
M–1 zM–1(1) zM–1(2) zM–1(3) . . . zM–1(n) . . . zM–1(N)
M zM(1) zM(2) zM(3) . . . zM(n) . . . zm(N)

Notation: zt(n) = spot rate for month t on path n; N = total number of interest rate paths; M = number of months for
the loan pool.

where

zt(n) = simulated spot rate for month t on
path n

fj(n) = simulated future one-month rate for
month j on path n

Consequently, the interest rate path for the
simulated future one-month rates can be con-
verted to the interest rate path for the simu-
lated monthly spot rates as shown in Table 5.
Therefore, the present value of the cash flows
for month t on interest rate path n discounted
at the simulated spot rate for month t plus some
spread is:

PV[BCCt(n)] = BCCt(n)
[1 + zt(n) + K ]t

(1)

where

PV[BCCt(n)] = present value of the cash
flow for the bond class for
month t on path n

BCCt(n) = cash flow for the bond class
for month t on path n

zt(n) = spot rate for month t on
path n

K = spread

The present value for path n is the sum of the
present value of the cash flows for each month

on path n. That is,

PV[Path(n)] = PV[BCC1(n)] + PV[BCC2(n)]
+ · · · + PV[BCCM(n)]

(2)
where PV[Path(n)] is the present value of inter-
est rate path n.

Determining the Theoretical Value
The present value of a given interest rate path
is treated as the theoretical value of a bond class
if that path is realized. The theoretical value
of the bond class using the Monte Carlo simu-
lation model is determined by calculating the
average of the theoretical values of all the in-
terest rate paths. That is, the theoretical value is
equal to

Theoretical value

= PV[Path(1)] + · · · + PV[Path(N)]
N

(3)

where N is the number of interest rate paths.
Notice that the results of the Monte Carlo sim-

ulation model produce one value, the average
value, and that value is taken as the theoretical
value. However, as noted earlier, the purpose
of a Monte Carlo simulation model is to esti-
mate the probability distribution for the vari-
able of interest. While a probability distribution
can easily be obtained from the values for each
path and summary information in addition to
the mean such as dispersion and skewness
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measures can be computed, it is rare if that
information is provided. Basically, the reason
is that investors rarely seek that information
because too often they do not understand the
Monte Carlo simulation process.

Moreover, it should be apparent how the
Monte Carlo simulation model is driven by as-
sumptions. Hence, a user of a model such as
the one described here is subject to modeling
risk. To mitigate modeling risk, an investor can
test the sensitivity of the value produced by
the model to alternative assumptions. For ex-
ample, regarding the volatility assumption, the
model can be rerun assuming both proportion-
ality lower and higher volatility than initially
assumed. The sensitivity to prepayments can
be analyzed in the same way. From the sensitiv-
ity analysis, an investor can determine which
assumptions appear to be more important for
the security being considered for purchase.6

Option-Adjusted Spread
Thus far we have seen how the theoretical
value of a security can be determined using the
Monte Carlo simulation model. Recall that in
the model, a spread (K) is added to the monthly
spot rates on all the interest rate paths in Table 5
in order to determine the discount rate used for
calculating the present value of the cash flows.
The spread should reflect the risk associated
with the security as required by the market.
However, the reverse can be done. Given (1)
the cash flows in Table 4 for the bond class be-
ing valued, (2) the spot rates in Table 5, and (3)
the market price of the security being valued,
one can determine the spread that will make
the average value for the interest rate paths
equal to the market price (plus accrued interest).
That spread is what is referred to as the option-
adjusted spread (OAS). Mathematically, OAS is
the spread that will make

Market price +
Accrued interest

= PV[Path(1)] + · · · + PV[Path(N)]
N

(4)

where N is the number of interest rate paths.

Basically, the OAS is used to reconcile the
model’s value [that is, the value determined
by the Monte Carlo simulation model given by
equation (3)] with the market price. On the left-
hand side of equation (4) is the market’s valua-
tion of the security as represented by the market
price. On the right-hand side of the equation
is the model’s evaluation of the security (that
is, the theoretical value), which is the average
present value over all the interest rate paths.
Basically, the OAS was developed as a measure
of the spread that can be used to convert dollar
differences between model value and market
price. But what is it a “spread” over? In de-
scribing the model above, we can see that the
OAS is measuring the average spread over the
benchmark spot rate. It is an average spread
since the OAS is found by averaging over the
interest rate paths for the possible future bench-
mark spot rate curves.

This spread measure is superior to the nom-
inal spread, which gives no recognition to the
prepayment risk. The OAS is “option adjusted”
because the cash flows on the interest rate paths
are adjusted for the option of the borrowers to
prepay.

Option Cost
The implied cost of the option embedded in a
security can be obtained by calculating the dif-
ference between the OAS and the zero-volatility
spread. That is,

Option cost = Zero-volatility spread − OAS

The option cost measures the prepayment (or
option) risk embedded in MBS and ABS. Note
that the cost of the option is a by-product of the
OAS analysis, not valued explicitly with some
option pricing model.

When the option cost is zero because the bor-
rower tends not to exercise the prepayment op-
tion when interest rates decline below the loan
rate or when there is no prepayment option,
then substituting zero for the OAS in the previ-
ous equation and solving for the zero-volatility
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spread, we get:

Zero-volatility spread = OAS

Consequently, when the value of the option is
zero (that is, the option cost is zero) for a partic-
ular ABS, simply computing the zero-volatility
spread for relative value purposes or for valu-
ing that ABS is sufficient. Even if there is a small
value for the option, the zero-volatility spread
should be adequate rather than calculating an
OAS using the Monte Carlo simulation model.

Simulated Average Life
The average life of a security when using the
Monte Carlo simulation model is the weighted
average time to receipt of principal payments
(scheduled payments and projected prepay-
ments). The average life reported in a Monte
Carlo model is the average of the average lives
along the interest rate paths. That is, for each
interest rate path, there is an average life. The
average of these average lives is the average life
reported by the model.

Additional information is conveyed by the
distribution of the average life. The greater the
range and standard deviation of the average
life, the more uncertainty there is about the se-
curity’s average life.

MEASURING INTEREST RISK
There are two measures of interest rate risk that
are commonly used: duration and convexity.7

Duration is a first approximation as to how the
value of an individual security or the value
of a portfolio will change when interest rates
change. Convexity measures the change in the
value of a security or portfolio that is not ex-
plained by duration. How these measures are
computed when using the Monte Carlo simula-
tion model is described in this section.

Duration
The most obvious way to measure a bond’s
price sensitivity as a percentage of its current

price to changes in interest rates is to change
rates by a small number of basis points and cal-
culate how its price will change. To do this, we
introduce the following notation. Let

V0 = initial value or price of the security
�y = change in the yield of the security (in

decimal)
V− = the estimated value of the security if the

yield is decreased by �y
V+ = the estimated value of the security if the

yield is increased by �y

There are two key points to keep in mind
in the foregoing discussion. First, the change
in yield referred to above is the same change
in yield for all maturities. This assumption is
commonly referred to as a “parallel yield curve
shift assumption.” Thus, the foregoing discus-
sion about the price sensitivity of a security to
interest rate changes is limited to parallel shifts
in the yield curve. Second, the notation refers to
the estimated value of the security. This value
is obtained from a valuation model. Conse-
quently, the resulting measure of the price sen-
sitivity of a security to interest rate changes is
only as good as the valuation model employed
to obtain the estimated value of the security.

Now let’s focus on the measure of interest. We
are interested in the percentage change in the
price of a security when interest rates change.
This measure is referred to as duration. It can
be demonstrated that duration can be estimated
using the following formula:

Duration = V− − V+
2V0(�y)

(5)

The duration of a security can be interpreted
as the approximate percentage change in price
for a 100 basis point parallel shift in the yield
curve. Thus, a bond with a duration of 5 will
change by approximately 5% for a 100 basis
point parallel shift in the yield curve. For a
50 basis point parallel shift in the yield curve,
the bond’s price will change by approximately
2.5%; for a 25 basis point parallel shift in the
yield curve, 1.25%, and so on.
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What this means is that in calculating the val-
ues of V– and V+ in the duration formula, the
same cash flows used to calculate V0 are used.
Therefore, the change in the bond’s price when
the yield curve is shifted by a small number of
basis points is due solely to discounting at the
new yields. This assumption makes sense for
option-free bonds such as Treasury securities
and nonmortgage ABS such as credit card ABS
and auto loan-backed ABS. However, the same
cannot be said for MBS and mortgage-related
ABS because for these products the cash flows
are sensitive to changes in interest rates. Rather,
for these products a change in yield will alter
the expected cash flows because it will change
expected prepayments.

The Monte Carlo simulation model takes into
account how parallel shifts in the yield curve
will affect the cash flows. Thus, when V– and
V+ are the values produced from the valuation
model, the resulting duration takes into account
both the discounting at different interest rates
and how the cash flows can change. When du-
ration is calculated in this manner, it is referred
to as effective duration or option-adjusted duration.

To calculate effective duration, the value of a
security must be estimated when interest rates
are shocked (that is, changed) up and down a
given number of basis points. In terms of the
Monte Carlo simulation model, the yield curve
used is shocked up and down and the new
curve is used to generate the values to be used
in equation (5) to obtain effective duration.

There are two important aspects of this pro-
cess of generating the values when the rates are
shocked that are critical to understand. First, the
assumption is that the relationships assumed
do not change when rates are shocked up and
down. Specifically, (1) the interest rate volatil-
ity is assumed to be unchanged to derive the
new interest rate paths for a given shock (that
is, the new Table 1), as well as the other assump-
tions made to generate the new Table 2 from the
newly constructed Table 1, and (2) the OAS is
assumed to be constant. The constancy of the
OAS comes into play because when discount-

ing the new cash flows (that is, the cash flows in
the new Table 4), the current OAS that was com-
puted is assumed to be the same and is added
to the new rates in the new Table 1.

Convexity
The duration measure indicates that regardless
of whether interest rates increase or decrease,
the approximate percentage price change is the
same. However, this does not agree with the
price volatility property of a bond. Specifically,
while for small changes in yield the percentage
price change will be the same for an increase or
decrease in yield, for large changes in yield this
is not true. This suggests that duration is only
a good approximation of the percentage price
change for a small change in yield.

The reason for this result is that duration is
in fact a first approximation for a small change
in yield. The approximation can be improved
by using a second approximation. This approx-
imation is referred to as “convexity.” (The use
of this term in the industry is unfortunate since
the term “convexity” is also used to describe
the shape or curvature of the price/yield rela-
tionship.) The convexity measure of a security
can be used to approximate the change in price
that is not explained by duration.

The convexity measure of a bond can be ap-
proximated using the following formula:

Convexity measure = V+ + V− − 2V0

2V0(�y)2 (6)

where the notation is the same as used earlier
for duration. When the values for the inputs
in the convexity measure as given in equation
(6) are obtained from a Monte Carlo simulation
model, the resulting convexity is referred to as
effective convexity. Note that dealers often quote
convexity by dividing the convexity measure
by 100.

When the convexity measure is positive, we
have the situation where the gain is greater than
the loss for a given large change in rates. That
is, the security exhibits positive convexity. Most
nonmortgage ABS have positive convexity.
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However, if the convexity measure is negative,
we have the situation where the loss will be
greater than the gain. A security with this char-
acteristic is said to have negative convexity and
it occurs with MBS and mortgage-related ABS.

KEY POINTS
� Valuing securities with interest rate–sensitive

options requires the employment of a model
that recognizes how future interest rates can
change and how that impacts the expected
cash flows.

� For bonds with embedded options such as
callable bonds and putable bonds, as well as
bonds that have an accelerated sinking fund
provision, the lattice method can be used.
Unfortunately, the lattice model cannot be
used for MBS and mortgage-related ABS be-
cause these securities have path-dependent
cash flows and thus how interest rates have
evolved prevents solving a lattice model.

� Instead of the lattice model, the Monte Carlo
simulation model is used to value MBS and
mortgage-related ABS. There are many as-
sumptions in the model and therefore, sen-
sitivity analysis should be used to test the
sensitivity of the model’s value to changes
in the major assumptions.

� For ABS that do not have an embedded op-
tion (that is, no prepayment option) or where
there is a prepayment option but for all in-
tents and purposes the prepayment option is
unlikely to be exercised, valuation is fairly
straightforward—assuming a good model for
estimating defaults and recoveries. It is sim-
ply the present value of the expected cash
flow discounted at the benchmark spot rates
plus an appropriate spread.

� The cash-flow yield measure for MBS and
ABS is a flawed measure of value. The cor-
responding nominal spread is therefore sim-
ilarly flawed. A better measure for ABS
where the prepayment option has little value
is the zero-volatility spread. For MBS and
mortgage-related ABS, the commonly used

measure is the OAS. This measure adjusts the
spread for the embedded option by adjusting
the cash flows in the Monte Carlo simulation
model (as well as in the lattice model).

� Because the OAS is derived from the
Monte Carlo simulation model, it is also
an assumption-driven product and therefore
subject to modeling risk.

� The appropriate interest risk measures for
MBS and mortgage-related ABS are effective
duration and effective convexity. These mea-
sures require, as inputs, the estimated value of
the security obtained by shocking the Monte
Carlo simulation model.

NOTES
1. For a discussion of MBS, see Fabozzi,

Bhattacharya, and Berliner (2011). Asset-
backed securities are described in Fabozzi
(2012).

2. For a discussion of prepayment models
for MBS, see Fabozzi, Bhattacharya, and
Berliner (2011).

3. PACs are described in Fabozzi, Bhat-
tacharya, and Berliner (2011).

4. For applications of Monte Carlo simulation
to finance, see Pachamanova and Fabozzi
(2010).

5. Variance-reduction methods in Monte
Carlo simulation are explained in
Pachamanova and Fabozzi (2010).

6. For an illustration applied to an actual
CMO transaction, see Fabozzi, Richard, and
Horowitz (2006).

7. For an explanation of duration and convex-
ity, see Fabozzi (1999, 2011).
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The Active-Passive Decomposition
Model for MBS
ALEXANDER LEVIN, PhD
Director, Financial Engineering, Andrew Davidson & Co., Inc.

Abstract: Even a simple mortgage pass-through is a path-dependent financial instrument, valuation
of which depends on prepayment “burnout.” The burnout is caused by observed or unobserved
heterogeneity of borrowers; as a result, a mortgage pool’s composition changes in the presence of
refinancing incentives. An attractive modeling approach for dealing with this is to split a mort-
gage pool into mutually exclusive “active” and “passive” groups. Not only does such a method
explain the burnout, it effectively decomposes the path-dependent valuation problem into two
easy-to-solve path-independent ones. The method is faster than the traditional Monte Carlo sam-
pling approach while delivering the full set of interest rate risk measures at no additional cost
of computing time. The method can be applied to an attractive prepayment model specification
where the speed is a function of the pool’s objective price, and not an interest rate. This makes
universal refinancing modeling feasible as the same curve or curves can apply to both fixed- and
adjustable-rate mortgages.

The active-passive decomposition (APD) method
of mortgage-backed securities (MBS) modeling
and valuation was introduced in Levin (2001,
2002, 2003). An efficient alternative to brute-
force Monte Carlo simulation, the APD method
splits a mortgage pass-through into two path-
independent components, the active (refinance-
able) and the passive (nonrefinanceable). Once
this is done, the most time-efficient pricing
structures operating backwards on probabil-
ity trees or finite-difference grids could be
employed. This valuation method runs faster
than Monte Carlo simulation while deliver-

The extended APD model and its implementation presented here has greatly benefited from joint work
with Andrew Davidson and Dan Szakallas.

ing a much richer outcome—all stressed values
required by mandatory risk assessments—at
no additional cost. Risk managers and traders
of unstructured mortgage instruments such
as agency pass-through MBS, whole loans,
stripped (IO/PO) derivatives, and mortgage
servicing rights (MSRs) are immediate benefi-
ciaries of the method.

The APD approach simulates the burnout ef-
fect in a natural and explicit way through mod-
eling the heterogeneity of the collateral. Hence,
it presents an analytical advantage over any
other approach that requires ad hoc judgments

17
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about the achieved degree of burnout. Struc-
tured instruments—such as a collateralized
mortgage obligation (CMO) and asset-backed
security (ABS)—though they retain heavy
sources of path-dependence (other than the
burnout) and still rely on Monte Carlo pricing,
can benefit from better, more robust prepay
modeling.

The multi-population view of mortgage col-
lateral is a known approach used to explain
the burnout effect. In one of the earliest mod-
eling attempts, Davidson (1987) and Davidson
et al. (1988) proposed the refinancing threshold
model, in which collateral is split into three or
more American option bonds having differing
strikes. A conceptually similar approach pro-
posed by Kalotay and Young (2002) divides
collateral into bonds differing by their exercise
timing. Such structures naturally call for the
backward induction pricing, but they fall short
in replicating actually observed, probabilisti-
cally smoothed, prepayment behavior—even if
many constituent bonds are used. On the other
hand, analytical systems used in practice of-
ten employ multi-population mortgage models
(see Hayre, 1994, 2000), but do not seek any
computational benefits as they rely heavily on
Monte Carlo simulation pricing anyway.

The APD is a “mortgage-like” model with
refinancing S-curve, aging, and other ad hoc
features, which are meant to capture noneffi-
cient, empirical option exercise. Therefore, the
APD model is capable of generating realistic
prepayment behavior with only two constituent
components, the active and the passive. This en-
try introduces an extended APD model and its
applications.

PATH-DEPENDENCE AND
PRICING PARTIAL
DIFFERENTIAL EQUATION
Let us consider a hypothetical dynamic asset
(“mortgage”) market price of which P(t, x) de-
pends on time t and one market factor x. The
latter can be formally anything and does not

necessarily have to be the short market rate or
the yield on the security analyzed. We treat x(t)
as a random process having a (generally, vari-
able) drift rate μ and a volatility rate σ , and be-
ing disturbed by a standard Brownian motion
z(t), that is,

dx = μdt + σdz (1)

We assume further that the asset continu-
ously pays the c(t, x) coupon rate and its bal-
ance B is amortized at the λ(t, x) rate, that is,
∂ B/∂t = −λB. Then one can prove that the price
function P(t, x) should solve the following par-
tial differential equation (PDE):

r + OAS︸ ︷︷ ︸
expected return

= 1
P

∂ P
∂t

+ 1
P

(c + λ) − λ

︸ ︷︷ ︸
time return

+ 1
P

∂ P
∂x

μ

︸ ︷︷ ︸
return

+ 1
2P

∂2 P
∂x2 σ 2

︸ ︷︷ ︸
return

(2)

A derivation of this PDE can be found in Levin
(1998), but it goes back at least to Fabozzi and
Fong (1994). A notable feature of the above writ-
ten PDE is that it does not contain the balance
variable, B. The entire effect of possibly ran-
dom prepayments is represented by the amor-
tization rate function, λ(t, x). Although the total
cash flow observed for each accrual period does
depend on the beginning-period balance, con-
struction of a finite-difference scheme and the
backward induction will require the knowl-
edge of λ(t, x), not the balance. This observa-
tion agrees with a trivial practical rule stating
that the relative price is generally independent
of the investment size.

Another interesting observation comes as
follows. If we transform the economy having
shifted all the rates, r (t, x) and c(t, x), by amor-
tization rate λ(t, x), then PDE (2) will be re-
duced to the constant-par asset’s pricing PDE. It
means that a probability tree or finite difference
pricing grid built in the “λ-shifted” economy
should, in principle, have as many dimen-
sions as the total number of factors or state
variables that affect r, c, and λ. In particular,
if the coupon rate is fixed, and the amortization
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rate λ depends only on current time (loan age)
and the immediate market factor x, the entire
valuation problem can be solved backwards on
a two-dimensional (x, t) lattice. To implement
this method, we would start our valuation pro-
cess from maturity T when we surely know that
the price is par, P(T, x) = 1, regardless the value
of factor x.

Working backwards, we derive prices at age
t − 1 from prices already found at age t. In doing
so, we replace derivatives in PDE (2) by finite
difference approximations, or weigh branches
of the lattice by explicitly computed probabili-
ties. If the market is multifactor, then x should
be considered a vector; the lattice will require
more dimensions. Generally, the efficiency of
finite-difference methods deteriorates quickly
on high-dimensional grids because the number
of nodes and cash flows grows geometrically;
probability trees may maintain their speed, but
at the cost of accuracy, if the same number of
emanating nodes is used to capture multifactor
dynamics. If we decide to operate on a probabil-
ity tree instead of employing a finite-difference
grid, then, for every branch,

Pk = ck + Pk+1 + λk(1 − Pk+1)
1 + rk + OAS

(3)

where Pk is the previous-node value deduced
from the next-node value Pk+1. Of course, prob-
ability weighting of thus obtained values ap-
plies to all emanating branches.

EXTENDED ACTIVE-PASSIVE
DECOMPOSITION MODEL
Even for a simple fixed-rate mortgage pass-
through, total amortization speed λ cannot be
modeled as a function of time and the imme-
diate market. Prepayment burnout is a strong
source of path-dependence because the future
refinancing activity is affected by the past in-
centives. One can think of a mortgage pool
as of a heterogeneous population of partici-
pants having different refinancing propensities.
Some borrowers have higher rate, better credit,

larger loans, or perhaps they face smaller state-
enforced transaction costs. Once they leave the
pool, the future prepayment activity gradually
declines.

Instead of considering pricing PDE for the en-
tire collateral, we propose decomposing it first
into two components, “active” and “passive,”
differing in refinanceability. Under the follow-
ing two conditions, mortgage path-dependent
collateral can be deemed a simple portfolio of
two path-independent instruments:

1. Active and passive components prepay dif-
ferently, but follow the immediate market
and loan age.

2. Any migration between components is
prohibited.

The Details
Here is a permissible example:

ActiveSMM = RefiSMM + TurnoverSMM
PassiveSMM = β∗RefiSMM + TurnoverSMM

(4)

where RefiSMM denotes refinancing speed
measured in terms of the single monthly
mortality rate (SMM), TurnoverSMM is the
turnover speed, and both are assumed to de-
pend on market rates and loan age only. Param-
eter β quantifies relative refinancing activity for
the passive component; it takes values between
0 and 1.

In order to find the total speed, we have to
know the collateral composition. Denote ψ the
ratio of active group to total, then

λ ≡ TotalSMM = ψ∗ActiveSMM

+ (1 − ψ)∗PassiveSMM (5)

All variables are time-dependent, but we
omitted subscript t for simplicity. The initial
value of ψ describes the composition of collat-
eral at origination; both ψ0 and β are parameters
for the particular prepay model. The dynamic
evolution of ψ from one time moment (t) to the
next (t + 1) is as follows

ψt+1 = ψt
1 − ActiveSMMt

1 − TotalSMMt
(6)
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It is worth considering a few trivial special
cases. First, if ψ is zero at any instance of time,
it will remain zero for life. Second, if ψ is 1 at
any time, then it will retain this value as well
because TotalSMM is identical to ActiveSMM
from equation (5). Indeed, if the mortgage pool
is either totally passive (ψ = 0) or totally active
(ψ = 1), it will retain its status due to the com-
plete absence of migration. In either of these
two special cases, variables ψ and TotalSMM
are path-independent, leading us to a key con-
clusion: The separate consideration of active
and passive components avoids the problem of
path-dependence altogether.

How the Model Works Forward
If 0 < ψ < 1, then TotalSMM < ActiveSMM,
the fraction in the right-hand side of formula
(6) is less than 1, and ψ gradually falls. If we
employed the APD model for prepay modeling
while using Monte Carlo simulation for valua-
tion, we could innovate compositional variable
ψ month after month. First, we would compute
refinancing and turnover speeds at time t from
their respective models. Then, we would pro-
duce active, passive, and total speeds, all still
at time t, from formulas (4) and (5). This in-
formation is not only sufficient to generate the
t-month cash flow, but it also allows for find-
ing the next-month composition, ψt+1, from for-
mula (6), and proceeding forward.

Note that prepay speeds RefiSMM and Turn-
overSMM depend only on current market rates
and time, that is, they are path-independent.
Naturally, ActiveSMM and PassiveSMM found
from (4) will be path-independent as well. In
contrast, variables ψ and TotalSMM are gen-
erally path-dependent except when ψ is either
0 or 1.

Let us visualize how the APD model works.
Suppose we have a pool with ψ0 = 0.8, that is,
the active part constitutes 80% of the total at
origination. Consider two possible scenarios:

Scenario A: Rates drop and remain low, induc-
ing refinancing activity.

Scenario B: Rates rise and remain high.

Figures 1A and 1B show how the pool com-
position will evolve in these two cases. For sce-
nario A, pool balance is amortized quickly due
to the refinancing wave, but, more importantly,
the active group (darker bars) evaporates much
faster than the passive group (lighter bars). As
the result, variable ψ drops from the original
80% to under 30% and, correspondingly, the to-
tal speed (as measured by conditional prepay-
ment rate and denoted by CPR) declines—in the
complete absence of any rate dynamics. A siz-
able speed reduction from 45 CPR to 30 CPR is
caused exclusively by the burnout effect and re-
flected by ψ . This effect is not seen in scenario B
where the active and the passive groups retire at
similar rates. Pool composition barely changes,
as does the total prepayment speed.

We could give prepayment behaviors de-
picted in Figures 1A and 1B another interest-
ing practical interpretation. Let us assume that
we wish to compare a regular fixed-rate pool
(Figure 1A) with a prepayment-penalty pool
(Figure 1B) under the same low-rate market
conditions. The regular pool burns out—unlike
the prepay-penalty one, which faces additional
refinancing barriers. At the end of its penalty
window (assume 60 months), this pool retains
a relatively high level of ψ (71.7%). Looking at
a matching speed level in Figure 1A, we con-
clude that, once the penalty window is over,
the prepay speed will jump above 40 CPR (com-
pared to 29 CPR of the regular pool). Therefore,
the APD model naturally explains the “catch-
up” effect actually known for prepay-penalty
mortgages.

Above, we assumed a newly originated pool,
the population of which is determined by pa-
rameter ψ0. In practice, a pool may be already
seasoned, and today’s value of ψ , denote it
ψ(t0), needs to be determined first. We will
cover this task shortly.

How the Model Works in
Backward Induction
If we decide to employ the APD model for back-
ward valuation, we do not need to innovate
path-dependent variables, ψ , and TotalSMM,
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Figure 1 Simple APD Model: How It Works Forward

or keep track of their dynamics. Here are few
simple steps to perform:

Step 1: Recover today’s value of the population
variable, ψ(t0).

Step 2 Active: Generate cash flows on each node
of a pricing grid (tree) for the active part

only and value it using a backward inducting
scheme that solves pricing equation (2).

Step 2 Passive: Do the same for the passive part.
Step 3: Combine thus obtained values as

P = ψ(t0)Pactive + [1 − ψ(t0)]Ppassive (7)

Interestingly enough, formula (7) applies to
today’s prices obtained for all interest rate
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levels of the pricing grid. As we mentioned
above, computing prices on the entire grid is an
inseparable part of backward valuation. There-
fore, the total price can be also found on the grid,
at no additional cost. In particular, the mea-
sures representing the sensitivities of an MBS
price to the interest rates are found immediately,
without any repetitive efforts with a stressed
market (compare to Monte Carlo simulation).
However, we can’t apply formula (7) for future
nodes because we know only ψ(t0)—today’s
value of ψ .

Initializing the Burnout Factor
If the pool is already seasoned, we have to
assess ψ(t0) first before we can employ the
APD model either for forward simulation or
backward induction. There exist two main ap-
proaches to solve this problem: an analytical
closed-form method and historical simulation.

Suppose that we know the pool’s age, t0,
factor, F (t0), and a constant turnover rate,1

λturnover. Then, we can assess the turnover fac-
tor Fturnover(t0) = exp(−λturnovert0) along with the
scheduled factor, Fscheduled(t0). Since the entire
pool’s amortization is driven by refinancing,
turnover, and the scheduled payoff, the knowl-
edge of two out of three factors along with the
total pool’s factor is enough to restore the entire
time t0 composition. It is easy to show that un-
known ψ(t0) satisfies the following, generally
transcendent, algebraic equation:

x + αxβ = 1 (8)

where α is a known parameter:

α = 1 − ψ0

ψ
β

0

[
Fturnover(t0)Fscheduled(t0)

F (t0)

]1−β

and β is the same speed-reducing multiplier
that enters the APD model (4).

Of course, no numerical iterations are needed
if β is 0, 1, or 0.5. For instance, β = 1 is a triv-
ial case when the pool is homogeneous and is
not subject to burnout, ψ(t0) ≡ ψ0. Case β = 0
was considered in Levin (2001, 2002); it leads to

ψ(t0) = 1 − (1 − ψ0) Fturnover(t0)Fscheduled(t0)
F (t0) . A sim-

ple quadratic equation for ψ(t0) arises when
β = 0.5, with only one meaningful positive so-
lution. For all other values of β, numerical meth-
ods will suffice.

Solving equation (8) is an attractive way to
initialize the burnout stage, as it does not re-
quire historical simulation of past refinancing
incentives. However, it is valid only for very
specific forms of the APD model, presented by
formulas (4) and (5). Any possible extension of
the model (such as discussed below) will make
it impossible to recover the burnout stage using
the pool’s factor and age information only. An
alternative method to estimate ψ(t0) would be a
historical simulation of all prepayment compo-
nents, that is, running the APD model forward
from a pool origination until today. A relevant
historical interest rate dataset will be required
to facilitate this process.

EXTENSIONS AND NUANCES
In this section, we discuss several possibilities
of exploring and extending the APD frame-
work. We complete the section by disclosing
its expected accuracy and limitations.

Computing Interest Rate
Sensitivities Directly Off a
Pricing Tree
Let us illustrate how interest rate exposures can
be efficiently computed using prices produced
on a pricing tree. The idea is to augment the
tree with “ghost nodes” as shown in Figure 2;
for simplicity and clarity, we illustrate the idea
with a recombining binomial tree.2

The tree contains the usual nodes and links
(solid lines) that refer to market conditions (in-
terest rates) and their changes. The root node
refers to today’s market. We assume applica-
tion of the pricing formula (3) for every tran-
sition. We carry this process from maturity
backward until we reach the root. This process
is carried out separately for Active and Passive
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Figure 2 Extended Pricing Tree

components of the mortgage pool; at the root,
we combine prices using formula (7).

Let us augment the actual tree with some
nodes marked by “Up” and “Down” in Fig-
ure 2. Those nodes cannot be reached from the
root, but can be perceived theoretically as re-
sults of immediate market shocks. We can add
as many nodes at time t = 0 as we would like.
These nodes and the emanating transitions are
marked by dashed lines in Figure 2. If we as-
sign transitional probabilities according to the
law of our interest rate models and carry out
the backward valuation process, we will end up
with prices of Active, Passive, and Total prices
at time t = 0. We can now measure duration
and convexity using up and down shifts in the
interest rate factor; we can also compile a risk
report covering a substantial range on interest
rate moves. These calculations will require car-
rying out the backward induction algorithm on
a somewhat expanded tree, but otherwise, no
extra computing efforts.

One practical question a user may have is
whether interest rate shocks that are reflected in
the up, the down, and other nodes are, in fact,
parallel moves. In most cases, they are not. Each

node of the valuation tree represents the full set
of market conditions altered by a single factor
(e.g., the short rate). The entire yield curve be-
comes known via the relevant law of the term
structure model. For example, long rates move
less than the short rate if the single-factor model
is mean reverting; the rate’s move may be com-
parable on a relative, not absolute, basis if the
model is lognormal, and so on. These examples
illustrate nonparallel moves in the yield curve.
In these cases, it would be practically advis-
able to measure the Greeks with respect to the
“most important” rate, such as the MBS current
coupon rate or the 10-year reference rate.

Among a vast family of known short-rate
models, there exists one special model whose
internal law is consistent with the notion of
parallel shocks. This is the Hull-White model
with a zero mean reversion, also known as the
Ho-Lee model3 (see, for example, Hull, 2005).
When the short rate moves by x basis point,
every zero-coupon rate will move by the same
amount, regardless of its maturity.

If the Ho-Lee model is not employed and the
sensitivity to parallel shocks of interest rates is
a must (no approximation accepted), the tree-
based valuation will have to be repeated using
user-defined parallel moves of the yield curve.
Whereas some advantages of the backward in-
duction’s superior speed will be forfeited, the
method will still stand as a viable alternative to
the Monte Carlo method.

More Components, More
Prepay Sources
The APD model given by (4), (5), and (6)
is a two-component pool model exposed to
two sources of prepayment, refinancing and
turnover. Each of these features can be gener-
alized. A mortgage pool can be thought of as
a blend of many prepayment patterns (super-
active, active, moderately active, and so on).
On the other hand, there may exist prepayment
sources that contribute to each of the groups,
but are distinctly different from refinancing and
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turnover. Let us briefly discuss both ways to ex-
tend the model.

As we already pointed out, even a two-
component model ensures smooth prepayment
behavior if each component does so. Within the
APD framework, a refinancing model may in-
clude the traditional S-like curve, aging, and
perhaps some other known empirical mort-
gage effects that can be attributed to a nonop-
timal option exercise. The total prepayment
speed is proven to be between RefiSMM and
TurnoverSMM, being continuously weighted
as controlled by variable ψ(t). Adding more
components into the model does not alter this
fact nor does it add any smoothness in the pre-
pay model. It is also more difficult to fit a three-
or four-component model than the APD model
presented here. We believe that even a simple,
but dynamic, APD model captures the main
prepayment factors, including burnout.

The APD model (4) assumes that the ac-
tive and passive components share the same
turnover rate, and their refinancing speeds re-
late to one another as 1 to β. We can consider
some other prepayment source that is not prop-
agated to the active and passive components
identically, or with the 1 to β ratio. For example,
we may introduce both default termination and
credit cure prepay sources, additive to refinanc-
ing and turnover, but likely having a higher ef-
fect on the passive part than on the active part.4

Of course, additional prepayment sources can
be formally included in the refinancing without
assuming any more that active and passive re-
financing models relate to one another. We will
not be able to initialize ψ(t0) by solving equation
(8), and we must use historical simulation for
this purpose as discussed above. Principally, we
may assume unrelated refinancing models built
for the active and passive components, gaining
generality with little sacrifice of convenience.

Residual Sources of
Path-Dependence
The APD model takes care of the burnout ef-
fect, the major source of path-dependence for

fixed-rate mortgages. After the decomposition
is done, we need to review residual sources
of path-dependence and arrange the numeri-
cal valuation procedure to reduce or eliminate
potential pricing errors.

Prepayment lag, a lookback option feature,
is such a source. Applications to obtain a new
mortgage replacing an old one enter the orig-
ination pipeline 30 to 90 days before the loan
is actually closed and the existing debt is paid
off. Even if the prepayment model features a
lag, but the backward valuation scheme is un-
aware of its existence, the pricing results can
be somewhat inaccurate. This ignorance of the
lag by the backward induction scheme usually
causes small errors for pass-through securities.
However, mortgage strip derivatives are highly
prepayment sensitive, and the lag may change
their values in a sizable way.

It is generally known that lookbacks with
fairly short lag periods can be accounted for
in the course of a backward induction process.
Let us assume, for example, that, on a trino-
mial monthly tree, speed λk actually depends
on market rates lagging one month. Hence, the
MBS value will also depend on both the current
market and 1-month lagged market. This is to
say that each valuation node of the tree should
be “sliced” into three subnodes keeping track of
prices matching three possible historical nodes,
one month back. Of course, this costs computa-
tional time; efficiency may deteriorate quickly
for deeper lags and more complex trees.

Approximate alternatives do exist and it
is feasible to reduce pricing errors without
much trouble. AD&Co employs a progressively
sparse recombining pentagonal tree, which
does not branch off every month. Branches of
the tree are made from two to 12 months long
so that the lagged market rates are explicitly
known for most monthly steps. The lookback
correction can also be adapted for the “frac-
tional” prepayment lag that almost always ex-
ists due to the net payment delay between the
accrued-month-end and the actual cash flow
date. In such a case, λk could be interpolated
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between the current-month and the previous-
month values. Thus, the total lag processing
should account for both prepay lookback and
payment delay.

Another example of path-dependence not
cured by pool decomposition is the coupon re-
set for adjustable-rate mortgages (ARMs). Both
reset caps and nonlinear relationships between
prepayments and coupons make it difficult for a
backward induction scheme to account for this
feature. One possible solution is to extend the
state space and create an additional dimension
that would keep track of the coupon rate for
an ARM (Dorigan et al., 2001). This state-space
extension will come at a cost of both compu-
tational efficiency and memory consumption.
Levin (2002) suggests that the reset provisions
found in typical ARMs allow for backward val-
uation with a practically acceptable accuracy,
without any special measures on curing this
path-dependence.

Modeling Prepayments Universally:
Refinancing Speed as a Function
of Price
We finish the entry with a rather interesting, if
not unique, application of the APD idea where
backward valuation of MBS is not an option,
but a necessity. The academic literature contains
quite a few works on the rational prepayment
exercise models.5 Our APD model is not of that
sort as it is a “mortgage-like” approach that
can accommodate empirical features such as an
S-curve or aging. Yet, it can address some short-
comings typically known for purely ad hoc em-
pirical models. As we have already asserted, the
APD model can value MBS backward provided
that its refinancing and turnover constituents
depend only on the current market. A likely im-
plementation of this rule would rely on some
experimental relationship between the SMMs
and a relevant mortgage index. Although this
is the way most mortgage practitioners en-
vision prepayment modeling, it is not the only
possible approach. In fact, the refinancing be-

havior of homeowners also depends on the
type of mortgage in hand. Given coupon and
market, the economic incentive to prepay van-
ishes when maturity, balloon, or ARM reset date
approach. Hence, each type of mortgage and
each seasoning stage call for its own refinancing
model.

An attractive alternative would be linking the
refinancing speed of a mortgage (still measured
on the grid nodes, separately for the active
and passive pieces) directly to its price appre-
ciation, using path-independent specification
RefiSMM(Price) instead of RefiSMM(Rate).
This is the same hint as the one used for val-
uation of American option bonds except the
refinancing model can still be an exogenous
S-curve, not the “optimal” or “rational” exer-
cise rule. This model would state the refinanc-
ing speed, RefiSMM, as a function of the pool’s
price, for example, 15 CPR if collateral is priced
at 102, 30 CPR for 105, and so on, asymptot-
ically approaching its “ultimate” speed. For-
mulas (4), (5) still allow computing the active,
passive, and total speeds. In particular, the pas-
sive component will still run off at a beta-
reduced speed for the same price premium as
the active component.

In essence, variable λ in the pricing PDE (2)
becomes a function of the unknown P. Such
an equation will still be path-independent, pre-
senting no theoretical or computational issues
for the backward solution. Moreover, if the refi-
nancing behavior is indeed driven by price ap-
preciation and such a universal relationship can
be experimentally established, then the APD
modeling approach and its backward imple-
mentation becomes a natural, if not the only,
way to price an MBS. Any Monte-Carlo-based
valuation method simply would not allow as-
sessing future prices and, hence, prepayment
speeds.

Arguably, the RefiSMM(Price) function can be
viewed as one universal refinancing rule that
can serve many collateral types. Furthermore,
such a model can directly account for additional
loan-specific transaction costs and cost saving
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opportunities. For example, the knowledge of
prepayment penalties, average loan sizes, or
state-imposed taxes can easily be used to mod-
ify the S-curve.

Furthermore, the RefiSMM(Price) formula-
tion can be used for modeling collateral be-
havior for CMOs as well. Although a typical
CMO is path-dependent well beyond its collat-
eral and necessitates Monte Carlo sampling, it
is the prepayment modeling stage that can be
done via the APD scheme. We will start with
valuing collateral first on the grid or a tree, and
then compute and store ActiveSMM and Pas-
siveSMM for every node of the tree as a result
of the backward inducting process described in
this entry. We then run Monte Carlo simulations
for the CMO in question and apply precom-
puted SMMs. As we pointed out, the key com-
positional variable ψ(t) is known going forward
(but not backward), thereby enabling construc-
tion of the full prepayment rate, hence, the cash
flow, for every node and every path.

This approach’s details and an illustration of
how the same S-curve can “serve” both fixed-
rate and adjustable-rate ARMs are given in
Levin (2006). Pricing PDE (2) with λ = λ(P) has
been given mathematical consideration by Gon-
charov (2003, 2006), who studied the existence
and uniqueness of its solution.

KEY POINTS
� The prices of mortgage-backed securities

follow a partial differential equation that in-
cludes interest rates, coupon rates, and pre-
payment rates. Even for a simple mortgage
pass-through security, this valuation PDE is
path-dependent as it depends on the attained
stage of burnout (hence, on past refinancing
incentives).

� The active-passive decomposition model
splits a pool into two path-independent, mu-
tually exclusive borrower groups. APD natu-
rally simulates the burnout effect.

� For mortgage pass-through securities (and
their strip derivatives), APD splits valuation

into two quick backward induction steps and
produces the entire pricing grid for risk mea-
surement at no additional cost (unlike Monte
Carlo simulation).

� Whereas CMOs will still rely on Monte Carlo
simulation as being heavily path-dependent
beyond the burnout, they will benefit from
better prepay modeling.

� The backward induction pricing technique
makes future values accessible and new valu-
ation and modeling tasks feasible. For exam-
ple, one can assume that the refinancing curve
is a function of a loan’s objective price rather
than interest rates. Such an approach can be
viewed as a universal model that applies to
both fixed and adjustable rate pools.

NOTES
1. We can relax this condition just assuming

that the historical turnover rate is known,
not necessarily constant.

2. When using finite difference grids for solving
the pricing PDE, the ghost nodes are part of
the grid.

3. Historical calibration of the Hull-White
model to the swaption volatility surface of-
ten reveals a small-to-zero level of the mean
reversion constant.

4. One reason a borrower is “passive” can be
due to credit-related issues.

5. See Longstaff (2003) and Stanton (1995).
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Abstract: The transformation of groups of mortgage loans with common attributes into tradable
and liquid MBS occurs using one of two mechanisms. Loans that meet the guidelines of the agencies
(i.e., Fannie Mae, Freddie Mac, and Ginnie Mae) in terms of credit quality, underwriting standards,
and balance are assigned an insurance premium (called a guaranty fee) by the agency in question
and securitized as an agency pool. Loans that either do not qualify for agency treatment, or for
which agency pooling execution is not efficient, can be securitized in nonagency or “private-label”
transactions when such transactions are economically feasible. These types of securities do not
have an agency guaranty, and must therefore be issued under the registration entity or “shelf”
of the issuer. Although the analysis of private-label mortgage-backed securities utilizes many
of the techniques employed to assess agency securities, the analysis must be extended in order
to incorporate credit risk and adjust returns for expected principal losses, requiring additional
analysis and metrics.

While the evaluation of private-label mortgage-
backed securities (MBS) utilizes many of the
techniques used in the evaluation of agency
MBS (i.e., Ginnie Mae, Fannie Mae, and Freddie
Mac MBS), the need to incorporate credit risk
and adjust returns for expected principal losses
requires additional analysis and metrics. The
fact that the credit risk in these securities is not

The authors acknowledge the contributions in one section of this entry by Paul Jacob.

assumed by the government, either explicitly
or implicitly, forces investors to evaluate and
judge both the timing of the return of princi-
pal as well as the amount of principal, if any,
that investors can expect to receive. Moreover,
credit analysis has moved up what is called the
credit stack. A major change stemming from
the subprime mortgage crisis is that investors

29
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can no longer assume that senior private-label
mortgage-backed securities have virtually the
same credit risk as agency MBS. Any bond that
does not have agency credit support must be
treated as a “credit piece” requiring the analy-
sis of a variety of internal and external factors.

In this entry, we outline the various ele-
ments that drive the performance of nonagency
MBS, and also examine the interactions of these
factors.1 We then examine a useful framework
for understanding the evolution of a popula-
tion’s credit profile and discuss a variety of
techniques used to evaluate the credit risk and
expected returns of private-label securities.

FACTORS IMPACTING
RETURNS FROM
NONAGENCY MBS
The analysis of agency MBS is focused on es-
timating the timing of principal cash flows
since the government backing of these secu-
rities eliminates investors’ exposure to princi-
pal writedowns. Private-label securities require
layers of additional analysis. This is because of
the introduction of a series of additional fac-
tors that determine the bond’s cash flows and
thus their projected returns. These factors can
be broadly characterized as:

� The amount of principal expected to be
returned.

� The timing of principal returns.
� The allocation of principal within the

transaction.

Before proceeding, it will be helpful to review
a few concepts. Prepayments on nonagency se-
curities must be classified based on their cau-
sation. Unlike agency securities, the return of
principal to the securitization (or, more specif-
ically, the investment trust) must be treated
differently depending on whether it resulted
from a voluntary action by the borrower or
is forced by credit-related difficulties. Model-
ing the impact of voluntary prepayments is rel-
atively straightforward; investors can assume

that 100% of principal being prepaid will be re-
turned on the next payment date. By contrast,
projecting the impact of involuntary prepay-
ments requires an estimate of both how much of
every principal dollar prepaid will actually be
paid to the investor, as well as when principal
payments will be received by the trust.

The Amount and Timing of
Principal Return
Before proceeding, a brief discussion of
terminology will be helpful. For private-label
securities voluntary prepayments encompass tra-
ditional prepayment activity. Involuntary pre-
payments are credit-related prepayments that re-
sult from defaults or other events specifically
related to credit events (such as short sales of
homes), while also accounting for the likelihood
that less than the full amount of principal will be
returned to the transaction (or, more accurately,
the trust holding the deal’s collateral). Volun-
tary prepayments are typically quoted as VPRs,
which stands for voluntary prepayment rate. They
are calculated similar to a conditional prepay-
ment rate (CPR), in which a monthly percent-
age of prepaid principal (sometimes denoted
by VMM) is annualized. Involuntary prepay-
ment speeds are quoted as conditional default
rates (CDRs)2, which are the annualized rate
of default. CDRs are calculated by annualiz-
ing the monthly rate of default as a percentage
of the current balance, or the MDR. The sum of
the monthly VMMs and MDRs equals the total
deal single monthly mortgage (SMM) rate for
any particular month.

The issue of how much principal is projected
to be received as a result of involuntary prepay-
ments is a straightforward function of the as-
sumed default rate and loss severity. Loss sever-
ities are simply the percentage of the defaulted
principal that ultimately will not be returned to
the investment trust. The inverse of loss sever-
ity is the recovery percentage.

The issues associated with the timing of prin-
cipal return are more complex. Since the CDR is
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by definition the involuntary prepayment rate,
a higher default rate assumes the faster return
of at least some principal to investors. As a re-
sult, the faster return of principal to the trust
due to higher default rates can offset the effects
of principal loss. This effect is a function of the
price of the security, the loss severity, and the
tranche’s position in the transaction’s structure
(i.e., under what circumstances the security will
absorb losses).

In addition, the amount of time between when
a default occurs and recovered principal is re-
ceived by the trust (the lag) can have a ma-
jor influence on investor returns, especially for
bonds that are more junior in priority. A longer
lag between the time of default and the re-
ceipt of recovered principal delays the write-
down of the junior bond’s principal value. This
means that the investor may receive interest
payments for a longer period of time, improv-
ing the value of securities for which the interest
payments comprise the bulk of expected cash
flows. In fact, lower-priority subordinates are
sometimes referred to as credit IOs, since in-
vestors assume that no principal will be re-
turned, and the only cash flows that they expect
to receive are coupon payments. Since the out-
standing principal is written off more slowly, in-
vestors holding the tranche receive a larger and
longer stream of interest payments as the lag
extends.

There are a variety of factors that influence
the lag. Both the amount of seriously delinquent
loans at a point in time and the actions of ser-
vicers play major roles in the timing of defaults
and principal recoveries. The period after 2007,
for example, saw a huge increase in the number
of seriously delinquent loans outstanding. At
the same time, servicers (i.e., the entities that
process borrower payments and manage the
foreclosure process) were unable to effectively
manage the huge surge in problem loans. This
resulted in an enormous backup in the foreclo-
sure pipeline, and led to long lags between the
time when loans stopped performing and the
properties were liquidated.

Legal and political factors also impact lag
times. Since real estate transactions are gov-
erned by state and local laws, there are differ-
ences in the timing of principal returns based
on the state in which a loan resides. Some
states, which are referenced as judicial states, re-
quire that a foreclosure be approved by a judge,
which typically slows the foreclosure process.
Foreclosures in nonjudicial states can be pro-
cessed faster, resulting in shorter lags. Also, the
foreclosure process itself can become a matter
of controversy. In 2010, for example, problems
with the legal documentation of foreclosure fil-
ings led to the suspension of foreclosure pro-
ceedings in some states, as well as calls for a
national foreclosure moratorium.

Generally speaking, the amount and timing of
cash flows to the trust are impacted by a variety
of actions and decisions taken by both borrow-
ers and servicers, and are also influenced by
exogenous factors. We discuss how these be-
haviors can be understood and modeled later
in this entry.

Deal-Specific Factors
There are also a series of other subtle and ob-
scure factors that can impact the cash flows
and returns of nonagency securities. Some of
these factors result from decisions by the ser-
vicer, while others vary depending on how an
individual transaction’s governing documents
were written. These factors include (but are not
limited to) the following:

� Servicers are required to advance principal
and interest on delinquent loans. However,
the governing documents of most deals state
that the servicer is not required to ad-
vance any amount it deems “nonrecover-
able” through the foreclosure process. The
interpretation of “recoverability” depends on
servicers’ policies with respect to how long
they will advance against seriously delin-
quent loans, along with the loan-to-value ra-
tios (LTVs) of properties backing these loans.
(Since expected recoveries are a function of
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the current LTV, servicers often will stop ad-
vancing on loans where the current LTV ex-
ceeds a certain threshold.)

� The treatment of “modified” loans (i.e., loans
for which the terms were altered in order to
help borrowers meet their obligations) within
individual transactions was rarely outlined
in deals issued prior to the mortgage crisis.
For example, there have been controversies
regarding whether “forborne” (i.e., deferred)
principal resulting from loan modifications
should be written off immediately (which
typically benefits the senior bondholders in a
transaction) or deferred until the point where
principal losses are realized by the trust,
which would result in more interest flowing
to the subordinates.

� The allocation of losses due to principal and
interest “shortfalls” can become highly com-
plex and deal-specific, particularly once the
subordinate bonds in an overcollateralization
structure are paid off. For example, some
deals (typically those issued before mid-2005)
only allow for the balances of senior bonds to
be reduced by payments actually made by
borrowers. These structures can experience
a phenomenon called “negative overcollater-
alization,” which means that losses for the
seniors are “implied.” As a result, losses on
the senior tranches are only realized when
the collateral pool is entirely paid off and the
trust is terminated with some bond balances
still outstanding.

One conclusion that can be drawn is that in-
vestors in private-label MBS must have the will-

ingness and ability to read and understand the
documents governing their holdings. Events
and factors that were either not contemplated
or were viewed as highly improbable can, un-
der adverse conditions, become important in
determining investor returns.

UNDERSTANDING THE
EVOLUTION OF CREDIT
PERFORMANCE WITHIN
A TRANSACTION
As discussed previously, the actions and deci-
sions taken by both borrowers and servicers,
along with outside environmental factors, de-
termine both the amount and timing of cash
flows received by the trust. This behavior can
be conceptualized through the use of transition
matrices. Such matrices show the probability of
loans moving from one credit status (or “state”)
to another in any month. This technique is
often used as a foundation for formally model-
ing voluntary and involuntary speeds. We ad-
dress it here, however, to help conceptualize
the “life cycle” of a transaction’s credit pro-
file. The methodology offers useful techniques
for demonstrating how the credit problems of
obligors evolve into delinquencies and defaults
and flow through a transaction over time. It is
also useful in describing and quantifying how
changes in the overall credit environment might
impact the performance of a loan population.

Table 1 contains a hypothetical example of a
roll matrix for a loan population, which can
be defined either narrowly (e.g., for a single

Table 1 Hypothetical Transition Matrix

T1 (“to”) State

Payoff Current D30 D60 D90+ Bk Fcl REO Liq Total

Current 0.6% 94.6% 4.6% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 100.0%
D30 0.2% 20.0% 42.4% 36.9% 0.0% 0.4% 0.0% 0.0% 0.1% 100.0%

T0 D60 0.1% 2.8% 8.9% 34.1% 52.8% 0.5% 0.7% 0.0% 0.2% 100.0%
(“from”) D90+ 0.1% 1.9% 0.7% 1.0% 85.7% 0.7% 8.3% 0.2% 1.5% 100.0%
State Bk 0.1% 0.1% 0.3% 0.2% 3.7% 86.8% 8.3% 0.4% 0.1% 100.0%

Fcl 0.1% 0.7% 0.1% 0.0% 4.2% 1.3% 88.7% 3.4% 1.5% 100.0%
REO 0.7% 0.0% 0.0% 0.0% 0.2% 0.1% 0.4% 82.3% 16.3% 100.0%
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Table 2 Applying the Current Population Profile to the Transition Matrix

A. Current Deal Profile

Percent of UPB

Current 61.1%
D30 4.6%
D60 2.1%
D90+ 16.6%
Bk 2.2%
Fcl 11.4%
REO 2.0%

B. Multiply Current Performance by Transition Matrix

T1 (“to”) State

Payoff Current D30 D60 D90+ Bk Fcl REO Liq

Current 0.3% 57.8% 2.8% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0%
D30 0.0% 0.9% 2.0% 1.7% 0.0% 0.0% 0.0% 0.0% 0.0%

T0 D60 0.0% 0.1% 0.2% 0.7% 1.1% 0.0% 0.0% 0.0% 0.0%
(“from”) D90+ 0.0% 0.3% 0.1% 0.2% 14.2% 0.1% 1.4% 0.0% 0.2%
State Bk 0.0% 0.0% 0.0% 0.0% 0.1% 1.9% 0.2% 0.0% 0.0%

Fcl 0.0% 0.1% 0.0% 0.0% 0.5% 0.1% 10.1% 0.4% 0.2%
REO 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.6% 0.3%
Subtotal 0.4% 59.2% 5.1% 2.6% 15.9% 2.3% 11.7% 2.1% 0.8% 98.8%

Normalized Totala 59.9% 5.1% 2.7% 16.1% 2.3% 11.8% 2.1% 100.0%
aExcluding payoffs and liquidations.

transaction) or more broadly (to represent a par-
ticular product and vintage). The vertical axis
of the matrix shows the current (or “from”)
states of the population, while the horizontal
axis shows the future (i.e., “to”) states of the
loans, typically one month hence. The horizon-
tal axis also allows for two additional states,
which would represent termination of the loans
either through “payoff” (i.e., prepaid volun-
tarily) or “liquidation” (involuntarily prepaid).
Each row must sum to 100%, as every loan in
the population at time zero must transition to
some state in the following month.

The matrix itself can be created through a va-
riety of techniques. In some cases, the matrix
simply represents historical experience (over ei-
ther a short- or long-term horizon), while other
analysts use loan-level simulations to generate
the matrix. Note that not all cells have values
greater than zero, as some transitions are im-
possible; for example, a loan cannot go from
current to 60-days delinquent without first re-
siding in the 30-days delinquent bucket.

Once a transition matrix is created, it can be
applied to the population’s current profile (i.e.,
at time T0) as a means of projecting the popu-
lation’s credit performance in a future month.
Table 2 illustrates the matrix math involved in
generating the population’s profile in month T1,
treating the T0 profile as a 1×7 matrix shown in
Table 2(A) to be multiplied times the 7×9 tran-
sition matrix in Table 1.3 Table 2(B) shows the
resulting profile one month hence (i.e., at time
T1) after summing each column, along with the
percentage of loans that drop out of the pop-
ulation through voluntary or involuntary pre-
payment. The remaining population profile is
then normalized by dividing the percentages
of remaining loans in each credit state (i.e., ex-
cluding loans that are paid off or liquidated)
by the remaining percentage in the pool. (In the
exhibit, 98.8% represents the portion of the pop-
ulation that remains active; the 59.2% of loans
expected to be current in month T1 is divided
by this percentage to get the 59.9% normalized
total.)
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Figure 1 Projected Long-Term Performance Trends for Subject Deal

The process can be performed iteratively in
order to show how the population’s profile can,
given unchanged transition behavior, be ex-
pected to evolve over time. (This means that the
profile at T1 can be multiplied by the transition
matrix to generate a profile for time T2, etc.)
Figure 1 shows the projected profile of the
population over the next 10 years by iteratively
applying the transition matrix in Table 1 to the
evolving population. The chart indicates that
liquidated loans (i.e., loans that go into default
and are removed from the pool through the
foreclosure process) will comprise the largest
single cohort in around three years if current
transition probabilities hold. Moreover, two-
thirds of the current population can be expected
to be liquidated in 10 years.

The iterative calculation can also be used to
generate projections for voluntary and invol-
untary prepayment speeds. VPR and CDR vec-
tors can then be utilized in yield and cash flow
calculators.4 Figure 2 shows the vectors gener-
ated by the analysis over 120 months.

Interestingly, the vectors are neither constant
nor linear; note that the CDR vector increases

fairly steadily for the first few years before level-
ing off around month 60. This pattern highlights
the intrinsic nature of population transitions.
Loans flow through the different credit states
at varying rates that are a function of transition
probabilities captured by the matrix. Therefore,
the levels of VPRs and CDRs over time will vary
even if transition activity is assumed to remain
stable.

However, transition patterns normally do
vary over time, reflecting changes in the eco-
nomic and lending landscape as well as in the
actions of servicers. The impact of changing be-
haviors can be captured by altering the transi-
tion matrix at a point in time. For example, a
move on the part of servicers to more aggres-
sively clean up the foreclosure pipeline would
be captured in a transition framework by in-
creasing the percentages in “late-stage” transi-
tions (i.e., D90+ to FC, FC to REO, and REO to
Liq) at a point in the future. Conversely, a full
foreclosure moratorium (which was discussed
in 2010) would be taken into account by chang-
ing all probabilities “from” the D90+, FC and
REO buckets to zero for the expected length
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Figure 2 VPRs and CDRs for Subject Deal Using Unchanged Transition Matrix

of the moratorium. Finally, improved borrower
performance would be captured by increasing
“cures,” (i.e., D30 and D60 to Current) while
decreasing the Current to D30 percentage. The
updated matrix would be utilized at the point
when the changes in behavior were expected to
go into effect.
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Incorporating such changes in servicer and/
or borrower behavior would result in discon-
tinuities in the VPR and CDR vectors. Along
with the base vector, Figure 3 shows the pro-
jected CDRs for the subject population if the
vectors are calculated using transition matri-
ces after month 12 that reflect the “Foreclosure
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Cleanup” and “Borrower Improvement” sce-
narios described above.

THE PROCESS OF
ESTIMATING
PRIVATE-LABEL
MBS RETURNS
The analysis and valuation of private-label MBS
is complicated by the need to project and ac-
count for a number of variables over and above
those required to evaluate agency securities. As
noted previously, the analysis requires addi-
tional metrics necessary to project the principal
and interest cash flows paid to the trust, as well
as how they will be allocated to the different
tranches under a variety of scenarios.

The additional complexity associated with
private-label MBS means that the dominant
metric used to assess expected returns is loss-
adjusted yield. This represents the internal rate
of return (IRR) for a security’s projected cash
flows using the additional factors and variables
discussed previously after adjusting for the nor-
mal MBS-specific issues such as payment fre-
quency and delay. The increased complexity
associated with the product means that some
methodologies, such as total return analysis,
are infrequently utilized in evaluating credit
pieces. For example, total return requires the
estimation of a terminal value at the horizon
for each scenario being analyzed. The complex-
ity involved in projecting future prices makes
them, and thus the analysis, quite subjective.

In the following sections, we illustrate the
technique described in this entry using a series
of tranches, as well as the collateral, from a rep-
resentative 2007-vintage hybrid ARM transac-
tion.5 The three tranches examined include a
super–senior (SS) tranche with 24.2% original
credit support; a senior mezzanine (SM) tranche
(i.e., a bond originally rated triple-A but junior
in priority to the SS) with original credit sup-
port of 5.25%; and a subordinate (“sub”) bond
or tranche that originally had 3.85% credit en-
hancement.

Differentiating between Collateral
and Tranche Losses
The various factors outlined above have in-
teresting effects and interactions within indi-
vidual transactions with respect to losses. For
one thing, it is important to differentiate be-
tween losses on a deal’s collateral pool (i.e., at
the trust level) and those impacting individual
bonds within a transaction. Private-label MBS
have a variety of internal mechanisms that allo-
cate cash flows and principal losses within the
structure to tranches having different degrees
of seniority. Therefore, losses absorbed by indi-
vidual bonds are a function of both the losses
absorbed by the trust and the amount of credit
support available to them.

Figure 4 shows projected losses, as a per-
centage of original face, for both the over-
all collateral pool of the deal as well as the
three tranches described above. Losses were
calculated using different loss severity assump-
tions while assuming a constant 4% VPR and
CDR. (These levels are hypothetical and used
for illustrative purposes only.) While the line
showing projected losses on the collateral has
a linear upward slope, the profile of projected
losses for the tranches are quite different. For
example, the SS tranche suffers no losses un-
til severities are greater than 50%, while the
SM begins to experience losses at severities
greater than 40%. The sub tranche, however, has
a unique loss profile. It experiences no losses
until severities exceed 30%, but at that point
losses spike higher; virtually the entire princi-
pal value of the bond is written off once the
assumed loss severity reaches 45%. The chart
highlights a critical conclusion; in addition to
being different from the collateral, each bond’s
exposure to losses is a function of its place in
the transaction’s capital structure.

The Interaction of Credit Inputs
There are also a series of interesting observa-
tions that can be made by comparing the yields
of the three bonds under a variety of scenarios.
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For the purposes of the analysis, the bonds were
all run at the hypothetical level of a 10% yield
to assumptions of 4% VPR, a 6% CDR, a 60%
loss severity, and a 12-month lag. (This resulted
in prices of 64-12, 48-00, and 6-22 for the three
securities.) Using those base-case prices, we ran
a few representative scenarios in which differ-
ent variables were altered, with the goal of ex-
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Figure 5 Projected Yields on Different Tranches Using Different CDR (assumption: 4% VPR, 60%
severity, 12-month lag)

ploring some of the subtleties of the different
tranches’ returns.

Figure 5 shows yields on the three securities
calculated using different CDR projections, as-
suming a constant 4% VPR along with a 60%
loss severity and a 12-month lag. The yield on
the SS tranche remains fairly stable (and ac-
tually increases slightly until the CDR reaches
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6%). The reason for this behavior is that faster
CDRs effectively increase the overall rate of pre-
payments to the SS tranche; however, the bond
does not absorb losses until the 6% CDR level is
breached due to its credit support. Given the
tranche’s highly discounted dollar price, the
faster rate of prepayments increases its yield.
By contrast, yields on the more junior tranches
decline as CDRs are increased since both bonds
realized losses once their limited credit support
is exhausted.

The rate of voluntary prepayments also in-
fluences returns for some bonds in the trans-
action. Figure 6 shows projected yields on the
three tranches at different assumed VPRs, us-
ing a constant 6% CDR (and, as before, 60%
severity and a 12-month lag assumption). While
their profiles partially reflect the impact of faster
prepayments on bonds with deeply discounted
prices, voluntary prepayments also have a sub-
tle impact on nonagency MBS. When voluntary
prepayments increase, principal is paid back to
investors at 100% of face value. This means that
there is less principal outstanding that can later
go into default, even if the CDR and loss sever-
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Figure 6 Projected Yields on Different Tranches Using Different VPR (assumption: 6% CDR, 60%
severity, 12-month lag)

ity are held constant. As a result, yields for the
senior tranches are influenced (and in the SM’s
case, strongly so) by the expected voluntary pre-
payment speed.

By contrast, the yield on the sub tranche class
is insensitive to changes in the VPR assump-
tion, in part as a result of its place in the deal’s
structure. (Subordinates generally don’t receive
voluntary prepayments in an overcollateraliza-
tion structure unless the deal “steps down,”
which does not happen under these assump-
tions.) Its returns, however, are highly sensi-
tive to the combination of assumptions used
for CDRs, loss severities, and lags. In partic-
ular, the severity assumption plays a key role
despite the fact that the bond does not receive
principal under most scenarios. As a credit IO,
the tranche’s outstanding principal value serves
as its notional value by dictating how much in-
terest is paid to investors in any single month.
Since the severity strongly influences how fast
the tranche’s face value is written off, it (along
with the lag assumption) dictates how long the
bond will remain outstanding and thus how
much interest investors can expect to receive.
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Evaluating Available Credit Support
Before evaluating projected yields and cash
flows for a tranche, a prudent step is to assess
the security’s remaining credit support rela-
tive to the expected level of losses. The objec-
tive is to evaluate whether a bond’s remaining
credit support (i.e., the amount and proportion
of bonds junior in priority) is adequate given
the losses that the transaction is expected to ab-
sorb. The following discussion outlines a simple
yet useful methodology for gauging a security’s
credit support relative to expected losses by us-
ing its current performance profile.

The analysis begins by evaluating a transac-
tion’s capital structure. Table 3(A) shows the
original and current credit structure of a deal.

(While hypothetical, the deal’s structure and
profile is representative of transactions issued
in 2006 and 2007.) The next step, shown in
Table 3(B), uses a simple technique to estimate
future cumulative losses for the transaction.
Utilizing the current performance profile of
the transaction, each performance cohort is as-
signed a probability of ultimate default, along
with an assumed loss severity. The example
uses a 10% estimate of ultimate default on
current loans, a 50% estimate for loans that
are D30, while 100% of loans that are seriously
delinquent (D90, FC, and REO) are expected
to ultimately default. (Note that loans in
bankruptcy are not included in this calculation
since they are generally captured in other

Table 3 Calculating “Coverage Ratios” for Tranches in a Transaction

A. Original and Current Deal Credit Structure

Tranche Orig. Rating Orig. C/E Curr. C/E Curr. Factor

A1 (super senior) AAA 25.0% 23.2% 0.6950
A2 (senior mezz) AAA 7.5% 4.5% 0.6950
M1 AA 4.0% 2.4% 1.0000
M2 A 3.5% 1.6% 1.0000
M3 BBB 3.0% 0.8% 1.0000
M4 BB 2.5% 0.0% 1.0000
M5 B 1.5% 0.0% 0.0180
M6 NR 0.0% n/a 0.0000

B. Current Credit Profile of Transaction

Performance UPB
Eventual
Default

Assumed
Severity Expected Loss

Current 63.1% 10% 75% 4.73%
D30 4.4% 50% 75% 1.65%
D60 3.1% 90% 75% 2.11%
D90 14.6% 100% 75% 10.96%
FC 12.8% 100% 75% 9.61%
REO 2.0% 100% 75% 1.48%

Total 30.54%

C. Calculating Coverage Ratio

Tranche Curr. C/E
Coverage Ratio
(curr. CE/expected loss)

A1 (super senior) 23.2% 0.760
A2 (senior mezz) 4.5% 0.147
M1 2.4% 0.079
M2 1.6% 0.052
M3 0.8% 0.026
M4 0.0% 0.000
M5 0.0% 0.000
M6 n/a n/a
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delinquency buckets.) Each delinquency cohort
is multiplied by its assigned percentages and
the loss severity assumption; the sum of these
figures represents the percentage of losses that
the deal will ultimately be expected to absorb.

The final step is to divide each tranche’s cur-
rent credit support percentage by the transac-
tion’s total expected losses, as shown in Table
3(C). This coverage ratio measures how much
credit support is available to each tranche if
the expected losses are eventually realized. In
the example, the 76% coverage ratio of the A1
tranche suggests that the bond is likely to ex-
perience significant future losses, despite its
current sizeable cushion. Expected losses will
probably also be large enough to eventually
cause the other outstanding bonds in the capi-
tal structure (i.e., the A2 down to the M5) to be
entirely written down.

While this analysis serves as a useful first step
in evaluating individual tranches, it is limited
by its simplistic approach. The default percent-
ages assigned to each credit bucket are arbi-
trary, and also cannot account for changes in
the credit environment. It also doesn’t take into
account the issue of time, that is, when losses
will accrue and bonds will be written down.
This limits its usefulness in evaluating credit
IOs and more junior securities. Finally, the anal-
ysis doesn’t take some forms of credit support,
such as excess spread and insurance wraps, into
account.

Despite its limitations, however, the method-
ology serves as a useful first step in evaluating
the credit enhancement currently supporting a
tranche. In addition, investors evaluating po-
tential purchases of newer securities will find
this and related techniques particularly help-
ful in evaluating both the adequacy of a bond’s
credit support and whether it is vulnerable to a
downgrade by the rating agencies.

Yield and Loss Matrix Analysis
As noted previously, the complexities associ-
ated with the product have made loss-adjusted

yield the primary metric for evaluating and
comparing credit-related MBS. However, stan-
dard yield matrices must be altered in order to
account for the numerous additional inputs and
outputs necessary to properly evaluate private-
label MBS. The additional inputs include
separate entries for voluntary and involuntary
prepayments, along with the inclusion of ex-
pected loss severities, lags, and servicer ad-
vances. In some cases, the analysis must also
account for the presence of insurance wraps and
how long they might remain in place; expec-
tations for how long servicers will continue to
advance principal and interest; and whether the
deal will pass its triggers (i.e., the tests that dic-
tate cash flow distributions within individual
transactions).

In addition, a number of additional outputs
are necessary in order to assess a bond’s value.
In addition to average life, spreads, and dura-
tions, investors need to assess expected losses
on both the tranche and the deal’s collateral at
different levels of the inputs. Also useful are the
points in time, if applicable, that the bond will
experience its first principal loss, along with the
amount of liquidations and losses previously
realized.

Table 4 contains examples of yield matrices
that might be used to evaluate the super–senior
and senior mezzanine tranches introduced in an
earlier section. Table 4(A) and (B) shows tables
for the SS (super senior) tranche and the senior
mezzanine (SM) tranche, respectively, priced
(as before) at a 10% loss-adjusted yield to a 4%
VPR/6% CDR base assumption. The tables in
the exhibit show loss-adjusted yields and credit
performance data for a range of CDRs, while
holding the other variables (i.e., VPR, loss sever-
ity, and lag) constant. In addition to yields and
average lives, the matrices show the durations,
the dates of the first writedown, and the per-
centages of bond and collateral losses at the dif-
ferent CDR assumptions (which are the same
for both tranches in this case).

However, the necessity of holding multiple
inputs constant makes this format somewhat
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Table 4 Example of Yield Tables for Private-Label MBS Tranches Pricing at 10% Yield at 4% VPR/6% CDR, 60%
Severity, and a 12-Month Lag

A. Super–Senior Tranche (Px 64-12)

VPR 4 4 4 4 4 4
CDR 2 4 6 8 10 12

Yield 9.725 9.978 9.977 9.711 9.310 8.835
WAL 10.39 9.96 8.93 7.95 7.11 6.4
Duration 6.49 6.09 5.71 5.36 5.05 4.77

First-Loss Dt N/A 09/25/2032 08/25/2023 11/25/2019 12/25/2017 09/25/2016
% Tranche Loss (orig. face) 0.0 0.4 3.7 7.6 11.1 13.9
% Collat. Loss (orig. face) 9.0 15.5 20.4 24.0 26.8 28.9
% Collat. Loss (curr. face) 13.0 22.5 29.6 34.8 38.8 41.9

B. Senior Mezzanine Tranche (Px 48-00)

VPR 4 4 4 4 4 4
CDR 2 4 6 8 10 12

Yield 15.066 14.406 9.995 3.784 −2.785 −9.137
WAL 10.38 6.69 4.1 3.01 2.46 2.13
Duration 5.18 4.37 3.59 3.08 2.74 2.52

First Loss Dt N/A 06/25/2019 10/25/2015 05/25/2014 08/25/2013 04/25/2013
% Tranche Loss (orig. face) 0.0 18.8 34.0 41.2 45.1 47.6
% Collat. Loss (orig. face) 9.0 15.5 20.4 24.0 26.8 28.9
% Collat. Loss (curr. face) 13.0 22.5 29.6 34.8 38.8 41.9

awkward and time-consuming. For example,
the tables would need to be recalculated mul-
tiple times in order to account for other as-
sumptions for VPRs, loss severities, and lags.
An alternative and somewhat more flexible
scheme displays two variables as the axes, with
yields and/or bond losses as the output (creat-
ing three-dimensional “surfaces” of yields and
losses). Table 5 contains a matrix for the SM
tranche showing VPRs on the vertical axis and
CDRs on the horizontal, while holding the loss
severity and lag assumptions constant. As with
other forms of matrices, however, this format

is also limited to showing two variables at any
one time. Additional matrices would need to
be constructed in order to display different fac-
tors, depending on how relevant they were to
the analysis.

Model-Generated Analysis
The variables used in the above analysis can be
generated in a variety of ways, depending on
both investors’ practices and the prevailing cir-
cumstances. During periods of relatively stable
credit and housing performance, for example,

Table 5 Yield and Bond Loss Matrix for Senior Mezzanine Tranche at Base-Case Price

2 13.420/0.0% 12.166/25.1% 7.081/39.9% 0.309/46.0% −6.665/49.2% −13.249/51.1%
4 15.067/0.0% 14.402/18.8% 9.992/34.1% 3.781/41.2% −2.786/45.1% −9.137/47.6%
6 16.893/0.0% 16.681/13.9% 12.847/29.1% 7.128/36.9% 0.922/41.4% −5.209/44.4%

VPR 8 18.890/0.0% 19.010/9.9% 15.681/24.8% 10.396/33.1% 4.515/38.1% −1.409/41.4%
10 21.050/0.0% 21.394/6.6% 18.515/21.1% 13.621/29.7% 8.033/35.0% 2.306/38.6%
12 23.368/0.0% 23.843/4.0% 21.368/17.9% 16.830/26.6% 11.509/32.2% 5.968/36.0%

2 4 6 8 10 12

CDR
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some investors may choose to simply utilize re-
cent history for inputs such VPRs, CDRs, and
loss severities, while making subjective adjust-
ments based on an examination of the transac-
tion’s current collateral profile.

Alternatively, some investors may choose to
utilize more sophisticated analysis, which can
incorporate both the attributes of a deal’s col-
lateral along with exogenous economic and
market variables. The models can be further
incorporated into integrated systems that gen-
erate yield and loss figures while simultane-
ously analyzing and stratifying the collateral.
Partial output from such an integrated sys-
tem is shown in Table 6. The exhibit shows
a yield matrix from Vichara Technology’s sys-
tem for the SS tranche.6 The matrix shows a
variety of outputs at different multiples of the
prepayment and default models, assuming un-
changed home prices and interest rates. In ad-
dition, separate tables generated by the analysis
(not shown) display the current credit structure
of the deal, the tranche’s cash flows, and analy-
ses of the collateral. (The model also allows for
the generation of a “credit OAS,” although this
metric is not widely utilized by investors at this
writing due to its sensitivity to modeling error.)

Additional analysis can be generated for
different home price appreciation (HPA) and
interest rate assumptions. For example, a
conservative set of assumptions might call
for a 100 basis point parallel increase in rates
accompanied by a 10% immediate decline in
home prices. In addition, models for HPA that
project different appreciation rates based on
geographic and economic factors can also be
utilized.

In the case of private-label securities, the
normal challenge of assessing a model’s “rea-
sonableness” is complicated by the interactive
nature of the variables. Unlike agency securi-
ties, where “model-equivalent CPRs” can be
easily estimated (i.e., the bond’s average life
is iteratively calculated at various CPRs until
it equals the model’s calculated WAL), the
division of prepayments into voluntary and
involuntary categories means that a model-

equivalent CDR cannot be calculated unless
the VPR is held constant, and vice versa. This
necessitates the need for additional output in
order to view and judge the model’s VPR and
CDR projections.

Interpreting the Outputs
The analysis and valuation of most securities
(and virtually all fixed income investments) can
be broadly summarized as assessing the “cor-
rect” level of expected returns given both mar-
ket conditions and the bond’s risks. This means
that a number of factors need to be evaluated,
including:

� The security’s base-case yields and returns.
� Its returns in best- and worst-case scenarios.
� The likelihood of different scenarios being

realized.

The relative complexity of analyzing private-
label MBS, particularly compared to evaluat-
ing agency-backed securities, results from both
the multiplicity of factors influencing returns as
well as the many exogenous elements that drive
these factors.

For example, a cursory evaluation of the yield
matrix for the SM tranche (contained in Table
4(B)) indicates that that the bond’s projected
yields decline rapidly as CDRs are increased.
However, the matrix in Table 5 also shows
that the tranche’s yields remain relatively high
if VPRs increase commensurately with CDRs
(i.e., in the lower-right quadrant of the matrix).
Alternatively, its projected yields are negative
when higher CDRs are paired with lower VPRs
(in the upper-right quadrant), while yields
greater than 20% can be achieved with a com-
bination of fast VPRs and slowing CDRs (the
lower-left quadrant). If an investor decides that
the combination of VPRs and CDRs in the
upper-right quadrant represents a likely sce-
nario, the negative yields projected for such
scenarios indicates that the base-case yield as-
sumption is too low to compensate investors for
the risks being accepted.

Utilizing just these two variables, the analy-
sis requires investors to assess the returns of
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Table 6 Partial Output of Integrated Model for SS Bond

HPI FLAT/+0 IR Shock Scenario

Percent of Default Model
Percent of
Prepay Model Analytics 75% 100% 125%

Yield 10.561 8.416 7.295
Price 64.38 64.38 64.38
WAL 5.454 5.295 4.979
MDuration 3.661 3.878 3.855
Convexity 0.263 0.303 0.308
Present Value 157,012,886 157,012,886 157,012,886

75% Present Value + Accrued 157,021,422 157,021,422 157,021,422
Collateral Loss % 37.84% 44.74% 47.97%
Bond Collateral Loss 37.84% 44.74% 47.97%
Bond Principal Window 1-333 1-356 1-379
Bond Principal Writedown 31,919,013 51,373,711 61,802,013
First Period Writedown 37 31 27
Bond Principal Writedown 13.09% 21.06% 25.34%
Total Interest Shortfall — — —

Yield 14.344 10.668 8.359
Price 64.38 64.38 64.38
WAL 4.252 4.336 4.268
MDuration 2.695 3.062 3.250
Convexity 0.144 0.186 0.216
Present Value 157,012,886 157,012,886 157,012,886

100% Present Value + Accrued 157,021,422 157,021,422 157,021,422
Collateral Loss % 29.62% 39.49% 45.29%
Bond Collateral Loss 29.62% 39.49% 45.29%
Bond Principal Window 1-328 1-355 1-388
Bond Principal Writedown 17,307,456 40,600,481 56,914,682
First Period Writedown 40 30 27
Bond Principal Writedown 7.10% 16.65% 23.33%
Total Interest Shortfall — — —

Yield 17.718 14.530 10.856
Price 64.38 64.38 64.38
WAL 3.495 3.576 3.631
MDuration 2.183 2.379 2.650
Convexity 0.094 0.112 0.140
Present Value 157,012,886 157,012,886 157,012,886

125% Present Value + Accrued 157,021,422 157,021,422 157,021,422
Collateral Loss 24.23% 32.30% 40.38%
Bond Collateral Loss 24.23% 32.30% 40.38%
Bond Principal Window 1-328 1-356 1-394
Bond Principal Writedown 9,427,796 26,037,741 45,698,364
First Period Writedown 44 32 27
Bond Principal Writedown 3.87% 10.68% 18.74%
Total Interest Shortfall — — —

Source: Vichara Technologies. Analysis utilizes deal libraries of Intex Solutions, and models and data provided by
CoreLogic.

potential investments in a range of different
prepayment and default scenarios with vary-
ing degrees of plausibility. Further inquiries
should be made regarding expected principal
losses on the investment under the assumed

scenarios, taking the availability and adequacy
of credit support into account. The sensitivity of
the bond’s returns to changes in other relevant
factors must then be examined. As an example,
expectations for real estate prices will directly
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impact expected loss severities, which will in
turn affect an investor’s willingness to buy se-
curities that are more junior in priority. Another
example relates to the state of the foreclosure
pipeline and its influence on lags. During much
of 2009 and 2010, the backup in the foreclosure
pipeline meant that buying credit IOs, which
benefited from the extended lag, was a prof-
itable strategy as long as servicers continued to
advance P&I.

The most difficult aspect of the analysis is gen-
erating expectations for factors that are difficult
or impossible to quantify. The previous example
of the value of credit IOs serves as an example.
In addition to the dearth of significant informa-
tion from servicers (who treat much of the in-
formation as having proprietary value), certain
factors simply defy quantification. In addition,
investors must continuously check their analy-
sis to be certain that they understand what fac-
tors are driving their results. This means that
the sort of analyses performed earlier in this
entry (particularly in the section describing the
interaction of factors) is highly useful in devel-
oping intuitions for how bonds can be expected
to perform under varying conditions.

Note that this entry’s discussions were fo-
cused on the evaluation of legacy bonds, that is,
private-label MBS issued in the period prior to
mid-2007. The techniques described in this en-
try, however, can also be used to evaluate newly
issued securities, although some adjustments to
the methodologies might need to be made. In-
vestors analyzing the adequacy of credit sup-
port using the “coverage ratio” methodology
demonstrated in Table 3, for example, would
need to replace the use of a transaction’s current
credit profile with alternative ways of predict-
ing future losses.

Finally, noticeably absent from these discus-
sions were any mention of the rating agen-
cies. Bond ratings cannot and should never
substitute for rigorous analysis, as investors
that experienced the post-2007 credit meltdown
can attest. Ratings are relevant mainly due to
constraints and restrictions on the holdings of
regulated investors; when bond holdings are

downgraded to below investment grade, many
investors are forced to liquidate them, causing
their prices to crater. Techniques similar to the
coverage ratios outlined previously can be used
to monitor the adequacy of bonds’ credit sup-
port and identify bonds that are vulnerable to
being downgraded.

KEY POINTS
� In the analysis of agency MBS, since the gov-

ernment backing of these securities eliminates
investors’ exposure to principal writedown,
the focus is on estimating the timing of prin-
cipal cash flows.

� Private-label securities require layers of addi-
tional analysis because of the introduction of
a series of additional factors that determine
the bond’s cash flows and thus their pro-
jected returns. These factors can be broadly
characterized as (1) the amount of principal
expected to be returned, (2) the timing of
principal returns, and (3) the allocation of
principal within the transaction.

� The issue of how much principal is projected
to be received as a result of prepayments is a
straightforward function of the assumed de-
fault rate and loss severity. Loss severity is
measured as the percentage of the defaulted
principal that will ultimately not be returned
to the investment trust and of this measure is
the recovery percentage.

� The amount and timing of cash flows to the
trust are impacted by a variety of actions and
decisions taken by both borrower and ser-
vicers, and are also influenced by exogenous
factors.

� The analysis and valuation of private-label
MBS is complicated by the need to project
and account for a number of variables over
and above those required to evaluate agency
securities, requiring additional metrics neces-
sary to project the principal and interest cash
flows paid to the trust, as well as how they
will be allocated to the different tranches, un-
der a variety of scenarios.
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� The additional complexity associated with
private-label MBS means that the dominant
metric used to assess expected returns is loss-
adjusted yield.

� Before evaluating projected yields and cash
flows for a tranche, a prudent step is to as-
sess the security’s remaining credit support
relative to the expected level of losses. The
objective is to evaluate whether a bond’s re-
maining credit support (i.e., the amount and
proportion of bonds junior in priority) is ad-
equate given the losses that the transaction is
expected to absorb.

� The relative complexity of analyzing private-
label MBS, particularly compared to evalu-
ating agency-backed securities, results from
both the multiplicity of factors influencing re-
turns as well as the many exogenous elements
that drive these factors. The most difficult as-
pect of the analysis is generating expectations
for factors that are difficult or impossible to
quantify.

NOTES
1. For an explanation of nonagency MBS, see

Fabozzi (2005) and Fabozzi, Bhattacharya,
and Berliner (2011).

2. See Chapter 4 in Fabozzi, Bhattacharya, and
Berliner (2011).

3. The example uses the common notation
where loans that are 30 to 59 days delinquent
are shown as D30, loans that are 90 or more
days delinquent are D90+, and so on. “Pay-
off” accounts for loans that are voluntarily
prepaid; “Liq” are seriously delinquent loans
that are liquidated, with T1 representing the
month when recoveries are received by the
trust.

4. The vectors technically are not the equivalent
of VPRs and CPRs since they don’t account
for the effects of amortization on the cash
flows.

5. The analysis utilized CWALT 07-HY8C A1,
A2, and M1.

6. The system utilizes the deal libraries of Intex
Solutions; the analysis shown used models
and data provided by CoreLogic.
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Abstract: The valuation of residential mortgage-backed securities begins with a projection of a
subject security’s cash flow. The monthly cash flow from the underlying pool of mortgage loans
includes three components: (1) scheduled principal payments (also referred to as amortization),
(2) interest payments, and (3) any prepayments. Prepayments are any payments made by borrow-
ers that are in excess of the scheduled principal payment. Consequently, the cash flow depends
on the prepayment behavior of the borrowers in the mortgage pool. In addition to prepayments,
the expected credit performance of the underlying loans must be projected to estimate a residen-
tial mortgage-backed securities cash flow. The sharp deterioration in mortgage performance that
emerged in late 2006 led to the realization that prepayments and defaults often had related effects
on the performance of these securities, even though they represent very different phenomena. As
a result, new terminology has emerged to clarify the different circumstances that result in the early
return of principal to investors. Understanding the terms used in the market to define prepayments
and default experience, as well as the methodologies used to generate these metrics, is important
for the following reasons: efficient risk-based pricing at the origination level; evaluation of relative
value within the residential mortgage-backed securities sector (as well as across the fixed income
universe); effective hedging and management of prepayment and credit risk exposure; and ex post
performance attribution.

47



48 Mortgage-Backed Securities Analysis and Valuation

Securities backed by a pool of residential mort-
gage loans, referred to as mortgage-backed se-
curities (MBS) or mortgage-related securities,
have complex cash flow characteristics com-
pared to the traditional government, corpo-
rate or municipal security. Residential MBS are
classified as agency MBS and nonagency MBS.
The former include MBS issued by Ginnie
Mae (a federally-related government entity)
and two government-sponsored enterprises
(Fannie Mae and Freddie Mac). Residential
MBS not issued by agency MBS are called nona-
gency or private label MBS. In turn nonagency
MBS are categorized based on the credit qual-
ity of the underlying borrower or lien. There are
nonagency MBS backed by prime loans, along
with those backed by borrowers with blem-
ished credit histories or an inferior lien on the
mortgaged property (e.g., a second mortgage
lien). The latter nonagency MBS are generically
referred to as subprime MBS.1

Complicating the cash flows projection of a
residential MBS is that borrowers can prepay
their loans and will in fact do so for a variety of
reasons. Such prepayments can occur for a vari-
ety of reasons. Virtually all mortgage loans have
a “due on sale” clause, which means that the re-
maining balance of the loan must be paid when
the house is sold. Existing mortgages can also
be refinanced by the obligor if the prevailing
level of mortgage rates declines, or if a more at-
tractive financing vehicle is proposed to them.
In addition, homeowners can make partial pre-
payments on their loan, which serve to reduce
the remaining balance and shorten the loan’s
remaining term. Prepayments strongly impact
the returns and performance of MBS, and in-
vestors devote significant resources to studying
and modeling them.

For the holder of a mortgage-related security
asset, the borrower’s prepayment option cre-
ates a unique form of risk. In cases where the
obligor refinances the loan in order to capital-
ize on a drop in market rates, the investor has
a high-yielding asset pay off, and it can be re-
placed only with an asset carrying a lower yield.

Prepayment risk is analogous to “call risk” for
corporate and municipal bonds in terms of
its impact on returns, and also creates uncer-
tainty with respect to the timing of investors’
cash flows. In addition, changing prepayment
“speeds” due to interest rate moves causes vari-
ations in the cash flows of mortgages and se-
curities collateralized by mortgage products,
strongly influencing their relative performance
and making them difficult and expensive to
hedge.

Prepayments are phenomena resulting from
decisions made by the borrower and/or the
lender and occur for the following reasons: (1)
sale of the property (due to normal mobility, as
well as death and divorce); (2) destruction of
the property by fire or other disaster, (3) default
on the part of the borrower, and (4) refinanc-
ing. Prepayments attributable to the first two
reasons are referred to under the broad rubric
of “turnover.” Turnover rates tend to be fairly
stable over time, but are strongly influenced by
the health of the housing market, specifically
the levels of real estate appreciation and the
volume of existing home sales. Refinancing ac-
tivity is categorized as either “rate and term” or
“cash-out” refinancings. Rate-and-term (or “no
cash”) transactions generally depend on a bor-
rower’s ability to obtain a new loan with either
a lower rate or a smaller payment. This activ-
ity is therefore dependent on the level of inter-
est rates, the shape of the yield curve, and the
availability of alternative loan products. These
factors also impact cash-out activity, although
the primary driver of cash-out refinancings re-
mains home price appreciation; the ability to
borrow additional funds against a property is
contingent on the property having appreciated
in price.

The paradigm in mortgages is thus fairly
straightforward. Mortgages with low note rates
(that are “out-of-the-money,” to borrow a term
from the option market) normally prepay
fairly slowly and steadily, while loans carrying
higher rates (and are “in-the-money”) are prone
to experience spikes in prepayments due to
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refinancings when rates decline. In turn, the
relationship between a loan’s note rate and
the prevailing level of mortgage rates dic-
tates whether the borrower has an incentive to
refinance.

It is important to understand how changes
in prepayment rates impact the performance
of mortgages and MBS. Since prepayments in-
crease as bond prices rise and market yields
are declining, mortgages shorten in average
life and duration when the bond market ral-
lies, constraining their price appreciation. Con-
versely, rising yields cause prepayments to slow
and bond durations to extend, resulting in a
greater drop in price than experienced by more
traditional (i.e., option-free) fixed income prod-
ucts. As a result, the price performance of
mortgages and MBS tends to lag that of compa-
rable fixed maturity instruments (such as Trea-
sury notes) when the prevailing level of yields
changes. This phenomenon is generically de-
scribed as negative convexity. The effect of chang-
ing prepayment speeds on mortgage durations,
based on movements in interest rates, is pre-
cisely the opposite of what a bondholder would
desire. (Fixed income portfolio managers, for
example, extend durations as rates decline, and
shorten them when rates rise.) The price per-
formance of mortgages and MBS is, therefore,
decidedly nonlinear in nature, and the prod-
uct will underperform assets that do not exhibit
negatively convex behavior as rates fluctuate.

Consequently, it is essential for participants
in the residential MBS market to understand
the general prepayment and credit performance
nomenclature. The market is characterized by
the usage of a variety of terms; some terms de-
scribe general phenomena, while others are spe-
cific to certain types of loan products and assets.
In this entry, the basic terms used to characterize
residential mortgage-related prepayments and
losses are discussed. Our focus is on describing
the terminology and outlining the methodolo-
gies used in calculating relevant metrics, not
on the determinants of prepayment and default
behavior.

PREPAYMENT
TERMINOLOGY

For fixed-rate fully amortizing assets, such as,
home equity loans (HELs), and manufactured
housing loans (MHs), the monthly scheduled
payment (consisting of scheduled principal
and interest) is constant throughout the amor-
tization term. If the borrower pays more than
the monthly scheduled payment, the extra
payment will be used to pay down the out-
standing balance faster than the original amor-
tization schedule, resulting in a prepayment (or,
as it is sometimes referenced, an unscheduled
principal payment). If the outstanding balance
is paid off in full, the prepayment is a complete
prepayment; if only a portion of the outstand-
ing balance is prepaid, the prepayment is called
either a partial prepayment or curtailment. Pre-
payments can be the result of natural turnover,
refinancings, defaults, partial paydowns, and
credit-related events.

The evaluation of prepayments is further
complicated by the fact that there is an in-
terplay between defaults, which are effectively
credit-related prepayments, and prepayments
attributable specifically to declining interest
rates. In agency MBS (i.e., pools issued by
Ginnie Mae, Fannie Mae, and Freddie Mac)
there have at times been large numbers of se-
riously delinquent loans in pools for which
Freddie Mac and Fannie Mae continued to
pay interest and scheduled principal. In 2010,
however, the two government-sponsored enter-
prises (Fannie Mae and Freddie Mac) changed
their policies and began buying loans that were
120 days or more delinquent out of pools. These
buyouts initially resulted in a surge in prepay-
ment speeds. Moreover, the new policy meant
that pools containing large numbers of lower-
quality loans would tend to experience con-
sistently faster prepayment speeds than those
pools backed by better-credit loans.

However, for private-label MBS, prepay-
ments resulting from credit events must be
treated differently than those attributable to
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refinancings. This is because a default means
that the investor will probably not receive the
entire amount of the defaulted principal, but
only the amount recovered after the foreclosure
process is completed. Moreover, the timing of
payments is also at issue. There is typically a
sizeable delay between the time a borrower be-
comes delinquent on a loan and its ultimate
liquidation. This has resulted in the conven-
tion where prepayments in private-label securi-
ties are separated into voluntary and involuntary
prepayments. Voluntary prepayments occur as
a result of a refinancing, the sale of the prop-
erty, or other events (e.g., the death of the prop-
erty owner) where the full principal amount is
paid immediately to the bondholder. Involun-
tary prepayments occur as a result of a credit
event, for which both the timing and net prin-
cipal received are uncertain.

Prepayments and defaults can be analyzed
on both the loan and pool level. Loan-level
prepayment analysis, which requires detailed
loan-level information, is more accurate than
pool-level prepayment analysis, but is also
more computationally intensive. Additionally,
this type of analysis allows the inclusion of
specific obligor and property characteristics as
determinants of prepayments and defaults.
Loan-level analysis involves tracking defaults
and prepayments on an individual loan ba-
sis, projecting each loan’s cash flows, and com-
bining these amounts to calculate aggregated
metrics. Due to the diversity of the characteris-
tics of the underlying loans in most deals, loan
level analysis is generally more accurate and
has greater predictive capabilities.

CALCULATING
PREPAYMENT SPEEDS
The first critical step in calculating prepayment
speed is to define a prepayment. For the pur-
poses of this discussion, a prepayment is de-
fined as the early return of principal to the

investor. By definition, this means that amor-
tization (or scheduled principal payments)
must be excluded from the calculation, leav-
ing only unscheduled principal payments to be
analyzed.

Conditional Prepayment Rate
The approach most commonly used to generate
prepayment speeds is to calculate monthly pre-
paid principal as a percentage of the security’s
outstanding balance and then annualize that
percentage. Most current approaches to prepay-
ment calculations either quote this annualized
periodic speed, known as the conditional pre-
payment rate (CPR) directly or use it as an in-
put to generate other quotation benchmarks.2

This methodology is useful in that it allows an-
alysts to both calculate the historical prepay-
ment experience of a security, as well as project
prepayment speeds (and thus a security’s cash
flows) into the future. When used as part of
a model to generate projected cash flows, the
CPR calculation assumes that some fraction of
the unpaid principal balance (or UPB) of the
pool is prepaid each month for the remaining
term of the mortgage. The advantages of this
approach are its simplicity and its flexibility.
For example, changes in economic conditions
that impact prepayment rates or changes in the
historical prepayment pattern of a pool can be
analyzed quickly. In addition, the CPR can be
used as an input to other models and quotation
mechanisms, as noted already.

The CPR is an annual rate. However, be-
cause mortgage cash flows are a monthly
phenomenon, calculating the CPR requires the
generation of a monthly prepayment rate,
called the single monthly mortality rate (SMM).
The SMM is the most fundamental mea-
sure of prepayment speeds. SMM measures the
monthly prepayment amount as a percentage
of the previous month’s outstanding balance
minus the scheduled principal payment. Math-
ematically, the SMM is calculated as follows:
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SMM = Total payment, including prepayments − Scheduled interest payment − Scheduled principal payment
[Unpaid principal balance − Scheduled principal payment]

For example, if the pool balance at month zero
is $10,000,000, assuming an interest rate of 12%,
the scheduled principal and interest payments
are $2,861.26 and $100,000 in month one, re-
spectively. If the actual payment received by
investors in month one is $202,891.25, the SMM
rate is 1%, calculated as

SMM = ($202,891.25 − $100,000 − $2,861.26)
($10,000,000 − $2,861.26)

= 1%

Therefore, if a mortgage loan prepaid at 1%
SMM in a particular month, this means that 1%
of that month’s scheduled balance (last month’s
outstanding balance minus the scheduled prin-
cipal payment) has been prepaid.

Given the SMM, a CPR can be computed us-
ing the following formula:

CPR = 1 − (1 − SMM)12

For example, if the SMM is 1%, then the CPR is

CPR = 1 − (0.99)12 = 11.36%

Conversely, CPRs can be converted into
SMMs (and thus be used to generate monthly
cash flows) through the following formula:

SMM = 1 − (1 − CPR)
1/12
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Figure 1 Graphical Depiction of 50 PSA, 100 PSA, and 300 PSA

For example, suppose that the CPR used to es-
timate prepayments is 6%. The corresponding
SMM is

SMM = 1 − (1 − 0.06)
1/12 = 1 − 0.940.08333 = 0.5143%

PSA Prepayment Benchmark
The Public Securities Association (PSA) prepay-
ment benchmark is expressed as a monthly se-
ries of annual prepayment rates.3 The basic PSA
model assumes that prepayment rates are low
for newly originated mortgages and then in-
crease linearly as the mortgages age or season.

The PSA standard benchmark assumes the
following prepayment rates for 30-year mort-
gages:

1. A CPR of 0.2% for the first month, increased
by 0.2% per year per month for the next 29
months when it reaches 6% per year.

2. A 6% CPR for the remaining years.

This benchmark, referred to as “100% PSA”
or simply “100 PSA,” is graphically depicted in
the middle graph in Figure 1. Mathematically,
100 PSA can be expressed as follows:

If t ≤ 30 then CPR = 6% × (t/30)
If t > 30 then CPR = 6%
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where t is the number of months since the mort-
gage was originated. Since the CPR prior to
month 30 rises at a constant rate, this period is
sometimes referred to as the “ramp,” and loans
are considered to be “on the ramp” when they
are less than 30 months old.

Slower or faster speeds are then referred to
as some percentage of PSA. For example, 50
PSA means one-half the CPR of the PSA bench-
mark prepayment rate; 150 PSA means 1.5 times
the CPR of the PSA benchmark prepayment
rate; 300 PSA means three times the CPR of
the benchmark prepayment rate. This is illus-
trated graphically in Figure 1 for 50 PSA, 100
PSA, and 150 PSA. A prepayment rate of 0 PSA
means that no prepayments are assumed.

It is important to note that mortgage pools
will typically be comprised of loans having dif-
ferent origination months and, therefore, differ-
ent ages. In practice, the weighted average loan
age (WALA) of a pool or security is used as a
proxy for its age. However, a large dispersion
of loan ages within a pool will distort the PSA
calculation.

It is helpful to outline the CPRs and SMMs
assumed at different PSA assumptions for dif-
ferent loan ages. The SMMs for month 5, month
20, and months 31 through 360 assuming 100
PSA are calculated as follows:

For month 5:

CPR = 6% (5/30) = 1% = 0.01
SMM = 1 − (1 − 0.01)1/12 = 1 − (0.99)0.083333

= 0.000837

For month 20:

CPR = 6% (20/30) = 4% = 0.04
SMM = 1 − (1 − 0.04)1/12 = 1 − (0.96)0.083333

= 0.003396

For months 31–360:

CPR = 6%
SMM = 1 − (1 − 0.06)1/12 = 1 − (0.94)0.083333

= 0.005143

The SMMs for month 5, month 20, and months
31 through 360 assuming 165 PSA are computed
as follows:

For month 5:

CPR = 6% (5/30) = 1% = 0.01
165 PSA = 1.65 (0.01) = 0.0165
SMM = 1 − (1 − 0.0165)1/12

= 1 − (0.9835)0.083333 = 0.001386

For month 20:

CPR = 6% (20/30) = 4% = 0.04
165 PSA = 1.65 (0.04) = 0.066
SMM = 1 − (1 − 0.066)1/12 = 1 − (0.934)0.083333

= 0.005674

For months 31 through 360:

CPR = 6%
165 PSA = 1.65 (0.06) = 0.099
SMM = 1 − (1 − 0.099)1/12 = 1 − (0.901)0.083333

= 0.007828

Notice that the SMM assuming 165 PSA is not
1.65 times the SMM at 100 PSA. Rather, the CPR
for the pool’s age at 100 PSA is multiplied by
1.65 to generate the CPR representing 165 PSA
at that age.

Illustration of Monthly Cash Flow
Construction
We now show how to construct a monthly cash
flow for a hypothetical agency pass-through
given a PSA assumption. For the purpose of
this illustration, the underlying mortgages for
this hypothetical pass-through are assumed to
be fixed rate fully amortizing mortgages with a
weighted average coupon (WAC) rate of 6.0%.
It will be assumed that the mortgage pass-
through rate is 5.5% with a weighted average
maturity (WAM) of 358 months.

Table 1 shows the cash flow for selected
months assuming 100 PSA. The cash flow is
broken down into three components: (1) inter-
est (based on the pass-through rate), (2) the



MEASUREMENT OF PREPAYMENTS FOR RESIDENTIAL MORTGAGE-BACKED SECURITIES 53

Table 1 Monthly Cash Flow for a $400 Million Mortgage Pass-Through with a 5.5% Pass-Through Rate, a WAC of
6.0%, and a WAM of 358 Months, Assuming 100% PSA

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Month
Outstanding
Balance SMM

Mortgage
Payment Net Interest

Scheduled
Prinicipal Prepayments

Total
Principal Cash Flow

1 400,000,000 0.00050 2,402,998 1,833,333 402,998 200,350 603,349 2,436,682
2 399,396,651 0.00067 2,401,794 1,830,568 404,810 266,975 671,785 2,502,353
3 398,724,866 0.00084 2,400,187 1,827,489 406,562 333,463 740,025 2,567,514
4 397,984,841 0.00101 2,398,177 1,824,097 408,253 399,780 808,033 2,632,130
5 397,176,808 0.00117 2,395,766 1,820,394 409,882 465,892 875,773 2,696,167
6 396,301,034 0.00134 2,392,953 1,816,380 411,447 531,764 943,211 2,759,591
7 395,357,823 0.00151 2,389,738 1,812,057 412,949 597,362 1,010,311 2,822,368
8 394,347,512 0.00168 2,386,124 1,807,426 414,386 662,652 1,077,038 2,884,464
9 393,270,474 0.00185 2,382,110 1,802,490 415,758 727,600 1,143,357 2,945,847

10 392,127,117 0.00202 2,377,698 1,797,249 417,063 792,172 1,209,235 3,006,484
11 390,917,882 0.00219 2,372,890 1,791,707 418,300 856,336 1,274,636 3,066,343
12 389,643,247 0.00236 2,367,686 1,785,865 419,470 920,057 1,339,527 3,125,391
13 388,303,720 0.00253 2,362,089 1,779,725 420,571 983,303 1,403,873 3,183,599
14 386,899,847 0.00271 2,356,101 1,773,291 421,602 1,046,041 1,467,643 3,240,934
15 385,432,204 0.00288 2,349,724 1,766,564 422,563 1,108,239 1,530,802 3,297,366
16 383,901,402 0.00305 2,342,961 1,759,548 423,454 1,169,864 1,593,318 3,352,866
17 382,308,084 0.00322 2,335,813 1,752,245 424,273 1,230,887 1,655,159 3,407,405
18 380,652,925 0.00340 2,328,284 1,744,659 425,020 1,291,274 1,716,294 3,460,953
19 378,936,632 0.00357 2,320,377 1,736,793 425,694 1,350,996 1,776,690 3,513,483
20 377,159,941 0.00374 2,312,095 1,728,650 426,296 1,410,023 1,836,319 3,564,968
21 375,323,622 0.00392 2,303,442 1,720,233 426,824 1,468,325 1,895,148 3,615,382
22 373,428,474 0.00409 2,294,420 1,711,547 427,278 1,525,872 1,953,150 3,664,697
23 371,475,324 0.00427 2,285,034 1,702,595 427,657 1,582,637 2,010,294 3,712,889
24 369,465,030 0.00444 2,275,288 1,693,381 427,962 1,638,590 2,066,553 3,759,934
25 367,398,478 0.00462 2,265,185 1,683,910 428,192 1,693,706 2,121,898 3,805,808
26 365,276,580 0.00479 2,254,730 1,674,184 428,347 1,747,956 2,176,303 3,850,488
27 363,100,276 0.00497 2,243,928 1,664,210 428,427 1,801,315 2,229,742 3,893,952
28 360,870,534 0.00514 2,232,783 1,653,990 428,430 1,853,758 2,282,189 3,936,178
29 358,588,346 0.00514 2,221,300 1,643,530 428,358 1,842,021 2,270,379 3,913,909
30 356,317,967 0.00514 2,209,875 1,633,124 428,286 1,830,345 2,258,631 3,891,755

100 223,414,587 0.00514 1,540,329 1,023,984 423,256 1,146,847 1,570,104 2,594,087
101 221,844,483 0.00514 1,532,407 1,016,787 423,185 1,138,773 1,561,958 2,578,745
102 220,282,525 0.00514 1,524,526 1,009,628 423,114 1,130,740 1,553,853 2,563,482
103 218,728,672 0.00514 1,516,686 1,002,506 423,042 1,122,749 1,545,791 2,548,297
104 217,182,881 0.00514 1,508,885 995,422 422,971 1,114,799 1,537,770 2,533,191
105 215,645,111 0.00514 1,501,125 988,373 422,900 1,106,891 1,529,790 2,518,164

200 100,719,066 0.00514 919,770 461,629 416,174 515,859 932,033 1,393,662
201 99,787,032 0.00514 915,039 457,357 416,104 511,066 927,170 1,384,527
202 98,859,862 0.00514 910,333 453,108 416,034 506,298 922,332 1,375,439
203 97,937,531 0.00514 905,651 448,880 415,964 501,555 917,518 1,366,399
204 97,020,012 0.00514 900,994 444,675 415,893 496,836 912,730 1,357,405
205 96,107,283 0.00514 896,360 440,492 415,823 492,142 907,966 1,348,457

300 28,001,417 0.00514 549,218 128,340 409,211 141,907 551,118 679,457
301 27,450,299 0.00514 546,393 125,814 409,142 139,073 548,215 674,028
302 26,902,085 0.00514 543,583 123,301 409,073 136,254 545,326 668,628
303 26,356,758 0.00514 540,787 120,802 409,003 133,450 542,453 663,255
304 25,814,305 0.00514 538,006 118,316 408,934 130,660 539,595 657,910
305 25,274,710 0.00514 535,239 115,842 408,865 127,885 536,751 652,593

350 3,725,850 0.00514 424,402 17,077 405,773 17,075 422,848 439,925
351 3,303,002 0.00514 422,219 15,139 405,704 14,901 420,605 435,744
352 2,882,397 0.00514 420,048 13,211 405,636 12,738 418,374 431,585
353 2,464,023 0.00514 417,887 11,293 405,567 10,587 416,154 427,447
354 2,047,869 0.00514 415,738 9,386 405,499 8,447 413,946 423,332
355 1,633,924 0.00514 413,600 7,489 405,430 6,318 411,749 419,237
356 1,222,175 0.00514 411,473 5,602 405,362 4,201 409,563 415,164
357 812,613 0.00514 409,357 3,724 405,294 2,095 407,388 411,113
358 405,224 0.00514 407,251 1,857 405,225 0 405,225 407,082
a Since the WAM is 358 months, the underlying mortgage pool is seasoned an average of two months. Therefore, the
CPR for month 28 is 6%.
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regularly scheduled principal payment, and (3)
prepayments based on 100 PSA. Let’s walk
through Table 1 column by column:

Column 1. This is the month.
Column 2. This column gives the outstanding

mortgage balance at the beginning of the
month. It is equal to the outstanding balance
at the beginning of the previous month re-
duced by the total principal payment in the
previous month.

Column 3. This column shows the SMM for 100
PSA. Two things should be noted in this col-
umn. First, for month 1, the SMM is for a
pass-through that has been seasoned three
months because the WAM is 357 months.
This results in a CPR of 0.8%. Second, from
month 27 on, the SMM is 0.00514, which cor-
responds to a CPR of 6%.

Column 4. The aggregate monthly mortgage
payments using a 6% note rate are shown in
this column. Notice that the total monthly
mortgage payment declines over time, as
prepayments reduce the mortgage balance
outstanding. (In the absence of prepay-
ments, this figure would remain constant.)
In essence, the payment is calculated each
month as a function of the WAC, the remain-
ing balance at the end of the prior month, and
the remaining term (i.e., the original WAM
minus the number of months since issuance).
For example, the payment in month 10 of
$2,376,474 can be generated on a calculator
by inputting $391,508,422 as the balance or
present value, 0.5% (6.0% divided by 12) as
the rate, and 348 months as the remaining
term.4

Column 5. The monthly interest paid to the
pass-through investor is found in this col-
umn. This value is determined by multiply-
ing the outstanding mortgage balance at the
beginning of the month by the pass-through
rate of 5.5% and dividing by 12.

Column 6. This column shows the scheduled
principal repayment, or amortization. This
is the difference between the total monthly

mortgage payment [the amount shown in
column (4)] and the gross coupon interest for
the month. The gross coupon interest is 6.0%
multiplied by the outstanding mortgage bal-
ance at the beginning of the month, then di-
vided by 12.

Column 7. The dollar value of prepayments for
the month is reported in this column. This
amount is calculated by using the following
equation:

Prepaymentst

= SMM(Beginning principal balancet

− Scheduled principal balancet)

So, for example, in month 100, the be-
ginning mortgage balance is $223,414,587,
the scheduled principal payment is $423,356,
and the SMM at 100 PSA is 0.00514301 (only
0.00514 is shown in the table to save space),
so the prepayment is

0.00514301 × ($223,414,587 − $423,356)

= $1,146,847

Column 8. The total principal payment, which
is the sum of columns (6) and (7), is shown
in this column.

Column 9. The projected monthly cash flow for
this pass-through is shown in this last col-
umn. The monthly cash flow is the sum of
the interest paid to the pass-through investor
[column (5)] and the total principal payments
for the month [column (8)].

Prospectus Prepayment Curve
A more recent addition to MBS prepayment ter-
minology is the prospectus prepayment curve
(PPC). While the logic underlying the PSA con-
vention (i.e., that loans prepay faster as they
age, all other factors constant) remains in force,
a PPC curve allowed its creator (typically the
underwriter of a private-label deal) to specify
the prepayment ramp that was used to struc-
ture the deal. Evidence suggested that loans
have seasoned faster than the 30 month period
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implied by the PSA curve, especially for some
products (such as alt-A loans) that were be-
lieved to season faster than normal. Rather than
use a percentage of a publicly utilized ramp,
PPC curves (which are quoted in a transaction’s
prospectus supplement) were used for many
nonagency transactions between 2004 and
2007.

Typically, 100% PPC is the base-case pre-
payment assumption used to create a particu-
lar deal. PPC curves (or ramps) are generally
specified as a beginning and terminal CPR,
along with the associated time period. A typ-
ical ramp might be specified as “8–20% CPR
over 12 months.” This translates to an assump-
tion of 8% CPR in the first month, increasing
1.09% per month for the next 11 months, and
terminating at 20% CPR in month 12. How-
ever, there is no industry standardization for
the usage of this terminology, as the specifica-
tion is issue-dependent. As a result, investors
must confirm how “100% PPC” is defined for
each particular issue before performing further
analysis.

The language utilized in a deal’s prospectus
supplement is illuminating. For example, the
document for the CWALT 2005-J9 deal has lan-
guage as follows:

Prepayments of mortgage loans commonly are mea-
sured relative to a prepayment standard or model.
The model used in this prospectus supplement as-
sumes a constant prepayment rate (i.e., CPR) or
an assumed rate of prepayment each month of the
then-outstanding principal balance of a pool of new
mortgage loans. A 100% prepayment assumption
for loan group 1 (the “prepayment assumption”)
assumes a CPR of 8.0% per annum of the then out-
standing principal balance of the applicable mort-
gage loans in the first month of the life of the
mortgage loans and an additional approximately
1.0909090909% (precisely 12%/11) per annum in
the second through 11th months. Beginning in the
12th month and in each month thereafter during
the life of the mortgage loans, a 100% prepayment
assumption assumes a CPR of 20.0% per annum
each month.

Note that the prospectus supplement does not
directly refer to a “PPC,” but rather defines

the prepayment ramp as “a 100% prepayment
assumption.”

Prepayment Conventions for
Securities Backed by Home Equity
and Manufactured Housing Loans
While the expression of prepayments in the
MBS market is fairly standardized and com-
prises a combination of PSA curves and CPR
calculations as previously described, a variety
of descriptions are used to express the pay-
down behavior of securities backed by home
equity and manufactured housing loans. While
issuance of securities backed by these loans fell
out of favor in the mid-2000s, a brief discussion
of these conventions will nonetheless be help-
ful in understanding how prepayment conven-
tions have been adjusted in order to represent
an asset’s unique behavior. Despite the diver-
sity in terminology, most of the concepts used
to indicate prepayments for these two sectors
of the mortgage market use the CPR concept
as the numeraire while incorporating the PSA
ramping methodology.

Home Equity Prepayment Speeds
In the early stages of the development of the
securitized market for home equity loans, the
majority of the loans were fixed rate, closed-end
loans. Over the years, the balance has slowly
shifted in favor of adjustable rate loans, par-
ticularly subprime ARMs. The earliest defini-
tion of prepayment speeds in the home equity
market was the home equity prepayment (HEP)
curve.5 The primary motivation for using a dif-
ferent prepayment methodology for home eq-
uity loans was to capture the faster seasoning
ramp observed for the asset class. Typically,
home equity loans season faster than traditional
single-family loans, making the PSA ramp an
inappropriate description of the behavior of
prepayments.

The HEP curve reflects the observed behav-
ior in historic HEL data—it has a ramp of
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10 months and a variable long-term CPR to
reflect individual issuer speeds. A faster long-
term speed means faster CPRs on the ramp
because the ramp is fixed at 10 months regard-
less of the long-term speed. For example, a
20% HEP projection would mean a 10-month
ramp increasing to 20% in the 10th month
from 2% in the first month and a constant 20%
thereafter. Figure 2 shows several HEP curves
at 20% HEP and 24% HEP, where month 1
speeds of 2.4% CPR increase over 10 months to
24% CPR.

In addition to utilizing the HEP curve, a PPC
ramp is also commonly used to define the base-
case prepayment assumption for the product.
As with other mortgage products, the spec-
ification of the ramp will be dependent on
the attributes of the underlying loan collateral,
with respect to both the beginning and termi-
nal speeds as well as the duration of the ramp.
Occasionally, deals are also priced to a constant
CPR assumption, ignoring the impact of sea-
soning in generating the deal’s cash flows.

Manufactured Housing
Prepayment Curve
The manufactured housing prepayment (MHP)
curve is a measure of prepayment behavior for
manufactured housing, based on the Green Tree

Financial manufactured housing prepayment
experience. MHP is similar to the PSA curve, ex-
cept that the seasoning ramp is slightly different
to account for the specific behavior of manufac-
tured loans: 100% MHP is equivalent to 3.6%
CPR at month zero and increases 0.1% CPR ev-
ery month until month 24, when it plateaus at
6% CPR. Figure 3 shows the prepayment speeds
at 50% MHP, 100% MHP, and 200% MHP.

DELINQUENCY, DEFAULT,
AND LOSS TERMINOLOGY
The measurement of potential and actual cash
flow impairment resulting from borrower credit
problems is critically important to the analysis
of private label or nonagency MBS. Historically,
the importance of these measures stemmed
from their role in allowing investors in subordi-
nate MBS tranches to assess relative value and
risk. However, the mortgage crisis that began
in 2007 demonstrated to investors that all nona-
gency securities have exposure to defaults and
losses; put differently, it is impossible to invest
in nonagency MBS without taking on a material
degree of credit risk. This means that any diver-
gence in realized default and loss experience
from investors’ initial expectations can result in
writedowns and losses on the investment.
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Despite the importance of delinquencies,
losses, and defaults in the mortgage-related
markets, the terminology is not standardized.
For instance, static pool losses may be reported
on a monthly or annualized basis as a percent-
age of either current or original balance, with
the metric based upon current balance being the
preferred method to ensure consistency with
prepayment reporting.

Before we discuss the measurement of de-
faults and losses, it is instructive to briefly re-
view the various outcomes of a loan when the
obligor ceases making scheduled payments. A
loan becomes delinquent when the obligor fails
to make the contractual payment on the stated
date. If the underlying property has appreci-
ated from the initial purchase price, the home-
owner can often sell the home and use the
proceeds to settle the mortgage debt. (This gen-
erally is categorized as a voluntary prepayment
and is considered part of housing turnover.) If
the homeowner cannot sell the property at a
high enough price and remains delinquent, the
loan is declared to be in default once all collec-
tion (and modification) efforts have failed. At
that point, the issuer (or the servicer) has several
options. There may either be a short sale, where
the borrower sells the property in a negotiated

transaction subject to approval by the servicer;
alternatively, the property may go into the fore-
closure or repossession process and be eventu-
ally sold by the servicer. Therefore, the process
chain is delinquency to default to foreclosure
(or repossession) to liquidation, at which time
the severity of loss can be assessed.

Delinquency Measures
As mentioned, when a borrower fails to make
one or more timely payments, the loan is said
to be delinquent. Delinquency measures are de-
signed to gauge whether borrowers are current
on their loan payment as well as to stratify un-
paid loans according to the seriousness of the
delinquency. The calculation method used is de-
termined by the servicer. When the underlying
pool of assets is comprised of mortgage loans,
the two commonly used methods for classifying
delinquencies are those recommended by the
now-defunct Office of Thrift Supervision (OTS)
and the Mortgage Bankers Association (MBA).

The OTS method uses the following loan
delinquency classifications:

� Payment due date to 30 days late: Current
� 30–60 days late: 30 days delinquent
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� 60–90 days late: 60 days delinquent
� More than 90 days late: 90+ days delinquent

The MBA method is a somewhat more strin-
gent classification method, classifying a loan as
30 days delinquent once payments are not re-
ceived after the due date. Thus, a loan classi-
fied as “current” under the OTS method would
be listed be as “30 days delinquent” under the
MBA method. The two methods can report sig-
nificantly different delinquencies.6

Default Measures
The conditions that result in classification of
some loans as delinquent (such as the loss of
a job or illness) may change, resulting in the
resumption of timely principal and interest pay-
ments. However, some portion of the loans clas-
sified as delinquent typically end up in default.
By definition, default is the point where the
borrower loses title to the property in question.

Two broadly used measures for quantifying
default are the cumulative default rate and the
conditional default rate. The cumulative default
rate (denoted as the CDX) is the proportion of
the total face value of loans in a pool that have
gone into default as a percentage of the total
face value of the security.

The conditional default rate (CDR) is the an-
nualized value of the unpaid principal balance
of newly defaulted loans over the course of a
month as a percentage of the unpaid balance of
the pool (before scheduled principal payment)
at the beginning of the month. It is computed by
first calculating the monthly default rate (MDR)
as shown below:
MDR for month t

= Default loan balance in month t
Beginning balance for month t − Scheduled principal

payment in month t

This is then annualized as follows to get the
CDR:

CDRt = 1 − (1 − Default rate for month t)12

Note that the conversion of MDR to CDR is
identical to the formula for converting SMMs

to CPRs. As described earlier, the default rate is
represents involuntary prepayments, and the
CDR represents the involuntary prepayment
speed calculated for nonagency MBS. Voluntary
prepayment speeds (i.e, those resulting from re-
financing activity and housing turnover) must
be calculated separately.

Let’s use the following as an example. As-
sume that a nonagency pool7 with an 8% note
rate and 300 months left to maturity has a bal-
ance at time t of $10,000,000. The pool’s sched-
uled monthly payment is $77,181.62, comprised
of $66,666.67 in interest and $10,514.96 in sched-
uled principal. Assume that the pool receives
$20,000 of voluntary prepayments and $15,000
in involuntary prepayments.8

The monthly voluntary prepayment speed is
calculated as follows:

Voluntary SMM = $20,000
$10,000,000 − $10,514.96

= 0.002

This can then be converted to 2.37% CPR.
The MDR is calculated similarly:

MDR = $15,000
$10,000,000 − $10,514.96

= 0.0015

which can be converted to 1.78% CDR.
In some cases, the involuntary and voluntary

prepayment speeds are combined to calculate a
single prepayment speed. In this case, the cal-
culation of a “total CPR” is as follows:

Total SMM = $35,000
$10,000,000 − $10,514.96

= 0.0035

which can be converted to a total CPR of 4.12%.
There are a number of issues implied by these

calculations. First, note that the voluntary SMM
and MDR equals the pool’s total SMM. (It is
not true, however, that CPRs and CDRs sum to
equal the total pool CPR; it is only the monthly
rates that are additive.) In using the output of a
model, it is also important to ascertain what the
vendor means when they quote a “CPR.” Since
many systems will show CPRs as the annual-
ized rate of all prepayments (i.e., total CPRs)
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Figure 4 Monthly Dollar Amounts of Defaults on a $100 Million Pool Using 8% CDR at Different
Voluntary Prepayment Speeds

and show CDRs separately, the voluntary
prepayment speed must be calculated indepen-
dently. This can be accomplished by deannual-
izing the CPRs and CDRs (i.e, converting them
to SMMs and MDRs), subtracting the MDR
from the SMM, and annualizing the difference.
In the above example, the voluntary SMM is
0.0035 less 0.0015 or 0.002, which annualizes to
a 2.37% voluntary CPR.

Also note that the CDR metric measures only
the amount of defaults and not the amount of
losses because actual losses depends upon the
amounts that can be recovered on loans in de-
fault, adjusted for the costs of collection and
servicer advances, if applicable. In the extreme
case, if there is full recovery of the unpaid prin-
cipal balance of the defaulted loans, the losses
will be zero except for the costs of recovery.
However, depending upon the timing of the
recovery of the defaulted loan balances, the
cash flows to certain bondholders may be in-
terrupted.

There is also an interesting and important re-
lationship between the voluntary prepayment
speed and the dollar amount of defaults in a
pool. Every dollar of principal that is prepaid
voluntarily is returned at 100 cents on the dollar

and cannot subsequently go into default. There-
fore, the dollar amount of a pool’s principal that
goes into default declines as voluntary prepay-
ment speeds increase, even if the assumed CDR
remains constant. This is illustrated in Figure 4.
The figure shows the projected dollar amounts
of defaults on a $100 million pool with an 8.5%
note rate at 8% CDR for two different voluntary
CPRs. At a combination of 15% CPR and 8%
CDR, the pool is expected to lose a total of $21.9
million in face value; the projected amount of
defaulted principal using 8% CPR and 8% CDR
increases to $29.0 million.

As with prepayment analysis, there are dis-
advantages to using constant CDRs that tend
to distort credit analysis. A constant CDR as-
sumption is not necessarily consistent with the
actual behavior of defaults, and also does not al-
low the analysis to take variations in the timing
of defaults into account. As with prepayments,
credit problems have historically tended to be
very low immediately after the loans are closed,
but generally increase with time as the pool in
question ages.

One time-honored methodology is to uti-
lize the Standard Default Assumption (SDA)
convention, which assumes that defaults (as
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measured in annual terms using CDRs) have a
fairly consistent pattern over the life of the pool.
The SDA model is similar in concept to the PSA
convention used in prepayment analysis, and is
specified as follows:

� 0.02% initial CDR, rising 0.02% CDR until
reaching 0.6% CDR in month 30.

� A constant 0.6% CDR from months 30 to 60.
� A linear decline of 0.0095% between months

61 and 120, reaching 0.03% in month 120.
� A constant 0.03% CDR for the remaining term.

The base SDA curve is shown in Figure 5.
In addition to the prescribed CDR curve de-

scribed above, the base SDA model explicitly
accounts for the effects of voluntary prepay-
ments by assuming a prepayment speed of
150% PSA. One hundred percent SDA at 150%
PSA results in cumulative defaults of around
2.73%. The dollar amount of monthly defaults
is calculated as the product of monthly default
rates or MDRs (i.e., the deannualized CDR) and
the monthly balance factor at the projected pre-
payment speed. Cumulative defaults are the
sum of this vector. Table 2 shows how 100%
SDA would be calculated, assuming a 6.0%
coupon pass-through (as in the prior examples).

A depiction of monthly defaults using the base
assumptions of the SDA model at 150% PSA is
shown in Figure 6.

Loss Severity Measures
Where the lender has a lien on the property, a
portion of the value of the loan can be recovered
through the legal recovery process (i.e., through
foreclosure and repossession) and subsequent
sale of the asset. The difference between the pro-
ceeds received from the recovery process (after
all transaction costs) and principal balance of
the loan is the loss in dollars. The historical
loss severity rate in any month is defined as
follows:

Loss severity rate = 1 − Liquidation Proceeds
Liquidation Balancet

The loss severity rate ranges from 0 to 1 (or
0% to 100%). If the loss severity rate is zero,
then liquidation proceeds are equal to the liq-
uidated loan balance. A loss severity rate of 1
(or 100%) means that there are no liquidation
proceeds. The loss rate is equal to the annual
default rate multiplied by the loss assumption
severity. In projecting future cash flows and
losses, investors will often use a constant loss
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Table 2 Calculation of Monthly Defaults Using 100% SDA at 150% PSA for a Pass-Through with a 5.5%
Pass-Through Rate, a WAC of 6.0%, and a WAM of 357 Months

(1) (2) (3) (4) (5)

100% SDA 100% SDA Bond Factor Factor-Adjusted
Month (in CDRs) (in MDRs)a (@ 150% PSA) MDRb

1 0.080% 0.007% 0.99798 0.0067%
2 0.100% 0.008% 0.99571 0.0083%
3 0.120% 0.010% 0.99318 0.0099%
4 0.140% 0.012% 0.99041 0.0116%
5 0.160% 0.013% 0.98738 0.0132%
6 0.180% 0.015% 0.98410 0.0148%
7 0.200% 0.017% 0.98057 0.0164%
8 0.220% 0.018% 0.97680 0.0179%
9 0.240% 0.020% 0.97278 0.0195%

10 0.260% 0.022% 0.96853 0.0210%
11 0.280% 0.023% 0.96403 0.0225%
12 0.300% 0.025% 0.95930 0.0240%
13 0.320% 0.027% 0.95433 0.0255%
14 0.340% 0.028% 0.94914 0.0269%
15 0.360% 0.030% 0.94372 0.0284%
16 0.380% 0.032% 0.93807 0.0298%
17 0.400% 0.033% 0.93220 0.0311%
18 0.420% 0.035% 0.92612 0.0325%
19 0.440% 0.037% 0.91982 0.0338%
20 0.460% 0.038% 0.91332 0.0351%
21 0.480% 0.040% 0.90661 0.0363%
22 0.500% 0.042% 0.89970 0.0376%
23 0.520% 0.043% 0.89260 0.0388%
24 0.540% 0.045% 0.88531 0.0399%
25 0.560% 0.047% 0.87783 0.0411%
26 0.580% 0.048% 0.87017 0.0422%
27 0.600% 0.050% 0.86233 0.0432%
28 0.600% 0.050% 0.85456 0.0428%
29 0.600% 0.050% 0.84685 0.0425%
30 0.600% 0.050% 0.83920 0.0421%

100 0.192% 0.016% 0.43487 0.0069%
101 0.182% 0.015% 0.43064 0.0065%
102 0.173% 0.014% 0.42644 0.0061%
103 0.163% 0.014% 0.42228 0.0057%
104 0.154% 0.013% 0.41815 0.0054%
105 0.144% 0.012% 0.41406 0.0050%

200 0.030% 0.003% 0.14894 0.0004%
201 0.030% 0.003% 0.14715 0.0004%
202 0.030% 0.003% 0.14538 0.0004%
203 0.030% 0.003% 0.14363 0.0004%
204 0.030% 0.003% 0.14188 0.0004%
205 0.030% 0.003% 0.14016 0.0004%

300 0.030% 0.003% 0.03093 0.0001%
301 0.030% 0.003% 0.03022 0.0001%
302 0.030% 0.003% 0.02952 0.0001%
303 0.030% 0.003% 0.02882 0.0001%
304 0.030% 0.003% 0.02814 0.0001%
305 0.030% 0.003% 0.02745 0.0001%

350 0.030% 0.003% 0.00289 0.0000%
351 0.030% 0.003% 0.00247 0.0000%
352 0.030% 0.003% 0.00204 0.0000%
353 0.030% 0.003% 0.00163 0.0000%
354 0.030% 0.003% 0.00121 0.0000%
355 0.030% 0.003% 0.00080 0.0000%
356 0.030% 0.003% 0.00040 0.0000%
357 0.030% 0.003% 0.00000 0.0000%

Cumulative Defaults 2.75%
a CDRs are converted to MDRs by using the following formula:

MDR = 1 − (1 − CDR)
1/12

b Column (3) × (4)
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Figure 6 Monthly CDRs for 100% SDA Using 150% PSA

severity assumption based on a combination
of loan attributes, projected changes in home
prices, and the length of time until liquidation.
The percentage of loss severity is then applied
to the monthly default amount (generated by
using the applicable MDR) in order to calculate
monthly losses.

Default and loss severity assumptions (which
translate into expected losses) are critical met-
rics for holders of mortgages and MBS that have
exposure to mortgage credit performance. From
the viewpoint of issuers, the assumptions used
to value and capitalize investments in retained
tranches are critical for assessing a firm’s value,
as any deterioration in the performance of re-
tained tranches can negatively impact overall
corporate valuations. Investors in whole-loan
mortgages and subordinate MBS routinely use
the credit metrics discussed above to analyze
the relative value of different alternatives by
generating default- and loss-adjusted returns
and valuations.

KEY POINTS
� The monthly cash flow from the underly-

ing pool of mortgage loans for a residential
mortgage-backed security includes sched-
uled principal payments, interest payments,
and any principal payments made by borrow-
ers that is in excess of the scheduled principal

payment. The last component is referred to as
prepayments.

� The valuation of residential mortgage-backed
securities requires the generation of a residen-
tial MBS’s cash flow. Prepayment speeds and
default rates must be projected in order to
do so.

� The performance of a residential MBS de-
pends on the prepayments and performance
of the loan pool.

� The measurement of potential and actual cash
flow impairment resulting from borrower
credit problems is critically important to the
analysis of nonagency or private label MBS.

� Complicating the evaluation of prepayments
is the interplay between defaults, which are
effectively credit-related prepayments, and
prepayments attributable specifically to de-
clining interest rates.

� The approach most commonly used to mea-
sure prepayment speeds is the conditional
prepayment rate, which calculates monthly
prepaid principal (i.e., that excludes sched-
uled principal amortizations) as a percentage
of the security’s outstanding balance and then
annualizes that percentage. The CPR is an an-
nual rate; the corresponding monthly rate is
the single monthly mortality rate.

� The Public Securities Association (PSA)
prepayment benchmark is expressed as a
monthly series of annual prepayment rates
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that assumes prepayment rates are low for
newly originated mortgages and then will
speed up as the mortgages age.

� A loan is classified as delinquent when a
borrower fails to make one or more timely
payments. Measures of delinquency are de-
signed to gauge whether borrowers are
current on their loan payment as well as strat-
ifying unpaid loans according to the seri-
ousness of the delinquency. The calculation
method used is determined by the servicer.
The two commonly used methods for classi-
fying delinquencies are those recommended
by the now-defunct Office of Thrift Supervi-
sion (OTS) and the Mortgage Bankers Asso-
ciation (MBA).

� Cumulative default rate and conditional de-
fault rate are the two broadly used metrics
for quantifying defaults for a mortgage pool.
The cumulative default rate is the proportion
of the total face value of loans in a pool that
have gone into default as a percentage of the
total face value of the collateral pool. The con-
ditional default rate is the annualized value
of the unpaid principal balance of newly de-
faulted loans over the course of a month as a
percentage of the unpaid balance of the pool
(before scheduled principal payment) at the
beginning of the month. To compute this mea-
sure, the monthly default rate must first be
calculated.

NOTES
1. For a detailed discussion of the types of mort-

gage loans and residential MBS, see Fabozzi,
Bhattacharya, and Berliner (2011).

2. Also called the constant prepayment rate.
3. This benchmark is commonly referred to as a

“prepayment model,” suggesting that it can
be used to estimate prepayments. Character-
ization of this benchmark as a prepayment
model is inaccurate. It is simply a market
convention. While the PSA has changed its
name to the Securities Industry and Financial
Markets Association, or SIFMA, the bench-
mark is still referred to as the “PSA prepay-
ment benchmark.”

4. The calculation can also be presented as a se-
ries of formulas, which are available in Chap-
ter 21 Fabozzi (2006).

5. The HEP curve was developed by Prudential
Securities based on the prepayment experi-
ence of $10 billion of home equity loan deals.

6. For example, a June 9, 2000, report by
Moody’s titled, “Contradictions in Terms:
Variations in Terminology in the Mortgage
Market,” shows that the reported delinquen-
cies can differ dramatically when the differ-
ent conventions are used.

7. For clarity’s sake, we assume a simple pool
with no credit enhancement.

8. These payments are reported in the monthly
remittance reports compiled by a transac-
tion’s trustee.
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Abstract: Prepayments and their impact on principal cash flows are critical components of the
valuation, trading, and risk management of residential mortgage-backed securities. Because of
this, substantial resources are expended by investors and dealers in understanding and modeling
prepayment “speeds.” However, prepayment behavior is not static and has evolved repeatedly
since the first prepayment waves in the early 1990s. Moreover, the very definition of “prepayments”
has evolved from one focused primarily on borrowers’ refinancing options to one encompassing a
plethora of actions and decisions.

In general, a mortgage is a loan that is secured
by underlying assets that can be repossessed in
the event of default. In the residential housing
market, a mortgage is defined as a loan made
to the owner of a one- to four-family residen-
tial dwelling and secured by the underlying
property (i.e., the land, the structure and any
improvements). The fundamental unit in the
residential mortgage-backed securities (MBS) mar-
ket is the pool. At its lowest common denomina-
tor, mortgage-backed pools are aggregations of
large numbers of mortgage loans with similar

(but not identical) characteristics. Loans with
a commonality of attributes such as note rate
(i.e., the interest rate paid by the borrower on
the loan), term to maturity, credit quality, loan
balance, and product type are combined using a
variety of legal mechanisms to create relatively
fungible investment vehicles.

To value a residential MBS, a financial mod-
eler must project the cash flow. For an in-
dividual mortgage, the monthly cash flow
includes the scheduled principal payments
(also referred to as amortization), interest
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payments, and any prepayments. Prepayments
are any payments made by borrowers that are
in excess of the scheduled principal payment.
Consequently, the cash flow depends on the
prepayment behavior of the borrowers in the
mortgage pool. This risk faced by investors is
referred to as prepayment risk and is similar to
the risk faced by investors in callable corporate
bonds.

Both the valuation and the subsequent per-
formance of a residential MBS depend on
prepayments—projected in the former case and
realized in the latter case. In this entry, we dis-
cuss the underlying factors impacting principal
repayment rates. We also draw distinctions be-
tween the traditional view of prepayments and
a broader one that puts credit-related factors
into context.

PREPAYMENT
FUNDAMENTALS
Traditional prepayment analysis has focused on
borrowers’ option to retire their loans prior to
maturity. Virtually all mortgage loans allow for
the early repayment of principal. Prepayment
behavior can be divided into several categories.
The first of these is referred to as turnover, which
occurs when the underlying property is sold
and the associated loan is retired. Turnover can
occur for a number of reasons:

� The homeowner moves or trades up to a
larger house.

� The obligor relocates as part of changes in
their job or employment.

� The property is sold subsequent to the death
of the homeowner or as part of a divorce
settlement.

� The property is destroyed by a fire or other
natural disaster.

In all these cases, the resulting proceeds (from
either the property’s sale or an insurance settle-
ment) are passed on as prepaid principal to the
holder of the mortgage. In the event of the sale

of the property, the loan is paid off from the
proceeds of the sale; in fact, most loans contain
a “due-on-sale” clause ensuring that the loan is
retired once the property is sold. Properties are
also sold in the event that the obligors encounter
financial difficulties. While we discuss credit-
related factors at several points in this entry, it
is important to note that prepayments resulting
from credit events are sometimes taken into ac-
count under the broad umbrella of “turnover.”

A second form of prepayment can be broadly
ascribed to refinancing. This behavior can take
a number of forms. A rate-and-term refinancing
is undertaken solely to reduce the borrower’s
monthly payment, most commonly due to a de-
cline in the level of consumer mortgage rates.
Such a change puts the market rate for new
mortgages below the rate of existing loans, cre-
ating incentives to refinance. A related activity
takes place when borrowers refinance in order
to liquefy their home’s equity by increasing the
balance on their new loan. Such transactions, re-
ferred to as cash-out refinancings, often are taken
as an alternative to second lien loans. Cash-out
activity is strongly correlated with rates of home
price appreciation which, logically enough, cre-
ates the borrower equity extracted through the
transaction. Such activity can also be relatively
insensitive to traditional refinancing incentives,
and has at times boosted prepayment speeds for
lower-coupon MBS.

At various points in time, borrowers have also
been inclined to refinance from one product into
a different one that offers a payment savings.
A simple form of product transition is to refi-
nance from a fixed-rate loan into an adjustable-
rate mortgage (ARM) that offers a lower rate.
Borrowers have also transitioned into prod-
ucts with alternative amortization schemes,
such as interest-only and negative amortization
loans, in order to reduce their monthly pay-
ment burdens. Such transitions are contingent
on the availability and popularity of alterna-
tive products, as well as borrowers’ ability (ei-
ther through lower rates or other nontraditional
means) to achieve payment reductions.
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Figure 1 Prepayment S-Curves for Different Years for 30-year Fixed Rate Conventional Loans
Data Source: eMBS.

Another critical factor in prepayments is
based on the borrower’s financial situation.
However, the impact of borrower credit on pre-
payments is quite complex. Prepayments often
result directly from changes to homeowners’ fi-
nancial situation. At its simplest, principal is
returned to investors when borrowers default
on their loans, although the amount and tim-
ing of principal cash flows is subject to many
variables. However, credit-related factors also
exert more subtle effects on prepayment behav-
ior. For example, borrowers with weak credit, or
who don’t have significant equity in their home,
may not be able to take advantage of declining
interest rates by obtaining new loans.

Taken together, these factors and activities re-
sult in prepayment speeds that vary across the
MBS market. The most common way to assess
prepayment speeds within a product group is
by a simple view of prepayment speeds as mea-
sured by conditional prepayment rates (CPRs)
at various levels of refinancing incentive. Pre-
payment S-curves show prepayment speeds for
different levels of mortgage rates and/or refi-
nancing incentives. S-curves can be created us-

ing a number of different methodologies and
data sources. Either projected or historical pre-
payment speeds can be shown; additionally, the
level of prepayments can be compared by show-
ing either the absolute level of rates or the rela-
tive degree of refinancing incentive.

An example of S-curves for different peri-
ods of time is shown in Figure 1. The figure
shows historical prepayment speeds for 30-year
conventional fixed-rate pools exhibited by refi-
nancing incentive (defined as the cohort’s WAC
less the Freddie Mac 30-year fixed survey rate
for that period). The different shapes of the
S-curves are indicative of different consumer
behaviors. For example, the curve for 2003
was quite steep, indicating that borrowers were
extremely sensitive to refinancing opportuni-
ties; borrowers that had an incentive to refi-
nance (or, to borrow a term from the option
market, were “in-the-money”) did so in large
numbers. At the same time, prepayments
on “out-of-the-money” pools (i.e., those with
lower weighted-average coupons (WACs) and
no apparent refi-nancing incentive) were rela-
tively slow, reflecting slow housing turnover
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and limited cash-out activity. By contrast, the
S-curves for 2004 and 2005 were increasingly
flat. This reflected faster housing turnover, brisk
levels of cash-out activity, and growing prod-
uct transition activity for loans with minimal
or negative incentives, while in-the-money bor-
rowers were less responsive to apparent refi-
nancing opportunities.

The following subsections discuss the pri-
mary drivers of prepayment speeds in more
detail.

Turnover
As previously described, turnover refers to ac-
tivity in which the underlying property is sold
or liquidated, with the proceeds of the sale sub-
sequently passed through to the holder of the
mortgage as a prepayment. There are a num-
ber of ways to observe the level of turnover. A
simple way to assess turnover is to look at the
prepayment speeds of out-of-the-money MBS
pools, such as, for example, prepayment speeds
on Fannie 4.0s when mortgage rates are 5% or
higher.

However, prepayment speeds for lower-
coupon MBS can also be influenced by fac-
tors other than turnover. For example, high
levels of cash-out refinancings (when borrow-
ers refinance primarily to monetize the equity
in their homes) will also increase prepayment
speeds on out-of-the-money coupons. Product
transition activity, which was widespread from
2004 through early 2007, can also distort the
normal calculation of “in-the-moneyness.” As
discussed later in this entry, transitions typi-
cally are associated with the widespread avail-
ability and popularity of products that allow
borrowers to reduce their monthly payment
obligations through either lower loan rates or
alternative amortization schemes.

A truer estimate of housing turnover can be
obtained by calculating existing home sales for
single-family homes as a percentage of the num-
ber of such homes owned. Existing home sales
data are published monthly by the National
Association of Realtors, while the number of

single-family homes outstanding is reported by
the Census Bureau on a quarterly basis, subject
to periodic adjustments. Research indicates that
turnover has varied over time, primarily reflect-
ing changes in the level of home sales.

It is tempting to associate elevated housing
turnover with robust growth in home prices.
Purely speaking, however, housing turnover is
not directly associated with real estate price ap-
preciation, but rather with the level of home
sales activity and the number of completed
transactions. While home prices and sales are
highly correlated, it is conceivable that home
prices could stagnate while sales activity re-
mains firm, and vice versa.

Refinancing
Refinancing (“refi”) activity can be broadly de-
fined as transactions where borrowers replace
their existing mortgage with a new loan, us-
ing the proceeds from the new loans to pay off
their preexisting mortgage obligations. While it
encompasses a number of different activities,
it most commonly occurs when the prevailing
level of interest rates declines to the point where
borrowers can take out new loans and reduce
their monthly payments (after accounting for
transaction costs and potential penalties).1

As noted already, refinancing activity can be
broadly categorized as rate-and-term refinanc-
ings, where borrowers act solely to reduce their
mortgage payments, and cash-out refinancings
for which the new loan is larger than the one be-
ing retired. Rate-and-term refis are easily con-
ceptualized as a form of option exercise. In a
fashion similar to a corporation calling a debt
issue, homeowners can reduce their required
debt service obligations by calling their current
loans carrying above-market rates and issuing
new debt.

However, the nature of mortgage lending
complicates borrowers’ refinancing decisions.
Homeowners refinancing their loans are subject
to a variety of costs and fees, many of which
are fixed. The expected monthly savings, by
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contrast, is a function of the size of the loan
in question. This implies that refinancing in-
centives are strongly impacted by loan size, as
smaller loans typically require a greater refi-
nancing incentive in order to trigger refinanc-
ing activity. Take, for example, two loans with
5% note rates and balances of $200,000 and
$400,000, respectively. A 50 basis point rate sav-
ings reduces the payment on the $200,000 loan
by $60 per month, while the same rate sav-
ings reduces the larger loan’s monthly payment
by roughly $120. If both loans are subject to
$1,000 in refinancing costs, the borrower with
the $400,000 loan will recoup the initial out-
lay in month 8; the borrower with the smaller
loan needs more than double the time to break
even. This makes loan size a critical variable
in modeling and projecting future prepayment
speeds.

Cash-out refinancings are commonly viewed
as a subset of overall refinancing activity. For
example, Freddie Mac defines cash-out refis as
transactions where the new loan is at least 5%
larger than the original one, and reports cash-
outs as a percentage of overall prepayment ac-
tivity. The level of cash-out activity has varied
significantly over time. For example, the rel-
ative level of cash-out activity was extremely
high in the late 1980s and 1990s, as well as in
the period between 2003 and 2007.

The primary driver of cash-out activity at any
point in time is the amount of equity borrowers
have in their homes. In turn, equity is a function
of both the original equity in the home (i.e., the
inverse of a loan’s loan-to-value (LTV) ratio)
and the rate of home price appreciation since
the home was purchased.

Aggregate refinancing incentives can be ob-
served by examining the distribution of note
rates within the MBS universe at various points
in time. Keep in mind that the outstanding
mortgage population is always changing, as
new loans are issued and older loans are retired.
The distribution of note rates for the popula-
tion of outstanding loans is strongly impacted
by refinancing activity, which can be thought

of as recycling older high-rate loans into new
mortgages with lower rates.

A useful technique is to compare the out-
standing balances and the cumulative percent-
ages of note rates for MBS products at different
points in time. The cumulative balance percent-
ages are calculated as follows:

� Divide the outstanding market balances into
discrete segments or “buckets” by WAC. (The
following analysis uses 12.5 basis point WAC
buckets.)

� For each WAC bucket, calculate the percent-
age of the remaining balances with note rates
equal to and below that bucket.

For example, if the lowest WAC bucket is 5.0%
to 5.124% and it represents 2% of the remain-
ing balance, its cumulative percentage is 2%. If
the next WAC bucket (5.125% to 5.249%) com-
prises 6% of the unpaid balance of the mar-
ket, its cumulative balance is therefore 8%. This
process is completed for all WAC buckets. This
technique is particularly useful in assessing the
“refinanceability” of the market at particular
points in time.

FACTORS INFLUENCING
PREPAYMENT SPEEDS
In understanding and evaluating prepayment
behavior, the level of consumer mortgage rates
is the single factor upon which most attention
is paid. However, there is no single “market”
rate that analysts can observe. There are al-
ways differences in the rate offerings of dif-
ferent lenders; since loans are the “product”
they offer, it’s not surprising that there are pric-
ing discrepancies. Individual lenders also have
a variety of offerings, with different combi-
nations of interest rates and up-front fees (or
“points,” which vary inversely with the rate
offered). While these options give borrowers
choices between up-front costs and monthly
payments, the relationship between rates and
points is highly lender-specific and a function
of their pricing algorithms. Finally, lenders seek
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Figure 2 MBA Refi Index versus Freddie Mac 30-year Survey Rate
Data Sources: Mortgage Bankers Association and Freddie Mac.

to price in the risk of loans to various borrow-
ers in a serious of activities broadly classified
under “risk-based pricing.”2

However, a variety of outside factors that
influence prepayment speeds and refinancing
behavior can be outlined. These include ex-
ogenous factors, mortgage industry economics,
and consumer behaviors and preferences.

Borrower Inefficiencies
Rational borrowers will always seek to lower
their borrowing costs by refinancing their debts.
Refinancing opportunities present themselves
to both institutional and individual borrow-
ers. Unlike corporations and municipalities,
however, residential borrowers are relatively
inefficient in capitalizing on refinancing op-
portunities. (If mortgagors were efficient, for
example, few if any premium pools would
be outstanding; however, there were approxi-
mately $110 billion of 30-year Fannie Maes with
coupons of 6.5% and higher at the end of 2010.)

Borrower inefficiencies exist for a number of
reasons. Homeowners have varying degrees of
awareness of financial market rates and condi-

tions, and as a result are not always cognizant
of refinancing opportunities. Borrowers often
hear about declines in rates from their friends
and co-workers; they also may read about it in
the financial press or see it discussed on news
programs. These are collectively referred to as
media effects. While the growth of the financial
press (with information available from print,
television, and the Internet) has improved re-
financing efficiency over time, it often takes a
significant and noteworthy drop in rates to gen-
erate conversation and media “buzz.” This ex-
plains the tendency for refinancings to occur
in waves, as illustrated in Figure 2. The fig-
ure shows mortgage rates (using Freddie Mac’s
30-year survey rate as a proxy, shown on a re-
verse scale) versus refinancing activity, using
the Mortgage Bankers Association’s refinanc-
ing applications index. The figure indicates that
refinancing activity often remains tepid for long
periods of time, but spikes when mortgage rates
decline beyond some indeterminate threshold.

In addition, the costs associated with refinanc-
ing alter the refinancing economics for borrow-
ers. The need to overcome cost hurdles serves
to inhibit refinancing activity and complicates
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refinancing decisions. As noted previously, this
is particularly relevant for borrowers with
smaller loan balances, who typically require a
greater refinancing incentive before engaging
in rate-and-term refinancings.

Refinancing efficiency has also been impacted
by the structure of the mortgage industry. Be-
ginning in the mid-1990s, lenders became in-
creasingly adept at marketing their products
and generating refinancing activity. Some of
these activities involve directly contacting exist-
ing customers, while others involve mass mar-
keting through television commercials, print
advertisements, and direct mail and phone so-
licitations. Also contributing to the marketing
effort was a cadre of mortgage brokers and
other “third-party originators” who acted as
agents linking lenders and borrowers. These de-
velopments contributed to improved refinanc-
ing efficiency.

The events that culminated in the financial
crisis in 2008, however, led to sharp contraction
in “wholesale” lending activities. Brokers were
blamed for poor loan quality and sloppy paper-
work; since they did not make loans directly,
they arguably had no incentive to insure the
quality of their loans. As a result, many smaller
originators that were dependent on the whole-
sale channel failed, while a number of large
originators curtailed or severely limited their
interaction with third-party lenders. This de-
velopment in turn served to impair borrowers’
ability and/or willingness to capitalize on refi-
nancing opportunities.

Finally, additional factors impact refinancing
activities. After 2007, for example, a combina-
tion of significantly tighter lending standards,
fewer product offerings, and declining bor-
rower equity due to falling home prices acted to
further depress refinancing activity. Referring
to Figure 2, the inability of the MBA’s refi index
to reach and maintain high levels reflected the
fact that the pool of borrowers with the abil-
ity to refinance was quickly exhausted when
mortgage rates plummeted beginning in early
2009.

Product Choices and Transitions
Both rate-and-term and cash-out refinancing
activity is at times influenced by product tran-
sitions. This means that borrowers can lower
their monthly payment by refinancing from one
product into another. This type of activity has
varied over time, depending on the availabil-
ity, popularity, and pricing of alternative prod-
ucts.When the yield curve has been relatively
steep, for example, large numbers of borrow-
ers have sometimes refinanced out of fixed rate
loans into adjustable rate products.

Transition activity has varied substantially
over time, however, driven by both lender
offerings and consumer preferences. Prior to
mid-2003, for example, ARMs were a niche
product targeted primarily to first-time home
buyers. In the summer of 2003, however, ARM
volumes rose fairly dramatically, as consumers
refinanced out of fixed rate products into newly
popular hybrid ARMs. This reflected both con-
sumers’ increased comfort with adjustable rate
loans as well as marketing efforts by mort-
gage lenders designed to maintain issuance
volumes. By mid-2007, borrowers once again
eschewed ARMs, in part due to bad publicity
emphasizing their riskiness.

These abrupt changes in behavior are illus-
trated in Figure 3. The figure contains a scatter-
chart showing the Freddie Mac 30-year fixed
survey rate on the horizontal axis, and the
percentage of loans taken as ARMs on the
vertical axis. The figure demonstrates the ex-
istence of three distinct regimes. ARMs were
relatively unpopular in the years prior to mid-
2003, and only reflected a large share of activ-
ity when mortgage rates were relatively high.
From mid-2003 through early 2008, by contrast,
the percentage of ARMs was relatively high ir-
respective of the level of mortgage rates and,
by implication, refi activity. After the begin-
ning of 2008, ARMs again fell out of favor; by
2010 they comprised less than 10% of new loan
applications.

The varying popularity of fixed-to-ARM re-
financings has several implications. Because
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of the generally upward slope of the yield
curves, ARM rates are typically lower than
fixed rates. This means that borrowers will-
ing to utilize adjustable rate products will be
presented with an apparent refinancing incen-
tive more often than those borrowers that es-
chew ARMs and will only consider fixed rate
products. (Of course, this savings is only guar-
anteed for an ARM’s fixed rate or “teaser”
period.) Taking available ARM rates into ac-
count means that more borrowers can reduce
their mortgage rates by refinancing.3 As a re-
sult, regimes where ARMs are a popular prod-
uct choice (due to consumer preferences and/or
a steep yield curve) are characterized by steady
levels of refinancing activity and relatively flat
S-curves.

Alternatively, when short rates rise and push
ARM rates higher, fixed-to-ARM refinancing in-
centives are reduced. In fact, regimes associated
with flat yield curves are often characterized by
ARM-to-fixed transitions, as borrowers seek to
lock in lower long-term rates. Taken together,
these phenomena indicate that refinancing be-
havior is not simply dictated by the level of
intermediate and long interest rates. The levels
of all interest rates, as well as the shape of the

yield curve, are important drivers of refinanc-
ing incentives and prepayment activity.

Large-scale transitions also have been ob-
served as borrowers utilized loan products with
alternative amortization schedules and pay-
ment schemes. As a simple example, a borrower
with a $200,000 loan balance and a 30-year loan
with a fixed 5% note rate would have monthly
P&I payments of $1,074. If they refinanced into
an interest-only loan with the same term and
note rate, their new monthly payment would
be $833, an initial savings of $240. However, the
savings would only be available for the period
that the borrower was allowed to make interest-
only payments; after that point, the loan is “re-
cast” (i.e., the payments are recalculated) over
the remaining term. If the borrower chooses
a new loan with an interest-only period of 10
years, the post-recast monthly payment would
be $1,320, significantly higher than the payment
on the original loan.

The borrower’s decision thus trades off early
savings for a sharply increase monthly pay-
ment (or payment shock) at the recast. While such
decisions were popular during the period of
widespread product transitions, the mortgage
crisis of 2007 led to the realization that these
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types of transitions exposed both borrowers
and lenders to serious embedded risks. As a re-
sult, transitions into alternative payment prod-
ucts became fairly rare by 2008.

Changes in Homeowner Equity
and Credit
As noted earlier, the experience of the post-2007
period has highlighted the interrelationship be-
tween prepayments and home prices and, by
extension, borrower credit. We already high-
lighted the importance of cash-out refinancings
and the critical role that home price apprecia-
tion plays in this activity. In addition, deteri-
orating borrower credit (of which homeowner
equity is a crucial element) often directly results
in prepayments, as we discuss next.

However, changing home prices and bor-
rower credit have other subtle affects on pre-
payments. For example, borrowers often are
presented with an enhanced refinancing in-
centive when their credit improves. If they
took loans with relatively high rates because
of risk-based pricing, they can capitalize on
their improved situation by refinancing. Such
“credit curing” can be related to economic
factors such as improving labor markets and
consumer credit conditions, particularly when
observing local or regional activity. A similar
phenomenon is associated with rapid increases
of home prices. Borrowers with high LTVs who
were saddled with higher risk-based mortgage
rates and/or mortgage insurance premiums
can lower their payments once their homes ap-
preciate in value, even if the overall level of
mortgage rates remains unchanged.

Alternatively, borrower credit can also act to
slow prepayment speeds. Borrowers with de-
teriorating credit may not be able to capitalize
on declining interest rates if they cannot obtain
new loans because of tighter credit standards.
Declining real estate values can also prevent
homeowners from refinancing existing loans by
reducing or eliminating their equity. If home-
owners’ equity disappears or becomes nega-

tive (a situation often referenced as “being un-
derwater”), they may lose the ability to ob-
tain new loans. Moreover, significant declines
in home values ultimately serve to constrain
homeowners from selling their properties, as
they would be forced to realize large losses
on their homes. These developments are col-
lectively called prepayment lock-in, and serve
to slow both refinancing- and turnover-related
prepayments.

Time
Prepayment rates vary with the passage of
time. In addition to purely random variations,
fairly predictable changes occur to prepayment
speeds due to factors that are independent of in-
terest rates. The behavior of borrowers under-
goes a variety of secular and cyclical changes
as time elapses; in addition, the composition of
closed loan populations (i.e., loans collateraliz-
ing a pool) changes as the pool ages and loans
drop out for any number of reasons.

Time-related factors mean that evaluating any
MBS at a single constant speed is unrealis-
tic. This realization was first incorporated into
the PSA prepayment benchmark, which rec-
ognized the fact that loans are more likely to
prepay as they age (or season). Borrowers are
disinclined to prepay their loans immediately
after issuance, but become increasingly open to
the possibility as time elapses. This is due to a
variety of factors:

� Borrowers typically are reluctant to under-
take the effort and expense of refinancing un-
til their loans are at least a few months old.

� Borrowers are unlikely to sell their proper-
ties and move immediately after purchasing
a home. This is true even for homeowners
that relocate frequently; evidence suggests
that they tend to stay in their homes for at
least a year.

� It takes some time for borrowers to build eq-
uity in their property (assuming, of course, a
regime of rising home prices).
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The key insight introduced by the PSA model
is the concept that prepayment speeds are not
constant over time, especially early in loans’
lives. It is, however, simplistic in its assump-
tion of a constant prepayment speed after
30 months, and does not account for other time-
related behaviors. One such factor is seasonal-
ity, which suggests that prepayments typically
increase during spring and summer months.
Another behavior, burnout, accounts for the ob-
servation that loans remaining in a population
are less likely to refinance after a certain point
in time. The underlying logic is that borrowers
that have not availed themselves of refinancing
opportunities lack the ability and/or the incli-
nation to do so.

The combination of these behaviors means
that a time series of CPRs generated by a pre-
payment model (as well as the realized pre-
payment speeds for any security)—the CPR
vector—will look very different from the equiv-
alent speeds quoted as percentages of the PSA
model.

Time-related changes to prepayment speeds
are even more profound for mortgage prod-
ucts that do not require fixed monthly payments
over their life. For example, ARMs typically ex-
perience a spike in prepayment speeds as the
loans approach their first reset date. (For ex-
ample, the monthly payments on 5/1 hybrid
ARMs change when the loans reset at month
60.) Interest-only loans exhibit comparable be-
havior, as their required monthly payments in-
crease once the IO period expires. All such
products exhibit prepayment patterns reflect-
ing variations in the loans’ monthly payments
and, by implication, refinancing incentives.

The spike in ARM speeds at their reset results
from a variety of factors. Unlike homeowners
in Europe, U.S. borrowers have traditionally
been somewhat averse to adjustable-rate loans.
This means that borrowers often prepay hybrid
ARMs simply to avoid being exposed to chang-
ing interest rates and variable payments. It also
is a function of the level of the benchmark rate
at the reset; in regimes where the yield curve
is flat or inverted, the new loan rates are often

higher than the teaser rate. The resulting pay-
ment shock creates a refinancing incentive for
borrowers during periods when the new rate is
higher than that for either a new ARM or a fixed
rate loan.

Empirical evidence shows a sharp increase
in CPRs at the reset; in addition, models also
project a cyclical increase in speed every 12
months thereafter, corresponding with the an-
nual rate resets for the loans as well as normal
seasonal patterns.4

DEFAULTS AND
“INVOLUNTARY”
PREPAYMENTS
The mortgage crisis that erupted in early 2007
underscored the critical role of credit perfor-
mance in all sectors of the mortgage and MBS
markets. In the past, investors assumed that
senior nonagency MBS were “money-good”
by virtue of their triple-A ratings. The col-
lapse of mortgage performance both reinforced
the importance of sound credit analysis of
private-label securities, while also giving in-
vestors a painful and expensive lesson on the
factors influencing residential mortgage credit
performance.

Factors Influencing Default
Frequency and Credit Performance
The general thinking has long been that bor-
rower equity simply provides a cushion for the
lender in cases when the home must be repos-
sessed. However, a critical lesson learned from
the post-2006 experience is that borrower credit
performance and home prices are strongly in-
terrelated at a number of levels, and that
high-LTV loans have, all else being equal, an
increased likelihood of default.

At its most basic, appreciating home prices
give borrowers the ability to monetize their
home’s equity in order to meet their finan-
cial obligations and mitigate cash flow prob-
lems. In addition, steady or rising home prices
also impact the resolution of troubled loans.
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Delinquent borrowers that have equity in their
homes can sell their properties and, using the
net proceeds, pay off their loans instead of going
into foreclosure. In theory, borrowers should
never default if their homes’ values are great
enough to extinguish the loan and pay the asso-
ciated costs. Borrowers whose homes have de-
clined to the point where their LTVs are greater
than 100% (i.e., where their loans are greater
than the value of their homes) do not have this
option. This accounts for why some loan vin-
tages (such as the year 2000) have experienced
relatively high levels of delinquency but limited
defaults and losses; borrowers in financial diffi-
culty were able to sell their homes and emerge
“whole.”5

The decline in home prices that began in
2007 resulted in unexpectedly large increases
in defaults. The loss of home equity induced
numerous borrowers to exercise the option
embedded in any collateralized loan that allows
the collateral to revert back to the lender. It is
axiomatic in corporate credit theory that bor-
rowers are expected to default on loans once
the value of the loans’ collateral declines below
the value of the loans themselves. However, the
mortgage sector has long operated under the as-
sumption that obligors rarely walk away from
the properties because of the importance of
dwellings to families’ well-being. This behavior
was untested until 2007, in large part because
home prices have never before experienced sig-
nificant and widespread declines. However, the
new phenomenon of the “strategic default”
emerged during the mortgage crisis, where
large numbers of homeowners with income and
assets sufficient to service their loans never-
theless ceased making monthly mortgage pay-
ments.

The emergence of this activity has a number
of implications. The most important realization
is that home prices and mortgage credit perfor-
mance are closely linked. In this light, the strong
credit performance exhibited by the mortgage
market since the 1950s was arguably skewed
higher by decades of steady home price appre-
ciation. This assertion implicitly argues that res-

idential mortgage loans are riskier assets than
previously assumed. In addition, mortgage un-
derwriters have placed undue faith in metrics
such as credit scores which, while valuable, can-
not serve as reliable proxies for borrowers’ will-
ingness to service their loans during times of
financial distress.

Voluntary and Involuntary
Prepayments
Once borrowers cease making regular pay-
ments, the loans eventually go into default,
meaning that the borrowers lose title to the un-
derlying properties. The properties are subse-
quently liquidated, typically by being placed in
foreclosure; this means that the servicer even-
tually takes possession of the property and sells
it. The proceeds of the sale, less associated costs,
are categorized as recovered principal or recov-
eries. Since recoveries are typically less than the
amount of the loan, some entity must absorb a
principal loss.

Losses for agency MBS are absorbed by the
entity or agency that guaranteed them. At some
point, seriously delinquent loans in agency
pools are classified as “nonperforming” and
subsequently bought out of the pools, either
by the GSEs or (in the case of FHA and VA loans)
the servicer. Because of the principal guar-
anty, the full face value of principal is quickly
returned to investors. This means that all un-
scheduled principal payments can be captured
in a single “prepayment speed” reported for
the security in question. This measure is cal-
culated based on the total principal repaid on
the pool and the breakdown (either reported or
estimated) between amortizations and prepay-
ments (i.e., between scheduled and unsched-
uled principal payments). As a result, many
agency securities exhibited increased prepay-
ment speeds during periods of poor credit
performance and widespread delinquencies,
particularly when the agencies change their
buyout policies.6 (This also blurs the line be-
tween credit-related prepayments and normal
housing “turnover.”)
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By contrast, traditional and credit-related pre-
payments must be calculated and reported sep-
arately for nonagency securities. This is because
of the fact that credit support for these securities
is internal; deals are structured such that senior
bonds in a transaction have priority over other
bonds in receiving principal and interest. Since
the transaction itself will absorb incurred losses,
traditional prepayments (which return all of
principal to the security holder) and credit-
related prepayments (which result in shortfalls
that must be allocated within structures) must
be segregated. As a result, private-label secu-
rities report both voluntary prepayments, which
encompass traditional prepayment activity, and
credit-related involuntary prepayments. The lat-
ter result from defaults or other events specifi-
cally related to credit events (such as short sales
of homes), while also accounting for the like-
lihood that less than the full amount of prin-
cipal will be returned to the transaction (or,
more accurately, the trust holding the deal’s
collateral).

These factors complicate the projection and
calculation of prepayment speeds for private-
label securities. Voluntary prepayments are
typically quoted as VPRs, which stands for
voluntary prepayment rate. They are calculated
similarly to a CPR, in which a monthly per-
centage of prepaid principal (sometimes called
a VMM) is annualized. Involuntary prepay-
ment speeds are quoted as conditional default
rates (CDRs) which are calculated by annual-
izing the monthly default rates or MDRs. Note
that the sum of the monthly VMMs and MDRs
equals the total deal SMM for any particular
month.

Involuntary prepayments require additional
metrics to be reported. In addition to the rate
of default, an estimate must be made of the
loss severity (which indicates how much of the
defaulted principal amount is returned to in-
vestors) as well as the lag between the time
when loans go into default (i.e., when the bor-
rowers lose title to the properties) and when the
trusts receive the recovered principal.

Interactions Between Prepayments
and Defaults
There are some interesting interactions between
voluntary and involuntary prepayment speeds
that impact the analysis of private-label secu-
rities. All things equal, fast prepayments en-
hance the performance of these securities; faster
return of principal means that there is less prin-
cipal outstanding to go into default. At the
same assumed CDR, faster voluntary prepay-
ment speeds (i.e., a higher VPR assumption)
will typically result in higher projected yields
and returns.

This assertion is somewhat simplistic, how-
ever, since it doesn’t take the changing compo-
sition of the pool into account. For example, it is
unlikely that the CDR would remain constant
under the different VPR assumptions, as the
profile of any closed population of mortgages
changes over time. In addition to home prices
and economic conditions, the composition of
the collateral pool backing a transaction evolves
as the result of attrition. Loans pay off over time
as a result of both voluntary and involuntary
factors. Voluntary prepayments negatively im-
pact the composition of a pool because “bet-
ter” borrowers (i.e., those with stronger credit
and/or more equity in their homes) are able
to take advantage of refinancing opportunities;
since weaker borrowers are locked into their ex-
isting loans, the credit profile of the remaining
population deteriorates. This is known as ad-
verse selection, and suggests that the credit qual-
ity of a pool typically declines over time, all
things equal.

The high level of defaults experienced dur-
ing the mortgage crisis also created a new and
unanticipated phenomenon. High levels of de-
faults means that weaker borrowers are drop-
ping out of the collateral pools. In turn, the
remaining borrowers generally have stronger
credit, meaning that the population’s credit
profile improves over time. This is especially
noteworthy during periods of declining home
prices. Borrowers with poor credit (i.e., both
those unable or unwilling to service their loans)
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go into default in large numbers, while stronger
borrowers who are nonetheless “locked in” by a
lack of equity continue to service their loans and
remain in the pool. This process is sometimes
called favorable selection, and was most promi-
nently observed in subprime and alt-A pools,
which experienced very high levels of defaults.

Neither the processes of adverse nor favor-
able selection take place in a vacuum. For exam-
ple, the performance of a cohort assumed to be
adversely selected (i.e., having experienced rel-
atively high levels of voluntary prepayments)
will improve in the face of home price appreci-
ation. Alternatively, a population of subprime
loans may experience a renewed surge in de-
faults if money-market rates increase sharply.
Since many subprime loans have adjustable-
note rates with very high loan margins, ris-
ing rates create widespread payment shock that
challenges the ability of borrowers to service
their loans.

KEY POINTS
� Traditional prepayment analysis has focused

on borrowers’ option to retire their loans prior
to maturity.

� The two primary drivers of prepayment be-
havior are turnover and refinancing.

� Turnover occurs when the underlying prop-
erties are sold and the associated loan is
retired.

� Refinancing behavior includes rate-and-term
refinancing (undertaken to reduce the bor-
rower’s monthly payment, most commonly
due to a decline in the level of consumer
mortgage rates) and cash-out refinancing (of-
ten are taken as an alternative to second lien
loans and strongly correlated with rates of
home price appreciation).

� The most common way to assess prepayment
speeds within a product group at various
levels of refinancing incentive is with the pre-
payment S-curves. These curves show pre-

payment speeds for different levels of mort-
gage rates and/or refinancing incentives.

� In understanding and evaluating prepayment
behavior, the level of consumer mortgage
rates is the single factor to which most at-
tention is paid.

� Outside factors that influence prepayment
speeds and refinancing behavior include
exogenous factors, mortgage industry eco-
nomics, and consumer behaviors and pref-
erences.

NOTES
1. For a more detailed discussion, see Chap-

ter 3 in Fabozzi, Bhattacharya, and Berliner
(2011).

2. See Bhattacharya, Berliner, and Fabozzi
(2008).

3. If ARM rates are low enough, virtually the
entire fixed rate coupon stack can be consid-
ered in-the-money.

4. See Bhattacharya, Berliner, and Fabozzi
(2008).

5. In these cases, the transaction is recorded as
a home sale and captured under “turnover.”

6. In early 2010, Fannie Mae and Freddie Mac
instituted policies in which loans that were
120 days or more delinquent were automati-
cally bought out of pools. Prior to that, buy-
outs had been left to their discretion. The
process of buying out large numbers of se-
riously delinquent loans led to sharp short-
term spikes in prepayment speeds, as well
as huge writedowns for Fannie Mae and
Freddie Mac.
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Abstract: At one time the belief was that financial institutions are exposed to two main risks.
Operational risk was regarded as a mere part of “other” risks. That view has changed. This risk is
now viewed as a major risk faced by financial institutions as the world financial system has been
shaken by a number of banking failures since the mid 1980s, and the risks—that internationally
active banks, in particular, have had to deal with—have become more complex and challenging.
More than 100 operational losses exceeding $100 million in value each and a number of losses
exceeding $1 billion have impacted financial firms globally since the end of the 1980s. There is no
question that the cause is unrelated to market or credit risks. Such large-scale losses have resulted in
bankruptcies, mergers, or substantial equity price declines of a large number of highly recognized
financial institutions.

A long-held belief is that credit risk and market
risk have been considered the two largest con-
tributors to the risks faced by financial entities
such as banks, insurance companies, and as-
set management firms. Credit risk is the risk of
counterparty failure; market risk is the loss due
to changes in market indicators, such as equity
prices, interest rates, and exchange rates. It is
now recognized that operational risk is a major
risk faced by financial entities. In general terms,
operational risk is the risk of loss resulting from
inadequate or failed internal processes, people,
or systems or from external events. This risk
encompasses legal risks, which includes, but is

not limited to, exposure to fines, penalties, or
punitive damages resulting from supervisory
actions, as well as private settlements.

Operational losses have been reflected in
banks’ balance sheets for many decades. Op-
erational risk affects the soundness and oper-
ating efficiency of all banking activities and all
business units. Most of the losses are relatively
small in magnitude—the fact that these losses
are frequent makes them predictable and of-
ten preventable. Examples of such operational
losses include losses resulting from acciden-
tal accounting errors, minor credit card fraud,
or equipment failures. Operational risk-related
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events that are often more severe in the mag-
nitude of incurred loss include tax noncom-
pliance, unauthorized trading activities, major
internal fraudulent activities, business disrup-
tions due to natural disasters, and vandalism.

Until around the 1990s, the latter events have
been infrequent, and even if they did occur,
banks were capable of sustaining the losses
without major consequences. This is quite un-
derstandable because the operations within the
banking industry until about the middle of
the 1980s have been subject to numerous re-
strictions, keeping trading volumes relatively
modest and diversity of operations limited.
Therefore, the significance of operational risk
(whose impact is positively correlated with in-
come size and dispersion of business units) has
been perceived as minor, with limited effect on
management’s decision making and capital al-
location when compared to credit risk and mar-
ket risk. However, serious changes in the global
financial markets have caused noticeable shifts
in banks’ risk profiles.

In this entry, we discuss some key aspects that
distinguish operational risk from credit risk and
market risk. They are related to the arrival pro-
cess of loss events, the loss severity, and the de-
pendence structure of operational losses across
a bank’s business units.

OPERATIONAL RISK
DEFINED
Let’s begin by distinguishing operational risk
from other categories of financial risk. Opera-
tional risk is, in large part, a firm-specific and
nonsystematic risk.1 Early publications of the
Bank for International Settlements (BIS) defined
operational risk as:2

� Other risks.
� “Any risk not categorized as market and

credit risk.”
� “The risk of loss arising from various types of

human or technical errors.”

Other definitions proposed in the literature
include:
� Risk “arising from human and technical er-

rors and accidents.”3

� “A measure of the link between a firm’s busi-
ness activities and the variation in its business
results.”4

� “The risk associated with operating a
business.”5

The formal definition that is currently widely
accepted was initially proposed by the British
Bankers Association (2001) and adopted by the
BIS in January 2001. Operational risk was de-
fined as “the risk of direct or indirect loss
resulting from inadequate or failed internal
processes, people or systems or from external
events.”

The industry responded to this definition
with criticism regarding the lack of a clear def-
inition of “direct” and “indirect” losses. A re-
fined definition of operational risk dropped the
two terms, hence finalizing the definition of op-
erational risk as:

Operational risk is the risk of loss resulting from
inadequate or failed internal processes, people or
systems, or from external events. (BIS, 2001b, p. 2)

This definition includes legal risk, but ex-
cludes strategic and reputational risk (these
will be defined soon). The definition is “causal-
based,” providing a breakdown of operational
risk into four categories based on its sources:
(1) people, (2) processes, (3) systems, and (4)
external factors. According to Barclays Bank,
the major sources of operational risk include
operational process reliability, IT security, out-
sourcing of operations, dependence on key
suppliers, implementation of strategic change,
integration of acquisitions, fraud, error, cus-
tomer service quality, regulatory compliance,
recruitment, training and retention of staff, and
social and environmental impacts.6

Large banks and financial institutions some-
times prefer to use their own definition of
operational risk. For example, Deutsche Bank
defines operational risk as
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potential for incurring losses in relation to employ-
ees, contractual specifications and documentation,
technology, infrastructure failure and disasters, ex-
ternal influences and customer relationships.7

The Bank of Tokyo-Mitsubishi defines opera-
tional risk as “the risk of incurring losses that
might be caused by negligence of proper opera-
tional processing, or by incidents or misconduct
by either officers or staffs.”8

In October 2003, the U.S. Securities and Ex-
change Commission (SEC) defined operational
risk as:

the risk of loss due to the breakdown of con-
trols within the firm including, but not limited to,
unidentified limit excesses, unauthorized trading,
fraud in trading or in back office functions, inexpe-
rienced personnel, and unstable and easily accessed
computer systems.9

OPERATIONAL RISK
EXPOSURE INDICATORS
The probability of an operational risk event
occurring increases with a larger number of
personnel (due to increased possibility of com-
mitting an error) and with a greater transaction
volume. Examples of operational risk exposure
indicators include:10

� Gross income.
� Volume of trades or new deals.
� Value of assets under management.
� Value of transactions.
� Number of transactions.
� Number of employees.
� Employees’ years of experience.
� Capital structure (debt to equity ratio).
� Historical operational losses.
� Historical insurance claims for operational

losses.

For example, larger banks are more likely to
have larger operational losses. Shih, Samad-
Khan, and Medapa (2000) measured the de-
pendence between a bank size and operational
loss amounts. They found that, on average, for
every unit increase in a bank size, operational
losses are predicted to increase by roughly a

fourth root of that. This means that when they
regressed log-losses on a bank’s log-size, the es-
timated coefficient was approximately 0.25. In a
different study, Chapelle, Crama, Hübner, and
Peters (2005) estimated the coefficient to be 0.15.

CLASSIFICATION OF
OPERATIONAL RISK
Operational risk can be classified according to

� The nature of the loss: internally inflicted or
externally inflicted.

� The impact of the loss: direct losses or indirect
losses.

� The degree of expectancy: expected or unex-
pected.

� Risk type, event type, and loss type.
� The magnitude (or severity) of loss and fre-

quency of loss.

We discuss each one below.

Internal versus External
Operational Losses
Operational losses can be either internally in-
flicted or result from external sources. Inter-
nally inflicted sources include most of the losses
caused by human, process, and technology fail-
ures, such as those due to human errors, internal
fraud, unauthorized trading, injuries, business
delays due to computer failures, or telecom-
munication problems. External sources include
man-made incidents such as external fraud,
theft, computer hacking, terrorist activities, and
natural disasters such as damage to physical as-
sets due to hurricanes, floods, and fires.

Many of the internal operational failures
can be prevented with appropriate internal
management practices; for example, tightened
controls and management of the personnel can
help prevent some employee errors and inter-
nal fraud, and improved telecommunication
networks can help prevent some technological
failures.
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External losses are very difficult to prevent.
However, it is possible to design insurance or
other hedging strategies to reduce or possibly
eliminate externally inflicted losses.

Direct versus Indirect Operational
Losses
Direct losses are the losses that directly arise
from the associated events. For example, an
incompetent currency trading can result in a
loss for the bank due to adverse exchange rate
movements. As another example, mistakenly
charging a client $50,000 instead of $150,000
results in the loss for the bank in the amount
of $100,000. The Basel II Capital Accord sets
guidelines regarding the estimation of the reg-
ulatory capital charge by banks based only on
direct losses. Table 1 identifies the Basel II Capi-
tal Accord’s categories and definitions of direct
operational losses.

Indirect losses are generally opportunity costs
and the losses associated with the costs of fixing
an operational risk problem, such as near-miss
losses, latent losses, or contingent losses.

Near-Miss Operational Losses
Near-miss losses (or near-misses) are the esti-
mated losses from those events that could po-
tentially occur but were successfully prevented.
The rationale behind including near-misses into
internal databases is as follows: The definition

of “risk” should not be solely based on the past
history of actual events but instead should be a
forward-looking concept and include both ac-
tual and potential events that could result in
material losses. The mere fact that a loss was
prevented in the past (be it by luck or by con-
scious managerial action) does not guarantee
that it will be prevented in the future. There-
fore, near-misses signal flaws in a bank’s in-
ternal system and should be accounted for in
internal models. It is also possible to view near-
misses from quite the opposite perspective: The
ability to prevent these losses before they hap-
pen demonstrates the bank’s effective opera-
tional risk management practices. Therefore,
the losses that would result had these events
taken place should not be included in the inter-
nal databases.

Muermann and Oktem (2002, p. 30) define
near-miss as:

an event, a sequence of events, or an observation
of unusual occurrences that possesses the potential
of improving a system’s operability by reducing the
risk of upsets some of which could eventually cause
serious damage.

They assert that internal operational risk mea-
surement models must include adequate man-
agement of near-misses.

Muermann and Oktem propose develop-
ing a pyramid-type three-level structure for
the near-miss management system: corporate
level, branch level, and individual level. At the
corporate level within every bank, they propose

Table 1 Direct Loss Types and Their Definitions According to the Basel II Capital Accord

Loss Type Contents

Write-downs Direct reduction in value of assets due to theft, fraud, unauthorized activity, or
market and credit losses arising as a result of operational events

Loss of recourse Payments or disbursements made to incorrect parties and not recovered
Restitution Payments to clients of principal and/or interest by way of restitution, or the cost

of any other form of compensation paid to clients
Legal liability Judgements, settlements, and other legal costs
Regulatory and compliance Taxation penalties, fines, or the direct cost of any other penalties, such as license

revocations
Loss of or damage to assets Direct reduction in value of physical assets, including certificates, due to an

accident, such as neglect, fire, and earthquake

Source: BIS (2001a), p. 23, with modifications.
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establishing a Near-Miss Management Strate-
gic Committee whose primary functions would
include:

� Establishing guidelines for corporate and site
near-miss structures.

� Developing criteria for classification of near-
misses.

� Establishing prioritizing procedures for each
near-miss class.

� Auditing the near-miss system.
� Integrating quality and other management

tools into near-miss management practice.
� Identifying gaps in the near-miss manage-

ment structure based on analysis of incidents
with higher damage (beyond near-misses)
and taking corrective actions.

� Developing guidelines for training site
management and employees on near-miss
system.

At the branch level, they propose establish-
ing a Near-Miss Management Council for ev-
ery business unit. The key responsibilities of
the council would include:

� Adapting criteria set by Near-Miss Man-
agement Strategic Committee to the branch
practices.

� Monitoring site near-miss practices.
� Promoting the program.
� Ensuring availability of necessary resources

for analysis and corrective action, especially
for high priority near-misses.

� Periodically analyzing reported near-misses
for further improvement of the system.

� Training employees on NM implementation.

Finally, a successful near-miss management
system relies on the individual actions by
managers, supervisors, and employees. Appro-
priate training is necessary to recognize op-
erational issues before they become a major
problem and develop into operational losses for
the bank.

Expected versus Unexpected
Operational Losses
Some operational losses are expected, some are
not. The expected losses are generally those that
occur on a regular (such as every day) basis,
such as minor employee errors and minor credit
card fraud. Unexpected losses are those losses
that generally cannot be easily foreseen, such
as terrorist attacks, natural disasters, and large-
scale internal fraud.

Operational Risk Type, Event Type,
and Loss Type
Confusion arises in the operational risk liter-
ature because of the distinction between risk
type (or hazard type), event type, and loss
type. When banks record their operational loss
data, it is crucial to record it separately ac-
cording to event type and loss type, and cor-
rectly identify the risk type.11 The distinction
between the three is comparable to cause and
effect:12

� Hazard constitutes one or more factors that
increase the probability of occurrence of an
event.

� Event is a single incident that leads directly to
one or more effects (e.g., losses).

� Loss constitutes the amount of financial dam-
age resulting from an event.

Thus, hazard potentially leads to event, and
event is the cause of loss. Therefore, an event
is the effect of a hazard while loss is the effect
of an event.

Figure 1 illustrates the mechanism of opera-
tional loss occurrence. The following example,
adopted from Mori and Harada (2001), further
illustrates how the correct identification of the
“event type” is critical in determining whether
a loss of a particular “loss type” is attributed to
market, credit, or operational risk.

Consider the following example:

� A reduction in the value of a bond due to a
change in the market price.
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HAZARD EVENT LOSS

Examples of hazard types:

• Inadequate employee
management

• Obsolete computer
systems

• Inexperienced personnel
• Large transaction volumes
• Diversity and cultural 

differences
• Unfavorable climate

conditions or geographical 
location

• Other 

Examples of event types:

• Internal fraud (e.g., 
unauthorized trading, 
forgery, theft)

• External fraud (e.g., credit
card fraud) 

• Diversity/discrimination
events

• Improper business and 
market practices

• Failed/inaccurate
reporting

• System failure
• Natural disasters
• Other

 Loss type categories:

• Write-downs 
• Loss of recourse 
• Restitution 
• Legal liability
• Regulatory and

compliance (e.g., fines 
and taxation 
penalties)

• Loss of or damage to 
physical assets 

• Other 

Figure 1 The Process of Operational Loss Occurrence
Source: Mori and Harada (2001), p. 3, with modifications.

� A reduction in the value of a bond due to the
bankruptcy of the issuer.

� A reduction in the value of a bond due to a
delivery failure.

In this example, the write-down of the bond
(the loss type) belongs to the scope of market

risk, credit risk, and operational risk, respec-
tively. Accurate documentation of operational
risk by the type of hazard, event, and loss is also
essential for an understanding of operational
risk.

The Basel II Capital Accord classifies oper-
ational risk into seven event-type groups (see

Table 2 Operational Risk Event Types and Their Descriptions According to the Basel II Capital Accord

Event Types and Descriptions According to Basel II

Event Type Definition and Categories

1. Internal Fraud Acts intended to defraud, misappropriate property, or circumvent regulations, the law,
or company policy, which involves at least one internal party. Categories:
unauthorized activity and theft and fraud.

2. External Fraud Acts of a type intended to defraud, misappropriate property, or circumvent the law, by a
third party. Categories: (1) theft and fraud and (2) systems security.

3. Employment Practices
and Workplace Safety

Acts inconsistent with employment, health, or safety laws or agreements, from payment
of personal injury claims, or from diversity/discrimination events. Categories: (1)
employee relations, (2) safe environment, and (3) diversity and discrimination.

4. Clients, Products, and
Business Practices

Unintentional or negligent failure to meet a professional obligation to specific clients
(including fiduciary and suitability requirements), or from the nature or design of a
product. Categories: (1) suitability, disclosure, and fiduciary, (2) improper business or
market practices, (3) product flaws, (4) selection, sponsorship, and exposure, and (5)
advisory activities.

5. Damage to Physical
Assets

Loss or damage to physical assets from natural disaster or other events. Categories:
disasters and other events.

6. Business Disruption
and System Failures

Disruption of business or system failures. Categories: systems.

7. Execution, Delivery,
and Process
Management

Failed transaction processing or process management, from relations with trade
counterparties and vendors. Categories: (1) transaction capture, execution, and
maintenance, (2) monitoring and reporting, (3) customer intake and documentation,
(4) customer/client account management, (5) trade counterparties, and (6) vendors
and suppliers.

Source: BIS (2001b), pp. 21–23.
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Table 2) and six operational loss types (see
Table 1).

Operational Loss Severity and
Frequency
We have already stated that expected losses
generally refer to the losses of low severity (or
magnitude) and high frequency. Generalizing
this idea, operational losses can be broadly clas-
sified into four main groups:

1. Low frequency/low severity.
2. High frequency/low severity.
3. High frequency/high severity.
4. Low frequency/high severity.

The idea is illustrated in the top half of
Figure 2.

According to Samad-Khan (2005), the third
group is implausible. More precisely, he sug-
gests classifying each of the frequency and

low frequency /
high severity

low frequency /
low severity

high frequency /
low severity

high frequency / 
high severity

loss
severity

loss
frequency

low frequency / 
high severity

N/A high frequency /
low severity

N/A

loss
severity

loss
frequency

Figure 2 Classification of Operational Risk by Frequency and Severity: Unrealistic View (top) and
Realistic View (bottom)

severity of operational losses into three groups:
low, medium, and high. This creates a 3 × 3 ma-
trix of all possible “frequency/severity” com-
binations. He states that “medium frequency/
high severity,” “high frequency/medium
severity,” and “high frequency/high severity”
losses are unrealistic.

Recently, the financial industry also agreed
that the first group is not feasible. Therefore, the
two remaining categories of operational losses
that the financial industry needs to focus on
are “high frequency/low severity” and “low
severity/high frequency” losses. The idea is il-
lustrated in the bottom half of Figure 2.

The losses of “high frequency/low severity”
are relatively unimportant for an institution and
can often be prevented. What poses the greatest
damage is the “low frequency/high severity”
losses. Banks must be particularly attentive to
these losses as these cause the greatest finan-
cial consequences to the institution, including
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potential bankruptcy.13 Just a few of such events
may result in bankruptcy or a significant decline
in the market value of the bank. Therefore, it
is critical for banks to be able to capture such
losses in their internal risk models.

KEY POINTS
� Financial institutions bear various opera-

tional losses on a daily basis. Examples are
losses resulting from employee errors, inter-
nal and external fraud, equipment failures,
business disruptions due to natural disasters,
and vandalism.

� Credit risk and market risk had been per-
ceived as the two biggest sources of risk for fi-
nancial institutions. Operational risk has been
regarded as a mere part of “other” risks. Fail-
ures of major financial entities have made
market participants aware of the importance
of this risk.

� Operation risk is the risk of loss resulting from
inadequate or failed internal processes, peo-
ple, or systems or from external events. This
definition identifies operational risk as com-
ing from four major causes: processes, hu-
man, systems, and external factors.

� Operational risk can be classified according
to several principles: nature of the loss (inter-
nally inflicted or externally inflicted), direct
losses or indirect losses, degree of expectancy
(expected or unexpected), risk type, event
type or loss type, and by the magnitude (or
severity) of loss and the frequency of loss.

� Operational risk can be the cause of repu-
tational risk, a risk that can occur when the
market reaction to an operational loss event
results in reduction in the market value of a
bank that is greater than the amount of the
initial loss.

NOTES
1. However, operational risk is not entirely

idiosyncratic. Two recent studies—Allen
and Bali (2007) and Chernobai, Jorion, and
Yu (2011)—found evidence of the effect of

macroeconomic factors on operational risk
in banks.

2. See BIS (1998).
3. See Jorion (2000).
4. See King (2001).
5. See Crouhy, Galai, and Mark (2001).
6. See Barclays Bank Annual Report 2004,

Form 20-F/A.
7. Deutsche Bank 2005 Annual Report, p. 45.
8. Bank of Tokyo-Mitsubishi Financial Perfor-

mance, Form 20-F (2005), p. 124.
9. ”Supervised Investment Bank Holding

Companies,” SEC (2003), p. 62914.
10. Examples of operational risk exposure in-

dicators are given in BIS (2001a, Annex 4),
Haubenstock (2003), and Allen, Boudoukh,
and Saunders (2004).

11. See the discussion of this issue in Mori and
Harada (2001) and Alvarez (2002).

12. See Mori and Harada (2001).
13. The events that incur such losses are often

called the “tail events.”
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Abstract: In general terms, operational risk is the risk of loss resulting from inadequate or failed
internal processes, people, or systems or from external events. The models that have been proposed
for assessing operational risk can be broadly classified into top-down models and bottom-up
models. Top-down approaches quantify operational risk without attempting to identify the events
or causes of losses. Bottom-up models quantify operational risk on a micro level being based on
identified internal events. The obstacle hindering the implementation of these models is the scarcity
of available historical operational loss data.

Identifying the core principles that underlie the
operational risk process is the fundamental build-
ing block in deciding on the optimal model to
be used. In this entry we provide an overview
of models that have been put forward for the
assessment of operational risk. These models
are broadly classified into top-down models and
bottom-up models.

Operational risk is distinct from credit risk
and market risk, posing difficulties of imple-
mentation of the Basel II guidelines and strate-
gic planning. We discuss some key aspects that
distinguish operational risk from credit risk and
market risk. They are related to the arrival pro-
cess of loss events, the loss severity, and the de-
pendence structure of operational losses across

a bank’s business units. Finally in this entry
we reconsider the normality assumption—an
assumption often made in modeling financial
data—and question its applicability for the pur-
pose of operational risk modeling.

OPERATIONAL RISK
MODELS
Broadly speaking, operational risk models stem
from two fundamentally different approaches:
(1) the top-down approach, and (2) the bottom-
up approach. Figure 1 illustrates a possible cat-
egorization of quantitative models.

Top-down approaches quantify operational
risk without attempting to identify the events
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Top-Down Bottom-Up

Process-based models

Actuarial models

Multifactor models for
pricing equity

Income-based models

Expense-based models

Operating leverage
models

OPERATIONAL RISK MODELS 

Scenario analysis and
stress testing

Causal models and

Risk indicator models

Bayesian belief networks

Reliability models 

Empirical loss distribution
based models

Parametric loss 
distribution based models

 Capital asset pricing
model approach

Models based on extreme 
value theory

Multifactor causal 
models

Proprietary models

Figure 1 Topology of Operational Risk Models

or causes of losses.1 That is, the losses are
simply measured on a macro basis. The prin-
cipal advantage of this approach is that little
effort is required with collecting data and eval-
uating operational risk. Bottom-up approaches
quantify operational risk on a micro level be-
ing based on identified internal events, and
this information is then incorporated into the
overall capital charge calculation. The advan-
tage of bottom-up approaches over top-down
approaches lies in their ability to explain the
mechanism of how and why operational risk is
formed within an institution. Banks can either
start with top-down models and use them as a
temporary tool to estimate the capital charge
and then slowly shift to the more advanced
bottom-up models, or they can adopt bottom-
up models from the start, provided that they
have robust databases.

Models Based on Top-Down
Approaches
In this section we will provide a brief look
at the seven top-down approaches shown in
Figure 1.2

Multifactor Equity Pricing Models
Multifactor equity pricing models, also referred
to as multifactor models, can be utilized to per-
form a global analysis of banking risks and may
be used for the purpose of integrated risk man-
agement, in particular for publicly traded firms.
The stock return process Rt can be estimated by
regressing stock return on a large number of
external risk factor indexes It related to mar-
ket risk, credit risks, and other nonoperational
risks (such as interest rate fluctuations, stock
price movements, and macroeconomic effects).
Operational risk is then measured as the volatil-
ity of the residual term. Such models rely on the
assumption that operational risk is the residual
banking risk, after credit and market risks are
accounted for.3

Rt = at + b1 I1t + · · · + bn Int + εt

in which εt is the residual term, a proxy for
operational risk.

This approach relies on the widely known ef-
ficient market hypothesis that was introduced
by Fama (1970), that states that in efficient
capital markets all relevant past, publicly, and
privately available information is reflected in
current asset prices.

Capital Asset Pricing Model
Under the capital asset pricing model (CAPM)
approach all risks are assumed to be measur-
able by the CAPM and represented by beta
(β). CAPM, developed by Sharpe (1964), is an
equilibrium model that describes the pricing
of assets. It concludes that the expected secu-
rity risk premium (i.e., expected return on se-
curity minus the risk-free rate of return) equals
beta times the expected market risk premium
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(i.e., expected return on the market minus the
risk-free rate of return).

Under the CAPM approach, operational risk
is obtained by measuring market, credit, and
other risks’ betas and deducting them from the
total beta. With respect to applications to opera-
tional risk, the CAPM approach was discussed
by Hiwatashi and Ashida (2002) and van den
Brink (2002). According to van den Brink (2002),
the CAPM approach has some limitations and
so has not received a wide recognition for oper-
ational risk, but was in the past considered by
Chase Manhattan Bank.

Income-Based Models
Income-based models resemble the multifactor
equity price models: Operational risk is esti-
mated as the residual variance by extracting
market, credit, and other risks from the his-
torical income (or earnings) volatility. Income-
based models are described by Allen,
Boudoukh, and Saunders (2004), who refer to
these models as earnings at risk models and
by Hiwatashi and Ashida (2002), who refer to
them as the volatility approach. According to
Cruz (2002), the profit and loss (P&L) volatil-
ity in a financial institution is attributed 50%,
15%, and 35% to credit risk, market risk, and
operational and other risks, respectively.

Expense-Based Models
Expense-based models measure operational
risk as fluctuations in historical expenses rather
than income. The unexpected operational losses
are captured by the volatility of direct expenses
(as opposed to indirect expenses, such as op-
portunity costs, reputational risk, and strategic
risk, that are outside the agreed scope of opera-
tional risk), adjusted for any structural changes
within the bank.

Operating Leverage Models
Operating leverage models measure the rela-
tionship between operating expenses and to-
tal assets. Operating leverage is measured as a
weighted combination of a fraction of fixed as-

sets and a portion of operating expenses. Exam-
ples of calculating operating leverage amount
per business line include taking 10% of fixed
assets plus 25% times three months’ operating
expenses for a particular business, or taking 2.5
times the monthly fixed expenses.4

Scenario Analysis and Stress Testing Models
Scenario analysis and stress testing models can
be used for testing the robustness properties
of loss models, in monetary terms, in the pres-
ence of potential events that are not part of
banks’ actual internal databases. These mod-
els, also called expert judgment models by van
den Brink (2002), are estimated based on the
“what if” scenarios generated with reference
to expert opinion, external data, catastrophic
events that occurred in other banks, or imagi-
nary high-magnitude events. Experts estimate
the expected risk amounts and their associated
probabilities of occurrence. For any particular
bank, examples of scenarios include:5

� Bank’s inability to reconcile a new settlement
system with the original system.

� A class action suit alleging incomplete
disclosure.

� Massive technology failure.
� High-scale unauthorized trading (for exam-

ple, adding the total loss borne by the Barings
bank preceding its collapse into the database,
and reevaluating the model).

� Doubling the bank’s maximum historical loss
amount.

Additionally, stress tests can be used to see the
likely increase in risk exposure due to removing
a control or reduction in risk exposure due to
tightening of controls.

Risk Indicator Models
Risk indicator models rely on a number (one or
more) of operational risk exposure indicators
to track operational risk. In the operational risk
literature, risk indicator models are also called
indicator approach models,6 risk profiling
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models,7 and peer-group comparison.8 A nec-
essary aspect of such models is testing for pos-
sible correlations between risk factors. These
models assume that there is a direct and sig-
nificant relationship between the indicators
and target variables. For example, Taylor and
Hoffman (1999) illustrate how training expen-
diture has a reverse effect on the number of
employee errors and customer complaints and
Shih, Samad-Khan, and Medapa (2000) illus-
trate how a bank’s size relates to the operational
loss amount.

Risk indicator models may rely on a single
indicator or multiple indicators. The former
model is called the single-indicator approach;9

an example of such a model is the Basic In-
dicator Approach for quantification of the op-
erational risk regulatory capital, proposed by
the Basel II. The latter model is called the multi-
indicator approach; an example of such a model
is the Standardized Approach.

Models Based on Bottom-Up
Approaches
An ideal internal operational risk assess-
ment procedure would be to use a balanced
approach, and include both top-down and
bottom-up elements in the analysis.10 For
example, scenario analysis can prove effec-
tive for backtesting purposes, and multifactor
causal models are useful in performing opera-
tional Value-at-Risk (VaR) sensitivity analysis.
Bottom-up approach models can be categorized
into three groups:11 process-based models,
actuarial-type models (or statistical models),
and proprietary models.

Process-Based Models
There are three types of process-based models:
(1) causal models and Bayesian belief networks,
(2) reliability models, and (3) multifactor causal
models. We describe each below.

The first group of process-based models is the
causal models and Bayesian belief networks.
Also called causal network models, causal

models are subjective self-assessment models.
Causal models form the basis of the scorecard
models.12 These models split banking activities
into simple steps; for each step, bank manage-
ment evaluates the number of days needed to
complete the step, the number of failures and
errors, and so on, and then records the results
in a “process map” (or scorecards) in order
to identify potential weak points in the opera-
tional cycle. Constructing associated event trees
that detect a sequence of actions or events that
may lead to an operational loss is part of the
analysis.13 For each step, bank management es-
timates a probability of its occurrence, called
the subjective (or prior) probability. The ulti-
mate event’s probability is measured by the
posterior probability. Prior and posterior prob-
abilities can be estimated using the Bayesian
belief networks.14 A variation of the causal
models, connectivity models, focuses on the ex
ante cause of operational loss event, rather than
the ex post effect.

The second group of process-based models
encompasses reliability models. These models
are based on the frequency distribution of the
operational loss events and their interarrival
times. Reliability models focus on measuring
the likelihood that a particular event will occur
at some point or interval of time. We discuss
this model below.

If f(t) is the density of a loss amount occurring
at time t, then the reliability of the system is the
probability of survival up to time t, denoted by
R(t) and calculated as

R(t) = 1 −
∫ t

0
f (s)ds

The hazard rate (or the failure rate), h(t), is the
rate at which losses occur per unit of time t,
defined as

h(t) = f (t)
R(t)

In practical applications, it is often convenient
to use the Poisson-type arrival model to de-
scribe the occurrence of operational loss events.
Under the simple Poisson model with the
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intensity rate λ (which represents the average
number of events in any point of time), the inter-
arrival times between the events (i.e., the time
intervals between any two consecutive points
of time in which an event takes place) follow an
exponential distribution having density of form
f(t) = λe−λt with mean interarrival time equal to
1/λ. The parameter λ is then the hazard rate for
the simple Poisson process.

Finally, the third group of process-based
models is multifactor causal models. These
models can be used for performing the fac-
tor analysis of operational risk. These are
regression-type models that examine the sensi-
tivity of aggregate operational losses (or, alter-
natively, VaR) to various internal risk factors (or
risk drivers). Multifactor causal models have
been discussed in the VaR and operational risk
literature.15 Examples of control factors include
system downtime in minutes per day, number
of employees in the back office, data quality
(such as the ratio of the number of transac-
tions with no input errors to the total number of
transactions), total number of transactions, skill
levels, product complexity, level of automation,
customer satisfaction, and so on. Cruz (2002)
suggests using manageable explanatory factors.
In multifactor causal models, operational losses
OR, or VaR, in a particular business unit at a
point t, are regressed on a number of control
factors:

ORt = at + b1 X1t + · · · + bn Xnt + εt

where Xk, k = 1, 2,. . ., n, are the explanatory
variables, and b’s are the estimated coefficients.
The model is forward-looking (or ex ante) as
operational risk drivers are predictive of fu-
ture losses. Extensions to the simple regression
model may include autoregressive mod-
els, regime-switching models, ARMA/GARCH
models, and others.

Actuarial Models
Actuarial models (or statistical models) are gen-
erally parametric statistical models. They have
two key components: (1) the loss frequency and

(2) the loss severity distributions of the historic
operational loss data. Operational risk capital
is measured by the VaR of the aggregated one-
year losses.16

For the frequency of the loss data it is com-
mon to assume a Poisson process, with possible
generalizations, such as a Cox process.

Actuarial models can differ by the type of
the loss distribution. Empirical loss distribu-
tion models do not specify a particular class of
loss distributions, but directly utilize the em-
pirical distribution derived from the historic
data. Parametric loss distribution models make
use of a particular parametric distribution for
the losses (or part of them), such as lognormal,
Weibull, Pareto, and so on. Models based on
extreme value theory (EVT) restrict attention
to the tail events (i.e., the losses in the upper
quantiles of the severity distribution), and VaR
or other analyses are carried out upon fitting
the generalized Pareto distribution to the data
beyond a fixed high threshold. Van den Brink
suggests using all three models simultaneously;
Figure 2, inspired by his discussions, illustrates
possible approaches. Yet another possibility is
to fit an ARMA/GARCH model to the losses be-
low a high threshold and the generalized Pareto
distribution to the data exceeding it.
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parametric distribution, 
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Figure 2 An Example of a Histogram of the
Operational Loss Severity Distribution
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Proprietary Models
Proprietary models for operational risk have
been developed by major financial service com-
panies and use a variety of bottom-up and
top-down quantitative methodologies, as well
as qualitative analysis, to evaluate operational
risk. Banks can input their loss data into ready
and systematized spreadsheets, which would
be further categorized. The system then per-
forms a qualitative and quantitative analysis of
the data, and can carry out multiple tasks such
as calculating regulatory capital, pooling in-
ternal data with external, performing Bayesian
network analysis, and so on.

SPECIFICS OF OPERATIONAL
LOSS DATA
The nature of operational risk is very different
from that of market risk and credit risk. In fact,
operational losses share many similarities with
insurance claims, suggesting that most actuar-
ial models can be a natural choice of the model
for operational risk, and models well developed
by the insurance industry can be almost exactly
applied to operational risk. In this section we
discuss some key issues characterizing opera-
tional risk that must be taken into consideration
before quantitative analysis is undertaken.

Scarcity of Available Historical Data
The major obstacle banks face in developing
comprehensive models for operational risk is
the scarcity of available historical operational
loss data. As of 2011, generally, even the largest
banks have no more than 11–12 years of loss
data. Shortage of relevant data means that the
models and conclusions drawn from the avail-
able limited samples would lack sufficient ex-
planatory power. This in turn means that the
estimates of the expected loss and VaR may be
highly volatile and unreliable. In addition, com-
plex statistical or econometric models cannot be
tested on small samples.

The problem becomes amplified when deal-
ing with modeling extremely high operational
losses: One cannot model tail events when only
a few such data are present in the internal loss
database. Three solutions have been proposed:
(1) pooling internal and external data, (2) sup-
plementing actual losses with near-miss losses,
and (3) scenario analysis and stress tests (dis-
cussed earlier in this entry).

The idea behind pooling internal and exter-
nal data is to populate a bank’s existing internal
database with data from outside the bank. The
rationale is twofold: (1) to expand the database
and hence increase the accuracy of statistical es-
timations and (2) to account for losses that have
not occurred within the bank but that are not
completely improbable based on the histories
of other banks. According to BIS,

. . . a bank’s internal measurement system must
reasonably estimate unexpected losses based on the
combined use of internal and relevant external loss
data. . . (BIS, 2006, p. 150)

Baud, Frachot, and Roncalli (2002) propose a
statistical methodology to pool internal and ex-
ternal data. Their methodology accounts for the
fact that external data are truncated from below
(banks commonly report their loss data to exter-
nal parties in excess of $1 million) and that bank
size may be correlated with the magnitudes of
losses. They showed that pooling internal and
external data may help avoid underestimation
of the capital charge.

Data Arrival Process
One of the difficulties that arise with modeling
operational losses has to do with the irregular
nature of the event arrival process. In market
risk models, market positions are recorded on a
frequent basis, many times daily depending on
the entity, by marking to market. Price quotes
are available daily or for those securities that
are infrequently traded, model-based prices are
available for marking a position to market. As
for credit risk, credit ratings by rating agen-
cies are available. In addition, rating agencies
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provide credit watches to identify credits that
are candidates for downgrades. In contrast, op-
erational losses occur at irregular time intervals
suggesting a process of a discrete nature. This
makes it similar to the reduced-form models
for credit risk, in which the frequency of de-
fault (i.e., failure to meet a credit agreement) is
of nontrivial concern. Hence, while in market
risk we need to model only the return distribu-
tion in order to obtain VaR, in operational risk
both loss severity and frequency distributions
are important.

Another problem is related to timing and data
recording issues. In market and credit risk mod-
els, the impact of a relevant event is almost
immediately reflected in the market and credit
returns. In an ideal scenario, banks would know
how much of the operational loss would be
borne by the bank from an event at the very mo-
ment the event takes place and would record the
loss at this moment. However, from the practi-
cal point of view, this appears nearly impos-
sible to implement, because it takes time for
the losses to accumulate after an event takes
place. Therefore, it may take days, months, or
even years for the full impact of a particular loss
event to be evaluated. Hence, there is the prob-
lem of discrepancy (i.e., a time lag) between the
occurrence of an event and the time at which
the incurred loss is being recorded.

This problem directly affects the method in
which banks choose to record their operational
loss data. When banks record their operational
loss data, they record (1) the amount of loss,
and (2) the corresponding date. We can identify
three potential scenarios for the types of date
banks might use:17

1. Date of occurrence: the date on which the event
that has led to operational losses actually
took place.

2. Date on which the existence of event has been
identified: the date when bank authorities re-
alize that an event that has led to operational
losses has taken or is continuing to take place.
Recording a loss at this date may be relevant

in cases when the true date of occurrence is
impossible or hard to track.

3. Accounting date: the date on which the total
amount of operational losses due to a past
event are realized and fully measured, and
the state of affairs of the event is closed or
assumed closed.

Depending on which of the three date types is
used, the models for operational risk and con-
clusions drawn from them may be considerably
different. For example, in the third case of ac-
counting dates, we are likely to observe cyclical-
ity/seasonal effects in the time series of the loss
data (for example, many loss events would be
recorded around the end of December), while in
the first and second cases such effects are much
less likely to be present in the data. Fortunately,
however, selection of the frequency distribution
does not have a serious impact on the resulting
capital charge.18

Loss Severity Process
There are three main problems that operational
risk analysts must be aware of with respect to
the severity of operational loss data: (1) the non-
negative sign of the data, (2) the high degree of
dispersion of the data, and (3) the shape of the
data.

The first problem related to the loss severity
data deals with the sign of the data. Depending
on the movements in the interest or exchange
rates, the oscillations in the market returns and
indicators can take either a positive or nega-
tive sign. This is different in the credit and
operational risk models—usually, only losses
(i.e., negative cash flows) are assumed to take
place.19 Hence, in modeling operational loss
magnitudes, one should either consider fitting
the loss distributions that are defined only on
positive values, or should use distributions that
are defined on negative and positive values,
truncated at zero.

The second problem deals with the high
degree of dispersion of loss data. Historical
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observations suggest that the movements in the
market indicators are generally of relatively low
magnitude. Bigger losses are usually attributed
to credit risk. Finally, although most of the op-
erational losses occur on a daily basis and hence
are small in magnitude, the excessive losses of
financial institutions are in general due to the
operational losses, rather than credit or mar-
ket risk–related losses. Empirical evidence in-
dicates that there is an extremely high degree of
dispersion of the operational loss magnitudes,
ranging from near-zero to billions of dollars. In
general, this dispersion is measured by variance
or standard deviation.20

The third problem concerns the shape of the
loss distribution. The shape of the data for oper-
ational risk is very different from that of market
or credit risk. In market risk models, for ex-
ample, the distribution of the market returns is
often assumed to be nearly symmetric around
zero. Asymmetric cases refer to the data whose
distribution is either left-skewed (i.e., the left
tail of the distribution is very long) or right-
skewed (i.e., the right tail of the distribution is
very long) and/or whose distribution has two
or more peaks of different height. Operational
losses are highly asymmetric, and empirical ev-
idence on operational risk indicates that the
losses are highly skewed to the right. This is
in part explained by the presence of “low fre-
quency/high severity” events. See Figure 2 for
an exemplary histogram of operational losses.

As previously discussed, empirical evidence
on operational losses indicates a majority of ob-
servations being located close to zero, and a
small number of observations being of a very
high magnitude. The first phenomenon refers
to a high kurtosis (i.e., peak) of the data, and
the second one indicates heavy tails (or fat tails).
Distributions of such data are often described
as leptokurtic.

The Gaussian (or normal) distribution is of-
ten used to model market risk and credit risk.
It is characterized by two parameters, μ and σ ,
that are its mean and standard deviation. Fig-
ure 3 provides an example of a normal density.

Loss frequency 
 f(x) 

Loss amount (x)

Figure 3 An Example of a Gaussian Density

Despite being easy to work with and having at-
tractive features (such as symmetry and stabil-
ity under linear transformations), the Gaussian
distribution makes several critical assumptions
about the loss data. They include the following:

� The Gaussian assumption is useful for model-
ing the distribution of events that are symmet-
ric around their mean. It has been empirically
demonstrated that operational losses are not
symmetric and severely right-skewed, mean-
ing that the right tail of the loss distribution
is very long.

� In most cases (except for the cases when the
mean is very high), the use of Gaussian dis-
tribution allows for the occurrence of nega-
tive values. This is not a desirable property
for modeling loss severity because negative
losses are usually not possible.21

� More importantly, the Gaussian distribution
has an exponential decay in its tails (this
property puts the Gaussian distribution into
the class of light-tailed distributions), which
means that the tail events (i.e., the events of
an unusually high or low magnitude) have
a near-zero probability of occurrence. How-
ever, very high-magnitude operational losses
can seriously jeopardize a financial institu-
tion. Thus, it would be inappropriate to model
operational losses with a distribution that
essentially excludes the possibility of high-
impact individual losses. Empirical evidence
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strongly supports the conjecture that the dis-
tribution of operational losses is in fact very
leptokurtic—that is, has a high peak and very
heavy tails (i.e., very rare events are assigned
a positive probability).

For the reasons presented above, it is unlikely
that the Gaussian distribution would find much
application for the assessment of operational
risk.22 Heavier tailed distributions such as log-
normal, Weibull, and even Pareto and alpha-
stable, ought to be considered.

Dependence Between
Business Units
In order to increase the accuracy of opera-
tional risk assessment, banks are advised to
classify their operational loss data into groups
of different degrees and nature of exposure to
operational risk. Following this principle, the
advanced measurement approaches (AMA) for
the quantification of the operational risk capital
charge, proposed by Basel II, suggest estimat-
ing operational risk capital separately for each
“business line/event type” combination. Such
a procedure is not common in market risk and
credit risk models.

The most intuitive approach to combine risk
measures collected from each of these “business
line/event type” combinations is to add them
up.23 However, such an approach may result
in overestimation of the total capital charge be-
cause it implies a perfect positive correlation
between groups. To prevent this from happen-
ing, it is essential to account for dependence
between these combinations. Covariance and
correlation are the simplest measures of depen-
dency, but they assume a linear type of depen-
dence, and therefore can produce misleading
results if the linearity assumption is not true.
An alternative approach would involve using
copulas that are more flexible with respect to
the form of the dependence structure that may
exist between different groups. Another attrac-
tive property of copulas is their ability to cap-

ture the tail dependence between the distribu-
tions of random variables. Both properties are
preserved under linear transformations of the
variables.

KEY POINTS
� Operational risk measurement models are di-

vided into top-down and bottom-up models.
� Top-down models use a macro-level regu-

latory approach to assess operational risk
and determine the capital charge. They in-
clude multifactor equity price models, in-
come and expense-based models, operating
leverage models, scenario analysis and stress
testing models, and risk indicator models.

� Bottom-up models originate from a micro-
level analysis of a bank’s loss data and con-
sideration for the process and causes of loss
events in determination of the capital charge.
They include process-based models (such as
causal network and Bayesian belief models,
connectivity models, multifactor causal mod-
els, and reliability models), actuarial models,
and proprietary models.

� Scarcity and reliability of available inter-
nal operational loss data remains a barrier
preventing banks from developing compre-
hensive statistical models. Sufficiently large
datasets are especially important for mod-
eling low frequency high severity events.
Three solutions have been put forward to help
expand internal databases: pooling together
internal and external data, accounting for
near-misses, and stress tests.

� The nature of operational risk is fundamen-
tally different from that of credit and mar-
ket risks. Specifics of operational loss process
include discrete data arrival process, delays
between time of event and loss detec-
tion/accumulation, loss data taking only pos-
itive sign, high dispersion in magnitudes
of loss data, distribution of loss data be-
ing severely right-skewed and heavy-tailed,
and dependence between business units and
event types.
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� While many market and credit risk models
make the convenient Gaussian assumption on
the market returns or stock returns, this dis-
tribution is unlikely to be useful for the oper-
ational risk modeling because it is unable to
capture the nonsymmetric and heavy-tailed
nature of the loss data.

NOTES
1. An exception is the scenario analysis mod-

els in which specific events are identified
and included in internal databases for stress
testing. These events are, however, imagin-
able and do not appear in the banks’ origi-
nal databases.

2. Some of these models are described in
Allen, Boudoukh, and Saunders (2004).

3. See Chapter 2 in Chernobai, Rachev, and
Fabozzi (2007) for an example of an empiri-
cal study that utilized such models in order
to to evaluate the sensitivity of operational
risk to macroeconomic factors.

4. See Marshall (2001).
5. The first four examples are due to Marshall

(2001).
6. See Hiwatashi and Ashida (2002).
7. See Allen, Boudoukh, and Saunders (2004).
8. See van den Brink (2002).
9. See van den Brink (2002).

10. The Internal Measurement Approach (see
description in BIS, 2001) combines some
elements of the top-down approach and
bottom-up approach: The gamma parame-
ter in the formula for the capital charge is set
externally by regulators, while the expected
loss is determined based on internal data.

11. See Allen, Boudoukh, and Saunders (2004).
12. In February 2001 the Basel Committee sug-

gested the Scorecard Approach as one pos-
sible advanced measurement approach to
measure the operational risk capital charge.

13. See, for example, Marshall (2001) on the
“fishbone analysis.”

14. Relevant Bayesian belief models with ap-
plications to operational risk are discussed

in Alexander and Pezier (2001), Neil and
Tranham (2002), and Giudici (2004), among
others.

15. See also Haubenstock (2003) and Cruz
(2002). The empirical study by Allen and
Bali (2007) investigates the sensitivity of
operational VaR to macroeconomic, rather
than a bank’s internal, risk factors.

16. Actuarial models form the basis of the loss
distribution approach, an advanced mea-
surement approach for operational risk. See
BIS (2001).

17. Identification of the three types of dates
are based on discussions with Marco
Moscadelli (Banking Supervision Depart-
ment, Bank of Italy).

18. See Carillo Menéndez (2005).
19. Certainly, it is possible that an event due to

operational risk can incur unexpected prof-
its for a bank, but usually this possibility is
not considered.

20. Some very heavy-tailed distributions, such
as the heavy-tailed Weibull, Pareto, or
alpha-stable, can have an infinite variance.
In these situations, robust measures of
spread must be used.

21. Certainly, it is possible to use a truncated
(at zero) version of the Gaussian distribu-
tion to fit operational losses.

22. Of course, a special case is fitting the Gaus-
sian distribution to the natural logarithm of
the loss data. This is equivalent (in terms
of obtaining the maximum likelihood pa-
rameter estimates) to fitting the lognormal
distribution to the original loss data.

23. This is the approach that was proposed in
BIS (2001).
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Abstract: A major risk faced by financial entities is operational risk. In general terms, operational
risk is the risk of loss resulting from inadequate or failed internal processes, people, or systems
or from external events. The two principal approaches in modeling operational loss distributions
are the nonparametric approach and the parametric approach. It is important to employ a model
that captures tail events and for this reason in operational risk modeling, distributions that are
characterized as light-tailed distributions should be used with caution.

For financial entities, representing a stream
of uncertain operational losses with a specified
model is a difficult task: Data can be wrongly
recorded, fuzzy, incomplete (e.g., truncated or
censored), or simply limited. Two main ap-
proaches may be undertaken: nonparametric
and parametric. In this entry, we focus on the
nonparametric approach, common loss distri-
butions, and mixture distributions. We begin
by reviewing the nonparametric approach to
modeling operational losses and then proceed
to the parametric approach and review some
common continuous distributions that can be
relevant for modeling operational losses. For
each of the distributions, we focus on its major
characteristics that are important when using

them to model the operational loss data: den-
sity, distribution, tail behavior, mean, variance,
mode, skewness, and kurtosis.

APPROACHES TO
OPERATIONAL RISK
MODELING
The two main approaches to operational risk
modeling are:

1. Nonparametric approach. One approach would
be to directly use the empirical density of
the data or its smoothed curve version.1 This
nonparametric approach can be relevant in
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two circumstances: first, when the available
data are not believed to follow any conven-
tional distribution,2 and second, when the
data set available at hand is believed to be
sufficiently comprehensive.3

2. Parametric approach. The task is considerably
simplified if we are able to fit a curve of a
simple analytical form that satisfies certain
properties. The general goal of this paramet-
ric approach is to find a loss distribution that
would most closely resemble the distribution
of the loss magnitudes of the available data
sample.

Figure 1 shows a common histogram for the
operational loss data with a fitted continuous
curve. Visual examination suggests that magni-
tudes of the majority of the losses are very close
to zero as is seen from the high peak around
zero of the histogram; an insignificant fraction
of data account for the long right tail of the
histogram. Clearly, if we choose the paramet-
ric approach and if the fitted curve represents
a density of some chosen parametric distribu-
tion, the loss distributions that would be ade-
quate for modeling operational losses are those
that are right-skewed, possibly leptokurtic, and
have support on the positive values.

Figure 2 summarizes possible approaches to
modeling operational loss severity.
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Figure 1 Illustration of a Histogram of Loss Data
and Fitted Continuous Density

Nonparametric Approach Parametric Approach

Common DistributionsEmpirical Distribution

Smooth Curve Approximation Mixture Distributions

Figure 2 Approaches to Modeling Loss Severity

NONPARAMETRIC
APPROACH: EMPIRICAL
DISTRIBUTION FUNCTION
Modeling operational losses with their empiri-
cal distribution function is a nonparametric ap-
proach as it does not involve estimation of the
parameters of a loss distribution. In this sense,
it is the simplest approach. On the other hand,
it makes the following two critical assumptions
regarding future loss data:

� Historic loss data are sufficiently comprehen-
sive.

� All past losses are equally likely to reappear
in the future, and losses of other magnitudes
(such as potential extreme events that are not
a part of existent database) cannot occur.

Suppose we want to find the empirical dis-
tribution function of a random variable X. It is
found by:

P(X ≤ x) = number of losses ≤ x
total number of losses

The empirical distribution function looks like
a step function, with a step up occurring at each
observed value of X. Figure 3 provides an illus-
tration. The density function4 is simply a rel-
ative frequency histogram with a bar at each
observed data value, and the height of each bar
shows the proportion of losses of this magni-
tude out of total.

Note that the empirical distribution is often
used in goodness-of-fit tests. One can compare
it with a fitted loss distribution, and if the fitted
loss distribution follows closely the empirical
distribution, then this indicates a good fit;
if it does not follow closely the empirical
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Figure 3 Illustration of Empirical Distribution
Function

distribution function, then the loss distribution
is not optimal.

PARAMETRIC APPROACH:
CONTINUOUS LOSS
DISTRIBUTIONS
In this section, we review several popular loss
distributions. Certainly, a variety of additional
distributions may be created by using some
transformation of the original data and then
fitting a distribution to the transformed data.
A popular transformation involves taking the
natural logarithm of the data. It is notable that
if the original data are severely right-skewed,
then the distribution of the log-data often be-
comes “bell-shaped” and nearly symmetric. For
example, fitting the normal distribution to the
log-data is equivalent to fitting the lognormal
distribution to the original data.

Exponential Distribution
The exponential distribution for a random vari-
able X of length n is described by its density f
and distribution F of the following form:

f (x) = λe−λx, F (x) = 1 − e−λx, x > 0

The distribution is characterized by only
one parameter λ (λ > 0), which is the scale
parameter.
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Figure 4 Illustration of Exponential Density

Examples of exponential densities are illus-
trated in Figure 4. The maximum likelihood es-
timate (MLE) for λ is

λ̂ = 1
x̄

where x̄ = 1
n

n∑

j=1

xj

Raw moments are calculated as:

E(Xk) = k!
λk

and so the population mean and variance are

mean(X) = 1/λ, var(X) = 1/λ2

The mode of an exponential distribution is
located at zero. The skewness and kurtosis co-
efficients are γ 1 = 2 and γ 2 = 6, respectively.

The inverse of the distribution has a sim-
ple form F−1(p) = −1/λ log(1 − p), p ∈ (0, 1),
and so an exponential random variate can be
simulated using the inverse transform method
by X = −1

λ log U, where U is distributed uni-
formly on the (0, 1) interval. Another popular
simulation method uses the Von Neumann al-
gorithm.

The exponential density is monotonically de-
creasing toward the right and is character-
ized by an exponentially decaying right tail of
the form F̄ (x) = e−λx, which means that high-
magnitude events are given a near-zero prob-
ability. For this reason, it is unlikely that it
would find much use in modeling operational
losses, where arguably the central concern is the
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losses of a very high magnitude (unless, per-
haps, some generalizations of the exponential
distribution or mixture models are considered).

Note that another parameterization of the ex-
ponential distribution is possible, with the den-
sity specified as f (x) = 1

λ
e− 1

λ
x.

Lognormal Distribution
A random variable X has a lognormal distribu-
tion if its density and distribution are:

f (x) = 1√
2πσ x

e− (log x−μ)2

2σ2

F (x) = �

(
log x − μ

σ

)
, x > 0

where �(x) is the distribution of a standard nor-
mal, N(0, 1), random variable, and can be ob-
tained by looking up the table of the standard
normal quantiles.5

Examples of the lognormal density are illus-
trated in Figure 5. The parameters μ (−∞ < μ

< ∞) and σ (σ > 0) are the location and scale
parameters, respectively, and can be estimated
with MLE as:

μ̂ = 1
n

n∑

j=1

log xj , σ̂ 2 = 1
n

n∑

j=1

(log xj − μ̂)2

(1)

Raw moments are calculated as:

E(Xk) = eμk+ σ2k2
2
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Figure 5 Illustration of Lognormal Density

and so the population mean and variance are
calculated to be

mean(X) = eμ+ σ2
2 , var(X) = (eσ 2 − 1)e2μ+σ 2

The mode is located at eμ−σ 2
. The skewness

and kurtosis coefficients are:

γ1 =
√

eσ 2 − 1(2 + eσ 2
)

γ2 = e4σ 2 + 2e3σ 2 + 3e2σ 2 − 6

The inverse of the distribution is F −1(p) =
e�−1(p)σ+μ, and so a lognormal random variate
can be simulated by X = e�−1(U)σ+μ, where �

is the standard normal distribution. Note that
a lognormal random variable can be obtained
from a normal random variable Y with param-
eters μ and σ (this is often written as N(μ, σ ))
via the transformation X = eY. Thus, if X has a
lognormal distribution, then log X has a normal
distribution with the same parameters.

The lognormal distribution is characterized
by moderately heavy tails, with the right tail
F̄ (x) ∼ x−1e− log2 x. To fit a lognormal distribu-
tion to the data, one can take the natural loga-
rithm of the dataset, and then fit to it the normal
distribution. Note that the MLE will produce
the same estimates, but the method of moments
will produce different parameter estimates.

Weibull Distribution
The Weibull distribution is a generalization of
the exponential distribution: Two parameters
instead of one parameter allow for greater flex-
ibility and heavier tails. The density and distri-
bution are6

f (x) = αβxα−1e−βxα

, F (x) = 1 − e−βxα

, x > 0

with β (β > 0) being the scale parameter and
α (α > 0) the shape parameter.

Examples of the density are illustrated in Fig-
ure 6. The MLE estimators for the parameters
do not exist in closed form, and should be evalu-
ated numerically. Raw moments are calculated
as:

E(Xk) = β−k/α	

(
1 + k

α

)
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Figure 6 Illustration of Weibull Density

and so the population mean and variance are:

mean(X) = β−1/α	

(
1 + 1

α

)

var(X) = β−2/α

(
	

(
1 + 2

α

)
− 	2

(
1 + 1

α

))

The mode is located at β−1(1 − α−1)1/α for α

> 0 and at zero otherwise. The formulae for the
skewness and kurtosis coefficients are:

γ1 = 2	3(1 + 1
α

) − 3	(1 + 1
α

)	(1 + 2
α

) + 	(1 + 3
α

)
[
	(1 + 2

α
) − 	2(1 + 1

α
)3/2

]

γ2 = −6
[
	4(1 + 1

α
) − 12	2(1 + 1

α
)	(1 + 2

α
) − 3	2(1 + 2

α
) − 4	(1 + 1

α
)	(1 + 3

α
) + 	(1 + 4

α
)
]

[
	(1 + 2

α
) − 	2(1 + 1

α
)
]2

The inverse of a Weibull random variable does
not exist in a simple closed form. To generate a
Weibull random variable, one can first generate
an exponential random variable Y with param-
eter β and then follow the transformation X =
Y1/α .

The right tail behavior of a Weibull ran-
dom variable follows the form F̄ (x) = eβxα

, and
so the distribution is heavy-tailed for α < 1.
Weibull distribution has been found to be the
optimal distribution in reinsurance models7 as
well as in asset returns models.8

Note the following regarding the Weibull dis-
tribution. First, if α = 1, then the Weibull distri-
bution reduces to the exponential distribution.
Second, other parameterizations of the Weibull
distribution are possible. For example, some au-
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Figure 7 Illustration of Gamma Density

thors use 1/β instead of β. Sometimes 1/βα is
used instead of β.

Gamma Distribution
The gamma distribution is another gener-
alization of an exponential distribution and

is specified by its density and distribution
given by9

f (x) = βα

	(α)
xa−1e−βx

F (x) = 	(a ; βx), x > 0

where the two parameters, α (α > 0) and
β (β > 0), characterize the shape and scale,
respectively.

Examples of the density are illustrated in Fig-
ure 7. The MLE estimates for the parameters
can be only evaluated numerically. The raw mo-
ments are found by:

E(Xk) = 	(α + k)
	(α)βk
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yielding the population mean and variance as

mean(X) = α

β
, var(X) = α

β2

The mode is α−1
β

for α > 1 and zero otherwise.
The skewness and kurtosis coefficients are
found by

γ1 = 2√
α

, γ2 = 6
α

If α is an integer,10 then to generate a gamma
random variable with parameters α and β one
can generate a sum of α exponential random
variables each with parameter β. Hence, if
U1,U2,. . ., Uα are independent uniform (0, 1)
random variables, then X = − 1/βlog (
α

j=1Uj )
has the desired distribution. A variety of meth-
ods for generation of a gamma random variable
is described in Devroye (1986).

Beta Distribution
The beta distribution has density and distribu-
tion of the following form:11

f (x) = 	(α + β)
	(α)	(β)

xα−1(1 − x)β−1

F (x) = I (x; α, β), 0 ≤ x ≤ 1

Examples of the density are illustrated in Fig-
ure 8. Note that X has a bounded support on
[0, 1]. Certainly, operational loss data may be
rescaled to fit this interval. In this case, the fol-
lowing version of the beta density and distri-
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Figure 8 Illustration of Beta Density

bution is possible (the parameter θ is assumed
known):

f (x) = 	(α)	(β)
	(α + β)

( x
θ

)α−1 (
1 − x

θ

)β−1 1
x

F (x) = I
( x

θ
; α, β

)
, 0 < x < θ, θ > 0

The parameters α (α > 0) and β (β > 0) de-
termine the shape of the distribution. The MLE
estimators can be evaluated numerically. The
raw moments for the regular version of the beta
density can be found by

E(Xk) = (α + β − 1)!(α + k − 1)!
(α − 1)!(α + β + k − 1)!

yielding the mean and the variance:

mean(X) = α

α + β

var(X) = αβ

(a + β)2(α + β + 1)

The mode is equal to (α − 1)/(α + β − 2).
The skewness and kurtosis coefficients are esti-
mated by

γ1 = 2(β − α)
√

1 + α + β√
α + β(2 + α + β)

γ2 = 6
[
α3 + α2(1 − 2β) + β2(1 + β) − 2αβ(2 + β)

]

αβ(α + β + 2)(α + β + 3)

The beta random variate can be generated us-
ing an algorithm described in Ross (2001, 2002)
or Devroye (1986).

Note that the beta distribution is related to
the gamma distribution. Suppose we have two
gamma random variables X and Y with param-
eters α1, β1 and α2, β2, respectively. Then the
variable Z = X/(X+Y) has a beta distribution
with parameters α1, α2. This property can be
used to generate a beta random variate from
two gamma random variates.

Pareto Distribution
The Pareto distribution is characterized by its
density and distribution of the form:

f (x) = αβα

xα+1 , F (x) = 1 −
(

β

x

)α

, β < x < ∞
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Figure 9 Illustration of Pareto Density

Note that the range of permissible values of X
depends on the scale parameter β (β > 0). The
parameter α (α > 0) determines the shape.

Figure 9 illustrates some examples of the den-
sity. No closed-form expressions for the MLE
estimators exist (except for the case when β = 1,
in which case α̂ = n/

∑n
j=1 log xj ), so they have

to be evaluated numerically.
The raw moments are estimated by

E(Xk) = αβk

α − k

from which the population mean and variance
are found to be

mean(X) = αβ

α − 1
for α > 1

var(X) = αβ2

(α − 1)2(α − 2)
for α > 2

The mode is equal to zero. The skewness and
kurtosis coefficients are:

γ1 =
√

α − 2
α

2(α + 1)
α − 3

γ2 = 6(α3 + α2 − 6α − 2)
α(α − 3)(α − 4)

The inverse of the distribution is F −1(p) =
β((1 − p)−1/α − 1), which can be used to gen-
erate a Pareto random variate.

The Pareto distribution is a very heavy-tailed
distribution, as is seen from the tail behavior. α

determines the heaviness of the right tail, which
is monotonically decreasing for the Pareto dis-

tribution: The closer it is to zero, the thicker the
tail, F̄ (x) =

(
β

β+x

)α

. Tails proportional to x−α

are called the power tails (as opposed to the
exponentially decaying tails) because they fol-
low a power function. The case when α ≤ 1
refers to a very heavy-tailed case, in which the
mean and the variance are infinite (see the for-
mulas for mean and variance earlier), means
that losses of an infinitely high magnitude are
possible.

While on one hand the Pareto distribution ap-
pears very attractive for modeling operational
risk, as it is expected to capture very high-
magnitude losses, on the other hand, from the
practical point of view, the possibility of infinite
mean and variance could pose a problem.

Note the following:
� Different versions of the Pareto distribution

are possible. Occasionally a simplified, 1-
parameter version of the Pareto distribution
is used, with β = 1.

� A 1-parameter Pareto random variable may
be obtained from an exponential random vari-
able via a simple transformation. If a random
variable Y follows an exponential distribu-
tion with parameter λ, then X = eY has the
1-parameter Pareto distribution with the
same shape parameter.

� A 2-parameter Pareto distribution may be
reparameterized in such a way that we obtain
the generalized Pareto distribution (GPD).
The GPD can be used to model extreme events
that exceed a high threshold.

Burr Distribution
The Burr distribution is a generalized three-
parameter version of the Pareto distribution
and allows for greater flexibility in the shape
due to additional shape parameter γ (γ > 0).
The density and distribution functions can be
written as

f (x) = γαβα xγ−1

(β + xγ )α+1

F (x) = 1 −
(

β

β + xγ

)α

, x > 0
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Figure 10 Illustration of Burr Density

Examples of the density are depicted in Fig-
ure 10. The MLE estimators for the parameters
can generally be evaluated only numerically.
The raw moments are estimated as:

E(Xk) = βk/γ

	(α)
	

(
1 + k

γ

)
	

(
α − k

γ

)
,

−γ < k < γα

from which the population mean and variance
are calculated as:

mean(X) = β1/γ

	(α)
	

(
1 + 1

γ

)
	

(
α − 1

γ

)

γα > 1

var(X) = β2/γ

	(α)
	

(
1 + 2

γ

)
	

(
α − 2

γ

)

− β2/γ

	2(α)
	2

(
1 + 1

γ

)
	2

(
α − 1

γ

)
,

γ α > 2

The mode is equal to 1
β1/γ

(
γ−1
αγ+1

)1/γ

for γ > 1
and zero otherwise.

The Burr random variable can be generated by
the inverse transform method, using F −1(p) =
(β((1 − p)−1/α − 1))1/γ .

The right tail has the power law property

and obeys F̄ (x) =
(

β

β+xγ

)α

. The distribution
is heavy-tailed for the case α < 2 and is very
heavy-tailed when α < 1. The Burr distribution
has been used in the insurance industry, and
has been found to be an optimal distribution
for natural catastrophe insurance claims.12

Note the following two points. First, if γ = 1,
then the Burr distribution reduces to the Pareto
distribution. Second, other parameterizations
of the Burr distribution are possible. For exam-
ple, the Burr distribution with β = 1 is known
as the loglogistic distribution.

EXTENSION: MIXTURE LOSS
DISTRIBUTIONS
Histograms of the operational loss data often
reveal a very high peak close to zero and a
smaller but distinct peak toward the right tail.
This may suggest that the operational loss data
often do not follow a pattern of a single distribu-
tion, even for data belonging to the same loss
type (such as operational losses due to busi-
ness disruptions) and the same business line
(such as commercial banking). One approach
in modeling such losses would be to consider
the GPD to model the tail events and an em-
pirical or other distribution for the remaining
lower-magnitude losses. Alternatively, one may
consider a single distribution composed by a
mixture of two or more loss distributions.

The density and distribution of a m-point mix-
ture distribution can be expressed as

f (x) =
m∑

j=1

w j f j (x), F (x) =
m∑

j=1

w j F j (x)

where wj, j = 1, 2,. . . ,m, are the positive weights
attached to each member distribution, adding
up to 1. It is possible to have a mixture of differ-
ent types of distributions, such as exponential
and Weibull, or of the same type of distribution
but with different parameters.

An example of a mixture of two lognormal
distributions (μ1 = 0.9, σ 1 = 1, μ2 = 3, σ 2 = 0.5)
is depicted in Figure 11.

The MLE estimates of the parameters (in-
cluding the weights) of mixture distributions
can generally be evaluated only numerically.
A commonly used procedure to estimate the
parameters of mixture distributions is the
expectation-maximization algorithm. The raw
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moments are found as the weighted sum of the
kth moments evaluated individually for each
of the m member distributions. The population
mean and variance are found by

mean(X) =
m∑

j=1

w j E j (X), var(X) =
m∑

j=1

w2
jσ

2
j (X)

where the subscripts j refer to each mem-
ber density. The right tail follows F̄ (x) =∑m

j=1 wj F̄j (x).
The advantage of using mixture distributions

is that they can be fitted to practically all shapes
of loss distributions. On the other hand, the
models may lack reliability due to a large num-
ber of parameters that need to be estimated (in
particular, when the available loss data set is
not large enough). For example, a 2-point mix-
ture of exponential distributions requires only
three parameters, but a 4-point mixture of expo-
nential distributions requires seven parameters.
In some cases, this problem may be overcome
when certain simplifications are applied to the
model. For example, it is possible to achieve
a 2-point mixture of Pareto distributions with
four, instead of five, unknown parameters; the
following distribution has been successfully ap-
plied to liability insurance:

F (x) = 1− a
(

β1

β1 + x

)α

+ (1 − a )
(

β2

β2 + x

)α+2

with the first distribution covering smaller
magnitude events and having a higher weight a
attached, and the second distribution covering
infrequent large-magnitude events.13

An extension to mixture distributions may be
to allow m to be a parameter, and “let the data
decide” on how many distributions should en-
ter the mixture. This, however, makes the model
data-dependent and more complex.14

Note that the term mixture distribution is
sometimes also used for distributions in which
an unknown parameter is believed to be ran-
dom and follows some distribution rather than
being fixed. For example, a mixture of Poisson
and gamma distributions (i.e., the parameter of
the Poisson distribution follows a gamma dis-
tribution) will result in a hypergeometric distri-
bution.

A NOTE ON THE TAIL
BEHAVIOR
Operational risk managers are concerned with
finding a model that would capture the “tail
events.” In the context of operational losses, it is
understood that tail events refer to the events in
the upper tail of the loss distribution. A crucial
task in operational risk modeling is to produce
a model that would give a realistic account to
the possibility of losses exceeding a very high
amount (this becomes critical in the estimation
of the Value-at-Risk).

In operational risk modeling, thin-tailed dis-
tributions should be used with caution. The
following example illustrates the danger of fit-
ting a light-tailed distribution to the data whose
true distribution is heavy-tailed.15 We gener-
ated 5,000 points from the Pareto distribution
(heavy-tailed) with parameters α = 1.67 and
β = 0.6. We then fitted an exponential distribu-
tion (light-tailed) to the data. The MLE proce-
dure resulted in the exponential parameter of
λ = 1.61. Figure 12 demonstrates the difference
in the behavior of the tails of both distributions.
In the far right, the probability of exceeding any
high point is significantly lower (roughly, by
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5%) under the exponential fit. This indicates
that the probability of high-value events (and
exceeding them) will be underestimated if one
commits the mistake of fitting a thin-tailed loss
distribution to the loss data. Such mistakes may
be costly and lead to serious consequences in
the operational risk management, if the poten-
tial for high-magnitude losses is being inade-
quately assessed.

In Table 1 common distributions are classi-
fied into two categories depending on the heav-
iness of the right tail. Note that the Weibull
distribution can be thin-tailed or heavy-tailed
depending on the value of the shape parame-
ter. Regarding the lognormal distribution, some

literature refers to it as a thin-tailed distribu-
tion, but we follow Embrechts, Klüppelberg,
and Mikosch (1997), who put it in the class of
medium-tailed distributions. The beta distribu-
tion has a bounded support, which makes it a
thin-tailed distribution.

EMPIRICAL EVIDENCE WITH
OPERATIONAL LOSS DATA
In this section we provide results from empiri-
cal studies based on operational loss data that
apply the distributions described in this entry.
There are two types of studies: Those based on
real operational loss data and those based on
simulated data.

The empirical studies indicate that practition-
ers try a variety of possible loss distributions
for the loss data and then determine an opti-
mal one on the basis of goodness-of-fit tests.
It is common to use the Kolmogorov-Smirnov
(KS) and Anderson-Darling (AD) tests to ex-
amine the goodness of fit of the model to the
data. The two tests use different measures of
the discrepancy between the fitted continu-
ous distribution and the empirical distribution
functions. The KS test better captures the dis-
crepancy around the median of the data, while
the AD test is more optimal for the tails. A
smaller value of the test statistic indicates a

Table 1 Tail Behavior of Common Loss Distributions

Name Tail F̄ (x) Parameters

Thin-Tailed Distributions

Normal F̄ (x) = 1 − �
( x−μ

σ

) −∞ < μ < ∞, σ > 0
Exponential F̄ (x) = e−λx λ > 0
Gamma F̄ (x) = 1 − 	(α; βx) α, β > 0
Weibull F̄ (x) = e−βxα

α ≥ 1, β > 0
Beta F̄ (x) = 1 − I (x; α, β) α, β > 0

Medium-Tailed and Heavy-Tailed Distributions

Lognormal F̄ (x) = 1 − �
(

log x−μ

σ

)
−∞ < μ < ∞, σ > 0

Weibull F̄ (x) = e−βxα

0 < α < 1, β > 0

Pareto F̄ (x) =
(

β

β+x

)α

α, β > 0

Burr F̄ (x) =
(

β

β+xγ

)α

α, β, γ > 0
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better fit. Other goodness-of-fit tests include
Kuiper, Cramér-von Mises, and Pearson’s χ2

test, among others.

Studies with Real Data
We review some empirical studies based on real
operational loss data from financial institutions.

Müller Study of 1950–2002 Operational
Loss Data
Müller (2002) carried out empirical analysis
with external operational loss data obtained
from worldwide institutions in the 1950–2002
period, made available then by the IC2 Opera-
tional Loss F1RST Database. Only data in U.S.
dollars for the events whose state of affairs was
“closed” or “assumed closed” on an indicated
date were considered for the analysis. The data
were available for five loss types:

� “Relationship” (such as events related to legal
issues, negligence, and sales-related fraud).

� “Human” (such as events related to employee
errors, physical injury, and internal fraud).

� “Processes” (such as events related to busi-
ness errors, supervision, security, and trans-
actions).

� “Technology” (such as events related to tech-
nology and computer failures and telecom-
munications).

� “External” (such as events related to natural
and man-made disasters and external fraud).

Figure 13 shows the histograms of the five
data sets. There is a clear peak in the beginning,
which is captured by the excessive kurtosis; a
heavy right tail is also evident and is captured
by the high degree of positive skewness (see
Table 2).

From the common distributions discussed
in this entry, exponential, lognormal, Weibull,
gamma, and Pareto distributions were used.
Table 2 demonstrates the five samples’ MLE
parameter estimates and KS and AD statistic
values for the five distributions. The center of
the data is best explained by the lognormal dis-
tribution, as is concluded from the lowest KS

statistic values, for all except “Technology” type
losses for which Weibull is the best. The same
conclusions are drawn regarding the tails of the
datasets.

Cruz Study of Legal Loss Data
Cruz (2002) applies exponential, Weibull,
and Pareto distributions to a sample (in U.S.
dollars) from a legal database (from an undis-
closed source), consisting of 75 points.16 The
sample’s descriptive statistics, as well as the
MLE parameters for the three distributions17

and goodness-of-fit statistics are depicted in
Table 3. The data are highly leptokurtic and
significantly right-skewed. Based on visual
and formal tests for the goodness of fit,18 Cruz
concluded that the Pareto distribution fits the
data best. Nevertheless, none of the considered
loss distributions is able to capture well the
heaviness of the upper tail.

Moscadelli Study of 2002 LDCE Operational
Loss Data
Moscadelli (2004) explores the data (in eu-
ros) collected by the Risk Management Group
(RMG) of the Basel Committee in June 2002’s
Operational Risk Loss Data Collection Exercise
(LDCE). There were 89 participating banks from
19 countries worldwide that provided their in-
ternal loss data for the year 2001. The data were
classified into eight business lines and pooled
together across all banks. The eight business
lines are:

� BL1: Corporate Finance.
� BL2: Trading and Sales.
� BL3: Retail Banking.
� BL4: Commercial Banking.
� BL5: Payment and Settlement.
� BL6: Agency Services.
� BL7: Asset Management.
� BL8: Retail Brokerage.

The lognormal, gamma, Gumbel, Pareto, and
exponential distributions were fitted to the
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Figure 13 Relative Frequency Histograms of Operational Loss Data in Müller Study

data. The estimation procedure used in the
study was somewhat simplified for two rea-
sons. First, different banks used different mini-
mum truncation levels for their internal data,
roughly between €6,000 to €10,000. This is-
sue was ignored in the estimation process. Sec-

ond, the data across all participating banks
were pooled together without any considera-
tion given for bank characteristics such as size.

Table 4 reproduces the sample descriptive
statistic (based on 1,000 bootstrapped sam-
ples generated from the original data), MLE
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Table 2 Sample Description, Parameter Estimates, and Goodness-of-Fit Tests in the Müller Study

“Relationship” “Human” “Processes” “Technology” “External”

1. Sample Description

# obs. 585 647 214 61 220
Mean ($ ’000,000) 0.0899 0.1176 0.3610 0.0770 0.0930
Median ($ ’000) 12.8340 6.3000 50.1708 11.0475 8.9076
St.Dev. ($ ’000,000) 0.3813 0.7412 1.0845 0.1351 0.4596
Skewness 11.1717 18.8460 7.8118 3.0699 10.9407
Kurtosis 152.2355 418.8717 81.5218 14.7173 136.9358

2. MLE Parameter Estimates and Goodness-of-Fit Test Statistics

Exponential distribution
λ 9.0·107 0.15·107 0.36·107 7.7·107 9.3·107

KS test 0.4024 0.5489 0.3864 0.3909 0.4606
AD test 1.2·105 8460 3.9185 1.9687 430.2

Lognormal distribution
μ 16.2693 15.9525 17.6983 16.1888 15.9696
σ 2.1450 2.4551 2.2883 2.5292 2.2665
KS test 0.0301 0.0530 0.0620 0.1414 0.0449
AD test 0.0787 0.1213 0.1600 0.3043 0.1597

Weibull distribution
α 0.0002 0.0008 0.0001 0.0003 0.0004
β 0.4890 0.4162 0.4822 0.4692 0.4527
KS test 0.0608 0.0907 0.0656 0.1179 0.0749
AD test 0.4335 0.2231 0.2247 0.2372 0.2696

Gamma distribution
α − − 0.3372 0.3425 −
β − − 1.07·109 0.2·109 −
KS test − − 0.1344 0.1357 −
AD test − − − − −
Pareto distribution
α −0.8014 −0.8936 −0.7642 −0.6326 −0.8498
β 1.8·107 1.6·107 8.5·107 2.8·107 1.4·107

KS test 0.1296 0.1979 0.1504 0.2812 0.1783
AD test 0.4031 0.5566 0.6256 1.0918 0.4784

Table 3 Sample Descriptive Statistics, Parameter Estimates, and
Goodness-of-Fit Tests in the Cruz Study

1. Sample Description

Mean ($) 439,725.99
Median ($) 252,200
St.dev. ($) 538,403.93
Skewness 4.42
Kurtosis 23.59

2. MLE Parameter Estimates and Goodness-of-Fit Test Statistics

Exponential λ = 440,528.63 KS test: 0.2104 W2 test: 1.3525
Weibull α = 2.8312 KS test: 0.3688 W2 test: 4.8726

β = 0.00263
Pareto α = 6.1737 KS test: 0.1697 W2 test: 0.8198

β = 2,275,032.12

Source: Cruz (2002), pp. 57, 58, and 60, with modifications.
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Table 4 Sample Descriptive Statistics, Parameter Estimates, and Goodness-of-Fit Statistics in the Moscadelli Study

BL1 BL2 BL3 BL4 BL5 BL6 BL7 BL8

1. Sample Description

# obs. 423 5,132 28,882 3,414 1,852 1,490 1,109 3,267
Mean (€’000) 646 226 79 356 137 222 195 125
St.dev. (€’000) 6,095 1,917 887 2,642 1,320 1,338 1,473 1,185
Skewness 16 23 55 15 24 13 25 32
Kurtosis 294 674 4,091 288 650 211 713 1,232

2. MLE Parameter Estimates and Goodness-of-Fit Test Statistics

Lognormal distribution
μ 3.58 3.64 3.17 3.61 3.37 3.74 3.79 3.58
σ 1.71 1.27 0.97 1.41 1.10 1.28 1.28 1.08
KS test 0.18 0.14 0.18 0.16 0.15 0.12 0.11 0.12
AD test 22.52 181 1,653 174 73.74 46.33 25.68 87.67

Gumbel distribution
μ 93.96 51.76 25.63 48.30 35.86 54.82 56.78 41.03
σ 602 185 58.80 204 110 181 154 93.51
KS test 0.43 0.37 0.34 0.37 0.36 0.35 0.32 0.31
AD test 125 1,224 6,037 831 436 333 204 577

Source: Moscadelli (2004), pp. 19 and 25.

parameter estimates (based on the original
data), and goodness-of-fit test statistics19 for the
lognormal and Gumbel distributions.20 Other
considered distributions showed a poor fit.
Although lognormal and Gumbel fitted the
main body of the data rather well, they per-
formed poorly in the upper tail, according to
Moscadelli. This was confirmed by the test
statistic values above the 90% critical values,
meaning that it is unlikely that the data come
from a selected distribution at the 90% confi-
dence level.

He further performs the analysis of the data
using the extreme value theory argument for
modeling high losses with the GPD, finding
that GPD outperforms other considered dis-
tributions. He also confirms the findings from
other empirical studies that operational losses
follow a very heavy-tailed distribution.

De Fontnouvelle-Rosengren-Jordan Study of
2002 LDCE Operational Loss Data
The dataset examined in Moscadelli was also
analyzed by de Fontnouvelle, Rosengren, and
Jordan (2006). They limited their analysis
to the data collected from six banks, and

performed the analysis on the bank-by-bank
basis, rather than pooling the data as was done
in Moscadelli. For confidentiality reasons, only
the data belonging to the four business lines—
Trading and Sales (BL1), Retail Banking (BL2),
Payment and Settlement (BL3), and Asset Man-
agement (BL4)—and six loss types—Internal
Fraud (LT1), External Fraud (LT2), Employment
Practices and Workplace Safety (LT3), Clients,
Products and Business Practices (LT4), and
Execution, Delivery and Process Management
(LT5)—were included in the analysis.

The following distributions were considered
for the study: exponential, Weibull, lognor-
mal, gamma, loggamma (i.e., log of data is
gamma-distributed), 1-parameter Pareto, Burr,
and loglogistic.21 The distributions were fitted
using the MLE method. Overall, heavy-tailed
distributions—Burr, loggamma, loglogistic,
and 1-parameter Pareto—fit the data very well,
while thin-tailed distributions’ fit is poor, as
expected. In particular, losses of LT3 are well fit
by most of the heavy-tailed distributions and
lognormal. In many cases, the estimated pa-
rameters would be unreasonable, for example
resulting in a negative mean loss. For some
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Table 5 Sample Descriptive Statistics, Parameter Estimates, and
Goodness-of-Fit Tests in the Lewis Study

1. Sample Description

Mean (£) 151,944.04
Median (£) 103,522.90
St.dev. (£) 170,767.06
Skewness 2.84
Kurtosis 12.81

2. MLE Parameter Estimates and Goodness-of-Fit Test Statistics

Normal μ = 151, 944.04, σ = 170, 767.06 AD test: 8.090
Exponential λ = 151, 944.04 AD test: 0.392
Weibull α = 0.95446, β = 0.00001 AD test: 0.267

Source: Lewis (2004), p. 88, with modifications.

BL and LT data sets, the models failed the χ2

goodness-of-fit test for all considered cases.
Hence, de Fontnouvelle, Rosengren, and
Jordan performed additional analysis using
the extreme value theory and fitting the GPD
to the data exceeding a high threshold.22

Lewis Study of Legal Liability Loss Data
Lewis (2004) reports his findings for a sam-
ple (in British pounds) of legal liability losses
(from an undisclosed source), consisting of 140
points.23 He fits the normal, exponential, and
Weibull distributions24 to the data and com-
pares the fit. Table 5 shows the descriptive
statistics for the sample, the MLE parameters
for three fitted distributions, and the values
of the AD goodness-of-fit statistic. The data
are highly leptokurtic and significantly right-
skewed. As expected, the normal distribution
results in a very poor fit, and the Weibull dis-
tribution seems the most reasonable assump-

tion, based on the lowest value of the AD test
statistic.

Studies with Simulated Data
A number of studies on operational risk that
have appeared in literature were using simu-
lated rather than real data. We present a few
examples here.

Reynolds-Syer Study
Reynolds and Syer (2003) apply a nonparamet-
ric approach to modeling operational loss sever-
ity. They use a hypothetical sample of six-year
internal operational loss data of a firm, with a
total of 293 observations. The summary of input
data is given in Table 6. Using the sample of his-
toric data, sampling is repeated a large number
of times, and 1,000 simulated years are created.
For each year, the simulated losses are summed
up. The distribution of yearly aggregated

Table 6 Sample Descriptive Statistics of Loss Data in the Reynolds-Syer
Study

Year # obs. Total ($ ’000,000) Average ($ ’000) St. Dev. ($ ’000)

2000 64 7.55 117.9 109.6
2001 57 6.35 111.3 106.2
2002 52 5.14 98.8 93.7
2003 55 5.29 96.1 88.0
2004 43 3.86 89.7 78.5
2005 45 3.41 75.7 68.5

Source: Reynolds and Syer (2003), p. 204.



118 Operational Risk

operational losses is assumed to follow the re-
sulting empirical distribution.

Rosenberg-Schuermann Study
Rosenberg and Schuermann (2006) use a Monte
Carlo approach to generate a sample of 200,000
operational losses. For the loss distribution
they consider a 1-parameter Pareto distribution
with parameter 1/0.65 = 1.5385. This param-
eter is based on the average of the exponen-
tial parameters25 of 1/0.64 and 1/0.66, obtained
for logarithmic losses from the OpRisk Ana-
lytics database and OpVantage database, re-
spectively, in the empirical study carried out
by de Fontnouvelle, DeJesus-Rueff, Jordan, and
Rosengren (2003). Recall that since the shape
parameter is less than one, then such Pareto
distribution has a finite mean but an infinite
variance. To guarantee the existence of the first
two moments, Rosenberg and Schuermann set a
log-loss greater than 1,000 standard deviations
equal to a loss of 1,000 standard deviations.

KEY POINTS
� Broadly, one can classify the approaches to

model operational loss magnitudes into two
groups: nonparametric approach and para-
metric approach.

� Under the nonparametric approach, one can
either model the losses using the empirical
distribution function, or one can fit a smooth
curve to the histogram of the data and analyze
the properties of the curve instead.

� Under the parametric approach, one can fit
one (or more) of common parametric distribu-
tions directly to the data (and compare them).

� Because of the specific nature of the oper-
ational loss data, the distributions that are
most likely to find application to modeling
the losses are those that are right-skewed and
are defined only on the positive values of
the underlying random variable. These distri-
butions include the exponential, lognormal,
Weibull, gamma, beta, Pareto, Burr, and mix-
ture distributions.

� Operational risk managers are concerned
with finding a model that would capture the
“tail events.” Common distributions are clas-
sified into two categories depending on the
heaviness of the right tail: light-tailed and
heavy-tailed. In operational risk modeling,
light-tailed distributions should be used with
caution.

� There have been several empirical studies
with operational loss data. Two types of em-
pirical studies are distinctive: studies that
use real loss data and studies that use simu-
lated data. Generally, most of the studies sug-
gest that heavy-tailed loss distributions (such
as lognormal or Pareto) best describe opera-
tional loss magnitudes.

NOTES
1. An example is cubic spline approxima-

tion as is done in Rosenberg and Schuer-
mann (2006). Useful references on this
approach include Silverman (1986) and
Scott (1992).

2. See Rosenberg and Schuermann (2006).
3. See Cizek, Härdle, and Weron (2005).
4. To be more precise, for a discrete random

variable it is called probability mass func-
tion.

5. The lognormal distribution was proposed
by the Basel Committee for the operational
risk modeling in 2001.

6. 	(a) is the complete gamma function,
	(a ) = ∫ ∞

0 ta−1e−tdt. When a is an integer,
then 	(a) = (a − 1)!

7. See Madan and Unal (2004) and Kremer
(1998).

8. See Mittnik and Rachev (1993a, 1993b).
9. 	(a; b) is the incomplete gamma function

defined as 	(a ; b) = 1
	(a )

∫ b
0 ta−1e−tdt.

10. In this case, the gamma distribution is called
the Erlang distribution.

11. I(x; α, β) is the regularized beta function
equal to

∫ x
0 uα−1(1 − u)β−1du × 	(α)	(β)

	(α+β) .

12. See Cizek, Härdle, and Weron (2005).
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13. See Klugman, Panjer, and Willmot
(2004).

14. See Klugman, Panjer, and Willmot (2004).
15. In literature, thin-tailed distributions are

also called light-tailed distributions, and
heavy-tailed distributions are also called
fat-tailed distributions. We will use the cor-
responding terms interchangeably.

16. Original dataset is available from Cruz
(2002), Chapter 3, p. 57.

17. Note that the density specification for the
exponential and Weibull distributions in
Cruz (2002) are different. We report the pa-
rameter values based on the specifications
of the density functions as presented in this
entry.

18. The KS values reported in Table 3 should
be further scaled by

√
n (n being the sample

length) if we want to compare the goodness
of fit across samples of different lengths.

19. The test statistics are unadjusted to the
length of data.

20. The Gumbel distribution is light-tailed
and has density f (x) = 1

σ
exp

{− x−μ

σ
−

exp
{− x−μ

σ

}}
, defined on x ∈ �. The sup-

port allows for negative loss values, so
the Gumbel distribution is unlikely to
find much application in operational risk
modeling.

21. The density of the loglogistic distribution is
f(x) = ax1/b − 1/[b(1 + ax1/b)2].

22. For the tables with the χ2 goodness-of-fit
statistic values and other details of this
empirical study we refer the reader to
de Fontnouvelle, Rosengren, and Jordan
(2006).

23. Original dataset is available from Lewis
(2004), Chapter 7, p. 87.

24. Lewis (2004) does not report the parame-
ter estimates for the Gaussian and Weibull
cases. We computed them directly by fitting
the ditributions to the data.

25. We stated earlier that an exponential trans-
formation of an exponentially distributed
random variable follows a 1-parameter
Pareto distribution.
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Embrechts, P., Klüppelberg, C., and Mikosch, T.
(1997). Modeling External Events for Insurance and
Finance. Berlin: Springer-Verlag.

Klugman, S. A., Panjer, H. H., and Willmot, G. E.
(2004). Loss Models: From Data to Decisions, 2nd
ed. Hoboken, NJ: John Wiley & Sons.

Kremer, E. (1998). Largest claims reinsurance pre-
miums for the Weibull model. In Blätter der
Deutschen Gesellschaft für Versicherungsmathe-
matik: 279–284.

Lewis, N. (2004). Operational Risk with Excel and
VBA. Hoboken, NJ: John Wiley & Sons.

Madan, D. B., and Unal, H. (2004). Risk-
neutralizing statistical distributions: With an
application to pricing reinsurance contracts on
FDIC losses. Technical report 2004-01, FDIC,
Center for Financial Research.

Mittnik, S., and Rachev, S. T. (1993a). Modelling
asset returns with alternative stable distribu-
tions. Econometric Reviews 12: 261–330.

Mittnik, S., and Rachev, S. T. (1993b). Reply to
comments on modelling asset returns with al-
ternative stable distributions and some exten-
sions. Econometric Reviews 12: 347–389.

Moscadelli, M. (2004). The modelling of opera-
tional risk: Experience with the analysis of the
data collected by the Basel Committee. Techni-
cal report, Bank of Italy.

Müller, H. (2002). Quantifying operational risk in
a financial institution. Master’s thesis, Institut
für Statistik und Wirtschaftstheorie, Universität
Karlsruhe.

Reynolds, D., and Syer, D. (2003). A general sim-
ulation framework for operational loss distri-
butions. In C. Alexander (ed.), Operational Risk:



120 Operational Risk

Regulation, Analysis, and Management. London:
Prentice Hall.

Rosenberg, J. V., and Schuermann, T. (2006). A gen-
eral approach to integrated risk management
with skewed, fat-tailed risks. Journal of Finan-
cial Economics 79, 3: 569–614.

Ross, S. M. (2001). Simulation, 3rd ed. Boston, MA:
Academic Press.

Ross, S. M. (2002). Introduction to Probability Mod-
els, 8th ed. Boston, MA: Academic Press.

Scott, D. W. (1992). Multivariate Density Estimation:
Theory, Practice, and Visualization. New York:
John Wiley & Sons.

Silverman, B. W. (1986). Density Estimation for
Statistics and Data Analysis. London: Chapman
& Hall.



Optimization Tools





Introduction to Stochastic
Programming and Its Applications
to Finance
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Abstract: Mathematical programming is one of a number of operations research techniques that em-
ploys mathematical optimization models to assist in decision making. Mathematical programming
includes linear programming, integer programming, mixed-integer programming, nonlinear pro-
gramming, stochastic programming, and goal programming. Mathematical programming models
allow the decision maker to identify the “best” solution. This is in contrast to other mathematical
tools that are in the arsenal of decision makers such as statistical models (which tell the decision
maker what occurred in the past), forecasting models (which tell the decision maker what might
happen in the future), and simulation models (which tell the decision maker what will happen
under different conditions). The mean-variance model for portfolio selection as formulated by
Markowitz is an example of an application of one type of mathematical programming (quadratic
programming). However, in formulating optimization models in many applications in finance, de-
cision makers need to take into consideration the uncertainty about the model’s parameters and the
multiperiod nature of the problem faced. To deal with these situations, the technique of stochastic
programming is employed.

The dynamic nature of financial decision mak-
ing requires the use of tools that are capable
of capturing the multiperiod nature inherent in
problems faced by asset managers in portfolio
selection decisions and financial managers in
capital budgeting decisions. These tools should
be understandable with adequate treatment of
uncertainty. They should incorporate practical
considerations, such as transaction costs in the
case of asset managers. Stochastic program-
ming bears these characteristics. In this entry,
we discuss the basics of stochastic program-

ming, give a brief history, and emphasize its
importance by comparing the approach to other
tools used in finance.

WHAT IS STOCHASTIC
PROGRAMMING?
Stochastic programming is nothing but a fancy
name for the study of optimal decision making
under uncertainty. As opposed to “determin-
istic,” the term “stochastic” implies that some
of the parameters of the problem are random
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(that is, not known with certainty); the term
“programming” points to links with mathemat-
ical programming and optimization algorithms.

Uncertainty is almost always inherent in real-
world decision problems (and even more so in
financial planning). As an example, we may
consider a bet whose outcome is determined by
flipping a coin. In such problems, uncertainty
of parameters may be due to the presence of un-
certain events (e.g., a coin flip in the previous
example) or simply due to lack of reliable data.

In the past, due to computational and infor-
mational limitations, optimal decision models
were often formulated deterministically by re-
placing the uncertainties with expectations or
best estimates. With contributions from many
disciplines, including operations research, and
improvements in the information technology
(faster hardware and software), stochastic pro-
gramming is rapidly developing today.

The main features of a stochastic program,
which can be viewed as an optimal decision
model with explicit consideration of uncertain-
ties, are:

� Random parameters with known (or partially
known) distributions.

� Several decision variables with many poten-
tial values.

� Discrete time periods for decisions.
� Use of expectations (or other functions of de-

cision variables) for objectives.

The problem structure, constraints, and ob-
jectives (risk/reward) are modeled across time
along with the uncertainty of events. Future
uncertainty is modeled through generating sce-
narios over time. In other words, the real-
izations of the uncertain parameters may be
(gradually) revealed after some or all of the
decisions have been made. High-performance
computers take advantage of sophisticated al-
gorithms to determine the optimal decision that
will take into account the future uncertainty. As
the uncertainty is revealed after each stage, re-
course decisions can be made in the light of new
information.

The relative importance of these main features
contrasts with other decision-making models,
such as statistical decision theory, decision anal-
ysis, dynamic programming, Markov decision
processes, and stochastic control (SC). In con-
trast to statistical decision theory, stochastic
programming has emphasized solution meth-
ods and analytical solution properties over
procedures for constructing objectives and up-
dating probabilities. Stochastic programs gen-
erally have higher dimensions (that is, larger
problem size) than SC models, which put more
emphasis on control rules and have more re-
strictive constraint assumptions.

We can see the first forms of decision mod-
els that involve uncertainty in the early days
of the history of mathematical programming.
Beale (1955), Dantzig (1955), and Charnes
and Cooper (1959) were the first to pro-
pose linear programs with random parameters.
Dantzig named his approach “linear program-
ming under uncertainty,” whereas Charnes and
Cooper called theirs “chance/probabilistically
constrained programming.”

Subsequently, stochastic programming has
become a major subfield of mathematical pro-
gramming with several theoretical develop-
ments. For overviews of the literature including
algorithms and applications, see Kall and Wal-
lace (1994), Infanger (1994), Ermoliev and Wets
(1988), Birge and Louveaux (1997), Wallace and
Ziemba (2003), Prékopa (1995), Higle and Sen
(1996), Wallace et al. (1996), Censor and Zenios
(1997), Wets and Ziemba (1999), Dupačová et al.
(2002), Birge et al. (2002), and Ruszczyński and
Shapiro (2003).

In general, stochastic optimization models re-
sult in large-scale programs since they include a
large number of scenarios to reflect all possible
outcomes of future uncertainty. Therefore, ef-
forts on the algorithmic developments focused
on adaptations of large-scale linear program-
ming methods for special classes of stochastic
programs whose structures are exploitable. In
other words, emphasis was placed on form-
ing the deterministic equivalent program and
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taking advantage of the structure of the result-
ing formulation. Dantzig and Madansky (1961)
introduced Dantzig-Wolfe decomposition as a
possible method. One of the most successful
approaches has been the application of Ben-
ders’ decomposition (Benders, 1962) method to
stochastic programs, originally developed by
Van Slyke and Wets (1969). Birge (1985) ex-
tended this idea for multistage stochastic pro-
grams. In general, these methods concentrate
on linear models. The diagonal quadratic ap-
proximation (DQA) algorithm, originally de-
veloped for linear programs by Mulvey and
Ruszczyński (1992), can handle both quadratic
and general convex (or equivalently concave)
objective functions with linear constraints, as
shown in Berger et al. (1994). The progressive
hedging algorithm, developed by Rockafellar
and Wets (1991), dualizes the nonanticipativity
constraints and, like DQA, iterates over scenar-
ios to force these constraints to be equal. Unlike
DQA, there is no quadratic penalty term and
all scenarios are coordinated through a master
processor. Mulvey and Vladimirou (1991) suc-
cessfully implemented the progressive hedging
algorithm in the context of stochastic networks.

Specialized software packages that employ
these methods are much faster than general
solvers. Combined with algebraic modeling
languages, such as AMPL, these specialized
stochastic programming solvers provide effi-
cient means of tackling problems that involve
high levels of uncertainty.

Stochastic Programming in Finance
Financial planning represents one of the major
application areas of stochastic programming.
In fact, it is a natural domain for stochastic
programming, since risk needs to be incorpo-
rated into investment decisions (portfolio de-
cisions and capital budgeting decisions) and
the problem structure is amenable to alge-
braic constraints and relationships. Determin-
istic approximations would fail to see the big
picture. For example, through stochastic pro-
grams, portfolio allocations that would opti-

mize an investor’s risk level under several
scenarios can be determined; by contrast, be-
cause they ignore risk, deterministic programs
provide inadequate solutions. Static portfolio
selection models, based on Markowitz’s mean-
variance model (1952), have been proposed in
many cases; however, their implementations
may result in significant transaction costs and
mistimed liquidation of assets. Examples of ap-
plication of stochastic programming in financial
planning can be found in Ziemba and Vickson
(1975) and Zenios (1992).

Within finance, stochastic programming ap-
plications have greatly increased in recent
years, particularly in asset-liability manage-
ment (ALM). Multistage stochastic programs
take into account the dynamic aspects of ALM
problems faced by institutional investors. Based
on assumptions about the (joint) dynamics
of risk factors that are usually described by
stochastic processes, representative scenarios
for investment strategies are generated. Trans-
actions take place at discrete points in time over
a finite planning horizon. Moreover, several
constraints (e.g., liability considerations, liquid-
ity restrictions, limits on risk exposure) can be
taken into account.

Since multistage programs suffer from an ex-
ponential growth in problem size with respect
to the number of periods under consideration,
the first models for ALM that appeared in the
early 1980s [see Kallberg et al. (1982), Kusy
and Ziemba (1986)] were restricted to a two-
stage structure due to computational limita-
tions. Mulvey and Vladimirou (1992) looked
at optimal investment strategies given liabili-
ties in a network environment. At Fannie Mae,
Holmer (1994) implemented a system to min-
imize investment risk while taking into ac-
count that firm’s retained mortgage portfolio.
Advances in computing power, paired with effi-
cient algorithms that are specialized for stochas-
tic programming, help researchers implement
and solve very large scale stochastic programs,
such as the pension fund model of Gondzio and
Kouwenberg (2001), with millions of scenarios.
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One of the first successful commercial mul-
tistage stochastic programming applications is
the Russell-Yasuda Kasai model (see Cariño
et al., 1994, 1998; and Cariño and Ziemba, 1998).
The model was employed to optimize the in-
vestment decisions for a Japanese insurance
company over time where investment returns
and liabilities are uncertain. The problem is
complicated by constraints to meet the random
liabilities and legal restrictions on the use of in-
come in Japan.

Other successful commercial applications in-
clude the Towers Perrin-Tillinghast ALM sys-
tem of Mulvey et al. (2000), the fixed income
portfolio management models of Zenios (1995)
and Beltratti et al. (1999), and the InnoALM
system of Geyer and Ziemba (2008). A good
number of applications in ALM are provided in
Ziemba and Mulvey (1998), Ziemba (2003), and
Zenios and Ziemba (2006).

Among other areas in finance, capital bud-
geting and fixed income portfolio manage-
ment have been researched extensively using
stochastic programming methods. For the for-
mer, Lockett and Gear (1975), De et al. (1982),
and Turney (1990) are the earliest applications.
Bradley and Crane (1972) were the first to pro-
pose stochastic programming for bond port-
folio management. Zenios and Kang (1993)
developed a portfolio immunization strategy in
a multi-period stochastic optimization frame-
work. Granville et al. (1994) describe a dual
method for an asset-only allocation problem.
Many other applications in the fixed income
literature exist, including Hiller and Eckstein
(1993) and Golub et al. (1995).

STOCHASTIC
PROGRAMMING VERSUS
OTHER METHODS IN
FINANCE
In this section, we compare stochastic pro-
gramming with other methods applied to fi-
nancial planning (especially to ALM). First,

we highlight the dynamic aspects of stochas-
tic programming and show its differences with
static models. Afterward, we briefly discuss
continuous-time models in finance and compare
these models with stochastic programming—a
discrete-time approach.

Static versus Dynamic Models in
Financial Planning
The most well-known static model for financial
planning is, without a doubt, the mean-variance
model of Markowitz (1952). In this framework,
the minimum-variance portfolio that satisfies
a required expected return defines the optimal
portfolio. Mulvey (1989) extended this model
to account for liabilities by replacing the re-
turn measure with the surplus (defined as assets
minus liabilities). Others have introduced
downside risk measures (e.g., conditional
value-at-risk, semivariance, mean absolute de-
viation, to name a few) to replace variance, rec-
ognizing the fact that variance is not a good
risk measure for most asset classes (such as
derivatives and fixed income securities) and
for long-term investors. (See, e.g., Fishburn,
1977, Worzel et al., 1994, and Rockafellar and
Uryasev, 2000.) Despite being computationally
attractive, static models are inappropriate for
long-term investors facing sequential decisions.
Single-period models, unlike dynamic models,
fail to cope with the dynamic aspects of the
problem, such as transaction costs.

Among other static models, duration-
matching models seem to be interesting, espe-
cially for ALM. These models seek to protect
the surplus against an interest rate uncertainty.
The optimal portfolio of assets is the lowest-
cost portfolio whose value and duration are
equal to those of liabilities. Applications can
be quite successful in certain cases, for exam-
ple, when a defined benefit pension plan has
been terminated and taken over by an insur-
ance company or when the transaction costs
are low. However, these models ignore the facts
that individual cash inflows and outflows are
not matched and that one needs to adjust to the



INTRODUCTION TO STOCHASTIC PROGRAMMING AND ITS APPLICATIONS TO FINANCE 127

changes in duration at every stage (which leads
to high transaction costs). Therefore, computa-
tional and structural advantages of these mod-
els are insufficient to justify their drawbacks.

Dynamic models, in contrast, provide sub-
stantial flexibility to address the issues faced
by long-term investors. They are not as easy
to solve and conceptualize as static models;
however, as discussed earlier in this entry,
the advances in technical aspects of stochas-
tic programming and today’s computational
power more than make up for these incapaci-
ties. Among these methods, dynamic program-
ming seems to be especially interesting from an
ALM perspective, as the optimal decisions are
obtained in feedback form. However, it suffers
from the curse of dimensionality as the planning
horizon or the uncertainty representation is ex-
tended. An alternative method to overcome this
problem is to specify a decision rule within the
same framework, which also helps handle the
transaction costs more easily. Nevertheless, in-
corporating decision rules leads to nonconvex
optimization models (see Mulvey and Simsek,
2002). Fleten et al. (2002) illustrate the supe-
rior performance of dynamic models over static
models. In the next section, we discuss the two
major types of dynamic models.

Continuous-Time Models versus
Stochastic Programming
Continuous-time models were introduced to
the finance literature by Merton (1969). The
variables that define the states of the world are
modeled through stochastic differential equations
(SDEs). Asset prices also follow SDEs whose
parameters may be state and/or time depen-
dent. Trading is assumed to occur continuously.
Under additional assumptions on investors’
preferences (that is, utility functions) and the
structure of the economy, an explicit analyti-
cal solution can be found for these models by
SC techniques. Thus, they provide better in-
sights than the stochastic programming solu-
tions, which are hard to generalize. However,

as Cochrane (2001, p. 28) suggests: “. . . in the
complexity of most practical situations, one of-
ten ends up resorting to numerical simulation
of a discretized model anyway.”

Although some of the SC recommendations
are implementable, the model simplifications
may render them ineffective. As these mod-
els cannot incorporate complex constraints im-
posed by realistic situations and most investors
(e.g., pension funds) do not want to trade con-
tinuously, we turn to stochastic programming,
which allows decisions to be made at a finite
number of discrete points in time.

In most cases, stochastic programming mod-
els require the uncertainties be approximated
by a scenario tree with a finite number of
states of the world at each time. As Kouwen-
berg and Zenios (2006, p. 291) suggest: “. . .

important practical issues such as transaction
costs, multiple state variables, market incom-
pleteness, taxes and trading limits, regulatory
restrictions, and corporate policy requirements
can be handled simultaneously within the frame-
work.” This huge practical advantage, unfor-
tunately, comes at a significant cost: curse of
dimensionality. As analytical solutions are not
possible, stochastic programming models need
to be solved via numerical optimization. The
model size explodes as the size of the state space
or the number of decision stages increases. In
recent years, this drawback has been substan-
tially overcome through the development of
new algorithms and the advances in comput-
ing power. Still, one should be careful about
incorporating too much detail into a stochastic
programming model, not because of the com-
putational disadvantages but mainly to avoid
confusing the decision maker, since SP solutions
are hard to generalize.

It is, however, interesting to note that the
continuous-time models have been the focus
of research in the financial economics literature,
whereas models in the operation research litera-
ture are mostly stated in discrete time. As Berger
(1995) points out, there have been several
successful applications of SC, such as the
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Black-Scholes option pricing formula (Black
and Scholes, 1973) and the continuous-time cap-
ital asset pricing model (Merton, 1973). See
also Constantinides (1986), Dumas and Luciano
(1991), and Shreve and Soner (1991) for SC ap-
plications with practical considerations such as
transaction costs.

A GENERAL MULTISTAGE
STOCHASTIC
PROGRAMMING MODEL
FOR FINANCIAL PLANNING
To illustrate the use of stochastic programming,
we provide in this section a multistage stochas-
tic program to tackle a long-term investment
problem. We formulate the deterministic equiv-
alent of the stochastic program and we discuss
the issue of modeling the uncertain parameters
on scenario generation methods.

Model Formulation
Here, we define the multiperiod investment
problem as a multistage stochastic program.
The basic model is a variant of Mulvey et al.
(1997), with special attention to transaction
costs.

To define the model, we divide the entire plan-
ning horizon T into two discrete time intervals
T1 and T2, where T1 = {0, 1, . . . , τ } and T2 =
{τ + 1, . . . , T}. The former corresponds to pe-
riods in which investment decisions are made.
Period τ defines the end of the planning hori-
zon. We focus on the investor’s position at the
beginning of period τ . Decisions occur at the be-
ginning of each time stage. Much flexibility ex-
ists. An active trader might see his time interval
as short as minutes, whereas a pension plan ad-
viser will be more concerned with much longer
planning periods such as the dates between the
annual board of directors’ meetings. It is pos-
sible for the steps to vary over time—short in-
tervals at the beginning of the planning period
and longer intervals toward the end. T2 handles
the horizon at time τ by calculating economic

and other factors beyond period τ up to period
T. The investor renders passive decisions after
the end of period τ .

Asset classes are defined by set A =
{1, 2, . . . , I}, with category 1 representing cash.
The remaining asset classes can include growth
and value stocks, bonds, real estate, hedge
funds, or private equity. The asset classes
should track well-defined market segments.
Ideally, the co-movements between pairs of as-
set class returns would be relatively low so
that diversification can be done across the as-
set classes.

In multiperiod models, uncertainty is repre-
sented by a set of distinct realizations, called
scenarios, s ∈ S. The scenarios may reveal iden-
tical values for the uncertain quantities up to a
certain period; that is, they share common in-
formation history up to that period. We address
the representation of the information structure
through nonanticipativity constraints, which
require that variables sharing a common his-
tory, up to time period t, must be set equal to
each other (see equation (7) below).

We assume that the portfolio is rebalanced
at the beginning of each period. Alternatively,
we could simply make no transaction except to
reinvest any dividend and interest—a buy-and-
hold strategy. For convenience, we also assume
that the cash flows are reinvested in the gener-
ating asset class and all the borrowing (if any)
is done on a single-period basis.

For each i ∈ A, t ∈ T1, and s ∈ S, we define the
following parameters and decision variables.

Parameters
r s

i,t = 1 + ρs
i,t , where ρs

i,t is the percent return for
asset i, in time period t, under scenario s
(projected by a stochastic scenario generator, for
example, see Mulvey et al. [2000]).

πs Probability that scenario s occurs,
∑
s∈S

πs = 1.

w0 Wealth at the beginning of time period 0.

σi,t Transaction costs incurred in rebalancing asset i
at the beginning of period t (symmetric
transaction costs are assumed, that is, cost of
selling equals cost of buying).

βs
t Borrowing rate in period t, under scenario s.
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Decision Variables
xs

i,t Amount of money in asset class i, at the
beginning of time period t, under scenario s,
after rebalancing.

vs
i,t Amount of money in asset class i, at the

beginning of time period t, under scenario s,
before rebalancing.

ws
t Total wealth at the beginning of time period t,

under scenario s.

ps
i,t Amount of asset i purchased for rebalancing in

period t, under scenario s.

ds
i,t Amount of asset i sold for rebalancing in period

t, under scenario s.

bs
t Amount of money borrowed at the beginning

of period t, underscenario s.

Given these definitions, we present the deter-
ministic equivalent of the stochastic asset-only
allocation problem.

Max EU(ws
τ ) =

∑

s∈S

πsU(ws
τ ) (1)

subject to
∑

i∈A

xs
i,0 = w0 ∀ s ∈ S (2)

∑

i∈A

xs
i,τ = wτ ∀ s ∈ S (3)

i = 1 i = 1 i = 1

i = 2

i = I

i = 2

i = I

i = 2

i = I

wτ

t  = 1 t  = 2 t  = τ

b1 b2 b

v1,1

v2,1

vI,1

1,1 v1,2

2,1 v2,2

I,1 vI,2

v1, τ

v2, τ

vI

x1, τ

2, τ

I, τ

d2,1 p2,1 d2,2 p2,2
d2,τ p2,τ

d I,1 p I,1 d I,2 p I,2 d I, τ p I, τ

Figure 1 Network Representation for Each Scenario, s ∈ S

vs
i,t = r s

i,t−1xs
i,t−1 ∀ s ∈ S, t = 1, . . . , τ, i ∈ A

(4)
xs

i,t = vs
i,t + ps

i,t(1 − σi,t) − ds
i,t

∀ s ∈ S, i ∈ A/{1}, t = 1, . . . , τ
(5)

xs
1,t = vs

1,t + ∑
i �=1

ds
i,t(1 − σi,t)

− ∑
i �=1

ps
i,t − bs

t−1(1 + βs
t−1) + bs

t

∀ s ∈ S, t = 1, . . . , τ

(6)

xs
i,t = xs ′

i,t ∀ s and s ′ with identical past up to
time t,t = 1, . . . , τ

(7)

A generalized network investment model is
presented in Figure 1. This figure depicts the
flows across time for each of the asset classes.
While all constraints cannot be put into a net-
work model, the graphical form is easy for asset
managers to comprehend. General linear and
nonlinear programs are now readily available
for solving the resulting problem. However, a
network may have computational advantages
for extremely large problems, such as security
level models.

As with single-period models, the nonlin-
ear objective function (1) can take several
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different forms. If the classical return-risk
function is employed, then (1) becomes Max
Z = η × Mean(wτ ) − (1 − η) × Risk(wτ ), where
Mean(wτ ) is the expected total wealth and
Risk(wτ ) is the risk of the total wealth across
the scenarios at the beginning of period τ . Pa-
rameter η indicates the relative importance of
risk as compared with the expected value. This
objective leads to an efficient frontier at period τ

by allowing alternative values of η in the range
[0,1]. It can be shown that a viable alternative to
the mean-risk framework is the von Neumann-
Morgenstern expected utility of wealth at the
beginning of period τ .

Let’s review the six constraints:

1. Constraint (2) guarantees that the total initial
investment equals the initial wealth.

2. Constraint (3) represents the total wealth in
the beginning of period τ . This constraint
can be modified to include assets, liabili-
ties, and investment goals, in which case the
modified result is referred to as the “surplus
wealth” (Mulvey, 1989). Many investors ren-
der investment decisions without reference
to their liabilities or investment goals. Mul-
vey (1989) incorporates the notion of surplus
wealth into the mean-variance and the ex-
pected utility models to address liabilities in
the context of asset allocation strategies.

3. Constraint (4) depicts the wealth vs
i,t accu-

mulated at the beginning of period t before
rebalancing in asset i.

4. Constraint (5) gives the flow balance con-
straint for all assets except cash for all pe-
riods. This constraint guarantees that the
amount invested in period t equals the net
wealth for the asset.

5. Constraint (6) represents the flow balancing
constraint for cash.

6. Constraints (7) are the nonanticipativity con-
straints.

The preceding constraints ensure that the sce-
narios with the same past will have identical
decisions up to that period. While these con-
straints are numerous, solution algorithms take

Splitting
Constraints

RV1 RV2 RV3 RVSNAV1 NAV2 NAV3

Figure 2 Split Variable Formulation (NAV:
Nonanticipativity Variables, RV: Remaining Vari-
ables)

advantage of their simple structure. See Birge
and Louveaux (1997), Dantzig and Infanger
(1993), Kall and Wallace (1994), and Mulvey and
Ruszczyński (1995), for example.

Figure 2 depicts the constraint structure for
a split variable formulation of the stochastic
asset allocation problem. This formulation has
proven successful for solving the model using
techniques such as the progressive hedging al-
gorithm of Rockafellar and Wets (1991) and the
DQA algorithm by Mulvey and Ruszczyński
(1995). The split variable formulation can be
beneficial for direct solvers that use the interior
point method. Given today’s powerful PCs, the
nonlinear optimization system can be solved in
a direct fashion for realistic-size implementa-
tions.

By substituting constraint (7) back into con-
straints (2) to (6), we obtain a standard form
of the stochastic allocation problem. Con-
straints for this formulation exhibit a dual block
diagonal structure for two-stage stochastic pro-
grams and a nested structure for general multi-
stage problems. This formulation may be better
for some direct solvers. The standard form of
the stochastic program possesses fewer deci-
sion variables than the split variable model and
is the preferred structure by many researchers
in the field. This model can be solved by means
of decomposition methods, for example, the
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L-shaped method (a specialization of Benders’
algorithm). (See Birge and Louveaux, 1997;
Consigli and Dempster, 1998; Dantzig and In-
fanger, 1993; and Kouwenberg and Zenios,
2006.)

As shown by Consigli and Dempster (1998),
Dantzig and Infanger (1993), Mulvey et al.
(2000), Ziemba and Mulvey (1998), and Ziemba
(2003), a multistage model can provide superior
performance over single-period models.

Modeling Future Uncertainties
(Scenario Generation)
To model future uncertainty in our financial
planning problem, we utilize a representative
set of scenarios. In this section, we review the
procedures for scenario generation and give de-
tails about the approach described.

In most cases, stochastic programming mod-
els require that the future uncertainties are
approximated by a scenario tree with a finite
number of states of the world at each time. The
planning horizon is divided into T time periods
(generally years for pension planning).

A sample scenario tree of three periods and
nine scenarios is depicted in Figure 3. The
root of the tree represents the current state of
the world. A scenario is defined as a single
branch from the root to any leaf of the tree
(e.g., the boldfaced path corresponds to sce-
nario 4). Thus, all of the parameter uncertain-
ties are depicted along this branch. Each node
represents a state of the world under a given
scenario at a given time; for instance, the bold-
faced node corresponds to the set of uncertain-
ties at the end of period 2 under scenario 4.
The stochastic program will determine an opti-
mal decision for each node of the scenario tree,
given the information available at that point.
As there are multiple succeeding nodes, the op-
timal decisions will be determined without ex-
ploiting hindsight. A stochastic programming
model will find the optimal policy that will fit
the current state of the world and the decision
maker in each node, while anticipating the op-

t = 3 t = 2 t = 1 t = 0 

s = 1 

s = 2 

s = 7 

s = 6 

s = 8 

s = 5 

s = 4 

s = 3 

s = 9 

Figure 3 A Three-Period Scenario Tree

timal adjustment of the policy later on as the
tree evolves and more information is revealed.

Generating scenario trees to represent the
evolution of future uncertainty is a two-step
process. Figure 4 depicts a diagram of the
process.

The first step involves the construction of
a stochastic forecasting model. This involves
choosing a model that would be appropriate
for the uncertain variables and calibrating the
parameters of this model using historical data.

The simplest approach, bootstrapping histor-
ical data, eliminates the need for a mathemat-
ical model (see, e.g., Grauer and Hakansson,
1982). Among mathematical models, stochas-
tic differential equations and time series anal-
ysis are two commonly used techniques to
generate anticipatory scenarios. Our preference
is to employ the former technique, in which a

True
Uncertainty

Stochastic
Forecasting

Model

Scenario
Trees

Sampling
Process

Model Selection/
Calibration

Figure 4 From Historical Data to Scenario Trees
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sequence of economic factors (e.g., gross do-
mestic product, corporate earnings, interest
rates, and inflation) drive the state variables (see
Mulvey [1996] for the details). The parameters
of the SDEs for the economic factors and asset
returns can be calibrated using historical data. A
standard variance reduction method, antithetic
variates, can be employed to improve the accu-
racy of the model’s recommendations. Indirect
inference methods for calibrating the parame-
ters of the resulting stochastic system can be
employed (see Gourieroux et al., 1993).

The next step involves the discretization of the
scenarios generated by the stochastic forecast-
ing model in the first step. To avoid any com-
putational disadvantages, this has to be done
using a small number of nodes, which in turn
will lead to approximation errors. There are sev-
eral methods to achieve this depending on the
models employed in the first step (see Hoyland
and Wallace, 2001; Kouwenberg and Zenios,
2006; Grebeck, Rachev, and Fabozzi, 2009; and
Ziemba, 2003). We first create discretized sam-
ple paths by moment-matching, using the cas-
caded SDE structure in the first step. Then, we
convert these sample paths to a scenario tree by
clustering (see Dupačová et al., 2002). We be-
gin by grouping similar first stage values of the
sample paths into clusters, and then continue
sequentially through each stage.

For an ALM system, one needs to generate
scenarios for the liability side as well as the as-
set side. Obviously, both components are driven
by economic factors. Liabilities are affected by
actuarial predictions as well. When modeling
the asset returns, one may need to use senti-
ment or expert judgment to improve the range
of scenarios.

The future value of the liabilities can be es-
pecially tricky to project for institutions, such
as pension plans, where the liabilities consist of
several contracts and therefore the valuation is
affected by various sources of uncertainty. For
a typical pension plan, one can simulate the
future status of the participants by making as-
sumptions about the retirement rates, resigna-

tion frequency, promotion/demotion probabil-
ities, and the mortality rate. Once this is done,
the interest rates are forecasted and used to cal-
culate the present value of the liabilities.

When modeling the asset returns, the eco-
nomic factors that drive the primary asset-
class returns are projected as a first step, which
would then be followed by the projection of re-
turns for these primary assets. More complex
assets would be the last to be modeled in this
setup. Alternatively, one can model all uncer-
tain variables at once through one big set of
multivariate time-series models.

KEY POINTS
� Stochastic programming is an operations re-

search method for optimal decision making
under uncertainty and bears suitable charac-
teristics for modeling and solving financial
planning applications, such as asset-liability
management, capital budgeting, and fixed in-
come portfolio management.

� The main features of a stochastic program are:
random parameters with known (or partially
known) distributions; several decision vari-
ables with many potential values; multiple
discrete time periods for decisions; use of ex-
pectations (or other functions of decision vari-
ables) for objectives.

� Stochastic programs typically have larger
problem size than stochastic control mod-
els, which put more emphasis on control
rules and have more restrictive constraint
assumptions.

� Stochastic programming models generally re-
quire that the future uncertainties are approx-
imated by a scenario tree with a finite number
of states of the world at each time.

� Multiperiod stochastic programs with a large
number of parameters and scenarios result
in large-scale deterministic-equivalent pro-
grams. Specialized software packages com-
bined with algebraic modeling languages are
utilized to efficiently tackle these problems.
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Prékopa, A. (1995). Stochastic Programming. Dor-
drecht, Netherlands: Kluwer Academic Pub-
lishers.

Rockafellar, R. T., and Uryasev, S. (2000). Opti-
mization of conditional Value-at-Risk. The Jour-
nal of Risk 2, 3: 21–41.

Rockafellar, R. T., and Wets, R. J-B. (1991). Scenario
and policy aggregation in optimization under
uncertainty. Mathematics of Operations Research
16: 119–147.
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Abstract: As the use of quantitative techniques has become more widespread in the investment
industry, the issue of how to handle portfolio estimation and model risk has grown in importance.
Robust optimization is a technique for incorporating estimation errors directly into the portfolio
optimization process, and is typically applied in conjunction with robust statistical estimation
methods. The robust optimization approach uses the distribution from the estimation process to
find a portfolio allocation in one single optimization, while keeping the computational costs low.
Robust portfolios tend to be less sensitive to estimation errors, offer some improved portfolio
performance, and often have lower turnover ratios.

The concepts of portfolio optimization and
diversification have been instrumental in the
understanding of financial markets and the de-
velopment of financial decision making. The
major breakthrough came in 1952 with the
publication of Harry Markowitz’s theory of
portfolio selection. Markowitz suggested that
sound financial decision making is a quantita-
tive trade-off between risk and return. His work
spurred a vast amount of research on quan-
tifying market behavior, and one of the main
practical consequences of his theory was the

acceptance of the notion that diversification re-
duces portfolio risk.

Sixty years after Markowitz’s seminal work,
substantial advances have been made in the
theory and practice of portfolio management.
Today, quantitative techniques for forecast-
ing asset returns, portfolio allocation, risk
measurement, trading and rebalancing, to
mention a few, have a major presence in the
financial industry. Their proliferation has been
facilitated by the decreased cost of comput-
ing power and the increased availability of
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sophisticated and specialized software that al-
lows investors to incorporate their forecasts
about the future direction of markets into disci-
plined analytical frameworks.

As the use of quantitative techniques has be-
come widespread in the investment industry,
the consideration of estimation risk and model
risk has grown in importance. For example,
Bayesian techniques and robust estimation of
model parameters are now common in finan-
cial applications. Most recently, practitioners
have begun incorporating the uncertainty in-
troduced by estimation errors directly into the
portfolio optimization process by mathemati-
cal techniques referred to as robust optimiza-
tion. Contrary to the traditional approach, in
which inputs to the portfolio allocation frame-
work are treated as deterministic, robust port-
folio optimization incorporates the notion that
inputs have been estimated with errors. In this
case, the inputs are not the traditional forecasts,
such as expected returns and asset covariances,
but rather uncertainty sets containing these point
estimates (e.g., confidence intervals around the
forecasts).

In this entry, we survey the area of robust
optimization and its applications in portfolio
management. We begin by explaining the main
ideas behind the robust optimization approach,
and discuss the relationship between robust
optimization and other robust methods for
portfolio management. Next, we review some
important developments in robust optimiza-
tion applications, and conclude with a dis-
cussion of future directions in robust portfolio
management.

THE ROBUST
OPTIMIZATION APPROACH
Introduced in the operations research litera-
ture by Ben-Tal and Nemirovski (1998) and El
Ghaoui and Lebret (1997), modern robust opti-
mization allows a portfolio manager to solve a
robust formulation of the portfolio optimization
problem with one single call to an optimization

solver in about the same time as the classical
portfolio optimization problem. The resulting
optimal portfolio allocations tend to be more
stable and less sensitive to changes in model
parameters.

Consider the classical mean-variance portfo-
lio allocation problem:

max
w

μ′w − λw′�w

s.t. w′ι = 1

where μ is the vector of expected returns
(alphas) for N assets in the investment universe,
� is the asset-asset covariance matrix, w is the
N-dimensional vector of portfolio weights, λ is
the risk aversion coefficient, and ι is a vector of
ones. This optimization problem simply states
that the optimal portfolio weights should be
chosen so that the expected portfolio return less
the portfolio risk (scaled by the risk aversion
coefficient) is as large as possible. The equal-
ity constraint ensures that the portfolio weights
add up to one.

As demonstrated, for instance, by Black and
Litterman (1992), a small change in the expected
asset returns can result in large changes in the
optimal portfolio allocation. In other words, the
classical portfolio optimization problem is not
robust with respect to small changes in its in-
puts. Since in practice expected returns and as-
set covariances cannot be measured exactly but
have to be estimated—sometimes with large
errors—it is important in applications that un-
certainty resulting from estimation errors be
taken into account.

One way to make the optimization problem
robust with respect to estimation errors is to
require that the optimal solution remains opti-
mal for all values of the expected returns that
are “close” to the estimates of expected returns
μ̂. We can express this requirement in the opti-
mization problem as follows: Instead of using
the estimate μ̂ of μ, we consider a set of vectors
that are close to the estimate μ̂, and solve the
optimization problem for all vectors in this set.
The idea here is that the expected returns may
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have been estimated with some error, but that
the estimates are not too far away from the true
expected returns. Mathematically, this idea is
incorporated in the definition of an uncertainty
set for μ̂,

Uδ(μ̂) = {
μ | |μi − μ̂i | ≤ δi , i = 1, . . . , N

}

(1)

In words, the set Uδ(μ̂) contains all vectors
μ = (μ1, . . . , μN) such that each component μi

is in the interval [μ̂i − δi , μ̂i + δi ], and is often
referred to as a “box” uncertainty set. From
a statistical point of view, these intervals can
be chosen to be certain confidence intervals
around each point estimate μ̂i .

We solve a modification of the original op-
timization problem such that even if μ takes
its worst possible value within the uncertainty
set, the allocation remains optimal. Namely,
we solve the max-min portfolio optimization
problem

max
w

{
min

μ∈Uδ (μ̂)

{
μ′w

} − λw′�w
}

s.t. w′ι = 1

At first sight, this optimization problem looks
complicated, as we have to minimize the
objective function with respect to μ over the
specified uncertainty set and, simultaneously,
maximize the objective function with respect to
w to find the optimal allocation. However, as we
will see shortly, this problem can be reformu-
lated into an equivalent maximization problem
with respect to only w. First, let us understand
what this model implies from an intuitive
perspective.

Observe that this model incorporates the no-
tion of aversion to estimation error in the fol-
lowing sense. When the interval [μ̂i − δi , μ̂i +
δi ] for the expected return of the ith asset is
large, meaning that the expected return has
been estimated with large estimation error, then
the minimization problem over μ is less con-
strained. Consequently, the minimum will be
smaller than it would be in situations when
the interval for μ̂i is smaller. Obviously, when

the interval is small enough, the minimization
problem will be so tightly constrained that it
would deliver a solution that is close to the
optimal solution of the classical portfolio op-
timization problem in which estimation errors
are ignored. In other words, it is the size of the
intervals (in general, the size of the uncertainty
set) that controls the aversion to the uncertainty
that comes from estimation errors.

The robust version of the classical portfolio
optimization problem is obtained by solving the
max-min problem above, and for this model is
easy to derive without any involved mathemat-
ics. Namely, it is

max
w

μ̂′w − δ′ |w| − λw′�w

s.t. w′ι = 1

where |w| denotes the absolute value of the en-
tries of the vector of weights w. To gain some
intuition, notice that if the weight of asset i
in the portfolio is negative, the worst-case ex-
pected return for asset i is μ̂i + δi (we lose the
largest amount possible). If the weight of asset
i in the portfolio is positive, then the worst-case
expected return for asset i is μ̂i − δi (we gain
the smallest amount possible). Observe that
μ̂iwi − δi |wi | equals (μ̂i − δi ) wi if the weight
wi is positive and (μ̂i + δi ) wi if the weight
wi is negative. Hence, the mathematical expres-
sion in the objective agrees with our intuition:
It minimizes the worst-case expected portfo-
lio return. In this robust version of the mean-
variance formulation, assets whose mean return
estimates are less accurate (have a larger estima-
tion error δi ) are therefore penalized in the ob-
jective function, and will tend to have a smaller
weight in the optimal portfolio allocation.

This optimization problem has the same com-
putational complexity as the nonrobust mean-
variance formulation—namely, it can be stated
as a quadratic optimization problem. The lat-
ter can be achieved by using a standard trick
that allows us to get rid of the absolute val-
ues for the weights. The idea is to introduce an
N-dimensional vector of additional variables ψ

to replace the absolute values, and to write an
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equivalent version of the optimization problem,

max
w,ψ

μ̂′w − δ′ψ − λw′�w

s.t. w′ι = 1
ψi ≥ wi ; ψi ≥ −wi , i = 1, . . . , N

Therefore, incorporating considerations about
the uncertainty in the estimates of the expected
returns in this example has virtually no compu-
tational cost.

We can view the effect of this particular “ro-
bustification” of the mean-variance portfolio
optimization formulation in two different ways.
On the one hand, we see that the values of the
expected returns for the different assets have
been adjusted downwards in the objective func-
tion of the optimization problem. That is, the
robust optimization model “shrinks” the ex-
pected return of assets with large estimation
error. On the other hand, we can interpret the
additional term in the objective function as a
“risk-like” term that represents penalty for es-
timation error. The size of the penalty is deter-
mined by the investor’s aversion to estimation
risk, and is reflected in the magnitude of the
deltas.

More complicated specifications for uncer-
tainty sets have more involved mathematical
representations, but can still be selected so that
they preserve an easy computational structure
for the robust optimization problem. For exam-
ple, a frequently used uncertainty set is

Uδ(μ̂) = {
μ| (μ − μ̂)′ �−1

μ (μ − μ̂) ≤ δ2} (2)

where �μ is the covariance matrix of estima-
tion errors for the vector of expected returns
μ. This uncertainty set represents the require-
ment that the scaled sum of squares (scaled
by the inverse of the covariance matrix of es-
timation errors) between all elements in the set
and the point estimates μ̂1, μ̂2, . . . , μ̂N can be
no larger than δ2. We note that this uncertainty
set cannot be interpreted as individual confi-
dence intervals around each point estimate. In-
stead, those familiar with statistics will notice
that this uncertainty set captures the idea of a
joint confidence region used, for example, in

Wald tests. In practice, the covariance matrix of
estimation errors is often assumed to be diag-
onal. For this particular case, the set contains
all vectors of expected returns that are within a
certain number of standard deviations from the
point estimate of the vector of expected returns,
and the resulting robust portfolio optimization
problem would protect the investor if the vec-
tor of expected returns is indeed within that
range.

Selecting Uncertainty Sets from
Statistical Procedures
How do we select uncertainty sets for a particu-
lar application? In practice, their shape and size
are usually based on statistical estimates and
probabilistic guarantees. For example, uncer-
tainty set (1) defines an N-dimensional box: It
considers possible deviations of the N uncertain
parameters from their expected values, and the
resulting robust portfolio optimization problem
protects against the worst possible realization
of each individual parameter separately. Uncer-
tainty set (2) defines an N-dimensional ellipsoid
(in two dimensions, an ellipsoid is an ellipse),
and is not as conservative as (1). The resulting
robust portfolio optimization offers protection
from the worst possible joint deviation of the
actual expected returns from the forecasts, by
considering the correlations between the es-
timation errors of the uncertain parameters
through the covariance matrix �μ.

The calibration of the parameters that enter
the definition of uncertainty sets is very impor-
tant. For example, the intervals for μ̂ that define
the uncertainty set (1) above can be matched to
95% or 99% confidence intervals for the esti-
mates of the expected returns. The value of the
parameter δ in the uncertainty set (2) can be
related to probabilistic guarantees, as we will
explain later.

The covariance matrix �μ of the errors in
the estimated expected asset returns in uncer-
tainty set (2) can be obtained using several
different techniques. However, its estimation
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can be problematic because of the difficulty in
separating the estimation error in expected re-
turns from the inherent variability in actual real-
ized returns (Lee, Stefek, and Zhelenyak, 2006).
Specifically, if a portfolio manager forecasts a
5% active return over the next time period, but
achieves 1%, he cannot argue that there was a
4% error in his expected return, so evaluating
�μ from historical data can be tricky.

In theory, if returns in a given sample of size
T are assumed to come from a normal distri-
bution, then �μ equals (1/T) · �, where � is
the covariance matrix of asset returns as before.
However, experience seems to suggest that this
may not be the best method in practice. One is-
sue is that this approach applies only in a world
in which returns are stationary. Another impor-
tant issue is whether the estimate of the asset
covariance matrix � itself is reliable if it is es-
timated from a sample of historical data. It is
well-known that computing a meaningful asset
return covariance matrix requires a large num-
ber of observations—many more observations
than the number of assets in the portfolio—and
even then the sample covariance matrix may
contain large estimation errors that produce
poor results in the mean-variance optimization.
A fix when sufficient data are not available is to
compute the estimation errors in expected re-
turns at a factor (e.g., industry, country, sector)
level, and use their variances and covariances
in the estimation error covariance matrix for the
individual asset returns in a manner similar to
standard factor models.

Several approximate methods for estimating
�μ have also been found to work well in prac-
tice (Stubbs and Vance, 2005). For example, it
has been observed that simpler estimation ap-
proaches, such as computing the diagonal ma-
trix containing the variances of the estimates (as
opposed to the complete error covariance ma-
trix), often provide most of the benefit in robust
portfolio optimization. In addition, standard
approaches for estimating expected returns,
such as Bayesian statistics and regression-based
methods, generate estimates for the estimation

error covariance matrix in the process of
generating the estimates themselves.

Uncertainty sets (1) and (2) are both sym-
metric, that is, the sets are symmetric around
the vector of uncertain parameters μ̂. One can
also consider asymmetric uncertainty sets that
better reflect information about the probability
distributions of the uncertain parameters when
the probability distributions are skewed (see
Natarajan, Pachamanova, and Sim, 2008). Re-
cently, there has been also a substantial interest
in developing “structured” uncertainty sets,
that is, uncertainty sets that are constructed for a
specific purpose. Frequently, structured uncer-
tainty sets based on simple intersections of ele-
mentary uncertainty sets are used to minimize
the “conservatism” in traditional ellipsoidal or
“box” uncertainty sets. We will discuss such
uncertainty sets in more detail later in this entry.

Clarifying a Misconception about
Robust Optimization
Among practitioners, the notion of robust
portfolio optimization is often equated with
the robust mean-variance model we just dis-
cussed, with uncertainty set (1) or (2) for the
expected asset returns. While robust optimiza-
tion applications frequently involve one form
or another of this model, the actual scope of
robust optimization can be much broader. We
note that the term “robust optimization” refers
to the technique of incorporating information
about uncertainty sets for the parameters in the
optimization model, and not to the specific defi-
nitions of uncertainty sets or the choice of which
parameters to model as uncertain. For example,
we can use the robust optimization method-
ology to incorporate considerations for uncer-
tainty in the estimate of the covariance matrix
in addition to the uncertainty in expected
returns, and obtain a different robust portfolio
allocation formulation.

Robust optimization can be applied also
to portfolio allocation models that are differ-
ent from the mean-variance framework, e.g.,



142 Optimization Tools

Sharpe ratio and value-at-risk optimization
(see, for example, Goldfarb and Iyengar, 2003
and Natarajan, Pachamanova, and Sim, 2008).
There are numerous useful and reasonable ro-
bust formulations, and a complete review is
beyond the scope of this entry. We refer inter-
ested readers to Fabozzi et al. (2007) for further
details.

THE RELATIONSHIP TO
BAYESIAN METHODS AND
ECONOMIC THEORY
Critics have argued that robust optimization is
not really different from shrinkage estimators
that combine the minimum variance portfolio
with a speculative investment portfolio. Indeed,
when using a particular uncertainty set for the
expected returns (assuming all other parame-
ters in the mean-variance problem are certain),
it can be shown that the optimal mean-variance
portfolio weights using robust optimization are
a linear combination of the weights of the mini-
mum variance portfolio (which is independent
of investor preferences or expected returns) and
a mean-variance efficient portfolio. These port-
folio weights can also be obtained by solving
a standard mean-variance problem with
expected return estimates derived from a stan-
dard shrinkage estimator with specific shrink-
age parameters (see, for example, Garlappi,
Uppal, and Wang, 2007 and Scherer, 2005). Ro-
bust optimization thus appears to offer a less
transparent way to express investor preferences
and tolerance to uncertainty than other ap-
proaches, such as Bayesian methods, in which the
shrinkage parameters can be defined explicitly.

In general, however, robust optimization is
not necessarily equivalent to shrinkage estima-
tion. For instance, differences are apparent in
the presence of additional portfolio constraints.
Furthermore, as we mentioned earlier, the ro-
bust optimization methodology can be used
to account for uncertainty in parameters other
than expected asset returns (covariances of asset

returns, for example), making its relationship
with Bayesian estimation even less obvious.

The concept of robust optimization has been
criticized also from the point of view of clas-
sical economic theory (see, for example, Sims,
2001). From a behavioral and decision-making
point of view, few individuals have max-min
preferences. Indeed, max-min preferences de-
scribe the behavior of decision makers who face
great ambiguity and thus make choices con-
sistent with the belief that the worst possible
outcomes are highly likely. This kind of con-
servative behavior is not typical of the average
investor. The problem of overconservativeness
in applying robust optimization, however, can
be controlled by modifying the specification of
uncertainty sets for the parameters, as we will
explain in the following section.

USING ROBUST PORTFOLIO
OPTIMIZATION IN
PRACTICE
One of the main problems in assessing the prac-
tical benefits of the robust optimization ap-
proach is that its performance is dependent on
the choice (or calibration) of the model param-
eters, such as the coefficient of aversion to esti-
mation error δ. In a sense, however, this issue is
no different from the calibration of standard pa-
rameters in the classical portfolio optimization
framework, such as the length of the estima-
tion period to use for forecast generation and
the choice of the risk aversion coefficient. These
and other parameters need to be determined
empirically or subjectively.

Note also that other robust modeling devices
such as Bayesian estimators and the Black-
Litterman model (for an overview, see Fabozzi,
Focardi, and Kolm, 2006) have similar issues. In
particular, for shrinkage estimators, the portfo-
lio manager needs to determine which shrink-
age target to use and the size of the shrinkage
parameter. In the Black-Litterman model, he
needs to provide his confidence in equilibrium
as well as his confidence in his views.
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The values of the robust formulation parame-
ters can sometimes be matched to probabilistic
guarantees. For example, if the estimates of the
expected asset returns are assumed to be nor-
mally distributed, then there is an ω% chance
that the estimates will fall in the ellipsoidal set
(2) around the manager’s estimates μ̂,

Uδ(μ̂) = {
μ| (μ − μ̂)′ �−1

μ (μ − μ̂) ≤ δ2}

if δ2 is assigned the value of the ωth percentile of
a χ2 distribution with degrees of freedom equal
to the number of assets in the portfolio. As an
example, suppose that there are 15 assets in the
asset universe and that all returns are normally
distributed. If we choose δ2 = 25, then 95% of
all expected returns will be in the set Uδ(μ̂).

More generally, if the expected returns can
belong to any possible probability distribution,
then assigning

δ =
√

1 − ω

ω

guarantees that the estimates will fall in the un-
certainty set Uδ(μ̂) with probability at least ω%
(El Ghaoui, Oks, and Oustry, 2003).

It has been observed that in practice the stan-
dard robust mean-variance formulation with
the above uncertainty set specification for esti-
mated expected returns may result in portfolio
allocations that are too pessimistic. Recall that
the traditional robust counterpart tries to find
the optimal solution so that constraints contain-
ing uncertain coefficients are satisfied for the
worst-case realizations of the uncertain param-
eters. Naturally, the larger the uncertainty set,
the greater the chance that the optimal portfo-
lio allocation will be conservative. Therefore,
especially in situations in which the worst-case
expected returns can be far away from the es-
timated expected returns, some portfolio per-
formance may be sacrificed. Of course, we can
always make a formulation less pessimistic by
considering a smaller uncertainty set. For the
uncertainty set above, we can achieve this by
decreasing the parameter δ. However, there is a
recent trend among practitioners to apply more

structured restrictions. We provide an example
of a structured uncertainty set next.

When we formulated the robust portfolio op-
timization problem earlier in this entry, we
made the assumption that all of the actual re-
alizations of expected returns could be worse
than their expected values. Thus, the net ad-
justment in the expected portfolio return will
always be downwards. While this leads to a
more robust problem than the original one, in
many instances it may be too pessimistic to as-
sume that all estimation errors go against us.
Instead, it may be more reasonable to believe
that at least some of the true realizations will
be above their expected values. For example,
we may make the assumption that there are
approximately as many realizations above the
estimated values as there are realizations be-
low the estimated values. This condition can
be incorporated in the portfolio optimization
problem by adding an additional restriction to
the uncertainty set (2). Ceria and Stubbs (2006)
refer to this adjustment as a “zero net alpha
adjustment.” Instead of adjusting the alphas of
the estimates, we can perform this kind of ad-
justment also on their standard deviations or
variances. It can be shown that the effect of the
zero net adjustment is equivalent to modifying
the covariance matrix �μ of estimation errors
for the expected returns. Tests with real data in-
dicate that robust mean-variance optimization
with this kind of adjustment for expected return
estimates outperforms classical mean-variance
optimization 70% to 80% of the time (Ceria and
Stubbs, 2006).

Other structured uncertainty sets include
“tiered” uncertainty sets in which some of the
uncertain parameters are modeled as “well-
behaved,” while others are modeled as “mis-
behaving.” The modeler can require protection
against a prespecified number of parameters
that he believes will “misbehave,” that is,
which will deviate significantly from their
expected values (see, for example, Bienstock,
2006). In the context of portfolio optimization,
we would specify “misbehaving” parameters
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as those realizations of expected asset returns
that are likely to be lower than their estimates.

Effect of Robust Portfolio
Optimization Formulations on
Performance
As we mentioned earlier, some tests with sim-
ulated and real market data indicate that ro-
bust optimization, when inaccuracy is assumed
in the expected return estimates, outperforms
classical mean-variance optimization in terms
of total excess return a large percentage (70%
to 80%) of the time (Ceria and Stubbs, 2006).
Other tests have not been as conclusive (Lee,
Stefek, and Zhelenyak, 2006). The factor that
accounts for much of the difference is how the
uncertainty in parameters is modeled. There-
fore, finding a suitable degree of robustness
and appropriate definitions of uncertainty sets
can have a significant impact on portfolio
performance.

Independent tests by practitioners and aca-
demics using both simulated and market data
appear to confirm that robust optimization gen-
erally results in more stable portfolio weights,
that is, that it eliminates the extreme cor-
ner solutions resulting from traditional mean-
variance optimization. Robust mean-variance
optimization also appears to improve worst-
case portfolio performance, and results in
smoother and more consistent portfolio returns.
Finally, by preventing large swings in positions,
robust optimization frequently makes better
use of the turnover budget and risk constraints.

Robust optimization, however, is not a
panacea. By using robust portfolio optimiza-
tion, investors are likely to trade off the opti-
mality of their portfolio allocation in cases in
which nature behaves as they predicted for pro-
tection against the risk of inaccurate estimation.
Therefore, investors using the technique should
not expect to do better than classical portfolio
optimization when estimation errors have little
impact, or when typical scenarios occur. They
should, however, expect insurance in scenarios

in which their estimates deviate from the actual
realized values by up to the amount they have
prespecified in the modeling process.

PRACTICAL
CONSIDERATIONS FOR
ROBUST PORTFOLIO
ALLOCATION
Which type of robust models is best for mod-
eling financial portfolios? The short answer is:
It depends. Among others, it depends on the
size of the portfolio, the type of assets and their
distributional characteristics, the portfolio
strategies and trading styles involved, and
the existing infrastructure. Sometimes it makes
sense to consider a combination of several tech-
niques, such as a blend of Bayesian estima-
tion and robust portfolio optimization. This is
an empirical question—indeed, the only way
to find out which strategy performs best is
through thorough research and testing. A sim-
ple step-by-step checklist for robust quantita-
tive portfolio management could include:

1. Risk forecasting: Develop an accurate risk
model

2. Return forecasting: Construct robust ex-
pected return estimates

3. Classical portfolio optimization: Start with a
simple framework

4. Model risk mitigation:
a. Minimize estimation risk through the use

of robust estimators
b. Improve the stability of the optimization

framework through robust optimization
5. Extensions

Needless to say, by no means do we claim that
this list is complete or that it has to be followed
religiously—it is simply provided as a starting
point for the quantitative portfolio manager.

In general, the most difficult item in this list
is the calculation of robust expected return esti-
mates. Developing profitable trading strategies
(“α generation”) is notoriously hard, but not
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impossible. It is important to remember that
modern portfolio optimization techniques and
fancy mathematics are not going to help at all if
the underlying trading strategies are poor.

Implicit in this list is that for each step one
needs to perform thorough testing in order to
understand the effect of changes and new addi-
tions to the model. It is not unusual that quan-
titative analysts and portfolio managers will
have to revisit previous steps as part of the re-
search and development process. For example,
it is important to understand the interplay be-
tween forecast generation and the reliability of
optimized portfolio weights. Introducing a ro-
bust optimizer may lead to more reliable, and
often more stable, portfolio weights. However,
how to make the optimization framework more
robust depends on how expected return and
risk forecasts are produced. Therefore, some-
times one has to refine or modify basic forecast
generation. Identifying the individual and the
combined contribution of different techniques
is crucial in the development of a successful
quantitative framework.

Minimizing estimation risk and improving
the reliability of the optimization framework
can be done in either order, or sometimes at
the same time. The goal of both approaches
is of course to improve the overall reliabil-
ity and performance of the portfolio alloca-
tion framework. Some important questions to
consider here are: When/why does the frame-
work perform well (poorly)? How sensitive is
it to changes in inputs? How does it behave
when constraints change? Are portfolio weights
intuitive—do they make sense? How high is the
turnover of the portfolio over time?

Starting from the simple framework of clas-
sical portfolio optimization, many extensions
are possible. Typical examples include the in-
troduction of transaction costs models, more
complex constraints (e.g., integer constraints
such as round lotting or cardinality constraints),
different risk measures (e.g., downside risk
measures, higher moments), and dynamic and
stochastic programming for incorporating in-

tertemporal dependencies. Often, these are
problem specific and have to be dealt with on a
case-by-case basis.

FUTURE DIRECTIONS
Advances in the mathematical and physical
sciences have always had a major impact on
finance. In particular, probability theory, statis-
tics, econometrics, and operations research
have provided the necessary tools and disci-
pline for the development of modern financial
economics and large-scale portfolio manage-
ment. The substantial advances in the areas
of robust estimation and robust optimization
during the 1990s have proven to be of signifi-
cant importance for the practical applicability
and reliability of portfolio management and
optimization.

From a theoretical perspective, the area of ro-
bust optimization is quite mature. By contrast,
there are many unanswered questions in the
practice of robust portfolio optimization. There
is a need for more empirical research in or-
der to provide better guidelines for applying
robust optimization in a way that guarantees
superior portfolio performance. In particular,
practitioners need to understand better (1) the
implications of using different types of uncer-
tainty set, (2) the interaction between different
forecast generation methods (estimation tech-
niques) and robust optimization, (3) how to
calibrate model parameters in the optimization
model, and (4) how to deal with the overcon-
servatism inherent in many robust models.

The robust optimization framework offers
great flexibility and many new interesting pos-
sibilities in portfolio management. For instance,
robust portfolio optimization can exploit the
notion of statistically equivalent portfolios.
Specifically, with robust optimization, a man-
ager can find the best portfolio that (1) mini-
mizes trading costs with respect to the current
holdings, and (2) has an expected portfolio re-
turn and variance that are statistically equiv-
alent to those of the classical mean-variance
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portfolio. Common portfolio constraints, such
as transaction cost considerations and tax impli-
cations, can be handled efficiently in the robust
optimization framework.

Robust optimization has also shown promise
as a computationally attractive alternative to
classical optimization methods when it comes
to multiperiod portfolio management. There
are numerous benefits to taking a long-term
view of investment management. Treating port-
folio allocation as a multiperiod problem pro-
vides a framework for robust overall portfolio
management that takes into consideration the
effects of rebalancing, transaction costs, future
liabilities, and taxes.

By incorporating multiperiod views on asset
behavior in rebalancing models, portfolio man-
agers may be able to reduce their transaction
costs, as the portfolio will not be rebalanced
unnecessarily often. As a simple example, if a
portfolio manager expects asset returns to dip
at the next time period, but then recover, he may
choose to hold on to the assets in his portfolio
in order to minimize transaction costs. How-
ever, if the net gain from realizing the tax loss
is higher than the expense of the transactions,
he may choose to trade for short term benefit
despite believing that the portfolio value will
recover after two trading periods. These trade-
offs are complex to evaluate and model, and tra-
ditional optimization techniques for multistage
optimization, such as dynamic programming
(see, for example, Bertsekas, 1995a) and stochas-
tic programming (see, for example, Wallace and
Ziemba, 2005), have not been very successful in
this context as they result in computationally
intractable problems due to the “curse of di-
mensionality.” However, if future asset returns
are treated as uncertain parameters, and the un-
certainty in their estimates is modeled through
appropriately chosen uncertainty sets, the re-
sulting portfolio optimization formulations are
computationally tractable.

We emphasize that while the focus of this
entry has been on the application of robust
optimization to portfolio construction, robust

optimization is a powerful and general tool
with financial applications that extend well
beyond that of portfolio allocation. The robust
optimization technique appears promising in
enhancing existing models for optimal trading,
the computation of hedge ratios, the estimation
of econometric models, and quantitative model
selection—just to mention a few. Certainly, the
future may bring many more.

KEY POINTS
� As the use of quantitative techniques has be-

come widespread in the investment indus-
try, the consideration of estimation risk and
model risk has grown in importance.

� In contrast to the traditional approach in
which inputs to the portfolio allocation
framework are treated as deterministic, ro-
bust portfolio optimization incorporates es-
timation errors in input parameters directly
into the optimization process.

� In robust portfolio optimization, the inputs
are not the traditional forecasts, such as
expected returns and risk, but rather un-
certainty sets containing these point esti-
mates (e.g., confidence intervals around the
forecasts).

� The robust optimization is a general tech-
nique that leads to a more reliable portfolio
allocation framework and offers greater flex-
ibility and many new interesting possibilities
for the portfolio manager.

� One of the main problems in assessing the
practical benefits of the robust optimization
approach is that its performance is dependent
on the choice (or calibration) of the model
parameters, such as the coefficient of aversion
to estimation error.

� Which type of robust model is best for
modeling financial portfolios depends on,
among other things, the size of the port-
folio, the type of assets and their distribu-
tional characteristics, the portfolio strategies
and trading styles involved, and the existing
infrastructure.
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Abstract: Probability theory is the mathematical approach to formalizing the uncertainty of events.
Even though a decision maker may not know which one of the set of possible events may finally
occur, with probability theory, a decision maker has the means of providing each event with a
certain probability. Furthermore, it provides the decision maker with the axioms to compute the
probability of a composed event in a unique way. The rather formal environment of probability
theory translates in a reasonable manner to the problems related to risk and uncertainty in finance
such as, for example, the future price of a financial asset. Today, investors may be aware of the
price of a certain asset, but they cannot say for sure what value it might have tomorrow. To make a
prudent decision, investors need to assess the possible scenarios for tomorrow’s price and assign to
each scenario a probability of occurrence. Only then can investors reasonably determine whether
the financial asset will satisfy an investment objective.

Probability theory serves as the quantification
of risk in finance. To estimate probabilistic mod-
els, we have to gather and process empirical

data. In this context, we need the tools provided
by statistics. In this entry, we introduce the gen-
eral concepts of probability theory.
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HISTORICAL DEVELOPMENT
OF ALTERNATIVE
APPROACHES TO
PROBABILITY
Before we introduce the formal definitions, we
provide a brief outline of the historical develop-
ment of probability theory and the alternative
approaches since probability is, by no means,
unique in its interpretation. We will describe
the two most common approaches: relative fre-
quencies and axiomatic system.

Probability as Relative Frequencies
The relative frequencies approach to probabil-
ity was conceived in 1928 by Richard von Mises
(Mises, 1928) and as the name suggests formu-
lates probability as the relative frequencies de-
noted by f (xi). This initial idea was extended
by Hans Reichenbach (1935). Given large sam-
ples, it was understood that f (xi) was equal to
the true probability of value xi. For example, if
f (xi) is small, then the true probability of value
xi occurring should be small, in general. How-
ever, f (xi) itself is subject to uncertainty. Thus,
the relative frequencies might deviate from the
corresponding probabilities. For example, if the
sample is not large enough, whatever large may
be, then it is likely that we obtain a rare set of
observations and draw the wrong conclusion
with respect to the underlying probabilities.

This point can be illustrated with a simple ex-
ample. Consider throwing a six-sided dice 12
times. Intuitively, one would expect the num-
bers 1 through 6 to occur twice each, since this
would correspond to the theoretical probabili-
ties of 1/6 for each number. But since so many
different outcomes of this experiment are very
likely possible, one might observe relative fre-
quencies of these numbers different from 1/6.
So, based on the relative frequencies, one might
draw the wrong conclusion with respect to the
true underlying probabilities of the according
values. However, if we increase the repetitions
from 12 to 1,000, for example, with a high de-

gree of certainty, the relative frequency of each
number will be pretty close to 1/6.

The reasoning of von Mises and Reichen-
bach was that since extreme observations
are unlikely given a reasonable sample size,
the relative frequencies will portray the true
probabilities with a high degree of accuracy.
In other words, probability statements based
on relative frequencies were justifiable since,
in practice, highly unlikely events could be
ruled out.

In the context of our dice example, they
would consider unlikely that certain numbers
appeared significantly more often than others
if the series of repetitions is, say, 1,000. But still,
who could guarantee that we do not acciden-
tally end up throwing 300 1s, 300 2s, 400 3s, and
nothing else?

The approach of von Mises becomes rel-
evant, again, in the context of estimating
and hypothesis testing. For now, however, we
will not pay any further attention to it but
turn to the alternative approach to probability
theory.

Axiomatic System
Introduced by Andrei N. Kolmogorov in 1933,
the axiomatic system abstracted probability
from relative frequencies as obtained from ob-
servations and instead treated probability as
purely mathematical. The variables were no
longer understood as the quantities that could
be observed but rather as some theoretical en-
tities “behind the scenes.” Strict rules were set
up that controlled the behavior of the variables
with respect to their likelihood of assuming val-
ues from a predetermined set. So, for example,
consider the price of a stock, say General Elec-
tric (GE). GE’s stock price as a variable is not
what you can observe but a theoretical quan-
tity obeying a particular system of probabilities.
What you observe is merely realizations of the
stock price with no implication on the true prob-
ability of the values since the latter is given and
does not change from sample to sample. The
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relative frequencies, however, are subject to
change depending on the sample.

We illustrate the need for an axiomatic system
due to the dependence of relative frequencies
on samples using our dice example. Consider
the chance of occurrence of the number 1. Based
on intuition, since there are six different “num-
bers of dots” on a dice, the number 1 should
have a chance of 1/6, right? Suppose we ob-
tain the information based on two samples of
12 repetitions each, that is, n1 = n2 = 12. In
the following table, we report the absolute fre-
quencies, ai, representing how many times the
individual numbers of dots 1 through 6 were
observed.

Absolute Frequencies ai

Number of Dots Sample 1 Sample 2

1 4 1
2 1 1
3 3 1
4 0 1
5 1 1
6 3 7

Total 12 12

That is, in sample 1, 1 dot was observed 4 times
while, in sample 2, 1 dot was observed only
once, and so on.

From the above observations, we obtain the
following relative frequencies

Relative Frequencies f (xi)

Number of Dots Sample 1 Sample 2

1 0.3333 0.0833
2 0.0833 0.0833
3 0.2500 0.0833
4 0.0000 0.0833
5 0.0833 0.0833
6 0.2500 0.5833

Total 1.0000 1.0000

That is, in sample 1, 1 dot was observed
33.33% of the time while in sample 2, 1 dot
was observed 8.33% of the time, and so on. We
see that both samples lead to completely differ-
ent results about the relative frequencies for the

number of dots. But, as we will see, the theoret-
ical probability is 1/6 = 0.1667, for each value 1
through 6. So, returning to our original question
of the chance of occurrence of 1 dot, the answer
is still 1/6 = 0.1667.

In finance, the problem arising with this con-
cept of probability is that, despite the knowl-
edge of the axiomatic system, we do not know
for sure what the theoretical probability is for
each value. We can only obtain a certain de-
gree of certainty as to what it approximately
might be. This insight must be gained from
estimation based on samples and, thus, from
the related relative frequencies. So, it might ap-
pear reasonable to use as many observations as
possible. However, even if we try to counteract
the sample-dependence of relative frequencies
by using a large number of observations, there
might be a change in the underlying probabili-
ties exerting additional influence on the sample
outcome. For example, during the period of a
bull market, the probabilities associated with an
upward movement of some stock price might
be higher than under a bear market scenario.

Despite this shortcoming, the concept of prob-
ability as an abstract quantity as formulated by
Kolmogorov (1933) has become the standard in
probability theory.

SET OPERATIONS AND
PRELIMINARIES
Before proceeding to the formal definition of
probability, randomness, and random variables
we need to introduce some terminology.

Set Operations
A set is a combination of elements. Usually, we
denote a set by some capital (uppercase) letter,
for example S, while the elements are denoted
by lowercase letters such as a, b, c, . . . or a1,
a2, . . . . To indicate that a set S consists of exactly
the elements a, b, c, we write S = {a,b,c}. If we
want to say that element a belongs to S, the no-
tation used is that a ∈ S where ∈ means “belongs



154 Probability Theory

to.” If, instead, a does not belong to S, then the
notation used is a �∈ S where �∈ means “does not
belong to.”

A type of set such as S = {a,b,c} is said to
be countable since we can actually count the in-
dividual elements a, b, and c. A set might also
consist of all real numbers inside of and includ-
ing some bounds, say a and b. Then, the set is
equal to the interval from a to b, which would
be expressed in mathematical notation as S =
[a,b]. If either one bound or both do not belong
to the set, then this would be written as either
S = (a,b], S = [a,b), or S = (a,b), respectively,
where the parentheses denote that the value is
excluded. An interval is an uncountable set since,
in contrast to a countable set S = {a,b,c}, we can-
not count the elements of an interval.1

We now present the operators used in the con-
text of sets. The first is equality denoted by = and
intuitively stating that two sets are equal, that
is, S1 = S2, if they consist of the same elements.
If a set S consists of no elements, it is referred
to as an empty set and is denoted by S = Ø. If
the elements of S1 are all contained in S2, the
notation used is S1 ⊂ S2 or S1 ⊆ S2. In the first
case, S2 also contains additional elements not
in S1 while, in the second case, the sets might
also be equal. For example, let S1 = {a,b} and
S2 = {a,b,c}, then S1 ⊂ S2. The operator ⊆ would
indicate that S2 consists of, at least, a and b. Or,
let M1 = [0,1] and M2 = [0.5,1], then M2 ⊂ M1.

If we want to join a couple of sets, we use
the union operator denoted by ∪. For example,
let S1 = {a,b} and S2 = {b,c,d}, then the union
would be S1 ∪ S2 = {a,b,c,d}. Or, let M1 = [0,1]
and M2 = [0.5,1], then M2 ∪ M1 = [0,1] = M1.2

If we join n sets S1, S2, . . . , Sn with n ≥ 2, we
denote the union by ∪n

i=1Si

The opposite operator to the union is the dif-
ference denoted by the “\” symbol. If we take
the difference between set S1 and set S2, that is,
S1\S2, we discard from S1 all the elements that
are common to both S1 and set S2. For example,
let S1 = {a,b} and S2 = {b,c,d}, then S1\S2 = {a}.

To indicate that we want to single out ele-
ments that are contained in several sets simul-

taneously, then we use the intersection operator
∩. For example, with the previous sets, the in-
tersection would be S1 ∩ S2 = {b}. Or, let M1 =
[0,1] and M2 = [0.5,1], then M1 ∩ M2 = [0.5,1] =
M2. Instead of the ∩ symbol, one sometimes
simply writes S1S2 to indicate intersection.

If two sets contain no common elements (i.e.,
the intersection is the empty set), then the sets
are said to be pairwise disjoint. For example, the
sets S1 = {a,b} and S2 = {c,d} are pairwise dis-
joint since S1 ∩ S2 = Ø. Or, let M1 = [0,0.5) and
M2 = [0.5, 1], then M1 ∩ M2 = Ø. If we intersect
n sets S1, S2, . . . , Sn with n ≥ 2, we denote the
intersection by ∩n

i=1Si .
The complement to some set S is denoted by S.

It is defined as S ∩ S = Ø and S ∪ S = �. That
is, the complement S is the remainder of � that
is not contained in S.

Right-Continuous and
Non-decreasing Functions
Next we introduce two concepts of functions
that should be understood in order to appre-
ciate probability theory: right-continuous func-
tion and non-decreasing function.

A function f is right-continuous at x̃ if the limit
from the right of the function values coincides
with the actual value of f at x̃. Formally, that is
limX>X̃ f (x) = f (x̃). We illustrate this in Figure 1.
At the abscissae x1 and x2, the function f jumps
to f (x1) and f (x2) respectively.3 After each jump,
the function remains at the new level for some
time. Hence, approaching x1 from the right, that
is, for higher x-values, the function f approaches
f (x1) smoothly. This is not the case when ap-
proaching x1 from the left since f jumps at x1

and, hence, deviates from the left-hand limit.
The same reasoning applies to f at abscissa x2.
A function is said to be a right-continuous func-
tion if it is right-continuous at every value on
the x-axis.

A function f is said to be a non-decreasing func-
tion if it never assumes a value smaller than any
value to the left. We demonstrate this using Fig-
ure 2. We see that while, in the different sections
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Figure 1 Demonstration of Right-Continuity of Some Hypothetical Function f at Values x1 and x2

A, B, and C, f might grow at different rates, it
never decreases. Even for x-values in section B,
f has zero and thus a nonnegative slope.

Outcome, Space, and Events
Before we dive into the theory, we will use
examples that help illustrate the concept be-

x

f(x)

CBA

Figure 2 Hypothetical Non-decreasing Function f

hind the definitions that follow later in this
entry.

Let us first consider again the number of dots
of a dice. If we throw it once, we observe a
certain value, that is, a realization of the ab-
stract number of dots, say 4. This is one par-
ticular outcome of the random experiment. We
will denote the outcomes by ω and a particular
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outcome i will be denoted by ωi. We might
just as well have realized 2, for example, which
would represent another outcome. All feasible
outcomes, in this experiment, are given by

ω1 = 1 ω2 = 2 ω3 = 3 ω4 = 4 ω5 = 5 ω6 = 6

The set of all feasible outcomes is called space
and is denoted by �. In our example, � = {ω1,
ω2, ω3, ω4, ω5, ω6}.

Suppose that we are not interested in the exact
number of points but care about whether we
obtain an odd or an even number, instead. That
is, we want to know whether the outcome is
from A = {ω1, ω3, ω5}—that is, the set of all
odd numbers—or B = {ω2, ω4, ω6,}—the set of
all even numbers. The sets A and B are both
contained in �; that is, both sets are subsets of
�. Any subsets of � are called events. So, we
are interested in the events “odd” and “even”
number of dots. When individual outcomes are
treated as events, they are sometimes referred
to as elementary events or atoms.

All possible subsets of � are given by the so-
called power set 2� of �. A power set of � is a set
containing all possible subsets of � including
the empty set Ø and �, itself.4

For our dice example, the power set is given
in Table 1. With the aid of this power set, we
are able to describe all possible events such
as, for example, the number of dots less than
3 (i.e., {ω1,ω2}) or the number of dots either 1 or
greater than or equal to 4 (i.e., {ω1, ω4, ω5, ω6}).

The power set has an additional pleasant fea-
ture. It contains any union of arbitrarily many
events as well as any intersection of arbitrar-
ily many events. Because of this, we say that
2� is closed under countable unions and closed un-
der countable intersections. Unions are employed
to express that at least one of the events has to
occur. We use intersections when we want to
express that the events have to occur simulta-
neously. The power set also contains the com-
plements to all events.

As we will later see, all these properties of the
power set are features of a σ -algebra (in words:
sigma-algebra), often denoted by A.

Now consider an example where the space
� is no longer countable. Suppose that we are
analyzing the daily logarithmic returns for a
common stock or common stock index. The-
oretically, any real number is a feasible out-
come for a particular day’s return.5 So, events
are characterized by singular values as well as
closed or open intervals on the real line. For
example, we might be interested in the event
E that the S&P 500 stock index return is “at
least 1%.” Using the notation introduced ear-
lier, this would be expressed as the half-open
interval E = [0.01,∞).6 This event consists of
the uncountable union of all outcomes between
0.01 and ∞. Now, as the sets containing all fea-
sible events, we might take, again, the power
set of the real numbers, that is, 2� with � =
(−∞,∞) = R.7 But, for theoretical reasons

Table 1 The Power Set of the Example Number of Dots of a Dice

2� = {∅, {ω1}, {ω2}, {ω3}, {ω4}, {ω5}, {ω6}, {ω2, ω3}, {ω2, ω4}, {ω2, ω5}, {ω2, ω6}, . . .
{ω3, ω4}, {ω3, ω5}, {ω3, ω6}, {ω4, ω5}, {ω4, ω6}, {ω5, ω6}, {ω1, ω2, ω3},
{ω1, ω2, ω4}, {ω1, ω2, ω5}, {ω1, ω2, ω6}, {ω1, ω3, ω4}, {ω1, ω3, ω5}, {ω1, ω3, ω6},
{ω1, ω4, ω5}, {ω1, ω4, ω6}, {ω1, ω5, ω6}, {ω2, ω3, ω4}, {ω2, ω3, ω5}, {ω2, ω3, ω6}, . . .
{ω2, ω4, ω5}, {ω2, ω4, ω6}, {ω2, ω5, ω6}, {ω3, ω4, ω5}, {ω3, ω4, ω6}, {ω3, ω5, ω6},
{ω4, ω5, ω6}, {ω1, ω2, ω3, ω4}, {ω1, ω2, ω3, ω5}, {ω1, ω2, ω3, ω6}, {ω1, ω2, ω4, ω5},
{ω1, ω2, ω4, ω6}, {ω1, ω2, ω5, ω6}, {ω1, ω3, ω4, ω5}, {ω1, ω3, ω4, ω6},
{ω1, ω3, ω5, ω6}, {ω1, ω4, ω5, ω6}, {ω2, ω3, ω4, ω5}, {ω2, ω3, ω4, ω6},
{ω2, ω3, ω5, ω6}, {ω2, ω4, ω5, ω6}, {ω3, ω4, ω5, ω6}, {ω1, ω2, ω3, ω4, ω5},
{ω1, ω2, ω3, ω4, ω6}, {ω1, ω2, ω3, ω5, ω6}, {ω1, ω2, ω4, ω5, ω6},
{ω1, ω3, ω4, ω5, ω6}, {ω1, ω3, ω4, ω5, ω6}, �}

Note: The notation {ωi} for i = 1, 2, . . . , 6 indicates that the outcomes are treated as
events.
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beyond the scope of this entry, that might cause
trouble.

Instead, we take a different approach. To de-
sign our set of events of the uncountable space
�, we begin with the inclusion of the events
“any real number,” which is the space �, itself,
and “no number at all,” which is the empty set
Ø. Next, we include all events of the form “less
than or equal to a,” for any real number a, that
is, we consider all half-open intervals (−∞,a],
for any a ∈ R. Now, for each of these (−∞,a],
we add its complement (−∞, a ] = �\(−∞,a] =
(a,∞), which expresses the event “greater than
a.” So far, our set of events contains Ø, �, all sets
(−∞,a], and all the sets (a,∞). Furthermore, we
include all possible unions and intersections of
everything already in the set of events as well as
of the resulting unions and intersections them-
selves. By doing this, we guarantee that any
event of practical relevance of an uncountable
space is considered by our set of events.

With this procedure, we construct the Borel
σ -algebra, B. This is the collection of events we
will use any time we deal with real numbers.

The events from the respective σ -algebra of the
two examples can be assigned probabilities in a
unique way, as we will see.

The Measurable Space
Let us now express the ideas from the previous
examples in a formal way. To describe a random
experiment, we need to formulate

1. Outcomes ω

2. Space �

3. σ -algebra A

Definition 1—Space: The space � contains all
outcomes. Depending on the outcomes ω, the
space � is either countable or uncountable.

Definition 2—σ -algebra: The σ -algebra A is the
collection of events (subsets of �) with the
following properties:
a. �∈A and Ø∈A.
b. If event E ∈ A then Ē ∈ A.

c. If the countable sequence of events E1,
E2, E3, . . . ∈ A then ∪∞

i=1 Ei ∈ A and ∩∞
i=1 Ei

∈ A.
Definition 3—Borel σ -algebra: The σ -algebra

formed by Ø, � = R, intervals (∞,a] for
some real a, and countable unions and in-
tersections of these intervals is called a Borel
σ -algebra and denoted by B.

Note that we can have several σ -algebrae for
some space �. Depending on the events we are
interested in, we can think of a σ -algebra A that
contains fewer elements than 2� (for countable
�), or the Borel σ -algebra (for uncountable �).
For example, we might think of A = {Ø, �}, that
is, we only want to know whether any outcome
occurs or nothing at all.8 It is easy to verify that
this simple A fulfills all requirements a, b, and
c of Definition 2.

Definition 4—Measurable space: The tuple (�, A)
with A being a σ -algebra of � is a measurable
space.

A tuple is the combination of several compo-
nents. For example, when we combine two val-
ues a and b, the resulting tuple is (a,b), which we
know to be a pair. If we combine three values a,
b, and c, the resulting tuple (a,b,c) is known as a
triplet.

Given a measurable space, we have enough to
describe a random experiment. All that is left is
to assign probabilities to the individual events.
We will do so next.

PROBABILITY MEASURE
We start with a brief discussion of what we ex-
pect of a probability or probability measure; that
is, the following properties:

Property 1: A probability measure should assign
each event E from our σ -algebra a nonneg-
ative value corresponding to the chance of
this event occurring.

Property 2: The chance that the empty set occurs
should be zero since, by definition, it is the
improbable event of “no value.”
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Property 3: The event that “any value” might oc-
cur (i.e., �) should be 1 or, equivalently, 100%
since some outcome has to be observable.

Property 4: If we have two or more events that
have nothing to do with one another that are
pairwise disjoint or mutually exclusive, and
create a new event by uniting them, the prob-
ability of the resulting union should equal
the sum of the probabilities of the individual
events.

To illustrate, let:

� The first event state that the S&P 500 log re-
turn is “maximally 5%,” that is, E1 = (−∞,
0.05].

� The second event state that the S&P 500 log
return is “at least 10%,” that is, E2 = [0.10, ∞).

Then, the probability of the S&P log return ei-
ther being no greater than 5% or no less than
10% should be equal to the probability of E1

plus the probability of E2.
Let’s proceed a little more formally. Let (�, A)

be a measurable space. Moreover, consider the
following definition.

Definition 5—Probability measure: A function P
on the σ -algebra A of � is called a probability
measure if it satisfies:
a. P(Ø) = 0 and P(�) = 1.
b. For a countable sequence of events E1,

E2, . . . in A that are pairwise disjoint (i.e.,
Ei ∩ E j = Ø . . . ,i �= j), we have

P
( ∞

U
i=1

Ei

)
=

∞∑

i=1

P(Ei )

This property is referred to as countable additi-
vity.

Then we have everything we need to model
randomness and chance, that is, we have the
space �, the σ -algebra A of �, and the proba-
bility measure P. This triplet (�, A, P) forms the
so called probability space.

At this point, we introduce the notion of
P-almost surely (P-a.s.) occurring events. It is
imaginable that even though P(�) = 1, not all
of the outcomes in � contribute positive prob-

ability. The entire positive probability may be
contained in a subset of � while the remaining
outcomes form the unlikely event with respect to
the probability measure P. The event account-
ing for the entire positive probability with re-
spect to P is called the certain event with respect to
P. If we denote this event by Eas, then we have
P(Eas) = 1 yielding P(�\Eas) = 0.

There are certain peculiarities of P depending
on whether � is countable or not. It is essential
to analyze these two alternatives since this dis-
tinction has important implications for the de-
termination of the probability of certain events.
Here is why.

Suppose, first, that � is countable. Then, we
are able to assign the event {ωi} associated with
an individual outcome, ωi, a nonnegative prob-
ability pi = P({ωi}), for all ωi ∈ �. Moreover, the
probability of any event E in the σ -algebra A

can be computed by adding the probabilities of
all outcomes associated with E. That is,

P(E) =
∑

ωi ∈E
pi

In particular, we have

P(�) =
∑

ωi ∈�
pi = 1

Let us resume the six-sided dice tossing ex-
periment. The probability of each number of
dots 1 through 6 is 1/6 or formally,

P({ω1}) = P({ω2}) = · · · = P({ω6}) = 1/6

or equivalently,

p1 = p2 = · · · = p6 = 1/6

Suppose, instead, we have � = R. That is, � is
uncountable and our σ -algebra is given by the
Borel σ -algebra, B. To give the probability of
the events E in B, we need an additional device,
given in the next definition.

Definition 6—Distribution function: A function F
is a distribution function of the probability mea-
sure P if it satisfies the following properties:
a. F is right-continuous.
b. F is non-decreasing.
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c. lim
x→−∞ F(x) = 0 and lim

x→∞ F(x) = l.

d. For any x ∈ R, we have F(x) = P((−∞,x]).

It follows that, for any interval (x,y], we com-
pute the associated probability according to

F (y) − F (x) = P((x, y]) (1)

So, in this case we have a function F uniquely
related to P from which we derive the proba-
bility of any event in B. Note that in general
F is only right-continuous, that is the limit of
F(y), when y > x and y → x, is exactly F(x). At
point x, we might have a jump of the distribu-
tion F(x). The size of this jump equals P({x}).
This distribution function can be interpreted in
a similar way to the relative empirical cumula-
tive distribution function. That is, we state the
probability of our quantity of interest being less
than or equal to x.

To illustrate, the probability of the S&P 500 log
return being at most 1%, E = (−∞, 0.01], is given
by FS&P 500(0.01) = P((−∞, 0.01]),9 while the
probability of it being between −1% and 1% is

F S&P500(0.01) − F S&P500(−0.01) = P((−0.01, 0.01])

RANDOM VARIABLE
Now the time has come to introduce the con-
cept of a random variable. When we refer to some
quantity as being a random variable, we want
to express that its value is subject to uncertainty,
or randomness. Technically, the variable of in-
terest is said to be stochastic. In contrast to a
deterministic quantity whose value can be de-
termined with certainty, the value of a random
variable is not known until we can observe a
realized outcome of the random experiment.
However, since we know the probability space
(�, A, P), we are aware of the possible values it
can assume.

One way we can think of a random variable
denoted by X is as follows. Suppose we have
a random experiment where some outcome ω

from the space � occurs. Then, depending on

this ω, the random variable X assumes some
value X(ω) = x, where ω can be understood as
input to X. What we observe, finally, is the value
x, which is only a consequence of the outcome
ω of the underlying random experiment.

For example, we can think of the price of a
30-year Treasury bond as a random variable as-
suming values at random. However, expressed
in a somewhat simple fashion, the 30-year Trea-
sury bond depends completely on the prevail-
ing market interest rate (or yield) and, hence,
is a function of it. So, the underlying random
experiment concerns the prevailing market in-
terest rate with some outcome ω while the price
of the Treasury bond, in turn, is merely a func-
tion of ω.

Consequently, a random variable is a function
that is completely deterministic and depends on
the outcome ω of some random experiment. In
most applications, random variables have val-
ues that are real numbers.

So, we understand random variables as func-
tions from some space into an image or state
space. We need to become a little more formal
at this point. To proceed, we will introduce a
certain type of function, the measurable function,
in the following

Definition 7—Measurable function: Let (�, A) and
(�′,A′) be two measurable spaces. That is
�, �′ are spaces and A, A

′ their σ -algebrae,
respectively. A function X: � → �′ is A-A′

-measurable if, for any set E ′ ∈ A
′, we have

X−1(E ′) ∈ A

In words, this means that a function from
one space to another is measurable if the ori-
gin with respect to this function of each im-
age in the σ -algebra of the state space can be
traced in the σ -algebra of the domain space.
Instead of A-A′-measurable, we will, hence-
forth, use simply measurable since, in our state-
ments, it is clear which σ -algebrae are being
referred to.

We illustrate this in Figure 3. Function X cre-
ates images in �′ by mapping outcomes ω from
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Ω

Ω′

X–1

X

X(ω) =   x

ω

E′

X–1(E′)

Figure 3 Relationship between Image E′ and X−1(E′) through the Measurable Function X

� with values X(ω) = x in �′. In reverse fash-
ion, for each event E′ in the state space with
σ -algebra A

′, X−1 finds the corresponding ori-
gin of E′ in σ -algebra A of the probability space.

Now, we define a random variable X as a mea-
surable function. That means for each event in
the state space σ -algebra, A

′, we have a corre-
sponding event in the σ -algebra of the domain
space, A.

To illustrate this, let us consider the example
with the dice. Now we will treat the “number
of points” as a random variable X. The possible
outcome values of X are given by the state space
�′, namely, �′ = {1,2,3,4,5,6}.10 The origin or
domain space is given by the set of outcomes �

= {ω1, ω2, ω3, ω4, ω5, ω6}. Now, we can think
of our random variable X as the function X:
�→�′ with the particular map X(ωi) = i with
i = 1,2, . . . ,6.

Random Variables on a
Countable Space
We will distinguish between random variables
on a countable space and on an uncountable
space. We begin with the countable case.

The random variable X is a function mapping
the countable space � into the state space �′.
The state space �′ contains all outcomes or val-
ues that X can obtain.11 Thus, all outcomes in
�′ are countable images of the outcomes ω in
�. Between the elements of the two spaces, we
have the following relationship.

Let x be some outcome value of X in �′. Then,
the corresponding outcomes from the domain
space � are determined by the set

X−1({x}) = {ω : X(ω) = x}
In words, we look for all outcomes ω that are

mapped to the outcome value x.
For events, in general, we have the relation-

ship

X−1(E ′) = {ω : X(ω) ∈ E ′}
which is the set of all outcomes ω in the domain
space that are mapped by X to the event E′ in
the state space. That leads us to the following
definition:

Definition 8—Random variable on a countable
space: Let (�, A) and (�′, A

′) be two measur-
able spaces with countable � and �′. Then
the mapping X: �→�′ is a random variable
on a countable space if, for any event E ′ ∈ A

′
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composed of outcomes x ∈ �′, we have

P X(E ′) = P({ω : X(ω) ∈ E ′}) = P(X−1(E ′))

= P(X ∈ E ′) (2)

We can illustrate this with the following ex-
ample from finance referred to as the “binomial
stock price model.” The random variable of in-
terest will be the price of some stock. We will
denote the price of the stock by S. Suppose at
the beginning of period t, the price of the stock
is $20 (i.e., St = $20). At the beginning of the
following period, t + 1, the stock price is either
St+1 = $18 or St+1 = $22. We model this in the
following way.

Let:

� (�, A) and (�′, A
′) be two measurable spaces

with �′ = {$18,$22} (i.e., the state space of the
period t + 1 stock price) and A (i.e., the corre-
sponding σ -algebra of all events with respect
to the stock price in t + 1).

� � be the space consisting of the outcomes of
some random experiment completely influ-
encing the t + 1 stock price.

�

A be the corresponding σ -algebra of � with
all events in the origin space.

Now, we can determine the origin of the event
that

St+1 = $18 by Edown = {ω : S(ω) = $18}
and

St+1 = $22 by Eup = {ω : S(ω) = $22}
Thus, we have partitioned � into the two
events, Edown and Eup, related to the two pe-
riod t + 1 stock prices. With the probability
measure P on �, we have the probability space
(�,A,P). Consequently, due to equation (2), we
are able to compute the probability PS($18) =
P(Edown) and PS($22) = P(Eup), respectively.

Random Variables on an
Uncountable Space
Now let’s look at the case when the probability
space (�, A, P) is no longer countable. Recall

the particular way in which events are assigned
probabilities in this case.

While for a countable space any outcome ω

can have positive probability, that is, pω > 0, this
is not the case for individual outcomes of an
uncountable space. On an uncountable space,
we can have the case that only events associ-
ated with intervals have positive probability.
These probabilities are determined by the dis-
tribution function F(x) = P(X < x) = P(X ≤ x)
according to equation (1).

This brings us to the following definition:

Definition 9—Random variable on a general possi-
bly uncountable space: Let (�,A) and (�′, A

′)
be two measurable spaces with, at least, �

uncountable. The map X: �→�′ is a random
variable on the uncountable space (�,A,P) if it
is measurable. That is, if, for any E′ ∈ A

′,
we have

X−1(E ′) ∈ A

induce probability from (�, A, P) on (�′, A
′)

by

P X(E ′) = p({ω : X(ω) ∈ E ′}) = P(X−1(E ′))

= P(X ∈ E ′)

We call this the probability law or distribution of
X. Typically, the probability of X ∈ E′ is written
using the following notation:

P X(E ′) = P(X ∈ E ′)

Very often, we have the random variable X as-
sume values that are real numbers (i.e., �′ = R

and B
′ = B). Then, the events in the state space

are characterized by countable unions and in-
tersections of the intervals (−∞,a] correspond-
ing to the events {X ≤ a}, for real numbers a. In
this case, we require that to be a random vari-
able, X satisfies

{ω : X(ω) ≤ a} = X−1((∞, a ]) ∈ B

for any real a.
To illustrate, let’s use a call option on a stock.

Suppose in period t we purchase a call option
on a certain stock expiring in the next period
T = t + 1. The strike price, denoted by K, is $50.
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Then as the buyer of the call option, in t + 1
we are entitled to purchase the stock for $50 no
matter what the market price of the stock (St+1)
might be. The value of the call option at time
t + 1, which we denote by Ct+1, depends on the
market price of the stock at t + 1 relative to the
strike price (K). Specifically,

� If St+1 is less than K, then the value of the
option is zero, that is, Ct+1 = 0

� If St+1 is greater than K, then the value of the
option is equal to St+1 − K

Let (�, A, P) be the probability space with
the stock price in t + 1; that is, St+1 = s repre-
senting the uncountable real-valued outcomes.
So, we have the uncountable probability space
(�, A, P) = (R, B, P). Assume that the price at
t + 1 can take any nonnegative value. Assume
further that the probability of exactly s is zero
(i.e., P(St+1 = s) = 0), that is, the distribution
function of the price at T = 1 is continuous. Let
the value of the call option in T = t + 1, Ct+1,
be our random variable mapping from � to �′.
Since the possible values of the call option at
t + 1 are real numbers, the state space is un-
countable as well. Hence, we have (�′, A

′) =
(R, B). Ct+1, to be a random variable, is a
B-B′–measurable function.

Now, the probability of the call becoming
worthless is determined by the event in the ori-
gin space that the stock price falls below K. For-
mally, that equals

PCt+1 (0) = P(Ct+1 ≤ 0} = P(St+1 ≤ K }
= P((−∞, K ])

since the corresponding event in A to a 0 value
for the call option is (−∞,K]. Equivalently,
C−1

t+1({0}) = (−∞, K]. Any positive value c of
Ct+1 is associated with zero probability since
we have

PCt+1 (c) = P(Ct+1 = c} = P(St+1 = c + K } = 0

due to the relationship Ct+1 = St+1 − K for
St+1 > K.

KEY POINTS
� Events in a mathematical probabilistic sense

represent sets of values. They are used to de-
scribe a certain situation such as an asset price
being below some benchmark value.

� A probability measure is a function that as-
signs each event a unique probability be-
tween zero and one. With respect to this
probability measure an event is P-almost sure
if it is assigned probability one, while an un-
likely event is one with zero probability.

� A random variable is a function assuming val-
ues from a given set of values at random. The
probability of the random variables assuming
certain values is determined by the probabil-
ity measure.

� A distribution function is uniquely related to
the probability measure. It assigns real num-
bers values between zero and one. At any real
number, it represents the probability that a
random variable assumes values of at most
this number.

� Stochastic is the Greek term for random. It is
often used in probability theory to describe
that something is not deterministic, that is,
known with certainty in advance.

NOTES
1. Suppose we have the interval [1,2], that is

all real numbers between 1 and 2. We can-
not count all numbers inside of this interval
since, for any two numbers such as, for ex-
ample, 1 and 1.001, 1.0001, or even 1.000001,
there are always infinitely many more num-
bers that lie between them.

2. Note that in a set, we do not consider an
element more than once.

3. By abscissa we mean a value on the horizon-
tal x-axis.

4. For example, let � = {1,2,3}, then the power
set 2� = {Ø,{1},{2},{3},{1,2},{1,3},{2,3},
�}. That is, we have included all possi-
ble combinations of the original elements
of �.
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5. Let us assume, for now, that we are not re-
stricted to a few digits due to measurement
constraints or quotes conventions in the
stock market. Instead, we consider being
able to measure the returns to any degree
of precision.

6. By convention, we never include ∞ since it
is not a real number.

7. The symbol R is just a mathematical abbre-
viation for the real numbers.

8. The empty set is interpreted as the improba-
ble event.

9. We use the index in FS&P 500 to emphasize
that this distribution function is unique to
the probability of events related to the S&P
500 log returns.

10. Note that we do not define the outcomes
of number of dots as nominal or even rank

data anymore, but as numbers. That is 1 is
1, 2 is 2, and so on.

11. Theoretically, �′ does not have to be count-
able; that is, it could contain more elements
than X can assume values. But we restrict
ourselves to countable state spaces �′ con-
sisting of exactly all the values of X.

REFERENCES
Kolmogorov, A. N. (1933). Grundbegriffe der

Wahrscheinlichkeitsrechnung. Berlin: Springer.
Mises, R. von. (1928). Wahrscheinlichkeit, Statistik

und Wahrheit. Wien: Springer.
Reichenbach, H. (1935). Wahrscheinlichkeitslehre:

eine Untersuchung über die logischen und mathe-
matischen Grundlagen der Wahrscheinlichkeits-
rechnung. Leiden: Sijthoff.





Discrete Probability Distributions
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Abstract: Discrete probability distributions are needed whenever the random variable is to describe
a quantity that can assume values from a countable set, either finite or infinite. A discrete probability
distribution (or law) is quite intuitive in that it assigns certain values positive probabilities adding
up to one, while any other value automatically has zero probability. In general, neglecting some
of the mathematical rigor, discrete distributions can be understood from the insight gained from
descriptive statistics. For example, the random number of defaults in a bond portfolio inside of a
given period of time can be modeled with a discrete probability distribution. Another example is
given by sampling when we are interested in whether an observation belongs to a certain group.
Also, simple stock price models are based on discrete laws where the stock price can only change
to one of a finite number of possible values.

Discrete random variables are random variables
on the countable space. We present the most
important discrete random variables used in
finance and their probability distribution (also
called probability law): Bernoulli, binomial, hy-
pergeometric, multinomial, Poisson, and dis-
crete uniform.

Appendix A provides a summary of the dis-
crete distributions covered.

DISCRETE LAW
In order to understand the distributions dis-
cussed in this entry, we will explain the gen-
eral concept of a discrete law. Based on the
knowledge of countable probability spaces, we
introduce the random variable on the count-
able space as the discrete random variable. To
fully comprehend the discrete random vari-
able, it is necessary to become familiar with the
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process of assigning probabilities to events in
the countable case. Furthermore, the cumula-
tive distribution function will be presented as
an important representative of probability. It is
essential to understand the mean and variance
parameters. Wherever appropriate, we draw
analogies to descriptive statistics for a facilita-
tion of the learning process.

Random Variable on the
Countable Space
Recall the probability space (�, A, P) where � is
a countable space. The probability of any event
E is given by

P(E) =
∑

ωi ∈E

pi

with the pi being the probabilities of the individ-
ual outcomes ωi in the event E. Remember that
the random variable X is the mapping from �

into �′ such that the state space �′ is countable.
(We denote random variables by capital letters,
such as X, whereas the outcomes are denoted by
small letters, such as xi.) Thus, the probability
of any event E′ in the state space has probability

P(X ∈ E ′) = P X(E ′) =
∑

ωi :X(ωi )∈E ′
pi

since E′ is associated with the set

{ωi : X(ωi ) ∈ E ′}
through X. The probability of each individual
outcome of X yields the discrete probability law
of X. It is given by P(X = xi) = pX

i , for all
xi ∈ �′.

Only for individual discrete values x is the
probability pX positive. This is similar to the
empirical frequency distribution with positive
relative frequency fi at certain observed values.
If we sort the xi ∈ � in ascending order, anal-
ogous to the empirical relative cumulative fre-
quency distribution

F f
emp(x) =

∑

xi ≤x

fi

we obtain the discrete cumulative distribution
(cdf ) of X,

F X(x) = P(X ≤ x) =
∑

xi ≤x

pX
i

That is, we express the probability that X as-
sumes a value no greater than x.

Suppose we want to know the probability of
obtaining at most 3 dots when throwing a dice.
That is, we are interested in the cdf of the ran-
dom variable number of dots, at the value x =
3. We obtain it by

F X(3) = p1 + p2 + p3 = 1/6 + 1/6 + 1/6 = 0.5

where the pi denote the respective probabilities
of the number of dots less than or equal to 3. A
graph of the cdf is shown in Figure 1.

Mean and Variance
The sample mean and variance are sample de-
pendent statistics. Here we present the mean
and variance of the distribution as parameters
where the probability space can be understood
as the analog to the population.

To illustrate, we use the random variable
number of dots obtained by tossing a dice. Since
we treat the numbers as numeric values, we are
able to perform transformations and compu-
tations with them. By throwing a dice several
times, we would be able to compute a sample
average based on the respective outcome. So,
a question could be: What number is theoreti-
cally expected? In our discussion below, we see
how to answer that question.

Mean
The mean is the population equivalent to the
sample average of a quantitative variable. In or-
der to compute the sample average, we sum up
all observations and divide the resulting value
by the number of observations, which we will
denote by n. Alternatively, we sum over all val-
ues weighted by their relative frequencies.

This brings us to the mean of a random
variable. For the mean of a random variable,
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Figure 1 Cumulative Distribution Function of Number of Dots Appearing from Tossing a Dice

we compute the accumulation of the outcomes
weighted by their respective probabilities; that
is,

E(X) =
∑

xi ∈�

xi · pX
i (1)

given that equation (1) is finite. (Often, the mean
is denoted as the parameter μ.) If the mean is
not finite, then the mean is said to not exist.
The mean equals the expected value of the ran-
dom variable X. However, as we will see in the
following examples, the mean does not actually
have to be equal to one of the possible outcomes.

For the number of dots on the dice example,
the expected value is

E(X) =
6∑

i=1

i · pi
1
6

6∑

i=1

i = 21/6 = 3.5

So, on average, one can expect a value of 3.5
for the random variable, despite the fact this is
not an obtainable number of dots. How can we
interpret this? If we were to repeat the dice toss-
ing many times, record for each toss the number
of dots observed, then, if we averaged over all
numbers obtained, we would end up with an
average very close if not identical to 3.5.

Let’s move from the dice tossing example to
look at a binomial stock price model. With the

stock price S at the end of period 1 being either
S1 = $18 or S1 = $22, we have only these two
outcomes with positive probability each. We de-
note the probability measure of the stock price
at the end of period 1 by PS(·). At the begin-
ning of the period, we assume the stock price
to be S0 = $20. Furthermore, suppose that up-
and down-movements are equally likely; that
is, PS(18) = 1/2 and PS(22) = 1/2. So we obtain

E(S) = 1/2 · $18 + 1/2 · $22 = $20

This means on average, the stock price will re-
main unchanged even though $20 is itself not
an obtainable outcome.

We can think of it this way. Suppose we ob-
served some stock over a very long period of
time and the probabilities for up- and down-
movements did not change. Furthermore sup-
pose that each time the stock price was $20 at
the beginning of some period, we recorded the
respective end-of-period price. Then, we would
finally end up with an average of these end-of-
period stock prices very close to if not equal
to $20.

Variance
Just like in the realm of descriptive statistics,
we are interested in the dispersion or spread of
the data. For this, we introduce the variance as
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a measure. Our focus is on the variance as a pa-
rameter of the random variable’s distribution.

A sample measure of spread gives us infor-
mation on the average deviation of observa-
tions from their sample mean. With the help
of the variance, we intend to determine the
magnitude we have to theoretically expect of
the squared deviation of the outcome from the
mean. Again, we use squares to eliminate the
effect from the signs of the deviations as well
as to emphasize larger deviations compared to
smaller ones, just as we have done with the
sample variance.

For the computation of the expected value of
the squared deviations, we weight the individ-
ual squared differences of the outcomes from
the mean with the probability of the respective
outcome. So, formally, we define the variance
of some random variable X to be

σ 2
X = Var(X) =

∑

xi ∈�

(xi − E(X))2 pX
i (2)

For example, for the number of dots obtained
from tossing a dice, we obtain the variance

σ 2
X = Var(X) =

6∑

i=1

(i − E(X))2 pX
i

= 1
6

[
(1 − 3.5)2 + (2 − 3.5)2 + · · · + (6 − 3.5)2]

= 2.9167

1 2 3 4 5

E(X) + 1.7078E(X) − 1.7078

E(X) = 3.5

6

Figure 2 Relation Between Standard Deviation (σ = 1.7078) and Scale of Possible Outcomes 1, 2, . . . , 6
Indicated by the ◦ Symbol

Thus, on average, we have to expect a squared
deviation from the mean by roughly 2.9.

The standard deviation is simply the square root
of the variance. Formally, the standard devia-
tion is given by

σX =
√

Var(X)

The standard deviation appeals to intuition
because it is a quantity that is of the same scale
as the random variable X. In addition, it helps
in assessing where the probability law assigns
its probability mass. A rule of thumb is that
at least 75% about the probability mass is as-
signed to a vicinity of the mean that extends
two standard deviations in each direction from
the mean. Furthermore, this rule states that in
at least 89% of the times, a value will occur that
lies in a vicinity of the mean of three standard
deviations in each direction.

For the number of dots obtained from tossing
a dice, since the variance is 2.9167, the standard
deviation is

σX =
√

2.9167 = 1.7078

In Figure 2, we display all possible outcomes
1 through 6 indicated by the ◦ symbol, in-
cluding the mean of E(X) = 3.5. We extend a
vicinity about the mean of length σ X = 1.7078,
indicated by the “+” symbol, to graphically
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relate the magnitude of the standard deviation
to the possible values of X.

BERNOULLI DISTRIBUTION
In the remainder of this entry, we introduce
the most common discrete distributions used
in finance. We begin with the simplest one, the
Bernoulli distribution.

Suppose we have a random variable X with
two possible outcomes. That is, we have the
state space �′ = {x1,x2}. The distribution of X is
given by the probability for the two outcomes,
that is,

pX
1 = p and pX

2 = 1 − p

Now, to express the random experiment of
drawing a value for X, all we need to know is
the two possible values in the state space and
parameter p representing the probability of x1.
This situation is represented concisely by the
Bernoulli distribution. This distribution is de-
noted B(p) where p is the probability parameter.

Formally, the Bernoulli distribution is asso-
ciated with random variables that assume the
values x1 = 1 and x2 = 0, or �′ = {0,1}. That is
why this distribution is sometimes referred to
as the “zero-one distribution.” One usually sets
the parameter p equal to the probability of x1

such that

p = P(X = x1) = P(X = 1)

The mean of a Bernoulli distributed random
variable is

E(X) = 0 · (1 − p) + 1 · p = p (3)

and the variance is

Var(X) = (0 − p)2 · (1 − p) + (1 − p)2 · p

= p · (1 − p) (4)

The Bernoulli random variable is commonly
used when one models the random experiment
where some quantity either satisfies a certain
criterion or not. For example, it is employed
when it is of interest whether an item is intact
or broken. In such applications, we assign the

outcome “success” the numerical value 1 and
the outcome “failure” the numerical value 0, for
example. Then, we model the random variable
X describing the state of the item as Bernoulli
distributed.

Consider the outcomes when flipping a coin:
head or tail. Now we set head equal to the nu-
merical value 0 and tail equal to 1. We take X as
the Bernoulli distributed random variable de-
scribing the side of the coin that is up after the
toss. What should be considered a fair coin? It
would be one where in 50% of the tosses, head
should be realized and in the remaining 50% of
the tosses, tail should realized. So, a fair coin
yields

p = 1 − p = 0.5

According to equation (3), the mean is then
E(X) = 0.5 while, according to equation (4), the
variance is Var(X) = 0.25. Here, again, the mean
does not represent a possible value x from the
state space �′. We can interpret it in the fol-
lowing way: Since 0.5 is halfway between one
outcome (0) and the other outcome (1), the coin
is fair because the mean is not inclined to either
outcome.

As another example, we will take a look at
credit risk modeling by considering the risk of
default of a corporation. Default occurs when
the corporation is no longer able to meet its debt
obligations. a priori, default occurring during
some period is uncertain and, hence, is treated
as random. Here, we view the corporation’s fail-
ure within the next year as a Bernoulli random
variable X. When the corporation defaults, X =
0 and in the case of survival, X = 1. For exam-
ple, a corporation may default within the next
year with probability

P(X = 0) = 1 − p = 1 − e−0.04 = 0.0392

and survive with probability

P(X = 1) = p = e−0.04 = 0.9608

We can, of course, extend the prerequisites
of the Bernoulli distribution to a more general
case; that is, we may choose values for the two
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outcomes, x1 and x2, of the random variable X
different from 0 and 1. Then, we set the param-
eter p equal to either one of the probabilities
P(X = x1) or P(X = x2). The distribution yields
mean

E(X) = x1 · p + x2 · (1 − p)

and variance

Var(X) = (x1 − E(X))2 · p + (x2 − E(X))2 · (1 − p)

where we set p = P(X = x1).
We illustrate this generalization of the

Bernoulli distribution in the case of the bino-
mial stock price model. Again, we denote the
random stock price at time period 1 by S1. Recall
that the state space �′ = {$18, $22} containing
the two possible values for S1. The probability
of S1 assuming value $18 can be set to

P(S1 = $18) = p

so that

P(S1 = $22) = 1 − p

Hence, we have an analogous situation to a
Bernoulli random experiment; however, with
�′ = {$18,$22} instead of �′ = {0,1}.

Suppose that

P(S1 = $18) = p = 0.4 and

P(S1 = $22) = 1 − p = 0.6

Then, the mean is

E(S1) = 0.4 · $18 + 0.6 · $22 = $20.4

and the variance

Var(S1) = ($18 − $20.4)2 · 0.4

+ ($22 − $20.4)2 · 0.6 = ($3.84)2

BINOMIAL DISTRIBUTION
Suppose that we are no longer interested in
whether merely one single item satisfies a par-
ticular requirement such as success or failure.
Instead, we want to know the number of items
satisfying this requirement in a sample of n
items. That is, we form the sum over all items

in the sample by adding 1 for each item that is
success and 0 otherwise. For example, it could
be the number of corporations that satisfy their
debt obligation in the current year from a sam-
ple of 30 bond issues held in a portfolio. In this
case, a corporation would be assigned 1 if it sat-
isfied its debt obligation and 0 if it did not. We
would then sum up over all 30 bond issues in
the portfolio.

Now, one might realize that this is the link-
ing of n single Bernoulli trials. In other words,
we perform a random experiment with n “inde-
pendent” and identically distributed Bernoulli
random variables, which we denote by B(p).
Note that we introduced two important as-
sumptions: independent random variables and
identically distributed random variables. Inde-
pendent random variables or independence is
an important statistical concept that requires a
formal definition. We will not provide one here.
Instead, we will simply relate independence to
an intuitive interpretation such as uninfluenced
by another factor or factors. So in the Bernoulli
trials, we assume independence, which means
that the outcome of a certain item does not in-
fluence the outcome of any others. By identical
distribution we mean that the two random vari-
ables’ distributions are the same. In our context,
it implies that for each item, we have the same
B(p) distribution.

This experiment is as if one draws an item
from a bin and replaces it into the bin before
drawing the next item. Thus, this experiment
is sometimes referred to as drawing with replace-
ment. All we need to know is the number of
trials, n, and the parameter p related to each sin-
gle drawing. The resulting sum of the Bernoulli
random variables is distributed as a binomial dis-
tribution with parameters n and p and denoted
by B(n, p).

Let X be distributed B(n, p). Then, the random
variable X assumes values in the state space
�′ = {0,1,2, . . . , n}. In words, the total X is equal
to the number of items satisfying the particular
requirement (i.e., having a value of 1). X has
some integer value i of at least 0 and at most n.
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To determine the probability of X being equal
to i, we first need to answer the following ques-
tion: How many different samples of size n can
yield a total of i hits (i.e., realizations of the out-
come i)? The notation to represent realizing i
hits out of a sample of size n is

(
n
i

)
(5)

The expression in equation (5) is called the bino-
mial coefficient and is explained in Appendix B
of this entry.

Since in each sample the n individual B(p)
distributed items are drawn independently, the
probability of the sum over these n items is the
product of the probabilities of the outcomes of
the individual items. We illustrate this in the
next example.

Suppose we flip a fair coin 10 times (i.e.,
n = 10) and denote by Yi the result of the i-th
trial. We denote by Yi = 1 that the i-th trial pro-
duced head and by Yi = 0 that it produced tail.
Assume we obtain the following result

Yl Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10
1 1 0 0 0 1 0 1 1 0

So, we observe X = 5 times head. For this par-
ticular result that yields X = 5, the probability
is

P(Y1 = 1, Y2 = 1, . . . , Y10 = 0)

= P(Y1 = 1) · P(Y2 = 1)· . . . · P(Y10 = 0)

= p · p · . . . · (1 − p)

= p5 · (1 − p)5

Since we are dealing with a fair coin (i.e.,
p = 0.5), the above probability is

P(Y1 = 1, Y2 = 1, . . . , Y10 = 0) = 0.55 · 0.55

= 0.510 ≈ 0.0010

With
(

10
5

)
= 252

different samples leading to X = 5, we compute
the probability for this value of the total as

P(X = 5) =
(

10
5

)
p5 · (1 − p)5

= 252 · 0.510 = 0.2461

So, in roughly one fourth of all samples of
n = 10 independent coin tosses, we obtain a
total of X = 5 1s (or heads).

From the example, we see that the exponent
for p is equal to the value of the total X (i.e.,
i = 5), and the exponent for 1 − p is equal to
n − i = 5.

Let p be the parameter from the related
Bernoulli distribution (i.e., P(X = 1) = p). The
probability of the B(n, p) random variable X be-
ing equal to some i ∈ �′ is given by

P(X = i) =
(

n
i

)
· pi · (1 − p)n−i

, i = 1, 2, . . . , n

(6)

For a particular selection of parameters, the
probability distribution at certain values can be
found in the four tables in Appendix A.

The mean of a B(n, p) random variable is

E(X) = n · p (7)

and its variance is

Var(X) = n · p · (1 − p) (8)

Below we will apply what we have just learned
to be the binomial stock price model and two
other applications.

Application to the Binomial Stock
Price Model
Let’s extend the binomial stock price model
in the sense that we link T successive periods
during which the stock price evolves. (The en-
tire time span of length T is subdivided into
the adjacent period segments (0,1], (1,2], . . . ,
(T − 1, T].) In each period (t, t + 1], the
price either increases or decreases by, say,
10%. The 10% can be intuitively thought of as
the variability of the stock price S. Thus, the
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corresponding factor by which the price will
change from the previous period is 0.9 (down
movement) and 1.1 (up movement). Based on
this assumption about the price movement for
the stock each period, at the end of the period
(t, t + 1], the stock price is

St+1 = St · Yt+1

where the random variable Yt+1 assumes a
value from {0.9, 1.1}, with 0.9 representing a
price decrease of 10% and 1.1 a price increase
of 10%. Consequently, in the case of Yt+1 = 1.1,
we have

St+1 = St · 1.1

while, in case of Yt+1 = 0.9, we have

St+1 = St · 0.9

For purposes of this illustration, let’s assume
the following probabilities for the down move-
ment and up movement, respectively,

P(Yt+1 = 1.1) = p = 0.6

and

P(Yt+1 = 0.9) = 1 − p = 0.4

After T periods, we have a random total of
X up movements; that is, for all periods (0,1],
(1,2], . . . , and (T − 1, T], we increment X by 1
if the period related factor Yt+1 = 1.1, t = 0,
1, . . . , T − 1. So, the result is some x ∈ {1,2, . . . ,
T}. The total number of up movements, X, is
a binomial distributed B(T, p) random variable
on the probability space (�′, A

′, PX) where

1. The state space is �′ = {1,2, . . . , T}.
2. σ -algebra A

′ is given by the power set 2�′

of �′.
3. PX is denoted by the binomial probability

distribution given by

P(X = k) =
(

T
k

)
pk(1 − p)T−k, k = 1, 2, . . . , T

with p = 0.6.

Consequently, according to equations (7) and
(8), we have

E(X) = 2 · 0.6 = 1.2

and

Var(X) = 2 · 0.6 · 0.4 = 0.48

By definition of ST and X, we know that the
evolution of the stock price is such that

ST = S0 · 1.1X · 0.9T−X

Let us next consider a random variable that
is not binomial itself, but related to a binomial
random variable. Now, instead of considering
the B(T, p) distributed total X, we could intro-
duce, as a random variable, the stock price at
T (i.e., ST). Using an illustration, we will derive
the stock price independently of X and, then,
emphasize the relationship between ST and X.
Note that ST is not a binomial random variable.

Let us set T = 2. We may start with an initial
stock price of S0 = $20. At the end of the first
period, that is, (0,1], we have

S1 = S0 · Y1

either equal to

S1 = $20 · 1.1 = $22

or

S1 = $20 · 0.9 = $18

At the end of the second period, that is, (1,2],
we have

S2 = S1 · Y2 = $22 · 1.1 = $24.20

or

S2 = S1 · Y2 = $22 · 0.9 = $19.80

in the case where S1 = $22, and

S2 = S1 · Y2 = $18 · 1.1 = $19.80

or

S2 = S1 · Y2 = $18 · 0.9 = $16.20

in the case where S1 = $18.
That is, at time t + 1 = T = 2, we have three

possible values for S2, namely, $24.20, $19.80,
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Figure 3 Binomial Stock Price Model with Two Periods
Note: Starting price S0 = $20. Upward factor u = 1.1, downward d = 0.9.

and $16.20. Hence, we have a new state space
that we will denote by �′

S = {$16.2, $19.8,
$24.2}. Note that S2 = $19.80 can be achieved
in two different ways: (1) S1 = S0 · 1.1 · 0.9 and
(2) S1 = S0 · 0.9 1.1. The evolution of this pric-
ing process, between time 0 and T = 2, can be
demonstrated using the binomial tree given in
Figure 3.

As σ -algebra, we use A = 2�′
S , which is the

power set of the state space �′
S. It includes

events such as, for example, “stock price in
T = 2 no greater than $19.80,” defined as
E′ = {S2 ≤ $19.80}.

The probability distribution of S2 is given by
the following

P(S2 = $24.20) = P(Y1 = 1.1) · P(Y2 = 1.1)

=
(

2
2

)
p2 = 0.62 = 0.36

P(S2 = $19.80) = P(Y1 = 0.9) · P(Y2 = 1.1)

+ P(Y1 = 1.1) · P(Y2 = 0.9)

= 2(1 − p)p =
(

2
1

)
· 0.4 · 0.6

= 0.48

P(S2 = $16.20) = P(Y1 = 0.9) · P(Y2 = 0.9)

=
(

2
0

)
(1 − p)2 = 0.42 = 0.16

We now have the complete probability space
of the random variable S2. One can see the con-
nection between S2 and X by the congruency
of the probabilities of the individual outcomes,
that is,

P(S2 = $24.20) = P(X = 2)

P(S2 = $19.80) = P(X = 1)

P(S2 = $16.20) = P(X = 0)

From this, we derive, again, the relationship

S2 = S0 · 1.1X · 0.92−X

Thus, even though S2, or, generally ST, is not
distributed binomial itself, its probability distri-
bution can be derived from the related binomial
random variable X.1

Application to the Binomial Interest
Rate Model
We next consider a binomial interest rate model
of short rates, that is, one-period interest rates.
Starting in t = 0, the short rate evolves over the
subsequent two periods as depicted in Figure 4.
In t = 0, we have r0 = 4%, which is the short rate
for period 1. For the following period, period 2,
the short rate is r1 while finally, r2 is valid for
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Figure 4 Binomial Interest Rate Model

period 3, from t = 2 through t = 3. Both r1 and
r2 are unknown in advance and assume values
at random.

As we see, in each of the successive periods,
the short rate either increases or decreases by
1% (i.e., 100 basis points). Each movement is as-
sumed to occur with a probability of 50%. So, in
period i, i = 1, 2, the change in interest rate, �ri,
has P(�ri = 1%) = p = 0.5 for an up-movement
and P(�ri = −1%) = 1 − p = 0.5 for a down-
movement. For each period, we may model the
interest rate change by some Bernoulli random
variable where X1 denotes the random change
in period 1 and X2 that of period 2. The Xi = 1 in
case of an up-movement and Xi = 0 otherwise.
The sum of both (i.e., Y = X1 + X2) is a bino-
mially distributed random variable, precisely
Y ∼ B (2,0.5), thus, assuming values 0, 1, or 2.

To be able to interpret the outcome of Y in
terms of interest rate changes, we perform the
following transformations. A value of Xi = 1
yields �ri = 1% while Xi = 0 translates into �ri

= −1% . Hence, the relationship between Y and
r2 is such that when Y = 0, implying two down-
movements in a row, r2 = r0 − 2% = 2%. When
Y = 1, implying one up- and down-movement
each, r2 = r0 + l% −l% = 4%. And finally,
Y = 2 corresponds to two up-movements such

that r2 = r0 + 2% = 6%. So, we obtain the prob-
ability distribution:

r2 P(r2)

2%
(

2
0

)
0.50 · 0.52 = 0.25

4%
(

2
1

)
0.51 · 0.51 = 0.5

6%
(

2
2

)
0.52 · 0.50 = 0.25

HYPERGEOMETRIC
DISTRIBUTION
Recall that the prerequisites to obtain a bino-
mial B(n, p) random variable X is that we have n
identically distributed random variables Yi, all
following the same Bernoulli law B(p) of which
the sum is the binomial random variable X. We
referred to this type of random experiment as
“drawing with replacement” so that for the se-
quence of individual drawings Yi, we always
have the same conditions.

Suppose instead that we do not “replace.”
Let’s consider the distribution of “drawing
without replacement.” This is best illustrated
with an urn containing N balls, K of which are
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black and N − K are white. So, for the initial
drawing, we have the chance of drawing a black
ball equal to K/N, while we have the chance
of drawing a white ball equal to (N − K)/N.
Suppose the first drawing yields a black ball.
Since we do not replace it, the condition be-
fore the second drawing is such that we have
(K − 1) black balls and still (N − K) white balls.
Since the number of black balls has been re-
duced by one and the number of white balls
is unchanged, the chance of drawing a black
ball has been reduced compared to the chance
of drawing a white ball; the total is also re-
duced by one. Hence, the condition is different
from the first drawing. It would be similar if
instead we had drawn a white ball in the first
drawing, however, with the adverse effect on
the chance to draw a white ball in the second
drawing.

Now suppose in the second drawing an-
other black ball is selected. The chances are
increasingly adverse against drawing another
black ball in the third trial. This changing envi-
ronment would be impossible in the binomial
model of identical conditions in each trial.

Even if we had drawn first a black ball and
then a white ball, the chances would not be the
same as at the outset of the experiment before
any balls were drawn because the total is now
reduced to N − 2 balls. So, the chance of obtain-
ing a black ball is now (K − 1)/(N − 2), and that
of obtaining a white ball is (N − K − 1)/(N −
2). Mathematically, this is not the same as the
original K/N and (N − K)/(N). Hence, the con-
ditions are altering from one drawing (or trial)
to the next.

Suppose now that we are interested in the
sum X of black balls drawn in a total of n trials.
Let’s look at this situation. We begin our reason-
ing with some illustration given specific values,
that is,

N = 10

K = 4

n = 5

k = 3

b2

b3 b4

b1

w1 w2

w3 w4

w6w5

Figure 5 Drawing n = 5 Balls without Replace-
ment
Note: N = 10, K = 4 (black), n = 5, and k = 3 (black).

The urn containing the black and white balls
is depicted in Figure 5. Let’s first compute the
number of different outcomes we have to con-
sider when we draw n = 5 out of N = 10 balls
regardless of any color. We have 10 different op-
tions to draw the first ball; that is, b1 through w6
in Figure 5. After the first ball has been drawn
without replacement, the second ball can be
drawn from the urn consisting of the remain-
ing nine balls. After that, the third ball is one
out of the remaining eight, and so on until five
balls have been successively removed. In total,
we have

10 × 9 × 8 × 7 × 6 = 10!/5! = 30, 240

alternative ways to withdraw the five balls. For
example, we may draw b4, b2, b1, w3, and w6.
However, this is the same as w6, w3, b4, b2, and
b1 or any other combination of these five balls.
Since we do not care about the exact order of the
balls drawn, we have to account for that in that
we divide the total number of possibilities (i.e.,
30,240) by the number of possible combinations
of the very same balls drawn. The latter is equal
to

5 × 4 × 3 × 2 × 1 = 5! = 120

Thus, we have 30,240/120 = 252 different
nonredundant outcomes if we draw five out of
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10 balls. Alternatively, this can be written as

252 = 10!
5! × 5!

=
(

10
5

)
(9)

Consequently, the chance of obtaining exactly
this set of balls (i.e., {b1, b2, b4, w3, w6}) in any
order is given by the inverse of equation (9)
which is

1
252

= 1
(

10
5

) = 0.004 (10)

Now recall that we are interested in the chance
of obtaining a certain number k of black balls
in our sample. So, we have to narrow down the
number of possible outcomes given by equation
(9) to all samples of size 5 that yield that number
k which, here, is equal to 3. How do we do
this?

We have a selection of four black balls (i.e.,
b1, b2, b3, and b4) to draw from. That gives us
a total of 4 × 3 × 2 = 4! = 24 different possi-
bilities to recover k = 3 black balls out of the
urn consisting of four balls. Again, we do not
care about the exact order in which we draw
the black balls. To us, it is the same whether we
select them, for example, in the order b1 − b2 −
b4 or b2 − b4 − b1, as long as we obtain the set
{b1, b2, b4}. So, we correct for this by dividing
the total of 24 by the number of combinations
to order these particular black balls; that is,

3 × 2 × 1 = 3! = 6

Hence, the number of combinations of draw-
ing k = 3 black balls out of four is

24/6 = 4!/3! = 4

Next we need to consider the previous num-
ber of possibilities of drawing k = 3 black balls
in combination with drawing n − k = 2 white
balls. We apply the same reasoning as before to
obtain two white balls from the collection of six
(i.e., {w1, w2, w3, w4, w5, w6}). That gives us 6
× 5/2 = 6!/(2! × 4!) = 15 nonredundant options
to recover two white balls, in our example.

In total, we have

4 × 15 = 4 × 3 × 2 × 1
3 × 2 × 1

× 6 × 5 × 4 × 3 × 2 × 1
2 × 1 × 4 × 3 × 2 × 1

= 4!
3! × 1!

× 6!
2! × 4!

=
(

4
3

)
×

(
6
2

)
= 60

different possibilities to obtain three black and
two white balls in a sample of five balls. All
these 60 samples have the same implication for
us (i.e., k = 3). Combining these 60 possibilities
with a probability of 0.004 as given by equation
(10), we obtain as the probability for a sum of
k = 3 black balls in a sample of n = 5

60/252 = 0.2381

Formally, we have

P(X = 3) =

(
4
3

) (
6
2

)

(
10
5

) = 0.2381

Then, for our example, the probability distri-
bution of X is

P(X = k) =

(
4
k

)(
6

n − k

)

(
10
5

) , k = 1, 2, 3, 4

(11)
(Note that we cannot draw more than four black
balls from b1, b2, b3, and b4.)

Let’s advance from the special conditions of
the example to the general case; that is, (1) at
the beginning, some nonnegative integer N of
black and white balls combined, (2) the overall
number of black balls 0 ≤ K ≤ N, (3) the sample
size 0 ≤ n ≤ N, and (4) the number 0 ≤ k ≤ n of
black balls in the sample.

In equation (11), we have the probability of k
black balls in the sample of n = 5 balls. We dis-
sect equation (9) into three parts: the denom-
inator and the two parts forming the product
in the numerator. The denominator gives the
number of possibilities to draw a sample of
n = 5 balls out of N = 10 balls, no matter what
the combination of black and white. In other
words, we choose n = 5 out of N = 10. The
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resulting number is given by the binomial co-
efficient. We can extend this to choosing a gen-
eral sample of n drawings out of a population
of an arbitrary number of N balls. Analogous
to equation (9), the resulting number of possi-
ble samples of length n (i.e., n drawings) is then
given by

(
N
n

)
(12)

Next, suppose we have k black balls in this
sample. We have to consider that in equation
(11), we chose k black balls from a population
of K = 4 yielding as the number of possibilities
for this the binomial coefficient on the left-hand
side in the numerator. Now we generalize this
by replacing K = 4 by some general number
of black balls (K ≤ N) in the population. The
resulting number of choices for choosing k out
of the overall K black balls is then,

(
K
k

)
(13)

And, finally, we have to draw the remaining
n − k balls, which have to be white, from the
population of N − K white balls. This gives us

(
N − K
n − k

)
(14)

different nonredundant choices for choosing
n − k white balls out of N − K.

Finally, all we need to do is to combine equa-
tions (12), (13), and (14) in the same fashion as
equation (11). By doing so, we obtain

P(X = k) =

(
K
k

) (
N − K
n − k

)

(
N
n

) , k = 1, 2, . . . , n

(15)

as the probability to obtain a total of X = k
black balls in the sample of length n without
replacement.

Importantly, here, we start out with N balls of
which K are black and, after each trial, we do not
replace the ball drawn, so that the population

is different for each trial. The resulting random
variable is hypergeometric distributed with pa-
rameters (N, K, n); that is, Hyp(N, K, n), and
probability distribution given by equation (15).

The mean of a random variable X following a
hypergeometric probability law is given by

E(X) = n · K
N

and the variance of this X ∼ Hyp(N, K, n) is
given by

Var(X) = σ 2 = n · K
N

· N − K
N

· N − n
N − 1

The hypergeometric and the binomial dis-
tributions are similar, though not equivalent.
However, if the population size N is large, the
hypergeometric distribution is often approxi-
mated by the binomial distribution with equa-
tion (6) causing only little deviation from the
true probabilities of equation (15).

Application
Let’s see how the hypergeometric distribution
has been applied in a Federal Reserve Bank
of Cleveland study by Humpage (1998) to as-
sess whether U.S. exchange-rate intervention
resulted in a desired depreciation of the dollar.

Consider the following scenario. The U.S.
dollar is appreciating against a certain foreign
currency. This might hurt U.S. exports to the
country whose sovereign issues the particular
foreign currency. In response, the U.S. Federal
Reserve might be inclined to intervene by pur-
chasing that foreign currency to help depreciate
the U.S. dollar through the increased demand
for foreign currency relative to the dollar.
This strategy, however, may not necessarily
produce the desired effect. That is, the dollar
might continue to appreciate relative to the
foreign currency. Let’s let an intervention by
the Federal Reserve be defined as the purchase
of that foreign currency. Suppose that we let the
random variable X be number of interventions
that lead to success (i.e., depreciation of the
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dollar). Given certain conditions beyond the
scope of this book, the random variable X is
approximately distributed hypergeometric.

This can be understood by the following
slightly simplified presentation. Let the num-
ber of total observations be N days of which
K is the number of days with a dollar de-
preciation (with or without intervention), and
N − K is the number of days where the dollar
appreciated or remained unchanged. The num-
ber of days the Federal Reserve intervenes is
given by n. Furthermore, let k equal the num-
ber of days the interventions are successful so
that n − k accounts for the unsuccessful inter-
ventions. The Federal Reserve could technically
intervene on all N days that would yield a to-
tal of K successes and N − K failures. How-
ever, the actual number of occasions n on which
there are interventions might be smaller. The
n interventions can be treated as a sample of
length n taken from the total of N days without
replacement.

The model can best be understood as fol-
lows. The observed dollar appreciations, persis-
tence, or depreciations are given observations.
The Federal Reserve can merely decide to in-
tervene or not. Consequently, if it took action
on a day with depreciation, it would be con-
sidered a success and the number of successes
available for future attempts would, therefore,
be diminished by one. If, on the other hand, the
Federal Reserve decided to intervene on a day
with appreciation or persistence, it would incur
a failure that would reduce the number of avail-
able failures left by one. The N − n days there
are no interventions are treated as not belong-
ing to the sample.

The randomness is in the selection of the days
on which to intervene. The entire process can
be illustrated by a chain with N tags attached
to it containing either a + or − symbol. Each
tag represents one day. A + corresponds to an
appreciation or persistence of the dollar on the
associated day, while a − to a depreciation. We
assume that we do not know the symbol behind
each tag at this point.

In total, we have K tags with a + and N − K
with a − tag. At random, we flip n of these tags,
which is equivalent to the Federal Reserve tak-
ing action on the respective days. Upon turning
the respective tag upside right, the contained
symbol reveals immediately whether the asso-
ciated intervention resulted in a success or not.

Suppose we have N = 3,072 total observa-
tions of which K = 1,546 represents the num-
ber of days with a dollar depreciation, while on
N − K = 1,508 days the dollar either became
more valuable or remained steady relative to
the foreign currency.

Again, let X be the hypergeometric random
variable describing successful interventions.
On n = 138 days, the Federal Reserve saw rea-
son to intervene, that is, purchase foreign cur-
rency to help bring down the value of the dollar
which was successful on k = 51 days and un-
successful on the remaining n − k = 87 days.
Concisely, the values are given by N = 3,072,
K = 1,546, N − K = 1,508, n = 138, k = 51, and
n − k = 87.

So, the probability for this particular outcome
k = 51 for the number of successes X given
n = 138 trials is

P(X = 51) =

(
1546

51

) (
1508

87

)

(
3072
138

) = 0.00013429

which is an extremely small probability.
Suppose we state the simplifying hypothesis

that the Federal Reserve is overall successful
if most of the dollar depreciations have been
the result of interventions (i.e., purchase of for-
eign currency). Then, this outcome with k = 51
successful interventions given a total of N − K
depreciations shows that the decline of the dol-
lar relative to the foreign currency might be
the result of something other than a Federal
Reserve intervention. Hence, the Federal Re-
serve intervention might be too vague a forecast
of a downward movement of the dollar relative
to the foreign currency.
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MULTINOMIAL
DISTRIBUTION
For our next distribution, the multinomial dis-
tribution, we return to the realm of drawing
with replacement so that for each trial, there
are exactly the same conditions. That is, we
are dealing with independent and identically
distributed random variables. (Once again we
note that we are still short of a formal definition
of independence in the context of probability
theory. We use the term in the sense of “un-
influenced by.”) However, unlike the binomial
distribution, let’s change the population so that
we have not only two different possible out-
comes for one drawing, but a third or possibly
more outcomes.

We extend the illustration where we used
an urn containing black and white balls. In
our extension, we have a total of N balls with
three colors: Kw white balls, Kb black balls, and
Kr = N − Kw − Kb red balls. The probability of
each of these colors is denoted by

P(Y = white) = pw

P(Y = black) = pb

P(Y = red) = pr

with each of these probabilities representing the
population share of the respective color: pi =
Ki/N, for i = white, black, and red. Since all
shares combined have to account for all N, we
set

pr = 1 − pb − pw

For purposes of this illustration, let pw = pb

= 0.3 and pr = 0.4. Suppose that in a sample of
n = 10 trials, we obtain the following result: nw

= 3 white, nb = 4 black, and nr = n − nw − nb =
3 red. Furthermore, suppose that the balls were
drawn in the following order

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10
r w b b w r r b w b

where the random variable Yi represents the
outcome of the i-th trial. (We denote w = white,

b = black, and r = red.) This particular sample
occurs with probability

P(Y1 = r, Y2 = w, . . . , Y10 = b) = pr · pw · . . . · pb

= p3
r · p3

w · p4
b

The last equality indicates that the order of ap-
pearance of the individual values, once again,
does not matter.

We introduce the random variable X repre-
senting the number of the individual colors oc-
curring in the sample. That is, X consists of the
three components Xw, Xb, and Xr or, alterna-
tively, X = (Xw, Xb, Xr). Analogous to the bino-
mial case of two colors, we are not interested
in the order of appearance, but only in the re-
spective numbers of occurrences of the different
colors (i.e., nw, nb, and nr). Note that several dif-
ferent sample outcomes may lead to X = (nw,
nb, nr). The total number of different nonredun-
dant samples with nw, nb, and nr is given by
the multinomial coefficient introduced in Ap-
pendix B, which here yields

(
n

nw nb nr

)
=

(
10

3 3 4

)
= 4,200

Hence, the probability for this value of X =
(kw, kb, kr) = (3,4,3) is then

P(X = (3, 4, 3)) =
(

10
3 3 4

)
· p3

w · p4
b · p3

r

= 4,200 · 0.33 · 0.34 · 0.43

= 0.0588

In general, the probability distribution of a
multinomial random variable X with k compo-
nents X1, X2, . . . , Xk is given by

P(X1 = n1, X2 = n2, . . . , , Xk = nk)

=
(

n
n1 n2 . . . nk

)
· pn1

1 · pn2
2 · . . . · pnk

k (16)

where, for j = 1, 2, . . . , k, nj denotes the outcome
of component j and the pj the corresponding
probability.
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The means of the k components X1 through
Xk are given by

E(X1) = p1 · n
...

E(Xk) = pk · n

and their respective variances by

Var(X1) = σ 2
1 = p1 · (1 − p1) · n

...
Var(Xk) = σ 2

k = pk · (1 − pk) · n

Multinomial Stock Price Model
We can use the multinomial distribution to ex-
tend the binomial stock price model described
earlier. Suppose we are given a stock with price
S0, in t = 0. In t = 1, the stock can have either
price

S(u)
1 = S0 · u

S(l)
1 = S0 · l

S(d)
1 = S0 · d

Let the three possible outcomes be a 10% in-
crease in price (u = 1.1), no change in price
(l = 1.0), and a 10% decline in price (d = 0.9).
That is, the price either goes up by some factor,
remains steady, or drops by some factor. There-
fore,

S(u)
1 = S0 · 1.1

S(l)
1 = S0 · 1.0

S(d)
1 = S0 · 0.9

Thus, we have three different outcomes of the
price change in the first period. Suppose the
price change behaved the same in the second
period, from t = 1 until t = 2. So, we have

S(u)
2 = S1 · 1.1

S(l)
2 = S1 · 1.0

S(d)
2 = S1 · 0.9

at time t = 2 depending on

S1 ∈
{

S(u)
1 , S(l)

1 , S(d)
1

}

Let’s denote the random price change in the
first period by Y1 and the price change in the
second period by the random variable Y2. So, it
is obvious that Y1 and Y2 independently assume
some value in the set {u,l,d} = {1.1,1.0,0.9}. Af-
ter two periods (i.e., in t = 2), the stock price is

S2 = S0 · Y1 · Y2 ∈
{

S(u)
2 , S(l)

2 , S(d)
2

}

Note that the random variable S2 is not multi-
nomially distributed itself. However, as we will
see, it is immediately linked to a multinomial
random variable.

Since the initial stock price S0 is given, the
random variable of interest is the product
Y1 · Y2, which is in a one-to-one relationship
with the multinomial random variable X = (nu,
nl, nd) (i.e., the number of up-, zero-, and down-
movements, respectively). The state space of
Y1 · Y2 is given by {uu,ul,ud,ll,ld,dd}. This corre-
sponds to the state space of X, which is given by

�′ = {(2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1),

(0, 1, 1)}
Note that since Y1 · Y2 is a product, we do

not consider, for example, (Y1 = u, Y2 = d) and
(Y1 = d, Y2 = u) separately. With

P(Yi = u) = pu = 0.25

P(Yi = l) = pl = 0.50

P(Yi = d) = pd = 0.25

the corresponding probability distribution of X
is given in the first two columns of Table 1. We
use the multinomial coefficient

(
n

nu nl nd

)

where

n = the number of periods
nu = the number of up-movements
nl = number of zero movements
nd = number of down-movements

Now, if S0 = $20, then we obtain the proba-
bility distribution of the stock price in t = 2 as
shown in columns 2 and 3 in Table 1. Note that
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Table 1 Probability Distribution of the Two-Period Stock Price Model

X = (nu, nl, nd) P(X = ·) S2 = ·

(2,0,0)
(

2
2 0 0

)
pu pu = 0.0625 S0 · u2 = 20 · 1.12 = 24.2

(1,1,0)
(

2
1 1 0

)
pu pl = 2 · 0.25 · 0.5 = 0.25 S0 · u · l = 20 · 1.1 · 1.0 = 22

(1,0,1)
(

2
1 0 1

)
pu pd = 2 · 0.252 = 0.125 S0 · u · d = 20 · 1.1 · 0.9 = 19.8

(0,2,0)
(

2
0 2 0

)
pl pl = 0.52 = 0.25 S0 · l · l = 20 · 1.02 = 20

(0,1,1)
(

2
0 1 1

)
pl pd = 2 · 0.5 · 0.25 = 0.25 S0 · l · d = 20 · 1.0 · 0.9 = 18

(0,0,2)
(

2
0 0 2

)
pd pd = 0.252 = 0.0625 S0 · d2 = 20 · 0.92 = 16.2

In the first and second columns, we have the probability distribution of the two period stock price changes X =
Y1 · Y2 in the multinomial stock price model. In the third column, we have the probability distribution of the stock
price S2.

the probabilities of the values of S2 are asso-
ciated with the corresponding price changes X
and, hence, listed on the same lines of Table 1.
It is now possible to evaluate the probability
of events such as, “a stock price S2 of, at most,
$22,” from the σ -algebra A

′ of the multinomial
probability space of X. This is given by

P(S2 ≤ $22)
= P(S2 = $16.2) + P(S2 = $18) + P(S2 = $19.8)

+ P(S2 = $20) + P(S2 = $22)

0 1 2 t

S1 S2S0

$20
$20

$24.20

$22

$19.80

$18

$16.20

$22

$18

$20

Figure 6 Multinomial Stock Price Model: Stock Price S2, in t = 2

= 0.25 + 0.125 + 0.25 + 0.25 + 0.0625

= 1 − P(S2 = $24.2)

= 0.9375

where the second line is the result of the fact
that the sum of the probabilities of all disjoint
events has to add up to one. That follows since
any event and its complement account for the
entire state space �′.

In Figure 6, we can see the evolution of the
stock price along the different paths.
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From equation (1), the expected stock price in
t = 2 is computed as

E(S2) =
∑

s∈�′
s · P(S2 = s)

= $16.2 · 0.0625 + $18 · 0.25 + $19.8 · 0.125
+ $20 · 0.25 + $22 · 0.25 + $24.2 · 0.0625

= $20

So, on average, the stock price will remain un-
changed.

POISSON DISTRIBUTION
To introduce our next distribution, consider the
following situation. A property and casualty in-
surer underwrites a particular type of risk, say,
automotive damage. Overall, the insurer is in-
terested in the total annual dollar amount of the
claims from all policies underwritten. The total
is the sum of the individual claims of differ-
ent amounts. The insurer has to have enough
equity as risk guarantee. In a simplified way,
the sufficient amount is given by the number
of casualties N times the average amount per
claim.

In this situation, the insurer’s interest is in the
total number of claims N within one year. Note
that there may be multiple claims per policy.
This number N is random because the insurer
does not know its exact value at the beginning
of the year. The insurer knows, however, that
the minimum number of casualties possible is
zero. Theoretically, although it is unlikely, there
may be infinitely many claims originating from
the year of interest.

So far, we have considered the number of
claims over the period of one year. It could be
of interest to the insurer, however, to know the
behavior of the random variable N over a pe-
riod of different length, say five years, or even
the number of casualties related to one month
could be of interest. It might be reasonable to as-
sume that there will probably be fewer claims
in one month than in one year or five years.

The number of claims, N, as a random variable
should follow a probability law that accounts
for the length of the period under analysis. In
other words, the insurers want to assure that
the probability distribution of N gives credit to
N being proportional to the length of the period
in the sense that if a period is n times as long
as another, then the number of claims expected
over the longer period should be n times as
large, as well.

As a candidate that satisfies these require-
ments, we introduce the Poisson distribution
with parameter λ formally expressed as Poi(λ).
We define that the parameter is a positive real
number (i.e., λ > 0). A Poisson random variable
N—that is, X ∼ Poi(λ)—assumes nonnegative
integer values. Formally, N is a function map-
ping the space of outcomes, �, into the state
space

�′ = {0, 1, 2, . . .}
which is the set N of the nonnegative integer
numbers.

The probability measure of a Poisson random
variable N for nonnegative integers k = 0, 1,
2, . . . is defined as

P(N = k) = λk

k!
e−λ (17)

where e = 2.7183 is the Euler constant. Here, we
have unit period length.

The mean of a Poisson random variable with
parameter λ is

E(N) = λ

while its variance is given by

Var(N) = σ 2 = λ (18)

So, both parameters, mean and variance, of
N ∼ Poi(λ) are given by the parameter λ.

For a period of general length t, equation (17)
becomes

P(N = k) = (λt)k

k!
e−λt (19)
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We can see that the new parameter is now
λt, accounting for the time proportionality of
the distribution of N, that is, N = N(t) is the
number of jumps of size 1 in the interval (0, t).
The mean changes to

EN(t) = λt (20)

and analogous to the variance given by (18) is
now

Var(N(t)) = σ 2(t) = λt (21)

We can see by equation (20) that the average
number of occurrences is the average per unit
of time, λ, times the length of the period, t, in
units of time. The same holds for the variance
given by equation (21).

The Poisson distribution serves as an ap-
proximation of the hypergeometric distribution
when certain conditions are met regarding sam-
ple size and parameter p.

Application to Credit Risk
Modeling for a Bond Portfolio
The Poisson distribution is typically used in fi-
nance for credit risk modeling. For example,
suppose we have a pool of 100 bonds issued by
different corporations. By experience or empir-
ical evidence, we may know that each quarter
of a year the expected number to default is two;
that is, λ = 2. Moreover, from prior research,
we can approximate the distribution of N by
the Poisson distribution, even though, theoret-
ically, the Poisson distribution admits values k
greater than 100. What is the number of bonds
to default within the next year, on average?
According to equation (3), since the mean is
Equarter(N) = λ = 2 per quarter, the mean per year
(t = 4) is

Eyear(N) = λt = 2 · 4 = 8

By equation (20), the variance is 8, from equa-
tion (19), the probability of, at most, 10 bonds

to default is given by

P(N ≤ 10) = P(N = 0) + P(N = 1) + · · ·
+ P(N = 10)

= e−2×4 · (2 × 4)0

0!
+e−2×4 · (2 × 4)1

1!
+ · · ·

+ e−2×4 · (2 × 4)10

10!
= 0.8159

DISCRETE UNIFORM
DISTRIBUTION
Consider a probability space (�′, A

′, P) where
the state space is a finite set of, say n, outcomes,
that is, �′ = {x1 x2, . . . , xn}. The σ -algebra A

′ is
given by the power set of �′.

So far we have explained how drawings from
this �′ may be modeled by the multinomial dis-
tribution. In the multinomial distribution, the
probability of each outcome may be different.
However, suppose that the for our random vari-
able X, we have a constant P(X = xj) = 1/n, for
all j = 1, 2, . . . . , n. Since all values xj have the
same probability (i.e., they are equally likely),
the distribution is called the discrete uniform dis-
tribution. We denote this distribution by X ∼
DU�′ . We use the specification �′ to indicate
that X is a random variable on this particular
state space.

The mean of a discrete, uniformly distributed
random variable X on the state space �′ = {x1,
x2, . . . , xn} is given by

E(X) =
n∑

i=1

pi · xi = 1
n

n∑

i=1

xi (22)

Note that equation (22) is equal to the arithmetic
mean. The variance is

Var(X) =
∑

i :xi ∈�′
pi ·(xi − E(X))2

= 1
n

∑

i :xi ∈�′
(xi − E(X))2

with E(X) from equation (22).



184 Probability Theory

A special case of a discrete uniform probabil-
ity space is given when �′ = {1,2, . . . , n}. The
resulting mean, according to equation (22), is
then,

E(X) =
n∑

i=1

pi · xi = 1
n

n∑

i=1

i

= 1
n

× n(n + 1)
2

= n + 1
2

(23)

For this special case of discrete uniform dis-
tribution of a random variable X, we use the
notation X ∼ DU(n) with parameter n.

Let’s once more consider the outcome of a
toss of a dice. The random variable number of
dots, X, assumes one of the numerical outcomes
1, 2, 3, 4, 5, 6 each with a probability of 1/6.
Hence, we have a uniformly distributed dis-
crete random variable X with the state space
�′ = {1, 2, 3, 4, 5, 6}. Consequently, we express
this as X ∼ DU (6).

Next, we want to consider several indepen-
dent trials, say n = 10, of throwing the dice. By
n1, n2, n3, n4, n5, and n6, we denote the num-
ber of occurrence of the values 1, 2, 3, 4, 5, and
6, respectively. With constant probability p1 =
p2 = . . . = p6 = 1/6, we have a discrete uni-
form distribution, that is, X ∼ DU (6). Thus, the
probability of obtaining n1 = 1, n2 = 2, n3 = 1,
n4 = 3, n5 = 1, and n6 = 2, for example, is

P(X1 = 1, X2 = 1, . . . , X6 = 2)

=
(

10
1 2 . . . 2

) (
1
6

)10

= 10!
1! × 2! × . . . × 2!

·
(

1
6

)10

= 151200 · 0.00000016538

= 0.0025

Application to the Multinomial
Stock Price Model
Let us resume the stock price model where in
t = 0 we have a given stock price, say S0 = $20,
where there are three possible outcomes at the
end of the period. In the first period, the stock

price either increases to

S(u)
1 = S0 · 1.1 = $22

remains the same at

S(l)
1 = S0 · 1.0 = $20

or decreases to

S(d)
1 = S0 · 0.9 = $18

each with probability 1/3. Again, we introduce
the random variable Y assuming the values
u = 1.1, l = 1.0, and d = 0.9 and, thus, repre-
senting the percentage change of the stock price
between t = 0 and t + 1 = 1. The stock price in
t + 1 = 1 is given by the random variable S1 on
the corresponding state space

�S =
{

S(u)
1 , S(l)

1 , S(d)
1

}

Suppose we have n = 10 successive periods
in each of which the stock price changes by the
factors u, l, or d. Let the multinomial random
variable X = (X1, X2, X3) represent the total of
up-, zero-, and down-movements, respectively.
Suppose, after these n periods, we have nu =
3 up-movements, nl = 3 zero-movements, and
nd = 4 down-movements. According to equa-
tion (16), the corresponding probability is

P(X1 = 3, X2 = 3, X3 = 4) =
(

10
3 3 4

) (
1
3

)10

= 4200·0.00001935

= 0.0711

This probability corresponds to a stock price in
t = 10 of

S10 = S0 · u3 · l3 · d4 = $20 · 1.13 · 1 · 0.94 = $17.47

This stock price is a random variable given by

S10 = S0 · Y1 · Y2 · . . . · Y10

where the Yi are the corresponding relative
changes (i.e., factors) in the periods i = 1, 2, . . . ,
10. Note that S10 is not uniformly distributed
even though it is a function of the random vari-
ables Y1, Y2, . . . , Y10 because its possible out-
comes do not have identical probability.
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B(n, p), Binomial Probability Distribution

P(X = k) =
(

n
k

)
· pk · (1 − p)n−k for n = 5

p 0.1 0.2 0.5 0.8 0.9
k

1 0.3281 0.4096 0.1563 0.0064 0.0005
2 0.0729 0.2048 0.3125 0.0512 0.0081
3 0.0081 0.0512 0.3125 0.2048 0.0729
4 0.0005 0.0064 0.1563 0.4096 0.3281
5 0 0.0003 0.0313 0.3277 0.5905

B(n, p), Binomial Probability Distribution

P(X = k) =
(

n
k

)
· pk · (1 − p)n−k for n = 10

p 0.1 0.2 0.5 0.8 0.9
k

1 0.3874 0.2684 0.0098 0 0
2 0.1937 0.3020 0.0439 0.0001 0
3 0.0574 0.2013 0.1172 0.0008 0
4 0.0112 0.0881 0.2051 0.0055 0.0001
5 0.0015 0.0264 0.2461 0.0264 0.0015
6 0.0001 0.0055 0.2051 0.0881 0.0112
7 0 0.0008 0.1172 0.2013 0.0574
8 0 0.0001 0.0439 0.3020 0.1937
9 0 0 0.0098 0.2684 0.3874

10 0 0 0.0010 0.1074 0.3487

B(n, p), Binomial Probability Distribution

P(X = k) =
(

n
k

)
· pk · (1 − p)n−k for n = 50

p 0.1 0.2 0.5 0.8 0.9
k

1 0.0286 0.0002 0 0 0
2 0.0779 0.0011 0 0 0
3 0.1386 0.0044 0 0 0
4 0.1809 0.0128 0 0 0
5 0.1849 0.0295 0 0 0
6 0.1541 0.0554 0 0 0
7 0.1076 0.0870 0 0 0
8 0.0643 0.1169 0 0 0
9 0.0333 0.1364 0 0 0

p 0.1 0.2 0.5 0.8 0.9
k

10 0.0152 0.1398 0 0 0
20 0 0.0006 0.0419 0 0
30 0 0 0.0419 0.0006 0
40 0 0 0 0.1398 0.0152
41 0 0 0 0.1364 0.0333
42 0 0 0 0.1169 0.0643
43 0 0 0 0.0870 0.1076
44 0 0 0 0.0554 0.1541
45 0 0 0 0.0295 0.1849
46 0 0 0 0.0128 0.1809
47 0 0 0 0.0044 0.1386
48 0 0 0 0.0011 0.0779
49 0 0 0 0.0002 0.0286
50 0 0 0 0 0.0052

B(n, p), Binomial Probability Distribution

P(X = k) =
(

n
k

)
· pk · (1 − p)n−k for n = 100

p 0.1 0.2 0.5 0.8 0.9
k

1 0.0003 0 0 0 0
2 0.0016 0 0 0 0
3 0.0059 0 0 0 0
4 0.0159 0 0 0 0
5 0.0339 0 0 0 0
6 0.0596 0.0001 0 0 0
7 0.0889 0.0002 0 0 0
8 0.1148 0.0006 0 0 0
9 0.1304 0.0015 0 0 0

10 0.1319 0.0034 0 0 0
20 0.0012 0.0993 0 0 0
30 0 0.0052 0 0 0
40 0 0 0.0108 0 0
50 0 0 0.0796 0 0
60 0 0 0.0108 0 0
70 0 0 0 0.0052 0
80 0 0 0 0.0993 0.0012
90 0 0 0 0.0034 0.1319
91 0 0 0 0.0015 0.1304
92 0 0 0 0.0006 0.1148
93 0 0 0 0.0002 0.0889
94 0 0 0 0.0001 0.0596
95 0 0 0 0 0.0339
96 0 0 0 0 0.0159
97 0 0 0 0 0.0059
98 0 0 0 0 0.0016
99 0 0 0 0 0.0003

100 0 0 0 0 0
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Poi(λ), Poisson Probability Distribution

P(X = k) = λk · e−λ

x!
for Several Values of

Parameter λ

λ 0.1 0.5 1 2 5 10
k

1 0.0905 0.3033 0.3679 0.2707 0.0337 0.0005
2 0.0045 0.0758 0.1839 0.2707 0.0842 0.0023
3 0.0002 0.0126 0.0613 0.1804 0.1404 0.0076
4 0 0.0016 0.0153 0.0902 0.1755 0.0189
5 0 0.0002 0.0031 0.0361 0.1755 0.0378
6 0 0 0.0005 0.0120 0.1462 0.0631
7 0 0 0.0001 0.0034 0.1044 0.0901
8 0 0 0 0.0009 0.0653 0.1126
9 0 0 0 0.0002 0.0363 0.1251

10 0 0 0 0 0.0181 0.1251
11 0 0 0 0 0.0082 0.1137
12 0 0 0 0 0.0034 0.0948
13 0 0 0 0 0.0013 0.0729
14 0 0 0 0 0.0005 0.0521
15 0 0 0 0 0.0002 0.0347
16 0 0 0 0 0 0.0217
17 0 0 0 0 0 0.0128
18 0 0 0 0 0 0.0071
19 0 0 0 0 0 0.0037
20 0 0 0 0 0 0.0019
50 0 0 0 0 0 0

100 0 0 0 0 0 0

APPENDIX B BINOMIAL
AND MULTINOMIAL
COEFFICIENTS
In this appendix, we explain the concept of the
binomial and multinomial coefficients used in
discrete probability distributions.

BINOMIAL COEFFICIENT
The binomial coefficient is defined as

(
n
k

)
= n!

k!(n − k)!

for some nonnegative integers k and n with 0 ≤
k ≤ n. For the binomial coefficient, we use the
factorial operator denoted by the “!” symbol. A
factorial is defined in the set of natural numbers

N that is k = 1, 2, 3, . . . as

k! = k · (k − 1) · (k − 2) · . . . · 1

For k = 0, we define 0! ≡ 1.

Derivation of the Binomial
Coefficient
In the context of the binomial distribution, we
form the sum X of n independent and iden-
tically distributed Bernoulli random variables

Yi with parameter p or, formally, Yi
iid∼B(p),

i = 1, 2, . . . , n. The random variable is then dis-
tributed binomial with parameters n and p, i.e.,
X ∼ B(n, p). Since the random variables Yi have
either value 0 or 1, the resulting binomial ran-
dom variable (i.e., the sum X) assumes some
integer value between 0 and n. Let X = k for
0 ≤ k ≤ n. Depending on the exact value k, there
may be several alternatives to obtain k since,
for the sum X, it is irrelevant in which order the
individual values of the Yi appear.

Special Case n = 3
We illustrate the special case where n = 3 using a
B(3,0.4) random variable X; that is, X is the sum
of three independent B(0.4) distributed random
variables Y1, Y2, and Y3. All possible values for
X are contained in the state space �′ = {0, 1, 2,
3}. As we will see, some of these k ∈ �′ can be
obtained in different ways.

We start with k = 0. This value can only be
obtained when all Yi are 0, for i = 1, 2, 3. So,
there is only one possibility.

Next we consider k = 1. A sum of X = 1 can
be the result of one Yi = 1 while the remain-
ing two Yi are 0. We have three possibilities for
Yi = 1 since it could be either the first, the sec-
ond, or the third of the Bernoulli random vari-
ables. Then we place the first 0. For this, we have
two possibilities since we have two Yi left that
are not equal to 1. Next, we place the second 0,
which we have to assign to the remaining Yi.
As an intermediate result, we have 3 · 2 · 1 = 6
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Y1 Y2 Y3 Y1 Y2 Y3

=

=

=Y2 = 1

Y3 = 1 1 2

22

2

1

1 1

1

1

2 2Y1 = 1

Figure B.1 Three Different Ways to Obtain a Total of X =
3∑

i=1
Yi = 1

Note: The alternatives matched by the = symbol lead to the same outcome, respectively.

possibilities. However, we do not need to dif-
ferentiate between the two 0 values because it
does not matter which of the zeros is assigned
first and which second. So, we divide the total
number of options by the number of possibili-
ties to place the 0 values (i.e., 2). The resulting
number of possible ways to end up with X = 1
is

3 · 2 · 1
2

= 3!
2! · 1!

= 3

For reasons we will make clear later, we intro-
duced the middle term in the above equation.

Let us illustrate this graphically. In Figure B.1,
a black ball represents a value Yi = 1 at the
i-th drawing while the white numbered circles
represent a value of Yi = 0 at the respective
i-th drawing with i matching the number in the
circle.

Now let k = 2. To yield the sum X = 2, we
need two Yi = 1 and one Yi = 0. So, we have
three different positions to place the 0, while
the remaining two Yi have to be equal to 1 au-
tomatically. Analogous to the prior case, X = 1,
we do not need to differentiate between the two
1 values, once the 0 is positioned.

Finally, let k = 3. This is accomplished by all
three Yi = 1. So, there is only one possibility to
obtain X = 3.

We summarize these results in Table B.1.

Special Case n = 4
We extend the prior case to the case where
the random variable X is the sum of four
Bernoulli distributed random variables—that
is, Yi

iid
∼ B(p), i = 1, 2, 3, 4—assuming either

value 0 or 1 for each. The resulting sum X is
then binomial distributed B(4, p) assuming
values k in the state space �′ = {0,1,2,3,4}.
Again, we will analyze how the individual
values of the sum X can be obtained.

To begin, let us consider the case k = 0. As in
the prior case n = 3, we have only one possibil-
ity (i.e., all four Yi equal to 0, that is, Y1 = Y2 =
Y3 = Y4 = 0). This can be seen from the follow-
ing. Technically, we have four positions to place
the first 0. Then, we have three choices to place
the second 0. For the third 0, we have two po-
sitions available, and one for the last 0. In total,
we have

4 × 3 × 2 × 1 = 24

Table B.1 Different Choices to Obtain X = k when n = 3

k = 0 k = 1 k = 2 k = 3

1 = 3!
0! × 3!

=
(

3
0

)
3 = 3!

1! × 2!
=

(
3
1

)
3 = 3!

2! × 1!
=

(
3
2

)
1 = 3!

3! × 0!
=

(
3
3

)
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Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4

=

= 1

21

2

1 2

2

Y1 = Y2 = 1

Y1 = Y2 = 1 2=

Y1 = Y2 = 1 2

1 2

1

1

12

1

Figure B.2 Four Different Ways to Obtain Y1 = Y2 = 1

But due to the fact that we do not care about
the order of the 0 values, we divide by the total
number of options (i.e., 24) and then obtain

4 × 3 × 2 × 1
4 × 3 × 2 × 1

= 4!
4!

= 1

Next, we derive a sum of k = 1. This can be
obtained in four different ways. The reasoning
is similar to that in the case k = 1 for n = 3.
We have four positions to place the 1. Once the
1 is placed, the remaining Yi have to be auto-
matically equal to 0. Again, the order of placing
the 0 values is irrelevant, which eliminates the
redundant options through division of the total
number by 3 × 2 × 1 = 6. Technically, we have

4 × 3 × 2 × 1
3 × 2 × 1

= 4!
3!

= 4

For a sum X equal to k = 2, we have four dif-
ferent positions to place the first 1. Then, we
have three positions left to place the second 1.
This yields 4 × 3 = 12 different options. How-
ever, we do not care which one of the 1 values
is placed first since, again, their order is irrel-
evant. So, we divide the total number by 2 to

Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4

=

=

=

212

2

2

1

2

2

2

1Y1 = Y3 = 1

Y1 = Y3 = 1

Y1 = Y3 = 1 2

1 1

1

21211

Figure B.3 Four Different Ways to Obtain Y1 = Y3 = 1

indicate that the order of the two 1 values is
unimportant. Next, we place the first 0, which
offers us two possible positions for the remain-
ing Yi that are not equal to 1 already. For this,
we have two options. In total, we then have

4 × 3 × 2 × 1
2 × 1

= 4!
2!

= 12

possibilities. Then, the second 0 is placed on the
remaining Yi. So, there is only one choice for
this 0. Because we do not care about the order
of placement of the 2 values, we divide by 2.
The resulting number of different ways to yield
a sum X of k = 2 is

4 × 3 × 2 × 1
2 × 1 × 2 × 1

= 4!
2! × 2!

= 6

which is illustrated in Figures B.2 through B.7.
A sum of X equal to k = 3 is achieved by three

1 values and one 0 value. So, since the order of
the 1 values is irrelevant due to the previous
reasoning, we only care about where to place
the 0 value. We have four possibilities, that is,

4 × 3 × 2 × 1
3 × 2 × 1

= 4!
3!

= 4
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Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4

1 1 22 2 1 2 1

1 2 1 2

2 2 1 1

=

=

=

212

Y1 = Y4 = 1

Y1 = Y4 = 1

Y1 = Y4 = 1

Figure B.4 Four Different Ways to Obtain Y1 = Y4 = 1

Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4

1 1 2 2 1 2

2 1 1

2 2 1

=

=

=

Y2 = Y3 = 1

Y2 = Y3 = 1

Y2 = Y3 = 1

12

2

1

Figure B.5 Four Different Ways to Obtain Y2 = Y3 = 1

Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4

1 1 2 2 1 2 2 1

2 1 1 2

2 2 1 1

=

=

=

212

Y2 = Y4 = 1

Y2 = Y4 = 1

Y2 = Y4 = 1

Figure B.6 Four Different Ways to Obtain Y2 = Y4 = 1

Y1 Y2 Y3 Y4 Y1 Y2 Y3 Y4

1 1 1 2
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=

=

=

212

Y3 = Y4 = 1

Y3 = Y4 = 1

Y3 = Y4 = 1

2 2

1

12
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1

2

Figure B.7 Four Different Ways to Obtain Y3 = Y4 = 1
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Table B.2 Different Choices to Obtain X = k when n = 4

k = 0 k = 1 k = 2 k = 3 k = 4

1 = 4!
0! × 4!

=
(

4
0

)
4 = 4!

1! × 3!
=

(
4
1

)
6 = 4!

2! × 2!
=

(
4
2

)
4 = 4!

3! × 1!
=

(
4
3

)
1 = 4!

4! × 0!
=

(
4
4

)

Finally, to obtain k = 4, we only have one
possible way to do so, as in the case where
k = 0. Mathematically, this is

4 × 3 × 2 × 1
4 × 3 × 2 × 1

= 4!
4!

= 1

We summarize the results in Table B.2.

General Case
Now we generalize for any n ∈ N (i.e., some
nonnegative integer number). The binomial
random variable X is hence the B(n, p) dis-
tributed sum of n independent and identically
distributed random variables Yi

From the two special cases (i.e., n = 3 and
n = 4), it seems that to obtain the number of
choices for some 0 ≤ k ≤ n, we have n! in the
numerator to account for all the possibilities
to assign the individual n values to the Yi, no
matter how many 1 values and 0 values we
have. In the denominator, we correct for the
fact that the order of the 1 values and 0 values
is irrelevant. That is, we divide by the number
of different orders to place the 1 values on the
Yi that are equal to 1, and also by the number
of different orders to assign the 0 values to the
Yi being equal to 0. Therefore, we have n! in the

numerator and k! × (n − k)! in the denominator.
The result is illustrated in Table B.3.

MULTINOMIAL
COEFFICIENT
The multinomial coefficient is defined as

(
n

n1 n2 · · · nk

)
= n!

n1! · n2! · . . . · nk !

for n1 + n2 + . . . + nk = n. Sometimes, the multi-
nominal coefficient is referred to as the polyno-
mial coefficient.

Assume we have some population of balls
with k different colors. Suppose n times we
draw some ball and return it to the popula-
tion such that for each trial (i.e., drawing), we
have the identical conditions. Hence, the indi-
vidual trials are independent of each other. Let
Yi denote the color obtained in the i-th trial for
i = 1, 2, . . . , n.

How many different possible samples of
length n are there? Let us think of the draw-
ings in a different way. That is, we draw one
ball after another disregarding color and assign
the drawn ball to the trials Y1 through Yn in an
arbitrary fashion.

Table B.3 Different Choices to Obtain X = k for General n

k = 0 k = 1 k = 2

1 = n!
0! × n!

=
(

n
0

)
n = n!

1! × (n − 1)!
=

(
n
1

)
n × (n − 1)

2
= n!

2! × (n − 2)!
=

(
n
2

)

. . . k = n − 1 k = n

. . . n = n!
(n − 1)! × 1!

=
(

n
n − 1

)
n = n!

n! × 0!
=

(
n
n

)
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First, we draw a ball with any of the k colors
and assign it to one of the n trials, Yi. Next, we
draw the second ball and assign it to one of the
remaining n − 1 possible trials i as outcome of
Yi. This yields

n × (n − 1)

different possibilities. The third ball drawn is
assigned to the n − 2 trials left so that we have

n × (n − 1) × (n − 2)

possibilities, in total. This is continued until we
draw the nth (i.e., the last), color, which can only
be placed in the last remaining trial Yi. In total
this yields

n × (n − 1) × (n − 2) × . . . × 2 × 1 = n!

different possibilities of drawing n balls.
The second question is how many different

possibilities are there to obtain a sample with
the number of occurrences n1, n2, . . . , and nk of
the respective colors. Let red be one of these
colors and suppose we have a sample with a
total of nr = 3 red balls from trials 2, 4, and 7 so
that Y2 = Y4 = Y7 = red. The assignment of red
to these three trials yields

3! = 3 × 2 × 1 = 6

different orders of assignment. Now, we are in-
different with respect to which of the Y2, Y4,
and Y7 was assigned red first, second, and third.
Thus, we divide the total number n! of different
samples by nr! = 3! to obtain only nonredundant
results with respect to a red ball. We proceed in
the same fashion for the remaining colors and,
finally, obtain for the total number of nonredun-
dant samples containing n1 of color 1, n2 of color
2, . . . , and nk of color k

(
n!

n1 n2 . . . nk

)
= n!

n1! × n2! × . . . × nk !

which is exactly the multinomial coefficient
equation given above.

KEY POINTS
� A discrete law or probability distribution is

related to some discrete random variable, that
is, a random variable that can assume values
from a countable set of values. Typical exam-
ples include counts (i.e., the number of items
meeting certain requirements) and number of
hits.

� The most important discrete random vari-
ables used in finance and their probability
distribution are the Bernoulli, binomial, hy-
pergeometric, multinomial, Poisson, and dis-
crete uniform.

� The Bernoulli distribution might be the most
famous discrete law. It is applied when a ran-
dom variable can only assume one of two
values—0 or 1. A simple example would be
the toss of a coin. In financial models, it is ap-
plied if it is of interest whether a certain event
has occurred (1) or not (0).

� The binomial distribution is the extension of
the Bernoulli distribution in the sense that it
represents repeated trials where the respec-
tive outcomes are either 0 or 1, so that in total
we can obtain any integer between 0 and n,
where n is the number of Bernoulli trials. A
typical example in finance would be given
by the binomial stock price model where it
is the objective to count the number of up-
movements of some stock over a given num-
ber of periods.

� Drawing with replacement refers to the
experiment of repeated trials where each
individual trial is conducted under identi-
cal conditions as the others and without
influencing each other. A prerequisite of
the binomial distribution is drawing with
replacement.

� The Poisson distribution is related to a dis-
crete random variable that can assume any
nonnegative integer value. A typical appli-
cation is in risk theory when the number of
defaults or occurrences of some undesirable
event has to be modeled.
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NOTE
1. Note that the successive prices S1, . . . , ST

depend on their respective predecessors.
They are said to be path-dependent. Only the
changes, or factors Yt+1, for each period are
independent. In this case, the price St+1 de-
pends only on St, however, and not the en-

tire past. This is referred to as the Markov
property.
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Abstract: Continuous probability distributions are needed when the random variable of interest
can assume any value inside of one or more intervals of real numbers such as, for example,
any number greater than zero. Asset returns, for example, whether measured monthly, weekly,
daily, or at an even higher frequency are commonly modeled as continuous random variables.
In contrast to discrete probability distributions that assign positive probability to certain discrete
values, continuous probability distributions assign zero probability to any single real number.
Instead, only entire intervals of real numbers can have positive probability such as, for example,
the event that some asset return is not negative. For each continuous probability distribution, this
necessitates the so-called probability density, a function that determines how the entire probability
mass of one is distributed. The density often serves as the proxy for the respective probability
distribution.

In this entry, we introduce the concept of con-
tinuous probability distributions. We present
the continuous distribution function with its
corresponding density function, a function
unique to continuous probability laws. In this
entry, parameters of location and scale such
as the mean and higher moments—variance
and skewness—are defined. For a more tech-
nical discussion of continuous distributions,
see Evans, Hastings, and Peacock (2000) or
Johnson, Kotz, and Balakrishnan (1995).

CONTINUOUS PROBABILITY
DISTRIBUTION DESCRIBED
Suppose we are interested in outcomes that are
no longer countable. Examples of such out-
comes in finance are daily logarithmic stock
returns, bond yields, and exchange rates. Tech-
nically, without limitations caused by rounding
to a certain number of digits, we could imag-
ine that any real number could provide a fea-
sible outcome for the daily logarithmic return
of some stock. That is, the set of feasible values

195
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that the outcomes are drawn from (i.e., the space
�) is uncountable. The events are described
by continuous intervals such as, for example,
(−0.05, 0.05], which, referring to our example
with daily logarithmic returns, would represent
the event that the return at a given observation
is more than −5% and at most 5%.

In the context of continuous probability dis-
tributions, we have the real numbers R as the
uncountable space �. The set of events is given
by the Borel σ -algebra B, which is based on the
half-open intervals of the form (−∞, a ], for any
real a. The space R and the σ -algebra B form the
measurable space (R, B), which we are to deal
with throughout this entry.

DISTRIBUTION FUNCTION
To be able to assign a probability to an event in
a unique way, in the context of continuous dis-
tributions we introduce as a device the contin-
uous distribution function F(a), which expresses
the probability that some event of the sort
(−∞, a] occurs (i.e., that a number is realized
that is at most a). (Formally, an outcome ω ∈ � is
realized that lies inside of the interval (−∞, a ].)
As with discrete random variables, this function
is also referred to as the cumulative distribution
function (cdf ) since it aggregates the probability
up to a certain value.

To relate to our previous example of daily
logarithmic returns, the distribution function
evaluated at say 0.05, that is, F(0.05), states
the probability of some return of at most 5%.
(The distribution function F is also referred to
as the cumulative probability distribution function
(often abbreviated cdf ) expressing that the
probability is given for the accumulation of all
outcomes less than or equal to a certain value.)

For values x approaching −∞, F tends to zero,
while for values x approaching ∞, F goes to 1.
In between, F is monotonically increasing and
right-continuous. More concisely, we list these

properties below:

Property 1. F (x)
x→−∞
——→ 0

Property 2. F (x)
x→∞

——→ 1
Property 3. F (b) − F (a ) ≥ 0 for b ≥ a
Property 4. lim

x↓a
F (x) = F (a )

The behavior in the extremes—that is when x
goes to either −∞ or ∞—is provided by prop-
erties 1 and 2, respectively. Property 3 states
that F should be monotonically increasing (i.e.,
never become less for increasing values). Fi-
nally, property 4 guarantees that F is right-
continuous.

Let us consider in detail the case when F(x) is
a continuous distribution, that is, the distribu-
tion has no jumps. The continuous probability
distribution function F is associated with the
probability measure P through the relationship

F (a ) = P((−∞, a ])

that is, that values up to a occur, and

F (b) − F (a ) = P((a , b]) (1)

Therefore, from equation (1) we can see that
the probability of some event related to an inter-
val is given by the difference between the value
of F at the upper bound b of the interval minus
the value of F at the lower bound a. That is, the
entire probability that an outcome of at most
a occurs is subtracted from the greater event
that an outcome of at most b occurs. Using set
operations, we can express this as

(a , b] = (−∞, b]\(−∞, a ]

For example as we have seen, the event of a
daily return of more than −5% and, at most,
5% is given by (−0.05, 0.05]. So, the probability
associated with this event is given by P((−0.05,
0.05]) = F(0.05) − F(−0.05).

In contrast to a discrete probability distri-
bution, a continuous probability distribution
always assigns zero probability to countable
events such as individual outcomes ai or unions
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thereof such as
∞⋃

i=1
ai

That is,

P({ai }) = 0, for all ai

P
( ∞⋃

i=1
ai

)
= 0 (2)

From equation (2), we can apply the left-hand
side of equation (1) also to events of the form
(a,b) to obtain

P((a , b)) = F (b) − F (a ) (3)

Thus, it is irrelevant whether we state the proba-
bility of the daily logarithmic return being more
than −5% and at most 5%, or the probability of
the logarithmic return being more than −5%
and less than 5%. They are the same because
the probability of achieving a return of exactly
5% is zero. With a space � consisting of un-
countably many possible values such as the set
of real numbers, for example, each individual
outcome is unlikely to occur. So, from a proba-
bilistic point of view, one should never bet on
an exact return or, associated with it, one par-
ticular stock price.

Since countable sets produce zero probabil-
ity from a continuous probability measure, they
belong to the so-called P-null sets. All events as-
sociated with P-null sets are unlikely events.

So, how do we assign probabilities to events
in a continuous environment? The answer is
given by equation (3). That, however, presumes
knowledge of the distribution function F. The
next task is to define the continuous distribution
function F more specifically as explained next.

DENSITY FUNCTION
The continuous distribution function F of a
probability measure P on (R, B) is defined as
follows

F (x) =
x∫

−∞
f (t)dt (4)

where f (t) is the density function of the probabil-
ity measure P.

We interpret equation (4) as follows. Since,
at any real value x the distribution function
uniquely equals the probability that an outcome
of at most x is realized, that is, F(x) = P((−∞, x]),
equation (4) states that this probability is ob-
tained by integrating some function f over the
interval from −∞ up to the value x.

What is the interpretation of this function f ?
The function f is the marginal rate of growth
of the distribution function F at some point
x. We know that with continuous distribution
functions, the probability of exactly a value of x
occurring is zero. However, the probability
of observing a value inside of the interval
between x and some very small step to the
right �x (i.e., [x, x + �x)) is not necessarily
zero. Between x and x + �x, the distribution
function F increases by exactly this probability;
that is, the increment is

F (x + �x) − F (x) = P (X ∈ [x, x + �x)) (5)

Now, if we divide F (x + �x) − F(x) from
equation (5) by the width of the interval �x, we
obtain the average probability or average incre-
ment of F per unit step on this interval. If we
reduce the step size �x to an infinitesimally
small step ∂x, this average approaches the
marginal rate of growth of F at x, which we denote
f ; that is,1

lim
�x→0

F (x + �x) − F (x)
�x

= ∂ F (x)
∂x

≡ f (x) (6)

At this point, let us recall the histogram with
relative frequency density for class data. Over
each class, the height of the histogram is given
by the density of the class divided by the width
of the corresponding class. Equation (6) is some-
what similar if we think of it this way. We divide
the probability that some realization should be
inside of the small interval. And, by letting
the interval shrink to width zero, we obtain
the marginal rate of growth or, equivalently, the
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derivative of F. (We assume that F is continuous
and that the derivative of F exists.) Hence, we
call f the probability density function or simply the
density function. Commonly, it is abbreviated as
pdf .

Now, when we refocus on equation (4), we
see that the probability of some occurrence of
at most x is given by integration of the den-
sity function f over the interval (−∞, x]. Again,
there is an analogy to the histogram. The rel-
ative frequency of some class is given by the
density multiplied by the corresponding class
width. With continuous probability distribu-
tions, at each value t, we multiply the cor-
responding density f (t) by the infinitesimally
small interval width dt. Finally, we integrate all
values of f (weighted by dt) up to x to obtain the
probability for (−∞, x]. This, again, is similar to
histograms: In order to obtain the cumulative
relative frequency at some value x, we compute
the area covered by the histogram up to value x.

In Figure 1, we compare the histogram and
the probability density function. The histogram

 

 h

 A1

 f(t)

x*  t

Figure 1 Comparison of Histogram and Density Function
Note: Area A1 represents probability P((−∞, x∗]) derived through integration of f (t) with respect to t
between −∞ and x∗

with density h is indicated by the dotted lines
while the density function f is given by the
solid line. We can now see how the probabil-
ity P((−∞, x∗]) is derived through integrating
the marginal rate f over the interval (−∞, x∗]
with respect to the values t. The resulting total
probability is then given by the area A1 of the
example in Figure 1. This is analogous to class
data where we would tally the areas of the rect-
angles whose upper bounds are less than x∗ and
the part of the area of the rectangle containing
x∗ up to the dash-dotted vertical line.

Requirements on the
Density Function
Given the uncountable space R (i.e., the real
numbers) and the corresponding set of events
given by the Borel σ -algebra B, we can give a
more rigorous formal definition of the density
function. The density function f of probability
measure P on the measurable space (R, B) with
distribution function F is a Borel-measurable
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function f satisfying.

P((−∞, x]) = F (x) =
x∫

−∞
f (t)dt (7)

with f (t) ≥ 0, for all t ∈ R and
∞∫

−∞
f (t)dt = 1

By the requirement of Borel-measurability, we
simply assume that the real-valued images gen-
erated by f have their origins in the Borel
σ -algebra B. Informally, for any value y = f (t),
we can trace the corresponding origin(s) t in B

that is (are) mapped to y through the function f .
Otherwise, we might incur problems comput-
ing the integral in equation (7) for reasons that
are beyond the scope of this entry.

From definition of the density function given
by equation (7), we see that it is reasonable that f
be a function that exclusively assumes nonneg-
ative values. Although we have not mentioned
this so far, it is immediately intuitive since f is
the marginal rate of growth of the continuous
distribution function F. At each t, f (t) · dt repre-
sents the limit probability that a value inside of
the interval (t, t + dt] should occur, which can
never be negative. Moreover, we require the in-

x

f(x)

A = 1

Figure 2 Graphical Interpretation of the Equality A =
∞∫

−∞
f (x)dx = 1

tegration of f over the entire domain from −∞
to ∞ to yield 1, which is intuitively reasonable
since this integral gives the probability that any
real value occurs.

The requirement
∞∫

−∞
f (t)dt = 1

implies the graphical interpretation that the
area enclosed between the graph of f over the
entire interval (−∞, ∞) and the horizontal axis
equals one. This is displayed in Figure 2 by the
shaded area A. For example, to visualize graph-
ically what is meant by

x∫

−∞
f (t)dt

in equation (7), we can use Figure 1. Suppose
the value x were located at the intersection of
the vertical dash-dotted line and the horizontal
axis (i.e., x∗). Then, the shaded area A1 repre-
sents the value of the integral and, therefore,
the probability of occurrence of a value of at
most x. To interpret

b∫

a

f (t)dt
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 x b a

 A

f(x)

Figure 3 Graphical Interpretation of A =
b∫

a
f (x)dx

graphically, look at Figure 3. The area represent-
ing the value of the interval is indicated by A.
So, the probability of some occurrence of at least
a and at most b is given by A. Here again, the
resemblance to the histogram becomes obvious
in that we divide one area above some class, for
example, by the total area, and this ratio equates
the according relative frequency.

For the sake of completeness, it should be
mentioned without indulging in the reasoning
behind it that there are probability measures
P on (R, B) even with continuous distribution
functions that do not have density functions as
defined in equation (7). But, in our context, we
will only regard probability measures with con-
tinuous distribution functions with associated
density functions so that the equalities of equa-
tion (7) are fulfilled.

Sometimes, alternative representations equiv-
alent to equation (7) are used. Typically, the fol-
lowing expressions are used

F (x) =
∫

R

f (t) · 1(−∞,x]dt (8a)

F (x) =
∞∫

−∞
f (t) · 1(−∞,x]dt (8b)

F (x) =
∞∫

P(dt) (8c)

F (x) =
∞∫

dP(t) (8d)

Note that in the first two equalities, (8a) and
(8b), the indicator function 1(a ,b] is used. The last
two equalities, (8c) and (8d), can be used even
if there is no density function and, therefore,
are of a more general form. We will, however,
predominantly apply the representation given
by equation (7) and occasionally resort to the
last two forms above.

We introduce the term support at this point
to refer to the part of the real line where the
density is truly positive, that is, all those x where
f (x) > 0.

CONTINUOUS RANDOM
VARIABLE
So far, we have only considered continuous
probability distributions and densities. We yet
have to introduce the quantity of greatest inter-
est to us in this entry, the continuous random vari-
able. For example, stock returns, bond yields,
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and exchange rates are usually modeled as con-
tinuous random variables.

Informally stated, a continuous random vari-
able assumes certain values governed by a
probability law uniquely linked to a contin-
uous distribution function F. Consequently,
it has a density function associated with its
distribution. Often, the random variable is
merely described by its density function rather
than the probability law or the distribution
function.

By convention, let us indicate the random
variables by capital letters. Recall that any ran-
dom variable, and in particular a continuous
random variable X, is a measurable function. Let
us assume that X is a function from the prob-
ability space � = R into the state space �′ = R.
That is, origin and image space coincide. The
corresponding σ -algebrae containing events of
the elementary outcomes ω and the events in
the image space X(ω), respectively, are both
given by the Borel σ -algebra B. Now, we can
be more specific by requiring the continuous
random variable X to be a B − B–measurable
real-valued function. That implies, for exam-
ple, that any event X ∈ (a , b], which is in B,
has its origin X−1((a,b]) in B, as well. Measur-
ability is important when we want to derive
the probability of events in the state space
such as X ∈ (a , b] from original events in the
probability space such as X−1((a , b]). At this
point, one should not be concerned that the
theory is somewhat overwhelming. It will be-
come easier to understand once we move to the
examples.

COMPUTING PROBABILITIES
FROM THE DENSITY
FUNCTION
The relationship between the continuous ran-
dom variable X and its density is given by the
following.2 Suppose X has density f , then the
probability of some event X ≤ x or X ∈ (a , b] is

computed as

P(X ≤ x) =
x∫

−∞
f (t)dt

P(X ∈ (a , b]) =
b∫

a

f (t)dt (9)

which is equivalent to F(x) and F(b) − F(a) re-
spectively, because of the one-to-one relation-
ship between the density f and the distribution
function F of X.

As explained earlier, using indicator func-
tions, equation (9) could be alternatively
written as

P(X ≤ x) =
∞∫

−∞
1(−∞,x](t) f (t)dt

P(X ∈ (a , b]) =
∞∫

−∞
1(a ,b](t) f (t)dt

In the following, we will introduce parame-
ters of location and spread such as the mean
and the variance, for example. In contrast to the
data-dependent statistics, parameters of ran-
dom variables never change. Some probability
distributions can be sufficiently described by
their parameters. They are referred to as para-
metric distributions. For example, for the normal
distribution we introduce shortly, it is sufficient
to know the parameters mean and variance to
completely determine the corresponding distri-
bution function. That is, the shape of parametric
distributions is governed only by the respective
parameters.

LOCATION PARAMETERS
The most important location parameter is the
mean that is also referred to as the first moment.
It is the only location parameter presented in
this entry.

The mean can be thought of as an average
value. It is the number that one would have to
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expect for some random variable X with given
density function f . The mean is defined as fol-
lows: Let X be a real-valued random variable
on the space � = R with Borel σ -algebra B. The
mean is given by

E(X) =
∞∫

−∞
x · f (x)dx (10)

in case the integral on the right-hand side of
equation (10) exists (i.e., is finite). Typically, the
mean parameter is denoted as μ.

In equation (10) that defines the mean, we
weight each possible value x that the random
variable X might assume by the product of the
density at this value, f (x), and step size dx. Re-
call that the product f (x) · dx can be thought
of as the limiting probability of attaining the
value x. Finally, the mean is given as the inte-
gral over these weighted values. Thus, equation
(10) is similarly understood as the definition of
the mean of a discrete random variable where,
instead of integrated, the probability-weighted
values are summed.

DISPERSION PARAMETERS
We turn our focus toward measures of spread
or, in other words, dispersion measures. Again,
as with the previously introduced measures
of location, in probability theory the disper-
sion measures are universally given parame-
ters. Here, we introduce the moments of higher
order, variance, standard deviation, and the
skewness parameters.

Moments of Higher Order
It might sometimes be necessary to compute
moments of higher order. As we already know
from descriptive statistics, the mean is the mo-
ment of order one. (Alternatively, we often say
the first moment. For the higher orders k, we
consequently might refer to the k-th moment.)
However, one might not be interested in the ex-
pected value of some quantity itself but of its
square. If we treat this quantity as a continu-

ous random variable, we compute what is the
second moment.

Let X be a real-valued random variable on
the space � = R with Borel σ -algebra B. The
moment of order k is given by the expression

E
(
Xk) =

∞∫

−∞
xk · f (x)dx (11)

in case the integral on the right-hand side of
equation (11) exists (i.e., is finite).

From equation (11), we learn that higher-
order moments are equivalent to simply com-
puting the mean of X taken to the k-th power.

Variance
The variance involves computing the expected
squared deviation from the mean E(X) = μ of
some random variable X. For a continuous ran-
dom variable X, the variance is defined as fol-
lows: Let X be a real-valued random variable on
the space � = R with Borel σ -algebra B, then
the variance is

Var(X) =
∞∫

−∞
(x − E(X))2 · f (x)dx

=
∞∫

−∞
(x − μ)2 · f (x)dx (12)

in case the integral on the right-hand side of
equation (12) exists (i.e., is finite). Often, the
variance in equation (12) is denoted by the
symbol σ 2.

In equation (12), at each value x, we square
the deviation from the mean and weight it by
the density at x times the step size dx. The latter
product, again, can be viewed as the limiting
probability of the random variable X assuming
the value x. The square inflates large deviations
even more compared to smaller ones. For some
random variable to have a small variance, it is
essential to have a quickly vanishing density in
the parts where the deviations (x − μ) become
large.

All distributions that we discuss in this en-
try are parametric distributions. For some of
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f(x)

µ1 = µ2

Figure 4 Two Density Functions Yielding Common Means, μ1 = μ2, but Different Variances, σ 2
1 < σ 2

2
Note: Dashed graph: σ 2

1 = 1. Solid graph: σ 2
2 = 1.5.

them, it is enough to know the mean μ and
variance σ 2 and consequently, we will resort
to these two parameters often. Historically, the
variance has often been given the role of risk
measure in context of portfolio theory. Sup-
pose we have two random variables R1 and
R2 representing the returns of two stocks, S1

and S2, with equal means μR1 and μR2 , respec-
tively, so that μR1 = μR2 . Moreover, let R1 and
R2 have variances σ 2

R1
and σ 2

R2
, respectively, with

σ 2
R1

< σ 2
R2

. Then, omitting further theory, at this
moment, we prefer S1 to S2 because of the S1’s
smaller variance. We demonstrate this in Fig-
ure 4. The dashed line represents the graph
of the first density function while the second
one is depicted by the solid line. Both density
functions yield the same mean (i.e., μ1 = μ2).
However, the variance from the first density
function, given by the dashed graph, is smaller
than that of the solid graph (i.e., σ 2

1 < σ 2
2 ). Thus,

using variance as the risk measure and resort-
ing to density functions that can be sufficiently
described by the mean and variance, we can
state that density function for S1 (dashed graph)
is preferable. We can interpret the figure as
follows.

Since the variance of the distribution with the
dashed density graph is smaller, the probabil-
ity mass is less dispersed over all x values.
Hence, the density is more condensed about
the center and more quickly vanishing in the
extreme left and right ends, the so-called tails.
On the other hand, the second distribution with
the solid density graph has a larger variance,
which can be verified by the overall flatter and
more expanded density function. About the
center, it is lower and less compressed than the
dashed density graph, implying that the second
distribution assigns less probability to events
immediately near the center. However, the den-
sity function of the second distribution decays
more slowly in the tails than the first, which
means that under the governance of the latter,
extreme events are less likely than under the
second probability law.

Standard Deviation
The parameter related to the variance is the
standard deviation. As we know from descrip-
tive statistics described earlier in this book, the
standard deviation is the positive square root
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of the variance. That is, let X be a real-valued
random variable on the space � = R with Borel
σ -algebra B. Furthermore, let its mean and vari-
ance be given by μ and σ 2, respectively. The
standard deviation is defined as

σ =
√

Var(X)

For example, in the context of stock returns,
one often expresses using the standard devia-
tion the return’s fluctuation around its mean.
The standard deviation is often more appealing
than the variance since the latter uses squares,
which are a different scale from the original val-
ues of X. Even though mathematically not quite
correct, the standard deviation, denoted by σ , is
commonly interpreted as the average deviation
from the mean.

Skewness
Consider the density function portrayed in Fig-
ure 5. The figure is obviously symmetric about
some location parameter μ in the sense that
f (−x − μ) = f (x − μ). Suppose instead that we
encounter a density function f of some random
variable X that is depicted in Figure 6. This fig-
ure is not symmetric about any location param-
eter. Consequently, some quantity stating the

f(x)

xµ

Figure 5 Example of Some Symmetric Density Function f (x)

extent to which the density function is deviat-
ing from symmetry is needed. This is accom-
plished by a parameter referred to as skewness.
This parameter measures the degree to which
the density function leans to either side, if at all.

Let X be a real-valued random variable on the
space � = R with Borel σ -algebra B, variance
σ 2, and mean μ = E(X). The skewness parame-
ter, denoted by γ , is given by

γ =
E

(
(x − E(X))3

)

σ
3/2

The skewness measure given above is referred
to as the Pearson skewness measure. Negative
values indicate skewness to the left (i.e., left
skewed) while skewness to the right is given by
positive values (i.e., right skewed).

The design of the skewness parameter fol-
lows the following reasoning. In the numerator,
we measure the distance from every value x
to the mean E(X) of random variable X. To
overweight larger deviations, we take them
to a higher power than one. In contrast to the
variance where we use squares, in the case of
skewness we take the third power since three
is an odd number and thereby preserves both
the signs and directions of the deviations. Due
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f(x)

Figure 6 Example of Some Asymmetric Density Function f (x)

to this sign preservation, symmetric density
functions yield zero skewness since all devia-
tions to the left of the mean cancel their counter-
parts to the right. To standardize the deviations,
we scale them by dividing by the standard
deviation, also taken to the third power. So,
the skewness parameter is not influenced by
the standard deviation of the distributions. If
we did not scale the skewness parameter in
this way, distribution functions with density
functions having large variances would always
produce larger skewness even though the
density is not really tilted more pronouncedly
than some similar density with smaller
variance.

We graphically illustrate the skewness param-
eter γ in Figure 6 for some density function f (x).
A density function f that assumes positive val-
ues f (x) only for positive real values (i.e., x > 0)
but zero for x ≤ 0 is shown in the figure. The
random variable X with density function f has
mean μ = 1.65. Its standard deviation is com-
puted as σ = 0.957. The value of the skewness
parameter is γ = 0.7224, indicating a positive
skewness. The sign of the skewness parame-
ter can be easily verified by analyzing the den-
sity graph. The density peaks just a little to the

right of the leftmost value x = 0. Toward the left
tail, the density decays abruptly and vanishes
at zero. Toward the right tail, things look very
different in that f decays very slowly, approach-
ing a level of f = 0 as x goes to positive infinity.
(The graph is depicted for x ∈ [0, 3.3].)

KEY POINTS
� A continuous random variable is a random

variable that does not only assume values
from a set of discrete values but may assume
any real value from within one or more in-
tervals. Often, asset returns are modeled as
continuous random variables.

� The continuous distribution function is the
probability distribution associated with a
continuous random variable. It distinguishes
itself from the discrete probability distribu-
tion in that it gives positive probability only
to entire intervals rather than some discrete
values only.

� To appreciate continuous random variables,
it is necessary to understand the concept of
the derivative of some function, which is the
marginal rate of growth of some function at a
certain point. It can be conceived as the slope
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of the function at some point considering only
very small increments in the argument of the
function away from the point.

� The density function determines how the
probability mass of one is distributed across
the real line. Hence, it would be counterintu-
itive if that function were ever negative such
that we require it to be nonnegative. Tech-
nically, it is the marginal rate of growth of
the distribution function at any position or, in
other words, its derivative.

� As support of some probability distribution,
we define the subset of the real numbers that
represents 100% of the probability. For the
continuous probability distributions, it is the
collection of intervals where the associated
probability density is positive.

NOTES
1. The expression ∂ F (x) is equivalent to the in-

crement F(x + �x) − F(x) as �x goes to zero.
2. Sometimes the density of X is explicitly in-

dexed fx. We will not do so here, however,
except where we believe not doing so will
lead to confusion. The same holds for its dis-
tribution function F.
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Abstract: To model the behavior of certain financial assets in a stochastic environment, we can
usually resort to a variety of theoretical distributions. Most commonly, probability distributions
are selected that are analytically well known. For example, the normal distribution is often the
distribution of choice when asset returns are modeled, or the exponential distribution is applied
to characterize the randomness of the time between two successive defaults of firms in a bond
portfolio. Many other distributions are related to them or built on them in a well-known manner.
These distributions often display pleasant features such as stability under summation—meaning
that the return of a portfolio of assets whose returns follow a certain distribution again follows the
same distribution. However, one has to be careful using these distributions since their advantage
of mathematical tractability is often outweighed by the fact that the stochastic behavior of the true
asset returns is not well captured by these distributions.

In this entry, we discuss the more commonly
used distributions with appealing statistical
properties that are used in finance. The dis-
tributions discussed are the normal distribu-
tion, the chi-square distribution, the Student’s
t-distribution, the Fisher’s F-distribution, the
exponential distribution, the gamma distribu-
tion (including the special Erlang distribu-
tion), the beta distribution, and the log-normal

distribution. Many of the distributions en-
joy widespread attention in finance, or sta-
tistical applications in general, due to their
well-known characteristics or mathematical
simplicity. However, as we emphasize, the
use of some of them might be ill-suited to
replicate the real-world behavior of financial
returns. For a more technical discussion of
continuous distributions, see Evans, Hastings,
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and Peacock (2000) or Johnson, Kotz, and
Balakrishnan (1995).

NORMAL DISTRIBUTION
The first distribution we discuss is the
normal distribution. It is the distribution most
commonly used in finance despite its many
limitations. This distribution, also referred to
as the Gaussian distribution (named after the
mathematician and physicist C. F. Gauss), is
characterized by the two parameters: mean
(μ) and standard deviation (σ ). The distribu-
tion is denoted by N(μ, σ 2). When μ = 0 and
σ 2 = 1, then we obtain the standard normal
distribution.

For x ∈ R, the density function for the normal
distribution is given by

f (x) = 1√
2πσ

· e
(x−μ)2

2σ2 (1)

The density in equation (1) is always positive.
Hence, we have support (i.e., positive density)
on the entire real line. Furthermore, the density
function is symmetric about μ. A plot of the
density function for several parameter values
is given in Figure 1. As can be seen, the value
of μ results in a horizontal shift from 0 while σ

inflates or deflates the graph. A characteristic of
the normal distribution is that the densities are
bell shaped.

A problem is that the distribution function
cannot be solved for analytically and therefore
has to be approximated numerically. In the par-
ticular case of the standard normal distribu-
tion, the values are tabulated. Standard statisti-
cal software provides the values for the stan-
dard normal distribution as well as most of
the distributions presented in this entry. The
standard normal distribution is commonly de-
noted by the Greek letter � such that we have
� (x) = F (x) = P (X ≤ x), for some standard
normal random variable X. In Figure 2, graphs
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of the distribution function are given for three
different sets of parameters.

Properties of the Normal
Distribution
The normal distribution provides one of the
most important classes of probability distribu-
tions due to two appealing properties that gen-
erally are not shared by all distributions:

Property 1. The distribution is location-scale
invariant.

Property 2. The distribution is stable under
summation.

Property 1, the location-scale invariance prop-
erty, guarantees that we may multiply X by b
and add a where a and b are any real numbers.
Then, the resulting a + b · X is, again, normally
distributed, more precisely, N (a + μ, bσ ). Con-
sequently, a normal random variable will still be
normally distributed if we change the units of
measurement. The change into a + b · X can be
interpreted as observing the same X, however,

measured in a different scale. In particular, if a
and b are such that the mean and variance of
the resulting a + b · X are 0 and 1, respectively,
then a + b · X is called the standardization of X.

Property 2, stability under summation, en-
sures that the sum of an arbitrary number n
of normal random variables, X1, X2, . . . , Xn

is, again, normally distributed provided that
the random variables behave independently of
each other. This is important for aggregating
quantities.

These properties are illustrated later in the
entry.

Furthermore, the normal distribution is of-
ten mentioned in the context of the central limit
theorem. It states that a sum of random vari-
ables with identical distributions and being in-
dependent of each other results in a normal
random variable.1 We restate this formally as
follows:

Let X1, X2, . . . , Xn be identically dis-
tributed random variables with mean E (Xi ) =
μ and Var (Xi ) = σ 2 and do not influence the
outcome of each other (i.e., are independent).
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Then, we have
n∑

i=1
Xi − n · μ

σ
√

n
D−→ N (0, 1) (2)

as the number n approaches infinity. The D
above the convergence arrow in equation (2) in-
dicates that the distribution function of the left
expression convergences to the standard nor-
mal distribution.

Generally, for n = 30 in equation (2), we con-
sider equality of the distributions; that is, the
left-hand side is N(0,1) distributed. In certain
cases, depending on the distribution of the Xi

and the corresponding parameter values, n <

30 justifies the use of the standard normal dis-
tribution for the left-hand side of equation (2).
If the Xi are Bernoulli random variables, that is,
Xi ∼ B(p), with parameter p such that n · p ≥
5, then we also assume equality in the distribu-
tions in equation (2). Depending on p, this can
mean that n is much smaller than 30.

These properties make the normal distribu-
tion the most popular distribution in finance.
But this popularity is somewhat contentious,
however, for reasons that will be given as we
progress in this entry.

The last property we will discuss of the nor-
mal distribution that is shared with some other
distributions is the bell shape of the density
function. This particular shape helps in roughly
assessing the dispersion of the distribution due
to a rule of thumb commonly referred to as the
empirical rule. Due to this rule, we have

P (X ∈ [μ ± σ ]) = F (μ + σ ) − F (μ − σ ) ≈ 68%
P (X ∈ [μ ± 2σ ]) = F (μ + 2σ ) − F (μ − 2σ ) ≈ 95%
P (X ∈ [μ ± 3σ ]) = F (μ + 3σ ) − F (μ − 3σ ) ≈ 100%

The above states that approximately 68% of
the probability is given to values that lie in an in-
terval one standard deviation σ about the mean
μ. About 95% probability is given to values
within 2σ to the mean, while nearly all prob-
ability is assigned to values within 3σ from the
mean.

By comparison, the so-called Chebychev in-
equalities valid for any type of distribution—so
not necessarily bell-shaped—yield

P (X ∈ [μ ± σ ]) ≈ 0%

P (X ∈ [μ ± 2σ ]) ≈ 75%

P (X ∈ [μ ± 3σ ]) ≈ 89%

which provides a much coarser assessment
than the empirical rule as we can see, for ex-
ample, by the assessed 0% of data contained
inside of one standard deviation about the
mean.

Applications to Stock Returns
Applying Properties 1 and 2 to
Stock Returns
With respect to Property 1, consider an exam-
ple of normally distributed stock returns r with
mean μ. If μ is nonzero, this means that the re-
turns are a combination of a constant μ and ran-
dom behavior centered about zero. If we were
only interested in the latter, we would subtract
μ from the returns and thereby obtain a new
random variable r̃ = r − μ, which is again nor-
mally distributed.

With respect to Property 2, we give two exam-
ples. First, let us present the effect of aggrega-
tion over time. We consider daily stock returns
that, by our assumption, follow a normal law.
By adding the returns from each trading day
during a particular week, we obtain the week’s
return as rw = rMo + rTu + . . . + rFr where rMo,
rTu, . . ., rFr are the returns from Monday through
Friday. The weekly return rw is normally dis-
tributed as well. The second example applies
to portfolio returns. Consider a portfolio con-
sisting of n different stocks, each with normally
distributed returns. We denote the correspond-
ing returns by R1 through Rn. Furthermore, in
the portfolio we weight each stock i with wi,
for i = 1, 2, . . . , n. The resulting portfolio return
Rp = w1R1 + w2R2 + . . . + wnRn is also a normal
random variable.
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Using the Normal Distribution to
Approximate the Binomial Distribution
Consider the binomial stock price model. At
time t = 0, the stock price was S0 = $20. At time
t = 1, the stock price was either up or down
by 10% so that the resulting price was either
S0 = $18 or S0 = $22. Both up- and down-
movement occurred with probability P($18) =
P($22) = 0.5. Now we extend the model to an
arbitrary number of n days. Suppose each day
i, i = 1, 2, . . . , n, the stock price developed in
the same manner as on the first day. That is,
the price is either up 10% with 50% probability
or down 10% with the same probability. If on
day i the price is up, we denote this by Xi = 1
and Xi = 0 if the price is down. The Xi are,
hence, B(0.5) random variables. After, say, 50
days, we have a total of Y = X1 + X2 + . . . +
X50 up-movements. Note that because of the as-
sumed independence of the Xi, that Y is a B(50,
0.5) random variable with mean n · p = 25 and
variance n · p · (1 − p) = 12.5. Let us introduce

Z50 = Y − 25√
12.5

From the comments regarding equation (2),
we can assume that Z50 is approximately
N(25,12.5) distributed. So, the probability
of at most 15 up-movements, for example,
is given by P(Y ≤ 15) = �((15 − 25)/

√
12.5) =

0.23%. By comparison, the probability of no
more than five up-movements is equal to P(Y ≤
5) = �((5 − 25)/

√
12.5) = 0%.

Normal Distribution for Logarithmic Returns
As another example, let X be some random
variable representing a quantitative daily mar-
ket dynamic such as new information about
the economy. A dynamic can be understood as
some driving force governing the development
of other variables. We assume that it is normally
distributed with mean E(X) = μ = 0 and vari-
ance Var(X) = σ 2 = 0.2. Formally, we would
write X ∼ N (0, 0.2). So, on average, the value of
the daily dynamic will be zero with a standard
deviation of

√
0.2. In addition, we introduce a

stock price S as a random variable, which is
equal to S0 at the beginning.

After one day, the stock price is modeled to
depend on the dynamic X as follows

S1 = S0 · e X

where S1 is the stock price after one day. The
exponent X in this presentation is referred to as
a logarithmic return in contrast to a multiplicative
return R obtained from the formula R = S1/S0

− 1. So, for example, if X = 0.01, S1 is equal
to e0.01 · S0. That is almost equal to 1.01 · S0,
which corresponds to an increase of 1% relative
to S0.2 The probability of X being, for instance,
no greater than 0.01 after one day is given by3

P(X ≤ 0.01) =
0.01∫

−∞
f (x)dx

=
0.01∫

−∞

1√
2π

√
0.2

e− x2
2·0.2 dx ≈ 0.51

Consequently, after one day, the stock price in-
creases, at most, by 1% with 51% probability,
that is, P(S1 ≤ 1.01·S0)≈ 0.51.

Next, suppose we are interested in a five-
day outlook where the daily dynamics Xi,
i = 1, 2, . . . , 5 of each of the following consec-
utive five days are distributed identically as X
and independent of each other. Since the dy-
namic is modeled to equal exactly the continu-
ously compounded return— that is logarithmic
returns—we refer to X as the return in this entry.
For the resulting five-day returns, we introduce
the random variable Y = X1 + X2 + . . . + X5

as the linear combination of the five individual
daily returns. We know that Y is normally dis-
tributed from Property 2. More precisely, Y ∼
N(0,1). So, on average, the return tends in nei-
ther direction, but the volatility measured by
the standard deviation is now

√
5 ≈ 2.24 times

that of the daily return X. Consequently, the
probability of Y not exceeding a value of 0.01 is
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now,

P(Y ≤ 0.01) =
0.01∫

−∞

1√
2π

√
1

e− y2
2·1 dy ≈ 0.50

We see that the fivefold variance results in a
greater likelihood to exceed the threshold 0.01,
that is,

P(Y > 0.01) = 1 − P(Y ≤ 0.01)

≈ 0.50 > 0.49 ≈ P(X > 0.01)

We model the stock price after five days as

S5 = S0 · eY = S0 · e X1+X2+...+X5

So, after five days, the probability for the stock
price to have increased by no more than 1%
relative to S0 is equal to

P(S5 ≤ e0.01 · S0) = P(S5 ≤ 1.01 · S0) ≈ 0.50

There are two reasons why in finance loga-
rithmic returns are commonly used. First, log-
arithmic returns are often easier to handle than
multiplicative returns. Second, if we consider
returns that are attributed to ever shorter pe-
riods of time (e.g., from yearly to monthly to
weekly to daily and so on), the resulting com-
pounded return after some fixed amount of
time can be expressed as a logarithmic return.
The theory behind this can be obtained from
any introductory book on calculus.

CHI-SQUARE DISTRIBUTION
Our next distribution is the chi-square distribu-
tion. Let Z be a standard normal random vari-
able, in brief Z ∼ N (0,1), and let X = Z2.
Then X is distributed chi-square with one de-
gree of freedom. We denote this as X ∼ X2(1).
The degrees of freedom indicate how many inde-
pendently behaving standard normal random
variables the resulting variable is composed of.
Here X is just composed of one, namely Z, and
therefore has one degree of freedom.

Because Z is squared, the chi-square dis-
tributed random variable assumes only non-
negative values; that is, the support is on the

nonnegative real numbers. It has mean E(X) =
1 and variance Var(X) = 2.

In general, the chi-square distribution is char-
acterized by the degrees of freedom n, which
assume the values 1, 2, . . . . Let X1, X2, . . . , Xn

be n χ2(1) distributed random variables that are
all independent of each other. Then their sum,
S, is

S =
n∑

i=1

Xi ∼ χ2(n) (3)

In words, the sum is again distributed chi-
square but this time with n degrees of freedom.
The corresponding mean is E(X) = n, and the
variance equals Var(X) = 2 · n. So, the mean
and variance are directly related to the degrees
of freedom.

From the relationship in equation (3), we see
that the degrees of freedom equal the number of
independent χ2(1) distributed Xi in the sum. If
we have X1 ∼ χ2(n1) and X2 ∼ χ2(n2), it follows
that

X1 + X2 ∼ χ2(n1 + n2) (4)

From property (4), we have that chi-square
distributions have Property 2; that is, they are
stable under summation in the sense that the
sum of any two chi-squared distributed random
variables is itself chi-square distributed.

The chi-square density function with n de-
grees of freedom is given by

f (x) =

⎧
⎪⎨

⎪⎩

f (x) = 1
2n/2� (n/2)

· e−x/2 · x
n/2−1

, x ≥ 0

0 x < 0

for n = 1, 2, . . . where �(·) is the gamma func-
tion. Figure 3 shows a few examples of the chi-
square density function with varying degrees
of freedom. As can be observed, the chi-square
distribution is skewed to the right.

Application to Modeling Short-Term
Interest Rates
As an example of an application of the chi-
square distribution, we present a simplified
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Figure 3 Density Functions of Chi-Square Distributions for Various Degrees of Freedom n

model of short-term interest rates, that is, so-
called short rates. The short rate given by rt, at
any time t, is assumed to be a nonnegative con-
tinuous random variable. Furthermore, we let
the short rate be composed of d independent
dynamics X1, X2, . . . , Xd according to

rt = X2
1 + X2

2 + · · · + X2
d

where d is some positive integer number. In ad-
dition, each Xi is given as a standard normal
random variable independent of all other dy-
namics. Then, the resulting short rate rt is chi-
square distributed with d degrees of freedom,
that is, rt ∼ χ2(d).

If we let d = 2 (i.e., there are two dynamics
governing the short rate), the probability of a
short rate between 0 and 1% is 0.5%. That is, we
have to expect that on five out of 1,000 days, we
will have a short rate assuming some value in
the interval (0,0.01]. If, in addition, we had one
more dynamic included such that rt ∼ χ2(3),
then, the same interval would have probability
P(rt ∈ (0,0.01]) ≈ 0.03%, which is close to being
an unlikely event. We see that the more dynam-

ics are involved, the less probable small interest
rates such as 1% or less become.

It should be realized, however, that this is
merely an approach to model the short rate sta-
tistically and not an economic model explaining
the factors driving the short rate.

STUDENT’S t-DISTRIBUTION
An important continuous probability distribu-
tion when the population variance of a distri-
bution is unknown is the Students t-distribution
(also referred to as the t-distribution and Stu-
dent’s distribution.

The t-distribution is a mixture of the normal
and chi-square distributions. To derive the dis-
tribution, let X be distributed standard normal,
that is, X ∼ N(0,1), and S be chi-square dis-
tributed with n degrees of freedom, that is, S ∼
χ2(n). Furthermore, if X and Y are independent
of each other (which is to be understood as not
influencing the outcome of the other), then

Z = X√
S/n

∼ t(n) (5)
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In words, equation (5) states that the result-
ing random variable Z is Student’s t-distributed
with n degrees of freedom. The degrees of free-
dom are inherited from the chi-square distribu-
tion of S.

How can we interpret equation (5)? Suppose
we have a population of normally distributed
values with zero mean. The corresponding nor-
mal random variable may be denoted as X. If
one also knows the standard deviation of X,

σ =
√

Var(X)

with X/σ , we obtain a standard normal random
variable.

However, if σ is not known, we have to use,
for example,

√
S/n =

√
1/n · (X2

1 + X2
2 + · · · + X2

n)

instead where X2
1, X2

2, · · · , X2
n are n random vari-

ables identically distributed as X. Moreover, X1,
X2, . . ., Xn have to assume values independently
of each other. Then, the distribution of

X/
√

S/n
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Figure 4 Density Function of the t-Distribution for Various Degrees of Freedom n Compared to the
Standard Normal Density Function (N(0,1))

is the t-distribution with n degrees of freedom,
that is,

X/
√

S/n ∼ t(n)

By dividing by σ or S/n, we generate rescaled
random variables that follow a standardized
distribution. Quantities similar to X/

√
S/n play

an important role in parameter estimation.
The density function is defined as

f (x) = 1√
n · π

·
�

(
n + 1

2

)

�
(n

2

) ·
(

1 + x2

n

)− n+1
2

(6)
where the gamma function � is incorporated
again. The density function is symmetric and
has support (i.e., is positive) on all R.

Basically, the Student’s t-distribution has a
similar shape to the normal distribution, but
thicker tails. For large degrees of freedom n, the
Student’s t-distribution does not significantly
differ from the standard normal distribution.
As a matter of fact, for n ≥ 100, it is practically
indistinguishable from N(0,1).

Figure 4 shows the Student’s t-density func-
tion for various degrees of freedom plotted
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against the standard normal density function.
The same is done for the distribution function
in Figure 5.

In general, the lower the degrees of freedom,
the heavier the tails of the distribution, mak-
ing extreme outcomes much more likely than
for greater degrees of freedom or, in the limit,
the normal distribution. This can be seen by the
distribution function that we depicted in Fig-
ure 5 for n = 1 and n = 5 against the standard
normal cumulative distribution function (cdf).
For lower degrees of freedom such as n = 1, the
solid curve starts to rise earlier and approach 1
later than for higher degrees of freedom such as
n = 5 or the N(0,1) case.

This can be understood as follows. When we
rescale X by dividing by

√
S/n as in equation

(5), the resulting X/
√

S/n obviously inherits
randomness from both X and S. Now, when S
is composed of few Xi, only, say n = 3, such that
X/

√
S/n has three degrees of freedom, there is

a lot of dispersion from S relative to the stan-
dard normal distribution. By including more
independent N(0,1) random variables Xi such
that the degrees of freedom increase, S becomes
less dispersed. Thus, much uncertainty relative

to the standard normal distribution stemming
from the denominator in X/

√
S/n vanishes. The

share of randomness in X/
√

S/n originating
from X alone prevails such that the normal char-
acteristics preponderate. Finally, as n goes to
infinity, we have something that is nearly stan-
dard normally distributed.

The mean of the Student’s t random variable
is zero, that is E(X) = 0, while the variance is a
function of the degrees of freedom n as follows

σ 2 = Var(X) = n
n − 2

For n = 1 and 2, there is no finite variance. Dis-
tributions with such small degrees of freedom
generate extreme movements quite frequently
relative to higher degrees of freedom. Precisely
for this reason, stock price returns are often
found to be modeled quite well using distri-
butions with small degrees of freedom, or alter-
natively, large variances.

Application to Stock Returns
Let us resume the example at the end of the
presentation of the normal distribution. We
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consider, once again, the 5-day return Y with
standard normal distribution. Suppose that
now we do not know the variance. For this
reason, at any point in time t, we rescale the
observations of Y by

√
1
5

· (Y2
−1 + Y2

−2 + · · · + Y2
−5)

where the Y2
−1, Y2

−2, . . . , Y2
−5 are the five inde-

pendent weekly returns immediately prior to
Y. The resulting rescaled weekly returns

Z = Y√
Y2

−1 + Y2
−2 + · · · + Y2

−5

then are t(5) distributed. The probability of Y
not exceeding a value of 0.01 is now

P(Y ≤ 0.01) = F (0.01) = 0.5083

where F is the cumulative distribution function
of the Student’s t-distribution with five degrees
of freedom. Under the N(0,1), this probability
was about the same.

Again, we model the stock price after five
days as S5 = S0·eY where S0 is today’s price.
As we know, when Y ≤ 0.01, then S5 ≤ S0 ·
e0.01 = S0 · 1.01. Again, it follows that the stock
price increases by at most 1% with probability
of about 0.51. So far there is not much difference
here between the standard normal and the t(5)
distribution.

Let’s analyze the stock of American Interna-
tional Group (AIG) in September 2008. During
one week, that is, five trading days, the stock
lost about 67% of its value. That corresponds
to a value of the 5-day return of Y = −1.0986
because of eY = e−1.0986 = 0.3333 = 1 − 0.6667.
In the N(0,1) model, a decline of this magnitude
or even worse would occur with probability

P(Y ≤ −1.0986) = �(−1.0986) = 13.6%

while under the t(5) assumption, we would
obtain

P(Y ≤ −1.0986) = F (−1.0986) = 16.1%

This is 2.5% more likely in the t(5) model. So,
stock price returns exhibiting extreme move-

ments such as that of the AIG stock price should
not be modeled using the normal distribution.

F-DISTRIBUTION
Our next distribution is the F-distribution. It is
defined as follows. Let X ∼ χ2(n1) and Y ∼
χ2(n2).

Furthermore, assuming X and Y to be inde-
pendent, then the ratio

F (n1, n2) =
X/n1

Y/n2

(7)

has an F-distribution with n1 and n2 degrees
of freedom inherited from the underlying chi-
square distributions of X and Y, respectively.
We see that the random variable in equation
(7) assumes nonnegative values only because
neither X nor Y are ever negative. Hence, the
support is on the nonnegative real numbers.
Also like the chi-square distribution, the F-
distribution is skewed to the right.

The F-distribution has a rather complicated
looking density function of the form

f (x)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F
(

n1 + n2

2

)

F
( n1

2

)
F

(
N2

2

) ·
(

n1

n2

)n1/2 · x
n1/2−1

[
1 + x · n1

2

] n1 + n2

2

, x ≥ 0

0 x < 0

(8)

Figure 6 displays the density function (8) for
various degrees of freedom. As the degrees
of freedom n1 and n2 increase, the function
graph becomes more peaked and less asymmet-
ric while the tails lose mass.

The mean is given by

E(X) = n2

n2 − 2
, for n2 > 2 (9)

while the variance equals

σ 2 = Var(X) = 2n2
2(n1 + n2 − 2)

n1(n2 − 2)2(n2 − 4)
, for n2 > 4

(10)
Note that according to equation (9), the mean

is not affected by the degrees of freedom n1 of
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Figure 6 Density Function of the F-Distribution for Various Degrees of Freedom n1 and n2

the first chi-square random variable, while the
variance in equation (10) is influenced by the
degrees of freedom of both random variables.

EXPONENTIAL
DISTRIBUTION
The exponential distribution is characterized by
the positive real-valued parameter λ. In brief,
we use the notation Exp(λ). An exponential ran-
dom variable assumes nonnegative values only.
The density defined for λ > 0 by

f (x) =
{

λ · e−λx, x ≥ 0
0 x < 0

is right skewed. Figure 7 presents the density
function for various parameter values λ.

The distribution function is obtained by sim-
ple integration as

F (x) = 1 − e−λx

For identical parameter values as in Figure 7,
we have plots of the exponential distribution
function shown in Figure 8.

For this distribution, both the mean and vari-
ance are relatively simple functions of the pa-

rameter. That is, for the mean

E(X) = 1
λ

and for the variance

Var(X) = 1
λ2

There is an inverse relationship between the
exponential distribution and the Poisson dis-
tribution. Suppose we have a Poisson random
variable N with parameter λ, i.e., N ∼ Poi(λ),
counting the occurrences of some event within
a time frame of length T. Furthermore, let X1,
X2, . . . be the Exp(λ) distributed interarrival
times between the individual occurrences. That
is between time zero and the first event, X1 units
of time have passed, between the first event and
the second, X2 units of time have elapsed, and
so on. Now, over these T units of time, we expect
T · λ = T · E(N) events to occur. Alternatively,
we have an average of T/(T · λ) = 1/λ = E(X)
units of time to wait between occurrences.

Suppose that by time T we have counted ex-
actly n events. Then the accrued time τ elapsed
when the event occurs for the nth time is ob-
tained by the sum of all individual interarrival
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Figure 7 Exponential Density Function for Various Parameter Values λ

times X1, X2, . . . , Xn, which cannot be greater
than T. Formally

τ =
n∑

i

Xi ≤ T (11)

A result of this relationship is

E(N) = λ = 1
E(X)
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Figure 8 Distribution Function F(x) of the Exponential Distribution for Various Parameter Values λ

The exponential distribution is commonly re-
ferred to as a distribution with a “no memory”
property in the context of life-span that ends
due to some break.

That means that there is no difference in the
probability between the following two events.
Event one states that the object will live for
the first τ units of time after the object’s cre-
ation while event two states that the object will
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continue living for the next τ units of time after
it has already survived some t units of time. In
other words, if some interarrival time or survival
time (i.e., the time between certain occurrences)
is Exp(λ) distributed, one starts all over wait-
ing at any given time t provided that the break
has not occurred yet. (Technically, these consid-
erations as well as the following equation (12)
require the understanding of the notion condi-
tional distributions. Here it will suffice to apply
pure intuition.) So, for example, let the time un-
til the next default of one of several corporate
bonds held in some portfolio be given as an ex-
ponential random variable. Then the probabil-
ity of the first bond defaulting in no more than
t units of time given that none have defaulted
so far is the same as the probability of the nth
bond defaulting after at most t units of time
given that n – 1 bonds have already defaulted.
That is, we only care about the probability dis-
tribution of the time of occurrence of the next
default regardless of how many bonds have al-
ready defaulted.

Finally, an additional property of the expo-
nential distribution is its relationship to the chi-
square distribution. Let X be Exp(λ). Then X is
also chi-square distributed with two degrees of
freedom, that is, X ∼ χ2(2).

Applications in Finance
In applications in finance, the parameter λ often
has the meaning of a default rate, default inten-
sity, or hazard rate. This can be understood by
observing the ratio

P(X ∈ (t, t + dt])
dt · P(X > t)

(12)

which expresses the probability of the event of
interest such as default of some company oc-
curring between time t and t + dt given that
it has not happened by time t, relative to the
length of the horizon, dt. Now, let the length of
the interval, dt, approach zero, and this ratio in
equation (12) will have λ as its limit.

The exponential distribution is often used
in credit risk models where the number of
defaulting bonds or loans in some portfolio

over some period of time is represented by a
Poisson random variable and the random times
between successive defaults by exponentially
distributed random variables. In general, then,
the time until the nth default is given by the
sum in equation (11).

Consider, for example, a portfolio of bonds.
Moreover, we consider the number of defaults
in this portfolio in one year to be some Poisson
random variable with parameter λ = 5, that is,
we expect five defaults per year. The same pa-
rameter, then, represents the default intensity
of the exponentially distributed time between
two successive defaults, that is, τ ∼ Exp(5), so
that on average, we have to wait E(τ ) = 1/5 of a
year or 2.4 months. For example, the probabil-
ity of less than three months (i.e., 1/4 of a year)
between two successive defaults is given by

P(τ ≤ 0.25) = 1 − e−5·0.25 = 0.7135

or roughly 71%. Now, the probability of no de-
fault in any given year is then

P(τ > 1) = e−5.1 = 0.0067
or 0.67%.

RECTANGULAR
DISTRIBUTION
The simplest continuous distribution we are
going to introduce is the rectangular distribution.
Often, it is used to generate simulations of
random outcomes of experiments via transfor-
mation. If a random variable X is rectangular
distributed, we denote this by X ∼ Re(a,
b) where a and b are the parameters of the
distribution.

The support is on the real interval [a, b]. The
density function is given by

f (x) =

⎧
⎪⎨

⎪⎩

1
b − a

, a ≤ x ≤ b

0 x /∈ [a , b]
(13)

We see that this density function is always con-
stant, either zero or between the bounds a and
b, equal to the inverse of the interval width. Fig-
ure 9 displays the density function (13) for some
general parameters a and b.
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Figure 9 Density Function of a Re(a, b) Distribution

Through integration, the distribution func-
tion follows in the form

F (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 x < a

1
b − a

a ≤ x ≤ b

1 x > b

(14)

The mean is equal to

E(X) = a + b
2

0

0.2

0.4

0.6

0.8

1

1.2

 a  b

F(x)

Figure 10 Distribution Function of a Re(a, b) Distribution

and the variance is

Var(X) = (b − a )2

12

In Figure 10, we have the distribution func-
tion given by equation (14) with some general
parameters a and b. By analyzing the plot, we
can see that the distribution function is not dif-
ferentiable at a or b, since the derivatives of F
do not exist for these values. At any other real
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Figure 11 Density Function of a Gamma Distribution Ga(λ, b)

value x, the derivative exists (being 0) and is
continuous. We say in the latter case that f is
smooth there.

GAMMA DISTRIBUTION
Next we introduce the gamma distribution for
positive, real-valued random variables. Char-
acterized by two parameters, λ and c, this dis-
tribution class embraces several special cases. It
is skewed to the right with support on the posi-
tive real line. We denote that a random variable
X is gamma distributed with parameter λ and
c by writing X ∼ Ga(λ, c) where λ and c are
positive real numbers.

The density function is given by

f (x) =

⎧
⎪⎨

⎪⎩

λ(λx)c−1 exp{−λx}
�(c)

, x > 0

0 x ≤ 0
(15)

with gamma function �. A plot of the den-
sity function from equation (15) is provided in

Figure 11. The distribution function is

F (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 x < 0

λx∫

0

uc−1e−udu

bc�(c)
, x ≥ 0

The mean is

E(X) = c
λ

with variance

Var(X) = c
λ2

Erlang Distribution
A special case is the Erlang distribution, which
arises for natural number values of the param-
eter c, that is, c ∈ N. The intuition behind it is
as follows. Suppose we have c exponential ran-
dom variables with the same parameter λ, that
is, X1, X2, . . . , Xc ∼ Exp(λ) all being independent
of each other. Then the sum of these

S =
c∑

i=1

Xi
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Figure 12 Density Function of a Beta Distribution Be(c, d)

is distributed Ga(λ, c) such that the resulting
distribution function is

F (s) =

⎧
⎪⎨

⎪⎩

0 s < 0

1 − e−λs
c−1∑
i=1

(λs)i

i !
, s ≥ 0

So, when we add the identically Exp(λ) dis-
tributed interarrival times until the c th default,
for example, the resulting combined waiting
time is Erlang distributed with parameters c
and λ.

BETA DISTRIBUTION
The beta distribution is characterized by the two
parameters c and d that are any positive real
numbers. We abbreviate this distribution by
Be(c, d). It has a density function with support
on the interval [0,1], that is, only for x ∈ [0,1]
does the density function assume positive val-
ues. In the context of credit risk modeling, it
commonly serves as an approximation for gen-
erating random defaults when the true underly-
ing probabilities of default of certain companies
are unknown.

The density function is defined by

f (x) =

⎧
⎪⎨

⎪⎩

1
B(c, d)

xc−1(1 − x)d−1, 0 ≤ x ≤ 1

0 else

where B(c, d) denotes the beta function with pa-
rameters c and d. The density function may as-
sume various different shapes depending on c
and d. For a few exemplary values, we present
the plots in Figure 12. As we can see, for c = d,
the density function is symmetric about x = 0.5.

LOG-NORMAL
DISTRIBUTION
Another important distribution in finance is the
log-normal distribution. It is connected to the nor-
mal distribution via the following relationship.
Let Y be a normal random variable with mean
μ and variance σ 2. Then the random variable

X = eY

is log-normally distributed with parameters μ

and σ 2. In brief, we denote this distribution by
X ∼ Ln(μ, σ 2).
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Figure 13 Density Function of the Log-Normal Distribution for Various Values of μ and σ 2

Since the exponential function eY = exp(Y)
only yields positive values, the support of the
log-normal distribution is on the positive half
of the real line only, as will be seen by its density
function given by

f (x) =

⎧
⎪⎨

⎪⎩

1

xσ
√

2π
e

(ln x−μ)2

2σ2 , x > 0

0 else
(16)

which looks strikingly similar to the normal
density function given by (2). Figure 13 de-
picts the density function for several parameter
values.

This density function results in the log-normal
distribution function

F (x) = �

(
ln x − μ

σ

)

where �(·) is the distribution function of the
standard normal distribution. (This is the re-
sult of the one-to-one relationship between the
values of a log-normal and a standard normal
random variable.) A plot of the distribution
function for different parameter values can be
found in Figure 14.

Mean and variance of a log-normal random
variable are

E(X) = e
(
μ+σ 2

/2
)

(17)

and

Var(X) = eσ 2
(eσ 2 − 1)e2μ (18)

Application to Modeling
Asset Returns
The reason for the popularity of the log-normal
distribution is that logarithmic asset returns r
have been historically modeled as normally dis-
tributed such that the related asset prices are
modeled by a log-normal distribution. That is,
let Pt denote today’s asset price and, further-
more, let the daily return r be N(μ, σ 2). Then in
a simplified fashion, tomorrow’s price is given
by Pt+1 = Pt · er while the percentage change
between the two prices, er, is log-normally dis-
tributed, that is, Ln(μ, σ 2).

The log-normal distribution is closed un-
der special operations as well. If we let the n
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Figure 14 Distribution Function of the Log-Normal Distribution for Various Parameter Values μ

and σ 2

random variables X1, . . . , Xn be log-normally
distributed each with parameters μ and σ 2 and
uninfluenced by each other, then multiplying
all of these and taking the nth root we have that

n

√√√√
n∏

i=1

Xi∼ Ln(μ, σ 2)

where the product sign is defined as

n∏

i=1

Xi ≡ X1 × X2 × . . . × Xn

As an example, we consider a very simplified
stock price model. Let S = $100 be today’s stock
price of some company. We model tomorrow’s
price S1 as driven by the 1-day dynamic X from
the previous example of the normal distribu-
tion. In particular, the model is

S1 = S0 · e X

By some slight manipulation of the above
equation, we see that the ratio of tomorrow’s

price over today’s price

S1

S0
= e X

follows a log-normal distribution with param-
eters μ and σ , that is, S1/S0 ∼ LN(μ, σ 2). We
may now be interested in the probability that
tomorrow’s price is greater than $120; that is,

P(S1 > 120) = P(S0e X > 120)

= P(100 · e X > 120)

This corresponds to

P
(

S1

S0
>

120
S0

)
= P(e X > 1.20)

= 1 − P(e X ≤ 1.20)

= 1 − F (1.2)

= 1 − 0.8190 = 0.1810

where in the third equation on the right-hand
side, we have applied the log-normal cumula-
tive probability distribution function F. So, in
roughly 18% of the scenarios, tomorrow’s stock
price S1 will exceed the price of today, S0 = $100,
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by at least 20%. From equation (17), the mean
of the ratio is

E
(

S1

S0

)
= μS1/S0

= e0+ 0.2
2 = 1.1052

implying that we have to expect tomorrow’s
stock price to be roughly 10% greater than to-
day, even though the dynamic X itself has an
expected value of 0. Finally, equation (18) yields
the variance

Var
(

S1

S0

)
= σ 2

S1/S0
= e0.2(e0.2 − 1) = 0.2704

which is only slightly larger than that of the
dynamic X itself.

The statistical concepts learned to this point
can be used for pricing certain types of deriva-
tive instruments such as the Black-Scholes op-
tion pricing model.

KEY POINTS
� The more commonly used distributions

with appealing statistical properties that are
used in finance are the normal distribution,
the chi-square distribution, the Student’s t-
distribution, the Fisher’s F-distribution, the
exponential distribution, the gamma, the beta
distribution, and the log-normal distribution.

� The normal distribution is probably the most
famous probability distribution. Its popular-
ity is credited to the fact that it serves as the
distribution of many random sums of random
variables. Moreover, it serves as the origin for
many other probability distributions with ap-
pealing properties.

� The empirical rule is helpful in assessing how
the data of most samples are dispersed even if
we do not know the underlying distribution.
The theoretical counterpart, the Chebychev
inequality, provides limits for the dispersion
of any probability distribution whose vari-
ance we know.

� Logarithmic returns in contrast to percentage
returns is the most commonly used method
to express changes of asset prices. The reason
for the widespread use of returns computed
in terms of logarithms lies in the simple math-
ematical tractability of their form. Moreover,
their intuitive appeal results from the fact that
they can be understood as the relative price
changes obtained from constant trading.

� The default intensity finds extended use in fi-
nancial models considering stochastic default
such as the default of some bond in a bond
portfolio. It expresses the probability of de-
faulting within the next unit of time interval
as we let the length of this interval approach
zero.

� The interarrival time is the random variable
associated with the time between two succes-
sive random events. For example, for a bond
portfolio manager it is of interest to model
the time between some default in the portfo-
lio and the next default. Commonly, the in-
terarrival time is modeled as an exponential
random variable.

NOTES
1. There exist generalizations such that the dis-

tributions need no longer be identical. How-
ever, this is beyond the scope of this entry.

2. For values near 0, the logarithmic return X
is virtually equal to the multiplicative return
R. Rounding to two decimals, they are both
equal to 0.01 here.

3. For some computer software, the probability
will be given as 0.5 due to rounding.
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Abstract: Continuous probability distributions are commonly the preferred candidates when mod-
eling financial asset returns. The most popular of them is unquestionably the normal distribution
because of its appealing properties as well as the fact that it serves as the limit distribution for
many sums of random variables such as, for example, aggregated returns. The normal distribution
generally renders modeling easy because all moments exist. However, the normal distribution fails
to reflect stylized facts commonly encountered in asset returns, namely, the possibility of very ex-
treme movements and skewness. To remedy this shortcoming, probability distributions accounting
for such extreme price changes have become increasingly popular. Some of these distributions con-
centrate exclusively on extreme values and others permit any real number, but in a manner that is
capable of reflecting market behavior. Consequently, there is a selection of probability distributions
that can realistically reproduce asset price changes. Their common shortcoming is generally that
they are mathematically difficult to handle.

In this entry, we present a collection of con-
tinuous probability distributions that are used
in finance in the context of modeling extreme
events. Although there are distributions that are
appealing in nature due to their mathematical
simplicity, the ones introduced in this entry are
sometimes rather complicated, using parame-
ters that are not necessarily intuitive. However,
due to the observed behavior of many quanti-

ties in finance, there is a need for more flexi-
ble distributions compared to keeping models
mathematically simple.

While the Student’s t-distribution is able to
mimic some behavior inherent in financial data
such as so-called heavy tails (which means that
a lot of the probability mass is attributed to
extreme values), it fails to capture other ob-
served behavior such as skewness. Hence,

227
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we decided not to include the Student’s t-
distribution in this entry.

In this entry, we present the generalized ex-
treme value distribution, the generalized Pareto
distribution, the normal inverse Gaussian dis-
tribution, and the α-stable distribution together
with their parameters of location and spread.
The presentation of each distribution is accom-
panied by some illustration to help render the
theory more appealing.

GENERALIZED EXTREME
VALUE DISTRIBUTION
Sometimes it is of interest to analyze the
probability distribution of extreme values of
some random variable rather than the entire
distribution. This occurs in risk management
(including operational risk, credit risk, and mar-
ket risk) and risk control in portfolio manage-
ment. For example, a portfolio manager may
be interested in the maximum loss a portfolio
might incur with a certain probability. For this
purpose, generalized extreme value (GEV) distri-
butions are designed. They are characterized by
the real-valued parameter ξ . Thus, the abbrevi-
ated appellation for this distribution is GEV(ξ ).

Technically, one considers a series of identi-
cally distributed random variables X1, X2, . . . ,
Xn, which are independent of each other so that
each one’s value is unaffected by the others’
outcomes. Now, the GEV distributions become
relevant if we let the length of the series n be-
come ever larger and consider its largest value,
that is, the maximum.

The distribution is not applied to the data im-
mediately but, instead, to the so-called standard-
ized data. Basically, when standardizing data x,
one reduces the data by some constant real
parameter a and divides it by some positive
parameter b so that one obtains the quantity
(x − a)/b. (Standardization is a linear transform
of the random variable such that its location
parameter becomes zero and its scale one.) The
parameters are usually chosen such that this
standardized quantity has zero mean and unit
variance. We have to point out that neither vari-

ance nor mean have to exist for all probability
distributions.

Extreme value theory, a branch of statistics
that focuses solely on the extremes (tails) of a
distribution, distinguishes between three dif-
ferent types of generalized extreme value
distributions: Gumbel distribution, Fréchet
distribution, and Weibull distribution. In the
extreme value theory literature, these distri-
butions are referred to respectively as Type I,
Type II, and Type III. (See Embrechts, Klüppel-
berg, and Mikosch [2003], De Haan and Ferreira
[2006], and Kotz and Nadarajah [2002].) The
three types are related in that we obtain one
type from another by simply varying the value
of the parameter ξ . This makes GEV distribu-
tions extremely pleasant for handling financial
data.

For the Gumbel distribution, the general param-
eter is zero (i.e., ξ = 0) and its density function
is

f (x) = e−x exp
{−e−x}

A plot of this density is given by the dashed
graph in Figure 1 that corresponds to ξ = 0.
The distribution function of the Gumbel distri-
bution is then

F (x) = exp
{−e−x}

Again, for ξ = 0, we have the distribution func-
tion displayed by the dashed graph in Figure 2.

The second GEV(ξ ) distribution is the Fréchet
distribution, which is given for ξ > 0 and has
density

f (x) = (1 + ξx)−ξ−1 · exp{−x−ξ }

with corresponding distribution function

F (x) = exp
{
−(1 + x)

−1/ξ
}

Note that the prerequisite 1 + ξ x > 0 has to be
met. For a parameter value of ξ = 0.5, an exam-
ple of the density and distribution function is
given by the dotted graphs in Figures 1 and 3,
respectively.
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Figure 1 GEV(ξ ) Density Function for Various Parameter Values

Finally, the Weibull distribution corresponds to
ξ < 0. It has the density function

f (x) = (1 + ξx)−ξ−1 · exp
{−x−ξ

}

A plot of this distribution can be seen in
Figure 1, with ξ = −0.5 (solid line). Again, 1
+ ξ x > 0 has to be met. It is remarkable that
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Figure 2 GEV(ξ ) Distribution Function for Various Parameter Values

the density function graph vanishes in a finite
right end point, that is, becomes zero. Thus, the
support is on (–∞, –1/ξ ). The corresponding
distribution function is

F (x) = exp
{−(1 + x)−1/ξ

}

a graph of which is depicted in Figure 2 for
ξ = −0.5 (solid line).



230 Probability Theory

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
f(x)

x

 

β  = 1, ξ  = −0.25

β  = 1, ξ  = 0

β  = 1, ξ  = 1

Figure 3 Generalized Pareto Density Function for Various Parameter Values

Notice that the extreme parts of the density
function (i.e., the tails) of the Fréchet distribu-
tion vanish more slowly than that of the Gumbel
distribution. Consequently, a Fréchet type dis-
tribution should be applied when dealing with
scenarios of large extremes.

GENERALIZED PARETO
DISTRIBUTION
A distribution often employed to model large
values, such as price changes well beyond the
typical change, is the generalized Pareto distribu-
tion or, as we will often refer to it here, sim-
ply Pareto distribution. This distribution serves
as the distribution of the so called “peaks over
thresholds,” which are values exceeding certain
benchmarks or loss severity.

For example, consider n random variables X1,
X2, . . . , Xn that are all identically distributed
and independent of each other. Slightly ideal-
ized, they might represent the returns of some
stock on n different observation days. As the

number of observations n increases, suppose
that their maximum observed return follows
the distribution law of a GEV distribution with
parameter ξ . Furthermore, let u be some suffi-
ciently large threshold return. Suppose that on
day i, the return exceeded this threshold. Then,
given the exceedance, the amount return Xi sur-
passed u by, that is, Xi − u, is a generalized
Pareto distributed random variable.

The following density function characterizes
the Pareto distribution

f (x) =

⎧
⎪⎨

⎪⎩

1
β

(
1 + ξ

x
β

)−1−1/ξ

, x ≥ 0

0 else

with β > 0 and 1 + (ξ x)/β > 0. Hence, the dis-
tribution is right skewed since the support is
only on the positive real line. The correspond-
ing distribution function is given by

F (x) = 1
β

(
1+ξ

x
β

)−1−1/ξ

, x ≥ 0

As we can see, the Pareto distribution is char-
acterized by two parameters β and ξ . In brief,
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Figure 4 Generalized Pareto Distribution Function for Various Parameter Values

the distribution is denoted by Pa(β,ξ ). The pa-
rameter β serves as a scale parameter while the
parameter ξ is responsible for the overall shape
as becomes obvious by the density plots in Fig-
ure 3. The distribution function is displayed, in
Figure 4, for a selection of parameter values.

For β < 1, the mean is

E(X) = β/1 − ξ

When β becomes very small approaching zero,
then the distribution results in the exponential
distribution with parameter λ = 1/β.

The Pareto distribution is commonly used to
represent the tails of other distributions. For ex-
ample, while in neighborhoods about the mean,
the normal distribution might serve well to
model financial returns; for the tails (i.e., the
end parts of the density curve), however, one
might be better advised to apply the Pareto dis-
tribution. The reason is that the normal distri-
bution may not assign sufficient probability to
more pronounced price changes measured in
log-returns. On the other hand, if one wishes to
model behavior that attributes less probability

to extreme values than the normal distribution
would suggest, this could be accomplished by
the Pareto distribution as well. The reason why
the class of the Pareto distributions provides a
prime candidate for these tasks is due to the
fact that it allows for a great variety of different
shapes one can smoothly obtain by altering the
parameter values.

NORMAL INVERSE
GAUSSIAN DISTRIBUTION
Another candidate for the modeling of fi-
nancial returns is the normal inverse Gaussian
distribution. It is considered suitable since it as-
signs a large amount of probability mass to the
tails. This reflects the inherent risks in finan-
cial returns that are neglected by the normal
distribution since it models asset returns be-
having more moderately. But in recent history,
we have experienced more extreme shocks than
the normal distribution would have suggested
with reasonable probability.
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Figure 5 Normal Inverse Gaussian Density Function for Various Parameter Values

The distribution is characterized by four pa-
rameters, a, b, μ, and δ. In brief, the distribution
is denoted by NIG(a,b,μ,δ). For real values x, the
density function is given by

f (x)
a · δ

π
exp

{
δ
√

a2 − b2 + b(x − μ)
}

×
K1

(
a
√

δ2 + (x − μ)2
)

√
δ2 + (x − μ)2

where K1 is the so-called Bessel function of
the third kind. In Figure 5, we display the
density function for a selection of parameter
values.

The distribution function is, as in the normal
distribution case, not analytically presentable. It
has to be determined with the help of numerical
methods. We display the distribution function
for a selection of parameter values in Figure 6.

The parameters have the following interpreta-
tion. Parameter a determines the overall shape
of the density while b controls skewness. The
location or position of the density function is
governed via parameter μ and δ is responsi-
ble for scaling. These parameters have values

according to the following

a > 0
0 ≤ b < a
μ ∈ R
δ > 0

The mean of a NIG random variable is

E(X) = μ + δ · b√
a2 − b2

and the variance is

Var(X) = δ
a2

(√
a2 − b2

)3

Normal Distribution versus Normal
Inverse Gaussian Distribution
Due to a relationship to the normal distribution
that is beyond the scope here, there are some
common features between the normal and NIG
distributions.

The scaling property of the NIG distribution
guarantees that any NIG random variable mul-
tiplied by some real constant is again a NIG
random variable. Formally, for some k ∈ R and
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X ∼ NIG(a, b, μ, δ), we have that

k · X ∼ NIG
(

a
k
,

b
k
, k · μ, k · δ

)
(1)

Among others, the result in equation (1) implies
that the factor k shifts the density function by
the k-fold of the original position. Moreover,
we can reduce skewness in that we inflate X by
some factor k.

Also, the NIG distribution is summation
stable such that, under certain prerequisites
concerning the parameters, independent NIG
random variables are again NIG. More pre-
cisely, if we have the random variables X1 ∼
NIG(a, b, μ1, δ1) and X2 ∼ NIG(a, b, μ2, δ2), the
sum is X1 + X2 ∼ NIG(a, b, μ1 + μ2, δ1 + δ2). So,
we see that only location and scale are affected
by summation.

α-STABLE DISTRIBUTION
The final distribution we introduce is the
class of α-stable distributions. (For a further
discussion of stable distributions, see Samorod-
nitsky and Taqqu [2000].) Often, these distri-

butions are simply referred to as stable distri-
butions. While many models in finance have
been modeled historically using the normal
distribution based on its pleasant tractability,
concerns have been raised that it underesti-
mates the danger of downturns of extreme mag-
nitude inherent in stock markets. The sudden
declines of stock prices experienced during sev-
eral crises since the late 1980s—October 19, 1987
(“Black Monday”), July 1997 (“Asian currency
crisis”), 1998–1999 (“Russian ruble crisis”),
2001 (“Dot-com bubble”), and July 2007 and
following (“Subprime mortgage crisis”)—are
examples that call for distributional alterna-
tives accounting for extreme price shocks more
adequately than the normal distribution. This
may be even more necessary considering that
financial crashes with serious price movements
might become even more frequent in time given
the major events that transpired throughout the
global financial markets in 2008. The immense
threat radiating from heavy tails in stock re-
turn distributions made industry professionals
aware of the urgency to take them seriously and
reflect them in their models.
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Many distributional alternatives providing
more realistic chances to severe price move-
ments are known, such as the Student’s t, for
example, or the GEV distributions presented
earlier in this entry. In the early 1960s, Benoit
Mandelbrot suggested as a distribution for
commodity price changes the class of stable
distributions. The reason is that, through their
particular parameterization, they are capable of
modeling moderate scenarios as supported by
the normal distribution as well as extreme ones
beyond the scope of most of the distributions
that we have presented in this entry.

The stable distribution is characterized by the
four parameters α, β, σ , and μ. In brief, we
denote the α-stable distribution by S(α,β,σ ,μ).
Parameter α is the so called tail index or charac-
teristic exponent. It determines how much prob-
ability is assigned around the center and the
tails of the distribution. The lower the value α,
the more pointed about the center is the density
and the heavier are the tails. These two fea-
tures are referred to as excess kurtosis relative to
the normal distribution. This can be visualized

graphically as we have done in Figure 7 where
we compare the normal density to an α-stable
density with a low α = 1.5. The parameters for
the normal distribution are μ = 0.14 and σ =
4.23. The parameters for the stable distribution
are α = 1.5, β = 0, σ = 1, and μ = 0. Note that
symbols common to both distributions have dif-
ferent meanings.

The density graphs are obtained from fitting
the distributions to the same sample data of ar-
bitrarily generated numbers. The parameter α

is related to the parameter ξ of the Pareto distri-
bution, resulting in the tails of the density func-
tions of α-stable random variables vanishing at
a rate proportional to the Pareto tail.

The tails of the Pareto as well as the α-stable
distribution decay at a rate with fixed power α,
x−α (i.e., power law), which is in contrast to the
normal distribution whose tails decay at an ex-
ponential rate (i.e., roughly e−x2/2). We illustrate
the effect focusing on the probability of exceed-
ing some value x somewhere in the upper tail,
say x = 3. Moreover, we choose the parameter
of stability to be α = 1.5. Under the normal law,
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the probability of exceedance is roughly e−32/2

= 0.011 while under the power law it is about
3–1.5 = 0.1925. Next, we let the benchmark x be-
come gradually larger. Then the probability of
assuming a value at least twice or four times as
large (i.e., 2x or 4x) is roughly

e− (2×3)2

2 ≈ 0

or

e− (4×3)2

2 ≈ 0

for the normal distribution. In contrast, under
the power law, the same exceedance probabili-
ties would be (2 × 3)−1.5 = 0.068 or (4 × 3)−1.5

≈ 0.024. This is a much slower rate than under
the normal distribution. Note that the value of
x = 3 plays no role for the power tails while the
exceedance probability of the normal distribu-
tion decays faster the further out we are in the
tails (i.e., the larger is x). The same reasoning
applies to the lower tails considering the prob-
ability of falling below a benchmark x rather
than exceeding it.

The parameter β indicates skewness where
negative values represent left skewness while
positive values indicate right skewness. The
scale parameter σ has a similar interpretation
as the standard deviation. Finally, the param-
eter μ indicates location of the distribution. Its
interpretability depends on the parameter α. If
the latter is between 1 and 2, then μ is equal to
the mean.

Possible values of the parameters are listed
below:

α (0, 2)
β [−1, 1]
σ (0,∞)
μ R

Depending on the parameters α and β, the dis-
tribution has either support on the entire real
line or only the part extending to the right of
some location.

In general, the density function is not explic-
itly presentable. Instead, the distribution of the
α-stable random variable is given by its charac-

teristic function. The characteristic function is
given by

ϕ(t) =
∞∫

−∞
eitx f (x)dx

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

exp
{

− σα |t|α
[
1 − iβsign(t) tan

πα

2

]

+iμt
}
, α 	= 1

exp
{

− σ |t|
[

1 − iβ
2
π

sign(t)ln(t)
]

+iμt
}
, α = 1

(2)

The density, then, has to be retrieved by an
inverse transform to the characteristic func-
tion. Numerical procedures are employed for
this task to approximate the necessary com-
putations. The characteristic function (2) is
presented here more for the sake of complete-
ness rather than necessity. So, one should not
be discouraged if it appears overwhelmingly
complex.

In Figures 8 and 9, we present the density
function for varying parameters β and α, re-
spectively. Note in Figure 9 that for a β = 1, the
density is positive only on a half-line toward
the right as α approaches 2.

Only in the case of an α of 0.5, 1, or 2 can
the functional form of the density be stated.
For our purpose here, only the case α = 2 is
of interest because for this special case, the sta-
ble distribution represents the normal distribu-
tion. Then, the parameter β ceases to have any
meaning since the normal distribution is not
asymmetric.

A feature of the stable distributions is that
moments such as the mean, for example, exist
only up to the power α. (Recall that a moment
exists when the according integral of the abso-
lute values is finite.) So, except for the normal
case (where α = 2), there exists no finite vari-
ance. It becomes even more extreme when α is
equal to 1 or less such that not even the mean
exists anymore. The nonexistence of the vari-
ance is a major drawback when applying stable
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Figure 8 Stable Density Function for Various Values of β

distributions to financial data. This is one
reason why the use of this family of distribu-
tion in finance is still contended.

This class of distributions owes its name to
the stability property for the normal distribution
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(Property 2): The weighted sum of an arbitrary
number of α-stable random variables with the
same parameters is, again, α-stable distributed.
More formally, let X1, . . . , Xn be identically dis-
tributed and independent of each other. Then,
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assume that for any n ∈ N, there exists a posi-
tive constant an and a real constant bn such that
the normalized sum Y(n)

Y(n) = an(X1 + X2 + · · · + Xn)

+ bn ∼ S(α, β, σ, μ) (3)

converges in distribution to a random variable
X, then this random variable X must be stable
with some parameters α, β, σ , and μ. Again,
recall that convergence in distribution means
that the distribution function of Y(n) in equation
(3) converges to the distribution function on the
right-hand side of equation (3).

In the context of financial returns, this means
that monthly returns can be treated as the sum
of weekly returns and, again, weekly returns
themselves can be understood as the sum of
daily returns. According to equation (3), they
are equally distributed up to rescaling by the
parameters an and bn.

From the presentation of the normal distri-
bution, we know that it serves as a limit dis-
tribution of a sum of identically distributed
random variables that are independent and
have finite variance. In particular, the sum con-
verges in distribution to the standard normal
distribution once the random variables have
been summed and transformed appropriately.
The prerequisite, however, was that the vari-
ance exists. Now, we can drop the requirement
for finite variance and only ask for indepen-
dence and identical distributions to arrive at
the generalized central limit theorem expressed by
equation (3). The sum of transformed random
variables following rather arbitrary laws will
have a distribution that follows a stable dis-
tribution law as the number n becomes very
large. Thus, the class of α-stable distributions
provides a greater set of limit distributions than
the normal distribution containing the latter as
a special case. Theoretically, this justifies the use
of α-stable distributions as the choice for model-
ing asset returns when we consider the returns
to be the resulting sum of many independent
shocks.

Let us resume the previous example with the
random dynamic and the related stock price
evolution. Suppose, now, that the 10-day dy-
namic was Sα distributed. We denote the ac-
cording random variable by V10. We select a
fairly moderate stable parameter of α = 1.8. A
value in this vicinity is commonly estimated
for daily and even weekly stock returns. The
skewness and location parameters are both set
to zero, that is, β = μ = 0. The scale is σ = 1, so
that if the distribution was normal, that is, α = 2,
the variance would be 2 and, hence, consistent
with the previous distributions. Note, however,
that for α = 1.8, the variance does not exist. Here
the probability of the dynamic’s exceedance of
the lower threshold of 1 is

P(V10 > 1) = 0.2413 (4)

compared to 0.2398 and 0.1870 in the normal
and Student’s t cases, respectively. Again, the
probability in (4) corresponds to the event that
in 10 days, the stock price will be greater than
$271. So, it is more likely than in the normal and
Student’s t model.

For the higher threshold of 3.5, we obtain

P(V10 > 3.5) = 0.0181

compared to 0.0067 and 0.0124 from the normal
and Student’s t cases, respectively. This event
corresponds to a stock price beyond $3,312,
which is an immense increase. Under the nor-
mal distribution assumption, this event is vir-
tually unlikely. It would happen in less than 1%
of the 10-day periods. However, under the sta-
ble as well as the Student’s t assumption, this
could happen in 1.81% or 1.24% of the scenarios,
which is three times or double the probability,
respectively. Just for comparison, let us assume
α = 1.6, which is more common during a rough
market climate. The dynamic would now ex-
ceed the threshold of 1 with probability

P(V10 > 1) = 0.2428

which fits in with the other distribution. For 3.5,
we have

P(V10 > 3.5) = 0.0315 (5)
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which is equal to five times the probabil-
ity under the normal distribution and almost
three times the probability under the Student’s
t distribution assumption. For this threshold,
the same probability as in equation (5) could
only be achieved with a variance of σ 2 = 4,
which would give the overall distribution a dif-
ferent shape. In the Student’s t case, the degree
of freedom parameter would have to be less
than 3 such that now the variance would not
exist any longer.

For the stable parameters chosen, the same
results are obtained when the sign of the re-
turns is negative and losses are considered.
For example, P(V10 < −3.5) = 0.0315 corre-
sponds to the probability of obtaining a stock
price of $3 or less. This scenario would only
be given 0.67% probability in a normal distri-
bution model. With respect to large portfolios
such as those managed by large banks, nega-
tive returns deserve much more attention since
losses of great magnitude result in widespread
damages to industries beyond the financial
industry.

As another example, let’s look at what hap-
pened to the stock price of American Interna-
tional Group (AIG) in September 2008. On one
single day, the stock lost 60% of its value. That
corresponds to a return of about −0.94. (Keep
in mind that we are analyzing logarithmic re-
turns.) If we choose a normal distribution with
μ = 0 and σ 2 = 0.0012 for the daily returns,
a drop in price of this magnitude or less has
near zero probability. The distributional param-
eters were chosen to best mimic the behavior of
the AIG returns. By comparison, if we take an
α-stable distribution with α = 1.6, β = 0, μ = 0,
and σ = 0.001 where these parameters were se-
lected to fit the AIG returns, we obtain the prob-
ability for a decline of at least this size of 0.00003,
that is, 0.003%. So even with this distribution,
an event of this impact is almost negligible. As a
consequence, we have to chose a lower param-
eter α for the stable distribution. That brings
to light the immense risk inherent in the return
distributions when they are truly α-stable.

KEY POINTS
� Heavy tails are the general reference term

for probability distributions whose probabil-
ity mass in the tails (i.e., extreme parts of the
distribution) is heavier than in the case of
a normal distribution. Although there is no
unique definition of the feature, there exists a
selection of parameters that express whether
a distribution is heavy-tailed with respect to
the normal distribution. Financial asset re-
turns commonly exhibit heavy tails, which
imposes additional risk on asset managers
that solely rely on theory based on the nor-
mal distribution and other candidates with
appealing properties. Hence, it is necessary
to account for heavy tails.

� Extreme value theory comprises a collec-
tion of distributions dealing with the most
extreme values of some set. Either these distri-
butions concentrate on the maxima and min-
ima, respectively, or the most extreme values
beyond thresholds. In general, this theory dis-
tinguishes among three different kinds of ex-
treme value behavior. Financial risk theory
has become intertwined with extreme value
theory since it has become common knowl-
edge that it does not suffice to base all analysis
on the normal distribution alone.

� Stable distributions form a class of distribu-
tions capable of dealing with many stylized
facts observed for asset returns. Moreover, the
distributions from this class exhibit the prop-
erty of stability under summation, roughly
meaning that sums of random variables fol-
lowing certain probability laws are again dis-
tributed as individual random variables. This
makes them appealing for the characteriza-
tion of asset return behavior observed in the
real world.

� Skewness is basically a measure of asym-
metry of some distribution. While the nor-
mal distribution is symmetric about its mean,
many other distributions do not share this fea-
ture. In fact, when analyzing asset returns,
it is often revealed that they are noticeably
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skewed to one side; that is, they are asymmet-
ric. Consequently, it is important to consider
skewness when dealing with asset returns in
order to avoid additional risk arising from its
neglect.

� The generalized central limit theorem is the
extension of the central limit theorem stat-
ing that the appropriately scaled sum of cer-
tain random variables is eventually standard
normally distributed when their number be-
comes large. However, the criteria for these
random variables for the central limit theo-
rem to hold are sometimes unrealistic. The
generalized central limit theorem, in con-
trast, relaxes some of these criteria to in-
clude a larger selection of random variables
that would fail to sum up to a standard nor-
mally distributed random variable. The lim-

iting distributions of these sums are instead
members of the class of α-stable distributions.
This theorem provides a justification for the
use of stable distributions in mathematical
finance.
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Abstract: In financial models for asset pricing and asset allocation, asset returns and prices are
assumed to follow a normal or Gaussian distribution. However, the properties of the normal
distribution are not consistent with the observed behavior found for real-world asset returns.
More specifically, the symmetric and rapidly decreasing tail properties of asset return distributions
cannot describe the skewed and fat-tailed properties of the empirical distribution of asset returns.
The alpha-stable distribution or α-stable distribution has been proposed as an alternative to the
normal distribution for modeling asset returns because it allows for skewness and fat tails. Recent
research since the turn of the century has introduced alternative distributions such as the tempered
stable distributions to better describe asset returns.

In finance, the normal or Gaussian distribu-
tion has been the underlying assumption in
describing asset returns in major financial the-
ories such as the capital asset pricing the-
ory and option pricing theory. In the early
1960s, Benoit Mandelbrot, a mathematician at
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IBM’s Thomas J. Watson Research Center, pre-
sented empirical evidence regarding returns
on commodity prices and interest rate move-
ments that strongly rejected the assumption
that asset returns are normally distributed (see
Mandelbrot, 1963). The mainstream financial
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models at the time relied on the work of Louis
Bachelier, a French mathematician who at the
beginning of the 20th century was the first
to formulate random walk models for stock
prices (see Bachelier, 1900). Bachelier’s work
assumed that relative price changes followed
a normal distribution. Mandelbrot’s findings
led a leading financial economist, Paul Coot-
ner of MIT, to warn the academic community
that Mandelbrot’s finding may mean that “past
econometric work is meaningless”(see Cootner,
1964).

In Mandelbrot’s attack on the normal distri-
bution, he suggested that asset returns are more
appropriately described by a non-normal stable
distribution referred to as a stable Paretian dis-
tribution or alpha-stable distribution (α-stable
distribution), so named because the tails of this
distribution have Pareto power-type decay. The
reason for describing this distribution as “non-
normal stable” is because the normal distribu-
tion is a special case of the stable distribution.
Because of the work by Paul Lévy, a French
mathematician who introduced and character-
ized the non-normal stable distribution, this
distribution is also referred to as the Lévy stable
distribution and the Pareto-Lévy stable distri-
bution.

There are two other facts about asset return
distributions that have been supported by em-
pirical evidence. First, distributions have been
observed to be skewed or nonsymmetric. That
is, unlike in the case of the normal distribu-
tion where there is a mirror imaging of the two
sides of the probability distribution, typically in
a skewed distribution one tail of the distribu-
tion is much longer (i.e., has greater probability
of extreme values occurring) than the other tail
of the probability distribution. Probability dis-
tributions with this attribute are referred to as
having fat tails or heavy tails. The second finding
is the tendency of large changes in asset prices
(either positive or negative) to be followed by
large changes, and small changes to be followed
by small changes. This attribute of asset return
distributions is referred to as volatility cluster-
ing. In contrast to the normal distribution, the

α-stable distribution allows for skewness and
fat tails.

While the α-stable distribution has certain
desirable properties that will be discussed in
more detail in this entry, it is not suitable
in certain modeling applications such as the
modeling of option prices. In order to obtain
a well-defined model for pricing options, the
mean, variance, and exponential moments of
the return distribution have to exist. For this
reason, the smoothly truncated stable distri-
bution and various types of tempered stable
distributions have been proposed for financial
modeling. Those distributions are obtained by
tempering the tail properties of the α-stable dis-
tribution. Because they converge weakly to the
α-stable distribution, the α-stable distribution
is embedded in the class of the tempered stable
distributions.

In this entry, we discuss the α-stable and tem-
pered stable distributions. The more general
distribution, named the infinitely divisible dis-
tribution, will be discussed as well. The distri-
butions in this entry are defined by their char-
acteristic functions. The density functions are
not given by a closed-form formula in general
but obtained by a numerical method discussed
in Rachev et al. (2011).

α-STABLE DISTRIBUTION
In this section, we discuss a wide class of
α-stable distributions. We review the defini-
tion and the basic properties of the α-stable
distribution. We further present the class of
smoothly truncated stable distributions which
has been proposed by Menn and Rachev (2009)
for dealing with the drawbacks of the α-stable
distribution.

Definition of an α-Stable
Random Variable
We begin with a definition of an α-stable ran-
dom variable.1 Suppose that X1, X2, . . .,Xn are
independent and identically distributed (IID)
random variables, independent copies of X.
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Then a random variable X is said to follow
an α-stable distribution if there exist a positive
constant Cn and a real number Dn such that the
following relation holds:

X1 + X2 + · · · + Xn
d= Cn X + Dn

The notation
d= denotes equality in distribu-

tion. The constant Cn = n
1
α dictates the stability

property, which we will discuss later. When α =
2, we have the Gaussian (normal) case. In subse-
quent discussions of the α-stable distributions
in this entry, we restrict ourselves to the non-
Gaussian case in which 0 < α < 2.

For the general case, the density of the
α-stable distribution does not have a closed-
form solution. The distribution is expressed by
its characteristic function:

φstable(μ; α, β, μ) = E[eiuX]{
exp(iμu − |σu|α (1 − iβ(sign u) tan πα

2 )), α �= 1
exp(iμu − σ |u| (1 − iβ 2

π
(sign u)ln |u|)), α = 1

(1)
where

sign t =
⎧
⎨

⎩

1, t > 0
0, t = 0

−1, t < 0

The distribution is characterized by four
parameters:
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Figure 1 Illustration of α-Stable Densities for Varying α’s, with β = 0, σ = 1, and μ = 0

� α: the index of stability or the shape parame-
ter, α ∈ (0, 2).

� β: the skewness parameter, β ∈ [−1,+1].
� σ : the scale parameter, σ ∈ (0, +∞).
� μ: the location parameter, μ ∈ (−∞, +∞).

When a random variable X follows the α-stable
distribution characterized by those parameters,
then we denote it by X ∼ Sα(σ , β, μ).

The three special cases where there is a closed-
form solution for the densities are (1) the Gaus-
sian case (α = 2), (2) the Cauchy case (α = 1,
β = 0), and (3) the Lévy case (α = 1/2, β = ±1)
with the following respective densities:

� Gaussian: f (x) = 1
2σ

√
π

e− (x−μ)2

4σ2 ,−∞ < x < ∞
� Gauchy: f (x) = σ

π((x−μ)2 + σ 2) , −∞ < x < ∞
� Lévy: f (x) =

√
σ√

2π(x−μ)3/2 e− σ
2(x−μ) , μ < x < ∞

Because of the four parameters, the α-stable
distribution is highly flexible and suitable for
modeling nonsymmetric, highly kurtotic, and
heavy-tailed data. Figures 1 and 2 illustrate the
effects of the shape and skewness parameters,
respectively, on the shape of the distribution,
with other parameters kept constant. As is ev-
ident from Figure 1, a lower value for α is at-
tributed to heavier tails and higher kurtosis.
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Figure 2 Illustration of α-stable Densities for Varying β’s, with α = 1.25, σ = 0.5, and μ = 0

Useful Properties of an α-Stable
Random Variable
The four basic properties of the α-stable
distribution:

� Property 1. The power tail decay property
means that the tail of the density function
decays like a power function (slower than
the exponential decay), which is what allows
the distribution to capture extreme events in
the tails:

P(|X| > x) ∝ C · x−α, x → ∞
for some constant C. More precisely, if X ∼
Sα(σ , β, μ) with 0 < α < 2 then

{
limλ→∞ λαP(X > λ) = Cα

1+β

2 σα

limλ→∞ λαP(X > −λ) = Cα
1−β

2 σα

where

Cα =
{

1−α
�(2−α) cos(πα/2) if α �= 1
2
π

if α �= 1

� Property 2. Raw moments satisfy the property:

E |X|p < ∞ for any 0 < p < α

E |X|p = ∞ for any p ≥ α

� Property 3. Because of Property 2, the mean is
finite only for α > 1:

E[X] = μ for α > 1
E[X] = ∞ for 0 < α ≤ 1

The second and higher moments are infinite,
leading to infinite variance together with the
skewness and kurtosis coefficients.

� Property 4. The stability property is a use-
ful and convenient property and dictates
that the distributional form of the variable is
preserved under linear transformations. The
stability property is governed by the stabil-
ity parameter α in the constant Cn (which
appeared earlier in the definition of an α-
stable random variable): Cn = n1/α . As was
stated earlier, smaller values of α refer to
a heavier-tailed distribution. The standard
central limit theorem does not apply to the
non-Gaussian case: An appropriately stan-
dardized large sum of IID random variables
converges to an α-stable random variable in-
stead of a normal random variable.

The following examples illustrate the stability
property. Suppose that X1, X2, . . . ,Xn are IID
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random variables with Xi ∼ Sα(σ i, β i, μi), i = 1,
2, . . . , n and a fixed α. Then:

� The distribution of Y = ∑n
i Xi is α-stable with

the index of stability α and parameters:

β =
∑n

i βiσ
α
i∑n

i σα
i

, σ =
(

n∑
i

σα
i

)1/α

, μ =
n∑
i

μi

� The distribution of Y = X1 + a for some real
constant a is α-stable with the index of stabil-
ity α and parameters:

β = β1, σ = σ1 μ = μ1 + a

� The distribution of Y = aX1 for some real con-
stant a(a �= 0) is α-stable with the index of
stability α and parameters:

β = (sign a )β1

σ = |a | σ1

μ =
{

aμ1 for α �= 1
aμ1 − 2

π
a (In a )σ1β1 for α = 1

� The distribution of Y = −X1 is α-stable with
the index of stability α and parameters:

β = −β1, σ = σ1 μ = μ1

Smoothly Truncated Stable
Distribution
In some special cases of financial modeling it
might occur that the infinite variance of stable
distributions make their application impossi-
ble. In many cases, the infinite variance of the
return might lead to an infinite price for deriva-
tive instruments such as options, clearly con-
tradicting reality and intuition. The modeler is
confronted with a dilemma. On the one hand,
the skewed and heavy-tailed return distribu-
tion disqualifies the normal distribution as a
suitable candidate; on the other hand, theoret-
ical restrictions in option pricing do not allow
the application of the stable distribution due to
its infinite moments of order higher than α. For
this reason, Menn and Rachev (2009) have sug-

gested the use of appropriately truncated stable
distributions.

The exact definition of truncated stable distri-
butions is not that important at this point; that is
why we restrict ourselves to a brief description
of the idea. The density function of a smoothly
truncated stable distribution (STS distribution)
is obtained by replacing the heavy tails of the
density function g of some stable distribution
with parameters (α, β, σ , μ) by the thin tails of
two appropriately chosen normal distributions
h1 and h2:

f (x) =
⎧
⎨

⎩

h1(x), x < a
g(x), a ≤ x ≤ b
h2(x), x > b

The parameters of the normal distributions
are chosen such that the resulting function is
the continuous density function of a probabil-
ity measure on the real line. If it is possible to
choose the cutting points a and b in a way that
the resulting distribution possesses zero mean
and unit variance, then we have found an easy
way to characterize standardized STS distribu-
tions. In Figure 3, the influence of the stable
parameters on the appropriate cutting points
is examined. As α approaches 2 (i.e., when the
stable distribution approaches the normal dis-
tribution), we observe that the cutting points
move to infinity. For small values of α, in con-
trast, the interval [a, b] shrinks, reflecting the
increasing heaviness of the tails of the stable
distribution in the center.

Due to the thin tails of the normal density
functions, the STS distributions admit finite mo-
ments of arbitrary order but nevertheless are
able to explain extreme observations. Table 1
provides a comparison of tail probabilities for
an arbitrarily chosen STS distribution with zero
mean and unit variance and the standard nor-
mal distribution. As can be seen from the ta-
ble, the probability of extreme events is much
higher under the assumption of an STS distri-
bution. STS distributions allow for skewness in
the returns. Moreover, the tails behave like fat
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Figure 3 Influence of the Stable Parameters on the Cutting Points a and b

Table 1 Comparison of Tail Probabilities for a
Standard Normal and a Standardized STS Distribution

P(X1 ≤ x) P(X2 ≤ x)
x with X1 ∼ N(0,1) with X2 ∼ STS

−1 15.866% 11.794%
−2 2.275% 2.014%
−3 0.135% 0.670%
−4 0.003% 0.356%
−5 ≈ 10–5% 0.210%
−6 ≈ 10–8% 0.120%
−7 ≈ 10–10% 0.067%
−8 ≈ 10–14% 0.036%
−9 ≈ 10–17% 0.019%

−10 ≈ 10–22% 0.010%

tails but are light tails in the mathematical sense.
Hence, all moments of arbitrary order exist and
are finite. For this reason, advocates of the class
of STS distribution argue that it is an appropri-
ate class for modeling the return distribution of
various financial assets.

TEMPERED STABLE
DISTRIBUTIONS
In this section, we discuss six types of tempered
stable distributions.

Classical Tempered Stable
Distribution
Let α ∈ (0,1) ∪ (1, 2), C, λ+, λ_ > 0, and m ∈
R. X is said to follow the classical tempered stable
(CTS) distribution if the characteristic function
of X is given by

φX(u) = φCT S(u; α, C, λ+,λ−,m)

= exp(ium − iuC�(1 − α)
(
λα−1

+ − λα−1
−

)

+ C�(−α)((λ+ − iu)α − λα
+

+ (λ− + iu)α − λα
−)) (2)

and we denote it by X ∼ CTS(α, C, λ+, λ_, m).
Using the nth derivative of ψ(u) = logφX(u)

evaluated around zero, the cumulants cn(X) =
1
in

∂nψ

∂u
(0) of X are obtained by

c1(X) = m

cn(X) = C�(n − α)(λα−n
+

+ (−1)nλα−n
− ), for n = 2, 3, · · ·

The role of the parameters is as follows:

� The parameter m determines the location of
the distribution.
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Figure 4 Probability Density of the CTS Distributions’ Dependence on C
Note: C ∈ {0.25, 0.5,1,2}, α = 1.4, λ+ = 50, λ_ = 50, m = 0.

� The parameter C is the scale parame-
ter. Figure 4 shows the density func-
tion of the CTS distributions’ dependence
on C.

� The parameters λ+ and λ_ control the rate
of decay on the positive and negative tails,

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
λ

+
=1, λ

−
=70

λ
+
=3, λ

−
=3

λ
+
=70, λ

−
=1

Figure 5 Probability Density of the CTS Distributions: Dependence on λ+ and λ_
Note: (λ+, λ_) ∈ {(1, 70), (3, 3), (70,1)}, α = 0.8, C = 1, m = 0.

respectively. If λ+ > λ_ (λ+ < λ_), then the
distribution is skewed to the left (right), and
if λ+ = λ_, then it is symmetric. Figure 5 il-
lustrates left and right skewed density func-
tions of the CTS distribution, as well as the
symmetric case.
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Figure 6 Probability Density of the Symmetric CTS Distributions’ Dependence on Parameters λ+, λ_
Note: λ+ = λ− ∈ {10, 20, 30, 40}, α = 1.1, C = 1, m = 0.

� The parameters λ+, λ_, and α are related to tail
weights. Figures 6 and 7 illustrate this fact. We
will discuss another role of α later.

� If α approaches to 0, the CTS distribution con-
verges to the variance-gamma distribution
(discussed later in this entry) in distribution
sense.
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Figure 7 Probability Density of the CTS Distributions: Dependence on α

Note: α ∈ {0.5, 0.8,1.1,1.4}, C = 1, λ+ = 50, λ_ = 50, m = 0.

If we take a special parameter C defined by

C = (�(2 − α)(λα−2
+ + λα−2

− ))−1 (3)

then X ∼ CTS(α, C, λ+, λ_, 0) has zero mean
and unit variance. In this case, X is called
the standard CTS distribution with parameters
(α, λ+, λ−) and denoted by X ∼ stdCTS(α, λ+,
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λ_). Let m be a real number, σ be a positive real
number, and X ∼ stdCTS(α, λ+, λ_). Then

Y = σ X + m ≈ CTS

x

(
α,

σα

�(2 − α)(λα−2
+ + λα−2

− )
,
λ+
σ

,
λ−
σ

, m

)

The random variable Y is the CTS distributed,
and its mean and variance are m and σ 2, respec-
tively.

Generalized Classical Tempered
Stable Distribution
A more general form of the characteristic func-
tion for the CTS distribution is

φX(u) = exp(ium − iu�(1 − α)(C + λα+−1
+ − C−λ

α−−1
− )

+ C+�(−α+)((λ+ − iu)α+ − λα+
+ )

+ C−�(−α−)((λ− + iu)α− − λα−
− )) (4)

where α+, α− ∈ (0, 1) ∪ (1, 2), C+, C−, λ+, λ− > 0,
and m ∈ R. This distribution has been referred to
as the generalized classical tempered stable (GTS)
distribution and we denote it by X ∼ GTS(α+,
α−, C+, C−, λ+, λ−,m).2

The cumulants of X are c1 (X) = m and

cn(X) = C+�(n − α+)λα+−n
+

+ (−1)nC−�(n − α−)λα−−n
−

for n = 2, 3, · · · . If we substitute

C+ = pλ
2−α+
+

�(2 − α+)
, C− = (1 − p)λ2−α−

−
�(2 − α−)

(5)

where p ∈ (0, 1), then X ∼ GTS(α+, α−, C+, C−,
λ+, λ−, 0) has zero mean and unit variance. In
this case, X is called the standard GTS distri-
bution with parameters (α+, α−, λ+, λ−, p) and
denoted by X ∼ stdGTS (α+, α−, λ+, λ−, p).

Modified Tempered Stable
Distribution
Let α ∈ (0, 1) ∪ (1, 2), C, λ+, λ– > 0, and m ∈ R.
X is said to follow the modified tempered stable

(MTS) distribution (see Kim et al., 2009) if the
characteristic function of X is given by

φX(u) = φMTS (u; α, C, λ+, λ−, m)
= exp(ium + C(G R(u; α, λ+) + G R(u; α, λ−))

+ iuC (G I (u; α, λ+) − G I (u; α, λ−))) (6)

where for u ∈ R,

G R(x; α, λ) = 2
−α+3

2
√

π�
(
−α

2

)
((λ2 + x2)

α
2 − λα)

and

G I (x; α, λ) = 2
−α+1

2 �

(
1 − α

2

)
λα−1

×
[

2 F1

(
1,

1 − α

2
;

3
2

; − x2

λ2

)
− 1

]

where 2 F1 is the hypergeometric function. We
denote an MTS distributed random variable X
by X ∼ MTS(α, C, λ+, λ–, m).

The role of the parameters of the MTS distri-
bution is same as in the case of the CTS dis-
tribution. For example, the parameters λ+ and
λ– control the rate of decay on the positive and
negative tails, respectively, and if λ+ = λ–, then
it is symmetric. The characteristic function of
the symmetric MTS distribution is defined not
only for the case α ∈ (0, 1) ∪ (1, 2) but also for
the case α = 1. The form of the characteristic
function for the symmetric case is given by

φX(u) = φMTS (u; α, C, λ, λ, m)

= exp
(

ium + C2− α+1
2

√
π�

(
−α

2

)

×
((

λ2 + x2) α
2 − λα

))

The mean of X is m, and the cumulants of X
are equal to

cn(X) = 2n− α+3
2 C�

(
n + 1

2

)
�

(
n − α

2

)

×(λα−n
+ + (−1)nλα−n

− )

for n = 2, 3, · · ·.
If we substitute

C = 2
α+1

2

(√
π�

(
1 − α

2

)
(λα−2

+ + λα−2
− )

)−1

(7)
then X ∼ MTS(α, C, λ+, λ–, 0) has zero mean and
unit variance. In this case, the random variable
X is called the standard MTS distribution and
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Figure 8 Probability Density of the NTS Distributions’ Dependence on β

Note: β ∈ {−2.5, 0, 2.5}, α = 0.8, C = 1, λ = 4, m = 0.

denoted by X ∼ stdMTS(α, λ+, λ–). Let m be a
real number, σ be a positive real number, and X
∼ stdMTS(α, λ+, λ–). Then

Y = σ X + m ∼ MTS(α, σαC, λ+/σ, λ−/σ, m)

where C is equal to (7). The random variable Y
is MTS distributed, and its mean and variance
are m and σ 2, respectively.

Normal Tempered Stable
Distribution
Let α ∈ (0, 2), C, λ > 0, |β| < λ, and m ∈ R. X is
said to follow the normal tempered stable (NTS)
distribution.3 If the characteristic function of X
is given by

φX(u) = φNTS (u; α, C, λ, β, m)

= exp(ium − iu2− α−1
2

√
πC�

(
1 − α

2

)

×β(λ2 − β2)
α
2 −1 + 2− α+1

2 C
√

π�
(
−α

2

)

×
((

λ2 − (
β + iu)2) α

2 − (
λ2 − β2) α

2
))

(8)

We denote an NTS distributed random variable
X by X ∼ NTS(α, C, λ, β, m).

The mean of X is m. The general expressions
for cumulants of X are omitted since they are

rather complicated. Instead of the general form,
we present three cumulants

c2(X) = C̄(λ2−β2)
α
2 −2α(αβ2−λ2−β2)

c3(X) = −C̄αβ(λ2−β2)
α
2 −3(α2β2−3αλ2−3αβ2+6λ2+2β2)

c4(X) = C̄α(α−2)(λ2−β2)
α
2 −4

×(α2β4)−6αλ2β2−4αβ4+3β4+18λ2β2+3λ4)

where C̄ = 2− α+1
2 C

√
π�

(−α
2

)

The roles of parameters α, C, and λ are same as
in the case of the symmetric MTS distribution.
The parameter β is related to the distribution’s
skewness. If β < 0 (β > 0), then the distribution
is skewed to the left (right). Moreover, if β = 0,
then it is symmetric. This fact is illustrated in
Figure 8.

If we substitute

C = 2
α+1

2

×
(√

π�
(
−α

2

)
α(λ2 − β2)

α
2 −2(αβ2 − λ2 − β2)

)−1

(9)

then X ∼ NTS(α, C, λ, β, 0) has zero mean
and unit variance. In this case, X is called the
standard NTS distribution and denoted by X ∼
stdNTS(α, λ, β). Let m be a real number, σ be a
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positive real number, and X ∼ stdNTS(α, λ, β).
Then

Y = σ X + m ∼ NTS(α, σαC, λ/σ, β/σ, m)

where C is equal to (9). The random variable Y
is NTS distributed, and its mean and variance
are m and σ 2, respectively.

If we substitute α = 1 and C = c
π

into the
definition of the NTS distribution, we obtain the
normal inverse Gaussian (NIG) distribution.4

That is, if random variable X ∼ NTS(1, c/π ,
λ, β, m), then X becomes an NIG distributed
random variable. In this case, we denote X ∼
NIG(c, λ, β, m).

By substituting α = 1 and C = c
π

into (8), we
obtain the characteristic function of the NIG dis-
tributed X as

φX(u) = φNIG (u; c, λ, β, m)

= exp

(
ium − iucβ√

λ2 − β2
− c

×
(√

λ2 − (β + iu)2 −
√

λ2 − β2

))
(10)

If we substitute

c =
(
λ2 − β2

) 3
2

λ2 (11)

then X ∼ NIG(c, λ, β, 0) has zero mean and unit
variance. In this case, X is called the standard
NIG distribution and denoted by X ∼ stdNIG
(λ, β).

Kim-Rachev Tempered Stable
Distribution
Let α ∈ (0, 1) ∪ (1, 2), , k+, k_, r+, r_ > 0, p+,
p− ∈ {p > −α | p �= −l, p �= 0}, and m ∈ R. X
is said to follow the Kim-Rachev tempered stable
(KRTS) distribution (see Kim et al., 2008b) if the
characteristic function of X is given by

φX(u) = φKRTS (u; α, k+, k−, r+, r−, p+, p−, m)

= exp (ium − iu�(1 − α)
(

k+r+
p+ + 1

− k−r−
p− + 1

)

+ k+ H(iu; α, r+, p+) + k− H(−iu; α, r−, p−))
(12)

where

H(x; α, r, p) = �(−α)
p

(2 F1(p,−α; 1 + p; r x)−1)

We denote a KRTS distributed random vari-
able X by X ∼ KRTS(α, k+, k_, r+, r_, p+, p_,
p_, m).

The KRTS distribution is an extension of
the CTS distribution. Indeed, the distribution
KRTS(α, k+, k−, r+, r−, p+, p−, m) converges
weakly to the CTS distribution as p± → ∞
provided that C± = c(α+ p±)r−α

± where c > 0
(see Kim et al., 2008a). Figure 9 shows that the
KRTS distribution converges to the CTS distri-
bution when parameter p = p+ = p– increases to
infinity.

The cumulants of the KRTS distributed ran-
dom variable X are c1(X) = m and

cn(X) = �(n − α)
(

k+rn
+

p+ + n
+ (−1)n k−rn

−
p− + n

)
,

for n = 2, 3, · · · .
If we substitute

k+ = C
α + p+

rα+

k− = C
α + p−

rα−

where

C = 1
�(2 − α)

(
α + p+
2 + p+

r2−α
+ + α + p−

2 + p−
r2−α
−

)−1

(13)
then X ∼ KRTS(α, k+, k–, r+, r_, p+, p–, 0) has zero
mean and unit variance. In this case, X is said to
be standard KRTS distributed and denoted by
X ∼ stdKRTS(α, r+, r_, p+, p–). Let m be a real
number, σ be a positive real number, and X ∼
stdKRTS(α, r+, r–, p+, p–). Then

Y = σ X + m

∼ KRTS(α, C(α + p+)(σr+)−α, C(α + p−)

(σr−)−α, σr+, σ−
r , p+, p−, m)

where C is equal to (13). The random variable Y
is KRTS distributed, and its mean and variance
are m and σ 2, respectively.
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Figure 9 Probability Density of the CTS Distribution with Parameters C = 1, λ+ = 10, λ− = 2, α = 1.25,
and the KRTS Distributions with k± = C(α + p)r−a

± , r+ = 1/λ+, r− = 1/λ−, where p = p+ = p− ∈ {−0.25,
1, 10}

Rapidly Decreasing Tempered
Stable Distribution
Let α ∈ (0, 1) ∪ (1, 2), C, λ+,λ− > 0, and m ∈ R. A
random variable X is said to follow the rapidly
decreasing tempered stable (RDTS) distribution (see
Bianchi et al., 2010 and Kim et al., 2010) if the
characteristic function of X is given by

φX(u) = φRDTS (u; α, C, λ+, λ−, m)
exp(ium + C(G(iu; α, λ+) + G(−iu; α, λ−)))

(14)

where

G(x; α, λ) = 2− α
2 −1λα�

(
−α

2

) (
M

(
−α

2
,

1
2

;
x2

2λ2

)
− 1

)

+ 2− α
2 − 1

2 λα−1x�

(
1 − α

2

)

×
(

M
(

1 − α

2
,

3
2

;
x2

2λ2

)
− 1

)

and M is the confluent hypergeometric func-
tion. Further details of the confluent hypergeo-
metric function are presented at the end of this
entry. In this case, we denote X ∼ RDTS(α, C,
λ+, λ−, m). The role of the parameters are the
same as for the case of the CTS distribution.

The mean of X is m, and the cumulants of X
are

cn(X) = 2
n−α−2

2 C�

(
n − α

2

)

×(λα−n
+ + (−1)nλα−n

− ), for n = 2, 3, · · · .

If we substitute

C = 2
α
2

(
�

(
1 − α

2

)
(λα−2

+ + λα−2
− )

)−1
(15)

then X ∼ RDTS(α, C, λ+, λ_, 0) has zero mean
and unit variance, and X is called the stan-
dard RDTS distribution and denoted by X ∼
stdRDTS(α, λ+, λ_). Let m be a real number, σ

be a positive real number, and X ∼ stdCTS(α,
λ+, λ_). Then

σ X + m ∼ RDTS(α, σαC, λ+/σ, λ−/σ, m)

where C is equal to (15). The random variable Y
is RDTS distributed, and its mean and variance
are m and σ 2, respectively.
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INFINITELY DIVISIBLE
DISTRIBUTIONS
A random variable Y is referred to as infinitely
divisible if for each positive integer n, there are
IID random variables Yi, Y2, · · ·, Yn such that
Y

d≡
∑n

k=1 Yk that is, the distribution of Y is the
same as the distribution of

∑n
k=1 Yk

For example, the normal distribution is in-
finitely divisible. Using the characteristic func-
tion for the normal distribution, we can easily
check the property. Suppose Y ∼ N(μ,σ 2). For
any positive integer n, consider a sequence of
IID random variables Y1, Y2, . . . Yn such that Yk

∼ N(μ/n, σ 2 /n). Since Yk’s are independent we
have

E

[
exp

(
iu

n∑

k=1

Yk

)]
=

n∏

k=1

E [iuYk]

The characteristic function of Yk is given by

E [iuYk] = exp
(

iuμ

n
− σ 2u2

2n

)

Hence, the characteristic function of
∑n

k=1 Yk is

E

[
exp

(
iu

n∑

k=1

Yk

)]
= exp

(
iuμ − σ 2u2

2

)

which is the same as the characteristic function
of Y. Therefore, Y

d≡
∑n

k−1 Yk .
Using similar arguments, we can show that

the Poisson, gamma, variance-gamma (VG), in-
verse Gaussian (IG), α-stable, CTS, GTS, MTS,
NTS(NIG), RDTS, and KRTS distributions are
infinitely divisible. The relations of Y and Yk, k
= 1,. . .n for those distributions are presented in
Table 2. We can show that the sum of infinitely
divisible random variables is again infinitely
divisible.

In the literature, the characteristic function of
the one-dimensional infinitely divisible distri-
bution is generalized by the Lévy-Khinchine
formula:

exp
(

iγ u − 1
2
α2u2 +

∫ ∞

−∞
(eiux − 1 − iux1|x|≤1)v(dx)

)

(16)

Table 2 Infinitely Divisible Distributions

Y
d= ∑n

k=1 Yk Yk

Poisson Poiss(λ) Poiss
(

λ
n

)

Gamma Gamma(c, λ) Gamma
( c

n , λ
)

Variance gamma VG(C, λ+, λ–) VG
( C

n , λ+, λ−
)

Inverse Gaussian IG(c, λ) IG
( c

n , λ
)

Normal N(μ, σ 2) N
(

μ

n , σ 2

n

)

α-stable Sα(σ , β, μ) Sα

(
σ
n , β,

μ

n

)

CTS CTS(α, C, λ+, λ–, m) CTS
(
α, C

n , λ+, λ−, m
n

)

GTS GTS (α+, α−, C+, C−, λ+, λ−, m) GTS
(
α+α−,

C+
N ,

C−
N , λ+, λ−, m

n

)

MTS MTS (α, C, λ+, λ−, m) MTS
(
α, C

n , λ+, λ−, m
n

)

NTS NTS (α, C, λ, β, m) NTS
(
α, C

n , λ, β, m
n

)

KRTS KRTS (α+, k+, k−, r+, r−, p+, p−, m) KRTS
(
α,

k+
n ,

k−
n , r+, r−, p+, p−, m

n

)

RDTS RDTS (α, C, λ+, λ−, m) RDTS
(
α, C

n , λ+, λ−, m
n

)
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Table 3 Lévy Measures

Distributions Lévy Measure

Poisson νPoisson(dx) = λδλ(dx)5

Gamma νgamma(dx) = ce−λx

x 1x>0dx

Variance gamma νVG(dx) =
(

Ce−λ+ x

x 1x>0 + Ce−λ−|x|
x 1x<0

)
dx

Inverse Gaussian νIG(dx) = ce− λ2
2 x

√
2πx

3
2

1x>0dx

In the formula, the measure v is referred to as
the Lévy measure. The measure is a Borel mea-
sure satisfying the conditions that v(0) = 0 and∫

R
(1 ∧ ∣∣x2

∣∣)v(dx) < ∞. The parameters γ and σ

are real numbers. The variable γ is referred to as
the center or drift and determines the location.
This triplet (σ 2, ν, γ ) is uniquely defined for
each infinitely divisible distribution and called
a Lévy triplet.

If ν(dx) = 0, then the characteristic function
equals the characteristic function of the normal
distribution. That is, the infinitely divisible dis-
tribution with ν(dx) = 0 becomes the normal
distribution with mean γ and variance σ 2.

If σ = 0, then the distribution is referred to as
a purely non-Gaussian distribution. The char-
acteristic functions of purely non-Gaussian dis-
tributions are computed by

exp
(

iγ u +
∫ ∞

−∞
(eiux − 1 − iux1|x|≤1)v(dx)

)

Hence, except for the location determined by γ ,
all the properties of the distribution are charac-
terized by the Lévy measure v(dx). The Poisson,
gamma, VG, IG, α-stable, CTS, GTS, MTS, NTS,
RDTS, and KRTS distributions are purely non-
Gaussian distributions. The Lévy measure of
the Poisson, gamma, VG, and IG distributions
are given in Table 3.

The Lévy measure of the α-stable distribution
is given by

νstable(dx) =
(

C+
x1+α

1x>0 + C−
|x|1+α

1x<0

)
dx

(17)

Using the Lévy Khinchine formula we can ob-
tain the characteristic function in (1).5

The Lévy measure of the CTS, MTS, NTS,
KRTS, and RDTS distributions can be obtained
by multiplying the tempering function by the
Lévy measure of α-stable distribution. For ex-
ample, if we take q (x) = e−λ+x1x>o + e−λ−|x|1x<o

as the tempering function, then we obtain the
Lévy measure of the CTS distribution as

ν(dx) = q (x)νstable(dx)

=
(

C + e−λ+x

x1+α
1x>0 + C−e−λ−|x|

|x|1+α
1x<0

)
dx

Tempering functions of the other distributions
are presented in Table 4. For this reason, they
are referred to as the tempered stable distribu-
tions. The GTS distribution is also a purely
non-Gaussian distribution, but not a tempered
stable distribution in this sense. Indeed, its Lévy
measure is given by

ν(dx) =
(

C + e−λ+x

x1+α+
1x>0 + C−e−λ−|x|

|x|1+α− 1x<0

)
dx

However, we will refer to the GTS distribu-
tion as a tempered stable distribution for con-
venience. Using the Lévy measures and the
Lévy-Khinchine formula, we can obtain the
characteristic functions (1), (2), (4), (6), (8), (12),
and (14).

Generalizations of the tempering function
and the tempered stable distribution have been
studied in the literature.6
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Table 4 Tempering Functions

Tempering Function q(x)

CTS e−λ+x1x>0 + e−λ−|x|1x<0

MTS (λ+x)
α+1

2 K α+1
2

(λ+x)1x>0 + (λ−|x|) α+1
2 K α+1

2
(λ−|x|)1x<0

NTS eβx(λ|x|) α+1
2 K α+1

2
(λ|x|)

KRTS r−p+
+

∫ r+
0 e−x/ssα+p+−1ds 1x>0 + r−p−

−
∫ r−

0 e−|x|/s sα+p−−1ds 1x<0

RDTS e− λ+ x2

2 1x>0 + e− λ−|x|2
2 1x<0

Exponential Moments
The exponential moment of a random variable
X is defined by E[euX] for some real number
u. Existence of the exponential moment is im-
portant for modeling an asset price process in
option pricing theory.

The exponential moment of the normal distri-
bution is given by

E
[
euX] = exp

(
μu + σ 2u2

2

)

where X ∼ N(μ, σ ).
Using the Lévy measure we can check the

existence of the exponential moment for an
infinitely divisible random variable. The fol-
lowing theorem (see Sato, 1999) provides a use-
ful tool to verify the existence of an exponential
moment of an infinitely divisible distribution.

Theorem Let X be an infinitely divisible random
variable with the Lévy triplet (σ 2, ν, γ ) and let
u ∈ R. Then E[euX] < ∞ if and only if

∫

|x|>1
euxν(dx) < ∞ (18)

In this case,

E[euX] = φX(−iu)

where φ is the characteristic function of X and
i = √−1.

The existence of exponential moments in the
tempered stable distributions is as following:

� For the α-stable random variable X, the expo-
nential moment of X generally does not exist.

However, if X ∼ Sα(σ , 1, 0), then E[euX] < ∞
for u < 0. In this case,

E
[
euX] =

{
exp

(
− σα

cos πα
2

μα
)

, α �= 1

exp
( 2σ

π
u In u

)
, α = 1

� For the CTS, GTS, and MTS distributions, the
condition (18) is satisfied if and only if −λ− ≤
u ≤ λ+. Hence, E[euX] < ∞ for u ∈ [−λ−, λ+].

� For the KRTS distribution, E[euX] < ∞ for u ∈
[−1/r−, 1/r+].

� For the NTS and the NIG distributions,
E[euX] < ∞ for u ∈ [−λ − β, λ − β].

� For the RDTS distribution, (18) is satisfied for
the entire real number u. Hence, E[euX] < ∞
for all u ∈ R.

If E[euX] < ∞, then we can define the log-
Laplace transform for the random variable X. The
log-Laplace transform is given by

L(u) = log E[euX] = log φ(−iu)

if (18) is satisfied.
For example, let X ∼ stdCTS(α, λ+, λ_). The

log-Laplace transform LCTS of X is defined on u
∈ [−λ_, λ+], and is given by

LCT S(u; a , λ+, λ−) = log φCT S(−iu; α, C, λ+, λ−, 0)

= (λ+ − u)α − λα
+ + (λ− + u)α − λα

−
α(α − 1)(λα−2

+ + λα−2
− )

− u(λα−1
+ − λα−1

− )

(1 − α)(λα−2
+ + λα−2

− )

where C is satisfied (3). Using the same method,
we can obtain the log-Laplace transform of the
other standard tempered stable distributions as
follows:
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� Standard GTS distribution:

LGT S(u; α+, α−, λ+, λ−)

= log φGT S(−iu; α+, α−, C+, C−, λ+, λ−, 0)

on u ∈[−λ−, λ+] where C+ and C– satisfy (5).
� Standard MTS distribution:

L MT S(u; α, λ+, λ−)

= log φMT S(−iu; α, C, λ+, λ−, 0)

on u ∈ [–λ–, λ+] where C satisfies (7).
� Standard NTS distribution:

L NT S(u; α, λ, β) = log φNT S(−iu; α, C, λ, β, 0)

on u ∈ [–λ – β, λ –β] where C satisfies (9).
� Standard NIG distribution:

L NI G(u; λ, β) = log φNI G(−iu; C, λ, β, 0)

on u ∈ [–λ – β, λ –β] where C satisfies (11).
� Standard KRTS distribution:

L K RT S(u; α, r+, r−, p+, p−)
= log φK RT S(−iu; α, k+, k−, r+, r−, p+, p−, 0)

on u ∈ [–λ–, λ+] where k+ and k– satisfy (13).
� Standard RDTS distribution:

L RDT S(u; α, λ+, λ−)

= log φRDT S(−iu; α, C, λ+, λ−, 0)

on u ∈ R where C satisfies (15).

HYPERGEOMETRIC
FUNCTION AND
CONFLUENT
HYPERGEOMETRIC
FUNCTION
In this entry, we referred to the hypergeometric
function and the confluent hypergeometric
function. Here we describe these two spe-
cial functions. (For more details, see Andrews,

1998.) We begin by introducing the following
notation

(a )0 = 1, (a )n = a (a + 1) · · · (a + n − 1)

n = 1, 2, 3, · · · , a ∈ R (19)

and we refer to the notation as the Pochhammer
symbol. By properties of the gamma function,
the Pochhammer symbol can also be defined by

(a )n = �(a + n)
�(a )

, n = 0, 1, 2, 3, · · · .

From (19), we obtain

(2n + 1)! = 22nn!
(

3
2

)

n
(20)

The Hypergeometric Function
The function

2 F1(a , b; c; x) =
∞∑

n=0

(a )n(b)n

(c)n

xn

n!
, |x| < 1

(21)
is called the hypergeometric function. If c �=
0, –1, –2, · · ·, the function F(a, b; c; x) is a so-
lution to the linear second-order differential
equation

x(1 − x)y′′ + (c − (a + b + 1)x)y′ − aby = 0
(22)

referred to as the hypergeometric equation.
Moreover, if c �= 0, ±1, ±2, · · ·,

y = C1 2 F1(a , b; c; x)

+C2x1−c
2 F1(1 + a − c, 1 + b − c; 2 − c; x)

for any constants C1 and C2, is a general so-
lution to equation (22). For k = 1, 2, 3 · · ·,
kth derivatives are obtained from the following
equation:

dk

dxk 2 F1(a , b; c; x) = (a )k(b)k

(c)k
2 F1(a + k, b + k; c + k; x)

(23)
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The Confluent Hypergeometric
Function
The function

M(a ; c; x) =
∞∑

n=0

(a )n xn

(c)n n!
,−∞ < x < ∞ (24)

is called the confluent hypergeometric function
and is obtained by the limit of the hypergeo-
metric function as follows:

M(a ; c; x) = lim
b→∞

F (a , b; c; x/b)

The function M(a; c; x) is a solution of the linear
second-order differential equation

xy′′ + (c − x)y′ − ay = 0 (25)

referred to as the confluent hypergeometric
equation. Moreover, if c �= 0, ±1, ±2, · · ·,

y = C1 M(a ; c; x) + C2x1−c F (1 + a − c; 2 − c; x)

for any constants C1 and C2, is a general so-
lution of equation (25). For k = 1, 2, 3 · · ·,
kth derivatives are obtained by the following
equation:

dk

dxk
M(a ; c; x) = (a )k

(c)k
M(a + k; c + k; x) (26)

KEY POINTS
� The distribution assumed in financial models

for asset returns is the normal or Gaussian dis-
tribution. Real-world asset returns, however,
have been observed to be skewed and non-
symmetric, two features that are inconsistent
with the normal distribution.

� Although the non-Gaussian alpha-stable dis-
tribution is superior to the normal distribu-
tion because it allows for skewness and fat
tails, it is not suitable in certain modeling ap-
plications such as in modeling option prices.
This is because the mean, variance, and ex-
ponential moments of the return distribution
have to exist. The smoothly truncated sta-

ble distribution, obtained by tempering the
tail properties of the alpha-stable distribution,
have been proposed for modeling in such
instances.

� There are six tempered stable distributions:
classical tempered stable distribution, gen-
eralized classical tempered stable distribu-
tion, modified tempered stable distribution,
normal tempered stable distribution, Kim-
Rachev tempered stable distribution, and
rapidly decreasing tempered stable distribu-
tion. All six tempered stable distributions and
the alpha-stable distribution are defined by
their characteristic functions.

� The infinitely divisible distribution is charac-
terized by the Lévy-Khinchine formula and
contains the alpha-stable and the tempered
stable distributions as special cases.

NOTES
1. Extensive analysis of α-stable distributions

and their properties can be found in
Samorodnitsky and Taqqu (1994), Rachev
and Mittnik (2000), and Stoyanov and
Racheva-Iotova (2004a, 2004b).

2. The KoBoL distribution (see Boyarchenko
and Levendorskii, 2000) is obtained by sub-
stituting α = α+ = α_, the truncated Lévy
flight is obtained by substituting λ = λ+ =
λ_ and α = α+ = α_, while the CGMY distri-
bution (see Carr et al., 2002) is obtained by
substituting C = C+ = C_, G = λ_, M = X+
and Y = α+ = α_.

3. The NTS distribution was originally ob-
tained using a time-changed Brownian mo-
tion with a tempered stable subordinator by
Barndorff-Nielsen and Levendorskii (2001).
Later, Kim, Rachev, Chung, and Bianchi
(2008c) define the NTS distribution by the
exponential tilting for the symmetric MTS
distribution.

4. The NIG distribution has been used for finan-
cial modeling by Barndorff-Nielsen (1998,
1997) and Rydberg (1997).
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5. More details about the calculation can be
found in Samorodnitsky and Taqqu (1994)
and Sato (1999).

6. The tempered stable distribution has been
generalized by Rosiński (2007) and Bianchi
et al. (2010). Rosiński (2007) defined the tem-
pering function as the completely mono-
tone function. The complete monotonicity
of the tempering function q(x) means that
(−1)n dn

dxn q (x) > 0 for all n = 0, 1, 2, . . . and
x ∈ R with x �= 0. The CTS and the KRTS dis-
tributions are included in Rosiński’s general-
ization. In Bianchi et al. (2010), the tempering
function is defined by the positive definite
radial function. The RDTS and the MTS dis-
tributions are subclasses of the class of the
TID distributions.
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Processes and Volatility Clustering. Hoboken, NJ:
John Wiley & Sons.

Rachev, S. T., and Mittnik, S. (2000). Stable Pare-
tian Models in Finance. Chichester: John Wiley &
Sons.
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Abstract: Fat-tailed laws have been found in many economic variables. Fully approximating a finite
economic system with fat-tailed laws depends on an accurate statistical analysis of the phenomena,
but also on a number of the theoretical implications of subexponentiality and scaling. Modeling
financial variables with stable laws implies the assumption of infinite variance, which seems to
contradict empirical observations. Nevertheless, scaling laws might still be an appropriate modeling
paradigm given the complex interaction of distributional shape and correlations in price processes.
They might help in understanding not only the sheer size of economic fluctuations but also the
complexity of economic cycles. There are applications where scaling laws play a fundamental
role, in particular in risk management and financial optimization. Ignoring the possibility of large
deviations would render financial risk management ineffective and dangerous.

Most models of stochastic processes and time
series assume that distributions have finite
mean and finite variance. In this entry we de-
scribe fat-tailed distributions with infinite vari-
ance. Fat-tailed distributions have been found
in many financial economic variables ranging
from forecasting returns on financial assets to
modeling recovery distributions in bankrupt-
cies. They have also been found in numerous
insurance applications such as catastrophic in-
surance claims and in value-at-risk measures
employed by risk managers.

In this entry, we review the related concepts of
fat-tailed, power-law, and Levy-stable distributions,
scaling, and self-similarity, as well as explore the
mechanisms that generate these distributions.

We discuss the key intuition relative to the ap-
plicability of fat-tailed or scaling processes to
finance: In a fat-tailed or scaling world (as op-
posed to an ergodic world), the past does not
offer an exhaustive set of possible configura-
tions. Adopting, as an approximation, a scaling
description of financial phenomena implies the
belief that only a small space of possible config-
urations has been explored; vast regions remain
unexplored.

We begin with the mathematics of fat-tailed
processes, followed by a discussion of classical
extreme value theory for independent and identi-
cally distributed sequences. We then explore the
consequences of eliminating the assumption of
independence and discuss different concepts of
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scaling and self similarity. We will not provide
a review of the literature on the evidence of
fat tails in financial markets. For a review, see
Rachev, Menn, and Fabozzi (2005).

SCALING, STABLE LAWS,
AND FAT TAILS
Let’s begin with a review of the different but re-
lated concepts and properties of fat tails, power
laws, and stable laws. These concepts appear
frequently in the financial and economic liter-
ature, applied to both random variables and
stochastic processes.

Fat Tails
Consider a random variable X. By definition, X
is a real-valued function from the set � of the
possible outcomes to the set R of real numbers,
such that the set (X ≤ x) is an event. If P(X ≤
x) is the probability of the event (X ≤ x), the
function F(x) = P(X ≤ x) is a well-defined func-
tion for every real number x. The function F(x)
is called the cumulative distribution function,
or simply the distribution function, of the ran-
dom variable X. Note that X denotes a function
� → R, x is a real variable, and F(x) is an ordi-
nary real-valued function that assumes values
in the interval [0,1]. If the function F(x) admits
a derivative

f (x) = dF(x)
dx

The function f (x) is called the probability den-
sity of the random variable X. The function
F̄ (x) = 1 − F (x) is the tail of the distribution
F(x). The function F̄ (x) is called the survival
function.

Fat tails are somewhat arbitrarily defined. In-
tuitively, a fat-tailed distribution is a distribu-
tion that has more weight in the tails than some
reference distribution. The exponential decay
of the tail is generally assumed as the border-
line separating fat-tailed from light-tailed dis-
tributions. In the literature, distributions with

a power-law decay of the tails are referred to
as heavy-tailed distributions. It is sometimes as-
sumed that the reference distribution is Gaus-
sian (i.e., normal), but this is unsatisfactory; it
implies, for instance, that exponential distribu-
tions are fat-tailed because Gaussian tails decay
as the square of an exponential and thus faster
than an exponential.

These characterizations of fat-tailedness (or
heavy-tailedness) are not convenient from a
mathematical and statistical point of view. It
would be preferable to define fat-tailedness in
terms of a function of some essential property
that can be associated to it. Several propos-
als have been advanced. Widely used defini-
tions focus on the moments of the distribution.
Definitions of fat-tailedness based on a single
moment focus either on the second moment,
the variance, or the kurtosis, defined as the
fourth moment divided by the square of the
variance. In fact, a distribution is often consid-
ered fat-tailed if its variance is infinite or if it is
leptokurtic (i.e., its kurtosis is greater than 3).
However, as remarked by Bryson (1982), defi-
nitions of this type are too crude and should be
replaced by more complete descriptions of tail
behavior.

Others consider a distribution fat-tailed if all
its exponential moments are infinite, E[esX] =
∞ for every s ≥ 0. This condition implies that
the moment-generating function does not ex-
ist. Some suggest weakening this condition,
defining fat-tailed distributions as those distri-
butions that do not have a finite exponential
moment of first order. Exponential moments
are particularly important in finance and eco-
nomics when the logarithm of variables, for in-
stance logprices, are the primary quantity to be
modeled.1

Fat-tailedness has a consequence of practical
importance: The probability of extremal events
(i.e., the probability that the random variable
assumes large values) is much higher than in
the case of normal distributions. A fat-tailed
distribution assigns higher probabilities to ex-
tremal events than would a normal distribution.
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For instance, a six-sigma event (i.e., a realized
value of a random variable whose difference
from the mean is six times the size of the stan-
dard deviation) has a near zero probability in
a Gaussian distribution but might have a non-
negligible probability in fat-tailed distributions.

The notion of fat-tailedness can be made
quantitative as different distributions have dif-
ferent degrees of fat-tailedness. The degree of
fat-tailedness dictates the weight of the tails
and thus the probability of extremal events. Ex-
treme value theory attempts to estimate the en-
tire tail region, and therefore the degree of fat-
tailedness, from a finite sample. A number of
indicators for evaluating the size of extremal
events have been proposed; among these is the
extremal claim index proposed in Embrechts,
Kluppelberg, and Mikosch (1999), which plays
an important role in risk management.

The Class � of Fat-Tailed
Distributions
Many important classes of fat-tailed distribu-
tions have been defined; each is characterized
by special statistical properties that are im-
portant in given application domains. We will
introduce a number of such classes in order
of inclusion, starting from the class with the
broadest membership: the class �, which is de-
fined as follows. Suppose that F is a distribu-
tion function defined in the domain (0, ∞) with
F < 1 in the entire domain (i.e., F is the distribu-
tion function of a positive random variable with
a tail that never decays to zero). It is said that
F ∈ � if, for any y > 0, the following property
holds:

lim
x→∞

F̄ (x − y)
F̄ (x)

= 1, ∀y > 0

We can rewrite the above property in an
equivalent (and perhaps more intuitive from
the probabilistic point of view) way. Under the
same assumptions as above, it is said that, given
a positive random variable X, its distribution
function F ∈ � if the following property holds

for any y > 0:

lim
x→∞ P(X > x + y|X > x)

= lim
x→∞

F̄ (x + y)
F̄ (x)

= 1, ∀y > 0

Intuitively, this second property means that if
it is known that a random variable exceeds a
given value x, then it will exceed any bigger
value with certainty as the value x tends to in-
finity. Some authors define a distribution as be-
ing heavy-tailed if it satisfies this property.2

It can be demonstrated that if a distribution
F(x) ∈ �, then it has the following properties:

� Infinite exponential moments of every order:
E[esX] = ∞ for every s ≥ 0

� lim
x→∞ F̄ (x)eλx = ∞, ∀λ > 0

As distributions in class � have infinite expo-
nential moments of every order, they satisfy
one of the previous definitions of fat-tailedness.
However, they might have finite or infinite
mean and variance.

The class � is in fact quite broad. It includes,
in particular, the two classes of subexponential
distributions and distributions with regularly
varying tails that are discussed in the following
sections.

Subexponential Distributions
A class of fat-tailed distributions, widely used
in insurance and telecommunications, is the
class S of subexponential distributions. Introduced
by Chistyakov (1964), subexponential distribu-
tions can be characterized by two equivalent
properties: (1) the convolution closure property
of the tails and (2) the property of the sums.3

The convolution closure property of the tails pre-
scribes that the shape of the tail is preserved
after the summation of identical and indepen-
dent copies of a variable. This property asserts
that, for x → ∞, the tail of a sum of indepen-
dent and identical variables has the same shape
as the tail of the variable itself. As the distri-
bution of a sum of n independent variables
is the n-convolution of their distributions, the
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convolution closure property can be written as

lim
x→∞

F̄ n∗
(x)

F̄ (x)
= n

Note that Gaussian distributions do not have
this property although the sum of independent
Gaussian distributions is again a Gaussian dis-
tribution. Subexponential distributions can be
characterized by another important (and per-
haps more intuitive) property, which is equiv-
alent to the convolution closure property: In a
sum of n variables, the largest value will be of
the same order of magnitude as the sum itself.
For any n, define

Sn(x) =
n∑

i=1

Xi

as a sum of independent and identical copies of
a variable X and call Mn their maxima. In the
limit of large x, the probability that the tail of
the sum exceeds x equals the probability that
the largest summand exceeds x:

lim
x→∞

P(Sn > x)
P(Mn > x)

= 1

The class S of subexponential distributions is
a proper subset of the class �. Every subexpo-
nential distribution belongs to the class � while
it can be demonstrated (but this is not trivial)
that there are distributions that belong to the
class � but not to the class S. Distributions that
have both properties are called subexponential
as it can be demonstrated that, as all distribu-
tions in �, they satisfy the property:

lim
x→∞ F̄ (x)eλx = ∞, ∀λ > 0

Note, however, that the class of distributions
that satisfies the latter property is broader than
the class of subexponential distributions; this is
because the former includes, for instance, the
class �.4

Subexponential distributions do not have fi-
nite exponential moments of any order, that
is, E[esX] = ∞ for every s ≥ 0. They may or
may not have a finite mean and/or a finite vari-
ance. Consider, in fact, that the class of subexpo-

nential distributions includes both Pareto and
Weibull distributions. The former have infinite
variance but might have finite or infinite mean
depending on the index; the latter have finite
moments of every order (see below).

The key indicators of subexponentiality are
(1) the equivalence in the distribution of the
tail between a variable and a sum of indepen-
dent copies of the same variable and (2) the fact
that a sum is dominated by its largest term. The
importance of the largest terms in a sum can be
made more quantitative using measures such as
the large claims index introduced in Embrechts,
Kluppelberg, and Mikosch (1999) that quanti-
fies the ratio between the largest p terms in a
sum and the entire sum.

The class of subexponential distributions
is quite large. It includes not only Pareto
and stable distributions but also log-gamma,
lognormal, Benkander, Burr, and Weibull
distributions. Pareto distributions and stable
distributions are a particularly important sub-
class of subexponential distributions; these will
be described in some detail below.

Power-Law Distributions
Power-law distributions are a particularly im-
portant subset of subexponential distributions.
Their tails follow approximately an inverse
power law, decaying as x−α . The exponent α

is called the tail index of the distribution. To
express formally the notion of approximate
power-law decay, we need to introduce the class
	(α), equivalently written as 	α of regularly
varying functions.

A positive function f is said to be regularly
varying with index α or f ∈ 	(α) if the following
condition holds:

lim
x→∞

f (tx)
f (x)

= tα

A function f ∈ 	(α) is called slowly varying. It
can be demonstrated that a regularly varying
function f (x) of index α admits the representa-
tion f (x) = xαl(x) where l(x) is a slowly varying
function.
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A distribution F is said to have a regularly
varying tail if the following property holds:

F̄ = x−αl(x)

where l is a slowly varying function. An exam-
ple of a distribution with a regularly varying
tail is Pareto’s law. The latter can be written in
various ways, including the following:

F̄ (x) = P(X > x) = c
c + xα

for x ≥ 0

Power-law distributions are thus distribu-
tions with regularly varying tails. It can be
demonstrated that they satisfy the convolution
closure property of the tail. The distribution of
the sum of n independent variables of tail index
α is a power-law distribution of the same index
α. Note that this property holds in the limit for
x →∞. Distributions with regularly varying
tails are therefore a proper subset of subexpo-
nential distributions.

Being subexponential, power laws have all
the general properties of fat-tailed distributions
and some additional ones. One particularly im-
portant property of distributions with regularly
varying tails, valid for every tail index, is the
rank-size order property. Suppose that samples
from a power law of tail index α are ordered by
size, and call Sr the size of the rth sample. One
then finds that the law

Sr = ar− 1
α

is approximately verified. The well-known
Zipf’s law is an example of this rank-size or-
dering. Zipf’s law states that the size of an ob-
servation is inversely proportional to its rank.
For example, the frequency of words in an En-
glish text is inversely proportional to their rank.
The same is approximately valid for the size of
U.S. cities.

Many properties of power-law distributions
are distinctly different in the three following
ranges of α: 0 < α ≤ 1, 1 < α ≤ 2, α > 2. The
threshold α = 2 for the tail index is important as
it marks the separation between the applicabil-
ity of the standard central limit theorem (CLT);
the threshold α = 1 is important as it separates

variables with a finite mean from those with in-
finite mean. Let’s take a closer look at the law of
large numbers and the CLT.

The Law of Large Numbers and the
Central Limit Theorem
There are four basic versions of the law of large
numbers (LLN), two weak laws of large num-
bers (WLLN), and two strong laws of large
numbers (SLLN).

The two versions of the WLLN are formulated
as follows.

1. Suppose that the variables Xi are IID with
finite mean E[Xi] = E[X] = μ Under this con-
dition it can be demonstrated that the empir-
ical average tends to the mean in probability:

X̄n =

n∑
i=1

Xi

n
P

n→∞
−→ E[X] = μ

2. If the variables are only independently dis-
tributed (ID) but have finite means and vari-
ances (μi,σ i), then the following relationship
holds:

X̄n =

n∑
i=1

Xi

n
P

n→∞
−→

n∑
i=1

X̄i

n
=

n∑
i=1

μi

n
In other words, the empirical average of a
sequence of finite-mean finite-variance vari-
ables tends to the average of the means.

The two versions of the SLLN are formulated
as follows.

1. The empirical average of a sequence of IID
variables Xi tends almost surely to a constant
a if and only if the expected value of the vari-
ables is finite. In addition, the constant a is
equal to μ. Therefore, if and only if |E[Xi]| =
|E[X]| = |μ| < ∞ the following relationship
holds:

X̄n =

n∑
i=1

Xi

n
A.S.

n→∞
−→ E[X] = μ

where convergence is in the sense of almost
sure convergence.



264 Probability Theory

2. If the variables Xi are only independently
distributed (ID) but have finite means and
variances (μi, σ i) and

lim
n→∞

1
n2

n∑

i=1

σ 2
i < ∞

then the following relationship holds:

X̄n =

n∑
i=1

Xi

n
A.S.

n→∞
−→

n∑
i=1

X̄i

n
=

n∑
i=1

μi

n

Suppose the variables are IID. If the scaling
factor n is replaced with

√
n, then the limit rela-

tion no longer holds as the normalized sum
n∑

i=1
Xi

√
n

diverges. However, if the variables have finite
second-order moments, he classical version of
the CLT can be demonstrated. In fact, under the
assumption that both first- and second-order
moments are finite, it can be shown that

Sn − nμ

σ
√

n
D→ �

Sn =
n∑

i=1
Xi

where μ, σ are respectively the expected value
and standard deviation of X, and � the standard
normal distribution.

If the tail index α > 1, variables have finite
expected value and the SLNN holds. If the tail
index α > 2, variables have finite variance and
the CLT in the previous form holds. If the tail
index α ≤ 2, then variables have infinite vari-
ance: The CLT in the previous form does not
hold. In fact, variables with α ≤ 2 belong to
the domain of attraction of a stable law of in-
dex α. This means that a sequence of properly
normalized and centered sums tends to a stable
distribution with infinite variance. In this case,
the CLT takes the form

Sn − nμ

n
1
α

D→ Gα, if 1 < α ≤ 2

Sn

n
1
α

D→ Gα, if 0 < α ≤ 1

where G are stable distributions as defined be-
low. Note that the case α = 2 is somewhat spe-
cial: variables with this tail index have infinite
variance but fall nevertheless in the domain of
attraction of a normal variable, that is, G2. Be-
low the threshold 1, distributions have neither
finite variance nor finite mean. There is a sharp
change in the normalization behavior at this
tail-index threshold.

Stable Distributions
Stable distributions are not, in their generality, a
subset of fat-tailed distributions as they include
the normal distribution. There are different,
equivalent ways to define stable distributions.
Let’s begin with a key property: the equality in
distribution between a random variable and the
(normalized) independent sum of any number
of identical replicas of the same variable. This is
a different property than the closure property of
the tail insofar as (1) it involves not only the tail
but the entire distribution and (2) equality in
distribution means that distributions have the
same functional form but, possibly, with differ-
ent parameters. Normal distributions have this
property: The sum of two or more normally
distributed variables is again a normally dis-
tributed variable. But this property holds for a
more general class of distributions called sta-
ble distributions or Levy-stable distributions.5

Normal distributions are thus a special type of
stable distributions.

The above can be formalized as follows: Sta-
ble distributions can be defined as those dis-
tributions for which the following identity in
distribution holds for any number n ≥ 2:

n∑

i=1

Xi
D= Cn X + Dn

where Xi are identical independent copies of
X and the Cn, Dn are constants. Alternatively,
the same property can be expressed stating that
stable distributions are distributions for which
the following identity in distribution holds:

AX1 + BX2
D= CX + D
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Stable distributions are also characterized by
another property that might be used in defin-
ing them: a stable distribution has a domain of
attraction (i.e., it is the limit in distribution of a
normalized and centered sum of identical and
independent variables). Stable distributions co-
incide with all variables that have a domain of
attraction.

Except in the special cases of Gaussian (α = 2),
symmetric Cauchy (α = 1, β = 0), and stable
inverse Gaussian (α = 1

2 , β = 0) distributions,
stable distributions cannot be written as simple
formulas; formulas have been discovered but
are not simple. However, stable distributions
can be characterized in a simple way through
their characteristic function, the Fourier trans-
form of the distribution function. In fact, this
function can be written as

�X(t) = exp[iγ t − c|t|α[1 − iβsign(t)z(t, α)]}
where t ∈ R, γ ∈ R, c > 0, α ∈ (0,2), β ∈ [−1,1],
and

z(t, α) = tan
πα

2
if α �= 1

z(t, α) = −2 log |t| if α = 1

It can be shown that only distributions with
this characteristic function are stable distribu-
tions (i.e., they are the only distributions closed
under summation). A stable law is character-
ized by four parameters: α, β, c, and γ . Normal
distributions correspond to the parameters: α =
2, β = 0, γ = 0.

Even if stable distributions cannot be writ-
ten as simple formulas, the asymptotic shape
of their tails can be written in a simple way. In
fact, with the exception of Gaussian distribu-
tions, the tails of stable laws obey an inverse
power law with exponent α (between 0 and 2).
Normal distributions are stable but are an ex-
ception as their tails decay exponentially.

For stable distributions, the CLT holds in the
same form as for inverse power-law distribu-
tions. In addition, the functions in the domain
of attraction of a stable law of index α < 2 are
characterized by the same tail index. This means
that a distribution G belongs to the domain of

attraction of a stable law of parameter α < 2
if and only if its tail decays as α. In particular,
Pareto’s law belongs to the domain of attraction
of stable laws of the same tail index.

EXTREME VALUE THEORY
FOR IID PROCESSES
In this section we introduce a number of impor-
tant probabilistic concepts that form the concep-
tual basis of extreme value theory (EVT). The
objective of EVT is to estimate the entire tail of
a distribution from a finite sample by fitting to
an appropriate distribution those values of the
sample that fall in the tail. Two concepts play a
crucial role in EVT: (1) the behavior of the up-
per order statistics (i.e., the largest k values in a
sample) and, in particular, of the sample max-
ima; and (2) the behavior of the points where
samples exceed a given threshold. We will ex-
plore the limit distributions of maxima and the
distribution of the points of exceedances of a
high threshold. Based on these concepts a num-
ber of estimators of the tail index in sequences
of independent and identically distributed (IID)
variables are presented.

Maxima
In the previous sections we explored the be-
havior of sums. The key result of the theory of
sums is that the behavior of sums simplifies in
the limit of properly scaled and centered infi-
nite sums regardless of the shape of individual
summands. If sums converge, their limit dis-
tributions can only be stable distributions. In
addition, the normalized sums of finite-mean,
finite-variance variables always converge to a
normal variable.

A parallel theory can be developed for max-
ima, informally defined as the largest value in
a sample. The limit distribution of maxima, if
it exists, belongs to one of three possible dis-
tributions: Frechet, Weibull, or Gumbel. This re-
sult forms the basis of classical EVT. Each limit
distribution of maxima has its own maximum
domain of attraction. In addition, limit laws are
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Figure 1 The Distribution of the Maxima of a Normal Variable

max-stable (i.e., they are closed with respect to
maxima). However, the behavior of maxima is
less robust than the behavior of sums. Maxima
do not converge to limit distributions for im-
portant classes of distributions, such as Poisson
or geometric distributions.

Consider a sequence of independent variables
Xi with common, nondegenerate distribution F
and the maxima of samples extracted from this
sequence:

M1 = X1, Mn = max(X1, . . . , Xn)

The maxima Mn form a new sequence of
random variables, which are not, however,
independent.

As the variables of the sequence Xi are as-
sumed to be independent, the distribution Fn

of the maxima Mn can be immediately written
down:

F (x)n = P(X1 ≤ x ∨ . . . ∨ Xn ≤ x) = F n(x)

where ∨ is the logical symbol for and.
If the distribution F, which is a nondecreasing

function, reaches 1 at a finite point xF—that is,

if xF = sup{x: F(x) < 1} < ∞, then

lim
n→∞ P(Mn < x) = lim

n→∞ Fn(x) = 0, for x < xF

If xF is finite,

P(Mn < x) = Fn(x) = 1, for x > xF

The point xF is called the right endpoint of the
distribution F.

Figure 1 illustrates the behavior of maxima in
the case of a normal distribution. Given a nor-
mal distribution with mean zero and variance
one, 100,000 samples of 20 elements each are
selected. For each sample, the maximum is cho-
sen. The distribution of the maxima and the em-
pirical distribution of independent draws from
the same normal are illustrated in the figure.

A deeper understanding of the behavior of
maxima can be obtained considering sequences
of normalized and centered maxima. Consider
the following sequence: c−1

n (Mn − dn) where
cn > 0, dn ∈ R are constants.

A fundamental result on the behavior of max-
ima is the Fisher-Tippett theorem, which can be
stated as follows. Consider a sequence of IID
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Figure 2 The Distribution of Frechet, Gumbel, and Weibull

variables Xi and the relative sequence of max-
ima Mn. If there exist two sequences of constants
cn > 0, dn ∈ R and a nondegenerate distribution
function H such that

c−1
n (Mn − dn)

D→ H

then H is one of the following distributions:

Frechet: �α(x) =
{

0 x ≤ 0
exp(−x−α) x > 0 α > 0

Weibull: 
α(x) =
{

exp[−(−x)−α] x < 0
1 x ≥ 0 α > 0

Gumbel: �(x) = exp{−e−x}, x ∈ R

The limit distribution H is unique, in the sense
that different sequences of normalizing con-
stants determine the same distribution.

The three above distributions—Frechet,
Weibull, and Gumbel—are called standard ex-
treme value distributions. They are continuous
functions for every real x. Random variables
distributed according to one of the extreme
value distributions are called extremal random
variables.

As an example, consider a standard exponen-
tial variable X. As F(x) = P(X ≤ x) = 1 − e−x,
x ≥ 0 the distribution of the maxima is P(Mn ≤
x) = Fn(x) = (1 − e−x)n, x ≥ 0. If we choose dn =
ln n, we can write: P(Mn − dn ≤ x) = P(Mn ≤ ln
n + x) = (1 − n−1e−x)n, x ≥ 0. For any given x,
(1 − n−1e−x)n → exp(−e−x), which shows that
the maxima of standard exponential variables
centered with dn = ln n tend to a Gumbel dis-
tribution. Figure 2 illustrates the three distribu-
tions: Frechet, Gumbel, and Weibull.

We can now ask if there are conditions on
the distribution F that ensure the existence of
centering and scaling constants and the conver-
gence to an extreme value distribution. To this
end, let’s first introduce the concept of the maxi-
mum domain of attraction (MDA) of an extreme
value distribution H or MDA(H).

A random variable X is said to belong to the
MDA(H) of the extreme value distribution H
if there exist constants cn > 0, dn ∈ R such
that

c−1
n (Mn − dn)

D→ H
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Two distribution functions F, G are said to
be tail equivalent if they have the same right
endpoints and the following condition holds:

lim
x→∞

F̄ (x)
Ḡ(x)

= c, 0 < c < ∞

Tail equivalence is an important concept for
characterizing MDAs. In fact, it can be demon-
strated that every MDA(H) is closed with
respect to tail equivalence (i.e., if two distribu-
tion functions F and G are tail equivalent F ∈
MDA(H) if and only if G ∈ MDA(H)). Tail equiv-
alence allows for a powerful characterization of
the three MDAs.

Let’s first define the quantile function. Given
a distribution function F, the quantile function
of F, written F←(x), is defined as follows:

F ←(x) = inf[s ∈ R : F (s) ≥ x], 0 < x < 1

The MDA of the Frechet Distribution
The Frechet distribution is written as �α(x) =
exp(−x−α). Let’s start by observing that the tail
of the Frechet distribution decays as an inverse
power law. In fact, we can write 1−�α(x) = 1 −
exp(−x−α) ≈ x−α for x → ∞.

It can be demonstrated that a distribution
function F belongs to the MDA of a Frechet
distribution �α(x), α > 0 if and only if there
is a slowly varying function L such that F̄ (x) =
x−α L(x). In this case, the constants assume the
values

cn = (1/F ←)(n), dn = 0

We can rewrite this condition more compactly
as follows:

F ∈ MDA(�α) ⇔ F̄ ∈ R−α

From the above definitions it can be demon-
strated that the following five distributions be-
long to the MDA of the Frechet distribution: (1)
Pareto; (2) Cauchy; (3) Burr; (4) stable laws with
exponent α < 2; or (5) log-gamma distribution.

The MDA of the Weibull Distribution
The Weibull distribution is written as follows:


α = exp[−(−x−α)]

The Weibull and the Frechet distributions are
closely related to each other. In fact, it is clear
from the definition that the following relation-
ship holds:


α(x) = �α(−x−1), x > 0

One can therefore expect that the MDA of the
two distributions are closely related. In fact, it
can be demonstrated that a distribution func-
tion F belongs to the MDA of a Weibull distri-
bution α > 0 if and only if

xF < ∞
and

F̄ (xF − x−1) = x−α L(x)

where L is a slowly varying function.
If

F ∈ MDA(
α)

then

c−1
n (Mn − xF )

D→ 
α

The MDA of the Weibull distribution includes
important distributions such as the distribution
uniform in (0,1), power laws truncated to the
right, and beta distributions.

The MDA of the Gumbel Distribution
The Gumbel distribution is written as �(x) =
exp[−exp(−x)]. Observe that the Gumbel distri-
bution has exponential tails. This fact can be eas-
ily ascertained through Taylor expansion. There
is no simple characterization of the MDA of the
Gumbel distribution.

The MDA of a Gumbel distribution encom-
passes a large class of distributions that in-
cludes the exponential distribution, the normal
distribution, and the lognormal distribution.
Though the Gumbel distribution has expo-
nential tails, its MDA includes subexponential
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distributions such as the Berktander distri-
bution, as explained in Goldie and Resnick
(1988).

Max-Stable Distributions
Stable distributions remain unchanged after
summation; max-stable distributions remain un-
changed after taking maxima. A nondegenerate
random variable X and the relative distribution
is called max-stable if there are constants cn > 0,
dn ∈ R such that the following conditions are
satisfied

max(X1, . . . , Xn)
D= cn X + dn

where X, X1, . . . , Xn are IID variables.
It can be demonstrated that the class of max-

stable distributions coincides with the class of
possible limit laws for normalized and centered
maxima. In view of the previous discussions,
the max-stable laws are the three possible limit
laws: Frechet, Weibull, and Gumbel.

Generalized Extreme Value
Distributions
The three extreme value distributions, Frechet,
Weibull, and Gumbel, can be represented
as a one-parameter family of distributions
through the standard generalized extreme
value distribution (GEV) of Jenkinson and Von
Mises. Define the distribution function Hξ as
follows:

Hξ =
{

exp[−(1 + ξx)−1/ξ ] for ξ �= 0
exp(− exp(−x)) for ξ = 0

where 1 + ξx > 0. One can see from the def-
inition that ξ = α−1 > 0 corresponds to the
Frechet distribution, ξ = 0 corresponds to the
Gumbel distribution, and ξ = −α−1 < 0 corre-
sponds to the Weibull distribution. We can now
introduce the related location-scale dependent
family Hξ ;μ,ψ by replacing the argument x with
(x − μ)/ψ .

Order Statistics
The behavior of order statistics is a useful tool
for characterizing fat-tailed distributions. For
instance, the famous Zipf’s law is an example of
the behavior of order statistics. Consider a sam-
ple X1, . . . , Xn made of n independent draws
from the same distribution F. Let’s arrange the
sample in decreasing order:

Xn,n ≤ . . . ≤ X1,n

The random variable Xk,n is called the kth up-
per order statistic. It can be demonstrated that
the distribution of the kth upper order statistic
is

Fk,n = P(Xk,n < x) =
k−1∑

r=0

F̄ r (x)F n−r (x)

In addition, if F is continuous, it has a density
with respect to F such that

Fk,n =
x∫

−∞
fk,n(z)dF(z)

where

fk,n = n!
(k − 1)!(n − k)!

F̄ k−1(x)F n−k(x)

The differences between two consecutive
variables in a sample Xk,n − Xk+1,n are random
variables called spacings. In the case of vari-
ables with finite right endpoint xF the zero-th
spacing is defined as: X0,n − X1,n = xF − X1,n.
The distribution of spacings depends on the
distribution F. For instance, it can be demon-
strated that the spacings of an exponential
random variable are independent, exponential
random variables with mean 1/n for an n-
sample. Spacings are a key concept for the def-
inition of the Hill estimator, as explained later
in this section.

Another key concept, which is related to spac-
ings, is that of quantile transformation. Let
X1, . . . , Xn be IID variables with distribution
function F and let U1, . . . , Un be IID variables
uniformly distributed on the interval (0,1). Re-
call that, given a distribution function F, the
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quantile function of F, written F←(x), is defined
as follows:

F ←(x) = inf{s ∈ R : F (s) ≥ x}, 0 < x < 1

It can be demonstrated that the following re-
sults hold:

� F ←(U1)
D= X1

� (X1,n, . . . , Xn,n)
D=[F ←(U1,n), . . . , F ←(Un,n)]

� The random variable F(X1) has a uniform dis-
tribution on (0,1) if and only if F is a continu-
ous function.

To appreciate the importance of the quantile
transformation, let’s introduce first the notion
of empirical distribution function and second the
Glivenko-Cantelli theorem. The empirical dis-
tribution function Fn of a sample X1, . . . , Xn is
defined as follows:

Fn(x) = 1
n

n∑

i=1

I (Xi ≤ x)

where I is the indicator function. In other words,
for each x, the empirical distribution function
counts the number of samples that are less than
or equal to x.

The Glivenko-Cantelli theorem provides the
theoretical underpinning of nonparametric
statistics. It states that, if the samples X1, . . . , Xn

are independent draws from the distribution F,
the empirical distribution function Fn tends to
F for large n in the sense that

�n = sup
x∈R

|Fn(x) − F (x)| a .s.→ 0, for n → ∞

The quantile transformation tells us that in
cases where F is a Pareto distribution, if we ap-
proximate n random draws from a uniformly
distributed variable as the sequence 1,2, . . . , n,
then the corresponding values of the sample
X1, . . . , Xn will be

1
1
,

1
2
, · · · 1

n
which is a statement of Zipf’s law.

From the quantile transformation, the limit
law of the ratio between two successive or-
der statistics can also be inferred. Suppose that

an (infinite) population is distributed accord-
ing to a distribution F ∈ 	(α) with regularly
varying tails. Suppose that n samples are ran-
domly and independently drawn from this dis-
tribution and ordered in function of size: Xn,n ≥
Xn−1,n ≥ . . . ≥ X1,n. It can be demonstrated that
the following property holds:

Xk,n

Xk+1,n
= 1,

k
n

→ 0

Point Process of Exceedances or
Peaks over Threshold
We have now reviewed the behavior of sums,
maxima, and upper order statistics of contin-
uous random variables. Yet another approach
to EVT is based on point processes; herein we
will use point processes only to define the point
process of exceedances.

Point processes can be defined in many differ-
ent ways. To illustrate the mathematics of point
processes, let’s first introduce the homogeneous
Poisson process. A homogeneous Poisson process
is defined as a process N(t) that starts at zero,
i.e., N(0) = 0, and has independent stationary
increments. In addition, the random variable
N(t) is distributed as a Poisson variable with pa-
rameter λt. N(t) is therefore a time-dependent
discrete variable that can assume nonnegative
integer values. Figure 3 illustrates the distribu-
tion of a Poisson variable.

A homogeneous Poisson process can also be
defined as a random sequence of points on
the real line. Consider all discrete sequences of
points on the real line separated by random in-
tervals. Intervals are independent random vari-
ables with exponential distribution. This is the
usual definition of a Poisson process. Call N(t)
the number of points that fall in the interval
[0,t]. It can be demonstrated that N(t) is a homo-
geneous Poisson process according to the pre-
vious definition.

This latter definition can be generalized to de-
fine point processes. Intuitively, a generic point
process is a random collection of discrete points
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Figure 3 Distribution of a Poisson Variable

in some space. From a mathematical point of
view, it is convenient to describe a point pro-
cess through the distribution of the number of
points that fall in an arbitrary set.6 In the case of
homogeneous Poisson processes, we consider
the number of points that fall in a given inter-
val; for a generic point process, it is convenient
to consider a wider class of sets.

Consider a subspace E of a finite dimensional
Euclidean space of dimension n. Consider also
the σ -algebra � of the Borel sets generated by
open sets in E. The space E is called the state
space. For each point x in E and for each set A
∈ �, define the Dirac measure εx as

εx =
{

1 if x ∈ A
0 if x /∈ A

For any given sequence xi, i ≥ 1 of points in E,
define the following set function:

m(A) =
∞∑

i=1

εxi (A) = card{i : Xi ∈ A}, A ∈ �

It can be verified that m(A) is a measure �,
called a counting measure. If a counting mea-

sure is finite on each compact set, then it is called
a point measure. In other words, any given
countable sequence in E generates a counting
measure on �.

A point process is obtained associating to each
family of sets Ai ∈ � the joint probability distri-
butions:

Pr{m(Ai ) = ni ; i = 1, 2, . . . , k; k = 1, 2, . . .}

To make this definition mathematically rigor-
ous, a point process can be defined as a mea-
surable map from some probability space to the
set of all point measures equipped with an ap-
propriate σ -algebra. Besides the mathematical
details, it should be clear that point processes
are defined by the probability distribution of
the number of points that fall in each set A of
some σ -algebra. The key ingredients of point
processes are (1) counting measures that asso-
ciate to each set A the number of points of each
discrete sequence that falls in A with the ad-
ditivity restrictions of measures and (2) prob-
ability distributions defined over the space of
counting measures.
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Equipped with the general concept of point
processes, we can now define the point process
of exceedances. Consider a threshold formed by
any real number u and a sequence of random
variables Xi, i = 1, 2, . . .. The point process of ex-
ceedances with state space E = (0,1) counts the
number of instances where the random vari-
ables Xi exceed the threshold u:

Nn(A) =
∞∑

i=1

εi/n(A) = card{i ≤ n and Xi > u}

Note that in this case the state space specifies
the size of the sample.

Estimation
In the previous sections we presented some key
topics related to the probability structure of the
tails of distributions, be they light- or fat-tailed.
Let’s now turn to the problem of estimation,
which is the key practical task. The problem of
estimation for EVT is essentially the problem
of estimating the tail of a distribution from a
finite sample. The key statistical idea of EVT
from the point of view of estimation is to use
only those sample data that belong to the tail
and not the entire sample. This notion has to
be made precise by finding criteria that allow
one to separate the tail from the bulk of the
distribution. Therefore, the estimation problem
of EVT distribution can be broken down into
three separate subproblems:

� Identify the beginning of the tail.
� Identify the shape of the tail, in particular dis-

criminate if it is a power-law tail.
� Estimate the tail parameters, in particular the

tail index in the case of a power-law tail.

It turns out that these three problems cannot
be easily separated. In fact, there is no reliable
constructive theory for solving all these prob-
lems automatically. In particular, the choice of
the statistical model (i.e., the distribution that
best describes data) is a classical problem of
formulating and validating a scientific hypoth-
esis in a probabilistic context. However, there

are many tools and tests to help the modeler in
this endeavor.

The first fundamental tool is the graphical
representation of data, in particular the quan-
tile plot or QQ-plot defined as the following set:

{
Xk,n, F ←

(
n − k + 1

n + 1

)
: k = 1, 2, . . . , n

}

The quantile transformation and the
Glivenko-Cantelli theorem allow conclud-
ing that this plot must be approximately linear.
Should F be a Pareto distribution, the linearity
of the QQ-plot is another statement of Zipf’s
law. The quantile plot allows a quick verifica-
tion of a statistical hypotheses by checking the
approximate linearity of the plot. It also allows
the modeler to form a preliminary opinion on
where the tail begins and whether the model
fails at the far end of the tail.

Though invaluable as an exploratory tool,
graphics rely on human judgment and intu-
ition. Rigorous tests are needed. A starting point
is parameter estimation for the generalized ex-
treme value (GEV) distribution that we write
as

Hξ ;μ,
(x) = exp

{
−

(
1 + ξ

x − μ




)−1/ξ
}

,

1 + ξ
x − μ



> 0

with the convention that the case ξ = 0 corre-
sponds to the Gumbel distribution:

H0;μ,
(x) = exp
{
−e− x−μ




}
, x ∈ R

We saw above that these distributions are the
limit distributions, if they exist, of the normal-
ized maxima of IID sequences. Suppose that
the data to be estimated are independent draws
from some EGV. This is a rather strong assump-
tion that we will progressively relax. This as-
sumption might be justified in domains where
long series of data are available so that the sam-
ple data are the maxima of blocks of consecu-
tive data. Though this assumption is probably
too strong in the domain of finance, it is useful
to elaborate its consequences.
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Standard methodologies exist for parameter
estimation in this case. In particular, the usual
maximum likelihood (ML) methodology can be
used for fitting the best GEV to data. Note that
if the above distributions fit maxima we have to
divide data into blocks and consider the max-
ima of each block. To apply ML, we have to
compute the likelihood function on the data
and choose the parameters that maximize it.
This can be done with numerical integration
methods.

An estimation method alternative to ML is the
method of moments, which consists in equating
empirical moments with theoretical moments.
An ample literature on various versions of the
method of moments exists.7

Let’s now release the assumption that the
sequence of empirical data are independent
draws from an exact GEV and replace this with
the weaker assumption that empirical data are
independent draws from F ∈ MDA(Hξ ). If we
assume that the limit distribution is a Frechet
distribution, then data must be independent
draws from some distribution F whose tail has
the form:

F̄ = x−α L(x)

where L is a slowly varying function as de-
scribed earlier in this entry. For this reason,
estimation under this weaker assumption is
semiparametric in nature. We will now intro-
duce a number of estimators of the shape pa-
rameter ξ .

The Pickand Estimator
The Pickand estimator ξ̂

(P)
k,n for an n-sample of

independent draws from a distribution F ∈
MDA(Hξ ) is defined as

ξ̂
(P)
k,n = 1

ln 2
ln

Xk,n − X2k,n

X2k,n − X4k,n

where the Xk, n are upper order statistics.
It can be demonstrated that the Pickand esti-

mator has the following properties:

� Weak consistency:

ξ̂
(P)
k,n

P→ ξ, n → ∞, k → ∞,
k
n

→ 0

� Strong consistency:

ξ̂
(P)
k,n

a .s.→ ξ, n → ∞,
k

ln(ln n)
→ ∞,

k
n

→ 0

� Asymptotic normality under technical condi-
tions.

The Pickand estimator is an estimator of the
parameter ξ that does not require any assump-
tion on the type of limit distribution. Let’s now
examine the Hill estimator, which requires the
prior knowledge that sample data are indepen-
dent draws from a Frechet distribution. Later
in this entry we will see that the assumption of
independence can be weakened.

The Hill Estimator
Suppose that X1, . . . , Xn are independent draws
from a distribution F ∈ MDA(�α), α > 0 so that
F̄ = x−α L(x) where L is a slowly varying func-
tion. The Hill estimator can be obtained as an
MLE based on the k upper order statistics. The
Hill estimator takes the following form:

α̂(H) = α̂
(H)
k,n =

⎛

⎝1
k

k∑

j=1

ln Xj,n − ln Xk,n

⎞

⎠
−1

The Hill estimator has the same weak and
strong consistency property as well as asymp-
totic normality as the Pickand estimator. The
Hill estimator is by far the most popular esti-
mator of the tail index. It has the advantage of
being robust to some dependency in the data
but can perform very poorly in case of devia-
tions from strict Pareto behavior. In addition,
it is subject to a bias-variance trade-off in the
following sense: The variance of the Hill esti-
mator depends on the ratio k/n: It decreases for
increasing k. However, using a large fraction of
the data will introduce bias in the estimator.

As stated above, a critical tenet of EVT is the
idea of fitting the tail rather than the entire dis-
tribution. A number of articles on the automatic
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determination of the optimal subset of samples
to be included in the tail have appeared. One
approach to the automatic determination of the
tail sample using the variance-bias trade-off
was proposed by Drees and Kaufmann (2000),
while Dacorogna et al. (1995), and Danielsson
and de Vries (1977) proposed methods based on
a bootstrap approach.

The moment ratio estimator is a generalization
of the Hill estimator. Consider the following
estimator of the second order moments of the k
upper order statistic:

M̂k,n = 1
k

⎛

⎝
k∑

j=1

ln Xj,n − ln Xk+1,n

⎞

⎠
2

The moment ratio estimator is defined as fol-
lows:

α̂
(m)
k,n = 1

2

(
M̂k,n

α̂
(H)
k,n

)

Wagner and Marsh (2000) did extensive sim-
ulation analysis of various estimators. Their
finding is that the moment ratio estimator
outperforms the Hill estimator in sequences
with a dependence structure (this is discussed
further in the next section).

The Hill estimator was extended by Dekkers
and de Haan (1989) to cover the entire range of
shape parameters ξ . A number of other estima-
tors have been proposed. In particular, under
the assumption that financial data follow a sta-
ble process, estimation procedures based on re-
gression analysis have been suggested. In fact,
the assumption of stable behavior, or at least
of exact Pareto tail, naturally leads to fitting a
linear model in a logarithmic scale. There is an
ample literature on this topic with a number
of useful discussions, though empirical stud-
ies based on Monte Carlo simulations are still
limited.8

The estimation methods reviewed above are
based on the behavior of maxima and upper
order statistics; another methodology uses the
points of exceedances of high thresholds. Esti-
mation methodologies based on the points of

exceedances require an appropriate model for
the point process of exceedances that was de-
fined in general terms previously in this entry.

ELIMINATING THE
ASSUMPTION OF IID
SEQUENCES
In the previous sections we reviewed a number
of mathematical tools that are used to describe
fat-tailed processes under the key assumption
of IID sequences. In this section we discuss
the implications of eliminating this assumption.
However, in finance theory the assumption
of stationary sequences of independent vari-
ables is only a first approximation; it has been
challenged in several instances. Consider in-
dividual price time series. The autocorrelation
function of returns decays exponentially and
goes to near zero at very short-time horizons
while the autocorrelation function of volatility
decays only hyperbolically and remains differ-
ent from zero for long periods. In addition, if
we consider portfolios made of many securi-
ties, price processes exhibit patterns of cross
correlations at different time-lags and, possi-
bly, cointegrating relationships. These findings
offer additional reasons to consider the as-
sumption of serial independence as only a first
approximation.

If we now consider the question of station-
arity, empirical findings are more delicate.
The nonstationarity that can be removed by
differencing is easy to handle and does not
present a problem. The critical issue is whether
financial time series can be modeled with
a single data generation process (DGP) that
remains the same for the entire period under
consideration or if the model must be modified.
Consider, for instance, the question of struc-
tural breaks. At a basic level, structural breaks
entail nonstationarity as the model parameters
change with time and thus the finite-dimension
distributions change with time. However, at a
higher level one might try to model structural
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changes, for instance through state-space
models or Markov switching models. In this
way, stationarity is recovered but at the price
of a more complex, serially autocorrelated
model.

EVT for multivariate models with complex
patterns of serial correlations loses its gener-
ality and becomes model-dependent. One has
to evaluate each model in terms of its behav-
ior as regards extremes. In this section we will
explore a number of models that have been
proposed for modeling financial time series:
ARCH and GARCH models and, more in gen-
eral, state-space models. First, however, a num-
ber of methodological considerations are in
order.

In the context of IID sequences, EVT tries to
answer the question of how to estimate a dis-
tribution with heavy tails given only a limited
amount of data. The model is the simplest
(i.e., a sequence of IID variables) and the ques-
tion is how to extrapolate from finite samples
to the entire tail. In the context of IID distri-
butions, conditional and unconditional distri-
butions coincide. However, if we release the
IID assumption, we have to specify the model
and to estimate the entire model—not just
the tail of one variable. Conditional and un-
conditional distributions no longer coincide.
For instance, there are families of models that
are conditionally normal and unconditionally
fat-tailed.

Here difficulties begin as model estimation
might be complex. In addition, estimation of
some specific tail might not be the primary con-
cern in model estimation. In the context of vari-
ables with a dependence structure, EVT can be
thought of as a methodology to estimate the
tails of the unconditional distribution, leaving
aside the question of full model estimation.

An important methodological question is
whether fat-tailedness is generated by the trans-
formation of a sequence of zero-mean, finite
variance IID variables (i.e., white noise) or
whether innovations themselves have fat tails
(i.e., so-called colored noise). For instance, as we

will see, GARCH models entail fat-tailed return
distributions as the result of the transformation
of white noise. On the other hand, one might
want to estimate an autoregressive moving av-
erage (ARMA) model under the assumption of
innovations with infinite variance.

Understanding how power laws and, more
in general, fat tails are generated from normal
variables has been a primary concern of econo-
metrics and econophysics. Given the universal-
ity of power laws in economics, it is clearly
important to understand how they are gener-
ated. These questions go well beyond the sta-
tistical analysis of heavy-tailed processes and
involve questions of economic theories. Essen-
tially, one wants to understand how the deci-
sions of a large number of economic agents do
not average out but produce cascading and am-
plification phenomena.

The law of large numbers tells that if indi-
vidual processes are independent and have fi-
nite variance, then phenomena average out in
aggregate and tend to an average limit. How-
ever, if individual processes have fat tails, phe-
nomena do not average out even in the infinite
limit. The weight of individual tails prevails and
drives the aggregate process. Philip W. Ander-
son, the corecipient of the 1997 Nobel Prize in
Physics, remarked:

Much of the real world is controlled as much by the
“tails” of distributions as by means or averages: by
the exceptional, not the mean; by the catastrophe,
not the steady drip; by the very rich, not the “middle
class.” We need to free ourselves from “average”
thinking. (Anderson, 1997)

When and if fat-tailed drivers exist, they
control the ensemble to which they belong.
But what generates these powerful drivers?
Models that generate fat tails from standard
normal innovations attempt to answer this
question. Different types of models have been
proposed. One such category of models is
purely geometric and exploits mathematical
theories such as percolation and random graph.
Others exploit phenomena of dynamic nonlin-
ear self-reinforcing cascades of events.
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Percolation models are based on the well
known mathematical fact that in regular spa-
tial structures of nodes connected by links, a
uniform density of links produces connected
subsets of nodes whose size is distributed ac-
cording to power laws. Percolation models are
time-transversal models: They model aggrega-
tion at any given time. They might be used
to explain how fat-tailed IID sequences are
generated.

Dynamic financial econometric models ex-
ploit cascading phenomena due to nonlinear-
ities, in particular multiplicative noise. In a
deterministic setting, it is well known that non-
linear chaotic models generate sequences that,
when analyzed statistically, exhibit fat-tailed
distributions. The same happens when noise is
subject to nonlinear transformation. In the next
sections, we explore simple ARMA models,
ARCH-GARCH models, subordinated models,
and state-space models, all examples of dy-
namic financial econometric models.

Before doing this, however, let’s go back to
the question of estimation. As observed above,
if variables are not IID but can be considered
generated by a DGP, the question of estimation
is no longer the estimation of a variable but that
of estimating a model or a theory. The estima-
tion of the eventual tail index is part of a larger
effort. However, empirical data are a sequence
of samples characterized by an unconditional
distribution. One might want to understand if
estimation procedures used for IID sequences
can be applied in this more general setting. For
instance, one might want to understand if tail-
index estimators such as the Hill estimator can
be used in the case of serially correlated se-
quences generated by a generic DGP.

From a practical standpoint, this question is
quite important as one wants to estimate the
tails even if one does not know exactly what
model generated the sequence. Clearly, there is
no general answer to this problem. However,
the behavior of a number of estimators under
different DGPs has been explored through sim-
ulation as explained in the following section.

Heavy-Tailed ARMA Processes
Let’s first consider the infinite moving average
representation of a univariate stationary series:

xt =
∞∑

i=0

hiεt−i + m

under the assumption that innovations are IID
α-stable laws of tail index α. By the properties
of stable distributions it can be demonstrated
that the finite-dimensional distributions of the
process x are α-stable. However, restrictions on
the coefficients need to be imposed. It can be
demonstrated that a sufficient condition to en-
sure that the process x exists and is stationary
is the following:

∞∑

i=0

|hi |α < ∞

A general univariate ARMA(p,q) model is
written as follows:

Xt =
p∑

i=1

αi Xt−i +
q∑

j=1

α j Zt− j

where the Z are IID variables.
Using the lag operator—L—notation, Li rep-

resents the variable at i lags, the ARMA(p,q)
model is written as follows:

Xt =
p∑

i=1

Li Xt +
q∑

j=1

L j Zt

The theory of ARMA processes can be carried
over at least partially to cover the case of fat-
tailed innovations. In particular, an ARMA(p,q)
process with IID α-stable innovations admits a
stationary, infinite moving average representa-
tion under the same conditions as in the clas-
sical finite-variance case. The coefficients of the
moving average satisfy the condition

∞∑

i=0

|hi |α < ∞

In the case of fat-tailed innovations, covari-
ances and autocovariances lose their meaning.
It can also be demonstrated, however, that the
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empirical autocorrelation function is meaning-
ful and is asymptotically normal. It can be
demonstrated that maximum likelihood esti-
mates can be extended to the infinite vari-
ance case, though through a number of ad hoc
processes.

ARCH/GARCH Processes
The simplest ARCH model can be written as
follows. Suppose that X is the random variable
to be modeled, Z is a sequence of independent
standard normal variables, and σ is a hidden
variable. The ARCH(1) model is written as

Xt = σt Zt

σ 2
t = β + δX2

t−1

This basic model was extended by Bollerslev
(1989), who proposed the GARCH(p,q) model
written as

Xt = σt Zt

σ 2
t = β +

p∑

i=1

γiσ
2
t−i +

q∑

i=1

δi X2
t−i

The IID variables Z can be standard normal
variables or other symmetrical, eventually fat-
tailed, variables.

Let’s first observe that model parameters
must be constrained in order to guarantee the
stationarity of the model. Stationarity condi-
tions depend on each model. No general sim-
ple expression for the stationarity conditions is
available.

Due to the multiplicative nature of noise,
GARCH models are able to generate fat-tailed
distributions even if innovations have finite
variance. This fact was established by Kesten
(1973). The tail index can be theoretically com-
puted at least in the case GARCH(1,1). Suppose
a GARCH(1,1) stationary process with Gaus-
sian innovation is given. It can be demonstrated
that

P(X > x) ≈ c
2

x−2κ

where κ is the solution of an integral equation.
In the generic p, q case, the return process is still
fat-tailed but no practical way to compute the
index from model parameter is known.

Subordinated Processes
Subordinated processes allow the time scale to
vary. Subordinated models are, in a sense, the
counterpart of stochastic volatility models in-
sofar as they model the change in volatility
by contracting and expanding the time scale.
The first model was proposed by Clark (1973).
Subordinated models have been extensively
studied by Ghysels, Gourieroux, and Josiak
(1995).

Subordinated models can be applied quite
naturally in the context of trading. Individual
trades are randomly spaced. In modern elec-
tronic exchanges, the time and size of trades are
individually recorded, thus allowing for accu-
rate estimates of the distributional properties
of inter-trades intervals. Consideration of ran-
dom spacings between trades naturally leads to
the consideration of subordinated models. Sub-
ordinated models generate unconditional fat-
tailed distributions.

Markov Switching Models
The GARCH family of models is not the only
family of serially correlated models able to pro-
duce fat tails starting from normally distributed
innovations. State-space models and Markov-
switching models present the same feature. The
basic ideas of state-space models and Markov
switching models is to split the model into two
parts: (1) a regressive model that regresses the
model variable over a hidden variable and (2)
an autoregressive model that describes the hid-
den variables.

In its simplest linear form, a state-space model
is written as follows:

Xt = αZt + εt

Zt = βZt−1 + δt
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where εt, δt are normally distributed indepen-
dent white noises. State-space models can also
be written in a multiplicative form:

Xt = αZt−1 + εt

αt = βαt−1 + δt

If the second equation is a Markov chain,
the model is called a Markov-switching model.
A well-known example of Markov-switching
models is the Hamilton model in which a two-
state Markov chain drives the switch between
two different regressions.

Purely linear state-space models exhibit fat
tails only if innovations are fat-tailed. However,
multiplicative state-space models and Markov-
switching models can exhibit fat tails even
if innovations are normally distributed. There
is a growing literature on Markov-switching
and multiplicative state-space models and a
relatively large number of different models,
univariate as well as multivariate, have been
proposed. Stochastic volatility models are the
continuous-time version of multiplicative state-
space models.

Estimation
Let’s now go back to the question of model es-
timation in a non-IID framework. Suppose that
we want to estimate the tail index of the un-
conditional distribution of a set of empirical
observations in the general setting of non-IID
variables. Note that if variables are fat-tailed,
we cannot say that they are serially autocor-
related as moments of second order generally
do not exist. Therefore we have to make some
hypothesis on the DGP.

There is no general theory of estimation under
arbitrary DGP. Both theoretical and simulation
work are limited to specific DGPs. ARMA mod-
els have been extensively studied. EVT holds
for ARMA models under general nonclustering
conditions.9

Often only simulation results are available.
A fairly ample set of results are available for

GARCH(1,1) models. For these models Resnick
and Starica (1998) showed that the Hill estima-
tor is a consistent estimator of the tail index.
Wagner and Marsh compared the performance
of the Hill estimator and of the moment ratio es-
timator for three model classes: IID α-stable re-
turns, IID symmetric Student, and GARCH(1,1)
with Student-t innovation. They found that, in
an adoptive framework, the moment ratio es-
timator generally yields results superior to the
Hill estimator.

Scaling and Self-Similarity
The concept of scaling is now quite frequently
evoked in economics and finance. Let’s begin by
making a distinction between scaling and self-
similarity and some of the properties associ-
ated with inverse power laws within or outside
the Levy-stable scaling regime. These concepts
have different, and not equivalent, definitions.

The concepts of scaling and self-similarity ap-
ply to distributions, processes, or structures.
Self-similarity was introduced as a property
that applies to geometrical self-similar objects
(i.e., fractal structures). In this context, self-
similarity means that a structure can be put
into a one-to-one correspondence with a part
of itself. Note that no finite structure can have
this property; self-similarity is the mark of infi-
nite structures. Self-similarity entails scaling: If
a fractal structure is expanded by a given fac-
tor, its measure expands by a power of the same
factor.10 The notion of scaling is often expressed
as absence of scale, meaning that a scaling ob-
ject looks the same at any scale, large or small: It
is impossible to ascertain the size of a portion of
a scaling object by looking at its shape. The clas-
sical illustration is a Norwegian coastline with
its fjords and fjords within fjords that look the
same regardless of the scale.

However, scaling can be defined without
making reference to fractals. In its simplest
form, the notion of scaling entails a variable
x and an observable A, which is a function
of A = A(x). If the observable obeys a scaling
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relationship, there is a constant factor between
x and A in the sense that A(λx) = λsA(x), where
s is the scaling exponent that does not de-
pend on x. The only function A(x) that satisfies
this relationship is a power law. In the three-
dimensional Euclidean space, volume scales as
the third power of linear length and surface as
the second power, while fractals scale according
to their fractal dimension.

The same ideas can be applied in a random
context, but require careful reasoning. A power-
law distribution has a scaling property as
multiplying the variable by a factor multiplies
probabilities by a constant factor, regardless of
the level of the variable. This means that the
ratio between the probability of the events X >

x and X > ax depends only on a power of a,
not on x. As an inverse power law is not de-
fined at zero, scaling in this sense is a property
of the tails. The probabilistic interpretation of
this property is the following: The probability
that an observation exceeds ax conditional on
the knowledge that the observation exceeds x
does not depend on x but only on a.

There are, however, other meanings attached
to scaling and these might be a source of con-
fusion. In the context of physical phenomena,
scaling is often intended as identity of distribu-
tion after aggregation. The same idea is also
behind the theory of groups of renormaliza-
tion and the notion of self-similarity applied
to structures such as coastlines. In the latter
case, the intuitive meaning of self-similarity is
that if one aggregates portions of the coastline,
approximating their shape with a straight line,
and then rescales, the resulting picture is qual-
itatively similar to the original. The same idea
applies to percolation structures: By aggregat-
ing “sites” (i.e., points in a percolation lattice)
into supersites and carefully redefining links,
one obtains the same distribution of connected
clusters.

Applying the idea of aggregation in a random
context, self-similarity seems to mean that, after
rescaling, the distribution of the sum of inde-
pendent copies of a random variable maintains

the same shape of the distribution of the vari-
able itself. Note that this property holds only for
the tails of subexponential distributions—and
it holds strictly only for stable laws that have
tails in the (0,2) range but whose shape is not
a power law except, approximately, in the tails.
It also holds for Gaussian distributions that do
not have power-law tails.

Scaling acquires yet another meaning when
applied to stochastic processes that are func-
tions of time. The most common among the
different meanings is the following: A stochas-
tic process is said to have a scaling property if
there is no natural scale for looking at its paths
and distributions. Intuitively, this means that it
is not possible to gauge the scale of a sample
by looking at its distribution; there is absence
of scale. An example from finance comes from
price patterns. If a price pattern is generated by
a process with the scaling property, the plots of
average daily and monthly prices will appear
to be perfectly similar in distribution; looking
at the plot, it’s impossible to tell if it refers to
daily or monthly prices.

Self-similarity is another way of expressing
the same concept. A process is self-similar if
a portion of the process is similar to the en-
tire process. As we are considering a random
environment, self-similarity applies to distribu-
tions, not to the actual realization of a process.
Let’s now make these concepts more precise.

A stochastic process X(t) is said to be self-
similar (ss) of index H (H-ss) if all its finite-
dimensional distributions obey the scaling
relationship:

(Xkt1 , Xkt2 , . . . , Xktm )
D= k−H(Xt1 , Xt2 , . . . , Xtm )∀k > 0

0 < H < 1, t1, t2, . . . , tm > 0

The above expression means that the scaling
of time by the factor k scales the variables X
by the factor kH. It gives precise meaning to
the notion of self-similarity applied to stochastic
processes.

There is a wide variety of self-similar pro-
cesses that cannot be characterized in a simple
way as scaling laws: The scaling property of
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stochastic processes might depend upon the
shape of distributions as well as the shape
of correlations. Let’s restrict our attention to
processes that are self-similar with stationary
increments (sssi) and with index H (H-sssi).
These processes can be either Gaussian or non-
Gaussian. Note that a Gaussian process is a pro-
cess whose finite-dimensional distributions are
all Gaussian.

Gaussian H-sssi processes might have inde-
pendent increments or exhibit long-range corre-
lations. The only Gaussian H-sssi process with
independent increment is the Brownian mo-
tion, but there are an infinite number of frac-
tional Brownian motions, which are Gaussian
H-sssi processes with long-range correlations.
Thus there are an infinite variety of Gaussian
self-similar processes. Among the many non-
Gaussian H-sssi processes with independent in-
crements are the stable Levy processes, which
are random walks whose increments follow a
stable distribution.11

There is another definition of self-similarity
for stochastic processes that makes use of the
concept of aggregation; it is closer, at least in
spirit, to the theory of renormalization groups.
Consider a stationary infinite sequence of inde-
pendent and identically distributed variables
Xi, i ≥ 1. Create consecutive nonoverlapping
blocks of m variables and define the correspond-
ing aggregated sequence of level m averaging
over each block as follows:

X(m)
k = 1

m

km∑

i=(k−1)m+1

Xi

A sequence is called exactly self-similar if, for
any integer m the following relationship holds:

X
D= m1−H X(m)

A stationary sequence is called asymptotically
self-similar if the above relationship holds only
for m → ∞.

When we apply the notion of scaling to
stochastic processes—the natural setting for
economics and finance—we have to abandon

the simple characterization of scaling as in-
verse power laws. Though the scaling property
is in itself characterized through simple power
laws, the scaling processes are complex and rich
mathematical structures entailing a variety of
distributions and correlation functions. In par-
ticular, the long-range correlation structure of
the process plays a role as important as the dis-
tribution of its variables.

KEY POINTS
� Fat-tailed laws have been found in many eco-

nomic variables.
� Fully approximating a finite economic system

with fat-tailed laws depends on an accurate
statistical analysis of the phenomena, but also
on a number of the theoretical implications of
subexponentiality and scaling.

� Modeling financial variables with stable laws
implies the assumption of infinite variance,
which seems to contradict empirical observa-
tions.

� Scaling laws might still be an appropriate
modeling paradigm given the complex inter-
action of distributional shape and correlations
in price processes.

� Scaling laws might help in understanding not
only the sheer size of economic fluctuations
but also the complexity of economic cycles.

NOTES
1. See Bamberg and Dorfleitner (2001).
2. See, for example, Sigman (1999).
3. See, for example, Goldie and Kluppelberg

(1998) and Embrechts, Kluppelberg, and
Mikosch (1999).

4. See Sigman (1999).
5. See Rachev and Mittnik (2000) and Rachev,

Menn, and Fabozzi (2005).
6. Cox and Isham (1980).
7. For a discussion of the different methods,

see Smith (1990). For a discussion of the
method of probability-weighted moments,
see Hosking, Wallis, and Wood (1985).



FAT TAILS, SCALING, AND STABLE LAWS 281

8. Diebold, Schuermann, and Stroughair
(2000).

9. See Embrechts, Kluppelberg, and Mikosch
(1999).

10. For an introduction to fractals, see Falconer
(1990).

11. See Samorodnitsky and Taqqu (1994).
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Abstract: Understanding dependences or functional links between variables is a key theme in fi-
nancial modeling. In general terms, functional dependences are represented by dynamic models.
Many important models are linear models whose coefficients are correlations coefficients. In many
instances in financial modeling, it is important to arrive at a quantitative measure of the strength
of dependencies. The correlation coefficient provides such a measure. In many instances, however,
the correlation coefficient might be misleading. In particular, there are cases of nonlinear depen-
dencies that result in a zero correlation coefficient. From the point of view of financial modeling,
this situation is particularly dangerous as it leads to substantially underestimated risk. Different
measures of dependence have been proposed, in particular copula functions.

Correlation is a widespread concept in finan-
cial modeling and stands for a measure of de-
pendence between random variables. However,
this term is very often incorrectly used to mean
any notion of dependence. Actually correlation
is one particular measure of dependence among
many. In the world of multivariate normal dis-
tribution and, more generally, in the world of
spherical and elliptical distributions, it is the
accepted measure. This follows from a prop-
erty of the multivariate normal distribution. In
this entry, we discuss the limitations of correla-
tion as a measure of the dependence between
two random variables and introduce an alter-

native measure to overcome these limitations,
copulas.1

DRAWBACKS OF
CORRELATION
In the general case, there are at least three
major drawbacks of the correlation measure.
Consider the case of two real-valued random
variables X and Y. First, the variances of X and
Y must be finite or the correlation is not de-
fined. This assumption causes problems when
working with heavy-tailed data because under
certain circumstances the variances are infinite
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and, for that reason, the correlation between
them is not defined.

Second, independence of two random vari-
ables implies correlation equal to zero; however,
generally speaking the opposite is not correct—
zero correlation does not imply independence.2

Only in the case of elliptical distribution are
uncorrelatedness and independence inter-
changeable notions. This statement is not valid
if only the marginal distributions are elliptical
and the joint distribution is nonelliptical.

Lastly, a more technical point. The correlation
is not invariant under nonlinear strictly increas-
ing transformations, a serious disadvantage. In
general corr(T(X),T(Y)) �= corr(X,Y). One exam-
ple that explains this technical requirement is
the following: Assume that X and Y represent
the continuous return (log-return) of two finan-
cial assets over the period [0,t], where t denotes
some point of time in the future. If you know
the correlation of these two random variables,
this does not imply that you know the depen-
dence structure between the asset prices itself
because the asset prices (P and Q for asset X
and Y, respectively) are obtained by Pt = P0 ·
exp(X) and Qt = Q0 · exp(Y). The asset prices are
strictly increasing functions of the return but the
correlation structure is not maintained by this
transformation. This observation implies that
the return could be uncorrelated whereas the
prices are strongly correlated and vice versa.

OVERCOMING THE
DRAWBACKS OF
CORRELATION: COPULAS
A more prevalent approach, which overcomes
this disadvantage, is to model dependency us-
ing copulas. As noted by Patton (2004, p. 3):
“The word copula comes from Latin for a ‘link’
or ‘bond’, and was coined by Sklar (1959),
who first proved the theorem that a collec-
tion of marginal distributions can be ‘coupled’
together via a copula to form a multivariate
distribution.” The idea is as follows. The

description of the joint distribution of a random
vector is divided into two parts:

1. The specification of the marginal distribu-
tions.

2. The specification of the dependence struc-
ture by means of a special function, called
copula.

The use of copulas offers the following advan-
tages:
� The nature of dependency that can be mod-

eled is more general. In comparison, only
linear dependence can be explained by the
correlation.

� Dependence of extreme events might be
modeled.

� Copulas are indifferent to continuously in-
creasing transformations (not only linear as
it is true for correlations).

Because of these advantages, in recent years
there has been increased application of copulas
in asset and option pricing, portfolio selection,
and risk management.

MATHEMATICAL
DEFINITION OF COPULAS
From a mathematical viewpoint, a copula func-
tion C is nothing more than a probability
distribution function on the d-dimensional hy-
percube Id = [0,1] × [0,1] × . . . × [0,1]:

C : Id → [0, 1]
(x1, . . . , xd ) → C(x1, . . . , xd )

It has been shown3 that any multivariate prob-
ability distribution function FY of some random
vector Y = (Y1, . . . , Yd) can be represented with
the help of a copula function C in the following
form:

FY(y1, . . . , yd ) = P(Y1 ≤ y1, . . . , Yd ≤ yd )

= C(P(Y1 ≤ y1), . . . , P(Yd ≤ yd ))

= C(FY1 (y1), . . . , FYd (yd ))

where the FYi , i = 1, . . . , d denote the marginal
distribution functions of the random variables
Yi, i = 1, . . . , d.
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Panel a Panel b

Figure 1 Visualization of the Copula for Bivariate Independence*
Panel a: Uniform Marginal Distributions. Panel b: Standard Normal Marginal Distributions.
*The graphs show the joint distribution function of a bivariate random vector for two different marginal
distributions. Each panel consists of a surface and a corresponding contour plot.

The copula function makes the bridge be-
tween the univariate distribution of the individ-
ual random variables and their joint probability
distribution. This justifies the fact that the cop-
ula function creates uniquely the dependence,
whereas the probability distribution of the in-
volved random variables is provided by their
marginal distribution.

As an example we consider the following
three bivariate copula functions:

� C(x, y) = x · y
� C(x, y) = min(x, y)

� C(x, y) =
�−1(x)∫

−∞

�−1(y)∫

−∞

1
2π (1 − ρ2)1/2

exp
(

s2 − 2ρst + t2

2(1 − ρ2)

)
dsdt

The first represents the independent case as
the joint probability distribution equals the
product of their marginals. The second exam-
ple represents a case of extreme dependence
whereas the third example represents the gen-
eral Gaussian copula function for the bivariate
case.
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Panel a Panel b

Figure 2 Visualization of the Bivariate Minimum Copula*
Panel a: Uniform Marginal Distributions. Panel b: Standard Normal Marginal Distributions.
*The graphs show the joint distribution function of a bivariate random vector for two different marginal
distributions. Each panel consists of a surface and a corresponding contour plot.

We illustrate the effect of the different copu-
las by applying them to two different marginal
distributions, namely (1) the uniform distribu-
tion on the interval [0,1] and (2) the standard
normal distribution. The results are presented
in Figures 1, 2, and 3.

KEY POINTS
� In financial modeling, it is critical to under-

stand dependencies or functional links be-

tween variables and have a quantitative mea-
sure of the strength of dependencies.

� The most commonly used measure of depen-
dency in finance is the correlation coefficient.
This measure might be misleading. In particu-
lar, there are cases of nonlinear dependencies
that result in a zero correlation coefficient.

� The existence of finite variances is required
for a correlation to be computed. Some return
distributions, however, have fat tails, and the
variances are infinite.
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Panel a Panel b

Figure 3 Visualization of the Gaussian Copula with Correlation ρ = 0.8*
Panel a: Uniform Marginal Distributions. Panel b: Standard Normal Marginal Distributions.
*The graph shows the joint distribution function of a bivariate random vector for two different marginal
distributions. Each panel consists of a surface and a corresponding contour plot.

� The correlation is not invariant under non-
linear strictly increasing transformations,
making the use of this measure a serious dis-
advantage.

� The copula overcomes the drawbacks of the
correlation as a measure of dependency by al-
lowing for a more general measure than lin-
ear dependence, allowing for the modeling
of dependence for extreme events, and being
indifferent to continuously increasing trans-
formations.

� The copula function bridges the univariate
distribution of the individual random vari-

ables and their joint probability distribution,
thereby justifying the fact that the copula
function creates the dependence uniquely,
whereas the probability distribution of the in-
volved random variables is provided by their
marginal distribution.

NOTES
1. For a discussion of applications in finance

and insurance, see Embrechts, McNeil, and
Straumann (1999) and Patton (2003a, 2003b,
2004).
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2. A simple example is the following: Let X be
a standard normal distribution and Y = X2.
Because the third moment of the standard
normal distribution is zero, the correlation
between X and Y is zero despite the fact that
Y is a function of X, which means that they
are dependent.

3. The importance of copulas in the modeling
of the distribution of multivariate random
variables is provided by Sklar’s theorem. The
derivation was provided in Sklar (1959).
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Abstract: Value-at-risk (VaR) calculation based on parametric models is in essence an estimation
problem. The point estimates should be interpreted accompanied by their confidence intervals.
Risk management for complex portfolios may consider simultaneously two or more VaR confi-
dence levels. The quantiles used for VaR estimation at different orders such as 1% and 5% are not
independent and therefore should be analyzed jointly. Consequently, it would be useful to establish
confidence regions for bivariate VaR estimates that will provide the risk managers with a valuable
tool for verifying the accuracy of their estimation process, as requested by external audit. A trade-
off between the complexity of probability distribution underlying the model and the degree of
robustness achieved is recommended.

While there are many models used for calcu-
lations of risk management measures such as
value-at-risk (VaR) and expected tail loss (ETL),
there are not many tools available to a risk man-
ager to verify whether the models chosen are
very good in practice. In this entry, we high-
light some practical aspects of VaR and ETL
calculus that are underpinned by theoretical re-
sults on order statistics. More precisely, we show
how to compute VaR and ETL based on quantile
sample statistics and how to derive the proba-
bility distribution of this estimator. The most
important development in this entry is that we
illustrate how to control the backtesting of two
risk measures, given by different specifications
of confidence levels such as 99% and 95%. Usu-
ally there is a difference between the confidence
level that a bank may use internally and the

confidence level required by a regulator. Then
the risk manager should make sure that the risk
models used perform well for both confidence
levels.

PERFORMANCE OF VaR
ESTIMATION
VaR is widely used in the financial industry
as a measure for market risk in normal con-
ditions. This concept has a strong influence on
bank capital, some of the major implications
of this estimation process being described in
Jackson et al. (1997). The European Capital Ad-
equacy Directive allows internal risk manage-
ment models. Marshall and Siegel (1997) found

289
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great errors in the estimation methods used in
the industry. Berkowitz and O’Brien (2002) in-
vestigated the accuracy of value-at-risk models
used by a sample of large commercial banks
and their analysis revealed discrepancies in the
performance of their models. Brooks and Per-
sand (2002) analyzed common methodologies
for calculating VaR and concluded that simpler
models provide better performance than very
complex models. In the light of severe market
disruptions and appeal for more stringent mea-
sures, the issue of how reliable is the model used
for market risk is of paramount importance.

The estimation of VaR is a statistical exer-
cise and the risk manager, trader, or quant
analyst has to consider the reliability of the esti-
mates proposed, especially when large amounts
of money are involved. Although there is a
plethora of models for VaR pointwise estima-
tion, reviewed for example in Duffie and Pan
(1997) and Jorion (1996, 1997), the literature on
the confidence associated with these estimators
is sparse. Jorion (1996) was among the first re-
searchers to consider the uncertainty associated
with VaR models leading to model risk. Kupiec
(1995) suggested that it may be very hard to
determine statistically the accuracy of VaR esti-
mates. After his seminal paper, Pritsker (1997)
and Dowd (2001) showed how to employ order
statistics for assessing the VaR accuracy. Dowd
(2000) described how to build confidence inter-
vals for VaR estimates using simulations meth-
ods but his technique was illustrated only for
some special cases linked to the Gaussian dis-
tribution.

Calibrating the models is not always easy and
for auditing and backtesting purposes the pre-
specified level of confidence can play an im-
portant role. The nonlinearity in results when
calculating VaR at various levels of confidence
means that, based on the same model, conclu-
sions obtained in backtesting at one level cannot
be extrapolated to other levels. In other words,
we can have a model with very good forecast-
ing power at 5% and quite bad results at 1%, or
vice versa.

VaR AND DIFFERENT LEVELS
OF CONFIDENCE
The starting point of VaR modeling is a time
series Y1, Y2, . . . , Yn of profit and loss obser-
vations (P/L); the time series consists of past
returns or simulated returns. If the critical level
(of confidence) for VaR is specified as α (e.g.,
10%, 5%, 1%), for a given sample the VaR is
determined from the empirical quantile at α%,
which we shall denote by zα . This means that,
if F (y) = ∫ y

−∞ f (u)du is the cumulative den-
sity function of returns, then F (zα) = α and the
probability area to the right of zα is equal to 1
— α. One of the main assumptions made with
many models for calculating VaR is that the re-
turns Y1, Y2, . . . , Yn are independent and identi-
cally distributed (IID). This is extremely impor-
tant in supporting the idea that VaR (for future
returns) can be forecasted based on past data. If
the IID assumption is not true, then the empiri-
cal quantile cannot be simply calculated from a
formula.

Let η be the number of times the realized
losses exceed the VaR threshold. The risk man-
ager expects ex ante that E(η) = nα. However, ex
post it is likely that η �= nα. For backtesting, the
daily loss series implies a sequence of success
or failure, depending whether the loss is greater
than VaR threshold or not. The probability of
failure is α and therefore, with n datapoints, the
probability density function of η is given by the
binomial distribution with parameters η and α

p(η = x) =
(

n
x

)
αx(1 − α)n−x (1)

for x ∈ {0, 1, 2, . . .}. If the sample size n is large
enough, the central limit theorem implies that

η−nα√
nα(1−α)

follows a standard Gaussian distribu-

tion. An asymptotic confidence interval for the
number of losses that will be seen η can then be
easily calculated. For example, a 95% asymp-
totic confidence interval for η is

−1.96
√

nα(1 − α) + nα < η

< 1.96
√

nα(1 − α) + nα (2)
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From the probabilistic point of view the P/L
values constitute a random sample {Y1, Y2,
. . . ,Yn} with cumulative distribution function

F (y1, y2, . . . , yn; θ ) =
n∏

i=1

Fk(yk ; φk) =
n∏

i=1

F (y; φ)

where the last equality follows from the IID
assumptions. For the empirical calculations of
VaR the reordered sample (Y[1], Y[2], . . . , Y[n]),
with Y[1] ≤ Y[2] ≤ . . . ≤ Y[n]) is of interest be-
cause the VaR at level α is equal to the negative
of the υ-th lowest value, where υ = 100α +1.
The statistic Y[1] is called the first order statistic,
Y[2] is called the second order statistic, and so
on. Y[n] is called the n-th order statistic, and
they are all sample quantiles. The theory of
order statistics allows making calculations on
sample quantiles. This translates for empirical
work based on the sample above into calculat-
ing the negative of the υ-th lowest value, where
υ = nα + 1, or Y[υ].

The portfolio losses can be analyzed through
the empirical cumulative distribution function

F̃ (y) =
⎧
⎨

⎩

0 if y < Y[1]
j
n if Y[ j] ≤ y < Y[ j+1]

1 if y ≥ Y[υ]

(3)

The inverse of this empirical cdf can be used
as an estimator of VaR at α level. The VaR
estimator is the order statistic Y[j] such that
j−1
υ

< α ≤ j
υ
, which is slightly different from

the upper empirical cumulative distribution
function value calculated as the Y[j] such that
j−1
υ

≤ α <
j
υ

. Mausser (2001) pointed out that
with 100 IID P/L values, the VaR at 5% level
would be estimated by the former estimator as
Y[5] and by the latter as Y[6].

One major criticism in using VaR to quan-
tify potential losses is the inability to gauge the
size of extreme losses. To overcome this prob-
lem another risk measure called expected tail
loss (ETL) has been introduced. The ETL is de-
fined as the mean losses that exceed the VaR
threshold. Hence, within the same framework
proposed to calculate VaR, one can determine
ETL by simply estimating the mean of the sam-

ple censored by the VaR estimate. If Y[j] is the
order statistic estimator representing VaR, ETL
can be estimated as the average of (Y[1], Y[2], . . . ,
Y[j−1]). It is important to realize that while ETL
may be more informative for gauging the poten-
tial losses than VaR, from an estimation point
of view ETL will always depend on VaR.

The calculation of VaR and expected tail loss
(ETL) with the order statistics methodology can
be easily implemented in Matlab. Table 1 con-
tains the VaR and ETL as estimated via the order
statistics method for simulated samples using
the Gaussian distribution and the t distribution
for the series of P/L, at various confidence lev-
els and sample sizes. In addition, the confidence
intervals determined as the 0.025% and 0.975%
percentiles of the distribution of each risk mea-
sure are also included. For a given sample size,
the confidence intervals for both VaR and ETL
are widening with the increase in the level of
confidence, as shown in Figures 1 and 2. Similar
results are obtained for larger sample sizes and
other distributions. For a prespecified level of
confidence, the confidence intervals tend to go
narrower with the increase in the sample size.

JOINT PROBABILITY
DISTRIBUTIONS FOR
ORDER STATISTICS
If F[i](u) = P(Y[i] ≤ u) is the cumulative distribu-
tion function of the i-th order statistic, then it is
not difficult to see that F[1](y) = 1−[1−F(y; φ)]n

and F[n](y) = F[(y; φ)]n. Exploiting the fact that
we use the quantile as a VaR estimator, Dowd
(2001) suggested applying the following known
result from order statistics for backtesting pur-
poses

P(exactly j values fromY1, Y2, . . . , Yn are ≤ y)

=
(

n
j

)
F (y; φ) j [1 − F (y; φ)]n− j (4)

to derive the cumulative distribution function
of this estimator

F[ j](y) = P(Y[ j] ≤ y) =
n∑

i= j

(
n
i

)
F (y; φ)i [1−F (y; φ)]n−i (5)



292 Probability Theory

Table 1 Order Statistics for VaR and ETL for One-Day Holding Period at 90%, 95% and 99% Confidence Levels
and Various Sample Sizes Using Standard Normal Distribution and t Distribution

Normal t

Sample size Level Measure 2.50% Median 97.5% 2.50% Median 97.5%

n = 100 90% VaR 0.9299 1.2816 1.5874 0.9247 1.2770 1.5854
ETL 1.4677 1.7535 2.0120 1.4671 1.7538 2.0198

95% VaR 1.2116 1.6449 2.0078 1.2068 1.6435 2.0130
ETL 1.6956 2.0614 2.3788 1.6975 2.0670 2.3974

99% VaR 1.6031 2.3263 2.8160 1.6012 2.3407 2.8520
ETL 2.0254 2.6640 3.1116 2.0335 2.6897 3.1677

n = 500 90% VaR 1.1278 1.2816 1.4263 1.1268 1.2807 1.4256
ETL 1.6269 1.7535 1.8748 1.6271 1.7515 1.8758

95% VaR 1.4543 1.6449 1.8218 1.4537 1.6446 1.8220
ETL 1.8985 2.0614 2.2150 1.8996 2.0598 2.2176

99% VaR 1.9921 2.3263 2.6185 1.9930 2.3292 2.6236
ETL 2.3650 2.6640 2.9299 2.3685 2.6653 2.9385

n = 1000 90% VaR 1.1735 1.2816 1.3850 1.1731 1.2811 1.3847
ETL 1.6644 1.7535 1.8401 1.6645 1.7513 1.8405

95% VaR 1.5110 1.6449 1.7719 1.5108 1.6447 1.7720
ETL 1.9467 2.0614 2.1715 1.9473 2.0590 2.1727

99% VaR 2.0899 2.3263 2.5425 2.0906 2.3278 2.5447
ETL 2.4519 2.6640 2.8604 2.4539 2.6623 2.8643

n = 5000 90% VaR 1.2337 1.2816 1.3285 1.236 1.2815 1.3284
ETL 1.7139 1.7535 1.7926 1.7140 1.7510 1.7927

95% VaR 1.5857 1.6449 1.7027 1.5856 1.6448 1.7027
ETL 2.0105 2.0614 2.1114 2.0106 2.0583 2.1116

99% VaR 2.2214 2.3263 2.4274 2.2216 2.3266 2.4278
ETL 2.5695 2.6640 2.7556 2.5700 2.6600 2.7562

n = 10000 90% VaR 1.2478 1.2816 1.3148 1.2478 1.2815 1.3148
ETL 1.7256 1.7535 1.7813 1.7256 1.7510 1.7813

95% VaR 1.6031 1.6449 1.6859 1.6031 1.6448 1.6859
ETL 2.0256 2.0614 2.0968 2.0255 2.0582 2.0969

99% VaR 2.2524 2.3263 2.3984 2.2525 2.3265 2.3985
ETL 2.5974 2.6640 2.7292 2.5976 2.6597 2.7296

Note: The number of degrees of freedom for t is chosen as the sample size minus 2.

In the following we shall denote F(y; φ) by F(y),
for simplicity. David (1981) pointed to the fol-
lowing useful result giving an analytical for-
mula for the distribution function of the order
statistic of order j.

F[ j](y) = BF (y)( j, n − j + 1) (6)

where BU(a , b) =
∫ U

0 ta−1(1−t)b−1dt
B(a ,b) is the incom-

plete beta function and B(a, b) is the beta func-
tion. This helps to calculate the pdf function
for those distributions that are absolute con-
tinuous with respect to a dominant probability
measure.1 The probability density function of

the j-th order statistics is

q[ j](y) = 1
B( j, n− j+1)

F j−1(y)[1−F (y)]n− j f (y)

(7)
where f (y) = d F

dy (y).

DISTRIBUTION-FREE
CONFIDENCE INTERVALS
FOR VaR
From a practical point of view, without any
loss of generality, it is safe to assume that the
cumulative distribution function F is strictly
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Figure 1 Expected Tail Loss for Normal P/L versus Level of Confidence When the Sample Size Is 100;
Calculations Are Done with Order Statistics

increasing. Then, for any α ∈ (0, 1) the equa-
tion

F (y) = α (8)

has a unique solution. This solution refers to the
entire population and it is called the quantile of
order α, denoted by zα . The 95% VaR is z0.05.

The order statistics can provide a distribution-
free confidence interval for the population
quantiles. Thompson (1936) showed that

P(Y[i] ≤ zα ≤ Y[ j]) =
j−1∑

k=i

(
n
k

)
αk(1 − α)n−k

(9)
This powerful result allows the construction of
distribution-free confidence intervals for VaR.
For given sample size n and VaR level α, there
are many combinations of i and j that make
the quantity in (9) larger or equal to 1 − a, the
confidence level desired. There may be several
combinations of order statistics Y[i], Y[j] that sat-
isfy the relationship (9) and the risk manager

may decide to select the combination leading
to the shortest confidence interval. Remark that
choosing the degree of confidence 1 − a is in-
dependent of the level of confidence α for VaR
point-estimation. In other words, a 95% confi-
dence interval for the population quantile zα

can be calculated for 95% VaR or for 99% VaR.

BIVARIATE ORDER
STATISTICS
The risk manager is faced with a dilemma. On
one hand the regulators are asking usually for
99%-VaR calculation so that the banks are re-
quested to set aside sufficient capital in order to
absorb 99% of all losses. On the other hand,
internal models may be used for day-to-day
operations to forecast 95% Var. As explained
by Brooks and Persand (2002) using an exam-
ple from Kupiec (1995), the standard error of the
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Figure 2 VaR for Normal P/L versus Level of Confidence When the Sample Size Is 100; Calculations
Are Done with Order Statistics

99% VaR can be more than 50% larger than the
corresponding standard error for the 95% VaR.
This is the case for a model using the Gaussian
distribution and it can be even worse for fat tail
distributions, with the confidence intervals for
the first percentile four times wider than confi-
dence intervals for the fifth percentile. For back-
testing purposes it would be ideal to do a joint
analysis. Thus, the bivariate joint distribution of
two order statistics will provide the confidence
regions (two-dimensional sets) for pairs of VaR
estimates. For example, the confidence regions
for 1% VaR and 5% VaR are recovered from the
bivariate joint distribution of Y[υ1], Y[υ2] where
υ1 = n × 1/100 + 1 and υ2 = n × 5/100 + 1, re-
spectively. This distribution is fully character-
ized by

F[i, j](x, y) = P(Y[i] ≤ x, Y[ j] ≤ y) (10)

with 1 ≤ i < j ≤ n. The probability on the right
side of equation (10) can be interpreted as the

probability that at least i values from the entire
sample Y1,Y2,. . .,Yn are not greater than x and at
least j values from the same sample Y1,Y2, . . . ,Yn

are not greater than y. Hence

F[i, j](x, y) =
n∑

k= j

k∑

s=i

P(exactly i of Y1, Y2, . . . , Yn

are ≤ x and
exactly j of Y1, Y2, . . . , Yn are ≤ y)

(11)

As in the univariate case, see David (1981), it
follows that

F[i, j](x, y) =
n∑

k= j

k∑

s=i

n!
s!(k − s)!(n − k)!

× [F (x)]s[F (y) − F (x)]k−s[1 − F (y)]n−k

(12)

for any x < y. Since for x ≥ y the event {Y[j] ≤
y} implies Y[i] ≤ x then F[i, j](x, y) = F[ j](y).
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An interesting corollary following from this
result is that any two order statistics, and there-
fore VaR estimates at different levels, are not
independent. This follows because the joint dis-
tribution in (12) cannot be factorized as a prod-
uct of two factors, one depending only on x
and the other only on y, up to a proportion-
ality constant. In other words, if both 1% VaR
and 5% VaR, for example, are needed for risk
management purposes, then the quality of the
VaR estimates should be investigated looking at
the joint bivariate distribution like that in (12)
rather than separate distributions of the type
given in (5).

KEY POINTS
� Order statistics can be used as estimators of

VaR and ETL and they are easy to compute.
� Banks may have to work with VaR measures

at several levels of confidence because of reg-
ulatory requirements that may not coincide
exactly with internal risk management deci-
sions.

� ETL can be estimated easily with the frame-
work based on order statistics, as the mean of
the sample censored by the VaR threshold.

� For a given sample size, the confidence inter-
vals for both VaR and ETL are widening with
the increase in the level of confidence. For
a prespecified level of confidence, the confi-
dence intervals tend to go narrower with the
increase in the sample size.

� There is a closed form solution for the density
of any order statistic, which has been advo-
cated here as a VaR estimator. Therefore, it
would be easy to perform backtesting of VaR
in this setup.

� The bivariate distribution of any two order
statistics is known in closed form and there-
fore could be used for backtesting when banks
have to work with two VaR measures simul-
taneously.

NOTE
1. For practical cases such as those encountered

in finance we can safely assume that the ran-
dom variables describing P/L series are con-
tinuous and they have probability density
functions.
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Abstract: Modified duration and effective duration are two ways to measure the price sensitivity of
a fixed income security. Both measure the percentage price change of a security from an absolute
change in yields. Effective duration is a more complete measure of price sensitivity since it incorpo-
rates embedded optionality while modified duration does not. Combining effective duration with
effective convexity is a superior risk management and measurement approach than using modified
duration and convexity. In general, for fixed income securities with embedded options, numerical
approaches (effective) to risk measurement are superior to analytic (modified) approaches.

Modified duration ignores any effect on cash
flows that might take place as a result of
changes in interest rates. Effective duration does
not ignore the potential for such changes in
cash flows. For example, bonds with embedded
options will have very different cash flow prop-
erties as interest rates (or yields) change. Mod-
ified duration ignores these effects completely.
In order to apply effective duration, an available
interest rate model and corresponding pricing
model are needed.1 The example in this entry
shows how to compute the effective duration
of securities with cash flows that are dependent
on changes in either the level or dynamics of
the term structure of interest rates.

There is no difference between modified
and effective duration for option-free or straight
bonds. In fact, it can be shown that they are

mathematically identical when the change in
rates (or yields) becomes very small. As shown
in the example, even for bonds with embedded
options, the differences between the two mea-
sures are minimal over certain ranges of yields.
For example, when the embedded option is far
out-of-the-money, the cash flows of the bond
are not affected by small changes in yields, re-
sulting in almost no difference in cash flows
between the two measures.

Convexity and effective convexity measure
the curvature of the price/yield relationship.
Convexity (sometimes referred to as stan-
dard convexity) suffers the same limitations
as modified duration and is therefore not
generally useful for securities with embed-
ded options. However, similar to the duration
measures, in ranges of rates (or yields) where
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the cash flows are not materially affected by
small changes in yields, the two convexity mea-
sures are almost identical.

As with the duration measures, there is no
difference between convexity and effective con-
vexity for option-free or straight bonds. In fact,
it can be shown that they are mathematically
identical when the change in rates (or yields)
becomes very small. As shown above, even
for bonds with embedded options, the differ-
ences between the two measures are minimal
over certain ranges of rates depending on the
characteristics of the embedded option. For
example, when the embedded option is far out-
of-the-money, the cash flows of the bond are not
affected by small changes in yields.

EFFECTIVE DURATION AND
EFFECTIVE CONVEXITY—AN
EXAMPLE
The following example illustrates how to cal-
culate and interpret effective duration and ef-
fective convexity for straight bonds and bonds
with embedded options.2

Suppose we need to measure the interest rate
sensitivity of the following three securities:

1. A 5-year, 6.70% coupon straight (noncallable
and nonputable) semiannual coupon bond,
with a current price of 102.75% of par.

2. A 5-year, 6.25% coupon bond, callable at
par in years 2 through 5 on the semiannual
coupon dates, with a current price of 99.80%
of par.

3. A 5-year, 5.75% coupon bond, putable at
par in years 2 through 5 on the semiannual
coupon dates, with a current price of 100.11%
of par.

The cash flows of these securities are very dif-
ferent as interest rates change. Consequently,
the sensitivities to changes in interest rates are
also very different.

Using the Black-Derman-Toy interest rate
model3 that is based on the existing term struc-
ture, the term structure of interest rates is
shifted up and down by 10 basis points (bps)
and the resulting price changes are recorded. P−
corresponds to the price after a downward shift
in interest rates, P+ corresponds to the price af-
ter an upward shift in interest rates, P is the cur-
rent price, and S is the assumed shift in the term
structure. (Note that shifting the term structure
in a parallel manner will result in a change in
yields equal to the shift for option-free bonds.)
Table 1 shows these prices for each bond. The

Table 1 Original Prices and Resulting Prices from a Downward and Upward 10 Basis Point
Interest Rate Shift and the Corresponding Effective Duration and Effective Convexity for Three
Bonds Based on the Black-Derman-Toy Model

Price Changes Following 10 bp Shift

Upward Shift Downward Shift
Variable Original Price P of 10 bp P+ of 10 bp P−

Straight Bond Price 102.7509029 102.3191235 103.1848805
Callable Bond Price 99.80297176 99.49321718 100.1085624
Putable Bond Price 100.1089131 99.84237604 100.3819059

Effective Duration and Effective Convexity Measures Calculated from Using the Price Changes
Resulting from the 10bp Shifts in the Term Structure

Effective duration Effective convexity

Straight Bond 4.21 21.39
Callable Bond 3.08 −41.72
Putable Bond 2.70 64.49
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Table 2 Effective Duration and Effective Convexity for Various Shifts in the Term Structure for Three Bonds

Straight Bond Callable Bond Putable Bond

Term Structure Effective Effective Effective Effective Effective Effective
Shift (bps) Duration Convexity Duration Convexity Duration Convexity

−500 4.40 23.00 1.91 4.67 4.46 23.46
−250 4.30 22.19 1.88 4.55 4.37 22.66

0 4.21 21.39 3.08 −41.72 2.70 64.49
250 4.12 20.62 4.15 20.85 1.87 7.07
500 4.03 19.87 4.07 20.10 1.81 4.23

1000 3.85 18.42 3.89 18.66 1.77 4.03

formulas for calculating effective duration and
effective convexity are as follows:

Effective duration = (P−) − (P+)
2PS

(1)

Effective convexity = (P−) − (P+) − 2P

PS2 (2)

It is critical to understand the importance of
the pricing model in this exercise. The model
must account for the change in cash flows of the
securities as interest rates change. The callable
and putable bonds have very different cash flow
characteristics that depend on the level of inter-
est rates. The pricing model used must account
for this property.4

Straight Bond
The effective duration for the straight bond is
found by recording the price changes from
shifting the term structure up (P+) and down
(P−) by 10 bps and then substituting these val-
ues into equation (1). The prices are shown in
Table 1. Consequently, the computation is:

Effective duration = 103.1848805 − 102.3191235
2(102.7509029)(0.001)

= 4.21

Similarly, the calculation for effective convex-
ity is found by substituting the corresponding
prices into equation (2):

Effective convexity

= 103.1848805 + 102.3191235 − 2(102.7509029)
102.7509029(0.001)2

= 21.39

For the straight bond, the modified duration
is 4.21 and the convexity is 21.40. These are very
close to the effective measures shown in Table 1.
This demonstrates that, for option-free bonds,
the two measures are almost the same for small
changes in yields.

Table 2 shows the effects of the term struc-
ture shifts on the effective duration and effec-
tive convexity of the straight bond. The effective
duration increases as yields decrease because as
yields decrease the slope of the price yield rela-
tionship for option-free bonds becomes steeper
and effective duration (and modified duration)
is directly proportional to the slope of this rela-
tionship. For example, the effective duration at
very low yields (−500-bp shift) is 4.40 and de-
creases to 3.85 at very high rates (+1,000 bps),
Figure 1 illustrates this phenomenon; as yields
increase notice how the slope of the price/yield
relationship decreases (becomes more horizon-
tal or flatter).
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Straight Bond
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As the term structure shifts up (that is, as rates
rise), the yield to maturity on a straight bond
increases by approximately the same amount.
As the yield increases, its convexity decreases.
Figure 1 illustrates this property. As yields in-
crease, the curvature (or the rate of change of
the slope) decreases. The results in Table 2 for
the straight bond also bear this out. The effec-
tive convexity values become smaller as yields
increase. For example, the effective convexity
at very low yields (−500-bp shift) is 23.00 and
decreases to 18.43 at very high rates (+1,000-bp
shift).

These are both well-documented properties of
option-free bonds. The modified duration and
convexity numbers for the straight bond are al-
most identical to the effective measures for the
straight bond shown in Table 2.

Callable Bond
The effective duration for the callable bond is
found by recording the price changes from shift-
ing the term structure up (P+) and down (P−) by
10 bps and then substituting these values into
equation (1). The prices are shown in Table 1.
Note that these prices take into account the
changing cash flows resulting from the embed-
ded call option. Consequently, the computation
is:

Effective duration = 100.1085624 − 99.49321718
2(99.800297)(0.001)

= 3.08

Similarly, the calculation for effective convex-
ity is found by substituting the corresponding
prices into equation (2):

Effective convexity

= 100.1085624 + 99.49321718 − 2(99.80297176)
99.80297176(0.001)2

= −41.72

The relationship between the shift in rates and
effective duration is shown in Table 2 and in Fig-
ure 2. As rates increase, the effective duration of
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Figure 2 Price/Yield Relationship of the
Callable Bond

the callable bond becomes larger. For example,
the effective duration at very low yields (−500-
bp shift) is 1.91 and increases to 3.89 at very
high rates (+1,000 bps). This reflects the fact
that as rates increase the likelihood of the bond
being called decreases and, as a result, the bond
behaves more like a straight bond; hence, its ef-
fective duration increases. Conversely, as rates
drop, this likelihood increases and the bond and
its effective duration behave more like a bond
with a two-year maturity because of the call op-
tion becoming effective in two years. As rates
decrease significantly, the likelihood of the is-
suer calling the bond in two years increases.
Consequently, at very low and intermediate
rates the difference between the effective du-
ration measure and modified duration is large
and at very high rates the difference is small.

As explained above, effective convexity
measures the curvature of the price/yield re-
lationship of bonds. Low values for effective
convexity simply mean that the relationship is
becoming linear (an effective convexity of zero
represents a linear relationship). As shown in
Table 2, the effective convexity values of the
callable bond at extremely low interest rates
(that is, for the −250-bp and −500-bp shifts in
the term structure) are very small positive num-
bers (4.55 and 4.67, respectively). This means
that the relationship is almost linear but ex-
hibits slight convexity. This is due to the call
option being delayed by two years. At these
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extremely low interest rates, the callable bond
exhibits slight positive convexity because the
price compression at the call price is not com-
plete for another two years. (Price compression
for a callable bond refers to the property that
a callable bond’s price appreciation potential is
severely limited as yields decline. As shown in
Figure 2 as yields fall below a certain level (that
is, where the yield corresponds to the call price),
the price appreciation of the callable bond is be-
ing compressed). If this bond were immediately
callable, the price/yield relationship would ex-
hibit positive convexity at high yields and neg-
ative convexity at low yields. At the current
level of interest rates, the effective convexity is
negative as expected. At these rate levels, the
embedded call option causes enough price com-
pression to cause the curvature of the price/
yield relationship to be negatively convex (that
is, concave). Figure 2 illustrates these proper-
ties. It is at these levels that the embedded op-
tion has a significant effect on the cash flows of
the callable bond.

Table 2 shows that for large positive yield
curve shifts (that is, for the +250-bp, +500-bp,
and +1,000-bp shifts in the term structure), the
effective convexity of the callable bond becomes
positive and very close to the effective convex-
ity values of the straight bond. For example, the
effective convexity at the +250-bp shift is 20.85
for the callable bond and 20.62 for the straight
bond. The only reason they are not the same is
because the coupon rates of the bonds are not
equal. Consequently, at very low and interme-
diate rates the difference between effective con-
vexity and the standard convexity is large and
at very high rates the difference is small. The
intuition behind these findings is straightfor-
ward. At low rates, the cash flows of the callable
bond are severely affected by the likelihood of
the embedded call option being exercised by
the issuer. At high rates, the embedded call op-
tion is so far out-of-the-money that it has almost
no effect on the cash flows of the callable bond
and so the callable bond behaves like a straight
bond.

Putable Bond
The effective duration for the putable bond is
found by recording the price changes from shift-
ing the term structure up (P+) and down (P−) by
10 bps and then substituting these values into
equation (1). The prices are shown in Table 1.
Note that these prices take into account the
changing cash flows resulting from the embed-
ded put option. Consequently, the computation
is:

Effective duration = 100.3819059 − 99.84237604
2(100.1089131)(0.001)

= 2.70

Similarly, the calculation for effective convex-
ity is found by substituting the corresponding
prices into equation (2):

Effective convexity

= 100.3819059 + 99.84237604 − 2(100.1089131)
100.1089131(0.001)2

= 64.49

Because the putable bond behaves so differ-
ently from the other two bonds, the effective du-
ration and effective convexity values are very
different. As rates increase, the bond behaves
more like a two-year bond because the owner
will, in all likelihood, exercise the right to put
the bond back at the put price as soon as possi-
ble. As a result, effective duration of the putable
bond is expected to decrease as rates increase.
This is due to the embedded put option severely
affecting the cash flows of the putable bond.
Conversely, as rates fall, the putable bond be-
haves more like a five-year straight bond since
the embedded put option is so far out-of-the-
money and has little effect on the cashflows of
the putable bond. Effective duration should re-
flect these properties. Table 2 shows that this
is indeed the case. For example, the effective
duration at very low yields (−500-bp shift) is
4.46 and decreases to 1.77 at very high rates
(+1,000 bps). Consequently, at very high rates
and intermediate rates the difference between
the effective duration and modified duration
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Figure 3 Price/Yield Relationship of the Putable
Bond

measures is large and at low rates the differ-
ence is small.

Table 2 shows that the effective convexity of
the putable bond is positive for all rate shifts
as would be expected, but it becomes smaller
as rates increase (that is, for the +250-bp,
+500-bp, and +1,000-bp shifts in the term
structure). As rates increase, the putable bond
price/yield relationship will become linear be-
cause of the bond’s price truncation at the put
price. (Price truncation for a putable bond refers
to the property that the putable bond’s price de-
preciation potential is severely limited as yields
increase.) As shown in Figure 3 as yields rise
above a certain level (that is, where the yield
corresponds to the put price), the price depreci-
ation of the putable bond is truncated.) This is
the reason for the small effective convexity val-
ues for the putable bond for the three positive
shifts in the term structure (7.07, 4.23, and 4.03,
respectively). It is at these levels that the em-
bedded put option has a significant effect on the
cash flows of the putable bond. Consequently,
at very high rates and intermediate rates the
difference between the effective convexity and
standard convexity is very large. Figure 3 illus-
trates these properties.

At very low rates (that is, for the 250-bp and
500-bp downward shifts in the term structure),
the putable bond behaves like a 5-year straight
bond because the put option is so far out-of-
the-money. Therefore, as the term structure is

shifted downward, the putable bond’s effective
convexity values approach those of a compara-
ble 5-year straight bond. Comparing the effec-
tive convexity measures for the putable bond
and the straight bond illustrates this character-
istic. For example, the effective convexity at the
−250-bp shift is 22.66 for the putable bond and
22.19 for the straight bond. The two convex-
ity measures are almost identical. In fact, they
would be identical if their coupon rates were
equal.

Figure 2 illustrates these properties. Also no-
tice how the transition from low yields to high
yields forces the price/yield relationship to
have a very high convexity at intermediate lev-
els of yields. For example, the current effective
convexity of the putable bond is 64.49 compared
to 21.39 for the straight bond and −41.72 for the
callable bond. This is because of the price trun-
cation of the putable bond resulting from the
embedded put option moving from out-of-the-
money and having little influence over the cash
flows to in-the-money and having a significant
impact on cash flows.

PUTTING IT ALL TOGETHER
Notice in Table 2 how effective duration
changes much more across yields for the
callable and putable bonds than it does for the
straight bond. This is to be expected because
the embedded options have such a significant
influence over cash flows as yields change over
a wide spectrum. Interestingly, at high (low)
yields the callable (putable) bond’s effective du-
ration is very close to the straight bond. This
is where the embedded call (put) option is so
far out-of-the-money that the two securities be-
have similarly. The same intuition holds for the
effective convexity measures.

A common use of effective duration and ef-
fective convexity is to estimate the percentage
price changes in fixed income securities for as-
sumed changes in yield. In fact, it is not un-
common for effective duration and effective
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Table 3 Percentage Price Changes Assuming an Increase in Yield of 100 bps and Effective Duration and Effective
Convexity for Various Shifts in the Term Structure

Straight Bond Callable Bond Putable Bond

% Price % Price % Price % Price % Price % Price
Change Change Change Change Change Change

Term Using Using Total % Using Using Total % Using Using Total %
Structure Effective Effective Price Effective Effective Price Effective Effective Price
Shift (bp) Duration Convexity Change Duration Convexity Change Duration Convexity Change

−500 −4.40 0.11500 −4.28500 −1.91 0.02335 −1.88665 −4.46 0.11730 −4.34270
−250 −4.30 0.11095 −4.18905 −1.88 0.02275 −1.85725 −4.37 0.11330 −4.25670

0 −4.21 0.10695 −4.10305 −3.08 −0.20860 −3.28860 −2.70 0.32245 −2.37755
250 −4.12 0.10310 −4.01690 −4.15 0.10425 −4.04575 −1.87 0.03535 −1.83465
500 −4.03 0.09935 −3.93065 −4.07 0.10050 −3.96950 −1.81 0.02115 −1.78885

1000 −3.85 0.09210 −3.75790 −3.89 0.09330 −3.79670 −1.77 0.02015 −1.74985

convexity to be presented in terms of estimated
percentage price change for a given change in
yield (typically 100 bp): Tables 3 and 4 show this
alternative presentation for a ±100 bp change in
yield. These results are computed by substitut-
ing the values from Table 2 into the following
relationship:

% Price change = �P
P

≈ −(ED)(�y)(100)

+1
2

(EC)(�y)2(100) (3)

where ED is the effective duration, EC is the ef-
fective convexity, and �y is the assumed change
in yield (e.g., 100 bp). Equation (3) is the result
of a Taylor Series expansion on the bond price
function. Also, note that the effective duration
(ED) and effective convexity (EC) terms can be

replaced by modified duration and standard
convexity, respectively, for option-free bonds.

Table 3 illustrates the resulting percentage
price changes resulting from an increase in yield
of 100 bps at various levels of the term structure.
For example, the percentage price change for
the callable bond at the current term structure
(0-bp shift) is calculated using the values from
Table 2 and substituting them into equation (3)
as follows:

% Price change ≈ −(3.08)(0.01)(100)

+1
2

(−41.72)(0.01)2(100)

≈ −3.08 − 0.2086 = −3.2886%

This example shows that the estimated total
percentage price change from effective con-
vexity (−0.2086%) is much smaller than the

Table 4 Percentage Price Changes Assuming a Decrease in Yield of 100 bps and Effective Duration and Effective
Convexity for Various Shifts in the Term Structure

Straight Bond Callable Bond Putable Bond

% Price % Price % Price % Price % Price % Price
Change Change Change Change Change Change

Term Using Using Total % Using Using Total % Using Using Total %
Structure Effective Effective Price Effective Effective Price Effective Effective Price
Shift (bp) Duration Convexity Change Duration Convexity Change Duration Convexity Change

−500 4.40 0.1150 4.5150 1.91 0.0234 1.9334 4.46 0.1173 4.5773
−250 4.30 0.1110 4.4110 1.88 0.0228 1.9028 4.37 0.1133 4.4833

0 4.21 0.1070 4.3170 3.08 −0.2086 2.8714 2.70 0.3225 3.0225
250 4.12 0.1031 4.2231 4.15 0.1043 4.2543 1.87 0.0354 1.9054
500 4.03 0.0994 4.1294 4.07 0.1005 4.1705 1.81 0.0212 1.8312

1000 3.85 0.0921 3.9421 3.89 0.0933 3.9833 1.77 0.0202 1.7902
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percentage price change from effective duration
(−3.08).

Table 4 illustrates the resulting percentage
price changes resulting from a decrease in yield
of 100 bp at the various levels of the term struc-
ture. For example, the percentage price change
for the callable bond at the current term struc-
ture (0-bp shift) is calculated using the values
from Table 2 and substituting them into equa-
tion (3) as follows:

% Price change ≈ −(3.08)(−0.01)(100)

+1
2

(−41.72)(−0.01)2(100)

≈ 3.08 − 0.2086 = 2.8714%

KEY POINTS
� Duration and convexity are measures for es-

timating the price sensitivity of a security to
changes in interest rates.

� Modified duration and effective duration are
two ways to measure the price sensitivity of a
fixed income security. Both measure the per-
centage price change of a security from an
absolute change in yields.

� There are important differences between ef-
fective duration and modified duration and
effective convexity and convexity. The differ-
ences are due to changing cash flows of the
security being evaluated.

� The effective measures account for chang-
ing cash flows and the traditional measures
do not. The differences between the two are
very significant whenever the cash flows are
greatly affected by the level of interest rates.
However, to properly compute the effective
measures both an interest rate and a valua-
tion model are required. Consequently, they
are more computationally intensive than the
traditional measures.

� The effective and traditional measures are
identical for option-free bonds.

� Combining effective duration with effective
convexity is a superior risk management and
measurement approach than using modified
duration and convexity.

� Investors would be best served by always us-
ing the effective measures since they properly
account for the cash flow characteristics of a
security.

NOTES
1. For the impact of interest rate models on

duration and convexity, see Buetow, Hanke,
and Fabozzi (2001).

2. For an illustration of how duration and con-
vexity are computed for mortgage-backed
securities, see Golub (2006) and Fabozzi
(1999).

3. Black, Derman, and Toy, 1990.
4. Note that when calculating the measures,

users are cautioned to not round values.
Since the denominators of both the dura-
tion and convexity terms are very small, any
rounding will have a significant impact on
results.
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Abstract: Duration is a useful metric for assessing a bond portfolio’s sensitivity to a parallel shift in
the reference yield curve (e.g., the Treasury yield curve). When the yield curve shift is not parallel,
however, two bond portfolios with the same duration will not generally experience the same return
performance. To evaluate differences in expected performance across portfolios, it is therefore
necessary to quantify the price impact due to changes in the shape, as opposed to a parallel shift, of
the yield curve. The risk exposure of a portfolio to changes in the yield curve is called yield curve
risk. Several approaches have been suggested for measuring yield curve risk.

Duration and convexity are useful measures for
approximating how the value of a bond port-
folio or a bond index will change for a paral-
lel shift in interest rates. Yet, empirically, both
published studies1 and proprietary studies by
asset management firms have found that yield
curve changes are not parallel. The exposure of
a bond portfolio or a bond index to changes in
the shape of the yield curve is called yield curve
risk.

There are several approaches for measuring
yield curve risk. In this entry, we describe some
of the more common approaches: cash-flow dis-
tribution analysis versus a benchmark, key rate
duration, slope elasticity measure, yield curve
reshaping duration, and analysis of likely shifts
in the yield curve. We begin the entry with an
illustration of the drawback of using duration

and convexity measures when the yield curve
does not shift in a parallel fashion.

DURATION, CONVEXITY,
AND NONPARALLEL YIELD
CURVE SHIFTS
To illustrate the limitations of duration and
convexity, let’s first look at how two portfolios
consisting of hypothetical Treasury securities
with the same portfolio duration will perform if
the yield curve does not shift in a parallel fash-
ion. Consider the three hypothetical Treasury
securities shown in Table 1. Security A is the
short-term Treasury, security B is the long-term
Treasury, and security C is the intermediate-
term Treasury. Each Treasury security is selling
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Table 1 Three Hypothetical Treasury Securities to
Illustrate the Limitations of Duration and Convexity

Information on three Treasury securities:

Treasury
Issue

Coupon
Rate (%) Price

Yield to
Maturity
(%)

Maturity
(years)

A 6.5 100 6.5 5
B 8.0 100 8.0 20
C 7.5 100 7.5 10

Calculation of duration and convexity (shock rates by
10 basis points):

Value if rate changes byTreasury
issue +10 bp −10 bp Duration Convexity

A 99.5799 100.4222 4.21122 10.67912
B 99.0177 100.9970 9.89681 73.63737
C 99.3083 100.6979 6.49821 31.09724

at par, and it is assumed that the next coupon
payment is six months from now. The duration
and convexity for each security are calculated
in the exhibit. Since all the securities are trad-
ing at par value, the durations and convexities
are the dollar duration and dollar convexity per
$100 of par value.

Suppose that the following two Treasury port-
folios are constructed. The first portfolio con-
sists of only security C, the 10-year issue, and
shall be referred to as the “bullet portfolio.” The
second portfolio consists of 51.86% of security
A and 48.14% of security B, and this portfolio
shall be referred to as the “barbell portfolio.”

The dollar duration of the bullet portfolio is
6.49821. Recall that dollar duration is a measure
of the dollar price sensitivity of a security or a
portfolio. The dollar duration of the barbell is
the weighted average of the dollar duration of
the two Treasury securities in the portfolio and
is computed below:

0.5186(4.21122) + 0.4814(9.89681) = 6.94821

The dollar duration of the barbell is equal to
the dollar duration of the bullet. In fact, the
barbell portfolio was designed to produce this
result.

Duration is just a first approximation of the
change in price resulting from a change in in-

terest rates. The convexity measure provides
a second approximation. The dollar convexity
measure of the two portfolios is not equal. The
dollar convexity measure of the bullet portfolio
is 31.09724. The dollar convexity measure of the
barbell is a weighted average of the dollar con-
vexity measure of the two Treasury securities in
the portfolio. That is,

0.5186(10.67912) + 0.4814(73.63737) = 40.98658

Thus, the bullet has a dollar convexity mea-
sure that is less than that of the barbell portfolio.
Below is a summary of the dollar duration and
dollar convexity of the two portfolios:

Parameter Bullet Portfolio Barbell Portfolio

Dollar duration 6.49821 6.49821
Dollar convexity 31.09724 40.98658

The better Treasury portfolio depends on the
portfolio manager’s investment objectives and
investment horizon. Let’s assume a six-month
investment horizon. The last column of Table 2

Table 2 Performance of Bullet and Barbell Treasury
Portfolios over a Six-Month Horizon Assuming a
Parallel Yield Curve Shift: Scenario Analysis

Total Return (%)

Yield Change Bullet Barbell
(in bps) Portfolio Portfolio Differencea

−300 53.47 55.79 −2.32
−250 44.95 46.38 −1.43
−200 36.79 37.55 −0.76
−150 28.99 29.26 −0.27
−100 21.51 21.47 0.05
−50 14.35 14.13 0.22
−25 10.89 10.63 0.26

0 7.50 7.22 0.28
25 4.18 3.92 0.27
50 0.93 0.70 0.23

100 −5.36 −5.45 0.09
150 −11.39 −11.28 −0.11
200 −17.17 −16.79 −0.38
250 −22.71 −22.01 −0.70
300 −28.03 −26.96 −1.06

aA positive sign indicates that the bullet portfolio out-
performed the barbell portfolio; a negative sign indi-
cates that the barbell portfolio outperformed the bullet
portfolio.
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shows the difference in the total return over
a six-month investment horizon for the two
Treasury portfolios, assuming that the yield
curve shifts in a “parallel” fashion. By paral-
lel it is meant that the yield for the short-term
security (A), the intermediate-term security (C),
and the long-term security (B) changes by the
same number of basis points, shown in the first
column of the table. The total return reported
in the second column of Table 2 is:

Bullet portfolio’s total return

− Barbell portfolio’s total return

Thus, a positive value in the last column
means that the bullet portfolio outperformed
the barbell portfolio, while a negative sign
means that the barbell portfolio outperformed
the bullet portfolio. Note that no assumption
is needed for the reinvestment rate since the

Table 3 Performance of Bullet and Barbell Treasury
Portfolios over a Six-Month Horizon Assuming a
Flattening of the Yield Curve: Scenario Analysis

Total return (%)

Yield change Bullet Barbell
for C (in bps) Portfolio Portfolio Differencea

−300 53.47 58.98 −5.51
−250 44.95 49.26 −4.31
−200 36.79 40.15 −3.36
−150 28.99 31.60 −2.62
−100 21.51 23.58 −2.06
−50 14.35 16.03 −1.67
−25 10.89 12.42 −1.53

0 7.50 8.92 −1.42
25 4.18 5.53 −1.35
50 0.93 2.23 −1.30

100 −5.36 −4.09 −1.27
150 −11.39 −10.06 −1.33
200 −17.17 −15.70 −1.47
250 −22.71 −21.04 −1.67
300 −28.03 −26.11 −1.92

Assumptions:
Change in yield of security C results in a change in the
yield of security A plus 30 basis points.
Change in yield of security C results in a change in the
yield of security B minus 30 basis points.
aA positive sign indicates that the bullet portfolio out-
performed the barbell portfolio; a negative sign indi-
cates that the barbell portfolio outperformed the bullet
portfolio.

three securities comprising the portfolios are
assumed to be trading right after a coupon pay-
ment has been made and therefore there is no
accrued interest.

Which portfolio is the better investment alter-
native if the yield curve shifts in a parallel fash-
ion and the investment horizon is six months?
The answer depends on the amount by which
yields change. Notice in the last column that
if yields change by less than 100 basis points,
the bullet portfolio will outperform the barbell
portfolio. The reverse is true if yields change by
more than 100 basis points.

Now let’s look at what happens if the yield
curve does not shift in a parallel fashion. The
last column of Tables 3 and 4 show the relative
performance of the two Treasury portfolios for
a nonparallel shift of the yield curve. Specifi-
cally, in Table 3 it is assumed that if the yield on

Table 4 Performance of Bullet and Barbell Treasury
Portfolios over a Six-Month Horizon Assuming a
Steepening of the Yield Curve: Scenario Analysis

Total Return (%)

Yield Change Bullet Barbell
for C (in bps) Portfolio Portfolio Differencea

−300 53.47 52.82 0.65
−250 44.95 43.70 1.24
−200 36.79 35.14 1.65
−150 28.99 27.09 1.89
−100 21.51 19.52 1.99
−50 14.35 12.39 1.97
−25 10.89 8.98 1.91

0 7.50 5.66 1.84
25 4.18 2.44 1.74
50 0.93 −0.69 1.63

100 −5.36 −6.70 1.34
150 −11.39 −12.38 0.99
200 −17.17 −17.77 0.60
250 −22.71 −22.88 0.17
300 −28.03 −27.73 −0.30

Assumptions:
Change in yield of security C results in a change in the
yield of security A minus 30 basis points.
Change in yield of security C results in a change in the
yield of security B plus 30 basis points.
aA positive sign indicates that the bullet portfolio out-
performed the barbell portfolio; a negative sign indi-
cates that the barbell portfolio outperformed the bullet
portfolio.
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C (the intermediate-term security) changes by
the amount shown in the first column, A (the
short-term security) will change by the same
amount plus 30 basis points, whereas B (the
long-term security) will change by the same
amount shown in the first column less 30 basis
points. That is, the nonparallel shift assumed
is a flattening of the yield curve. For this yield
curve shift, the barbell will outperform the bul-
let for the yield changes assumed in the first col-
umn. While not shown in the table, for changes
greater than 300 basis points for C, the opposite
would be true.

In Table 4, the nonparallel shift assumes that
for a change in C’s yield, the yield on A will
change by the same amount less 30 basis points,
whereas the yield on B will change by the same
amount plus 30 basis points. That is, it assumes
that the yield curve will steepen. In this case, the
bullet portfolio would outperform the barbell
portfolio for all but a change in yield greater
than 250 basis points for C.

The key point here is that looking at duration
or convexity tells us little about performance
over some investment horizon because perfor-
mance depends on the magnitude of the change
in yields and how the yield curve shifts.

CASH-FLOW DISTRIBUTION
ANALYSIS VERSUS A
BENCHMARK
The most straightforward approach to assess-
ing a portfolio’s risk exposure to yield curve
shifts is by looking at the distribution of the
present value of the cash flows for the port-
folio being managed versus a benchmark. The
benchmark will be either a bond index or a lia-
bility structure. The steps are as follows:

Step 1: Determine the discrete time periods for
the analysis. The shortest and longest time is
determined by the shortest and longest cash
flows for the portfolio and the benchmark.
Each time period is referred to as a cash-flow
vertex.

Step 2: Compute the cash flows for the port-
folio and the benchmark for each cash-flow
vertex.

Step 3: Compute the present value of the cash
flows for the portfolio and the benchmark
for each cash-flow vertex. The spot rate used
to compute the present value is the spot
rate for the cash-flow vertex. For example,
if the cash-flow vertex is year 5, the 5-year
spot rate is used.

Step 4: Compute the duration contribution at
each cash flow vertex for the portfolio and
the benchmark.

Step 5: Compute the duration contribution as
a percentage of duration for both the port-
folio and the benchmark for each cash-flow
vertex.

Step 6: Compute the difference in the portfolio
percentage and benchmark percentage com-
puted in Step 5 for each cash-flow vertex.

In practice, the application is not straightfor-
ward because of the inclusion of bonds with
embedded options and mortgage-backed and
asset-backed securities. Suppose a bond is a 7-
year bond that is callable in three years. The
cash flows for this bond depend on the portfo-
lio manager’s assessment of the probability that
it will be called in three years. For mortgage-
backed and asset-backed securities, the cash
flows depend on the prepayment assumption.

Another difficulty in the implementation pro-
cess is the allocation of cash flows to the cash-
flow vertices when a cash flow is not exactly on
a cash-flow vertex date. For example, consider
a bond whose coupon payment of $1 million
is to be received 4.75 years from now and that
there is a 4-year and 5-year cash-flow vertex.
How should the $1 million coupon payment be
allocated? The procedure would be to allocate
25% to the 4-year cash-flow vertex and 75% to
the 5-year cash-flow vertex.

Despite its simplicity, the cash-flow distribu-
tion analysis is commonly used as a measure of
yield curve risk for index fund managers (see
Volpert, 2000).
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KEY RATE DURATION

One approach to measure yield curve risk is
to change the yield for a particular maturity
of the yield curve and determine the sensitiv-
ity of a security or portfolio to this change,
holding all other yields constant. The sensi-
tivity of the change in value to a particular
change in yield is called rate duration. There
is a rate duration for every point on the yield
curve. Consequently, there is not one rate du-
ration, but a vector of durations representing
each maturity on the yield curve. The total
change in value if all rates change by the same
number of basis points is simply the duration
of a security or portfolio to a parallel shift
in rates.

This approach was first suggested by Cham-
bers and Carleton (1988), who called it duration
vectors. Reitano (1992) suggested a similar ap-
proach and referred to these durations as par-
tial durations. The most popular version of this
approach is that developed by Ho (1992). This
approach examines how changes in Treasury
yields at different points on the spot curve af-
fect the value of a bond portfolio. Ho’s method-
ology has three basic steps. The first step is to
select several key maturities or “key rates” of
the spot rate curve. Ho’s approach focuses on
11 key maturities on the spot rate curve. These
rate durations are called key rate durations. The
specific maturities on the spot rate curve for
which a key rate duration is measured are
3 months, 1 year, 2 years, 3 years, 5 years,
7 years, 10 years, 15 years, 20 years, 25 years,
and 30 years. However, in order to illustrate
Ho’s methodology, we will select only three key
rates: 1 year, 10 years, and 30 years.

The next step is to specify how other rates
on the spot curve change in response to key
rate changes. Ho’s rule is that a key rate’s ef-
fect on neighboring rates declines linearly and
reaches zero at the adjacent key rates. For exam-
ple, suppose the 10-year key rate increases by
40 basis points. All spot rates between 10 years
and 30 years will increase but the amount each

changes will be different and the magnitude
of the change diminishes linearly. Specifically,
there are 40 semiannual periods between 10 and
30 years. Each spot rate starting with 10.5 years
increases by 1 basis point less than the spot rate
to its immediate left (that is, 39 basis points)
and so forth. The 30-year rate which is the ad-
jacent key rate is assumed to be unchanged.
Thus, only one key rate changes at a time. Spot
rates between 1 year and 10 years change in an
analogous manner such that all rates change
but by differing amounts. Changes in the
1-year key rate affect spot rates between 1 and
10 years, while spot rates 10 years and beyond
are assumed to be unaffected by changes in the
1-year spot rate. In a similar vein, changes in
the 30-year key rate affect all spot rates be-
tween 30 years and 10 years while spot rates
shorter than 10 years are assumed to be un-
affected by changes in the 30-year rate. This
process is illustrated in Figure 1. Note that if
we add the three rate changes together, we
obtain a parallel yield curve shift of 40 basis
points.

The third and final step is to calculate the per-
centage change in the bond’s portfolio value
when each key rate and neighboring spot rates
are changed. There will be as many key rate du-
rations as there are preselected key rates. Let’s
illustrate this process by calculating the key rate
duration for a coupon bond. Our hypotheti-
cal 6% coupon bond has a maturity value of
$100 and matures in five years. The bond de-
livers coupon payments semiannually. Valua-
tion is accomplished by discounting each cash
flow using the appropriate spot rate. The bond’s
current value is $107.32 and the process is illus-
trated in Table 5. The initial hypothetical (and
short) spot curve is contained in column (3).
(Note that the spot rates are annual rates and
are reported as bond-equivalent yields. When
present values are computed, we use the ap-
propriate semiannual rates that are taken to be
one half the annual rate.) The present values of
each of the bond’s cash flows are presented in
the last column.
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Figure 1 Graph of How Spot Rates Change
when Key Rates Change

Table 5 Valuation of 5-Year 6% Coupon Bond Using
Spot Rates

Spot Rate Cash Flow Present Value
Years Period (in percent) (in dollars) (in dollars)

0.5 1 3.00 3.0 2.96
1.0 2 3.25 3.0 2.90
1.5 3 3.50 3.0 2.85
2.0 4 3.75 3.0 2.79
2.5 5 4.00 3.0 2.72
3.0 6 4.10 3.0 2.66
3.5 7 4.20 3.0 2.59
4.0 8 4.30 3.0 2.53
4.5 9 4.35 3.0 2.47
5.0 10 4.40 103.0 82.86

Total 107.32

To compute the key rate duration of the 5-
year bond, we must select some key rates. We
assume the key rates are 0.5, 3, and 5 years. To
compute the 0.5-year key rate duration, we shift
the 0.5-year rate upwards by 20 basis points
and adjust the neighboring spot rates between
0.5 and 3 years as described earlier. (The choice
of 20 basis points is arbitrary.) Figure 2 shows
the initial spot curve and the spot curve after
the 0.5-year key rate and neighboring rates are
shifted. The next step is to compute the bond’s
new value as a result of the shift. This calcula-
tion is shown in Table 6. The bond’s value to
the shift is $107.30. To estimate the 0.5-year key
rate duration, we divide the percentage change
in the bond’s price as a result of the shift in
the spot curve by the change in the 0.5-year
key rate. Accordingly, we employ the following
formula:

Key rate duration = P0 − P1

P0(�y)

where

P0 = the bond’s value using the initial spot
curve

P1 = the bond’s value after the shift in the
spot curve

�y = shift in the key rate (in decimal)

Substituting in numbers from our illustration
presented above, we can compute the 0.5-year

Table 6 Valuation of the 5-Year 6% Coupon Bond
after 0.5-Year Key Rate and Neighboring Spot Rates
Change

Spot Rate Cash Flow Present Value
Years Period (in percent) (in dollars) (in dollars)

0.5 1 3.20 3.0 2.95
1.0 2 3.41 3.0 2.90
1.5 3 3.62 3.0 2.84
2.0 4 3.83 3.0 2.78
2.5 5 4.04 3.0 2.71
3.0 6 4.10 3.0 2.66
3.5 7 4.20 3.0 2.59
4.0 8 4.30 3.0 2.53
4.5 9 4.35 3.0 2.47
5.0 10 4.40 103.0 82.86

Total 107.30
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Figure 2 Graph of the Initial Spot Curve and the Spot Curve after the 0.5-Year Key Rate Shift

key rate duration as follows:

P0 = 107.32

P1 = 107.30

�y = 0.002

0.5-year key rate duration = 107.32 − 107.30
107.32(0.002)

= 0.0932

4.5
INITIAL

SHIFTI

4.2

3.9

3.6

3.3

3.0

Maturity (in years)

Y
ie

ld
 (

in
 p

er
ce

nt
)

4.500003.500002.500001.500000.50000 54321

Figure 3 Graph of the Initial Spot Curve and the Spot Curve after the 3-Year Key Rate Shift

To compute the 3-year key rate duration, we
repeat this process. We shift the 3-year rate by
20 basis points and adjust the neighboring spot
rates as described earlier. Figure 3 shows the
initial spot curve and the spot curve after the 3-
year key rate and neighboring rates are shifted.
Note that in this case the only two spot rates
that do not change are the 0.5-year and the
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Figure 4 Graph of the Initial Spot Curve and the Spot Curve after the 5-Year Key Rate Shift

5-year key rates. Then, we compute the bond’s
new value as a result of the shift. The bond’s
postshift value is $107.25 and the calculation
appears in Table 7. Accordingly, the 3-year key
rate duration is computed as follows:

3-year key rate duration = 107.32 − 107.25
107.32(0.002)

= 0.3261

The final step is to compute the 5-year key du-
ration. We shift the 5-year rate by 20 basis points

Table 7 Valuation of the 5-Year 6% Coupon Bond
After 3-Year Key Rate and Neighboring Spot Rates
Change

Spot Rate Cash Flow Present Value
Years Period (in percent) (in dollars) (in dollars)

0.5 1 3.00 3.0 2.96
1.0 2 3.29 3.0 2.90
1.5 3 3.58 3.0 2.84
2.0 4 3.87 3.0 2.78
2.5 5 4.16 3.0 2.71
3.0 6 4.30 3.0 2.64
3.5 7 4.35 3.0 2.58
4.0 8 4.40 3.0 2.52
4.5 9 4.40 3.0 2.47
5.0 10 4.40 103.0 82.86

Total 107.25

and adjust the neighboring spot rates. Figure 4
presents a graph of the initial spot curve and the
spot curve after the 5-year key rate and neigh-
boring rates are shifted. The bond’s postshift
value is $106.48 and the calculation appears in
Table 8. Accordingly, the 5-year key rate dura-
tion is computed as follows:

5-year key rate duration = 107.32 − 106.48
107.32(0.002)

= 3.9135

Table 8 Valuation of the 5-Year 6% Coupon Bond
after 5-Year Key Rate and Neighboring Spot Rates
Change

Spot Rate Cash Flow Present Value
Years Period (in percent) (in dollars) (in dollars)

0.5 1 3.00 3.0 2.96
1.0 2 3.25 3.0 2.90
1.5 3 3.50 3.0 2.85
2.0 4 3.75 3.0 2.79
2.5 5 4.00 3.0 2.72
3.0 6 4.10 3.0 2.66
3.5 7 4.25 3.0 2.59
4.0 8 4.40 3.0 2.52
4.5 9 4.50 3.0 2.46
5.0 10 4.60 103.0 82.05

Total 106.48
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What information can be gleaned from these
key rate durations? Each key rate duration by
itself means relatively little. However, the dis-
tribution of the bond’s key rate durations helps
us assess its exposure to yield curve risk. In-
tuitively, the sum of the key rate durations is
approximately equal to a bond’s duration. (The
reason it is only approximate is that modified
duration assumes a flat yield curve, whereas
key rate duration takes the spot curve as given.)

As a result, it is useful to think of a set of key
rate durations as a decomposition of duration
into sensitivities to various portions of the yield
curve. In our illustration, it is not surprising that
the lion’s share of the yield curve risk exposure
of the coupon bond in our illustration is due to
the bond’s terminal cash flow, so the 5-year key
rate duration is the largest of the three. Simply
put, the 5-year bond’s value is more sensitive to
movements in longer spot rates and less sensi-
tive to movements in shorter spot rates.

Key rate durations are most useful when com-
paring two (or more) bond portfolios that have
approximately the same duration. If the spot
curve is flat and experiences a parallel shift,
these two bond portfolios can be expected to
experience approximately the same percentage
change in value. However, the performance of
the two portfolios will generally not be the same
for a nonparallel shift in the spot curve. The key
rate duration profile of each portfolio will give
the portfolio manager some clues about the rel-
ative performance of the two portfolios when
the yield curve changes shape and slope.

SLOPE ELASTICITY
MEASURE
The slope elasticity measure, introduced by
Schumacher, Dektar, and Fabozzi (1994) for
managing the yield curve risk of portfolios of
collateralized mortgage obligation bonds, also
looks at the sensitivity of a position or portfo-
lio to changes in the slope of the yield curve.
They define the yield curve slope as the spread
between the 30-year on-the-run Treasury yield

and the 3-month Treasury bill yield (that is, ba-
sically the longest and the shortest points on the
Treasury yield curve).

They find that while this is not a perfect defi-
nition, it captures most of the effect of changes
in yield curve slope. They then define changes
in the yield curve as follows: Half of any ba-
sis point change in the yield curve slope results
from a change in the 3-month yield and half
from a change in the 30-year yield. For example,
with a 200-basis-point steepening of the yield
curve, the assumption is that 100 basis points of
that steepening come from a rise in the 30-year
yield, and another 100 basis points come from
a fall in the 3-month yield.

The sensitivity of a bond’s price to changes
in the yield curve is simply its slope elasticity.
They define slope elasticity as the approximate
negative percentage change in a bond’s price
resulting from a 100-basis-point change in the
slope of the curve. Slope elasticity is calculated
as follows: Increase and decrease the yield curve
slope, calculate the price change for these two
scenarios after adjusting for the price effect of a
change in the level of yields, and compare the
prices to the initial price. More specifically, the
slope elasticity for each scenario is calculated as
follows:

Price effect of a change in slope/Base price
Change in yield curve slope

The slope elasticity is then the average of the
slope elasticity for the two scenarios.

A bond or bond portfolio that benefits when
the yield curve flattens is said to have positive
slope elasticity; a bond or a bond portfolio that
benefits when the yield curve steepens is said
to have negative slope elasticity. The definition
of yield curve risk follows from that of slope
elasticity. It is defined as the exposure of the
bond to changes in the slope of the yield curve.

YIELD CURVE RESHAPING
DURATION
Yield curve reshaping duration, introduced by
Klaffky, Ma, and Nozari (1992), focuses on three
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points on the yield curve: 2-year, 10-year, and
30-year, and the spread between the 10-year and
2-year issues and the spread between the 30-
year and 10-year issues. The former spread is
referred to as the short end of the yield curve,
and the latter spread the long end of the yield
curve. Klaffky, Ma, and Nozari refer to the sen-
sitivity of a portfolio to changes in the short end
of the yield curve as short-end duration (SEDUR)
and to changes in the long end of the yield curve
as long-end duration (LEDUR). These concepts,
however, are applicable to other points on the
yield curve.

To calculate the SEDUR of each security in
the portfolio, the percentage change in the se-
curity’s price is calculated for (1) a steepening
of the yield curve at the short end by 50 basis
points, and (2) a flattening of the yield curve
at the short end of the yield curve by 50 basis
points. Then the security’s SEDUR is computed
as follows:

SEDUR = Ps − Pf

2P0(�y)

where

Ps = security’s price if the short end of the
yield curve steepens by 50 basis points

Pf = security’s price if the short end of the
yield curve flattens by 50 basis points

P0 = security’s current market price
�y = number of basis points by which the

yield curve is changed

To calculate the LEDUR, the same procedure
is used for each security in the portfolio: Cal-
culate the price for (1) a flattening of the yield
curve at the long end by 50 basis points, and (2)
a steepening of the yield curve at the long end
of the yield curve by 50 basis points. Then the
security’s LEDUR is computed as follows:

LEDUR = Pf − Ps

2P0(�y)

For an illustration, see Fabozzi (1999).

ANALYSIS OF LIKELY YIELD
CURVE SHIFTS
While key rate duration is a useful measure
for identifying the exposure of a portfolio to
different potential shifts in the yield curve, it
is difficult to employ this approach to yield
curve risk in hedging a portfolio. An alterna-
tive approach is to investigate how yield curves
have changed historically and incorporate typ-
ical yield curve change scenarios into the hedg-
ing process. This approach of using likely yield
curve changes obtained from principal compo-
nent analysis has been suggested by Richard
and Gord (1997), Golub and Tilman (1997), and
Axel and Vankudre (2000).

Empirically, studies have found that yield
curve changes are not parallel. Rather, when
the level of interest rates changes, studies have
found that short-term rates move more than
longer-term rates. Some firms develop their
own proprietary models that decompose his-
torical movements in the rate changes of Trea-
sury strips with different maturities in order to
analyze typical or likely rate movements. The
statistical technique used to decompose rate
movements is principal component analysis.

KEY POINTS
� When using a portfolio’s duration and con-

vexity to measure the exposure to interest
rates, it is assumed that the yield curve shifts
in a parallel fashion.

� For a nonparallel shift in the yield curve, du-
ration and convexity may not provide ade-
quate information about the risk exposure to
changes in interest rates.

� Yield curve risk is the exposure of a portfolio
to a change in the shape of the yield curve.
There are several approaches that have been
proposed for measuring a portfolio’s yield
curve risk.

� A simple approach to measuring yield curve
risk, an approach commonly used by in-
dex managers, is an analysis of the cash
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flow distribution of a portfolio relative to a
benchmark.

� Key rate duration measures how changes in
Treasury yields at different points on the spot
rate curve affect the value of a bond.

� Slope elasticity looks at the sensitivity of a po-
sition or portfolio to changes in the slope of
the yield curve and is defined as the approxi-
mate negative percentage change in a bond’s
price resulting from a 100-basis-point change
in the slope of the curve.

� Yield curve reshaping duration decomposes
the yield curve into a short end and a long
end. The sensitivity of a portfolio to changes
in the short end of the yield curve is called
short-end duration (SEDUR) and to changes
in the long end of the yield curve is called
long-end duration (LEDUR).

� Using principal component analysis, a portfo-
lio manager can determine likely yield curve
shifts and use those shifts to assess the expo-
sure of a portfolio to yield curve risk.

NOTE
1. See, e.g., Litterman and Scheinkman (1991)

and Jones (1991).
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Abstract: A risk measure that has been widely accepted since the 1990s is the value-at-risk (VaR). In
the late 1980s, it was integrated by JP Morgan on a firmwide level into its risk-management system.
In the mid-1990s, the VaR measure was approved by regulators as a valid approach to calculating
capital reserves needed to cover market risk. The Basel Committee on Banking Supervision released
a package of amendments to the requirements for banking institutions, allowing them to use their
own internal systems for risk estimation. In this way, capital reserves, which financial institutions
are required to keep, could be based on the VaR numbers computed internally by an in-house risk
management system. Generally, regulators demand that the capital reserve equal the VaR number
multiplied by a factor between 3 and 4. Thus, regulators link the capital reserves for market risk
directly to the risk measure. In practice, there are several approaches for estimating VaR.

In this entry, we cover the most commonly
used risk measure used by financial institu-
tions: value-at-risk (VaR). We comment on its
properties and different calculation methods.
Where possible, the definitions and equations
are geometrically interpreted, making the ideas
more intuitive and understandable.

VALUE-AT-RISK DEFINED
VaR is defined as the minimum level of loss at
a given, sufficiently high, confidence level for

a predefined time horizon. The recommended
confidence levels are 95% and 99%. Suppose
that we hold a portfolio with a 1-day 99% VaR
equal to $1 million. This means that over the
horizon of 1 day, the portfolio may lose more
than $1 million with probability equal to 1%.

The same example can be constructed for per-
centage returns. Suppose that the present value
of a portfolio we hold is $10 million. If the 1-
day 99% VaR of the return distribution is 2%,
then over the time horizon of 1 day, we lose
more than 2% ($200,000) of the portfolio present
value with probability equal to 1%.
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Denote by (1 − ε)100% the confidence level
parameter of the VaR. As we explained, losses
larger than the VaR occur with probability ε.
The probability ε, we call tail probability. De-
pending on the interpretation of the random
variable, VaR can be defined in different ways.
Formally, the VaR at confidence level (1 −
ε)100% (tail probability ε) is defined as the
negative of the lower ε-quantile of the return
distribution,

VaRε(X) = − inf
x

{ x| P(X ≤ x) ≥ ε} = −F −1
X (ε)

(1)

where ε ∈ (0,1) and F −1
X (ε) is the inverse of the

distribution function. If the random variable X
describes random returns, then the VaR number
is given in terms of a return figure. The defini-
tion of VaR is illustrated in Figure 1.

If X describes random payoffs, then VaR is
a threshold in dollar terms below which the
portfolio value falls with probability ε,

VaRε(X) = inf
x

{ x| P(X ≤ x) ≥ ε} = F −1
X (ε) (2)

where ε ∈ (0,1) and F −1
X (ε) is the inverse of the

distribution function of the random payoff. VaR

VaR

VaR
0.05

Density function

Distribution function

Figure 1 The VaR at 95% Confidence Level of a
Random Variable X
Note: The top plot shows the density of X, the
marked area equals the tail probability, and the
bottom plot shows the distribution function.

can also be expressed as a distance to the present
value when considering the profit distribution.
The random profit is defined as X − P0 where
X is the payoff and P0 is the present value. The
VaR of the random profit equals

VaRε(X − P0) = − inf
x

{ x| P(X − P0 ≤ x) ≥ ε}
= P0 − Va Rε(X)

in which VaRε(X) is defined according to (2)
since X is interpreted as a random payoff. In this
case, the definition of VaR is essentially given
by equation (1).

According to the definition in equation (1),
VaR may become a negative number. If VaRε(X)
is a negative number, then this means that at
tail probability ε we do not observe losses but
profits. Losses happen with even smaller prob-
ability than ε. If for any tail probability VaRε(X)
is a negative number, then no losses can oc-
cur and, therefore, the random variable X bears
no risk as no exposure is associated with it. In
this entry, we assume that random variables de-
scribe either random returns or random profits
and we adopt the definition in equation (1).

We illustrate one aspect in which VaR differs
from the deviation measures and all uncertainty
measures. As a consequence of the definition, if
we add to the random variable X a nonrandom
profit C, the resulting VaR can be expressed by
the VaR of the initial variable in the following
way

VaRε(X + C) = VaRε(X) − C (3)

Thus, adding a nonrandom profit decreases the
risk of the portfolio. Furthermore, scaling the re-
turn distribution by a positive constant λ scales
the VaR by the same constant,

VaRε(λX) = λVaRε(X) (4)

It turns out that these properties characterize
not only VaR. They are identified as key features
of a risk measure.

To illustrate, let’s use an example. Suppose
initially we have a portfolio that consists of a
common stock with random monthly return
denoted by rX. We rebalance the portfolio so
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that it becomes an equally weighted portfolio of
the stock and a default-free government bond
with a nonrandom monthly return of 5.26%,
rB = 5.26%. Thus, the portfolio return can be
expressed as

rp = rX(1/2) + rB(1/2) = rX/2 + 0.0526/2

Using equations (3) and (4), we calculate that if
VaRε(rX) = 12%, then VaRε(rp) ≈ 3.365%, which
is by far less than 6%—half of the initial risk.
Any deviation measure would indicate that the
dispersion (or the uncertainty) of the portfolio
return rp would be twice as small as the uncer-
tainty of rX.

A very important remark has to be made
with respect to the performance of VaR and,
as it turns out, of any other risk measure. It
is heavily dependent on the assumed probabil-
ity distribution of the variable X. An unrealis-
tic hypothesis may result in underestimation or
overestimation of true risk. If we use VaR to
build reserves in order to cover losses in times
of crises, then underestimation may be fatal and
overestimation may lead to inefficient use of
capital. An inaccurate model is even more dan-
gerous in an optimal portfolio problem in which
we minimize risk subject to some constraints, as
it may adversely influence the optimal weights
and therefore not reduce the true risk.

Even though VaR has been largely adopted
by financial institutions and approved by reg-
ulators, it turns out that VaR has important
deficiencies. While it provides an intuitive de-
scription of how much a portfolio may lose,
generally, it should be abandoned as a risk mea-
sure. The most important drawback is that, in
some cases, the reasonable diversification effect
that every portfolio manager should expect to
see in a risk measure is not present; that is, the
VaR of a portfolio may be greater than the sum
of the VaRs of the constituents

VaRε(X + Y) > VaRε(X) + VaRε(Y) (5)

in which X and Y stand for the random payoff
of the instruments in the portfolio. This shows
that VaR cannot be a true risk measure.

We give a simple example, which shows that
VaR may satisfy (5). Suppose that X denotes a
bond that either defaults with probability 4.5%
and we lose $50 or it does not default and in
this case the loss is equal to zero. Let Y be the
same bond but assume that the defaults of the
two bonds are independent events. The VaR of
the two bonds at 95% confidence level (5% tail
probability) is equal to zero,

VaR0.05(X) = VaR0.05(Y) = 0

Being the 5% quantile of the payoff distribu-
tion in this case, VaR fails to recognize losses
occurring with probability smaller than 5%. A
portfolio of the two bonds has the following
payoff profile: It loses $100 with probability of
about 0.2%, loses $50 with probability of about
8.6%, and the loss is zero with probability 91.2%.
Thus, the corresponding 95% VaR of the port-
folio equals $50 and clearly,

$50 = VaR0.05(X + Y) > VaR0.05(X)

+VaR0.05(Y) = 0

What are the consequences of using a risk
measure that may satisfy property (5)? It is go-
ing to mislead portfolio managers that there is
no diversification effect in the portfolio and they
may make the irrational decision to concentrate
it only into a few positions. As a consequence,
the portfolio risk actually increases.

Besides being sometimes incapable of recog-
nizing the diversification effect, another draw-
back is that VaR is not very informative about
losses beyond the VaR level. It only reports that
losses larger than the VaR level occur with prob-
ability equal to ε but it does not provide any
information about the likely magnitude of such
losses, for example.

Nonetheless, VaR is not a useless concept to
be abandoned altogether. For example, it can be
used in risk reporting only as a characteristic of
the portfolio return (payoff) distribution since
it has a straightforward interpretation. The
criticism of VaR is focused on its wide appli-
cation by practitioners as a true risk measure,
which, in view of the deficiencies described
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above, is not well grounded and should be
reconsidered.

COMPUTING PORTFOLIO
VaR IN PRACTICE
In this section, we provide three approaches
for portfolio VaR calculation that are used in
practice. We assume that the portfolio contains
common stocks, which is only to make the de-
scription easier to grasp; this is not a restriction
of any of the approaches.

Suppose that a portfolio contains n common
stocks and we are interested in calculating the
daily VaR at 99% confidence level. Denote the
random daily returns of the stocks by X1, . . . ,Xn

and by w1, . . . , wn the weight of each stock in
the portfolio. Thus, the portfolio return rp can
be calculated as

rp = w1 X1 + w2 X2 + · · · + wn Xn

The portfolio VaR is derived from the distri-
bution of rp. The three approaches vary in the
assumptions they make.

The Approach of RiskMetrics
The approach of RiskMetrics Group is centered
on the assumption that asset returns have a
multivariate normal distribution. Under this
assumption, the distribution of the portfolio re-
turn is also normal. Therefore, in order to calcu-
late the portfolio VaR, we only have to calculate
the expected return of rp and the standard de-
viation of rp. The 99% VaR will appear as the
negative of the 1% quantile of the N(Erp, σ 2

rp
)

distribution.
The portfolio expected return can be directly

expressed through the expected returns of the
assets

Erp = w1EX1 + w2EX2 + · · · + wnEXn

=
n∑

k=1

wkEXk (6)

where E denotes mathematical expectation.
Similarly, the variance of the portfolio return

σ 2
rp

can be computed through the variances of
the asset returns and their covariances,

σ 2
rp

= w2
1σ

2
X1

+ w2
2σ

2
X2

+ · · · + w2
nσ

2
Xn

+
∑

i �= j

wiw j cov(Xi , Xj )

in which the last term appears because we have
to sum up the covariances between all pairs
of asset returns. There is a more compact way
of writing down the expression for σ 2

rp
using

matrix notation,

σ 2
rp

= w′�w (7)

in which w = (w1, . . . , wn) is the vector of port-
folio weights and � is the covariance matrix of
asset returns,

�=

⎛

⎜⎜⎜⎝

σ 2
X1

σ12 · · · σ1n

σ21 σ 2
X2

· · · σ2n
...

...
. . .

...
σn1 σn2 · · · σ 2

Xn

⎞

⎟⎟⎟⎠

in which σi j , i �= j , is the covariance between
Xi and Xj, σi j = cov(Xi , Xj ). As a result, we ob-
tain that the portfolio return has a normal dis-
tribution with mean given by equation (6) and
variance given by equation (7).

The standard deviation is the scale parameter
of the normal distribution and the mean is the
location parameter. Due to the normal distribu-
tion properties, if rp ∈ N(Erp, σ

2
rp

), then

rp − Erp

σrp

∈ N(0, 1)

Thus, because of the properties (3) and (4) of the
VaR, the 99% portfolio VaR can be represented
as

VaR0.01(rp) = q0.99σrp − Erp (8)

where the standard deviation of the portfolio
return σ rp is computed from equation (7), the
expected portfolio return Erp is given in (6), and
q0.99 is the 99% quantile of the standard normal
distribution.

Note that q0.99 is a quantity independent of the
portfolio composition; it is merely a constant
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that can be calculated in advance. The param-
eters that depend on the portfolio weights are
the standard deviation of portfolio returns σ rp

and the expected portfolio return. As a conse-
quence, VaR under the assumption of normality
is symmetric even though, by definition, VaR is
centered on the left tail of the distribution; that
is, VaR is asymmetric by construction. This re-
sult appears because the normal distribution is
symmetric around the mean.

The approach of RiskMetrics can be extended
for other types of distributions. Lamantia et al.
(2006a) and Lamantia et al. (2006b) provide such
extensions and comparisons for Student’s t and
stable distributions.

The Historical Method
The historical method does not impose any dis-
tributional assumptions; the distribution of
portfolio returns is constructed from historical
data. Hence, sometimes the historical simula-
tion method is called a nonparametric method.
For example, the 99% daily VaR of the portfolio
return is computed as the negative of the empir-
ical 1% quantile of the observed daily portfolio
returns. The observations are collected from a
predetermined time window such as the most
recent business year.

While the historical method seems to be
more general as it is free of any distributional
hypotheses, it has a number of major draw-
backs.

1. It assumes that the past trends will continue
in the future. This is not a realistic assump-
tion because we may experience extreme
events in the future, for instance, which have
not happened in the past.

2. It treats the observations as independent
and identically distributed (IID), which is
not realistic. The daily returns data exhibits
clustering of the volatility phenomenon, au-
tocorrelations and so on, which are some-
times a significant deviation from the IID
assumption.

3. It is not reliable for estimation of VaR at
very high confidence levels. A sample of one
year of daily data contains 250 observations,
which is a rather small sample for the pur-
pose of the 99% VaR estimation.

The Hybrid Method
The hybrid method is a modification of the his-
torical method in which the observations are
not regarded as IID but certain weights are as-
signed to them depending on how close they are
to the present. The weights are determined us-
ing the exponential smoothing algorithm. The
exponential smoothing accentuates the most re-
cent observations and seeks to take into account
the time-varying volatility phenomenon.

The algorithm of the hybrid approach consists
of the following steps.

1. Exponentially declining weights are at-
tached to historical returns, starting from the
current time and going back in time. Let
rt−k+1, . . . , rt−1, rt be a sequence of k observed
returns on a given asset, where t is the cur-
rent time. The i-th observation is assigned a
weight

θi = c∗λt−i

where 0 < λ < 1, and c = 1−λ
1−λk is a constant

chosen such that the sum of all weights is
equal to one,

∑
θi = 1.

2. Similarly to the historical simulation
method, the hypothetical future returns are
obtained from the past returns and sorted in
increasing order.

3. The VaR measure is computed from the em-
pirical c.d.f. in which each observation has
probability equal to the weight θi .

Generally, the hybrid approach is appropriate
for VaR estimation of heavy-tailed time series.
It overcomes, to some degree, the first and the
second deficiency of the historical method but
it is also not reliable for VaR estimation of very
high confidence levels.
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The Monte Carlo Method
In contrast to the historical method, the Monte
Carlo method requires specification of a statisti-
cal model for asset returns. The statistical model
is multivariate, hypothesizing both the behav-
ior of the asset returns on a stand-alone basis
and their dependence. For instance, the mul-
tivariate normal distribution assumes normal
distributions for the asset returns viewed on
a stand-alone basis and describes the depen-
dencies by means of the covariance matrix. The
multivariate model can also be constructed by
specifying explicitly the one-dimensional dis-
tributions of the asset returns, and their depen-
dence through a copula function.

The Monte Carlo method consists of the fol-
lowing basic steps.

Step 1. Selection of a statistical model. The sta-
tistical model should be capable of explain-
ing a number of observed phenomena in the
data, for example, heavy tails, clustering of
the volatility, and so on, which we think in-
fluence the portfolio risk.

Step 2. Estimation of the statistical model param-
eters. A sample of observed asset returns is
used from a predetermined time window, for
instance the most recent 250 daily returns.

Step 3. Generation of scenarios from the fitted model.
Independent scenarios are drawn from the
fitted model. Each scenario is a vector of asset
returns, which depend on each other accord-
ing to the presumed dependence structure of
the statistical model.

Step 4. Calculation of portfolio risk. Compute
portfolio risk on the basis of the portfolio
return scenarios obtained from the previous
step.

The Monte Carlo method is a very general
numerical approach to risk estimation. It does
not require any closed-form expressions and,
by choosing a flexible statistical model, accurate
risk numbers can be obtained. A disadvantage
is that the computed portfolio VaR is dependent
on the generated sample of scenarios and will

fluctuate a little if we regenerate the sample.
This side effect can be reduced by generating a
larger sample. An illustration is provided in the
following example.

Suppose that the daily portfolio return dis-
tribution is standard normal and, therefore, at
Step 4 of the algorithm we have scenarios from
the standard normal distribution. Under the as-
sumption of normality, we can use the approach
of RiskMetrics and compute the 99% daily VaR
directly from formula (8). Nevertheless, we will
use the Monte Carlo method to gain more in-
sight into the deviations of the VaR based on
scenarios from the VaR computed according to
formula (8).

In order to investigate how the fluctuations
of the 99% VaR change about the theoretical
value, we generate samples of different sizes:
500, 1,000, 5,000, 10,000, 20,000, and 100,000 sce-
narios. The 99% VaR is computed from these
samples and the numbers are stored. We repeat
the experiment 100 times. In the end, we have
100 VaR numbers for each sample size. We ex-
pect that as the sample size increases, the VaR
values will fluctuate less about the theoretical
value which is VaR0.01(X) = 2.326, X ∈ N(0,1).

Table 1 contains the result of the experiment.
From the 100 VaR numbers, we calculate the
95% confidence interval for the true value given
in the third column. The confidence intervals
cover the theoretical value 2.326 and also we
notice that the length of the confidence interval

Table 1 The 99% VaR of the Standard Normal
Distribution Computed from a Sample of Scenarios

Number of
Scenarios 99% VaR

95% Confidence
Interval

500 2.067 [1.7515, 2.3825]
1,000 2.406 [2.1455, 2.6665]
5,000 2.286 [2.1875, 2.3845]

10,000 2.297 [2.2261, 2.3682]
20,000 2.282 [2.2305, 2.3335]
50,000 2.342 [2.3085, 2.3755]

100,000 2.314 [2.2925, 2.3355]

Note: The 95% confidence interval is calculated from
100 repetitions of the experiment. The true value is
VaR0.01(X) = 2.326.
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Figure 2 Boxplot Diagrams of the Fluctuation of
the 99% VaR of the Standard Normal Distribution
Based on Scenarios
Note: The horizontal axis shows the number of
scenarios and the boxplots are computed from 100
independent samples.

decreases as the sample size increases. This
effect is best illustrated with the help of the box-
plot diagrams1 shown in Figure 2. A sample of
100,000 scenarios results in VaR numbers that
are tightly packed around the true value while
a sample of only 500 scenarios may give a very
inaccurate estimate.

This simple experiment shows that the num-
ber of scenarios in the Monte Carlo method
has to be carefully chosen. The approach we
used to determine the fluctuations of the VaR
based on scenarios is a statistical method called
parametric bootstrap. The bootstrap methods
in general are powerful statistical methods that
are used to compute confidence intervals when
the problem is not analytically tractable but
the calculations may be quite computationally
intensive.

The true merits of the Monte Carlo method
can only be realized when the portfolio contains
complicated instruments such as derivatives. In
this case, it is no longer possible to use a closed-
form expression for the portfolio VaR (and any
risk measure in general) because the distribu-
tion of portfolio return (or payoff) becomes
quite arbitrary. The Monte Carlo method pro-
vides the general framework to generate scenar-

ios for the risk-driving factors, then revaluates
the financial instruments in the portfolio under
each scenario, and, finally, estimates portfolio
risk on the basis of the computed portfolio re-
turns (or payoffs) in each state of the world.

While it may seem a straightforward ap-
proach, the practical implementation is a very
challenging endeavor from both the software
development and financial modeling points of
view. The portfolios of big financial institutions
often contain products that require yield curve
modeling, development of fundamental and
statistical factor models, and, on top of that,
a probabilistic model capable of describing the
heavy tails of the risk-driving factor returns, the
autocorrelation, clustering of the volatility, and
the dependence between these factors. Process-
ing large portfolios is related to manipulation
of colossal data structures, which requires ex-
cellent skills of software developers in order to
be efficiently performed.

BACK-TESTING OF VaR
If we adopt VaR for analysis of portfolio expo-
sure, then a reasonable question is whether the
VaR calculated according to any of the meth-
ods discussed in the previous section is real-
istic. Suppose that we calculate the 99% daily
portfolio VaR. This means that according to our
assumption for the portfolio return (payoff) dis-
tribution, the portfolio loses more than the 99%
daily VaR with 1% probability. The question is
whether this estimate is correct; that is, does the
portfolio really lose more than this amount with
1% probability? This question can be answered
by back-testing of VaR.

Generally, the procedure consists of the
following steps.

Step 1. Choose a time window for the back-
testing. Usually the time window is the most
recent one or two years.

Step 2. For each day in the time window, calcu-
late the VaR number.
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Figure 3 The Observed Daily Returns of the S&P 500 Index between December 31, 2002 and December
31, 2003 and the Negative of VaR
Note: The marked observation is an example of an exceedance.

Step 3. Check if the loss on a given day is be-
low or above the VaR number computed the
day before. If the observed loss is larger, then
we say that there is a case of an exceedance.
Figure 3 provides an example.

Step 4. Count the number of exceedances.
Check if there are too many or too few
of them by verifying if the number of ex-
ceedances belong to the corresponding 95%
confidence interval.

If in Step 4 we find out that there are too
many exceedances, then the VaR numbers pro-
duced by the model are too optimistic. Losses
exceeding the corresponding VaR happen too
frequently. If capital reserves are determined
on the basis of VaR, then there is a risk of being
incapable of covering large losses. Conversely,
if the we find out that there are too few ex-
ceedances, then the VaR numbers are too pes-
simistic. This is also an undesirable situation.
Note that the actual size of the exceedances is
immaterial; we only count them.

The confidence interval for the number of
exceedances is constructed on the basis of
the indicator-type events “we observe an ex-
ceedance,” “we do not observe an exceedance”

on a given day. If we consider the 99% VaR,
then the probability of the first event, according
to the model, is 1%. Let us associate a number
with each of the events similar to a coin tossing
experiment. If we observe an exceedance on a
given day, then we say that the number 1 has
occurred, otherwise 0 has occurred. If the back-
testing time window is two years, then we have
a sequence of 500 zeros and ones and the ex-
pected number of exceedances is 5. Thus, find-
ing the 95% confidence interval for the number
of exceedances reduces to finding an interval
around 5 such that the probability of the num-
ber of ones belonging to this interval is 95%.

If we assume that the corresponding events
are independent, then there is a complete
analogue of this problem in terms of coin toss-
ing. We toss an unfair coin independently 500
times with probability of success equal to 1%.
What is the range of the number of success
events with 95% probability? In order to find
the 95% confidence interval, we can resort to
the normal approximation to the binomial dis-
tribution. The formula is

left bound = Nε − F −1(1 − 0.05/2)
√

Nε(1 − ε)

right bound = Nε + F −1(1 − 0.05/2)
√

Nε(1 − ε)
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where N is the number of indicator-type events,
ε is the tail probability of the VaR, and F−1(t) is
the inverse distribution function of the standard
normal distribution. In the example, N = 500,
ε = 0.01, and the 95% confidence interval for
the number of exceedances is [0, 9]. Similarly,
if we are back-testing the 95% VaR, under the
same circumstances the confidence interval is
[15, 34].

Note that the statistical test based on the
back-testing of VaR at a certain tail probabil-
ity cannot answer the question if the distribu-
tional assumptions for the risk-driving factors
are correct in general. For instance, if the portfo-
lio contains only common stocks, then we pre-
sume a probabilistic model for stocks returns.
By back-testing the 99% daily VaR of portfolio
return, we verify if the probabilistic model is
adequate for the 1% quantile of the portfolio
return distribution; that is, we are back-testing
if a certain point in the left tail of the portfo-
lio return distribution is sufficiently accurately
modeled. This should not be confused with sta-
tistical tests such as the Kolmogorov test or
the Kolmogorov-Smirnov test, which concern
accepting or rejecting a given distributional
hypothesis.

COHERENT RISK MEASURES
Even though VaR has an intuitive interpretation
and has been widely adopted as a risk mea-
sure, it does not always satisfy the important
property that the VaR of a portfolio should not
exceed the sum of the VaRs of the portfolio posi-
tions. This means that VaR is not always capable
of representing the diversification effect.

This fact raises an important question. Can
we find a set of desirable properties that a risk
measure should satisfy? An answer is given
by Artzner et al. (1998). They provide an ax-
iomatic definition of a functional, which they
call a coherent risk measure. The axioms follow
with remarks given below each axiom. We de-
note the risk measure by the functional ρ(X)
assigning a real-valued number to a random

variable. Usually, the random variable X is
interpreted as a random payoff and the motiva-
tion for the axioms in Artzner et al. (1998) fol-
lows this interpretation. In the remarks below
each axiom, we provide an alternative interpre-
tation, which holds if X is interpreted as random
return.

The Monotonicity Property
Monotonicity ρ(Y) ≤ ρ(X),

if Y ≥ X in almost sure sense

Monotonicity states that if investment A has
random return (payoff) Y, which is not less than
the return (payoff) X of investment B at a given
horizon in all states of the world, then the risk
of A is not greater than the risk of B. This is quite
intuitive but it really does matter whether the
random variables represent random return or
profit because an inequality in an almost sure
sense between random returns may not trans-
late into the same inequality between the corre-
sponding random profits and vice versa.

Suppose that X and Y describe the random
percentage returns on two investments A and
B and let Y = X + 3%. Apparently, Y > X in all
states of the world. The corresponding payoffs
are obtained according to the equations

Payoff(X) = IA(1 + X)

Payoff(Y) = IB(1 + Y) = IB(1 + X + 3%)

where IA is the initial investment in opportunity
A and IB is the initial investment in opportunity
B. If the initial investment IA is much larger than
IB, then Payoff(X) > Payoff(Y) irrespective of
the inequality Y > X. In effect, investment A
may seem less risky than investment B in terms
of payoff but in terms of return, the converse
may hold.

The Positive Homogeneity Property
Positive Homogeneity ρ(0) = 0, ρ(λX) = λρ(X),

for all X and all λ > 0

The positive homogeneity property states that
scaling the return (payoff) of the portfolio by
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a positive factor scales the risk by the same fac-
tor. The interpretation for payoffs is obvious—if
the investment in a position doubles, so does the
risk of the position. We give a simple example
illustrating this property when X stands for a
random percentage return.

Suppose that today the value of a portfolio
is I0 and we add a certain amount of cash C.
The value of our portfolio becomes I0 + C. The
value tomorrow is random and equals I1 + C
in which I1 is the random payoff. The return of
the portfolio equals

X = I1 + C − I0 − C
I0 + C

= I1 − I0

I0

(
I0

I0 + C

)

= h
I1 − I0

I0
= hY

where h = I0/(I0 + C) is a positive constant. The
axiom positive homogeneity property implies
that ρ(X) = hρ(Y); that is, the risk of the new
portfolio will be the risk of the portfolio without
the cash but scaled by h.

The Subadditivity Property
Subadditivity ρ(X + Y) ≤ ρ(X) + ρ(Y),

for all X and Y

If X and Y describe random payoffs, then the
subadditivity property states that the risk of the
portfolio is not greater than the sum of the risks
of the two random payoffs.

The positive homogeneity property and the
subadditivity property imply that the func-
tional is convex

ρ(λX + (1 − λ)Y) ≤ ρ(λX) + ρ((1 − λ)Y)

= λρ(X) + (1 − λ)ρ(Y)

where λ ∈ [0, 1]. If X and Y describe random re-
turns, then the random quantity λX + (1 − λ)Y
stands for the return of a portfolio composed of
two financial instruments with returns X and Y
having weights λ and 1 − λ respectively. There-
fore, the convexity property states that the risk
of a portfolio is not greater than the sum of the
risks of its constituents, meaning that it is the

convexity property that is behind the diversifi-
cation effect that we expect in the case of X and
Y denoting random returns.

The Invariance Property
Invariance ρ(X + C) = ρ(X) − C,

for all X and C ∈ R

The invariance property has various labels.
Originally, it was called translation invariance
while in other texts it is called cash invariance.2

If X describes a random payoff, then the invari-
ance property suggests that adding cash to a
position reduces its risk by the amount of cash
added. This is motivated by the idea that the
risk measure can be used to determine cap-
ital requirements. As a consequence, the risk
measure ρ(X) can be interpreted as the minimal
amount of cash necessary to make the position
free of any capital requirements

ρ(X + ρ(X)) = 0

The invariance property has a different in-
terpretation when X describes random return.
Suppose that the random variable X describes
the return of a common stock and we build
a long-only portfolio by adding a government
bond yielding a risk-free rate rB. The portfolio
return equals wX + (1 − w)rB, where w ∈ [0,1]
is the weight of the common stock in the portfo-
lio. Note that the quantity (1 − w)rB is nonran-
dom by assumption. The invariance property
states that the risk of the portfolio can be de-
composed as

ρ (wX + (1 − w) rB) = ρ (wX) − (1 − w) rB

= wρ(X) − (1 − w) rB

(9)
where the second equality appears because of
the positive homogeneity property. In effect, the
risk measure admits the following interpreta-
tion: Assume that the constructed portfolio is
equally weighted, that is, w = 1/2, then the
risk measure equals the level of the risk-free
rate such that the risk of the equally weighted
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portfolio consisting of the risky asset and the
risk-free asset is zero. The investment in the
risk-free asset will be, effectively, the reserve
investment.

Alternative interpretations are also possible.
Suppose that the present value of the position
with random percentage return X is I0. Assume
that we can find a government security earning
return r∗

B at the horizon of interest. Then we can
ask the question in the opposite direction: How
much should we reallocate from I0 and invest in
the government security in order to hedge the
risk ρ(X)? The needed capital C should satisfy
the equation

I0 − C
I0

ρ(X) − C
I0

r∗
B = 0

which is merely a restatement of equation (9)
with the additional requirement that the risk
of the resulting portfolio should be zero. The
solution is

C = I0
ρ(X)

ρ(X) + r∗
B

Note that if in the invariance property the con-
stant is nonnegative, C ≥ 0, then it follows that
ρ(X + C) ≤ ρ(X). This result is in agreement
with the monotonicity property as X + C ≥ X.
In fact, the invariance property can be regarded
as an extension of the monotonicity property
when the only difference between X and Y is in
their means.

According to the discussion in the previous
section, VaR is not a coherent risk measure be-
cause it may violate the subadditivity property.

An example of a coherent risk measure is the
Average Value-at-Risk (AVaR), defined as the
average of the VaRs that are larger than the VaR
at a given tail probability ε. The accepted nota-
tion is AVaRε(X) in which ε stands for the tail
probability level. A larger family of coherent
risk measures is the family of spectral risk mea-
sures, which includes the AVaR as a representa-
tive. The spectral risk measures are defined as
weighted averages of VaRs.

KEY POINTS
� VaR is defined as the minimum level of loss

at a given, sufficiently high confidence level
for a predefined time horizon.

� The performance of VaR, as well as any other
risk measure, is heavily dependent on the as-
sumed probability distribution for the eco-
nomic measure of interest.

� Despite VaR’s wide acceptance in the finance
industry, it has important deficiencies so that,
in general, it should be abandoned as a risk
measure. However, it is not a useless con-
cept to be abandoned altogether. For exam-
ple, it can be used in risk reporting only as
a characteristic of the portfolio return (pay-
off) distribution since it has a straightforward
interpretation.

� The most important drawback of VaR is
that, in some cases, the reasonable diversi-
fication effect that every portfolio manager
should expect to see in a risk measure is not
present.

� The criticism of VaR is focused on its wide ap-
plication by practitioners as a true risk mea-
sure, which, in view of its deficiencies, is not
well grounded and should be reconsidered.

� Three approaches for portfolio VaR calcula-
tion that are used in practice are the Risk-
Metrics approach, the historical method ap-
proach, and the Monte Carlo approach.

NOTES
1. A boxplot, or a box-and-whiskers diagram,

is a convenient way of depicting several sta-
tistical characteristics of the sample. The size
of the box equals the difference between the
third and the first quartile (75% quantile–
25% quantile), also known as the interquar-
tile range. The line in the box corresponds
to the median of the data (50% quantile).
The lines extending out of the box are
called whiskers and each of them is long
up to 1.5 times the interquartile range. All
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observations outside the whiskers are la-
beled outliers and are depicted by a plus
sign.

2. This label can be found in Föllmer and Schied
(2002).
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Abstract: Despite the fact that the value-at-risk (VaR) measure has been adopted as a standard
risk measure in the financial industry, it has a number of deficiencies recognized by financial
professionals. It is not a coherent risk measure. This is because it does not satisfy the subadditivity
property requirement of a coherent risk measure. That is, there are cases in which the portfolio
VaR is larger than the sum of the VaRs of the portfolio constituents, supporting the view that VaR
cannot be used as a true risk measure. Unlike VaR, the average value-at-risk measure (AVaR)—also
referred to as conditional value-at-risk and expected shortfall—is a coherent risk measure and has
other advantages that result in its greater acceptance in risk modeling.

The average value-at-risk (AVaR) is a risk mea-
sure that is a superior alternative to VaR. Not
only does it lack the deficiencies of VaR, but it
also has an intuitive interpretation. There are
convenient ways for computing and estimating
AVaR, which allows its application in optimal
portfolio problems. Moreover, it satisfies all ax-
ioms of coherent risk measures and it is consis-
tent with the preference relations of risk-averse
investors.

In this entry, we explore in detail the prop-
erties of AVaR and illustrate its superiority to
VaR. We develop new geometric interpretations
of AVaR and the various calculation methods.

We also provide closed-form expressions for the
AVaR of the normal distribution, Student’s t dis-
tribution, and a practical formula for Lévy sta-
ble distributions. Finally, we describe different
estimation methods and remark on potential
pitfalls.

AVERAGE VALUE-AT-RISK
DEFINED
A disadvantage of VaR is that it does not give
any information about the severity of losses
beyond the VaR level. Consider the following
example. Suppose that X and Y describe the

331
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Figure 1 Note: The top plot shows the densities
of X and Y and the bottom plot shows their c.d.f.s.
The 95% VaRs of X and Y are equal to 0.15 but X
has a thicker tail and is more risky.

random returns of two financial instruments
with densities and distribution functions such
as the ones in Figure 1. The expected returns
are 3% and 1%, respectively. The standard de-
viations of X and Y are equal to 10%.1 The
cumulative distribution functions (c.d.f.s) FX(x)
and FY(x) cross at x = −0.15 and FX(−0.15) =
FY(−0.15) = 0.05. According to the definition of
VaR, the 95% VaRs of both X and Y are equal
to 15%. That is, the two financial instruments
lose more than 15% of their present values with
probability of 5%. In effect, we may conclude

that their risks are equal because their 95% VaRs
are equal.

This conclusion is wrong because we pay no
attention to the losses that are larger than the
95% VaR level. It is visible in Figure 1 that the
left tail of X is heavier than the left tail of Y.2

Therefore, it is more likely that the losses of X
will be larger than the losses of Y, on condi-
tion that they are larger than 15%. Thus, look-
ing only at the losses occurring with probability
smaller than 5%, the random return X is riskier
than Y. Note that both X and Y have equal
standard deviations. If we base the analysis on
the standard deviation and the expected return,
we would conclude that not only is the uncer-
tainty of X equal to the uncertainty of Y, but
X is actually preferable because of the higher
expected return. In fact, we realize that it is ex-
actly the opposite, which shows how important
it is to ground the reasoning on a proper risk
measure.

The disadvantage of VaR, that it is not infor-
mative about the magnitude of the losses larger
than the VaR level, is not present in the risk mea-
sure known as average value-at-risk. In the liter-
ature, it is also called conditional value-at-risk3 or
expected shortfall but we will use average value-
at-risk (AVaR) as it best describes the quantity
it refers to.

The AVaR at tail probability ε is defined as
the average of the VaRs, which are larger than
the VaR at tail probability ε. Therefore, by con-
struction, the AVaR is focused on the losses in
the tail, which are larger than the corresponding
VaR level. The average of the VaRs is computed
through the integral

AVaR∈(X) = 1
ε

∫ ε

0
VaRp(X)dp (1)

where VaRp(X) is defined by VaRε(X) =
− inf

x
{ x| P(X ≤ x) ≥ ε} = −F −1

X (ε). As a matter

of fact, the AVaR is not well defined for all
real-valued random variables but only for those
with finite mean; that is AVaRε(X) < ∞ if E |X|
< ∞. This should not be disturbing because
random variables with infinite mathematical
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Figure 2 Geometrically, AVaRε(X) is the height
for which the area of the drawn rectangle equals
the shaded area closed between the graph of the
inverse c.d.f. and the horizontal axis for t ∈ [0,ε].
The VaRε(X) value is shown by a dash-dotted line.

expectation have limited application in the field
of finance. For example, if such a random vari-
able is used for a model of stock returns, then it
is assumed that the common stock has infinite
expected return, which is not realistic.

The AVaR satisfies all the axioms of coher-
ent risk measures. One consequence is that, un-
like VaR, it is convex for all possible portfolios,
which means that it always accounts for the di-
versification effect.

A geometric interpretation of the definition in
equation (1) is provided in Figure 2. In this fig-
ure, the inverse c.d.f. of a random variable X is
plotted. The shaded area is closed between the
graph of F −1

X (t) and the horizontal axis for t ∈ [0,
ε] where ε denotes the selected tail probability.
AVaRε(X) is the value for which the area of the
drawn rectangle, equal to ε × AVaRε(X), coin-
cides with the shaded area, which is computed
by the integral in equation (1). The VaRε(X)
value is always smaller than AVaRε(X). In Fig-
ure 2, VaRε(X) is shown by a dash-dotted line
and is indicated by an arrow.

Let us revisit the example developed at the be-
ginning of this section. We concluded that even
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Figure 3 The AVaRs of the Return Distributions
from Figure 1 in Line with the Geometric Intuition
Note: Even though the 95% VaRs are equal, the
AVaRs at 5% tail probability differ, AVaR0.05 (X) >

AVaR0.05(Y).

though the VaRs at 5% tail probability of both
random variables are equal, X is riskier than
Y because the left tail of X is heavier than the
left tail of Y; that is, the distribution of X is more
likely to produce larger losses than the distribu-
tion of Y on condition that the losses are beyond
the VaR at the 5% tail probability. We apply the
geometric interpretation illustrated in Figure 2
to this example. First, notice that the shaded
area in Figure 2, which concerns the graph of
the inverse of the c.d.f., can also be identified
through the graph of the c.d.f. This is done in
Figure 3, which shows a magnified section of
the left tails of the c.d.f.s plotted in Figure 1.
The shaded area appears as the intersection of
the area closed below the graph of the distribu-
tion function and the horizontal axis, and the
area below a horizontal line shifted at the tail
probability above the horizontal axis. In Fig-
ure 3, we show the area for FX(x) at 5% tail
probability. The corresponding area for FY(x) is
smaller because FY(x) ≤ FX(x) to the left of the
crossing point of the two c.d.f.s, which is exactly
at 5% tail probability.

In line with the geometric interpretation, the
AVaR0.05(X) is a number such that if we draw
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a rectangle with height 0.05 and width equal
to AVaR0.05(X), the area of the rectangle (0.05 ×
AVaR0.05(X)) equals the shaded area in Figure 3.
The same exercise for AVaR0.05(Y) shows that
AVaR0.05(Y) < AVaR0.05(X) because the corre-
sponding shaded area is smaller and both rect-
angles share a common height of 0.05.

Besides the definition in equation (1), AVaR
can be represented through a minimization
formula,4

AVaRε(X) = min
θ∈R

(
θ + 1

ε
E(−X − θ )+

)
(2)

where (x)+ denotes the maximum between x
and zero, (x)+ = max(x, 0) and X describes the
portfolio return distribution. It turns out that
this formula has an important application in
optimal portfolio problems based on AVaR as
a risk measure. In the appendix to this entry,
we provide an illuminating geometric interpre-
tation of equation (2), which shows the connec-
tion to the definition of AVaR.

How can we compute the AVaR for a given re-
turn distribution? Throughout this section, we
assume that the return distribution function is a
continuous function, that is, there are no point
masses. Under this condition, after some alge-
bra and using the fact that VaR is the negative
of a certain quantile, we obtain that the AVaR
can be represented in terms of a conditional
expectation,

AVaRε(X) = −1
ε

∫ ε

0
F −1

X (t)dt

= −E(X|X < −VaRε(X)) (3)

which is called expected tail loss (ETL) and is
denoted by ETLε(X). The conditional expecta-
tion implies that the AVaR equals the average
loss provided that the loss is larger than the VaR
level. In fact, the average of VaRs in equation (1)
equals the average of losses in equation (3) only
if the c.d.f. of X is continuous at x = VaRε(X). If
there is a discontinuity, or a point mass, the rela-
tionship is more involved. The general formula
is given in the appendix to this entry.

Equation (3) implies that AVaR is related to
the conditional loss distribution. In fact, under
certain conditions, it is the mathematical expec-
tation of the conditional loss distribution, which
represents only one characteristic of it. In the ap-
pendix to this entry, we introduce several sets
of characteristics of the conditional loss distri-
bution, which provide a more complete picture
of it. Also, in the appendix, we introduce the
more general concept of higher-order AVaR.

For some continuous distributions, it is pos-
sible to calculate explicitly the AVaR through
equation (3). We provide the closed-form
expressions for the normal distribution and Stu-
dent’s t distribution. In the appendix to this en-
try, we give a semi-explicit formula for the class
of stable distributions.

1. The normal distribution
Suppose that X is distributed according to a
normal distribution with standard deviation
σ X and mathematical expectation EX. The
AVaR of X at tail probability ε equals

AVaRε(X)= σX

ε
√

2π
exp

(
− (VaRε(Y))2

2

)
−E X

(4)

where Y has the standard normal distribu-
tion, Y ∈ N(0,1).

2. The Student’s t distribution
Suppose that X has Student’s t distribution
with ν degrees of freedom, X ∈ t(ν). The AVaR
of X at tail probability ε equals

AVaRε (X) =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�

(
ν + 1

2

)

�
( ν

2

)
√

ν

(ν − 1)ε
√

π

(
1 + (VaRε (X))2

ν

) 1 − ν

2
, ν > 1

∞ , ν = 1

where the notation �(x) stands for the
gamma function. It is not surprising that for
ν = 1 the AVaR explodes because the Stu-
dent’s t distribution with one degree of free-
dom, also known as the Cauchy distribution,
has infinite mathematical expectation.5
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Note that equation (4) can be represented in a
more compact way,

AVaRε(X) = σXCε − E X (5)

where Cε is a constant which depends only
on the tail probability ε. Therefore, the AVaR
of the normal distribution has the same struc-
ture as the normal VaR—the difference between
the properly scaled standard deviation and the
mathematical expectation. In effect, similar to
the normal VaR, the normal AVaR properties
are dictated by the standard deviation. Even
though AVaR is focused on the extreme losses
only, due to the limitations of the normal as-
sumption, it is symmetric.

Exactly the same conclusion holds for the
AVaR of Student’s t distribution. The true mer-
its of AVaR become apparent if the underlying
distributional model is skewed.

AVaR ESTIMATION FROM
A SAMPLE
Suppose that we have a sample of observed
portfolio returns and we are not aware of their
distribution. Provided that we do not impose
any distributional model, the AVaR of portfolio
return can be estimated from the sample of ob-
served portfolio returns. Denote the observed
portfolio returns by r1, r2,. . ., rn at time instants
t1, t2, . . ., tn. The numbers in the sample are
given in order of observation. Denote the sorted
sample by r(1) ≤ r(2) ≤,. . ., ≤ r(n). Thus, r(1) equals
the smallest observed portfolio return and r(n)

is the largest. The AVaR of portfolio returns at
tail probability ε is estimated according to the
formula6

ÂVaRε (r ) = − 1
ε

⎛

⎝ 1
n

�nε�−1∑

k=1

r(k) +
(

ε − �nε� − 1
n

)
r(�nε�)

⎞

⎠

(6)

where the notation �x� stands for the smallest
integer larger than x.7 The “hat” above AVaR
denotes that the number calculated by equation
(6) is an estimate of the true value because it is

based on a sample. This is a standard notation
in statistics.

We demonstrate how equation (6) is applied
in the following example. Suppose that the
sorted sample of portfolio returns is −1.37%,
−0.98%, −0.38%, −0.26%, 0.19%, 0.31%, 1.91%
and our goal is to calculate the portfolio AVaR
at 30% tail probability. In this case, the sample
contains 7 observations and (nε) = (7 × 0.3) =
3. According to equation (6), we calculate

ÂVaR0.3(r ) = − 1
0.3

(
1
7

(−1.37% − 0.98%)

+(0.3 − 2/7)(−0.38%)

)

= 1.137%.

Formula (6) can be applied not only to a sam-
ple of empirical observations. We may want
to work with a statistical model for which no
closed-form expressions for AVaR are known.
Then we can simply sample from the distri-
bution and apply formula (6) to the generated
simulations.

Besides formula (6), there is another method
for calculation of AVaR. It is based on the
minimization formula (2) in which we replace
the mathematical expectation by the sample
average,

ÂVaRε(r ) = min
θ∈R

(
θ + 1

nε

n∑

i=1

max(−ri − θ, 0)

)

(7)

Even though it is not obvious, equations (6) and
(7) are completely equivalent.

The minimization formula in equation (7) is
appealing because it can be calculated through
the methods of linear programming. It can be
restated as a linear optimization problem by
introducing auxiliary variables d1,. . ., dn, one
for each observation in the sample,

min
θ,d

θ + 1
nε

n∑
k=1

dk

subject to −rk − θ ≤ dk, k = 1, n
dk ≥ 0, k = 1, n

θ ∈ R

(8)
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The linear problem (8) is obtained from
(7) through standard methods in mathemati-
cal programming. We briefly demonstrate the
equivalence between them. Let us fix the value
of θ to θ *. Then the following choice of the auxil-
iary variables yields the minimum in (8). If −rk

− θ * < 0, then dk = 0. Conversely, if it turns out
that −rk − θ * ≥ 0, then −rk −θ * = dk. In this way,
the sum in the objective function becomes equal
to the sum of maxima in equation (7).

Applying (8) to the sample in the example
above, we obtain the optimization problem

min
θ,d

θ + 1
7 × 0.3

7∑

k=1

dk

subject to 0.98% − θ ≤ d1

−0.31% − θ ≤ d2

−1.91% − θ ≤ d3

1.37% − θ ≤ d4

0.38% − θ ≤ d5

0.26% − θ ≤ d6

−0.19% − θ ≤ d7

dk ≥ 0, k = 1, 7
θ ∈ R

The solution to this optimization problem is the
number 1.137%, which is attained for θ = 0.38%.
In fact, this value of θ coincides with the VaR at
30% tail probability and this is not by chance but
a feature of the problem, which is demonstrated
in the appendix to this entry. We verify that the
solution of the problem is indeed the number
1.137% by calculating the objective in equation
(7) for θ = 0.38%,

AVaRε(r ) = 0.38% + 0.98% − 0.38% + 1.37% − 0.38%
7 × 0.3

= 1.137%

Thus, we obtain the number calculated through
equation (6).

COMPUTING PORTFOLIO
AVaR IN PRACTICE
The ideas behind the approaches of VaR estima-
tion are applied to AVaR. We assume that there

are n assets with random returns described by
the random variables X1,. . .,Xn. Thus, the port-
folio return is represented by

rp = w1 X1 + . . . + wn Xn

where w1,. . ., wn are the weights of the assets in
the portfolio.

The Multivariate Normal
Assumption
If the asset returns are assumed to have a mul-
tivariate normal distribution, then the portfolio
return has a normal distribution with variance
w′�w, where w is the vector of weights and �

is the covariance matrix between stock returns.
The mean of the normal distribution is

Erp =
n∑

k=1

wk E Xk

where E stands for the mathematical expecta-
tion. Thus, under this assumption the AVaR of
portfolio return at tail probability ε can be ex-
pressed in closed-form through equation (4),

AVaRε(rp) =
√

w′�w

ε
√

2π
exp

(
− (VaRε(Y))2

2

)
− Erp

= Cε

√
w′�w − Erp (9)

where Cε is a constant independent of the port-
folio composition and can be calculated in ad-
vance. In effect, due to the limitations of the
multivariate normal assumption, the portfolio
AVaR appears symmetric and is representable
as the difference between the properly scaled
standard deviation of the random portfolio re-
turn and portfolio expected return.

The Historical Method
The historical method is not related to any dis-
tributional assumptions. We use the historically
observed portfolio returns as a model for the fu-
ture returns and apply formula (6) or (7).

The historical method has several drawbacks.
It is very inaccurate for low tail probabilities, for
example, 1% or 5%. Even with one year of daily
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returns, which amounts to 250 observations, in
order to estimate the AVaR at 1% probability, we
have to use the 3 smallest observations, which
is quite insufficient. What makes the estimation
problem even worse is that these observations
are in the tail of the distribution; that is, they are
the smallest ones in the sample. The implication
is that when the sample changes, the estimated
AVaR may change a lot because the smallest
observations tend to fluctuate a lot.

The Hybrid Method
According to the hybrid method, different
weights are assigned to the observations by
which the more recent observations get a higher
weight. The rationale is that the observations far
back in the past have less impact on the portfo-
lio risk at the present time.

The hybrid method can be adapted for AVaR
estimation. The weights assigned to the ob-
servations are interpreted as probabilities and,
thus, the portfolio AVaR can be estimated from
the resulting discrete distribution according to
the formula

ÂVaRε(r )

= −1
ε

⎛

⎝
kε∑

j=1

p jr( j) +
⎛

⎝ε −
kε∑

j=1

p j

⎞

⎠ r(kε+1)

⎞

⎠

(10)

where r(1) ≤ r(2) ≤ . . . ≤ r(km) denotes the sorted
sample of portfolio returns or payoffs and p1,
p2, . . . , pkm stand for the probabilities of the
sorted observations; that is, p1 is the probabil-
ity of r(1). The number kε in equation (10) is an
integer satisfying the inequalities

kε∑

j=1

p j ≤ ε <

kε+1∑

j=1

p j

Equation (10) follows directly from the defi-
nition of AVaR8 under the assumption that the
underlying distribution is discrete without the
additional simplification that the outcomes are

equally probable. In the appendix to this en-
try, we demonstrate the connection between
equation (10) and the definition of AVaR in
equation (1).

The Monte Carlo Method
The Monte Carlo method assumes and esti-
mates a multivariate statistical model for the
asset return distribution. Then we sample from
it, and we calculate scenarios for portfolio re-
turn. On the basis of these scenarios, we esti-
mate portfolio AVaR using equation (6) in which
r1,. . ., rn stands for the vector of generated sce-
narios.

Similar to the case of VaR, an artifact of the
Monte Carlo method is the variability of the risk
estimate. Since the estimate of portfolio AVaR is
obtained from a generated sample of scenarios,
by regenerating the sample, we will obtain a
slightly different value.

Suppose that the portfolio daily return distri-
bution is the standard normal law, rp ∈ N(0,1).
By the closed-form expression in equation (4),
we calculate that the AVaR of the portfolio at
1% tail probability equals

AVaR0.01(rp) = 1

0.01
√

2π
exp

(
−2.3262

2

)

= 2.665

In order to investigate how the fluctuations
of the 99% AVaR change about the theoretical
value, we generate samples of different sizes:
500, 1,000, 5,000, 10,000, 20,000, and 100,000 sce-
narios. The 99% AVaR is computed from these
samples using equation 6 and the numbers are
stored. We repeat the experiment 100 times. In
the end, we have 100 AVaR numbers for each
sample size. We expect that as the sample size
increases, the AVaR values will fluctuate less
about the theoretical value which is AVaR0.01

(X) = 2.665, X ∈ N(0,1).
Panel A of Table 1 contains the result of the

experiment. From the 100 AVaR numbers, we
calculate the 95% confidence interval reported
in the third column. The confidence intervals
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Table 1 Confidence Intervals Calculated for AVaR
and VaR

Number of
Scenarios AVaR at 99%

95% Confidence
Interval

500 2.646 [2.2060, 2.9663]
1,000 2.771 [2.3810, 2.9644]
5,000 2.737 [2.5266, 2.7868]

10,000 2.740 [2.5698, 2.7651]
20,000 2.659 [2.5955, 2.7365]
50,000 2.678 [2.6208, 2.7116]

100,000 2.669 [2.6365, 2.6872]

Panel A: The 99% AVaR of the standard normal distri-
bution computed from a sample of scenarios. The 95%
confidence interval is calculated from 100 repetitions of
the experiment. The true value is AVaR0.01(X) = 2.665.

Number of
Scenarios 99% VaR

95% Confidence
Interval

500 2.067 [1.7515, 2.3825]
1,000 2.406 [2.1455, 2.6665]
5,000 2.286 [2.1875, 2.3845]

10,000 2.297 [2.2261, 2.3682]
20,000 2.282 [2.2305, 2.3335]
50,000 2.342 [2.3085, 2.3755]

100,000 2.314 [2.2925, 2.3355]

Panel B: The 99% VaR of the standard normal distri-
bution computed from a sample of scenarios. The 95%
confidence interval is calculated from 100 repetitions of
the experiment. The true value is VaR0.01(X) = 2.326.

cover the theoretical value 2.665 and also we no-
tice that the length of the confidence interval de-
creases as the sample size increases. This effect
is illustrated in Figure 4 with boxplot diagrams.
A sample of 100,000 scenarios results in AVaR
numbers, which are tightly packed around the
true value while a sample of only 500 scenarios
may give a very inaccurate estimate.

By comparing, Panel A of Table 1 to Panel B of
the table, which shows the results for VaR, we
notice that the length of the 95% confidence in-
tervals for AVaR are larger than the correspond-
ing confidence intervals for VaR. This result is
not surprising. Given that both quantities are
at the same tail probability of 1%, the AVaR
has larger variability than the VaR for a fixed
number of scenarios because the AVaR is the
average of terms fluctuating more than the 1%

500 1,000 5,000 10,000 20,000 50,000 100,000
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Figure 4 Boxplot Diagrams of the Fluctuation of
the AVaR at 1% Tail Probability of the Standard
Normal Distribution Based on Scenarios
Note: The horizontal axis shows the number of
scenarios and the boxplots are computed from 100
independent samples.

VaR. This effect is more pronounced the more
heavy-tailed the distribution is.

BACK-TESTING OF AVaR
Suppose that we have selected a method for
calculating the daily AVaR of a portfolio. A rea-
sonable question is how we can verify if the es-
timates of daily AVaR are realistic. This is done
by back-testing. In the case of VaR back-testing
consists of computing the portfolio VaR for each
day back in time using the information avail-
able up to that day only. In this way, we have
the VaR numbers back in time as if we had used
exactly the same methodology in the past. On
the basis of the VaR numbers and the realized
portfolio returns, we can use statistical meth-
ods to assess whether the forecasted loss at the
VaR tail probability is consistent with the ob-
served losses. If there are too many observed
losses larger than the forecasted VaR, then the
model is too optimistic. Conversely, if there are
too few losses larger than the forecasted VaR,
then the model is too pessimistic.
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Note that in the case of VaR back-testing, we
are simply counting the cases in which there
is an exceedance; that is, when the size of the
observed loss is larger than the predicted VaR.
The magnitude of the exceedance is immaterial
for the statistical test.

Unlike VaR, back-testing of AVaR is not
straightforward and is a much more challeng-
ing task. By definition, the AVaR at tail proba-
bility ε is the average of VaRs larger than the
VaR at tail probability ε. Thus, the most direct
approach to test AVaR would be to perform VaR
back-tests at all tail probabilities smaller than ε.
If all these VaRs are correctly modeled, then so
is the corresponding AVaR.

One general issue with this approach is that
it is impossible to perform in practice. Suppose
that we consider the AVaR at tail probability
of 1%, for example. Back-testing VaRs deeper
in the tail of the distribution can be infeasible
because the back-testing time window is too
short. The lower the tail probability, the larger
the time window we need in order for the VaR
test to be conclusive. Another general issue is
that this approach is too demanding. Even if the
VaR back-testing fails at some tail probability ε1

below ε, this does not necessarily mean that the
AVaR is incorrectly modeled because the test
failure may be due to purely statistical reasons
and not to incorrect modeling.

These arguments illustrate why AVaR
back-testing is a difficult problem—we need the
information about the entire tail of the return
distribution describing the losses larger than
the VaR at tail probability ε and there may be
too few observations from the tail upon which
to base the analysis. For example, in one busi-
ness year, there are typically 250 trading days.
Therefore, a one-year back-testing results in 250
daily portfolio returns, which means that if ε =
1%, then there are only 2 observations available
from the losses larger than the VaR at 1% tail
probability.

As a result, in order to be able to back-test
AVaR, we can assume a certain “structure” of
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Figure 5 Examples of Risk-Aversion Functions
Note: The right plot shows the risk-aversion func-
tion yielding the AVaR at tail probability ε.

the tail of the return distribution that would
compensate for the lack of observations. There
are two general approaches:

1. Use the tails of the Lévy stable distributions
as a proxy for the tail of the loss distribution
and take advantage of the practical semi-
analytic formula for the AVaR given in the
appendix to this entry to construct a statisti-
cal test.

2. Make the weaker assumption that the loss
distribution belongs to the domain of attrac-
tion of a max-stable distribution. Thus, the
behavior of the large losses can be approxi-
mately described by the limit max-stable dis-
tribution and a statistical test can be based
on it.

The rationale of the first approach is that, gen-
erally, the Lévy stable distribution provides a
good fit to the stock returns data and, thus, the
stable tail may turn out to be a reasonable ap-
proximation. Moreover, from the generalized
central limit theorem we know that stable dis-
tributions have domains of attraction, which
makes them an appealing candidate for an
approximate model.
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The second approach is based on a weaker
assumption. The family of max-stable dis-
tributions arises as the limit distribution of
properly scaled and centered maxima of IID
random variables. If the random variable de-
scribes portfolio losses, then the limit max-
stable distribution can be used as a model for
the large losses (i.e., the ones in the tail). Unfor-
tunately, as a result of the weaker assumption,
estimators of poor quality have to be used to
estimate the parameters of the limit max-stable
distribution, such as the Hill estimator, for ex-
ample. This represents the basic trade-off in this
approach.

TECHNICAL APPENDIX
In this appendix, we start with a more gen-
eral view that better describes the conditional
loss distribution in terms of certain character-
istics in which AVaR appears as a special case.
We continue with the notion of higher-order
AVaR, generating a family of coherent risk mea-
sures. Next, we provide an intuitive geomet-
ric interpretation of the minimization formula
for the AVaR calculation. We also provide a
semi-analytic expression for the AVaR of sta-
ble distributions and compare the expected tail
loss measure to AVaR. Finally, we comment on
the proper choice of a risk-aversion function in
spectral risk measures, which does not result in
an infinite risk measure.

Characteristics of Conditional Loss
Distributions
In the entry, we defined AVaR as a risk mea-
sure and showed how it can be calculated in
practice. While it is an intuitive and easy to use
coherent risk measure, AVaR represents the av-
erage of the losses larger than the VaR at tail
probability ε, which is only one characteristic
of the distribution of extreme losses. We re-
marked that if the distribution function is con-
tinuous, then AVaR coincides with ETL, which
is the mathematical expectation of the condi-

tional loss distribution. Besides the mathemati-
cal expectation, there are other important char-
acteristics of the conditional loss distribution.
For example, AVaR does not provide any in-
formation about how dispersed the conditional
losses are around the AVaR value. In this sec-
tion, we state a couple of families of useful char-
acteristics in which AVaR appears as one exam-
ple.

Consider the following tail moment of order
n at tail probability ε,

mn
ε (X) = 1

ε

∫ ε

0
(F −1

X (t))ndt (A.1)

where n = 1,2,. . ., F −1
X (t) is the inverse c.d.f. of

the random variable X. If the distribution func-
tion of X is continuous, then the tail moment of
order n can be represented through the follow-
ing conditional expectation

mn
ε (X) = E(Xn|X < VaRε(X)) (A.2)

where n = 1, 2,. . . In the general case, if the c.d.f.
has a jump at VaRε(X), a link exists between
the conditional expectation and equation (A.1),
which is similar to formula (A.12) later in this
appendix for AVaR. In fact, AVaR appears as
the negative of the tail moment of order one,
AVaRε(X) = −m1

ε(X).
The higher-order tail moments provide addi-

tional information about the conditional distri-
bution of the extreme losses. We can make a
parallel with the way the moments of a random
variable are used to describe certain properties
of it. In our case, it is the conditional distribution
that we are interested in.

In addition to the moments mn
ε (X), we intro-

duce the central tail moments of order n at tail
probability ε,

Mn
ε (X) = 1

ε

∫ ε

0
(F −1

X (t) − m1
ε(X))ndt (A.3)

where m1
ε(X) is the tail moment of order one.

If the distribution function is continuous, then
the central moments can be expressed in terms
of the conditional expectation

Mn
ε (X) = E((X − m1

ε(X))n|X < VaRε(X))
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The tail variance of the conditional distribu-
tion appears as M2

ε (X) and the tail standard de-
viation equals

(M2
ε (X))1/2 =

(
1
ε

∫ ε

0
(F −1

X (t) − m1
ε(X))2dt

)1/2

There is a formula expressing the tail variance
in terms of the tail moments introduced in (A.2),

M2
ε (X) = m2

ε(X) − (m1
ε(X))2

= m2
ε(X) − (AVaRε(X))2

This formula is similar to the representation of
variance in terms of the first two moments,

σ 2
X = E X2 − (E X)2

The tail standard deviation can be used to
describe the dispersion of conditional losses
around AVaR as it satisfies the general prop-
erties of dispersion measures. It can be viewed
as complementary to AVaR in the sense that if
there are two portfolios with equal AVaRs of
their return distributions but different tail stan-
dard deviations, the portfolio with the smaller
standard deviation is preferable.

Another central tail moment that can be in-
terpreted is M3

ε (X). After proper normalization,
it can be employed to measure the skewness
of the conditional loss distribution. In fact, if
the tail probability is sufficiently small, the tail
skewness will be quite significant. In the same
fashion, by normalizing the central tail moment
of order 4, we obtain a measure of kurtosis of
the conditional loss distribution.

In a similar way, we introduce the abso-
lute central tail moments of order n at tail
probability ε,

μn
ε (X) = 1

ε

∫ ε

0
|F −1

X (t) − m1
ε(X)|ndt (A.4)

The tail moments μn
ε (X) raised to the power of

1/n, (μn
ε (X))1/n, can be applied as measures of

dispersion of the conditional loss distribution if
the distribution is such that they are finite.

In the entry, we remarked that the tail of the
random variable can be so heavy that AVaR be-
comes infinite. Even if it is theoretically finite,
it can be hard to estimate because the heavy

tail will result in the AVaR estimator having
a large variability. Thus, under certain condi-
tions it may turn out to be practical to employ
a robust estimator instead. The median tail loss
(MTL), defined as the median of the conditional
loss distribution, is a robust alternative to AVaR.
It has the advantage of always being finite no
matter the tail behavior of the random variable.
Formally, it is defined as

MT Lε(X) = −F −1
X (1/2|X < −VaRε(X)) (A.5)

where F −1
X (p|X < −VaRε(X)) stands for the in-

verse distribution function of the c.d.f. of the
conditional loss distribution

FX(x|X < −VaRε(X))

= P(X ≤ x|X < −VaRε(X))

=
{

P(X ≤ x)/ε, x < −VaRε(X)
1, x ≥ −VaRε(X)

In effect, MTL, as well as any other quantile of
the conditional loss distribution, can be directly
calculated as a quantile of the distribution of X,

MT Lε(X) = −F −1
X (ε/2)

= VaRε/2(X) (A.6)

where F −1
X (p) is the inverse c.d.f. of X and ε is

the tail probability of the corresponding VaR in
equation (A.5). Thus, MTL shares the properties
of VaR. Equation (A.6) shows that MTL is not a
coherent risk measure even though it is a robust
alternative to AVaR, which is a coherent risk
measure.

In the universe of the three families of mo-
ments that we introduced, AVaR is one special
case providing only limited information. It may
be the only coherent risk measure among them
but the other moments can be employed in ad-
dition to AVaR in order to gain more insight into
the conditional loss distribution. Furthermore,
it could appear that other reasonable risk mea-
sures can be based on some of the moments.
Thus, we believe that they all should be consid-
ered in financial applications.



342 Risk Measures

Higher-Order AVaR
By definition, AVaR is the average of VaRs larger
than the VaR at tail probability ε. In the same
fashion, we can pose the question of what hap-
pens if we average all AVaRs larger than the
AVaR at tail probability ε. In fact, this quantity
is an average of coherent risk measures and,
therefore, is a coherent risk measure itself since
it satisfies all defining properties of coherent
risk measures. We call it AVaR of order one and
denote it by AVaR(1)

ε (X) because it is a derived
quantity from AVaR. In this section, we consider
similar derived quantities from AVaR which we
call higher-order AVaRs.

Formally, the AVaR of order one is represented
in the following way

AVaR(1)
ε = 1

ε

∫ ε

0
AVaRp(X)dp

where AVaRp(X) is the AVaR at tail probability
p. Replacing AVaR by the definition given in
equation (1), we obtain

AVaR(1)
ε = −1

ε

∫ ε

0

(∫ 1

0
F −1

X (y)gp(y)dy
)

dp

= −1
ε

∫ 1

0
F −1

X (y)
(∫ ε

0
gp(y)dp

)
dy

where

gp(y) =
{

1/p, y ∈ [0, p]
0, y > p

and after certain algebraic manipulations, we
get the expression

AVaR(1)
ε (X) = −1

ε

∫ ε

0
F −1

X (y) log
ε

y
dy

=
∫ ε

0
VaRy(X)φε(y)dy (A.7)

In effect, the AVaR of order one can be ex-
pressed as a weighted average of VaRs larger
than the VaR at tail probability ε with a weight-
ing function φε(y) equal to

φε(y) =
⎧
⎨

⎩

1
ε

log
ε

y
, 0 ≤ y ≤ ε

0, ε < y ≤ 1

The AVaR of order one can be viewed as a spec-
tral risk measure with φε(y) being the risk aver-
sion function.

Similarly, we define the higher-order AVaR
through the recursive equation

AVaR(n)
ε (X) = 1

ε

∫ ε

0
AVaR(n−1)

p (X)dp (A.8)

where AVaR(0)
p (X) = AVaRp(X) and n = 1,2. . .

Thus, the AVaR of order two equals the average
of AVaRs of order one, which are larger than
the AVaR of order one at tail probability ε. The
AVaR of order n appears as an average of AVaRs
of order n − 1.

The quantity AVaR(n)
ε (X) is a coherent risk

measure because it is an average of coherent
risk measures. This is a consequence of the re-
cursive definition in (A.8). It is possible to show
that AVaR of order n admits the representation

AVaR(n)
ε (X) = 1

ε

∫ ε

0
VaRy(X)

1
n!

(
log

ε

y

)n

dy (A.9)

and AVaR(n)
ε (X) can be viewed as a spectral risk

measure with a risk aversion function equal to

φ(n)
ε (y) =

⎧
⎨

⎩

1
εn!

(
log

ε

y

)n

, 0 ≤ y ≤ ε

0, ε < y ≤ 1

As a simple consequence of the definition, the
sequence of higher-order AVaRs is monotonic,

AVaRε(X) ≤ AVaR(1)
ε (X) ≤ . . . ≤

AVaR(n)
ε (X) ≤ . . .

In the entry, we remarked that if the random
variable X has a finite mean, E|X| < ∞, then
AVaR is also finite. This is not true for spec-
tral risk measures and the higher-order AVaR
in particular. In line with the general theory de-
veloped later in this appendix, AVaR(n)

ε (X) is fi-
nite if all moments of X exist. For example, if
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the random variable X has an exponential tail,
then AVaR(n)

ε (X) < ∞ for any n < ∞.

The Minimization Formula for AVaR
In this section, we provide a geometric inter-
pretation of the minimization formula (2) for
AVaR. We restate equation (2) in the following
equivalent form,

AVaRε(X) = 1
ε

min
θ∈R

(εθ + E(−X − θ )+) (A.10)

where (x)+ = max(x, 0). Note the similarity
between equation (A.10) and the definition of
AVaR in (A.2). Instead of the integral of the
quantile function in the definition of AVaR, a
minimization formula appears in (A.10). We
interpreted the integral of the inverse c.d.f.
as the shaded area in Figure 2. Similarly, we
will find the area corresponding to the objec-
tive function in the minimization formula and
we will demonstrate that as θ changes, there
is a minimal area that coincides with the area
corresponding to the shaded area in Figure 2.
Moreover, the minimal area is attained for θ =
VaRε(X) when the c.d.f. of X is continuous at
VaRε(X). In fact, all illustrations in this section
are based on the assumption that X has a con-
tinuous distribution function.

Consider first the expectation in equation
(A.10). Assuming that X has a continuous c.d.f.,
we obtain an expression for the expectation in-
volving the inverse c.d.f.,

E(−X − θ )+ =
∫

R

max(−x − θ, 0)d FX(x)

=
∫ 1

0
max(−F −1

X (t) − θ, 0)dt

= −
∫ 1

0
min(F −1

X (t) + θ, 0)dt

This representation implies that the expectation
E(−X − θ )+ equals the area closed between the
graph of the inverse c.d.f. and a line parallel to
the horizontal axis passing through the point
(0, −θ ). This is the shaded area on the right plot
in Figure A.1. The same area can be represented

0

0

F
X
−1(t)F

X
(x)

−θ

−θ

Figure A.1 Note: The shaded area is equal to the
expectation E(–X – θ )+ in which X has a continu-
ous distribution function.

in terms of the c.d.f. This is done on the left plot
in Figure A.1.

Let us get back to equation (A.10). The tail
probability ε is fixed. The product ε × θ equals
the area of a rectangle with sides equal to ε and
θ . This area is added to E(−X − θ )+. Figure A.2
shows the two areas together. The shaded ar-
eas on the top and the bottom plots equal ε ×
AVaRε(X). The top plot shows the case in which
−θ< −VaRε(X). Comparing the plot to Figure
A.1, we find out that adding the marked area
to the shaded area we obtain the total area cor-
responding to the objective in the minimization
formula, εθ + E(−X − θ )+. If −θ> −VaRε(X),
then we obtain a similar case shown on the bot-
tom plot. Again, adding the marked area to the
shaded area we obtain the the total area com-
puted by the objective in the minimization for-
mula. By varying θ , the total area changes but
it always remains larger than the shaded area
unless θ = VaRε(X).

Thus, when θ = VaRε(X) the minimum area
is attained, which equals exactly ε × AVaRε(X).
According to equation (A.10), we have to di-
vide the minimal area by ε in order to obtain
the AVaR. As a result, we have demonstrated
that the minimization formula in equation (2)
calculates the AVaR.



344 Risk Measures

Figure A.2 Note: The marked area is in addition
to the shaded one. The marked area is equal to
zero if θ = VaRε(X)

AVaR for Stable Distributions
Working with the class of stable distributions in
practice is difficult because there are no closed-
form expressions for their densities and distri-
bution functions. Thus, practical work relies on
numerical methods.

Stoyanov et al. (2006) give an account of
the approaches to estimating AVaR of sta-
ble distributions. It turns out that there is a
formula that is not exactly a closed-form ex-
pression, such as the ones for the normal and
Student’s t AVaR stated in the entry, but is suit-

able for numerical work. It involves numerical
integration but the integrand is nicely behaved
and the integration range is a bounded inter-
val. Numerical integration can be performed
by standard toolboxes in many software pack-
ages, such as MATLAB, for example. Moreover,
there are libraries freely available on the In-
ternet. Therefore, numerical integration itself
is not a severe restriction for applying a for-
mula in practice. Since the formula involves
numerical integration, we call it a semi-analytic
expression.

Suppose that the random variable X has a sta-
ble distribution with tail exponent α, skewness
parameter β, scale parameter σ , and location
parameter μ, X ∈ Sα(σ , β,μ). If α ≤ 1, then
AVaRε(X) = ∞. The reason is that stable distri-
butions with α ≤ 1 have infinite mathematical
expectation and the AVaR is unbounded.

If α > 1 and VaRε(X) 
= 0, then the AVaR can
be represented as

AVaRε(X) = σ Aε,α,β − μ

where the term Aε,α,β does not depend on the
scale and the location parameters. In fact, this
representation is a consequence of the positive
homogeneity and the invariance property of
AVaR. Concerning the term Aε,α,β ,

Aε,α,β = α

1 − α

|VaRε(X)|
πε∫ π/2

−θ̄0

g(θ ) exp
(−|VaRε(X)

∣∣ α
α−1 v(θ )

)
dθ

where

g(θ ) = sin(α(θ̄0 + θ ) − 2θ )
sin α(θ̄0 + θ )

− α cos2 θ

sin2 α(θ̄0 + θ )
,

v(θ ) = (cos αθ̄0)
1

α−1

(
cos θ

sin α(θ̄0 + θ )

) α
α−1

cos(αθ̄0 + (α − 1)θ )
cos θ

,

in which θ̄0 = 1
α

arctan (β̄ tan πα
2 ), β̄ =

−sign(VaRε(X))β, and VaRε(X) is the VaR of the
stable distribution at tail probability ε.
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If VaRε(X) = 0, then the AVaR admits a very
simple expression,

AVaRε(X) = 2�
(

α−1
α

)

(π − 2θ0)
cos θ0

(cos αθ0)1/α

in which �(x) is the gamma function and θ0 = 1
α

arctan(βtanπα
2 ).

ETL vs. AVaR
The expected tail loss and the average value-
at-risk are two related concepts. In the entry,
we remarked that ETL and AVaR coincide if the
portfolio return distribution is continuous at the
corresponding VaR level. However, if there is a
discontinuity, or a point mass, then the two no-
tions diverge. Still, the AVaR can be expressed
through the ETL and the VaR at the same tail
probability. In this section, we illustrate this re-
lationship and show why the AVaR is more ap-
pealing. Moreover, it will throw light on why
equation (6) should be used when considering
a sample of observations.

The ETL at tail probability ε is defined as the
average loss provided that the loss exceeds the
VaR at tail probability ε,

ET Lε(X) = −E(X|X < −VaRε(X)) (A.11)

As a consequence of the definition, the ETL can
be expressed in terms of the c.d.f. and the in-
verse c.d.f. Suppose additionally, that the c.d.f.
of X has a jump at −VaRε(X). In this case, the
loss VaRε(X) occurs with probability equal to
the size of the jump and, because of the strict
inequality in (A.11), it will not be included in
the average.

Figure A.3 shows the graphs of the c.d.f. and
the inverse c.d.f. of a random variable with a
point mass at −VaRε(X). If ε splits the jump of
the c.d.f. as on the left plot in Figure A.3, then
the ETL at tail probability ε equals

ET Lε(X) = −E(X|X < −VaRε(X))

= −E(X|X < −VaRε0 (X))

= ET Lε0 (X)

0
0

F
X
(x)

0

0

F
X
−1(t)

ε

ε
0

−VaRε(X)

−VaR
ε
(X)

ε
0

ε

Figure A.3 The C.D.F. and the Inverse C.D.F. of a
Random Variable X with a Point Mass at –VaRε(X)
Note: The tail probability e splits the jump of the
c.d.f.

In terms of the inverse c.d.f., the quantity
ETLε0(X) can be represented as

ET Lε0 (X) = − 1
ε0

∫ ε0

0
F −1

X (t)dt

The relationship between AVaR and ETL fol-
lows directly from the definition of AVaR.9 Sup-
pose that the c.d.f. of the random variable X is
as on the left plot in Figure A.3. Then,

AVaRε(X) = −1
ε

∫ ε

0
F −1

X (t)dt

= −1
ε

(∫ ε0

0
F −1

X (t)dt+
∫ ε

ε0

F −1
X (t)dt

)

= −1
ε

∫ ε0

0
F −1

X (t)dt+ε − ε0

ε
VaRε(X)

where the last inequality holds because the in-
verse c.d.f. is flat in the interval [ε0, ε] and the
integral is merely the surface of the rectangle
shown on the right plot in Figure A.3. The inte-
gral in the first summand can be related to the
ETL at tail probability ε and, finally, we arrive
at the expression

AVaRε(X) = ε0

ε
ET Lε(X) + ε − ε0

ε
VaRε(X) (A.12)



346 Risk Measures

Equation (A.12) shows that AVaRε(X) can be
represented as a weighted average between the
ETL and the VaR at the same tail probability as
the coefficients in front of the two summands
are positive and sum up to one. In the special
case in which there is no jump, or if ε = ε1, then
AVaR equals ETL.

Why is equation (A.12) important if in all
statistical models we assume that the random
variables describing return or payoff distribu-
tion have densities? Under this assumption, not
only are the corresponding c.d.f.s continuous
but they are also smooth. Equation (A.12) is im-
portant because if the estimate of AVaR is based
on the Monte Carlo method, then we use a sam-
ple of scenarios that approximate the nicely be-
haved hypothesized distribution. Even though
we are approximating a smooth distribution
function, the sample c.d.f. of the scenarios is
completely discrete, with jumps at the scenar-
ios the size of which equals the 1/n, where n
stands for the number of scenarios.

In fact, equation (6) given in the entry is actu-
ally equation (A.12) restated for a discrete ran-
dom variable. The outcomes are the available
scenarios, which are equally probable. Consider
a sample of observations or scenarios r1,. . .,rn

and denote by r(1) ≤ r(2) ≤. . .≤ r(n) the ordered
sample. The natural estimator of the ETL at tail
probability ε is

ÊT Lε(r ) = − 1
�nε� − 1

�nε�−1∑

k=1

r (k) (A.13)

where �x� is the smallest integer larger than x.
Formula (A.13) means that we average �nε� − 1
of the �nε� smallest observations, which is, in
fact, the definition of the conditional expecta-
tion in (A.11) for a discrete distribution. The
VaR at tail probability ε is equal to the negative
of the empirical quantile,

V̂aRε(r ) = −r(�nε�) (A.14)

It remains to determine the coefficients in
(A.12). Having in mind that the observations in
the sample are equally probable, we calculate

that

ε0 = �nε� − 1
n

Plugging ε0, (A.14), and (A.13) into equation
(A.12), we obtain (6), which is the sample AVaR.

Similarly, equation (10) also arises from
(A.12). The assumption is that the underlying
random variable has a discrete distribution but
the outcomes are not equally probable. Thus,
the corresponding equation for the average loss
on condition that the loss is larger than the VaR
at tail probability ε is given by

ÊT Lε(r ) = − 1
ε0

kε∑

j=1

p jr( j) (A.15)

where ε0 = ∑kε

j=1 p j and kε is the integer satis-
fying the inequalities

kε∑

j=1

p j ≤ ε <

k∈+1∑

j=1

p j

The sum
∑kε

j=1 p j stands for the cumulative
probability of the losses larger than the the
VaR at tail probability ε. Note that equation
(A.15) turns into equation (A.13) when the
outcomes are equally probable. With these re-
marks, we have demonstrated the connection
between equations (6), (10), and (A.12).

The differences between ETL and AVaR are
not without any practical importance. In fact,
ETL is not a coherent risk measure. Further-
more, the sample ETL in (A.13) is not a smooth
function of the tail probability while the sam-
ple AVaR is smooth. This is illustrated in
Figure A.4. The top plot shows the graph of
the sample ETL and AVaR with the tail proba-
bility varying between 1% and 10%. The sam-
ple contains 100 independent observations on
a standard normal distribution, X ∈ N(0,1). The
bottom plot shows the same but the sample is
larger. It contains 250 independent observations
on a standard normal distribution.

Both plots demonstrate that the sample ETL
is a step function of the tail probability while
the AVaR is a smooth function of it. This is not
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Figure A.4 The Graphs of the Sample ETL and
AVaR with Tail Probability Varying between 1%
and 10%
Note: The top plot is produced from a sample
of 100 observations and the bottom plot from
a sample of 250 observations. In both cases,
X ∈ N(0, 1).

surprising because, as ε increases, new obser-
vations appear in the sum in (A.13) producing
the jumps in the graph of the sample ETL. In
contrast, the AVaR changes gradually as it is
a weighted average of the ETL and the VaR
at the same tail probability. Note that, as the
sample size increases, the jumps in the graph
of the sample ETL diminish. In a sample of
5,000 scenarios, both quantities almost overlap.
This is because the standard normal distribu-

tion has a smooth c.d.f. and the sample c.d.f.
constructed from a larger sample better approx-
imates the theoretical c.d.f. In this case, as the
sample size approaches infinity, the AVaR be-
comes indistinguishable from the ETL at the
same tail probability.10

KEY POINTS
� Although the value-at-risk (VaR) measure is

a popular risk measure in the financial indus-
try, it has a number of deficiencies. It is not a
coherent risk measure because it does not sat-
isfy the subadditivity property requirement
of a coherent risk measure.

� In contrast to VaR, the average value-at-risk
measure (AVaR)—also referred to as condi-
tional value-at-risk and expected shortfall—is
a coherent risk measure and has other advan-
tages that results in its greater acceptance in
risk modeling.

� There are convenient ways for computing and
estimating AVaR that allow its application in
optimal portfolio problems.

� A more general family of coherent risk mea-
sures is the spectral risk measure. The AVaR
is a spectral risk measure with a specific risk-
aversion function and is important for the
proper selection of the risk-aversion function
to avoid explosion of the risk measure.

� There is connection between the theory of
probability metrics and risk measures. Basi-
cally, by choosing an appropriate probability
metric one can guarantee that if two portfo-
lio return distributions are close to each other,
their risk profiles are also similar.

NOTES
1. In fact, X = 0.05

√
3Z + 0.03 where Z has

Student’s t distribution with 4 degrees of
freedom and Y has a normal distribution
with standard deviation equal to 0.1 and
mathematical expectation equal to 0.01. The
coefficient of Z is chosen so that the stan-
dard deviation of X is also equal to 0.1.
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2. By comparing the c.d.f.s, we notice that the
c.d.f. of X is “above” the c.d.f. of Y to the
left of the crossing point, FX(x) ≥ FY(x), x ≤
−0.15.

3. This term is adopted in Rockafellar and
Uryasev (2002).

4. Equation (2) was first studied by Pflug
(2000). A proof that equation (1) is indeed
the AVaR can be found in Rockafellar and
Uryasev (2002).

5. As we remarked, AVaRε(X) can be infinite
only if the mathematical expectation of X
is infinite. Nevertheless, if this turns out to
be an issue, one can use instead of AVaR
the median of the loss distribution pro-
vided that the loss is larger than VaRε(X)
as a robust version of AVaR. The me-
dian of the conditional loss is always finite
and, therefore, the issue disappears but at
the cost of violating the coherence axioms.
The appendix to this entry provides more
details.

6. This formula is a simple consequence of
the definition of AVaR for discrete distribu-
tions; see the appendix to this entry. A de-
tailed derivation is provided by Rockafellar
and Uryasev (2002).

7. For example, �3.1� = �3.8� = 4.
8. A formal proof can be found in Rockafel-

lar and Uryasev (2002). The reasoning in
Rockafellar and Uryasev (2002) is based on
the assumption that the random variable
describes losses while in equation (10), the
random variable describes the portfolio re-
turn or payoff.

9. Formal derivation of this relationship can
be found, for example, in Rockafellar and
Uryasev (2002).

10. In fact, this is a consequence of the cel-
ebrated Glivenko-Cantelli theorem claim-
ing that the sample c.d.f. converges almost
surely to the true c.d.f.
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Abstract: The standard assumption in financial models is that the distribution for the return on fi-
nancial assets follows a normal (or Gaussian) distribution and therefore the standard deviation (or
variance) is an appropriate measure of risk in the portfolio selection process. This is the risk measure
that is used in the well-known Markowitz portfolio selection model (that is, mean-variance model)
which is the foundation for modern portfolio theory. With mounting evidence since the early 1960s
that return distributions do not follow a normal distribution, researchers have proposed alterna-
tive risk measures for portfolio selection. These risk measures fall into two disjointed categories:
dispersion measures and safety-first measures. In addition, there has been considerable theoretical
work in defining the features of a desirable risk measure.

Most of the concepts in theoretical and empir-
ical finance that have been developed over the
last 50 years rest upon the assumption that the
return or price distribution for financial assets
follow a normal distribution. Yet, with rare ex-
ception, studies that have investigated the va-
lidity of this assumption since the 1960s fail to
find support for the normal distribution. More-
over, there is ample empirical evidence that
many—if not most—financial return series are
heavy-tailed and, possibly, skewed. The “tails”
of the distribution are where the extreme values

occur. Empirical distributions for stock prices
and returns have found that the extreme values
are more likely than would be predicted by the
normal distribution. This means that between
periods where the market exhibits relatively
modest changes in prices and returns, there
will be periods where there are changes that
are much higher (that is, crashes and booms)
than predicted by the normal distribution. This
is not only of concern to financial theorists,
but also to practitioners seeking, for example,
to produce probability estimates for financial

349
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risk assessment. To more effectively implement
portfolio selection, alternative risk measures are
needed.

In this entry, we review alternative risk
measures that can be employed in portfolio
selection, which can accommodate non-normal
return distributions. These risk measures are
classified as dispersion measures and safety-
first measures. We begin with a discussion of the
desirable features of investment risk measures.

DESIRABLE FEATURES
OF INVESTMENT
RISK MEASURES
In portfolio theory, the variance of a port-
folio’s return has been historically the most
commonly used measure of investment risk.
However, different investors adopt different in-
vestment strategies in seeking to realize their in-
vestment objectives. Consequently, intuitively,
it is difficult to believe that investors have come
to accept only one definition of risk. Regula-
tors of financial institutions and commenta-
tors to risk measures proposed by regulators
have proffered alternative definitions of risk.
As noted by Dowd (2002, p. 1):

The theory and practice of risk management—
and, included with that, risk measurement—
have developed enormously since the pioneer-
ing work of Harry Markowitz in the 1950s.
The theory has developed to the point where
risk management/measurement is now re-
garded as a distinct sub-field of the theory of
finance. . . .

Szegö (2004, p. 1) categorizes risk measures as
one of the three major revolutions in finance and
places the start of that revolution in 1997. The
other two major revolutions are mean-variance
analysis (1952–1956) and continuous-time mod-
els (1969–1973). He notes that alternative risk
measures have been accepted by practitioners
but “rejected by the academic establishment
and, so far discarded by regulators!” (Szegö,
2004, p. 4).

Basic Features of Investment
Risk Measures
Balzer (2001) argues that a risk measure is in-
vestor specific and, therefore, there is “no single
universally acceptable risk measure.” He sug-
gests several features that an investment risk
measure should capture. Here we describe the
following three features:

� Relativity of risk
� Multidimensionality of risk
� Asymmetry of risk

The relativity of risk means that risk should be
related to performing worse than some alter-
native investment or benchmark. Balzer (1994,
2001) and Sortino and Satchell (2001), among
others, have proposed that investment risk
might be measured by the probability of the
investment return falling below a specified risk
benchmark. The risk benchmark might itself be
a random variable, such as a liability bench-
mark (e.g., an insurance product), the infla-
tion rate or possibly inflation plus some safety
margin, the risk-free rate of return, the bottom
percentile of return, a sector index return, a bud-
geted return, or other alternative investments.
Each benchmark can be justified in relation to
the goal of the portfolio manager. Should per-
formance fall below the benchmark, there could
be major adverse consequences for the portfolio
manager.

In addition, the same investor could have
multiple objectives and, hence, multiple risk
benchmarks. Thus, risk is also a multidimen-
sional phenomenon. However, an appropriate
choice of the benchmarks is necessary in order
to avoid an incorrect evaluation of opportuni-
ties available to investors. For example, too of-
ten, little recognition is given to liability targets.
This is the major factor contributing to the un-
derfunding of U.S. corporate pension sponsors
of defined benefit plans.1

Intuition suggests that risk is an asymmet-
ric concept related to the downside outcomes,
and any realistic risk measure has to value and
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consider upside and downside differently. The
standard deviation considers the positive and
the negative deviations from the mean as a po-
tential risk. In this case overperformance rela-
tive to the mean is penalized just as much as
underperformance.

Intertemporal Dependence and
Correlation with Other Sources
of Risk
The standard deviation is a measure of disper-
sion and it cannot always be used as a mea-
sure of risk. The preferred investment does
not always present better returns than the
other. It could happen that the worst invest-
ment presents the greatest return in some peri-
ods. Hence, time could influence the investor’s
choices.

Clearly, if the degree of uncertainty changes
over time, the risk has to change during the time
as well. In this case, the investment return pro-
cess is not stationary; that is, we cannot assume
that returns maintain their distribution unvar-
ied in the course of time. In much of the research
published, stationary and independent realiza-
tions are assumed. The latter assumption im-
plies that history has no impact on the future.
More concrete, the distribution of tomorrow’s
return is the same independent of whether the
biggest stock market crash ever recorded took
place yesterday or yesterday’s return equaled
10%.

As a result, the oldest observations have
the same weight in our decisions as the most
recent ones. Is this assumption realistic? Re-
cent studies on investment return processes
have shown that historical realizations are not
independent and present a clustering of the
volatility effect (time-varying volatility). Those
phenomena lead to the fundamental time-
series model autoregressive conditional het-
eroscedascity (ARCH) formulated by Engle
(1981). In particular, the last observations have
a greater impact in investment decisions than
the oldest ones. Thus, any realistic measure of

risk changes and evolves over time taking into
consideration the heteroscedastic (time-varying
volatility) behavior of historical series. An ex-
amination of the returns of say the equity re-
turn indexes such as the S&P 500 over some
time period would show a propagation effect on
another equity market, say the DAX 30. When
we observe the highest peaks in one return in-
dex series, for example, there is an analogous
peak in the other return index series. This prop-
agation effect is known as cointegration of the
return series, introduced by the fundamental
work of Granger (1981) and elaborated upon
further by Engle and Granger (1987). The prop-
agation effect in this case is a consequence of
the globalization of financial markets—the risk
of a country/sector is linked to the risk of the
other countries/sectors. Therefore, it could be
important to limit the propagation effect by di-
verstfying the risk. As a matter of fact, it is
largely proven that the diversification, oppor-
tunely modeled, diminishes the probability of
big losses. Hence, an adequate risk measure val-
ues and models correctly the correlation among
different investments, sectors, and markets.

ALTERNATIVE RISK
MEASURES FOR
PORTFOLIO SELECTION
The goal of portfolio selection is the construc-
tion of portfolios that maximize expected re-
turns consistent with individually acceptable
levels of risk. Using both historical data and in-
vestor expectations of future returns, portfolio
selection uses modeling techniques to quantify
“expected portfolio returns” and “acceptable
levels of portfolio risk,” and provides methods
to select an optimal portfolio.

It would not be an overstatement to say that
modern portfolio theory as developed by Harry
Markowitz (1952, 1959) has revolutionized the
world of investment management. Allowing
managers to appreciate that the investment
risk and expected return of a portfolio can be
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quantified has provided the scientific and objec-
tive complement to the subjective art of invest-
ment management. More importantly, whereas
previously the focus of portfolio management
used to be the risk of individual assets, the the-
ory of portfolio selection has shifted the focus
to the risk of the entire portfolio. This theory
shows that it is possible to combine risky assets
and produce a portfolio whose expected return
reflects its components, but with considerably
lower risk. In other words, it is possible to con-
struct a portfolio whose risk is smaller than the
sum of all its individual parts.

Though practitioners realized that the risks of
individual assets were related, prior to modern
portfolio theory they were unable to formalize
how combining them into a portfolio impacted
the risk at the entire portfolio level or how the
addition of a new asset would change the re-
turn/risk characteristics of the portfolio. This
is because practitioners were unable to quan-
tify the returns and risks of their investments.
Furthermore, in the context of the entire port-
folio, they were also unable to formalize the
interaction of the returns and risks across as-
set classes and individual assets. The failure to
quantify these important measures and formal-
ize these important relationships made the goal
of constructing an optimal portfolio highly sub-
jective and provided no insight into the return
investors could expect and the risk they were
undertaking. The other drawback, before the
advent of the theory of portfolio selection and
asset pricing theory, was that there was no mea-
surement tool available to investors for judging
the performance of their investment managers.

The theory of portfolio selection set forth by
Markowitz was based on the assumption that
asset returns are normally distributed. As a re-
sult, Markowitz suggested that the appropriate
risk measure is the variance of the portfolio’s
return and portfolio selection involved only
two parameters of the asset return distribu-
tion: mean and variance. Hence, the approach
to portfolio selection he proposed is popularly
referred to as mean-variance analysis.

Markowitz recognized that an alternative to
the variance is the semivariance.2 The semivari-
ance is similar to the variance except that, in the
calculation, no consideration is given to returns
above the expected return. Portfolio selection
could be recast in terms of mean-semivariance.
However, if the return distribution is symmet-
ric, Markowitz (1959, p. 190) notes that “an anal-
ysis based on (expected return) and (standard
deviation) would consider these . . . (assets) as
equally desirable.” He rejected the semivari-
ance noting that the variance “is superior with
respect to cost, convenience, and familiarity”
and when the asset return distribution is sym-
metric, either measure “will produce the same
set of efficient portfolios.” (Markowitz 1959,
pp. 193–194).

There is a heated debate on risk measures
used for valuing and optimizing the investor’s
risk portfolio. In this section and the one to
follow, we describe the various portfolio risk
measures proposed in the literature and more
carefully look at the properties of portfolio risk
measures.

According to the literature on portfolio theory,
two disjointed categories of risk measures can
be defined: dispersion measures and safety-first
risk measures. In the remainder of this entry, we
review some of the most well-known dispersion
measures and safety-first measures along with
their properties.3

In the following, we consider a portfolio of
N assets whose individual returns are given by
r1, . . . , rN. The relative weights of the portfo-
lio are denoted as x1, . . . xn and, therefore, the
portfolio return rp can be expressed as

rp = x1 · r1 + · · · + xN · rN =
N∑

i=1

xi · ri

We also provide a sample version of the dis-
cussed risk measures. The sample version will
be based on a sample of length T of independent
and identically distributed observations r (k)

p ,
k − 1, . . . , T of the portfolio return rp. These
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observations can be obtained from a corre-
sponding sample of the individual assets.

DISPERSION MEASURES
Several portfolio mean dispersion approaches
have been proposed in the last few decades.
The most significant ones are discussed below,
and we provide for each measure an example
to illustrate the calculation.

Mean Standard Deviation
In the mean standard deviation approach the dis-
persion measure is the standard deviation of the
portfolio return rp (see Markowitz, 1959, and
Tobin, 1958):

σ (rp) =
√

E(rp − E(rp))2 (1)

The standard deviation is a special case of the
mean absolute moment discussed below. The
sample version can be obtained from the gen-
eral case by setting p = 2.

Mean Absolute Deviation
In the mean absolute deviation (MAD) approach,
the dispersion measure is based on the absolu-
tion deviations from the mean rather than the
squared deviations as in the case of the stan-
dard deviation.4 The MAD is more robust with
respect to outliers. The MAD for the portfolio
return rp is defined as

MAD(rp) = E(|rp − E(rp)|) (2)

Mean Absolute Moment
The mean absolute moment (MAM(q)) approach is
the logical generalization of the MQ approach.
Under this approach the dispersion measure is
defined as

MAM(rq , p) = (E(|rp − E(rp)|q ))1/q , q ≥ 1
(3)

Note that the mean absolute moment for q = 2
coincides with the standard deviation and for

q = 1 the mean absolute moment reduces to the
mean absolute deviation. One possible sample
version of (3) is given by

MAM(rp, q ) = q

√√√√ 1
T

T∑

k=1

∣∣∣r (k)
p − r̄ p

∣∣∣
q

where

r̄ = 1
T

T∑

k=1

r (k)
p

denotes the sample mean of the portfolio return.

Gini Index of Dissimilarity
The index of dissimilarity is based on the measure
introduced by Gini (1912, 1921).5 Gini objected
to the use of the variance or the MAD because
they measure deviations of individuals from the
individual observations of the mean or location
of a distribution. Consequently, these measures
linked location with variability, two properties
that Gini argued were distinct and do not de-
pend on each other. He then proposed the pair-
wise deviations between all observations as a
measure of dispersion, which is now referred
to as the Gini measure.

While this measure has been used for the
past 80 years as a measure of social and eco-
nomic conditions, its interest as a measure of
risk in the theory of portfolio selection is rela-
tively recent. Interest in a Gini-type risk mea-
sure has been fostered by Rachev (1991) and
Rachev and Gamrowski (1995). Mathematically,
the Gini risk measure for the random portfolio
return rp is defined as

GM(rp, rb) = Min{E |rp − rb |} (4)

where the minimum is taken over all joint dis-
tributions of (rp, rb) with fixed marginal distri-
bution functions F and G:

F (x) = P(rp ≤ x) and

G(x) = P(rb ≤ x), x real

Here rb is the benchmark return, say, the re-
turn of a market index, or just the risk-free
rate (U.S. Treasury rate or LIBOR, for example).
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Expression (4) can be represented as the mean
absolute deviation between the two distribu-
tion functions F and G:

GM(rp, rb) =
+∞∫

−∞
|F (x) − G(x)|dx

Given a sample or a distributional assumption
for the benchmark return rb, the latter expres-
sion can be used for estimating the Gini index
by calculating the area between the graphs of
the empirical distribution function of rp and the
(empirical) distribution function of rb.

Mean Entropy
In the mean entropy (M-entropy) approach, the
dispersion measure is the exponential entropy.
Exponential entropy is a dispersion measure
only for portfolios with continuous return dis-
tribution because the definition of entropy for
discrete random variables is formally different
and does not satisfy the properties of the disper-
sion measures (positive and positively homoge-
neous). The concept of entropy was introduced
in the last century in the classical theory of ther-
modynamics. Roughly speaking, it represents
the average uncertainty in a random variable.

Probably its most important application in
finance is to derive the probability density func-
tion of the asset underlying an option on the ba-
sis of the information that some option prices
provide.6 Entropy was used also in portfolio
theory by Philippatos and Wilson (1972) and
Philippatos and Gressis (1975) and is defined as

Entropy = −E(log f (rp))

where f is the density of the portfolio return.
Thus, the exponential entropy is given by

EE(rp) = e−E(log f (rp)) (5)

The valuation of entropy can be done either by
considering the empirical density of a portfolio
or assuming that portfolio returns belong to a
given family of continuous distributions and
estimate their unknown parameters.

Mean Colog
In the mean colog (M-colog) approach, the dis-
persion measure is the covariance between the
random variable and its logarithm.7 That is, the
colog of a portfolio return is defined as

Colog(1 + rp) = E(rp log(1 + rp))

− E(rp)E(log(1 + rp)) (6)

Colog can easily be estimated based on a sam-
ple of the portfolio return distribution by:

Colog(1 + rp) ≈ 1
T

T∑

k=1

(
r (k)

p − r̄ p

)
·
(

log(1 + r (k)
p

)

− log(1 + rp))

where

log(1 + rp) = 1
T

T∑

k=1

log
(

1 + r (k)
p

)

denotes the sample mean of the logarithm of
one plus the portfolio return.

SAFETY-FIRST RISK
MEASURES
Many researchers have suggested the safety-
first rules as a criterion for decision making un-
der uncertainty.8 In these models, a subsistence,
a benchmark, or a disaster level of returns is
identified. The objective is the maximization of
the probability that the returns are above the
benchmark. Thus, most of the safety-first risk
measures proposed in the literature are linked
to the benchmark-based approach.

Even if there are not apparent connections be-
tween the expected utility approach and a more
appealing benchmark-based approach, Castag-
noli and LiCalzi (1996) have proven that the
expected utility can be reinterpreted in terms
of the probability that the return is above a
given benchmark. Hence, when it is assumed
that investors maximize their expected utility,
it is implicitly assumed that investors minimize
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the probability of the investment return falling
below a specified risk benchmark.

Although it is not always simple to iden-
tify the underlying benchmark, expected util-
ity theory partially justifies the using of the
benchmark-based approach. Moreover, it is
possible to prove that the two approaches are
in many cases equivalent even if the economic
reasons and justifications are different.9

Some of the most well-known safety-first risk
measures proposed in the literature are de-
scribed in the next section.

Classical Safety First
In the classical safety-first portfolio choice prob-
lem the risk measure is the probability of loss or,
more generally, the probability Pλ = P(rp ≤ λ)
of portfolio return less than λ. Generally, safety-
first investors have to solve a complex, mixed
integer linear programming problem to find the
optimal portfolios. However, when short sales
are allowed and return distributions are ellipti-
cal, depending on a dispersion matrix Q and
a vector mean μ, then there exists a closed-
form solution to the investor’s portfolio selec-
tion problem:

Minimize: P(rp ≤ λ)

Subject to:
N∑

i=1
xt = 1, xi ≥ 0

The interesting property of this optimization
problem is that we are able to express the set of
optimal portfolios explicitly as a function of the
shortfall barrier λ, the mean vector μ, and the
dispersion matrix Q. The mean m and the dis-
persion σ 2 of these optimal portfolios can again
be expressed as a function of the threshold λ,
the mean vector μ, and the dispersion matrix
Q. In the case where the elliptical family has
finite variance (as, for example, the normal dis-
tribution), then the dispersion σ 2 corresponds
to the variance.

As the risk measure consists of the probabil-
ity that the return falls below a given barrier
λ, we can estimate the risk measure by the ra-
tio between the number of observations being

smaller than λ and the total number of observa-
tions in the sample.

Value at Risk
Value at risk (VaR1−α) is a closely related possi-
ble safety-first measure of risk defined by the
following equality:

VaR1−α(rp) = − min{z|(P(rp ≤ z) > α)} (7)

Here, 1 − α is denoted as the confidence level
and α usually takes values like 1% or 5%. Theo-
retically, the VaR figure defined by equation (7)
can admit negative values. In reality, however,
it is likely and often implicitly assumed that the
VaR is positive, and it can be interpreted as the
level at which the losses will not exceed with a
probability of 1 − α%. Sometimes VaR is, there-
fore, defined as the maximum of zero and the
expression defined in equation (7) to guarantee
a positive value for VaR.

VaR can be used as a risk measure to deter-
mine reward-risk optimal portfolios. Moreover,
this simple risk measure can also be used by fi-
nancial institutions to evaluate the market risk
exposure of their trading portfolios. The main
characteristic of VaR is that of synthesizing in
a single value the possible losses that could oc-
cur with a given probability in a given tem-
poral horizon. This feature, together with the
(very intuitive) concept of maximum probable
loss, allows the nonexpert investor to figure out
how risky the position is and the correcting
strategies to adopt. Based on a sample of re-
turn observations, VaR estimates coincide with
the empirical alphaquantile. VaR and sophis-
ticated methodologies for estimating VaR are
explained in Chapter 14 of Rachev, Menn, and
Fabozzi (2005).

Conditional Value at Risk/Expected
Tail Loss
The conditional value at risk (CVaR1−α) or expected
tail loss (ETL) is defined as:

CVaR1−α(rp) = E(max(−rp, 0) | − rp

≥ VaR1−α(rp)) (8)
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where VaR1−α(X) is defined in equation (7) and
we assume that portfolio return distribution is
continuous.10 From this definition we observe
that the CVaR can be seen as the expected short-
fall assuming the VaR1−α(X) as the benchmark.

A sophisticated estimation of CVaR depends
strongly on the estimation of VaR. An explana-
tion and illustration of the calculation of CVaR is
provided in Rachev, Menn, and Fabozzi (2005).
Based on a large sample of observations, a nat-
ural estimate for CVaR can be obtained by av-
eraging all observations in the sample that are
smaller than the corresponding VaR estimate.

MiniMax
An alternative way to derive some safety-first
optimal portfolios is minimizing the MiniMax
(MM) risk measure (see Young, 1998). The
MiniMax of a portfolio return is given by:

MM(rp) = − sup{c|P(rp ≤ c) = 0} (9)

This risk measure can be seen as an extreme
case of CVaR.

Lower Partial Moment
A natural extension of semivariance is the lower
partial moment risk measure (see Bawa, 1976,
and Fishburn, 1977) also called downside risk or
probability-weighted function of deviations below a
specified target return. This risk measure depends
on two parameters:

1. A power index that is a proxy for the in-
vestor’s degree of risk aversion.

2. The target rate of return that is the minimum
return that must be earned to accomplish the
goal of funding the plan within a cost con-
straint.

The lower partial moment of a portfolio rp

bounded from below is given by

LPM(rp, q ) = q
√

E(max(t − rp, 0)q ) (10)

where q is the power index and t is the target
rare of return.

Given a sample of return observations, we can
approximate equation (10) as follows:

LPM(rp, q ) = q

√√√√ 1
T

T∑

k=1

max
(

k(k)
p − r̄ p, 0

)q

where as before

r̄ = 1
T

T∑

k=1

r (k)
p

denotes the sample mean of the portfolio
return.

Power Conditional Value at Risk
The power conditional value at risk measure, in-
troduced in Rachev, Jasic, Biglova, and Fabozzi
(2005), is the CVaR of the lower partial moment
of the return. It depends on a power index that
varies with respect to an investor’s degree of
risk aversion. Power CVaR generalizes the con-
cept of CVaR and is defined as

CVaRq ,1−α(rp) = E(max(−rp, 0)q | − rp

≥ VaR1−α(rp)) (11)

A sample version of power CVaR can be ob-
tained in the same way as sample version for
the regular CVaR, that is, one calculates the q-th
sample moment of all observations in the sam-
ple that are smaller than the corresponding VaR
estimate.

KEY POINTS
� While the underpinning of financial theory is

that the distribution of the return on financial
assets is normally distributed, little evidence
supports this assumption. Consequently, the
justification for the use of the standard devia-
tion or variance as a measure of risk in finan-
cial applications such as portfolio selection is
difficult to justify.

� Alternative risk measures that can accommo-
date the properties of asset returns that have
been observed in financial markets have been
proposed.



RISK MEASURES AND PORTFOLIO SELECTION 357

� Alternative risk measures include dispersion
measures and safety-first risk measures.

� Dispersion measures include mean standard
deviation, mean absolute deviation, mean ab-
solute moment, index of dissimilarity, mean
entropy, and mean colog.

� Safety-first risk measures include classical
safety first, value at risk, conditional value
at risk, expected tail loss, MiniMax, lower
partial moment, downside risk, probability-
weighted function of deviations below a spec-
ified target return, and power conditional
value at risk.

NOTES
1. See Ryan and Fabozzi (2002).
2. The mean semivariance approach was re-

visited by Stefani and Szegö (1976).
3. For more details, see Rachev, Menn, and

Fabozzi (2006).
4. See Konno and Yamazaki (1991), Zenios

and Kang (1993), Speranza (1993), and
Ogryczak and Ruszczynski (2001).

5. For a further discussion of this index, see
Rachev (1991).

6. See Buchen and Kelly (1996) and Avel-
laneda (1998).

7. See Giacometri and Ortobelli (2001).
8. See, among others, Roy (1952), Tesler

(1955/6), and Bawa (1976, 1978).
9. See Castagnoli and LiCalzi (1996, 1999),

Bordley and LiCalzi (2000), Ortobelli and
Rachev (2001), Rachev and Mittnik (2000,
pp. 424–464), and Rachev, Ortobelli, and
Schwartz (2004).

10. See Bawa (1978), Uryasev (2000), and
Martin, Rachev, and Siboulet (2003).
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Back-Testing Market Risk Models
KEVIN DOWD, PhD
Partner, Cobden Partners, London

Abstract: Back-testing is the quantitative evaluation of a model, and back-testing a risk or prob-
ability density forecasting model involves a comparison of the model’s density forecasts against
subsequently realized outcomes of the random variable whose density is forecast. One purpose
of back-testing is to determine whether the forecasts are sufficiently close to realized outcomes to
enable us to conclude that the forecasts are statistically compatible with those outcomes. Back-tests
conducted for this purpose involve statistical hypothesis tests to determine if a model’s forecasts
are acceptable. Hypothesis tests can be applied to observations involving a loss that exceeds the
value-at-risk at a given confidence interval, or they can be applied to forecasts of VaRs at multi-
ple confidence intervals. A second purpose of back-testing is to assist risk managers to diagnose
problems with their risk models and so help improve them. A third purpose of back-testing is to
rank the performance of a set of alternative risk models to determine which model gives the “best”
density forecast evaluation performance.

To back-test a model is to evaluate it in quantita-
tive terms, and back-testing a risk (or probability
density forecasting) model involves a compari-
son of the model’s density forecasts against sub-
sequently realized outcomes of the underlying
random variable whose density is forecast. The
importance of back-testing is self-evident: If risk
managers are to have confidence in their risk
models, then those models need to be properly
back-tested and to have performed well under
those back-tests.

Back-tests can be used for three complemen-
tary purposes. The first is to assess whether a
model’s density forecasts are statistically com-
patible with the realized values of the under-
lying random variable. The second purpose
is diagnostic: to generate feedback about the
model’s potential weaknesses to assist the

model builder and help him/her to “correct”
the model. The third purpose is to rank alterna-
tive models. A good risk model should fare well
by all three criteria: It should pass its statistical
tests, should not generate any worrying diag-
nostics, and should rank well in comparison to
alternative models.

The archetypal market risk model is a model
that forecasts the value at risk (VaR) of a port-
folio over one or more confidence levels, for a
specified horizon. We will assume for the most
part that the horizon is a trading day.

To back-test such a model, we need a dataset
that consists of the model’s forecasts, on the
one hand, and the daily profits or losses (P/L)
generated by the portfolio, on the other. The
first task in back-testing is therefore to assemble
such a dataset. For most market risk managers,

361
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the forecasts themselves should be readily
available. However, obtaining suitable profit
and loss data is a more difficult problem than it
might initially appear to be. The reason is that
we do not need data on the profits or losses ac-
tually generated by a portfolio, but data on the
profits or losses attributable to the market risks
taken: We want P/L data that reflect underlying
market volatility rather than accounting pru-
dence. We also need to clean our P/L data to get
rid of components that are not directly related to
current or recent market risk-taking. Such com-
ponents include fee income, hidden and unre-
alized P/L, earnings attributable to nonmarket
risks, such as yields on corporate bonds, and
the impact of intraday trading on P/L.

Having obtained our dataset, the next stage
is to carry out a preliminary data analysis. We
should plot a back-testing chart—a plot of the
realized P/L over time with the VaR forecasts
superimposed on it—and look for any odd or
outstanding features. It is also good practice
to supplement back-testing charts with P/L
histograms, which sometimes give a clearer
indication of the empirical P/L distribution,
and quantile-quantile (QQ) charts, which plot
the quantiles of an empirical P/L distribution
against those of a forecasted P/L distribution.
It is also a good idea to examine summary
P/L statistics, including the obvious statistics
of mean, variance, skewness, kurtosis, range,
and so on and the number and size of extreme
observations. A preliminary data analysis can
be very helpful in enabling practitioners to get
to know their data and get a feel for any prob-
lems they might encounter.

STATISTICAL
BACK-TESTING
The first type of back-tests are statistical tests
based on a hypothesis-testing paradigm. We
first specify the null hypothesis that we wish
to test—typically the null hypothesis is that the
model is adequate—and select an alternative

hypothesis to be accepted if the null is rejected.
We then select a significance level and estimate
the probability associated with the null hypoth-
esis being “true.” We would accept the null
hypothesis if the estimated value of this prob-
ability, the estimated prob-value, exceeds the
chosen significance level, and we would reject it
otherwise. The higher the significance level, the
more likely we are to accept the null hypothe-
sis, and the less likely we are to incorrectly reject
a true model (that is, to make a Type I error).
Unfortunately, it also means that we are more
likely to incorrectly accept a false model (that
is, to make a Type II error). Any test therefore
involves a trade-off between these two types of
possible error. Ideally, we should select a sig-
nificance level that takes account of the likeli-
hoods and costs of these errors and strikes an
appropriate balance between them. However,
in practice, it is common to select some arbi-
trary significance level such as 5% and apply
that level in all our tests. A significance level of
this magnitude gives the model a certain ben-
efit of the doubt, and implies that we would
reject the model only if the evidence against it
is reasonably strong.

EXCEEDANCE-BASED
STATISTICAL APPROACHES
Suppose that we have a sample of n daily VaR
forecasts VaRt and a corresponding sample of n
realized loss outcomes Lt, where t goes from 1
to n. Lt is denominated in units in which real-
ized losses are positive and realized profits are
negative.

Some common approaches to back-testing in-
volve exceedance observations, where an ex-
ceedance observation (also called a tail loss) is
a loss that exceeds the VaR. These exceedance
observations ht are obtained by putting our
sample observations through the following
transformation:

ht =
{

1

0

}
if

{
Lt > VaRt

Lt ≤ VaRt
(1)
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This transformation gives a unit value to all ob-
servations where there is a loss exceeding VaR
and a zero value to all other observations.

Binomial (Kupiec) Approach
We can now apply the basic frequency (or bino-
mial) test suggested by Kupiec (1995): We test
whether the observed frequency of exceedances
is consistent with the frequency predicted by
the model. In particular, under the null hypoth-
esis that the model is “good,” the number of ex-
ceedances x follows a binomial distribution with
probability p, where p is the tail probability or
1 minus the confidence level. The probabil-
ity of x exceedances given n observations is
therefore:

Prob(x|n, p) =
(

n
x

)
px(1 − p)n−x (2)

Equation (2) also tells us that the only infor-
mation required to implement a binomial test is
information about the values of n, p, and x. This
probability is then calculated using a suitable
calculation engine (e.g., using the “binomdist”
function in Excel).

To illustrate, suppose n = 1,000 and we take
the confidence level α to be 0.95. Our model
therefore predicts that p = 1 – α = 0.05 and the
null hypothesis is H0: p = 0.05. We then expect
np = 50 exceedances under the null. Now sup-
pose that the number of exceedances, x, is 60.
This corresponds to an empirical frequency, p̂,
equal to 0.060. Since p̂, exceeds 0.05; we might
specify a one-sided alternative hypothesis H1:
p > 0.05. The prob-value of the test is the prob-
ability under the null that x ≥ 60. This is most
easily calculated as 1 − Pr[x ≤ 59], which equals
0.0867 given the values of n and p. At a conven-
tional significance level such as 5%, we would
then “pass” the model as acceptable. It is also
clear that as x gets larger and moves further
away from its predicted value of 50, then the
probability of observing x exceedances will fall.
Values of x with prob-values lower than our
significance level would lead to rejections of

the null hypothesis and a “fail” result for the
model. In fact, if we work with a 5% signifi-
cance level, it is straightforward to show that
we would accept the null if x ≤ 62 and reject it
if x ≥ 63.

We can also apply binomial tests using a two-
sided alternative hypothesis H1: p �= 0.05. We
could do so by estimating a confidence interval
for the number of exceedances and checking
whether x lies within this interval. For example,
if we want to test using a 5% significance level,
we would estimate a 95% confidence interval
for x, the bounds of which would delineate the
lower and upper 5% tails of x’s density function.
With n = 1,000 and p = 0.05, the 95% confidence
interval for x is [36, 66]. We would then accept
the null if x falls within this range and otherwise
reject it.

A Normal Approximation
Testing can be simplified further if we work
with a normal approximation to the binomial.
Provided n is sufficiently large—and n would
be sufficiently large with the sample sizes that
risk managers typically work with—then the
distribution of x is approximately normal with
mean np and variance np(1 – p). This implies, in
turn, that the variable z = (x − np)/

√
np(1 − p)

is distributed as standard normal, and we can
test whether the observed value of z is compat-
ible with this distribution. For instance, if we
wished to carry out a two-sided test, we know
that the 95% confidence interval for a standard
normal is [−1.96, +1.96], so we would accept
the null if (and only if) z falls in this range.

Tests of Independence
Besides predicting that x should be binomial
or approximately normal with large samples,
the null hypothesis of model adequacy often
leads to the prediction that x should be indepen-
dent. “Independence” means that there should
be no temporal pattern in the x series that is,
the probability of the next observation being an
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exceedance should be independent of whether
any previous observation was an exceedance
or not. Where this prediction arises, it is impor-
tant that it be tested too: A bad model might
pass the earlier tests, but still be inadequate be-
cause it produces predictable exceeedances or
clusters of exceedances that ought not to arise.
Evidence of exceedance clustering would sug-
gest that the model is misspecified, even if the
model has the correct exceedance frequency.

One of the simplest independence tests is a
runs test, in which we test whether the num-
ber of runs in a time series is consistent with
what we would expect under independence.
We can apply a runs test to any data that are
time-ordered and expressed in binary form, as
is the case with observations in our x series that
either take the value 0 or the value 1. A run is
then a sequence of consecutive identical num-
bers, and the number of runs R is equal to the
number of sign changes plus 1. If u is the num-
ber of observations taking one value and v the
number taking the other value, then under the
independence null the mean and variance of the
number of runs are, respectively:

μR = 1 + 2uv

u + v
(3)

σ 2
R = 2uv(2uv − u − v)

(u + v)2(u + v − 1)
(4)

If the total number of observations is large, then
R is approximately normal and z = (R − μR)/σ R

approximately standard normal, and we can
test accordingly.

A more sophisticated version of the same idea
is suggested by Engle and Manganelli (2004):
They propose estimating a binary regression
model—that is, they regress ht against possible
explanatory variables, such as lagged returns or
lagged squared returns—and then test for the
joint insignificance of the explanatory variables.
A binary regression approach is more powerful
than a basic runs test because it can take account
of the impact of other possible variables, which
a runs test does not.

Conditional Testing (Christoffersen)
Approach
We can also carry out tests of the distribution
and independence of x within the same test-
ing framework, and this takes us to the con-
ditional back-testing approach of Christoffersen
(1998). His idea is to separate out the partic-
ular predictions being tested and then test each
prediction separately. We begin by rephrasing
the earlier frequency or unconditional coverage
test in likelihood ratio (LR) form.

Given that the observed frequency of ex-
ceedances is x/n, then under the hypothesis/
prediction of correct unconditional coverage,
the test statistic

LRuc = −2 ln[(1 − p)n−x px]

+2 ln[(1 − x/n)n−x(x/n)x]
(5)

is distributed as a χ2(1), a chi-squared with 1 de-
gree of freedom. As we can see from equation
(5), this boils down to a test of whether the em-
pirical frequency x/n is “close” to the predicted
frequency p.

Turning to the independence prediction, let
nij be the number of days that state j occurred
after state i occurred the previous day, where
the states refer to the occurrence or not of an ex-
ceedance, and let π ij be the probability of state j
in any given day, given that the previous day’s
state was i. Under the hypothesis of indepen-
dence, the test statistic

LRind = −2 ln
[
(1 − π̂2)n00+n11 π̂

n01+n11
2

]

+ 2 ln
[
(1 − π̂01)n00 π̂

n01
01 (1 − π̂11)n10π

n11
11

]

(6)
is also distributed as a χ2(1), and note that we
can recover estimates of the probabilities from

π̂01 = n01

n00 + n01

π̂11 = n11

n10 + n11

π̂2 = n01 + n11

n00 + n10 + n01 + n11

(7)
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It follows that under the combined hypothesis
of correct coverage and independence the test
statistic

LRcc = LRuc + LRind (8)

is distributed as χ2(2). The Christoffersen
approach enables us to test both coverage and in-
dependence hypotheses at the same time. More-
over, if the model fails such a test, this approach
enables us to test each hypothesis separately,
and so establish whether the model fails be-
cause of incorrect coverage or because of lack
of independence.

Strengths and Limitations of
Exceedance-Based Approaches
These exceedance tests have the advantages
that they have a simple intuition, are easy to
apply, and do not require a great deal of infor-
mation. However, they often lack power (that is,
the ability to identify bad models) except with
very large sample sizes, because they throw po-
tentially valuable information away: Focusing
on tests of exceedances over VaR at a given con-
fidence level is equivalent to throwing away in-
formation about the model’s forecasts of VaRs
at other confidence levels, and this discarded
information often includes useful information
about the sizes of tail losses predicted by a risk
model (or information about VaRs at higher
confidence levels). This can mean that a “bad”
risk model will pass an exceedance-based test if
it generates an acceptably accurate frequency of
exceedances, even if its forecasts of losses larger
than VaR are very poor.

STATISTICAL
BACK-TESTING OF VaRs AT
MULTIPLE CONFIDENCE
LEVELS
This line of reasoning suggests that we should
consider back-testing the performance of a
model’s VaR forecasts over multiple confidence

levels. Indeed, pushed to the limit, it suggests
that we consider back-testing a model’s VaR
forecasts over all confidence levels at the same
time. We would proceed by applying the fol-
lowing transformation:

pt = Ft(Xt) (9)

where Ft(.) is the (typically time-dependent)
probability-integral transformation (PIT) that
maps the realized one-day loss or profit, Xt, to
its cumulative density value, where the fore-
cast is made the previous day. So, for example,
if our model specifies that losses are standard
normal, then a value Xt = 1.645 would give us
pt = Ft(1.645) = 0.95, and so forth.

We can now deduce that pt is stationary and
distributed as standard uniform under the hy-
pothesis that the VaR model is adequate. pt is
also independent because consecutive values
of pt have no common factors. Hence pt is pre-
dicted to be independent and identically dis-
tributed (IID) U(0,1) under the null hypothesis.

As an aside, it is worth noting at this point that
the independence assumption does not arise in
cases where we have a multi-step-ahead as op-
posed to a one-step-ahead VaR model: An ex-
ample of the latter is a VaR model that produces
daily VaR forecasts over a daily forecast hori-
zon; an example of the former is a VaR model
that produces daily VaR forecasts over a multi-
day horizon. The forecast horizon is equal to
one day in the one case, and equal to more
than one day in the other. The pt are predicted
to be independent for one-day-ahead VaR fore-
casts because consecutive observations are not
affected by common shocks; however, for mul-
tiday forecasts, there is no independence pre-
diction because consecutive pt observations are
subject to at least one common random factor.
For example, the two-day return over Monday
and Tuesday and the two-day return over Tues-
day and Wednesday are both affected by the
Tuesday daily return. This means that they have
a common random factor and are therefore not
independent. We will ignore multistep-ahead
models in the rest of our discussion, but the
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reader should keep in mind that we cannot as-
sume independence for multi-step-ahead mod-
els or regard independence tests applied to such
models as tests of model adequacy.

Testing Uniformity
Returning to the one-step-ahead case, we can
now test our model by applying conventional
uniformity tests. One of the best known of these
is the Kolmogorov-Smirnov (KS) test. The KS
test statistic D is then the maximum distance
between the predicted cumulative density F(x),
which is a 45-degree line, and the empirical cu-
mulative density F̂ (x), evaluated over each data
point Xt:

D = max
t

∣∣F (Xt) − F̂ (Xt)
∣∣ (10)

The test value of the KS statistic is then com-
pared to the relevant critical value and the null
is accepted or rejected accordingly. This test is
easy to implement because the test statistic is
straightforward to calculate and its critical val-
ues are easily obtained using Monte Carlo sim-
ulation. However, the KS test tends to be more
sensitive to the distributional differences near
the center of the distribution, and is less sensi-
tive at the tails. This is obviously a drawback
when back-testing VaR models, where we are
usually much more interested in the tail than in
the central mass of a distribution.

A way around this latter problem is to replace
the KS test with a Kuiper test. The Kuiper test
statistic D* is the sum of the maximum amount
by which each distribution exceeds the other:

D∗ = max
t

∣∣F (Xt) − F̂ (Xt)
∣∣

+ max
t

∣∣F̂ (Xt) − F (Xt)
∣∣ (11)

The Kuiper test can be implemented in much
the same way as the KS test: Its test statistic is
straightforward to calculate and its critical val-
ues can be obtained by Monte Carlo simulation.
The Kuiper test has the advantage over the KS
test that it is more sensitive to deviations in the
tail regions. It is also believed to be more robust

to transformations in the data, and to be good
at detecting cyclical and other features in the
data. However, there is also evidence that it is
very data intensive and needs large datasets to
get reliable results.

We can also test uniformity by applying a text-
book χ2 test to binned (or classified) data). We
divide the data into k classes and then compute
the test statistic:

k∑

i=1

(Oi − Ei )2

Ei
(12)

where Oi is the observed frequency of data in
bin i, and Ei is the expected frequency of data in
bin i. Under the null hypothesis, this test statis-
tic is distributed as χ2(k − c), where c is the num-
ber of estimated parameters in the VaR model.
The main disadvantage of the χ2 test is that re-
sults are dependent on the way in which the
data are binned and binning is (largely) arbi-
trary. In using it, we should be careful to check
the sensitivity of results to alternative ways of
binning the data.

Applying the Berkowitz
Transformation and Testing for
Standard Normality
It is often more convenient to put the pt through
a second (or Berkowitz) transformation to make
them standard normal under the null of model
adequacy; that is, we work with the trans-
formed variable:

zt = �−1(pt) (13)

where �(.) is the standard normal distribu-
tion function (see Berkowitz, 2001). This sec-
ond transformation is helpful because testing
for standard normality is more convenient than
testing for standard uniformity, and because a
normal variable is more convenient when deal-
ing with temporal dependence. Under the null,
zt will be distributed as IID standard normal
[denoted by IID N(0,1)].
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Testing model adequacy now boils down to
testing whether zt is distributed as IID N(0,1).
There are two distinct tasks here:

1. We need to test whether zt is N(0,1), taking as
given that zt is IID, and there are various tests
we might apply. If zt is standard normal, then
it should have a zero mean, a variance of 1, a
zero skew, and a kurtosis of 3. Assuming IID,
we can test the mean prediction using a z-test
or t-test, we can test the variance prediction
using a variance ratio test, and we can test the
skewness and kurtosis predictions using a
Jarque-Bera test, which can also be regarded
as a test of normality itself. All these tests are
conventional textbook tests and are easy to
apply.

2. We need to test whether zt is IID, and there
are many tests of the IID prediction. These
include runs and binary regression tests,
which we have already discussed above. We
can also estimate the autocorrelation struc-
ture of our zt observations or fit an autore-
gressive moving average (ARMA) process to
them. All the parameters in an autocorrela-
tion function or an ARMA process should be
insignificant, and we can test for their sig-
nificance using standard tests such as a Box-
Pierce Q test. Another possibility, if we have
enough data, is to test independence using
a BDS test (Brock et al., 1987): a BDS test is
very powerful, but also data-intensive.

Since the hypothesis of model adequacy pre-
dicts both N(0,1) and IID, it is important to note
that the model must “pass” both types of test if
it is to “pass” overall.

Tests Applied to Truncated
Distributions
There are also situations where we are only
interested in part of the P/L distribution: For
example, we might be interested only in the
distribution of losses in excess of VaR. If we are
working to a confidence level α, we can take
our earlier pt series and delete all nontail obser-

vations from it. We then end up with a series
that is IID uniformly distributed over the in-
terval [0,1 − α], and this implies that pt/(1 −
α) is IID uniformly distributed over the interval
[0,1]. We can test this prediction using one of the
uniformity tests discussed earlier. If we wish to,
we can apply the Berkowitz transformation to
pt/(1 − α) to obtain the series zt = �−1(pt/(1 −
α)), which is distributed as IID N(0,1) under the
null. We can then apply the tests just discussed.

USING BACK-TESTS FOR
DIAGNOSTIC PURPOSES
We can also modify many of these back-test
procedures to help diagnose problems with our
VaR model. Model diagnosis is a key ingredient
to successful model building, and requires the
modeler to be on the lookout for evidence of
possible problems. So, to use an earlier exam-
ple, if we have 60 exceedances out of a sample of
1,000 and we are operating to a VaR at the 95%
confidence level, then we know that this is asso-
ciated with a prob-value of 0.0867. Were we car-
rying out a formal back-test of model adequacy
at a conventional significance level such as 5%,
we would dismiss this result as statistically in-
significant because the significance level gives
the model the benefit of the doubt. However, for
diagnostic purposes we do not wish to give the
model the benefit of the doubt: Instead, we are
looking for evidence “against” the model, even
if that evidence is statistically “weak.” In these
circumstances, a result like this would lead us
to suspect whether the model has a tendency
to underestimate the VaR. A wise risk manager
would then start to ask whether other evidence
could be found that would confirm or refute
this suspicion. And, to put the same point a
little differently, the last thing a risk manager
should do in the face of such evidence is to wait
and do nothing till the evidence has become
overwhelming: The risk manager should act in
a timely manner on the basis of any reasonable
evidence available.
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Independence tests can also be useful diag-
nostic tools. If we apply an independence test
and the test result gives us some (not neces-
sarily strong) reason to suspect that the model
does not satisfy a valid independence predic-
tion, then we can interpret this evidence as
suggesting that there might be some dynamic
misspecification in our model: Even if the broad
coverage is about right, there might still be
something wrong with the updating of our VaR
forecasts from one day to the next. So, for exam-
ple, if we have a parametric VaR model, then we
might suspect that a key parameter in the model
was not being updated efficiently, and the obvi-
ous suspects would be volatility or correlation
parameters. Again, the evidence might be sta-
tistically “weak,” but even weak evidence can
be useful in pointing to areas of weakness in the
model.

Another useful diagnostic is provided by em-
pirical moments of the Berkowitz-transformed
series (see equation (13) above), which we saw
earlier are predicted to be standard normal un-
der the null of model adequacy. Some very use-
ful diagnostic information can then be obtained
by estimating their sample moments and con-
sidering any departures from their predicted
values:

� If the sample mean is different from zero, we
might suspect whether the model’s forecasts
are biased in one direction or the other.

� If sample variance is less than 1, we might sus-
pect that the model’s predicted dispersion is
too low, in which case the model might over-
estimate risk; and if the sample variance is
greater than 1, we might suspect that the pre-
dicted dispersion is too high and the model
underestimates risk.

� If the sample skew is positive or negative, we
might suspect that the forecasts are skewed
in one direction or the other.

� If the sample kurtosis is less than 3 or (as
is more likely in risk management contexts)
bigger than 3, we might ask ourselves if the
model is overestimating or underestimating
its tails.

In each of these cases, we should also check
the strength of the evidence and we can do so
by applying the relevant tests and checking out
their prob-values: The lower the prob-value, the
stronger the evidence against the model. How-
ever, since we are especially concerned in risk
management with the possibility that the model
might underestimate risks, then a sample vari-
ance that considerably exceeds 1 or a sample
kurtosis that considerably exceeds 3 is poten-
tially important evidence that might warrant
further scrutiny.

RANKING ALTERNATIVE
MODELS
It is often the case that we are interested in
how different models compare to each other.
We can compare models using forecast evalua-
tion methods that give each model a score in
terms of some loss function; we then use the
loss scores to rank the models—the lower the
loss, the better the model. These approaches
are not statistical tests of model adequacy and
this means that they do not suffer from the
low power of tests such as frequency tests: This
makes them attractive for back-testing with the
datasets typically available in real-world appli-
cations. In addition, they also allow us to tailor
the loss function to take account of particular
concerns: For example, we might be more con-
cerned about higher losses than lower losses,
and might therefore wish to give higher losses
a greater weight in our loss function.

The ranking process has four key ingredients
for each model:

1. A set of n paired observations—paired ob-
servations of losses or profits for each period
and their associated VaR forecasts.

2. A loss function that gives each observation
a score Ct depending on how the observed
loss or profit compares to the VaR forecasted
for that period.

3. A benchmark, which gives us an idea of the
score we could expect from a “good” model.
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4. A score function, which takes as its inputs
our loss-function and benchmark values.

We need to specify the loss function, and a
number of different loss functions have been
proposed. Perhaps the most straightforward is
the binary loss function proposed by Lopez
(1998, p. 121), which gives exceedance obser-
vations a value of 1 and other observations a
value of 0. Ct is then as follows:

Ct =
{

1
0

if
Lt > VaRt

Lt ≤ VaRt
(14)

This loss function is intended for the user who
is (exclusively) concerned with the frequency
of exceedances. The natural benchmark for this
loss function is p, the exceedance probability or
expected value of E(Ct). If we take our bench-
mark to be the expected value of Ct under the
null hypothesis that the model is “good,” then
Lopez (1998) suggests that a good choice of
score function is the following quadratic prob-
ability score (QPS) function:

QPS = 2
n

n∑

t=1

(Ct − p)2 (15)

The QPS takes a value in the range [0,2], and
the closer the QPS-value to zero, the better the
model. We can therefore use the QPS (or some
similar score function) to rank our models, with
the better models having the lower scores. In ad-
dition, the QPS criterion has the attractive prop-
erty that it (usually) encourages truth-telling by
VaR modelers: If VaR modelers wish to mini-
mize their QPS score, they will (usually) report
their VaRs “truthfully.” This is a useful property
in situations where the back-tester and the VaR
modeler are different, and where the back-tester
might be concerned about the VaR modeler re-
porting false VaR forecasts to alter the results of
the back-test.

A drawback of this loss function is that it ig-
nores the magnitude of tail losses. If we wish
to remedy this defect, Lopez suggests a second,

size-adjusted, loss function:

Ct =
{

1 + (Lt − VaRt)2

0
if

Lt > VaR
Lt ≤ VaRt

(16)

This loss function allows for the sizes of tail
losses in a way that (15) does not: A model
that generates higher tail losses would gener-
ate higher values of (16) than one that generates
lower tail losses, other things being equal. How-
ever, with this loss function, there is no longer
a straightforward condition for the benchmark,
so we need to estimate the benchmark by some
other means (e.g., Monte Carlo simulation). The
size-adjusted loss function (17) also has the
drawback that it loses some of its intuition, be-
cause squared monetary returns have no ready
monetary interpretation.

A way around this last problem is suggested
by Blanco and Ihle (1998), who suggest the fol-
lowing loss function:

Ct =
{

(Lt − VaRt)/VaRt

0
if

Lt > VaRt

Lt ≤ VaRt

(17)

This loss function gives each tail-loss observa-
tion a weight equal to the tail loss divided by the
VaR. This has a nice intuition and ensures that
higher tail losses get awarded higher Ct val-
ues without the impaired intuition introduced
by squaring the tail loss. The benchmark for this
forecast evaluation procedure is also easy to de-
rive: The benchmark is equal to the difference
between the Expected Shortfall (ES) and the
VaR, divided by the VaR. However, the Blanco-
Ihle loss function also has a problem of its own:
Because (17) has the VaR as its denominator, it
is not defined if the VaR is zero, and can give
awkward answers if VaR gets “close” to zero
or becomes negative. We should therefore only
use it if we can be confident of the VaR being
sufficiently large and positive.

We therefore seek a size-based loss function
that avoids the squared term in the second
Lopez loss function, but also avoids denomi-
nators that might be zero-valued. A promising



370 Risk Measures

candidate is the tail loss itself:

Ct =
{

Lt

0
if

Lt > VaR

Lt ≤ VaRt
(18)

The expected value of the tail loss is of course
the ES, so we can choose the ES as our bench-
mark and use a quadratic score function such
as:

QS = 2
n

n∑

t=1

(Ct − ESt)2 (19)

This approach penalizes deviations of tail losses
from their expected value, which makes intu-
itive sense. Moreover, because it is quadratic, it
gives very high tail losses much greater weight
than more common tail losses, and thereby
comes down hard on large losses.

KEY POINTS
� In general, back-testing is the quantitative

evaluation of a model. When back-testing is
applied to a risk or probability density fore-
casting model, it involves a comparison of
the model’s density forecasts against sub-
sequently realized outcomes of the random
variable whose density is forecast.

� The main purposes of back-testing market
risk models are to test model adequacy, to
diagnose potential model problems, and to
compare or rank alternative models. A good
risk model should fare well by all three crite-
ria: It should pass its statistical tests, should
not generate any worrying diagnostics, and
should rank well in comparison to alternative
models.

� Because the typical market risk model is a
model that forecasts the value-at-risk of a
portfolio over one or more confidence levels
for a specified horizon, back-testing of mar-
ket risk models involves some comparison of
VaR forecasts against subsequently realized
values of profit or loss.

� Formal tests of market risk model adequacy
can be applied to the frequency and inde-

pendence of exceedance observations, but can
also be applied to forecasts of VaR at multiple
confidence levels.

� Comparable approaches can be used for
model diagnostic purposes, where the main
concern is not to test model adequacy in a
formal way, as such, but instead to gather ev-
idence of possible model misspecification.

� Simple loss-scoring approaches can be used to
rank the forecast performance of alternative
models.
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Abstract: The measurement of liquidity risk risks is an underdeveloped area of market risk measure-
ment and management. Liquidity issues affect the estimation of conventional market risk measures,
but the measurement of liquidity risks is an important subject in its own right. Liquidity issues also
figure prominently in periods of market crisis. There are various easily implementable and often
complementary approaches to the estimation of liquidity-adjusted Value-at-Risk: These involve
modeling the bid-ask spread or the liquidity discount incurred when liquidating a position. There
are also approaches to the modelling of Liquidity-at-Risk, which deals with the riskiness of cash
flows, in both noncrisis and crisis situations.

Market practitioners often assume that markets
are liquid—that is, that we can liquidate or un-
wind positions at going market prices, usually
taken to be the mean of bid and ask prices, with-
out too much difficulty or cost. This assumption
is very convenient and provides a justification
for the practice of marking positions to market
prices. However, it is often empirically ques-
tionable and the failure to allow for it can seri-
ously undermine market risk measurement. In
any case, liquidity risk is a major risk factor in
its own right, and we will often want to measure
it too.

This entry looks at liquidity issues and how
they affect the estimation of market and liquidity
risk measures. Liquidity issues affect market risk
measurement through their impact on standard
measures of market risk. In addition, because
effective market risk management involves an
ability to estimate and manage liquidity risk it-
self, we also need to be able to estimate liquidity
risk—or liquidity-at-risk. Finally, since liquidity

problems are particularly prominent in market
crises, we also need to address how to estimate
crisis-related market risks and liquidity risks.
Accordingly, the main themes of this entry are:

� The nature of market liquidity and illiquidity,
and their associated costs and risks.

� The estimation of value-at-risk (VaR) in illiquid
or partially liquid markets—liquidity-adjusted
VaR (or LVaR).

� Estimating liquidity-at-risk (LaR).
� Estimating crisis-related liquidity risks.

For convenience, and to be faithful to the lit-
erature, we focus on the (discredited, but com-
putationally convenient) VaR risk measure, but
we should note that any of the approaches
suggested here can be adapted to estimate
superior risk measures such as coherent risk
measures (see, e.g., Artzner et al., 1999) or any
other quantile-based risk measures. For exam-
ple, estimates of these alternative risk measures
can be obtained using the “average tail VaR”
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approach set out in Dowd (2005, Chapter 3):
This is based on the idea that, since the VaR is a
quantile, any of these other quantile-based risk
measurements can be estimated as a weighted
average of VaRs predicated on a suitable range
of confidence levels.

LIQUIDITY AND LIQUIDITY
RISKS
The notion of liquidity refers to the ability of a
trader to execute a trade or liquidate a position
with little or no cost, risk, or inconvenience. Liq-
uidity is a function of the market, and depends
on such factors as the number of traders in the
market, the frequency and size of trades, the
time it takes to carry out a trade, and the cost
(and sometimes risk) of transacting. It also de-
pends on the commodity or instrument traded,
and more standardized instruments (e.g., such
as FX or equities) tend to have more liquid mar-
kets than nonstandardized or tailor-made in-
struments (e.g., such as over-the-counter [OTC]
derivatives). Markets vary greatly in their liq-
uidity: Markets such as the FX market and the
big stock markets are (generally) highly liquid;
but other markets are less so, particularly those
for many OTC instruments and instruments
that are usually held to maturity and, hence, are
rarely traded once initially bought. However,
even the “big” standardized markets are not
perfectly liquid—their liquidity fluctuates over
time and can fall dramatically in a crisis—so we
cannot take their liquidity for granted.

Imperfect liquidity also implies that there is
no such thing as the going market price. Instead,
there are two going market prices—an ask price,
which is the price at which a trader sells, and
a (lower) bid price, which is the price at which
a trader buys. The “market” price often quoted
is just an average of the bid and ask prices, and
this price is fictional because no one actually
trades at this price. The difference between the
bid and ask prices is a cost of liquidity, and
in principle we should allow for this cost in
estimating market risk measures.

The bid-ask spread also has an associated risk,
because the spread itself is a random variable.
This means there is some risk associated with
the price we can obtain, even if the fictional mid-
spread price is given. Other things being equal,
if the spread rises, the costs of closing out our
position will rise, so the risk that the spread will
rise should be factored into our risk measures
along with the usual market price risk.

We should also take account of a further dis-
tinction. If our position is small relative to the
size of the market (e.g., because we are a very
small player in a very large market), then our
trading should have a negligible impact on the
market price. In such circumstances we can re-
gard the bid-ask spread as exogenous to us, and
we can assume that the spread is determined by
the market beyond our control. However, if our
position is large relative to the market, our activ-
ities will have a noticeable effect on the market
itself and can affect both the market price and
the bid-ask spread. For example, if we suddenly
unload a large position, we should expect the
market price to fall and the bid-ask spread to
widen. This is partly because there is a limited
market, and prices must move to induce other
traders to buy. A second reason is a little more
subtle: Large trades often reveal information,
and the perception that they do will cause other
traders to revise their views. Consequently, a
large sale may encourage other traders to revise
downward their assessment of the prospects for
the instrument concerned, and this will further
depress the price. In these circumstances the
market price and the bid-ask spread are to some
extent endogenous (i.e., responsive to our trad-
ing activities) and we should take account of
how the market might react to us when esti-
mating liquidity costs and risks. Other things
again being equal, the bigger our trade, the big-
ger the impact we should expect it to have on
market prices.

In sum, we are concerned with both liquidity
costs and liquidity risks, and we need to take ac-
count of the difference between exogenous and
endogenous liquidity. We now consider some of
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the approaches available to adjust our estimates
of VaR to take account of these factors.

ESTIMATING
LIQUIDITY-ADJUSTED VaR
There are many ways we could estimate
liquidity-adjusted VaR. These vary in their
degrees of sophistication and in their ease (or
otherwise) of implementation, and there is no
single “best” method. However, sophisticated
approaches are not necessarily more useful than
more basic ones, and the best method, even if
we could establish what it is, is not necessarily
better than a collection of inferior ones. Instead,
what we really seek are simple-to-implement
(i.e., spreadsheet-executable) approaches that
are transparent in terms of their underlying as-
sumptions; in effect, we are looking for liquid-
ity “add-ons” that allow us to modify original
VaR estimates that were obtained without any
consideration for liquidity. We can then easily
assess the impact of our assumptions on our es-
timates of VaR. Moreover, there is a premium on
compatibility, because different methods look
at different aspects of illiquidity, and it can be
helpful to combine them to get some sense of an
overall liquidity adjustment. Because of this, a
really good method might not always be as use-
ful as two inferior methods that actually work
well together.

Whichever models we used, we also need
to check their sensitivities—how does the
liquidity adjustment change as we change the
confidence level, holding period, or any other
parameters? A priori, we should have some
idea of what these should be (e.g., that the
liquidity adjustment should fall as the holding
period rises, etc.), and we need to satisfy our-
selves that the models we use have sensitivities
of the right sign and approximate magnitude.
Going further, we should also try to ensure that
models are calibrated against real data (e.g., bid-
ask spread parameters should be empirically
plausible, etc.) and be properly stress-tested

and back-tested. In addition, we should keep
in mind that different approaches are often
suited to different problems, and we should
not seek a best approach to the exclusion of any
others. In the final analysis, liquidity issues are
much more subtle than they look, and there is
no established consensus on how we should
deal with them. So perhaps the best advice
is for risk measurers to hedge their bets, and
use different approaches to highlight different
liquidity concerns.

The Constant Spread Approach
Ideally, if we had actual transaction prices,
we could infer the actual returns obtained by
traders, in which case conventional VaR meth-
ods would take account of spread liquidity
factors without the need for any further adjust-
ment. In such cases, we would model actual
returns (taking account of how they depend
on market volume, etc.), infer a relevant con-
ditional distribution (e.g., a t), and plug in the
values of the parameters concerned into an ap-
propriate parametric VaR equation. For more on
how this might be done, see Giot and Grammig
(2003).

However, practitioners often lack such data
and have to work with market prices that are
averages of bid and ask prices. They might then
attempt to take account of liquidity factors by
working with the bid-ask spread, and the sim-
plest way to incorporate liquidity risk into a
VaR calculation is in terms of a spread that is
assumed to be constant. If we make this as-
sumption, the liquidity cost is then equal to half
the spread times the size of the position liqui-
dated. Using obvious notation, this means that
we add the following liquidity cost (LC) to a
“standard” VaR:

LC = 1
2

spread∗ P (1)

where spread is expressed as actual spread di-
vided by the midpoint. For the sake of compari-
son and using obvious notation, let us compare
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this to a benchmark conventional lognormal
VaR with no adjustment for liquidity risk:

VaR = P
[
1 − exp(μR − σRzα)

]
(2)

where the returns have been calculated using
prices that are the midpoints of the bid-ask
spread. The liquidity-adjusted VaR, LVaR, is
then given by:

LVaR = VaR + LC = P[1 − exp(μR − σRzα)

+ 1
2

spread] (3)

Setting μR = 0 to clarify matters, the ratio of
LVaR to VaR is then

LVaR
VAR

= 1 + spread
2[1 − exp(−σRzα)]

(4)

It is easy to show that the liquidity adjustment
(a) rises in proportion with the assumed spread,
(b) falls as the confidence level increases, and (c)
falls as the holding periods each increase. The
first and third of these are obviously correct, but
the second implication is one that may or may
not be compatible with one’s prior expectations.

This approach is easy to implement and
requires only minimal information, but the
assumption of a constant spread is highly
implausible, and it takes no account of any other
liquidity factors.

The Exogenous Spread Approach
A superior alternative is to assume that traders
face random spreads. If our position is suffi-
ciently small relative to the market, we can also
regard our spread risk as exogenous to us (i.e.,
independent of our own trading), for any given
holding period. We could assume any process
for the spread that we believe to be empirically
plausible. For example, we might believe that
the spread is normally distributed:

spread ∼ N(μspread, σ
2
spread) (5)

where μspread is the mean spread and σspread is
the spread volatility. Alternatively, we might
use some heavy-tailed distribution to accom-
modate excess kurtosis in the spread.

We could now estimate the LVaR using Monte
Carlo simulation: We could simulate both P and
the spread, incorporate the spread into P to
get liquidity-adjusted prices, and then infer the
liquidity-adjusted VaR from the distribution of
simulated liquidity-adjusted prices.

However, in practice, we might take a short-
cut suggested by Bangia et al. (1999). They
suggest that we specify the liquidity cost (LC)
as:

LC = P
2

(μspread + kσspread) (6)

where k is some parameter whose value is to
be determined. The value of k could be deter-
mined by a suitably calibrated Monte Carlo ex-
ercise, but they suggest that a particular value
(k = 3) is plausible (e.g., because it reflects the
empirical facts that spreads appear to have ex-
cess kurtosis and are negatively correlated with
returns, etc.). The liquidity-adjusted VaR, LVaR,
is then equal to the conventional VaR plus the
liquidity adjustment (6):

LVaR = VaR + LC = P[1 − exp(μR − σRzα)

+ P
2

(μspread + 3σspread] (7)

Observe that this LVaR incorporates (3) as a
special case when σspread = 0. It therefore retains
many of the properties of (3), but generalizes
from (3) in allowing for the spread volatility as
well. The ratio of LVaR to VaR is then:

LVaR
VaR

= 1 + LC
VaR

= 1 + 1
2

(μspread + 3σspread)
[
1 − exp(−σr zα)

]

(8)

This immediately tells us that the spread
volatility σspread serves to increase the liquid-
ity adjustment relative to the earlier case. The
Bangia et al. framework was also further de-
veloped by Erwan (2002), who presented em-
pirical results that are similar to the illustrative
ones presented here in suggesting that the liq-
uidity adjustment can make a big difference to
our VaR estimates.
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Endogenous-Price Approaches
The previous approaches assume that prices are
exogenous and therefore ignore the possibility
of the market price responding to our trading.
However, we have also noted that this is of-
ten unreasonable, and we may wish to make a
liquidity adjustment that reflects the response
of the market to our own trading. If we sell,
and the act of selling reduces the price, then
this market-price response creates an additional
loss relative to the case where the market price
is exogenous, and we need to add this extra loss
to our VaR. The liquidity-adjustment will also
depend on the responsiveness of market prices
to our trade: The more responsive the market
price, the bigger the loss.

We can estimate this extra loss in various
ways, but the simplest is to make use of some
elementary economic theory. We begin with the
notion of the price elasticity of demand, η, de-
fined as the ratio of the proportional change
in price divided by the proportional change in
quantity demanded:

η = �P/P
�N/N

< 0; �N/N > 0 (9)

where in this context N is the size of the market
and �N is the size of our trade. �N/N is there-
fore the size of our trade relative to the size of
the market. The impact of the trade on the price
is therefore

�P
P

= η
�N
N

(10)

We can therefore estimate �P/P on the basis
of information about η and �N/N, and both of
these can be readily guessed at using a combi-
nation of economic and market judgement. The
LVaR is then:

LVaR = VaR
(

1 − �P
P

)
= VaR

(
1 − η

�N
N

)

(11)
bearing in mind that the change in price is neg-
ative. The ratio of LVaR to VaR is therefore:

LVaR
VaR

= 1 − η
�N
N

(12)

This gives us a very simple liquidity adjust-
ment that depends on only two easily calibrated
parameters. It is even independent of the VaR
itself: The adjustment is the same regardless of
whether the VaR is normal, lognormal, etc.

The ratio of LVaR to VaR thus depends entirely
on the elasticity of demand η and the size of our
trade relative to the size of the market (�N/N).

This type of approach is easy to implement,
and it is of considerable use in situations where
we are concerned about the impact on VaR of
endogenous market responses to our trading
activity, as might be the case where we have
large portfolios in thin markets. However, it is
also narrow in focus and entirely ignores bid-
ask spreads and transactions costs.

On the other hand, the fact that this approach
focuses only on endogenous liquidity and the
earlier ones focus on exogenous liquidity means
that this last approach can easily be combined
with one of the others; in effect, we can add
one adjustment to the other. Thus, two very
simple approaches can be added to produce
an adjustment that addresses both exogenous
and endogenous liquidity risk. This combined
adjustment is given by

LVaR
VaR

∣∣∣∣
combined

= LVaR
VaR

∣∣∣∣
exogenous

+ LVaR
VaR

∣∣∣∣
endogenous

(13)

The Liquidity Discount Approach
A more sophisticated approach is suggested
by Jarrow and Subramanian (1997). They con-
sider a trader who faces an optimal liquidation
problem—the trader must liquidate his or her
position within a certain period of time to max-
imize expected utility, and seeks the best way
to do so. Their approach is impressive, as it en-
compasses exogenous and endogenous market
liquidity, spread cost, spread risk, an endoge-
nous holding period, and an optimal liquida-
tion policy.

Their analysis suggests that we should mod-
ify the traditional VaR in three ways. First, in-
stead of using some arbitrary holding period,
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we should use an optimal holding period deter-
mined by the solution to the trader’s expected-
utility optimization problem, which takes into
account liquidity considerations and the pos-
sible impact of the trader’s own trading strat-
egy on the prices obtained. We should also add
the average liquidity discount to the trader’s
losses (or subtract it from our prices) to take ac-
count of the expected loss from the selling pro-
cess. Finally, their analysis also suggests that
the volatility term should take account of the
volatility of the time to liquidation and the
volatility of the liquidity discount factor, as well
as the volatility of the underlying market price.

To spell out their approach more formally, as-
sume that prices between trades follow a geo-
metric Brownian motion with parameters μ and
σ . The current time is 0 and the price at time t
is p(t), so that geometric returns log(p(t)/p(0))
are normally distributed. However, the prices
actually obtained from trading are discounted
from p(t); more specifically, the prices obtained
are p(t)c(s), where c(s) is a random quantity-
dependent proportional discount factor, s is the
amount traded, 0 ≤ c(s) ≤ 1 and, other things
being equal, c(s) falls as s rises. Any order
placed at time t will be also be subject to a
random execution lag �(s), and therefore take
place at time t + �(s). Other things again being
equal, the execution lag �(s) rises with s: Big-
ger orders usually take longer to carry out. Our
trader has S shares and wishes to maximize the
present value of his or her current position, as-
suming that it is liquidated by the end of some
horizon t, taking account of all relevant factors,
including both the quantity discount c(s) and
the execution lag �(s). After solving for this
problem, they produce the following expres-
sion for the liquidity-adjusted VaR:

LVaR = P
{

E[ln(p(�(S))c(S)/p(0)]

+ std[ln(p(�(S))c(S)/p(0)]zα

}
(14)

= P
{(

μ − σ 2

2

)
μ�(S) + μln c(S)

+
[
σ
√

μ�(S) +
(

μ − σ 2

2

)
σ�(S) + σln c(S)

]
zα

}

where all parameters have the obvious interpre-
tations. This expression differs from the conven-
tional VaR in three ways. First, the liquidation
horizon t in the conventional VaR is replaced
by the expected execution lag μ�(S) in selling S
shares. Clearly, the bigger is S, the longer the
expected execution lag. Second, the LVaR takes
account of the expected discount μln c(s) on the
shares to be sold. And, third, the volatility σ in
the conventional VaR is supplemented by ad-
ditional terms related to σ�(s) and σln c(s), which
reflect the volatilities of the execution time and
the quantity discount. Note, too, that if our liq-
uidity imperfections disappear, then μ�(S) = t,
σ�(S) = 0, and c(S) = 1 (which in turn implies
μln c(s) = σln c(s) = 0) and our LVaR (14) collapses
to a conventional VaR as a special case—which
is exactly as it should be.

To use this LVaR expression requires estimates
of the usual Brownian motion parameters μ and
σ , as well as estimates of the liquidity param-
eters μ�(S), σ�(S), μln c(s) and σln c(s), all of which
are fairly easily obtained. The approach is there-
fore not too difficult to implement. All we have
to do is then plug these parameters into (14) to
obtain our LVaR.

ESTIMATING
LIQUIDITY-AT-RISK (LAR)
We turn now to liquidity-at-risk (LaR), some-
times also known as cash flow-at-risk (CFaR).
LaR (or CFaR) relates to the risk attached to
prospective cash flows over a defined horizon
period, and can be defined in terms analogous
to the VaR. Thus, the LaR is the maximum likely
cash outflow over the horizon period at a spec-
ified confidence level: for example, the 1-day
LaR at the 95% confidence level is the maxi-
mum likely cash outflow over the next day, at
the 95% confidence level, and so forth. A posi-
tive LaR means that the likely worst outcome,
from a cash flow perspective, is an outflow of
cash; and a negative LaR means that the likely
worst outcome is an inflow of cash. The LaR is
the cash flow equivalent to the VaR, but whereas
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VaR deals with the risk of losses (or profits), LaR
deals with the risk of cash outflows (or inflows).

These cash flow risks are quite different from
the risks of liquidity-related losses. Nonethe-
less, they are closely related to these latter risks,
and we might use LaR analysis as an input to
evaluate them. Indeed, the use of LaR for such
purposes is an important liquidity management
tool.

An important point to appreciate about LaR is
that the amounts involved can be very different
from the amounts involved with VaR. Suppose
for the sake of illustration that we have a large
market-risk position that we hedge with a fu-
tures hedge of much the same amount. If the
hedge is a good one, the basis or net risk re-
maining should be fairly small, and our VaR
estimates should reflect that low basis risk and
be relatively small themselves. However, the
futures hedge leaves us exposed to the possibil-
ity of margin calls, and our exposure to margin
calls will be related to the size of the futures
position, which corresponds to the gross size
of our original position. Thus, the VaR depends
largely on the netted or hedged position, whilst
the LaR depends on the larger gross position. If
the hedge is a good one, the basis risk (or the
VaR) will be low relative to the gross risk of the
hedge position (or the LaR), and so the LaR can
easily be an order of magnitude greater than the
VaR. On the other hand, there are also many
market risk positions that have positive VaR,
but little or no cash flow risk (e.g., a portfolio
of long European option positions, which gen-
erates no cash flows until the position is sold or
the options expire), and in such cases the VaR
will dwarf the LaR. So the LaR can be much
greater than the VaR or much less than it, de-
pending on the circumstances.

As we might expect, the LaR is potentially
sensitive to any factors or activities, risky or
otherwise, that might affect future cash flows.
These include:

� Borrowing or lending, the impact of which on
future cash flows is obvious.

� Margin requirements on market risk positions
that are subject to daily marking-to-market.

� Collateral obligations, such as those on
swaps, which can generate inflows or out-
flows of cash depending on the way the
market moves. Collateral obligations can
also change when counterparties like brokers
alter them in response to changes in volatil-
ity, and collateral requirements on credit-
sensitive positions (e.g., such as default-risky
debt or credit derivatives) can change in
response to credit events such as credit-
downgrades.

� Unexpected cash flows can be triggered by
the exercise of options, including the exercise
of convertibility features on convertible debt
and call features on callable debt.

� Changes in risk management policy; for in-
stance, a switch from a futures hedge to an
options hedge can have a major impact on
cash flow risks, because the futures position
is subject to margin requirements and mark-
ing to market whilst a (long) option position
is not.

Two other points are also worth emphasizing
here. The first is that obligations to make cash
payments often come at bad times for the firms
concerned, because they are often triggered by
bad events. The standard example is where a
firm suffers a credit downgrade that leads to an
increase in its funding costs, and yet this same
event also triggers a higher collateral require-
ment on some existing (e.g., swap) position and
so generates an obligation to make a cash pay-
ment. It is axiomatic in many markets that firms
get hit when they are most vulnerable. The sec-
ond point is that positions that might be similar
from a market risk perspective (e.g., such as
a futures hedge and an options hedge) might
have very different cash flow risks. The dif-
ference in cash flow risks arises, not so much
because of differences in market risk character-
istics, but because the positions have different
credit risk characteristics, and it is the measures
taken to manage the credit risk—the margin
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and collateral requirements, and so on—that
generate the differences in cash flow risks.

We can estimate LaR using many of the same
methods used to estimate VaR and other mea-
sures of market risk. One approach, suggested
by Singer (1997), is to use our existing VaR esti-
mation tools to estimate the VaRs of marginable
securities only (i.e., those where P/L translates
directly into cash flows), thus allowing us to in-
fer an LaR directly from the VaR. We could then
combine this LaR estimate with comparable fig-
ures from other sources of liquidity risk within
the organization (e.g., such as estimates of LaR
arising from the corporate treasury) to produce
an integrated measure of firm-wide liquidity
risk. The beauty of this strategy is that it makes
the best of the risk measurement capabilities
that already exist within the firm, and effec-
tively tweaks them to estimate liquidity risks.

However, this approach is also fairly rough
and ready, and cannot be relied upon when
the firm faces particularly complex liquidity
risks. In such circumstances, it is often better to
build a liquidity-risk measurement model from
scratch, and we can start by setting out the ba-
sic types of cash flow to be considered. These
might include:

� Known certain (or near certain) cash flows
(e.g., income from government bonds, etc.).
These are very easy to handle because we
know them in advance.

� Unconditional uncertain cash flows (e.g., in-
come from default-risky bonds, etc.). These
are uncertain cash flows, which we model
in terms of the probability density functions
(pdfs) (i.e., we choose appropriate distribu-
tions, assign parameter values, etc.).

� Conditional uncertain cash flows. These are
uncertain cash flows that depend on other
variables (e.g., a cash flow might depend on
whether we proceeded with a certain invest-
ment, and so we would model the cash flow
in terms of a pdf, conditional on that in-
vestment); other conditioning variables that
might trigger cash flows could be interest

rates, exchange rates, decisions about major
projects, and so forth.

Once we specify these factors, we can then
construct an appropriate engine to carry out
our estimations. The choice of engine would de-
pend on the types of cash flow risks we have to
deal with. For instance, if we had fairly uncom-
plicated cash flows we might use an historical
simulation or variance-covariance approach, or
some specially designed term-structure model;
however, since some cash flows are likely to
be dependent on other factors such as discrete
random variables (e.g., such as downgrades or
defaults), it might not be easy tweaking such
methods to estimate LaRs with sufficient accu-
racy. In such circumstances, it might be better to
resort to simulation methods, which are much
better suited to handling discrete variables and
the potential complexities of cash flows in larger
firms.

Another alternative is to use scenario anal-
ysis. We can specify liquidity scenarios, such
as those arising from large changes in interest
rates, default by counterparties, the redemption
of putable debt, calls for collateral on repos and
derivatives, margin calls on swaps or futures
positions, and so forth. We would then (as best
we could) work through the likely/possible
ramifications of each scenario, and so get an
idea of the liquidity consequences associated
with each scenario. Such exercises can be very
useful, but, as with all scenario analyses, they
might give us an indication of what could hap-
pen if the scenario occurs, but don’t as such tell
us anything about the probabilities associated
with those scenarios or the LaR itself.

ESTIMATING LIQUIDITY IN
CRISES
We now consider liquidity in crisis situations.
As we all know, financial markets occasionally
experience major crises—these include, for ex-
ample, the stock market crash of 1987, the ERM
crisis of 1992, the Russian default crisis of the
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summer of 1998, and, of course, the many liq-
uidity problems experienced since the onset of
the financial crisis in August 2007. Typically,
some event occurs that leads to a large price
fall. This event triggers a huge number of sell
orders, traders become reluctant to buy, and the
bid-ask spread rises dramatically. At the same
time, the flood of sell orders can overwhelm
the market and drastically slow down the time
it takes to get orders executed. Selling orders
that would take minutes to execute in normal
times instead take hours, and the prices eventu-
ally obtained are often much lower than sellers
had anticipated. Market liquidity dries up, and
does so at the very time market operators need
it most. Assumptions about the market—and
in particular, about market liquidity—that hold
in “normal” market conditions can thus break
down when markets experience crises. This
means that estimating crisis liquidity is more
than just a process of extrapolation from LaR
under more normal market conditions: We need
to estimate crisis-liquidity risks using methods
that take into account the distinctive features of
a crisis—large losses, high bid-ask spreads, and
so forth.

One way to way to carry out such an exer-
cise is by applying “crashmetrics” (Wilmott,
2000, Chapter 58). To give a simple example,
we might have a position in a single deriva-
tives instrument, and the profit/loss � on this
instrument is given by a delta-gamma approx-
imation:

� = δ�S + γ

2
(�S)2 (15)

where �S is the change in the stock price, and
so forth. The maximum loss occurs when d S =
−δ/γ and is equal to:

Lmax = −�min = δ2

2γ
(16)

The worst-case cash outflow is therefore
mδ2/(2γ ), where m is the margin or collat-
eral requirement. This approach can also be
extended to handle the other Greek param-
eters (the vegas, thetas, rhos, etc.), multi-

option portfolios, counterparty risk, and so
forth. The basic idea—of identifying worst-
case outcomes and then evaluating their liq-
uidity consequences—can also be implemented
in other ways as well. For example, we might
identify the worst-case outcome as the expected
outcome at a chosen confidence level, and we
could estimate this (e.g., using extreme-value
methods) as the ES at that confidence level. The
cash outflow would then be m times this ES.

There are also other ways we can estimate
crisis-LaR. Instead of focusing only on the high
losses associated with crises, we can also take
account of the high-bid ask spreads and/or the
high bid-ask spread risks associated with crises.
We can do so, for example, by estimating these
spreads (or spread risks), and inputting these
estimates into the relevant liquidity-adjusted
VaR models discussed earlier.

However, these suggestions (i.e., Greek- and
ES-based) are still rather simplistic, and with
complicated risk factors—such as often arise
with credit-related risks—we might want a
more sophisticated model that was able to take
account of the complications involved, such as:

� The discreteness of credit events.
� The interdependency of credit events.
� The interaction of credit and market risk fac-

tors (e.g., the ways in which credit events de-
pend, in part, on market risk factors).

� Complications arising from the use of
credit-enhancement methods such as net-
ting arrangements, periodic settlement, credit
derivatives, credit guarantees, and credit trig-
gers (see, e.g., Wakeman, 1998).

These complicating factors are best handled
using simulation methods tailor-made for the
problems concerned.

The obvious alternative to probabilistic ap-
proaches to the estimation of crisis-liquidity
is to use crisis-scenario analyses. We would
imagine a big liquidity event—a major market
crash, the default of a major financial institu-
tion or government, the outbreak of a war, or
whatever—and work through the ramifications
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for the liquidity of the institution concerned.
One attraction of scenario analysis in this con-
text is that we can work through scenarios in as
much detail as we wish, and so take proper ac-
count of complicated interactions such as those
mentioned in the last paragraph. This is harder
to do using probabilistic approaches, which are
by definition unable to focus on any specific sce-
narios. However, as with all scenario analyses,
the results of these exercises are highly subjec-
tive, and the value of the results is critically
dependent on the quality of the assumptions
made.

KEY POINTS
� Liquidity refers to the ability to execute a

trade or liquidate a position with little or no
cost or inconvenience.

� Liquidity is a function of the market and de-
pends on the type of position traded and
sometimes the size and trading strategy of
an individual trader.

� Liquidity risks are those associated with the
prospect of imperfect of imperfect market liq-
uidity, and can relate to risk of loss or risk to
cash flows.

� There are two main aspects to liquidity risk
measurement: the measurement of liquidity-
adjusted measures of market risk (e.g.,
liquidity-adjusted value-at-risk, LVaR) and
the measurement of liquidity risks per se (e.g.,
liquidity-at-risk, LaR).

� There are a number of easily implementable
and often complementary approaches to the
estimation of liquidity-adjusted measures of
market risk: the constant spread, exogenous
spread, and endogenous price approaches, and
the liquidity discount approach.

� These approaches can produce risk estimates
that differ substantially from the risk esti-
mates obtained if liquidity is ignored.

� There are a number of approaches to the es-
timation of liquidity risks in noncrisis situa-
tions. These include both LaR approaches and
scenario analyses.

� The LaR can be much greater than the VaR
or much less than the VaR, depending on the
circumstances.

� Crisis-related liquidity risks can be estimated
using “crashmetrics” or scenario analyses hy-
pothecated on crisis events such as a dry-up
in market liquidity.
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Abstract: Asset returns are often not normally distributed and exhibit several stylized empirical
facts: fat tails, skewness, finite variance, time scaling, and volatility clustering. Modeling the tail
distribution of asset returns plays an essential role in downside risk management. The “left tail” of
the distribution is where market crashes or crises occur. Downside risk can be measured in terms
of conditional value-at-risk and estimated by fat-tailed and skewed models such as Lévy stable,
truncated Lévy flight, skewed Student’s t, mixture of normal distributions, and GARCH models.
These fat-tailed and skewed models have different characteristics in describing the tail distribution
of asset returns. The objective is to select appropriate ones that can accurately model the downside
risk.

The financial crisis of 2008 has led many practi-
tioners and academics to reassess the adequacy
of the return distribution models, in particular,
the left tail. This entry focuses on modeling the
left fat tails since they reflect market crashes or
crises and play an essential role in downside
risk management.

The most common model of asset returns
is assumed to be normally or Gaussian dis-
tributed (see Bachelier, 1900). In other words,
the returns follow a random walk or Brown-
ian motion. This model is natural if one as-
sumes the return over a time interval to be
the result of many small independent shocks,
which leads to a Gaussian distribution by the
central limit theorem. However, empirical stud-
ies have observed that the return distributions

are more leptokurtic or fat-tailed than Gaussian
distributions.

A normal distribution model assumes that an
asset return that is three standard deviations
below its arithmetic mean (popularly referred
to as a “three-sigma event”) has a probabil-
ity of only approximately 0.13%; that is, once
every 1,000 times. For example, from January
1926 to March 2010, the S&P 500 total return
index had a monthly mean return of 0.93%
and a monthly standard deviation of 5.54%. A
negative three-sigma event would be a return
lower than −15.69%. During this time period
of 1,010 months, there were 10 monthly returns
worse than −15.69% as shown in Table 1 (the
three-sigma event), with the most recent loss of
−16.79% in October 2008 being ranked at ninth.
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Table 1 The Worst 10 Monthly Returns for the S&P
500 (from 1/1926 to 3/2010)

S&P 500 (%)

Sep 1931 −29.73
Mar 1938 −24.87
May 1940 −22.89
May 1932 −21.96
Oct 1987 −21.52
Apr 1932 −19.97
Oct 1929 −19.73
Feb 1933 −17.72
Oct 2008 −16.79
Jun 1930 −16.25

Source: Morningstar Encorr.

This implies the probability of a three-sigma
event is about 1% rather than 0.13%, or eight
times greater than we would expect under a
normal distribution. Hence, a normal distribu-
tion fails to describe the “fat” or “heavy” tails
of the stock market.

Many statistical models have been put forth to
account for the heavy tails. We discuss several
standard and popular fat-tailed models, such as
Mandelbrot’s Lévy stable hypothesis (see Man-
delbrot, 1963), the Student’s t-distribution (see
Blattberg and Gonedes, 1974), the mixture of nor-
mal distributions (see Clark, 1973), and GARCH
(see Bollerslev, 1986) models. There are many
other fat-tailed candidates, and this entry does
not aim at being exhaustive. Instead, we se-
lect representative models and illustrate them
through examples so that practitioners may
have some intuition about these practically im-
plementable models.

Along the way, we introduce a relatively
new fat-tailed and skewed model: the truncated
Lévy flight (TLF). Another name for the TLF
is the tempered stable distribution. The TLF
model has a few interesting properties that we
will illustrate later, such as possessing fat tails,
skewness, finite moments, and time scaling. Of
course, these quantitative models are not the
only tool, and they need to be integrated with
judgmental analyses and other estimates, but

they represent a good starting point for the
management of downside risk.

DOWNSIDE RISK MEASURE
Before we dive into the discussions of fat-tailed
models, we need to specify an appropriate
downside risk measure. A popular downside
risk measure is value-at-risk (VaR), which is an
estimate of the loss that we expect to be ex-
ceeded with a given level of probability (e.g.,
5%) over a specified time period. VaR has been
recommended as a way of measuring risk by
regulators and various financial industry advi-
sory committees.

Conditional value-at-risk (CVaR), a closely re-
lated measure to VaR, is derived by taking a
weighted average between the VaR and losses
exceeding the VaR. Other terms for CVaR in-
clude mean shortfall, tail VaR, and expected tail
loss. Studies such as Rockafellar and Uryasev
(2000), for example, have shown that CVaR has
more attractive properties than VaR. Specifi-
cally, CVaR is a coherent measure of risk as
proved by Pflug (2000) in the sense of Artzner
et al. (1999). One of the coherent measures is
subadditivity; that is, the risk of a combination
of investments is at most as large as the sum of
the individual risks. VaR is not always subad-
ditive, which means that the VaR of a portfo-
lio with two instruments may be greater than
the sum of individual VaRs of these two instru-
ments. In contrast, CVaR is subadditive. There-
fore, CVaR is a more appropriate measure of
downside risk.

LÉVY STABLE DISTRIBUTION
Lévy distributions are stable; that is, the sum of
two independent random variables, character-
ized by the same Lévy distribution of tail index
α, is itself characterized by a Lévy distribution
of the same index. In other words, the func-
tional form of the distribution is maintained, if
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we sum up independent, identically distributed
Lévy stable random variables. The characteris-
tic function of the Lévy stable distribution is
(Lévy, 1925):

ln ϕ(q ) = iδq − γ |q |α
[

1 − iβ
q
|q | tan

(π

2
α
)]

for α �=1

= iδq − γ |q |
[

1 − iβ
q
|q |

2
π

ln |q |
]

for α = 1

The probability density function is obtained
by performing the inverse Fourier transform
on the characteristic function. The four parame-
ters associated with the Lévy stable distribution
are: α determines the tail weight or the distribu-
tion’s kurtosis with 0 < α ≤ 2; β determines the
distribution’s skewness; γ is a scale parameter;
and δ is a location parameter. One can generate
univariate stable distributed returns through a
numerical software package, for example, writ-
ten by John Nolan (2009).1 (In his software, the
function “stablernd()” takes four parameters, α,
β, γ , and δ, and generates random returns that
follow a Lévy stable distribution. For empiri-
cal analyses, these four parameters can be esti-
mated by the software’s function “stablefit()”.)

In 1963, Mandelbrot modeled cotton prices
with a Lévy stable process (Mandelbrot, 1963).
Mandelbrot observed that in addition to be-
ing fat-tailed, the returns show another interest-
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Figure 1 The Time Scaling of the S&P 500 Index with a Stability Index α = 1.5

ing property: time scaling. This means that the
distributions of returns have similar functional
forms for different time intervals, ranging from
one day to one month. The time scaling prop-
erty is very appealing as it allows the sum of
two independent Lévy stable distributed vari-
ables to be stable distributed, with the same
stability index α. The normal distribution is a
special case of the Lévy stable distribution, and
it is scaled in the same way that the sum of two
normally distributed variables is also normally
distributed.

Figure 1 shows the time scaling of the S&P 500
index returns at time intervals of 1, 2, 3, and 5
days. The scaling variable for a Lévy stable pro-
cess of index α is Z̃ = Z

(�t)1/α . The best fit gives
α = 1.5, and a good data collapse can be ob-
served in Figure 1.

Mandelbrot’s finding was later supported by
Fama’s study on stocks (Fama, 1965). A Lévy
stable distribution model has fat tails and obeys
scaling properties, but it has an infinite vari-
ance, which conflicts with empirical observa-
tions that the return variance is finite. For
example, extensive analyses on high-frequency
data (ranging from 1 minute to 1 day) for the
1,000 largest companies provided evidence that
the returns have finite variance (Gopikrishnan
et al., 1998). Infinite variance complicates the
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S&P 500 Monthly Return Distribution (Jan 1926 -- Mar 2010)
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Figure 2 The Distributions of S&P 500 Monthly Returns Fitted by the Log-Stable and Lognormal
Models

task of risk estimation, as well as the applica-
tion of mean-variance portfolio construction.

Figure 2 illustrates the log-stable and log-
normal distributions in fitting the distribution
of monthly S&P 500 returns (also see Martin,
Rachev, and Siboulet, 2003). Log-stable distri-
bution applies the stable distribution to log-
returns. The vertical axis of Figure 2 is in log
scale with a base of 10, and this helps to view
the tails of the distribution more clearly. It is
clear that the lognormal distribution fails to fit
the return distribution below −15% (the above-
mentioned three-sigma events). The log-stable
distribution fits the tail well, but it extends far
beyond the historical maximum loss or gain
with nonnegligible probabilities, which even-
tually results in an infinite variance. In other
words, the tail for the log-stable distribution is
perhaps too fat.

The infinite variance associated with the sta-
ble distribution induces a challenging problem
in risk estimation. In practice, what is needed
is a model with a distribution falling between
the normal and stable distributions so that its
tail is appropriately fat, but finite. By truncat-
ing the extreme tails of the stable distribution, a
model named the truncated Lévy flight has such
properties.

Truncated Lévy Flight
The TLF model was first introduced by Man-
tegna and Stanley (1994) in the physics liter-
ature, and it has drawn widespread attention
since then. Koponen (1995) modified it in such
a way as to allow an analytical calculation of
the characteristic function and determination
of the complete probability density distribu-
tion. Another name for the TLF is the tempered
stable distribution—introduced and extended
by Boyarchenko and Levendorskii (2000), Carr
et al. (2002), Rosinski (2007), and Kim et al.
(2008, 2010). Another application is the so-
called smoothly truncated stable distribution
introduced by Menn and Rachev (2009).

In this entry, we focus on the simplest TLF
model by Mantegna and Stanley (1994). The
probability density function (PDF) of a simple
TLF process is defined as:

P(x) = 0, x < −l;
P(x) = PLevy(x), −l ≤ x ≤ l;
P(x) = 0, x > l

where PLevy(x) is the PDF of return x for a Lévy
stable distribution and l is the cutoff length for
the truncation. It can be seen that the truncation
is abrupt. Alternative TLF models are similar
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Table 2 Parameter Estimates with the Log-TLF Model for Monthly S&P 500,
Weekly MSCI EM, and Weekly MSCI EAFE Returns

Log-TLF α β γ δ Cutoff Length

S&P 500 Monthly 1.42 −0.12 0.024 0.010 6.8
MSCI EM Weekly 1.58 −0.40 0.015 0.0054 8.0
MSCI EAFE Weekly 1.79 −0.52 0.014 0.0033 10.0

and have in general smoother truncations in
the form of exponential tails.

To simulate a TLF process from a Lévy stable
process, we apply a truncation method on the
Lévy stable distributed returns generated in the
previous section so that the return series follows
a TLF model. These truncated returns are then
used in the distribution analyses and CVaR es-
timates, as well as the Monte Carlo simulations.

The truncation is simply implemented, for ex-
ample, by truncating returns that are beyond
8-sigma for the MSCI Emerging Market in-
dex weekly returns or 6.8-sigma for S&P 500
monthly returns. The estimates of the five pa-
rameters are shown in Table 2. In the table, we
choose the cutoff length in such a way that it is
slightly larger than the historical maximum loss
(in terms of standard deviation) over the entire
historical period. The cutoff length shown in
the table is normalized. One can think of a nor-
malized cutoff length of 6 as a six-sigma event.
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Figure 3 Time Scaling of the TLF process

The other four parameters are estimated by the
maximum likelihood method.

An interesting feature of the TLF model is its
time scaling behavior. Mantegna and Stanley
(1994, 1999) show that for a small time interval
(e.g., a minute), the TLF distribution approxi-
mates a Lévy stable distribution with Lévy sta-
ble scaling; while for a significantly large but
finite time interval (e.g., a year), the TLF dis-
tribution slowly converges to a Gaussian dis-
tribution. In other words, the TLF undergoes
a crossover from a Lévy stable distribution to
a Gaussian distribution as the time interval in-
creases. This crossover is consistent with an in-
dependent empirical study of the distribution
of daily, weekly and monthly returns for which
a progressive convergence to a Gaussian pro-
cess is deemed to be observed (Akgiray and
Booth, 1988).

Figure 3 shows the convergence of the TLF
from the Lévy stable distribution at a small time
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interval to the Gaussian distribution at a large
time interval. It shows that as the time inter-
val increases from one month to one year and
finally to five years, the normalized return dis-
tribution converges from the approximate Lévy
stable distribution (one-month interval) to the
normal distribution (five-year interval).

The truncation is able to mathematically solve
the infinite variance problem inherent in the
stable distribution. In fact, the truncation leads
to the advantage that all four moments are fi-
nite. An interesting question is whether there
are economic rationales for the truncation, even
though the empirical evidence of finite vari-
ance is convincing. The truncation implies an
upside or downside boundary for the returns.
For the left tail, it is easy to see that the return is
bounded by −100% due to limited liability for
shareholders for unleveraged indexes or portfo-
lios. However, the existence of the boundary for
the upside tail is debatable and it may require
extensive separate research. Factors that can
limit an infinite positive gain for a large market
index such as the S&P 500 may include competi-
tive industries, business cycles, government in-
tervention such as antitrust law and increasing
interest rates, contrarian strategies that lead to
mean reversion of returns, and so on. Funda-
mental “intrinsic valuation” indicates that the
asset prices should be commensurate with the
overall economic growth, which is limited by
population growth, labor resources, productiv-
ity, and so on.

On the drawback side, like the normal or
Lévy stable distribution model, the TLF model
assumes an independent and identically dis-
tributed process and therefore it cannot de-
scribe the time-dependent volatility or volatility
clustering observed in market data. Volatility
clustering means that a period of high volatil-
ity tends to be followed by high volatility and
a period of low volatility is likely followed by
low volatility.

An attempt to address this drawback is to
assume TLF innovations instead of Gaussian
innovations in GARCH models. A few stud-

ies have investigated the option pricing prob-
lem with GARCH dynamics and non-Gaussian
innovations. For example, Menn and Rachev
(2009) considered smoothly truncated stable in-
novations in order to provide a practical frame-
work to extend option pricing theory to the
Lévy stable model. Kim et al. (2010) studied
parametric models based on tempered stable
innovations, and they showed that the GARCH
model with tempered stable innovations ex-
plains both asset price behavior and European
option prices better than the normal GARCH
model.

STUDENT’S t-DISTRIBUTION
The Student’s t-distribution is well documented
in the literature. Its probability density function
is given by:

P(x) =
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where υ is the degrees of freedom. The Stu-
dent’s t-distribution coincides with the Cauchy
distribution for υ = 1, and approaches Gaus-
sian for υ → ∞. Finite variance only exists for
υ > 2.

Blattberg and Gonedes (1974) proposed that
the returns are distributed with a Student’s
t-distribution. Markowitz and Usmen (1996)
found that the daily log-return data of the
S&P 500 index can be fitted by the Student’s
t-distribution with about 4.5 degrees of free-
dom. Hurst and Platen (1997) reached a similar
conclusion. Platen and Sidorowicz (2007) inves-
tigated the log-returns of a variety of diversi-
fied world stock indexes in different currency
denominations by applying the maximum like-
lihood ratio test to the large class of generalized
hyperbolic distributions, and showed that the
Student’s t-distribution with about four degrees
of freedom was the best fit among the models
they tested.
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The Student’s t-distribution is symmetric,
thus it cannot model skewness. In order to
model negative skewness, Hansen (1994) in-
troduced the skewed Student’s t-distribution,
which is able to model skewness, but it requires
one more parameter to be estimated.

The Student’s t-distribution has fat tails
but does not obey time scaling, which indi-
cates that the sum of two independent Stu-
dent’s t-distributed variables is not a Student’s
t-variable with the same degrees of freedom. It
cannot model volatility clustering.

The kurtosis of the Student’s t distribution is
given by 6

4−υ
, and it is only defined for υ > 4. In

other words, the kurtosis is infinite when υ is
less than or equal to 4, and the skewness tends
to be unstable for υ ≤ 4. In order to avoid an
infinite kurtosis, we set the minimum υ as 4.1
when the maximum likelihood estimate gives
a value of υ less than 4 (shown as MLE-υ in
Table 3). Our numerical simulations show that
the CVaR estimate is not sensitive to this small
change of υ.

For the symmetric Student’s t-distribution, υ

is the only parameter that needs to be estimated
for normalized returns. For the skewed Stu-
dent’s t-distribution, we need to add a param-
eter, λ, to capture the skewness (see Hansen,
1994). These estimated parameters are shown
in Table 3.

Table 3 Parameter Estimates with the Log Student’s t
and Log Skewed Student’s t Distributions for Monthly
S&P 500, Weekly MSCI EM, and Weekly MSCI EAFE
Returns

Log Student’s t

υ MLE-υ

S&P 500 Monthly 4.1 3.6
MSCI EM Weekly 4.1 4.0
MSCI EAFE Weekly 4.4 4.4

Log Skewed t

υ λ

S&P 500 Monthly 4.1 −0.13
MSCI EM Weekly 4.1 −0.25
MSCI EAFE Weekly 4.4 −0.09

MIXTURE OF NORMAL
DISTRIBUTIONS
In the mixture of normal distributions model,
the fat tails are obtained through subordination.
The model considered for the log-returns is:

d log S(t) = μdt + σg(t)dW

where μ and σ are associated with the normal
process of an individual trade. W is a stan-
dard Brownian motion. This model becomes
the standard geometric Brownian motion when
g(t) is constant. g(t) is a subordinator and pos-
itive increasing random process that character-
izes the market trading activity time.

If g(t) is assumed to be lognormally dis-
tributed with mean μs and standard deviation
σ s, this mixture process is also referred to as
the normal-lognormal mixture. The probability
density function for the normal-lognormal mix-
ture is given in Clark (1973).

Other kinds of mixtures exist in the literature,
such as a normal-gamma mixture, also referred
to as a variance gamma process (Madan and
Seneta, 1990). In this entry, we only illustrate the
normal-lognormal mixture, one of the simplest
mixture models. The estimated parameters for
the normal-lognormal mixture are shown in
Table 4.

The mixture of normal distributions utilizes
the concept of a subordinated process. Clark
(1973) assumes that trading volume is a plausi-
ble measure of the evolution of price dynamics.
Indeed, a sizeable literature has demonstrated
a strong positive contemporaneous correlation
between trading volume and return volatility
(see, for example, Andersen, 1996). More specif-
ically, the distribution of log-returns occurring

Table 4 Parameter Estimates with the Mixture
Distribution for Monthly S&P 500, Weekly MSCI EM,
and Weekly MSCI EAFE Returns

μ σ μs σ s

S&P 500 Monthly 0.0075 0.0382 0.0006 1.193
MSCI EM Weekly 0.0019 0.0206 0.0002 1.241
MSCI EAFE Weekly 0.0013 0.0152 0.0003 1.280
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from a given level of trading volume is subor-
dinate to the distribution of an individual trade
and directed by the distribution of the trading
volume. By assuming the normal distribution
for the individual trade and finite moments for
the distribution of the trading volume, Clark
(1973) proves that the mixed distribution has
fat tails with all moments finite.

The mixture of normal distributions is intu-
itively appealing because it is directly linked
to market microstructure such as information
flow, trading volume, and number of transac-
tions. The subordinated process premise has
also evolved into stochastic volatility that now
receives vigorous attention in the finance liter-
ature (see Andersen, 1996). In general, mixture
of normal distributions has fat tails but does
not obey time scaling. A generalized mixture
of normal distributions, however, can describe
volatility clustering.

GARCH Models
General autoregressive conditional het-
eroscedasticity (GARCH) models, first intro-
duced by Bollerslev (1986), are now widely
employed in financial time-series analyses.
In particular, they are used to predict short
horizon volatilities (ranging from one day to
one month).

The return generating process is based on geo-
metric Brownian motion but with the variance
being a time-dependent GARCH(1,1) process,
which is defined by the relation:

σ 2
t = α0 + α1r2

t−1 + β1σ
2
t−1

where α0, α1, and β1 are the control parame-
ters of the GARCH(1,1) stochastic process. rt is
a random variable with zero mean and vari-
ance σ 2

t , and is characterized by a conditional
probability density function ft(x), which is ar-
bitrary but is often chosen to be Gaussian. In
this entry, the innovation σ 2

t is assumed to be
Gaussian. These three control parameters are
estimated by the maximum likelihood method
and shown in Table 5.

Table 5 Parameter Estimates with the GARCH(1,1)
Model for Monthly S&P 500, Weekly MSCI EM, and
Weekly MSCI EAFE Returns

α0 α1 β1

S&P 500 Monthly 0.00006 0.1291 0.8474
MSCI EM Weekly 0.00002 0.1431 0.8309
MSCI EAFE Weekly 0.00002 0.0897 0.8815

GARCH models assume that volatility
changes with time and with past information.
Because of the time-dependent volatility, the
unconditional distribution of returns exhibit fat
tails. GARCH models allow for volatility clus-
tering or autocorrelation in the volatility.

The most popular GARCH model is GARCH
(1,1). The scaling properties of GARCH(1,1) are
not clear from the theory; however, numerical
simulations of GARCH(1,1) with Gaussian
innovations show that it fails to describe the
scaling properties of high-frequency data (see
Mantegna and Stanley, 1999).

GARCH(1,1) processes are unconditionally
stationary with finite variance if 1 − α1 − β1 >

0, and have finite kurtosis if 1 − β2
1 − 2α1β1 −

3α2
1 > 0.

MODELING RETURN
DISTRIBUTIONS FOR MAJOR
INDEXES
Applications of the Lévy stable, Student’s t, and
mixture of normal distribution models in mod-
eling market indexes are well documented (see,
for example, Mandelbrot [1963], Clark [1973],
Blattberg and Gonedes [1974], Markowitz
and Usmen [1996], Hurst and Platen [1997],
Martin, Rachev and Siboulet [2003], Platen and
Sidorowicz [2007], etc.). The literature offered
detailed methodology on how the model pa-
rameters are estimated. In some cases, they per-
formed comparisons for these models.

Mantegna and Stanley (1999) studied the TLF
model and GARCH(1,1) with Gaussian innova-
tions processes. They found that the TLF model
well describes the time scaling, while it is not
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able to properly describe the volatility cluster-
ing. The GARCH(1,1) model seems to be com-
plementary to the TLF: It is able to describe
the volatility clustering, but it fails to describe
the time scaling. As mentioned earlier, how-
ever, the GARCH model with TLF innovations
might offer a better solution to the TLF model
or GARCH with Gaussian innovations.

Many previous studies have focused on high-
frequency data such as daily return data. Here,
we are interested in weekly or monthly data
because investors typically have a relatively
long investment horizon and portfolios are of-
ten rebalanced monthly. We apply these fat-
tailed models to some well-known weekly or
monthly returns of equity indexes. Our test as-
sets include the monthly S&P 500 total return
index, the weekly MSCI Emerging Market in-
dex, and the weekly MSCI EAFE index. One
reason to use weekly data is to have more data
points in the tails given that the MSCI indexes

have relatively short histories. A few other eq-
uity and fixed income indexes, such as the MSCI
UK, U.S. Long-Term Government Bond, Muni
bonds, and some individual stocks were tested
with the same methodologies and the results
are similar, so they are not reported (e.g., Xiong,
2010).

We apply the maximum likelihood method to
calibrate model parameters as previous stud-
ies did. The estimated parameters for the TLF,
Student’s t, normal-lognormal mixture, and
GARCH(1,1) are shown in Tables 2, 3, 4, and
5, respectively. Since we are more interested in
modeling downside risk, our goal is to fit the
model’s tail distribution to the empirical tail
distribution in terms of CVaR through Monte
Carlo simulations.

Table 6 focuses on nonstable distribution
models and presents the empirical statistics as
well as the Monte Carlo simulation results for
the six models. The statistics for each model

Table 6 Statistics Summary for Historical Returns, as Well as Simulated Returns for Lognormal, Log-TLF, Log
Student’s t, Log Skewed Student’s t, Normal-Lognormal Mixture, and GARCH(1,1) Models

S&P 500 Monthly

Mean Std Dev Skewness Kurtosis CVaR

Empirical 0.93% 5.54% 0.35 12.45 −12.20%
Lognormal 0.93% 5.54% 0.16 3.05 −9.96%
log-TLF 0.93% 5.54% 0.59 12.90 −12.20%
log-Student t 0.93% 5.54% 1.35 47.93 −10.91%
log-Skewed t 0.93% 5.54% 0.69 50.70 −11.91%
Mixture 0.93% 5.54% 1.02 18.85 −11.34%
GARCH(1,1) 0.93% 5.54% 0.46 9.50 −10.77%

MSCI EM Weekly
Empirical 0.25% 3.04% −0.52 8.38 −7.45%
Lognormal 0.25% 3.04% 0.09 3.02 −5.88%
log-TLF 0.25% 3.04% −0.38 12.29 −7.45%
log-Student t 0.25% 3.04% 0.71 22.90 −6.49%
log-Skewed t 0.25% 3.04% −0.81 14.23 −7.45%
Mixture 0.25% 3.04% 0.62 16.10 −6.76%
GARCH(1,1) 0.25% 3.04% 0.58 23.91 −6.47%

MSCI EAFE Weekly
Empirical 0.16% 2.29% −0.76 10.25 −5.27%
Lognormal 0.16% 2.29% 0.07 3.01 −4.47%
log-TLF 0.16% 2.29% −0.47 9.25 −5.27%
log-Student t 0.16% 2.29% 0.46 16.71 −4.93%
log-Skewed t 0.16% 2.29% −0.18 13.03 −5.27%
Mixture 0.16% 2.29% 0.52 16.71 −5.17%
GARCH(1,1) 0.16% 2.29% 0.10 4.20 −4.73%
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are based on 1,000,000 simulated random re-
turns that follow the corresponding distribu-
tion models. It can be seen that the lognormal
model underestimates the monthly CVaR by
2.04% for the S&P 500, the weekly CVaR by
1.57% for the MSCI EM, and the weekly CVaR
by 0.8% for the MSCI EAFE, respectively. The
log Student’s t-distribution, normal-lognormal
mixture, and GARCH(1,1) have similar CVaR
estimates, and all of them are better than
the lognormal model but appear to underes-
timate the tail risk. On the other hand, both
the log-TLF model and the log skewed Stu-
dent’s t-model provide a good fit for CVaR
for all three indexes: S&P 500, MCSI EM, and
MSCI EAFE.

Note that the log Student’s t, normal-
lognormal mixture, and GARCH(1,1) are pos-
itively skewed by design in a way similar to the
lognormal distribution because we are work-
ing with the log-returns. The positive skewness
resulted from taking the exponential function
on the log-returns. None of these three mod-
els can account for negative skewness without
modifications.

S&P 500 Monthly Return Distribution (Jan 1926 -- Mar 2010)
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Figure 4 The Historical Distributions of S&P 500 Monthly Returns Fitted by the Log-TLF, Log Skewed
Student’s t, Normal-Lognormal Mixture, GARCH(1,1), and Lognormal Models

Therefore there are two reasons why the log-
TLF and the log skewed Student’s t-models do
well in fitting the CVaR. First, their tails are ap-
propriately fat, and second, both of them are
able to capture negative skewness. For the TLF
model, the fatness of the tail is controlled by α

and the cutoff length and the skewness is con-
trolled by β as shown in Table 2. For the skewed
Student’s t-distribution, the fatness of the tail
is controlled by the degrees of freedom υ and
the skewness is controlled by λ as shown in
Table 3.

Figures 4, 5, and 6 compare the log-TLF model
with other models in fitting the historical re-
turn distributions for monthly S&P 500 returns,
weekly MSCI EM returns, and weekly MSCI
EAFE returns, respectively. The figures confirm
the results shown in Table 6. It can be seen
that the log-TLF provides a good fit for the
three indexes. The log skewed Student’s t is
almost as effective as the log-TLF model in fit-
ting CVaRs. Compared to the log skewed Stu-
dent’s t-distribution, the log-TLF has a fatter
but shorter tail because of the truncation. On
the other hand, the normal-lognormal mixture
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MSCIEM Weekly Return Distribution (Jan 1988 -- Mar 2010)
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Figure 5 The Historical Distributions of MSCI EM Weekly Returns Fitted by the Log-TLF, Log Skewed
Student’s t, Normal-Lognormal Mixture, GARCH(1,1), and Lognormal Models

and GARCH(1,1) model have CVaRs that fall
between those of the log-TLF and lognormal
models. The finding for the log symmetric Stu-
dent’s t-distribution, not plotted due to space
limitations, is similar to the normal-lognormal
mixture and GARCH(1,1) model.

Table 7 summarizes the underestimated
CVaRs for the six models that have been ap-
plied to the three indexes. The underestimated

MSCIEAFE Weekly Return Distribution (Jan 1976 -- Mar 2010)
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Figure 6 The Historical Distributions of MSCI EAFE Weekly Returns Fitted by the Log-TLF, Log
Skewed Student’s t, Normal-Lognormal Mixture, GARCH(1,1), and Lognormal Models

tails are reported on a relative basis based
on CVaR estimates shown in Table 6. For ex-
ample, the lognormal model underestimates
the monthly CVaR by a relative percentage of
18% (= 12.2 − 9.96

12.2 ) for the S&P 500 index.
Averaging over the three indexes, the lognor-

mal model underestimates the CVaR by about
18% on a relative basis. The normal-lognormal
mixture, the log Student’s t-distribution, and
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Table 7 Underestimated CVaRs in Relative Percentage for the Six Models

Index S&P 500 MSCI EM MSCI EAFE

Data Range 1926.1–2010.3 1988.1–2010.4 1976.1–2010.4
Number of Periods 1011 Monthly 1164 Weekly 1792 Weekly
Lognormal 18% 21% 15%
Log-TLF 0% 0% 0%
Log Student’s t 11% 13% 6%
Log Student’s Skewed t 2% 0% 0%
Normal-Lognormal Mixture 7% 9% 2%
GARCH(1,1) 12% 13% 10%

GARCH(1,1) with Gaussian innovations per-
form better than the lognormal model but ap-
pear to underestimate the CVaR by about 6%,
10%, and 12%, respectively. In contrast, both
the log-TLF and log skewed t-distribution did
a better job in modeling the CVaR.

KEY POINTS
� It is well known that asset returns often ex-

hibit fat tails, negative skewness, time scal-
ing, and volatility clustering. Fat-tailed and
skewed models can be used to estimate the
downside risk of assets. It is important that
the selected models are able to capture fat
tails and skewness, among others.

� The lognormal distribution is the fundamen-
tal assumption of many important financial
models, but it has thin tails and thus can sig-
nificantly underestimate the downside risk.
On the other side, the Lévy stable distribu-
tion exhibits time scaling and fat tails, but it
tends to overestimate the downside risk due
to its infinite variance.

� The Student’s t-distribution can model fat
tails but not negative skewness. A modi-
fication results in the skewed Student’s t-
distribution, which can model both fat tails
and negative skewness. However, both of
them do not possess time scaling properties
and cannot model volatility clustering.

� The normal-lognormal mixture is intuitive as
it is directly linked to market microstructure
such as information flow and trading vol-
ume. It has fat tails but cannot model negative

skewness. In general, it does not possess time
scaling.

� The truncated Lévy flight model can describe
the asymptotic return distributions measured
at all frequencies and the scaling proper-
ties (self-similarities). More specifically, for a
small time interval (e.g., a minute), this dis-
tribution approximates a Lévy stable distri-
bution with Lévy stable scaling; while for a
significantly large but finite time interval
(e.g., a year), the truncated Lévy flight dis-
tribution slowly converges to a Gaussian dis-
tribution. It has finite four moments and can
model both fat tails and negative skewness.

� The truncated Lévy flight or tempered stable
distribution model cannot describe volatility
clustering. In contrast, GARCH with Gaus-
sian innovations can model volatility cluster-
ing but it is often found that the tail is not fat
enough. Recent studies show that a GARCH
with truncated Lévy flight innovations ap-
pears to be able to describe most of the styl-
ized empirical facts: fat tails, skewness, and
volatility clustering.

NOTE
1. For details, see http://academic2.american

.edu/∼jpnolan/stable/stable.html/
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Abstract: The volatilities and correlations of the returns on a set of assets, risk factors, or interest rates
are summarized in a covariance matrix. This matrix lies at the heart of risk and return analysis. It
contains all the information necessary to estimate the volatility of a portfolio, to simulate correlated
values for its risk factors, to diversify investments, and to obtain efficient portfolios that have
the optimal trade-off between risk and return. Both risk managers and asset managers require
covariance matrices that may include very many assets or risk factors. For instance, in a global
risk management system of a large international bank all the major yield curves, equity indexes,
foreign exchange rates, and commodity prices will be encompassed in one very large dimensional
covariance matrix.

Variances and covariances are parameters of the
joint distribution of asset (or risk factor) re-
turns. It is important to understand that they
are unobservable. They can only be estimated or
forecast within the context of a model.
Continuous-time models, used for option pric-
ing, are often based on stochastic processes
for the variance and covariance. Discrete-time
models, used for measuring portfolio risk, are
based on time series models for variance and
covariance. In each case, we can only ever esti-
mate or forecast variance and covariance within
the context of an assumed model.

It must be emphasized that there is no ab-
solute “true” variance or covariance. What is
“true” depends only on the statistical model.

Even if we knew for certain that our model
was a correct representation of the data gen-
eration process, we could never measure the
true variance and covariance parameters ex-
actly because pure variance and covariance are
not traded in the market. An exception to this
is the futures on volatility indexes such as the
Chicago Board Options Exchange Volatility In-
dex (VIX). Hence, some risk-neutral volatility
is observed. However, this entry deals with co-
variance matrices in the physical measure.

Estimating a variance according to the for-
mulas given by a model, using historical data,
gives an observed variance that is “realized”
by the process assumed in our model. But
this “realized variance” is still only ever an

395
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estimate. Sample estimates are always subject
to sampling error, which means that their value
depends on the sample data used.

In summary, different statistical models can
give different estimates of variance and covari-
ance for two reasons:

� A true variance (or covariance) is different
between models. As a result, there is a con-
siderable degree of model risk inherent in the
construction of a covariance or correlation ma-
trix. That is, very different results can be ob-
tained using two different statistical models
even when they are based on exactly the same
data.

� The estimates of the true variances (and co-
variances) are subject to sampling error. That
is, even when we use the same model to esti-
mate a variance, our estimates will differ de-
pending on the data used. Both changing the
sample period and changing the frequency
of the observations will affect the covariance
matrix estimate.

This entry covers moving average discrete-
time series models for variance and covari-
ance, focusing on the practical implementation
of the approach and providing an explanation
for their advantages and limitations. Other sta-
tistical tools are described in Alexander (2008a,
Chapter 9).

BASIC PROPERTIES OF
COVARIANCE AND
CORRELATION MATRICES
The covariance matrix is a square, symmetric
matrix of variance and covariances of a set of m
returns on assets, or on risk factors, given by:

V =

⎛

⎜⎜⎜⎝

σ 2
1 σ12 . . . . . . σ1m

σ21 σ 2
2 . . . . . . σ2m

σ31 σ32 σ 2
3 . . . σ3m

. . . . . . . . . . . . . . .

σm1 . . . . . . . . . σ 2
m

⎞

⎟⎟⎟⎠ (1)

Since
⎛

⎜⎜⎜⎜⎜⎝

σ 2
1 σ12 . . . . . . σ1m

σ21 σ 2
2 . . . . . . σ2m

σ31 σ32 σ 2
3 . . . σ3m

. . . . . . . . . . . . . . .

σm1 . . . . . . . . . σ 2
m

⎞

⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎝

σ 2
1 �12σ1σ2 . . . . . . �1mσ1σm

�21σ2σ1 σ 2
2 . . . . . . �2mσ2σm

�31σ3σ1 �32σ3σ2 σ 2
3 . . . �3mσ3σm

. . . . . . . . . . . . . . .

�m1σmσ1 . . . . . . . . . σ 2
m

⎞

⎟⎟⎟⎟⎠

a covariance matrix can also be expressed as

V = DCD (2)

where D is a diagonal matrix with elements
equal to the standard deviations of the returns
and C is the correlation matrix of the returns.
That is:

⎛

⎜⎜⎜⎜⎜⎝

σ 2
1 σ12 . . σ1m

σ12 σ 2
2 . . σ2m

. . . . .

. . . . .

σ1m σ2m . . σ 2
m

⎞

⎟⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

σ1 0 . . 0
0 σ2 0 . 0
0 0 . . .
. . . . 0
0 , . 0 σn

⎞

⎟⎟⎟⎟⎠

×

⎛

⎜⎜⎜⎜⎝

1 �12 . . �1n

�12 1 . . �2n

. . . . .

. . . . .

�1n �2n . . 1

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

σ1 0 . . 0
0 σ2 0 . 0
0 0 . . .

. . . . 0
0 , . 0 σn

⎞

⎟⎟⎟⎟⎠

Hence, the covariance matrix is simply a math-
ematically convenient way to express the asset
volatilities and their correlations.

To illustrate how to estimate an annual co-
variance matrix and a 10-day covariance ma-
trix, assume three assets that have the following
volatilities and correlations:

Asset 1 volatility 20% Asset 1–Asset 2 correlation 0.8
Asset 2 volatility 10% Asset 1–Asset 3 correlation 0.5
Asset 3 volatility 15% Asset 3–Asset 2 correlation 0.3

Then,

D =
(

0.2 0 0
0 0.1 0
0 0 0.15

)
C =

(
1 0.8 0.5
0.8 1 0.3
0.5 0.3 1

)
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So the annual covariance matrix DCD is:
⎛

⎝
0.2 0 0
0 0.1 0
0 0 0.15

⎞

⎠

⎛

⎝
1 0.8 0.5
0.8 1 0.3
0.5 0.3 1

⎞

⎠

⎛

⎝
0.2 0 0
0 0.1 0
0 0 0.15

⎞

⎠

=
⎛

⎝
0.04 0.016 0.015
0.016 0.01 0.0045
0.015 0.0045 0.0225

⎞

⎠

To find a 10-day covariance matrix in this
simple case, one is forced to assume the returns
are independent and identically distributed
in order to use the square root of time rule:
that is, that the h-day covariance matrix is h
times the 1 day covariance matrix. Put another
way, the 10-day covariance matrix is obtained
from the annual matrix by dividing each
element by 25, assuming there are 250 trading
days per year.

Alternatively, we can obtain the 10-day matrix
using the 10-day volatilities in D. Note that un-
der the independent and identically distributed
returns assumption C should not be affected by
the holding period. That is,

D =
(

0.04 0 0
0 0.02 0
0 0 0.03

)
C =

(
1 0.8 0.5
0.8 1 0.3
0.5 0.3 1

)

because each volatility is divided by 5 (that is,
the square root of 25). Then we get the same
result as above, that is

⎛

⎝
0.04 0 0
0 0.02 0
0 0 0.03

⎞

⎠

⎛

⎝
1 0.8 0.5
0.8 1 0.3
0.5 0.3 1

⎞

⎠

×
⎛

⎝
0.04 0 0
0 0.02 0
0 0 0.03

⎞

⎠ =
⎛

⎝
0.16 0.064 0.06
0.064 0.04 0.018
0.06 0.018 0.09

⎞

⎠

× 10−2

Note that V is positive semidefinite if and only
if C is positive semidefinite. D is always positive
definite. Hence, the positive semidefiniteness
of V only depends on the way we construct
the correlation matrix. It is quite a challenge
to generate meaningful, positive semidefinite
correlation matrices that are large enough for
managers to be able to net the risks across all
positions in a firm. Simplifying assumptions are
necessary. For example, RiskMetrics (1996) uses
a very simple methodology based on moving

averages in order to estimate extremely large
positive definite matrices covering hundreds of
risk factors for global financial markets. (This is
discussed further below.)

EQUALLY WEIGHTED
AVERAGES
This section describes how volatility and cor-
relation are estimated and forecast by applying
equal weights to certain historical time series
data. We outline a number of pitfalls and limi-
tations of this approach and as a result recom-
mend that these models be used as an indication
of the possible range for long-term volatility
and correlation. As we shall see, these models
are of dubious validity for short-term volatility
and correlation forecasting.

In the following, for simplicity, we assume
that the mean return is zero and that returns
are measured at the daily frequency, unless
specifically stated otherwise. A zero mean re-
turn is a standard assumption for risk assess-
ments based on time series of daily data, but
if returns are measured over longer intervals
it may not be very realistic. Then the equally
weighted estimate of the variance of returns is
the average of the squared returns and the cor-
responding volatility estimate is the square root
of this expressed as an annual percentage. The
equally weighted estimate of the covariance of
two returns is the average of the cross products
of returns and the equally weighted estimate of
their correlation is the ratio of the covariance
to the square root of the product of the two
variances.

Equal weighting of historical data was the
first widely accepted statistical method for fore-
casting volatility and correlation of financial as-
set returns. For many years, it was the market
standard to forecast average volatility over the
next h days by taking an equally weighted aver-
age of squared returns over the previous h days.
This method was called the historical volatil-
ity forecast. Nowadays, many different statis-
tical forecasting techniques can be applied to
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historical time series data so it is confusing to
call this equally weighted method the historical
method. However, this rather confusing termi-
nology remains standard.

Perceived changes in volatility and corre-
lation have important consequences for all
types of risk management decisions, whether
to do with capitalization, resource allocation,
or hedging strategies. Indeed it is these param-
eters of the returns distributions that are the
fundamental building blocks of market risk as-
sessment models. It is therefore essential to un-
derstand what type of variability in returns the
model has measured. The model assumes that
an independently and identically distributed
process generates returns. That is, both volatil-
ity and correlation are constant and the “square
root of time rule” applies. This assumption has
important ramifications and we shall take care
to explain these very carefully.

Statistical Methodology
The methodology for constructing a covari-
ance matrix based on equally weighted aver-
ages can be described in very simple terms.
Consider a set of time series {ri,t} i = 1, . . . , m;
t = 1, . . . , T . Here the subscript i denotes the as-
set or risk factor, and t denotes the time at which
each return is measured. We shall assume that
each return has a zero mean. Then an unbiased
estimate of the unconditional variance of the ith
returns variable at time t, based on the T most
recent daily returns as:

σ̂ 2
i,t =

T∑
l=1

r2
i,t−l

T
(3)

The term “unbiased estimator” means the ex-
pected value of the estimator is equal to the true
value.

Note that (3) gives an unbiased estimate of the
variance but this is not the same as the square of
an unbiased estimate of the standard deviation.
That is,

√
E (σ̂ 2) = σ but E (σ̂ ) �= σ . So really the

hat ‘ ˆ ’ should be written over the whole of σ 2.

But it is generally understood that the notation
σ̂ 2 is used to denote the estimate or forecast of
a variance, and not the square of an estimate of
the standard deviation. So, in the case that the
mean return is zero, we have

E
(
σ̂ 2) = σ 2

If the mean return is not assumed to be zero
we need to estimate this from the sample, and
this places a (linear) constraint on the variance
estimated from sample data. In that case, to ob-
tain an unbiased estimate we should use

s2
i,t =

T∑
l=1

(
ri,t−l − r̄i

)2

T − 1
(4)

where r̄i is the average return on the ith series,
taken over the whole sample of T data points.
The mean-deviation form above may be use-
ful for estimating variance using monthly or
even weekly data over a period for which aver-
age returns are significantly different from zero.
However with daily data the average return is
usually very small and since, as we shall see be-
low, the errors induced by other assumptions
are huge relative to the error induced by as-
suming the mean is zero, we normally use the
form (3).

Similarly, an unbiased estimate of the uncon-
ditional covariance of two zero mean returns at
time t, based on the T most recent daily returns
is:

σ̂i, j,t =

n∑
l=1

ri,t−lr j,t−l

T
(5)

As mentioned above, we would normally ig-
nore the mean deviation adjustment with daily
data.

The equally weighted unconditional covari-
ance matrix estimate at time t for a set of k
returns is thus V̂t = (σ̂i, j,t) for i, j = 1, . . . , k.
Loosely speaking, the term “unconditional”
refers to the fact that it is the overall or long-
run or average variance that we are estimating,
as opposed to a conditional variance that can
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change from day to day and is sensitive to re-
cent events.

As mentioned in the introduction, we use the
term “volatility” to refer to the annualized stan-
dard deviation. The equally weighted estimates
of volatility and correlation are obtained in two
stages. First, one obtains an unbiased estimate
of the unconditional covariance matrix using
equally weighted averages of squared returns
and cross products of returns and the same
number n of data points each time. Then these
are converted into volatility and correlation es-
timates by applying the usual formulas. For in-
stance, if the returns are measured at the daily
frequency and there are 250 trading days per
year:

Equally weighted volatility = σ̂t

√
250

(6)

Equally weighted correlation = �̂ij,t = σ̂ij,t

σ̂i,tσ̂ j,t

In the equally weighted methodology the
forecasted covariance matrix is simply taken
to be the current estimate, there being noth-
ing else in the model to distinguish an estimate
from a forecast. The original risk horizon for
the covariance matrix is given by the frequency
of the data—daily returns will give the 1-day
covariance matrix forecast, weekly returns will
give the 1-week covariance matrix forecast, and
so forth. Then, since the model assumes that
returns are independently and identically dis-
tributed we can use the square root of time rule
to convert a 1-day forecast into an h-day co-
variance matrix forecast, simply by multiplying
each element of the 1-day matrix by h. Simi-
larly, a monthly forecast can be obtained for the
weekly forecast by multiplying each element by
4, and so forth.

Having obtained a forecast of variance,
volatility, covariance, and correlation we
should ask: How accurate is this forecast? For
this we could provide either a confidence inter-
val, that is, a range within which we are fairly
certain that the true parameter will lie, or a stan-
dard error for our parameter estimate. The stan-

dard error gives a measure of precision of the
estimate and can be used to test whether the
true parameter can take a certain value, or lie in
a given range. The next few sections show how
such confidence intervals and standard errors
can be constructed.

Confidence Intervals for Variance
and Volatility
A confidence interval for the true variance σ 2

when it is estimated by an equally weighted
average can be derived using a straightforward
application of sampling theory. Assuming the
variance estimate is based on n normally dis-
tributed returns with an assumed mean of zero,
then T σ̂ 2/σ 2will have a chi-squared distribu-
tion with T degrees of freedom (see Freund,
1998). A 100(1 – α)% two-sided confidence in-
terval for T σ̂ 2/σ 2 would therefore take the form
(χ2

1−α/2,T , χ2
α/2,T ) and a straightforward calcula-

tion gives the associated confidence interval for
the variance σ 2 as:

(
T σ̂ 2

χ2
α/2,T

,
T σ̂ 2

χ2
1−α/2,T

)
(7)

For example, a 95% confidence interval for an
equally weighted variance forecast based on 30
observations is obtained using the upper and
lower chi-squared critical values:

χ2
0.975,30 = 16.791 and χ2

0.025,30 = 46.979

So the confidence interval is (0.6386σ̂ 2,
1.7867σ̂ 2) and exact values are obtained by sub-
stituting in the value of the variance estimate.

Figure 1 illustrates the upper and lower
bounds for a confidence interval for a variance
forecast when the equally weighted variance es-
timate is one. We see that as the sample size T
increases, the width of the confidence interval
decreases, markedly so as T increases from low
values.

We can turn now to the confidence intervals
that would apply to an estimate of volatility.
Recall that volatility, being the square root of
the variance, is simply a monotonic decreasing



400 Risk Measures

0

0.5

1

1.5

2

2.5

3

3.5

200150100500

Figure 1 Confidence Interval for Variance
Forecasts

transformation of the variance. Percentiles are
invariant under any strictly monotonic increas-
ing transformation. That is, if f is any mono-
tonic increasing function of a random variable
X, then:

P (cl < X < cu) = P ( f (cl ) < f (X) < f (cu))
(8)

Property (8) provides a confidence interval for
a historical volatility based on the confidence
interval (7). Since

√
x is a monotonic increasing

function of x, one simply takes the square root
of the lower and upper bounds for the equally
weighted variance. For instance if a 95% con-
fidence interval for the variance is [16%, 64%]
then a 95% for the associated volatility is [4%,
8%]. And, since x2 is also monotonic increas-
ing for x > 0, the converse also applies. Thus
if a 95% confidence interval for the volatility is
[4%, 8%] then a 95% for the associated variance
is [16%, 64%].

Standard Errors for Equally
Weighted Average Estimators
An estimator of any parameter has a distribu-
tion and a point estimate of volatility is just the
expectation of the distribution of the volatil-
ity estimator. The distribution function of the
equally weighted average volatility estimator
is not just square root of the distribution func-
tion of the corresponding variance estimate. In-

stead, it may be derived from the distribution
of the variance estimator via a simple transfor-
mation. Since volatility is the square root of the
variance, the density function of the volatility
estimator is

g(σ̂ ) = 2σ̂h(σ̂ 2) for σ̂ > 0 (9)

where h
(
σ̂ 2

)
is the density function of the vari-

ance estimator. This follow from the fact that if
y is a monotonic and differentiable function of
x, then their probability densities g(.) and h(.)
are related as g(y) = |dx/dy|h(x) (see Freund,
1998). Note that when y = √

x, |dx/dy|= 2y
and so g(y) = 2y h(x).

In addition to the point estimate or expecta-
tion, one might also estimate the standard devi-
ation of the distribution of the estimator. This is
called the “standard error” of the estimate. The
standard error determines the width of a con-
fidence interval for a forecast and it indicates
how reliable a forecast is considered to be. The
wider the confidence interval, the more uncer-
tainty there is in the forecast.

Standard errors for equally weighted average
variance estimates are based on a normality as-
sumption for the returns. Moving average mod-
els assume that returns are independent and
identically distributed. Now assuming normal-
ity also, so that the returns are normally and
independently distributed, denoted by NID(0,
σ 2), we apply the variance operator to (3). Note
that if Xi are independent random variables (i =
1, . . ., T), then f (Xi) are also independent for any
monotonic differentiable function f . Hence, the
squared returns are independent, and we have:

V
(
σ̂ 2

t

) =
T∑

i=1

V
(
r2

t−i

)/
T2 (10)

Since V(X) = E(X2) − E(X)2 for any random
variable X, V(r2

t ) = E(r4
t ) − E(r2

t )2. By the zero
mean assumption E(r2

t ) = σ 2 and assuming
normality, E(r4

t ) = 3σ 4. Hence for every t:

V
(
r2

t

) = 3σ 4 − σ 4 = 2σ 4
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and substituting this into (10) gives

V
(
σ̂ 2

t

) = 2σ 4

T
(11)

Hence, the standard error of an equally
weighted average variance estimate based on

T zero mean squared returns is σ 2
√

2
T or sim-

ply
√

2
T , when expressed as a percentage of the

variance. For instance, the standard error of the
variance estimate is 20% when 50 observations
are used in the estimate, and 10% when 200 ob-
servations are used in the estimate.

What about the standard error of the volatility
estimator? To derive this, we first prove that for
any continuously differentiable function f and
random variable X:

V
(

f
(
X

)) ≈ f ′(E
(
X

))2V
(
X

)
(12)

To show this, we take a second order Taylor ex-
pansion of f about the mean of X and then take
expectations. See Alexander (2008a), Chapter 1.
This gives:

E
(

f
(
X

)) ≈ f
(
E

(
X

)) + 1/2 f ′′(E
(
X

))
V

(
X

)

(13)
Similarly,

E
(

f
(
X

)2) ≈ f
(
E

(
X

))2 + (
f ′(E

(
X

))2

+ f
(
E

(
X

))
f ′′(E

(
X

)))
V

(
X

)

(14)

again ignoring higher-order terms. The result
(12) follows on noting that:

V
(

f
(
X

)) = E
(

f
(
X

)2) − E
(

f
(
X

))2

We can now use (11) and (12) to derive the
standard error of a historical volatility estimate.
From (12) we have V

(
σ̂ 2

) ≈ (2σ̂ )2 V (σ̂ ) and so:

V
(
σ̂
) ≈ V

(
σ̂ 2

)
(
2σ̂

)2 (15)

Now using (11) in (15) we obtain the variance
of the volatility estimator as:

V
(
σ̂
) =

(
1

2σ 2

) (
2σ 4

T

)
= σ 2

2T
(16)

so the standard error of the volatility estimator
as a percentage of volatility is (2T)−1/2. This re-
sult tells us that the standard error of the volatil-
ity estimator (as a percentage of volatility) is
approximately one-half the size of the standard
error of the variance (as a percentage of the
variance).

Thus, as a percentage of the volatility, the stan-
dard error of the historical volatility estimator
is approximately 10% when 50 observations are
used in the estimate, and 5% when 200 observa-
tions are used in the estimate. The standard er-
rors on equally weighted moving average volatility
estimates become very large when only a few
observations are used. This is one reason why
it is advisable to use a long averaging period in
historical volatility estimates.

It is harder to derive the standard error of an
equally weighted average correlation estimate.
However, it can be shown that

V
(
�̂i j

) = 1 − �2

T − 2
(17)

and so we have the following t-distribution for
the correlation estimate divided by its standard
error:

�̂i j
√

T − 2√
1 − �̂2

i j

∼ tT−2 (18)

In particular, the significance of a correlation es-
timate depends on the number of observations
that are used in the sample.

To illustrate testing for the significance of his-
torical correlation, suppose that a historical cor-
relation estimate of 0.2 is obtained using 38
observations. Is this significantly greater than
zero? The null hypothesis is H0 : � = 0, the al-
ternative hypothesis is H1 : � > 0, and the test
statistic is (18). Computing the value of this
statistic given our data gives

t = 0.2 × 6√
1 − 0.04

= 12√
96

= 3√
6

=
√

1.5 = 1.225

Even the 10% upper critical value of the
t-distribution with 36 degrees of freedom is
greater than this value (it is in fact 1.3). Hence
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we cannot reject the null hypothesis: 0.2 is not
significantly greater than zero when estimated
from 38 observations. However, if the same
value of 0.2 had been obtained from a sample
with, say, 100 observations our t-value would
have been 2.02, which is significantly positive
at the 2.5% level because the upper 2.5% critical
value of the t-distribution with 98 degrees of
freedom is 1.98.

Equally Weighted Moving Average
Covariance Matrices
An equally weighted “moving” average is cal-
culated on a fixed size data “window” that
is rolled through time, each day adding the
new return and taking off the oldest return.
The length of this window of data, also called
the “look-back” period or averaging period, is
the time interval over which we compute the
average of the squared returns (for variance)
or the average cross products of returns (for
covariance). In the past, several large financial
institutions have lost a lot of money because
they used the equally weighted moving aver-
age model inappropriately. I would not be sur-
prised if much more money was lost because of
the inexperienced use of this model in the fu-
ture. The problem is not the model itself—after
all, it is a perfectly respectable statistical for-
mula for an unbiased estimator—the problems
arise from its inappropriate application within
a time series context.

A (fallacious) argument goes as follows:
Long-term predictions should be unaffected by
short-term phenomena such as “volatility clus-
tering” so it will be appropriate to take the
average over a very long historic period. But
short-term predictions should reflect current
market conditions, which means that only the
immediate past returns should be used. Some
people use an historical averaging period of T
days in order to forecast forward T days; others
use slightly longer historical periods than the
forecast period. For example, for a 10-day fore-
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Figure 2 MIB 30 and S&P 100 Daily Close

cast, some practitioners might look back 30 days
or more. But this apparently sensible approach
actually induces a major problem. If one or more
extreme returns is included in the averaging pe-
riod, the volatility (or correlation) forecast can
suddenly jump downward to a completely dif-
ferent level on a day when absolutely nothing
happened in the markets. And prior to myste-
riously jumping down, a historical forecast will
be much larger than it should be.

Figure 2 illustrates the daily closing prices of
the Italian MIB 30 stock index between the be-
ginning of January 2000 and the end of April
2006 and compares these with the S&P 100 in-
dex prices over the same period. The prices
were downloaded from Yahoo! Finance. We will
show how to calculate the 30-day, 60-day, and
90-day historical volatilities of these two stock
indexes and compare them graphically.

We construct three different equally weighted
moving average volatility estimates for the MIB
30 index, with T = 30 days, 60 days and 90 days,
respectively. The result is shown in Figure 3. Let
us first focus on the early part of the data period
and on the period after the September 11, 2001
(9/11), terrorist attack in particular. The Italian
index reacted to the news far more than most
other indexes. The volatility estimate based on
30 days of data jumped from 15% to nearly 50%
in one day, and then continued to rise further,
up to 55%. Then, suddenly, exactly 30 days after
the event, 30-day volatility jumped down again
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Figure 3 Equally Weighted Moving Average
Volatility Estimates of the MIB 30 Index

to 30%. But nothing particular happened in the
Italian markets on that day. The drastic fall in
volatility was just a “ghost” of the 9/11 terror-
ist attack: It was no reflection at all of the real
market conditions at that time.

Similar features are apparent in the 60-day
and 90-day volatility series. Each series jumps
us immediately after the 9/11 event, and then,
either 60 or 90 days afterward, jumps down
again. On November 9, 2001, the three differ-
ent look-back periods gave volatility estimates
of 30%, 43%, and 36%, but they are all based
on the same underlying data and the same in-
dependent and identically distributed assump-
tion for the returns! Other such ghost features
are evident later in the period, for instance, in
March 2001 and March 2003. Later on in the
period, the choice of look-back period does not
make so much difference: The three volatility
estimates are all around the 10% level.

Case Study: Measuring the Volatility
and Correlation of U.S Treasuries
The interest rate covariance matrix is an im-
portant determinant of the value at risk (VaR)
of a cash flow. In this section, we show how
to estimate the volatilities and correlations of
different maturity U.S. zero-coupon interest
rates using the equal weighted moving average
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Figure 4 U.S. Treasury Rates
Source: http://www.federalreserve.gov/releases
/h15/data.htm.

method. Consider daily data on constant matu-
rity U.S. Treasury rates between January 4, 1982
and March 11, 2005. The rates are graphed in
Figure 4.

It is evident that rates followed marked trends
over the period. From a high of about 15% in
1982, by the end of the same period the short-
term rates were below 3%. Also, periods where
the term structure of interest rates is relatively
flat are interspersed with periods when the term
structure is upward sloping, sometimes with
the long-term rates being several percent higher
than the short-term rates. During the upward
sloping yield curve regimes, especially the lat-
ter one from 2000 to 2005, the medium- to long-
term interest rates are more volatile than the
short-term rates, in absolute terms. However, it
is not clear which rates are the most volatile in
relative terms, as the short rates are much lower
than the medium to long-term rates. There are
three decisions that must be made:

Decision 1: How long an historical data period
should be used?

Decision 2: Which frequency of observations
should be used?

Decision 3: Should the volatilities and cor-
relations be measured directly on absolute
changes in interest rates, or should they be
measured on relative changes and then the
result converted into absolute terms?

http://www.federalreserve.gov/releases/h15/data.htm
http://www.federalreserve.gov/releases/h15/data.htm
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Decision 1: How Long a Historical Data Period
Should Be Used?
The equally weighted historical method gives
an average volatility, or correlation, over the
sample period chosen. The longer the data pe-
riod, the less relevant that average may be today
(that is, at the end of the sample). Looking at
Figure 4, it may be thought that data from 2000
onward, and possibly also data during the first
half of the 1990s, are relevant today. However,
we may not wish to include data from the latter
half of the 1990s, when the yield curve was flat.

Decision 2: Which Frequency of Observations
Should Be Used?
This is an important decision, which depends
on the end use of the covariance matrix. We
can always use the square root of time rule to
convert the holding period of a covariance ma-
trix. For instance, a 10-day covariance matrix
can be converted into a 1-day matrix by divid-
ing each element by 10; and it can be converted
into an annual covariance matrix by multiply-
ing each element by 25. However, this conver-
sion is based on the assumption that variations
in interest rates are independent and identically
distributed. Moreover, the data become more
noisy when we use high-frequency data. For
instance, daily variations may not be relevant
if we only ever want to measure covariances
over a 10-day period. The extra variation in the
daily data is not useful, and the crudeness of
the square root of time rule will introduce an
error. To avoid the use of crude assumptions it
is best to use a data frequency that corresponds
to the holding period of the covariance matrix.

However, the two decisions above are linked.
For instance, if data are quarterly, we need a
data period of five or more years; otherwise,
the standard error of the estimates will be very
large. But then our quarterly covariance matrix
represents an average over many years that may
not be thought of as relevant today. If data are
daily, then just one year of data provides plenty
of observations to measure the historical model

volatilities and correlations accurately. Also, a
history of one year is a better representation of
today’s markets than a history of five or more
years. However, if it is a quarterly covariance
matrix that we seek, we have to apply the square
root of time rule to the daily matrix. Moreover,
the daily variations that are captured by the
matrix may not be relevant information at the
quarterly frequency.

In summary, there may be a trade-off between
using data at the relevant frequency and using
data that are relevant today. It should be noted
that such a trade-off between Decisions 1 and 2
above applies to the measurement of risk in all
asset classes and not only to interest rates.

In interest rates, there is another decision to
make before we can measure risk. Since the
price value of a basis point (PV01) sensitiv-
ity vector is usually measured in basis points,
an interest rate covariance matrix is also usu-
ally expressed in basis points. Hence, we have
Decision 3.

Decision 3: Absolute versus Relative Measures
Should the volatilities and correlations be mea-
sured directly on absolute changes in interest
rates, or should they be measured on relative
changes and then the result converted into ab-
solute terms?

If rates have been trending over the data
period the two approaches are likely to give
very different results. One has to make a de-
cision about whether relative changes or abso-
lute changes are the more stable. In these data,
for example, an absolute change of 50 basis
points in 1982 was relatively small, but in 2005
it would have represented a very large change.
Hence, to estimate an average daily covariance
matrix over the entire data sample, it may be
more reasonable to suppose that the volatilities
and correlations should be measured on relative
changes and then converted to absolute terms.

Note, however, that a daily matrix based on
the entire sample would capture a very long-
term average of volatilities and correlations
between daily U.S. Treasury rates, indeed it
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is a 22-year average that includes several pe-
riods of different regimes in interest rates. Such
a long-term average, which is useful for long-
term forecasts, may be better based on lower
frequency data (e.g., monthly). For a 1-day fore-
cast horizon, we shall use only the data since
January 1, 2000.

To make the choice for Decision 3, we take
both the relative daily changes (the differ-
ence in the log rates) and the absolute daily
changes (the differences in the rates, in basis-
point terms). Then we obtain the standard de-
viation, correlation, and covariance in each case,
and in the case of relative changes we translate
the results into absolute terms. We now com-
pare results based on relative changes with re-
sults based on absolute changes. The correlation
matrix estimates based on the period January 1,
2000, to March 11, 2005, are shown in Table 1.

The matrices are similar. Both matrices dis-
play the usual characteristics of an interest rate
term structure: Correlations are higher at the
long end than the short end, and they decrease
as the difference between the two maturities
increases.

Table 1 Correlation of U.S. Treasuries

(a) Based on Relative Changes

m3 m6 y1 y2 y3 y5 y10

m3 1.00
m6 0.77 1.00
y1 0.53 0.84 1.00
y2 0.44 0.69 0.88 1.00
y3 0.42 0.66 0.84 0.97 1.00
y5 0.39 0.62 0.79 0.91 0.96 1.00
y10 0.32 0.54 0.71 0.82 0.88 0.95 1.00

(b) Based on Absolute Changes

m3 m6 y1 y2 y3 y5 y10

m3 1.00
m6 0.79 1.00
y1 0.54 0.81 1.00
y2 0.40 0.67 0.87 1.00
y3 0.37 0.62 0.83 0.97 1.00
y5 0.33 0.57 0.77 0.92 0.95 1.00
y10 0.26 0.48 0.69 0.84 0.88 0.95 1.00

Table 2 compares the volatilities of the inter-
est rates obtained using the two methods. The
figures in the last row of each table represent an
average absolute volatility for each rate over the
period January 1, 2000 to March 11, 2005. Basing
this first on relative changes in interest rates, Ta-
ble 2(a) gives the standard deviation of relative
returns volatility in the first row. The long-term
rates have the lowest standard deviations, and
the medium-term rates have the highest stan-
dard deviations. These standard deviations are
then annualized (by multiplying by

√
250, as-

suming each rate is independent and identically
distributed) and multiplied by the level of the
interest rate on March 11, 2005. There was a very
marked upward sloping yield curve on March
11, 2005. Hence the long-term rates are more
volatile than the short-term rates: For instance,
the 3-month rate has an absolute volatility of
about 76 basis points, but the absolute volatil-
ity of the 10-year rates is about 98 basis points.

Table 2(b) measures the standard deviation
of absolute changes in interest rates over the
period January 1, 2000 to March 11, 2005, and
then converts this into volatility by multiply-
ing by

√
250. We again find that the long-term

rates are more volatile than the short-term rates;
for instance, the six-month rate has an absolute
volatility of about 62 basis points, but the ab-
solute volatility of the five-year rates is about
106 bps. (It should be noted that it is quite un-
usual for long-term rates to be more volatile
than short-term rates. But from 2000 to 2004 the
U.S. Fed was exerting a lot of control on short-
term rates, to bring down the general level of
interest rates. However, the market expected
interest rates to rise, because the yield curve
was upward sloping during most of the period.)
We find that correlations were similar, whether
based on relative or absolute changes. But Ta-
ble 2 shows there is a substantial difference be-
tween the volatilities obtained using the two
methods. When volatilities are based directly
on the absolute changes, they are slightly lower
at the short end and substantially lower for the
medium-term rates.
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Table 2 Volatility of U.S. Treasuries

(a) Based on Relative Changes

m3 m6 y1 y2 y3 y5 y10

Standard deviation 0.0174 0.0172 0.0224 0.0267 0.0239 0.0187 0.0136
Yield curve on March 11, 2005 2.76 3.06 3.28 3.73 3.94 4.22 4.56
Absolute volatility (in basis points) 75.89 83.08 116.23 157.61 148.71 124.88 98.21

(b) Based on Absolute Changes

m3 m6 y1 y2 y3 y5 y10

Standard deviation 4.4735 3.9459 4.7796 6.4626 6.7964 6.7615 6.1738
Absolute volatility (in basis points) 70.73 62.39 75.57 102.18 107.46 106.91 97.62

Finally, we obtain the annual covariance ma-
trix of absolute changes (in basis point terms)
by multiplying the correlation matrix by the ap-
propriate absolute volatilities and to obtain the
one-day covariance matrix we divide by 250.
The results are shown in Table 3. Depending
on whether we base estimates of volatility and
correlation on relative or absolute changes in
interest rates, the covariance matrix can be
very different. In this case, it is short-term and
medium-term volatility estimates that are the
most affected by the choice. Given that we have
used the equally weighted average method-

Table 3 One-Day Covariance Matrix of U.S.
Treasuries, in Basis Points

(a) Based on Relative Changes

m3 m6 y1 y2 y3 y5 y10

m3 23.04
m6 19.46 27.61
y1 18.85 32.26 54.04
y2 20.87 36.29 64.50 99.36
y3 18.98 32.86 58.28 91.14 88.46
y5 14.75 25.84 45.95 71.94 71.01 62.38
y10 9.67 17.70 32.45 51.07 51.29 46.47 38.58

(b) Based on Absolute Changes

m3 m6 y1 y2 y3 y5 y10

m3 20.01
m6 13.96 15.57
y1 11.65 15.30 22.84
y2 11.69 17.01 26.86 41.77
y3 11.17 16.76 26.96 42.73 46.19
y5 9.89 15.21 25.03 40.09 43.81 45.72
y10 7.17 11.71 20.25 33.34 36.92 39.55 38.12

ology to construct the covariance matrix, the
underlying assumption is that volatilities and
correlations are constant. Hence, the choice be-
tween relative or absolute changes depends on
which are the more stable. In countries with
very high interest rates, or when interest rates
have been trending during the sample period,
relative changes tend to be more stable than ab-
solute changes.

In summary, there are four crucial decisions to
be made when estimating a covariance matrix
for interest rates:

1. Which statistical model should we employ?
2. Which historical data period should be used?
3. Should the data frequency be daily, weekly,

monthly, or quarterly?
4. Should we base the matrix on relative or ab-

solute changes in interest rates?

The first three decisions must also be made
when estimating covariance matrices in other
asset classes such as equities, commodities, and
foreign exchange rates. There is a huge amount
of model risk involved with the construction of
covariance matrices; very different results may
be obtained depending on the choice made.

Pitfalls of the Equally Weighted
Moving Average Method
The problems encountered when applying this
model stem not from the small jumps that are
often encountered in financial asset prices, but
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from the large jumps that are only rarely en-
countered. When a long averaging period is
used, the importance of a single extreme event
is averaged out within a large sample of re-
turns. Hence, a moving average volatility esti-
mate may not respond enough to a short, sharp
shock in the market. This effect is clearly visible
in 2002, where only the 30-day volatility rose
significantly over a matter of a few weeks. The
longer-term volatilities did rise, but it took sev-
eral months for them to respond to the market
falls in the MIB during mid-2002. At this point
in time there was actually a cluster of volatility,
which often happens in financial markets. The
effect of the cluster was to make the longer-term
volatilities rise, eventually, but then they took
too long to return to normal levels. It was not
until markets returned to normal in late 2003
that the three volatility series in Figure 2 are in
line with each other.

When there is an extreme event in the mar-
ket, even just one very large return will influ-
ence the T-day moving average estimate for
exactly T days until that very large squared re-
turn falls out of the data window. Hence volatil-
ity will jump up, for exactly T days, and then
fall dramatically on day T + 1, even though
nothing happened in the market on that day.
This type of ghost feature is simply an artifact
of the use of equal weighting. The problem is
that extreme events are just as important to cur-
rent estimates, whether they occurred yester-
day or a very long time ago. A single large,
squared return remains just as important T – 1
days ago as it was yesterday. It will affect the
T-day volatility or correlation estimate for ex-
actly T days after that return was experienced,
and to exactly the same extent. However, with
other models we would find that volatility or
correlation had long ago returned to normal lev-
els. Exactly T + 1 days after the extreme event,
the equally weighted moving average volatil-
ity estimate mysteriously drops back down to
about the correct level—that is, provided that
we have not had another extreme return in the
interim!

Note that the smaller is T, the number of data
points used in the data window, the more vari-
able the historical volatility series will be. When
any estimates are based on a small sample size
they will not be very precise. The larger the sam-
ple size the more accurate the estimate, because
sampling errors are proportional to 1/

√
T. For

this reason alone a short moving average will
be more variable than a long moving average.
Hence, a 30-day historic volatility (or correla-
tion) will always be more variable than a 60-day
historic volatility (or correlation) that is based
on the same daily return data. Of course, if
one really believes in the assumption of con-
stant volatility that underlies this method, one
should always use as long a history as possible,
so that sampling errors are reduced.

It is important to realize that whatever the
length of the historical averaging period and
whenever the estimate is made, the equally
weighted method is always estimating the same
parameter: the unconditional volatility (or cor-
relation) of the returns. But this is a constant—it
does not change over the process. Thus, the
variation in T-day historic estimates can only
be attributed to sampling error: There is noth-
ing else in the model to explain this variation.
It is not a time-varying volatility model, even
though some users try to force it into that frame-
work.

The problem with the equally weighted mov-
ing average model is that it tries to make an
estimate of a constant volatility into a forecast
of a time-varying volatility. Similarly, it tries to
make an estimate of a constant correlation into a
forecast of a time-varying correlation. No won-
der financial firms have lost a lot of money with
this model! It is really only suitable for long-
term forecasts of average volatility, or correla-
tion, for instance over a period of between six
months to several years. In this case, the look-
back period should be long enough to include a
variety of price jumps, with a relative frequency
that represents the modeler expectations of the
probability of future price jumps of that magni-
tude during the forecast horizon.
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Using Equally Weighted Moving
Averages

To forecast a long-term average for volatil-
ity using the equally weighted model, it is
standard to use a large sample size T in the
variance estimate. The confidence intervals for
historical volatility estimators given earlier in
this entry provide a useful indication of the
accuracy of these long-term volatility forecasts
and the approximate standard errors that we
have derived earlier in this entry give an in-
dication of variability in long-term volatility.
Here, we saw that the variability in estimates
decreased as the sample size increased. Hence,
long-term volatility that is forecast from this
model may prove useful.

When pricing options, it is the long-term
volatility that is most difficult to forecast. Op-
tions trading often focuses on short-maturity
options and long-term options are much less
liquid. Hence, it is not easy to forecast a long-
term implied volatility. Long-term volatility
holds the greatest uncertainty, yet it is the
most important determinant of long-term op-
tion prices.

We conclude this section with an interest-
ing conundrum, considering two hypothetical
historical volatility modelers, whom we shall
call Tom and Dick, both forecasting volatility
over a 12-month risk horizon based on equally
weighted average of squared returns over the
past 12 months of daily data. Imagine that it is
January 2006 and that on October 15, 2005, the
market crashed, returning –50% in the space of
a few days. So some very large jumps occurred
during the current data window, albeit three
months ago.

Tom includes these extremely large returns
in his data window, so his ex-post average of
squared returns, which is also his volatility fore-
cast in this model, will be very high. Because
of this, Tom has an implicit belief that another
jump of equal magnitude will occur during the
forecast horizon. This implicit belief will con-
tinue until one year after the crash, when those

large negative returns fall out of his moving
data window. Consider Tom’s position in Oc-
tober 2006. Up to the middle of October he
includes the crash period in his forecast but
after that the crash period drops out of the
data window and his forecast of volatility in
the future suddenly decreases—as if he sud-
denly decided that another crash was very un-
likely. That is, he drastically changes his belief
about the possibility of an extreme return. So, to
be consistent with his previous beliefs, should
Tom now “bootstrap” the extreme returns ex-
perienced during October 2005 back into his
data set?

And what about Dick, who in January 2006
does not believe that another market crash
could occur in his 12-month forecast horizon?
So, in January 2006, he should somehow fil-
ter out those extreme returns from his data. Of
course, it is dangerous to embrace the possibil-
ity of bootstrapping in and filtering out extreme
returns in data in an ad hoc way, before it is used
in the model. However, if one does not do this,
the historical model can imply a very strange
behavior of the beliefs of the modeler.

In the Bayesian framework of uncertain
volatility the equally weighted model has an
important role to play. Equally weighted mov-
ing averages can be used to set the bounds
for long-term volatility; that is, we can use
the model to find a range [σ min, σ max] for the
long-term average volatility forecast. The lower
bound σ min can be estimated using a long pe-
riod of historical data with all the very extreme
returns removed and the upper bound σ max can
be estimated using the historical data where the
very extreme returns are retained—and even
adding some!

A modeler’s beliefs about long-term volatility
can be formalized by a probability distribution
over the range [σ min, σ max]. This distribution
would then be carried through for the rest of the
analysis. For instance, upper and lower price
bounds might be obtained for long-term expo-
sures with option-like structures, such as war-
rants on a firm’s equity or convertibles bonds.
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This type of Bayesian method, which provides
a price distribution rather than a single price,
will be increasingly used in market risk man-
agement in the future.

EXPONENTIALLY WEIGHTED
MOVING AVERAGES
An exponentially weighted moving average
(EWMA) avoids the pitfalls explained in the
previous section because it puts more weight
on the more recent observations. Thus as ex-
treme returns move further into the past as the
data window slides along, they become less im-
portant in the average.

Statistical Methodology
An exponentially weighted moving average
can be defined on any time series of data. Say
that on date t we have recorded data up to time
t − 1, so we have observations (xt – 1, . . . . , x1).
The exponentially weighted average of these
observations is defined as:

EWMA(xt−1, . . . , x1)

= xt−1 + λxt−2 + λ2xt−3+.....+λt−2x1

1 + λ + λ2+.....+λt−2

where λ is a constant, 0 < λ < 1, called the
smoothing or the decay constant. Since λT → 0
as T → ∞ the exponentially weighted average
places negligible weight on observations far in
the past. And since 1 + λ + λ 2 +.... = (1 − λ)−1

we have, for large t,

EWMA(xt−1,...,x1 ) ≈ xt−1 + λxt−2 + λ2xt−3 + . . . . . .

1 + λ + λ2 + . . . . . .

= (1 − λ)
∞∑

i=1

λi−1 xt−i

This is the formula that is used to calcu-
late exponentially weighted moving average
(EWMA) estimates of variance (with x being
the squared return) and covariance (with x be-
ing the cross product of the two returns). As
with equally weighted moving averages, it is

standard to use squared daily returns and cross
products of daily returns, not in mean deviation
form. That is:

σ̂ 2
t = (1 − λ)

∞∑

i=1

λi−1 r2
t−i (19)

and

σ̂12,t = (1 − λ)
∞∑

i=1

λi−1 r1,t−i r2,t−i (20)

The above formulas may be rewritten in the
form of recursions, more easily used in calcula-
tions:

σ̂ 2
t = (1 − λ) r2

t−1 + λσ̂ 2
t−1 (21)

and

σ̂12,t = (1 − λ) r1,t−1r2,t−1 + λ σ̂12,t−1 (22)

An alternative notation used for the above is
Vλ (rt), for σ̂ 2

t and COVλ (r1,t, r2,t) for σ̂12,t when
we want to make explicit the dependence on
the smoothing constant.

One converts the variance to volatility by
taking the annualized square root, the annu-
alizing constant being determined by the data
frequency as usual. Note that for the EWMA
correlation the covariance is divided by the
square root of the product of the two EWMA
variance estimates, all with the same value of
λ. Similarly for the EWMA beta the covariance
between the stock (or portfolio) returns and the
market returns is divided by the EWMA es-
timate for the market variance, both with the
same value of λ. That is:

�̂t,λ = COVλ(r1,t, r2,t)√
Vλ(r1,t)Vλ(r2,t)

(23)

and

β̂t,λ = COVλ(Xt, Yt)
Vλ(Xt)

(24)

Interpretation of λ

There are two terms on the right-hand side
of (21). The first term (1 − λ) r2

t−1 determines
the intensity of reaction of volatility to market
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events: The smaller is λ the more the volatility
reacts to the market information in yesterday’s
return. The second term λσ̂ 2

t−1 determines the
persistence in volatility: Irrespective of what
happens in the market, if volatility was high
yesterday it will be still be high today. The closer
that λ is to 1, the more persistent is volatility fol-
lowing a market shock.

Thus, a high λ gives little reaction to actual
market events but great persistence in volatil-
ity, and a low λ gives highly reactive volatilities
that quickly die away. An unfortunate restric-
tion of exponentially weighted moving average
models is that the reaction and persistence pa-
rameters are not independent: The strength of
reaction to market events is determined by 1 – λ,
while the persistence of shocks is determined by
λ. But this assumption is not empirically justi-
fied except perhaps in a few markets (e.g., major
U.S. dollar exchange rates).

The effect of using a different value of λ in
EWMA volatility forecasts can be quite substan-
tial. Figure 5 compares two EWMA volatility
estimates/forecasts of the S&P 100 index, with
λ = 0.90 and λ = 0.975. It is not unusual for these
two EWMA estimates to differ by as much as
10%.

So which is the best value to use for the
smoothing constant? How should we choose
λ? This is not an easy question. (By contrast,
in generalized autoregressive conditional het-
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Figure 5 EWMA Volatility Estimates for SP100
with Different λs

eroskedascity (GARCH) models there is no
question of how we should estimate parame-
ters, because maximum likelihood estimation is
an optimal method that always gives consistent
estimators.) Statistical methods may be consid-
ered: For example, λ could be chosen to min-
imize the root mean square error between the
EWMA estimate of variance and the squared
return. But, in practice, λ is often chosen subjec-
tively because the same value of λ has to be used
for all elements in an EWMA covariance matrix.
As a rule of thumb, we might take values of λ

between about 0.75 (volatility is highly reactive
but has little persistence) and 0.98 (volatility is
very persistent but not highly reactive).

Properties of the Estimates
An EWMA volatility estimate will react im-
mediately following an unusually large return,
then the effect of this return on the EWMA
volatility estimate gradually diminishes over
time. The reaction of EWMA volatility estimates
to market events therefore persists over time,
and with a strength that is determined by the
smoothing constant λ. The larger the value of λ,
the more weight is placed on observations in the
past and so the smoother the series becomes.

Figure 6 compares the EWMA volatility of the
MIB index with λ = 0.95 and the 60-day equally
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Figure 6 EWMA versus Equally Weighted
Volatility
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weighted volatility estimate. The difference be-
tween the two estimators is marked following
an extreme market return. The EWMA esti-
mate gives a higher volatility than the equally
weighted estimate, but it returns to normal lev-
els faster than the equally weighted estimate
because it does not suffer from the ghost fea-
tures discussed above.

One of the disadvantages of using EWMA to
estimate and forecast covariance matrices is that
the same value of λ is used for all the variances
and covariances in the matrix. For instance, in a
large matrix covering several asset classes, the
same λ applies to all equity indexes, foreign ex-
change rates, interest rates, and/or commodi-
ties in the matrix. But why should all these risk
factors have similar reaction and persistence to
shocks? This constraint is commonly applied
merely because it guarantees that the matrix
will be positive semidefinite.

The EWMA Forecasting Model
The exponentially weighted average variance
estimate (19), or in its equivalent form (21), is
just a methodology for calculating σ̂ 2

t . That is,
it gives a variance estimate at any point in time
but there is no model as such that explains the
behavior of the variance of returns, σ 2

t at each
time t. In this sense, we have to distinguish
EWMA from a GARCH model, which starts
with a proper specification of the dynamics of
σ 2

t and then proceeds to estimate the parame-
ters of this model.

Without a proper model, it is not clear how
we should turn our current estimate of vari-
ance into a forecast of variance over some fu-
ture horizon. One possibility is to augment (21)
by assuming it is the estimate associated with
the model

σ 2
t = (1 − λ) r2

t−1 + λσ 2
t−1 rt |It−1 ∼N

(
0, σ 2

t

)

(25)

An alternative is to assume a constant volatil-
ity, so the fact that our estimates are time vary-

ing is merely due to sampling error. In that case
any EWMA variance forecast must be constant
and equal to the current EWMA estimate. Sim-
ilar remarks apply to the EWMA covariance,
this time regarding EWMA as a simplistic ver-
sion of bivariate normal GARCH. Similarly, the
EWMA volatility (or correlation) forecast for all
risk horizons is simply set at the current EWMA
estimate of volatility (or correlation). The base
horizon for the forecast is given by the fre-
quency of the data—daily returns will give the
one-day covariance matrix forecast, weekly re-
turns will give the one-week covariance matrix
forecast, and so forth. Then, since the returns
are independent and identically distributed, the
square root of time rule applies. So we can con-
vert a one-day forecast into an h-day covariance
matrix forecast by multiplying each element of
the one-day EWMA covariance matrix by h.

Since the choice of λ itself is quite ad hoc,
as discussed above, some users choose differ-
ent values of λ for forecasting over different
horizons. For instance, as discussed later in this
entry, in the RiskMetricsTM methodolgy a rel-
atively low value of λ is used for short-term
forecasts and a higher value of λ is used for
long-term forecasts. However, this is purely an
ad hoc rule.

Standard Errors for EWMA Forecasts
In the previous section, we justified the assump-
tion that the underlying returns are normally
and independently distributed with mean zero
and variance σ 2. That is, for all t

E
(
rt

) = 0 and V
(
rt

) = E
(
r2

t

) = σ 2

In this section, we use this assumption to ob-
tain standard errors for EWMA forecasts. From
the above, and further from the normality as-
sumption, we have:

V
(
r2

t

) = E
(
r4

t

) − E
(
r2

t

)2 = 3σ 4 − σ 4 = 2σ 4

Now we can apply the variance operator to
(21) and calculate the variance of the EWMA
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variance estimator as:

V
(
σ̂ 2

t

) = (1 − λ)2

(1 − λ2)
V

(
r2

t

) = 2
1 − λ

1 + λ
σ 4 (26)

For instance, as a percentage of the variance,
the standard error of the EWMA variance esti-
mator is about 5% when λ = 0.95, 10.5% when
λ = 0.9, and 16.2% when λ = 0.85.

A single point forecast of volatility can be very
misleading. A forecast is always a distribution.
It represents our uncertainty over the quantity
that is being forecast. The standard error of a
volatility forecast is useful because it can be
translated into a standard error for a VaR esti-
mate, for instance, or an option price. In any VaR
model one should be aware of the uncertainty
that is introduced by possible errors in the fore-
cast of the covariance matrix. Similarly, in any
mark-to-model value of an option, one should
be aware of the uncertainty that is introduced
by possible errors in the volatility forecast.

The RiskMetricsTM Methodology
Three very large covariance matrices, each
based on a different moving average methodol-
ogy, are available from www.riskmetrics.com.
These matrices cover all types of assets includ-
ing government bonds, money markets, swaps,
foreign exchange, and equity indexes for 31 cur-
rencies and commodities. Subscribers have ac-
cess to all of these matrices updated on a daily
basis—and end-of-year matrices are also avail-
able to subscribers wishing to use them in sce-
nario analysis. After a few days, the datasets are
also made available free for educational use.

The RiskMetricsTM group is the market leader
in market and credit risk data and mod-
eling for banks, corporate asset managers,
and financial intermediaries. It is highly rec-
ommended that readers visit the Web site
(www.riskmetrics.com), where they will find a
surprisingly large amount of information in the
form of free publications and data. See the Ref-
erences at the end of this entry for details.

The three covariance matrices provided by the
RiskMetrics group are each based on a history of
daily returns in all the asset classes mentioned
above. They are:

1. Regulatory matrix: This takes its name from
the (unfortunate) requirement that banks
must use at least 250 days of historical data
for VaR estimation. Hence this metric is an
equally weighted average matrix with n =
250. The volatilities and correlations con-
structed from this matrix represent forecasts
of average volatility (or correlation) over the
next 250 days.

2. Daily matrix: This is an EWMA covariance
matrix with λ = 0.94 for all elements. It is
not dissimilar to an equally weighted aver-
age with n = 25, except that it does not suf-
fer from the ghost features caused by very
extreme market events. The volatilities and
correlations constructed from this matrix
represent forecasts of average volatility (or
correlation) over the next day.

3. Monthly matrix: This is an EWMA covari-
ance matrix with λ = 0.97 for all elements
and then multiplied by 25 (that is, using the
square root of time rule and assuming 25
days per month). The volatilities and correla-
tions constructed from this matrix represent
forecasts of average volatility (or correlation)
over the next 25 days.

The main difference between the three differ-
ent methods is evidenced following major mar-
ket movements: The regulatory forecast will
produce a ghost effect of this event, and does
not react as much as the daily or monthly fore-
casts. The most reactive is the daily forecast,
but it also has less persistence than the monthly
forecast.

Figure 7 compares the estimates for the FTSE
100 volatility based on each of the three Risk-
Metrics methodologies and using daily data
from January 2, 1995, to June 23, 2006. As men-
tioned earlier in this entry, these estimates are
assumed to be the forecasts over, respectively,
one day, one month, and one year. In volatile

http://www.riskmetrics.com
http://www.riskmetrics.com
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Figure 7 Comparison of the RiskMetrics “Fore-
casts” for FTSE100 Volatility

times, the daily and monthly estimates lie well
above the regulatory forecast and the converse
is true in more tranquil periods. For instance,
during most of 2003, the regulatory estimate of
average volatility over the next year was about
10% higher than both of the shorter-term es-
timates. However, it was falling dramatically
during this period, and indeed the regulatory
forecast of more than 20% volatility on average
between June 2003 and June 2004 was entirely
wrong. However, at the end of the period, in
June 2006, the daily forecasts were above 20%,
and the monthly forecasts were only just below
this. However, the regulatory forecast over the
next year was only slightly more than 10%.

During periods when the markets have been
tranquil for some time, for instance during the
whole of 2005, the three forecasts tend to agree
more. But during and directly after a volatile
period there are large differences between the
regulatory forecasts and the two EWMA fore-
casts, and these differences are very difficult
to justify. Neither the equally weighted aver-
age nor the EWMA methodology is based on a
proper forecasting model. One simply assumes
the current estimate is the volatility forecast.
But the current estimate is a backward-looking
measure based on recent historical data. So both
of these moving average models make the as-
sumption that the behavior of future volatility

is the same as its past behavior and this is a very
simplistic view.

KEY POINTS
� The equally weighted moving average, or

historical approach to estimating/forecasting
volatilities and correlations, was the only sta-
tistical method used by practitioners until the
mid-1990s.

� The historical method may provide a useful
indication of the possible range for a long-
term average, such as the average volatility or
correlation over the next several years. How-
ever, its application to short-term forecast-
ing suffers from at least four drawbacks: (1)
The forecast of volatility/correlation over all
future horizons is simply taken to be the cur-
rent estimate of volatility, because the under-
lying assumption in the model is that returns
are independent and identically distributed;
(2) the only choice facing the user is on the
data points to use in the data window; (3) fol-
lowing an extreme market move the forecasts
of volatility and correlation will exhibit a so-
called “ghost” feature of that extreme move,
which will severely bias the volatility and cor-
relation forecasts upward; and (4) the extent
of this bias depends very much on the size of
the data window.

� The bias issue associated with the his-
torical approach was addressed by the
RiskMetricsTM data and software suite. The
choice of methodology helped to popularize
the use of exponentially weighted moving av-
erages (EWMA) by financial analysts.

� The EWMA approach provides useful fore-
casts for volatility and correlation over the
very short term, such as over the new day
or week. However, its use for longer-term
forecasting is limited, and this methodology
has two major problems: (1) The forecast of
volatility/correlation over all future horizons
is simply taken to be the current estimate of
volatility, because the underlying assumption
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in the model is that returns are indepen-
dent and identically distributed, and (2) the
only choice facing the user is about the value
of the smoothing constant. With the EWMA
approach, the forecasts produced depend
crucially on this decision, yet there is no sta-
tistical procedure to choose for the value of
the smoothing constant.

� Moving average models assume returns are
independent and identically distributed, and
the further assumption that they are normally
distributed allows one to derive standard er-
rors and confidence intervals for moving av-
erage forecasts. But empirical observations
suggest that returns to financial assets are
hardly ever independent and identically, let
alone normally, distributed. For these reasons
more and more practitioners are basing their
forecasts on generalized autoregressive con-
ditional heteroskedasticity (GARCH) models.

� There is no doubt that GARCH models pro-
duce superior volatility forecasts. It is only
in GARCH models that the term structure
volatility forecasts converge to the long-run
average volatility—the other models produce
constant volatility term structures. Moreover,
the value of the EWMA smoothing constant is

chosen subjectively and the same smoothing
constant must be used for all the returns, oth-
erwise the covariance matrix need not be posi-
tive semidefinite. But GARCH parameters are
estimated optimally and GARCH covariance
matrices truly reflect the time-varying volatil-
ities and correlations of the multivariate
returns distributions.
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Abstract: MATLAB is a modeling environment that allows for input and output processing, sta-
tistical analysis, simulation, and other types of model building for the purpose of analysis of a
situation. MATLAB uses a number-array-oriented programming language; that is, a programming
language in which vectors and matrices are the basic data structures. Reliable built-in functions, a
wide range of specialized toolboxes, easy interface with widespread software like Microsoft Excel,
and beautiful graphing capabilities for data visualization make implementation with MATLAB
efficient and useful for the financial modeler.

MATLAB is an interactive computing environ-
ment for model development that also enables
data visualization, data analysis, and numerical
simulation. The core of the MATLAB environ-
ment was created as a number-array-oriented
programming language; that is, as a program-
ming language in which vectors and matri-
ces are the basic data structures. (MATLAB
stands for Matrix Laboratory.) Operations in-
volving matrices and vectors can be performed
efficiently within the core MATLAB software
product. More specialized operations, such as
statistical data analysis, optimization, and sim-
ulation, can be accessed by purchasing some
of MATLAB’s specialized toolboxes. Once a
toolbox is installed, functions from the tool-
box can be called in the same way as standard
MATLAB functions, without any special ad-
ditional syntax. MATLAB toolboxes that are
useful for quantitative analysis in financial ap-
plications include:

� Statistics Toolbox
� Optimization Toolbox
� Global Optimization Toolbox
� Curve Fitting Toolbox
� Neural Network Toolbox
� Partial Differential Equation Toolbox

For example, the Statistics Toolbox contains
data analysis tools (for multivariate analy-
sis, statistical tests, statistical plots), random
number generation tools, and quasi-random
number generation tools, which are useful for
implementing risk management and deriva-
tive pricing routines. The Optimization Tool-
box contains solvers for linear, quadratic,
nonlinear, and binary optimization, which can
aid quantitative portfolio allocation schemes.
The Global Optimization Toolbox contains
randomized search optimization subroutines
that can be used for solving complex (e.g.,
mixed-integer) optimization problems to near

417
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optimality. It is useful, for example, for creat-
ing more complex portfolio allocation or trad-
ing routines. For more details and information
about the other toolboxes, see the Mathworks
website, http://www.mathworks.com.

MATLAB also has toolboxes that are specif-
ically targeted at financial applications. These
toolboxes include:

� Financial Toolbox
� Econometrics Toolbox
� Datafeed Toolbox
� Fixed-Income Toolbox
� Financial Derivatives Toolbox

For example, the Financial Toolbox contains
specialized routines for computing frequently
used financial quantities, such as present and
future value, basic portfolio optimization, term
structure of interest rates, bond prices, and
derivative prices. It also contains functions that
help with the manipulation of typical finan-
cial data sets, such as multivariate regression
with missing data. Many of these routines can
be implemented by using standard MATLAB
functions, but the Financial Toolbox puts them
together in a convenient package.

It is worth noting that most of the finan-
cial toolboxes require installation of one or
more of the mathematics toolboxes listed ear-
lier. For example, the Financial Toolbox requires
the Statistics Toolbox and the Optimization
Toolbox. The Financial Derivatives Toolbox re-
quires the Statistics, Optimization, and Finance
Toolboxes.

Another tool of interest to those who use Win-
dows and Microsoft Excel extensively as the
platform for their applications is Spreadsheet
Link EX. Spreadsheet Link EX enables the ma-
nipulation of Microsoft Excel worksheets from
within MATLAB and using MATLAB functions
from within Excel. This is a useful toolbox that
allows powerful MATLAB capabilities to be ac-
cessed through a familiar interface.

This entry provides brief pointers to impor-
tant aspects of modeling in MATLAB. We discuss
basic array construction and operations, func-

tions and scripts, as well as graphs. We also
provide examples of MATLAB code for port-
folio optimization schemes and for pricing a
European call option by simulation.

When readers try to implement such routines
themselves, they may find it useful to know that
the MATLAB manual and online help contain
abundant information and examples. Detailed
documentation is also provided in MATLAB it-
self. For example, typing help at the prompt
in MATLAB lists all major topics. Type help
name of function at the prompt or in the
box in the Help dialog box to access the docu-
mentation on that function in MATLAB. If un-
sure of which help topic is relevant, click on the

button with question mark ( ) in MATLAB’s
top menu. It provides richer search options.

THE MATLAB DESKTOP
AND EDITOR
The standard MATLAB desktop window con-
tains a Workspace window, a Command His-
tory window, and a Command window (see
Figure 1). Depending on how you customize
the MATLAB desktop window, however, you
may see more or fewer windows. To check
which windows are currently displayed and
view other options, click on Desktop in the top
MATLAB desktop window menu.

MATLAB commands are entered in the Com-
mand window. When a series of commands
need to be given, it is more convenient to
list them in an M-file, which is basically a file
with instructions that MATLAB executes se-
quentially. Such files (scripts) are saved with
the suffix “.m” and can be called from the
prompt in the Command window typing their
name (without the suffix “.m”). For example, if
you create a file OptimizePortfolio.m with in-
structions on how to perform optimal portfolio
allocation, you can call that file from the MAT-
LAB command prompt by typing

>> OptimizePortfolio

http://www.mathworks.com
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Figure 1 The Standard MATLAB Desktop

(If the file is saved in a directory other than
the default MATLAB directory, you will need
to make sure that MATLAB can find the file.
Select Desktop > Current Directory from the
top menu and navigate to the correct directory
before typing the command at the prompt.)

To create an M-file, you can use any text edit-
ing program, such as WordPad, NotePad, and
the open source editor Emacs. In general, it is
convenient to use an editor that recognizes the
MATLAB file type and provides helpful high-
lighting for parts of the code that have differ-
ent characteristics. (For example, comments in
the code appear in different colors than com-
mands.) MATLAB’s own editor can do that, and
Emacs can be set up to recognize the MATLAB
file format as well.

To call MATLAB’s editor in order to create or
edit M-files, select Desktop > Editor from the
top menu. Alternatively, you can use the short-
cut buttons at the top of the MATLAB desktop

window: the button to open the MATLAB

editor to write a new file, or the button to
open a file that has already been created.

BASIC OPERATIONS AND
MATRIX ARRAY
CONSTRUCTION
Basic Mathematical Operations
MATLAB can perform many kinds of different
mathematical operations, such as addition (+),
multiplication (* or .*), square root (sqrt or
sqrtm), and power (ˆ). These commands can
be entered at the command prompt. For exam-
ple, typing

>> 3*sqrt(4) + 15

and pressing Enter produces the output

ans =

21
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To suppress output, use the semicolon (;). For
example, entering

>> 3*sqrt(4) + 15;

does not result in any visible output in the com-
mand window. However, MATLAB still per-
forms the calculation. To see this, let us assign
the value of the above expression to a variable,
ExpressionValue:

>> ExpressionValue = 3*sqrt(4) + 15;

Then, typing ExpressionValue at the com-
mand prompt, you get

>> ExpressionValue

ExpressionValue =

21

Constructing Vectors and Matrices
As mentioned earlier, MATLAB’s core data
structures are vectors and matrices. For exam-
ple, the command

>> x = [2 3 4 6]

produces a horizontal vector array (one row) x
that contains the numbers 2, 3, 4, and 6.

The semicolon (;) is used to create new rows.
To create a vertical vector array ywith the same
entries, you can enter

>> y = [2; 3; 4; 6]

or press Enter after entering each number.
(MATLAB treats semicolons and carriage re-
turns in array declarations as new lines.) The
different syntax is useful depending on the
source for downloading the data that populate
the arrays.

Matrices are declared similarly. For example,
a 2-by-2 matrix X can be specified as

>> X = [1 2 3 4; 5 6 7 8]

X =

1 2 3 4

5 6 7 8

MATLAB is case-sensitive; that is, it will treat
the matrix X and the vector x defined earlier as
separate variables.

Special commands exist for declaring types of
matrices that are used often. For example,

>> I = eye(3,3)

I =

1 0 0

0 1 0

0 0 1

produces a 3×3 identity matrix.
Similarly, the commands ones(n,m) and

zeros(n,m) can be used to declare matrices
that contain only 0s or 1s of the desired dimen-
sion (n x m), and diag(x) can be used to create
a matrix that has a vector x as its diagonal ele-
ments, and 0s everywhere else.

You can also “stack” matrices and vectors. For
example,

>> Y =[x; X]

Y =

2 3 4 6

1 2 3 4

5 6 7 8

Basic Array Operations
To transpose an array A, use the command
transpose(A) or A’. This operation converts
a horizontal vector into a vertical one and vice
versa, and flips the elements of a matrix that
contains real numbers in its entries around
the diagonal, keeping the diagonal entries the
same.

For example,

>> X’

ans =

1 5

2 6

3 7

4 8

To multiply two arrays, you can simply use
the multiplication command *. Since the oper-
ation * performs a matrix multiplication, you
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need to make sure that the matrix dimensions
agree. For example, an error results in the case
when the 1×4 array x is multiplied by the 2×4
array X:

>> x*X

??? Error using ==> mtimes

Inner matrix dimensions must agree.

To multiply x and X correctly, you can instead
type

>> x*X’

ans =

44 104

If you need to perform an element-by-element
multiplication of two arrays (of equal sizes), use
the .* operator. For example,

>> X.*X

ans =

1 4 9 16

25 36 49 64

Note that this is different from the matrix
product. The matrix product would produce the
following result:

>> X’*X

ans =

26 32 38 44

32 40 48 56

38 48 58 68

44 56 68 80

When a matrix array is multiplied by a num-
ber, all of the array’s entries are multiplied by
that number. Similarly, if a number is added to
a matrix array, the number will be added to all
of the elements of the matrix. For example,

>> 10+X

ans =

11 12 13 14

15 16 17 18

Extracting Information from Arrays
Suppose you have a matrix array Data with
financial data on annual stock returns over

10 years for 1,000 companies traded on the New
York Stock Exchange, and you would like to
check the entry for the return on stock 253 in
year 7. You are dealing with a 10x1000 matrix
array in which each row is a time period and
each column contains the returns on a partic-
ular stock. You are looking for the element in
row 7, column 253 of this array. This can be
requested with the command Data(7,253).

Suppose now that you would like to extract
information on all of stock 253’s returns over
the 10 years. This means that you are looking
for the elements of column 253 of the matrix
array. This can be requested with the command
Data(:,253). The colon operator replaces the
row index to specify that elements with all in-
dexes in the 253rd column should be produced.
Similarly, if you would like to request all ele-
ments in the same row (e.g., the returns on all
stocks in year 7), you can use the colon operator
again: Data(7,:).

To illustrate the output, let us use the matrix
array X. To find out what the value of the ele-
ment in row 1, column 3 is, enter

>> X(1,3)

ans =

3

The third column of X is

>> X(:,3)

ans =

3

7

Similarly, the second row of X can be obtained
as

>> X(2,:)

ans =

5 6 7 8

IMPORTANT MATLAB
FUNCTIONS
MATLAB supports a number of built-in func-
tions. A function is written as a command and
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takes arguments as inputs in parentheses. It
processes the inputs by using operations hid-
den from the user and passes the final results
back to the user. While we cannot cover many
of the MATLAB functions in this brief intro-
duction, we illustrate how functions work with
an example of the function find, which can be
useful in many situations.
Find takes in an array and a condition as

arguments and returns the indexes of elements
within the array that satisfy the condition. In ad-
dition to traditional applications, find can be
very helpful when dealing with missing data,
which happens often with financial time series.

Suppose you want to find the indexes of the
elements that are less than 5 of the 1×4 array x
from the previous section. At the prompt, type

>> find(x<5)

The result is

ans =

1 2 3

Now let us see how find works when the
array is a matrix rather than a vector. Recall that
Y was the matrix array obtained by stacking x
and X. Suppose you want to find the indexes of
the elements in the array that are less than 5. At
the prompt, type

>> ind = find(Y<5)

MATLAB creates the following array:

ind =

1

2

4

5

7

8

11

MATLAB treated the matrix array as a
stacked-up collection of column vectors. The
elements of the array ind correspond to the
indexes of the elements in that long column vec-
tor. Obtaining the actual elements of Y that cor-

respond to these indexes can be accomplished
by typing

>> Y(ind)

This produces the answer

ans =

2

1

3

2

4

3

4

The indexing of an array as a sequence of
stacked columns works well if the array is a
vector, but it can get confusing if the array is a
matrix. In the latter case, it is more intuitive to
obtain the indexes as a row and column index.
For example,

>> [indRow,indCol] = find(Y<5)

produces

indRow =

1

2

1

2

1

2

2

indCol =

1

1

2

2

3

3

4

This means that the following elements of Y
have values less than 5: (row 1, column 1), (row
2, column 1), (row 1, column 2), and so on. Un-
fortunately, looking up the actual values of the
elements of Y as Y(indRow,indCol) does not
work.
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CREATING USER-DEFINED
FUNCTIONS
The compactness of the function syntax makes
functions desirable when a user needs to call
a certain sequence of commands often. For
example, the Black-Scholes formula for pricing
European options takes a number of steps to
compute. It is convenient to have a function
that returns one value—the option price—to the
user after the user inputs values of factors that
determine that price, such as the strike price,
the time to maturity, the volatility, and so on.

Functions need to be written in M-files. Al-
though general script M-files can contain any
sequence of instructions that will be completed

when the name of the file is typed at the MAT-
LAB prompt, function M-files need to start with
a specific first line. That line contains the word
“function” and a declaration of the function
name, inputs, and outputs. The function name
and the name of the M-file should be the same.

The Black-Scholes formula already exists in
the Financial Toolbox, so it is convenient to see
how the price is computed and discuss impor-
tant aspects of writing user-defined functions.
(We have skipped some lines in the code for the
sake of brevity.) Users can view the source code
for some of the advanced MATLAB functions
in the toolboxes by entering type function
name at the prompt.

>> type blsprice

function [call,put] = blsprice(S, X, r, T, sig, q)

% BLSPRICE Black-Scholes put and call option pricing.

% Compute European put and call option prices using a Black-Scholes model.

%

% [Call,Put] = blsprice(Price, Strike, Rate, Time, Volatility)

% [Call,Put] = blsprice(Price, Strike, Rate, Time, Volatility, % Yield)

%

% Optional Input: Yield

%

% Inputs:

% Price - Current price of the underlying asset.

% Strike - Strike (i.e., exercise) price of the option.

% Rate - Annualized continuously compounded risk-free rate of

% return over the life of the option, expressed as a positive decimal number.

% Time - Time to expiration of the option, expressed in years.

% Volatility - Annualized asset price volatility (i.e., annualized

% standard deviation of the continuously compounded asset return),

% expressed as a positive decimal number.

% Optional Input: Yield - Annualized continuously compounded yield of the

% underlying asset over the life of the option, expressed as a decimal

% number. If Yield is empty or missing. the default value is zero. For

% example, this could represent the dividend yield (annual dividend rate

% expressed as a percentage of the price of the security) or foreign

% risk-free interest rate for options written on stock indices and

% currencies, respectively.

%
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% Outputs:

% Call - Price (i.e., value) of a European call option.

% Put - Price (i.e., value) of a European put option.

. . .

%

. . .

% Copyright 1995-2005 The MathWorks, Inc.

% $Revision: 1.8.2.5 $ $Date: 2005/09/18 16:19:06 $

%

% Input argument checking & default assignment.

%

if nargin < 5

error(’Finance:blsprice:InsufficientInputs’, . . .

’Specify Price, Strike, Rate, Time, and Volatility.’)

end

if (nargin < 6) ‖ isempty(q)

q = zeros(size(S));

end

message = blscheck(’blsprice’, S, X, r, T, sig, q);

error(message);

%

% Perform scalar expansion & guarantee conforming arrays.

%

try

[S, X, r, T, sig, q] = finargsz(’scalar’, S, X, r, T, sig, q);

catch

error(’Finance:blsprice:InconsistentDimensions’, . . .

’Inputs must be scalars or conforming matrices.’)

end

%

% Record array dimensions for output argument formatting.

%

[nRows, nCols] = size(S);

call = nan(nRows * nCols, 1);

put = nan(nRows * nCols, 1);

%
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% Convert to column vectors for intermediate processing.

%

[S, X, r, T, sig, q] = deal(S(:), X(:), r(:), T(:), sig(:), q(:));

%

% Enforce some boundary conditions that produce warnings (e.g., logarithm

% of zero and divide by zero) and potential NaN’s in the output option

% price arrays:

%

% (1) At expiration (i.e., T = 0), the price of all options is simply the

% greater of their intrinsic value and zero.

%

% (2) When the price of the underlying asset is zero (i.e., S = 0), the value

% of a call option is zero and the value of a put option is equal to its

% present value of the strike price (X). This boundary condition enforces

% the "absorbing barrier" property associated with the geometric Brownian

% motion diffusion process governing the price path of the underlying

% asset (S).

%

% (3) When the strike price is zero (i.e., X = 0), the value of a put option

% is zero and the value of a call option is equal to the price of the

% underlyer (S).

%

isTimeZero = (T == 0); % Expired options.

call(isTimeZero) = max(S(isTimeZero) - X(isTimeZero), 0);

put (isTimeZero) = max(X(isTimeZero) - S(isTimeZero), 0);

isStockZero = (S == 0);

call(isStockZero) = 0; % Worthless calls.

if any(isStockZero)

put(isStockZero) = X(isStockZero) .* exp(-r(isStockZero).*T(isStockZero));

end

isStrikeZero = (X == 0);

call(isStrikeZero) = S(isStrikeZero);

put (isStrikeZero) = 0; % Worthless puts.

%

% Suppress a divide by zero warning ONLY for zero volatility conditions. Other

% warnings could be valuable.

%

state = warning; % Store the current state.

if any(sig == 0)

warning(’off’, ’MATLAB:divideByZero’)

end
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%

% Now apply the general Black-Scholes European option pricing formulae,

% excluding the boundary cases handled above, and explicitly handling

% calculations that produce 0/0 = NaN’s for the parameters of the

% cumulative normal distribution function (i.e., d1 & d2).

%

% NaN’s occur when S = X, r = q, and Sigma = 0. This situation corresponds to

% at-the-money options written on riskless underlying assets. Such assets

% should earn the risk-free rate less the dividend yield. But when r = q, the

% net growth rate is also zero, resulting in 0/0 = NaN.

%

i = ∼(isTimeZero | isStockZero | isStrikeZero);

d1 = log(S(i)./X(i)) + (r(i) - q(i) + sig(i).ˆ2/2) .* T(i);

d1 = d1 ./(sig(i).*sqrt(T(i)));

d2 = d1 - (sig(i).*sqrt(T(i)));

d1(isnan(d1)) = 0;

d2(isnan(d2)) = 0;

call(i) = S(i) .* exp(-q(i).*T(i)) .* normcdf( d1) - . . .

X(i) .* exp(-r(i).*T(i)) .* normcdf( d2);

put (i) = X(i) .* exp(-r(i).*T(i)) .* normcdf(-d2) - . . .

S(i) .* exp(-q(i).*T(i)) .* normcdf(-d1);

warning(state) % Restore the state.

%

% Reshape the outputs for the user.

%

call = reshape(call, nRows, nCols);

put = reshape(put , nRows, nCols);

% [EOF]

Some aspects of this function are very compli-
cated for a beginner, but a review of the func-
tion syntax helps create a list of useful pointers
to which you can refer when creating your own
functions:

� The first line contains the word function
followed by a specification of the outputs of
the function call (in this case, [call,put]).

Note that a function can have more than one
output. After calling the function, MATLAB
computes the values for the outputs, and the
variable callwill contain the price of a Euro-
pean call option, while the variable put will
contain the price of a European put option.
Next, we have an equal sign followed by the
name of the function (blsprice) and the ar-
guments for the function (S for current stock
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price, X for strike price, r for rate of return, T
for time to maturity, sig for volatility, as well
as the optional argument yield for continu-
ous dividend yield).

� When the function is called with specific in-
put values, you can assign the output to vari-
ables. For example,

>> [callOutput,putOutput]

= blsprice(110,100,0.10,2,0.40)

callOutput =

38.1757

putOutput =

10.0488

� The names of the input variables need to par-
ticipate in calculations in the function. For ex-
ample, S appears as the current stock price
in the first line (function [call,put] =
blsprice(S, X, r, T, sig, q)), and
this is the same variable that is used to store
the value of the stock price in the compu-
tations. Similarly, the names of the output
variables (call and put) should appear
somewhere in the text of the function and be
assigned an expression, which can then be re-
turned to the user.

� Note the abundance of the percentage sign (%)
in the function code. This sign is used for writ-
ing comments that are ignored by MATLAB
when executing the code. It is always a good
idea to comment abundantly in order to be
able to retrace your reasoning later. The first
comment line is called “the H1 line,” and it is
the line that is searched by the MATLAB built-
in function lookfor. Lookfor searches all
MATLAB files containing a keyword in their
first line. (This is useful if you are not sure
which function to use for a specific purpose,
and you would like to find the names of all
functions that may be relevant.) Therefore, it
is important to provide a meaningful descrip-
tion of your function in the first commented
line. After the first line, you can continue with
a more detailed description of the function
and list references.

CONTROL FLOW
STATEMENTS
M-files, whether of a generic or function kind,
can contain more advanced operations than ma-
trix manipulation. Next, we briefly review a
couple of control flow statements that are of-
ten used in such files: the for loop and the if
statement.

The general format of a for loop is

for n = array

commands

end

The commands inside the for loop are exe-
cuted once for every value in the column in the
array. (Typically, the array is a vector of num-
bers, so the loop is executed once for every num-
ber.) For example,

for n = 1:5

v(n) = sqrt(n);

end

results in

v =

1.0000 1.4142 1.7321 2.0000 2.2361

The array 1:5 is equivalent to [1 2 3 4 5].
MATLAB starts out with n = 1, computes its
square root, and assigns it to v(1). Then, it
keeps repeating the process until it has com-
puted v(5) for n = 5.

Loops in MATLAB are often necessary, but
as a general rule MATLAB is more efficient in
array operations than in loops. For example,
the same effect (adding 10 to each element of
the vector x) can be achieved in two ways:

for n = 1:4

x(n) = x(n) + 10;

end

and

>> x = x+10

Both of them result in

x =

12 13 14 16
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The second command would typically be
completed faster. Loops are not as inefficient as
they used to be in older versions of MATLAB,
however—the difference in speed between the
two approaches has been greatly reduced in the
latest versions of the software.

The if statement has the following general
format:

if expression

commands

end

The commands are completed only if all ele-
ments in the expression are true. A somewhat
more complex if statement is

if expression1

commands1

elseif expression2

commands2

else expression3

commands3

end

Commands1 are completed if expression1
is true. If expression1 is not true, MATLAB
moves on and checks if expression2 is true.
If expression2 is true, commands2 are com-
pleted. If expression2 is not true either,
MATLAB moves to expression3. If expres-
sion2 is true, commands3 are completed;
otherwise MATLAB exits. The elseif or else
commands are optional in if statements.

There are several other useful control flow
statements, such as the while loop, switch-
case constructions, and try-catch blocks.
See the MATLAB manual and help for more
detail.

GRAPHS
MATLAB is well known for its beautiful graph-
ing capabilities. The most common function for
plotting two-dimensional (2-D) graphs is plot.

To illustrate how plot works, suppose we
would like to plot the standard normal prob-

ability distribution. We will use the function
normpdf (available from the Statistics Tool-
box), which computes the probability den-
sity function (PDF) of a normal random
variable.

The command

>> x = linspace(-6,6,100)

creates a vector x with 100 values, equally
spaced between the minimum value −6 and
the maximum value +6. (In reality, the normal
distribution stretches from negative infinity to
positive infinity, but it is highly unlikely that
we will obtain realizations that are greater than
6 standard deviations away from the mean of 0,
so we focus on plotting the center of the distri-
bution.)

The command

>> y = normpdf(x)

computes the values of the normal probability
distribution function for every value in the ar-
ray for x.

To plot x versus y, use

>> plot(x,y)

The result is the graph in Figure 2.
You can play with the options for the graph.

For example,

>> plot(x,y,’r:p’); title(’Normal PDF’);

xlabel(’x’); ylabel(’pdf’)

plots the same graph as a red dotted line with
a pentagram symbol, labels the horizontal (x)
and the vertical (y) axes, and creates a title for
the graph (see Figure 3).

To plot multiple graphs on the same picture,
use the command hold on before you start
and hold off when you are done with the
instructions. For example, suppose we would
like to plot the standard normal distribution
and a standard t-distribution with 5 degrees of
freedom on the same graph in order to compare
them. The following sequence of commands ac-
complishes this.
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Figure 3 A Plot of the PDF of the Normal Distribution (with Modified Options)
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Figure 4 Illustration of hold on / hold off Effect

First, we declare a variable that follows a t-
distribution with 5 degrees of freedom:

>> t=tpdf(x,5);

Then, we plot the graph:

>> hold on

>> plot(x,y,’r:p’); xlabel(’x’);

ylabel(’pdf’)

>> plot(x,t);

>> title(’Normal Versus T Distribution’);

>> hold off

The results are displayed in Figure 4.
Alternatively, you can list several pairs of

variables inside the plot function. For exam-
ple,

>> plot(x,y,’r:p’,x,t); xlabel(’x’);

ylabel(’pdf’)

>> legend(’Normal PDF’,’T PDF’)

>> title(’Normal Versus T Distribution

with 5 DoF’);

This script also creates a legend (Figure 5).

Legend, titles, and other graph attributes can
be added and modified also after the basicplot
command has been given and a graph window
has popped up. To modify an existing graph’s
options, click on the corresponding items in the
top menu of the graph window.

Suppose now that we would like to plot the
two PDFs side by side in the same figure. To
graph several separate graphs in the same
figure, use the command subplot(number
of rows, number of columns, index
of graph within the graph array).

For example, the code

>> subplot(1,2,1), plot(x,y,’r:p’);

xlabel(’x’); ylabel(’pdf’)

>> title(’(a) Normal PDF’)

>> subplot(1,2,2), plot(x,t);

xlabel(’x’); ylabel(’pdf’)

>> title(’(b) T PDF’)

produces the graph in Figure 6.
Finally, we briefly discuss three-dimensional

(3-D) graphs. They can be created with



INTRODUCTION TO FINANCIAL MODEL BUILDING WITH MATLAB 431

-6 -4 -2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

pd
f

Normal Versus T Distribution with 5 DoF

Normal PDF

T PDF

Figure 5 Changing Defaults and Plotting Multiple Graphs with the plot Function

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

pd
f

(a) Normal PDF

-10 -5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x

pd
f

(b) T PDF

Figure 6 Multiple Plots within the Same Figure



432 Software for Financial Modeling

commands like plot3 and surf, and as a gen-
eral matter are more complex.

The command plot3(first variable
x, second variable y, third vari-
able z) plots points in 3-D space whose
three coordinates are given by the vectors or
matrices (x,y,z) in the three arguments of
the function. The arguments need to be arrays
of equal sizes.

The command surf(x, y, z) plots a
shaded surface using z as the height and (x,
y) as the vectors or matrices that define the
other two dimensions of the surface. When x
and y are vector arrays, as is the case in most
financial applications, the number of rows for
z should be the length of the vector array y,
and the number of columns for z should be the
length of the vector array x.

For example, suppose we would like to plot
a multivariate normal distribution function for
two normal variables, x1 and x2, that have
means of 0 and are correlated with covariance
matrix [0.25 0.3; 0.3 1]. (Note that this notation
means that the variance of x1 is 0.25 (the stan-
dard deviation of x1 is 0.5), the variance of x2
is 1 (the standard deviation of x2 is 1), and the
covariance of x1 and x2 is 0.3.

The multivariate normal distribution func-
tion can be computed with the MATLAB func-
tion mvnpdf(X,mu,Sigma). The arguments
mu and Sigma are the vector array of aver-
age (expected) values for the normal random
variables and their covariance matrix, respec-
tively. In this case, we have two normal random
variables, so mu=[0 0] and Sigma = [0.25
0.3; 0.3 1]. The first argument in the func-
tion (matrix X) provides the points at which the
function should be evaluated. The function is
evaluated for every row of X, taking the el-
ements in that row as the coordinates of the
point at which the function should be evalu-
ated. Therefore, since in our example we are
looking at two normal random variables, there
should be two columns of the matrix X. We
cannot simply provide two columns with, say,
equally spaced values for x1 and x2. If we do,

MATLAB would pair each entry of x1 with the
corresponding entry of x2, and will only use
those combinations of coordinates, so the plot
will look two-dimensional. The columns of X
should provide a grid. In other words, we can-
not simply provide possible coordinates along
each axis and expect that MATLAB will know
to take every combination of possible coordi-
nates to obtain the points at which to plot the
function. To create this grid of points, we need
to go through a couple of steps.

First, we would use the function [X1,X2]
= meshgrid(x1,x2). It creates two matrices.
The number of rows in the first matrix,X1, is the
same as the number of elements in the vector
y (i.e., the number of rows equals length(y),
another useful MATLAB command). Each row
of the column X1 contains identical entries: the
entries of the vector x. The matrix X2 contains
the same number of columns as the number
of elements in the vector x, and each column
contains an identical copy of the vector y. While
perhaps difficult to imagine at first, X1(i,j)
and X2(i,j) cover all possible combinations
of the elements of the original vectors, x and y.

The second step is to create the array
[X1(:), X2(:)]. The colon operator (:) has
multiple uses, but in the context of being used
as an argument for a matrix, it takes all en-
tries of a matrix, column by column, and lists
them as a vector array. Therefore, the array
[X1(:),X2(:)] would contain two columns
with every possible combination of coordinates
generated by the original list in the vector ar-
rays x and y.

To summarize, here are the commands used
to generate 30 points between –4 and 4 along
each coordinate x1 and x2, then to evaluate the
multivariate normal PDF at each combination
of coordinates:

>> x1 = linspace(-4,4,30);

x2 = linspace(-4,4,30);

>> Sigma = [0.25 0.3; 0.3 1]; mu = [0 0];

>> [X1,X2] = meshgrid(x1,x2);

>> z = mvnpdf([X1(:),X2(:)],mu,Sigma);
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Figure 7 Three-Dimensional Plot of a Multivariate Normal Distribution

The output of this sequence of commands
is a vertical array of values that represent the
multivariate normal PDF evaluated at each
combination of coordinates. (If you skip the
semicolon at the end of the last row with the
function mvnpdf, you can see what the out-
put looks like. You can also use the command
size(z) to check the dimensions of z.) Now
we would like to plot these values. We will use
the surf function.

The surf function’s third argument, z, needs
to be a matrix whose entries represent the
values of the function to be plotted at each
combination of coordinates. However, we ob-
tained a vector of values for the PDF. We need
to “reshape” that vector back into a matrix.
This can be done with the command Z = re-
shape(z,m,n). The function reshape takes
the array z and goes through the elements of z
columnwise. The first m elements of z become
the first column of the new matrix Z, the next m
elements of z become the second column of the
matrix Z, and so forth until n columns for Z are
created. In this example, we would like to create

length(x1) columns and length(x2) rows.
(This may be a bit confusing, but, as we men-
tioned earlier, the function surf expects the
third argument to be a matrix with the number
of columns equal to the size of the first argu-
ment, and the number of rows equal to the size
of the second argument.)

>> Z = reshape(z,length(x2),length(x1));

>> surf(x1,x2,Z);

>> title(’Multivariate Normal

Probability Density’)

>> axis([-4 4 -4 4 0 0.4]);

>> xlabel(’x1’); ylabel(’x2’);

zlabel(’PDF’);

The resulting graph is in Figure 7.

IMPORTING DATA AND
INTERACTING WITH
SPREADSHEETS
MATLAB recognizes files with the extension
.dat as data files. Such files should contain text
structured in rows and columns. For example,
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suppose that the file returns.dat contains daily
annual returns on the stocks traded in the NYSE
for 10 years. The command

>> load returns.dat

imports the data in the file into a data
structure—a matrix array with rows and
columns that can then be referenced using some
of the commands we described earlier.

Many financial companies build their infra-
structure around Microsoft Excel. The MATLAB
core product contains some useful functions for
importing Excel data and exporting MATLAB
results to spreadsheets. The function

>> xlsread(‘fileName’,’sheetName’,

’range’)

allows the user to read into MATLAB the data
stored in file fileName, worksheet sheet-
Name, cells in range range. Instead of a range
in the spreadsheet, you can state an array name
if you had named the array of cells in ad-
vance. Variations of this command exist; for
instance

>> xlsread(‘fileName’,-1)

allows the user to select the range in file-
Name directly, through interactive selection in
Excel. Type help xlsread at the MATLAB
command prompt for further information.

The function

>> xlswrite(‘fileName’,output,’sheetName’,

’cell’)

allows the user to export MATLAB results
(output) to a worksheet (sheetName) in an
Excel file (fileName). MATLAB preserves the
dimensions of the output and writes it to the
spreadsheet starting at cell reference cell. For
example, if output is a horizontal array of
numbers, MATLAB will write the data in a row
in the Excel file, starting at cell.

MATLAB operations work within the xl-
swrite command. For example, you can
switch the array dimensions (transpose) the

output by using output’ inside the parenthe-
ses of the xlswrite command if you desire
different output formatting in the Excel spread-
sheet.

More sophisticated capabilities exist through
MATLAB’s Excel Link. With Excel Link, you can
call MATLAB’s functions directly from within
Excel, thus ensuring access to MATLAB’s supe-
rior computational and graphical capabilities.
Excel Link is purchased as a separate toolbox.
It can then be made visible from within Excel
by selecting it as one of Excel’s Add-Ins. There
are 11 commands (they all start with “ML”)
that allow for communicating data back and
forth between Excel and MATLAB. For exam-
ple, =MLAppendMatrix() creates or appends
a matrix in MATLAB with data from an Excel
spreadsheet.

A word of caution: Excel Link formulas are
not case sensitive. For example, MLAppend-
Matrix and mlappendmatrix are the same.
However, MATLAB functions and variables
called through these links are case sensitive. For
example, x and X would still be treated as two
separate variables.

EXAMPLES
This section discusses several scripts and func-
tions in MATLAB that can be used in financial
applications. The goal is to illustrate the use of
toolboxes in MATLAB and to provide concrete
examples of some of the tools introduced earlier
in the entry.

Optimization in MATLAB
Optimization is an area in applied mathematics
that, most generally, deals with efficient algo-
rithms for finding an optimal solution among
a set of solutions that satisfy given constraints.
The first application of optimization in finance
was suggested by Harry Markowitz in 1952, in a
seminal paper that outlined his mean-variance
optimization framework for optimal asset allo-
cation. Some other classical problems in finance
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Table 1 MATLAB Optimization Toolbox Functions/Solvers Appropriate for Specific Types of Optimization
Problems

OBJECTIVE

Linear Quadratic Least squares Smooth nonlinear Nonsmooth

C
O

N
S

T
R

A
IN

T
S

None N/A quadprog \, isqcurvefit, isqnonlin fminsearch,fminunc fminsearch, *
Bound linprog quadprog isqcurvefit, isqlin,

isqnonlin, isqnonne
fminbnd, fmincon,

fseminf
*

Linear linprog quadprog isqlin fmincon, fseminf *
Smooth

nonlinear
fmincon fmincon fmincon fmincon, fseminf *

Discrete bintprog

Note: Asterisk (*) is used to denote solvers that are available only through the Global Optimization Toolbox. Blank
entries mean that there is currently no solver available. Technically, the Global Optimization Toolbox can be used for
solving discrete problems as well; however, it requires additional programming.

that can be solved by optimization algorithms
include:

1. Is there a possibility to make riskless profit
given market prices of related securities?

2. How should trades be executed so as to reach
a target allocation with minimum transaction
costs?

3. Given a limited capital budget, which capital
budgeting projects should be selected?

4. Given estimates for the costs and benefits
of a multistage capital budgeting project, at
what stage should the project be expanded/
abandoned?

MATLAB’s Optimization Toolbox contains
solvers for a range of optimization problems.
MATLAB expects optimization formulations
to be passed to its solvers in an array form
and has functions that call specific solvers for
specific types of optimization problems. (See
Table 1 for a quick overview. See also
MATLAB’s help for a complete listing.) If the
Global Optimization Toolbox is available, the
range of solvers is expanded to include ran-
domized search algorithms.

The most often used solver in MATLAB is
fmincon, which is the solver for general non-
linear optimization. However, if you know the
type of problem you are trying to solve, you are
always better off giving the optimization soft-

ware as much information as you can in order
to make the optimization process more accurate
and efficient. In financial applications, you are
most likely to encounter situations in which you
need linprog (a linear programming solver),
quadprog (a quadratic programming solver),
bintprog (a binary programming solver), and
randomized search algorithms, such as simu-
lannealbnd and ga.

We will use linprog and quadprog to solve
two examples of portfolio allocation problems.
Before we show the actual implementation, we
need to explain how solvers are actually called
in MATLAB. There are two ways to call the
solvers: as functions directly from the command
prompt (equivalently, from within M-files), or
through the optimization tool.

The MATLAB optimization tool provides an
interface between the solvers and the user.
While using such an interface may not be op-
timal when solving sequences of optimization
problems, as in the case of dynamic program-
ming or stochastic programming, it is quite
convenient when solving a single optimization
problem, because it lists all available solvers,
prompts the user for the different inputs that
the optimization solvers expect, and allows for
easy manipulation of the options. Options can
be specified directly when a solver is called from
the command prompt as well, but that is more
difficult for MATLAB beginners.
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Figure 8 The Optimization Tool Interface in MATLAB

The optimization tool is called by typing op-
timtool at the MATLAB command prompt.
The optimization tool dialog box is shown in
Figure 8. The panel on the left-hand side is ded-
icated to the specification of the inputs: the type
of solver that needs to be called, the arrays with
the problem data, the starting point, and so on.
The panel in the middle allows for changing the
level of tolerance in the search for the optimal
solution. For example, the Function tolerance is
currently set at the default value of 1e-06, which
is 10-6. This means that the selected algorithm
will continue to iterate through solutions until
the improvement in successive objective func-
tion values becomes smaller than 10-6. Some-
times, such level of accuracy is unnecessary.
For example, if our objective function is mea-
sured in dollars and cents (e.g., we are maxi-
mizing dollar return as in the simple portfolio
allocation example we will discuss next), then
technically we do not need precision beyond
2–3 digits after the decimal point. Therefore, we
can speed up the algorithm by relaxing the re-

quirements on tolerance. Other useful options
include level of display (whether to show itera-
tions of the optimization algorithm or not) and
function plots at intermediate stages.

Linear Optimization: Simple Portfolio
Allocation
Let us consider a specific example to illus-
trate the use of the optimization function lin-
prog. (For more details, see section 5.3.1 in
Pachamanova and Fabozzi, 2010.)

The portfolio manager at a large university
in the United States is tasked with investing a
$10 million donation to the university endow-
ment. He has decided to invest these funds only
in mutual funds and is considering the follow-
ing four: an aggressive growth fund (Fund 1),
an index fund (Fund 2), a corporate bond fund
(Fund 3), and a money market fund (Fund 4),
each with a different expected annual return
and risk level. (The risk level measurement is
deliberately simplified for the sake of this ex-
ample.) The investment guidelines established
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Table 2 Data for the Portfolio Manager’s Problem

Fund type Growth Index Bond
Money
market

Fund # 1 2 3 4
Expected return 20.69% 5.87% 10.52% 2.43%
Risk level 4 2 2 1
Max investment 40% 40% 40% 40%

by the Board of Trustees limit the percentage of
the money that can be allocated to any single
type of investment to 40% of the total amount.
The data for the portfolio manager’s task are
provided in Table 2. In addition, in order to
contain the risk of the investment to an accept-
able level, the amount of money allocated to
the aggressive growth and the corporate bond
funds cannot exceed 60% of the portfolio, and
the aggregate average risk level of the portfolio
cannot exceed 2. What is the optimal portfolio
allocation for achieving the maximum expected
return at the end of the year, if no short selling
is allowed?

The vector of decision variables for this op-
timization problem can be defined as x =
(x1, x2, x3, x4): amounts (in $) invested in Fund
1, 2, 3, and 4, respectively.

Let the vector of expected returns be μ =
(20.69%, 5.87%, 10.52%, 2.43%). Then, the ob-
jective function can be written as

f (x) = μ′x = (20.69%) · x1 + (5.87%) · x2

+ (10.52%) · x3 + (2.43%) · x4

It represents the optimal expected dollar
amount at the end of the year.

There are also several constraints.

1. The total amount invested should be $10 mil-
lion. This can be formulated as x1 + x2 + x3 +
x4 = 10,000,000.

2. The total amount invested in Fund 1 and
Fund 3 cannot be more than 60% of the total
investment ($6 million). This can be written
as

x1 + x3 ≤ 6,000,000

3. The average risk level of the portfolio can-
not be more than 2. This constraint can be
expressed as

4*(proportion of investment with risk level 4) +
2*(proportion of investment with risk level 2) +
1*(proportion of investment with risk level 1) ≤
1 or, mathematically,

4 · x1 + 2 · x2 + 2 · x3 + 1 · x4

x1 + x2 + x3 + x4
≤ 2

In this particular example we know that the
total amount x1 + x2 + x3 + x4 = 10,000,000, so
the constraint can be formulated as

4 · x1 + 2 · x2 + 2 · x3 + 1 · x4 ≤ 2 · 10,000,000

1. The maximum investment in each fund can-
not be more than 40% of the total amount
($4,000,000). These constraints can be writ-
ten as

x1 ≤ 4,000,000, x2 ≤ 4,000,000, x3 ≤ 4,000,000,

x4 ≤ 4,000,000.

2. Given the no short selling requirement,
the amounts invested in each fund cannot
be negative. These are nonnegativity con-
straints: x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

The final optimization formulation can be
written in matrix form. The objective function
is

max
x1,x2,x3,x4

[
0.2069 0.0587 0.1052 0.0243

] ·

⎡

⎢⎣

x1

x2

x3

x4

⎤

⎥⎦

Let us organize the constraints into groups ac-
cording to their signs. This will be useful when
we input the constraints into MATLAB.

Equality(=) :
[

1 1 1 1
] ·

⎡

⎢⎢⎣

x1

x2

x3

x4

⎤

⎥⎥⎦ = 10,000,000

Inequality(≤) :

⎡

⎢⎢⎢⎢⎢⎢⎣

1 0 1 0
4 2 2 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎦
·

⎡

⎢⎢⎣

x1

x2

x3

x4

⎤

⎥⎥⎦≤

⎡

⎢⎢⎢⎢⎢⎢⎣

6,000,000
20,000,000
4,000,000
4,000,000
4,000,000
4,000,000

⎤

⎥⎥⎥⎥⎥⎥⎦
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Nonnegativity(≥) :

⎡

⎢⎢⎣

x1

x2

x3

x4

⎤

⎥⎥⎦ ≥

⎡

⎢⎢⎣

0
0
0
0

⎤

⎥⎥⎦

This is a linear optimization problem because
all constraints and the objective function are
linear. To solve linear optimization problems
with MATLAB, use linprog (f,A,b,Aeq,
beq,lb,ub). The function arguments f,A,b,
Aeq,beq,lb,ub correspond to the following

LP formulation:

min
x

f′x

s.t. Ax ≤ b
Aeq · x = beq
lb ≤ x ≤ ub

Therefore, before calling linprog, you need
to write the problem formulation in this partic-
ular form. We include the complete MATLAB
script below.

1 numAssets = 4;

2 expReturnsVec = [0.2069 0.0587 0.1052 0.0243]’;

3 %create placeholders for an array of decision variables

4 %(amounts to invest in

5 %each fund) and the optimal portfolio expected return (to be filled out

6 %after the optimization)

7

8 amountsVec = zeros(numAssets,1);

9 optReturn = [];

10

11 %vector of coefficients of objective function f since MATLAB expects

12 %minimization (and we are maximizing), take the negative of the function

13 %we are trying to maximize

14 f = -expReturnsVec;

15

16 %A, matrix of coefficients in constraints with inequalities so that

17 %Ax<=b

18 A = [1 0 1 0;

19 4 2 2 1;

20 1 0 0 0;

21 0 1 0 0;

22 0 0 1 0;

23 0 0 0 1];

24

25 %b

26 b = [6000000 20000000 4000000 4000000 4000000 4000000]’;

27

28 %Aeq, matrix of coefficients in constraints with equalities so that

29 %Aeq*x=beq

30 Aeq = ones(1,numAssets);

31

32 %beq

33 beq = 10000000;

34

35 %lower bounds: nonnegativity requires that all decision variables are >= 0
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36 lb = zeros(numAssets,1);

37

38 %upper bounds can be left infinite (although, technically, we cannot invest

39 %more than the $10m we have available)

40 ub = inf*ones(numAssets,1);

41

42 [amountsVec,optReturn] = linprog(f,A,b,Aeq,beq,lb,ub);

43

44 format(’bank’);

45

46 amountsVec

47 %revert to correct number for maximum return (reverse sign)

48 optReturn = -optReturn

The process for formulating the optimiza-
tion problem is as follows. First, we ask
ourselves what corresponds to the vector of
decision variables x in the linprog formu-
lation. In our example, x maps directly to the
vector of amounts to invest in each asset. We
then enter problem data, such as the expected
returns vector expReturnsVec. We allocate
empty arrays to store the values of the optimal
solution amountsVec and the optimal value of
the objective function optReturn after collect-
ing the information from the solver.

Next, we create the input data for the lin-
prog solver. The solver expects a vector of ob-
jective function coefficients f, which in our case
is the vector of expected returns on the dif-
ferent assets. Note, however (line 14), that we
specify f as -expReturnsVec. This is because
MATLAB expects a minimization problem, and
our objective function is to maximize expected
revenue, so we need to convert our problem to
the required form by minimizing the negative
of the expression for the maximization objec-
tive. At the end (line 48), we take the negative
of the optimal value for expected return found
by the solver, so that we arrive at the actual
optimal value for the maximization problem.
The optimal values of the decision variables,
which in this case are the amounts to invest,
amountsVec, do not need to be modified af-

ter the optimization results are returned by the
solver.

Lines 14–40 contain the specification of the
other inputs in the problem. Note that we are
in fact using the matrices of coefficients for the
groups of constraints (inequality, equality, and
nonnegativity) that we defined earlier. Namely,
A (lines 18–23) is the matrix of left-hand-side
inequality constraint coefficients; Aeq (line 30)
is the matrix of left-hand-side equality con-
straint coefficients; b (line 26) is the vector
of right-hand-side coefficients of the inequal-
ity constraints; and beq (line 33) is the vector
of right-hand-side coefficients of the equality
constraints (in our example, we have only one
equality constraint). The lower bounds, lb (line
36), are the zeros from the right-hand-side of
the nonnegativity constraints on the decision
variables, so we create a vector array with size
equal to the number of decision variables that
contains only zeros. We have explicit upper
bounds of $4,000,000 on each decision variable
since we cannot invest more than that amount
in each individual fund, so we could have stated
those bounds as the input vector ub. However,
these bounds have already been included in
the matrix A, so we do not need to state them
again. Instead, we state the individual upper
bounds as infinity, that is, as the product of
the number inf (in MATLAB, that denotes
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infinity) and a vector of ones. (See line 40 of
the code.)

An equivalent formulation of the constraints
from MATLAB’s perspective would have been
to specify the arrays A, beq, and ub as

A = [1 0 1 0;

4 2 2 1]

b = [6000000 20000000]’

ub = 4000000*ones(numAssets,1)

with all other input arrays remaining the
same.

After all inputs have been specified, the lin-
prog solver is called (line 42). The syntax in line
42 outputs requests that the output from the op-
timization be stored in the arrays we specified at
the beginning, amountsVec and optReturn.
The results are then printed to the screen and
are formatted according to format(‘bank’)
(line 44), which basically rounds numbers to
two decimal places.

Figure 9 The Optimization Tool Dialog Box for the Portfolio Allocation Problem

After running the M-file, we obtain the fol-
lowing output:

amountsVec =

2000000.00

0.00

4000000.00

4000000.00

optReturn =

931800.00

If you prefer to solve the problem by using
the optimization tool for solving this problem,
you need to fill out the dialog box as shown in
Figure 9. Select linprog as the solver from the
drop-down menu at the top. Under Algorithm,
you can either leave the default (Large Scale),
or select Medium scale – simplex, which is ap-
propriate because our problem is quite small.
We entered the names of the arrays that corre-
spond to the objective function coefficients and
the constraint coefficients in the correspond-
ing fields in the left panel of the dialog box.
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Figure 10 Handling the Structure of Optimization Results Exported from MATLAB’s Optimization
Tool

Note that these arrays must be prefilled; that
is, they must be entered from the command
prompt or read from a file before the prob-
lem is solved through the optimization tool;
otherwise the solver will complain that these
arrays are empty. You can make sure that the
arrays f,A,b,Aeq,beq,lb,ub are filled in by
checking first whether they are listed in the
Workspace window at the upper left corner of
the MATLAB desktop. Once all the input data
are specified, click on the Start button in the
left panel to solve the problem. The solution
appears in the field below the Start button.

The optimization model can be saved as a
script in an M-file by selecting File | Generate
M-file from the main menu in the optimization
tool. In addition, the optimization results can be
exported to the workspace and further manip-
ulated by selecting File | Export to Workspace.
To export only the results, as opposed to the en-
tire model, check Export results to a MATLAB
structure named: optimresults. This cre-
ates a structure of results, optimresults, that

shows up in the Workspace. So, for example,
the optimal solution (the portfolio allocation)
can be read by typing optimresults.x at the
command prompt. (See Figure 10.) Similarly,
the optimal value of the objective function can
be retrieved by typing optimresults.fval
at the command prompt.

Quadratic Optimization: Mean-Variance
Portfolio Allocation
The classical mean-variance portfolio opti-
mization problem as introduced by Harry
Markowitz (1952) is to minimize the variance of
portfolio return subject to the constraint that the
expected portfolio return is at a certain level. Let
us consider a slight variation of the problem, in
which we require that the expected return is at
least at a certain level rtarget. The mathematical
formulation is

min
w

w′�w

s.t. w′μ ≥ rtarget

w′ι = 1
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where w is the vector of portfolio weights (to be
determined), μ is the vector of expected returns,
� is the covariance matrix of returns, and ι is a
vector of ones of appropriate dimension.

The minimum variance portfolio allocation
problem is a quadratic optimization problem
with linear constraints. The quadprog func-
tion in MATLAB solves exactly problems of this
kind:

min
x

1
2

x′Hx + f′x

s.t. Ax ≤ b
Aeq · x = beq
lb ≤ x ≤ ub

and is called with the command
quadprog(H,f,A,b,Aeq,beq,lb,ub).

It is easy to see how to match the two formu-
lations:
� x = w
� f = 0
� H = 2 �
� A = −μ’
� b = −rtarget
� Aeq = ι’
� beq = 1
� lb = −infinity
� ub = infinity

For example, the inequality constraint

w′μ ≥ rtarget

in the mean-variance formulation is mapped to
the inequality constraint assumed by thequad-
prog function

Ax ≤ b

by rewriting the mean-variance constraint as

−w′μ ≤ −rtarget

and setting A = −μ’ and b = −rtarget.
Suppose we are given a portfolio with a num-

ber of stocks equal to numAssets, expected
returns for the stocks stored in a vertical vec-
tor muVec, covariance matrix SigmaMx, and
required expected return of targetReturn.
Consider a simple portfolio of two stocks with
expected returns of 9.1% and 12.1%, standard
deviations of returns of 16.5% and 15.8%, and
a correlation of –0.22 (covariance of –57.35). A
MATLAB script that uses input data for the two
stocks, calls the optimization solver for several
instances of the problem with different values
of targetReturn, and plots the efficient fron-
tier looks as follows:

numAssets = 2;

muVec = [9.1; 12.1];

SigmaMx = [272.25, -57.35;

-57.35, 249.64];

targetReturn = 11;

%SINGLE OPTIMIZATION

%create the matrix X

H = 2*SigmaMx;

%create a vector of length numAssets with zeros

f = zeros(numAssets,1);

%create right hand and left hand side of inequality constraints

A = -transpose(muVec);

b = -targetReturn;
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%create lower bounds array for asset weights (negative infinity)

lb = -inf*ones(numAssets,1);

%create upper bounds array for asset weights (infinity)

ub = inf*ones(numAssets,1);

%create right hand and left hand side of equality constraints

beq = [1];

Aeq = transpose(ones(numAssets,1));

[weights,variance] = quadprog(H,f,A,b,Aeq,beq,lb,ub);

%print results to screen

stdDev = sqrt(variance)

weights

%EFFICIENT FRONTIER

%loop through different values of the target portfolio returns, compute the

%optimal portfolio standard deviation, and plot the efficient frontier

iCounter = 1;

for iTRet = 9.5:0.5:12

b = -iTRet;

[weights,variance] = quadprog(H,f,A,b,Aeq,beq,lb,ub);

y(iCounter) = iTRet;

x(iCounter) = sqrt(variance);

iCounter = iCounter + 1;

end

%plot efficient frontier

plot(x,y);

xlabel(’Portfolio standard deviation’);

ylabel(’Portfolio expected return’);

title(’Efficient Frontier’);

The command

[weights,variance] = quadprog(H,f,A,b,

Aeq,beq,lb,ub);

ensures that the optimal solution to the opti-
mization problem is stored in a vector called
weights, and the optimal objective function
value (the minimum portfolio variance) is
stored in the scalar variance. This is an ex-
ample of using a MATLAB built-in function.

The portfolio standard deviation is computed
as the square root of variance.

The MATLAB output from running the code
above is as follows:

stdDev =

10.4928

weights =

0.3667

0.6333
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The script also contains an example of a for
loop that runs the optimization problem for val-
ues of the target return between 9.5 and 12,
increasing the target return by 0.5 at each it-
eration. The expected portfolio return and the
optimal standard deviation obtained from the
optimization output are stored in vectors x and
y. The last few lines in the code plot the efficient
frontier using the values stored in x and y, and
label the graph.

Pricing a European Call Option by
Simulation
Simulation is a technique for replicating uncer-
tain processes and evaluating decisions under
uncertain conditions. In the financial context, it
typically involves generation of random num-
bers from particular probability distributions,
using those for approximating the behavior of
exogenous variables such as stock returns, and
assessing outcomes of interest, such as the per-
formance of a portfolio or the price of a financial
instrument.

Through the Statistics Toolbox, MATLAB pro-
vides commands for generating the most com-
monly used random numbers directly. For
example, a normal random variable can be sim-
ulated with

>> normrnd(mean,stdev,numRows,

numColumns)

In the expression above, mean and stdev are
the mean and the standard deviation of the
normal random variable. numRows and num-
Columns specify the dimension of the array of
random numbers we would like to generate.

We show how to use MATLAB’s Statistics
Toolbox to compute the price of a European
call option with simulation under the assump-
tions that there are no transaction costs or
market frictions, and the price of the underly-
ing follows geometric Brownian motion. (The
closed-form formula for pricing the option un-
der these assumptions is the Black-Scholes for-

mula.) Option pricing by simulation was first
suggested by Boyle (1977). For further details
on the implementation and more examples, see
Pachamanova and Fabozzi (2010).

The evolution of the asset price at time t, St,
can be described by the equation

dSt = μStdt + σ StdWt

where Wt is standard Brownian motion and
μ and σ are the drift and the volatility of the
process, respectively. For technical reasons (ab-
sence of arbitrage), when pricing an option, the
drift μ is replaced by the risk-free rate r.

Under the assumption for the random process
followed by the asset price, the value of the asset
price ST at time T given the asset price St at time
t can be computed as

ST = Ste (r− 1
2 σ 2)·(T−t)+σ ·

√
(T−t)·ε̃

where ε̃ is a standard normal random variable.
(If the stock pays a continuously compounded
dividend yield of q, then we use (r – q – 0.5·σ 2)
instead of (r – 0.5·σ 2) as the drift term.)

The price of the option can be approximated
by creating scenarios for the stock price ST at
time T, computing the discounted payoffs of
the option, and finding the expected payoff of
the option. Suppose we generate N scenarios
for ε̃: ε(1),. . ., ε(N). Then, the price of a European
call option with strike price K will be

Ct = e−r (T−t) ·
N∑

n=1

1
N

· max
{

Ste (r− 1
2 σ 2)·(T−t)+σ ·

√
(T−t)·ε(n) − K , 0

}

The expression above is the expected value of
the option payoffs; that is, the weighted aver-
age of the option payoffs. The “weight,” or the
probability of each scenario, is 1/N.

In MATLAB, we create a functionEuropean-
Call (stored in a file EuropeanCall.m), which
follows.
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function CEPrice = EuropeanCall(initPrice,K,r,T,sigma,q,numPaths)

%function for evaluating the price of a European call option using crude

%Monte Carlo

%initPrice is the initial price, K is the strike price, r is the annual interest

%rate, T is the time to maturity, sigma is the annual volatility, q is the

%continuous dividend yield, numPaths is the number of scenarios to generate for

%the evaluation

CEpayoffs = zeros(numPaths,1);

%compute a vector array of asset prices, one for each scenario

assetPrices = initPrice*exp((r-q-0.5*sigmaˆ2)*T+sigma*sqrt(T)*

normrnd(zeros(1,numPaths),ones(1,numPaths)));

CEpayoffs = exp(-r*T)*max(assetPrices - K,0);

CEPrice = mean(CEpayoffs);

In the function, we generate the (random)
end points of numPaths paths for the un-
derlying stock price under the assumption
that the price follows geometric Brownian
motion. We use the Statistics Toolbox function
normrnd(mu,sigma), which in this case
returns a vector array with the realizations of
normal random variables. The array has the
dimension of the mu and sigma vectors, which
are vectors of zeros and ones, respectively, with
length numPaths. Then, we generate a vector
array of asset prices by calculating the asset
price in each scenario. We use a nice feature in
MATLAB, which is that we can pass an array
(namely, normrnd(zeros(1,numPaths),
ones(1,numPaths)) into a formula (namely,
initPrice*exp((rq-0.5*sigmaˆ2)*T +
sigma*sqrt(T)* normrnd(zeros(1,
numPaths),ones(1,numPaths))), and
MATLAB automatically creates an array with
results (assetPrices). In other programming
languages, we would need to implement this
by creating a for loop.

Finally, we calculate the option price CEPrice
as the average of the payoffs of the option in
each scenario by using the function mean.

Pricing a European Call Option
Using a Sobol Sequence
In the function EuropeanCall, we used the
MATLAB built-in function normrnd from the
Statistics Toolbox with arguments that were ar-
rays of zeros and ones to generate a set of
realizations drawn from a standard normal
probability distribution and compute a set of
paths for the price of the underlying. Alter-
natively, we could have generated a set of
quasirandom numbers that sometimes lead to
a faster and more accurate estimation for the
option price. (See the discussion in Chapter 14
of Pachamanova and Fabozzi, 2010; Chapter
6 in McLeish, 2005; or section 5.2.3 of Chap-
ter 5 in Glasserman, 2004.) MATLAB’s Statis-
tics Toolbox contains built-in syntax for com-
puting the elements of some low-discrepancy
sequences, such as the Sobol sequence (Sobol,
1967). Namely, the function sobolset(d)
computes a Sobol sequence of dimension d,
and the sequence can then be retrieved with
the command net. For example,

seq = sobolset(3); net(seq,5)
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returns the first five elements of a Sobol se-
quence of dimension 3.

The calculation of the European call option
price using the Sobol sequence is shown in the
function EuropeanCallSobol below.

function SCEPrice = EuropeanCallSobol(initPrice,K,r,T,sigma,q,numPaths)

%function for evaluating the price of a European option using

%a Sobol sequence

%initPrice is the initial price, K is the strike price

%r is the annual interest rate, T is the time to maturity, sigma is the

%annual volatility

%q is the continuous dividend yield

%numPaths is the maximum number of scenarios to generate for the evaluation

SCEpayoffs = zeros(numPaths,1);

%use the sobolset function in the Statistics Toolbox to generate the

%sequence

seq = sobolset(1);

SobolPoints = net(seq,numPaths+1);

%drop the first element, which is 0

SobolPoints = SobolPoints(2:numPaths+1);

%compute a vector array of asset prices, one for each Sobol point

assetPrices = initPrice*exp((r-q-0.5*sigmaˆ2)*T+sigma*sqrt(T)*

norminv(SobolPoints));

%compute a vector array of discounted payoffs, one for each scenario

%generated from a Sobol point

SCEpayoffs = exp(-r*T)*max(assetPrices - K,0);

%compute price of option

SCEPrice = mean(SCEpayoffs);

Again, in this function, we passed an array
(SobolPoints) into a formula (init-
Price *exp((rq-0.5*sigmaˆ2)*T +
sigma*sqrt(T)*norminv(Sobol-
Points))), and MATLAB automatically
created an array with results (assetPrices).

The Sobol sequence generated in the function
is of dimension 1 and length numPaths+1. We
created it with the commands

seq = sobolset(1);

SobolPoints = net(seq,numPaths+1);

and remove the first element, which is 0, with
the command

SobolPoints = SobolPoints(2:numPaths+1);

(As explained in Chapter 14 of Pachamanova
and Fabozzi [2010], it is common to drop some
number of elements of low-discrepancy se-
quences. It takes a certain “warming up” for the
low-discrepancy sequence to begin producing
stable and accurate estimates.)
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Computing the Black-Scholes Price
of a European Option Using the
Financial Toolbox
The price for the European option obtained in
the ways described in the previous two sections
is, of course, an approximation. It will vary
slightly depending on the specific set of sce-
narios simulated with the normrnd function,
or on the number of points generated with the
Sobol sequence. The true option price under
the stated assumptions is given by the Black-
Scholes formula. (See Black and Scholes, 1973;
Hull, 2008; or Pachamanova and Fabozzi, 2010.)
As we mentioned earlier in this entry, the func-
tion blsprice in MATLAB’s Financial Tool-
box can compute this price. For example, for
an initial price of 100, a strike price of 110, an
interest rate of 6%, time to maturity of 1 year,
and volatility 40%, the Black-Scholes price for
the European call option will be computed by
typing

>> blsprice(100, 110, 0.06, 1, 0.40)

at the MATLAB prompt. MATLAB returns

ans =

14.4018

You should get a similar price by typing the
names of the user-defined functions we wrote
previously,

>> EuropeanCall(100,110,0.06,1,0.40,

0,20,1000)

to compute it with simulation, or

>> EuropeanCallSobol(100,110,0.06,1,

0.40,0,1000)

to compute it by using a Sobol sequence. Here
we are requesting that the price be evaluated
with 1,000 paths for the price of the underly-
ing. The greater the number of paths, the closer

the estimates will be to the Black-Scholes price.
For this example, we obtained 14.3772 for the
option price by crude Monte Carlo simulation,
and 14.0882 by using the Sobol low-discrepancy
sequence. The variability for the option price
estimated using the crude Monte Carlo simu-
lation approach is large, so readers can expect
answers that differ quite a bit.

KEY POINTS
� MATLAB uses a number-array-oriented pro-

gramming language; that is, a programming
language in which vectors and matrices are
the basic data structures.

� Array operations are very efficient in
MATLAB.

� Specialized MATLAB toolboxes provide ad-
ditional capabilities, save time, and simplify
model building. Some toolboxes build on the
capabilities of other toolboxes and need to be
purchased in groups.

� An M-file is a file with instructions that
MATLAB executes sequentially. Such files are
saved with the suffix “.m” and can be called
from the prompt in MATLAB’s Command
window by typing their name without the
suffix “.m”.

� M-files can be scripts, that is, a simple list-
ing of instructions for MATLAB, or functions,
which take in a certain number of arguments
and return a certain number of outputs.

� While general script M-files can contain any
sequence of instructions that will be com-
pleted when the name of the file is typed at
the MATLAB prompt, function M-files need
to start with a specific first line. That line con-
tains the word “function” and a declaration
of the function name, inputs, and outputs.
The function name and the name of the M-
file should be the same.

� Control flow statements in MATLAB in-
clude for loops, if statements, while
loops, switch-case constructions, and
try-catch blocks.
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� MATLAB has beautiful 2-D and 3-D graphing
capabilities. The most common function for
plotting 2-D graphs is plot.

� MATLAB has the ability to interact efficiently
with Microsoft Excel. The core product con-
tains commands that allow importing data
from and exporting data to Excel.

� Spreadsheet Link EX is a useful toolbox that
allows a more complex interface between
MATLAB and Excel. With Spreadsheet Link
EX, one can call MATLAB’s functions di-
rectly from within Excel, thus ensuring ac-
cess to MATLAB’s superior computational
and graphical capabilities.

� Optimization in MATLAB can be performed
through the Optimization and the Global Op-
timization Toolboxes. These capabilities are
especially useful for quantitative portfolio
management.

� MATLAB expects optimization formulations
to be passed to its solvers in an array form and
has functions that can call specific solvers for
specific types of optimization problems.

� The MATLAB Statistics Toolbox contains
functions for

random number generation and can be used
when performing financial simulations.
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Abstract: Visual Basic for Applications (VBA) is a programming language environment that allows
Microsoft Excel users to automate tasks, create their own functions, perform complex calculations,
and interact with spreadsheets. Despite some important limitations, VBA adds useful capabilities
to spreadsheet modeling and is a good tool to know for finance professionals for whom Microsoft
Excel is the platform of choice.

This entry is a brief introduction to Visual Basic
for Applications (VBA), the programming lan-
guage environment that allows Microsoft Excel
users to automate tasks, create their own func-
tions, perform complex calculations, and in-
teract with spreadsheets. We focus on features
of VBA useful for financial applications. For
a comprehensive introduction to VBA, good
references are Walkenbach (2004) and Roman
(2002). The Excel VBA help is also useful as a
quick reference. All Excel commands listed in
this entry are based on Microsoft Office 2007.

A SIMPLE EXAMPLE OF A
VBA PROGRAM
Before we review some important characteris-
tics of the VBA language, let us create a simple
example of a VBA program. Excel has a tool
for recording tasks performed in a spreadsheet,
which can then be replayed as a macro. Macros

in Excel record a sequence of commands, so
that you do not have to repeat the same set
of instructions if you need to perform the task
several times. Macros are in effect computer
programs whose commands are hidden from
the user, but can be seen if you open the VBA
editor (VBE). You can access the VBE by us-
ing a shortcut, Alt-F11, in all versions of Ex-
cel. In Excel 2007, VBE can be accessed from
the Developer tab. If the Developer tab is not
visible, do the following to set it up: Click on

the main MS Excel button , then Excel Op-
tions. Under the Popular Options tab, check
Show Developer Tab in Ribbon. Once the De-
veloper tab is available in Excel’s top menu,
you can click on the Visual Basic button in the
ribbon associated with it to open the editor.
(See Figure 1.)

Use the Macro Security button to enable
macros. (It is always a good idea to return
to the default—disabled macros—after you are
finished working with macros.)

449
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Figure 1 Visual Basic Button in the Developer
Ribbon in Excel 2007

Open a new file and name it ReturnCalc.xlsm.
(Excel 2007 will automatically make the file ex-
tension .xlsm if there are macros already in the
file. Here, we do not have macros yet, so the
default in Excel 2007 will be to save the file as
.xlsx. To save the file with extension .xlsm, you
need to select Excel Macro-Enabled Workbook
from the drop-down menu next to Save as Type
in the Save dialog box.)

We are trying to create the layout shown in
Figure 2. First, enter the text in columns A and
B; that is, enter stock prices for three points in
time. Suppose we want to compute the realized
cumulative return over the two time periods
for any set of three stock prices in column B.
We can do that by, for example, computing the
realized returns over each of the two periods
in column C, and then computing the cumula-
tive return between times 1 and 3 in cell D5.

Figure 2 Macro Recording Example

Let us record the entries and the calculations
as a macro. To record a macro, click on Record
Macro in the Developer tab. Delete the default
name Macro 1, and replace it with something
more meaningful, for example, ReturnCalc.
Click OK. Once the macro recorder is on, do the
following:

1. Enter = (B3-B2)/B2 in cell C3 (this will
compute the return for time period 1–2).

2. With the cursor in cell C3, enter Ctrl-C to
copy the contents of cell C3, move the cursor
to cell C4, and enter Ctrl-V to paste. This will
fill cells C4 with the formula for computing
the return between times 2 and 3.

3. Highlight cells C3–C4, right-click, select For-
mat Cells | Number | Percentage | Dec-
imal Points 2 to format the returns as
percentages.

4. Click on cell D3, enter = (1+C3). Then
right-click, select Format Cells | Number |
Number | Decimal Points 2 to format the
contents of the cell as a number.

5. Click on cell D4, enter = D3*(1+C4).
6. Type Total Return in cell C5.
7. Enter = D4-1 in cell D5 to compute the total

return over the five periods.
8. Highlight cells C5:D5. Right-click, then select

Format Cells | Border. Select the double-line,
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then click the upper line of the cell in the Bor-
der window to make the double-line appear.
Click OK.

9. Click on the stop button in the macro
recorder to stop recording.

Now let us see what the macro does. You can
use the file you created. Delete all contents from
the array C3:D5. Press Alt-F8 or, equivalently,
click on the Macro button in the Developer tab.
SelectReturnCalc, press OK. The spreadsheet

should fill up with the entries that you entered
before. If you had changed the value of the stock
price in any of the three cells in column B, the
macro should calculate the correct correspond-
ing value for total return in cell D5.

Behind the scenes, Excel recorded VBA code
with instructions that tell Excel what functions
to perform when you run the macro. You can
see these instructions by opening the VBA ed-
itor and clicking on Modules | Module 1. The
instructions look like this:

1 Sub ReturnCalc()

2 ’

3 ’ ReturnCalc Macro

4 ’ Macro recorded month/day/year by you

5 ’

6

7 ’

8 Range("C3").Select

9 ActiveCell.FormulaR1C1 = "= (RC[-1]-R[-1]C[-1])/R[-1]C[-1]"

10 Range("C3").Select

11 Selection.Copy

12 Range("C4").Select

13 ActiveSheet.Paste

14 Range("C3:C4").Select

15 Selection.NumberFormat = "0.00%"

16 Range("D3").Select

17 ActiveCell.FormulaR1C1 = " = 1+RC[-1]"
18 Range("D3").Select

19 Selection.NumberFormat = "0.00"

20 Range("D4").Select

21 ActiveCell.FormulaR1C1 = " = R[-1]C*(1+RC[-1])"
22 Range("C5").Select

23 ActiveCell.FormulaR1C1 = "Total return"

24 Range("D5").Select

25 ActiveCell.FormulaR1C1 = " = R[-1]C-1"

26 Range("D5").Select

27 Selection.Style = "Percent"

28 Selection.NumberFormat = "0.00%"

29 Range("C5:D5").Select

30 Selection.Borders(xlDiagonalDown).LineStyle = xlNone

31 Selection.Borders(xlDiagonalUp).LineStyle = xlNone

32 Selection.Borders(xlEdgeLeft).LineStyle = xlNone

33 With Selection.Borders(xlEdgeTop)

34 .LineStyle = xlDouble
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35 .Weight = xlThick

36 .ColorIndex = xlAutomatic

37 End With

38 Selection.Borders(xlEdgeBottom).LineStyle = xlNone

39 Selection.Borders(xlEdgeRight).LineStyle = xlNone

40 Selection.Borders(xlInsideVertical).LineStyle = xlNone

41 Range("D5").Select

42 End Sub

Knowing the actions we took to create the
macro, it is relatively straightforward to trace
what the program is doing at every step. To un-
derstand better how the macro works, however,
and to know how to create such scripts without
recording them in the spreadsheet, we need to
understand some basic facts about VBA.

OBJECTS, PROPERTIES,
AND METHODS
The most important fact about VBA is that
it tries to act as an object-oriented language.
(VBA does not quite qualify as an object-
oriented language for technical reasons; how-
ever, for all practical purposes it is helpful to
remember that VBA shares many of the same
concepts as “real” object-oriented program-
ming languages.) This means that it treats ev-
ery component of Excel, such as a worksheet, a
cell, a range of cells, and a chart, as an object.
Objects are arranged in a hierarchy and have
properties (attributes) that can be modified by
entering the name of the object followed by dot
and a specific command. In addition, objects are
associated with actions (methods) that the ob-
jects can perform or have applied to them. You
can view all objects by selecting View | Object
Browser from the top menu in the VBE window.
In Excel 2007, you can also view a detailed list
of objects, their properties, and their methods
by clicking on Help (pressing F1) and selecting
Excel Object Model Reference.

The largest object, the object on top of the hier-
archy, is Excel itself. It is the Application ob-
ject. Worksheets, ranges, selections, charts, and

so on are all objects that are lower in the hier-
archy. Objects in the same class are organized
in collections. For instance, the Workbooks col-
lection contains all workbooks (Excel files) that
are currently open. Similarly, the Worksheets
collection contains all Excel spreadsheets in the
files that are currently open, the Sheets collec-
tion contains all Excel spreadsheets and charts
in the files that are currently open, and so
on. Thus, for example, to reference cell C3 in
Worksheet Return in file (Workbook) Return-
Calc.xlsm, you would type

Application.Workbooks("ReturnCalc

.xlsm").Sheets("Return").Range("C3")

This reference is rather long and, as we can
see from the actual VBA code, it is not neces-
sary, as long as the macro is saved within the
active Excel workbook and the identification of
the cell range that is referenced is unique. In
our example, Range("C3") is sufficient to ref-
erence cell C3, because the objects higher in the
hierarchy, such as the name of the worksheet
and the name of the file, are implied in the
reference.

An example of an action (method) that can
be performed on an object is the command Se-
lect. The Select method applies to several
objects, including Worksheet, Chart, and
Range. Notice that it was used often in the
macro we created, because clicking on a cell or
highlighting on an array performed the action.
For example, in line 14 we selected the range
C3:C4. Similarly, in line 10 we selected the cell
C3 with the command

Range("C3").Select
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Then, the Selection property of an object in
the background (the Window object) was used
to return a Range object (representing the se-
lected range on the spreadsheet) on which we
can apply other methods, such as Copy (line 11
of the code):

Selection.Copy

VBA usually suggests actions and properties
that can be used with an object, so you can select
from a list.

Another example of modifying the proper-
ties of the object is in lines 14–15 of the VBA
code. They request that the format of the cell
range C3:C4 be changed to percentage with two
digits after the decimal point. Namely, we se-
lected the range C3:C4, and the NumberFor-
mat property of the Range object that was
returned by the Selection property was set
to percentage with two digits after the decimal
point.

While the code we created by recording a
macro is helpful in understanding the basics
of the VBA language, it can be confusing be-
cause it is unnecessarily verbose. For example,
the same result as lines 14–15,

Range("C3:C4").Select

Selection.NumberFormat = "0.00%"

can be achieved with the command

Range("C3:C4").NumberFormat =
"0.00%"

which modifies directly the property Number-
Format of the object Range("C3:C4").

You can test that this is the case by delet-
ing lines 14–15 in the VBA code in your file
and replacing them with Range("C3:C4").
NumberFormat = "0.00%". Save the code
by pressing Ctrl-S or selecting Save from the list

under the main Excel button . Next, delete
cells C3:D5 in the spreadsheet, and run the Re-
turnCalc macro again. The result and the for-
matting should be the same.

The effect of the With/End structure in lines
33–36 is another piece of code that can be repli-

cated easily through other commands; the ad-
vantage of the structure is that it allows you to
reduce the number of listed objects in the code,
and that it makes the code more readable. A
With/End statement requires the specification
of an object. Inside the With/End statement,
one can omit mentioning the object with every
modification of a property or application of a
method to the object. In this particular exam-
ple, lines 33–36 could be replaced with

Range("C5:D5").Borders(xlEdgeTop)

.LineStyle = xlDouble

Range("C5:D5").Borders(xlEdgeTop)

.Weight = xlThick

Range("C5:D5").Borders(xlEdgeTop)

.ColorIndex = xlAutomatic

with the same effect as the With/End state-
ment that references Range("C5:D5"). Bor-
ders(xlEdgeTop). However, the With/ End
statement is more concise.

In general, when writing VBA code you do
not need to select cells explicitly in order to en-
ter data into them. However, if you are new to
VBA, it is helpful to record the macro first to
see the code VBA suggests, and clean up after-
ward. In addition, it is a good idea to “comment
out” the redundant statements at first, rather
than deleting them. (Commenting out is done
by entering an apostrophe (’) at the front of the
line of code that you wish VBA to ignore.) Af-
ter commenting out overly verbose statements,
save the macro by pressing Ctrl-S, make sure it
still does what you would like it to do, and
only then go back and delete the redundant
statements.

A less verbose version of the VBA code is

Sub ReturnCalc()

’

’ ReturnCalc Macro

’ Less verbose

’

Range("C3").Formula = "= (RC[-1]

-R[-1]C[-1])/R[-1]C[-1]"

Range("C3").Copy

Range("C4").Select
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ActiveSheet.Paste

Range("C3:C4").NumberFormat =
"0.00%"

Range("D3").Formula = "= 1+RC[-1]"
Range("D3").NumberFormat = "0.00"

Range("D4").Formula = "= R[-1]C*

(1+RC[-1])"
Range("C5").Formula = "Total

return"

Range("D5").FormulaR1C1 = "=
R[-1]C-1"

Range("D5").Style = "Percent"

Range("D5").NumberFormat = "0.00%"

With Range("C5:D5")

.Borders(xlDiagonalDown)

.LineStyle = xlNone

.Borders(xlDiagonalUp)

.LineStyle = xlNone

.Borders(xlEdgeLeft).LineStyle

= xlNone

With .Borders(xlEdgeTop)

.LineStyle = xlDouble

.Weight = xlThick

.ColorIndex = xlAutomatic

End With

.Borders(xlEdgeBottom).LineStyle

= xlNone

.Borders(xlEdgeRight).LineStyle

= xlNone

.Borders(xlInsideVertical)

.LineStyle = xlNone

End With

Range("D5").Select

End Sub

Notice how theWith/End structure was used
to reduce the number of words we need to use,
and how With/End structures can be nested
inside one another. You can test that this code
achieves the same effect by replacing the cur-
rent code in the module in your file Return-
Calc.xlsm, saving the new code, and rerunning
the macro ReturnCalc.

Before we end this section, we would like to
mention a useful property of the Range object,
Offset(v,h). It points to a cell that is v cells

above or below (vertical direction) and h cells
to the right or left (horizontal direction) from a
specific cell. For example,

Range("C5").Select

ActiveCell.Offset(1,2) = 10

sets the value of the cell that is 1 cell down and
2 cells to the right from cell C5 (i.e., cell E6) to
10. Similarly,

Range("C5").Select

ActiveCell.Offset(-1,-2) = 20

sets the value of the cell that is 1 cell up and 2
cells to the left from cell C5 (i.e., cell A4) to 20.

We saw the idea of referencing cells above and
below and to the left and right of the current
cells in the example code at the beginning of
this section. For example, the formula in line 9
of the original macro,

ActiveCell.FormulaR1C1 = "= (RC[-1]

-R[-1]C[-1])/R[-1]C[-1]"

uses the cell in the same row and one column
to the left (RC[-1]) and the cell one row up
and one column to the left (R[-1]C[-1]) to
compute the value in the active cell. These kinds
of commands help when one prefers to create
relative references—in other words, to perform
tasks relative to a prespecified location in the
spreadsheet without changing the code when
the starting location is changed.

The default in VBA is to record macros in
absolute reference mode. To change the mode
to relative references, make sure that the rel-
ative references button in the Developer tab

( ) is “pressed in” before
starting the macro recorder.

PROGRAMMING TIPS
While some desired formatting of an Excel
spreadsheet can be recorded with the macro
recorder, knowing basic programming in VBA
opens up a whole lot of additional functional-
ity. For example, suppose that you have a set of
data on stock returns over several months and,
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as often happens with real-world data, it is not
recorded well—there are some duplicate rows.
You could record a macro as you go through
the spreadsheet and clean them by hand, but
next time you have a set of data, duplicate en-
tries will not be exactly in the same rows as the
first set of data. How can you tell Excel to sort
through the data and remove duplicate rows in
any set of data? You need to construct a pro-
gram from scratch and make the code general
enough to enable the script to be transferable.

In the remainder of this section, we cover
some basic VBA programming concepts. We
discuss the difference between subroutines and
user-defined functions, explain variable decla-
ration in VBA, and introduce some important
control flow statements. These concepts are not
unique to VBA—versions of them exist in most
programming languages.

Subroutines versus User-Defined
Functions
Subroutines and user-defined functions in VBA
are both blocks of code saved in modules.
(If you do not see a module when you open
VBE, select Insert | Module from the top menu
in VBE to create one.) The difference is that sub-
routines are general scripts; that is, lists of in-
structions, whereas functions complete a list of
instructions and return a value to the user. Sub-
routines have the general form

Sub ()

[commands]

End Sub

whereas functions have the form

Function FunctionName(list of inputs)

As type [commands]

FunctionName = Return value

’Computed from [commands]

End Function

The macro recorded at the beginning of this
entry was an example of subroutine code. Next,
we provide another small example in order to

illustrate the difference between a subroutine
and a function. Do not worry about the details
of the commands right now; we will explain
each part of the code in subsequent sections.

Suppose we would like to calculate n! (pro-
nounced “n factorial”), where n is an integer
number the user provides as input. n! is the
product of all integer numbers less than or equal
to n; that is, n! = 1·2·. . .·n. Next, we provide sev-
eral examples of subroutines and user-defined
functions that accomplish this goal. The sub-
routine

Sub FactorialSub1()

’Compute factorial using control flow

statements

’Declare the variable that will

’store the value for factorial

Dim Factorial As Integer

’Declare the variable that will

’store the number n

Dim inNumber As Integer

’Declare the variable that will be

’used as counter in the loop

Dim i As Integer

’Read in the number from cell B1,

’store it in inNumber

inNumber = Range("B1").Value

’Calculate factorial

Factorial = 1

For i = 1 To inNumber

Factorial = i * Factorial

Next i

Range("B2").Value = Factorial

End Sub

takes the number specified in cell B1, computes
the factorial of that number, and sets the value
of the cell B2 to the value of that factorial. To
see how this subroutine works, copy the code
in a new module in the VBE window of a
new Excel file. Enter the number 5 in cell B1.
Press Alt-F8, and select FactorialSub1. The
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subroutine fills cell B2 with 120 (5! = 1·2·3·4·5 =
120).

The function FactorialFun1 whose code is
provided next computes the same result, but
works in a different way. It takes a number as
an input (inNumber), and returns a number
as an output (FactorialFun1). The output to
be returned should have the same name as the
function.

Function FactorialFun1(inNumber)

As Integer

Dim i As Integer

’Calculate factorial

FactorialFun1 = 1

For i = 1 To inNumber

FactorialFun1 = i * FactorialFun1

Next i

End Function

Add this function to the module in the VBE
in your file. To call this function, type in a
cell in your spreadsheet (say, cell B3) = Fac-
torialFun1(B1). If the value in cell B1 was
still 5 (the value you entered in the previ-
ous example), then the value of cell B3 will
be 120. Notice that the syntax for calling your
(user-defined) function is not different from the
syntax for calling built-in Excel functions. In
fact, Excel has a function for computing a fac-
torial, = Fact(number), and if you entered
the expression = Fact(B1) in, say, cell B4 of
your spreadsheet, you would get the same re-
sult (120).

Excel built-in functions can be used also in-
side VBA code with the prefix Application.
It is worthwhile to note, though, that VBA itself
has some built-in numeric functions. In particu-
lar, functions such as Abs (absolute value), Exp
(exponential), Int (integer part), Cos (cosine),
Sin (sine), Log (natural log), Rnd (random
number generator), Sign (sign function), Tan
(tangent), and Sqr (square root) can be used di-
rectly within VBA code without the prefix Ap-
plication. Although it seems that this should
make things easier, it may also be a source of
confusion. Notice that Excel has equivalent nu-

merical functions for formulas that are entered
into cells in spreadsheets, but the syntax for
some of the functions is different. For exam-
ple, the natural logarithm function in Excel is
Ln, and the square root function is Sqrt. So,
typing Sqr in your program in VBA is equiv-
alent to typing Application.Sqrt. In prac-
tice, you would want to use the shorter syntax
Sqr. It is important to be aware of inconsisten-
cies between names of equivalent functions in
Excel and VBA.

The subroutine FactorialSub1() and the
function FactorialFun2() whose code is
provided below illustrate how the factorial can
be computed by calling the built-in Excel func-
tion Fact.

Sub FactorialSub2()

’Compute factorial using Excel’s FACT

’function within a subroutine

Range("B5") = Application.Fact_

(Range("B1"))

End Sub

Function FactorialFun2(inNumber) As

Integer

’Calculate factorial

FactorialFun2 = Application_

.Fact(inNumber)

End Function

Copy the code above in the module in your
file. The subroutine FactorialSub2() uses
the number entered in cell B1 in the spread-
sheet as an input and calls the Excel function
Fact() to compute the factorial of the value
in cell B1. The function FactorialFun2() is
called with an input argument that is a number
and returns the factorial of that number. If you
type = FactorialFun2(B1) in cell B6 and
the value in cell B1 is still 5, you should obtain
120 in cell B6.

What is the advantage of using user-defined
functions rather than subroutines? In some
cases, you can only use one or the other. How-
ever, in cases in which both are possible, it
may be preferable to structure the script as
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a function as opposed to a subroutine. User-
defined functions are more “transferable”—in
other words, it is easier to use them in different
places in the spreadsheet. There are some other
conveniences—for example, check what hap-
pens when the number for n in cell B1 is
changed from 5 to 6. Cell B3 (which contains the
call to the function FactorialFun1) immedi-
ately updates to 720, which is the correct result.
However, cells B2 and B5—those that are output
ranges for the subroutines FactorialSub1
and FactorialSub2—do not update until
you rerun the macros associated with them.

Variable Declaration
Variables are a basic common concept in
computer languages. They are used to store
numerical and text data and handle inter-
mediate output in subroutines and functions.
For example, inNumber in the code for
FactorialSub1was a variable that stored the
value of n for which the factorial should be
computed. There is no convention for naming
variables, but a good practice is to give them
meaningful names (rather than x, y, and z), so
that your code is easier to follow. We prefer to
start names of variables with small letters. If
there is a second word in the name, that word
starts with a capital letter. We also like to dif-
ferentiate variables that store inputs (such as
inNumber) and variables that record output
(e.g., outFactorialValue).

Depending on their type, variables are han-
dled differently and are allocated a different
amount of memory. For example, we specified
that inNumber should be an integer number by
declaring it with the syntax Dim variable-
Name As variableType:

Dim inNumber As Integer

Other types of variables include String,
Single, Double, Long, Boolean,
Date, Object, Variant, and so on. For
example, when you need a variable that will
hold a fractional (also called “floating point”)

value, then you should use the Single or
Double data type. When you need a variable
to store text data, use the String type. The
Variant type can be used to replace any type;
however, it also uses up the largest amount of
space, so it is better to specify a particular type
for a variable if you know it.

When specifying a variable type, make sure
that you have enough space for the data you
are planning to store in that variable. If the
value gets too large for the variable type, your
program may crash. For example, the Inte-
ger type can store values between –32,768 and
32,767. If you need to store an integer num-
ber outside this range, use the Long variable
type. Similarly, theSingle (floating point) type
can store numbers between –3.402823E38 and
–1.401298E-45 for negative values, and num-
bers between 1.401298E-45 and 3.402823E38 for
positive values.1 If you need to work with frac-
tional numbers outside this range, use the Dou-
ble (floating point) variable type.

Variables can be grouped into arrays. For ex-
ample,

Dim myArray(5) As Integer

declares an array of integers of size 6.
One of the most confusing things about VBA

is the way it handles arrays. The default is to in-
dex the first element in arrays as 0, which is the
convention in most programming languages,
which is why the total number of elements in
myArray is 6. However, in some special cir-
cumstances arrays are treated as starting with
the index 1. To ensure consistency and minimize
confusion, it is helpful to use the command

Option Base 1

at the beginning of the module, which makes
sure that the indexing of arrays always starts at
1. If this option is stated, then declaring

Dim myArray(5) As Integer

will result in an array of 5 elements. Those ele-
ments can be referenced as myArray(1),. . .,
myArray(5) later in the program.
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You can specify arrays of multiple dimensions
as well, for example,

Dim myMultiArray(5,2) As Integer

will result in an array of 5 rows and 2 columns.
You can also declare dynamic arrays, that is,

arrays that do not have specific dimensions
from the beginning. This may happen if, for ex-
ample, you have a set of data and you need to
read it in before you know how many elements
it has. In that case, you would declare an array

Dim myDynamicArray() As Integer

which will be filled as necessary. Once the
number of elements is counted, the array can
be resized by using the command ReDim, for
example,

ReDim myDynamicArray(10)

ReDim reinitializes (sets to empty) all values
within an array. If you want to preserve the
values that are already there, use ReDim Pre-
serve, which preserves as many elements as
can fit in the new array dimensions.

Working with arrays within VBA is cumber-
some and prone to errors. Often, one needs to
resort to loops (see the introduction to loops in
the next section) to handle array operations. In
many cases, it may be preferable to use built-in
Excel array manipulation functions, such as
SUMPRODUCT, which performs vector multipli-
cation. As we mentioned earlier, such built-in
Excel functions can be called with Applica-
tion.FunctionName. For example, Array3
= Application.SUMPRODUCT(Array1,
Array2) will fill a variable array Array3 with
the result of the elementwise multiplication
and summation of the matrix arrays Array1
and Array2.

VBA will assume that you are creating a new
variable whenever you use an expression that
is not one of the standard commands. Stating
the type of variables you use in the program
can save you a lot of headache. (Typically, vari-
able declaration is done at the beginning of the
program.)

We also strongly recommend that you write
the statement Option Explicit in the first
line of your modules. This statement makes
sure that Excel will report an error if it encoun-
ters an undeclared variable in your code. (This
also can be accomplished by checking Require
Variable Declaration under Tools | Options
in the top VBE menu.) While this may seem
like an inconvenience, think about a situation
in which you mistype the name of a variable
somewhere in your program. If Excel is not in
the Option Explicit mode, it will treat the
mistyped name as a new variable, ignoring any
value that your variable may have had at that
point in the program, and you will get nonsen-
sical output. If Excel reports an error instead,
you will know to fix the typo.

Control Flow Statements: For and If

Control flow statements in VBA allow for build-
ing more sophisticated programs than simple
input and output of data to Excel. We briefly re-
view a couple of important control statements
that are used in VBA code: an example of an
iterative statement (the For loop) and an exam-
ple of checking a condition (the If statement).

The general syntax of a For loop in VBA is as
follows:

For i = 1 to n

commands

Next i

The commands inside the For loop are exe-
cuted once for every value of n. (One can also
specify a step by writing For i = 1 to n
Step k. For example, if n = 10 and step k = 2,
then the commands in the loop will be executed
for n = 1, 3, 5, 7, 9.)

We saw an example of a For loop in the code
for calculating the factorial of a number n. Let
us walk through the For loop code inside Fac-
torialSub1.

’Calculate factorial

Factorial = 1
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For i = 1 To inNumber

Factorial = i * Factorial

Next i

The initial value of Factorial is set to 1.
Suppose the value for inNumber is 5. The loop
starts ati= 1. During the first iteration, the new
value ofFactorial equals the current value of
i (which is 1) times the current value ofFacto-
rial (which is 1 as well). At the end of the first
run through the loop, the value of Factorial
is 1. Next, the value of i is set to 2. The new
value of Factorial equals the current value
of i (which is 2) times the current value of Fac-
torial (which is 1); that is, it equals 2. At the
third iteration, the value of i is 3 and the cur-
rent value of Factorial is 2; that is, the new
value of Factorial is 3·2 = 6. And so on and
so forth for the next values of i, which are 4
and 5. The value of Factorial keeps getting
updated until it reaches 720 ( = 5!) in the last
iteration of the loop.

There are other commands that enable iterat-
ing through commands multiple times, such as
the Do While and Do Until. See VBE’s Help
for description of the syntax and use of these
alternatives.

The general form of the If statement is

If condition Then

commands

End If

When the condition is true, the block of com-
mands executes. More generally, you can use a
statement of the kind

If condition1 Then

commands1

ElseIf condition2 Then

commands2

Else

commands3

End If

Commands1 will be executed if condition1
is true. If condition1 is not true, then (and
only then) condition2 will be checked. If

condition2 is true, then commands2 will be
executed. Ifcondition2 is not true, then com-
mands2 will be executed.

When using If statements, one typically
needs to compare values of variables and check
whether conditions are true. Therefore, it is use-
ful to know about the logical operators that
allow for such comparisons and checks. The
comparison operators are the following:

= tests for equality
<> tests for inequality
< tests whether the variable to the

left of it is less than the variable
on the right

> tests whether the variable to the
right of it is less than the vari-
able on the left

< = and > = test for less than or equal to/
greater than or equal to

Additional useful operators are AND, OR,
and NOT. AND allows checking whether more
than one statement is true at the same time. OR
returns a True result if at least one of the state-
ments is true. NOT returns a True result if the
statement is false.

To illustrate how we can use these operators,
consider a couple of simple examples that in-
volve three numerical variables, var1, var2,
and var3. Let var1 = 5, var2 = 10.

The code

If (var1 <> var2) Then

var3 = 100

Else

var3 = -100

End If

checks whether the value for var1 is different
from the value of var2. If it is (i.e., the value
of the logical statement (var1 <> var2) is
True), then the value of var3 is set to –100;
otherwise the value of var3 is set to 100. In
this example, the value of var3 at the end
of the loop is 100, since the value for var1
(5) is indeed different from the value of var2
(10).
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Consider also the example

If (var1 < 5) Or (var2 > = 7) Then

var3 = 100

Else

var3 = -100

End If

The code checks if at least one of the state-
ments (var1 < 5) and (var2 > = 7) is
true. If at least one of them is true, then the
value of var3 is set to 100; otherwise the value
of var3 is set to –100. In our case, the first state-
ment is false, because the value of var1 is not
less than 5 (it is equal to 5). However, the sec-
ond statement is true: The value of var2 (10) is
indeed greater than or equal to 7. Therefore,
the combined statement (var1 < 5) Or
(var2 > = 7) is true, and the value of var3
will be set to 100.

User Interaction in VBA
While we covered the most fundamental con-
cepts about the VBA language, it is fun to
learn about some additional capabilities that
enable your programs to interact better with

their users. For example, once you have created
a macro, you can associate it with a button that
the user can press every time he or she wants the
macro to run. To do that, go to the Developer
tab, select Insert | Form Controls, and click on
the button. When Excel pops up in the Macro
dialog box, click on the macro you would like
to have associated with this button.

Sometimes, it is convenient to ask the user
to input information through an input dialog
box. This can be done with the command In-
putBox("question for user", "title
of the input box"). For example,

inNumber = InputBox("Enter an

integer", "Factorial Calculation")

will prompt the user to enter an integer num-
ber and will save that number into the variable
inNumber. The title of the input box will be
Factorial Calculation.

Other useful user interaction tools include
Message Box ( MsgBox), which allows you to
report output not in a cell on the spreadsheet,
but in a message box. To test how it works, let
us go through the following modification of the
factorial calculation program (save it in your
file as subroutine FactorialSubMsgBox()):

1 Sub FactorialSubMsgBox()

2 Dim inNumber As Variant

3 Dim numberType As Boolean

4 Dim outFactorial As Integer

5

6 inNumber = InputBox("Enter an integer number", "Factorial Calculation")

7

8 numberType = IsNumeric(inNumber)

9

10 If numberType = True Then

11 outFactorial = Application.Fact(inNumber)

12 MsgBox ("The factorial of " & inNumber & " equals " & outFactorial)

13 ElseIf numberType = False Then

14 MsgBox ("Not a number. Please enter an integer number.")

15 End If

16 End Sub
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On line 6, we ask the user to specify the num-
ber for which we want to compute the factorial.
On line 8, we check whether this is indeed a
number. Note that the variable numberType is
specified as Boolean, which means that it can
only take True or False values. If it is true,
that is, if inNumber is indeed a number, then
we call the Excel built-in function Fact to cal-
culate the factorial of this number, and print the
statement “The factorial of the number the user
entered is the result obtained” in a message box
on the screen. If it is not true, then we prompt
the user to enter a number.

Note that in line 2, we specified the type of
variable forinNumber as Variant, which allows
it to be anything. If we had declared inNumber
As Integer and had entered a letter instead
of a number, Excel itself would have returned
an error, complaining that there is a variable
type mismatch between what was declared and
what the actual value of the variable is. Thus,
declaring the exact type of variable whenever
we know the type is very is important for min-
imizing errors in output.

DEBUGGING
VBA has useful debugging tools that allow you to
look at the code in more detail if your programs
do not work as expected. These tools can be
accessed through commands under the Debug
item in the top menu of the VBE.

The “Step Into” button (shortcut F8) lets
you execute your program step by step. When
you are executing a program step-by-step, your
program is in “break mode.” Every time you
press F8, the “break” is moved to the next com-
mand. While the break is set on a particular
command, placing the cursor over any variable
above the break point will give you an updated
stored value for that variable. This makes it
easy to catch calculation errors and inconsis-
tencies. You can “step over” (i.e., skip) some
subroutines that you are not interested in

double-checking (use the button or the

shortcut Shift-F8) and “step out” of the break

mode (use the button or the shortcut Ctrl-
Shift-F8). Equivalently, you can click on the Re-

set button in the top VBE menu ( ) to get out
of debug mode.

Rather than going through the program step-
by-step, it is sometimes helpful in long pro-
grams to set breakpoints in advance, so that the
program runs until it gets to a particular break-
point. A breakpoint can be specified by placing
the cursor at the place where it should be in-

serted, and clicking on the button in the
Debug menu (or using the shortcut F9). When
the program gets to the breaking point, it auto-
matically goes into break mode and allows you
to follow the subsequent commands step-by-
step and check the values of the variables at that
point in the program. To remove a breakpoint,
simply place the cursor in the corresponding
line, and click on the breakpoint button again.

EXAMPLES
The best way to learn to program in VBA is to
see and implement many examples. Let us dis-
cuss three examples of using VBA in financial
applications. The first example is a function that
computes the Black-Scholes price of a European
call option. It shows how a function is created,
how variables are declared, and how Excel func-
tions are accessed from within VBA. The second
example is a function that generates possible
paths for an asset price assumed to follow geo-
metric Brownian motion. It involves using the
random number generator in VBA, manipulat-
ing arrays, and iterating with loops. The third
example is a function that computes the price
of a European call option by simulation. It illus-
trates how user-defined and Excel functions can
be called from within VBA functions, and pro-
vides another example of array manipulation
and loops in VBA. Further examples of VBA
scripts for financial applications, such as calcu-
lating the price of an Asian option, or comput-
ing and graphing the mean-variance efficient
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portfolio frontier (see Markowitz, 1952), can be
found in Pachamanova and Fabozzi (2010). See
also Jackson and Staunton (2001).

Pricing a European Call Option with
the Black-Scholes formula
The Black-Scholes formula for a European call
option (C) is as follows (Black and Scholes,
1973):

C = S0 · e−q T · �(d1) − K · e−rT · �(d2)

where

d1 = ln(S0/K ) + (r − q + σ 2/2) · T

σ · √
T

d2 = d1 − σ ·
√

T

K is the strike price
T is the time to maturity
q is the percentage of stock value paid annu-

ally in dividends
� denotes the cumulative probability density

function for the normal distribution

The value for �(d) can be found in Ex-
cel by using the built-in formula =NORMDIST
(d,0,1,1) or, equivalently, the formula
=NORMSDIST(d).

To illustrate the Black-Scholes option pricing
formula, assume the following values:

Current stock price (S0) = $50
Strike price (K) = $52
Time remaining to expiration (T) = 183 days =

0.5 years (183 days/365, rounded)
Stock return volatility (σ ) = 0.25 (25%)
Short-term risk-free interest rate = 0.10 (10%)

Plugging into the formula, we obtain

d1 = ln(50/52) + (0.10 − 0 + 0.252/2) · 0.5

0.25 · √
0.5

= 0.1502

d2 = 0.1502 − 0.25 ·
√

0.5 = −0.0268
�(0.1502) = 0.5597
�(−0.0268) = 0.4893
C = 50 · 1 · 0.5597 − 52 · e−0.10·0.5 · 0.4893 = $3.79

Next, we provide the code of a VBA function
that computes the price of a European call op-
tion with the Black-Scholes formula.

Function BSCallPrice(initPrice As_

Double, _

K As Double, _

T As Double, _

r As Double, _

sigma As Double, _

q As Double)

’Computes the Black-Scholes price of a

’European call option

’initPrice is the initial price of the

’stock

’r is the interest rate

’T is the time to maturity of the

’option

’sigma is the volatility of the stock

’q is the continuous dividend yield

Dim dOne As Double

dOne = (Log(initPrice / K) + (r - q _

+ 0.5 * sigma ˆ 2) * T) / _

(sigma * Sqr(T))

BSCallPrice = initPrice * Exp(-q * T)_

* Application.NormSDist(dOne) - _

K * Exp(-r * T) * Application. _

NormSDist(dOne - sigma * Sqr(T))

End Function

In the code above, all input variables (init-
Price, r, T, sigma and q) are specified
to be of type Double. A variable dOne is
declared as type Double within the function.
dOne stands for d1 in the definition of the
Black-Scholes formula above. It takes the
value of the expression (Log(initPrice
/ K) + (r - q + 0.5 * sigma ˆ 2)
* T) / (sigma * Sqr(T)). (Note that
this expression contained an underscore (“_”)
in the code above. The underscore is used
when transferring a part of an expression to
a new line.) The price of the option is stored
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Figure 3 Example of Using the User-Defined Function BSCallPrice in a Spreadsheet

in BSCallPrice. The functions Log and Exp
used in the calculation are VBA functions. We
also call the Excel function NormSDist with
the expression Application.NormSDist.

The function BSCallPrice can then be used
in a spreadsheet. An example is given in Fig-
ure 3. The inputs are stored in cells B3:B8, and
the function is called with arguments that are
cell references to cells where the information is
stored.

VBA is forgiving if you are sloppy in writ-
ing the function. For example, the code below
(without any variable declarations) would have
worked as well.

Function BSCallPrice(initPrice,K,T,r,

sigma,q)

dOne = (Log(initPrice / K) + (r - q

+ 0.5 * sigma ˆ 2) * T) / _ (sigma

* Sqr(T))

BSCallPrice = initPrice * Exp(-q * T)

* Application.NormSDist(dOne) - _

K * Exp(-r * T) * Application.

NormSDist(dOne - sigma * Sqr(T))

End Function

However, as we mentioned earlier, it is a good
practice to keep your code well organized. It
helps minimize errors and saves you time in
the long run.

Generating Paths for the Price of an
Asset That Follows Geometric
Brownian Motion
In finance, the dynamics of asset price processes
in discrete time increments are typically de-
scribed by two kinds of models: trees (such as
binomial trees) and random walks. When the
time increment used to model the asset price
dynamics becomes infinitely small, such pro-
cesses are referred to as stochastic processes in
continuous time. The ability to generate paths
for asset prices following these processes is im-
portant for computing prices of securities that
depend on the asset price under consideration,
as well as for calculating various risk measures
associated with holding the asset in a portfolio.

The most widely used stochastic process in fi-
nance is geometric Brownian motion. The evo-
lution of the underlying asset price is described
by the equation

d St = μ St dt + σ St dWt

where Wt is standard Brownian motion, and
μ and σ are the drift and the volatility of the
process, respectively. (See a more detailed in-
troduction in Hull [2008] or Pachamanova and
Fabozzi [2010].) It turns out that the value of the
asset price ST at time T given the asset price St

at time t can be computed as

ST = Ste (μ− 1
2 σ 2)·(T−t)+σ ·

√
(T−t)·ε̃
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where ε̃ is a standard normal random vari-
able. If the stock pays a continuously com-
pounded dividend yield of q, then we use
(μ – q – 0.5·σ 2) instead of (μ – 0.5·σ 2) in the
above formula.

Let us create a function, GBMPaths, that
generates a prespecified number of paths
(numPaths) for the asset. Each path consists

of a prespecified number of steps (numSteps).
The value of the asset at each step is computed
according to the formula for ST above. In the
formula, we replace time t with time 0 (i.e., the
present), and time T with the time correspond-
ing to the step.

The code of the function is

Function GBMPaths(initPrice As Double, _

mu As Double, _

sigma As Double, _

T As Double, _

q As Double, _

numSteps As Integer, _

numPaths As Integer)

Randomize

Dim iPath, iStep As Integer

Dim paths() As Variant

ReDim paths(1 To numSteps + 1, 1 To numPaths)

For iPath = 1 To numPaths

paths(1, iPath) = initPrice

For iStep = 2 To numSteps + 1

paths(iStep, iPath) = paths(iStep - 1, iPath) * _

Exp((mu - q - 0.5 * sigma ˆ 2) * (T / numSteps) + _

sigma * (T / numSteps) ˆ (1 / 2) * _

(Application.NormSInv(Rnd)))

Next

Next

GBMPaths = paths

End Function

Let us now see what this function does. First,
we use the command Randomize to make sure
that VBA creates a different sequence each time
we generate normal random variables to com-
pute the paths for the asset. (If you do not type
Randomize before you use the VBA random
generator function Rnd, Rnd will always re-
turn the same sequence of numbers.)

Next, we declare variables we will use in the
function. The variables iPath and iStep will
be counters for the number of paths and the
number of steps we have generated so far. They
are, of course, integers. The two-dimensional
array paths will store the values of the asset

along each path and for each step. We use
ReDim to specify the dimensions of the array.

We next use a for loop to populate the ar-
ray paths. In fact, we have two nested for
loops—one that iterates through the number for
paths, and one that iterates through the points
in each path. For each pointiStep on each path
iPath, we calculate the price of the asset and
store it inpaths(iStep,iPath). The formula
that computes the price of the asset contains the
expression Application.NormSInv(Rnd),
which generates a value for the normal ran-
dom variable ε̃ in the formula for ST ear-
lier in this section. Rnd is the VBA random
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number generator—it returns a random num-
ber between 0 and 1. The reason we used the
command Randomize at the beginning of the
function is so that we could force Rnd to gen-
erate different sequences of random numbers
every time you call the function GBMPaths.
NormSInv is an Excel function that finds the
number on the horizontal axis of the nor-
mal distribution that corresponds to the value
for cumulative probability generated by Rnd.
(See, for example, Chapter 4 in Pachamanova
and Fabozzi [2010] for an explanation of how
random numbers from different probability
distributions are generated.) As in the pre-
vious example, in order to indicate to VBA
that NormSInv is an Excel function, we use
Application. in front of NormSInv.

The function returns a two-dimensional ar-
ray, GBMPaths (which is equal to paths, as set
in the second-to-last line of the function). Ev-
ery column of the array contains a randomly
generated path for the asset price; that is, it has
numSteps values that represent the values of
the asset price along that path.

Pricing a European Call Option by
Simulation
Let us now use the function we created in the
previous section to write a function that prices a
European call option by simulation. While this
is not the most efficient way to price a European
call option by simulation, it will illustrate how
user-defined functions are called within other
functions, and how arrays are handled as out-
puts of a function.

As in the previous section, we will make the
assumption that the asset price follows geo-
metric Brownian motion, which means that the
value of the asset price ST at time T given the
asset price St at time t can be computed as

ST = Ste (r− 1
2 σ 2)·(T−t)+σ ·

√
(T−t)·ε̃

where ε̃ is a standard normal random variable.
(When we generate asset price paths for the pur-
pose of valuing an option, we use r (the risk-free
rate) in place of the drift term μ. This is done for
technical reasons (absence of arbitrage).) As in
the previous section, if the stock pays a contin-
uously compounded dividend yield of q, then
we use (r – q – 0.5·σ 2) instead of (r – 0.5·σ 2) in
the formula above.

The price of the option can be approximated
by creating scenarios for the stock price ST at
time to maturity T, computing the discounted
payoffs of the option, and finding the expected
payoff of the option. (Option pricing by simula-
tion was first suggested by Boyle, 1977. See also
Boyle et al., 1997; Pachamanova and Fabozzi,
2010; Glasserman, 2004; or McLeish, 2005.)

Suppose we generate N scenarios for ε̃ at time
T: ε(1),. . ., ε(N). Then, the price of a European call
option with strike price K will be

Ct = e−r (T−t) ·
N∑

n=1

1
N

× max
{

Ste (r− 1
2 σ 2)·(T−t)+σ ·

√
(T−t)·ε(n) − K , 0

}

The expression above is the expected value of
the option payoffs, that is, the weighted average
of the option payoffs.

The VBA code of the function is given below.

Function EuropeanCall(initPrice As Double, _

K As Double, _

r As Double, _

T As Double, _

sigma As Double, _

q As Double, _

numSteps As Integer, _

numPaths As Integer)
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Dim iPath As Integer

Dim payoffs() As Variant

ReDim payoffs(1 To numPaths)

Dim paths() As Variant

ReDim paths(1 To numSteps + 1, 1 To numPaths)

paths = GBMPaths(initPrice, r - q, sigma, T, q, numSteps, numPaths)

For iPath = 1 To numPaths

payoffs(iPath) = Exp(-r * T) * _

Application.Max(paths(numSteps + 1, iPath) - K, 0)

Next

EuropeanCall = Application. Average(payoffs)

End Function

The variable declarations are similar to the
declarations in the previous sections; however,
now we have an additional array, payoffs,
that will store the payoff of the option at the
end of each generated path (that is, for each
generated scenario). The dimension of the ar-
ray is therefore 1× numPaths.

After declaring the variables in the function,
we call the function we created in the previ-
ous section, GBMPaths, and store the output
in the array paths. This is achieved with the
command

paths = GBMPaths(initPrice, r - q,

sigma, T, q, numSteps, numPaths)

The arguments of the function GBM-
Paths were initPrice, mu, sigma, T,
q, numSteps and numPaths. Note that when
we call the function GBMPaths from within the
function EuropeanCall, we input r - q in
place of the argument mu.

After generating numPaths paths for the
price of the underlying asset, we compute the
payoffs of the option. We only need the pay-
offs at the time of maturity of the option, time
T, so we only use paths(numSteps + 1,
iPath) in the calculation.

The payoff along path iPath is calculated
as the maximum of zero and the difference be-
tween the strike price K and the value of the
underlying at the end of path iPath at time T.

We use the Excel function Max to compute the
maximum and call it as Application.Max.
Each payoff is discounted, and is added to the
array payoffs.

After the arraypayoffs is filled, we compute
the average of the payoffs to get the price of
the option. We use the Excel function Average,
which we call with the command Applica-
tion.Average.

KEY POINTS
� Macros contain prerecorded tasks that can be

performed in a spreadsheet. Macros are in
effect computer programs whose commands
are hidden from the user, but they can be seen
if the VBA editor is open.

� The most important fact about VBA is that
it tries to act as an object-oriented language.
This means that it treats every component of
Excel, such as a worksheet, a cell, a range of
cells, and a chart, as an object.

� Objects are arranged in a hierarchy and have
properties (attributes) that can be modified
by entering the name of the object followed
by a dot and a specific command. In addition,
objects are associated with actions (methods)
that the objects can perform or have applied
to them.

� Subroutines and user-defined functions in
VBA are both blocks of code saved in
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modules. The difference is that subroutines
are general scripts; that is, lists of instructions,
whereas functions complete a list of instruc-
tions and return a value to the user.

� Variable types in VBA include Integer, String,
Single, Double, Long, Boolean, Date, Object,
and Variant. A different amount of memory
is allocated to storing values of variables of
different types.

� The default in VBA is to index the first ele-
ment in arrays as 0, which is the convention
in most programming languages. The com-
mand Option Base 1 at the beginning of a
module makes sure that the indexing of ar-
rays starts at 1.

� Control flow statements such as For and If
allow for building more sophisticated pro-
grams than simple input and output of data
to Excel.

� Excel functions can be accessed from VBA by
prefixing them with Application.

� VBA has some built-in numeric functions,
but it is important to know that their syn-
tax is not always the same as the syntax of
the same function in Excel. For example, the
function Sqrt (square root) in Excel is Sqr
in VBA.

� Useful tools in Excel and VBA that allow for
interaction with users include buttons, input
dialog boxes, and message boxes.

� VBA has debugging tools that allow you to
look at the code in more detail if your pro-
grams do not work as expected. These tools
can be accessed through commands under the
Debug item in the top menu of the VBE.

NOTE
1. The notation E in Excel denotes multiplica-

tion by 10 to a specific power. For example,
5E40 means 5·1040, and 5E-45 means 5·10−45.
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Abstract: Calculus is an important tool because it provides two key ideas for financial modeling:
(1) the concept of instantaneous rate of change, and (2) a framework and rules for linking together
quantities and their instantaneous rates of change. Calculus made the concept of infinitely small
quantities precise with the notion of limit. If the rate of change can get arbitrarily close to a definite
number by making the time interval sufficiently small, that number is the instantaneous rate of
change. The instantaneous rate of change is the limit of the rate of change when the length of the
interval gets infinitely small. This limit is referred to as the derivative of a function, or simply
derivative. Starting from this definition and with the help of a number of rules for computing a
derivative, it was shown that the instantaneous rate of change of a number of functions can be
explicitly computed as a closed formula. The process of computing a derivative, referred to as
differentiation, solves the problem of finding the steepness of the tangent to a curve; the process of
integration solves the problem of finding the area below a given curve. A key result of calculus is
the discovery that integration and derivation are inverse operations: Integrating the derivative of
a function yields the function itself. Standard calculus deals with deterministic functions. As such,
there are limits as to the application of integration of determinist functions to financial modeling
such as pricing contingent claims. The major application of integration to financial modeling
involves stochastic integrals. An understanding of stochastic integrals is needed to understand
an important tool in contingent claims valuation: stochastic differential equations.

In elementary calculus, integration is an op-
eration performed on single, deterministic
functions; the end product is another single,
deterministic function. Integration defines a
process of cumulation: The integral of a func-
tion represents the area below the function.
However, the usefulness of deterministic func-
tions in financial modeling is limited. Given
the amount of uncertainty, few laws in finan-

cial theory can be expressed through them. It
is necessary to adopt an ensemble view, where
the path of economic variables must be consid-
ered a realization of a stochastic process, not
a deterministic path. We must therefore move
from deterministic integration to stochastic in-
tegration. In doing so we have to define how
to cumulate random shocks in a continuous-time
environment. These concepts require rigorous
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definition. In this entry, we define the con-
cept and the properties of stochastic integration.
Based on the concept of stochastic integration,
an important tool used in financial modeling,
stochastic differential equations can be under-
stood.

Two observations are in order. First, although
ordinary integrals and derivatives operate on
functions and yield either individual num-
bers or other functions, stochastic integration
operates on stochastic processes and yields
either random variables or other stochastic
processes. Therefore, while a definite integral
is a number and an indefinite integral is a
function, a stochastic integral is a random
variable or a stochastic process. A differential
equation—when equipped with suitable initial
or boundary conditions—admits as a solution
a single function while a stochastic differen-
tial equation admits as a solution a stochastic
process.

Second, moving from a deterministic to a
stochastic environment does not necessarily re-
quire leaving the realm of standard calculus.
In fact, all the stochastic laws of financial the-
ory could be expressed as laws that govern
the distribution of transition probabilities. An
example of this mathematical strategy is the
application of the forward Komogorov differ-
ential equation or the Fokker-Planck differential
equation to term structure modeling, which are
deterministic partial differential equations that
govern the probability distributions of prices.
Nevertheless it is often convenient to represent
uncertainty directly through stochastic integra-
tion and stochastic differential equations. This
approach is not limited to financial theory: It
is also used in the domain of the physical sci-
ences. In financial theory, stochastic differential
equations have the advantage of being intu-
itive: Thinking in terms of a deterministic path
plus an uncertain term is easier than thinking
in terms of abstract probability distributions.
There are other reasons why stochastic calculus
is the methodology of choice in economics and
finance but easy intuition plays a key role.

For example, a risk-free bank account, which
earns a deterministic instantaneous interest rate
f (t), evolves according to the deterministic law:

y = A exp
(∫

f (t)dt
)

which is the general solution of the differential
equation:

dy
y

= f (t)dt

The solution of this differential equation tells us
how the bank account cumulates over time.

However, if the rate is not deterministic but is
subject to volatility— that is, at any instant the
rate is f (t) plus a random disturbance—then the
bank account evolves as a stochastic process.
That is to say, the bank account might follow
any of an infinite number of different paths:
Each path cumulates the rate f (t) plus the ran-
dom disturbance. In a sense that will be made
precise in this entry and with an understand-
ing of stochastic differential equations, we must
solve the following equation:

dy
y

= f (t)dt plus random distrubance

Here is where stochastic integration comes into
play: It defines how the stochastic rate process
is transformed into the stochastic account pro-
cess. This is the direct stochastic integration ap-
proach.

It is possible to take a different approach. At
any instant t, the instantaneous interest rate and
the cumulated bank account have two prob-
ability distributions. We could use a partial
differential equation to describe how the prob-
ability distribution of the cumulated bank ac-
count is linked to the interest rate probability
distribution.

Similar reasoning applies to stock and deriva-
tive price processes. In continuous-time finance,
these processes are defined as stochastic pro-
cesses that are the solution of a stochastic dif-
ferential equation. Hence, the importance of
stochastic integrals in continuous-time finance
theory should be clear.
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Following some remarks on the informal in-
tuition behind stochastic integrals, we proceed
to define Brownian motions and outlines the
formal mathematical process through which
stochastic integrals are defined. A number of
properties of stochastic integrals are then es-
tablished. After introducing stochastic integrals
informally, we go on to define more rigorously
the mathematical process for defining stochas-
tic integrals.

THE INTUITION BEHIND
STOCHASTIC INTEGRALS
Let’s first contrast ordinary integration with
stochastic integration. A definite integral

A =
b∫

a

f (x)dx

is a number A associated to each function f (x)
while an indefinite integral

y(x) =
x∫

a

f (s)ds

is a function y associated to another function
f. The integral represents the cumulation of
the infinite terms f (s)ds over the integration
interval.

A stochastic integral, which we will denote by

W =
b∫

a

Xtd Bt

or

W =
b∫

a

Xt ◦ d Bt

is a random variable W associated to a stochas-
tic process if the time interval is fixed or, if the
time interval is variable, is another stochastic
process Wt. The stochastic integral represents
the cumulation of the stochastic products XtdBt.
The rationale for this approach is that we need

to represent how random shocks feed back into
the evolution of a process. We can cumulate
separately the deterministic increments and the
random shocks only for linear processes. In
nonlinear cases, as in the simple example of the
bank account, random shocks feed back into
the process. For this reason we define stochas-
tic integrals as the cumulation of the product
of a process X by the random increments of a
Brownian motion.

Consider a stochastic process Xt over an in-
terval [S,T]. Recall that a stochastic process is a
real variable X(ω)t that depends on both time
and the state of the economy ω. For any given
ω, X(·)t is a path of the process from the origin
S to time T. A stochastic process can be identi-
fied with the set of its paths equipped with an
appropriate probability measure. A stochastic
integral is an integral associated to each path; it
is a random variable that associates a real num-
ber, obtained as a limit of a sum, to each path.
If we fix the origin and let the interval vary,
then the stochastic integral is another stochastic
process.

It would seem reasonable, prima facie, to de-
fine the stochastic integral of a process X(ω)t

as the definite integral in the sense of Rieman-
Stieltjes associated to each path X(·)t of the pro-
cess. If the process X(ω)t has continuous paths
X(·, ω), the integrals

W(ω) =
T∫

S

X(s, ω)ds

exist for each path. However, as discussed in
the previous section, this is not the quantity we
want to represent. In fact, we want to represent
the cumulation of the stochastic products XtdBt.
Defining the integral

W =
b∫

a

Xtd Bt

pathwise in the sense of Rieman-Stieltjes would
be meaningless because the paths of a Brownian
motion are not of finite variation. If we define
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stochastic integrals simply as the limit of XtdBt

sums, the stochastic integral would be infinite
(and therefore useless) for most processes.

However, Brownian motions have bounded
quadratic variation. Using this property, we can
define stochastic integrals pathwise through
an approximation procedure. The approxi-
mation procedure to arrive at such a def-
inition is far more complicated than the
definition of the Rieman-Stieltjes integrals.
Two similar but not equivalent definitions of
stochastic integral have been proposed, the
first by the Japanese mathematician Kiyoshi Ito
(1951), the second by the Russian physicist Rus-
lan Stratonovich in the 1960s.1 The definition
of stochastic integral in the sense of Ito inte-
gral or of Stratonovich stochastic replaces the
increments �xi with the increments �Bi of a
fundamental stochastic process called Brown-
ian motion.2 The increments �Bi represent the
“noise” of the process.

The definition proceeds in the following three
steps:

� Step 1. The first step consists in defining a
fundamental stochastic process—the Brown-
ian motion. In intuitive terms, a Brownian mo-
tion Bt(ω) is a continuous limit (in a sense
that will be made precise in the following
sections) of a simple random walk. A simple
random walk is a discrete-time stochastic pro-
cess defined as follows. A point can move
one step to the right or to the left. Movement
takes place only at discrete instants of time,
say at time 1,2,3,. . .. At each discrete instant,
the point moves to the right or to the left with
probability 1

2 .
The random walk represents the cumula-

tion of completely uncertain random shocks.
At each point in time, the movement of the
point is completely independent from its past
movements. Hence, the Brownian motion
represents the cumulation of random shocks
in the limit of continuous time and of contin-
uous states. It can be demonstrated that a.s.
each path of the Brownian motion is not of

bounded total variation but it has bounded
quadratic variation.

Recall that the total variation of a function
f (x) is the limit of the sums

∑
| f (xi ) − f (xi−1)|

while the quadratic variation is defined as the
limit of the sums

∑
| f (xi ) − f (xi−1)|2

Quadratic variation can be interpreted as the
absolute volatility of a process. Thanks to this
property, the �Bi of the Brownian motion
provides the basic increments of the stochas-
tic integral, replacing the �xi of the Rieman-
Stieltjes integral.

� Step 2. The second step consists in defining the
stochastic integral for a class of simple func-
tions called elementary functions. Consider the
time interval [S,T] and any partition of the
interval [S,T] in N subintervals: S ≡ t0 < t1

< . . .ti < . . .tN ≡ T. An elementary function
φ is a function defined on the time t and the
outcome ω such that it assumes a constant
value on the i-th subinterval. Call I[ti+1, ti)
the indicator function of the interval [ti+1, ti).
The indicator function of a given set is a func-
tion that assumes value 1 on the points of the
set and 0 elsewhere. We can then write an
elementary function φ as follows:

φ(t, ω) =
∑

i

εi (ω)I [ti+1, ti )

In other words, the constants εi(ω) are random
variables and the function φ(t,ω) is a stochas-
tic process made up of paths that are constant
on each i-th interval.

We can now define the stochastic integral,
in the sense of Ito, of elementary functions
φ(t,ω) as follows:

W =
T∫

S

φ(t, ω)d Bt(ω)

=
∑

i

εi (ω)[Bi+1(ω) − Bi (ω)]

where B is a Brownian motion.
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It is clear from this definition that W is a
random variable ω → W(ω). Note that the
Ito integral thus defined for elementary func-
tions cumulates the products of the elemen-
tary functions φ(t,ω) and of the increments of
the Brownian motion Bt(ω).

It can be demonstrated that the follow-
ing property, called Ito isometry, holds for Ito
stochastic integrals defined for bounded ele-
mentary functions as above:

E

⎡

⎢⎣

⎛

⎝
T∫

S

φ(t, ω)d Bt(ω)

⎞

⎠
2⎤

⎥⎦ = E

⎡

⎣
T∫

S

φ(t, ω)2dt

⎤

⎦

The Ito isometry will play a fundamental role
in Step 3.

� Step 3. The third step consists in using the Ito
isometry to show that each function g which is
square-integrable (plus other conditions that
will be made precise in the next section) can
be approximated by a sequence of elementary
functions φn(t, ω) in the sense that

E

⎡

⎣
T∫

S

[g − φn(t, ω)]2dt

⎤

⎦ → 0

If g is bounded and has a continuous time-
path, the functions φn(t, ω) can be defined as
follows:

φn(t, ω) =
∑

i

g(ti , ω)I [ti+1, ti )

where I is the indicator function. We can now
use the Ito isometry to define the stochastic
integral of a generic function f (t, ω) as follows:

T∫

S

f (t, ω)d Bt(ω) = lim
n→∞

T∫

S

φn(t, ω)d Bt(ω)

The Ito isometry ensures that the Cauchy
condition is satisfied and that the above se-
quence thus converges.

In outlining the above definition, we omitted
an important point that will be dealt with in
the next section: The definition of the stochastic
integral in the sense of Ito requires that the el-

ementary functions be without anticipation—
that is, they depend only on the past history
of the Brownian motion. In fact, in the case of
continuous paths, we wrote the approximating
functions as follows:

φn(t, ω) =
∑

i

g(ti , ω)[Bi+1(ω) − Bi (ω)]

taking the function g in the left extreme of each
subinterval.

However, the definition of stochastic integrals
in the sense of Stratonovich admits anticipation.
In fact, the stochastic integral in the sense of
Stratonovich, written as follows

T∫

S

f (t, ω) ◦ d Bt(ω)

uses the following approximation under the as-
sumption of continuous paths:

φn(t, ω) =
∑

i

g(t∗
i , ω)[Bi+1(ω) − Bi (ω)]

where

t∗
i = ti+1 − ti

2

is the midpoint of the i-th subinterval.
Whose definition—Ito’s or Stratonovich’s—is

preferable? Note that neither can be said to be
correct or incorrect. The choice of the one over
the other is a question of which one best repre-
sents the phenomena under study. The lack of
anticipation is one reason why the Ito integral
is generally preferred in finance theory.

We have just outlined the definition of
stochastic integrals leaving aside mathematical
details and rigor. The following two sections
will make the above process mathematically
rigorous and will discuss the question of an-
ticipation of information. While these sections
are a bit technical and might be skipped by
those not interested in the mathematical details
of stochastic calculus, they explain a number of
concepts that are key to the modern develop-
ment of finance theory.
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BROWNIAN MOTION
DEFINED

The previous section introduced Brownian mo-
tion informally as the limit of a simple ran-
dom walk when the step size goes to zero. This
section defines Brownian motion formally. The
term “Brownian motion” is due to the Scot-
tish botanist Robert Brown who in 1828 ob-
served that pollen grains suspended in a liquid
move irregularly. This irregular motion was
later explained by the random collision of the
molecules of the liquid with the pollen grains. It
is therefore natural to represent Brownian mo-
tion as a continuous-time stochastic process that
is the limit of a discrete random walk.

Let’s now formally define Brownian motion
and demonstrate its existence. Let’s first go back
to the probabilistic representation of the econ-
omy. The economy can be represented as a prob-
ability space (�, �, P), where � is the set of
all possible economic states, � is the event σ -
algebra, and P is a probability measure. The eco-
nomic states ω ∈ � are not instantaneous states
but represent full histories of the economy for
the time horizon considered, which can be a fi-
nite or infinite interval of time. In other words,
the economic states are the possible realization
outcomes of the economy.

In this probabilistic representation of the
economy, time-variable economic quantities—
such as interest rates, security prices or cash
flows as well as aggregate quantities such as
economic output—are represented as stochas-
tic processes Xt(ω). In particular, the price and
dividend of each stock are represented as two
stochastic processes St(ω) and dt(ω).

Stochastic processes are time-dependent ran-
dom variables defined over the set �. It is criti-
cal to define stochastic processes so that there is
no anticipation of information, that is, at time t
no process depends on variables that will be re-
alized later. Anticipation of information is pos-
sible only within a deterministic framework.
However the space � in itself does not contain
any coherent specification of time. If we asso-

ciate random variables Xt(ω) to a time index
without any additional restriction, we might
incur the problem of anticipation of informa-
tion. Consider, for instance, an arbitrary fam-
ily of time-indexed random variables Xt(ω) and
suppose that, for some instant t, the relation-
ship Xt(ω) = Xt+1(ω) holds. In this case there is
clearly anticipation of information as the value
of the variable Xt+1(ω) at time t + 1 is known at
an earlier time t. All relationships that lead to
anticipation of information must be treated as
deterministic.

The formal way to specify in full generality
the evolution of time and the propagation of in-
formation without anticipation is through the
concept of filtration. The concept of filtration is
based on identifying all events that are known
at any given instant. It is the propagation of
information assuming that it is possible to as-
sociate to each moment t a σ -algebra of events
�t ⊂ � formed by all events that are known
prior to or at time t. It is assumed that events
are never “forgotten,” that is, that �t ⊂ �s, if t
< s. An increasing sequence of σ -algebras, each
associated to the time at which all its events
are known, represents the propagation of in-
formation. This sequence (called a filtration) is
typically indicated as �t.

The economy is therefore represented as a
probability space (�,�, P) equipped with a
filtration {�t}. The key point is that every pro-
cess Xt(ω) that represents economic or finan-
cial quantities must be adapted to the filtration
{�t}, that is, the random variable Xt(ω) must
be measurable with respect to the σ -algebras
�t. In simple terms, this means that each event
of the type Xt(ω) ≤ x belongs to �t while each
event of the type Xs(ω) ≤ y for t ≤ s belongs to
�s. For instance, consider a process Pt(ω), which
might represent the price of a stock. Any coher-
ent representation of the economy must ensure
that events such as {ω: Ps(ω) ≤ c} are not known
at any time t < s. The filtration {�t} prescribes
all events admissible at time t.

Why do we have to use the complex con-
cept of filtration? Why can’t we simply identify



STOCHASTIC INTEGRALS 477

information at time t with the values of all the
variables known at time t as opposed to iden-
tifying a set of events? The principal reason is
that in a continuous-time continuous-state en-
vironment any individual value has probability
zero; we cannot condition on single values as
the standard definition of conditional probabil-
ity would become meaningless. In fact, in the
standard definition of conditional probability,
the probability of the conditioning event ap-
pears in the denominator and cannot be zero.

It is possible, however, to reverse this reason-
ing and construct a filtration starting from a
process. Suppose that a process Xt(ω) does not
admit any anticipation of information, for in-
stance because the Xt(ω) are all mutually
independent. We can therefore construct a fil-
tration �t as the strictly increasing sequence of
σ -algebras generated by the process Xt(ω). Any
other process must be adapted to �t.

Let’s now go back to the definition of the
Brownian motion. Suppose that a probability
space (�, �, P) equipped with a filtration �t is
given. A one-dimensional standard Brownian mo-
tion is a stochastic process Bt(ω) with the follow-
ing properties:

� Bt(ω) is defined over the probability space (�,
�, P).

� Bt(ω) is continuous for 0 ≤ t < ∞.
� B0(ω) = 0.
� Bt(ω) is adapted to the filtration �t.
� The increments Bt(ω) –Bs(ω) are independent

and normally distributed with variance (t–s)
and zero mean.

The above conditions3 state that the standard
Brownian motion is a stochastic process that
starts at zero, has continuous paths and nor-
mally distributed increments whose variance
grows linearly with time. Note that in the last
condition the increments are independent of
the σ -algebra �S and not of the previous val-
ues of the process. As noted above, this is be-
cause any single realization of the process has
probability zero and it is therefore impossible to
use the standard concept of conditional proba-

bility: Conditioning must be with respect to a
σ -algebra �S. Once this concept has been firmly
established, one might speak loosely of inde-
pendence of the present values of a process from
its previous values. It should be clear, however,
that what is meant is independence with respect
to a σ -algebra �s.

Note also that the filtration �t is an inte-
gral part of the above definition of the Brow-
nian motion. This does not mean that, given
any probability space and any filtration, a
standard Brownian motion with these char-
acteristics exists. For instance, the filtration
generated by a discrete-time continuous-state
random walk is insufficient to support a Brow-
nian motion. The definition states only that we
call a one-dimensional standard Brownian mo-
tion a mathematical object (if it exists) made up
of a probability space, a filtration, and a time
dependent random variable with the properties
specified in the definition.

However, it can be demonstrated that Brown-
ian motions exist by constructing them. Sev-
eral construction methodologies have been
proposed, including methodologies based on
the Kolmogorov extension theorem or on con-
structing the Brownian motion as the limit
of a sequence of discrete random walks. To
prove the existence of the standard Brownian
motion, we will use the Kolmogorov extension
theorem.

The Kolmogorov theorem can be summarized
as follows. Consider the following family of
probability measures

μt1,...,tm (H1 × . . . × Hm)

= P[(Xt1 ∈ H1, . . . , Xtm ∈ Hm), Hi ∈ Bn]

for all t1,. . .,tk ∈ [0, ∞), k ∈ N and where the
Hs are n-dimensional Borel sets. Suppose that
the following two consistency conditions are
satisfied

μtσ (1),...,tσ (m) (H1 × . . . × Hm)

= μt1,...,tm (Hσ−1(1) × . . . × Hσ−1(m))
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for all permutations σ on {1,2,. . ., k}, and

μt1,...,tk (H1 × . . . × Hk)

= μt1,...,tk ,tk+1,...,tm (H1 × . . . × Hk × Rn × . . . × Rn)

for all m. The Kolmogorov extension theorem
states that, if the above conditions are satisfied,
then there is (1) a probability space (�, �, P) and
(2) a stochastic process that admits the proba-
bility measures

μt1,...,tm (H1 × . . . × Hm)

= P[(Xt1 ∈ H1, . . . , Xtm ∈ Hm), Hi ∈ Bn]

as finite dimensional distributions.
The construction is lengthy and technical and

we omit it here, but it should be clear how, with
an appropriate selection of finite-dimensional
distributions, the Kolmogorov extension the-
orem can be used to prove the existence of
Brownian motions. The finite-dimensional dis-
tributions of a one-dimensional Brownian mo-
tion are distributions of the type

μt1,...,tk (H1 × . . . × Hk)

=
∫

p(t, x, x1)p(t2 − t1, x1, x2) . . .

p(tk − tk−1, xk−1, xk)dx1 . . . dxk H1 × . . . × Hk

where

p(t, x, y) = (2π t)−
1
2 exp

(
−|x − y|2

2t

)

and with the convention that the integrals are
taken with respect to the Lebesgue measure.
The distribution p(t, x, x1) in the integral is the
initial distribution. If the process starts at zero,
p(t, x, x1) is a Dirac delta, that is, it is a distribu-
tion of mass 1 concentrated in one point.

It can be verified that these distributions
satisfy the above consistency conditions; the
Kolmogorov extension theorem therefore en-
sures that a stochastic process with the above
finite dimensional distributions exists. It can
be demonstrated that this process has nor-
mally distributed independent increments with
variance that grows linearly with time. It is

therefore a one-dimensional Brownian motion.
These definitions can be easily extended to an
n-dimensional Brownian motion.

In the initial definition of a Brownian motion,
we assumed that a filtration �t was given and
that the Brownian motion was adapted to the
filtration. In the present construction, however,
we reverse this process. Given that the pro-
cess we construct has normally distributed, sta-
tionary, independent increments, we can define
the filtration �t as the filtration �B

t generated
by Bt(ω). The independence of the increments
of the Brownian motion guarantee the absence
of anticipation of information. Note that if we
were given a filtration �t larger than the filtra-
tion �B

t , Bt(ω) would still be a Brownian motion
with respect to �t.

In stochastic differential equations, there are
two types of solutions of stochastic differen-
tial equations—strong and weak—depending
on whether the filtration is given or generated
by the Brownian motion. The implications of
these differences for economics and finance will
be discussed in the same section.

The above construction does not specify
uniquely the Brownian motion. In fact, there
are infinite stochastic processes that start from
the same point and have the same finite di-
mensional distributions but have totally dif-
ferent paths. However, it can be demonstrated
that only one Brownian motion has continuous
paths a.s. (a.s. means almost surely; that is, for
all paths except a set of measure zero). This pro-
cess is called the canonical Brownian motion. Its
paths can be identified with the space of con-
tinuous functions.

The Brownian motion can also be constructed
as the continuous limit of a discrete random
walk. Consider a simple random walk Wi where
i are discrete time points. The random walk
is the motion of a point that moves �x to the
right or to the left with equal probability 1/2 at
each time increment �x. The total displacement
Xi at time i is the sum of i independent incre-
ments each distributed as a Bernoulli variable.
Therefore the random variable X has a binomial
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distribution with mean zero and variance:

�2x
�t

Suppose that both the time increment and the
space increment approach zero: �t → 0 and �x
→ 0. Note that this is a very informal state-
ment. In fact what we mean is that we can
construct a sequence of random walk processes
Wn

i , each characterized by a time step and by
a time displacement. It can be demonstrated
that if

�2x
�t

→ σ

(i.e., the square of the spaced interval and the
time interval are of the same order) then the
sequence of random walks approaches a Brow-
nian motion. Though this is intuitive as the
binomial distributions approach normal distri-
butions, it should be clear that it is far from
being mathematically obvious.

Figure 1 illustrates 100 realizations of a Brow-
nian motion approximated as a random walk.
The exhibit clearly illustrates that the standard

Figure 1 Illustration of 100 Paths of a Brownian Motion Generated as an Arithmetic Random Walk

deviation grows with the square root of the time
as the variance grows linearly with time. In
fact, as illustrated, most paths remain confined
within a parabolic region.

PROPERTIES OF BROWNIAN
MOTION
The paths of a Brownian motion are rich struc-
tures with a number of surprising properties. It
can be demonstrated that the paths of a canon-
ical Brownian motion, though continuous, are
nowhere differentiable. It can also be demon-
strated that they are fractals of fractal dimen-
sion 3/2. The fractal dimension is a concept that
measures quantitatively how a geometric ob-
ject occupies space. A straight line has fractal
dimension one, a plane has fractal dimension
two, and so on. Fractal objects might also have
intermediate dimensions. This is the case, for
example, of the path of a Brownian motion,
which is so jagged that, in a sense, it occupies
more space than a straight line.
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Figure 2 Illustration of the Fractal Properties of the Paths of a Brownian Motion
Note: Five paths of a Brownian motion are generated as random walks with different time steps and then
magnified.

The fractal nature of Brownian motion paths
implies that each path is a self-similar object.
This property can be illustrated graphically. If
we generate random walks with different time
steps, we obtain jagged paths. If we allow paths
to be graphically magnified, all paths look alike
regardless of the time step with which they have
been generated. In Figure 2, sample paths are
generated with different time steps and then
portions of the paths are magnified. Note that
they all look perfectly similar.

This property was first observed by Mandel-
brot (1963) in sequences of cotton prices in the
1960s. In general, if one looks at asset or com-
modity price time series, it is difficult to rec-
ognize their time scale. For instance, weekly or
monthly time series look alike. (Recent empiri-
cal and theoretical research work has made this
claim more precise.)

Let’s consider a one-dimensional standard
Brownian motion. If we wait a sufficiently long
period of time, every path except a set of
paths of measure zero will return to the ori-

gin. The path between two consecutive pas-
sages through zero is called an excursion of the
Brownian motion. The distribution of the max-
imum height attained by an excursion and of
the time between two passages through zero
or through any level have interesting proper-
ties. The distribution of the time between two
passages through zero has infinite mean. This
is at the origin of the so-called St. Petersburg
paradox described by the Swiss mathematician
Bernoulli. The paradox consists of the follow-
ing. Suppose a player bets increasing sums on
a game that can be considered a realization of
a random walk. As the return to zero of a ran-
dom walk is a sure event, the player is certain
to win—but while the probability of winning is
one, the average time before winning is infinite.
To stay the game, the capital required is also in-
finite. Difficult to imagine a banker ready to put
up the money to back the player.

The distribution of the time to the first pas-
sage through zero of a Brownian motion is not
Gaussian. In fact, the probability of a very long



STOCHASTIC INTEGRALS 481

waiting time before the first return to zero is
much higher than in a normal distribution. It is
a fat-tailed distribution in the sense that it has
more weight in the tail regions than a normal
distribution. The distribution of the time to the
first passage through zero of a Brownian motion
is an example of how fat-tailed distributions can
be generated from Gaussian variables.

STOCHASTIC INTEGRALS
DEFINED
Let’s now go back to the definition of stochas-
tic integrals, starting with one-dimensional
stochastic integrals. Suppose that a probabil-
ity space (�, �, P) equipped with a filtration
�t is given. Suppose also that a Brownian mo-
tion Bt(ω) adapted to the filtration �t is given.
We will define Ito integrals following the three-
step procedure outlined earlier in this entry.
We have just completed the first step defin-
ing Brownian motion. The second step con-
sists in defining the Ito integral for elementary
functions.

Let’s first define the set 	(S, T) of functions
	(S, T) ≡ {f (t,ω): [(0, ∞)× � → R]} with the
following properties:

� Each f is jointly B × � measurable.
� Each f (t,ω) is adapted to �t.

� E

[
T∫

S
f 2(t, ω)dt

]
< ∞ (this condition

can be weakened).

This is the set of paths for which we define the
Ito integral.

Consider the time interval [S,T] and, for each
integer n, partition the interval [S,T] in subin-
tervals: t0<t1<. . .t1<. . .tn<. . .tN≡ T in this way:

tk = tn
k =

⎧
⎨

⎩

k2−n if S ≤ k2−n ≤ T
S if k2−n < S
T if k2n > T

This rule provides a family of partitions of the
interval [S,T] which can be arbitrarily refined.

Consider the elementary functions φ(t,ω) ∈ 	

which we write as

φ(t, ω) =
∑

i

εi (ω)I [ti+1 − ti )

As φ(t,ω) ∈ 	, εi(ω) are �ti measurable random
variables.

We can now define the stochastic integral, in
the sense of Ito, of elementary functions φ(t,ω)
as

W =
T∫

S

φ(t, ω)d Bt(ω) =
∑

i≥0

εi (ω)[Bi+1(ω)−Bi (ω)]

where B is a Brownian motion. Note that the
εi(ω) and the increments Bj(ω) −Bi(ω) are inde-
pendent for j > i. The key aspect of this def-
inition that was not included in the informal
outline is the condition that the εi(ω) are �ti

measurable.
For bounded elementary functions φ(t,ω) ∈ 	

the Ito isometry holds

E

⎡

⎢⎣

⎛

⎝
T∫

S

φ(t, ω)d Bt(ω)

⎞

⎠
2⎤

⎥⎦ = E

⎡

⎣
T∫

S

φ(t, ω)2dt

⎤

⎦

The demonstration of the Ito isometry rests
on the fact that

E[εiε j (Bti+1 − Bti )(Btj+1 − Btj )] =
{

0 if i �= j
E(ε2

i ) if i = j

This completes the definition of the stochastic
integral for elementary functions.

We have now completed the introduction of
Brownian motions and defined the Ito integral
for elementary functions. Let’s next introduce
the approximation procedure that allows us to
define the stochastic integral for any φ(t,ω). We
will develop the approximation procedure in
the following three additional steps that we will
state without demonstration:

� Step 1. Any function g(t,ω) ∈	 that is bounded
and such that all its time paths φ(·, ω) are



482 Stochastic Processes and Tools

continuous functions of time can be approxi-
mated by

φn(t, ω) =
∑

i

g(ti , ω)I [ti+1 − ti )

in the sense that:

E

T∫

S

[(g − φn)2dt] → 0, n → ∞,∀ω

where the intervals are those of the partition
defined above. Note that φn(t, ω) ∈ 	 given
that g(t, ω) ∈ 	.

� Step 2. We release the condition of time-path
continuity of the φn(t, ω). It can be demon-
strated that any function h(t, ω) ∈ 	 which
is bounded but not necessarily continuous
can be approximated by functions gn(t, ω) ∈
	, which are bounded and continuous in the
sense that

E

⎡

⎣
T∫

S

(h − gn)2dt

⎤

⎦ → 0

� Step 3. It can be demonstrated that any func-
tion f (t, ω) ∈ 	, not necessarily bounded or
continuous, can be approximated by a se-
quence of bounded functions hn(t, ω) ∈ 	 in
the sense that

E

⎡

⎣
T∫

S

( f − hn)2dt

⎤

⎦ → 0

We now have all the building blocks to com-
plete the definition of Ito stochastic integrals. In
fact, by virtue of the above three-step approx-
imation procedure, given any function f (t, ω)
∈ 	, we can choose a sequence of elementary
functions φn(t, ω) ∈ 	 such that the following
property holds:

E

⎡

⎣
T∫

S

( f − φn)2dt

⎤

⎦ → 0

Hence we can define the Ito stochastic integral
as follows:

I [ f ](w)=
T∫

S

f (t, ω)d Bt(ω)= lim
n→∞

⎡

⎣
T∫

S

φn(t, ω)dt

⎤

⎦

The limit exists as

T∫

S

φn(t, ω)d Bt(ω)

forms a Cauchy sequence by the Ito isome-
try, which holds for every bounded elementary
function.

Let’s now summarize the definition of the Ito
stochastic integral: Given any function f (t, ω) ∈
	, we define the Ito stochastic integral by

I [ f ](w)=
T∫

S

f (t, ω)d Bt(ω) = lim
n→∞

⎡

⎣
T∫

S

φn(t, ω)dt

⎤

⎦

where the functions φn(t, ω) ∈ 	 are a sequence
of elementary functions such that

E

⎡

⎣
T∫

S

( f − φn)2dt

⎤

⎦ → 0

The multistep procedure outlined above en-
sures that the sequence φn(t, ω) ∈ 	 exists. In
addition, it can be demonstrated that the Ito
isometry holds in general for every f (t, ω) ∈ 	

E

⎡

⎢⎣

⎛

⎝
T∫

S

f (t, ω)d Bt(ω)

⎞

⎠
2⎤

⎥⎦ =E

⎡

⎣
T∫

S

f (t, ω)2dt

⎤

⎦

SOME PROPERTIES OF ITO
STOCHASTIC INTEGRALS
Suppose that f, g ∈ 	(S, T) and let 0 < S < U
< T. It can be demonstrated that the following
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properties of Ito stochastic integrals hold:

T∫

S

f d Bt =
U∫

S

f d Bt+
T∫

U

f d Bt for a.a.ω

E

⎡

⎣
T∫

S

f d Bt

⎤

⎦ = 0

T∫

S

(c f + dg)d Bt = c

T∫

S

f d Bt + d

T∫

S

gd Bt,

for a.a. ω, c, d constants

If we let the time interval vary, say (0, t),
then the stochastic integral becomes a stochastic
process:

It(ω) =
t∫

0

f d Bt

It can be demonstrated that a continuous ver-
sion of this process exists. The following three
properties can be demonstrated from the defi-
nition of integral:

t∫

0

d Bs = Bt

t∫

0

sd Bs = tBt −
t∫

0

Bsds

t∫

0

Bsd Bs = 1
2

B2
t − 1

2
t

The last two properties show that, after per-
forming stochastic integration, deterministic
terms might appear.

KEY POINTS
� Stochastic integration provides a coherent

way to represent that instantaneous uncer-

tainty (or volatility) cumulates over time. It
is thus fundamental to the representation of
financial processes such as interest rates, secu-
rity prices, or cash flows as well as aggregate
quantities such as economic output.

� Stochastic integration operates on stochastic
processes and produces random variables or
other stochastic processes.

� Stochastic integration is a process defined on
each path as the limit of a sum. However,
these sums are different from the sums of
the Riemann-Lebesgue integrals because the
paths of stochastic processes are generally not
of bounded variation.

� Stochastic integrals in the sense of Ito are de-
fined through a process of approximation.

� Step 1 consists in defining Brownian motion,
which is the continuous limit of a random
walk.

� Step 2 consists in defining stochastic inte-
grals for elementary functions as the sums
of the products of the elementary functions
multiplied by the increments of the Brownian
motion.

� Step 3 extends this definition to any function
through approximating sequences.

NOTES
1. The publications of Stratonovich can be

found in Romanovski (2007).
2. A history of stochastic integrations and fi-

nancial mathematics is provided by Jarrow
and Protter (2004). For a more detailed dis-
cussion of stochastic integration, see Protter
(1990).

3. The set of conditions defining a Brownian
motion can be more parsimonious. If a pro-
cess has stationary, independent increments
and continuous paths a.s. it must have nor-
mally distributed increments. A process with
stationary independent increments and with
paths that are continuous to the right and
limited to the left (the cadlag functions) is
called a Levy process.
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Abstract: In nontechnical terms, differential equations are equations that express a relationship
between a function and one or more derivatives (or differentials) of that function. It would be
difficult to overemphasize the importance of differential equations in financial modeling where
they are used to express laws that govern the evolution of price probability distributions, the
solution of economic variational problems (such as intertemporal optimization), and conditions for
continuous hedging (such as in the Black-Scholes equation). The two broad types of differential
equations are ordinary differential equations and partial differential equations. The former are
equations or systems of equations involving only one independent variable; the latter are differential
equations or systems of equations involving partial derivatives. When one or more of the variables
is a stochastic process, we have the case of stochastic differential equations and the solution is also
a stochastic process. An assumption must be made about driving noise in a stochastic differential
equation. In most applications, it is assumed that the noise term follows a Gaussian random variable,
although types of random variables can be assumed.

Stochastic differential equations solve the prob-
lem of giving meaning to a differential equation
where one or more of its terms are subject to
random fluctuations. For instance, consider the
following deterministic equation:

dy
dt

= f (t)y

We know from differential equations that, by
separating variables, the general solution of this
equation can be written as follows:

y = Aexp
[∫

f (t)dt
]

A stochastic version of this equation might
be obtained, for instance, by perturbing the
term f , thus resulting in the stochastic differential
equation

dy
y

= [ f (t) + ε]dt

where ε is a random noise process.
As with stochastic integrals, in defining

stochastic differential equations it is necessary
to adopt an ensemble view: The solution of
a stochastic differential equation is a stochas-
tic process, not a single function. In this en-
try, we first provide the basic intuition behind

485



486 Stochastic Processes and Tools

stochastic differential equations and then pro-
ceed to formally define the concept and the
properties.

THE INTUITION BEHIND
STOCHASTIC DIFFERENTIAL
EQUATIONS
Let’s go back to the equation

dy
dt

= [ f (t) + ε]y

where ε is a continuous-time noise pro-
cess. It would seem reasonable to define a
continuous-time noise process informally as
the continuous-time limit of a zero-mean, IID
sequence, that is, a sequence of independent
and identically distributed variables with zero
mean. In a discrete time setting, a zero-mean,
IID sequence is called a white noise. We could en-
visage defining a continuous-time white noise
as the continuous-time limit of a discrete-time
white noise. Each path of ε is a function of time
ε(·,ω). It would therefore seem reasonable to de-
fine the solution of the equation pathwise, as
the family of functions that are solutions of the
equations

dy
dt

= [ f (t) + ε(t, ω)]y

where each equation corresponds to a specific
white noise path.

However, this definition would be meaning-
less in the domain of ordinary functions. In
other words, it would generally not be possible
to find a family of functions y(·,ω) that satisfy
the above equations for each white-noise path
and that form a reasonable stochastic process.

The key problem is that it is not possible to
define a white noise process as a zero-mean
stationary stochastic process with independent
increments and continuous paths. Such a pro-
cess does not exist in the domain of ordinary
functions.1 In discrete time the white noise pro-
cess is obtained as the first-difference process
of a random walk. Random walk is an integrated

nonstationary process, while its first-difference
process is a stationary IID sequence.

The continuous-time limit of the random walk
is the Brownian motion. However, the paths of
a Brownian motion are not differentiable. As
a consequence, it is not possible to take the
continuous-time limit of first differences and
to define the white noise process as the deriva-
tive of a Brownian motion. In the domain of or-
dinary functions in continuous time, the white
noise process can be defined only through its in-
tegral, which is the Brownian motion. The def-
inition of stochastic differential equations must
therefore be recast in integral form.

A sensible definition of a stochastic dif-
ferential equation must respect a number of
constraints. In particular, the solution of a
stochastic differential equation should be a
“perturbation” of the associated deterministic
equation. In the above example, for instance,
we want the solution of the stochastic equation

dy
dy

= [ f (t) + ε(t, ω)]dt

to be a perturbation of the solution

y = Aexp
(∫

f (t)dt
)

of the associated deterministic equation

dy
y

= f (t)dt

In other words, the solution of a stochastic
differential equation should tend to the solu-
tion of the associated deterministic equation in
the limit of zero noise. In addition, the solu-
tions of a stochastic differential equation should
be the continuous-time limit of some discrete-
time process obtained by discretization of the
stochastic equation.

A formal solution of this problem was pro-
posed by Kiyoshi Itô (1951) and, in a different
setting, by Ruslan Stratonovich in the 1960s. Itô
and Stratonovich proposed to give meaning to
a stochastic differential equation through its in-
tegral equivalent. The Itô definition proceeds
in two steps: In the first step, Itô processes are
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defined; in the second step, stochastic differen-
tial equations are defined.

� Step 1: Definition of Itô processes. Given two
functions ϕ(t, ω) and ψ(t, ω) that satisfy usual
conditions to be defined later, an Itô pro-
cess—also called a stochastic integral—is a
stochastic process of the form:

Z(t, ω) =
t∫

0

ϕ(s, ω)ds +
t∫

0

ψ(s, ω)dBs(s, ω)

An Itô process is a process that is the result of
the sum of two summands: The first is an or-
dinary integral, the second an Itô integral. Itô
processes are stable under smooth maps, that
is, any smooth function of an Itô process is an
Itô process that can be determined through
the Itô formula (see Itô processes below).

� Step 2: Definition of stochastic differential equa-
tions. As we have seen, it is not possible to
write a differential equation plus a white-
noise term that admits solutions in the do-
main of ordinary functions. However, we
can meaningfully write an integral stochas-
tic equation of the form

X(t, ω) =
t∫

0

ϕ(s, X)ds +
t∫

0

ψ(s, X)dBs

It can be demonstrated that this equation ad-
mits solutions in the sense that, given two func-
tions ϕ and ψ , there is a stochastic process X
that satisfies the above equation. We stipulate
that the above integral equation can be written
in differential form as follows:

dX(t, ω) = ϕ(t, X)dt + ψ(t, X)dBt

Note that this is a definition; a stochastic
differential equation acquires meaning only
through its integral form. In particular, we can-
not divide both terms by dt and rewrite the
equation as follows:

dX(t, ω)
dt

= ϕ(t, X) + ψ(t, X)
dBt

dt
The above equation would be meaningless be-

cause the Brownian motion is not differentiable.

This is the difficulty that precludes writing
stochastic differential equations adding white
noise pathwise. The differential notation of a
stochastic differential equation is just a short-
hand for the integral notation.

However, we can consider a discrete approx-
imation:

�X(t, ω) = ϕ∗(t, X)�t + ψ∗(t, X)�Bt

Note that in this approximation the func-
tions ϕ∗(t, X), ψ∗(t, X) will not coincide with
the functions ϕ(t, X), ψ(t, X). Using the latter
would (in general) result in a poor approxima-
tion.

The following sections will define Itô pro-
cesses and stochastic differential equations and
study their properties.

ITÔ PROCESSES
Let’s now formally define Itô processes and es-
tablish key properties, in particular the Itô for-
mula. In the previous section we stated that an
Itô process is a stochastic process of the form

Z(t, ω) =
t∫

0

a (s, ω)ds +
t∫

0

b(s, ω)dB(s, ω)

To make this definition rigorous, we have to
state the conditions under which (1) the inte-
grals exist, and (2) there is no anticipation of
information. Note that the two functions a and
b might represent two stochastic processes and
that the Riemann-Stieltjes integral might not ex-
ist for the paths of a stochastic process. We have
therefore to demonstrate that both the Itô inte-
gral and the ordinary integral exist. To this end,
we define Itô processes as follows.

Suppose that a one-dimensional Brownian
motion Bt is defined on a probability space
(�,�, P) equipped with a filtration Jt. The fil-
tration might be given or might be generated
by the Brownian motion Bt. Suppose that both
a and b are adapted to Jt and jointly measur-
able in J × R. Suppose, in addition, that the
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following two integrability conditions hold:

P

⎡

⎣
t∫

0

b2(s, ω)ds < ∞ for all t ≥ 0

⎤

⎦ = 1

and

P

⎡

⎣
t∫

0

|a (s, ω)
∣∣ds < ∞ for all t ≥ 0

⎤

⎦ = 1

These conditions ensure that both integrals in
the definition of Itô processes exist and that
there is no anticipation of information. We can
therefore define the Itô process as the following
stochastic process:

Z(t, ω) =
t∫

0

a (s, ω)ds +
t∫

0

b(s, ω)dBs(s, ω)

Itô processes can be written in the shorter dif-
ferential form as

d Zt = adt + bdBt

It should be clear that the latter formula is just
a shorthand for the integral definition.

THE ONE-DIMENSIONAL
ITÔ FORMULA
One of the most important results concerning
Itô processes is a formula established by Itô
that allows one to explicitly write down an Itô
process that is a function of another Itô pro-
cess. Itô’s formula is the stochastic equivalent
of the change-of-variables formula of ordinary
integration. We will proceed in two steps. First
we will introduce Itô’s formula for functions
of Brownian motion and then for functions of
general Itô processes. Suppose that the function
g(t, x) is twice continuously differentiable in
[0,∞) × R and that Bt is a one-dimensional
Brownian motion. The function Yt = g(t, Bt) is a
stochastic process. It can be demonstrated that
the process Yt = g(t, Bt) is an Itô process of the
following form

dYt =
(
∂g
∂t

(t,Bt) + 1
2

∂2g
∂x2 (t,Bt)

)
dt + ∂g

∂x
(t,Bt) dBt

The preceding is Itô’s formula in the case the
underlying process is a Brownian motion. For
example, let’s suppose that g(t, x) = x2. In this
case we can write

∂g
∂t

= 0,
∂g
∂x

= 2x,
∂2g
∂x2 = 2

Inserting the above in Itô’s formula we see that
the process B2

t can be represented as the follow-
ing Itô process

dYt = dt + 2BtdBt

or, explicitly in integral form

Yt = t + 2

t∫

0

BsdBs

The nonlinear map g(t, x) = x2 introduces a
second term in dt.

Let’s now generalize Itô’s formula. Suppose
that Xt is an Itô process given by dXt = adt +
bdBt. As Xt is a stochastic process, that is, a func-
tion X(t, ω) of both time and the state, it makes
sense to consider another stochastic process Yt,
which is a function of the former, Yt = g(t, Xt).
Suppose that g is twice continuously differen-
tiable on [0,∞) × R.

It can then be demonstrated (we omit the de-
tailed proof) that Yt is another Itô process that
admits the representation

dYt = ∂g
∂t

(t, Xt) dt + ∂g
∂x

(t, Xt)dXt

+1
2

∂2g
∂x2 (t, Xt) (dXt)

2

where differentials are computed formally ac-
cording to the rules known as Box algebra

dt · dt = dt · dBt = dBt · dt = 0, dBt · dBt = dt

Itô’s formula can be written (perhaps more)
explicitly as

dYt =
(

∂g
∂t

+ ∂g
∂x

a + 1
2

∂2g
∂x2 b2

)
dt + ∂g

∂x
bdBt

This formula reduces to the ordinary formula
for the differential of a compound function in
the case where b = 0 (that is, when there is no
noise).
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As a second example of application of Itô’s
formula, consider the geometric Brownian
motion:

dXt = μXtdt + σ XtdBt

where μ,σ are real constants, and consider the
map g(t, x) = log x. In this case, we can write

∂g
∂t

= 0,
∂g
∂x

= 1
x
,
∂2g
∂x2 = 1

x2

and Itô’s formula yields

dYt = d log Xt =
(

μ − 1
2
σ 2

)
dt + σdBt

STOCHASTIC DIFFERENTIAL
EQUATIONS
An Itô process defines a process Z(t, ω) as the
sum of the time integral of the process a(t, ω)
plus the Itô integral of the process b(t, ω). Sup-
pose that two functions ϕ(t, x), ψ(t, x) that
satisfy conditions established below are given.
Given an Itô process X(t, ω), the two processes
ϕ(t, X), ψ(t, X) admit respectively a time inte-
gral and an Itô integral. It therefore makes sense
to consider the following Itô process:

Z(t, ω) =
t∫

0

ϕ[s, X(s, ω)]ds +
t∫

0

ψ[s, X(s, ω)]dBs

The term on the right side transforms the pro-
cess X into a new process Z. We can now ask if
there are stochastic processes X that are mapped
into themselves such that the following stochas-
tic equation is satisfied:

X(t, ω) =
t∫

0

ϕ[s, X(s, ω)]ds +
t∫

0

ψ[s, X(s, ω)]dBs

The answer is positive under appropriate
conditions. It is possible to prove the follow-
ing theorem of existence and uniqueness. Sup-
pose that a one-dimensional Brownian motion
Bt is defined on a probability space (�, J, P)
equipped with a filtration Jt and that Bt is
adapted to the filtration Jt. Suppose also that the
two measurable functions ϕ(t, x), ψ(t, x) map [0,

T] × R → R and that they satisfy the following
conditions:

∣∣ϕ(t, x)
∣∣2 + ∣∣ψ(t, x)

∣∣2 ≤ C (1 + |x|)2
,

t ∈ [0, T] , x ∈ R

and
∣∣ϕ(t, x)

∣∣ − ϕ(t, y) + ∣∣ψ(t, x)
∣∣ − ψ(t, y)

≤ D (|x − y|) , t ∈ [0, T], x ∈ R

for appropriate constants C, D. The first condi-
tion is known as the linear growth condition,
the last condition is the Lipschitz condition.
Suppose that Z is a random variable inde-
pendent of the σ -algebra �∞ generated by Bt

for t ≥ 0 such that E(|Z|2) < ∞. Then there
is a unique stochastic process X, defined for
0 ≤ t ≤ T, with time-continuous paths such that
X0 = Z and such that the following equation is
satisfied:

X(t, ω) = X0 +
t∫

0

ϕ[s, X(s, ω)]ds

+
t∫

0

ψ[s, X(s, ω)]dBs

The process X is called a strong solution of the
above equation.

The above equation can be written in differ-
ential form as follows:

dX(t, ω) = ϕ[t, X(t, ω)]dt + ψ[t, X(t, ω)]dBt

The differential form does not have an indepen-
dent meaning; a differential stochastic equation
is just a short albeit widely used way to write
the integral equation.

The key requirement of a strong solution is
that the filtration Jt is given and that the func-
tions ϕ,ψ are adapted to the filtration Jt. From
the economic (or physics) point of view, this
requirement translates the notion of causality.
In simple terms, a strong solution is a func-
tional of the driving Brownian motion and of
the “inputs” ϕ,ψ . A strong solution at time t is
determined only by the “history” up to time t of
the inputs and of the random shocks embodied
in the Brownian motion.
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These conditions can be weakened. Suppose
that we are given only the two functions ϕ(t, x),
ψ(t, x) and that we must construct a process Xt,
a Brownian motion Bt, and the relative filtration
so that the above equation is satisfied. The equa-
tion still admits a unique solution with respect
to the filtration generated by the Brownian mo-
tion B. It is, however, only a weak solution in the
sense that, though there is no anticipation of in-
formation, it is not a functional of a given Brow-
nian motion. (See, for example, Karatzas and
Shreve [1991].) Weak and strong solutions do
not necessarily coincide. However, any strong
solution is also a weak solution with respect to
the same filtration.

Note that the solution of a differential equa-
tion is a stochastic process. Initial conditions
must therefore be specified as a random vari-
able and not as a single value as for ordinary
differential equations. In other words, there is
an initial value for each state. It is possible to
specify a single initial value as the initial condi-
tion of a stochastic differential equation. In this
case the initial condition is a random variable
where the probability mass is concentrated in a
single point.

We omit the detailed proof of the theorem
of uniqueness and existence. Uniqueness is
proved using the Itô isometry and the Lips-
chitz condition. One assumes that there are two
different solutions and then demonstrates that
their difference must vanish. The proof of exis-
tence of a solution is similar to the proof of ex-
istence of solutions in the domain of ordinary
equations. The solution is constructed induc-
tively by a recursive relationship of the type

X(k+1)(t, ω) =
t∫

0

ϕ[s, Xk(s, ω)]ds

+
t∫

0

ψ[s, Xk(s, ω)]dBs

It can be shown that this recursive relationship
produces a sequence of processes that converge
to the unique solution.

GENERALIZATION TO
SEVERAL DIMENSIONS
The concepts and formulas established so far for
Itô (and Stratonovich) integrals and processes
can be extended in a straightforward but of-
ten cumbersome way to multiple variables. The
first step is to define a d-dimensional Brownian
motion.

Given a probability space (�, J, P) equipped
with a filtration {Jt}, a d-dimensional standard
Brownian motion Bt(ω), is a stochastic process
with the following properties:

� Bt(ω) is a d-dimensional process defined over
the probability space (�, J, P) that takes val-
ues in Rd.

� Bt(ω) has continuous paths for 0 ≤ t ≤ ∞.
� B0(ω) = 0.
� Bt(ω) is adapted to the filtration Jt.
� The increments Bt(ω) − Bs(ω) are independent

of the σ -algebra Js and have a normal distri-
bution with mean zero and covariance matrix
(t − s)Id, where Id is the identity matrix.

The above conditions state that the standard
Brownian motion is a stochastic process that
starts at zero, has continuous paths, and has
normally distributed increments whose vari-
ances grow linearly with time.

The next step is to extend the definition of the
Itô integral in a multidimensional environment.
This is again a straightforward but cumbersome
extension of the one-dimensional case. Suppose
that the following r × d-dimensional matrix is
given:

v =
⎡

⎣
v11 · v1d

· · ·
vr1 · vrd

⎤

⎦

where each entry vij = vij, (t,ω) satisfies the fol-
lowing conditions:

1. vij are �d × � measurable.
2. Vij are Jt-adapted.

3. P[
t∫

0
(vi j )2ds < ∞ for all t ≥ 0] = 1.
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Then, we define the multidimensional Itô
integral

t∫

0

vdB =
t∫

0

⎡

⎣
v11 · v1d

· · ·
vr1 · vrd

⎤

⎦

⎡

⎣
dB1

·
dBd

⎤

⎦

as the r-dimensional column vector whose
components are the following sums of one-
dimensional Itô integrals:

d∑

i=1

t∫

0

vi j (s, ω)dB j (s, ω)

Note that the entries of the matrix are func-
tions of time and state: They form a vector of
stochastic processes. Given the previous defi-
nition of Itô integrals, we can now extend the
definition of Itô processes to the multidimen-
sional case. Suppose that the functions u and v
satisfy the conditions established for the one-
dimensional case. We can then form a multidi-
mensional Itô process as the following vector of
Itô processes:

dX1 = u1dt + v11dB1 + · · · + v1ddBd

· · ·
dX1r = ur dt + vr1dB1 + · · · + vrddBd

or, in matrix notation

dX = udt + vdB

After defining the multidimensional Itô pro-
cess, multidimensional stochastic equations are
defined in differential form in matrix notation
as follows:

dX(t, ω) = u[t, X1(t, ω), . . . , Xd (t, ω)]dt

+ v[t, X1(t, ω), . . . , Xd (t, ω)dB

Consider now the multidimensional map:
g(t, x) ≡ [g1(t, x), . . . , gd(t, x)], which maps the
process X into another process Y = g(t, X). It can
be demonstrated that Y is a multidimensional
Itô process whose components are defined

according to the following rules:

dYk = ∂gk(t, X)
∂t

dt +
∑

i

∂gk(t, X)
∂ Xi

dXi

+1
2

∑

i. j

∂2gk(t, X)
∂ Xi∂ Xj

dXi dX j

dBi dBj =1 if i = j, 0 if i 
= j, dBi dt = dtdBi =0

SOLUTION OF STOCHASTIC
DIFFERENTIAL EQUATIONS
It is possible to determine an explicit solution
of stochastic differential equations in the linear
case and in a number of other cases that can
be reduced to linear equations through func-
tional transformations. Let’s first consider lin-
ear stochastic equations of the form:

dXt = [A(t)Xt + a (t)]dt + σ (t)dBt, 0 ≤ t < ∞
X0 = ξ

where B is an r-dimensional Brownian motion
independent of the d-dimensional initial ran-
dom vector ξ and the (d × d), (d × d), (d × r)
matrices A(t), a(t), σ (t) are nonrandom and
time dependent.

The simplest example of a linear stochastic
equation is the equation of an arithmetic Brow-
nian motion with drift, written as follows:

dXt = μdt + σdBt, 0 ≤ t < ∞
X0 = ξ, μ, σ constants

In linear equations of this type, the stochastic
part enters only in an additive way through
the terms σ ij(t)dBt. The functions σ (t) are some-
times called the instantaneous variances and
covariances of the process. In the example of
the arithmetic Brownian motion, μ is called the
drift of the process and σ the volatility of the
process.

It is intuitive that the solution of this equa-
tion is given by the solution of the associated
deterministic equation, that is, the ordinary dif-
ferential equation obtained by removing the
stochastic part, plus the cumulated random
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disturbances. Let’s first consider the associated
deterministic differential equation

dx
dt

= A(t)x + a (t), 0 ≤ t < ∞

where x(t) is a d-dimensional vector with initial
conditions x(0) = ξ .

It can be demonstrated that this equation has
an absolutely continuous solution in the do-
main 0 ≤ t < ∞. To find its solution, let’s first
consider the matrix differential equation

d�

dt
= A(t)�, 0 ≤ t < ∞

This matrix differential equation has an abso-
lutely continuous solution in the domain 0 ≤
t < ∞. The matrix �(t) that solves this equa-
tion is called the fundamental solution of the
equation. It can be demonstrated that �(t) is a
nonsingular matrix for each t. Lastly, it can be
demonstrated that the solution of the equation:

dx
dt

= A(t)x + a (t), 0 ≤ t < ∞

with initial condition x(0) = ξ , can be written in
terms of the fundamental solution as follows:

x(t) = �(t)

⎡

⎣x(0) +
t∫

0

�−1(s)a (s)ds

⎤

⎦ , 0 ≤ t < ∞

Let’s now go back to the stochastic equation

dXt = [A(t)Xt + a (t)]dt + σ (t)dBt, 0 ≤ t < ∞
X0 = ξ

Using Itô’s formula, it can be demonstrated that
the above linear stochastic equation admits the
following unique solution:

X(t) = �(t)

⎡

⎣ξ +
t∫

0

�−1(s)a (s)ds

+
t∫

0

�−1(s)σ (s)dBs

⎤

⎦ , 0 ≤ t < ∞

This effectively demonstrates that the solution
of the linear stochastic equation is the solution
of the associated deterministic equation plus

the cumulated stochastic term
t∫

0

�−1(s)σ (s)dBs

To illustrate this, below we now specialize the
above solutions in the case of arithmetic Brown-
ian motion, Ornstein-Uhlenbeck processes, and
geometric Brownian motion.

The Arithmetic Brownian Motion
The arithmetic Brownian motion in one dimension
is defined by the following equation:

dXt = μdt + σdBt

In this case, A(t) = 0, a(t) = μ, σ (t) = σ and the
solution becomes

X = μt + σ B

The Ornstein-Uhlenbeck Process
The Ornstein-Uhlenbeck process in one dimension
is a mean-reverting process defined by the fol-
lowing equation:

dXt = −αXtdt + σdBt

It is a mean-reverting process because the drift
is pulled back to zero by a term proportional to
the process itself. In this case, A(t) = −α, a(t) =
0, σ (t) = σ and the solution becomes

Xt = X0 + e−αt + σ

t∫

0

e−α(t−s)dBs

The Geometric Brownian Motion
The geometric Brownian motion in one dimension
is defined by the following equation:

dX = μXdt + σXdB

This equation can be easily reduced to the pre-
vious linear case by the transformation:

Y = log X
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Let’s apply Itô’s formula

dYt =
(

∂g
∂t

+ ∂g
∂x

a + 1
2

∂2g
∂x2 b2

)
dt + ∂g

∂x
bdBt

where

g(t, x) = log x,
∂g
∂t

= 0,
∂g
∂t

= 1
x
,
∂2g
∂x2 = − 1

x2

We can then verify that the logarithm of the geo-
metric Brownian motion becomes an arithmetic
Brownian motion with drift

μ′ = μ − 1
2
σ 2

The geometric Brownian motion evolves as a
lognormal process:

Xt = x0 exp
{(

μ − 1
2
σ 2

)
t + σ Bt

}

KEY POINTS
� Stochastic differential equations give mean-

ing to ordinary differential equations where
some terms are subject to random perturba-
tion.

� Following Itô and Stratonovich, stochastic
differential equations are defined through
their integral equivalent: The differential no-
tation is just a shorthand.

� Itô processes are the sum of a time integral
plus an Itô integral.

� Itô processes are closed with respect to
smooth maps: A smooth function of an Itô
process is another Itô process defined through
the Itô formula.

� Stochastic differential equations are equa-
tions established in terms of Itô processes.

� Linear equations can be solved explicitly as
the sum of the solution of the associated de-
terministic equation plus a stochastic cumu-
lative term.

NOTE
1. It is possible to define a “generalized white

noise process” in the domain of “tempered
distributions.” See Oksendal (1992).
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management. Continuous-time processes allow for more elegant theoretical modeling compared
to discrete-time models and many results proven in probability theory can be applied to obtain a
simple evaluation method.

In 1900, the father of modern option pricing the-
ory, Louis Bachelier, proposed using Brownian
motion for modeling stock market prices. There
are several reasons why Brownian motion is a
popular process. First, Brownian motion is the
milestone of the theory of stochastic processes.

Dr. Bianchi acknowledges that the views expressed in this entry are his own and do not necessarily
reflect those of the Bank of Italy.

However, more realistic general processes that
are better suited for financial modeling such as
Lévy, additive, or self-similar processes have
been developed only since the mid 1990s (see
Samorodnitsky and Taqqu (1994), Sato (1999),
and Embrechts and Maejima (2002)). Most of
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the practical problems in mathematical finance
can be solved by taking into consideration these
new processes. For example, the concept of
stochastic integral with respect to Brownian
motion was introduced in 1933 and only in
the 1990s has the general theory of stochas-
tic integration with respect to semi-martingale
appeared. From a practical point of view, the
second reason for the popularity of Brownian
motion is that the normal distribution allows
one to solve real-world pricing problems such
as option prices as estimations and simulations
in a few seconds, and most of the problems
have a closed-form solution which can be eas-
ily used. See Øksendal (2003) or Karatzas and
Shreve (1991) for a complete theoretical treat-
ment of financial applications of continuous-
time stochastic processes driven by Brownian
motion.

The two basic classes of continuous-time
stochastic processes are Brownian motion and
the Poisson process. The name of the former is
due to the botanist Robert Brown who in 1827
described the movement of pollen suspended
in water. The theory of Brownian motion was
founded by the work of Norbert Wiener who
was the first to prove its existence and, as a
result, Brownian motion is sometimes also
referred to as a Wiener process. The Poisson
process generated by the Poisson distribution is
the building block of pure jump processes. Both
processes are fundamentally different with
respect to their path properties and they belong
to the larger class of Lévy processes (for more
details about Lévy processes see Sato [1999]).
Schoutens (2003), Cont and Tankov (2004), and
Rachev et al. (2011) provide details of Lévy
processes with applications to option pricing.

Infinitely divisible distributions, including α-
stable and tempered stable distributions, can be
considered to define continuous-time stochas-
tic processes. In order to model the behavior
of a financial asset’s returns and prices, one
can consider (1) a Brownian motion, (2) a pro-
cess defined as the sum of a Brownian motion
and a Poisson process, or (3) a pure jump Lévy
process.

In this entry, we will discuss continuous-time
stochastic processes. We will first consider pro-
cesses consisting of jumps and then we will dis-
cuss continuous processes without jumps. We
then turn our focus to processes having ran-
dom time instead of physical time. Finally, we
will discuss a general process that contains all
of these processes.

SOME PRELIMINARIES
Before we continue with the discussion and the
construction of processes, we will briefly define
terms that will be used in this entry.

� A stochastic process X = (Xt)t ≥ 0 is a family of
R-valued random variables Xt with parame-
ter t ≥ 0, defined on the sample space �. For
every outcome ω ∈ �, the function t �→ Xt(ω)
is called a sample path of the process X.

� Let X be a stochastic process. Given 0 < t1

< t2 < . . . < tn, if the random variables
Xt1 − X0, Xt2 − Xt1 , · · · , Xtn − Xtn−1 are inde-
pendent, we say that X has independent
increments. Moreover, for t ≥ 0, if the dis-
tribution of of Xt+h − Xt does not depend on
t ≥ 0, we say that X has stationary increments.
Loosely speaking, one could say that the dis-
tribution of the future changes does not de-
pend on past realizations.

� A process X is said to be non-decreasing, if
Yt ≥ 0 almost surely (a.s.) for t ≥ 0, and Yt ≥
Ys a.s. for 0 ≤ s ≤ t. Usually, a non-decreasing
process is called a subordinator. A process X is
said to be non-increasing if Yt ≤ 0 a.s. for t ≥
0, and Yt ≤ Ys a.s. for 0 ≤ s ≤ t.

� We say that a process X has finite (infinite)
variation if its sample paths are of finite
(infinite) variation, that is, the variation

V(X(ω))t = lim
n→∞

n∑
k=1

|Xtk/n(ω) − Xt(k−1)/n(ω)|,
∀t > 0

is finite (infinite) for almost every ω ∈ �.
� The characteristic function of the stochastic

process X = (Xt)t≥0 on R is defined as the
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function φ : R → C

φXt (u) = E[eiuXt ]

POISSON PROCESS
Consider a process N = (Nt)t≥0 derived by
a Poisson distribution with parameter λ as
follows:

1. N0 = 0
2. N has independent increments and station-

ary increments.
3. For any real numbers t ≥ 0 and h ≥ 0, the

variable (Nt+h − Nt) is a Poisson distributed
random variable with parameter λh, that is,

P(Nt+h − Nt = n) = e−λh (λh)n

n!
, n = 0, 1, 2, · · ·

The process N is referred to as the Poisson process
with intensity λ.

If (τ j)j∈N are independent exponential random
variables with parameter λ and the random
variable Nt is given by

Nt = inf

⎧
⎨

⎩n ≥ 1 :
n∑

j=1

τ j > t

⎫
⎬

⎭

then it can be proven that the process (Nt)t ≥ 0 is
the Poisson process with intensity λ.

The Poisson process is a fundamental exam-
ple of a stochastic process with discontinuous
trajectories, and a building block for construct-
ing more complex jump processes.

Compounded Poisson Process
The process X = (Xt)t≥0 is referred to as a com-
pounded Poisson process if X is defined by

Xt =
Nt∑

k=1

Yk

where

� Y1, Y2, · · · are independent and identically
distributed (IID) random variables, and f is
the probability density function of Y1.

� (Nt)t ≥ 0 is a Poisson process with intensity λ.
� Nt and Yk are independent for all t ≥ 0 and

k = 1, 2, · · ·.

The characteristic function of Xt is equal to

φXt (u) = exp
(

λt
∫ ∞

−∞
(eiux − 1) f (x)dx

)

Moreover, if f is given by the probability density
function of the normal distribution, then X is
referred to as a jump diffusion process.

PURE JUMP PROCESS
Consider a process Xx = (Xx

t )t≥0 for a given real
number x such that

Xx
t = xNλ(x)

t

where (Nλ(x)
t )t≥0 is the Poisson process with in-

tensity λ(x). The number x represents the jump
size and the intensity λ(x) is the expected num-
ber of jumps with size x in the unit time.

Let S = {xj ∈ R : xj 	= 0, j = 1, 2, · · ·} be a dis-
crete subset of jump sizes, λ(xj) > 0 for all xj

∈ S, and Y = (Yt)t ≥0 be a process defined by

Yt = γ t +
∞∑

j=1

Xxj
t

If S consists of positive real numbers and γ >

0, then the process Y is non-decreasing. Con-
versely, if S consists of negative real numbers
and γ < 0, Y is non-increasing.

Since the characteristic function of Xx
t is equal

to

φXx
t
(u) = exp(λ(x)t(e−iux − 1))

the characteristic function of Yt is obtained by

φYt = exp

⎛

⎝iγ ut + t
∞∑

j=1

λ(xj )(eiux j − 1)

⎞

⎠

For the process Y, the function ν defined
by ν(A) =∑xj ∈A λ(xj ) represents the expected
number of jumps with size x ∈ A in the unit
time interval, where A is a subset of S. For ex-
ample, the expected number of jumps whose
sizes are in {x1, x2, · · ·, xn} is equal to ν({x1,
x2, · · ·, xn} =∑n

j=1 λ(xj ).
Now, we extend the set of jump size S to the

real number set R. Then the expected number
of jumps is defined by a map ν from a subset
of R to a positive number. The map ν is a jump
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measure, that is, the expected number of jumps
whose sizes are in a real interval [a, b] is rep-
resented by ν([a,b]). Using ν, we can obtain an
extended process Y such that the characteristic
function of Yt is given by

φYt = exp
(

iγ ut + t
∫ ∞

−∞
(eiux − 1)ν(dx)

)
(1)

where γ ∈ R. Jump sizes of process Y can be
defined continuously. In this case, the measure
ν is referred to as a Lévy measure, that is, a Borel
measure on R satisfying ν(0) = 0 and

∫ ∞

−∞
min{1, x2}ν(dx) < ∞

The class of jump processes satisfying (1) can-
not contain infinite variation processes. To in-
clude infinite variation processes in the class
of jump processes we will be using, we need
a more general definition. Consider a process
Z = (Zt)t≥0 such that the characteristic function
of Zt is given by

φZt = exp
(

iγ ut + t
∫ ∞

−∞
(eiux−1 − iux1|x|≤1)ν(dx)

)

(2)
The process Z is referred to as the pure jump
process. If

∫ 1

−1
|x|ν(dx) = ∞

then the characteristic function (1) is not de-
fined, but the function (2) is well defined. The
details can be found in Sato (1999) and Cont
and Tankov (2004). The path behavior of the
pure jump process is determined by the Lévy
measure ν and real number γ .

� γ > 0 and ν(A) = 0 for all A ⊂ (−∞, 0), then Z
is non-decreasing.

� γ < 0 and ν(A) = 0 for all A ⊂ (0, ∞), then Z
is non-increasing.

� If ν(R) < ∞ (i.e., the expected number of
jumps on the unit time is finite), then we say
that Z has a finite activity.

� If ν(R) = ∞ (i.e., the expected number of
jumps on the unit time is infinite), then we
say that Z has an infinite activity.

� If
∫ 1
−1 |x|ν(dx) < ∞, the process Z has finite

variation.
� If

∫ 1
−1 |x|ν(dx) = ∞, the process Z has infinite

variation.

The building block of the pure jump process
Z is the Poisson process. Hence, Z has the fol-
lowing properties:

� Z0 = 0.
� Z has independent and stationary increments;

that is, the random variable (Zt − Zs) is inde-
pendent of the random variable (Zv − Zu) for
all real number s, t, u, and v with 0 ≤ s < t <

u < v.
� Zs+t − Zs

d= Zt for s ≥ 0 and t > 0. More-
over, we have

log φzt (u) = t log φz1 (u) (3)

where φzt (u) is the characteristic function of
Zt for t > 0.

If t = 1, then we obtain the purely non-Gaussian
infinitely divisible random variable. In fact,
there is a one-to-one correspondence between
a purely non-Gaussian infinitely divisible ran-
dom variable and a pure jump process.

Gamma Process
Consider the gamma distribution with param-
eter (c, λ). Since the gamma distribution is a
purely non-Gaussian infinitely divisible distri-
bution, we can define a pure jump process G =
(Gt)t≥0 such that G1 ∼ Gamma(c, λ). By equation
(3), the characteristic function φGt of Gt is given
by

φGt =
(

λ

λ − iu

)ct

(4)

In this case, the process G is referred to as the
gamma process with parameter (λ, c). The sample
path of the gamma process is non-decreasing,
since the gamma distribution is supported only
on the positive real line. When we take c = 1 of
the gamma process, the process is referred to as
an exponential process.
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Inverse Gaussian Process
Consider the inverse Gaussian distribution
with parameter (c, λ). Since the inverse
Gaussian distribution is also a purely non-
Gaussian infinitely divisible distribution, we
can define a pure jump process X = (Xt)t≥0 such
that X1 ∼ IG(c,λ). By equation (3), the character-
istic function φXt of Xt is given by

φXt = exp
(
−ct(

√
λ2 − 2iu − λ)

)
(5)

In this case, the process X is referred to as the
inverse Gaussian (IG) process with parameter
(c, λ). The sample path of the gamma process
is nondecreasing, since the inverse Gaussian
distribution is supported only on the positive
real line.

Variance Gamma Process
The variance gamma process is an infinitely di-
visible distribution. Thus we can define pure
jump processes X = (Xt)t≥0 such that X1 ∼ VG(C,
λ+, λ−). By equation (3), the characteristic func-
tion φXt of Xt is given by

φXt =
(

λ+λ−
(λ+ − iu)(λ− + iu)

)Ct

(6)

In this case, the process X is referred to as
the variance gamma (VG) process with parameter
(C, λ+, λ−).

α-Stable Process
The pure jump process X = (Xt)t≥0 is re-
ferred to as the α-stable process with parameters
(α, σ , β, μ) if X1 is an α-stable random variable,
that is, X1 ∼ Sα(σ , β, μ). By equation (3), the
characteristic function φXt of Xt is given by

φXt (u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
exp(iμut − t|σu|α

×
(

1 − iβ(sign u) tan
πα

2

))
, α 	= 1

(
exp(iμut − tσ |u|
×
(

1 + iβ
2
π

(sign u)ln|u|
))

, α = 1

Recall the Lévy measure of the α-stable process
can be written as

ν(dx) =
(

C+
x1+α

1x>0 + C−
|x|1+α

1x<0

)
dx

where C+ and C− are positive constants. Then
we can prove that

ν(R) =
∫ ∞

−∞
ν(dx) = ∞

and hence the α-stable process is an infinite ac-
tivity process. On the other hand, since we have

∫ 1

−1
|x|ν(dx) =

{ C++C−
1−α

, α < 1
∞, α ≥ 1

we conclude that the α-stable process has finite
variation if α < 1 and the infinite variation if
α ≥ 1.

Tempered Stable Process
The pure jump process X = (Xt)t≥0 is referred to
as the tempered stable process if X1 is the tempered
stable random variable.

� The process X is referred to as the classical
tempered stable (CTS) process with param-
eters (α, C, λ+, λ−, m) if X1 ∼ CTS (α, C, λ+,
λ−, m). The process X is referred to as the stan-
dard CTS process with parameters (α, λ+, λ−) if
X1 ∼ stdCTS(α, λ+, λ−).

� The process X is referred to as the generalized
tempered stable (GTS) process with parameters
(α+, α−, C+, C−, λ+, λ−, m) if X1 ∼ GTS(α+, α−,
C+, C−, λ+, λ−, m). The process X is referred to
as the standard GTS process with parameters
(α+, α−, λ+, λ−, p) if X1 ∼ stdGTS(α+, α−, λ+,
λ−, p).

� The process X is referred to as the mod-
ified tempered stable (MTS) process with
parameters (α, C, λ+, λ−, m) if X1 ∼ MTS (α,
C, λ+, λ−, m). The process X is referred to as
the standard MTS process with parameters (α,
λ+, λ−) if X1 ∼ stdMTS(α, λ+, λ−).

� The process X is referred to as the normal
tempered stable (NTS) process with parameters
(α, C, λ, β, m) if X1 ∼ NTS (α, C, λ, β, m).
The process X is referred to as the standard
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NTS process with parameters (α, λ, β) if X1 ∼
stdNTS(α, λ, β).

� Moreover, the process X is referred to as the
normal inverse Gaussian (NIG) process with pa-
rameters (c, λ, β, m) if X1 ∼ NIG(c, λ, β, m).
The process X is referred to as the standard
NIG process with parameters (λ, β) if X1 ∼
stdNIG(λ, β).

� The process X is referred to as the Kim-Rachev
tempered stable (KRTS) process with parameters
(α, k+, k−, r+, r−, p+, p−, m) if X1 ∼ KRTS (α, k+,
k−, r+, r−, p+, p−, m). The process X is referred
to as the standard KRTS process with parame-
ters (α, r+, r−, p+, p−) if X1 ∼ stdKRTS(α, r+,
r−, p+, p−).

� The process X is referred to as the rapidly de-
creasing tempered stable (RDTS) process with pa-
rameters (α, C, λ+, λ−, m) if X1 ∼ RDTS(α, C,

λ+, λ_, m). The process X is referred to as the
standard RDTS process with parameters (α, λ+,
λ−) if X1 ∼ stdRDTS(α, λ+, λ−).

The characteristic function φXt of Xt is obtained
by equation (3). For example, if X is the CTS
process with parameters (α, C, λ+, λ−, m), then

φXt (u) = exp(t log(φCT S(u; α, C, λ+, λ−, m)))
= exp(iumt − iutC(1 − α)(λα−1

+ − λα−1
− )

+tC(−α)((λ+ − iu)α − λα
+

+(λ− + iu)α − λα
−))

Characteristic exponents of tempered stable
processes are presented in Table 1.

Let ν(dx) be the Lévy measure of the tem-
pered stable process. Then we can prove that
ν(R) = ∞,

∫ 1
−1 |x|ν(dx) < ∞ if α < 1, and

∫ 1
−1 |x|ν(dx) = ∞ if α ≥ 1. Consequently, the

Table 1 Characteristic Exponents of Tempered Stable Processes

Process ψXt (u) = log φXt (u)

CTS iumt − iutC(1 − α)(λα−1
+ − λα−1

− )
+tC(−α)((λ+ − iu)α − λα

+ + (λ− + iu)α − λα
−)

GTS iumt − iut(1 − α)(C+λ
α+−1
+ − C−λ

α−−1
− )

+tC+(−α+)((λ+ − iu)α+ − λ
α+
+ ) + tC−(−α−)((λ− + iu)α− − λ

α−
− ))

MTS iumt + tC(G R(u; α, λ+) + G R(u; α, λ−)) + iutC(G I (u; α, λ+) − G I (u; α, λ−))
where G R(x; α, λ) = 2− α+3

2
√

π
(
−α

2

) (
(λ2 + x2)

α
2 − λα

)

and G I (x; α, λ) = 2− α+1
2 

(
1 − α

2

)
λα−1

[
2 F1

(
1,

1 − α

2
;

3
2

; − x2

λ2

)
− 1
]

NTS iumt − iut2− α−1
2 C

√
π
(

1 − α

2

)
β(λ2 − β2)

α
2 −1

+t2− α+1
2 C

√
π
(
−α

2

)
((λ2 − (β + iu)2)

α
2 − (λ2 − β2)

α
2 )

NIG iumt − iutcβ√
λ2 − β2

− tc
(√

λ2 − (β + iu)2 −
√

λ2 − β2

)

KRTS iumt − iut(1 − α)
(

k+r+
p+ + 1

− k−r−
p− + 1

)

+tk+ H(iu; α, r+, p+) + tk− H(−iu; α, r−, p−)

where H(x; α, r, p) = (−α)
p

(2 F1(p,−α; 1 + p; r x) − 1)

RDTS iumt + tC(G(iu; α, λ+) + G(−iu; α, λ−))

where G(x; α, λ) = 2− α
2 −1λα

(
−α

2

)(
M
(

−α

2
,

1
2

;
x2

2λ2

)
− 1
)

+2− α
2 − 1

2 λα−1x

(
1 − α

2

)(
M
(

1 − α

2
,

3
2

;
x2

2λ2

)
− 1
)
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tempered stable process has infinite activity,
and has finite variation if α < 1 and infinite vari-
ation if α ≥ 1, as explained in Carr et al. (2002),
Kim (2005), and Kim et al. (2008 and 2010).

BROWNIAN MOTION
In this section, we will discuss Brownian motion
by means of an example. We begin with a short
summary of the most important and defining
properties of a standard Brownian motion W =
(Wt)t≥0

1. W0 = 0
2. W has independent increments and station-

ary increments.
3. For any real numbers t ≥ 0 and h ≥ 0, the vari-

able (Wt+h − Wt) is a normally distributed
random variable with mean zero and
variance h.

4. The paths of W = (Wt)t≥0 are continuous.

Every process fulfilling the above four prop-
erties is referred to as the standard Brownian
motion. From the second and third conditions
it can be deduced that Brownian motion Wt at
time t (which equals the increment from time
0 to time t) is normally distributed with mean
zero and variance t.

The paths of Brownian motion are highly ir-
regular and nowhere differentiable. In order to
draw a true path, one would have to calculate
the value of the process for every real number,
which is clearly not feasible. Due to its charac-
teristic path property, it is impossible to draw a
real path of Brownian motion. The process can
only be evaluated for a discrete set of points.
Figure 1 illustrates possible paths of Brownian
motion. Strictly speaking, the plotted paths are
only discrete approximations to the true paths.

From the above definition of the process,
it may not be clear how one can envision a
Brownian motion or how one could construct
it. Therefore, we will present a constructive
method demonstrating how one can generate
a Brownian motion as the limit of very sim-
ple processes. We restrict the presentation to

the unit interval (i.e., we assume 0 ≤ t ≤ 1) but
the generalization to the abstract case should
be obvious. The procedure is iterative, which
means that on the kth step of the iteration we
define a process (X(k)

t )0≤t≤1, which will serve
as an approximation for a standard Brownian
motion.

Let random variables I1, I2, I3, · · · be IID with

I j =
{

1 with probability p = 0.5
−1 with probability 1 − p = 0.5

,

j = 1, 2, · · ·
Define X(k)

t = 1√
k

∑n
j=1 I j where t = n/k and

n = 0,1, · · ·, k. If the value t is on the interval( n
k , n+1

k

)
, then we take a value obtained by a

linear interpolation as

X(k)
t = (kt − n)X(k)

n/k + (kt − n − 1)X(k)
(n+1)/k

By doing so, we get a stochastic process with
continuous paths.

Let’s start with k = 1. Then we have

X(1)
0 = 0,

X(1)
1 =

{
1 with probability p = 0.5
−1 with probability 1 − p = 0.5

At any time t the random variable X(1)
1 can take

only two possible values, namely −t and t. At
any time, the process has zero mean and the
variance at time t = 1 equals

V
(

X(1)
1

)
= 12 · 0.5 + (−1)2 · 0.5 = 1

That is not so bad for the first step, but obviously
the distribution of X(1)

1 is far from being normal.
What we do in the next step, k = 2, is allow

for two different values until time t = 1
2 and

three different values for 1
2 ≤ t ≤ 1. We do so

by defining:

X(2)
0 = 0,

X(2)
0.5 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1√
2

with probability p = 0.5

− 1√
2

with probability 1 − p = 0.5

X(2)
1 =

⎧
⎨

⎩

√
2 with probability p2 = 0.25

0 with probability p(1 − p) = 0.5
−√

2 with probability (1 − p)2 = 0.25
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Figure 1 Possible Paths of a Standard Brownian Motion (Every Path Consists of 10,000 Equally Spaced
Observations)

The process X(2)
t now has four possible paths.

The mean of X(2)
t is zero and the variance of X(2)

t

equals

V
(

X(2)
0.5

)
=
(

1√
2

)2

· 0.5 +
(

− 1√
2

)2

· 0.5 = 0.5

V
(

X(2)
1

)
=

√
22 · 0.25 + (−√

2)2 · 0.25 = 1

but still the distribution of X(2)
t is far from being

normal.
By iterating the stated procedure, the proba-

bility of X(k)
t is given by

P
(

X(k)
t = n − 2m√

k

)
=
(

n
m

)(
1
2

)n

if m ∈ {0,1, 2, · · ·, n}, t = n/k, n ∈ {0,1,2, · · ·, k}.
The mean and variance can be obtained as
follows:

E
[

X(k)
t

]
= 1√

k

n∑

j=1

E[I j ] = 0

V
(

X(k)
t

)
= 1

k

n∑

j=1

E[I 2
j ] = n

k

where t = n/k, n = 1,2, · · ·, k. Since X(k)
n/k is defined

by the sum of IID random variables, it has

� Independent increments: X(k)
n1/k and X(k)

n2/k− X(k)
n1/k

are independent, for all n1, n2 ∈ {0, 1, · · ·, k}
with n1 < n2.

� Stationary increments: X(k)
n2/k−X(k)

n1/k
d= X(k)

(n2 − n1)/k
for all n1, n2 ∈ {0,1, · · ·, k} with n1 < n2.

Moreover, the distribution of X(k)
t will ap-

proach the normal distribution due to the
central limit theorem. Consequently, we have
found all the defining properties of a Brown-
ian motion in this simple approximating pro-
cess, that is, the process (X(k)

t )0≤t≤1 converges in
distribution to the standard Brownian motion
(Wt)0≤t≤1.

In the context of financial applications, there
are two main variants of the standard Brow-
nian motion which have to be mentioned: the
arithmetic and the geometric Brownian motion.
Both are obtained as a function of the standard
Brownian motion.
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Arithmetic Brownian Motion
Given a Brownian motion (Wt)t≥0 and two real
constants μ and σ , the arithmetic Brownian mo-
tion (Xt)t≥0 is obtained as:

Xt = μt + σ Wt

The process (Xt)t≥0 consists of the sum of a
purely deterministic linear trend function μt
and a rescaled Brownian motion σWt. The lat-
ter has the property that at time t, σWt is nor-
mally distributed with mean 0 and variance σ 2t.
The paths will therefore randomly jitter around
the deterministic trend with a variance propor-
tional to the point in time t under consideration.
The arithmetic Brownian motion is a simple but
popular model for financial asset returns.

Geometric Brownian Motion
Given a Brownian motion (Wt)t≥0, two real con-
stants μ and σ , and a starting value S0 > 0, the
geometric Brownian motion (St)t≥0 is obtained
as:

St = S0eμt+σ Wt

The process (St)t≥0 is just the exponential of
an arithmetic Brownian motion multiplied by
a factor. Therefore log (St/S0) is normally dis-
tributed and

E[St/S0] = eμt+ 1
2 σ 2t

TIME-CHANGED BROWNIAN
MOTION
If a pure jump process process T = (Tt)t≥0 is non-
decreasing, that is, Tt ≥ 0 a.s. for t > 0, and Tt

≥ Ts a.s. for s ≤ t, then the process T is referred
to as the subordinator or intrinsic time process.
Intuitively, it can be thought of as the cumula-
tive trading volume process for a financial asset
which measures the cumulative volume of all
the transitions up to physical time t (Rachev
and Mittnik, 2000).

The Poisson, gamma, and inverse Gaussian
processes are non-decreasing, and hence they
are subordinators. Moreover, for the case where

0 < α < 1, the support of the α-stable distribu-
tion Sα(α, 1, 0) is the positive real line. Hence,
the α-stable process with parameters ( α

2 , σ , 1, 0)
and 0 < α < 2 is a subordinator and referred
to as α-stable subordinator. If we can consider
an additional assumption that E[Tt] = t, this
would mean that the expected intrinsic time is
the same as physical time.

If we take an arithmetic Brownian motion
and change the physical time to a subordinator,
then we obtain the time-changed Brownian mo-
tion. That is, take an arithmetic Brownian mo-
tion with drift μ and volatility σ as follows:

μt + σ Wt

and consider a subordinator T = (Tt)t≥0 in-
dependent to the standard Brownian motion
(Wt)t≥0. Then substituting t = Tt in the arith-
metic Brownian motion, we have a new process
X = (Xt)t≥0 with

Xt = μTt + σ WTt

which is the time-changed Brownian motion.
If Tt is fixed, then the conditional probability

of Xt with a fixed variable Tt follows a normal
distribution, that is

P(Xt < y|Tt) = P(μTt + σ WTt < y|Tt)

= 1√
2πσ 2Tt

∫ y

−∞
e

(x−μTt )2

2σ2Tt dx

Using properties of the conditional probability
and independence between Wt and Tt, the dis-
tribution function FXt and the probability den-
sity function fXt of Xt of Xt are obtained by

FXt (y) = P(Xt < y)

=
∫ y

−∞

∫ ∞

0

1√
2πσ 2s

e− (x−μs)2

2σ2s fTt (s)ds dx

and

fXt (y) = d
dy

FXt (y) =
∫ ∞

0

1√
2πσ 2s

e− (y−μs)2

2σ2s fTt (s)ds

respectively, where fTt is the probability den-
sity function of Tt. Moreover, we can derive the
characteristic function φXt as follows:

φXt (u) = φTt

(
μu + iu2σ 2

2

)
(7)
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where φTt is the characteristic function of Tt.
Using the time-changed Brownian motion, we
can define various processes.

The time-changed Brownian motion con-
struction is well known from the theory of
stochastic processes and is referred to as the
Skorokhod embedding problem. Theoretically,
every Lévy process can be defined as the time-
changed Brownian motion. More in general, a
process can be embedded in a Brownian mo-
tion if and only if it is a local semimartingale, as
proved by Monroe (1978).

Although the representation via Brownian
subordination is a nice property, we do not
know a general constructive method to find
the process Tt such that Xt = μTt + σ WTt . This
means that given a semimartingale Xt, the time
process Tt is not always of known form. Thus,
this approach can be applied only for some par-
ticular Lévy processes.

Variance Gamma Process
By considering the gamma process as the subor-
dinator of the Brownian motion, we obtain the
VG process. That is, the VG process is defined
by X = (Xt)t≥0 with

Xt = μGt + σ WGt

where G = (Gt)t≥0 is the gamma process with
parameter (c, λ). In order to reduce the num-
ber of parameters, we consider the assumption
E[Gt] = t. Since we have E[Gt] = ct

λ
, the as-

sumption is satisfied if c = λ. Then the char-
acteristic function of Xt is equal to

φXt (u) =
(

c

c − iμu + u2σ 2

2

)ct

=
(

2c
σ 2

2c
σ 2 − 2μ

σ 2 ui + u2

)ct

(8)
by (7) and the characteristic function of Gt

given in (4) with c = λ. Inserting into (8) the
parametrization

λ− − λ+ = 2μ

σ 2

λ+λ− = 2c
σ 2

C = c

we obtain the form given by (6).

Normal Inverse Gaussian Process
By considering the inverse Gaussian process as
the subordinator of the Brownian motion, we
obtain the NIG process.

Define a process X = (Xt)t≥0 with

Xt = μTt + σ WTt

where T = (Tt)t≥0 is the inverse Gaussian pro-
cess with parameter (c, λ), satisfying E[Tt] = t.
The condition E[Tt] = t holds if c = λ. Then the
characteristic function of Xt is equal to

φXt (u) = exp
(
−kt(

√
k2 − 2iμu + 2σ 2u2 − k)

)

= exp

⎛

⎝−
√

2kσ t

⎛

⎝

√
k2

2σ 2 − μ

σ 2 iu + u2

−
√

k2

2σ 2

⎞

⎠

⎞

⎠ (9)

by (7) and the characteristic function of Tt given
in (5) with k := c = λ. Inserting into (9) the
parametrization

λ2 − β2 = k2

2σ 2

β = μ

2σ 2

c = √
2kσ

we obtain the NIG process with parameter
(c, λ, β,

cβ√
λ2−β2

).

Normal Tempered Stable Process
Assume Lévy measure ν is equal to

ν(dx) = ce−θx

xα/2+1 1x>0dx (10)

where α ∈ (0,2), c > 0, and θ > 0, and consider
the pure jump process T = (Tt)t≥0 defined by ν

and γ , where

γ =
∫ 1

0
xν(dx)

Since ν(A) = 0 for all A ⊂ (−∞, 0) and μ ≥ 0,
the process T is a nondecreasing process. Hence
it is a subordinator and referred to as the
tempered stable subordinator with parameters
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(α, c, θ ). Using equation (2), the characteristic
function φTt of Tt is equal to

φTt (u) = exp
(

tc
∫ ∞

0
(eiux − 1)

e−θx

xα/2+1 dx
)

Solving the integration in the last equation, we
can obtain the following formula,

φTt (u) = exp
(

tc
(
−α

2

)
((θ − iu)

α
2 − θ

α
2 )
)

(11)
The mean of Tt is computed by the first cumu-
lant, that is,

E[Tt] = 1
i

∂

∂u
log φTt (u)|u=0 = tc

(
1 − α

2

)
θ

α
2 −1

Hence, the condition E[Tt] = t holds if c =(

(
1 − α

2

)
θ

α
2 −1
)−1

.

By considering the tempered stable subordi-
nator as the subordinator of the Brownian mo-
tion, we obtain the NTS process. That is, define
a process X = (Xt)t≥0 with

Xt = μTt + σ WTt

where T = (Tt)t≥0 is the tempered
stable subordinator with parameter(
α,
(

(
1 − α

2

)
θ

α
2 −1
)−1

, θ
)

. The characteris-
tic function of Xt is equal to

φXt (u)

= exp

⎛

⎝ t
(− α

2

)


(
1 − α

2

)
θ

α
2 −1

⎛

⎝
(

θ − i

(
μu + iσ 2u2

2

)) α
2

− θα
2

⎞

⎠

⎞

⎠

=exp

⎛

⎝ −2t

αθ
α
2 −1

⎛

⎝
(

θ − i

(
μu + iσ 2u2

2

)) α
2

− θ
α
2

⎞

⎠

⎞

⎠ (12)

by (7) and (11) with c = ( (1 − α
2

)
θ

α
2 −1
)−1 . The

last equation can be changed to the following
expression:

φXt (u) = exp

⎛

⎜⎝
t
(−α

2

) (
σ 2

2

) α
2


(
1 − α

2

)
θ

α
2 −1

((
2θ

σ 2 +
( μ

σ 2

)2

−
( μ

σ 2 + iu
)2
) α

2

−
(

2θ

σ 2

) α
2

))
(13)

Inserting into (13) the parametrization

λ =
√

2θ

σ 2 +
( μ

σ 2

)2

β = μ

σ 2

C =
√

2σα

√
π
(
1 − α

2

)
θ

α
2 −1

we obtain the NTS process with parameter
(α, C, λ, β, m) where

m = −2− α+1
2 C

√
π
(α

2

)
β(λ2 − β2)

α
2 −1

LÉVY PROCESS
A stochastic process X = (Xt)t≥0 is called a Lévy
process if the following five conditions are satis-
fied :

1. X0 = 0 a.s.
2. X has independent increments.
3. X has stationary increment.
4. X is stochastically continuous that is, ∀t ≥ 0

and a > 0,

lim
s→t

P [|Xs − Xt| > a ] = 0

5. X is right continuous and has left limits
(cadlag).

The standard Brownian motion, arithmetic
Brownian motions, and pure jump processes
are all Lévy processes. Moreover, a Lévy pro-
cess can be decomposed by a Brownian motion
and a pure jump process (Zt)t≥0 independent to
the Brownian motion, that is

Xt = σ Wt + Zt

Hence we obtain the characteristic function of
Xt as follows:

φxt(u) = φσ Wt (u)φZt (u)

= exp
(− t

2σ 2u2
)

exp
(
iγ ut + t

∫∞
−∞ (eiux − 1

−iux1|x|≤1)ν(dx)
)

= exp
(
iγ ut − t

2σ 2u2 + t
∫∞
−∞ (eiux − 1

−iux1|x|≤1)ν(dx)
)

where φσ Wt (u) is the characteristic function of
N(0, σ 2t), and φZt (u) given by (2). Therefore,
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if X = (Xt)t≥0 is a Lévy process, then for any
t ≥ 0, Xt is an infinitely divisible random vari-
able. Conversely, if Y is an infinitely divisible
random variable, then there exists uniquely a
Lévy process (Xt)t≥0 such that X1 = Y, as proved
by Sato (1999, p. 38).

KEY POINTS
� Continuous-time stochastic processes are the

building block of financial modeling and they
are usually used to explain the uncertain be-
havior of financial assets. Some results of
probability theory can be usefully applied to
financial derivatives pricing and risk manage-
ment.

� Given any infinitely divisible random vari-
able X1, it is possible to define a stochastic
process with independent and stationary in-
crements such that for all t > s, the increment
Xt − Xs has characteristic function exp((t −
s) log φX1 (u)). These processes are known as
Lévy processes.

� Brownian motion and Poisson processes are
Lévy processes. All Lévy processes can be
constructed by changing the deterministic
time t of the Brownian motion Wt with a
stochastic time Tt. This construction is called
Brownian subordination and the increasing
process Tt is a subordinator.

� There are two main variants of the standard
Brownian motion used in financial applica-
tions: the arithmetic and the geometric Brow-
nian motion.

� The Poisson process is a fundamental exam-
ple of a stochastic process with discontinuous
trajectories, and a building block for con-
structing more complex jump processes.

� Pure jump processes include also the gamma
process, the inverse Gaussian process, the
varaince gamma process, the α-stable process,
and the tempered stable process.
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Sato, K. (1999). Lévy Processes and Infinitely Di-
visible Distributions. Cambridge: Cambridge
University Press.

Schoutens, W. (2003). Lévy Processes in Finance:
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In this entry, we present some issues in
stochastic processes. We begin by defining
events of a probability space mathematically,
and then discuss the concept of conditional
expectation. We then explain two important
notions for stochastic processes: martingale
properties and Markov properties. The for-
mer relates to the fair price in a market and

Dr. Bianchi acknowledges that the views expressed in this entry are his own and do not necessarily
reflect those of the Bank of Italy.

the latter describes the efficiency of a mar-
ket. Finally, “change of measures” for processes
are discussed. Change of measures for tem-
pered stable processes are important for de-
termining no-arbitrage pricing for assets. Fur-
ther details about no-arbitrage pricing with the
change of measure is discussed in Rachev et al.
(2011).
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EVENTS, σ -FIELDS,
AND FILTRATION
A set of possible outcomes in a given sample
space � is called an event. An event is mathe-
matically defined as a subset of �. If we have
one event A, then the set of outcomes that are
not included in A is also an event. For example,
if we consider an event that the return of the
stock of Disney tomorrow will be positive, then
the set of outcomes that Disney’s return tomor-
row will be negative is also an event. Moreover,
if we have two events A and B, then a set of out-
comes included in both A and B is also an event.
For instance, consider two events, the first event
being that Disney’s stock return tomorrow will
be positive, and the other event that IBM’s stock
return tomorrow will be positive. Then a set of
outcomes that both stock returns will be posi-
tive tomorrow is an event.

The class of events is described mathemati-
cally by the σ -field. The σ -field, denoted by F ,
is the class of the subsets of � that satisfy the
following properties:

Property 1. ∅ ∈ F and � ∈ F .
Property 2. If A ∈ F , then Ac = {x ∈ � |x /∈ A}

∈ F .
Property 3. If A1, A2, A3, . . . ∈ F , then U∞

n=1 An

∈ F .

Let G denote a class of subsets contained in
�. Then the smallest σ -field containing G is re-
ferred to as the σ -field generated by G, and is
denoted by σ (G). For a given random variable
X, consider the class G = {A ⊆ � : A = X−1(I ),
for all open interval I in R}, where X−l is the
inverse image of X. Then the σ -field generated
by G is referred to as the σ -field generated by
X, and denoted by σ (X). If there is a σ -field
F such that σ (X) ⊆ F , then we say that X is
F-measurable.

The probability P is a map from a given σ -
field F to the unit interval [0, 1]. If A ⊆ N ∈ F
and P(N) = 0, then the set A is referred to as a
null set with respect to (�,F ,P). Let N be the
class of all null sets with respect to (�,F , P).
The space (�, F̃ , P̃) is referred to as a comple-

tion of (�,F , P) if F̃ = σ (F ∪ N ) and P̃(A ∪ N)
= P(A) for all A ∈ F and N ∈ N . All probability
spaces in this entry are assumed to be comple-
tions of spaces, that is, all null sets are contained
in given σ -fields, and probabilities are defined
on completed σ -fields.

Let (Ft)t≥0 be a sequence of σ -field with con-
tinuous index t ≥ 0 (or discrete index t = 0,1, 2,
. . .). If Fs ⊆ Ft for all 0 ≤ s ≤ t, then (Ft)t≥0 is re-
ferred to as a filtration. Ft can be interpreted as
the “information” available to all market agents
at time t. The filtration describes increasing in-
formation for time t.

Consider a stochastic process X = (Xt)t≥0. If Xt

is Ft-measurable for all t ≥ 0, then X is referred
to as a (Ft)t≥0-adapted process. If Xt is Ft−1-
measurable for all discrete index t = 0, 1, 2, . . . ,
then X is referred to as a (Ft)t≥0-predictable
process.

For a given process X = (Xt)t≥0, we can gen-
erate a filtration (Ft)t≥0 by

Ft = σ (Xs ; 0 ≤ s ≤ t)

where σ (Xs; 0 ≤ s ≤ t) is the smallest σ -field
containing all σ (Xs) with 0 ≤ s ≤ t. Then the
process X is (Ft)t≥0-adapted and this filtration
is referred to as a filtration generated by X.

CONDITIONAL
EXPECTATION
The conditional expectation is a value of the ex-
pectation of a random variable under some re-
stricted events. Let g be a Borel function, X be a
random variable on a space (�, P) with E[g(X)]
< ∞, and A be an event. The conditional expec-
tation E[g(X)|A] is defined by

E[g(X) |A] = E[g(X)1A]
P(A)

where

1A(ω) =
{

0 if ω /∈ A
1 if ω /∈ A.

Consider a Borel function g, a stochastic pro-
cess X = (Xt)t≥0 adapted to filtration (Ft)t≥0. We
can define the conditional expectation on Ft as
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a random variable. That is, the conditional ex-
pectation E[g(XT ) |Ft ] for t ≤ T is a random
variable, such that

E[g(XT ) |Ft ](ω) = E[g(XT )|Aω], ω ∈ �

where Aω is the smallest event in Ft with ω ∈
Aω, or Aω = ∩ω∈Bω∈Ft Bω. Moreover, if g and h
are Borel functions, and 0 ≤ s ≤ t ≤ T ≤ T*, then
we have the following properties:

� E[g(Xt) |F0 ] = E[g(Xt)] whereF0 = {∅,�}.
� E[E[g(XT )|Ft]|Fs] = E[g(XT ) |Fs ].
� E[g(Xt)h(XT ) |Ft ] = g(Xt)E[h(XT ) |Ft ].
� E[ag(XT ) + bh(XT*) |Ft ] = a E[g(XT )

∣∣Ft] +
b E[h(XT*) |Ft ], for a , b ∈ R.

We write E[g(XT ) | Xt] instead of
E[g(XT ) |Ft ] when Ft = σ (Xt). Hence we
have:

� E[E[g(XT ) |Xt ] |Xs ] = E[g(XT ) |Xs ].
� E[g(Xt)h (XT ) |Xt ] = g(Xt)E[h(XT ) |Xt ].
� E[ag(XT ) + bh(XT*)|Xt] = a E[g(XT ) |Xt ] +

b E[h(XT*) |Xt ], for a,b ∈ R.

If a (Ft)-adapted process X = (Xt)t≥0 satisfies
the condition

E[g(XT ) |Ft ] = E[g(XT ) |Xt ]

for all 0 ≥ t ≥ T and Borel function g, then the
process X is referred to as a Markov process.

In finance, a Markov process is used to ex-
plain the efficient market hypothesis. Suppose
X is a price process of an asset, and consider
a forward contract on the asset with maturity
T. The σ -field Ft contains all market informa-
tion until time t. Hence, Ft = E[XT |Ft ] is the
expected price of the forward contract based
on the information up to t. If the market is
efficient, all information until t is impounded
into the current price Xt. Hence, the expected
price of the forward contract can be obtained
by Ft = E[XT |Xt ].

If a (Ft)-adapted process X = (Xt)t≥0 satisfies
the condition

Xt = E[XT |Ft ]

for all 0 ≤ t ≤ T, then the process X is referred to
as a martingale process. The process X = (Xt)t≥0

with Xt = σWt is a martingale process, where
σ > 0 and (Wt)t≥0 is the standard Brownian
motion. Since Xt is Ft-measurable, we have

E[XT |Ft ] = E[XT − Xt + Xt |Ft ]

= E[XT − Xt |Ft ] + Xt

Since X has stationary and independent
increments,

E[XT − Xt |Ft ] = E[XT − Xt] = E[XT−t]

= E[σ WT−t] = 0

Hence the process X is a martingale.
In finance, a martingale process describes

the fair price or no-arbitrage price for an asset.
For example, consider one share of a stock and
a forward contract that required delivery of
one share of that stock to the forward contract
holder at the maturity date. Suppose (St)t≥0 is
a stock price process and (Ft)0≤t≤T is the price
process for the forward contract with maturity
T. The forward price at time t < T is given by
the conditional expectation of ST based on the
information until time t, that is, Ft = E[ST |Ft ].
Moreover, we can see that Ft = St for all t with
0 ≤ t ≤ T by the following argument. Suppose
Ft > St. Then we obtain the difference Ft − St > 0
at time t by purchasing one share of the stock at
price St and selling the forward contract at price
Ft. We invest the proceeds in a money market
account with interest rate r. At time T, by deliv-
ering the stock to the holder of the forward con-
tract, we will then have er (T−t)(Ft − St), which is
an arbitrage profit. If Ft > St, then another arbi-
trage opportunity can be found by selling (i.e.,
shorting) one share of the stock and purchasing
the forward contract. Therefore, to eliminate
arbitrage opportunities, Ft should be equal to
St; that is, the stock price process should be a
martingale.

CHANGE OF MEASURES
In this section, we will present change of mea-
sure for random variables and Lévy processes.
Change of measure is an important method



510 Conditional Expectation and Change of Measure

to determine no-arbitrage prices of assets and
derivatives.

Equivalent Probability Measure
Consider two probability measures P and Q on
a sample space � and σ -field F . If they satisfy
the condition

Q(A) = 0 ⇒ P(A) = 0,

then we say that P is absolutely continuous with
respect to Q, and denote P � Q. Moreover, if
P � Q and Q � P, that is,

Q(A) = 0 ⇔ P(A) = 0,

then we say that P and Q are equivalent.
If Q � P, then there exists a positive random

variable ξ with
∫
�

ξdP = 1 and

Q(A) =
∫

A
ξdP (1)

for any A ∈ F . In this case, ξ is referred to as the
Radon-Nikodym derivative, and denotes

ξ = dQ
dP

Conversely, if there is a positive random vari-
able ξ with

∫
�

ξdP = 1 and Q is defined by
equation (1), then Q is also a probability mea-
sure and Q � P.

Let X be a random variable on a probabil-
ity measure P, and f (x) = ∂

∂x P(X ≤ x) be the
probability density function (p.d.f.) of X. Sup-
pose Q is a probability measure and the prob-
ability density function of X on Q is given by
g(x) = ∂

∂x Q(X ≤ x). If P and Q are equivalent,
then the Radon-Nikodym derivative is equal to

dQ
dP

= g(X)
f (X)

For example, X ∼ N(0, 1) is normally dis-
tributed on P. If we take the Radon-Nikodym
derivative by

ξ1 = e −(x−μ)2

2σ 2 /
√

2πσ 2

e− X2
2 /

√
2π

,

then the measure Q1 defined by Q1 (A) =∫
A ξ1dP for A ∈ F is equivalent to P and X ∼

N(μ, σ 2) on the measure Q1. On the other hand,
if we take the Radon-Nikodym derivative by

ξ2 = h(X)

e− X2
2 /

√
2π

where

h(x) = σ

π ((x − μ)2 + σ 2)

which is the probability density function of the
Cauchy distribution, then the measure Q2, de-
fined by Q2(A) = ∫

A ξ2dP for A ∈ F is equiva-
lent to P and X ∼ S1(σ, 0, μ) on the measure Q2.

Consider a finite discrete process (Xt)t∈{1,2,...,T}
of independent and identically distributed (IID)
real random variables on both probability mea-
sures P and Q, where T is a positive integer. By
the independent property of the process on P,
we have

P[X1 ∈ R, · · · , Xt−1 ∈ R, Xt < x,

Xt+1 ∈ R, · · · , XT ∈ R]

= P[X1 ∈ R] · · · P[Xt−1 ∈ R] · P[Xt < x]

·P[Xt+1 ∈ R] · · · P[XT ∈ R]

= P[Xt < x]

By the same argument, we have

Q[X1 ∈ R, · · · , Xt−1 ∈ R, Xt < x,

Xt+1 ∈ R, · · · , XT ∈ R] = Q[Xt < x]

Since Xt’s are identically distributed on P
and Q, respectively, we have P[Xt < x] =
P[Xs < x] and Q[Xt < x] = Q[Xs < x] for all
t, s ∈ {1, 2, · · · , T}. Suppose that for all t ∈
{1, 2, · · · , T} the probability density functions
of Xt are given by f (x) and g(x) on probability
measures P and Q, respectively. That is

f (x) = ∂

∂x
P[Xt < x]

and

g(x) = ∂

∂x
Q[Xt < x]

If the domain of the function f is the same as
the domain of the function g, then P and Q are
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equivalent and the Radon-Nikodym derivative
is equal to

dQ
dP

= g(X1)g(X2) · · · g(XT )
f (X1) f (X2) · · · f (XT )

However, that method cannot be used for either
continuous-time processes or infinite-discrete
processes. In the next section, we discuss the
change of measure for continuous-time pro-
cesses using Girsanov’s theorem and the ex-
tended Girsanov’s theorem.

Change of Measure for
Continuous-Time Processes
A continuous-time process is a function from
the sample space to the set of appropriate
functions. Hence, the change of measure for
processes is more complex than the change of
measure for a random variable.

Brownian motion is a function from the sam-
ple space to the set of continuous functions. For
Brownian motion, we can find an equivalent
measure using the following theorem, which is
referred to as Girsanov’s theorem:1

Theorem 1. Let W = (Wt)t≥0 be a standard
Brownian motion under measure P and (Ft)t≥0

be a filtration generated by W. Consider a pro-
cess (ξt)t≥0 defined by

ξt = e−θWt− θ2
2 t

Then the probability measure Q given by

Q(A)
∣∣Ft =

∫

A
ξtdP, A ∈ Ft

is equivalent to P|Ft for all t ≥ 0, and the pro-
cess W̃ = (W̃t)t≥0 with W̃t = θ t + Wt is a stan-
dard Brownian motion under the measure Q.

Girsanov’s theorem shows how stochastic
processes change under the change of measure.
For example, let a process X = (Xt)t≥0 be an
arithmetic Brownian motion under measure P
such that

Xt = μt + σ Wt

where (Wt)t≥0 is the standard Brownian motion.
The process X is not martingale on the measure
P, but we can obtain a measure where X is a
martingale by Girsanov’s theorem. Indeed, we
define a measure Q equivalent to P such that

Q(A)
∣∣Ft =

∫

A
e− μWt

σ
− μ2

2σ2 tdP, A ∈ Ft

Then the process X becomes Xt = σ W̃t with
W̃t = μt

σ
+ Wt and the process (W̃t)t≥0 is a stan-

dard Brownian motion on the measure Q.
Therefore, the process X is a martingale on the
measure Q.

A Lévy process is a function from the sample
space to the set of right continuous functions
with left limits at any point of the domain.2

Girsanov’s theorem can be extended for Lévy
processes by the following theorem:

Theorem 2. Suppose a process X = (Xt)t≥0 is a
Lévy process with Lévy triplets (σ 2,ν,γ ) under
measure P. If there is a real number θ satis-
fying

∫
|x|≥1 eθxν(dx) < ∞, then we can find the

equivalent measure Q whose Radon-Nikodym
derivative is given by

dQ
dP

∣∣Ft = ξt = eθ Xt

EP[eθ Xt ]
= eθ Xt−l(θ)t

where l(θ ) = log EP[eθX1 ]. That is,

Q(A)
∣∣
Ft

=
∫

A
ξtdP, A ∈ Ft

is equivalent to P|Ft for all t ≥ 0. Moreover, the
process X is a Lévy process with Lévy triplets
(σ 2,ν̃, γ̃ ) under the measure Q, where ν̃(dx) =
eθxν(dx) and γ̃ = γ + ∫

|x|≤1 x(eθx − 1)ν(dx).
The change of measure using Theorem 2 is

referred to as the Esscher transform. The most
general theorem of change of measure for Lévy
processes is given by the following theorem (see
Sato, 1999):

Theorem 3. Suppose a process X = (Xt)t≥0

has Lévy triplets (σ 2, ν, γ ) and (σ̃ 2, ν̃, γ̃ ) under
measures P and Q, respectively.

1. In the case where σ 2 �= 0 and σ̃ 2 �= 0, P|Ft and
Q|Ft are equivalent for all t > 0 if and only if
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the Lévy triplets satisfy

σ 2 = σ̃ 2 > 0 (2)

and
∫ ∞

−∞
(eψ(x)/2 − 1)2ν(dx) < ∞ (3)

where ψ(x) = ln
( d ν̃

dν

)
.

2. In the case where σ 2 = σ̃ 2 = 0, P|Ft and Q|Ft

are equivalent for all t ≥ 0 if and only if the
Lévy triplets satisfy (3) and

γ̃ − γ =
∫

|x|≤1
x(ν̃ − v)(dx) (4)

When P and Q are equivalent, the Radon-
Nikodym derivative is

dQ
dQ

∣∣Ft = eξ t

where ξ = (ξt)t≥0 is a Lévy process with Lévy
triplet (σ 2

ξ , νξ , γξ ) given by
⎧
⎪⎪⎨

⎪⎪⎩

σ 2
ξ = σ 2η2

νξ = ν ◦ ψ−1

γξ = −σ 2η2

2
−

∫ ∞

−∞
(e y − 1 − y1|y|≤1)νξ (dy)

(5)
and η is such that

γ̃ − γ −
∫

|x|≤1
x(ν̃ − ν)(dx) =

{
σ 2η if σ > 0
0 if σ = 0

Change of Measure in Tempered
Stable Processes
In this section, we present the change of mea-
sure for six tempered stable processes: the
classical tempered stable (CTS) process, Kim-
Rachev tempered stable (KRTS) process, mod-
ified tempered stable (MTS) process, normal
tempered stable (NTS) process, and rapidly de-
creasing tempered stable (RDTS) process. The
six processes are defined as follows:

� Let α ∈ (0, 2), C, λ+, λ− > 0, and m ∈ R. A Lévy
process (Xt)t≥0 is referred to as the classical
tempered stable (CTS) process3 if the charac-

teristic function of Xt is given by

φXt (u) = exp(iumt−iutC�(1 − α)(λα−1
+ −λα−1

− )

+tC�(−α)((λ+ − iu)α − λα
+

+(λ− + iu)α − λα
−))

If we take a special parameter C defined by

C = (�(2 − α)(λα−2
+ + 2λα−2

− ))−1 (6)

and m = 0 then E[Xt] = 0 and V(Xt) = t. In
this case, X is called the standard CTS process
with parameters (α, λ+, λ−).

� A Lévy process (Xt)t≥0 is referred to as the
generalized tempered stable (GTS) process if
the characteristic function of Xt is given by

φXt (u) = exp(iumt − iut�(1 − α)(C+λ
α+−1
+

− C−λα −1
− )

+tC+�(−α+)((λ+ − iu)α+ − λ
α+
+ )

+tC−�(−α )((λ− + iu)α− − λ
α−
− )),

(7)
where α+, α− ∈ (0, 1) ∪ (1, 2), C+, C−, λ+, λ−
> 0, and m ∈ R. If we substitute

C+ = pλ
2−α+
+

�(2 − α+)
, C− = (1 − p)λ2−α−

−
�(2 − α−)

(8)

where p ∈ (0, 1), and m = 0 then E [Xt] = 0 and
V(Xt) = t. In this case, X is called the standard
GTS process with parameters (α+,α–,λ+,λ–, p).

� Let α ∈ (0, 2) \ {1}, , k+, k−, r+, r− > 0,
p+, p− ∈ {p > −α |p �= −1, p �= 0 }, and m ∈ R.
A Lévy process (Xt)t≥0 is referred to as the
Kim-Rachev (KR) process4 if the characteris-
tic function of Xt is given by

φXt (u) = exp (iumt − iut�(1 − α)

×
(

k+r+
p+ + 1

− k−r−
p− + 1

)

+tk+ H(iu; α, r+, p+)

+tk− H(−iu; α, r−, p−))

where

H(x; α, r, p) = �(−α)
p

(2 F1(p,−α; 1+ p; r x)−1)

where 2 F1 is the hypergeometric function.5 If
p+ and p− approach to the infinite, then the
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KR process converges to the CTS process. If
we substitute

k+ = C
α + p+

rα+

k− = C
α + p−

rα−

where

C = 1
�(2 − α)

(
α + p+
2 + p+

r2−α
+ + α + p−

2 + p−
r2−α
−

)
−1

(9)

and m = 0 then E[Xt] = 0 and V(Xt) = t. In this
case, X is called the standard KRTS process
with parameters (α, r+, r−, p+, p−).

� Let α ∈ (0, 2) \ {1}, C, λ+, λ− > 0, and
m ∈ R. A Lévy process (Xt)t≥0 is referred
to as the modified tempered stable (MTS)
process6 if the characteristic function of Xt is
given by

φXt(u) = exp(iumt + tC(G R(u; α, C, λ+)
+G R(u; α, C, λ ))
+iutC(G I (u; α, λ+) − G I (u; α, λ )))

where for u ∈ R,

G R(x; α, λ) = 2− α+3
2

√
π�

(
−α

2

)

×((λ2 + x2)
α
2 − λα)

and

G I (x; α, λ) = 2− α+1
2 �

(
1 − α

2

)
λα−1

×
[

2 F1

(
1,

1 − α

2
;

3
2

; − x2

λ2

)
− 1

]

If we substitute

C = 2
α+1

2

(√
π�

(
1 − α

2

) (
λα−2

+ + λα−2
−

))−1

(10)
and m = 0 then E[Xt] = 0 and V(Xt) = t. In
this case, X is called the standard MTS process
with parameters (α,λ+,λ−).

� Let α ∈ (0, 2), C, λ > 0, |β| < λ, and m ∈ R.
A Lévy process (Xt)t≥0 is referred to as the
normal tempered stable (NTS) process7 if the

characteristic function of Xt is given by

φXt(u) = exp
(

iumt + iut2− α+1
2 C

√
π�

(
−α

2

)

×αβ(λ2 − β2)
α
2 −1 + 2− α+1

2 tC
√

π�
(
−α

2

)

× ((λ2 − (β + iu)2)
α
2 − (λ2 − β2)

α
2
)

If we substitute

C = 2
α+1

2

(√
π�

(
−α

2

)
α

(
λ2 − β2) α

2 −2

× (
αβ2 − λ2 − β2))−1

(11)

and m = 0 then E[Xt] = 0 and V(Xt) = t. In
this case, X is called the standard NTS process
with parameters (α, λ,β).

� Let α ∈ (0, 2) \ {1}, C, λ+, λ− > 0, and m ∈
R. A Lévy process (Xt)t≥0 is referred to as the
rapidly decreasing tempered stable (RDTS)
process8 if the characteristic function of Xt is
given by

φXt (u) = exp(iumt + tC(G(iu; α, λ+)

+G(−iu; α, λ−))),

where

G(x; α, λ)

= 2− α
2 −1λα�

(
−α

2

) (
M

(
−α

2
,

1
2

;
x2

2λ2

)
−1

)

+2− α
2 − 1

2 λα−1x�

(
1 − α

2

)

×
(

M
(

1 − α

2
,

3
2

;
x2

2λ2

)
− 1

)

and M is the confluent hypergeometric func-
tion. See Andrews (1998). If we take a special
parameter C defined by

C = 2
α
2

(
�

(
1 − α

2

) (
λα−2

+ + λα−2
−

))−1
(12)

and m = 0 then E[Xt] = 0 and V(Xt) = t. In
this case, X is called the standard RDTS process
with parameters (α, λ+, λ–).

The six tempered stable processes are pure
jump Lévy processes with Lévy triplet (0, ν, γ ),
where γ = m − ∫

|x|>1 xν(dx) and Lévy measures
are presented in Table 1.
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Table 1 Lévy Measures for Tempered Stable Processes

Lévy Measure ν(dx)

CTS C
(

e−λ+x

x1+α
1x>0 + e−λ−|x|

|x|1+α
1x<0

)
dx

GTS
(

C+e−λ+x

x1+α+
1x>0 + C−e−λ−|x|

|x|1+α−
1x<0

)
dx

MTS

⎛

⎝
C+(λ+x)

α+1
2 K α+1

2
(λ + x)

x1+α
1x>0 +

C−(λ−|x|) α+1
2 K α+1

2
(λ−|x|)

|x|1+α
1x<0

⎞

⎠ dx

NTS
Ceβx(λ|x|) α+1

2 K α+1
2

(λ|x|)
|x|1+α

dx

KRTS

(
k+r−p+

+
x1+α

∫ r+

0
e−x/s sα+p+−1ds 1x>0 + k−r−p−

−
|x|1+α

∫ r−

0
e−|x|/s sα+p−−1ds 1x<0

)
dx

RDTS

⎛

⎝C+e− λ+ x2

2

x1+α
1x>0 + C−e− λ−|x|2

2

|x|1+α
1x<0

⎞

⎠ dx

Let X = (Xt)t≥0 be one tempered stable pro-
cess among the six tempered stable processes.
Then E[Xt] = mt and X has stationary and
independent increments. Therefore, we have

E[XT |Ft] = E[XT − Xt|Ft] + Xt

= E[XT−t] + Xt = m(T − t) + Xt

and hence X is a martingale when m = 0.
The properties of tempered stable processes

change under the change of measure using the
Esscher transform. For example, let a process
X = (Xt)t≥0 be a symmetric CTS process under
measure P (that is λ+ = λ− = λ). Then the Lévy
measure ν(dx) of X is given by

ν(dx) = C
(

e−λx

x1+α
1x>0 + e−λ|x|

|x|1+α
1x<0

)
dx

Since we have
∫
|x|≥1 eθxν(dx) < ∞ for some real

number θ with –λ ≤ θ ≤ λ, we can define a
measure Q equivalent to P such that

Q(A)|Ft =
∫

A
eθ Xt−l(θ)tdP, A ∈ Ft

where

l(θ ) = log EP[eθ X1 ] = C�(−α)((λ − θ )α

+(λ + θ )α − 2λα)

Moreover, the Lévy measure ν̃(dx) of X under
Q is given by

ν̃(dx) = eθxν(dx)

= C
(

e−(λ−θ)x

x1+α
1x>0 + e−(λ+θ)|x|

|x|1+α
1x<0

)
dx

By the same argument, we discuss the relation
between the symmetric MTS and NTS process.
That is, let a process X = (Xt)t≥0 be a symmetric
MTS process under measure P. Then the Lévy
measure ν(dx) of X is given by

ν(dx) = C(λ|x|) α+1
2 K α+1

2
(λ|x|)dx

Since we have
∫
|x|≥1 e−βxν(dx) < ∞ for some

real number β with –λ ≤β ≤λ, we can define
a measure Q equivalent to P such that

Q(A)|Ft =
∫

A
e−β Xt−l(−β)tdP, A ∈ Ft,

where

l(x) = log EP[exX1 ]

= C2− α+1
2

√
π�

(
−α

2

)
((λ2 + x2)

α
2 − λα)

Moreover, the Lévy measure ν̃(dx) of X under
Q is given by

ν̃(dx) = e−βxν(dx) = Ce−βx(λ|x|) α+1
2 K α+1

2
(λ|x|)dx

which is the Lévy measure for the NTS process.
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Table 2 Condition for Equivalent between P and Q

(Xt)t≥0

Parameters under
Measure P

Parameters under
Measure Q Equivalent Condition

CTS process (α, C, λ+, λ–, m) (α̃, C̃, λ̃+, λ̃−, m̃) C = C̃, α = α̃, and

m̃ − m = C�(1 − α)(λ̃α−1
+ − λ̃α−1

− − λα−1
+ + λα−1

− )

GTS process
(

α+α−, C+, C−,

λ+, λ−, m

) (
α̃+α̃−, C̃+, C̃−,

λ̃+, λ̃−, m

)
α+ = α̃+, α− = α̃−, C+ = C̃+, C− = C̃−, and

m̃ − m = C+�(1 − α+)(λ̃α+−1
+ − λ̃

α−−1
− )

−C−�(1 − α−)(λα+−1
+ + λ

α−−1
− )

MTS process (α, C, λ+, λ–, m) (α̃, C̃, λ̃+, λ̃−, m̃) C = C̃, α = α̃, and

m̃ − m = 2− α+1
2 C�

(
1 − α

2

)
(λ̃α−1

+ − λ̃α−1
− − λα−1

+ + λα−1
− )

NTS process (α, C, λ, β,m) (α̃, C̃, λ̃, β̃, m̃) C = C̃, α = α̃, and

m̃ − m = κ(β̃(λ̃2 − β̃2)
α
2 −1 − β(λ2 − β2)

α
2 −1),

where κ = 2− α−1
2

√
πC�

(
1 − α

2

)

KRTS process
(

α1, k1,+, k1,−, r1,+,

r1,−, p1,+, p1,−, m1

) (
α2, k2,+, k2,−, r2,+,

r2,−, p2,+, p2,−, m2

) {
p j,± > 1/2 − α j and p j,± �= 0, α j ∈ (0, 1)
p j,± > 1 − α j and p j,± �= 0, α j ∈ (1, 2) , for j = 1, 2

α := α1 = α2

k1, + rα
1,+

α + p1,+
= k2,+rα

2,+
α + p2,+

,
k1,−rα

1,−
α + p1,−

= k2,−rα
2,−

α + p2,−
, and

m2 − m1 = �(1 − α)
∑

j=1,2
(−1) j

(
k j,+r j,+
p j,+ + 1

− k j,−r j,−
p j,− + 1

)

RDTS process (α, C, λ+, λ–, m) (α̃, C̃, λ̃+, λ̃−, m̃) C = C̃, α = α̃, and

m̃ − m = 2− α+1
2 C�

(
1 − α

2

)
(λ̃α−1

+ − λ̃α−1
− − λα−1

+ + λα−1
− )

We can apply Theorem 3 to tempered stable
processes. For example, let X = (Xt)t≥0 be a CTS
process with parameters (α, C, λ+, λ–, m) on
measure P and a CTS process with parameters
(α̃, C̃, λ̃+, λ̃−, m̃) on measure Q. Then P and Q
are equivalent if and only if C = C̃, α = α̃, and

m̃−m = C�(1 − α)(λ̃α−1
+ − λ̃α−1

− − λα−1
+ + λα−1

− )
(13)

When P and Q are equivalent, the Radon-

Nikodym derivative is dQ
dP

∣∣∣
Ft

= eUt where U

= (Ut)t≥0 is a Lévy process with Lévy triplet
(σ 2

U, νU, γU) given by

σ 2
U = 0, νU = ν ◦ ψ−1,

γU =−
∫ ∞

−∞
t(e y − 1 − y1|y|≤1)(ν◦ψ−1)(dy) (14)

In equation (14), ν is the CTS Lévy measure
given by

ν(dx) = C
(

e−λ+x

x1+α
1x>0 + e−λ−|x|

|x|1+α
1x<0

)
dx

and ψ(x) = (λ+ − λ̃+)x1x>0 − (λ− − λ̃−)x1x<0.
Proofs can be obtained by Theorem 3, but we
will not discuss the proofs here.9

We can apply the same argument to the GTS,
MTS, NTS, KRTS, and RDTS processes.10 The
necessary and sufficient equivalent condition
for change of measures for the six tempered
stable distributions are presented in Table 2.
Radon-Nikodym derivatives are omitted in the
table.

By applying change of measures, we can ob-
tain a martingale process from a CTS process.
Let a process X0 = (X0

t )t≥0 be a CTS process with
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Table 3 Change of Measures for Standard TS Processes: Yt = μt + Xt

(Xt)t≥0 under Measure P (Yt)t≥0 under Measure Q Relations of Parameters

Standard CTS process
with parameters
(α, λ+, λ−)

Standard CTS process
with parameters
(α, λ̃+, λ̃−)

λα−2
+ + λα−2

− = λ̃α−2
+ + λ̃α−2

− ,

μ = λα−1
+ − λα−1

− − λ̃α−1
+ + λ̃α−1

−
(1 − α)(λα−2

+ + λα−2
− )

Standard GTS process
with parameters
(α+, α−, λ+, λ−, p)

Standard GTS process
with parameters
(α+, α−, λ̃+, λ̃−, p̃)

pλ2−α+
+ = p̃λ̃

2−α+
+

(1 − p)λα−−2
− = (1 − p̃)λ̃α−−2

−

μ = p
λ

α+−1
+ − λ̃

α+−1
+

(1 − α+)λα+−1
+

+ (1 − p)
λ̃

α−−1
− − λ

α+−1
−

(1 − α−)λα+−1
+

Standard MTS process
with parameters (α, λ+,
λ−)

Standard MTS process
with parameters
(α, λ̃+, λ̃−)

λ̃α−2
+ + λ̃α−2

− = λα−2
+ + λα−2

−

μ = �
( 1−α

2

) (
λα−1

+ − λα−1
− − λ̃α−1

+ + λ̃α−1
−

)
√

π�
(
1 − α

2

) (
λ̃α−2

+ + λ̃α−2
−

)

Standard NTS process
with parameters (α, λ, β)

Standard NTS process
with parameters (α, λ̃, β̃)

αβ2 − λ2 − β2

(λ2 − β2)2− α
2

= αβ̃2 − λ̃2 − β̃2

(λ̃2 − β̃2)2− α
2

μ = β(λ2 − β2)
α
2 −1 − β̃(λ̃2 − β̃2)

α
2 −1

(λ2 − β2)
α
2 −2(αβ2 − λ2 − β2)

Standard KRTS process
with parameters (α, r1,+,
r1,−, p1,+, p1,−)

Standard KRTS process
with parameters (α, r2,+,
r2,−, p2,+, p2,−)

r2,+, r2,− > 0
α + p1,+
2 + p1,+

r2−α
1,+ + α + p1,−

2 + p1,−
r2−α

1,−
α + p2,+
2 + p2,+

r2−α
2,+ + α + p2,−

2 + p2,−
r2−α

2,−

μ = ∑
j=1,2 (−1) j c j

(
p j,+ + α

p j,+ + 1
r1−α

j,+ − p j,− + α

p j,− + 1
r1−α

j,−

)

where c j = 1
α−1

(
α + p j,+
2 + p j,+

r2−α
j,+ + α + p j,−

2 + p j,−
r2−α

j,−

)−1

Standard RDTS process
with parameters
(α, λ+, λ−)

Standard RDTS process
with parameters
(α, λ̃+, λ̃−)

λα−2
+ + λα−2

− = λ̃α−2
+ + λ̃α−2

− ,

μ = �
( 1−α

2

) (
λα−1

+ − λα−1
− − λ̃α−1

− + λ̃α−1
−

)
√

2�
(
1 − α

2

) (
λ̃α−2

+ + λ̃α−2
−

)

parameters (α, C, λ+, λ–, 0) on measure P and
let X = (Xt)t≥0 be a process with Xt = mt + X0

t .
Then X becomes the CTS process with param-
eters (α, C, λ+, λ–, m) on the measure P. The
process X is not a martingale on the measure
P, but we can obtain a measure where X is
a martingale by the change of measures for CTS
processes. We assume that λ̃+ and λ̃− are posi-
tive real numbers such that

0 − m = C�(1 − α)(λ̃α−1
+ − λ̃α−1

− − λα−1
+ + λα−1

− )

and we define a measure Q equivalent to P such
that

Q(A)
∣∣Ft =

∫

A
eUt dP, A ∈ Ft

where (Ut)t≥0 is the Lévy process with Lévy
triplet (σ 2

U, νU, γU) given by equation (14). Then

the process X becomes the CTS process with
parameters (α, C, λ̃+, λ̃−, 0) on the measure Q.
Therefore, the process X is a martingale on mea-
sure Q.

Furthermore, by applying change of measures
to the standard CTS process, we obtain the
following result. Let (Xt)t≥0 be a standard CTS
process with parameters (α, λ+, λ–) under a
measure P, and λ̃+, λ̃+ > 0 and real number
μ satisfy the following:

{
λα−2

+ + λα−2
− = λ̃α−2

+ + λ̃α−2
−

μ = λα−1
+ −λα−1

− −λ̃α−1
+ +λ̃α−1

−
(1−α)(λα−2

+ +λα−2
− )

(15)

Then we can find a measure Q equivalent to
P such that a process (Yt)t≥0 with Yt = μt +
Xt is a standard CTS process with parameters
(α, λ̃+, λ̃−) under a measure Q.
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We apply the same argument to the standard
GTS, standard MTS, standard NTS, standard
KRTS, and standard RDTS processes. The rela-
tions of parameters between standard tempered
stable process (Xt)t≥0 under P and standard
tempered stable process (Yt)t≥0 with Yt = μt
+ Xt under Q are presented in Table 3.

KEY POINTS
� The information available to all market agents

at one time interprets the filtration.
� Conditional expectation is the best approxi-

mation of the price of assets, portfolios, and
derivatives under information until the cur-
rent time.

� Markov processes are used to explain the ef-
ficient market hypothesis in finance.

� Martingale processes describe the fair price
or no-arbitrage price for an asset in finance.

� Change of measure on the Brownian motion
process is achieved by Girsanov’s theorem,
while change of measure on the Lévy process
is achieved by the Esscher transform or the
generalized Girsanov theorem.

� Using the generalized Girsanov theorem, the
tempered stable process becomes a martin-
gale process.

NOTES
1. The general form of the Girsanov’s theo-

rem is presented in many articles includ-
ing Karatzas and Shreve (1991), Oksendal
(2000), and Klebaner (2005). The Black-
Scholes option pricing formula is derived
by applying Girsanov’s theorem in Harri-
son and Pliska (1981).

2. We refer to such functions as cadlag func-
tions.

3. See Koponen (1995), Boyarchenko and Lev-
endorskii (2000), and Carr et al. (2002).

4. See Kim et al. (2008c, 2007).
5. See Andrews (1998).
6. See Kim et al. (2009).

7. See Barndorff-Nielsen and Levendorskii
(2001).

8. See Bianchi et al. (2010) and Kim et al.
(2010).

9. See Kim and Lee (2006) for more details.
10. See Kim et al. (2008a, 2008b, 2009, 2010) and

Bianchi et al. (2010) for more details.
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Change of Time Methods
ANATOLIY SWISHCHUK, PhD
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Abstract: Change of time can be used in financial modeling to introduce stochastic volatility or solve
many stochastic differential equations. The main idea of the change of time method is to change
time from t to a nonnegative process T(t) with nondecreasing sample paths (e.g., subordinator).
Many Lévy processes may be written as time-changed Brownian motion. Lévy processes can also
be used as a time change for other Lévy processes (subordinators). Using change of time, we can get
an option pricing formula for an asset following geometric Brownian motion (e.g., Black-Scholes
formula) and obtain an explicit option pricing formula for an asset following the mean-reverting
process (e.g., continous-time GARCH proccess).

In this entry, we provide an overview on
change of time methods (CTM), and show
how to solve many stochastic differential equa-
tions (SDEs) in finance (geometric Brown-
ian motion [GBM], Ornstein-Uhlenbeck [OU],
Vasićek, continuous-time GARCH, etc.) using
the change of time method. As applications of
CTM we present two different models: geomet-
ric Brownian motion (GBM) and mean-reverting
models. The solutions of these two models are
different. But the nice thing is that they can be
solved by CTM like many other models men-
tioned in this entry. And moreover, we can use
these solutions to find easy option pricing for-
mulas: One is classic-Black-Scholes and another
one is new for a mean-reverting asset. These for-
mulas can be used in practice (for example, in
the energy market) because they all are explicit.1

This includes:
� CTM in martingale and semimartingale setting
� CTM in SDEs setting
� Subordination as a change of time

We present two appplications of CTM:
� Black-Scholes formula
� Explicit option pricing formula for a mean-

reverting asset

CHANGE OF TIME METHOD
The main idea of the change of time method is
to change time from t to a nonnegative process
T(t) with nondecreasing sample paths. One ex-
ample is subordinator: If X(t) and T(t) > 0 are
some processes, then X(T(t)) is subordinated to

519
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X(t); T(t) is a change of time. Another example is
time-changed Brownian motion: M(t) = B(T(t)),
where B(t) is a Brownian motion and T(t) is
a subordinator (e.g., variance-gamma process2

V(t) = B(T(t), where T(t) is a gamma process).
Bochner (1949) introduced the notion of

change of time (time-changed Brownian
motion). Clark (1973) introduced Bochner’s
change of time into financial economics. Feller
(1966) introduced subordinated process X(T(t))
with Markov process X(t) and T(t) as a process
with independent increments (T(t) was called
randomized operational time). Johnson (1979)
introduced the time-changed stochastic volatility
model (SVM) in continuous time. Johnson and
Shanno (1987) studied the pricing of options
using the time-changed stochastic volatility
(SV) model. Ikeda and Watanabe (1981) intro-
duced and studied change of time for the solu-
tion of SDEs. Barndorff-Nielsen, Nicolato, and
Shephard (2003) studied the relationship be-
tween subordination and SVM using change of
time (T(t)-chronometer). Carr, Geman, Madan,
and Yor (2003) used subordinated processes to
construct SV for Lévy processes (T(t)-business
time).

The change of time method is closely asso-
ciated with the embedding problem: To em-
bed a process X(t) in Brownian motion is to
find a Wiener process W(t) and an increasing
family of stopping times T(t) such that W(T(t))
has the same joint distribution as X(t). Sko-
rokhod (1965) first treated the embedding prob-
lem, showing that the sum of any sequence
of independent random variables (r.v.) with
mean zero and finite variation could be embed-
ded in Brownian motion using stopping times.
Dambis (1965) and Dubins and Schwartz (1965)
independently showed that every continuous
martingale could be embedded in Brownian
motion. Knight (1971) discovered the multivari-
ate extension of Dambis (1965) and Dubins and
Schwartz’s (1965) result. Huff (1969) showed
that every process of pathwise bounded vari-
ation could be embedded in Brownian motion.
Monroe (1972) proved that every right continu-

ous martingale could be embedded in a Brow-
nian motion. Monroe (1978) proved that a pro-
cess can be embedded in Brownian motion if
and only if this process is a local semimartin-
gale. Meyer (1971) and Papangelou (1972) in-
dependently discovered Knight’s (1971) result
for point processes.

Rosiński and Woyczyński (1986) considered
time changes for integrals over stable Lévy
processes. Kallenberg (1992) considered time
change representations for stable integrals.

Lévy processes can also be used as a time
change for other Lévy processes (subordina-
tors). Madan and Seneta (1990) introduced the
variance gamma (VG) process (Brownian mo-
tion with drift time changed by a gamma
process). Geman, Madan, and Yor (2001)
considered time changes for Lévy processes
(business time). Carr, Geman, Madan, and
Yor (2003) used change of time to intro-
duce stochastic volatility into a Lévy model
to achieve leverage effect and a long-term
skew. Kallsen and Shiryaev (2001) showed
that the Rosiński-Woyczyński-Kallenberg state-
ment cannot be extended to any other Lévy
process but symmetric α-stable. Swishchuk
(2004, 2007) applied change of time method
for options and swaps pricing for Gaussian
models.3

The General Theory of
Time Changes
The general theory of change of time for mar-
tingale and semimartingale theories4 is well
known. In this entry we give a brief description
of the change of time method in the following
settings: martingales and stochastic differential
equations.

Martingale and Semimartingale Settings of
Change of Time
Let (�,F , P) be a given probability space with
a right continuous filtration (Ft)t≥0. Suppose
Mt is a square integrable local continuous
martingale such that limt→+∞〈M〉(t) = +∞
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almost sure (a.s.), where τt := inf{μ : 〈M〉(u) >

t} and F̃t = Fτt Then the time-changed process
B(t): = M(τ t) is an F̃t-Brownian motion. Also,
M(t) = B(< M > (t)). Here, 〈·〉 defines predictable
quadratic variation.

If φt is a change of time process (i.e., any
continuous Ft-adapted process such that φ0 =
0, t → φt is strictly increasing and limt→+∞
φt = +∞ a.s.) and if Xt is an Ft-adapted semi-
martingale, then the process X̃t := Xτ t is an
F̃t-adapted semimartingale, where τt := inf{u :
φu > t}, and F̃t := Fτt X̃t is called the time
change of Xt by φt.

Geman, Madan, and Yor (2001) consider pure
jump Lévy processes (which are semimartin-
gales) of finite variation with an infinite arrival
rate of jumps as models for the logarithm of as-
set prices. These processes also may be written
as time-changed Brownian motion. Their paper
exhibits the explicit time change for each of a
wide class of Lévy processes and shows that the
time change is a weighted price move measure
of time.

Stochastic Differential Equations Setting of
Change of Time
The change of time method is used to solve the
following SDE:

dXt = α(t, Xt)dB(t)

with B(t) being a Brownian motion and α(t, x)
being a “good” function of t ≥ 0 and x ∈ R.
Having solved the equation we can also solve
the general SDE

dXt = β(t, Xt)dt + γ (t, Xt)dB(t)

with drift β(t, Xt) using the method of transfor-
mation of drift (the Girsanov transformation).5

Subordinators as Time Changes
Subordinators
Feller (1966) introduced a subordinated process
Xτ t for a Markov process Xt and τ t a process
with independent increments. τ t was called a

randomized operational time. Increasing Lévy
processes can also be used as a time change for
other Lévy processes.6 Lévy processes of this
kind are called subordinators. They are very
important ingredients for building Lévy-based
models in finance.7 If St is a subordinator, then
its trajectories are almost surely increasing, and
St can be interpreted as a “time deformation”
and used to “time change” other Lévy pro-
cesses. Roughly, if (Xt)t≥0 is a Lévy process and
(St)t≥0 is a subordinator independent of Xt, then
the process (Yt)t≥0 defined by Yt: = XSt is a Lévy
process.8 This time scale has the financial in-
terpretation of business time,9 that is, the inte-
grated rate of information arrival.

Subordinators and Stochastic Volatility
The time change method was used to introduce
stochastic volatility into a Lévy model to
achieve the leverage effect and a long-term
skew.10 In the Bates (1996) model the leverage
effect and long-term skew were achieved using
correlated sources of randomness in the price
process and the instantaneous volatility. The
sources of randomness are thus required to be
Brownian motions. In the Barndorff-Nielsen
et al. (2001, 2002) model the leverage effect
and long-term skew are generated using the
same jumps in the price and volatility without
a requirement for the sources of randomness to
be Brownian motions. Another way to achieve
the leverage effect and long-term skew is to
make the volatility govern the time scale of
the Lévy process driving jumps in the price.
Carr et al. (2003) suggested the introduction
of stochastic volatility into an exponential-
Lévy model via a time change. The generic
model here is St = exp(Xt) = exp(Yυt ), where
υt := ∫ t

0 σ 2
s ds. The volatility process should be

positive and mean-reverting (i.e., an Ornstein-
Uhlenbeck or Cox-Ingersoll-Ross process).
Barndorff-Nielsen et al. (2003) reviewed and
placed in context some of their recent work
on stochastic volatility models including the
relationship between subordination and
stochastic volatility.
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The main difference between the change of
time method and the subordinator method is
that in the former case the change of time pro-
cess φt depends on the process Xt, but in the
latter case, the subordinator St and Lévy pro-
cess Xt are independent.

APPLICATIONS OF CHANGE
OF TIME METHOD
The change of time method may be applied to
get Black-Scholes formula for GBM, explicit op-
tion pricing formula for a mean-reverting as-
set, and to price swaps in financial models with
stochastic volatility.

Black-Scholes by Change of
Time Method
In the early 1970s, Black et al. (1973) made a
major breakthrough by deriving a pricing for-
mula for vanilla option written on a stock. Their
model and its extensions assume that the prob-
ability distribution of the underlying cash flow
at any given future time is lognormal. There
are many proofs of their result, including par-
tial differential equation and the martingale
approach.11

One of the aims of this entry is to give an idea
of how to get the Black-Scholes result by the
change of time method.

An Option Pricing Formula for a
Mean-Reverting Asset Model Using
a Change of Time Method
Some commodity prices, like oil and gas, ex-
hibit mean reversion. This means that they tend
over time to return to some long-term mean.
This mean-reverting model is a one-factor ver-
sion of the two-factor model made popular in
the context of energy modeling by Pilipovic
(1997). Black’s model (1976) and Schwartz’s
model (1997) have become standard tools to
price options on commodities. These models
have the advantage that they give rise to closed-

form solutions for some types of option.12 We
note that the recent book by Geman (2005) dis-
cusses hard and soft commodities (that is, en-
ergy, agriculture, and metals) and also presents
an analysis of economic and geopolitical issues
in commodities markets. Here, we show how
to get an explicit option pricing formula for
a continuous-time GARCH asset price model
using change of time.

One of the aims of this entry is to get an
explicit option pricing formula for a mean-
reverting asset using change of time method.

Swaps by Change of Time Method:
Heston Model
One of the applications of change of time
method is to value variance, volatility, covari-
ance, and correlation swaps for Heston’s (1993)
model. Change of time method for pricing of
different types of swaps for Heston’s model
and pricing of options has been considered in
Swishchuk (2004, 2007, 2008c). Applications of
change of time method to Lévy-based stochas-
tic volatility models, interest rates, and energy
derivatives have been considered in Swishchuk
(2008a, 2008b, 2010a, 2010b).

In this section, we apply the change of time
method to get the Black-Scholes formula and to
obtain an explicit option pricing formula for a
mean-reverting asset.

Change of Time Method
In this section we give a brief description of
the change of time method for the martingales
and stochastic differential equations. Through-
out this entry we consider (�,F ,Ft, P) to be a
probability space with a right continuous filtra-
tion (Ft)t≥0

Change of Time Method in
Martingale Setting
In this section, we describe the change of
time method for a martingale M(t) ∈ Mc,loc

2 ,
the space of local square integrable continuous
martingales.13
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If M(t) ∈ Mc,loc
2 , limt→+∞ < M > (t) = +∞

a.s., τt := inf{u :< M > (u) > t} and F̃t := Fτt ,
then the following process with changed time

W(t) := M(τt)

is an F̃t-Brownian motion (or standard Wiener
process).

Consequently, we can express a local martin-
gale M(t) using an F̃t-Brownian motion W(t)
and an F̃t-stopping time. (since {< M > (t) ≤
u} = {τu ≥ t} ∈ Fτu = F̃u)

M(t) = W(< M > (t))

Change of Time Method in a Stochastic
Differential Equation Setting
We consider the following generalization of the
previous results to an SDE of the following form
(without a drift)

dX(t) = α(t, X(t))dW(t)

where W(t) is a Brownian motion and α(t, X) is a
continuous and measurable by t and X function
on [0, +∞) × R.

The reason we consider this equation is if we
solve the equation, then we can solve a more
general equation with a drift β(t, X) using the
Girsanov transformation.14 The following re-
sult is used frequently to find a solution of
an SDE using change of time method. The fol-
lowing theorem is due to Ikeda and Watanabe
(1981).15

Let W̃(t) be a one-dimensional Ft-Wiener pro-
cess with W̃(0) = 0, given on a probability space
(�,F , (Ft)t>0, P) and let X(0) be an F0-adopted
random variable. Define a continuous process
V = V(t) by

V(t) = X(0) + W̃(t)

Let φt be the change of time process:

φt =
∫ t

0
α−2(φs, X(0) + W̃(s))ds

If

X(t) := V(φ−1
t ) = X(0) + W̃(φ−1

t )

and F̃t := Fφ−1
t

, then there exists F̃t-adopted
Wiener process W = W(t) such that (X(t), W(t))
is a solution of the initial equation on probabil-
ity space (�,F , F̃t, P).16

We note that the solution of the following
SDE

dX(t) = a (X(t))dW(t)

may be presented in the following form (which
follows from the previous theorem)

X(t) = X(0) + W̃(φ−1
t )

where a(X) is a continuous measurable func-
tion, W̃(t) is an ne-dimensional Ft-Wiener pro-
cess with W̃(0) = 0, given on a probability space
(�,F , (Ft)t≥0, P) and X(0) is anF0-adopted ran-
dom variable. In this case17

φt =
∫ t

0
a−2(X(0) + W̃(s))ds

and

φ−1
t =

∫ t

0
a2(X(0) + W̃(φ−1

s )ds

Examples: Solutions of Some SDEs18

1. Solution for Ornstein-Uhlenbeck (OU) Process
Using Change of Time.
Let St satisfy the following SDE:

dSt = −αStdt + σdWt

Then St may be presented in the following
form using the change of time method:

St = e−αt[S0 + W̃(φ−1
t )]

where φ−1
t satisfies

φ−1
t = σ 2

∫ t

0
(eαs(S0 + W̃(φ−1

s )))2ds

2. Solution for Vasićek Process Using Change of
Time.
Let St satisfy the following SDE:

dSt = α(b − St)dt + σdWt

Then St may be presented in the following form
using the change of time method

St = e−αt[S0 − b + W̃(φ−1
t )]
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where φ−1
t satisfies

φ−1
t = σ 2

∫ t

0
(eαs(S0 − b + W̃(φ−1

s )) + b)2ds

The above theorem may also be applied to
solve the Cox-Ingersoll-Ross (1985) equation,
mean-reversion equation for commodity price
(Pilipovic, 1997) and geometric Brownian mo-
tion equation (Black-Scholes, 1973).19

Black-Scholes Formula by Change
of Time Method
Let (�,F ,Ft, P) be a probability space with a
sample space �, σ -algebra of Borel sets F and
probability P. The filtration Ft, t ∈ [0, T] is the
natural filtration of a standard Brownian mo-
tion Wt, t ∈ [0, T], and FT = F .

Black-Scholes Formula
The well-known Black-Scholes (1973) formula
states if we have (B, S)-security market consist-
ing of riskless asset B(t) with interest rate r as a
constant

dB(t) = rB(t)dt, B(0) > 0, r > 0 (1)

and risky asset (stock) S(t)

dS(t) = μS(t)dt + σ S(t)dW(t), S(0) > 0
(2)

where μ ∈ R is an appreciation rate, σ > 0
is a volatility, then the option price formula
for European call option with pay-off function
f (T) = max(S(T) − K, 0) (K > 0 is a strike price)
has the following look

C(T) = S(0)
(y+) − e−rT K
(y−) (3)

where

y± :=
ln

(
S(0)
K

)
+

(
r ± σ 2

2

)
T

σ
√

T
(4)

and


(y) := 1√
2π

∫ y

−∞
e− x2

2 dx (5)

Solution of SDE for Geometric Brownian
Motion using Change of Time Method
The solution of equation (2) has the following
look:

S(t) = eμt(S(0) + W̃(φ−1
s )) (6)

where W̃(t) is a one-dimensional Wiener pro-
cess,

φ−1
t = σ 2

∫ t

0
[S(0) + W̃(φ−1

s )]2ds

and

φt = σ−2
∫ t

0
[S(0) + W̃(s)]−2ds

Black-Scholes Formula by Change of Time
Method
In a risk-neutral world the dynamic of stock
price S(t) has the following look:

dS(t) = rS(t)dt + σ S(t)dW∗(t) (7)

where

W∗(t) := W(t) + μ − r
σ

(8)

From (6) we have the solution of equation (7)

S(t) = ert[S(0) + W̃∗(φ−1
t )] (9)

where

W̃∗(φ−1
t ) = S(0)(eσ W∗(t)− σ2t

2 − 1) (10)

and W∗(t) is defined in (8).
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Let EP
∗ be an expectation under risk-neutral

measure (or martingale measure) P∗ (i.e.,
process e−rTS(t) is a martingale under the
measure P∗).

Then the option pricing formula for European
call option with payoff function

f (T) = max[S(T) − K , 0]

has the following look

C(T) = e−rT EP∗ [ f (T)]

= e−rT EP∗ [max(S(T) − K , 0)] (11)

Using change of time method we have the
following representation for the process S(t)
(see (9))

S(t) = ert[S(0) + W̃∗(φ−1
t )]

where W̃∗(φ−1
t ) is defined in (10). From (7)–(11),

after substitution W̃∗(φ−1
t ) into (9) and S(T) into

(11), it follows that

C(T) = e−rT EP∗ [max(S(T) − K , 0)]

= e−rT 1√
2π

∫ +∞

−∞
max[S(0)eσu

√
T+(r− σ2

2 )T

− K , 0]e− u2
2 du (12)

Let y0 be a solution of the following equation

S(0)eσ y
√

T+(r−σ 2/2)T = K

namely,

y0 =
ln

(
K

S(0)

)
− (r − σ 2/2)T

σ
√

T
.

Then (12) may be presented in the following
form

C(T) = e−rT 1√
2π

∫ +∞

y0
(S(0)eσu

√
T+(r− σ2

2 )T − K )

×e− u2
2 du (13)

Finally, straightforward calculation of the inte-
gral in the right-hand side of (13) gives us the

Black-Scholes result:20

C(T) = 1√
2π

∫ +∞

y0

S(0)eσu
√

T− σ2T
2 e−u2/2du

− Ke−rT[1 − 
(y0)]

= S(0)√
2π

∫ +∞

y0−σ
√

T
e−u2/2du − Ke−rT[1 − 
(y0)]

= S(0)[1 − 
(y0 − σ
√

T)] − Ke−rT[1 − 
(y0)]
= S(0)
(y+) − Ke−rT
(y−) (14)

where y± and 
(y) are defined in (4) and (5).

Explicit Option Pricing Formula for
Mean-Reverting Asset Model
(MRAM) by Change of Time
Method
In this section, we consider a risky asset St fol-
lowing the mean-reverting stochastic process
given by the following stochastic differential
equation

dSt = a (L − St)dt + σ StdWt (15)

where Wt is an Ft-measurable one-dimensional
standard Wiener process, σ > 0 is the volatility,
constant L is called the long-term mean of the
process, to which it reverts over time, and a > 0
measures the “strength” of mean reversion. We
find explicit solution of the equation (15) using
the change of time method, give some proper-
ties of the mean-reverting asset St, and present
an explicit option pricing formula for the
European call option for this mean-reverting as-
set model of commodity price.

Explicit Solution of SDE for MRAM
Equation

dSt = a (L − St)dt + σ StdWt

in (15) has the following solution

St = e−at[S0 − L + W̃(φ−1
t )] + L

where W̃(φ−1
t ) is a one-dimensional Wiener pro-

cess and

φ−1
t = σ 2

∫ t

0
(S0 − L + W̃(φ−1

t ) + eas L)2ds



526 Stochastic Processes and Tools

which follows from the substitution

Vt := eat(St − L)

and theorem above.

Explicit Option Pricing Formula for
European Call Option under
Risk-Neutral Measure
In this section, we are going to obtain an explicit
option pricing formula for a European call op-
tion under risk-neutral measure P∗ using the
change of time method.

Mean-Reverting Risk-Neutral Asset Model
Consider the model given by (15)

dSt = a (L − St)dt + σ StdWt

We want to find a probability P∗ equivalent to P,
under which the process e−rtSt is a martingale,
where r > 0 is a constant interest rate.

In a risk-neutral world the model in (15) takes
the following look:

dSt = a∗(L∗ − St)dt + σ StdW∗
t (16)

where

a∗ : = a + λσ, L∗ := aL
a + λσ

(17)

W∗
t = Wt + λ

∫ t

0
S(u)du (18)

and λ∈ R is a market price of risk, which follows
from the Girsanov theorem.21

Now, we are going to apply our method of
changing of time to the model (16) to obtain the
explicit option pricing formula.

Explicit Solution for Mean-Reverting
Risk-Neutral Asset Model
Applying the above results to our model (16)
we obtain the explicit solution (19) for our risk-
neutral model (16). The explicit solution for the
risk-neutral model given by (16) has the follow-
ing look

St = e−a∗t[S0 − L∗ + W̃∗((φ∗
t )−1)] + L (19)

where W̃∗(t) is an Ft-measurable standard
one-dimensional Wiener process in (18) under
measure P∗, (φ∗

t )−1 is an inverse function to φ∗
t :

φ∗
t = σ−2

∫ t

0
(S0 − L∗ + W̃∗(s) + ea∗φ∗

s L∗)−2ds

(20)
We note that

(φ∗)−1
t = σ 2

∫ t

0
(S0 − L∗ + W̃∗((φ∗

t )−1) + ea∗s L∗)2ds

where a∗ and L∗ are defined in (17).

Explicit Option Pricing Formula for European
Call Option under Risk-Neutral Measure
The payoff function fT for the European call
option equals

fT = (ST − K )+ := max(ST − K , 0)

where ST is an asset price, T is an expiration
time (maturity), and K is a strike price.

In this way (see (19)),

fT = [e−aT(S0 − L + W̃∗(φ−1
T )) + L − K ]+

= [S(0)e−a∗T eσ W∗(T)− σ
2T
2

+ a∗L∗e−a∗T eσ W∗(T)− σ2T
2

∫ T

0
ea∗se−σ W∗(s) σ2s

2

× ds − K ]+ (21)

The explicit option pricing formula for the
European call option under a risk-neutral mea-
sure for mean-reverting asset S(t) in (21) has the
following look:

C∗
T = e−(r+a∗)T S(0)
(y+) − e−rT K
(y−)

+ L∗e−(r+a∗)T [(ea∗T − 1) −
∫ y0

0
zF ∗

T (dz)]

(22)

where y0 is the solution of the following
equation

y0 =
ln

(
K

S(0)

)
+

(
σ 2

2 + a∗
)

T

σ
√

T

−
ln

(
1+ a∗ L∗

S(0)

∫ T
0 ea∗se−σ y0

√
s+ σ2s

2 ds
)

σ
√

T
(23)

y+ : = σ
√

T − y0 and y− := −y0,

a∗ : = a + λσ, L∗ := aL
a + λσ

(24)
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λ is the market price of risk and F ∗
T (dz) is the

distribution with characteristic function

φ∗
λ(T) = eiλ(ea∗T −1), i := √−1, λ ∈ C

This result can be obtained from the following
expression

CT : = e−rT EP∗ fT

= e−rT EP∗ [e−a∗T (S0 − L + W̃∗(φ−1
T )) + L∗ − K ]+

= 1√
2π

e−rT
∫ +∞

−∞
max[S(0)e−a∗T eσ y

√
T− σ2T

2

+ aLe−a∗T eσ y
√

T− σ2T
2

∫ T

0
ea∗se−σ y

√
s+ σ2s

2 ds

− K , 0]e− y2
2 dy

and above-mentioned results.

Connection with Black-Scholes Result: L∗ = 0
and a∗ = −r and Black-Scholes formula
follows!
If L∗ = 0 and a∗ = − r then we obtain from (22)

CT = S(0)
(y+) − e−rT K
(y−) (25)

where

y+ := σ
√

T − y0 and y− := −y0 (26)

and y0 is the solution of the following equation
(see (23))

S(0)e−rTeσ y0
√

T− σ2T
2 = K

or

y0 =
In

(
K

S(0)

)
+

(
σ 2

2 − r
)

T

σ
√

T
(27)

and


(x) = 1√
2π

∫ x

−∞
e− y2

2 dy

But (25)–(27) is exactly the well-known Black-
Scholes result!

In this way, we can see that the option pric-
ing formula in (22) for the mean-reverting asset
S(t) consists of a Black-Scholes part and an ad-
ditional part due to mean reversion.

The results of this section may be also used to
model and price variance and volatility swaps
in energy and commodity markets for assets
with stochastic volatility that are described

by a contunuous-time mean-reverting GARCH
model; see Swishchuk (2010a).

KEY POINTS
� The main idea of the change of time method is

to change time from t to a nonnegative process
T(t) with nondecreasing sample paths (e.g.,
subordinator).

� Many Lévy processes may be written as time-
changed Brownian motion.

� Lévy processes can also be used as a
time change for other Lévy processes (sub-
ordinators).

� Change of time can be used to introduce
stochastic volatility or solve many stochastic
differential equations.

� Using change of time, we can get an option
pricing formula for an asset following geo-
metric Brownian motion such as the Black-
Scholes formula.

� Using change of time, we can get an ex-
plicit option pricing formula for an asset fol-
lowing the mean-reverting process, such as
continuous-time GARCH process.

NOTES
1. Swishchuk (2007) and Swishchuk (2008c).
2. Madan et al. (1990).
3. Barndorff-Nielsen and Shiryaev (2010) state

the main ideas and results of the stochas-
tic theory of change of time and change of
measure.

4. Ikeda and Watanabe (1981).
5. Ikeda and Watanabe (1981), Chapter IV, Sec-

tion 4, p. 176.
6. Applebaum (2004), Barndorf-Nielsen et al.

(2001), Barndorf-Nielsen et al. (2003),
Bertoin (1996), Cont et al. (2004), and
Schoutens (2003).

7. Cont et al. (2004) and Schoutens (2003).
8. Cont et al. (2004).
9. Geman et al. (2001).

10. Carr et al. (2003).
11. Wilmott et al. (1995) and Elliott et al. (1999).
12. Wilmott (2000).
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13. Ikeda and Watanabe (1981), Theorem 7.2,
Chapter 2.

14. Ikeda and Watanabe (1981), Chapter 4,
Section 4.

15. Chapter IV, Theorem 4.3.
16. The proof of this theorem may be found

in Ikeda and Watanabe (1981), Chapter IV,
Theorem 4.3.

17. Ikeda and Watanabe (1981), Chapter IV,
Example 4.2.

18. Swishchuk (2007).
19. Swishchuk (2007).
20. Black and Scholes (1973).
21. Elliott et al. (1999).
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The Concept and Measures of Interest
Rate Volatility
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Abstract: The knowledge of interest rates and cash flows represents the basis for valuation of fixed
income financial instruments. In reality, not only are future interest rates random, but the future
cash flows of many securitized investments are also uncertain, as they depend (are “contingent”)
on interest rates. Valuation of rate options and embedded option bonds, including MBS and ABS,
requires sophisticated models of this randomness.

In this entry, we introduce the concepts of mar-
ket volatility and discuss how it is measured.
The dynamics of rates are subject to market
forces, mean reversion, and combinations of
diffusions and jumps.

BASIC DEFINITIONS AND
FIRST FINDINGS
We can’t tell in advance what interest rates
will be. Investors may be either enriched or
bankrupted from sudden changes in interest
rates. Financial institutions devote considerable
resources to risk management and hedging. Yet,
if future interest rates were deterministic, there
would be no need to hedge. Coping with uncer-
tainty is a central feature of investment markets.

The pricing of options and embedded-options
instruments utilizes a statistical concept to de-
scribe the magnitude of potential interest rates
changes. The key notion is the volatility of in-
terest rates. While this term conjures up images

of instability, flares of activity, and unpredict-
ability, it is actually a very specific description of
the range of possible outcomes. More precisely,
volatility can be defined as the standard devi-
ation of a rate’s annualized daily increments.
Table 1 provides an example for yields on the
10-year Treasury measured over 10 consecu-
tive business days. As part of the measurement,
we will be taking a daily time series and then
transforming into “absolute returns” and “rel-
ative returns”—much like measuring portfolio
performance.

The absolute rate changes are computed by
taking the difference between the interest rates
on successive days. The relative changes are
computed by dividing the absolute change by
the starting rate. For example, for the first day
the absolute change is 5.00343 − 5.03234 =
−0.0289. The relative increment is −0.0289/
5.03234 = −0.0057. In order to calculate the
daily volatility, we just take the standard devia-
tion of the daily absolute and relative change
series. In the example above, the standard
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Table 1 Example of Volatility Calculations

Absolute Relative
Date Rate Increments Increments

03-Jun-02 5.03234
04-Jun-02 5.00343 −0.0289 −0.0057
05-Jun-02 5.04900 0.0456 0.0091
06-Jun-02 5.01176 −0.0372 −0.0074
07-Jun-02 5.06165 0.0499 0.0100
10-Jun-02 5.03885 −0.0228 −0.0045
11-Jun-02 4.97500 −0.0639 −0.0127
12-Jun-02 4.95004 −0.0250 −0.0050
13-Jun-02 4.90280 −0.0472 −0.0095
14-Jun-02 4.80276 −0.1000 −0.0204

deviations are 0.048 (absolute increments) and
0.00966 (relative increments). The former num-
ber is the standard deviation for daily absolute
increments; the latter number represents that of
the daily relative changes. To compute volatil-
ity, we place these daily measures on an annual
basis scaling by the number of trading days in
the year (approximately 260):

Relative Volatility

= Daily Standard Relative Deviation ×
√

260

= 0.00966 ×
√

260 = 0.1557
Absolute Volatility

= Daily Standard Absolute Deviation ×
√

260

= 0.0480 ×
√

260 = 0.773

Thus, in our example of the 10-day yield se-
ries, we would calculate the annual volatility as
77.3 basis points (absolute) or 15.57% (relative).
The relative volatility times the average yield
for the period 0.1557 × 4.983 = 0.776 is close
to the absolute yield volatility of 0.773—as one
would expect.

The second relevant clarification may dam-
age a naı̈ve understanding of volatility as the
annual standard deviation. Volatility measures
only the pace of uncertainty; this concept does
not assume the daily-measured volatility re-
mains constant over time, just as when driving
in traffic with starts and stops there is a dif-
ference between instantaneous speed and the
average velocity. Third, an important assump-
tion for annualizing the daily volatilities is that

the daily increments are serially independent. If
there is a relationship between rate changes on
one day and another day, then we say there is se-
rial correlation. The “square-root rule” will not
be an accurate measure of the annual volatility
if there is serial correlation in the random pro-
cess. Figure 1 illustrates that volatility has been
volatile.

In the 1980s, both volatility measures exhib-
ited instability, although the relative one ap-
peared to be much more stable. However, since
the 1990s, the absolute volatility measure has
become more stable, oscillating around 1% (100
basis points). Based on these observations, it is
not hard to understand why during different
time periods, the relative volatility was mov-
ing inversely, and the absolute volatility di-
rectly, with respect to the rate level. Aside from
the explicit level-related effect, both volatil-
ity measures seemingly synchronously react to
economic disturbances. Pricing in the interest
rate options market reflects these important
findings.

Different points of the yield curve have dif-
fering volatility, too. This observation suggests
that not only do the rates have a “term struc-
ture,” but their volatility has a term structure as
well. A hump shape of such a volatility curve
is often observed (see Figure 2). It can be at-
tributed to (1) absence of change in the short
rates unless regulators take actions and (2) the
dampening force of the mean reversion. We will
explain both factors further in the entry.

A DIFFUSIVE MODEL FOR
RANDOMNESS
Can we describe the randomness mathemati-
cally? It is perhaps simpler than it sounds. In
fact, having become acquainted with volatility,
we did most of the task. A general diffusive
model for an interest rate process that describes
how interest rates will vary over time, r(t), will
have the following form:

dr = (Drift)dt + (Volatility)dz (1)
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Figure 1 History of Volatility for the 10-year Treasury Yield

What does this mean? Notations dr and dt re-
fer to small increments measured over infinites-
imally short time. Variable dz represents small
changes in z(t) which is called Brownian mo-
tion, also known as the Wiener process. It is the
source of randomness. We cannot control the
exact value of this variable. Drift and volatility

describe how the changes in rates are related
to changes in time and the random variable dz.
Mathematical model (1) can be thought of in the
following way: The change in interest rate over
a small time period is the result of a number
representing systematic drift times the amount
of time change plus a random shock scaled by
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Figure 2 Historical Volatility Term Structure for the Swap Rates

the amount of volatility.

�r = (Drift)(Passage of time) + (Volatility)

× (Random shock)

A Brief Excursion to Brownian
Motion
Brownian motion:

� Is continuous
� Is normally distributed
� Has a zero mean (“centered”)
� Has time increments that are serially indepen-

dent
� Has its own volatility scaled to 1

Therefore, z(t) has a standard deviation of
√

t
(for the same reason that a square root appears
in the annualization of daily volatility). Any
particular function z(t) is said to be a “real-
ization” or a “sample path” of the Brownian
motion. The Brownian motion, therefore, can
be thought of as a container of random paths
subject to the conditions described above. Fig-
ure 3 depicts a sample path and the single- and
double-standard deviation zones.

With the use of volatility multiples, we can
scale the rate process to any volatility level. The
drift variable simulates a systematic, nonran-
dom tendency. For example, it can model a cen-
tral tendency function known as mean reversion.
Equation (1) is called the stochastic differential
equation. Both multiples, drift and volatility do
not have to be constants. They can be functions
of time, t, and rate, r. Any particular specifi-
cation of drift(t,r) and volatility(t,r) leads to a
specific rate model, but not necessarily a good
one. At this stage, it is enough to understand
that a good model can be a strong quantita-
tive pricing tool. Although we cannot know
what the random variable z(t) is going to do,
we, at least, can simulate its behavior with a
large number of random scenarios. The Monte
Carlo method draws on this idea. On the other
hand, we may be able to do some intelligent
analytical work making the brute-force simu-
lations unnecessary. We could also make sure
that the model is consistent with (“calibrated
to”) prices of widely traded interest rate instru-
ments; then we will feel more confident apply-
ing it to the exotic options or the market for
mortgage-backed securities (MBSs) and asset-
backed securities (ABSs).
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MEAN REVERSION AND
MARKET STABILITY
Consider the following special form of equation
(1): dr = 5rdt + σdz. Can this equation model
an actual interest rate? Since the formula shows
that the change in interest rate increases with
changes in time, the average rate will continue
to grow. Utilizing calculus, we note that the so-
lution to this equation will not only grow with
time, but will grow exponentially as it contains
an e5t term. Since interest rates cannot increase
exponentially forever (at least, they never have),
we need to dismiss this formula as inappropri-
ate for the job.

How about dr = σdz? The drift is chosen to be
zero, and provided that the initial value r(0)
is known, the process will randomly evolve
around this value, on average. Whether the ini-
tial rate is high or low, the model will stay cen-
tered around it. The standard deviation, as we
already know, will grow as

√
t. This may not be

a very good thing either. A century from now,
the magnitude of the standard deviation will be
huge, at ten times annual volatility. Figure 1B
demonstrated that interest rates tend to stay
within a range.

Both models briefly reviewed above suffer
with the same disease: They are unstable. Ob-
servable objects in economy, finance, engineer-
ing, or physics tend to be stable; otherwise, they
would not be able to exist long enough to be ob-
served. The feature making financial markets
stable is known as mean reversion. It is sim-
ply a properly chosen specification of the drift
term that would ensure the dampening effect
(also known as central tendency). If the rate ran-
domly has grown too high or fallen too low, the
drift term will help “return” it back. Here is an
example:

dr = a (r∞ − r )dt + σdz (2)

where mean reversion parameter a > 0. This
time, the solution will contain e−at, a decaying
component that indicates stability. The mean
converges to parameter r∞, the long-term equi-
librium (now we see the point for this strange
notation). The standard deviation will grow
with time as

σ

√
(1 − e−2at)/2a

and converges to

σ/
√

2a
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Figure 4 Standard Deviation and Average Volatility for Different Values of a

as the horizon extends. Figure 4 compares the
standard deviation (lines launching from the
origin) and equivalent (“average”) volatility for
different levels of mean reversion including the
zero one (σ = 1% was assumed).

Mean reversion, therefore, stabilizes the mar-
ket. It also explains why volatility is typically
measured on a daily basis; in the presence
of mean reversion, the average volatility mea-
sured over a time horizon generally depends on
this horizon. For example, if a = 10%, only 95%
of actual volatility is seen in annual increments.

If r(t) in (2) is the short market rate, then ev-
ery other rate (the 5-year, the 10-year, etc.) can
be derived as a function of it. In particular, for
mean-reverting models, volatility of long rates
should eventually fade with maturity of the
rate, and it does happen as seen in Figure 2.
Mathematically, it is a direct consequence of the
mean reversion: The short rate’s uncertainty gets
limited going forward, thereby making long-
term bonds less volatile now. Economically, dis-
count rates for very remote cash flows should
be almost certain; otherwise their present val-
ues would be infinitely risky.

Does it seem that model (2) makes sense?
Well, Vasicek (1977) noticed it, as one of the
first interest rate models. It is been popular and

important since and was a basis for many of the
models that are used today.

THE RATE DISTRIBUTION
Equation (2) is a linear stochastic differential
equation disturbed by a Brownian motion. The
math tells us that the output of this equation,
rate r(t), is going to be normally distributed. Al-
though it makes the model tractable, the nega-
tive rates are not precluded, which may or may
not be a problem. Arguably, the actual rates
should stay positive—at least, they almost al-
ways have been. When using process (2), odds
of negative rates grow with future time, as the
present value falls. In addition, mortgages and
related securities are amortizing and may have
small balances and cash flows years from now.
Levin (2004) provided a quantitative support
for the use of normal distribution by showing it
does not distort options’ value materially.

The fact that a Brownian motion is normally
distributed does not require that the rate pro-
cess be such. For example, considering expo-
nential transformation R = exp(r) and using R
as the rate, rather than r, we ensure that the rate
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Figure 5 Jumpy and Continuous Interest Rates

remains positive. Such a process is said to have
lognormal distribution. The mean and standard
deviation for this known distribution is explic-
itly stated through the mean μ and the standard
deviation σ of the original variable, r(t):

E(R) = exp
(

μ + 1
2
σ 2

)

std(R) = exp
(

μ + 1
2
σ 2

)√
exp(σ 2) − 1

Another popular example is the squared
transformation, R = r2, that also guarantees that
rate R stays positive; the distribution of such
defined rate is known as noncentral χ2. For the
squared transformation,

E(R) = μ2 + σ 2

std(R) = σ
√

2σ 2 + 4μ2

INTEREST RATE JUMPS
Stochastic differential equation (1) is not the
most general mathematical form of a random
process. It applies only to diffusions, that is, con-
tinuous random processes. Stochastic calculus
considers many other forms of randomness; an
important one is called random jumps or ran-
dom events. To appreciate this type of random-

ness, let us consider the history of three rates,
the 1-month London Interbank Offered Rate
(LIBOR) (“LIBOR 01”), the 2-year swap (“LI-
BOR 24”), and the 10-year swap rate (“LIBOR
120”), depicted in Figure 5.

Both swap rates change almost continuously,
day after day, and little by little, at times
randomly oscillating, in response to the mar-
ket forces. The 1-month rate was changing in
a suspiciously smooth fashion between sud-
den jumps featuring apparent and prolonged
plateaus that are not seen for the swap rates.
For example, in 2002 to 2004, it had been barely
changing for a while, and then plunged re-
sponding to the Fed’s actions. Furthermore,
whereas the visual dynamics for all three rates
seem to resemble one another, statistical mea-
surements of correlation between daily incre-
ments overwhelmingly reject such a conclusion.
For this 18-year-long history (over 4,500 obser-
vations) we computed a small 7% correlation
between daily increments of the 1-month and
the 2-year rates, and an even smaller 4% corre-
lation between 1-month and 10-year rates. What
if we measure correlations between increments
in monthly averages (216 observations), thereby
filtering out the disparity between daily dy-
namics? Then the 7% goes way up to 46% and
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Table 2 Empirical Correlations between Periodic Increments, 1992–2010 History

Daily Monthly Quarterly Semiannually Annually

2-year to 1-month 7% 46 65 81 90
10-year to 1-month 4 24 40 51 71
Total observations 4,527 216 71 35 17

the 4% to 24%, and the interrate correlations
continue to improve steadily as we extend the
averaging period (Table 2).

These objective facts suggest that a stochas-
tic diffusive model suitable for swap rates may
be not perfectly appropriate for short rates. A
random jump component may be necessary to
explain the actual short-rate behavior and as-
sociated option pricing. One popular mathe-
matical form of jumps is the Poisson process.
It is simply a random occurrence of events de-
scribed by a single parameter λ called frequency
or intensity. The average number of events to
occur during a time interval of t is equal to
λt; curiously enough the variance of this num-
ber is equal to λt too. Probability that we will
have exactly j events during this time interval
is equal to e−λt(λt)j/j! It is only the period’s
length that really matters, not when the period
starts—for this reason, the Poisson process can’t
be used to describe, say, human deaths or bulb
failures when the attained age is a strong fac-
tor. However, it is plausible to assume that the
Poisson jumps describe some events in financial
markets.

Aside from the jumps’ arrival, the size of
jumps can be also random. Merton (1976) intro-
duced an option-pricing model when the un-
derlying process includes Poisson jumps with
normally distributed magnitude. Using math-
ematical notations, we can express the model
as

dr = (Drift)dt + (Volatility)dz

+ (Jump Volatility)dN (3)

where N is the Poisson-Merton jump variable.
When jump occurs, dN is drawn from the stan-
dard normal distribution N[0,1]; it stays 0 oth-

erwise. In a less strict notations,

�r = (Drift)(Passage of time)

+ (Volatility)(Random shock)

+ (Jump volatility)(Random jump)

The practical difference between random
shock and random jump is that, for a small
time interval, the former is small, but nonzero,
whereas the latter is mostly zero and rarely fi-
nite. Hence, equation (3) describes a more gen-
eral stochastic process combining diffusion and
jumps (“jump-diffusion”). Notably, mathemat-
ical variance of the Poisson process N(t) is too
proportional to the time horizon t. This fact al-
lows aligning interpretations of σ d ≡ Volatility
and σ j ≡ Jump Volatility: for very small t, the
standard deviation of r(t) is equal to

t
√

σ 2
d + λσ 2

j

meaning that the mixed volatility will be simply

σ =
√

σ 2
d + λσ 2

j

Furthermore, if we generalize the linear mean-
reverting Vasicek model given by (2) by adding
a jump term, then expressions for the mean and
the standard deviation of r(t) won’t change; it
will be enough to replace σ .

At first, it is tempting to interpret a jump-
diffusion process as diffusion with another
volatility scale. In reality, probability distri-
butions of these two stochastic patterns are
different. Inclusion of jumps “fattens” the distri-
bution’s tail (see Table 3) and is much more suit-
able for modeling and pricing rare events like
a corporation’s defaults or credit downgrade, a
financial crisis, reaching a very remote option’s
strike, or change in the short rate over a fairly
short horizon.
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Table 3 Comparison of Distribution’s Tails for Poisson-Merton Jump Processes

Value of λt Prob(r < μ − 4σ ) Prob(r < μ − 3σ ) Prob(r < μ − 2σ ) Prob(r < μ − 1σ )

0.2 0.789% 1.777% 3.505% 6.022%
1 0.158 0.753 3.357 12.568
5 0.027 0.303 2.559 14.732
Infinite (normal) 0.003 0.135 2.275 15.866

Models with Poisson-Merton processes con-
verge to normal when the value of λt is
large (frequent jumps are similar to diffusion),
but may produce significantly different results
when it is small.

Stochastic differential equations (1) and (3)
can be viewed as building blocks for the interest
rate modeling. Some models used today in the
financial industry are multifactor with the short
rate r(t) defined not as the solution to equations
(1) or (3), but as their sum. When modeling
LIBOR, neither the jump arrivals have to be
Poissonian, nor the magnitude has to be nor-
mal. For example, Chan et al. (2003) developed
a model with rate jumps timed to periodic Fed
meetings, and the magnitude being a random
multiple of 25 bps. There exist other modeling
views at interest rate dynamics that we don’t
cover in this entry including continuous ran-
domness with stochastic volatility levels; see
James and Webber (2000) for a comprehensive
overview.

KEY POINTS
� The most common way of simulating inter-

est rates’ uncertainty is employing stochas-
tic differential equations containing drift and
volatility terms.

� In older times, absolute volatility was direc-
tionally related to the rate’s level; this rela-
tionship has gradually disappeared.

� The drift term must contain a mean reversion,
that is, stabilization force.

� Actual short rates (LIBOR) have been his-
torically jumpy and require adding random
jumps to diffusions.
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Short-Rate Term Structure Models
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Abstract: Market randomness makes the fair value of a financial instrument an expectation. It also
requires a rigorous quantification of the dynamics of interest rates; that is, a well-defined interest
rate model. Prices of interest rate options and options embedded in bonds such as corporate or
agency callable debts, mortgage-backed securities, and asset-backed securities will firmly depend
on this modeling work. Contemporary interest rate models employ the available information about
currently observed forward rates and vanilla European options and are “calibrated” to them. The
relationships between bond rates should preclude arbitrage. Some analytically tractable models
ensure these properties explicitly. Selecting the “best” term structure model is becoming more
a conscientious task and less a matter of taste. Measuring “volatility skew” for widely traded
swaptions is a simple technique that yields rich results. Another method is computing volatility
indexes produced by different models and tracking their stability. Recent trading history confirms
normalization of the swaption market making the Hull-White model, the extended Cox-Ingersoll-
Ross model, or the squared Gaussian model more attractive than formerly popular lognormal
models. Single-factor models cannot value accurately curve options or some exotic derivatives that
are exposed to the yield curve shape and require multifactor modeling work. The affine theory offers
a systematic method of constructing such models. It also allows for jump-diffusion extensions that
may be necessary to explain volatility smile; that is, an excessive convexity of the Black volatility
as a function of strike.

This entry introduces a family of models for
stochastic behavior of interest rates and the
principles of their design widely used by mar-
ket participants.

THE CONCEPT OF
SHORT-RATE MODELING
Why do we call interest rate models term-
structure models? Aren’t there too many rates
for one model? The tree-based valuation ex-

amples found in many books and research
papers show us that we can value an any-
maturity bond and thereby reconstruct the en-
tire term structure using only dynamics of
one-period rate (see, for example, Davidson
et al., 2003 [Chapter 12], and Fabozzi, 1994).
Interest rate models operating with the short
(one-period) rate r(t) as their main object are
commonly referred to as “short-rate models.”
They are different by construction from so-
called “forward rate models,” such as the
Heath-Jarrow-Morton model (Heath, Jarrow,
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and Morton, 1992) or the Brace-Gatarek-
Musiela model (Brace, Gatarek, and Musiela,
1997). Both types of interest rate modeling are
designed to solve the same problems and are
widely used for valuation of fixed income op-
tions and embedded option bonds, but oper-
ate with different objects. Unlike the short-rate
modeling family, forward rate models employ
and randomly evolve the entire forward curve
of the short rate, f (t,T), in which the t is time
and T is the forward time, to which the short
rate applies.

We restrict our attention solely to the short-
rate modeling. This term does not assume that
any short-rate term structure model is a one-
factor model or depends only on the short rate.

The Arbitrage-Free Interrate
Relationship
Let us assume that we have a stochastic process,
possibly multifactor, describing the short rate
dynamics r(t). Let us denote PT(t) to be the mar-
ket price observed at time t of a T-maturity zero-
coupon bond; that is, a bond paying $1 at t + T.
This price is exponential to the yield to maturity
(“rate”) rT(t) of this bond: PT(t) = exp[−rT(t)T].
However, we can use the arbitrage argument
claiming that, once prices of instruments re-
flect rate expectations and risks, there should
exist no advantage or disadvantage in invest-
ing in the zero-coupon bond over continuous
reinvesting into the short rate. Hence, the same
price should be equal to

PT (t) = E

⎡

⎣exp

⎡

⎣−
t+T∫

t

r (τ )dτ

⎤

⎦

⎤

⎦

where E denotes the arbitrage-free expectation.
Equating these two expressions, we get

rT (t) = − 1
T

LnE

⎡

⎣exp

⎡

⎣−
t+T∫

t

r (τ )dτ

⎤

⎦

⎤

⎦ (1)

Formula (1) allows us to compute any-
maturity zero-coupon rates via some expecta-
tion involving random behavior of the short
rate. Of course, once we establish the entire
zero-coupon curve, we can restore a yield for
any other bond including a coupon-paying one.
To compute the expectation in (1), we must
know two things: stochastic equation (or equa-
tions) for r(τ ) and initial (time t) conditions. The
latter represents public information about the
market at time t and includes every factor affect-
ing the short rate. Therefore, it would be correct
to state that an any-maturity rate can be recov-
ered using only factors that determine the evo-
lution of the short rate. In particular, if only one
Brownian motion drives the short rate dynam-
ics, it will define the entire yield curve as well.

Consistency with the Initial
Yield Curve
Let us apply the interrate relationship (1) to the
initial point of time, t = 0:

rT (0) = − 1
T

LnE

⎡

⎣exp

⎡

⎣−
T∫

0

r (τ )dτ

⎤

⎦

⎤

⎦ (2)

The left-hand side of this formula is known
from today’s term structure of interest rates.
Hence, the short rate dynamics r(t) must be
such as to ensure (2) holds. In practical terms,
adjusting a rate process to fit the initial yield
curve is part of a more general task often termed
“calibration.” Without this necessary step, an
interest rate model can’t be used to value even
simple, option-free bonds. Computation of ex-
pectation in formulas (1) and (2) can be done
numerically or, in some models, analytically.

Consistency with European
Option Values
If a term structure model is built to value com-
plex derivative instruments, it must value, at
minimum, simple European options. Suppose
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we have an option that is exercised at a future
point of time t and generates a cash flow that
we denote g[r(t)]; that is, some nonlinear func-
tion of the short rate observed at t. Note that the
actual option’s exercise may be triggered by a
long, rather than the short, rate; nevertheless, it
will depend either on r(t) (single-factor models)
or all market factors (multifactor models) known
at t. The value of the option is going to be

option = E

⎡

⎣g[r (t)] exp

⎡

⎣−
t∫

0

r (τ )dτ

⎤

⎦

⎤

⎦ (3)

where E denotes the same expectation as before.
We may now demand that the short rate

process r(t) produces options values (3)
that match market prices. Most commonly,
term structure models are calibrated to
LIBOR caps, or European options on swaps
(swaptions), or both. These are standard,
widely traded European options. For example,
a call option on a T-maturity swap will gener-
ate cash flow equal to g[r(t)] = AT(t)[K − cT(t)]+

where A denotes annuity, c denotes the swap
rate, both measured at t, and superscript “+”
indicates that only a positive value is taken.
Another standard derivative is the LIBOR cap
made of “caplets,” that is, European calls on
some relatively short rate. A T-maturity LIBOR
caplet (T = 3 months for standard caps) expir-
ing at t pays [rT(t) − K]+ at t + T. To recognize
the time difference T between the caplet’s ex-
piry and the actual pay, we can move the pay-
off from t + T to t and express it as g[r(t)] =
[rT(t) − K]+/(1 + TrT(t)]. We then have to make
sure that formula (3) yields correct values for
the caplets. Note that the cap market does not
usually quote caplets directly; however, their
values can be assessed by bootstrapping.

SINGLE-FACTOR
SHORT-RATE MODELS
In the this section, we describe several dif-
ferent single-factor models, which employ the

short rate as the only factor. We also give some
evidence on the relative performance of the
models. For each of the models, we emphasize
three key aspects: the model’s formulation, its
arbitrage-free calibration, and the interrate rela-
tionship that recovers the entire term structure
contingent on the dynamics of the short rate.

The Hull-White/Vasicek Model
The Hull-White (HW) model (Hull and White,
1994) describes the dynamics of the short rate
r(t) in the form given by

dr = a (t)(θ (t) − r )dt + σ (t)dz (4)

Here, a(t) denotes mean reversion, σ (t) stands
for volatility; both can be time-dependent.
Function θ (t) is sometimes referred to as
“arbitrage-free” drift. This terminology is
caused by the fact that, by selecting proper θ (t),
we can match any observed yield curve. The
HW model was preceded by the Vasicek model
having θ (t) = 0. The short rate is normally dis-
tributed in this model, so the volatility repre-
sents absolute rather than relative changes.

This can be seen mathematically as (4) is a
linear equation disturbed by the Brownian mo-
tion (a normally distributed variable); the short
rate is normally distributed as well. Therefore,
its integral is normally distributed too, and the
expectation found in the right-hand side of for-
mulas (1), (2), and, in some cases, (3) can be com-
puted in a closed form. Without going through
the math we provide here the analytical calibra-
tion results to the observed short forward curve
f (t) for the constant-parameter case:

θ (t) = f (t) + 1
a

d f (t)
dt

+ σ 2

2a2 (1 − e−2at) (5)

The short rate’s expectation is found as

E[r (t)] = f (t) + σ 2

2a2 (1 − e−at)2 (6)

The last term in (6) is called the convexity ad-
justment; that is, the difference between mathe-
matically expected short rates in the future and
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the forward short rates. This adjustment is pro-
portional to volatility squared; for zero mean
reversion, it is simply equal to 1

2σ 2t. It is there-
fore up to financial engineers to make sure the
convexity adjustment is properly implemented
in a pricing system; it is very volatility sensitive.

The expected value for any long, T-maturity,
zero-coupon rate is proven to be in the
same form: forward rate + convexity adjust-
ment. This time, the exact formula for this
relation is

E[rT (t)] = fT (t)

+ σ 2

4a3T
(1 − e−a T )[2(1 − e−at)2

+(1 − e−2at)(1 − e−a T ) (7)

Any long zero-coupon rate is normally dis-
tributed too and proven to be linear in the short
rate; deviations from their respective mean lev-
els are related as

�rT

�r
≡ rT (t) − E[rT (t)]

r (t) − E[r (t)]
= 1 − e−a T

a T
≡ BT

(8)
The function BT of maturity T plays an impor-

tant role in the HW model. It helps, for example,
to link the short-rate volatility to the long-rate one
and explicitly calibrate it to the market. If a = 0,
this function becomes identical to 1, regardless
the maturity T. This important special case al-
lows for a pure parallel change in the entire
curve (every point moves by the same amount).
This particular specification can be suitable for
standardized risk measurement tests.

The HW model is a very tractable arbitrage-
free model, which allows for the use of
analytical solutions as well as Monte Carlo sim-
ulation. The volatility σ and mean reversion a
can be analytically calibrated to European op-
tions on zero-coupon bonds. Most commonly,
the HW model is calibrated to either a set of
short-rate options (LIBOR caps) or swaptions.
In the later case, very good approximations can
be constructed (see Levin, 2001; Musiela and
Rutkowski, 2000). The model’s chief drawback
is that it produces negative interest rates. How-
ever, with mean reversion, the effect of negative

rates is reduced. The rate history of the 1990s
and 2000s supports this type of formulation of
a term structure model.

The Cox-Ingersoll-Ross Model
The Cox-Ingersoll-Ross model (CIR model) is
a unique example of a model supported by
the general equilibrium arguments (see Cox,
Ingersoll, and Ross, 1985). CIR argued that the
fixed income investment opportunities should
not be dominated by neither expected return
(the rate), nor the risk. The latter was associ-
ated with the return variance, thus suggesting
that volatility-squared should be of the same
magnitude as the rate:

dr = a (t)(θ (t) − r )dt + σ (t)
√

r dz (9)

Equation (9) is actually a no-arbitrage exten-
sion to the “original CIR” that allows fitting
the initial rate and volatility curves. Since the
volatility term is proportional to the square root
of the short rate, the latter is meant to remain
positive. The extended CIR model is analyti-
cally tractable, but to a lesser extent than the
HW model. Perhaps the most important result
of CIR is that the long zero-coupon rates are also
proven linear in the short rate—in line with (8).
However, the slope function has now a quite
different form; it depends on both maturity T
and time t and is found as BT(t) = −b(t,t + T)/T.
Function b(t,T) used in this expression solves
a Ricatti-type differential equation, considered
for any fixed maturity T:

db(t, T)
dt

= a (t)b(t, T) − 1
2
σ 2(t)b2(t, T) + 1

(10)
subject to terminal condition b(T,T) = 0.

If the mean reversion a and “CIR volatility” σ

are constant (the “original CIR”), equation (10)
allows for an explicit solution. In this case, b(t,T)
is a function of T − t only, and BT is appeared
to be time-independent:

BT = 2(eγ T − 1)
(γ T + a T)(eγ T − 1) + 2γ T

(11)
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where γ = √
a2 + 2σ 2.

Without a mean reversion, this formula re-
duces to a more concise

BT = tanh(γ T/ 2)
(γ T/ 2)

Note that this ratio is always less than 1. This
means that the long rates are less volatile than
the short one, even without a mean reversion.
This is in contrast to the HW model where, with
a = 0, the yield curve would experience a strictly
parallel reaction to a short rate shock.

Generally speaking, calibration to the cur-
rently observed short forward curve f (T) can-
not be done as elegantly and explicitly as in the
HW model. Once the b(t,T) function is found,
the calibrating function θ (t) satisfies an integral
equation:

− f (T) =
T∫

0

db(t, T)
dT

θ (t)a (t)dt + db(0, T)
dT

r0

(12)

Numerical methods, well developed for inte-
gral equations, should be employed.

It is established that all zero-coupon rates,
under the CIR model, have noncentral χ2 dis-
tributions and remain positive. Economic ratio-
nale, nonnegative rates, and analytic tractability
have made the CIR model deservedly popular;
it is one of the most attractive and useful in-
terest rate models. It is also consistent with the
Japanese market and some periods of the U.S.
rate history when rates were very low.

The Squared Gaussian Model
To describe the squared Gaussian model (SqG
model, and also known as the quadratic model),
we employ a linear differential equation (4) only
to define an auxiliary variable x(t); we then de-
fine the short rate in a form of its square:

dx = −a (t)xdt + σ (t)dz

r (t) = [R(t) + x(t)]2 (13)

For convenience, we removed previously
used arbitrage-free function θ (t) from the first

equation and introduced a deterministic cal-
ibrating function R(t) to the second equation
serving the same purpose. Note that we could
have introduced the HW model similarly by
defining the short rate as r(t) = R(t) + x(t). Ito’s
lemma allows us to convert model (13) to a sin-
gle stochastic differential equation for the short
rate:

dr = [2R′√r − 2a (r − R
√

r ) + σ 2]dt

+2σ
√

r dz (14)

where R′ stands for dR/dt. The SqG model has
an apparent similarity to the CIR model in that
its volatility term is proportional to the square
root of the short rate, too. However, comparing
stochastic equations (14) and (9) we see that
they have different drift terms.

The SqG model has been studied by Beagle-
hole and Tenney (1991), Jamshidian (1996), and
Pelsser (1997), among others. The most notable
fact established for the SqG model is that any
zero-coupon rate rT(t) is quadratic in x(t) that is
linear in the short rate r(t) and its square root√

r (t):

(T − t)rT (t) = A(t, T) − B(t, T)
√

r (t)

−C(t, T)r (t) (15)

Functions A, B, and C satisfy a system of
ordinary differential equations:

A′ = BR′ + σ 2( 1
2 B2 + C) + aRB (16a)

with A(T,T) = 0

B ′ = aB − 2CR′ − 2aCR − 2σ 2BC (16b)

with B(T,T) = 0

C ′ = 1 + 2aC − 2σ 2C2 (16c)

with C(T,T) = 0
where, for brevity, A′ and the like denote

derivatives with respect to time t and the de-
pendence of all functions on t and T is omitted.
Note that all the terminal conditions are set to
zero. Indeed, once t is equal to T, both sides
of the relationship (15) must become zero for
any value of r; this is possible if and only if
functions A, B, and C turn to zero. Much like
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in the CIR model, equation (16c) for the linear
term’s slope, this time denoted via C, is of a Ric-
cati type (see Boyle, Tian, and Guan, 2002) and
can be solved in a closed-end form. In fact, it
is identical to already solved equation (10) ex-
cept it operates with a doubled mean reversion
and a doubled volatility. Other equations in (16)
and calibration to the initial yield curve can be
solved numerically.

The short rate has a noncentral χ2 distribution
with 1 degree of freedom. Long rates are mix-
tures of normal and χ2 deviates. Like the CIR
model, the SqG model ensures positive rates;
the square-root specification of volatility is suit-
able for many options. Due to some analytical
tractability and known form for long rates, the
volatility function and mean reversion can be
quite accurately calibrated to traded options.

The Black-Karasinski Model
Once a very popular model, the Black-
Karasinski model (BK model) expresses the
short rate as r(t) = R(t)exp[x(t)], where, as in
the previous case, random process x(t) is nor-
mally distributed (see Black and Karasinski,
1991). The short rate is, therefore, lognormally
distributed. Assuming the same process for x(t)
we can write the stochastic differential equation
for the short rate as

dr = r
(

R′

R
+ 1

2
σ 2 − a ln

r
R

)
dt + rσdz (17)

The rate’s absolute volatility is therefore pro-
portional to the rate’s level. Although the en-
tire short-rate distribution is known (includ-
ing the mean and variance), no closed-form
pricing solution is available. This is because
the cumulative discount rate, the integral of r,
has an unknown distribution. Traditionally, the
BK model is implemented on a tree. Calibra-
tion to the yield curve and volatility curve can
be done using purely numeric procedures. For
example, one could iterate to find R(t) period-
by-period until all the coupon bonds or
zero-coupon bonds (used as input) are priced

exactly. Alternatively, one could find approxi-
mate formulas and build a faster, but approxi-
mate scheme.

Despite its past popularity, the BK model’s
main assumption, the rate’s lognormality, is not
supported by the recent rate history. The volatil-
ity parameter σ entering the BK model is not
the same as the Black volatility typically quoted
for swaptions or LIBOR caps. For example, se-
lecting σ = 0.15, a = 0 does not ensure 15%
volatility even for European options on short
rates (caplets). Hence, calibration of the model
to volatilities found in the option market is not
an easy task.

The Flesaker-Hughston Model
The Flesaker-Hughston model (FH) is an in-
teresting model because it is different from all
previously described ones in that it allows for
computing the coupon rates analytically (see
Flesaker and Hughston, 1996). The model starts
with defining a random process M(t), which is
any martingale starting from 1, and two de-
terministic positive functions A(t) and B(t), de-
creasing with time t. Then, at any point of time t,
a zero-coupon bond maturing at T has its price
in a rational functional form of M(t):

P(t,T) = A(T) + B(T)M(t)
A(t) + B(t)M(t)

(18)

Taking the natural logarithm of this expres-
sion, changing the sign, and dividing it by T −
t gives us, of course, the zero-coupon rate. In
order to derive a coupon rate c(t,T), let us recall
that a coupon-bearing bond generates periodic
payments at a rate of c and returns the princi-
pal amount ($1) at maturity. Let us denote the
time-t value of this bond as Pc(t,T):

Pc(t,T) =
n∑

i=1

c P(t, ti ) + P(t,T)

where ti are the timings of coupon payments,
with tn = T. To express the par coupon rate
c, let us equate this Pc(t,T) to 1 and substitute
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postulated expression (18) for all discount
factors:

c(t, T) = A(t) − A(T) + [B(t) − B(T)]M(t)∑n
i=1 [A(ti ) + B(ti )M(t)]

r (t) = − A′(t) + B ′(t)M(t)
A(t) + B(t)M(t)

(19)

Hence, all coupon rates and the short rate are
too rational functions of M(t). If we select a pos-
itive martingale process M(t); for example, a
lognormal one, dM = σMdz, then all rates will
stay positive. Functions A(t) and B(t) can fit the
initial term structure of rates and volatilities.
(See Flesaker and Hughston, 1996, or James and
Webber, 2000, for additional details.)

Other Single-Factor Models
There exists a fair amount of “named” models
not mentioned in this entry thus far. They differ
in specifications of drift and volatility functions.
They include the Ho-Lee model, the Black-
Derman-Toy model, and the Brennan-Schwartz
model. We will briefly review some of them.

A predecessor to the HW model, the Ho-Lee
model (HL model) was offered as a discrete-
time, arbitrage-free, model (see Ho and Lee,
1986). Its continuous version is equivalent to the
HW model with zero mean reversion. Hence, all
analytical statements made for the HW model
are valid for the HL model.

The Black-Derman-Toy model (BDT model)
is a lognormal short-rate model with endoge-
nously defined mean reversion term equal to
σ ′(t)/σ (t) (see Black, Derman, and Toy, 1990).
This specification means that a constant volatil-
ity leads to a zero mean reversion; a growing
short-rate volatility function σ (t) causes a nega-
tive mean reversion, thereby destabilizing the
process. Once very popular in financial indus-
try, BDT was replaced by the BK model; both of
these models are now recognized as outdated.

The Brennan-Schwartz model is a pro-
portional volatility, mean-reverting, short-rate
model (see Brennan and Schwartz, 1979). In-
troduced in 1979 as an equilibrium model, it
has some similarity in its volatility specification

to lognormal models; however, rates are not
lognormally distributed.

Calibration Issues
The Vasicek model and the original Cox-
Ingersoll-Ross model laid the foundation of
term structure modeling. Despite their unques-
tionable historical importance, traders almost
never employ them today. The reason is fairly
simple: Built with constant parameters, these
models can’t be calibrated to the market accu-
rately enough. The extensions, known as the
Hull-White (“extended Vasicek”) model and
the extended CIR model, allow for selecting
time-dependent functions a(t), σ (t), and θ (t) so
that the model produces exact or very close
prices for a large set of widely traded fixed
income instruments, ranging from option-free
bonds (or swaps) to European (“vanilla”) op-
tions on them and more. In particular, function
θ (t) [or R(t)] is normally selected to fit the entire
option-free yield curve as formula (5) demon-
strates. In contrast, functions a(t), σ (t) are usu-
ally found to match prices of European options.
For example, using just a pair of constants (a, σ )
one can match exactly prices of two options, for
example, a 1-year swaption on the 2-year swap
and 10-year swap. Clearly, we can match many
more expiration points if we make a(t), σ (t) time
dependent. In some systems, volatility function
is allowed to be time dependent, but mean re-
version remains a positive constant. This way,
one can fit options’ expiration curve only on
average, but the model remains stable and ro-
bust. Note that a negative mean reversion may
destabilize the dynamic process.

As we pointed out, single-factor models
possess various degrees of analytical tractabil-
ity. When using the HW model, a large
portion of calibration work can be done
analytically—starting from formula (5). The
CIR model and the SqG model are somewhat
analytical, but, practically speaking, require nu-
merical solutions to ordinary differential equa-
tions. The BK model has no known solution
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at all. A lack of analytical tractability doesn’t
preclude using numerical methods or efficient
analytical approximations that are beyond this
entry.

Single-factor models can’t be calibrated to all
market instruments. For example, each of the
models we have considered thus far creates cer-
tain dependence of a European option’s value
(hence the implied volatility) on an option’s
strike known as volatility skew. Once a model
is selected, luckily or not (see the next section),
the skew implied by it cannot be changed by the
model’s parameters. Another problem is that
all rates are perfectly correlated in any single-
factor model. Hence, none of them can replicate
values of “spread options” or “curve options,”
that is, special derivatives that are exercised
when the yield curve flattens or steepens. The
solution may lie in using multifactor models as
discussed further in this entry.

WHICH MODEL IS BETTER?
The HW model, the CIR model, the SqG model,
and the BK model are special cases of a more
general class of “CEV models” introduced in
1980s:

dr = (Drift)dt + σrγ dz (20)

Parameter γ is called constant elasticity of
variance (CEV). For γ = 0 we may have the
HW model; for γ = 0.5, the CIR model or the
SqG model; for γ = 1, the BK model. There ex-
ist no specific economic arguments supporting
the rγ functional form for volatility. Often, the
CEV constant lies between 0 and 1, but it is not
necessary.

Measuring Volatility Skew
Blyth and Uglum (1999) linked the CEV con-
stant to the volatility skew; that is, its depen-
dence of the Black volatility (also called implied
volatility) on the option’s strike, found in the
swaption market. They argue that market par-
ticipants should track the Black volatility ac-

cording to the following simple formula:

σK

σF
≈

(
F
K

) 1−γ

2

(21)

where σ K is the Black volatility for the option
struck at K, σ F is the Black volatility for the “at-
the-money” option struck at today’s forward
rate, F. Importantly, one can recover the best
CEV constant to use in the model by simply
measuring the observed skew.

The skew measured for the 5-year option
on the 10-year swap quoted for the period of
1998 to 2004 suggests γ = 0.14 being optimal,
on average. This means that the most suitable
model lies between the HW model and the
CIR/SqG model (Figure 1). It is also seen that
low-struck options are traded with a close-to-
normal volatility, while high-struck options are
traded with a square-root volatility profile. This
fact may be a combination of the “smile” effect
discussed at the end of this entry and the broker
commission demand. As shown a little further,
the square-root volatility specification becomes
very suitable in a low-rate environment.

The most recent tendency has been clearly to-
ward γ = 0, that is, normality (Figure 2), thereby
making the HW model the best single-factor
model choice currently. Note that neither the
rate history of the 20-year period from 1991 to
2010, nor the available swaption volatility skew
data support lognormality, although earlier rate
history did appear to support γ > 1.

Using the Volatility Index
To compare rate models, it is useful to design a
market volatility index—a single number reflect-
ing the overall level of option volatility deemed
relevant to the interest rate market. Levin (2004)
describes a method of constructing such an
index by first designating a family of at-the-
money (ATM) swaptions (“surface”); that is, op-
tions on swaps struck exactly at current forward
rate. Then, assuming zero mean reversion, one
can optimize for the single short-rate volatility
constant σ (volatility index) best matching the
swaptions’ volatility surface, on average. This
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measure is model-specific; unlike some other
volatility indexes, it is not a simple average of
swaption volatilities. The internal analytics of
each model, exact or approximate, are used to
translate the short rate volatility constant into
swaption volatilities used for calibration. Note
that this constant-volatility, zero mean rever-
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sion setup is employed only to define the in-
dex; it is not a recommended setup for pricing
complex instruments.

Figure 3 depicts the history of three volatil-
ity indexes (sigmas) computed from the begin-
ning of 2000 for the HW model, the BK model,
and the squared Gaussian model. Each index is
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calibrated to the same family of equally
weighted ATM swaptions on the 2-year swap
and the 10-year swap with expirations ranging
from 6 months to 10 years. We add for compar-
ison a line for the 7-year rate level, and scale all
four lines so that they start from 1.0.

Figure 3 strongly confirms the normalization
of the interest rate market; the volatility index
constructed for the HW model has gradually
become the most stable one. For example, the
swap rate plunged a good 60% between Jan-
uary 2000 and June 2003, but the HW volatility
index barely changed. The two other models
produced volatility indexes that looked mirror-
reflective of the rate level (the lognormal model
does by far the worst job). A similar observation
applies to the 2007–2010 period.

Interestingly enough, the SqG index was sta-
ble for most of 2003 and could handle the
record-setting rate plunge. This confirms that
the square root volatility pattern may outper-

form others when the rates are very low. These
findings are consistent with the swaption skew
measures we have discussed. This is not a coin-
cidence at all. People who set the market for the
ATM swaptions are the same ones who trade
out-of- and in-the-money options.

In the sections to follow we will discuss how
to extend the short-rate modeling framework to
multifactor models and jump-diffusion models,
which are often constructed in so-called affine
analytical form.

ADDING A SECOND FACTOR
TO SHORT-RATE MODELS
Let us consider a fixed income instrument that
pays floating coupons indexed to some short
rate (such as the 3-month LIBOR). The payer
does not want to pay too much in case the
curve inverts, so a cap is established equal
to the level of some long, say 10-year, rate.
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How much is this cap worth? Practically speak-
ing, the curve’s inversion is not so rare a phe-
nomenon of the fixed income market. However,
if the initial curve is steep, we will greatly un-
dervalue the cap using any of the single-factor
models described above. This example high-
lights the limitation of single-factor modeling:
All rates change in unison. Instruments that
contain “curve options,” that is, asymmetric re-
sponse to a curve’s twist or butterfly moves,
cannot be valued using single-factor term
structures. Much more complex examples re-
quiring multifactor modeling include Ameri-
can or Bermudan options, certain collateralized
mortgage obligations (CMOs) that are much
shorter or longer than the collateral itself.

Mathematically, a two-factor normal model
can be constructed in a fairly simple way.
Suppose that, instead of having one auxiliary
Gaussian variable x(t), we have two, x1(t) and
x2(t), that follow linear stochastic differential
equations:

dx1 = −a1(t)x1dt + σ1(t)dz1

dx2 = −a2(t)x2dt + σ2(t)dz2 (22)

Brownian motions z1(t) and z2(t) may have cor-
related increments, corr[dz1,dz2] = ρ. Let us as-
sume that ρ is equal to neither +1 nor –1, and
mean reversions a1(t) and a2(t) are positive and
not identical to one another. These conditions
ensure that the system (22) is stable and cannot
be reduced to single-factor diffusion.

We now define the short rate simply as r(t) =
R(t) + x1(t) + x2(t) where deterministic function
R(t) is chosen to fit the initial yield curve. The
short rate will be normally distributed; it can
be shown that such a model possesses analyti-
cal tractability similar to the Hull-White single-
factor model, see Levin (1998). In particular, the
calibrating function R(t) can be computed in a
closed-end form given the forward curve, f (t).
The long zero-coupon rates are linear in x1(t)
and x2(t),

rT (t) = A(t, T) + B1T (t)x1(t) + B2T (t)x2(t)

Functions B’s depend on time t only if the mean
reversions a’s do. If a’s are constant, then B’s
depend only on maturity T and have a familiar
form: BiT = (1 − e−ai T )/ai T , i = 1 or 2.

The normal deviates, x1(t) and x2(t), bear
no financial meaning. However, we can com-
plement the short rate with an independent
“slope” variable, v = x1 + βx2 with

β = −σ1(σ1 + ρσ2)/σ2(σ2 + ρσ1) �= 1

The new variable has increments dv mathe-
matically uncorrelated to dr; it therefore can be
interpreted as the driver of long rates indepen-
dent of the short rate. The underlying processes,
x1(t) and x2(t), can be transformed differently,
thereby creating a pair of state variables with
desired financial meanings, see Levin (2001).
Levin (1998) developed a three-point calibra-
tion method that analytically computes param-
eters of the two-factor model using volatility
of and correlation between the short rate and
two arbitrary long rates. The method allows for
constructing term structure models with inter-
rate correlations selected by the user and main-
tained steadily over time. The latter property
can be achieved by constructing a model with
constant mean reversion parameters a1 and a2,
and a constant σ 1(t)/σ 2(t) ratio.

Interestingly enough, all stable two-factor
normal models having two real eigenvalues
can be presented in the above-written form.
Hull and White (1994) introduced a two-factor
model that was designed in the form of a single-
factor HW model for the short rate (factor 1)
with a random long-term equilibrium rate (fac-
tor 2). Their approach draws on Brennan and
Schwartz (1979). It is now clear that such an
appeal to the financial meaning was unneces-
sary, and the general mathematical approach is
as good or even better.

If we transform x1(t) and x2(t) nonlinearly,
we will get multifactor versions of other pre-
viously considered models. For example, we
could define the short rate as r(t) = R(t)exp[x1(t)
+ x2(t)], thereby creating a two-factor lognor-
mal model. As one would expect, these models
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inherit main properties of the single-factor par-
ents, but add a greater freedom in changing the
curve’s shape and calibrating to volatility and
correlation structures.

THE CONCEPT OF AFFINE
MODELING
Affine modeling is a term introduced by Duffie
and Kan (1996). It is a class of term struc-
ture models, often multifactor, where all
zero-coupon rates are linear functions of fac-
tors. Therefore, the zero-coupon bond pricing
has an exponential-linear form. Let us revisit the
general stochastic model given by

dr = (Drift)dt + (Volatility)dz

Duffie and Kan showed that the model will be
affine if drift and the square of volatility are
both linear in rate r, or, more generally, in all
market factors. In order to illustrate the main
idea, let us denote the drift term as μ(x,t), the
volatility term as σ (x,t), and assume for the sake
of simplicity that r = x, the lone market factor.

Every financial derivative satisfies a partial
differential equation, see Duffie (1996). The left-
hand side of this equation is equal to the invest-
ment’s arbitrage-free expected return, which is
the product of price (P) by the short rate (r). The
right-hand side collects all the terms arising in
the course of random behavior of P(x,t): the de-
cay, the drift, the diffusion, and cash received.
In particular, a zero-coupon bond receives no
cash; its equation is

rP(x, t) = ∂P(x, t)
∂t

+ μ(x, t)
∂P(x, t)

∂x

+1
2
σ 2(x, t)

∂2P(x, t)
∂x2 (23)

subject to the terminal condition, P(x,T) = 1
(bond pays sure $1 at maturity regardless of
the market conditions). Suppose now that func-
tions μ(x,t) and σ 2(x,t) are linear in x:

μ(x, t) = α1(t) + α2(t)x;

σ 2(x, t) = β1(t) + β2(t)x

It turns out that the solution to equation (23)
will have an exponential-linear form:

P(x, t) = exp[a (t, T) + b(t, T)x]

To prove this conjecture, we place the above
expressions into equation (23), take all deriva-
tives, and observe that all the terms are either
independent of x or linear in x. Collecting them,
we get two ordinary differential equations
defining unknown functions a(t,T) and b(t,T):

b′
t(t, T) = −α2(t)b(t, T) − 1

2
β2(t)b2(t, T) + 1

b(T, T) = 0 (24)

a ′
t(t, T) = −α1(t)b(t, T) − 1

2
β1(t)b2(t, T)

a (T, T) = 0 (25)

The terminal conditions for a(t,T) and b(t,T)
are dictated by the terminal condition for the
price function, P(x,T) = 1. Note that equation
(24) defines function b(t,T); once it is solved, we
can solve (25) for a(t,T).

It is clear that the HW model and the CIR
model we considered earlier in the entry were
affine. Indeed, in the HW model, β2 is zero, α2

is −a, β1 is σ 2, and (24) becomes a linear dif-
ferential equation. In the CIR model, β1 is zero,
α2 is again −a, and β2 is σ 2; (24) becomes the
Ricatti equation (10). In fact, these two models
cover all most important specifications of the
affine modeling, for the single-factor case. The
concept of affine modeling lets us build mul-
tifactor models systematically. The two-factor
Gaussian model we introduced above was
affine, too. Much more complex three-factor
affine models were analyzed by Balduzzi et al.
(1996) and by Dai and Singleton (2000). Among
early works we should mention the model of
Longstaff and Schwartz (1992). In their model,
both the short rate and its volatility are affine in
two factors that follow CIR-like processes.

The Jump-Diffusion Case
All term structure models considered thus far
are based on diffusion—a continuous random
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disturbance known as Brownian motion
(Wiener process), z(t). Short rates are some-
what jumpy and may require an addition of
the Poisson process for modeling. The jump-
diffusion extension to the affine modeling con-
cept has been considered by many researchers
(see Duffie and Kan, 1996; Das et al., 1996; and
Das, 2000). The key point is that, under certain
conditions, addition of jumps does not change
the complexity of the problem; long rates re-
main affine in factors and even equation (24)
for b(t,T) remains unaffected.

Under the presence of jumps, the main
stochastic differential equation for the short rate
(or other market factors) gets an additional term
as shown below:

dr = (Drift)dt + (Volatility)dz + (Jump Volatility)dN

where N is the Poisson-Merton jump variable
having intensity of λ. When a jump occurs,
dN is drawn from the standard normal distri-
bution N[0,1]; it stays 0 otherwise. Continuing
our affine-model notational style, let us denote
the jump volatility term as σ j(t) and the jump
intensity as λ(x,t). Note that we allow jump’s in-
tensity, but not the size, to be factor dependent.

With jumps, the partial differential equation
(23) will get one additional term to its right-
hand side. If a jump of size δ occurs, the price
of a zero-coupon bond, P(x,t) before the jump,
will become P(x + δ,t). The expected change of
price can be written as

∞∫

−∞
[P(x + δ, t) − P(x, t)]n[0,σ j ](δ)dδ

where, as usual, n denotes a normal density
function. This expression captures the random-
ness of the jump’s size, not the randomness of
the jump’s occurrence. Multiplying it by the
probability of a jump to occur between t and
t + dt (that is, λdt) we get the cumulative ex-
pected effect of price change. Finally, dividing
by dt we get the annualized return component
caused by the jumps. Therefore, the partial-

differential equation (23) will now become a
partial integral-differential equation:

r P(x, t) = ∂ P(x, t)
∂t

+ μ(x, t)
∂ P(x, t)

∂x
+ 1

2
σ 2(x, t)

∂2 P(x, t)
∂x2

+λ(x, t)

∞∫

−∞
[P(x + δ, t) − P(x, t)]n[0,σ j ](δ)dδ

(26)

For the diffusion case, we required functions
μ(x,t) and σ 2(x,t) to be linear in x. Let us extend
this condition to the jump’s intensity: λ(x,t) =
γ 1(t) + γ 2(t)x. It turns out that the exponential-
linear form P(x,t) = exp[a(t,T) + b(t,T)x] still
fits the equation. Again, collecting terms, we
get two ordinary differential equations defining
unknown functions a(t,T) and b(t,T):

b′
t(t, T) = −α2(t)b(t, T) − 1

2
β2(t)b2(t, T)

−γ2(t)[e
1
2 b2(t,T)σ 2

j (t) − 1] + 1

b(T, T) = 0 (27)

a ′
t(t, T) = −α1(t)b(t, T) − 1

2
β1(t)b2(t, T)

−γ1(t)[e
1
2 b2(t,T)σ 2

j (t) − 1]

a (T, T) = 0 (28)

Notably, equation (27) defining function b(t,T)
will coincide with previously discussed equa-
tion (24) if γ 2 = 0. If we have a single-factor
model, the linear relationship between long
rates and the short rate will have a slope of
b(t,t + T)/T. This slope, found for an affine dif-
fusive model, won’t change if we add jumps of
factor-independent intensity and size. Hence,
in such affine models, jumps and diffusions
are equally propagated from the short rate to
long rates. Knowing that actually observed long
rates are chiefly diffusive and the short rate is
notably jumpy, one can conclude that the jump-
diffusive setting makes more practical sense
within the frame of multifactor modeling.

Using jump-diffusion models may be re-
quired when valuing options struck away from
the current forward rate (that is, the ATM
point). Aside from the volatility skew, option
pricing features volatility smile, or simply an
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Figure 4 Daily Normalized Volatility Smile for Traded Swaptions (bp/day)
Data are courtesy of Bear Stearns, January 2007.

excessive convexity in σ K. Revisiting Figure 1,
one can notice that the actual dependence of
volatility on the strike is more convex than
even the optimal CEV model predicts. This is
the smile effect, albeit fairly moderate for op-
tions on long rates. Smiles for options on shorter
rates are very apparent, especially for short ex-

pirations. Figure 4 depicts swaption volatility
measured in basis points per day, as a function
of strike.

In this normalized scale, all panels of
Figure 4 exhibit similar volatility skews, the
ones close to normal (CEV = 0). However, the
smile effect looks very different in panels A, B,
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and C; it clearly fades with maturity of the un-
derlying rate and the option’s expiry. The pres-
ence of jumps fattens the distribution tails and
inflates out-of-the money or in-the money op-
tion values relatively to the ATM values. There-
fore, jump modeling can capture the smile effect
and explains its dependence on the swap’s ma-
turity and the option’s expiry: Jumps allowed
to occur over a longer time horizon look more
like diffusion.

KEY POINTS
� The concept of short-rate modeling serves as

a foundation for the fixed-income derivatives
market.

� Short-rate models can be single- or multifac-
tor, but their central object is a theoretical risk-
free rate. Models employed in the financial
markets have to be calibrated to the initial
yield curve and simple options; some models
let us solve this task analytically.

� There are a number of single-factor models
that differ with respect to their distribution
of rates, interrate relationships, and ability to
fit the swaption market; the Hull-White (nor-
mal) model seems to fit the observed volatility
skew the best.

� A two-factor normal model can be con-
structed by borrowing the recipes of so-called
“affine” models; such a model can be used to
price complex derivatives that are asymmet-
rically exposed to changes in the yield curve’s
shape.

� With jumps included, models can be em-
ployed to capture volatility “smile,” that is,
value options struck far out-of- or in-the-
money.
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Abstract: The term structure of interest rates represents the cost of (return from) borrowing (lending/
investing) for different terms at any one moment in time. The term structure is most often specified
for a specific market such as the U.S. Treasury market, the bond market for double-A rated financial
institutions, the interest rate market for LIBOR and swaps, and so on. The term structure is usually
specified via a rate or yield for a given term or the discount to a cash payment at some time in the
future. These are often summarized mathematically through a wide variety of models. In addition,
term structure models are fundamental to expressing value and risk, and establishing relative value
across the spectrum of instruments found in the various interest-rate or bond markets. Static models
of the term structure are characterizations that are devoted to relationships based on a given market
and do not serve future scenarios where there is uncertainty. Standard static models include those
known as the spot yield curve, discount function, par yield curve, and the implied forward curve.
Instantiations of these models may be found in both a discrete- and continuous-time framework.
An important consideration is establishing how these term structure models are constructed and
how to transform one model into another.

The objective of this entry is to describe the prin-
ciples and approaches for a deterministic model
of the term structure of interest rates. This is
done first in a discrete-time setting, followed by
a more analytical development in a continuous-

time setting. We provide an eclectic mixture of
ideas from the academic literature in concert
with adaptations well known to practitioners.

Computational implementation of anything
as complex as interest rate term structure

559
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models naturally engenders the rigorous ad-
herence to, yet clever application of, some ar-
cane ideas from software/system engineering.
These are beyond the scope of this introduc-
tion, but such topics include numerical recipes;
mechanisms to ensure internal consistencies
during development and build-up; tests for in-
ternal consistency, verification, and validation
of completed applications (e.g., put-call parity,
cash-and-carry arbitrage, and others); parame-
terization of models and applications from the
markets; and the utility of advanced computer
architectures.

A deterministic approach to the term struc-
ture of interest rates (or simply, the term
structure) may be appropriately thought of as a
static modeling approach. This is distinguished
from a dynamic model of term structure. The
chief distinction is that in a static term structure
model, no accommodation is made of the
course of interest rates over time. On the other
hand, a dynamic model explicitly incorporates
how interest rates change over time and there-
fore needs to admit a notion of uncertainty in
considering the future course of interest rates.
The following discussion will concentrate on
static models. First, we address a taxonomy
for term structure models in some additional
detail.

INTRODUCTION TO TERM
STRUCTURE MODELING
The term structure of interest rates (or term struc-
ture) is simply a price or yield relationship
among a set of securities that differ only in the
timing of their cash flows or their term until ma-
turity. These securities invariably have a speci-
fied set of other attributes in common so that the
study of the term relationship is meaningful.

It is common to think of the term structure
as consisting of the current-coupon U.S. Trea-
sury issues only. This restriction is not necessary
since it is possible to define other term struc-
tures derived from other securities. For exam-

ple, it is meaningful to define the term structure
of sets of coupon or principal Treasury strips.
Other examples include off-the-run Treasury is-
sues, agency debentures, LIBOR/interest-rate
swaps, or the notes of single-A rated banks
and finance companies. The set of securities
used to define a term structure is called the
reference set. A market sector (sometimes re-
ferred to as a market or a sector) consists of all
those instruments described by a specific term
structure. There is the market sector of coupon
or principal Treasury strips, off-the-run Trea-
suries, agency debentures, interest-rate swaps,
and single-A rated banks and finance compa-
nies, and so forth. Very often, the reference set
for a market sector may have restrictions on
the structure (noncallable only), liquidity (re-
cent issues only), or price (close to par only) of
the securities that make up the set.

The relationship expressed by the term
structure is traditionally the par-coupon yield
relationship, hence the terminology: yield curve.
This also is not a necessary restriction. In gen-
eral, the term structure could be the discount
function, the spot-yield curve, or some other
expression of the price or yield relationship
between the securities. Given the widespread
usage of the (par) yield curve for the Treasury
market, it is not surprising that many market
sectors are defined from a reference set derived
from the Treasury market. For example, the
reference set that defines the agency debenture
market is a set of yield spreads to the on-the-run
Treasuries, so that a 5-year debenture issued by
an agency may be priced at par to yield 15 basis
points more than the current 5-year Treasury
issue. If the Treasury issue is trading at a 6.60%
yield to maturity, the par priced agency issue
has a 6.75% coupon. By inference, from the
spread quote of 15 basis points, the reference
yield for the 5-year term is 6.75%. Similar
statements can be made for the interest-rate
swap and the corporate bond markets.

It needs to be emphasized that the reference
set of bonds used to define the term structure
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of interest rates and the resulting term structure
itself are not one and the same. Indeed, the term
structure, as a complete description of the entire
yield curve, ultimately can be used to analyze
all manner of option-laden, index-amortizing
swaps or debentures that are in the same mar-
ket sector. The “vanilla” reference set consists
of individual bonds that are used mainly to de-
fine the term structure or to derive its defining
relationships—spot-yield curve, spot-rate pro-
cess, discount function, and the like.

Theories about the term structure of interest
rates fall into two categories:

� Qualitative theories seek to explain the shape of
the yield curve based on economic principles.
Three theories attract the widest attention: the
expectations, liquidity preference, and preferred
habitat (or hedging pressure) theories.

� Quantitative theories seek to mathematically
characterize the term structure (often in har-
mony with one of the qualitative theories).

Usually, a quantitative theory about the term
structure of interest rates culminates in a math-
ematical model, a term structure model that
exhibits useful properties. Specifically, a term
structure model is the mathematical represen-
tation of the relationship among the securities
in a market sector. This formalizes the distinc-
tion between the reference set used to define a
market sector and a term structure model.

TERM STRUCTURE MODELS
The simplest and most familiar term structure
model is the (semilogarithmic) graph of the
U.S. Treasury yield curve (once found daily
in the Wall Street Journal and in the business
section of many newspapers). This model is
useful mainly as a visualization of the yield
relationship between the most recently issued
shorter-term Treasury instruments and bonds.
The graph can be characterized by a mathe-
matical equation and is one example of the set
of interpolation models of the term structure.

These “connect-the-dots” models can be useful
in providing a quantitative way to price bonds
outside the current-coupon Treasury issues, but
their utility is rather limited. Bonds that are val-
ued through a linear-interpolation technique
may not be “fairly” valued in the sense that
an average yield may not be equal to the “par-
coupon” yield corresponding to the same date.
Later we provide a discussion of how the par-
coupon curve is constructed to be fairly valued
in comparison to the set of reference (Treasury)
issues.

The term structure model as described above
simply provides a snapshot of the relationship
between the yields for selected Treasury maturi-
ties on a given day. It is often required that term
structure models exhibit additional “analytic”
properties. One such property is the consistency
associated with the preclusion of riskless arbi-
trage when the term structure model is used for
pricing. More will be said about this later. For
now, it is intended merely to indicate that the
“visualization” of the yield relationship to term
may be neither completely useful nor adequate.

More generally, term structure models are
called on to describe the evolution of a set of
interest rates over time. This motivates the fol-
lowing distinction in classifying term structure
models:

� Static models of the term structure offer a
mechanism to establish the “present value
of a future dollar” in a deterministic econ-
omy. That is, no allowance for uncertainty
or interest-rate volatility is explicitly incor-
porated into the model.

� Dynamic models of the term structure, in con-
trast to static models, explicitly allow for un-
certainty in the future course of interest rates.

Ideally, a dynamic model of the term struc-
ture should have useful static models embed-
ded within. That is, with no contingency on
the receipt of a future cash payment or when
there is an assumption of negligible volatility, a
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dynamic model should correspond to a consis-
tent static model.

The essence of term structure modeling is the
process of converting the market description of
a sector’s reference set (the data) into a math-
ematical set of relationships that characterizes
all issues in a sector. This is by no means trivial
to do correctly. For example, the same model
that correctly values a note in the Treasury mar-
ket should also correctly value an option on
that note, the futures contract into which that
note may be deliverable, and an option on that
futures contract. It should also reveal if the
traded basis on that note is rich or cheap rel-
ative to the cash, futures, and options markets.
It should also be able to describe any strip-
ping or reconstitution opportunities between
coupon and principal strips and the cash mar-
ket. These analyses should not be the result of
several models, but of a single term structure
model.

A key element of the modeling process is to
eliminate distinguishing characteristics associ-
ated with each constituent of the reference set.
For example, in the on-the-run set of Treasury
issues, there are bills as well as notes and bonds.
The bills have different conventions for day
counting, pricing, and yield expression from
those of the coupon-paying issues of the sec-
tor. These characteristics need to be removed
prior to developing the mathematical relation
of the term structure model (as do the distin-
guishing characteristics for notes and bonds).
In this simple example, a model of the Treasury
term structure might be the spot curve or the
discount function, as opposed to a “connect-
the-dots” model to which no yield adjustments
have been made.

The mathematical relationship of a term
structure model can be used to characterize all
issues in a sector. As is the case for the Treasury
sector, every instrument can be considered a
collection of zero-coupon bonds (the maturities
of which correspond to the coupon/principal
payment dates, the denominations of which

correspond to the amount of coupon/principal
paid). Accordingly, the discount function or
equivalently, its corresponding spot-yield
curve, furnishes a pricing technique for each
zero-coupon bond and, therefore, for each of
the instruments. With this insight, the utility of
equivalence between the spot-yield curve and
discount function, which are derived from the
original reference set, is readily apparent.

We begin with the familiar, discrete-time mod-
eling approach. That is, units of time quanta
are defined (usually in terms of compounding
frequency) and financial manipulations are
indexed with integer, multiple periods. We
continue to build on the discussion by intro-
ducing the continuous-time analogies to the
concepts developed for discrete-time modeling.
Continuous-time modeling allows financial
manipulations to be freed from discretization
artifacts (such as compounding frequency)
and provides an algebraic framework that
more naturally and rigorously accommodates
“rate” as a concept of change. In addition, this
approach opens up a huge field of applicable
mathematics with the attendant opportunity
for abstraction. For example, continuous-time
models free the analyst from artificial a priori
assumptions about interest-rate lattices; allow
concentration on the financial analyses at hand;
defer time-step issues to final implementation
of an algorithm; and let the analyst choose an
approach based on convenience, speed, and
accuracy.

DISCRETE-TIME MODELS OF
THE TERM STRUCTURE
In the discrete-time framework, we introduce
some fundamental concepts in term structure
theory. These include the discount function,
the spot rate and spot yield, and the forward
rate. While these initially may appear to be
esoteric in nature, they are in fact closely in-
terrelated quantities that directly represent the
term structure, or act to influence the course
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of future interest rates in an arbitrage-free en-
vironment. In this section these concepts are
shown to be incorporated into the different ex-
pressions that describe the various qualitative
term structure theories, such as the expectation,
preferred habitat, and liquidity preference hy-
potheses. The continuous-time term structure
model is evolved next from the same underly-
ing premises as found in discrete time, thereby
speeding the exposition.

DISCOUNT FUNCTION
The discount function incorporates market
yield-curve information to express the present
value of a future dollar as a function of the
term to its receipt. As such, the discount func-
tion is a valid expression of the term structure
of interest rates by virtue of the price/yield
relationship. Since the discount function is
used to quantify the value of a future dollar,
the discount function also provides a direct
means to value a coupon-paying bond since
the coupon and principal payments are simply
scalar multiples of a single dollar. As a result,
the discount function can be used as a refer-
ence check for other quantitative term structure
models.

Quantitative term structure models ulti-
mately deal with the analysis of pure discount
bonds. (Discount bonds, or zero-coupon bonds,
are the simplest types of bonds to analyze as
there is only the repayment of par at maturity.
Further, all other bonds can be built from a se-
ries of discount bonds and options on discount
bonds.) As a consequence of modeling the yield
movements of discount bonds, term structure
models describe their price movements since
the price/yield relationship allows the term
structure to be analyzed in terms of either price
or yield.

This relationship is addressed further later in
this entry, in which the term structure model is
expressed in terms of price as a function of rate
and time.

Figure 1 Discount Function

If it is assumed that the discount bond pays
one dollar at maturity, then the present value of
the bond is some decimal fraction less than one.
For a set of discount bonds of increasing matu-
rities, there is the corresponding set of present
values starting from approximately 0.999 and
decreasing thereafter. This set of present values
is called the discount function and is shown in
Figure 1.

The discount function is the term-to-maturity
relationship of the present value of a future
unit of cash flow. More formally, for a cash
flow, CF, received after a term, T, from today,
t, the present value, PV, of that cash flow is
discounted, d, from the future value CF as ex-
pressed by the relation

PV(t, T) = d(t, T) × CF(t, T) (1)

where

PV(t, T) = present value of the cash flow

at t

d(t, T) = discount at t for a cash flow

received T after t

CF(t, T) cash = flow received at t + T

As we are able to generate the discount func-
tion, d, for all terms-to-maturity, T, this can
be a valid representation of the term structure
of interest rates. Indeed, the discount function
reflects the Treasury term structure when the
discount function exactly reprices the current-
coupon Treasury issues.
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Deriving the Discount Function for
On-the-Run Treasuries
More generally, let P(t, i) = Pi (t) be the set of
closing prices on (date) t for the set of current-
coupon Treasury bonds (where the index, i, as-
sociates a specific issue among several)

P(t, 3-month) : price of the 3-month

(13-week) bill, at time t

P(t, 6-month) : price of the 6-month

(26-week) bill, at time t

P(t, 52-week) : price of the 1-year

(52-week) bill, at time t

P(t, 2-year) : price of the 2-year

note, at time t
. . .

P(t, 30-year) : price of the 30-year

bond, at time t

Each of these instruments has its own time se-
ries of cash flows, each with its own individual
term-to-maturity (or better, term-to-payment).
For the Treasury bills, the cash flows and asso-
ciated terms-to-maturity are

3-month bill: CF(t, T(3-month, 1)),

6-month bill: CF(t, T(6-month, 1)),

and for the periodic instruments,

2-year note: CF(t, T(2-year, 1)),

CF(t, T(2-year, 2)), . . . , CF(t, T(2-year, 4)),

. . .

30-year bond: CF(t, T(30-year, 1)),

CF(t, T(30-year, 2)), CF(t, T(30-year, 60))

The term to each of the cash flows, T(i, j) =
Ti, j , is specific to the instrument and the context
of the notion of “today,” t for the purpose of es-
tablishing a present value. (In this sense, the de-
pendence on t has been suppressed and it might
be more precise to specify T asT(t; i, j), but we
believe this to be unnecessary.) The index j is
the sequence of the cash flow in the time se-
ries for security i. Finally, in general, cash flows
only exist in a futures sense. If T(i, j) is less than
zero (the cash flow has already been paid), then

those j-cash flows are not included in the series
(although this is not an issue for the current-
coupon Treasury issues).

The present value of a coupon-paying in-
strument is simply the sum of the discounted
present values of the cash flows that make up
the coupon payments and the payment of prin-
cipal. Accordingly, for the discount function to
model the Treasury term structure (i.e., the mar-
ket sector defined by the on-the-run Treasury
reference set), the following equations must be
simultaneously satisfied. In this way, the dis-
count function will reprice the current-coupon
Treasury issues.

P(t, 3-month) = d(t, T(3-month, 1))

×CF(t, T(3-month, 1))

= d(t, T1,1) × CF(t, T1,1)

P(t, 6-month) = d(t, T(6-month, 1))

×CF(t, T(6-month, 1))

= d(t, T2,1) × CF(t, T2,1)

P(t, 2-year) = P(t, 3) =
4∑

j=1

d(t, T3, j ) × CF(t, T3, j )

. . .

P(t, 30-year) = P(t, 8) =
60∑

j=1

d(t, T8, j ) × CF(t, T8, j )

The last cash flow of each series consists of the
principal payment and, for the notes and bond,
one coupon payment. The solution to these si-
multaneous equations furnishes many distinct
points of term in which the discount function is
defined; the long bond alone may have as many
as 60 term points. Depending on the circum-
stances surrounding each auction, there may
be as many as over 90 distinct points of term
defining the discount function.

As with the earlier “connect-the-dots” model
for the yield curve, in which the yield points
were connected to generate intermediate
values for the term structure, similar ideas can
be used to accommodate the cash flows that do
not fall on one of the terms, T(i, j), enumerated
above. In fact, interpolation techniques using
spline functions may be applied to create
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a continuous discount-function curve, as in
Oldrich and Fong (1982).

The discount function forms the basis for
the development of a term structure model,
as will be developed further in later sections.
As the discount function is an expression of
the term structure based on price, there is no
ambiguity of compounding periodicity, as with
yield-based term structure models. The dis-
count function simply expresses the nondimen-
sional, fractional, present value of a unit cash
flow to be received after some term. The term
may be specified in a unit of time (e.g., years,
months, or days) or in periods, in which the
period length is a unit of time.

SPOT YIELD CURVE
With the assumption of a compounding con-
vention (usually semiannual), the discount
function can be used to derive the equivalent
Treasury zero-coupon structure—sometimes
referred to as the spot-yield curve. In this case, the
spot-yield curve is an equivalent term structure
representation based on yield that provides a
view of the term structure that is more famil-
iar. The equivalence between these two forms
of the term structure is used later in this entry.

The spot yield, R, is related to the discount
function, d, through a price/yield relation. By
definition, the present value at t, PV(t, n), of
a cash flow received n periods in the future,
CF(t, n), has the spot yield, R(t, n), through the
relation

PV(t, n) = CF(t, n)
[1 + R(t, n)]n (2)

We use the discrete notion of integer periods,
with each period of length P, to keep the math
simple at this point. The more general case of a
noninteger world is treated when a continuous
time model is introduced.

Comparing equations (2) and (1) provides the
relation between the spot yield and the discount
function

d(t, n) = 1
[1 + R(t, n)]n (3)

where

d(t, n) = discount of a cash flow received

n periods after t

R(t, n) = n-period spot yield on t

The spot-yield curve is just the set of spot
yields for all terms-to-maturity. In contrast, the
spot rate is simply the one-period rate prevail-
ing on t for repayment one period later. In the
above notation, the spot rate is denoted R(t, 1).

We can generalize the earlier comment about
coupon-paying bonds in terms of the set of spot
yields. The present value of a coupon-paying in-
strument is simply the sum of the discounted
(present value) of the cash flows that make up
the coupon payments and the payment of prin-
cipal. The analogy to equation (2) for a coupon-
paying bond using spot yields is

PV(t, n) = CF(t, 1)
[1 + R(t, 1)]

+ CF(t, 2)

[1 + R(t, 2)]2

+ · · · + CF(t, n)
[1 + R(t, n)]n (2a)

Similarly, the analogy to equation (1) for a
coupon-paying bond using the discount func-
tion is given by

PV(t, n) = d(t, 1) × CF(t, 1) + d(t, 2) × CF(t, 2)

+ · · · + d(t, n) × CF(t, n) (1a)

IMPLIED FORWARD RATE
A consequence of the discount function, spot
yield, and spot rate is the immediate relation
to the (implied) forward rates. The implied for-
ward rate is the spot rate embodied in today’s
yield curve for some period in the future. The
forward rate generally is regarded as an indi-
cation of future spot rates in an arbitrage-free
economy. In the absence of arbitrage and un-
certainty, the future spot rate, by definition, is
equal to the forward rate. In the arbitrage-free
term structure model discussed later, it can be
shown that the future spot rate continuously
converges toward the forward rate as the spot
rate evolves over time.
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Specifically, the one-period forward rate, F,
can be determined from the spot yields as fol-
lows. Consider the one-period and two-period
spot yields; the forward rate, F, may be found
from

(1 + R (t, 2))2 = (1 + R (t, 1)) × (1 + F (t, 1, 1))
(4)

where

R(t, 2) = two-period spot yield on t

R(t, 1) = one-period spot rate on t

F (t, 1, 1) = one-period forward rate one

period from t

This relation follows from the no-arbitrage as-
sumption intrinsic in the concept of forward
rates. The calculation of the forward rate pre-
sumes that an investment today for two peri-
ods provides the same return as a one-period
investment today immediately rolled into an-
other one-period investment one period from
now. That is

PV(t) = CF(t, 2)

[1 + R (t, 2)]2 (5)

PV(t) = CF(t, 2)
[1 + R (t, 2)] × [1 + F (t, 1, 1)]

(6)

By equating equations (5) and (6), equation
(4) results.

Deriving Forward Rates from
Spot Yields
Implied from the term structure, through the
spot-yield curve, is a set of forward rates. These
forward rates may be iteratively defined from
the above and written as follows

(1 + R(t, n))n = (1 + R(t, n − 1))n−1

× (1 + F (t, 1, n − 1))

where in addition to the earlier notation, F(t, 1,
n−1) = one-period forward rate n−1 periods
from t, and noting, through substitution, that

(1 + R(t, n))n = (1 + R(t, 1)) × (1 + F (t, 1, 1))

× (1 + F (t, 1, 2)) × · · ·
× (1 + F (t, 1, n − 1)) (7)

this furnishes the first n − 1 one-period forward
rates.

The relation among spot yield, spot rate, and
forward rates, equation (7), can be combined
with equation (2) to furnish a method for calcu-
lating the present value, at t, of a single n-period
future cash flow based on a series of one-period
forward rates

PV(t, n) = CF(t, n)
[1 + R (t, 1)] × · · · × [1 + F (t, 1, n − 1)]

(8)

Since the present value of a coupon-paying
security is simply the sum of the discounted
present value of the cash flows that make up the
coupon payments and the payment of princi-
pal (see equations (1a) and (2a)), the analogy to
equation (8) for determining the present value
of a coupon-paying bond is

PV(t, n) = CF(t, 1)
[1 + R (t, 1)]

+ CF(t, 2)
[1 + R (t, 1)] × [1 + F (t, 1, 1)]

+ · · ·

+ CF(t, n)
[1 + R (t, 1)] ×· · ·× [1 + F (t, 1, n − 1)]

This equation may be used to define multi-
period forward rates.

Deriving Forward Rates from the
Discount Function
The discount function provides a direct method
for generating forward rates. The one-period
forward return n −1 periods from t is obtained
through the following

1 + F (t, 1, n − 1) = d(t, n − 1)
d(t, n)

(9)

Equation (9) may be derived from earlier
equations, or from the following argument that
creates a synthetic forward position. For each
unit of cash delivered n periods from today, t,
we pay d(t, n). We take a long position in this
zero. We also short d(t, n)/d(t, n − 1) units of
cash to be delivered n − 1 periods from t. For
this we receive d(t, n − 1) times d(t, n)/d(t, n − 1),
or simply d(t, n), units. There is no net change
in our cash position today. After n − 1 periods
we pay out d(t, n)/d(t, n − 1) and after n periods
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receive one unit of cash. Thus the forward price
per unit, FP, to be paid n − 1 periods from now is

FP(t, 1, n − 1) = d(t, n − 1)
d(t, n)

where

FP(t, 1, n − 1) = forward price of a one-period

unit of cash n − 1 periods from

now

The forward price then gives the forward one-
period rate, n − 1 periods from t as

FP(t, 1, n − 1) = 1
1 + F (t, 1, n − 1)

Equating these results in equation (9).

TERM STRUCTURE IN A
CERTAIN ECONOMY
As discussed earlier, term structure models de-
scribe the evolution of interest rates over time.
Often, future interest rates are expressed in
terms of the future spot rate. If the future spot
rate (or equivalently, the future rate of return
on a bond) is known, the future term structure
of interest rates may be found from the pre-
viously established interrelationships between
the spot rate and the discount function or spot
yield. In fact, it is this relationship between the
spot rate and the discount function that is used
to motivate the formulation of the term struc-
ture models described later as a function of the
spot rate. As a precursor to a generalized term
structure theory, we first discuss the ramifica-
tions for a term structure in a certain economy.
(In this context, “certain” refers to an economy
with a lack of randomness, in other words, a
lack of uncertainty.)

If the future course of interest rates is known
with certainty, then arbitrage arguments de-
mand that future spot rates be identical to
forward rates. In the notation presented in
equation (7), this is equivalent to noting that

R(t + nP, 1) = F (t, 1, n) (10)

for n = 1, 2, 3, . . . and where P is the term of
the period. If this condition were violated, say,
for example,

F (t, 1, n) > R(t + nP, 1)

then the same arbitrage argument may be made
as before: If we buy the synthetic forward (this
is a long position in a unit zero to be deliv-
ered n + 1 periods from today, t); and short
d(t, n + 1)/d(t, n) units of cash to be delivered
n periods from today, t, no cash changes hands
today. However, after n periods, we pay the
forward price, FP,

FP(t, 1, n − 1) = 1
1 + F (t, 1, n − 1)

to receive one unit of cash after n + 1 periods.
Also, after n periods, at t + nP, we sell the
one-period unit zero for a price of

1
1 + R(t + nP, 1)

We know we can do this since there is no
uncertainty in the economy. If, as assumed,
F (t, 1, n) > R(t + nP, 1), then after n periods
the long and short positions yield a positive
net cash flow, or a riskless arbitrage, of

1
1 + R(t + nP, 1)

− 1
1 + F (t, 1, n)

> 0

after n periods with no uncertainty and with
no net investment. Arbitrageurs will exploit the
imbalance of the n-period forward rate with
the spot rate n periods from now by continu-
ing to buy the synthetic forward until demand
outstrips supply. In this scenario, the synthetic
forward price goes up, and the forward rate,
F(t, 1, n), goes down to R(t + nP, 1)—with pre-
dictable effect on d(t, n + 1) and/or d(t, n). On
the other hand, if F (t, 1, n) < R(t + nP, 1), we
may reverse our positions, and the same ar-
gument shows that F(t, 1, n) will increase to
R(t + nP, 1).

Using the no-arbitrage condition in a certain
economy, equation (10), in the present value
expression from the implied forward-rate ex-
pression, equation (8) (which always holds ir-
respective of assumptions about the economy),
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we have,

PV(t, n)

= CF(t, n + 1)
[1 + R (t, 1)] × [1 + R (t + P, 1)] × · · · × [1 + R(t + nP, 1)]

= CF(t, n + 1)

[1 + R (t, n + 1)]n+1 (11)

This means that the certain return of hold-
ing an n + 1 period zero until maturity is the
same as the total return on a series of one-period
bonds over the same period. Later we will dis-
cuss the various forms of equation (11) from
various qualitative term structure theories.

Given equation (11), we have, at time P (one
period) later,

PV(t + P, n)

= CF(t, n + 1)
[1 + R (t + P, 1)] × · · · × [1 + R(t + nP, 1)]

so we find that the single-period return on a
long-term zero is

PV(t + P)
PV(t)

= 1 + R(t, 1) (12)

Since the term-to-maturity was not specified,
equation (12) must be true for zeros of any ma-
turity. That is, the return realized on every dis-
count bond over any period is equal to one plus
the prevailing spot rate over that period. This
will be expanded upon later.

Alternatively, we can use our relation for the
discount function in equation (1), noting

PV(t + T, n) = d(t + P, n) × CF(t, n + 1)

and

PV(t, n) = d(t, n + 1) × CF(t, n + 1)

and restate equation (12) in its discount-
function based form:

d(t + P, n)
d(t, n + 1)

= 1 + R(t, 1)

While these developments for the certain
economy may appear trivial and obvious, they
serve as a guide for modeling the term structure
under uncertainty as well.

TERM STRUCTURE IN THE
REAL WORLD—NOTHING
IS CERTAIN
In the real-world economy, the future course
of interest rates contains uncertainty. In at-
tempting to deal with uncertainty, however, it
would not be inconceivable that a belief in the
efficiency of the market would prompt one to
use the term structure and the relation between
forward rates and spot rates as indicators of
expectation about the future. Indeed, market
efficiency states that prices reflect all available
information bearing on the valuation of the
instrument. Equilibrium supply and demand
for fixed-income instruments reflect a market-
cleared consensus of the economic future. As
uncertainty represents a departure from this
consensus, the expected equilibrium offers a
natural starting point for analysis.

Expectations Hypothesis
The expectations theory of the term structure
of interest rates offers a good starting point
for dealing with an uncertain future. Actually,
there is a whole family of expectations theories.
Broadly, the expectations theory states that the
expected one-period rate of return on an invest-
ment is the same, regardless of the maturity of
the investment. That is, if the investment hori-
zon is one year, it would make no difference to
invest in a one-year instrument, a two-year in-
strument sold after one year, or two sequential
six-month instruments.

The most common form of this statement uses
equation (10) as the basis for the theory. This
is referred to as the unbiased expectations hy-
pothesis, which states that the expected future
spot rate is equal to the forward rate, or

E [R(t + nP, 1)] = F (t + k P, 1, n − k)

for k = 0, 1, . . . , n − 1, and where E[·] is the
expectation operator.

Using this relation, we find from equation
(8) that the present value in an economy
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characterized by unbiased expectations is

PV(t, n)= CF(t, n+1)

[1+R(t, 1)]×{
1+E [R(t+P, 1)]

}

× · · · × {
1+E [R(t+nP, 1)]

}
(13)

Therefore, the unbiased expectations hypoth-
esis concludes that the guaranteed return from
buying an (n + 1) period bond and holding it to
maturity is equivalent to the product of the ex-
pected returns from holding one-period bonds
using a strategy of rolling over a series of one-
period bonds until maturity.

Alternatively, the return-to-maturity expecta-
tions hypothesis is based on equation (11). Here
we find that present value in such an economy
is

PV(t, n)= CF(t, n+1)

E
{
[1+R(t, 1)] × [1+R(t+P, 1)]
× · · · × [1+R(t+nP, 1)]

}
(14)

The return-to-maturity expectations hypoth-
esis assumes that an investor would expect to
earn the same return by rolling over a series of
one-period bonds as buying an (n + 1)-period
bond and holding it to maturity.

The last version of the expectations hypothe-
sis that we will mention (there are others) is the
local-expectations hypothesis (or risk-neutral
hypothesis). This hypothesis is based on equa-
tion (12), or equivalently, its associated discount
function–based equation. Under this hypothe-
sis, the expected rate of return over a single
period is equal to the prevailing spot rate of in-
terest. Applying these expressions recursively
gives

PV(t) = E [PV(t + P)]
[1 + R(t, 1)]

= E
{

PV(t + 2P)
[1 + R(t + P, 1)] × [1 + R(t, 1)]

}

= CF(t, n + 1) × E

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

[1+R(t, 1)] × [1+R(t+P, 1)]

× · · · × [1+R(t+nP, 1)]

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(15)

Equations (13), (14), and (15) are clearly dif-
ferent in that the coefficient of the cash flow,

CF(t, n + 1), received n + 1 periods in the future
is a different expression in each case. Further-
more, by the principle from mathematical anal-
ysis known as Jensen’s inequality, only one of
the expressions can be true if the future course
of interest rates is uncertain.

In fact, in discrete time, we find that bond
prices given by the unbiased and return-to-
maturity hypotheses are equal but less than that
given by the expectations hypothesis. Although
the three hypotheses are different, in discrete
time, any of these hypotheses is an acceptable
description of equilibrium.

In the next section, term structure model-
ing in continuous time is developed. Equa-
tions (13), (14), and (15) have continuous-time
analogs, which (as in discrete time) are dif-
ferent from one another. This is again due
to Jensen’s inequality. Unlike in discrete time,
however, only the local expectations hypothesis
is acceptable as a statement of equilibrium be-
cause the expected returns under each of these
hypotheses are not consistent with those im-
plied in a general equilibrium, as noted by Cox
et al. (1981).

Preferred Habitat Hypothesis
Crucial alternatives to the expectations theory
of the term structure of interest rates are theo-
ries that add an element of risk when conferring
the expected rate of return for bonds of different
maturities; that is, the indifference assumption
that was stated earlier no longer holds. If the
investment horizon is one year, it does make a
difference whether to invest in a one-year in-
strument, a two-year instrument sold after one
year, or two sequential six-month instruments.
The preferred habitat theory argues that we first
must know the investment horizon to deter-
mine relative risk among bonds. In the simple
example, the horizon is one year. The one-year
instrument is safest for this horizon. Under the
preferred habitat theory, the investor would re-
quire a higher rate of return on both the two-
year and six-month instrument.
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Liquidity Preference Hypothesis
The liquidity preference theory can be con-
sidered a special case of the preferred habitat
theory. Here, it is held that investors demand
a risk premium as compensation for holding
longer-term bonds. In addition, since the vari-
ability of price increases with maturity, the risk
premium demanded by investors increases. As
a special instance of the preferred habitat the-
ory, the liquidity preference theory says that as
all investors have a habitat of a single period,
the shortest-term bond is judged safest.

With each of these theories, one can assess
their efficacy only in the context of the gen-
eral economy. Specifically, we assume that the
economy is one in which investors have an in-
clination to consume, as well as to invest (in
fact, even in a diverse set of risky investments).
With a specification of utility of consumption
and wealth, as well as a formal expression for
risk aversion, the risk-based term structure the-
ories can be viewed in the context of markets.
Given that risk-based term structure theories
can be viewed in the context of a defined mar-
ket, the following conclusions can be made.

Term premiums are monotonic in maturity (or
term). Interest-rate risk is inherently intertem-
poral. That is, it is a multiperiod phenomenon,
in which an unexpected interest-rate change at
any period affects all future returns and risk
compounds over time. The traditional notion
of preferred habitat seems difficult to reconcile
with real markets. As it turns out, the traditional
notion omits the importance of risk aversion. As
we incorporate a varying need to hedge against
interest-rate changes, the theory converges to
a more acceptable view of markets. The gen-
eralization of these economic analyses has led
to what has been called an eclectic theory of the
term structure that recognizes and accommo-
dates the many factors that play a role in shap-
ing the term structure. Expectations of future
events, risk preferences, and the characteristics
of a variety of investment alternatives are all im-
portant, as are the individual preferences (habi-
tats) of market participants about the timing of

their consumption. It is this eclectic theory that
one needs to embrace in the development of the
dynamic term structure.

CONTINUOUS-TIME
MODELS OF THE TERM
STRUCTURE
Now we discuss how the earlier concepts
of discount function, spot rate, spot yield,
and forward rate have their analogies in the
continuous-time domain. It will be seen that
while the mathematics are slightly more com-
plex, the roles that each of these quantities play
in the term structure of interest rates remain
unchanged.

In summary, the priced-based representation
of the term structure, or the discount function,
facilitates both the mathematical formulation
of the problem and its subsequent solution.
Once the term structure equation is solved ex-
plicitly in terms of price, the price/yield equa-
tion (in continuous time) is used to convert the
term structure to its equivalent representation
in terms of yield.

Given the intertemporal nature of the term
structure and the apparent efficiency of the mar-
ket to incorporate information, it is assumed
that the market acts instantaneously, and that a
period in time is but an instant. This is the un-
derlying premise for continuous-time models
in economics and finance.

Traditional fixed-income analysis assumes
that compounding occurs at discrete points or
over finite intervals, typically on a semiannual
basis. However, as the compounding period
grows ever shorter, discrete compounding is
replaced by continuous compounding. We ex-
pand our original equation (2) for the present
value (at t), PV(t, T), of a cash flow received T
years from today, CF(t, T), which is invested at
the spot yield, R(t, T), to be

PV(t, T) = CF(t, T)e−TR(t,T) (16)

Equation (16) is the fundamental price/yield
relationship for the case of continuous
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compounding of a discount bond and is
the direct analog of the price/yield relation-
ship shown in equation (2) for discrete com-
pounding.

DISCOUNT FUNCTION
For a pure discount bond that pays one dol-
lar at maturity, CF(t, T) = 1. Let P be the price
of the pure discount bond. Thus equation (16)
becomes

P(t, T) = e−TR(t,T) (17)

Combining the above with equation (16),
which equates the price of a discount bond to
the discount function, we obtain

P(t, T) = e−TR(t,T) = d(t, T) (18)

Equation (18) provides an expression for the
relationship between the discount function d
and the spot yield R, and is the continuous-time
analogy to equation (3).

Spot Rate
In the previous section, the spot rate was de-
fined as the one-period rate of return. Under
continuous compounding, the spot rate r is de-
fined as the continuously compounded instan-
taneous rate of return. Stated another way, the
spot rate is the return on a discount bond that
matures in the next instant. The spot rate is re-
ally an expression of the concept that a discount
bond with a specified term-to-maturity and
yield is equivalent to a series of instantaneously
maturing discount bonds that are continuously
reinvested at a rate r until the final term T. This
is discussed in the following section.

Spot Yield
If the spot rate is a known function of time, then
a loan amount W that is invested at the spot rate
r will grow by an increment dW that is given by

dW(t) = W(t)r (t)dt (19)

where

dW(t) = incremental increase in the value of

the loan from time t to time t + dt

W(t) = value of loan at time t

r (t) = spot rate at time t

To find the value of the loan W at maturity,
integrate equation (19)

∫ t+T

t

DW(τ )
W(τ )

=
∫ t+T

t
r (τ )dτ

W(t) = W(t + T) exp
(

−
∫ t+T

t
r (τ )dτ

)
(20)

If W is a discount bond, W(t) is equal to the
present value P(t, T) and the value of W(t + T)
is one. Equation (20) is rewritten as

P(t, T) = exp
(

−
∫ t+T

t
r (τ )dτ

)
(21)

From equation (17), the price P is expressed in
terms of its spot yield R. By equating (17) and
(21), we obtain the following expression for the
spot yield in terms of the spot rate

R(t, T) = 1
T

∫ t+T

t
r (τ )dτ (22)

Equation (22) is a general expression that
always holds.

Another view of the relationship between the
spot yield and the spot rate is that instead of
continuously reinvesting at the spot rate r for
a fixed maturity T to obtain the spot yield R,
if the term-to-maturity grows ever shorter, the
spot yield R approaches the spot rate r “in the
limit.” r may be stated as

r (t) = R(t, T = 0) = lim
T→0

R(t, T) (23)

Graphically, the spot rate at t = 0 may be visu-
alized as the yield corresponding to the point at
which the spot-yield curve intercepts the yield
axis.
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FORWARD RATE
The forward rate, F(t0, t) is the marginal rate of
return for extending an investment to an addi-
tional increment of term at t > t0. The forward
rate is defined by

R(t, T) = 1
T

∫ t+T

t
F (t, τ )dτ (24)

Comparing the above notations for the for-
ward rate with that in equation (4), note that the
parameter “1” from the previous parameter set
(denoting one time period) is no longer present.
In the continuous-time domain, one time period
collapses to just an instant.

Rearranging and applying Leibniz’s rule, the
above becomes

d
dT

[TR(t, T)] = d
dT

∫ t+T

t
F (t, τ )dτ

= F (t, t + T)

= F (t, s) (25)

where s is the maturity date. The above equa-
tions relate the forward rate to the spot yield
R. As with the case of discrete compounding,
the forward rate may be expressed similarly in
terms of the discount function d(t, T) or the spot
rate r(t).

From equations (17), (18), and (25),

F (t, t + T) = −d
dT

ln [d(t, T)] (26)

where ln[] is the natural logarithm.
Separately, from equations (22) and (24),

r (t) = lim
T→0

R(t, T)

r (t) = lim
T→0

R(t, T)
1
T

∫ t+T

t
F (t, τ )dτ

= lim
T→0

1
T

F (t, t̂)T (t < t̂ < t + T)

= F (t, t) (27)

Under a certain economy, equations (22) and
(27) show that the spot rate needs to be equal
to the forward rate to preclude arbitrage. In the
case in which the spot-yield curve R(t, T) (and
consequently the term structure) is defined, it
follows that the spot rate needs to be equal to

the instantaneous forward rate over the term of
the discount bond for equation (27) to hold true
(see equation (7) for the analogy in the case of
discrete compounding).

Since R is the yield of a discount bond and
the term structure of interest rates is the set of
spot yields as a function of maturity, equation
(22) defines the term structure when the evo-
lution of the spot rate is a known function of
time. However, in general, the spot rate is not
known; only the current spot rate is known from
the current spot-yield curve. Nevertheless, term
structure theory expands the basic relationship
that is shown in equation (22), namely that the
yield of a discount bond is a function of the spot
rate. This is discussed in more detail in the next
section when the spot rate assumes the form of
a stochastic differential equation.

TERM STRUCTURE IN
CONTINUOUS TIME
As stated in the previous section, the term struc-
ture of interest rates describes the relationship
between the yields of default-free, zero-coupon
securities as a function of maturity. Conse-
quently, the term structure may be envisioned
as a continuous set of yields for zero-coupon
securities over a range of maturities.

Equation (18) describes the price/yield rela-
tionship for a single zero-coupon bond of a
given maturity. As the term-to-maturity T spans
the range of possible maturities within the term
structure, the associated spot yields are gener-
ated for each maturity point, that is, R is a func-
tion of the term T. Furthermore, for any one
value of T, the spot yield will vary as a function
of the time t. In general, the spot yield R is a
function of the term-to-maturity T, the time t
and the spot rate r (as shown by equation (22)).
R may be expressed as

R = R(r, t, T) (28)

Equation (28) describes the functional form of
the term structure in terms of the spot yield R. In
order to describe the term structure completely,
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an equation is needed that mathematically spec-
ifies the form of the relationship between the
spot yield R and the term T over time t.

Such an equation for the term structure may
be found by considering that the term struc-
ture may be expressed equivalently in terms of
the prices of discount bonds (i.e., through the
discount function). Thus equation (17) may be
rewritten as

R(r, t, T) = − 1
T

ln [P(r, t, T)] (29)

where ln[] is the natural logarithm.
If an expression for P(r, t, T) can be found

that defines the value of a zero-coupon bond at
different points in time and for varying terms
T, then the term structure of interest rates has
been defined fully. Alternatively, equation (29)
provides an equivalent description of the evo-
lution of the term structure over time in terms
of the spot yield.

KEY POINTS
� There are three main static models for the

term structure of interest rates: the spot yield
curve, the discount function, and the curve of
implied forward rates; straightforward trans-

formations allow moving from one model to
the other.

� These representations exist in both discrete-
time and continuous-time versions and may
be readily constructed from market data.

� Static models of the term structure suit val-
uation and comparisons of fixed-income in-
struments for which there is no dependency
(contingency) on future events.

� Even though implied forward rates provide
an arbitrage-free forecast for the future course
of interest rates, static models do not admit
uncertainty about the future.

� There are three main explanations for the fu-
ture course of interest rates in equilibrium: the
expectations hypothesis, the preferred habi-
tat hypothesis, and the liquidity preference
hypothesis.
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Abstract: The term structure of interest rates represents the cost of (return from) borrowing (lend-
ing/investing) for different terms at any one moment in time. The term structure is most often
specified for a specific market such as the U.S. Treasury market, the bond market for double A rate
financial institutions, the interest rate market for LIBOR and swaps, and so on. The term structure
is usually specified via a rate or yield for a given term or the discount to a cash payment at some
time in the future. These are often summarized mathematically through a wide variety of models.
In addition, term structure models are fundamental to expressing value, risk, and establishing
relative value across the spectrum of instruments found in the various interest-rate or bond mar-
kets. Dynamic models of the term structure are characterizations that are specifically established to
consider future market scenarios where there is uncertainty. As such they are rooted in probability,
stochastic process, and martingale theory. Standard models include those derived from assump-
tions that include a short-rate or a forward rate process as an explanatory factor for the evolution of
markets. Instantiations of these models include a general zero-coupon bond pricing equation and
the LIBOR market model. An important consideration includes expressing the market price of risk
that allows for the complexity of the term structure of interest rates to exist without arbitrage, as
found from the traded markets. This consideration provides a platform to analyze bond and interest
rate derivatives in the risk-neutral setting or with a real-world/objective probability measure.

Modern financial markets are predicated on
the notions of contingency and uncertainty.
Many recent financial innovations are directed
at coping with the uncertainty of markets
and the contingency of obligations. As part

of this evolutionary process, dynamic mod-
els of securities and their behavior in the
markets are at the forefront of financial eco-
nomic research and application. In the fixed-
income markets, this condition dominates and

575
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drives the need for dynamic term structure
models.

The dynamic term structure model of a mar-
ket sector, as defined by a reference set of se-
curities, is a mathematical set of relationships
that can be used to characterize any security
in that market sector in which market un-
certainty dominates the expected timing and
receipt of cash flows. There are several quali-
tative essentials that need to be accommodated
by a useful modeling approach. The ability to
value fixed-income securities at any point in
time (present or future) for conventional or for-
ward settlement is a necessary first step. This
is especially true in the valuation of compound
or derivative instruments. Indeed, before the
value of a bond option may be determined, the
ability to calculate the (probabilistic) expected
value of the bond on the future exercise date
(conditioned on current market condition) is
needed. Complementing this, reasonable vari-
ations from this expectation also need to be de-
termined and weighed relative to the expected
outcome. It is essentially this same idea that al-
lows for the analysis of a futures contract, an
interest-rate cap, or an option on a swap. In ad-
dition, to determine the performance risk that
results from market moves, a rationale for incor-
porating market changes needs to be embedded
into the modeling process.

With these premises in mind, the following
assertions regarding dynamic models for the
term structure of interest rates are postulated:

� The model must have the capability to extrap-
olate into the future an equilibrium evolution
of the term structure of interest rates, given its
form on a specified day, and must preclude
riskless arbitrage.

� The model must allow a probabilistic descrip-
tion of how the term structure may deviate
from its expected extrapolation while main-
taining the model’s equilibrium assumption.

� The model must embody a rationale to in-
corporate perturbations from the equilibrium
that correspond to the economic fundamen-
tals that drive the financial markets.

A technical discussion of term structure mod-
els is really equivalent to a discussion of the
(zero-coupon or) spot-yield curve. The theory
of the term structure of interest rates focuses
on a term structure model that models the
movement of the spot (zero-coupon) yield over
time. Such term structure models are developed
where any coupon-paying bond may be viewed
in terms of its constituent zero-coupon bonds
and analyzed in the context of this term struc-
ture model.

In this entry we focus on arriving at dy-
namic term structure models that respond to
these imperatives. We first describe a dynamic
term structure model in the case of objective
(or real-world) probability measures. The as-
sumptions, derivation, and parameterizations
of the general model are described. We then in-
dicated how this dynamic term structure model
represents zero-coupon bonds, coupon-paying
bonds, and determines par-coupon and hori-
zon yield curves. It can also be used to model
option-laden bonds and derivatives. The key
feature of this model is dependence on a short-
rate model as the (single) explanatory factor.

Next, a dynamic term structure model in a
risk-neutral measure is presented. It is here that
connections between the risk-neutral and the
real-world setting are made; the importance of
the forward rate model as the key explanatory
factor is identified; and the implementation of
computational imperatives in the context of ap-
plying the model to interest rate derivatives are
identified.

KEY ELEMENTS IN A
DYNAMIC TERM
STRUCTURE MODEL
The following key ideas guide the development
of dynamic term structure models:

� Equilibrium
� Arbitrage-free
� Continuous time/continuous state
� Spot rate/forward rates as underlying variable
� Completeness of markets
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These five principles not only provide an el-
egant mathematical formulation of the term
structure of interest rates, but also one that is
applicable to a number of different market sec-
tors and situations. Later we look at alternatives
to the spot rate as the underlying variable and
introduce a concept that highlights the market-
clearing consequence of equilibrium—namely,
the consensus of a fair market as embodied in
the idea of a martingale in probability theory
and forward rates as the underlying variable.

EQUILIBRIUM
General equilibrium models of the economy de-
scribe the basic workings of the macro econ-
omy as a function of a given “state variable.”
This implies that the production processes and
assets that constitute the economy are deter-
mined by the value of the state variable. Cox,
Ingersoll, and Ross (CIR; 1985) showed that this
general equilibrium model of the economy may
be used to derive a model for the term structure
of interest rates in terms of this state variable.
Such an approach is considered to be a general
equilibrium model of interest rates in that the
interest-rate model is a consequence of a gen-
eral economic model.

In contrast to general equilibrium models,
“partial equilibrium” models assume a par-
ticular form of the interest-rate process as a
given. This type of approach does not require
the particular interest-rate process to be a re-
sult of some greater underlying theory. Exam-
ples of partial equilibrium models are those of
Vasicek (1977), Ho and Lee (1986), and Black,
Derman, and Toy (1990), among others. In addi-
tion, partial equilibrium models are calibrated
exogenously to the current term structure of in-
terest rates. Without this exogenous informa-
tion, partial equilibrium models cannot quan-
tify the term structure.

On the other hand, general equilibrium mod-
els theoretically can specify a term structure in-
dependently of any bond-market information.
It has been observed, though, that such a term
structure (as provided by earlier general equi-

librium models) may not be consistent with
the entire market term structure. For this rea-
son and due to the difficulty that some term
structure practitioners have had in quantifying
the parameters in the CIR model, many imple-
menters of term structure models have pursued
the development of partial equilibrium models.

We approached these issues in the develop-
ment of this term structure model in a variety of
ways. While the model described herein is not
purely a general equilibrium model, we began
with the basic CIR model as a starting point and
then further generalized that model’s stochas-
tic interest-rate process. Furthermore, we de-
veloped an approach for the specification of
CIR-type model parameters such that the de-
rived term structure was consistent with the
observed market term structure. Thus, draw-
ing upon a cornerstone in term structure theory,
we developed an extension to the CIR model
that can be readily applied to the financial
marketplace.

ARBITRAGE-FREE
One underlying principle that the term struc-
ture model under discussion shares with many
of the above-mentioned references is that the
term structure is arbitrage-free. This concept, an
extension of the arbitrage-free principles found
in the Black-Scholes options theory for com-
modity and equity markets, states that the term
structure observes a given relationship among
its constituent parts and that purely arbitrary
yield-curve shapes do not occur. Given today’s
yield curve, subsequent yield curves are as-
sumed to evolve in a “rational” manner that
precludes riskless arbitrage. This indicates that
the prices of bonds defining the yield curve
move in such a way that it is not possible to
create a portfolio of securities that always will
outperform another portfolio without entailing
any risk or net investment; in other words, there
is no “free lunch.” The arbitrage-free principle
plays an important role in the mathematical
pricing of fixed-income securities.
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CONTINUOUS
TIME/CONTINUOUS STATE
Another distinguishing feature of this term
structure model is the strict adherence to the
continuous-time/continuous-state approach to the
modeling of stochastic processes. This assumes
that interest rates and bond prices move in a
continuous fashion over time, rather than in
discrete jumps. Thus a spot-yield curve may be
found for any point in time during the life of a
bond, rather than only at specific points (such as
a coupon payment date). This concept is consis-
tent with the notion of a continuous yield curve
and allows for the use of continuous stochastic
calculus.

Continuous Probability
Distributions
Furthermore, the generality of the transitional
probability density function, as a complete
specification of the statistical properties of the
rate process, is maintained throughout the term
of the bond. This is in contrast to the common
approach of describing individual sample
paths or scenarios, as found in Monte Carlo
approaches to security analysis. The ability to
extend the analyses to compound, derivative
instruments is unimpaired through the use of
this transitional probability density function.
Moreover, the continuous-time/continuous-
state approach avoids the computational issues
associated with the number of sample paths
analyzed. Since the complete specification of
the statistical properties is maintained, it is as
if an infinite number of sample paths are run.

Numerical Solution Technique
The computer numerical solution technique
that accompanies the continuous-time for-
mulation is one that is well known in the
engineering and physical sciences as the Crank-
Nicholson finite-difference method for the
solution of partial differential equations (PDEs).

This solution technique has been used exten-
sively in the study of aerodynamics and fluid
flow, and has the flexibility to focus its com-
putational efforts in areas that require greater
numerical precision, such as the time period
surrounding an option exercise period. This
is in contrast to binomial interest-rate lattices,
which are constrained to jump, for example, in
six-month intervals, such as in some commer-
cially available applications.

COMPLETENESS OF
MARKETS
One of the key ideas in developing financial
models—especially term structure models—is
formulating valuation in the context of a repli-
cating portfolio. That is, for a given structure, a
portfolio is formed that replicates or hedges the
instrument with the same risk-return proper-
ties. Then the replicating portfolio dictates the
value of the given structure. Otherwise, a self-
financing riskless arbitrage can be engaged. Pre-
sumably, price convergence would result given
sufficient market awareness. Essentially, a mar-
ket is complete if this can be always done with a
certain characterization of uniqueness.

DYNAMIC TERM
STRUCTURE MODEL
The formulation and implementation of the
term structure model needs to be completely
general so as to be applicable across a broad
range of fixed-income markets in a straight-
forward and consistent manner. For example,
once the value of the fixed-income instrument
is found, the value of its derivative (such as
its futures contract) also may be found. Fur-
thermore, it is possible to value the quality
and delivery options within the bond futures
contract. These effects also can be incorporated
when valuing an option on the bond futures
contract.
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General Assumptions
The analytical model that describes spot-rate
movement is a one-factor, mean-reverting, dif-
fusion process model. The model assumes:

1. The evolution of interest rates is a contin-
uous process and may be described by a
single variable, that is, by the instantaneous
spot rate, which is the return on an invest-
ment over an infinitesimally short period of
time. This allows for the use of continuous-
time mathematics, which requires greater
technical sophistication, but which increases
the flexibility of the mathematical modeling
process.

2. The model assumes that interest rates move
in a random fashion, which is known as
Brownian motion or a Wiener process. The
Weiner process has been used in the physical
sciences to describe the motion of molecular
particles as they diffuse (or spread) over time
and space.

3. The term structure of interest rates is as-
sumed to be represented by a Markov pro-
cess, which states that the future movement
in interest rates depends only on the current
term structure and that all past information
is embodied in the current term structure.

4. The term structure is arbitrage free in that a
portfolio of securities derived from the term
structure is constrained to have an instanta-
neous rate of return that is equal to the risk-
free rate. Future movements in interest rates
are similarly constrained so that the possi-
bility of riskless profit is precluded. This im-
plies that there are a sufficient number of
sophisticated investors who will take advan-
tage of any temporary mispricing in the mar-
ketplace, thus quickly diluting any arbitrage
opportunities that exist.

Technically, an arbitrage-free term structure
indicates that a portfolio of securities derived
from the term structure may be constructed
such that the portfolio instantaneously returns
the risk-free rate. Since the above holds true for

any arbitrary set of maturities in this portfolio of
securities, it is said to be true for all maturities.
This indicates that all securities that comprise
the term structure are related in a common fash-
ion. This commonality is expressed through the
concept of the market price of risk, which is the
incremental return over the risk-free rate that is
required for incurring a given amount of addi-
tional risk. In this context, risk is measured by
the variance of a bond’s rate of return. A result
of the arbitrage-free nature of the term struc-
ture is that all securities share the same market
price of risk. As we demonstrate at the end of
the entry, the risk premium is one component
of the market price of risk.

1. The price of a default-free, zero-coupon (dis-
count) bond at any point in time continu-
ously depends on the spot rate, time, and
maturity of the bond. This models the in-
teraction between the bond’s price and the
probabilistic movement in the spot rate. This
is an extension of the point discussed earlier
that stated the yield of a discount bond is a
function of the spot rate.

2. The market is efficient in that all investors
have the same timely access to relevant mar-
ket information. Furthermore, investors are
rational and there are no transaction costs.

SPOT-RATE MODEL
As a result of assumptions 1 through 3 above,
the equation that describes the diffusion process
for the movement in the spot rate is given by
equation (1)

dr = k(θ − r )dt + σ
√

rdz (1)

where

r = spot rate, the instantaneous rate of re-
turn

dr = infinitesimal change in the spot rate
k = mean reversion constant
θ = “target” spot rate, which will be ex-

pressed as a function of time
dt = infinitesimal change in time
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σ = volatility of r
dz = infinitesimal change in the random vari-

able z (a characterization of the Weiner
process)

There are many alternatives to the form (1)
(see, for example, Hull, 2009) and while this
model has some attractive features, we in no
way argue that it is “best.” It is just useful and
has been shown to work well in practice. Its
features include the following.

Mean Reversion
Equation (1) states that the rate r changes with
respect to time and the degree of randomness.
The first term on the right-hand side of equation
(1) states that the “drift” in the spot rate over
time is proportional to the difference between
the rate r and θ . As r deviates from θ , the change
in r is such that r has a tendency to revert back to
θ , a feature that is known as mean reversion. The
presence of mean reversion imposes a central-
izing tendency such that rates are not expected
to go to extremely high or low levels. In ad-
dition, mean reversion precludes the existence
of negative interest rates in our interest-rate
model, given that the initial interest rates are
positive.

One can easily derive a closed-form expres-
sion for θ as a function of time. Note that θ is
not assumed to be constant, which is usually
the case for the traditional CIR approach.

Effect of Randomness
The second term on the right-hand side of equa-
tion (1) states that the contribution to the change
in r due to randomness is driven by movements
in the random variable z. The variable z is nor-
mally distributed with a mean of zero and a
variance that is proportional to time. This in-
dicates that the amount of random “noise,” as
represented by the variable z, may be any pos-
itive or negative value, but that its expected
value is zero. In addition, as time passes, the
variance increases so that the “amplitude” of

the noise also increases. The variables σ and r,
which are coefficients of dz in equation (1), show
that the change in r also depends on the level of
volatility and interest rates. The variable z has
its own defined level of uncertainty so that as
volatility and rate change, the overall degree of
uncertainty is influenced by the level of these
variables.

Endogenous Parameterization
(Tuning the Model)
Equation (1) describes the rate in terms of the
parameters k, σ , and θ . The volatility parameter
σ is specified externally so that it reflects either
the historical level of volatility or the volatil-
ity that is currently present in the market. Sec-
ondly, θ reflects the current term structure such
that the future movements in r are influenced
by today’s term structure. Finally, the mean re-
version constant k determines the speed of ad-
justment of r back to θ . In order for the interest-
rate model to be of any utility, the parameter
k is chosen to be consistent with the observed
market prices of bonds comprising the current
yield curve, while θ is derived directly from the
current yield curve. This process of determin-
ing k and θ “parameterizes” the model to the
observed yield curve.

There are several variations of equation (1)
that exist within the academic literature that
appear to be similar to equation (1); see, for ex-
ample, Chan et al. (1992). However, the details
surrounding the functional form of each term in
equation (1) and the associated parameteriza-
tion process can result in very different models.
The specification of parameters for this term
structure model is driven by the requirement
to be able to precisely reprice the set of securi-
ties that constitute the reference yield curve. A
properly calibrated term structure model needs
to be able to define a bond whose cash flow
characteristics match those of an on-the-run is-
sue exactly and then have the price of that con-
structed bond match exactly the market price
of the Treasury issue. By repeating this process
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for each of the on-the-run issues, the mean re-
version constant and the risk premium that are
appropriate over the range of reference issues
may be quantified.

As a technical side note, the term structure
model needs to satisfy internal consistency
checks, and the parameter specification process
plays a part in the internal system for checks
and balances. For the set of chosen parame-
ters, the price furnished by the term structure
model—as the solution to a PDE—needs to be
equal to that provided by applying the discount
function to the cash flows of the specific on-the-
run issue, as explained earlier. Thus the dis-
count function is a direct means of verifying
the results of the term structure model. In fact,
the PDE may be decomposed into two coupled
ordinary differential equations (ODE) in the ab-
sence of any embedded options. Thus prices
obtained from the PDE, ODE, and discount-
function approaches all need to be identical.

Calculation of the Spot Rate
The solution to equation (1) is obtained through
computer numerical solution techniques and
accounts for the current value of the spot rate
(as an initial condition) and its level of volatil-
ity. As time moves forward, the solution ex-
presses the probable distribution of the spot rate
as the spot rate propagates through time. Thus,
at any point in time, it is possible to calculate the
probability distribution of the spot rate. It was
discussed previously that the price of a bond
depends on the spot rate so that the spot-rate
probability distribution is also the probability
distribution for the bond price. This is useful
in calculating the probability that an embedded
call or put option will be exercised, which is the
probability that the price of a particular bond is
greater than or less than, respectively, the spec-
ified strike price at exercise.

The calculation of the probabilities is made
possible by assuming a specific mathematical
form for the random variable z, or a Wiener pro-
cess. Generally, a probability distribution func-

tion is described by its mean and variance as
functions of time. If these quantities are known,
then the probability of different spot rates is
known. The Wiener process assumption states
that the statistical variance for the random vari-
able z varies with the length of time under con-
sideration. As time increases, the variance of z
also increases. The known change in the vari-
ance of z is subsequently translated (in a known
fashion) to the change in the variance of the
rate r, which may be used to obtain the desired
probability in terms of r . In general, we use the
solution of the Kolmogorov (forward or back-
ward) equation to establish an expression for
the probability density of the short rate.

BOND-PRICE VALUATION
MODEL
As a consequence of assumptions 4 and 5 (the
price of a default-free discount bond depends
continuously on the spot rate), it can be shown
that the price of a discount bond of term T is
expressed as

∂ P
∂t

= rP − [k(θ − r ) + λσr ]
∂ P
∂r

− 1
2
σ 2r

∂2 P
∂r2

(2)

where

P = price of zero-coupon bond for
time t and rate r

∂P/∂t = partial derivative of price with re-
spect to time

∂P/∂r = partial derivative of price with re-
spect to rate

∂2P/∂r2 = second partial derivative of price
with respect to rate

λ = “risk premium”

The “risk premium” is the variable that rep-
resents the additional return over the risk-free
rate that the market requires for holding a
longer-term instrument. This is determined
from the current term structure. In addition to
the bond price equation, to represent the
behavior of the instrument, boundary
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conditions on the solution to (2) need to
be prescribed. These conform to given circum-
stances, but in the simplest case, they include
cash flows and constraints on P as r converges
toward zero or becomes arbitrarily large.

Developing the Bond-Price Equation
A development of the bond-price valuation model
(for the zero-coupon bond) follows in a straight-
forward manner. Arguments of variables are
suppressed except when needed to clarify de-
pendencies.

Equation (1) describes the process for the
propagation of the spot rate and is given by

dr = k(θ − r )dt + σ
√

rdz

If we assume that P is a function of the two
variables r and t expressed as the following
P = P(r, t), then Ito’s lemma (see Shreve, 2004)
provides that

dP =
[

k(θ − r )
∂ P
∂r

+ ∂ P
∂t

+ 1
2
σ 2r

∂2 P
∂r2

]
dt

+ σ
√

r
∂ P
∂r

dz

To apply the principal of an arbitrage-free
term structure, consider the representation of
evolutions of the price to be

dP = μPdt − ρPdz

where

μ = 1
P

[
a

∂ P
∂r

+ ∂ P
∂t

+ 1
2

b2 ∂2 P
∂r2

]

ρ = − 1
P

b
∂ P
∂r

Any security Wi with maturity si is subject to
the same relationship such that

dWi = μi Wi dt − ρi Wi dz

Consider a portfolio W consisting of owning
an amount of W1 and shorting an amount of W2

such that

W = W2 − W1

where

W2 =
[

ρ1

ρ1 − ρ2

]
W

and

W1 =
[

ρ2

ρ1 − ρ2

]
W

Thus

dW = dW2 − dW1

Substituting for dW1 and dW2 yields

dW =
[

μ1ρ2

ρ1 − ρ2

]
Wdt −

[
ρ2ρ1

ρ1 − ρ2

]
Wdz

−
[

μ1ρ2

ρ1 − ρ2

]
Wdz +

[
ρ1ρ2

ρ1 − ρ2

]
Wdz

=
[
μ2ρ1 − μ1ρ2

ρ1 − ρ2

]
Wdt

Since the stochastic element dz disappears, the
rate of return on the portfolio W is equal to the
riskless rate r. Therefore,

dW = rWdt

where we see it must be that

r = μ2ρ1 − μ1ρ2

ρ1 − ρ2

This gives the following relationship

rρ1 − rρ2 = μ2ρ1 − μ1ρ2

or, equivalently,
μ2 − r

ρ2
= μ1 − r

ρ1

Since the maturities s1 and s2 were chosen ar-
bitrarily, the above is true for any maturity s.
Therefore, the term

μ − r
ρ

is not a function of maturity and may be written
as

μ − r
ρ

= q (t, r )

where q(t, r) is the market price of risk.
Applying separation of variables, we choose

q(t, r) to be the following

q (t, r ) = λ(t)
√

r
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where λ(t) is the risk premium, which can be
shown to be

λ(t) = 1
2

σ

k

[
1 − e−kt

]

(As the term extends, the premium is higher.)
We see, therefore, that

μ − r
ρ

= q (t, r ) ⇒ μ = r + λ(t)
√

rρ

or that the expected return of a bond is equal
to the riskless rate plus another term related to
the risk premium.

With ρ = − 1
P b ∂ P

∂r , the above becomes

μ = r + λ
√

r
(

−σ
√

r
∂ P
∂r

1
P

)

Substituting the above into dP = μPdt − ρPdz
gives (where ∂ P

∂r < 0)

dP =
(

r − λσr
∂ P
∂r

1
P

)
Pdt − ρPdz

Equating the coefficients of dt between the
above and

dP =
[

k(θ − r )
∂ P
∂r

+ ∂ P
∂t

+ 1
2
σ 2r

∂2 P
∂r2

]
dt

+ σ
√

r
∂ P
∂r

dz

gives

∂ P
∂t

= rP − [k(θ − r ) + λσr ]
∂ P
∂r

− 1
2
σ 2r

∂2 P
∂r2

where, at maturity, we have the boundary con-
dition

P(r . t) = 1

This completes the derivation of equation (2).
Next, if we assume a separation of variables

for P(r, t) of the form

P(r, t) = exp [C(t) − B(t)r]

it can be derived that the target spot rate, θ (t),
is of the form

θ (t0 + T) = − d
dT

ln d(t0, T) − 1
k

d2

dT2 ln d(t0, T)

or

θ (t0 + T) = F (t0, t0 + T) + 1
k

d
dT

F (t0, t0 + T)

which will provide a solution to equation (2)
that will exactly reprice the reference set where
the discount function d(t0, T) and the forward
rates F(t0, t0 + T) are derived from the refer-
ence set using spline functions. Furthermore,
this property is true for all volatilities when the
above-specified risk premium is used.

THE TERM STRUCTURE
Equation (2) is a PDE whose solution is ob-
tained through a numerical finite-difference
technique. The solution gives the price P of the
bond for different times and spot rates, and can
be visualized as a three-dimensional surface for
which the height of the surface is the price of
the bond and the location of the point (i.e., lon-
gitude and latitude) is given by the time and
spot rate. The solution takes into account that
the bond’s price is par at maturity, regardless
of the level of interest rates. As the solution
steps back from the maturity date, the price
of the bond may be calculated for varying lev-
els of the spot rate and the familiar price/rate
graph may be drawn for this time-step. (Not
all bond prices are equally likely to occur since
interest-rate movements and the probabilities
associated with these movements are described
by equation (1).)

As the solution process continues backward
from maturity to the present day, the theoretical
price corresponding to today’s spot rate can be
calculated. Once the price behavior of a bond
is known, the value of an option on that bond
may also be calculated. In general, the expected
value of the bond may be determined at any
time from the present to maturity under the
expectation operation over the solution to (2)
and the probability density function for r.

Since the solution to equation (2) furnishes the
price as a function of time and rate, equation
(14) of the previous section may be solved to
provide the zero-coupon yield for a bond with
the term-to-maturity T. As the term T is varied,
the entire term structure may be obtained.
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(The obtained term structure, in general, can
take a variety of shapes. If the current spot rate
is below the current value of the long-term rate,
θ , the obtained term structure will be upward
sloping. If the current spot rate is substantially
above the long-term rate, the obtained term
structure will be inverted to downward sloping.
For spot-rate values in between, the term struc-
ture will be humped, displaying both upward
sloping and downward sloping segments. Thus
an attractive feature of the term structure model
is the ability to obtain term structure specifica-
tions that are consistent with those that have
been observed historically.)

APPLICATIONS OF THE
TERM STRUCTURE MODEL
We conclude this entry with a description of the
application of the term structure model devel-
oped in the previous section in the valuation of
fixed-income securities. For the simple case of
noncallable bonds, many term structure mod-
els can be used to determine value. In fact, the
spline-fit discount function is a very straightfor-
ward method of calculating the value of such a
bond. However, when option-embedded bonds
or compound instruments are considered, us-
ing the PDE approach is opportune to reflect
the specific nature of the option features. As
this entry demonstrates, the PDE-based term
structure model is but the first step that leads
to a greater assortment of analytical financial
tools.

Zero-Coupon Bonds
Most yield curves, such as the U.S. Treasury
curve, are expressed in terms of the yields of
coupon-bearing bonds, not zero-coupon bonds.
Thus a procedure is required to translate the
current-coupon yield curve to an initial zero
curve (i.e., the current term structure) expressed
in terms of a spot-yield curve. One of several
methods may be employed; see Vasicek and

Fong (1982). In summary, a reference set of se-
curities is chosen to represent the yield curve,
and each of the cash flows from this set of se-
curities is treated as a zero-coupon bond that
is part of the term structure. Since each of the
reference securities has a known market price,
the price/yield relationship, along with a curve-
fitting process, is applied sequentially to each of
the cash flows to derive the current term struc-
ture. This process establishes the set of initial
conditions necessary to predict the evolution of
the term structure.

If the actual zero-coupon yields are compared
to the theoretical zero-coupon yields, then the
richness or cheapness of the zero-coupon mar-
ket may be gauged. Since the discount func-
tion may be constructed from any reasonable
set of reference bonds, if the reference bonds
consisted of off-the-run Treasury issues that are
commonly stripped and/or reconstituted, then
the corresponding theoretical zero curve should
be indicative of the shape and level of the mar-
ket strip curve.

Additionally, as the Treasury curve flattens
or steepens, the theoretical zero curve changes
accordingly to reflect the new shape of the Trea-
sury curve. Consequently, as the Treasury curve
steepens or flattens, the degree of anticipated
yield-spread widening or tightening in the zero
market may be estimated.

Coupon-Paying Bonds
While our discussion thus far applies mainly
to the price of a zero-coupon bond, it is more
common to encounter coupon-paying bonds.
To value coupon-paying bonds, we simply sum
the present values of each of the coupon pay-
ments to determine the price. As discussed ear-
lier, each coupon is treated as an individual
zero-coupon bond.

Determination of the Theoretical
Fair Value
Once the term structure is defined, it may be
used to value any collection of cash flows and
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serves as the standard of fair value. The theoret-
ical price of a security that is calculated in this
manner may be compared to its actual market
price. Any difference in price that results indi-
cates whether the security is rich or cheap rela-
tive to its fair value. If the market price is equal
to the fair value, then the security is said to be
fairly priced.

Generally, Treasury securities are chosen to
represent the basis for fair value and most
securities (such as corporate and government-
agency debt obligations) are cheap to Trea-
suries. However, if there are a sufficient number
of securities from a particular sector or issuer,
these issues may be used as the reference set of
securities and a new yield curve may be defined
to be the standard of fair value. Thus corpo-
rate, agency, or municipal debt issues may be
compared to their own family of securities or
to their own sector to determine their relative
value within the specified sector.

Determination of Par-Coupon and Horizon
Yield Curves
A par-coupon yield curve is a theoretical yield
curve comprised of par-priced bonds along the
maturity spectrum. Each of these par-priced
bonds is constructed from the same discount
function, which in turn is derived from a spec-
ified set of reference bonds. Since the discount
function is defined continuously at different
maturity points and cash-flow dates (via a
spline-fitting procedure, for example), the par-
coupon bonds corresponding to these same
points may be determined.

The procedure for constructing a par-coupon
bond involves an iterative process in which an
initial coupon is assumed. For a given maturity
date and associated coupon-payment dates, the
cash flows and cash-flow dates are known for
the assumed coupon level. The present value
of each of the cash flows is found through the
discount function, and the sum of the present
values is compared to a price of par. The coupon
then is varied until a par-priced bond is found.
The process may be repeated for as many ma-

turity points as desired to construct an entire
par-coupon yield curve.

A par-coupon yield curve is helpful in pric-
ing bonds with off-the-run maturities. Often the
question arises as to what exactly is the compa-
rable Treasury yield when pricing off-the-run
bonds. Depending on the fixed-income market
sector, the comparable Treasury yield may be
that of a specific Treasury note, or it may be an
interpolated yield. The par-coupon curve pro-
vides a more technically rigorous means of cal-
culating the interpolated yield, as opposed to a
simple straight-line interpolation scheme.

Another application of the concept of the par-
coupon yield curve is the horizon yield curve,
the par-coupon yield curve for a future horizon
date. Since the discount function may be deter-
mined as a function of time, the corresponding
horizon yield curves at various points in time
also may be found. The horizon yield curve is
one way to help visualize how the present yield
curve may evolve in the future in an arbitrage-
free environment. (Of course, as new informa-
tion is incorporated into the marketplace as
time passes, the actual yield curve may devi-
ate from the horizon yield curve. However, a
horizon yield curve may still be calculated that
reflects particular views about the future move-
ments in both short-term and long-term rates.)

Yield-Curve Shocks and Shifts
The shape of the yield curve is governed by
exogenous (real-world) factors. As the Federal
Reserve alters its monetary policy, or as the
inflation outlook changes, the yield curve re-
sponds accordingly. These perturbations to the
curve can be characterized as “shocks” to short-
term rates and as “shifts” to long-term rates. A
shock can occur when there is a sudden and
unexpected event that causes short-term rates
to jump, even though the overall economic fun-
damentals have not changed.

The clearest example of a shock is the crash of
1987, during which investors fled to the safety
of the Treasury market. During October 19,
short-term rates dropped by approximately 90
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to 100 basis points as investors sought a tem-
porary safe haven. At the same time, long-term
rates fell by about 20 to 30 basis points. Since
the crash was a market phenomenon, rather
than an altering of economic fundamentals, it is
characterized as a shock to the system. (This is
described mathematically within the term
structure model as a change to the initial con-
dition of the differential equation, where the
differential equation remains the same. The so-
lution to the differential equation shows how
the entire yield curve responds to a shock in
short-term rates.)

A shift in the yield curve results from a change
in the economic landscape where federal bud-
getary concerns or inflation outlooks can affect
the view on long-term interest rates. (In contrast
to a shock, the term structure model represents
a shift as a respecification of the parameters to
the differential equation, while the initial condi-
tion has remained unchanged. The most general
situation can consist of a combination of shocks
and shifts.)

The basic premise underlying the shocked
and/or shifted horizon yield curve is that the
curve evolves in an arbitrage-free manner as
prescribed by the term structure model despite
alterations to the curve. Thus, even though a
shock or a shift has occurred, the entire yield
curve responds in such a way as to preclude
arbitrage. As a result of different combinations
of shocks and shifts of varying magnitudes, a
series of horizon yield curves can be found for
different yield-curve steepening and flattening
scenarios.

TERM STRUCTURE OF
FORWARD RATES
The financial markets can be viewed as a
“game” with bids and offers between par-
ticipants. To characterize fairness among the
participants, the concept of a martingale (from
probability theory) is introduced. Briefly, a mar-
tingale M(t) is a stochastic process with finite
first moment for any t and where

E [M(s)|Ft] = M(t) for s > t

with Ft denoting that the conditioning is on
a given filtration or data set. Additionally, a
portfolio may be thought of as a quantity vec-
tor representing a particular set of positions
(Øksendal, 2007). If the market is fair, then
the discounted future value of any portfolio
should be the same as today’s portfolio value
when an appropriate discounting methodology
is employed. However, in the objective (or real)
world, equipped with the real-world measure,
discount functions vary according to individ-
ual risk preferences, each associated with its
own sector/market consensus. It is tedious to
quantify these preferences for every case. So,
instead of working under the real-world mea-
sure, we seek to explore an artificial probability
measure under which every situation is risk-
neutral. This probability measure is called the
risk-neutral measure.

Modern pricing theory for financial deriva-
tives is based on replicating a given deriva-
tive’s payoff by putting together a self-financing
portfolio consisting of the underlying assets
and risk-free bonds. By buying a derivative and
selling its replicated portfolio (or vice versa),
the self-financing portfolio is found to be risk-
free. Constructing such a risk-free portfolio is
beyond the scope of this discussion, but un-
derstanding and utilizing the existence and
uniqueness of this replicating strategy is the
key for what follows (see Björk, 2009). Next,
we first examine the derivation of a risk-neutral
probability measure from a forward-rate model.
Then we look at a general no-arbitrage condition
for the bond market. Finally, we address some
practical issues and solutions in a conceptual
fashion.

HEATH, JARROW, AND
MORTON MODEL OF THE
TERM STRUCTURE
Heath, Jarrow, and Morton (1992) proposed a
general condition for no-arbitrage using the in-
stantaneous forward-rate curve dynamics. The
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instantaneous forward-rate is defined as

F (t, T) := −∂ ln B(t, T)
∂T

where B(t, T) is the zero-coupon bond price at
time t and maturity T. This stochastic process is
usually written in a differential form

dF(t, T) = α(t, T)dt + σ (t, T)dW(t)

where α and σ satisfy the usual conditions for
an Ito process and W(t) is a standard Brownian
motion (under the real-world measure). Here,
F(0, T) is the initial forward-rate term structure.
In many situations, instantaneous forward rates
are fundamental building blocks for modeling
fixed-income contingent claims. For example,
a bond price process can be derived from Ito’s
lemma such that

dB(t, T)
B(t, T)

=
[

F (t, t) −
∫ T

t
α(t, u)du

+ 1
2

(∫ T

t
σ (t, u)du

)2]
dt

−
∫ T

t
σ (t, u)dudW(t)

Details can be found in Shreve (2004). Also,
the money market account can be written as

dM(t)
M(t)

= F (t, t)dt (or equivalently,

M(t) = e
∫ t

0 F (u,u)du)

A discount factor, D(t) = M−1(t), is defined
similarly. A variation of this setting is one
where we use the notation T to represent time-
to-maturity (also called term). This alternative
model is closer to the market reality because the
curve won’t shorten and will validate rolling-
over trading strategies. For simplicity we set T
to be maturity in the rest of this entry.

Let’s first assume the existence of a
risk-neutral probability measure, which is
equivalent to imposing the local expectations

hypothesis, that is,

�

E
[

dB(t, T)
B(t, T)

|Ft

]
= F (t, t)dt

where the expectations
�

E [] is taken under this
risk-neutral measure. Therefore the discounted
bond-price processes D(t)B(t, T ) is a martingale
for all T, that is,

�

E [D(s)B(s, T)|Ft] = D(t)B(t, T) for t ≤ s ≤ T

This hypothesis also implies that the short
rate evolves along today’s instantaneous for-
ward rate curve. Refer to Björk (2009) or Shreve
(2004) for more details. Based on the martin-
gale property we can then derive the HJM no-
arbitrage condition shown in Heath et al. (1992)
that

α(t, T) = σ (t, T)
∫ T

t
σ (t, u)du

That is, the drift term of the instantaneous
forward-rate curve process is tightly defined
by the volatility term. This remarkable result
tells us that only volatilities matter when mod-
eling interest rates under a risk-neutral mea-
sure. Since the martingale property is imposed
on all zero-coupon bonds to ensure fairness, ar-
bitrage trades are precluded. If a pricing model
is designed only for a derivatives pricing pur-
pose, further investigation on risk premium is
not necessary. This is an important point. For
once the HJM no-arbitrage condition is applied
to a particular model, the existence of a risk-
neutral measure is assumed and the risk pre-
mium is zero. Nonetheless, not every modeler
appreciates the consequence of ignoring the
risk premium—especially when an asset and its
derivative are priced congruently. For example,
mortgage-backed derivatives usually involve
prepayment statistics, which cannot be quanti-
fied under a risk-neutral measure, and the risk
premium is usually given exogenously. The an-
swer of which model should be used is based
on the modeler’s discretion involving calibra-
tion, implementation, and market assumptions,
which we will talk about a bit more below.
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MARKET PRICE OF RISK
Let the market price of risk be denoted by 	(t).
By the HJM no-arbitrage condition

α(t, T) − σ (t, T)	(t) = σ (t, T)
∫ T

t
σ (t, u)du

which shows that the risk premium can be writ-
ten as

	(t) = α(t, T)
σ (t, T)

−
∫ T

t
σ (t, u)du

If 	 exists, then the market is arbitrage-free.
Moreover if 	 is unique, then the market is com-
plete. For a multifactor model, completeness
can be shown by nonsingularity of the volatil-
ity matrix. A remark can be made here that risk
premiums are determined endogenously by the
HJM no-arbitrage condition following from the
local expectations hypothesis. This market price
of risk identified in the HJM model is, however,
a constant function of all maturities. The lack of
flexibility limits the interest rate curve evolution
under the real-world measure. In other words,
if the curve dynamic is initially set up under a
risk-neutral measure, then 	(t) is usually im-
possible to find so that the “model-derived”
real-world interest rates could satisfy the “real”
real-world statistics.

BOND PRICING
When the market is assumed to be arbitrage-
free and complete, zero-coupon bonds can then
be derived under a unique risk-neutral measure
that

dB(t, T)
B(t, T)

= F (t, t)dt −
∫ T

t
σ (t, u)du dW̃(t)

The rate of return for any bond is the same
as the short rate; nonetheless, the bond-price
process is not Markov for a general forward-
rate model. This result is critical when it comes
to derivatives pricing since Monte Carlo sim-
ulation is often the only approach, and it
can be slow and imprecise. Furthermore, no
closed-form solution for bond dynamics can be

given, thus there is no closed-form solution for
bond derivatives. Besides the computational is-
sues due to the complexity in bond dynamics,
the HJM framework cannot be used for log-
normally distributed forward rates since, under
the continuous compounding environment, the
process “explodes” with positive probability.
Therefore, practitioners seek eclectic methods
to resolve the issues. A powerful tool invented
for interest-rate derivatives pricing is the tech-
nique of “changing the numeraire,” discussed
next.

CHANGE OF NUMERAIRE
The numeraire is a traded asset used for measur-
ing value. Given a numeraire, all other prices
are measured relative to this asset. In general,
risk-neutral measures can have various forms in
terms of different numeraires. For instance, if a
money market account is used as a numeraire,
it is the tradition risk-neutral measure as we
see in the Black-Scholes option pricing setting.
In a traditional risk-neutral world, the general
evaluation form is written as

V(t) = Ê [D(T)V(T)|Ft]

where V(T) is the payoff of a contingent claim
maturing at time T, and V(0) is its price at time
0. Normally interest rates and underlying assets
are assumed to be uncorrelated. This assump-
tion makes the evaluation of the expectations
above easier, but it is obviously invalid when
a derivative V is based on interest rates. Fur-
ther investigation in separating the derivative
value process and the discount factor has been
established by Geman et al. (1995).

In a traditional risk-neutral world, every
discounted traded-asset price process is a mar-
tingale. When we take, for example, a zero-
coupon bond with maturity T as our numeraire,
the drift term of any other discounted traded-
asset price process is adjusted according to this
zero-coupon bond volatility. The new measure
based on the zero-coupon bond numeraire is the
T-forward risk-neutral measure. Consequently
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we have

V(t) = B(t, T)E T [V(s)|Ft]

where ET [] is the expectation under the T-
forward risk-neutral measure. When the money
market account is used as the numeraire, this
adjustment to the drift term is unnecessary
since the money market account process has
zero volatility. In this new pricing equation the
discount factor is taken out of the bracket and
replaced with the zero-coupon bond discount.
Therefore, the expectation is performed solely
on the derivative V.

MARKET MODELS
For practitioners, the continuous compound-
ing framework is unnecessary since most in-
terest rates, such as LIBOR, for example, have
only 1-week, 1-month, 3-month, 6-month, and
1-year investing intervals. Therefore, adopting
the general no-arbitrage condition under the
HJM framework, Brace et al. (1997) created
a model for simple forward rates, which are
compounded under a discrete-time framework.
Based on the change of numeraire technique,
forward rate processes are martingales under
specific forward risk-neutral measures. This
phenomenon can be justified via analyzing a
bond portfolio used to create the payoff of a
forward rate agreement: Let F̂ (t, T, T + τ ) de-
note the process of a simple forward rate for the
period [t, T] with tenor τ . Then

F̂ (t, T, T + τ ) = B(t, T) − B(t, T + τ )
τ B(t, T + τ )

Here B(t, T + τ ) serves as the numeraire and
transforms the traditional risk-neutral proba-
bility into a forward risk-neutral probability.
By Ito’s lemma, the forward rate dynamic can
therefore be written as

d F̂ (t, T, T + τ )
F̂ (t, T, T + τ )

= γ (t, T, T + τ )dW̃T+τ (t)

where

γ (t, T, T + τ ) = 1 + τ F̂ (t, T, T + τ )
τ F̂ (t, T, T + τ )

×
[∫ T+τ

T
σ (t, u)du

]

The main advantage of the LIBOR market
model is set on the practical side. First, if γ

are assumed to be nonstochastic, then for-
ward rates are log-normal, which coincides
with Black’s pricing formula. Moreover, the
consequence that interest rates are nonnegative
and zero-coupon bond prices are nonzero un-
der Monte Carlo simulations makes the model
widely accepted. Therefore, for the past two
decades, the LIBOR market model has been
highly developed for various applications in-
cluding the LIBOR swap market. Derivations
and implementations of these market models
can be found in Brigo and Mercurio (2006) and
Rebonato (2002, 2004).

INTEREST RATE
DERIVATIVES
An interest-rate cap consists of a portfolio of
caplets that provide insurance against rising
borrowing costs. Let C(T) denote a caplet with
maturity T on a simple τ -LIBOR forward rate
F̂ over time interval [t, T]. The payoff of this
LIBOR caplet is

C(T, T) = L
(
F̂ (T, T, T + τ ) − K

)+

where L is the principal amount and K is the
strike rate. Under the market model setting
with deterministic forward-rate volatilities, the
caplet price can be written in Black’s formula
by

C(0, T) = B(0, T)L
[
F̂ (0, T, T + τ )N(d1) − KN(d2)

]

d1 =
ln

(
F̂ (0, T, T + τ )

K

)
+ 1

2

∫ T

0
γ 2(u, T, T + τ )du

√∫ T
0 γ 2(u, T, T + τ )du

d2 = d1 −
√∫ T

0
γ 2(u, T, T + τ )du
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in which the volatility structure is flat with re-
spect to the caplet strike prices. Despite this lim-
itation, the model becomes the building block
for replicating exotic interest-rate derivatives
since the implied volatilities can be derived
from several plain-vanilla traded derivatives.
The information determined from this smaller
scale market is then extended to characterize the
whole-market dynamic. The operation usually
involves interpolating, and many techniques
are introduced in Rebonato (2002).

For pricing exotic interest-rate derivatives,
interpolation on implied volatilities is often nec-
essary, though undesirable because the HJM no-
arbitrage condition cannot hold in most cases.
LIBOR serial options, for example, are not as ac-
tively traded, so the prices are calculated based
on the LIBOR cap/floor market. A serial option
has two different maturities for the underlying
forward rate agreement different from the op-
tion itself. Despite the availability of a closed-
form solution, the needed volatility input for
Black’s formula turns out to be a partial integra-
tion from time 0 to the option maturity, and this
information is not available from the cap/floor
market. Therefore, further heuristic treatment
is usually undertaken to connect the dots, in
which case the curve would behave in explicit
patterns and allow arbitrage.

DESIGNING YOUR NEXT
MODEL
No single model is perfect in general for all as-
sets in any market environment. The trade-offs
between convenience and accuracy are eval-
uated by individual trading desks, quantita-
tive analysts, and ultimately validated by the
market. Nonetheless, when presenting a new
model, three aspects are usually evaluated.

From a financial aspect, a model must be able
to price the underlying asset(s) and its deriva-
tives simultaneously. The market for an asset

and its derivatives are congruent, and there is
no logic in pricing them separately, thereby risk-
ing “model” arbitrage. For example, we con-
struct an interest-rate model for LIBOR-swaps
curve in the real world and organically em-
bed it in the model to price LIBOR derivatives
such as LIBOR caps, floors, or even serial op-
tions in a risk-neutral world. Another example
is for an underlying bullet bond and its callable
counterpart. A callable bond is a bullet bond
with an issuer-long, embedded American-style
call option; however, the bullet bond price is
determined under the real-world measure and
the embedded option can be priced in the risk-
neutral world. Therefore, a good model should
be able to value a callable bond by valuing the
bullet bond and the embedded American-style
call option simultaneously.

From a mathematical standpoint, a model
must be able to exhibit equivalency under dif-
ferent measures by explicitly characterizing the
market price of risk. This mathematical com-
ponent builds the bridge connecting the real
world and a risk-neutral world. A complete fi-
nancial market infers the existence of a unique
market price of risk; but we should empha-
size that whether a market is complete or not
does not depend on the existence of a set
of complete traded assets, but on the exis-
tence of an entity that can make the market
if an arbitrage opportunity is revealed. There-
fore, modern financial markets create not only
hedging tools but an intangible equilibrium,
which validates the underlying mathematical
assumptions.

Finally, as we employ computation, this as-
pect demands that models/derivatives that re-
quire Monte Carlo analysis must be simulated
by the same algorithm efficiently under dif-
ferent measures. This issue is more important
in interest-rate modeling since there may be a
trade-off between satisfying the mathematical
requirements of a model and employing a com-
putational implementation. Finding a model
that satisfies both criteria is not trivial even
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though the markets are assumed to be complete.
We specifically use the word “efficiently” to im-
plicitly indicate that a model can be simulated
by a recombination tree for American-style
options.

Dynamic term structure models represent
a highly developed condition where finance,
mathematics, and computation come together.
As opposed to the case with static term struc-
ture models where the term structure ap-
pears explicitly, for dynamic models the term
structure of interest rates is usually implicitly
embedded in models that engage in represent-
ing risk/value relative to current conditions for
lending and borrowing over the spectrum of
terms available in the market. Preclusion of ar-
bitrage is fundamental for these models. We
have shown two approaches to dynamic term
structure models, one depending on a repre-
sentation through the spot rate, the other de-
pending on a representation through implied
forward rates. In each case the relationship
between the objective and risk-neutral world
(measure) has been exploited to ensure coher-
ence between underlying asset prices and any
resulting derivative. Here, the value of the as-
set and the derivative each depend on a repre-
sentation of the same determining condition of
interest rates.

KEY POINTS
� Dynamic term structure models of interest

rates readily admit uncertainty in valuation/
risk analyses requiring a characterization of
future market scenarios.

� In building dynamic term structure models it
is important that equilibrium, in an arbitrage-
free sense, is represented and that variations
from the equilibrium may be represented in
an appropriate, probabilistic sense through a
choice of stochastic processes and probability
measures.

� Two approaches in explaining the future
course of interest rates embody the short-rate
model or an evolution of forward rates.

� Common methods for analyzing fixed-
income/interest-rate instruments include for-
mulation through a risk-neutral measure or
by maintaining a real-world (objective) prob-
ability measure. Each has its own merit.

� The market price of risk is the key link be-
tween the risk-neutral and objective proba-
bility measures.
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Abstract: Models of the term structure of interest rates have become increasingly important in financial
modeling. However, the understanding of these models by practitioners has not always kept pace
with the breadth of the application of these models. In particular, misinterpretation of the proper
uses of a particular model can lead to significant errors. The confusion regarding these models has
arisen because of the overuse and misuse of the term “arbitrage-free.”

In this entry, we attempt to clear up some of
the most commonly misconstrued aspects of
interest rate models: the choice between an
arbitrage-free or equilibrium model, and the
choice between risk neutral or realistic parame-
terizations of a model. These two dimensions
define four classes of model forms, each of
which has its own proper use.

Much of the confusion has arisen from
overuse and misuse of the term “arbitrage-
free.” Virtually all finance practitioners believe
that market participants quickly take advan-
tage of any opportunities for risk-free arbitrage
among financial assets, so that these oppor-
tunities do not exist for long; thus, the term
“arbitrage-free” sounds as if it would be a good
characteristic for any model to have. Simply
based on these positive connotations, it almost
seems hard to believe that anyone would not
want their model to be arbitrage-free. Briefly,

in the world of finance this expression has the
associations of motherhood and apple pie.

Unfortunately, this has led some users (and
even builders) of interest rate models to link un-
critically the expression “arbitrage-free” with
the adjective “good.” One objective of this
entry is to show that arbitrage-free models
are not appropriate for all purposes. Further,
we show that just because a model uses the
arbitrage-free approach does not mean that it
is necessarily good, even for the purposes for
which arbitrage-free models are appropriately
used.

Another common confusion ensues from im-
plicitly equating the terms “arbitrage-free” and
“risk neutral.” This arises partly from the fact
that, in the academic and practitioner literature,
there have been very few papers that have ap-
plied the arbitrage-free technique to a model
that was not in risk-neutral form. We explain
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the reason for this below. The natural result is
that the terms have sometimes been used inter-
changeably. In addition, since quantitative risk
management is a relatively new concept to the
finance community, most well-known papers
have focused only on the application of inter-
est rate models to simple valuation and hedging
problems. These have not required either the re-
alistic or equilibrium approaches to modeling.
This lack of published work has led to a mis-
taken belief that an arbitrage-free, risk-neutral
model is the only valid kind of term structure
model. In this entry, we intend to dispel that
notion.

CATEGORIZATION OF
APPROACHES TO TERM
STRUCTURE MODELING
Arbitrage-Free Modeling
Arbitrage-free models take certain market
prices as given and adjust model parameters
in order to fit the prices exactly. Despite be-
ing called “term structure” models, they do not
in reality attempt to emulate the dynamics of
the term structure. Instead, they assume some
computationally convenient, but essentially ar-
bitrary, random process underlying the yield
curve, and then add time-dependent constants
to the drift (mean) and volatility (standard de-
viation) of the process until all market prices are
matched. To achieve this exact fit, they require
at least one parameter for every market price
used as an input to the model.

For valuation, it is possible to produce rea-
sonable current prices for many assets with-
out having a realistic term structure model, by
using arbitrage-free models for interpolation
among existing prices. To this end, the trading
models used by most dealers in the over-the-
counter derivatives market employ enormous
numbers of time-dependent parameters. These
achieve an exact fit to prices of assets in partic-
ular classes, without regard to any differences

between the behaviors of the models and the
actual behavior of the term structure over time.
Placed in terms of a physical analogy, the dis-
tinction here is between creating a robot based
on a photograph of an animal, and creating a
robot based on multiple observations of the an-
imal through time. While the robot produced
using only the photograph may look like the
animal, only the robot built based on behav-
ioral observations will act like the animal. An
arbitrage-free model is like the former robot,
constructed with reference to only a single point
in time; that is, a snapshot of the fixed-income
marketplace.

Equilibrium Modeling
In contrast to arbitrage-free models, equilib-
rium term structure models are truly models
of the term structure process. Rather than inter-
polating among prices at one particular point
in time, they attempt to capture the behaviors
of the term structure over time. An equilibrium
model employs a statistical approach, assum-
ing that market prices are observed with some
statistical error, so that the term structure must
be estimated, rather than taken as given. Equi-
librium models do not exactly match market
prices at the time of estimation, because they
use a small set of state variables (fundamen-
tal components of the interest rate process) to
describe the term structure. Extant equilibrium
models do not contain time-dependent parame-
ters; instead they contain a small number of sta-
tistically estimated constant parameters, drawn
from the historical time series of the yield
curve.

Risk-Neutral Probabilities:
The Derivative Pricing
Probability Measure
When we create a model for pricing interest rate
derivatives, the “underlying” is not the price of
a traded security, as it would be in a model for
equity options. Instead, we specify a random
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process for the instantaneous, risk-free spot
interest rate, the rate payable on an investment
in default-free government bonds for a very
short period of time. For convenience, we call
this interest rate “the short rate.” Financial mod-
elers have chosen to create models around the
short rate because it is the only truly riskless in-
terest rate in financial markets. An investment
in default-free bonds for any noninstantaneous
period of time carries market risk, the chance
that the short rate will rise during the term of
the investment, leading to a decline in the in-
vestment’s value.

As with any risky investment, an investor in
bonds subject to market risk expects to earn a
risk-free return (that is, the return from contin-
uously investing at the short rate, whatever that
may be) plus a risk premium, which could in-
crease or decrease as the term of the investment
increases. Thus, the spot rate for a particular
term is composed of the return expected un-
der the random process for the short rate up
to the end of that term, plus a term premium,
an additional return to compensate the investor
for the interest rate risk of the investment. The
term premium offered in the market depends
on the aggregate risk preference of market
participants, taking into account their natural
preferences for securities that conform to their
investment (term) needs.

Let rt be the short rate at time t. Let D(t, T) be
the price, at time t, of a discount bond paying
one dollar at time T. Let s(t, T) be the spot rate
at time t for the term (T−t). Finally, let φ(T− t)
be the term premium (expressed as an annual
excess rate of return) required by investors for
a term of (T−t). All rates are continuously com-
pounded. We can then write,

D(t, T) = 1
es(t,T)×(T−t)

= 1
eφ(T−t)×(T−t)

E
[

1

e
∫ T

t rs ds

]

(1)

The second term in the two-term expression
above is a discount factor that reflects the ex-
pected return from investing continuously at

the short rate for the term (T–t). The first term
is the additional discount factor that accounts
for the return premium that investors require to
compensate them for the market risk of invest-
ing for a term of (T–t). The use of an integral
in the expression for the expected short rate
discount factor is necessary because the short
rate is continuously changing over the bond’s
term.

From this description and formula, it may
seem necessary to know the term premium for
every possible term, in addition to knowing
the random process for the short rate, in or-
der to value a default-free discount bond. This
is not the case, however. As in the pricing of a
forward contract or option on a stock, we can
use the mathematical sleight-of-hand known as
risk-neutral valuation to find the relative value
of a security that is derivative of the short
rate.

The principle of risk-neutral valuation as it
applies to bonds and other interest rate deriva-
tives is that, regardless of how risk averse in-
vestors are, we can identify a set of spot rates
that value discount bonds correctly relative to
the rest of the market. We do not have to iden-
tify separately the term premium embedded in
each spot rate in order to use it to discount fu-
ture cash flows. This fact can be used to make
the valuation of all interest rate derivatives eas-
ier by risk adjusting the term structure model;
that is, by changing the probability distribution
of the short rate so that the spot rate of every
term is, under the new model, equal to the ex-
pected return from investing at the short rate
over the same term. This is accomplished by re-
defining the model so that, instead of being a
random process for the short rate, it is a random
process for the short rate plus a function of the
term premium. If we specify the process for r∗

t
in such a way that

r∗
s = rs + φ(s − t) + φ′(s − t) × (s − t) (2)

at every future point in time s (accomplished by
adjusting the rate of increase of rt upward) then
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we can write,

D(t, T) = 1
es(t,T)×(T−t)

= E

⎡

⎢⎢⎢⎣
1

e

∫ T

t
(rs + φ(T − t))ds

⎤

⎥⎥⎥⎦ = E

⎡

⎢⎢⎢⎣
1

e

∫ T

t
r∗

s ds

⎤

⎥⎥⎥⎦

(3)

By transforming the short rate process in this
manner, we have created a process for a random
variable which, when used to discount a cer-
tain future cash flow, gives an expected present
value equal to the present value obtained by
discounting that cash flow at the appropriate
spot rate. It is important to note that this ran-
dom variable is no longer the short rate, but
something artificial that we might refer to as
the risk-adjusted short rate.1

The resulting risk-neutral model might be con-
strued as a model for the true behavior of the
short rate in an imaginary world of risk-neutral
market participants, where there is no extra ex-
pected return to compensate investors for the
extra price risk in bonds of longer maturity. This
impression, while accurate, is not very informa-
tive. The important aspect of the risk-neutral
model is that the term premiums, whatever
their values, that exist in the marketplace are
embedded in the interest rate process itself, so
that the expected discounted value of a cash
flow at the risk-adjusted short rate is equal to
the discounted value of the cash flow at the spot
rate.2

The value of the risk-neutral probability measure
is that, under this parameterization, an interest-
sensitive instrument’s price can be estimated by
averaging the present values of its cash flows,
discounted at the short-term interest rates along
each path of the short rate under which those
cash flows occur. In contrast, valuing assets un-
der the model before it was risk adjusted would
require a more complicated discounting proce-
dure that applied additional discount factors to
the short rate paths to compensate for market
risk; however, the price obtained under both
approaches would be the same. For this rea-

son, we use randomly generated scenarios from
risk-neutral interest rate models for pricing.

To sum up, there is nothing magical about risk
neutrality. There are any number of changes of
variables we could make to a short rate process
that would retain the structure of the model, but
have a different (but equivalent) probability dis-
tribution for the new variable. We could change
the measure to represent imaginary worlds in
which market participants were risk seeking
(negative term premiums), or more risk averse
than in the real world; regardless, as long as we
structured the discounting procedure properly
we would always determine the same model
price for an interest rate derivative. The specific
change of variables that produces a risk-neutral
model simply makes the algebra easier than the
others, because one can ignore risk preferences.

Realistic Probabilities:
The Estimated Market
Probability Measure
We have described why risk-neutral interest
rate scenarios are preferred for pricing bonds
and interest rate derivatives. However, it is
important to note that risk-neutral scenarios
are not appropriate for all purposes. For ex-
ample, for scenario-based evaluation of port-
folio strategies, realistic simulation is needed.
And a computerized system for stress testing
asset/liability strategies under adverse move-
ments in interest rates is to actuaries what a
wind tunnel is to aerospace engineers. The rel-
evance of the information provided by the test-
ing depends completely on the realism of the
simulated environment. Stated differently, the
test environment must be like the real environ-
ment; if not, the test results are not useful.

The realistic term structure process desired
for this kind of stress testing must be distin-
guished from the risk-neutral term structure
process used for pricing. The risk-neutral pro-
cess generates scenarios in which all term pre-
miums are zero. This process lacks realism; in
the real world, term premiums are clearly not
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zero, as evidenced by the fact that the implied
spot curve from Treasuries has been predom-
inantly upward sloping. This predominantly
upward slope reflects an expected return pre-
mium for bonds of longer maturity, although
at times other configurations of buyer prefer-
ences can be inferred; for example, an inverted
curve suggests that buyers demand an increas-
ing premium for decreasing the term of their
positions.

Thus, the user of an interest rate model must
be careful. When generating scenarios for re-
serve adequacy testing, where the purpose is
to examine the effect on a company’s balance
sheet of changes in the real (risk-averse) world,
the user must not use the scenarios from a risk-
neutral interest rate model.

WHEN DO I USE EACH OF
THE MODELING
APPROACHES?
The two dimensions, risk-neutral versus realis-
tic and arbitrage-free versus equilibrium, define
four classes of modeling approaches. Each has
its appropriate use.

Risk-Neutral and Arbitrage-Free
Model
The risk-neutral and arbitrage-free model is the
most familiar form of an interest rate model for
most analysts. The model has been risk adjusted
to use for pricing interest rate derivatives, and
its parameters have been interpolated from a
set of current market prices rather than being
statistically estimated from historical data. It is
appropriately used for current pricing when the
set of market prices is complete and reliable.

It is worth noting that, just because two mod-
els are each both risk neutral and arbitrage-
free, we cannot conclude that they will give the
same price for a particular interest rate deriva-
tive. Two arbitrage-free models will produce the
same prices only for the instruments in a subset

common to both sets of input data. The form
of the model, and particularly the number of
random factors underlying the term structure
process, can make a large difference to valua-
tions of the other instruments.

When the market data are sparse, the behavior
of the model becomes important. For example,
the value of a Bermudan or American swap-
tion depends on the correlations among rates
of different maturities. The swaption market is
not liquid, nor are its prices widely dissemi-
nated, so there is no way to estimate a “term
structure of correlations” that would allow a
simple arbitrage-free model to interpolate rea-
sonable swaption prices. In this case, a multi-
factor model that captures the nature of cor-
relations among rates of different maturities,
including the way that those correlations are
influenced by the shape of the term structure,
will perform better for pricing swaptions than
will a one-factor model. Models with good sta-
tistical fit to historical correlation series are
needed for Bermudan or American options on
floating-rate notes, caps, and floors for the same
reason. Model behavior is also important for
long-dated caps and floors, where there is a lack
of reliable data for estimating the “term struc-
ture of volatilities” beyond the 5-year tenor.

Risk-Neutral and Equilibrium
There are a number of sources of “error” in
quotations of the market prices of bonds, so
that the discount rates that exactly match a set
of price quotations may contain bond-specific
effects, corrupting the pricing of other instru-
ments. These sources, defined as any effects
on a bond’s market price apart from the dis-
count rates applying to all market instruments,
include differences in liquidity, differential tax
effects, bid-ask spreads (the bid-ask spread de-
fines a range of possible market prices, imply-
ing a range of possible discount rates), quota-
tion stickiness, timeliness of data, the human
element of the data collection and reporting
process, and market imperfections.
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Since arbitrage-free models accept all input
prices as given, without reference to their rea-
sonability or comparability to other prices in the
input data, they impound in the pricing model
any bond-specific effects. In contrast, equilib-
rium models capture the global behavior of the
term structure over time, so security-specific ef-
fects are treated in the appropriate way, as noise.
For this reason, risk-neutral equilibrium models
can have an advantage over arbitrage-free mod-
els in that equilibrium models are not overly
sensitive to outliers. Also, for current pricing (as
distinguished from horizon pricing, described
below), equilibrium models can be estimated
from historical data when current market prices
are sparse. Thus, a risk-neutral and equilibrium
model can be used for pricing when the current
market prices are unreliable or unavailable.

For most standard instruments, circum-
stances rarely prevail such that the current mar-
ket prices needed for estimating an arbitrage-
free model are not available. However, such
circumstances always prevail for horizon pric-
ing, where the analyst calculates a price for an
instrument in some assumed future state of the
market. Since arbitrage-free models require a
full set of market prices as input, arbitrage-free
models are useless for horizon pricing, the fu-
ture prices being unknown. Thus, the horizon
prices obtained under the different values of
the state variables in an equilibrium model pro-
vide an analytical capability that arbitrage-free
models lack.

USING MODELS OF
BORROWER BEHAVIOR
WITH A RISK-NEUTRAL
INTEREST RATE MODEL
Often, an interest rate model is not enough to
determine the value of a fixed-income security
or interest rate derivative. To value mortgage-
backed securities or collateralized mortgage
obligations (CMOs), one also needs a prepay-
ment model. To value bonds or interest rate
derivatives with significant credit risk, one

needs a model of default and recovery. To value
interest-sensitive annuities and insurance liabil-
ities, one needs models of lapse and other pol-
icyholder behaviors. In all of these behavioral
models, the levels of certain interest rates are
important explanatory variates, meaning that,
for example, the prepayment speeds in a CMO
valuation system are driven primarily by the
interest rate scenarios.

Common practice has been to estimate pa-
rameters for prepayment, default, and lapse
models using regression on historical data
about interest rates and other variables. Then,
in the valuation process, the analyst uses the in-
terest rates from a set of risk-neutral scenarios
to derive estimates for the rates of prepayment,
default, or lapse along those scenarios. This bor-
rower behavior information is combined with
the interest rates to produce cash flows and,
ultimately, prices. Unfortunately, this practice
leads to highly misleading results.

The primary problem here is that the regres-
sions have been estimated using historical data,
reflecting the real probability distributions of
borrower behavior, and then used with scenar-
ios from a risk-neutral model, with an artificial
probability distribution. The risk-neutral model
is not a process for the short rate; rather, it is a
process for the risk-adjusted short rate. Since
the real world is risk averse, the risk-adjusted
short rate usually has an expected value much
higher than the market’s forecast of the short
rate; the extra premium for interest rate risk per-
mits one to value optionable default-free bonds
by reference to the forward rate curve.

The same procedure can be applied to cor-
porate bonds. Corporate bonds are exposed to
default risk in addition to interest rate risk. One
may construct a behavioral model of failure
to pay based on historical data about default
rates and recovery, perhaps using bond ratings
as explanatory variates in addition to interest
rates. One can then attempt to compute the
present value of a corporate bond by finding the
expected value of the discounted cash flows
from the two models in combination: a risk-
neutral model of the Treasury curve, and a
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realistic model of default behavior as a function
of interest rates and other variables. Because
the cash flows of the bond, adjusted for default,
will be less than the cash flows for a default-free
bond, the model will price the corporate bond
at a positive spread over the Treasury curve.

This spread will almost certainly be sub-
stantially too low in comparison to the cor-
porate’s market price. The reason for this is
that, just as investors demand a return pre-
mium for interest rate risk, they demand an
additional return for default risk. The appli-
cation of an econometrically estimated model
of default to pricing has ignored the default
risk premium encapsulated in the prices of cor-
porate bonds. Market practice has evolved a
simple solution to this; one adjusts the default
model to fit (statistically, in the equilibrium
case; exactly, in the arbitrage-free case) the cur-
rent prices of active corporates in the appro-
priate rating class. By using the market prices
of active corporates to embed the default risk
premium in the model, the analyst is really ap-
plying the principle of risk-neutral valuation to
the default rate. The combined model of risk-
adjusted interest rates and risk-adjusted default
rates now discounts using the corporate bond
spot rate curve instead of the Treasury spot
curve.

The same technique of risk neutralizing a
model by embedding information about risk
premiums derived from current market prices
can be applied to prepayment models as well.
The results of a prepayment model can be
risk adjusted by examining the prices of active
mortgage-backed securities. Unfortunately, one
can only guess at the appropriate expected re-
turn premium for insurance policy lapse risk
or mortality risk. Nevertheless, these quanti-
ties should be used to “risk neutralize” these
models of behavior to the extent practical. The
integrity of risk-neutral valuation depends on
risk adjusting all variables modeled; otherwise,
model prices will be consistently overstated.

A final note can be made in this regard about
option-adjusted spread (OAS). OAS can be un-
derstood in this context as a crude method to

risk adjust the pricing system to reflect all risk
factors not explicitly modeled.

Realistic and Arbitrage-Free
A realistic, arbitrage-free model starts by exactly
matching the term structure of interest rates
implied by a set of market prices on an initial
date, then evolves that curve into the future
according to the realistic probability measure.
This form of a model is useful for producing
scenarios for evaluation of hedges or portfolio
strategies, where it is important that the initial
curve in each scenario exactly matches current
market prices. The difficulty with such an ap-
proach lies in the estimation; realistic, arbitrage-
free models are affected by confounding, where
it is impossible to discriminate between model
misspecification error and the term premiums.
Since the model parameters have been set to
match market prices exactly, without regard to
historical behavior, too few degrees of freedom
remain to estimate both the term premiums and
an error term. Unless the model perfectly de-
scribes the true term structure process (that is,
the time-dependent parameters make the resid-
ual pricing error zero at all past and future
dates, not just on the date of estimation), the
term premiums cannot be determined. The re-
sult is that realistic, arbitrage-free models are
not of practical use.

Realistic and Equilibrium
Since the arbitrage-free form of a realistic model
is not available, the equilibrium form must be
used for stress testing, Value-at-Risk (VAR) cal-
culations, reserve and asset adequacy testing,
and other uses of realistic scenarios.

Some analysts express concern that, because
the predicted initial curve under the equilib-
rium model does not perfectly match observed
market prices, then the results of scenario test-
ing will be invalid. However, the use of an
equilibrium form does not require that the pre-
dictions be used instead of the current mar-
ket prices as the first point in a scenario. The
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Table 1 When to Use Each of the Model Types

Model Classification Risk Neutral Realistic

Arbitrage-free • Current pricing, where input data
(market prices) are reliable

• Unusable, since term premium cannot
be reliably estimated

Equilibrium • Current pricing, where inputs (market
prices) are unreliable or unavailable

• Stress testing
• Reserve and asset adequacy testing

• Horizon pricing

Table 2 Four Forms of the Black-Karasinski Model

Model Risk
Classification Neutral Realistic

Arbitrage-free du = κ(t) (θ(t) − u) dt + σ (t) dz du = κ(t) (θ(t) − λ(u,t) − u) dt + σ (t) dz
• u0 and θ(t) matched to bond prices • u0 and θ (t) matched to bond prices
• κ(t) and σ (t) matched to cap or option prices • κ(t) and σ (t) matched to cap or option prices

• λ(u,t) cannot be reliably estimated

Equilibrium du = κ(θ − u) dt + σ dz du = κ(θ − λ(u) − u) dt + σ dz
• u0 statistically fit to bond prices • u0 statistically fit to bond prices
• κ , θ , σ historically estimated • κ , θ , σ , λ(u) historically estimated

scenarios can contain the observed curve at the
initial date and the conditional predictions at
future dates. This does not introduce inconsis-
tency, because the equilibrium model is a statis-
tical model of term structure behavior; by tak-
ing this approach we explicitly recognize that
its predictions will deviate from observed val-
ues by some error. In contrast, the use of an
arbitrage-free, realistic model implicitly assumes
that the model used for the term structure pro-
cess is absolutely correct.

Summary of the Four
Essential Classes
Table 1 summarizes the uses of the four Es-
sential Classes of interest rate models. Table 2
shows the mathematical form of a commonly
used interest rate model, disseminated by Black
and Karasinski (1991), under each of the mod-
eling approaches and probability measures. In
each equation, u is the natural logarithm of the
short rate.

In the above models, σ is the instantaneous
volatility of the short rate process, κ is the rate of
mean reversion, θ is the mean level to which the
natural logarithm of the short rate is reverting,
and λ represents the term premium demanded

by the market for holding bonds of longer ma-
turity. The value of the state variable u at the
time of estimation is represented by u0.

The realistic model forms can be distin-
guished from the risk-neutral forms by the
presence of the term premium function λ. The
difference between the arbitrage-free forms and
the equilibrium forms can be discerned in that
the parameters of the arbitrage-free forms are
functions of time.

KEY POINTS
� Models of the term structure of interest rates

are important in financial modeling.
� The most commonly misconstrued aspects of

interest rate models are important to under-
stand to make the correct choice between an
arbitrage-free or equilibrium model, and the
correct choice between risk-neutral or realis-
tic parameterizations of a model.

� A common confusion is the result of implicitly
equating the terms “arbitrage-free” and “risk
neutral.”

� Arbitrage-free models take certain market
prices as given and adjust model parameters
in order to fit the prices exactly.
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� Equilibrium term structure models are truly
models of the term structure process because
rather than interpolating among prices at one
particular point in time, they attempt to cap-
ture the behaviors of the term structure over
time.

� The principle of risk-neutral valuation as
it applies to bonds and other interest rate
derivatives is that, regardless of how risk
averse investors are, a set of spot rates that
value discount bonds correctly relative to the
rest of the market can be identified.

� The two dimensions, risk-neutral versus re-
alistic and arbitrage-free versus equilibrium,
define four classes of modeling approaches.

� The risk-neutral and arbitrage-free model is
appropriately used for current pricing when
the set of market prices is complete and
reliable.

� Because equilibrium models capture the
global behavior of the term structure over
time, so security-specific effects are treated as
noise, a risk-neutral and equilibrium model
can be used for pricing when the current mar-
ket prices are unreliable or unavailable.

� For several reasons, realistic, arbitrage-free
models are not of practical use.

NOTES
1. This is not the way that risk neutrality is

usually presented. Typically, writers have
focused on the stochastic calculus, using
Girsanov’s theorem to justify a change of

probability measure to an equivalent (i.e., an
event has zero probability under one mea-
sure if and only if it has zero probability
under the other measure) martingale mea-
sure. This complexity and terminology can
obscure the simple intuition that we are mak-
ing a change of variables in order to restate
the problem in a more easily solvable form.
For this approach to explaining risk neutral
valuation, see Courtadon (1982) or Harrison
and Pliska (1981).

2. Note that this is not the same as the expecta-
tions hypothesis of the term structure, which
holds that the term structure’s shape is de-
termined solely by the market’s expectations
about future rates. The expectations hypoth-
esis is a theory of the real term structure pro-
cess, whereas the risk-neutral approach is an
analytical convenience that takes no position
about the truth or falsity of any term struc-
ture theory.
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Abstract: Interest rates are commonly modeled using stochastic differential equations. One-factor
models use a stochastic differential equation to represent the short rate and two-factor models use
a stochastic differential equation for both the short rate and the long rate. The stochastic differential
equations used to model interest rates must capture some of the market properties of interest rates
such as mean reversion and/or a volatility that depends on the level of interest rates. There are two
distinct approaches used to implement the stochastic differential equations into a term structure
model: equilibrium and no arbitrage.

In modeling the behavior of interest rates,
stochastic differential equations (SDEs) are com-
monly used. The SDEs used to model interest
rates must capture some of the market prop-
erties of interest rates such as mean reversion
and/or a volatility that depends on the level of
interest rates. For a one-factor model, the SDE
is used to model the behavior of the short-
term rate, referred to simply as the “short rate.”
The addition of another factor (i.e., a two-factor
model) involves extending the SDE to represent
the behavior of the short rate and a long-term
rate (i.e., long rate).

There are two distinct approaches used to im-
plement the SDEs into a term structure model:

equilibrium and no arbitrage. Each can be used
to value bonds and interest rate contingent
claims. Both approaches start with the same
SDEs but apply the SDE under a different
framework to price securities.

Equilibrium models such as those developed by
Vasicek (1977), Cox, Ingersoll, and Ross (1985),
Longstaff (1989, 1992), Longstaff and Schwartz
(1992), and Brennan and Schwartz (1979, 1982)
all start with an SDE model and develop pric-
ing mechanisms for bonds under an equilib-
rium framework. The actual implementation
may vary depending on the model. Vasicek and
Cox, Ingersoll, and Ross (CIR) develop analytic
pricing expressions while Backus, Foresi, and

603
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Telmer (2001) present econometric and recur-
sive approaches to implement the equilibrium
models. Brennan and Schwartz use a finite dif-
ference scheme that approximates a partial dif-
ferential equation.

No arbitrage models such as Black and
Karasinski, (1991), Black, Derman, and Toy
(1990), Ho and Lee (1986), Heath, Jarrow, and
Morton (1992), and Hull and White (1990, 1993)
begin with the same or similar SDE models as
the equilibrium approach but use market prices
to generate an interest rate lattice. The lattice
represents the short rate in such a way as to en-
sure there is a no arbitrage relationship between
the market and the model. The numerical ap-
proach used to generate the lattice will depend
on the SDE model(s) being used to represent
interest rates.

No arbitrage models are the preferred frame-
work to value interest rate derivatives. This is
because they minimally ensure that the market
prices for bonds are exact. Equilibrium models
will not price bonds exactly, and this can have
tremendous effects on the corresponding con-
tingent claims. No arbitrage lattices also allow
for a systematic valuation approach to almost
all interest rate securities.

Three general SDE functional forms are con-
sidered in this entry. The first is the Hull-White
(HW) model. The HW model is a more general
version of the Ho and Lee (HL)1 approach except
that it allows for mean reversion. Implementing
the HW in a binomial framework removes a de-
gree of freedom, and in this case the HW model
collapses to the HL model if a constant time
step is retained. The second model we consider
is the Black-Karasinski (BK) model. The BK model
is a more general form of the Kalotay, Williams,
and Fabozzi (KWF) model.2 The BK model (like
the HW model) in the binomial setting does not
have enough degrees of freedom to be properly
modeled and so the time step must be allowed
to vary. The third is the Black, Derman, and
Toy model.

We implement the HW and BK trinomial
models using the Hull and White approach.

Within the trinomial setting the time step re-
mains constant and mean reversion can be ex-
plicitly incorporated. We discuss the SDEs, the
properties of the SDEs, the numerical solutions
to the SDEs, and the binomial and trinomial in-
terest rate lattices for these models.

The focus of our presentation is on the end
user and developer of interest rate models.
We will highlight some significant differences
across models. Most of these are due to the dif-
ferent distributions that underlie the models.
This is done to emphasize the need to calibrate
all models to the market prior to their use. By
calibrating the models to the market we reduce
the effects of the distributional differences and
ensure a higher level of consistency in the met-
rics produced by the models.

The outline of this entry is as follows. In the
next section we present the SDEs and some of
their mathematical properties. We also use the
mathematics to highlight properties of the short
rate. We then develop the methodology used
to implement our approach in both the bino-
mial and trinomial frameworks. A comparison
of some numerical results across the different
models including some interest rate risk and
valuation metrics is then presented.

THE GENERAL MODELS FOR
THE SHORT RATE
The models considered in this entry take the
form of the following one-factor SDE:

df(r (t)) = [θ (t) + ρ(t)g(r (t))]dt + σ (r (t), t)dz
(1)

where f and g are suitably chosen functions, θ is
determined by the market, and ρ can be chosen
by the user of the model or dictated by the mar-
ket. We will show that θ is the drift of the short
rate and ρ is the tendency to an equilibrium
short rate. The term σ is the local volatility of
the short rate. The term dz = ε

√
dt arises from

a normally distributed Wiener process, since
ε ∼ N(0,1), where N(0,1) is the normal
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distribution with mean 0 and standard devi-
ation of 1. This means that the term σ (r(t), t)dz
has an average or expected value of 0.

Equation (1) has two components. The first
component is the expected or average change
in rates over a small period of time, dt. This is
the component where certain characteristics of
interest rates, such as mean reversion, are in-
corporated. The second component is the un-
known or the risk term since it contains the
random term. This term dictates the distribu-
tion characteristics of interest rates. Depending
on the model, interest rates are either normally
or lognormally distributed.

The Ho-Lee Model
In the HL model or process f (r) = r, g(r) = 0,
and ρ = 0 in equation (1). The HL process is,
therefore, given by

dr = θdt + σdz (2)

Since z is a normally distributed Wiener pro-
cess, we say the HL process is a normal process
for the short rate. The solution to equation (2),
assuming r(0) = r0 is given by

r (t) = r0 +
t∫

0

θds +
t∫

t

σdz (3a)

where the integral involving σ is a stochastic
integral. If θ is constant this can be expressed as

r (t) = r0 + θ t +
t∫

0

σdz (3b)

Equation (3b) shows that the HL process
models an interest rate that can change pro-
portionally with time t through the constant of
proportionality, θ , and a random disturbance
determined by σ . That is, the larger θ is in
magnitude, the larger the average change in
the short rate over time. This is why θ is called
the “drift in the short rate.” Also, the smaller
θ is, the larger the influence of the random
disturbance. The short rate can be negative in

the HL process. This is a shortcoming of the
model. Hull (2000) shows that θ is related to
the slope of the term structure.

To obtain a numerical approximation for
equation (2) we approximate equation (2) by
using equations (3a) and (3b). Letting tk = kτ
and rk ≈ r (kτ ) gives

rk+1 − rk = θkτ + σk�zk

or

rk+1 = rk + θkτ + σk�zk (4)

where �zk is a numerical (discrete) approxi-
mation to dz. Since dz = ε

√
dt, we can further

approximate equation (4) by

rk+1 = rk + θkτ + σkεk
√

τ (5)

where εk is a random number given by a normal
distribution N(0,1). Equation (5) is the form of
the expression that is used for rk+1 to build the
HL binomial tree.

We first consider the solution to equation (5)
without the stochastic term when θ is constant.
Equation (5) under these requirements is

rk+1 = rk + τθ (6a)

and the solution is given by

rk = c + kδ (6b)

where c and δ are constants. In particular, c = r0

and δ = θτ . It is seen from this last equation that
the mean short rate in the HL process increases
or decreases at a constant rate θ over time de-
pending on the sign of θ . As a matter of fact,
equation (6b) shows that the short rate grows
without bound if θ > 0 and decreases without
bound (i.e. becomes very negative) if θ < 0.

The Hull-White Model
In the HW model or process f (r) = r, g(r) = r,
and ρ = −φ. Therefore, the stochastic process
for the HW model for the short rate is

dr = (θ − φr )dt + σdz (7)
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The short rate process in the HW model is seen
to be normal as in the HL process. We consider
the case where the parameters θ and φ are con-
stant over time. Note that if φ = 0 the HL process
reduces to the HW process. (The HW process
will, therefore, be similar to the HL process if
φ is close to 0.) We will see that the introduc-
tion of φ in the HW model is an attempt to
incorporate mean reversion and to correct for
the uncontrolled growth (or decline) in the HL
model discussed later.

Eliminating the stochastic term in equation (7)
gives the ordinary differential equation

dr = (θ − φr )dt (8)

whose solution is given by

r (t) = θ

φ
+ ce−φt (9)

where

c = r0 − θ

φ
(10)

If φ > 0 we see from equation (9) that

lim
t→∞ r (t) = θ

φ
= μ

Therefore, for positive mean reversion (φ > 0)
the HW process will converge to the short rate,
μ. Due to this, the term μ, is called the “target”
or “long run mean rate.” For negative mean
reversion (φ < 0), the short rate grows expo-
nentially over time.

Factoring φ in equation (7) leads to

dr = φ(μ − r )dt + σdz

and eliminating the stochastic term leads to

dr = φ(μ − r )dt

We see that if r > μ then dr is negative and r
will decrease and if r < μ then dr is positive
and r will increase. That is, r will approach the
target rate μ. The larger φ is, the faster this ap-
proach to the target rate μ. This is why φ is
called the “mean reversion” or “mean rever-
sion rate.” It regulates how fast the target rate
is reached. However, it does not eliminate the
negative rates that can occur in the HL process.

Since the target rate μ is equal to θ/φ, we can
solve for the drift, θ , or the mean reversion, φ.
That is,

θ = μφ (11)

or

φ = θ

μ
(12)

It is seen from equations (11) and (12) that
there is a strong relationship between the drift
and mean reversion that can be used to reach
any desired target rate. How large the mean
reversion should be is an important financial
question. Equations (11) and (12) can be used
to set target rates. Equations (9) and (10) allow
one to determine how long it takes to reach the
target rate.

Approximating equation (7) gives us

rk+1 = rk + (θk − φkrk)τ + σkεk
√

τ (13)

If θ and φ are constant and we eliminate the
stochastic term, then the solution to equation
(13) has the form

rk = αβ k + γ

To determine α, β, and γ we substitute this form
for rk into equation (13) under these conditions
and obtain that β = (1 − φτ ), γ = θ/φ = μ, and
α = r0 − μ. Therefore,

rk = α(1 − φτ )k + θ

φ
(14)

Note that if 0 < φτ < 2 then −1 < 1 − φτ < 1
and

lim
k→∞

rk = θ

φ
= μ

which is the same result we obtained from
equation (9) for the HW SDE. The condition
0 < φτ < 2 is easily maintained in modeling the
short rate.

The Kalotay-Williams-Fabozzi
Model
For the KWF process f (r) = ln(r), g(r) = 0, and
ρ = 0 in equation (1). This leads to the
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differential process

d ln(r ) = θdt + σdz (15a)

This model is directly analogous to the HL
model. If u = ln r, then we obtain the HL process
(equation (2)) for u

du = θdt + σdz (15b)

Because u follows a normal process, ln(r) fol-
lows a normal process and so r follows a lognor-
mal process. Since u follows the same process as
the HL and HW models, u can become negative,
but u = ln(r) and r = eu ensuring r is always pos-
itive. Therefore, the KWF model eliminates the
problems of negative short rates that occurred
in the HL and HW models.

Eliminating the stochastic term in equation
(15) we obtain

d ln(r ) = θ (t)dt

and

du = θ (t)dt

From equation (3a) we have

ln r (t) = u = u(0) +
t∫

0

θ (s) ds

since u(0) = ln r(0) = ln r0,

ln r (t) = ln r (0) +
t∫

0

θ (s) ds

Taking the exponential of both sides gives us

r (t) = r0e
∫ t

0 θ(s)ds (16)

showing that r(t) > 0 since r(0) > 0. Therefore,
if θ (t) > 0 the short rate in the KWF process can
grow without bound and if θ (t) < 0 the short
rate in the KWF process can decay to 0.

From equation (5) for the HL process the dis-
crete approximation to equation (15b) is

uk+1 = uk + θkτ + σkεk
√

τ (17a)

and the exponential of this equation gives the
discrete approximation to equation (15a):

rk+1 = rkeθkτ+σkεk
√

τ (17b)

From equation (17b) and equation (16) we see
that the numerical approximation to equation
(15a) has similar properties to the solution to
the HL SDE. That is, if θ (t) > 0 the short rate
can grow without bound and if θ (t) < 0 the
short rate can decay to 0.

The Black-Karasinski Model
In the BK model we set f (r) = ln r, p = −φ, and
g(r) = ln r in equation (1) to obtain the SDE

d ln r = (θ − φ ln r )dt + σdz (18a)

We now work with equation (18a) using equa-
tion (7) for the HW process in a manner similar
to how we used results from the HL process to
develop the KWF process. If we let u = ln r in
equation (18a) we obtain

du = (θ − φu)dt + σdz (18b)

which is the HW process for u. Again, note that
u has all the same properties as r in the HW
model. Since r = eu in the BK process, r > 0.
This is the advantage the BK model has over the
HW model. Therefore, we see that the BK pro-
cess is an extension of the KWF process as the
HW process is an extension of the HL process.
The main difference is the BK is a lognormal
extension of the lognormal KWF process. As a
matter of fact, if φ = 0 the BK process reduces
to the KWF process. Black and Karasinski intro-
duced φ to control the growth of the short rate
in the KWF process.

From equation (9) we have

u(t) = θ

φ
+ ce−φt

and after taking exponentials

r (t) = eu(t) = e
θ
φ
+ce−φt

(19)

For φ < 0 we see that r grows without bound
and that for φ > 0

lim
t→∞ r (t) = e

θ
φ = μ

The target rate for the BK process is the expo-
nential of the target rate for the HW process.
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As in the HW process, from equation (19) (or
equations (9) and (10)) we see that

c = ln r0 − θ

φ
(20)

in the BK process. The closer the initial rate is
to the target rate, the faster the BK process con-
verges to the target rate. From equations (19)
and (20) we see that if the initial short rate is
the target rate, then r(t) = μ for all t in the BK
process, which is analogous to the HW process.

Given the target rate μ. we can solve for the
drift or the mean reversion similarly to equa-
tions (11) and (12) in the HW model. We have

θ = φ ln μ (21)

and

φ = θ

ln μ
(22)

We discretize u = ln r in equation (18b) just as
we did for the HW SDEs and then let r = eu.
This is analogous to how we used the HL dis-
crete process to get the KWF discrete process.
The equations corresponding to equation (13)
are

uk+1 = uk + (θk − φkuk)τ + σkεk
√

τ (23a)

or after taking the exponential of both sides of
equation (23a)

rk+1 = rke (θk−ϕk ln rk )τ+σkεk
√

τ (23b)

For constant θ and φ (similarly to equation (14)),
the solution to equation (23b) after eliminating
the stochastic term is

rk = eα(1−φr )k+ θ
φ (24)

Note from equation (24) that

lim
k→∞

rk = e
θ
φ = μ

for 0 < φτ < 2. This is similar to the result we
obtained from equation (14) for the HW SDEs.

The Black-Derman-Toy Model
The Black-Derman-Toy (BDT) model is a log-
normal model with mean reversion, but the
mean reversion is endogenous to the model.

The mean reversion in the BDT model is deter-
mined by market conditions.

The equation describing the interest rate dy-
namics in the BDT model has f (r) = ln r and
g(r) = ln r in equation (1) as in the BK model.
Therefore, the short rate in the BDT model fol-
lows the lognormal process

d ln r + [θ (t) + ρ(t) ln r ]dt + σ (t)dz

However, in the BDT model ρ(t) = d
dt ln σ (t) =

σ ′(t)
σ (t) giving us

d ln r =
(

θ (t) + σ ′(t)
σ (t)

ln r
)

dt + σ (t)dz (25a)

Making the substitution u = ln r leads to

du =
(

θ (t) + σ ′(t)
σ (t)

u
)

dt + σ (t)dz (25b)

Notice the similarity in equations (25) and the
equations (18) of the BK model. We expect

σ ′(t)
σ (t)

to behave similarly to −φ(t) in the BK model.
This expression should give mean reversion
in the short rate when it is negative. That
is, we expect that if σ ′(t) < 0 (implying σ (t)
is decreasing) then the BDT model will give
mean reversion. On the other hand, when
σ ′(t) > 0 (implying σ (t) is increasing) the short
rates in the BDT model will grow with no
mean reversion. If σ (t) is constant in the BDT
model, then σ ′(t) = 0 so ρ = 0 and equation
(25a) becomes the KWF model (equation (15)).
Therefore, we will only study the case of
varying local volatility for the BDT model.

Eliminating the stochastic term in equation
(25) leads to

d ln r = du =
(

θ (t) + σ ′(t)
σ (t)

u
)

dt

=
(

θ (t) + σ ′(t)
σ (t)

ln r
)

dt (26)

Solving this equation for u, as we did in the KF
and BK models, gives us

u(t) =
[

u(0)
σ (0)

+
∫ t

0

θ (s)
σ (s)

ds
]

σ (t)
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or

r (t) = e
(

log(r0)
σ0

+∫ t
0

θ (s)
σ (s) ds

)
σ (t) = e

σ (t) log(r0)
σ0 eσ (t)

∫ t
0

θ (s)
σ (s) ds

or

r (t) = r0e
σ (t)−σ0 log(r0)

σ0 eσ (t)
∫ t

0
θ (s)
σ (s) ds (27)

Note that the BDT mean short rate depends
on the local volatility. If the local volatility has a
decreasing structure, then the first exponential
term in equation (27) has a negative exponent
and will cause a decrease in the short rate and
vice versa if the local volatility has an increasing
structure. It is important to note that mean re-
version in the BDT model comes from the local
volatility structure (i.e., it is endogenous).

We now consider numerical solutions to the
BDT process. To discretize equation (25a) for the
BDT model we start off again by approximating
du in equation (25b) by u to get

uk+1 = uk + (θk + ρkuk)τ + σkεk
√

τ (28)

The exponential of equation (28) gives us

rk+1 = rke [(θk+ρk ln rk )τ+σkεk
√

τ ] (29)

where

ρk = σ ′
k

σk

We approximate this term by

σk+1 − σk

τ

σk

That is, we approximate σ ′
k by a discrete approx-

imation to the derivative. We now have

uk+1 = uk +

⎛

⎜⎝θk +
σk+1 − σk

τ

σk
uk

⎞

⎟⎠ τ + σkεk
√

τ

or

uk+1 = σk+1

σk
uk + θkτ + σkεk

√
τ (30)

If the random term is 0 equation (30) becomes

uk+1 = σk+1

σk
uk + θkτ (31)

In particular, if

σk+1

σk
= α

where α is a constant then

uk = αku0 +
k−1∑

j=0

α jθk− j−1τ

The exponential of this gives

rk = r0e (αk−1) ln r0 e

k−1∑
j=0

α j θk− j−1τ

This equation is interesting because ln r0 < 0. If
α > 1 then the first exponential term decreases.
When θ < 0 the second exponential term also
decreases and the BDT short rate should ap-
proach a target rate. Conversely, when θ > 0
the second exponential term increases. In this
case we can approach a target rate or the sec-
ond term can dominate. If α < 1 then a similar
situation arises. Therefore, in order to get mean-
ingful numerical results for the BDT short rates
we strongly recommend that α be close to 1 and
that the term structure of spot rates not have
too large a slope.

The analysis of the equations without the
stochastic term presented in this section is im-
portant. Recall that the characteristics of the
random term are such that average influence of
this term will be much smaller than the mean
term in the SDEs. Consequently, the properties
presented within this section will also hold un-
der more general circumstances. The discrete
approximations we developed for the models
will be used to build the binomial and trino-
mial models in the next section. Note that we
are highlighting the difference across the mod-
els and do not calibrate the models to market
information.

For numerical reasons, the BK and HW mod-
els are best implemented in the trinomial
framework. The HL, KWF, and BDT models
are more easily implemented in the binomial
framework.3 We will discuss the specifics of this
in the next section. For the trinomial framework
we use the approach of Hull and White (1994).
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r1,3
r1,2

r1,1 r2,3
r1,0 r2,2

r2,1 r3,3
r3,2

r4,3

t0 t1 t2 t3

Figure 1 Binomial Lattice

BINOMIAL AND TRINOMIAL
SOLUTIONS TO THE
STOCHASTIC DIFFERENTIAL
EQUATIONS
In this section we present the binomial and tri-
nomial lattice models that are obtained for the
discretized versions of SDEs given in the pre-
vious section. The binomial method models the
short rate in a geometrically analogous man-
ner as equities.4 The up move has a probability
q and so the down move has a probability of
1 − q. We use q = 0.5 within the framework
of risk neutrality. This binomial process of two
possible moves for the short rate in the next
time period is then continued at each time to
produce a binomial lattice of interest rates.

The trinomial model is similar in spirit to
the binomial except there are three possible
states emanating from each node. From each
point in time we call the upward-most move
the “up move,” the downward-most move the
“down move,” and the center move the “mid-
dle move.” The probabilities for an up move,
middle move, and down move are given by q1,
q2, and q3 with q1 + q2 + q3 = 1.

Interest rate lattices should possess the prop-
erty of recombination for them to be computa-
tionally tractable. That is, from any given node
in the binomial model we will require an up
move followed by a down move to get to the
same point as a down move followed by an up
move. This ensures that the number of nodes in
the binomial lattice increase by only one at each
time step. In the trinomial case recombination

r1,4
r1,2 r2,4

r1,1 r2,2 r3,4
r1,0 r2,1 r3,2 r4,4

r3,1 r4,2 r5,4
r5,2 r6,4

r7,4

t0 t1 t2 t3

Figure 2 Trinomial Lattice

is a little more complicated. From any node in
the trinomial lattice an up move followed by a
down move will get to the same node as two
successive middle moves and as a down move
followed by an up move. This ensures that the
number of nodes in the trinomial lattice increase
by only two at each time step.

Figure 1 represents a binomial short rate lat-
tice and Figure 2 represents a trinomial short
rate lattice. The notation rj,k is used to denote
the short rate value at level j at time tk. In the
binomial lattice, an up move from rj,k is given
by rj,k+1 and a down move is given by rj+1,k+1.
At time tk there are k + 1 possible values for
the short rate in the binomial lattice. That is, j
ranges from 1 to k + 1. In the trinomial model,
an up move, middle move, and down move
from the short rate rj,k are given by rj,k+1, rj+1, k+1,
and rj+2,k+1, respectively. In the trinomial model
there are 2k + 1 possible values for the short rate
at time tk. That is, j ranges from 1 to 2k + 1. The
short rates forming the top of the lattice will
be called the up state for the short rates and the
short rates forming the bottom of the lattice will
be called the down state for the short rates. For
the binomial and trinomial model, the up state
is the set of short rates r1,k for 0 ≤ k ≤ n and
the down state for the binomial case is the set of
short rates rk,k for 0 ≤ k ≤ n; within the trinomial
tree the down state is the set of short rates r2k+1,k

for 0 ≤ k ≤ n.

Hull-White Binomial Lattice
Since the HW model is a more general version of
the HL model we present the binomial version
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only for the HW. In the HW binomial lattice the
expressions for rj,k that correspond to equation
(13) are

r j,k+1 = r j,k + θkτk − φkr j,kτk + σk
√

τ k (32)

for an up move and

r j+1,k+1 = r j,k + θkτk − φkr j,kτk − σk
√

τk (33)

for a down move. (We are using τ k for �tk.)
These equations suggest that in order to have

recombination the following must be true:

τk+1 = τk

4
(

σk

σk+1

)2

⎡

⎣1 +
√

1 + 4
(

σk

σk+1

)2

τkφk+1

⎤

⎦
2

(34)
Equation (34) illustrates that if you want a

constant time step when the local volatility is
constant, the mean reversion must be 0. The
recombination requirement has put the strin-
gent condition on the HW binomial lattice that
the mean reversion is determined by the local
volatility. To avoid this problem within the bi-
nomial framework we must allow the time step
to vary with k in equations (32) through (34). As
a matter of fact, for a constant time step,

φk+1 = σk − σk+1

σkτ
(35)

which can also be solved for σ k+1 to give

σk+1 = σk(1 − φk+1τ ) (36)

Equation (36) shows that the mean reversion
can be used to match any given local volatility
for a constant time step. If the local volatility is
decreasing the mean reversion will be positive,
and if the local volatility is increasing the mean
reversion will be negative. We point out that if
a variable time step is used, one does not have
to have mean reversion match local volatility.

Black-Karasinski Binomial Lattice
Since the BK model is a more general form of the
KWF model, we only present the binomial ver-
sion for the BK model. The expressions corre-

sponding to equations (32) and (33) of the HW
model and from equation (23b) are

r j,k+1 = r j,ke (θk−φk ln(r j,k ))τk+σk
√

τk (37)

for an up move and

r j+1,k+1 = r j,ke (θk−φk ln(r j,k ))τk−σk
√

τk (38)

for a down move.
Using equations (37) and (38) we can develop

equations for the BK binomial lattice that are
identical to equations (34) and (36) for the HW
binomial lattice. This should be expected since
the BK SDE is just a lognormal version of the
HW SDE. A crucial point here is that we can use
the HW and BK models to match local volatility
and to compare results. It is important to point
out that the HW and BK binomial lattices have
a constant time step. If a variable time step is
used, then interpolation is required to give the
short rates at the fixed time steps. We do not of-
fer this framework. Instead we present the HW
and the BK models in the trinomial framework.

Within the binomial framework, the HW and
BK models only approximate the distributional
properties of their respective SDEs. The ac-
curacy of the approximation is a function of
the mean reversion. As the mean reversion in-
creases, the accuracy decreases. Note that since
the HL and KWF models have a zero mean re-
version the distributional characteristics of their
SDEs are perfectly matched within the binomial
framework. This is the reason for using the tri-
nomial method for the HW and BK models.

The Trinomial Lattices
A better way to keep a constant time step and to
match the appropriate distributional properties
is to use a trinomial lattice instead of a binomial
lattice. If we use a trinomial lattice for the HW
SDEs, then from equation (13) we use

r j,k+1 = r j,k + θkτ − φkr j,kτ + αkσk
√

τ (39a)

for an up move,

r j+2,k+1 = r j,k + θkτ − φkr j,kτ − αkσk
√

τ (39b)
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for a down move, and

r j+1,k+1 = r j,k + θkτ − φkr j,kτ (39c)

for a middle move. Similarly, if we use a trino-
mial lattice for the BK SDEs then from equation
(23b) we use

r j,k+1 = r j,ke (θk−φk ln(r j,k ))τ+αkσk
√

τ (40a)

for an up move,

r j+2,k+1 = r j,ke (θk−φk ln(r j,k ))τ−αkσk
√

τ (40b)

for a down move, and

r j+1,k+1 = r j,ke (θk−φk ln(r j,k ))τ (40c)

for a middle move.
Note that a constant time step is now used.

The expression αk is used to guarantee recom-
bination. The probabilities of an up, middle,
and down move are chosen to give the correct
variance.

The No Arbitrage Equations
The procedure to generate the no arbitrage
equations for the binomial and trinomial lattices
is outlined in the appendix. The no arbitrage
polynomial for the short rates in the binomial
tree is given by

fi = c1,i

i∏

j=1

(1 + r j,iτ ) +
i∑

m=1

cm+1,i

i∏

n=1
n	=m

(1 + rn,iτ )

(41)
where, for i ≥ 3

a1,i =
i−1∏

n=0

i∏

m=1

(1 + rm,nτ )

a2,i = b1,i−1, a j,i = b j−2,i−1 + b j−1,i−1, for
j = 3, . . . , i, ai+1, j = bi−1,i−1, and c1,i =
Pi+1a1,i , c j+1,i = q i− j (1 − q ) j−1a j+1,i for
j = 1, . . . , i .

We solve equation (41) for θ i by setting
fi = 0. We then use θ i to compute rj,i for
j = 1, . . . , i at the ith period. The bisection
method will converge quickly because there is

only one root between −1 and 1 for the HW bi-
nomial lattice and one root between 0 and 1 for
the BK binomial lattice.5

After generating the new rates we let

b j,i = α j+1,i

i∏

m=1
m 	= j

(1 + rm,iτ )

For the variable time step, τ i we replace the
terms (1 + rj,iτ ) by (1 + rj,iτ )τ i/τ and the terms
(1 + rn,iτ ) by

(1 + rn,iτ )τi /τ

in equation (41).
Similarly, the no arbitrage polynomial for the

trinomial trees is given by

fi = c1,i

2i−1∏

j=1

(1 + r j,iτ ) +
2i−1∑

m=1

cm+1,i

2i−1∏

n=1
n	=m

(1 + rn,iτ )

(42)

where we first let

a1,i =
2i−3∏

j=1

(1 + r j,iτ )

a2,i = q1b1,i−1a2,i−1,a3,i = q2b1,i−1a2,i−1

+ q1b2,i−1a3,i−1

a j,i = q3b j−3,i−1a j−2,i−1, + q2b j−2,i−1a j−1+q1b j−1i−1a j,i−1,

for j = 4, . . . , 2i − 2,

a2i−1,i = q3b2i−4,i−1a2i−3,i−1 + q2b2i−3,i−1a2i−2,i−1,a2i,i

= q3b2i−3,i−1a2i−2,i−1

and then let

c1,i = Pi+1a1,i , c j,i = a j,i for j = 2, . . . , 2i + 1

We solve equation (42) for θ i by setting fi = 0
using the bisection method. From this the short
rates for either the HW or BK trinomial lattices
are determined at step i. We then let

bn =
2i−1∏

j=1
j 	=n

(1 + r j,iτ )

for n = 1, . . . , 2i − 1 and then repeat the process.
In these derivations Pi = 1/(1 + Riτ )i is the
discount factor given by the spot rates (zero
curve).
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The Hull and White Lattice
We now briefly outline the Hull and White
methodology for generating HW and BK trino-
mial lattices.6 The Hull and White methodology
uses

r j,k = x + ( jk)�ρ (43)

for the HW trinomial lattice short rates and

r j,k = e [x+( jk )�ρ] (44)

for the BK trinomial lattice short rates.
They choose �ρ = σ

√
3τ to minimize numer-

ical error and introduce the mean reversion
through the probabilities q1, q2, and q3. Specifi-
cally, they use

q1 = 1
6

+ ( jk)2φ2τ 2 + ( jk)φτ

2

q2 = 2
3

− ( jk)2φ2τ 2

and

q3 = 1
6

+ ( jk)2φ2τ 2 − ( jk)φτ

2

for the up, middle, and down moves at rj,k,
respectively, since this matches the expected
change and variance of the short rate over the
next time period. However, as they point out,
these probabilities must remain positive. In or-
der to do this they “prune” the upper and lower
branches of their lattice at the level j that keeps
these probabilities positive. Since q2 is the only
one that can become negative they require the
following

j <

√
6

3φτ
≈ 0.816

φτ

At this maximum value of j, Hull and White ap-
ply a different branching procedure with differ-
ent probabilities in order to “prune” the lattice.
However, as they point out, using this value of
j can lead to computational problems so they
actually use the first j satisfying

jk >
3 − √

6
3φτ

≈ 0.184
φτ

This leads to a reduction in the spread of the
rates.

COMPARATIVE STUDY OF
THE NUMERICAL
SOLUTIONS
In this section a comparison between the
methodologies is presented. In particular, we
look at the effects of mean reversion and lo-
cal volatility on the drift and the spread in the
short rates. We present numerical results for the
term structures, volatility, and mean reversion
in Table 1. The table also includes the bond in-
formation for use later.

Original Term Structure with No
Mean Reversion
We first consider the original term structure
with no mean reversion for the HL and HW
models. In Figure 3 we present the binomial
tree for the HL model and the trinomial for the
HW model using the HW trinomial method-
ology. We use a 10% volatility throughout the
trees. We see that the spread in the short rates
increases over time in the models as expected.

Table 1 Input Information

Original TS Volatility
Mean
Reversion

6.20% 10.00% 5%
6.16% 10.00%
6.15% 9.00%
6.09% 9.00%
6.02% 8.00%
6.02% 8.00%
6.01% 7.00%
6.01% 7.00%
6.00% 7.00%
6.01% 7.00%

Bond Information for ED, EC, and OAS

Call Price (Regular Callable) $102.50
Put Price (Regular Putable) $95.00
Annual Coupon ($ per $100) $6.00
Time Option Starts (years from now) 1
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a. The Ho-Lee Interest Rate Lattice

136.31%
118.42%

101.50% 116.31%
85.20% 98.42%

69.85% 81.50% 96.31%
54.99% 65.20% 78.42%

41.49% 49.85% 61.50% 76.31%
28.93% 34.99% 45.20% 58.42%

17.05% 21.49% 29.85% 41.50% 56.31%
6.20% 8.93% 14.99% 25.20% 38.42%

−2.95% 1.49% 9.85% 21.50% 36.31%
−11.07% −5.01% 5.20% 18.42%

−18.51% −10.15% 1.50% 16.31%
−25.01% −14.80% −1.58%

−30.15% −18.50% −3.69%
−34.80% −21.58%

−38.50% −23.69%
−41.58%

−43.69%

Time in Years 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

b. The Hull-White Trinomial Interest Rate Lattice Using the HW Method with No Mean Reversion

203.31%
172.58% 185.99%

142.30% 155.26% 168.67%
131.70% 124.98% 137.94% 151.35%

107.78% 114.38% 107.66% 120.62% 134.03%
84.92% 90.46% 97.06% 90.34% 103.30% 116.71%

63.71% 67.60% 73.14% 79.74% 73.02% 85.98% 99.39%
43.65% 46.38% 50.28% 55.82% 62.42% 55.70% 68.66% 82.07%

24.39% 26.33% 29.06% 32.96% 38.50% 45.10% 38.38% 51.34% 64.75%
6.20% 7.07% 9.01% 11.74% 15.64% 21.18% 27.78% 21.06% 34.02% 47.43%

−10.25% −8.31% −5.58% −1.68% 3.86% 10.46% 3.74% 16.70% 30.11%
−25.63% −22.90% −19.00% −13.46% −6.86% −13.58% −0.62% 12.79%

−40.22% −36.32% −30.78% −24.18% −30.90% −17.94% −4.53%
−53.64% −48.10% −41.50% −48.22% −35.26% −21.85%

−65.42% −58.83% −65.54% −52.58% −39.18%
−76.15% −82.86% −69.90% −56.50%

−100.18% −87.22% −73.82%
−104.54% −91.14%

−108.46%

Time in Years 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Figure 3 The HL Binomial and HW Trinomial Trees for the Original Term Structure with No Mean Reversion

We also see that the HL model can give negative
short rates.

In Figure 4 we present the binomial tree for
the KWF model, the trinomial for the BK model
using the HW trinomial methodology, and the
BDT binomial model. The KWF and BK models
use the 10% volatility throughout the tree and

no mean reversion. Note the volatile nature of
the BDT model. This is due to the time varying
volatility structure and the way mean reversion
is incorporated into the BDT model through this
decreasing volatility structure. Note that all the
short rates are positive and that the spread in
the rates is significantly less than in Figure 3.
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a. The Kalotay, Williams, and Fabozzi Interest Rate Lattice

14.72%
12.92%

11.87% 12.05%
10.65% 10.58%

9.76% 9.72% 9.87%
8.43% 8.72% 8.66%

7.89% 7.99% 7.96% 8.08%
7.44% 6.90% 7.14% 7.09%

6.73% 6.46% 6.54% 6.52% 6.61%
6.20% 6.09% 5.65% 5.84% 5.81%

5.51% 5.29% 5.36% 5.34% 5.41%
4.98% 4.62% 4.78% 4.75%

4.33% 4.39% 4.37% 4.43%
3.79% 3.92% 3.89%

3.59% 3.58% 3.63%
3.21% 3.19%

2.93% 2.97%
2.61%

2.43%

Time in Years 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

b. The Black-Karasinski Trinomial Interest Rate Lattice Using the HW Method with No Mean Reversion

28.45%
23.21% 23.92%

19.82% 19.52% 20.12%
16.52% 16.67% 16.41% 16.92%

14.08% 13.89% 14.02% 13.80% 14.23%
11.31% 11.84% 11.68% 11.79% 11.61% 11.97%

9.82% 9.51% 9.96% 9.83% 9.92% 9.76% 10.06%
8.60% 8.26% 8.00% 8.37% 8.26% 8.34% 8.21% 8.46%

7.25% 7.23% 6.95% 6.73% 7.04% 6.95% 7.01% 6.90% 7.12%
6.20% 6.09% 6.08% 5.75% 5.66% 5.92% 5.84% 5.90% 5.81% 5.98%

5.12% 5.11% 4.91% 4.76% 4.98% 4.91% 4.96% 4.88% 5.03%
4.30% 4.13% 4.00% 4.19% 4.13% 4.17% 4.11% 4.23%

3.47% 3.37% 3.52% 3.48% 3.51% 3.45% 3.56%
2.83% 2.96% 2.92% 2.95% 2.90% 2.99%

2.49% 2.46% 2.48% 2.44% 2.52%
2.07% 2.09% 2.05% 2.12%

1.75% 1.73% 1.78%
1.45% 1.50%

1.26%

Time in Years 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

Figure 4 The BDT and KWF Binomial and the BK Trinomial Trees for the Original Term Structure with No Mean
Reversion

Table 2 presents the trinomial lattices for the
HW and BK models using the information in
Table 1 and a mean reversion of 5%. The volatil-
ity is 10%. Notice the pruning that takes place
within the lattice when we have mean rever-
sion. This produces lattices that are significantly

different from those shown in Figures 3 and
4. This is a peculiarity of the Hull and White
methodology. The pruning is a result of incor-
porating mean reversion into the model and
ensuring that the distributional characteristics
of the SDEs are retained.
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c. The Black, Derman, and Toy Interest Rate Model

11.39%
10.29%

6.47% 9.89%
9.52% 8.93%

7.36% 6.34% 8.59%
8.12% 8.10% 7.76%

7.24% 6.79% 6.21% 7.46%
7.44% 6.78% 6.90% 6.74%

6.73% 6.30% 6.26% 6.08% 6.47%
6.20% 6.09% 5.66% 5.88% 5.85%

5.51% 5.49% 5.77% 5.95% 5.62%
4.98% 4.73% 5.00% 5.09%

4.78% 5.32% 5.83% 4.88%
3.95% 4.26% 4.42%

4.91% 5.71% 4.24%
3.63% 3.84%

5.59% 3.68%
3.33%

3.20%

Time in Years 1 2 3 4 5 6 7 8 9

Figure 4 (Continued)

Table 2 Trinomial Model

a. The Hull-White Trinomial Interest Rate Lattice Using the HW Method with Mean Reversion of 5%

83.50% 87.60% 91.92% 96.84% 101.89% 107.24%
63.14% 66.18% 70.28% 74.60% 79.52% 84.57% 89.91%

43.51% 45.82% 48.86% 52.96% 57.28% 62.20% 67.25% 72.59%
24.39% 26.18% 28.50% 31.54% 35.64% 39.96% 44.88% 49.93% 55.27%

6.20% 7.07% 8.86% 11.17% 14.22% 18.32% 22.64% 27.56% 32.61% 37.95%
−10.25% −8.46% −6.15% −3.10% 1.00% 5.32% 10.24% 15.29% 20.63%

−25.78% −23.47% −20.42% −16.32% −12.00% −7.09% −2.03% 3.31%
−40.79% −37.75% −33.64% −29.32% −24.41% −19.35% −14.01%

−55.07% −50.96% −46.64% −41.73% −36.67% −31.33%

Time in Years 1 2 3 4 5 6 7 8 9

b. The Black-Karasinski Trinomial Interest Rate Lattice Using the HW Method with Mean Reversion of 5%

11.34% 11.87% 11.73% 11.84% 11.67% 12.03%
9.83% 9.53% 9.99% 9.86% 9.96% 9.81% 10.12%

8.60% 8.27% 8.02% 8.40% 8.29% 8.38% 8.25% 8.51%
7.25% 7.26% 6.95% 6.74% 7.06% 6.98% 7.04% 6.94% 7.16%

6.20% 6.09% 6.08% 5.85% 5.67% 5.94% 5.87% 5.92% 5.84% 6.02%
5.12% 5.11% 4.92% 4.77% 4.99% 4.93% 4.98% 4.91% 5.06%

4.30% 4.14% 4.01% 4.20% 4.15% 4.19% 4.13% 4.26%
3.48% 3.37% 3.53% 3.49% 3.52% 3.47% 3.58%

2.84% 2.97% 2.93% 2.96% 2.92% 3.01%

Time in Years 1 2 3 4 5 6 7 8 9
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Table 3 Effective Duration and Effective Convexity Results

Shift==> −500 bp −250 bp Current 250 bp 500 bp

Model/ Eff. Eff. Eff. Eff. Eff. Eff. Eff. Eff. Eff. Eff.
Structure Duration Convexity Duration Convexity Duration Convexity Duration Convexity Duration Convexity

Ho Lee
Callable Bond 3.72119 −31.15230 3.62427 10.51371 3.43354 9.58153 4.19081 −6.18888 4.18588 12.92063
Putable Bond 6.48070 55.51213 5.96968 26.45835 4.82856 41.73014 4.33750 17.68955 3.52379 15.98202

BDT
Callable Bond 0.98815 0.97643 0.96433 0.92992 5.72746 −100.52077 6.97619 31.91884 6.59872 29.24115
Putable Bond 8.15290 41.20380 7.75444 37.88876 6.94320 136.25219 0.91997 0.84634 0.89929 0.80871

KWF
Callable Bond 0.98815 0.97643 0.96433 0.92992 5.48099 −8.70115 6.90354 18.94888 6.59875 29.22747
Putable Bond 8.15311 41.26110 7.75438 37.97492 6.02987 132.82680 0.91997 0.84634 0.89929 0.80871

HW-HW
Callable Bond 3.35706 5.81085 3.24446 8.80890 3.33140 9.55382 3.46677 −9.19552 4.65946 14.99510
Putable Bond 5.82483 23.71025 5.33913 20.81987 4.79375 17.78372 4.14647 14.50538 3.30034 10.76225

BK-HW
Callable Bond 0.98815 0.97643 0.96433 0.92992 5.21624 −77.28716 6.93694 31.17366 6.56855 28.88729
Putable Bond 8.09134 40.58931 7.70100 37.39723 6.79269 72.05773 0.91997 0.84634 0.89929 0.80871

Comparison of the Models Using
Common Risk and Value Metrics
Here we contrast the effective duration, effec-
tive convexity, and the option-adjusted spread
(OAS) for 10-year callable and putable bonds
each with a one-year delay on the embedded
option. The information in Table 1 is used for
the analysis. We computed the effective dura-
tion for the original term structures shown in
Table 1 using a yield change of 25 basis points.
The original term structure is then shifted up
and down in a parallel manner by ±250 basis
points and by ±500 basis points, respectively. In
other words, we computed the effective dura-
tion at five different term structure levels using
a yield change of 25 basis points.

Table 3 presents the effective duration and
convexity results for the two securities for each
model. The results are interesting. It is clear that
the normal models do not agree with the lognor-
mal models. Specifically, the normal models do
not match the characteristics of the price yield

relationship at extreme interest rate levels.7

Furthermore, each model gives slightly dif-
ferent results. This is an important finding
and must be appreciated by any user of these
models.

Table 4 presents the OAS results. We used a
market price that is 3% below the model price
for the OAS computation. They are consistent
with the results in Table 3. Note that the nor-
mal models produce OAS values larger than
any of the lognormal models. This is due to the
distributional differences and the property of
allowing very low and negative interest rates.
Clearly, normal models are not desirable when
evaluating securities with embedded options.8

APPENDIX
In this appendix we outline how to obtain equa-
tions (41) and (42). For equation (41) we use
Figure 1. For equation (42) we use Figure 2.

Table 4 Option-Adjusted Spread Results

Ho-Lee BDT KWF HW-HW BK-HW

Callable Bond 0.8454% 0.4785% 0.5449% 0.8350% 0.5063%
Putable Bond 0.5884% 0.4732% 0.5249% 0.5688% 0.4774%
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We first solve for r1,1 and r2,1 in Figure 1.
Equating the price from the spot rate term struc-
ture with the price from the binomial lattice
gives us

P2 = 1

(1 + R2τ )2 = q p1,1 + (1 − q ) p2,1

1 + r1,0τ
(A1)

Substituting in the discount factors p j,1 = 1/

(1 + r j,1τ ) for j = 1, 2 and clearing fractions we
obtain

P2 (1 + r1,0τ ) (1 + r1,1τ ) (1 + r2,1τ )

−q (1 + r2,1τ ) − (1 − q ) (1 + r1,1τ ) = 0 (A2)

We let r1,0 = R1. This equation can now be
solved for θ1.

For the next period in the binomial lattice we
have from Figure 1 that

P3 = 1

(1 + R3τ )3 = q p1,1 + (1 − q ) p2,1

1 + r1,0τ
=

q
(

q p1,2 + (1 − q ) p2,2

1 + r1,1τ

)
+ (1 − q )

(
q p2,2 + (1 − q ) p3,2

1 + r2,1τ

)

1 + r1,0τ

which reduces to

P3 (1 + r1,0τ ) (1 + r1,1τ ) (1 + r2,1τ ) (1 + r1,2τ )

× (1 + r2,2τ ) (1 + r3,2τ )

−q 2 (1 + r2,1τ ) (1 + r2,2τ ) (1 + r3,1τ )

−q (1 − q ) [(1 + r1,1τ ) + (1 + r2,1τ )]

× (1 + r1,2τ ) (1 + r3,2τ ) − (1 − q )2 (1 + r1,1τ )

× (1 + r1,2τ ) (1 + r2,2τ ) = 0 (A3)

We now solve equation (A3) for θ2 using the
bisection method.

From equation (A2) and equation (A3) we
can generate the remainder of the no arbitrage
equations that give the short rates in the bi-
nomial lattice. Note that equation (A2) can be
written as

c1,1 (1 + r1,1τ ) (1 + r2,1τ ) + c2,1 (1 + r2,1τ )

+ c3,1 (1 + r1,1τ ) = 0 (A4)

and that equation (A3) can be written as

c1,2 (1 + r1,2τ ) (1 + r2,2τ ) (1 + r3,2τ )
+ c2,2 (1 + r2,2τ ) (1 + r3,2τ ) + c3,2 (1 + r1,2τ )
× (1 + r3,2τ ) + c4,2 (1 + r1,2τ ) (1 + r2,2τ ) = 0 (A5)

We now introduce some variables that will
help to generate the coefficients ci,k for the poly-
nomials that determine the interest rates at time
period k. We start by doing it for the polynomi-
als in equations (A4) and (A5). This is done in
two steps. The first step is to notice how the
coefficients are related to the interest rates at
the previous time periods. Note that if we let
a1,1 = 1 + r1,0τ , a2,1 = −1, and a3,1 = −1 then
c1,1 = P2a1,1, c2,1 = qa2,1, and c3,1 = (1 − q)a3,1

in equation (A4). In order to generate equation
(A5) we first let b1,1 = a2,1(1 + r2,1τ ), b2,1 = a3,1

(1 + r1,1τ ). We can then generate a1,2 = (1 +
r1,0τ )(1 + r1,1τ )(1 + r2,1τ ), a2,2 = b1,1, a3,2 = b1,1 +
b2,1, and a4,2 = b2,1. It is now seen that c1,2 =
P3a1,2, c2,2 = q2 a2,2, c3,2 = q(1 − q)a3,3, and c4,2 =
(1 − q)2a4,2. We now let b1,2 = a3,1(1 + r2,2τ )

(1 + r3,2τ ), b2,2 = a3,2(1 + r1,2τ )(1 + r3,2τ ), and
b3,2 = a4,2(1 + r1,2τ )(1 + r2,2τ ) and continue the
process to obtain equation (41).

For the trinomial lattice no arbitrage poly-
nomial we first solve for r1,1, r2,1, and r3,1 in
Figure 2. Equating the price from the spot rate
term structure with the price from the trinomial
lattice gives us

P2 = 1

(1 + R2τ )2 = q1 p1,1 + q2 p2,1 + q3 p3,1

1 + r1,0τ

which is similar to equation (A1). Proceeding as
in the binomial lattice we find that

P2 (1 + r1,0τ ) (1 + r1,1τ ) (1 + r2,1τ ) (1 + r3,1τ )

− q1 (1 + r2,1τ ) (1 + r3,1τ ) − q2 (1 + r1,1τ )

× (1 + r3,1τ ) − q3 (1 + r1,1τ ) (1 + r2,1τ ) = 0

(A6)

As in the binomial case, r1,0 = R1 and equa-
tion (A6) is solved for θ1 using the bisection
method.
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For the next period in the trinomial lattice
(Figure 2) gives us

P3 = 1

(1 + R3τ )3 = q p1,1 + q2 p2,1 + q3 p3,1

1 + r1,0τ

=
q1

(
q1 p1,2 + q2 p2,2 + q3 p3,2

1 + r1,1τ

)
+ q2

(
q1 p2,2 + q2 p3,2 + q3 p3,3

1 + r2,1τ

)
+ q3

(
q1 p3,3 + q2 p3,4 + q3 p3,5

1 + r3,1τ

)

1 + r1,0τ

which simplifies to the following equation
similar to equation (A3)

P3 (1 + r1,0τ )
3∏

j=1

(
1 + r j,1τ

) 5∏

j=1

(
1 + r j,2τ

)

− q 2
1 (1 + r2,1τ ) (1 + r3,1τ )

5∏

j=2

(
1 + r j,2τ

)

− [q1q2 (1 + r2,1τ ) (1 + r3,1τ ) + q1q2 (1 + r1,1τ )

× (1 + r3,1τ )]
5∏

j=1
j 	=2

(
1 + r j,2τ

)

− [
q1q3 (1 + r2,1τ ) (1 + r3,1τ ) + q 2

2 (1 + r1,1τ )

× (1 + r3,1τ ) + q3q1 (1 + r1,1τ ) (1 + r2,1τ )]

×
5∏

j=1
j 	=3

(
1 + r j,2τ

)
(A7)

− [q2q3 (1 + r1,1τ ) (1 + r3,1τ ) + q3q2 (1 + r1,1τ )

× (1 + r2,1τ )]
5∏

j=1
j 	=4

(
1 + r j,2τ

)

−q 2
3 (1 + r1,1τ ) (1 + r2,1τ )

4∏

j=1

(
1 + r j,2τ

) = 0

Equation (A7) is also solved for θ2 using the
bisection method. We now proceed as in the
binomial lattice case to generate the no arbitrage
equation for θ i given in equation (42).

KEY POINTS
� Interest rates are commonly modeled using

stochastic differential equations.
� One-factor models use a stochastic differen-

tial equation to represent the short rate and

two-factor models use a stochastic differen-
tial equation for both the short rate and the
long rate.

� The stochastic differential equations used to
model interest rates must capture some of
the market properties of interest rates such
as mean reversion and/or a volatility that de-
pends on the level of interest rates.

� The approaches used to implement the SDEs
into a term structure model include equilib-
rium and no arbitrage.

� There are five different term structure mod-
els that evolve from three general stochastic
differential equations.

� Without market calibration the models pro-
duce very different results.

� Both the end user and the developer must be
aware of these properties in order to properly
implement and interpret any results from the
models.

� Even with calibration the models can produce
different results. Calibration reduces the dif-
ferences across the models but does not elim-
inate them.

NOTES
1. Ho and Lee (1986).
2. Kalotay, Williams, and Fabozzi (1993).
3. See Buetow and Sochacki (2001).
4. See, for example, Cox, Ross, and Rubinstein

(1979).
5. See Burden and Faires (1998).
6. For complete details see Hull and White

(1994).



620 Term Structure Modeling

7. See Fabozzi, Buetow, and Johnson (2012) for
more details on the behavior of putable and
callable bonds.

8. Details of these phenomena are provided in
Buetow, Hanke, and Fabozzi (2001).
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Abstract: Portfolio managers and traders need to be able to effectively model the impact of trading
costs on their portfolios and trades.

Trading is an integral component of the eq-
uity investment process. A poorly executed
trade can eat directly into portfolio returns. This
is because equity markets are not frictionless,
and transactions have a cost associated with
them. Costs are incurred when buying or sell-
ing stocks in the form of, for example, brokerage
commissions, bid-ask spreads, taxes, and mar-
ket impact costs.

In recent years, portfolio managers have
started to more carefully consider transaction
costs. The literature on market microstructure,
analysis and measurement of transaction costs,
and market impact costs on institutional trades
is rapidly expanding.1 One way of describing
transaction costs is to categorize them in terms
of explicit costs such as brokerage and taxes,
and implicit costs, which include market im-
pact costs, price movement risk, and opportu-
nity cost. Market impact cost is, broadly speaking,
the price an investor has to pay for obtaining
liquidity in the market, whereas price move-
ment risk is the risk that the price of an asset in-
creases or decreases from the time the investor

decides to transact in the asset until the transac-
tion actually takes place. Opportunity cost is the
cost suffered when a trade is not executed. An-
other way of seeing transaction costs is in terms
of fixed costs versus variable costs. Whereas
commissions and trading fees are fixed, bid-ask
spreads, taxes, and all implicit transaction costs
are variable.

Portfolio managers and traders need to be
able to effectively model the impact of trading
costs on their portfolios and trades. In this entry,
we introduce several approaches for the mod-
eling of transaction costs, in particular market
impact costs.

MARKET IMPACT COSTS
The market impact cost of a transaction is the
deviation of the transaction price from the mar-
ket (mid) price2 that would have prevailed had
the trade not occurred. The price movement is
the cost, the market impact cost, for liquidity.
Market impact of a trade can be negative if,
for example, a trader buys at a price below the

623
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no-trade price (i.e., the price that would have
prevailed had the trade not taken place). In
general, liquidity providers experience nega-
tive costs while liquidity demanders will face
positive costs.

We distinguish between two different kinds
of market impact costs, temporary and perma-
nent. Total market impact cost is computed as
the sum of the two. The temporary market im-
pact cost is of transitory nature and can be seen
as the additional liquidity concession neces-
sary for the liquidity provider (e.g., the market
maker) to take the order, inventory effects (price
effects due to broker/dealer inventory imbal-
ances), or imperfect substitution (for example,
price incentives to induce market participants
to absorb the additional shares).

The permanent market impact cost, however,
reflects the persistent price change that results
as the market adjusts to the information content
of the trade. Intuitively, a sell transaction reveals
to the market that the security may be overval-
ued, whereas a buy transaction signals that the
security may be undervalued. Security prices
change when market participants adjust their
views and perceptions as they observe news
and the information contained in new trades
during the trading day.

Traders can decrease the temporary market
impact by extending the trading horizon of an
order. For example, a trader executing a less
urgent order can buy or sell his or her posi-
tion in smaller portions over a period and make
sure that each portion only constitutes a small
percentage of the average volume. However,
this comes at the price of increased opportunity
costs, delay costs, and price movement risk.

Market impact costs are often asymmetric;
that is, they are different for buy and sell orders.
Several empirical studies suggest that market
impact costs are generally higher for buy or-
ders. Nevertheless, while buying costs might be
higher than selling costs, this empirical fact is
most likely due to observations during rising/
falling markets, rather than any true market mi-
crostructure effects. For example, a study by

Hu shows that the difference in market impact
costs between buys and sells is an artifact of
the trade benchmark.3 (We discuss trade bench-
marks later in this entry.) When a pre-trade mea-
sure is used, buys (sells) have higher implicit
trading costs during rising (falling) markets.
Conversely, if a post-trade measure is used,
sells (buys) have higher implicit trading costs
during rising (falling) markets. In fact, both
pre-trade and post-trade measures are highly
influenced by market movement, whereas
during- or average-trade measures are neutral
to market movement.

Despite the enormous global size of equity
markets, the impact of trading is important
even for relatively small funds. In fact, a siz-
able fraction of the stocks that compose an in-
dex might have to be excluded or their trad-
ing severely limited. For example, RAS Asset
Management, which is the asset manager arm
of the large Italian insurance company RAS,
has determined that single trades exceeding
10% of the daily trading volume of a stock
cause an excessive market impact and have
to be excluded, while trades between 5% and
10% need execution strategies distributed over
several days.4 According to RAS Asset Man-
agement estimates, in practice funds managed
actively with quantitative techniques and with
market capitalization in excess of €100 million
can operate only on the fraction of the market
above the €5 million, splitting trades over sev-
eral days for stocks with average daily trading
volume in the range from €5 million to €10 mil-
lion. They can freely operate only on two-thirds
of the stocks in the MSCI Europe.

LIQUIDITY AND
TRANSACTION COSTS
Liquidity is created by agents transacting in the
financial markets when they buy and sell securi-
ties. Market makers and brokers–dealers do not
create liquidity; they are intermediaries who
facilitate trade execution and maintain an or-
derly market.
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Liquidity and transaction costs are interre-
lated. A highly liquid market is one where large
transactions can be immediately executed with-
out incurring high transaction costs. In an in-
definitely liquid market, traders would be able
to perform very large transactions directly at
the quoted bid-ask prices. In reality, partic-
ularly for larger orders, the market requires
traders to pay more than the ask when buying
and to receive less than the bid when selling.
As we discussed previously, this percentage
degradation of the bid-ask prices experienced
when executing trades is the market impact
cost.

The market impact cost varies with transac-
tion size: The larger the trade size, the larger
the impact cost. Impact costs are not constant
in time, but vary throughout the day as traders
change the limit orders that they have in the
limit order book. A limit order is a conditional
order; it is executed only if the limit price or
a better price can be obtained. For example, a
buy limit order of a security XYZ at $60 indi-
cates that the assets may be purchased only at
$60 or lower. Therefore, a limit order is very
different from a market order, which is an un-
conditional order to execute at the current best
price available in the market (guarantees exe-
cution, not price). With a limit order, a trader
can improve the execution price relative to the
market order price, but the execution is neither
certain nor immediate (guarantees price, not
execution).

Notably, there are many different limit or-
der types available such as pegging orders,
discretionary limit orders, immediate or cancel
order (IOC) orders, and fleeting orders. For ex-
ample, fleeting orders are those limit orders
that are canceled within two seconds of sub-
mission. Hasbrouck and Saar find that fleeting
limit orders are much closer substitutes for mar-
ket orders than for traditional limit orders.5 This
suggests that the role of limit orders has
changed from the traditional view of being liq-
uidity suppliers to being substitutes for market
orders.

At any given instant, the list of orders sitting
in the limit order book embodies the liquidity
that exists at a particular point in time. By ob-
serving the entire limit order book, impact costs
can be calculated for different transaction sizes.
The limit order book reveals the prevailing sup-
ply and demand in the market.6 Therefore, in a
pure limit order market, we can obtain a mea-
sure of liquidity by aggregating limit buy orders
(representing the demand) and limit sell orders
(representing the supply).7

We start by sorting the bid and ask prices,
pbid

1 , . . . , pbid
k and pask

1 , . . . , pask
l , (from the most

to the least competitive) and the corresponding
order quantities q bid

1 , . . . , q bid
k and q ask

1 , . . . , q ask
l .

We then combine the sorted bid and ask prices
into a supply and demand schedule according
to Figure 1. For example, the block (pbid

2 , q bid
2 )

represents the second best sell limit order with
price pbid

2 and quantity q bid
2 .

We note that unless there is a gap between the
bid (demand) and the ask (supply) sides, there
will be a match between a seller and buyer,
and a trade would occur. The larger the gap,
the lower the liquidity and the market par-
ticipants’ desire to trade. For a trade of size
Q, we can define its liquidity as the recipro-
cal of the area between the supply and de-
mand curves up to Q (i.e., the “dotted” area in
Figure 1).

However, few order books are publicly avail-
able and not all markets are pure limit order
markets. In 2004, the New York Stock Exchange
(NYSE) started selling information on its limit
order book through its new system called
the NYSE OpenBook

R©
. The system provides

an aggregated real-time view of the ex-
change’s limit-order book for all NYSE-traded
securities.8

In the absence of a fully transparent limit or-
der book, expected market impact cost is the
most practical and realistic measure of market
liquidity. It is closer to the true cost of transact-
ing faced by market participants as compared
to other measures such as those based upon the
bid-ask spread.
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Figure 1 The Supply and Demand Schedule of a Security
Source: Figure 1A in Domowitz and Wang (2002, p. 38).

MARKET IMPACT
MEASUREMENTS AND
EMPIRICAL FINDINGS
The problem with measuring implicit transac-
tion costs is that the true measure, which is
the difference between the price of the stock in
the absence of a money manager’s trade and the
execution price, is not observable. Furthermore,
the execution price is dependent on supply and
demand conditions at the margin. Thus, the ex-
ecution price may be influenced by competi-
tive traders who demand immediate execution
or by other investors with similar motives for
trading. This means that the execution price re-
alized by an investor is the consequence of the
structure of the market mechanism, the demand
for liquidity by the marginal investor, and the
competitive forces of investors with similar mo-
tivations for trading.

There are many ways to measure transaction
costs. However, in general this cost is the dif-
ference between the execution price and some

appropriate benchmark, a so-called fair market
benchmark. The fair market benchmark of a secu-
rity is the price that would have prevailed had
the trade not taken place, the no-trade price.
Since the no-trade price is not observable, it has
to be estimated. Practitioners have identified
three different basic approaches to measure the
market impact:9

1. Pre-trade measures use prices occurring be-
fore or at the decision to trade as the bench-
mark, such as the opening price on the same
day or the closing price on the previous day.

2. Post-trade measures use prices occurring af-
ter the decision to trade as the benchmark,
such as the closing price of the trading day
or the opening price on the next day.

3. Same-day or average measures use average
prices of a large number of trades during
the day of the decision to trade, such as the
volume-weighted average price (VWAP) calcu-
lated over all transactions in the security on
the trade day.10
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The volume-weighted average price is calcu-
lated as follows. Suppose that it was a trader’s
objective to purchase 10,000 shares of stock
XYZ. After completion of the trade, the trade
sheet showed that 4,000 shares were purchased
at $80, another 4,000 at $81, and finally 2,000 at
$82. In this case, the resulting VWAP is (4,000 ×
80 + 4,000 × 81 + 2,000 × 82)/10,000 = $80.80.

We denote by χ the indicator function that
takes on the value 1 or −1 if an order is a buy
or sell order, respectively. Formally, we now ex-
press the three types of measures of market im-
pact (MI) as follows

MIpre =
(

pex

ppre − 1
)

χ

MIpost =
(

pex

ppost − 1
)

χ

MIVWAP =

⎛

⎜⎜⎜⎝

k∑
i=1

Vi · Pex
i

k∑
i=1

Vi

/ppre − 1

⎞

⎟⎟⎟⎠ χ

where pex, ppre, and ppost denote the execution
price, pre-trade price, and post-trade price of
the stock, and k denotes the number of transac-
tions in a particular security on the trade date.
Using this definition, for a stock with market
impact MI the resulting market impact cost for a
trade of size V, MIC, is given by

MIC = MI · V

It is also common to adjust market impact for
general market movements. For example, the
pre-trade market impact with market adjust-
ment would take the form

MIpre =
(

pex

ppre − pex
M

ppre
M

)
χ

where pex
M represent the value of the index at

the time of the execution, and ppre
M the price of

the index at the time before the trade. Market-
adjusted market impact for the post-trade and
same-day trade benchmarks are calculated in
an analogous fashion.

The above three approaches to measure mar-
ket impact are based upon measuring the fair
market benchmark of stock at a point in time.
Clearly, different definitions of market impact
lead to different results. Which one should be
used is a matter of preference and is depen-
dent on the application at hand. For example,
Elkins and McSherry, a financial consulting firm
that provides customized trading costs and ex-
ecution analysis, calculates a same-day bench-
mark price for each stock by taking the mean
of the day’s open, close, high, and low prices.
The market impact is then computed as the
percentage difference between the transaction
price and this benchmark. However, in most
cases VWAP and the Elkins McSherry approach
lead to similar measurements.11

As we analyze a portfolio’s return over time
an important question to ask is whether we
can attribute good/bad performance to invest-
ment profits/losses or to trading profits/losses.
In other words, in order to better understand
a portfolio’s performance it can be useful to
decompose investment decisions from order ex-
ecution. This is the basic idea behind the imple-
mentation shortfall approach suggested by Perold
(1998).

In the implementation shortfall approach, we
assume that there is a separation between in-
vestment and trading decisions. The portfolio
manager makes decisions with respect to the in-
vestment strategy (i.e., what should be bought,
sold, and held). Subsequently, these decisions
are implemented by the traders.

By comparing the actual portfolio profit/loss
(P/L) with the performance of a hypothetical
paper portfolio in which all trades are made at
hypothetical market prices, we can get an es-
timate of the implementation shortfall. For ex-
ample, with a paper portfolio return of 6% and
an actual portfolio return of 5%, the implemen-
tation shortfall is 1%.

There is considerable practical and academic
interest in the measurement and analysis of in-
ternational trading costs. Domowitz, Glen, and
Madhavan (1999) examine international equity
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trading costs across a broad sample of 42 coun-
tries using quarterly data from 1995 to 1998.
They find that the mean total one-way trad-
ing cost is 69.81 basis points. However, there is
an enormous variation in trading costs across
countries. For example, in their study the high-
est was Korea with 196.85 basis points whereas
the lowest was France with 29.85 basis points.
Explicit costs are roughly two-thirds of total
costs. However, one exception to this is the
United States where the implicit costs are about
60% of the total costs.

Transaction costs in emerging markets are sig-
nificantly higher than those in more developed
markets. Domowitz, Glen, and Madhavan ar-
gue that this fact limits the gains of international
diversification in these countries, explaining in
part the documented home bias of domestic
investors.

In general, they find that transaction costs de-
clined from the middle of 1997 to the end of
1998, with the exception of Eastern Europe. It is
interesting to notice that this reduction in trans-
action costs happened despite the turmoil in the
financial markets during this period. A few ex-
planations that Domowitz et al. suggest are that
(1) the increased institutional presence has re-
sulted in a more competitive environment for
brokers/dealers and other trading services; (2)
technological innovation has led to a growth
in the use of low-cost electronic crossing net-
works (ECNs) by institutional traders; and (3)
soft dollar payments are now more common.

FORECASTING AND
MODELING MARKET
IMPACT
In this section, we describe a general method-
ology for constructing forecasting models for
market impact. These types of models are very
useful in predicting the resulting trading costs
of specific trading strategies and in devising op-
timal trading approaches.

Explicit transaction costs are relatively
straightforward to estimate and forecast. There-

fore, our focus in this section is to develop a
methodology for the implicit transaction costs,
and more specifically, market impact costs. The
methodology is a linear factor-based approach
where market impact is the dependent vari-
able. We distinguish between trade-based and
asset-based independent variables or forecasting
factors.

Trade-Based Factors
Some examples of trade-based factors include:

� Trade size
� Relative trade size
� Price of market liquidity
� Type of trade (information or informationless

trade)
� Efficiency and trading style of the investor
� Specific characteristics of the market or the

exchange
� Time of trade submission and trade timing
� Order type

Probably the most important market impact
forecasting variables are based on absolute or
relative trade size. Absolute trade size is of-
ten measured in terms of the number of shares
traded, or the dollar value of the trade. Relative
trade size, on the other hand, can be calculated
as number of shares traded divided by aver-
age daily volume, or number of shares traded
divided by the total number of shares outstand-
ing. Note that the former can be seen as an
explanatory variable for the temporary market
impact and the latter for the permanent market
impact. In particular, we expect the temporary
market impact to increase as the trade size to
the average daily volume increases because a
larger trade demands more liquidity.

Each type of investment style requires a differ-
ent need for immediacy.12 Technical trades often
have to be traded at a faster pace in order to cap-
italize on some short-term signal and therefore
exhibit higher market impact costs. In contrast,
more traditional long-term value strategies can
be traded more slowly. These types of strategies
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can in many cases even be liquidity providing,
which might result in negative market impact
costs.

Several studies show that there is a wide vari-
ation in equity transaction costs across differ-
ent countries.13 Markets and exchanges in each
country are different, and so are the resulting
market microstructures. Forecasting variables
can be used to capture specific market charac-
teristics such as liquidity, efficiency, and insti-
tutional features.

The particular timing of a trade can affect
the market impact costs. For example, it ap-
pears that market impact costs are generally
higher at the beginning of the month as com-
pared to the end of it.14 One of the reasons for
this phenomenon is that many institutional in-
vestors tend to rebalance their portfolios at the
beginning of the month. Because it is likely that
many of these trades will be executed in the
same stocks, this rebalancing pattern will in-
duce an increase in market impact costs. The
particular time of the day a trade takes place
does also have an effect. Many informed insti-
tutional traders tend to trade at the market open
as they want to capitalize on new information
that appeared after the market close the day
before.

As we discussed earlier in this entry, market
impact costs are asymmetric. In other words,
buy and sell orders have significantly differ-
ent market impact costs. Separate models for
buy and sell orders can therefore be estimated.
However, it is now more common to construct
a model that includes dummy variables for dif-
ferent types of orders such as buy/sell orders,
market orders, limit orders, and the like.

Asset-Based Factors
Some examples of asset-based factors are:

� Price momentum
� Price volatility
� Market capitalization
� Growth versus value
� Specific industry or sector characteristics

For a stock that is exhibiting positive price mo-
mentum, a buy order is liquidity demanding
and it is, therefore, likely that it will have higher
market impact cost than a sell order.

Generally, trades in high volatility stocks re-
sult in higher permanent price effects. It has
been suggested by Chan and Lakonishok (1997)
and Smith et al. (2001) that this is because trades
have a tendency to contain more information
when volatility is high. Another possibility is
that higher volatility increases the probability
of hitting and being able to execute at the liq-
uidity providers’ price. Consequently, liquidity
suppliers display fewer shares at the best prices
to mitigate adverse selection costs.

Large-cap stocks are more actively traded and
therefore more liquid in comparison to small-
cap stocks. As a result, market impact cost is
normally lower for large caps.15 However, if we
measure market impact costs with respect to
relative trade size (normalized by average daily
volume, for instance), they are generally higher.
Similarly, growth and value stocks have differ-
ent market impact cost. One reason for that is
related to the trading style. Growth stocks com-
monly exhibit momentum and high volatility.
This attracts technical traders that are inter-
ested in capitalizing on short-term price swings.
Value stocks are traded at a slower pace and
holding periods tend to be slightly longer.

Different market sectors show different
trading behaviors. For instance, Bikker and
Spierdijk (2007) show that equity trades in
the energy sector exhibit higher market impact
costs than other comparable equities in nonen-
ergy sectors.

A Factor-Based Market
Impact Model
One of the most common approaches in practice
and in the literature in modeling market impact
is through a linear factor model of the form:

MIt = α +
I∑

i=1

βi xi + εt
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where α, β i are the factor loadings and xi are the
factors. Frequently, the error term εt is assumed
to be independently and identically distributed.
Recall that the resulting market impact cost of a
trade of (dollar) size V is then given by MICt =
MIt · V. However, extensions of this model in-
cluding conditional volatility specifications are
also possible. By analyzing both the mean and
the volatility of the market impact, we can better
understand and manage the trade-off between
the two. For example, Bikker and Spierdijk use
a specification where the error terms are jointly
and serially uncorrelated with mean zero, sat-
isfying

Var(εt) = exp

(
γ +

J∑

i=1

δ j z j

)

where γ , δj, and zj are the volatility, factor load-
ings, and factors, respectively.

Although the market impact function is linear,
this of course does not mean that the dependent
variables have to be. In particular, the factors
in the previous specification can be nonlinear
transformations of the descriptive variables.

Consider, for example, factors related to trade
size (e.g., trade size and trade size to daily vol-
ume). It is well known that market impact is
nonlinear in these trade size measures. One of
the earliest studies in this regard was performed
by Loeb (1983), who showed that for a large
set of stocks the market impact is proportional
to the square root of the trade size, resulting
in a market impact cost proportional to V3/2.
Typically, a market impact function linear in
trade size will underestimate the price impact of
small- to medium-sized trades whereas larger
trades will be overestimated.

Chen, Stanzl, and Watanabe (2002) suggest to
model the nonlinear effects of trade size (dollar
trade size V) in a market impact model by using
the Box-Cox transformation; that is,

MI (Vt) = αb + βb
Vλb

t − 1
λb

+ εt

where t and τ represent the time of transaction
for the buys and the sells, respectively. In their

specification, they assumed that εt and ετ are
independent and identically distributed with
mean zero and variance σ 2. The parameters αb,
βb, λb, αs, βs, and λs were then estimated from
market data by nonlinear least squares for each
individual stock. We remark that λb, λs ∈ [0, 1]
in order for the market impact for buys to be
concave and for sells to be convex.

In their data sample (NYSE and Nasdaq
trades between January 1993 and June 1993),
Chen, Stanzl, and Watanabe report that for
small companies the curvature parameters λb,
λs are close to zero, whereas for larger compa-
nies they are not far away from 0.5. Observe
that for λb = λs = 1 market impact is linear in
the dollar trade size. Moreover, when λb = λs

= 0 the impact function is logarithmic by the
virtue of

lim
λ→0

Vλ − 1
λ

= ln(λ)

As just mentioned, market impact is also a
function of the characteristics of the particu-
lar exchange where the securities are traded
as well as of the trading style of the investor.
These characteristics can also be included in the
general specification outlined previously. For
example, Keim and Madhavan (1996, 1997) pro-
posed the following two different market im-
pact specifications

1. MI = α + β1χOTC + β2
1
p

+ β3 |q | + β4 |q |2 +
β5 |q |3 + β6χUp + ε

where

χOTC = a dummy variable equal to one if the
stock is an OTC traded stock or zero
otherwise.

p = the trade price.
q = the number of shares traded over the

number of shares outstanding.
χUp = a dummy variable equal to one if

the trade is done in the upstairs16

market or zero otherwise.
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2. MI = α + β1χNasdaq + β2q + β3 ln(MCa p) +
β4

1
p

+ β5χTech + β6χIndex + ε

where

χNasdaq = a dummy variable equal to one if
the stock is traded on Nasdaq or
zero otherwise.

q = the number of shares traded over
the number of shares outstanding.

MCap = the market capitalization of the
stock.

p = the trade price.
χTech = a dummy variable equal to one if

the trade is a short-term technical
trade or zero otherwise.

χ Index = a dummy variable equal to one if
the trade is done for a portfolio that
attempts to closely mimic the be-
havior of the underlying index or
zero otherwise.

These two models provide good examples for
how nonlinear transformations of the underly-
ing dependent variables can be used along with
dummy variables that describe specific market
or trade characteristics.

Several vendors and broker-dealers such
as MSCI Barra17 and ITG18 have developed
commercially available market impact mod-
els. These are sophisticated multimarket mod-
els that rely upon specialized estimation
techniques using intraday data or tick-by-tick
transaction-based data. However, the general
characteristics of these models are similar to the
ones described in this section.

We emphasize that in the modeling of trans-
action costs it is important to factor in the ob-
jective of the trader or investor. For example,
one market participant might trade just to take
advantage of price movement and hence will
only trade during favorable periods. This in-
vestor’s trading cost is different from that of
an investor who has to rebalance a portfolio
within a fixed time period and can therefore
only partially use an opportunistic or liquidity
searching strategy. In particular, this investor

has to take into account the risk of not com-
pleting the transaction within a specified time
period. Consequently, even if the market is not
favorable, this investor may decide to trans-
act a portion of the trade. The market impact
models described previously assume that or-
ders will be fully completed and ignore this
point.

KEY POINTS
� Trading and execution are integral compo-

nents of the investment process. A poorly
executed trade can eat directly into portfolio
returns because of transaction costs.

� Transaction costs are typically categorized in
two dimensions: fixed costs versus variable
costs, and explicit costs versus implicit costs.

� In the first dimension, fixed costs include
commissions and fees. Bid-ask spreads, taxes,
delay cost, price movement risk, market im-
pact costs, timing risk, and opportunity cost
are variable trading costs.

� In the second dimension, explicit costs in-
clude commissions, fees, bid-ask spreads, and
taxes. Delay cost, price movement risk, mar-
ket impact cost, timing risk, and opportunity
cost are implicit transaction costs.

� Implicit costs make up the larger part of the
total transaction costs. These costs are not ob-
servable and have to be estimated.

� Liquidity is created by agents transacting in
the financial markets by buying and selling
securities.

� Liquidity and transaction costs are interre-
lated: In a highly liquid market, large trans-
actions can be executed immediately without
incurring high transaction costs.

� A limit order is an order to execute a trade
only if the limit price or a better price can be
obtained.

� A market order is an order to execute a trade
at the current best price available in the
market.

� In general, trading costs are measured as the
difference between the execution price and
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some appropriate fair market benchmark.
The fair market benchmark of a security is
the price that would have prevailed had the
trade not taken place.

� Typical forecasting models for market impact
costs are based on a statistical factor approach
where the independent variables are trade-
based factors or asset-based factors.

NOTES
1. See, for example, Domowitz, Glen, and

Madhavan (2001) and Keim and Madhavan
(1998).

2. Since the buyer buys at the ask and the seller
sells at the bid, this definition of market im-
pact cost ignores the bid–ask spread, which
is an explicit cost.

3. Hu (2009).
4. Private communication, RAS Asset Man-

agement.
5. Hasbrouck and Saar (2008).
6. Note that even if it is possible to view the en-

tire limit order book it does not give a com-
plete picture of the liquidity in the market.
This is because hidden and discretionary or-
ders are not included. For a discussion on
this topic, see Tuttle (2002).

7. Domowitz and Wang (2002) and Foucault,
Kadan, and Kandel (2005).

8. NYSE and Securities Industry Automation
Corporation, NYSE OpenBook

R©
, Version 1.1

(New York: 2004).
9. Collins and Fabozzi (1991) and Chan and

Lakonishok (1993).
10. Strictly speaking, VWAP is not the bench-

mark here but rather the transaction type.
11. See Willoughby (1998) and McSherry

(1998).
12. Keim and Madhavan (1997).
13. See Domowitz, Glen, and Madhavan (2001)

and Chiyachantana, Jain, Jiang, and Wood
(2004).

14. Foster and Viswanathan (1990).
15. Keim and Madhavan (1998) and Spierdijk,

Nijman, and van Soest ( 2003).

16. A securities transaction not executed on the
exchange but completed directly by a bro-
ker in-house is referred to as an upstairs
market transaction. Typically, the upstairs
market consists of a network of trading
desks of the major brokerages and institu-
tional investors. The major purpose of the
upstairs market is to facilitate large block
and program trades.

17. Torre and Ferrari (1999).
18. Investment Technology Group (2003).
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Monte Carlo Simulation in Finance
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Abstract: Monte Carlo simulation has become an essential tool for pricing and risk estimation in
financial applications. It allows finance professionals to incorporate uncertainty in financial models,
and to consider additional layers of complexity that are difficult to incorporate in analytical models.
The main idea of Monte Carlo simulation is to represent the uncertainty in market variables through
scenarios, and to evaluate parameters of interest that depend on these market variables in complex
ways. The advantage of such an approach is that it can easily capture the dynamics of underlying
processes and the otherwise complex effects of interactions among market variables. A substantial
amount of research in recent years has been dedicated to making scenario generation more accurate
and efficient, and a number of sophisticated computational techniques are now available to the
financial modeler.

This entry provides an introduction to Monte
Carlo simulation and its applications to finance,
from financial derivative pricing to portfolio risk
management. We begin with a discussion of the
main ideas behind simulation and a listing of
several important areas in finance where sim-
ulation techniques are widely used. We then
discuss technical issues that are important for
understanding the advantages and limitations
of the Monte Carlo simulation technique, such
as how random numbers are actually gener-
ated, what techniques are used for increasing
the accuracy of estimates from simulation, and
what software can be helpful for applications.

MAIN IDEAS AND
IMPORTANT CONCEPTS
Simulation can be most generally defined as
imitation of real-life systems with the goal of

studying important characteristics of their be-
havior. Monte Carlo simulation is named after
the main residential area of the Monaco prin-
cipality, which was well known for its casino.
The term alludes to randomness and process
repetition, analogous to casino games such as
roulette.

The idea of applying Monte Carlo simulation
to finance arises naturally, given the inherent
variability in markets and the need for finance
professionals to evaluate strategies with uncer-
tain outcomes. Consider, for example, a port-
folio manager who would like to estimate the
effect of a market downturn on the portfolio
(e.g., if the market goes down by 10%). What
would be the resulting portfolio value? If the
portfolio beta is 1, the expected decline in the
portfolio value will be 10% as well; if the port-
folio beta is 0.9, the portfolio will decline 9%
if the market declines by 10%. More generally,
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Figure 1 Examples of Probability Distributions

a portfolio manager may want to assess the
exposure of a portfolio to a set of risk factors
suggested by economic theory or empirical evi-
dence such as interest rate changes, commodity
price changes, exchange rate movements, and
so on. These risk factors and their interactions
with each other are not straightforward to eval-
uate. One can imagine that a portfolio manager
would consider scenarios for possible joint re-
alizations of market variables—for example, in
a global recession or under favorable monetary
policy changes—and would assess the change
to the portfolio value in each of these scenar-
ios. Taking it yet another step further, a port-
folio manager may assign probabilities to the
different scenarios, thus expressing a view on
their likelihood of occurring. Assigning proba-
bilities to outcomes produces probability distri-
butions. Examples of probability distributions
include the discrete uniform distribution (see
Figure 1a), which assigns equal probabilities
to all possible discrete outcomes, and the nor-
mal distribution (Figure 1b), which is continu-
ous (defined on a range, as opposed to discrete
values), and allocates more probability to out-
comes close to the average than to those far from
the average.

The example in the previous paragraph il-
lustrates a Monte Carlo simulation system:
Possibly random inputs (the risk factors) in-
corporating subjective or statistically estimated
views via probability distributions are en-
tered into an evaluation model (computation
of change in portfolio value), and the result-
ing output (the portfolio change) is not a single

number, but a probability distribution of out-
comes that incorporates characteristics of the
input probability distributions and their com-
plex interactions. The actual simulation process
involves generating a certain number of sce-
narios, evaluating the portfolio change for each
scenario, and obtaining a corresponding set of
scenarios for the portfolio change. The latter set
of scenarios can then be analyzed to determine
most likely outcomes for portfolio change, vari-
ability of estimated portfolio change, range of
possible outcomes, and the like. One can use
the simulation output also to estimate any port-
folio risk measure such as value-at-risk (VaR)
or expected tail loss (ETL). Since VaR has been
adopted by regulators and is commonly used
by portfolio managers, we will use VaR in our
illustrations. When generating scenarios for the
factors influencing the future value of the port-
folio, it is easy to collect information on possible
portfolio losses relative to the current value of
the portfolio in each scenario. Then, the 95%
VaR, for example, can be computed as the 95th
percentile of the distribution of portfolio losses
(see Figure 2).

As another illustration of a simulation model,
consider the problem of finding the fair price of
a simple European call option on a stock with
current stock price St. If the strike price is K and
the option matures at time T, the option payoff
at time T can be expressed as

VT = max {ST − K , 0}
According to a fundamental theory in asset

pricing, the fair price of a financial asset



MONTE CARLO SIMULATION IN FINANCE 639

0

5

10

15

20

25

30

More302520151050–5–10–15–20

Portfolio losses ($m)

P
er

ce
n

ta
g

e 
o

f 
S

ce
n

ar
io

s

95% VaR

Highest 5% of
Simulated Losses

Figure 2 Determining Portfolio VaR from
Simulation

under certain conditions can be meaningfully
estimated as the expected value (equivalently,
as a “probability-weighted average”) of the
possible payoffs of the financial asset in differ-
ent states of the world in the future. The fair
value of the option at time t will therefore be
the expected value of the discounted payoff:

Vt = E
[
e−r (T−t) max {ST − K , 0}

]

where r is the short-term risk-free rate.
The expected value in the expression above

is meaningful only if one can specify a proba-
bility distribution of possible outcomes for the
future price of the asset. For example, consider
a European call option on a common stock with
an exercise price of $20. Assume that the short-
term risk-free rate is 0%, and suppose that the
stock price at time T can only take the values
$18, $21, and $23 with (risk-neutral) probabil-
ities 3/6, 2/6, and 1/6, respectively. Then the
fair price of the option can be computed as the
weighted average of the payoffs in the three
possible states of the world:

V = 3
6

max {18 − 20, 0} + 2
6

max {21 − 20, 0}

+1
6

max {23 − 20, 0}

= 3
6

· 0 + 2
6

· 1 + 1
6

· 3 = 5
6

= 0.83

That is, the fair value of the option is $0.83.

Typically, however, the stock price can take
many more values, and the option price cannot
be valued exactly. It therefore makes sense to
generate a large number (e.g., 1,000) of scenar-
ios for the future value of the stock price using
the risk-neutral probabilities, and average out
the payoffs to the option. The average obtained
from the simulation will approximate the true
expected value of the option.

The Black-Scholes formula for European op-
tions (Black and Scholes, 1973) is widely used
in the financial industry. It provides a closed-
form expression for computing the price of the
option. The underlying assumption used in the
derivation of the Black-Scholes formula is that
the percentage changes in the asset price are in-
crements of a Brownian motion.1 The evolution
of the stock price can then be described by the
equation

dSt = μSt dt + σ St dWt (1)

where Wt is standard Brownian motion, and μ

and σ are called “drift” and “volatility” of the
process, respectively.

Equation (1) says that the change in the asset
price at any time period is determined by two
components: (1) a drift term that is a fraction of
the current asset price level, and (2) a “random
noise” term that assumes that volatility is pro-
portional to the current price level. For techni-
cal reasons (namely, absence of arbitrage), when
pricing an option on an asset whose movement
is described by equation (1), the drift μ is re-
placed by the risk-free rate r. The technical de-
tails of equation (1) are not important for our
purposes. The important result is that under the
assumption for the random process followed by
the stock price in (1), the value of the stock price
ST at time T can be computed as

ST = Ste (r− 1
2 σ 2)(T−t)+σ

√
(T−t)w̃ (2)

where w̃ is a random variable following a nor-
mal distribution with mean 0 and standard de-
viation 1 (see Figure 1b).
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Hence, the option price obtained from the
Black-Scholes formula can be approximated by
simulation if a large number of values for the
normal random variable w̃ are generated, thus
creating scenarios for the stock price ST at time
T and allowing for computing the discounted
payoffs of the option. Suppose we generate n
scenarios for w̃: w1, . . . , wn. Then, the price of
the European option will be

Vt = e−r (T−t)

·
n∑

i=1

1
n

max
{

Ste (r− 1
2 σ 2)(T−t)+σ

√
(T−t)wi − K , 0

}

Note that the expression above is still a
weighted average of the payoffs of the option
in each scenario: the “weight,” or the probabil-
ity of each scenario, is assumed to be 1/n, since
the scenarios are picked at random, and the fre-
quency of their occurrence already incorporates
the probability distribution of w̃.

It appears unnecessarily complicated to price
the option this way, and indeed, in practice sim-
ulation is rarely used for such simple problems.
There are more complex derivative instruments
and more sophisticated models for asset price
behavior; in such cases, it may be simpler to
generate scenarios and evaluate prices by sim-
ulation than to look for closed-form analytical
expressions like the Black-Scholes formula. In
addition, in the case of portfolios and baskets
of multiple assets, generating joint scenarios for
multiple securities in simulation can help cap-
ture the otherwise complicated effect of inter-
actions among different risk factors influencing
the future value of the portfolio or derivative
instrument.

How Many Scenarios?
A simulation may not be able to capture all pos-
sible realizations of uncertainties in the model.
For instance, consider the European option pric-
ing example above. If the percentage change in
the stock price is assumed to be the increment
of a Brownian motion, the possible number of

values for the stock price ST at time T is infinite.
(This is because the number of values the nor-
mal random variable w̃ can take is infinite—the
normal distribution has an infinite range.) Thus,
one could never obtain the exact value of the
option price by simulation. One can, however,
get close. The accuracy of the estimation will
depend on the number of generated scenarios.
If the scenario generation is truly random, then
the standard error (the “variability”) in the es-
timate of the average will be

s√
n

where s is the standard deviation of the sim-
ulated discounted option payoffs, and n is the
number of scenarios. This result follows from
the central limit theorem (CLT). This theorem
states that if a sample of n independent and
identically distributed observations is drawn
from a distribution with mean μ and standard
deviation σ , then the sample mean (which is
an estimate of the true distribution mean μ)
will follow a normal distribution around the
actual distribution mean μ with standard devi-
ation σ/

√
n as the sample size n tends to infinity,

regardless of the shape of the original distribu-
tion, as long as n is large. The fact that the dis-
tribution standard deviation σ in the CLT can
be replaced by the sample standard deviation
s follows from additional theoretical results on
the convergence of s to σ in distribution as the
number of observations grows large.

Hence, to double the accuracy of estimating
the mean of the output distribution, one would
have to quadruple the number of scenarios. This
can get expensive computationally, especially
in more complicated multistage situations. For-
tunately, there are modern methods for gener-
ating random numbers and scenarios that can
help reduce the computational burden.

While the average output from a simulation
is important, it is often not the only quantity of
interest, something that practitioners tend to
forget when using simulation to value com-
plex financial instruments. For example, as
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mentioned earlier, in assessing the risk of a
portfolio, a portfolio manager may be inter-
ested in the percentiles of the distribution of
outputs (VaR for portfolios) or the worst-case
and best-case scenarios. Unfortunately, it is not
as straightforward to determine the accuracy
of those estimates from a simulation. There are
some useful results from probability theory that
apply.2 However, the general question of how
many scenarios one should generate to get a
good representation of the output distribution
does not have an easy answer. This issue is com-
plicated further by the fact that results from
probability theory do not necessarily apply to
many of the scenario-generating methods used
in practice, which do not simulate “truly ran-
dom” samples of observations, but instead use
smarter methods that reduce the number of
scenarios needed to achieve good estimate ac-
curacy. We will discuss some such methods
later in this entry.

Estimator Bias
The statistical concept of estimator bias is
important in simulation applications because
it shows whether an estimator estimates the
“right thing” on average (that is, whether it ap-
proaches the true parameter one needs to esti-
mate given a sufficient number of replications).
For example, the average obtained from a sam-
ple of scenarios is an unbiased estimator of the
true expected value. Depending on the way sce-
narios are generated, however, one may intro-
duce a bias in the estimate of the parameter of
interest.

Suppose, for example, that one generates sce-
narios for the future asset price in the option
pricing example introduced earlier in this entry,
but instead of the formula describing the evolu-
tion of the asset price in continuous time (equa-
tion (2)), one divides the time between now and
the maturity of the option into small intervals
of length h and uses a “discrete-time” formula
[based on equation (1)] to approximate the stock
price at each time period between t and T, com-

piling the changes to obtain the final asset price
at the maturity of the option.

Simulating the asset price in this manner will
generate a bias in the estimate of the expected
present value of the option, because the sim-
ulated changes in the asset price along the
way are not continuous or instantaneous, but
happen over a fixed-length time interval. This
kind of bias is referred to as “discretization er-
ror bias.” Of course, in the case of geometric
Brownian motion with fixed drift and volatility
described by equation (1) one can obtain an un-
biased estimator of the average option payoff
by simulating the future asset price with the
continuous-time formula (2). However, in many
instances it is not possible to find such a closed-
form expression for the future asset price; for
example, such a formula does not exist when
the volatility σ in the random process for the
asset price is time-dependent, or when one uses
a mean-reversion process to describe the evolu-
tion of the underlying price. In such cases, one
can reduce the time interval length h to reduce
the bias, but it is important to keep in mind that
reducing the time interval length increases the
number of steps necessary to create a scenario
for the future asset price, and becomes compu-
tationally expensive.

Estimator Efficiency
If there are two ways to obtain an estimate of
a quantity of interest and the estimators are
otherwise equivalent in terms of bias, which
estimator should be preferable; that is, which
estimator is more “efficient”? Statistical theory
states that one should prefer the estimator with
the smaller standard deviation, because it is
more accurate. For example, consider two unbi-
ased estimators, both of which are obtained as
averages from a sample of independent repli-
cations. Their standard errors will be given
by

s1√
n1

and
s2√
n2
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where s1 and s2 are the standard deviations from
the samples of scenarios, and n1 and n2 are the
number of scenarios for each of the estimators.

In the case of simulation, statistical concepts
frequently need to be extended to include nu-
merical and computational considerations. For
example, suppose that it takes longer to gen-
erate the scenarios for the estimator with the
smaller standard deviation. Is that estimator
still preferable, given that one can use the ex-
tra time to generate additional scenarios for the
other estimator, thus reducing the latter esti-
mator’s standard error? It is natural (and the-
oretically justified) to modify the measure of
variability and efficiency so that it includes a
concept of time. If τ 1 and τ 2 are the times it
takes to generate one scenario for each of the
two estimators, then one should select the es-
timator with the smaller of the time-adjusted
standard deviations s1

√
τ1, s2

√
τ2.

FINANCIAL APPLICATIONS
OF SIMULATION
Simulation has become an important staple in
a financial modeler’s toolbox. This section lists
some important examples of simulation appli-
cations in finance.

Financial Derivative Pricing
The use of Monte Carlo simulation in derivative
pricing dates back to Boyle (1977). Although
the technique is not widely used for pricing of
European-style securities with a single under-
lying stochastic variable, it is helpful for pricing
European-style securities with multiple un-
derlying stochastic variables, path-dependent
options, such as Asian and American options,
as well as basket options, where correlations
between assets need to be taken into consid-
eration. Additional examples of Monte Carlo
simulation applications in financial derivative
pricing include options on the spread between

two assets, barrier options, and quantos, whose
payoff depends both on a stock price and an ex-
change rate. We already described a simple ex-
ample of pricing a European call by simulation.
In this section, we discuss further simulation
issues in the context of pricing Asian options.

The value of an Asian option is determined by
the average price of the underlying asset either
continuously over the time to maturity or at a
prespecified set of monitoring dates t1, . . . , tT .
In particular, the payoff of an Asian call option
is

VT = max
{

Saverage − K , 0
}

Thus, to price the option, one needs informa-
tion not only on the value of the asset at time
T, but also on the possible paths the asset could
take to reach its terminal value. If the percent-
age change in the underlying asset price S is
assumed to be the increment of a Brownian mo-
tion and if the average is computed as a geomet-
ric (as opposed to an arithmetic) average, there
are analytical formulas for pricing continuous-
time Asian options. However, there are no ex-
act formulas in the case of discrete monitoring
dates or different assumptions on the process
followed by the asset price.

To price the option by simulation, one would
generate possible paths for the underlying asset
price. Let Sti ( j) be the simulated asset price at
time ti , i = 1,. . . . . , T, for path j, j = 1,. . . . . , n.
For example, if the percentage change in the
underlying asset price S is assumed to be the
increment of a Brownian motion, then the asset
price at time t1 can be simulated given the asset
price at time 0 as

St1 = S0e (r− 1
2 σ 2)(t1−0)+σ

√
(t1−0)w̃0

where, as defined earlier, w̃0 is a random vari-
able following a normal distribution with mean
0 and standard deviation 1 (the subscript “0”
stands for the fact that this realization of w̃ is
for the time period (0, t1]). Having generated
a realization of St1 , one can simulate a possible



MONTE CARLO SIMULATION IN FINANCE 643

value for St2 by using the formula

St2 = St1 e (r− 1
2 σ 2)(t2−t1)+σ

√
(t2−t1)w̃1

and generating a realization of the normal ran-
dom variable w̃1. After repeating this T times,
one has generated a path for the asset price. Av-
eraging the (properly discounted) option payoff
over n paths produces the fair price of the Asian
option.

The simulation process makes it easy to cal-
ibrate model parameters to observed market
factors and to incorporate additional layers of
modeling complexity. For example, suppose
that at time 0 one observes a term structure of
zero-bond prices B(0, t1), . . . , B(0, tT ) that is not
necessarily consistent with a single interest rate
r. In other words, one cannot find a short rate r
such that

B(0, ti ) = e−rti

for all intermediate time periods ti . It would
be difficult to correct for this in a closed-form
formula such as the Black-Scholes formula for
European options. However, the correction can
be easily implemented in the simulation: one
only needs to simulate future asset prices at
each intermediate time period as

Sti+1 = Sti
B(0, ti )

B(0, ti+1)
e− 1

2 σ 2(ti+1−ti )+σ
√

(ti+1−ti )w̃i

Similarly, if one observes forward prices
F (0, t1), . . . , F (0, tT ) on the underlying asset,
one can obtain a more accurate representation
of the possible scenarios in the simulation by
using the formula

Sti+1 = Sti
F (0, ti+1)
F (0, ti )

e− 1
2 σ 2(ti+1−ti )+σ

√
(ti+1−ti )w̃i

The complexity of the pricing model can be in-
creased further by incorporating realistic mod-
els for the volatility σ . The simulation technique
therefore has a tremendous modeling potential.

Estimating Sensitivities
For trading, hedging, and risk management
purposes, the estimation of the sensitivity of
derivative prices to different inputs is some-
times even more critical than the estimation
of the prices themselves. These sensitivity
measures are popularly referred to as the
“Greeks” because each sensitivity measure is
traditionally denoted by a Greek letter. A natu-
ral way to think of evaluating the sensitivity of
a derivative price to a change in an underlying
parameter is to use Monte Carlo simulation to
compute the price of the derivative, and then
use Monte Carlo simulation again to compute
the price of the derivative if the input param-
eter is changed by a small amount h. This kind
of estimation (referred to as a “finite-difference
method”), however, presents both theoretical
and practical challenges. On the theoretical
side, finite difference methods frequently result
in a large amount of bias. On the practical side,
the amount of computation required for the
estimation of the sensitivity is large (double
the amount of computation used in the pricing
of the derivative), and can become prohibitive
if this computation is done in the context of
evaluating the sensitivity of a whole portfolio
of securities to changes in underlying factors.

In specific circumstances, the computational
burden can be reduced by finding an expression
for the Greek variable of interest that can be cal-
culated as a by-product when paths are gener-
ated in a single simulation. Such expressions ex-
ist when computing the Black-Scholes delta or
the delta of an Asian option.3 These methods are
referred to as “pathwise methods”—namely,
the evolution of the underlying model over
paths is differentiated, and the parameter with
respect to which the change is computed is
treated as a parameter of that evolution. For ex-
ample, consider the delta (denoted by �) for an
option price calculated with the Black-Scholes
formula, where delta is defined as the (math-
ematical) derivative of the option value with
respect to the value of the underlying asset. To
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Table 1 Scenarios for Portfolio VaR Estimation

Scenario
Market
Variable 1

Market
Variable 2 . . .

Market
Variable m

Change in Portfolio
Value ($ million)

1 3.54 21.54 . . . 0.17 100.32
2 3.27 22.03 . . . 0.18 101.54
. . . . . . . . . . . . . . . . . .

n 3.83 22.32 . . . 0.15 100.87

calculate the value of delta, one would generate
n paths for the evolution of the asset price, and
keep track of the paths in the simulation that
end up in-the-money. Let the sum of the asset
prices at the end of all in-the-money paths be
�. Then, the delta at time t can be computed as

�t = e−r (T−t) · �

St · n

More recently, efficient estimators for sensitiv-
ity from simulation trials have been developed
based on Malliavin calculus.4

Portfolio Risk Management
Earlier, we mentioned the importance of sim-
ulation for portfolio risk measurement and
management. We now explain the simulation
procedure in more detail.

To estimate the portfolio VaR, for example,
one would generate n possible scenarios for the
possible changes in m market variables that in-
fluence the change in the portfolio value, and
compute the change in portfolio value in each
scenario (see Table 1). Sometimes historical data
are used to create the scenarios, but typically
the scenarios are generated in a more sophis-
ticated manner. The changes in the portfolio
value are then sorted, and the 95% VaR, for ex-
ample, can be computed as the 5th percentile of
the so-obtained empirical distribution of port-
folio value changes. (This is equivalent to com-
puting the 95% VaR as the 95th percentile of the
emprical distribution of future portfolio losses,
as illustrated in Figure 2.)

While this standard Monte Carlo simulation
procedure is comprehensive, it can be very slow,
especially when the portfolio contains complex
derivative securities whose changes in value

must be reevaluated in every scenario for the
market variables. In fact, the portfolio VaR cal-
culation by simulation involves a number of
“subsimulations” evaluating the sensitivities
of the securities in the portfolios to each of
the market variables. For large portfolios, the
computational cost of generating each scenario
for the change in portfolio value can become
prohibitive.

In practice, several approaches are used
to speed up the calculation of VaR. One of
the earliest approaches, popularized by JP
Morgan’s RiskMetrics software in the 1990s, is
to assume that all changes in market variables
are normally distributed. If the portfolio value
is a linear function of these market variables
(this happens, e.g., when the portfolio contains
equities and factor models are used to represent
the changes in asset value relative to changes
in market variable values), then the change in
portfolio value is also normally distributed, and
can be computed in closed form, by expressing
the VaR as a multiple of the standard devia-
tion of changes in the market variables. This
approach does not necessarily have to involve
simulation, and actually works reasonably well
for large equity-only portfolios that contain liq-
uid assets, because the empirical distributions
of their returns can be indeed very close to
normal. However, it can grossly underestimate
the true portfolio VaR when the portfolio con-
tains complex derivatives (which are nonlinear
functions of the returns on the underlying
market variables) or fixed income securities
(which depend nonlinearly on interest rates).

The nonlinearity can be partially incorpo-
rated in the estimate of the change in portfolio
value by using second-order information,
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so-called “Delta-Gamma” or quadratic approx-
imation to the change in portfolio value.5 In
other words, the change in portfolio value is
expressed not only through the changes in the
values of the market variables, but also through
the changes in the market variables squared
and scaled by their so-called Hessian matrix.
(From a mathematical perspective, this is a
multidimensional Taylor expansion involving
the Greeks of the different securities in the
portfolio.) Since traders of complex derivatives
often have to keep track of this information
for their own risk management purposes, the
portfolio risk management process amounts to
disciplined accumulation of information that
is already available. This method is only an
approximation, but it can reduce substantially
the time for computing the portfolio VaR.

Valuing Mortgage-Backed Securities
Monte Carlo methods are often used for valu-
ing mortgage-backed securities (MBSs) such
as collateralized mortgage obligations (CMOs)
and stripped MBSs (mortgage strips). The cash
flows for such products can be calculated using
different pricing models. The highly uncertain
terms in those cash flow models, such as the
behavior of interest rates and the expected pre-
payments over the life of the MBS, are often
simulated to determine the expected cash flows
to the MBS holder, which then provide the sam-
ple average (“fair”) value for the MBS.

Valuing Credit-Risky Securities
Similar ideas to those for pricing CMOs are
used for pricing collateralized debt obligations
(CDOs), which employ securitization to pack-
age credit-risky debt obligations (bonds and
loans) in ways analogous to the way mortgages
are packaged in CMOs. In order to price the
CDO, one needs to simulate the defaults of dif-
ferent bond issuers in the collection.6

Simulation is also used for pricing other
credit-risky instruments, such as first-to-default
baskets and basket default swaps.7 The simula-
tion techniques applied in such cases can be
quite advanced, as credit defaults are consid-
ered “rare events” and need to be modeled with
care. We will discuss the main ideas of simula-
tion modeling techniques for rare events, such
as importance sampling, later in this entry.

RANDOM NUMBER
GENERATION
At the core of Monte Carlo simulation is the
generation of random numbers. In fact, however,
generating random numbers from a wide vari-
ety of distributions reduces to generating ran-
dom numbers on the unit interval from 0 to 1
uniformly, that is, generating random numbers
on the interval [0,1] in such a way that each
value between 0 and 1 is equally likely to oc-
cur. Many computer languages and software
packages have a command for generating a
random number between 0 and 1: “=RAND()”
in Microsoft Excel, “rand(1)” in MATLAB and
FORTRAN, and “rand()” in C++.

From a Uniform Random Variable to
a Variable from an Arbitrary
Distribution
The most common method for converting a ran-
dom number between 0 and 1 to a number
from an arbitrary probability distribution is to
evaluate the so-called “inverse” of the cumula-
tive probability distribution function at the ran-
dom number between 0 and 1. The idea works
because the total mass for a probability distri-
bution is always 1, and the cumulative proba-
bility for any value of the distribution (defined
as the probability that this particular value or
any value below it will occur) is always be-
tween 0 and 1. For example, suppose that one
would like to generate a random number from
the normal distribution in Figure 1b. Suppose
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the =RAND() command in Excel returns the
number 0.975. The next step is to look for a cor-
responding random number from a normal dis-
tribution so that 97.5% of the probability mass
(the area under the probability density curve)
is to the left of that number. In Excel in particu-
lar, the function ‘=NORMINV(RAND(), mean,
standard deviation)’ can be used to find that
random number on the x-axis of a normal dis-
tribution with the specified mean and standard
deviation.

“Inverting” the cumulating probability distri-
bution is trickier for discrete probability distri-
butions, but the idea still applies. For example,
suppose that given a random number genera-
tor on the interval [0,1], one would like to simu-
late values for a random variable that takes the
value 5 with probability 50%, the value 15 with
probability 30%, and the value 35 with proba-
bility 20%. Let us split the unit interval [0,1] into
three intervals based on the cumulative proba-
bilities 50%, 80% and 100% for obtaining the
values 5, 15, and 35: [0,0.5], (0.5,0.8], and (0.8,1].
If the random number that is drawn falls in
the interval [0,0.5] (which happens 50% of the
time if the number generator is truly random),
then one records a value of 5 for that trial. If
the random number is in the interval (0.05, 0.8]
(which happens with probability 30%), then one
records a value of 15 for that trial. Finally, if the
random number is in the third interval (which
happens with probability 20%), one records a
value of 35. Thus, if many trials are run, the
values 5, 15, and 35 are generated with the de-
sired probabilities. In Excel, one can simulate
these values with the corresponding probabili-
ties by creating a table with the interval ranges
in the first two columns, and the corresponding
values (5, 15, and 35) in the third column, and
using the Excel function

VLOOKUP(lookup value, table array,col

index num)

to look up the range in which a number gener-
ated with RAND() falls.8

What Defines a “Good” Random
Number Generator?
Given the discussion in the previous section,
generating “good” uniform random numbers
on [0,1] is critical for the performance of
simulation algorithms. Interestingly, defining
“good” random number generation is not as
straightforward as it appears. Early random
number generators tried to use “truly random”
events for random number generation, such as
the amount of background cosmic radiation. In
practice, however, this kind of random number
generation is time consuming and difficult.
Moreover, it was realized that the ability to
reproduce the random number sequence and
to analyze the random number characteristics
is actually a desirable property for random
number generators. In particular, the ability to
reproduce a sequence of random numbers al-
lows for reducing the variance of estimates and
for debugging computer code by rerunning
experiments in the same conditions in which
they were run in previous iterations of code
development.

Most simulation software products employ
random number generation algorithms that
produce streams of numbers that appear to be
random, but are in fact a result of a clearly
defined series of calculation steps in which
the next “random number” xn in the sequence
is a function of the previous “random num-
ber” xn−1, that is, xn = f (xn−1). The sequence
starts with a number called the seed, and if
the same seed is used in several simulations,
each simulation sequence will contain exactly
the same numbers, which is helpful for code
debugging and drawing fair comparisons be-
tween different strategies evaluated under un-
certainty. It is quite an amazing statistical fact
that some of these recursion formulas (named
“pseudo-random number generators”) define
sequences of numbers that imitate random be-
havior well and appear to obey (roughly) some
major laws of probability, such as the CLT and
the Glivenko-Cantelli lemma.
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In general, a pseudo-random number gener-
ator is considered “good” if it satisfies the fol-
lowing conditions:

1. The numbers in the generated sequence are
uniformly distributed between 0 and 1. This
can be tested by running a chi-square or a
Kolmogorov-Smirnov test.

2. The sequence has a long cycle (that is, it takes
many iterations before the sequence begins
repeating itself).

3. The numbers in the sequence are not auto-
correlated. This can be verified by running a
Durbin-Watson test on the sequence of num-
bers. The Durbin-Watson test is widely used
in statistics for identifying autocorrelation in
time series of observations.

In the following section, we discuss briefly a
couple of important types of pseudo-random
number generators. The goal is not to provide
comprehensive coverage of random number
generators, but rather to give readers a flavor of
the main ideas behind the method of producing
apparently random numbers with determinis-
tic algorithms.

Pseudo-Random Number
Generators
One of the earliest pseudo-random number
generators developed is called the midsquare
technique. It takes a number (the seed), squares
it, and takes the set of middle digits as the next
random number. It is easy to predict when such
an approach may run into difficulties. As soon
as the “middle digits” become a small number
such as 1 or 0, the sequence ends with the same
numbers generated over and over again; that
is, the sequence converges to a constant value
(typically 0) or to a very short cycle of values.

A better, commonly used type of pseudo-
random number generators is congruential
pseudo-random number generators. They are
based on sequences of numbers of the form

xn = f (xn−1) mod m

where mod m stands for “modulus m”.
f (xn−1) mod m is the remainder after dividing
f (xn−1) by m. For example, 5 mod 3 = 2, 15 mod
5 = 0, etc. Note that f (xn−1) mod m will always
be an integer between 0 and m-1. Thus, to cre-
ate a good representation of randomness, one
would want to make the range for the modu-
lus as large as possible. For a 32-bit computer,
for example, the maximum integer that can be
stored is 231 – 1, which is large enough for prac-
tical purposes.

More advanced generators include matrix
multiplicative congruential generators, multi-
ple recursive generators, and shuffled genera-
tors. Most pseudo-random number generators
used in popular software products nowadays
have been thoroughly tested and are very good.

VARIANCE REDUCTION
TECHNIQUES
Paradoxically, truly random numbers can be
too random for all practical purposes. Recall
that the error in the average estimate obtained
from truly random Monte Carlo simulation is
proportional to 1/

√
n, where n is the number

of scenarios for the random variable (this fact
would be approximately true for good pseudo-
random number generators as well). Much re-
search has been dedicated in recent years to
finding ways to reduce that error and to be com-
putationally savvy when generating scenarios.
Several methods for variance reduction, widely
used in financial applications, are listed below.9

Antithetic Variables
Simulating a random number is computation-
ally expensive. One technique that is used to re-
duce the error in the average estimate in deriva-
tive pricing without increasing the number of
simulated values is to incorporate the generated
random number twice in computing the deriva-
tive payoff: once as the original simulated num-
ber, and another as its “antithetic” number.
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For example, recall from our earlier option
pricing example that one possibility to model
the value of the stock price ST at time T is by
using equation (2). In that expression, w̃ is a ran-
dom variable following a normal distribution
with mean 0 and standard deviation 1. Suppose
that n values for the normal random variable
w̃ are generated. With the antithetic variable
method, the value of the derivative payoff in
each of the n scenarios is computed as the aver-
age of two payoffs: one obtained by plugging in
the simulated value for w̃, and another obtained
by plugging in the negative of the simulated
value for w̃. These n “adjusted” payoffs are
otherwise treated in the same way as in the tra-
ditional simulation method described earlier in
this entry: At the end, the n payoffs are averaged
and properly discounted to obtain the “fair”
estimate of the derivative price. The difference
is that this approach substantially reduces the
standard error in the average estimate, while
keeping the number of simulation trials at n.

The antithetic variable approach does not
apply only to normal random variables. As ex-
plained in the previous section, random num-
ber generation typically happens in two stages:
First, a random number between 0 and 1 is gen-
erated, and then this random number is “in-
verted” to obtain a random number from the
desired probability distribution. Thus, one can
apply the antithetic technique at the first stage,
and treat the randomly generated number U as
two realizations: U and its “antithetic” variable
1-U. For example, if the number generated on
the interval [0,1] is 0.7, then the antithetic num-
ber is 0.3. Both of these numbers can then be
“inverted” to obtain a pair of antithetic variables
from a prespecified distribution.

Stratified Sampling
Observations in the tails of input distributions
that are typically less likely to be generated may
never occur in a simulation, because the prob-
ability of their occurrence is small. Such obser-
vations, however, contain important informa-
tion about extreme events which are of partic-

ular interest in financial applications. In order
to ensure that they appear in the simulation,
one would need to generate a huge number of
scenarios.

This problem is often addressed by stratified
sampling. Most generally, the term “stratified
sampling” refers to any technique that divides
the random values into ranges (called “strata”
in statistics), and sampling from each range to
ensure that a good representation of the distri-
bution is obtained.

A simple way of stratifying the numbers in the
[0,1] interval to ensure that, when “inverted,”
the generated random numbers cover well the
whole range of a probability distribution of in-
terest, is to divide the [0,1] interval into k smaller
intervals of equal length:

[
0,

1
k

]
,

(
1
k
,

2
k

]
, . . . ,

(
k − 1

k
, 1

]

Random numbers can then be drawn se-
quentially from each small interval. Therefore,
values from the tails of the distribution of in-
terest (which will be generated when uniform
random numbers from the intervals [0, 1

k ] and
( k−1

k , 1] are drawn) obtain better representation.
In multiple dimensions (that is, when simu-

lating several random variables), this method
extends to dividing a hypercube (as opposed to
an interval) into smaller hypercubes, and draw-
ing an observation along each dimension of the
smaller hypercubes. An enhanced extension to
the basic stratified sampling method is Latin hy-
percube sampling (an option in many advanced
simulation software products), which permutes
the coordinates of an initially generated ran-
dom vector of observations—one observation
within each small hypercube—to reduce the
number of times an actual random number is
generated while ensuring that all strata are suf-
ficiently well represented.

Importance Sampling
Importance sampling is an alternative to strati-
fied sampling for dealing with rare events, or
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extreme observations, and for reducing the
number of simulation trials necessary to
achieve a particular level of accuracy. The
method changes the underlying scenario prob-
abilities so as to give more weight to impor-
tant outcomes in the simulation. Such outcomes
are generated with greater frequency than they
otherwise would. At the end, the observations’
weights are scaled back in the computation of
the parameter of interest, so that the estimation
is correct.

There is no single recipe for how to construct
good importance sampling methods. The spe-
cific construction depends on the underlying
random process dynamics. For example, when
pricing a European call option in the Black-
Scholes setting, generating paths that are out-
of-the-money is wasteful. This is because only
paths that are in-the-money count in the final
computation of the option price—the contribu-
tion of out-of-the-money paths to the option
price is 0. Although in practice one would not
use importance sampling for pricing a Euro-
pean call option for which there is a closed-
form formula, we will use European call option
pricing as a context in which to explain the im-
portance sampling method.

First, note that in-the-money paths will occur
only if the asset price at expiration is greater
than the strike price; that is, they will result
from realizations of the standard normal ran-
dom variable w̃ such that

Ste (r− 1
2 σ 2)(T−t)+σ

√
(T−t)w̃ > K

From this inequality, one can derive that only
normal random numbers higher than

ln(K/St) − (r − σ 2/2)(T − t)
σ
√

T − t

will lead to in-the-money paths. Equivalently,
this means that only random numbers between

N
(

ln(K/St) − (r − σ 2/2)(T − t)
σ
√

T − t

)
and 1

on the unit interval [0,1], when “inverted” to
obtain normal random numbers, will lead to in-

the-money paths (N(.) here denotes the cumula-
tive normal distribution). Thus, one only needs
to simulate random numbers in that range of
the [0,1] interval. When computing the option
price at the end, instead of weighing each payoff
equally by multiplying it by 1/n as one would
do in standard Monte Carlo sampling, one mul-
tiplies the sum of the payoffs obtained from the
simulation by the probability that a particular
random path would be in-the-money assuming
truly random sampling, which is the standard
Monte Carlo method. The latter probability is

1 − N
(

ln(K/St) − (r − σ 2/2)(T − t)
σ
√

T − t

)

= N
(

ln(St/K ) + (r − σ 2/2)(T − t)
σ
√

T − t

)

The call option price is then

Vt = e−r (T−t) · N
(

ln(St/K ) + (r − σ 2/2)(T − t)
σ
√

T − t

)

·
n∑

i=1

max
{

Ste (r− 1
2 σ 2)(T−t)+σ

√
(T−t)wi − K , 0

}

where w1, . . . , wn are all random numbers gen-
erated from a normal distribution in the range
higher than

ln(K/St) − (r − σ 2/2)(T − t)
σ
√

T − t

As mentioned above, this is only a simple
example in order to illustrate the main idea
of importance sampling. More practical (al-
beit more technically challenging) applications
can be found, for instance, in Chapter 4.6 in
Glasserman (2004).

Quasi-Random (Low-Discrepancy)
Sequences
A truly random number generator may pro-
duce clustered observations (see Figure 3a),
which necessitates generating many scenarios
in order to obtain a good representation of the
output distribution of interest. Recall from our
earlier discussion that stratified sampling can
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be used to deal with this problem—it divides
the ranges of possible values into a fixed num-
ber of strata, so as to “disperse” observations
more evenly over the range. Quasi-random se-
quences instead ensure a smooth representation
of the range by continuously “filling in” gaps on
the unit interval [0,1] left by previously gener-
ated random numbers (see an example of 1,000
generated values of a quasi-random sequence in
Figure 3b). The term “quasi-random” is actually
a misnomer, because, unlike pseudo-random
number sequences, quasi-random number se-
quences do not pretend to be random. They are
deterministic on purpose, and their roots can
be found in real analysis and abstract algebra
rather than in simulation or probability theory.
The term low discrepancy sequences is often used
interchangeably with the term “quasi-random”
sequences, and is more accurate.

Important examples of quasi-random se-
quences were suggested by Sobol (1967), Faure
(1982), Halton (1960), and Hammersley (1960).
These sequences build on a family of so-called
Van der Korput sequences.10 For example, the
Van der Korput sequence of base 2 is

0,
1
2
,

1
4
,

3
4
,

1
8
,

5
8
,

3
8
,

7
8
, . . .

The actual generation of Van der Korput se-
quences is somewhat technical, but the outcome

is intuitive. Note that as new points are added
to the sequence, they appear on alternate sides
of 1

2 in a balanced way. The main idea is that as
the number of generated values increases, the
sequence covers uniformly the unit interval.

The values generated with quasi-random se-
quences are treated as “random” numbers for
the purposes of simulation modeling. In par-
ticular, instead of generating random numbers
between 0 and 1 and “inverting” them to obtain
an arbitrary probability distribution, one would
“invert” the numbers in the quasi-random se-
quence. Different sequences have different ad-
vantages for specific financial applications, but
the Faure and Sobol sequences in particular
have been proven to generate very accurate es-
timates for derivative pricing in tests.11

Figure 4 illustrates the value of a Euro-
pean call option computed with three differ-
ent methods: BS (the closed-form Black-Scholes
price), MC (traditional Monte-Carlo), and QMC
(quasi-random or quasi-Monte-Carlo using a
Faure low discrepancy sequence to generate
scenarios). The current asset price is assumed
to be $100, the exercise price for the option is
assumed to be $95, the asset volatility is 20%,
the time to maturity of the option is 1 year, and
the risk-free rate is 4% per annum. One can ob-
serve that as the number of scenarios gener-
ated increases, the quasi-Monte-Carlo method
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Figure 4 Value of a European Call Option Computed with Three Different Methods

results in a smoother and more consistent ap-
proximation to the true option price computed
with the Black-Scholes formula than the tradi-
tional Monte Carlo method. In general, as the
number of generated quasi-random numbers
increases, so does the accuracy of estimation,
although it is not easy to state the exact level of
accuracy, because probability laws do not apply
to deterministic sequences.

SIMULATION SOFTWARE
Today, good random number generators and
user-friendly simulation software are easily
available. Most computer languages have a
“rand()” command that simulates a random
number between 0 and 1. Microsoft Excel add-
ins such as Crystal Ball and @RISK allow not
only for simulating random numbers from a
wide variety of probability distributions, but
also for incorporating random number gener-
ation into larger models through macros and
scripts. Computing environments such as Mat-
lab and Mathematica contain commands for
random number simulation, and the capability
of generating low discrepancy sequences can
be added through widely available libraries.
In addition, a number of modules that allow

for simulating sophisticated probability distri-
butions are available for open-source computer
languages such as Perl (see the Comprehensive
Perl Archive Network, http://www.cpan.org),
Python (see http://www.python.org), and R
(see http://www.r-project.org).

KEY POINTS
� The main idea behind the Monte Carlo sim-

ulation technique is to represent uncertainty
in the form of scenarios and to evaluate vari-
ables of interest based on these scenarios.

� Monte Carlo simulation has widespread ap-
plications in pricing, hedging, and risk man-
agement. Examples include complex financial
derivative pricing, assessment of sensitivity
of prices to changes in market variables, port-
folio risk measurement, and credit risk esti-
mation and pricing.

� Despite great advances in computational
power, Monte Carlo simulation can be expen-
sive for large-scale problems, and a substan-
tial amount of research in recent years has
been dedicated to making it more efficient
and accurate.

� Variance reduction methods such as an-
tithetic variables, stratified sampling,

http://www.cpan.org
http://www.python.org
http://www.r-project.org
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importance sampling, and carefully selected
low discrepancy sequences are widely used
in practice today.

NOTES
1. For an introduction to Brownian motion,

see Hull (2005).
2. See, for example, Chapter 9 in Glasserman

(2004).
3. See Chapter 7.2 in Glasserman (2004).
4. See Chen and Glasserman (2006a) for fur-

ther details.
5. See Glasserman et al. (2000).
6. For example, see Duffie and Garleanu

(2001).
7. See Chen and Glasserman (2006b).
8. See, for example, Chapter 2 in Evans and

Olson (2002).
9. For a more detailed discussion of such

methods, see Chapter 14 in Pachamanova
and Fabozzi (2010).

10. See Chapter 5 in Glasserman (2004).
11. See the survey in Boyle et al. (1997).
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Stochastic Volatility
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Abstract: Volatility, as measured by the standard deviation, is an important concept in financial
modeling because it measures the change in value of a financial instrument over a specific horizon.
The higher the volatility, the greater the price risk of a financial instrument. There are different types
of volatility: historical, implied volatility, level-dependent volatility, local volatility, and stochas-
tic volatility (e.g., jump-diffusion volatility). Stochastic volatility models are used in the field of
quantitative finance. Stochastic volatility means that the volatility is not a constant, but a stochastic
process and can explain volatility smile and skew.

Volatility, typically denoted by the Greek letter
σ , is the standard deviation of the change in
value of a financial instrument over a specific
horizon such as a day, week, month, or year.
It is often used to quantify the price risk of a
financial instrument over that time period. The
price risk of a financial instrument is higher the
greater its volatility.

Volatility is an important input in option pric-
ing models. The Black-Scholes model for option
pricing assumes that the volatility term is a con-
stant. This assumption is not always satisfied in
real-world options markets because probability
distribution of common stock returns has been
observed to have a fatter left tail and thinner
right tail than the lognormal distribution (see
Hull, 2000). Moreover, the assumption of con-
stant volatility in a financial model, such as the
original Black-Scholes option pricing model, is
incompatible with option prices observed in the
market.

As the name suggests, stochastic volatility
means that volatility is not a constant, but a
stochastic process. Stochastic volatility models
are used in the field of quantitative finance
and financial engineering to evaluate deriva-
tive securities, such as options and swaps. By
assuming that volatility of the underlying price
is a stochastic process rather than a constant,
it becomes possible to more accurately model
derivatives. In fact, stochastic volatility mod-
els can explain what is known as the volatility
smile and volatility skew in observed option
prices.

In this entry, we provide an overview of
the different types of nonstochastic volatilities
and the different types of stochastic volatilities.
There are two approaches to introduce stochas-
tic volatility: (1) changing the clock time t to a
random time T(t) (subordinator), and (2) chang-
ing constant volatility into a positive stochastic
process.

653
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NONSTOCHASTIC
VOLATILITY MEASURES
We begin by providing an overview of the dif-
ferent types of nonstochastic volatility measure.
These include

� Historical volatility
� Implied volatility
� Level-dependent volatility
� Local volatility

Historical Volatility
Historical volatility is the volatility of a financial
instrument or a market index based on histori-
cal returns. It is a standard deviation calculated
using historical (daily, weekly, monthly, quar-
terly, yearly) price data. The annualized volatil-
ity σ is the standard deviation of the instru-
ment’s logarithmic returns over a one-year pe-
riod:

σ =
√√√√ 1

n − 1

n∑

i=1

(Ri − R̄)2

where Ri = ln Sti
Sti−1

, R̄ = 1
n

∑n
i=1 ln Sti

Sti−1
, Sti is an

asset price at time ti, i = 1, 2, . . . , n.

Implied Volatility
Implied volatility is related to historical volatil-
ity. However, there are important differences.
Historical volatility is a direct measure of the
movement of the price (realized volatility) over
recent history. Implied volatility, in contrast, is
set by the market price of the derivative contract
itself, and not the underlier. Therefore, different
derivative contracts on the same underlier have
different implied volatilities. Most derivative
markets exhibit persistent patterns of volatil-
ities varying by strike. The pattern displays
different characteristics for different markets.
In some markets, those patterns form a smile
curve. In others, such as equity index options
markets, they form more of a skewed curve.

This has motivated the name “volatility skew.”
For markets where the graph is downward slop-
ing, such as for equity options, the term “volatil-
ity skew” is often used. For other markets, such
as FX options or equity index options, where
the typical graph turns up at either end, the
more familiar term “volatility smile” is used. In
practice, either term may be used to refer to the
general phenomenon of volatilities varying by
strike.

The models by Black and Scholes (1973)
(continuous-time (B,S)-security market) and
Cox, Ross, and Rubinstein (1976) (discrete-time
(B,S)-security market (binomial tree)) are un-
able to explain the negative skewness and lep-
tokurticity (fat tail) commonly observed in the
stock markets. The famous implied-volatility
smile would not exist under their assumptions.
Most derivatives markets exhibit persistent pat-
terns of volatilities varying by strike. In some
markets, those patterns form a smile. In oth-
ers, such as equity index options markets, it is
more of a skewed curve. This has motivated
the name volatility skew. In practice, either the
term volatility smile or volatility skew (or sim-
ply skew) may be used to refer to the general
phenomenon of volatilities varying by strike.
Another dimension to the problem of volatility
skew is that of volatilities varying by expiration,
known as volatility surface.

Given the prices of call or put options across
all strikes and maturities, we may deduce the
volatility that produces those prices via the
full Black-Scholes equation.1 This function has
come to be known as local volatility. Local
volatility-function of the spot price St and time
t : σ ≡ σ (St, t) (see Dupire’s (1994) formulas for
local volatility).

Level-Dependent Volatility
Level-dependent volatility (e.g., constant elastic-
ity of variance (CEV) or firm model, see Beck-
ers, 1980, Cox, 1975) is a function of the spot
price alone. To have a smile across strike price,
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we need σ to depend on S : σ ≡ σ (St). In this
case, the volatility and stock price changes are
now perfectly negatively correlated (so-called
“leverage effect”).

Local Volatility
Local volatility (LV) is a volatility function of
the spot price and time. Volatility smile can be
retrieved in this case from the option prices.
Dupire (1994) derived the local volatility for-
mula in continuous time and Derman and Kani
(1994) used the binomial (or trinomial tree)
framework instead of the continuous one to find
the local volatility formula. The LV models are
very elegant and theoretically sound. However,
they present in practice many stability issues.
They are ill-posed inversion problems and are
extremely sensitive to the input data. This might
introduce arbitrage opportunities and, in some
cases, negative probabilities or variances.

Stochastic Volatility
Stochastic volatility means that volatility is not
a constant, but a stochastic process. Black and
Scholes (1973) made a major breakthrough by
deriving pricing formulas for vanilla options
written on the stock. The Black-Scholes model
assumes that the volatility term is a constant.
Stochastic volatility models are used in the field
of quantitative finance to evaluate derivative
securities, such as options and swaps (see Carr
and Lee, 2009). By assuming that the volatility
of the underlying price is a stochastic process
rather than a constant, it becomes possible to
more accurately model derivatives.

The above issues have been addressed and
studied in several ways, such as:

1. Volatility is assumed to be a deterministic
function of the time:2 σ ≡ σ (t), with the im-
plied volatility for an option of maturity T
given by σ̂ 2

T = 1
T

∫ T
0 σ 2

u du;
2. Volatility is assumed to be a function of the

time and the current level of the stock price

S(t): σ ≡ σ (t, S(t));3 the dynamics of the
stock price satisfies the following stochastic
differential equation:

d S(t) = μS(t)dt + σ (t, S(t))S(t)dW1(t)

where W1(t) is a standard Wiener process;
3. The time variation of volatility involves an

additional source of randomness, besides
W1(t), represented by W2(t), and is given by

dσ (t) = a (t, σ (t))dt + b(t, σ (t))dW2(t)

where W2(t) and W1(t) (the initial Wiener
process that governs the price process) may
be correlated;4

4. Volatility depends on a random parameter
x such as σ (t) ≡ σ (x(t)), where x(t) is some
random process.5

5. Stochastic volatility, namely, uncertain
volatility scenario. This approach is based
on the uncertain volatility model developed
in Avellaneda et al. (1995), where a concrete
volatility surface is selected among a candi-
date set of volatility surfaces. This approach
addresses the sensitivity question by com-
puting an upper bound for the value of the
portfolio under arbitrary candidate volatil-
ity, and this is achieved by choosing the local
volatility σ (t, S(t)) among two extreme val-
ues σ min and σ max such that the value of the
portfolio is maximized locally;

6. The volatility σ (t, St) depends on St = S(t +
θ ) for θ ∈ [−τ ,0], namely, stochastic volatility
with delay.6

In approach (1), the volatility coefficient is in-
dependent of the current level of the underlying
stochastic process S(t). This is a deterministic
volatility model, and the special case where σ

is a constant reduces to the well-known Black-
Scholes model that suggests changes in stock
prices are lognormal. Empirical tests by Boller-
slev (1986) seem to indicate otherwise. One ex-
planation for this problem of a lognormal model
is the possibility that the variance of log(S(t)/
S(t − 1)) changes randomly.
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In approach (2), several ways have been de-
veloped to derive the corresponding Black-
Scholes formula: One can obtain the formula
by using stochastic calculus and, in particular,
Ito’s formula (see Shiryaev (1999), for example).

A generalized volatility coefficient of the form
σ (t,S(t)) is said to be level-dependent. Because
volatility and asset price are perfectly corre-
lated, we have only one source of randomness
given by W1(t). A time and level-dependent
volatility coefficient makes the arithmetic more
challenging and usually precludes the existence
of a closed-form solution. However, the ar-
bitrage argument based on portfolio replica-
tion and completeness of the market remains
unchanged.

Approaches to Introduce
Stochastic Volatility
The idea to introduce stochastic volatility is to
make volatility itself a stochastic process. The
aim with a stochastic volatility model is that
volatility appears not to be constant and in-
deed varies randomly. For example, the situa-
tion becomes different if volatility is influenced
by a second “nontradable” source of random-
ness, and we usually obtain a stochastic volatil-
ity model, introduced by Hull and White (1987).
This model of volatility is general enough to
include the deterministic model as a special
case. Stochastic volatility models are useful be-
cause they explain in a self-consistent way why
it is that options with different strikes and ex-
pirations have different Black-Scholes implied
volatilities (the volatility smile). These cases
are addressed in approaches 3, 4 and 5 above.
Stochastic volatility is the main concept used
in the fields of financial economics and mathe-
matical finance to deal with the endemic time-
varying volatility and codependence found in
financial markets. Such dependence has been
known for a long time; early comments include
Mandelbrot (1963) and Officer (1973).

There are two approaches to introduce
stochastic volatility: One approach is to change

the clock time t to a random time T(t) (change
of time). Another approach is to change con-
stant volatility into a positive stochastic process.
Continuous-time stochastic volatility models
include:

� Ornstein-Uhlenbeck (OU) process (Ornstein-
Uhlenbeck (1930))

� Geometric Brownian motion with zero corre-
lation with respect to a stock price (Hull and
White, 1987)

� Geometric Brownian motion with nonzero
correlation with respect to a stock price
(Wiggins, 1987)

� OU process, mean-reverting, positive with
nonzero correlation with respect to a stock
price (Scott, 1989)

� OU process, mean-reverting, negative, with
zero correlation with respect to a stock price
(Stein and Stein, 1991)

� Cox-Ingersoll-Ross process, mean-reverting,
nonnegative with non zero correlation with
respect to a stock price (Heston, 1993).

Heston and Nandi (1997) showed that the
OU process corresponds to a special case of
the GARCH model for stochastic volatility.
Hobson and Rogers (1998) suggested a new
class of nonconstant volatility models, which
can be extended to include the aforementioned
level-dependent model and share many char-
acteristics with the stochastic volatility model.
The volatility is nonconstant and can be re-
garded as an endogenous factor in the sense
that it is defined in terms of the past behavior
of the stock price. This is done in such a way
that the price and volatility form a multidimen-
sional Markov process.

Discrete Models for Stochastic
Volatility
Another popular process is the continuous-
time GARCH(1,1) process, developed by Engle
(1982) and Bollerslev (1986) in a discrete frame-
work. The generalized autoregressive con-
ditional heteroskedasticity (GARCH) model
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(see Bollerslev, 1986) is popular model for es-
timating stochastic volatility. It assumes that
the randomness of the variance process varies
with the variance, as opposed to the square root
of the variance as in the Heston model. The
standard GARCH(1,1) model has the following
form for the variance differential:

dσt = κ(θ − σt)dt + γ σtd Bt

The GARCH model has been extended via
numerous variants, including the NGARCH,
LGARCH, EGARCH, GJR-GARCH, and so on.

Continuous-time models provide the natural
framework for an analysis of option pricing;
discrete-time models are ideal for the statisti-
cal and descriptive analysis of the patterns of
daily price changes. Volatility clustering, peri-
ods of high and low variance (large changes
tend to be followed by small changes; see Man-
delbrot, 1963), led to using discrete models,
GARCH models. There are two main classes of
discrete-time stochastic volatility models. First
class—autoregressive random variance (ARV)
or stochastic variance model—is a discrete time
approximation to the continuous time diffusion
models that we outlined above. Second class
is the autoregressive conditional heteroskedas-
tic (ARCH) model introduced by Engle (1982),
and its descendants GARCH (Bollerslev, 1986),
NARCH, NGARCH (Duan, 1996), LGARCH,
EGARCH, GJR-GARCH. General class of
stochastic volatility models, which includes
many of the above-mentioned models, has been
introduced by Ewald, Poulsen, and Schenk-
Hoppe (2006). Gatheral (2006) introduce the
Heston-like model for stochastic volatility that
is more general than the Heston model.

Jump-Diffusion Volatility
Jump-diffusion volatility is essential as there is
evidence that assumption of a pure diffusion
for the stock return is not accurate. Fat tails
have been observed away from the mean of the
stock return. This phenomenon is called lep-
tokurticity and could be explained in different

ways. One way to explain smile and leptokur-
ticity is to introduce a jump-diffusion process
for stochastic volatility (see Bates, 1996). Jump-
diffusion is not a level-dependent volatility pro-
cess, but can explain the leverage effect.

Multifactor Models for
Stochastic Volatility
One-factor SV models (all above-mentioned):
(1) incorporate the leverage between returns
and volatility and (2) reproduce the skew of
implied volatility. However, they fail to match
either the high conditional kurtosis of returns
(Chernov et al., 2003) or the full term structure
of implied volatility surface (Cont et al., 2004).
Two primary generalizations of one-factor SV
models are: (1) adding jump components in
returns and/or volatility process, and (2) con-
sidering multifactor SV models. Among multi-
factor SV models we mention here the following
ones:

� Fouque et al. (2005) SV model, Chernov et al.
(2003) model (used efficient method of mo-
ments to obtain comparable empirical-of-fit
from affine jump-diffusion and two-factor SV
family models).

� Molina et al. (2003) model (used a Markov
chain Monte Carlo method to find strong ev-
idence of two-factor SV models with well-
separated time scales in foreign exchange
data).

� Cont et al. (2004) (found that jump-diffusion
models have a fairly good fit to the implied
volatility surface).

� Fouque et al. (2000) model (found that two-
factor SV models provide a better fit to the
term structure of implied volatility than one-
factor SV models by capturing the behavior
at short and long maturities).

� Swishchuk (2006) (introduced two-factor and
three-factor SV models with delay (incor-
porating mean-reverting level as a random
process geometric Brownian model, OU,
continuous-time GARCH(1,1) model).
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We also mention the SABR model (see
Hagan et al., 2002), describing a single forward
under stochastic volatility, and Chen’s (1996)
three-factor model for the dynamics of the in-
stantaneous interest rate.

Multifactor SV models have advantages and
disadvantages. One of the disadvantages is that
multifactor SV models do not admit in gen-
eral explicit solutions for option prices. One of
the advantages is that they have direct implica-
tions for hedges. As a comparison, a class of
jump-diffusion models (Bates, 1996) enjoys
closed-form solutions for option prices. But the
complexity of hedging strategies increases due
to jumps. In this way, there is no strong empir-
ical evidence to judge the overwhelming posi-
tion of jump-diffusion models over multifactor
SV models or vice versa.

The probability literature demonstrates that
stochastic volatility models are fundamental
notions7 in financial markets analysis.

KEY POINTS
� Because it measures the change in value of a

financial instrument over a specific horizon,
volatility, as measured by the standard de-
viation, is an important concept in financial
modeling.

� The different types of volatility are historical,
implied, jump-diffusion, level-dependent, lo-
cal, and stochastic volatilities.

� Stochastic volatility means that the volatil-
ity is not a constant, but a stochastic
process. Stochastic volatility can explain the
well-documented volatility smile and skew
observed in option markets.

� Stochastic volatility is the main concept used
in finance to deal with the endemic time-
varying volatility and codependence found
in financial markets and stochastic volatility
models are used to evaluate derivative secu-
rities such as options and swaps.

� Two approaches to introduce stochastic
volatility are: (1) changing the clock time to

a random time and (2) changing constant
volatility into a positive stochastic process.

NOTES
1. Black and Scholes (1973), Dupire (1994),

Derman and Kani (1994).
2. Wilmott et al. (1995), Merton (1976).
3. Dupire (1994), Hull (2000).
4. Hull and White (1987), Heston (1993).
5. Elliott and Swishchuk (2007), Swishchuk

(2000, 2009), Swishchuk et al. (2010).
6. Kazmerchuk, Swishchuk, and Wu (2005),

Swishchuk (2005, 2006, 2007, 2009a, 2010).
7. Barndor-Nielsen, Nicolato, and Shephard

(1996), Shephard (2005).
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ARCH/GARCH models
application to VaR, II:365–366
behavior of, II:361–362
discussion of, II:362–366
generalizations of, II:367–373
usefulness of, II:366–367
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Area, approximation of, II:589–590,
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ARMA (autoregressive moving
average) models
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and Hankel matrices, II:512
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representations of, II:508–512
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standard approach to, I:37–38
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Asset-liability management (ALM),
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Asset management, focus of, I:35
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codependence of, I:92
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statistical inference of models,
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Asset pricing, I:3, I:56–59, I:59–60,
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characteristics of, III:392
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generation of correlated, I:380–381
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III:223–225
models of, III:381
normal distribution of, I:40
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carry costs, I:424–425
correlation of company, I:411
current vs. noncurrent, II:533
deliverable, I:483
discrete flows of, I:425–426
expressing volatilities of, III:396–397
financing of, II:548
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future value of, I:426t, I:427t
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management of, II:558
market prices of, I:486
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prices of, I:60
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values of after default events, I:350
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importance of, III:62
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zero mean return, III:397

Attribution analysis, II:188–189
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Augmented Dickey-Fuller test (ADF),

II:387, II:389, II:390t, II:514
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Autoregressive conditional duration

(ACD) model, II:370
Autoregressive conditional

heteroskedastic (ARCH)
models. See ARCH
(autoregressive conditional
heteroskedastic) models

Autoregressive integrated moving
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Autoregressive models, II:360–362
Autoregressive moving average

(ARMA) models. See ARMA
(autoregressive moving
average) models

AVaR. See average value at risk (AVaR)
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back-testing of, III:338–340
boxplot of fluctuation of, III:338f
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III:333–334
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III:336–338
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III:334–335
defined, III:331–335
estimation from sample, III:335–336
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graph of, III:347f
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hybrid method for, III:337
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III:343–344
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tail probability of, III:332–333
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exceedance-based, III:365
tests of independence, III:363–364
trading strategies, II:236–237
use of, III:370
using normal approximations,

III:363
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risk in, II:259
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Black-Karasinski (BK) model, III:548,
III:607–608

binomial lattice, III:611
defined, I:493
features of, III:604
forms of, III:600t
interest rate trinomial lattice,
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statistical concepts for, III:225
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I:223, II:730, III:576
valuing of, I:213–214, I:244–246,
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Capital asset pricing model (CAPM).

See CAPM (capital asset pricing
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CAPM (capital asset pricing model).
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main idea of, III:519–520, III:527
in martingale settings, III:522–523
in stochastic differential equation
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Chaos: Making a New Science (Gleick),
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Chebychev inequalities, III:210, III:225
Chen model, I:493
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CID (conditionally independent
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distribution, II:741–742, II:741f,
II:742f, II:743–744, III:512

Classification, and Bayes’ Theorem,
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Classification and regression trees
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(classification and regression
trees)

Classing, procedure for, II:494–498
Clearinghouses, I:478
CME Group, I:489–490
CMOs (collateralized mortgage

obligations), III:598, III:645
Coconut markets, I:70
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binomial, III:171, III:187–191
of determination, II:315
estimated, II:336–337
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and VaR, III:329

Coins, fair/unfair, III:169, III:326–327
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Collateralized mortgage obligations
(CMOs), III:598, III:645
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Complexity (Waldrop), II:699
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Review, I:412
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introduction of into finance, II:480
modeling with, I:511, II:695
random walk generation of, II:708
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III:125–126
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Conditional autoregressive value at

risk (CAViaR), II:366
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II:672, II:679–681
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of bid-ask spreads, II:456–457
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short vs. long, I:437–438, I:438f
valuing of, I:426–430
vs. futures, I:430–431, I:433
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I:555, I:558, I:566

Forward measure, use of, I:543–544
Forward rates

calculation of, I:491, III:572
defined, I:509–510
from discount function, III:566–567
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Fréchet distribution, II:754n, III:228,

III:230, III:265, III:267, III:268
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financial adjustments to, II:25–26
statement of, direct method,

II:24–25, II:24t
statement of, indirect method,

II:24–25, II:24t
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Hamilton-Jacobi equations, II:675
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Harrison, Michael, II:476
Hazard, defined, III:85
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equity, I:15t, II:190t, II:262–263
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III:629
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Information technology, role of,

II:480–481
Ingersoll models, I:271–273, I:275f
Initial conditions, fixing of, II:502
Initial margins, I:478
Initial value problems, II:639
Inner quartile range (IQR), II:494
Innovations, II:126
Insurance, credit, I:413–414
Integrals, II:588–590, II:593. See also

stochastic integrals
Integrated series, and trends,

II:512–514
Integration, stochastic, III:472, III:473,

III:483
Intelligence, general, II:154
Intensity-based frameworks, and the

Poisson process, I:315
Interarrival time, III:219, III:225
Intercepts, treatment of, II:334–335
Interest

accumulated, II:604–605, II:604f
annual vs. quarterly compounding,

II:599f
compound, II:597, II:597f
computing accrued, and clean price,

I:214–215
coverage ratio, II:560
defined, II:596
determining unknown rates,

II:601–602
effective annual rate (EAR),

II:616–617
mortgage, II:398
simple vs. compound, II:596
terms of, II:619
from TIPS, I:277

Interest rate models
binomial, III:173–174, III:174f
classes of, III:600
confusions about, III:600
importance of, III:600
properties of lattices, III:610
realistic, arbitrage-free, III:599
risk-neutral/arbitrage-free, III:597

Interest rate paths, III:6–9, III:7, III:8t
Interest rate risk, III:12–14
Interest rates

absolute vs. relative changes in,
III:533–534

approaches in determining future,
III:591

binomial model of, III:173–174
binomial trees, I:236, I:236f, I:237f,

I:240f, I:244, I:244f, III:174f
borrowing vs. lending, I:482–483
calculation of, II:613–618
calibration of, I:495
caps/caplets of, III:589–590
caps on, I:248–249
categories of term structure, III:561
computing sensitivities, III:22–23
continuous, I:428, I:439–488
derivatives of, III:589–590
determination of appropriate,

I:210–211
distribution of, III:538–539
dynamic of process, I:262
effect of, I:514–515
effect of shocks, III:23
effect on putable bonds, III:303–304
future course of, III:567, III:573
and futures prices, I:435n
importance of models, III:600
jumps of, III:539–541
jumpy and continuous, III:539f
long vs. short, III:538
market spot/forward, I:495t
mean reversion of, III:7
modeling of, I:261–265, I:267, I:318,

I:491, I:503, III:212–213
multiple, II:599–600
negative, III:538
nominal, II:615–616
and option prices, I:486–487
and prepayment risk, III:48
risk-free, I:442
shocks/shifts to, III:585–596
short-rate, I:491–494, III:595
simulation of, III:541
stochastic, I:344, I:346
structures of, III:573, III:576
use of for control, I:489
volatility of, III:405, III:533

Intermarket relations, no-arbitrage,
I:453–455

Internal consistency rule, in OAS
analysis, I:265

Internal rate of return (IRR), II:617–618
in MBSs, III:36

International Monetary Fund
Global Stability Report, I:299

International Swap and Derivatives
Association (ISDA). See ISDA

Interpolated spread (I-spread), I:227
Interrate relationship, arbitrage-free,

III:544
Intertemporal dependence, and risk,

III:351
Intertrade duration, II:460–461,

II:462t
Intertrade intervals, II:460–461
Intervals, credible, I:170
Interval scales, data on, II:487
Intrinsic value, I:441, I:511, I:513,

II:16–17
Invariance property, III:328–329
Inventory, II:542, II:557
Inverse Gaussian process, III:499
Investment, goals of, II:114–115
Investment management, III:146
Investment processes

activities of integrated, II:61
evaluation of results of, II:117–118
model creation, II:96
monitoring of performance, II:104
quantitative, II:95, II:95f
quantitative equity, II:95f, II:96f,

II:105
research, II:95–102
sell-structured, II:108
steps for equity investment, II:119
testing of, II:109

Investment risk measures, III:350–351
Investments, I:77–78n, II:50–51,

II:617–618
Investment strategies, II:66–67,

II:198
Investment styles, quantamental,

II:93–94, II:93f
Investors

behavior of, II:207, II:504
comfort with risk, I:193
completeness of information of,

I:353–354
focus of, I:299, II:90–91
fundamental vs. quantitative,

II:90–94, II:91f, II:92f, II:105
goals/objectives of, II:114–115,

II:179, III:631
individual accounts of, II:74
monotonic preferences of, I:57
number of stocks considered, II:91
preferences of, I:5, I:260, II:48, II:56,

II:92–93
prior beliefs of, II:727
real-world, II:132
risk aversion of, II:82–83, II:729
SL-CAPM assumptions about, I:66
sophistication of, II:108
in uncertain markets, II:54
views of, I:197–199

Invisible hand, notion of, II:468–469
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ISDA (International Swap and
Derivatives Association)

Credit Derivative Definitions (1999),
I:230, I:528

Master Agreement, I:538
organized auctions, I:526–527
supplement definition, I:230

I-spread (interpolated spread), I:227
Ito, Kiyosi, II:470
Ito definition, III:486–487
Ito integrals, I:122, III:475, III:481,

III:490–491
Ito isometry, III:475
Ito processes

defined, I:95
generic univariate, I:125
and Girsanov’s theorem, I:131
under HJM methodology, I:497
properties of, III:487–488
and smooth maps, III:493

Ito’s formula, I:126, III:488–489
Ito’s lemma

defined, I:98
discussion of, I:95–97
in estimation, I:348
and the Heston model, I:548

James-Stein shrinkage estimator, I:194
Japan, credit crisis in, I:417
Jarrow-Turnbull model, I:307
Jarrow-Yu propensity model, I:324–325
Jeffreys’ prior, I:153, I:160n, I:171–172
Jensen’s inequality, I:86, III:569
Jevons, Stanley, II:468
Johansen-Juselius cointegration tests,

II:391–393, II:395
Joint jumps/defaults, I:322–324
Joint survival probability, I:323–324
Jordan diagonal blocks, II:641–642
Jorion shrinkage estimator, I:194, I:202
Jump-diffusion, III:554–557, III:657
Jumps

default, I:322–324
diffusions, I:559–560
downward, I:347
idiosyncratic, I:323
incorporation of, I:93–94
in interest rates, III:539–541
joint, I:322–324
processes of, III:496
pure processes, III:497–501, III:506
size of, III:540

Kalotay-Williams-Fabozzi (KWF)
model, III:604, III:606–607,
III:615f

Kamakura Corporation, I:301, I:307,
I:308–309, I:310n

Kappa, I:521

Karush-Kuhn-Tucker conditions (KKT
conditions), I:28–29

Kendall’s tau, I:327, I:332
Kernel regression, II:403, II:412–413,

II:415
Kernels, II:412, II:413f, II:746
Kernel smoothers, II:413
Keynes, John Maynard, II:471
Key rate durations (KRD), II:276,

III:311–315, III:317
Key rates, II:276, III:311
Kim-Rachev (KR) process, III:512–513
KKT conditions (Karush-Kuhn-Tucker

conditions), I:28–29, I:31, I:32
KoBoL distribution, III:257n
Kolmogorov extension theorem,

III:477–478
Kolmogorov-Smirnov (KS) test, II:430,

III:366, III:647
Kolomogorov equation, use of, III:581
Kreps, David, II:476
Krispy Kreme Doughnuts, II:574–575,

II:574f
Kronecker product, I:172, I:173n
Kuiper test, III:366
Kurtosis, I:41, III:234

Lag operator L, II:504–506, II:507,
II:629–630

Lagrange multipliers, I:28, I:29–31,
I:30, I:32

Lag times, II:387, III:31
Laplace transforms, II:647–648
Last trades, price and size of, II:450
Lattice frameworks

bushy trees in, I:265, I:266f
calibration of, I:238–240
fair, I:235
interest rate, I:235–236, I:236–238
one-factor model, I:236f
for pricing options, I:487
usefulness of, I:235
use of, I:240, I:265–266, III:14
value at nodes, I:237–238
1-year rates, I:238f, I:239f

Law of iterated expectations, I:110,
I:122, II:308

Law of large numbers, I:267, I:270n,
III:263–264, III:275

Law of one α, II:50
Law of one price (LOP), I:52–55,

I:99–100, I:102, I:119, I:260
LCS (liquidity cost score), I:402

use of, I:403
LDIs (liability-driven investments),

I:36
LD (loss on default), I:370–371
Leases, in financial statements, II:542
Least-square methods, II:683–685

Leavens, D. H., I:10
Legal loss data

Cruz study, III:113, III:115t
Lewis study, III:117, III:117t

Lehman Brothers, bankruptcy of, I:413
Level (parallel) effect, II:145
Lévy-Khinchine formula, III:253–254,

III:257
Lévy measures, III:254, III:254t
Lévy processes

and Brownian motion, III:504
in calibration, II:682
change of measure for, III:511–512
conditions for, III:505
construction of, III:506
from Girsanov’s theorem, III:511
and Poisson process, III:496
as stochastic process, III:505–506
as subordinators, III:521
for tempered stable processes,

III:512–514, III:514t
and time change, III:527

Lévy stable distribution, III:242,
III:339, III:382–386, III:392

LGD (loss given default), I:366, I:370,
I:371

Liabilities, II:533, II:534–535, III:132
Liability-driven investments (LDIs),

I:36
Liability-hedging portfolios (LHPs),

I:36
LIBOR (London Interbank Offered

Rate)
and asset swaps, I:227
changes in, by type, III:539–540
curve of, I:226
interest rate models, I:494
market model of, III:589
spread of, I:530
in total return swaps, I:541
use of in calibration, III:7

Likelihood maximization, I:176
Likelihood ratio statistic, II:425
Limited liability rule, I:363
Limit order books, use of, III:625,

III:632n
Lintner, John, II:474
Lipschitz condition, II:658n, III:489,

III:490
Liquidation

effect of, II:186
procedures for, I:350–351
process models for, I:349–351
time of, I:350
vs. default event, I:349

Liquidity
assumption of, III:371
in backtesting, II:235
changes in, I:405
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Liquidity (Continued )
cost of, I:401
creation of, III:624–625, III:631
defined, III:372, III:380
effect of, II:284
estimating in crises, III:378–380
in financial analysis, II:551–555
and LCS, I:404
and market costs, III:624
measures of, II:554–555
premiums on, I:294, I:307
ratios for, II:555
in risk modeling, II:693
shortages in, I:347–348
and TIPS, I:293, I:294
and transaction costs, III:624–625

Liquidity-at-risk (LAR), III:376–378
Liquidity cost, III:373–374, III:375–376
Liquidity cost score (LCS), I:402, I:403
Liquidity preference hypothesis,

III:570
Liquidity ratios, II:563
Liquidity risk, II:282, III:380
Ljung-Box statistics, II:407, II:421,

II:422, II:427–428
LnMix models, calibration of,

II:526–527
Loading, standardization of, II:177
Loan pools, III:8–9
Loans

amortization of, II:606–607,
II:611–613

amortization table for, II:612t
delinquent, III:63
fixed rate, fully amortized schedule,

II:614t
floating rate, II:613
fully amortizing, II:611
modified, III:32
nonperforming, III:75
notation for delinquent, III:45n
recoverability of, III:31–32
refinancing of, III:68–69
repayment of, II:612f, II:613f
term schedule, II:615t

Loan-to-value ratios (LTVs), III:31–32,
III:69, III:73, III:74–75

Location parameters, I:160n,
III:201–202

Location-scale invariance property
(Gaussian distribution), II:732

Logarithmic Ornstein-Uhlenbeck
(log-OU) processes, I:557–558

Logarithmic returns, III:211–212,
III:225

Logistic distribution, II:350
Logistic regression, I:307, I:308, I:310
Logit regression models, II:349–350,

II:350

Log-Laplace transform, III:255–256
Lognormal distribution, III:222–225,

III:392
Lognormal mixture (LnMix)

distribution, II:524–525
Lognormal variables, I:86
Log returns, I:85–86, I:88
London Interbank Offered Rate

(LIBOR). See LIBOR
Lookback options, I:114, III:24
Lookback periods, III:402, III:407
LOP (law of one price). See law of one

price (LOP)
Lorenz, Edward, II:653
Loss distributions, conditional,

III:340–341
Losses. See also operational losses

allocation of, III:32
analysis of in backtesting, III:338
collateral vs. tranche, III:36
computation of, I:383
defined, III:85
estimation of cumulative, III:39–40
expected, I:369–370, I:373–374
expected vs. unexpected, I:369,

I:375–376
internal vs. external, III:83–84
median of conditional, III:348n
projected, III:37f
restricting severity of, I:385–386
severity of, III:44
unexpected, I:371–372, I:374–375

Loss functions, I:160n, III:369
Loss given default (LGD), I:366, I:370,

I:371
Loss matrix analysis, III:40–41
Loss on default (LD), I:370–371
Loss severity, III:30–31, III:60–62,

III:97–99
Lottery tickets, I:462
Lower partial moment risk measure,

III:356
Lundbert, Filip, II:467, II:470–471

Macroeconomic influences, defined,
II:197

Magnitude measures, II:429–430
Maintenance margins, I:478
Major indexes, modeling return

distributions for, III:388–392
Malliavin calculus, III:644
Management, active, II:115
Mandelbrot, Benoit, II:653, II:738,

III:234, III:241–242
Manufactured housing prepayment

(MHP) curve, III:56
Marginalization, II:335
Marginal rate of growth, III:197–198
Marginal rate of substitution, I:60

Margin calls, exposure to, III:377
Market cap vs. firm value, II:39
Market completeness, I:52, I:105
Market efficiency, I:68–73, II:121,

II:473–474
Market equilibrium

and investor’s views, I:198–199
Market impact

costs of, III:623–624, III:627
defined, II:69
forecasting/modeling of,

III:628–631
forecasting models for, III:632
forecasting of, III:628–629,

III:629–631
measurement of, III:626–628
between multiple accounts, II:75–76
in portfolio construction, II:116
and transaction costs, II:70

Market model regression, II:139
Market opportunity, two state, I:460f
Market portfolios, I:66–67, I:72–73
Market prices, I:57, III:372
Market risk

approaches to estimation of, III:380
in bonds, III:595
in CAPM, I:68–69, II:474
importance of, III:81
models for, III:361–362
premium for, I:203n, I:404

Markets
approach to segmented, II:48–51
arbitrage-free, I:118
complete, I:51–52, III:578
complex, II:49
effect of uncertainty in on bid-ask

spreads, II:455–456
efficiency of, II:15–16
frictionless, I:261
incomplete, I:461–462
liquidity of, III:372
models of, III:589
for options and futures, I:453–454
perfect, II:472
properties of modern, III:575–576
sensitivities to value-related

variables, II:54t
simple, I:70
systematic fluctuations in,

II:172–173
unified approach to, II:49
up/down, defined, II:347

Market sectors, defined, III:560
Market standards, I:257
Market structure, and exposure,

II:269–270
Market timing, II:260
Market transactions, upstairs,

III:630–631, III:632n
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Market weights, II:269t
Markov chain approximations, II:678
Markov chain Monte Carlo (MCMC)

methods, II:410f, II:417–418
Markov coefficients, II:506–507, II:512
Markov matrix, I:368
Markov models, I:114
Markov processes

in dynamic term structures, III:579
hidden, I:182
use of, III:509, III:517

Markov property, I:82, I:180–181, I:183,
II:661, III:193n

Markov switching (MS) models
discussion of, I:180–184
and fat tails, III:277–278
stationarity with, III:275
usefulness of, II:433
use of, II:409–411, II:411t

Markowitz, Harry M., I:38, I:140,
II:467, II:471–472, III:137,
III:351–352

Markowitz constraint sets, I:69, I:72
Markowitz diversification, I:10–11,

I:11
Markowitz efficient frontiers, I:191f
Markowitz model

in financial planning, III:126
Mark-to-market (MTM)

calculation of value, I:535–536, I:536t
defined, I:535
and telescoping futures, I:431–432

Marshall and Siegel, II:694
Marshall-Olkin copula, I:323–324,

I:329
Martingale measures, equivalent

and arbitrage, I:111–112, I:124
and complete markets, I:133
defined, I:110–111
and Girsanov’s theorem, I:130–133
and state prices, I:133–134
use of, I:130–131
working with, I:135

Martingales
with change of time methods

(CTM), III:522–523
defined, II:124, II:126, II:519
development of concept, II:469–470
equivalent, II:476
measures of, I:110–111
use of conditions, I:116
use of in forward rates, III:586

Mathematical theory, importance of
advances in, III:145

Mathworks, website of, III:418
MATLAB

array operations in, III:420–421
basic mathematical operations in,

III:419–420

construction of vectors/matrices,
III:420

control flow statements in,
III:427–428

desktop, III:419f
European call option pricing with,

III:444–445
functions built into, III:421–422
graphs in, III:428–433, III:429–430f,

III:431f
interactions with other software,

III:433–434
M-files in, III:418–419, III:423,

III:447
operations in, III:447
optimization in, III:434–444,

III:435t
Optimization Tool, III:435–436,

III:436f, III:440f, III:441f
overview of desktop and editor,

III:418–419
quadprog function, II:70
quadratic optimization with,

III:441–444
random number generation,

III:444
for simulations, III:651
Sobol sequences in, III:445–446
for stable distributions, III:344
surf function in, III:432–433
syntax of, III:426–427
toolboxes in, III:417–418
user-defined functions in,

III:423–427
Matrices

augmented, II:624
characteristic polynomial of, II:628
coefficient, II:624
companion, II:639–640
defined, II:622
diagonal, II:622–623, II:640
eigenvalues of random, II:704–705
eigenvectors of, II:640–641
in MATLAB, III:422, III:432
operations on, II:626–627
ranks of, II:623, II:628
square, II:622–623, II:626–627
symmetric, II:623
traces of, II:623
transition, III:32–33, III:32t, III:33t,

III:35f
types of, II:622, II:628

Matrix differential equations, III:492
Maturity value (lump sum), from

bonds, I:211
Maxima, III:265–269, III:266f
Maximum Description Length

principle, II:703
Maximum eigenvalue test, II:392–393

Maximum likelihood (ML)
approach, I:141, I:348
methods, II:348–349, II:737–738,

III:273
principal, II:312

Maximum principle, II:662, II:667
Max-stable distributions, III:269,

III:339–340
MBA (Mortgage Bankers Association)

refi index, III:70, III:70f
MBS (mortgage-backed securities),

I:258
agency vs. nonagency, III:48
cash flow characteristics of, III:48
default assumptions about, III:8
negative convexity of, III:49
performance of, III:74
prices of, III:26
projected long-term performance of,

III:34f
time-related factors in, III:73–74
valuation of, III:62
valuing of, III:645

MBS (mortgage-backed securities),
nonagency

analysis of, III:44–45
defined, III:48
estimation of returns, III:36–44
evaluation of, III:29
factors impacting returns of,

III:30–32
yield tables for, III:41t

Mean absolute deviation (MAD),
III:353

Mean absolute moment (MAM(q)),
III:353

Mean colog (M-colog), III:354
Mean entropy (M-entropy), III:354
Mean excess function, II:746–747
Mean/first moment, III:201–202
Mean residual life function, II:754n
Mean reversion

discussion of, I:88–92
geometric, I:91–92
in HW models, III:605
and market stability, III:537–538
models of, I:97
parameter estimation, I:90–91
risk-neutral asset model, III:526
simulation of, I:90
in spot rate models, III:580
stabilization by, III:538
within a trinomial setting, III:604

Mean-reverting asset model (MRAM),
III:525–526

Means, I:148, I:155, I:380, III:166–167
Mean-variance

efficiency, I:190–191
efficient portfolios, I:13, I:68, I:69–70
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Mean-variance (Continued )
nonrobust formulation, III:139–140
optimization, I:192

constraints on, I:191
estimation errors and, I:17–18
practical problems in, I:190–194

risk aversion formulation, II:70
Mean variance analysis, I:3, I:15f,

I:201, II:471–472, III:352
Measurement levels, in descriptive

statistics, II:486–487
Media effects, III:70
Median, I:155, I:159n, II:40
Median tail loss (MTL), III:341
Mencken, H. L., II:57
Menger, Carl, II:468
Mercurio-Moraleda model, I:493–494
Merton, Robert, I:299, I:310, II:468,

II:475, II:476
Merton model

advantages and criticisms of,
I:344

applied to probability of default,
I:363–365

with Black-Scholes approach,
I:305–306

default probabilities with, I:307–308
discussion of, I:343–344
drawbacks of, I:410
with early default, I:306
evidence on performance, I:308–309
as first modern structural model,

I:313, I:341
in history, I:491
with jumps in asset values, I:306
portfolio-level hedging with,

I:411–413
with stochastic interest rates, I:306
and transaction-level hedging,

I:408–410
usefulness of, I:410, I:411–412,

I:417–418
use of, I:304, I:305, I:510
variations on, I:306–307

Methodology, equally weighted,
III:399

Methods
quantile, II:354–356

Methods pathwise, III:643
Metropolis-Hastings (M-H) algorithm,

I:178
M-H algorithm, I:179
MIB 30, III:402–403, III:402f, III:403f
Microsoft, II:722f . See also Excel
Midsquare technique, III:647
Migration mode

calculation of expected/unexpected
losses under, I:376t

expected loss under, I:373–374

Miller, Merton, II:467, II:473
MiniMax (MM) risk measure, III:356
Minimization problems, solutions to,

II:683–684
Minimum-overall-variance portfolio,

I:69
Minority interest, on the balance

sheet, II:536
Mispricing, risk of, II:691–692
Model creep, II:694
Model diagnosis, III:367–368
Model estimation, in non-IDD

framework, III:278
Modeling

calibration of structure, III:549–550
changes in mathematical, II:480–481
discrete vs. continuous time, III:562
dynamic, II:105
issues in, II:299
nonlinear time series, II:427–428,

II:430–433
quantitative, II:481

Modeling techniques
non-parametric/nonlinear, II:375

Model risk
of agency ratings, II:728–729
awareness of, I:145, II:695–696
with computer models, II:695
consequences of, II:729–730
contribution to bond pricing,

II:727–728
defined, I:331, II:691, II:697
discussion of, II:714–715
diversification of, II:378
endogenous, II:694–695, II:697
in finical institutions, II:693
guidelines for institutions,

II:696–697
management of, II:695–697, II:697
misspecification of, II:199
and robustness, II:301
of simple portfolio, II:721–726
sources of, II:692–695

Models. See also operational risk
models

accuracy in, III:321
adjustment, II:502
advantages of reduced-form, I:533
analytical tractability of, III:549–550
APD, III:18, III:20–22, III:21f , III:26
application of, II:694
appropriate use of classes of,

III:597–598
arbitrage-free, III:600
autopredictive, II:502
averages across, II:715
bilinear, II:403–404
binomial, I:114–116, I:119
binomial stochastic, II:10–11

block maxima, II:745
choosing, III:550–552
comparison of, III:617
compatibility of, III:373
complexity of, II:704, II:717
computer, I:511, II:695
conditional normal, II:733–734
conditional parametric fat-tailed,

II:744
conditioning, II:105
construction of, II:232–235
for continuous processes, I:123
creation of, II:100–102
cross-sectional, II:174–175, II:175t
cumulative return of, II:234
defined, II:691, II:697
to describe default processes, I:313
description and estimation of,

II:256–257
designing the next, III:590–591
determining, II:299–300
disclosure of, I:410
documentation of, II:696
dynamic factor, II:128, II:131,

III:126–127
dynamic term structure, III:591
econometric, II:295, II:304
equilibrium forms of, III:599–600
equity risk, II:174, II:178–191, II:192
error correction, II:381t, II:387–388,

II:394–395
evidence of performance, I:308–309,

II:233
examples of multifactor, II:139–140
financial, I:139, II:479–480
forecasting, II:112, II:303–304
for forecasting, III:411
formulation of, III:128–131
fundamental factor, II:244, II:248
generally, II:360–362
Gordon-Shapiro, II:17–18
Heath-Jarrow-Morton, III:586–587,

III:589
hidden-variable, II:128, II:131
linear, II:264, II:310–311, II:348,

II:507–508
linear autoregressive, II:128,

II:130–131
linear regression, I:91, I:163–170,

II:360, II:414–415
liquidation process, I:342
martingale, II:127–128, III:520–521
MGARCH, II:371–372
model-vetting procedure, II:696–697
moving average, III:414
multifactor, II:231–232, III:92
multivariate extensions of,

II:370–373
no arbitrage, III:604
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nonlinear, II:402–421, II:417–418
penalty functions in, II:703
performance measurement of, II:301
predictive regressive, II:130
predictive return, II:128–131
for pricing, II:127–128
pricing errors in, I:322
principals for engineering,

II:482–483
probabilistic, II:299
properties of good, I:320
ranking alternative, III:368–370
recalibration of, II:713–714
reduced form default, I:310, I:313
regressive, II:128, II:129–130
relative valuation, I:260
return forecasting, II:119
returns of, II:233t
robustness of, II:301
selection of, I:145, II:298, II:692–693,

II:699–701
short-rate, I:494
single-index market, II:317–318
static, II:297, III:573
static regressive, II:129–130
static vs. dynamic, II:295–296, II:304
statistical, II:175, II:175t
stochastic, I:557, III:124–125
structural, I:305, I:313–314, I:341–342
structural vs. reduced, I:532–533
subordinated, II:742–743
temporal aggregation of, II:369
testing of, II:126–127, II:696–697
time horizon of, II:300–301
time-series, II:175, II:175t
tree, II:381, III:22–23
tuning of, III:580–581
two-factor, I:494
univariate regression, I:165
usefulness of, II:122
use of in practice, I:494–496, III:600t

Models, lattice
binomial, III:610, III:610f
Black-Karasinski (BK) lattice, III:611
Hull White binomial, III:610–611
Hull White trinomial, III:613
trinomial, III:610, III:610f,

III:611–612
Models, selection of

components of, II:717
generally, II:715–717
importance of, II:700
machine learning approach to,

II:701–703, II:717
uncertainty/noise in, II:716–717
use of statistical tools in, II:230

Modified Accelerated Cost Recovery
System (MACRS), II:538

Modified Restructuring clause, I:529

Modified tempered stable (MTS)
processes, III:513

Modigliani, Franco, II:467, II:473
Modigliani-Miller theorem, I:343,

I:344, II:473, II:476
Moment ratio estimators, III:274
Moments

exponential, III:255–256
first, III:201–202
of higher order, III:202–205
integration of, II:367–368
raw, II:739
second, III:202
types of, II:125

Momentum
formula for analysis of, II:239
portfolios based on, II:181

Momentum factor, II:226–227
Money, future value of, II:596–600
Money funds, European options on,

I:498–499
Money markets, I:279, I:282, I:314,

II:244
Monotonicity property, III:327
Monte Carlo methods

advantages of, II:672
approach to estimation, I:193
defined, I:273
examples of, III:637–639
foundations of, I:377–378
for interest rate structure, I:494
main ideas of, III:637–642
for nonlinear state-space modeling,

II:417–418
stochastic content of, I:378
usefulness of, I:389
use of, I:266–268, III:651
of VaR calculation, III:324–325

Monte Carlo simulations
for credit loss, I:379–380
effect of sampling process, I:384
in fixed income valuation modeling,

III:6–12
sequences in, I:378–379
speed of, III:644
use of, III:10–11, III:642

Moody’s diversity score, use of,
I:332

Moody’s Investors Service, I:362
Moody’s KMV, I:364–365
Mortgage-backed securities (MBS). See

MBS (mortgage-backed
securities)

Mortgage Bankers Association (MBA)
method, III:57–58

Mortgagee pools
composition of, III:52
defined, III:23, III:65
nonperforming loans and, III:75

population of, III:19
seasoning of, III:20, III:22

Mortgages, III:48–49, III:65, III:69,
III:71

Mosaic Company, distribution of price
changes of, II:723f

Mossin, Jan, II:468, II:474
Moving averages, infinite, II:504–508
MSCI Barra model, II:140
MSCI EM, historical distributions of,

III:391f
MSCI-Germany Index, I:143
MSCI World Index, I:15–17

analysis of 18 countries, I:16t
MS GARCH model, I:185–186

estimation of, I:182
sampling algorithm for, I:184

MSR (maximum Sharpe Ratio), I:36–37
MS-VAR models, II:131
Multiaccount optimization, II:75–77
Multicollinearity, II:221
Multilayer perceptrons, II:419
Multinomial/polynomial coefficients,

III:191–192
Multivariate normal distribution, in

MATLAB, III:432–433, III:433f
Multivariate random walks, II:124
Multivariate stationary series,

II:506–507
Multivariate t distribution, loss

simulation, I:388–389

Nadaraya-Watson estimator, II:412,
II:415

Natural conjugate priors, I:160n
Navigation, fuel-efficient, I:562–563
Near-misses, management of,

III:84–85
Net cash flow, defined, II:541
Net cost of carry, I:424–425, I:428,

I:437, I:439–440, I:455
Net free cash flow (NFCF), II:572–574,

II:578
Net profit margin, II:556
Net working capital-to-sales ratio,

II:554–555
Network investment models,

III:129–130, III:129f
Neumann boundary condition, II:666,

II:671
Neural networks, II:403, II:418–421,

II:418f, II:701–702
Newey-West corrections, II:220
NIG distribution, III:257n
9/11 attacks, effects of, III:402–403
No-arbitrage condition, in certain

economy, III:567–568
No arbitrage models, use of, III:604
No-arbitrage relations, I:423
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Noise
continuous-time, III:486
in financial models, II:721–722
in model selection, II:716–717
models for, II:726
reduction of, II:51–52

Noise, white
defined, I:82, II:297
qualities of, II:127
sequences, II:312, II:313
in stochastic differential equations,

III:486
strict, II:125
vs. colored noise, III:275

Nonlinear additive AR (NAAR)
model, II:417

Nonlinear dynamics and chaos, II:645,
II:652–654

Nonlinearity, II:433
in econometrics, II:401–403
tests of, II:421–427

Non-normal probability distributions,
II:480

Nonparametric methods, II:411–416
Normal distributions, I:81, I:82f,

I:177–178, III:638f
and AVaR, III:334
comparison with α-stable, III:234f
fundamentals of, II:731–734
inverse Gaussian, III:231–233,

III:232f, III:233f (See also
Gaussian distribution)

likelihood function, I:142–143
for logarithmic returns, III:211–212
mixtures of for downside risk

estimation, III:387–388
for modeling operational risk,

III:98–99
multivariate, and tail dependence,

I:387
properties of, II:732–733, III:209–210
relaxing assumption of, I:386–387
standard, III:208
standardized residuals from, II:751
use of, II:752n
using to approximate binomial

distribution, III:211
for various parameter values,

III:209f
vs. normal inverse Gaussian

distribution, III:232–233
Normal mean, and posterior tradeoff,

I:158–159
Normal tempered stable (NTS)

processes, III:513
Normative theory, I:3
Notes, step-up callable, I:251–252,

I:251f, I:252f
Novikov condition, I:131–132

NTS distribution, III:257n
Null hypothesis, I:157, I:170, III:362
Numeraire, change of, III:588–589
Numerical approximation, I:265
Numerical models for bonds,

I:273–275

OAS (option-adjusted spread). See
option-adjusted spread

Obligations, deliverable, I:231, I:526
Observations, frequency of, III:404
Occam’s razor, in model selection,

II:696
Odds ratio, posterior, I:157
Office of Thrift Supervision (OTS)

method, III:57–58
Oil industry, free cash flows of, II:570
OLS (ordinary least squares). See

ordinary least squares (OLS)
Open classes, II:493–494
Operating cash flow (OCF), II:23
Operating cycles, II:551–554
Operating profit margin, II:556
Operational loss data

de Fontnouvelle, Rosengren, and
Jordan study, III:116–117,
III:116t

empirical evidence with, III:112–118
Moscadelli study, III:113, III:116,

III:116t
Müller study, III:113, III:114f,

III:115t
Reynolds-Syer study, III:117–118
Rosenberg-Schuermann study,

III:118
Operational losses

and bank size, III:83
definitions of types, III:84t
direct vs. indirect, III:84–85
expected vs. unexpected, III:85
histogram of, III:104f
histogram of severity distribution,

III:95f
historical data on, III:96
near-miss, III:84–85
process of arriving at data, III:96–97
process of occurrence, III:86f
recording of, III:97
severity of, III:104f
time lags in, III:96–97
types of, III:81, III:88

Operational loss models
approaches to, III:103–104
assumptions in, III:104
nonparametric approach,

III:103–104, III:104–105, III:118
parametric approach, III:104,

III:105–110, III:118
types of, III:118

Operational risk
classifications of, III:83–88, III:87–88,

III:87f, III:88
defined, III:81–83, III:88
event types with descriptions,

III:86t
indicators of, III:83
models of, III:91–96
nature of, III:99
and reputational risk, III:88
sources of, III:82

Operational risk/event/loss types,
distinctions between, III:85–87

Operational risk models
actuarial (statistical) models, III:95
bottom-up, III:92f, III:94–96, III:99
causal, III:94
expense-based, III:93
income-based, III:93
multifactor causal models, III:95
operating leverage, III:93
process-based, III:94–95
proprietary, III:96
reliability, III:94–95
top down, III:92–94, III:99
types of, III:91–92

Operations
addition, II:625, II:626
defined, II:628
inverse and adjoint, II:626–627
multiplication, II:625–626, II:626
transpose, II:625, II:626
vector, II:625–626

Operators in sets, defined, III:154
Ophelimity, concept of, II:469
Opportunity cost, I:435, I:438, I:439,

II:596, III:623
Optimal exercise, I:515–516
Optimization

algorithms for, III:124
complexity of, II:82
constrained, I:28–34
defined, III:434–435
local vs. global, II:378
in MATLAB, III:434–444
unconstrained, I:22–28

Optimization theory, I:21
Optimization Toolbox, in MATLAB,

III:435–436, III:436f
Optimizers, using, II:115–116, II:483
Option-adjusted spread (OAS)

calculation of, I:253–255
defined, I:254, III:11
demonstrated, I:254f
determination of, I:259
implementation of, I:257
and market value, I:258
results from example, III:617t
and risk factors, III:599
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rules-of-thumb for analysis,
I:264–265

usefulness of, III:3
values of, I:267, I:268
variance between dealers, I:257–258

Option premium, I:508–509
time/intrinsic values of, I:513

Option premium profiles, I:512, I:512f
Option prices

components of, I:484–485, I:511–512
factors influencing, I:486–487, I:486t,

I:487–488, I:522–523
models for, I:490

Options
American, II:664–665, II:669–670,

II:674–679, II:679–681
American-style, I:444, I:454–455,

I:490
Asian, II:663–664, II:668–669,

III:642–643
on the average, II:663–664
barrier, II:662–663
basic properties of, I:507–508
basket, II:662, II:672
Bermudean, II:663–664, III:597
buying assets of, I:439
costs of, I:441–442, III:11–12
difference from forwards, I:437–439
early exercise of, I:442–443, I:447
Eurodollar, I:489
European, I:125, I:127–129,

II:660–664, II:665–674
European-style, I:444–445, I:454
European-style vs. American-style,

I:453t, I:455n, I:508, I:515–516
and expected volatility, I:486
expiration/maturity dates of, I:484
factors affecting value of, I:474
formulas for pricing, III:522, III:527
in/out of/at-the-money, I:485
long vs. short call, I:437–439, I:438f
lookback, II:663, II:672, II:673f
on the maximum, II:663
models of, I:510–511
no-arbitrage futures, I:453
price relations for, I:448t
pricing of, I:124–129, I:455t,

I:484–488, I:507, III:408
theoretical valuation of, I:508–509
time premiums of, I:485
time to expiration of, I:486
types of, I:484
valuing of, I:252–253, III:639
vanilla, II:661, III:655
volatility of, I:488

Orders
in differential equations, II:643,

II:644–645
fleeting limit, III:625

limit, III:625, III:631
market, III:625, III:631

Order statistics, III:269–270
bivariate, III:293–295
joint probability distributions for,

III:291–292
use of, III:289
for VaR and ETL, III:292t
in VaR calculations, III:291

Ordinary differential equations
(ODE), II:644–645, II:646–648,
II:648–652, II:649f

Ordinary least squares (OLS)
alternate weighting of, II:438–439
estimation of factor loadings matrix

with, II:165
in maximum likelihood estimates,

II:313–314
pictorial representations of,

II:437–438, II:438f
squared errors in, II:439–440
use of, I:165, I:172n, II:353
vs. Theil-Sen estimates of beta,

II:442f
vs. Theil-Sen regression, II:441t

Ornstein-Uhlenbeck process
with change of time, III:523
and mean reversion, I:263, I:264f
solutions to, III:492
use of, I:89, I:95
and volatility, III:656

Outcomes, identification and
evaluation of worst-case,
III:379–380

Outliers
in data sets, II:200
detection and management of, II:206
effect of, II:355f, II:442–443
and market crashes, II:503
in OLS methods, II:354
in quantile methods, II:355–356
and the Thiel-Sen regression

algorithm, II:440
Out-of-sample methodology, II:238

Pair trading, II:710
P-almost surely (P-a.s.) occurring

events, III:158
Parallel yield curve shift assumption,

III:12–13
Parameters

calibration of, II:693
density functions for values, III:229f,

III:230f, III:231f
distributions of, II:721
estimation of for random walk, I:83
robust estimation of, II:77–78
stable, III:246f

Parametric methods, use of, II:522

Parametric models, II:522–523,
II:526–527

Par asset swap spreads, I:530, I:531
Par CDS spread, I:531
Par-coupon curve, III:561
Pareto, Vilfredo, II:467, II:468–469,

II:474
Pareto(2) distribution, II:441
Pareto distributions

density function of, II:738
generalized (GPD), II:745–746,

II:747, III:230–231
in loss distributions, III:108–109
parameters for determining, II:738
stable, II:738–741
stable/varying density, II:739f
tails of, II:751

Pareto law, II:469
Pareto-Lévy stable distribution,

III:242
Partial differential equations (PDEs)

for American options, II:664–665
equations for option pricing,

II:660–665
framework for, I:261, I:265, II:675,

III:555
pricing European options with,

II:665–674
usefulness of, II:659–660
use of, III:18–19

Partitioning, binary recursive,
II:376–377, II:376f

Paths
in Brownian motion, III:501, III:502f
dependence, III:18–19
stochastic, II:297

Payments, I:229, II:611–612
Payment shock, III:72
Payoff-rate process, I:121–122
Payoffs, III:466, III:638–639
PCA (principal components analysis).

See principal component
analysis (PCA)

Pearson skewness, III:204–205
Pension funds, constraints of, II:62
Pension plans, II:541, III:132
P/E (price/earnings) ratio, II:20–21,

II:38
Percentage rates, annual vs. effective,

II:615–617
Percolation models, III:276
Performance attribution, II:57, II:58,

II:104, II:188–189, II:252–253,
II:253t

Performance-seeking portfolios
(PSPs), I:36, I:37

Perpetuities, II:607–608
Pharmaceutical companies, II:7–8,

II:11, II:244
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Phillips-Perron statistic, II:386, II:398
Pickand-Balkema-de Haan theorem,

II:746
Pickand estimator, III:273
Pliska, Stankey, II:476
Plot function, in MATLAB, III:428–432
P-null sets, III:197
Pochhammer symbol, III:256
Poincaré, Henri, II:469
POINT R©

features of, II:193n, II:291n
modeling with, II:182
screen shot of, II:287f, II:288f
use of, II:179, II:189, II:286–287

Point processes, III:270–272
Poisson-Merton jump process,

distribution tails for,
III:540–541

Poisson-Merton jump variable,
III:540

Poisson processes
compounded, III:497
homogeneous, III:270–271
and jumps, I:93, III:498, III:540
for modeling durations, II:461
as stochastic process, III:496, III:497,

III:506
use of, I:262, I:315–316

Poisson variables, distribution of,
III:271f

Policy iteration algorithm (Howard
algorithm), II:676–677

Polyhedral sets, I:33, I:33f
Polynomial fitting of trend stationary

process, II:702–703, II:702f
Population profiles, in transition

matrices, III:32–34
Portfolio allocation, example using

MATLAB, III:436–441
Portfolio management

approaches to, II:108–110
checklist for robust, III:144
for credit risk, I:416–417
of large portfolios, III:325
and mean-variance framework,

I:196
real world, I:190
software for, II:75 (See also Excel)
tax-aware, II:74–75
using Bayesian techniques, I:196

Portfolio managers, III:444–445
approaches used by, II:108–109
enhanced indexers, II:268
example of, III:436–441, III:437t
questions considered by, II:277
specialization of, II:48–49
traditional vs. quantitative, II:109,

II:110t
types of, II:179, II:286

Portfolio optimization
for American options, II:678
classical mean-variance problem,

III:441–444
constraints on, II:62
defined, I:36
formulation of theory, II:476
max-min problem, III:139
models of, II:84–85n
robust, III:146
techniques of, II:115–116
uncertainty in, I:192–193, II:82–83

Portfolios. See constraints, portfolio
allocation of, I:192–193, II:72
assessment of risk factors of,

III:637–638
benchmark, I:41–42, II:180
building efficient, II:115
bullet vs. barbell, III:308t, III:309t
bullet vs. barbell (hypothetical),

III:308
cap-weighted, I:38f
centering optimal, I:199
considerations for rebalancing of,

II:75
construction of, I:37–38, II:56–57,

II:102–104, II:102f, II:114–116,
II:179–184, II:261–264,
II:286–287, II:301–303

cor-plus, and DTS, I:398
credit bond, hedging of, I:405
data on, II:365t
diversification of, I:10–12
efficient, I:12, I:77, I:288f, I:289f,

I:290f
efficient set of, I:13
efficient vs. feasible, I:13
efficient vs. optimal, I:5
examples of, II:261t, II:262t
expected returns from, I:6–7, I:7,

I:12t, I:69t, I:195
factor exposures in, II:183t, II:184t,

II:263t, II:264t
factor model approach to, II:224
feasible and efficient, I:12–14
feasible set of, I:12–13, I:13f
index-tracking, II:186
information content of, I:192
long-short, II:181–182, II:226f
management of fixed-income, I:391
and market completeness, I:50–52
mean-variance efficient, I:66, I:69f
mean-variance optimization of,

II:79
momentum, II:182f
monitoring of, II:106
MSR (maximum Sharpe Ratio),

I:36–37
normalized, II:157

optimal, I:14–15, I:14f, I:15–17,
II:181t

optimization-based approach to,
II:224–225

optimization of, I:17–18, I:40,
II:56–57, II:301–303

optimized, II:116
performance-seeking, I:36
quadratic approximation for value,

III:644–645
rebalancing of, II:287–288
replication of, II:476
resampling of, I:189, II:78–80, II:84
returns of, I:6–7
risk control in, II:181–182
riskless, I:509
with risky assets, I:12–17
robust optimization of, II:80–84
rule-based, II:116
selection of, I:3–19, III:351–353,

III:356
self-financing, II:660–661
stress tests for, I:412
tangency, I:36–37
tilting of, II:263–264
tracking, II:187t
weighting in, I:50–51, II:64–65
weights of, I:191–192
yield simulations of, I:284–285

Portfolio sorts
based on EBITDA/EV factor,

II:216–217, II:216f
based on revisions factor, II:217–218,

II:217f
based on share repurchase factor,

II:218, II:218f
information ratios for, II:219
results from, II:225f
use of, II:214–219

Portfolio trades, arbitrage, I:440t
Position distribution and likelihood

function, I:142–143
Positive homogeneity property,

III:327–328
Posterior distribution, I:159, I:165
Posterior odds ratio, I:157
Posterior tradeoff, and normal mean,

I:158–159
Power conditional value at risk

measure, III:356
Power law, III:234–235
Power plants/refineries, valuation

and hedging of, I:563
Power sets, III:156, III:156t
Precision, I:158, II:702
Predictability, II:122–127
Predictions, I:167, II:124
Predictive return modes, adoption of,

II:128–129
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Preferred habitat hypothesis,
III:569–570

Prepayments
burnout, III:19
calculating speeds of, III:50–56
in cash-flow yields, III:4
conditional rate of (CPR), III:30,

III:50–51, III:58–59
defaults and involuntary, III:59,

III:74–77
defined, III:50
disincentives for, III:7–8
drivers of, III:77
effect of time on rates of, III:73–74
evaluation of, III:62
factors influencing speeds of,

III:69–74
fundamentals of, III:66–69
for home equity securities, III:55–56
interactions with defaults, III:76–77
interest rate path dependency of,

III:6
lag in, III:24–25
levels of analysis, III:50
lock-ins, III:73
modeling of, I:258, I:267, I:268,

III:63n, III:598–600
practical interpretations of, III:20
rates of, III:74
reasons for, III:48
risk of, II:281, II:281t
S-curves for, III:67–68, III:67f
sources of, III:23–24
voluntary, III:38
voluntary vs. involuntary, III:30,

III:75–76
Prepay modeling, III:19–20

rational exercise, III:25
Present value, I:268n, II:19, II:603–604,

II:609, III:9–10
Price/earnings (P/E) ratio, II:20–21,

II:38
Price patterns, scaling in, III:279
Price processes, bonds, I:128
Prices

bid/ask, III:625
Black-Scholes, II:673–674
changes in, II:722f, II:723f, II:742,

III:305–306, III:305t
compression of, III:303
computing clean, I:214–215
dirty, I:382
distribution of, I:510
estimating changes in bond,

I:373–374
flexible and sticky in CPI basket,

I:292
formula for discounted, I:110
marked-to-market, I:430

modeling realistic, I:93–94
natural logarithm of, I:85
path-dependent, III:193n
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I:556

Prior elicitation, informative,
I:152–153, I:159

Prior precision, I:158
Priors, I:153, I:165–167, I:168, I:171–172
Probabilistic decision theory,
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hypothetical results, II:40t
implications of hypothetical,

II:41–42
low or negative numbers in, II:42–43

Relative valuation methods
choice of valuation multiples in,
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Simulations

credit loss, I:378–380
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cointegration regression, II:390t
daily close, III:402f
daily returns (2003), III:326f
distributions of, III:384f
error correction model, II:391t
historical distributions of, III:390f
index and dividends (1962–2006),

II:388f
parameter estimates of, III:385t,

III:387t, III:388t
return and excess return data

(2005), II:316–317t
stationarity test for, II:389t
time scaling of, III:383f
worst returns for, III:382t

State dependent models (SDMs), I:342,
I:351–352

Statement of stockholders’ equity,
II:541

State price deflators
defined, I:103, I:129–130
determining, I:118–119, I:124
formulas for, I:107–108, I:109–110
in multiperiod settings, I:105
and trading strategy, I:106

State prices
and arbitrage, I:55–56
condition, I:54
defined, I:101–102
and equivalent martingale

measures, I:133–134
vectors, I:53–55, I:58, I:119

States, probabilities of, I:115
States of the world, I:457–458, I:459,

II:306, II:308, II:720
State space, I:269n
Static factor models, II:150
Stationary series, trend vs. difference,

II:512–513
Stationary univariate moving average,

II:506

Statistical concepts, importance of,
II:126–127

Statistical factors, II:177
Statistical learning, II:298
Statistical methodology, EWMA,

III:409
Statistical tests, inconsistencies in,

II:335–336
Statistics, II:387, II:499
Stein paradox, I:194
Stein-Stein model, II:682
Step-up callable notes, valuing of,

I:251–252
Stochastic, defined, III:162
Stochastic control (SC), III:124
Stochastic differential equations

(SDEs)
binomial/trinomial solutions to,

III:610–613
with change of time methods,

III:523
defined, II:658
examples of, III:523–524
generalization to several

dimensions with, III:490–491
intuition behind, III:486–487
modeling states of the world with,

III:127
for MRAM equation, III:525–526
setting of change of time, III:521
solution of, III:491–493
steps to definition, III:487
usefulness of, III:493
use of, II:295, III:485–486,

III:489–490, III:536, III:603,
III:619

Stochastic discount factor, I:57–58
Stochastic integrals

defined, III:481–482
intuition behind, III:473–475
in Ito processes, III:487
properties of, III:482–483
steps in defining, III:474–475

Stochastic processes
behavior of, I:262
characteristic function of, III:496
characteristics of, II:360
continuous-time, III:496, III:506
defined, I:263–264, I:269n, II:518,

III:476, III:496
discrete time, II:501
properties of, II:515
representation of, II:514–515
and scaling, III:279
specification of, II:692–693

Stochastic programs
features of, III:124, III:132

Stochastic time series, linear,
II:401–402

Stochastic volatility models (SVMs)
with change of time, III:520
continuous-time, III:656
discrete, III:656–657
importance of, III:658
for modeling derivatives,

III:655–656
multifactor models for, III:657–658
and subordinators, III:521–522
use of, III:653, III:656

Stock indexes
interim cash flows in, I:482
risk control against, II:262–263

Stock markets
bubbles in, II:386
as complex system, II:47–48
1987 crash, II:521, III:585–586
dynamic relationships among,

II:393–396
effects of crises, III:233–234
variables effects on different sectors

of, II:55
Stock options, valuation of long-term,

I:449
Stock price models

binomial, III:161, III:171–173, III:173f
multinomial, III:180–182, III:181f,

III:184
probability distribution of

two-period, III:181t
Stock prices

anomalies in, II:111t
behavior of, II:58
correlation of, I:92–93
and dividends, II:4–5
lognormal, III:655–656
processes of, I:125

Stock research, main areas of, II:244t
Stock returns, II:56, II:159f
Stocks

batting average of, II:99, II:99f
characteristics of, II:204
common, II:4, II:316–322
cross-sectional, II:197
defined, II:106
defining parameters of, II:49
determinants of, II:245f
execution price of, III:626
fair value vs. expected return, II:13f
finding value for XYZ, Inc., II:31t
information coefficient of, II:98f
information sources for, II:90f
measures of consistency, II:99–100
mispriced, II:6–7
quantitative research metrics tests,

II:97–99
quintile spread of, II:97f
relative ranking of, I:196–197
review of correlations, II:101f
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sale/terminal price of, II:5
short selling of, I:432–433
similarities between, II:245f
sorting of, II:215
testing of, II:95, II:96f
that pay no dividend, II:17
use of, II:90
valuation of, II:6, II:8–9, II:14,

II:18–19
weightings of, II:101f

Stock selection
models for, II:197
in quantitative equity investment

process, II:105
quantitative model, II:94–95
for retail sector, II:94f
strategies for, II:195
tree for, II:379–381, II:380f

Stopping times, II:685
Straontonovich, Ruslan, II:470
Strategies, backtesting of, II:235–236
Stress tests, I:412, I:417, I:418, III:93,

III:596–597
Strike price, I:509, I:514
Strong Law of Large Numbers

(SLLN), I:270n, III:263–264
Structural breaks, I:167, III:274–275
Student’s t distribution

applications to stock returns,
III:215–216

and AVaR, III:334–335
classical, II:734–738
density function of, II:735
discussion of, III:213–216
distribution function of, III:215f
for downside risk estimation,

III:386–387
fitting and simulation of, II:737–738
heavy tails of, I:160n, I:176,

II:747–748, II:751, III:227–228
limitations of, II:736
in modeling credit risk, I:387–388
normals representation in,

I:177–178
skewed, II:736–737, II:753n
skewness of, III:390
standard deviation of, I:173n
symmetry of, III:387
tails of, III:392
use of, I:153–154, I:172n, III:234

Student’s t-test, II:219
Sturge’s rule, II:495
Style analysis, II:189
Style factors, II:247
Style indexes, II:48
Stylized facts, II:503–504
Subadditivity property, III:328
Subordinated processes, I:186n,

III:277, III:521–522

Successive over relaxation (SOR)
method, II:677

Summation stability property
(Gaussian distribution),
II:732–733

Supervisory Capital Assessment
Program, I:300, I:412

Support, defined, III:200
Survey bias, I:293
Survival probability, I:533–535
Swap agreements, I:434, I:435–436n
Swap curves, I:226, II:275–276
Swap rates, I:226, III:536f
Swaps

with change of time method, III:522
covariance/correlation, I:547–548,

I:549–550, I:552
duration-matched, I:285
freight rate, I:558
modeling and pricing of, I:548–550
summary of studies on, I:546t
valuing of, I:434–435

Swap spread (SS) risk, II:278, II:278t
Swaptions, I:502–503, III:550
Synergies, in conglomerates, II:43–44
Systematic risk, II:290
Systems

homogenous, II:624
linear, II:624
types of, II:47, II:58

Tailing the hedge, defined, I:433
Tail losses

in loss functions, III:369–370
Tail probability, III:320
Tail risk, I:377, I:385, II:752
Tails

across assets through time,
II:735–736

behavior of in operational losses,
III:111–112

in density functions, III:203
dependence, I:327–328, I:387
Gaussian, III:98–99, III:260
heavy, II:734–744, III:238
modeling heaviness of, II:742–743
for normal and STS distributions,

III:246t
power tail decay property, II:739,

III:244
properties of, III:261–262
tempering of, II:741

Takeovers, probability of, I:144–145
Tangential contour lines, I:29–30, I:30f,

I:32f
Tanker market, I:565
TAR-F test, II:426
TAR(1) series, simulated time plot of,

II:404f

Tatonnement, concept of, II:468
Taxes

and bonds, I:226
capital gains, II:73
cash, II:573
for cash/futures transactions, I:484
complexity of, II:73–74
deferred income, II:535, II:538
effect on returns, II:83–84, II:84,

II:85n
in financial statements, II:541
impact of, I:286–287
incorporating expense of, II:73–75
managing implications of, III:146
and Treasury strips, I:218

Tax policy risk, II:282–283
Technology, effect of on relative

values, II:37
Telescoping futures strategy, I:433
Tempered stable distributions

discussions of, III:246–252,
III:384–386

generalized (GTS), III:249
Kim-Rachev (KRTS), III:251–252
modified (MTS), III:249–250
normal (NTS), III:250–251
probability densities of, III:247f,

III:248f, III:250f, III:252f
rapidly decreasing (RDTS), III:252
tempering function in, III:254,

III:258n
Tempered stable processes,

III:499–501, III:500t, III:512–517
Tempering functions, III:254, III:255t
Templates, for data storage, II:204
Terminal profit, options and forwards,

I:438f, I:439f
Terminal values, II:45
Terminology

of delinquency, default and loss,
III:56

of prepayment, III:49–50
standard, of tree models, II:376

Term structure
in contiguous time, III:572–573
continuous time models of,

III:570–571
defined, III:560
eclectic theory of, III:570
of forward rates, III:586
mathematical relationships of,

III:562
modeling of, I:490–494, III:560
of partial differential equations,

III:583–584
in real world, III:568–570

Term structure modeling
applications of, III:584–586
arbitrage-free, III:594
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Term structure modeling (Continued )
calibration of, III:580–581
discount function in, III:565
discussion of, III:560–561

Term structure models
approaches to, III:603–604
defined, I:262, I:263
discrete time, III:562–563
discussion of, III:561–562
of interest rates, I:314
internal consistency checks for,

III:581
with no mean reversion, III:613–616
for OAS, I:265–267
quantitative, III:563
static vs. dynamic, III:561–562

Term structures, III:567–568, III:570,
III:579, III:587

Tests
Anderson-Darling (AD), III:112–113
BDS statistic, II:423–424, II:427
bispectral, II:422–423
cointegration, II:708–710
Kolmogorov-Smirnov (KS),

III:112–113
monotonic relation (MR), II:219
nonlinearity, II:426–427, II:427t
nonparametric, II:422–424
out-of-sample vs. in-sample,

II:236
parametric, II:424–426
RESET, II:424–425
run tests, III:364
threshold, II:425–426
for uniformity, III:366

TEV (tracking error volatility), II:180,
II:186, II:272–274, II:286–287

Theil-Sen regression algorithm,
II:440–442, II:443–446,
II:444t

The Internal Measurement Approach
(BIS), III:100n

Theoretical value, determination of,
III:10–11

Théorie de la Spéculation (The Theory of
Speculation) (Bachelier),
II:121–122, II:469

Theory of point processes, II:470–471
Three Mile Island power plant crisis,

II:51–52
Three-stage growth model, II:9–10
Threshold autoregressive (TAR)

models, II:404–408
Thresholds, II:746–747
Through the cycle, defined, I:302–303,

I:309–310
Thurstone, Louis Leon, II:154
Tick data. See high-frequency data

(HFD)

Time
in differential equations, II:643–644
physical vs. intrinsic scales of, II:742
use of for financial data, II:546–547

Time aggregation, II:369
Time decay, I:509, I:513, I:521f
Time dependency, capture of,

II:362–363
Time discretization, II:666, II:679
Time increments

models of, I:79
in parameter estimation, I:83

Time intervals, size of, II:300–301
Time lags, II:299–300
Time points, spacing of, II:501
Time premiums, I:485
Time series

autocorrelation of, II:331
causal, II:504
concepts of, II:501–503
continuity of, I:80
defined, II:501–502, II:519
fractal nature of, III:480
importance of, II:360
multivariate, II:502
stationary, II:502
stationary/nonstationary, II:299
for stock prices, II:296

Time to expiry, I:513
Time value, I:513, I:513f, II:595–596
TIPS (Treasury inflation-protected

securities)
and after-tax inflation risk, I:287
apparent real yield premium, I:293f
effect of inflation and flexible price

CPI, I:292f
features of, I:277
and flexible price CPI, I:291f
and inflation, I:290, I:294
performance link with short-term

inflation, I:291–292
real yields on, I:278
spread to nominal yield curve,

I:281f
volatility of, I:288–290, I:294
vs. real yield, I:293–294
10-year data, I:279–280
yield of, I:284
yields from, I:278

TLF model, strengths of, III:388–389
Total asset turnover ratio, II:558
Total return reports, II:237t
Total return swaps, I:540–542,

I:541–542
Trace test statistic, II:392
Tracking error

actual vs. predicted, II:69
alternate definitions of, II:67–68
defined, II:115, II:119

estimates of future, II:69
as measure of consistency, II:99–100
reduction of, II:262–263
standard definition, II:67
with TIPS, I:293

Tracking error volatility (TEV). See
TEV (tracking error volatility)

Trade optimizers, role of, II:116–117
Trades

amount needed for market impact,
III:624

cash-and-carry, I:487
crossing of, II:75
importance of execution of, III:623,

III:631
measurement of size, III:628
in portfolio construction, II:104,

II:116–117
round-trip time of, II:451
size effects of, III:372, III:630
speed of, II:105
timing of, III:628–629

Trading costs, II:118, III:627–628,
III:631–632

Trading gains, defined, I:122, I:123
Trading horizons, extending, III:624
Trading lists, II:289t
Trading strategies

backtesting of, II:236–237
categories of, II:195
in continuous-state,

continuous-time, I:122
development of factor-based,

II:197–198, II:211
factor-based, II:195, II:232–235
factor weights in, II:233f
in multiperiod settings, I:105
risk to, II:198–200
self-financing, I:126–127, I:136

Trading venues, electronic, II:57
Training windows, moving, II:713–714
Tranches, III:38, III:39t, III:45
Transaction costs

in backtesting, II:235
in benchmarking, II:67
components of, II:119
consideration of, II:64, II:85–86n
dimensions of, III:631
effect of, I:483
figuring, II:85n
fixed, II:72–73
forecasting of, II:113–114
incorporation of, II:69–73, II:84
international, III:629
linear, II:70
and liquidity, III:624–625
managing, III:146
measurement of, III:626
piecewise-linear, II:70–72, II:71f
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quadratic, II:72
in risk modeling, II:693
types of, III:623

Transformations, nonlinear,
III:630–631

Transition probabilities, I:368, I:381t
Treasuries

correlations of, III:405t
covariance matrix of, III:406t
curve risk, II:277t
discount function for, III:564–565
futures, I:482
inflation-indexed, I:286
movements of, III:403f
on-the-run, I:227, III:7, III:560
par yield curve, I:218t
spot rates, I:220
3-month, II:415–416, II:416f
volatility of, III:404–406, III:406t

Treasury bill rates, weekly data, I:89f
Treasury inflation-protected securities

(TIPS). See TIPS (Treasury
inflation-protected securities)

Treasury Regulation T (Reg T), I:67
Treasury securities, I:210–211

comparable, defined, III:5
in futures contracts, I:483
hypothetical, illustration of

duration/convexity,
III:308–310, III:308t

maturities of, I:226
options on, I:490
par rates for, I:217
prediction of 10-year yield,

II:322–328
valuation of, I:216
yield of, II:324–327t

Treasury strips, I:218t, I:220–221, I:286,
III:560

Treasury yield curves, I:226, III:561
Trees/lattices

adjusted to current market price,
I:496f

bushy trees, I:265, I:266f
calibrated, I:495
convertible bond value, I:274–275
extended pricing tree, III:23f
from historical data, III:131f
pruning of, II:377
stock price, I:274
three-period scenario, III:131f
trinomial, I:81, I:273, I:495–496
use of in modeling, I:494–496

Trees/lattices, binomial
building of, I:273
for convertible bonds, I:275f
discussion of, I:80–81
interest rate, I:244
model of, I:273–275

stock price model, III:173
term structure evolution, I:495f
use of, I:114–115, I:114f

Trends
deterministic, II:383
in financial time series, II:504
and integrated series, II:512–514
stochastic, II:383, II:384

Treynor-Black model., I:203n
Trinomial stochastic models, II:11–12
Truncated Lévy flight (TLF), III:382,

III:384–386
IDD in, III:386
time scaling of, III:385f

Truncation, III:385–386
Truth in Savings Act, II:615
T-statistic, II:240n, II:336, II:350, II:390
Tuple, defined, III:157
Turnover

assessment of, III:68
defined, III:66
in MBSs, III:48
in portfolios, II:234, II:235

Two beta trap, I:74–77
Two-factor models, III:553–554
Two-stage growth model, II:9

U.K. index-linked gilts, tax treatment
of, I:287

Uncertainties
and Bayesian statistics, I:140
in measurement processes, II:367
modeling of, II:306, III:124,

III:131–132
and model risk, II:729
quantification of, I:101
representation of, III:128
time behavior of, II:359

Uncertainty sets
effect of size of, III:143
in portfolio allocation, II:80
selection of, III:140–141
structured, III:143–144
in three dimensions, II:81f
use of, III:138, III:140

Uncertain volatility model, II:673–674
Underperformance, finding reasons

for, II:118
Underwater, on homeowner’s equity,

III:73
Unemployment rate

as an economic measure, II:398
application of TAR models to,

II:405–406
characteristics of series, II:430
forecasts from, II:433
performance of forecasting,

II:432–433, II:432t
and risk, II:292n

test of nonlinearity, II:431, II:431t
time plot of, II:406f, II:430f

Uniqueness, theorem of, III:490
Unit root series, II:385
Univariate linear regression model,

I:163–170
Univariate stationary series, II:504
U.S. Bankruptcy Code. See also

bankruptcy
Chapter 7, I:350
Chapter 11, I:342, I:350

Utility, I:56, II:469, II:471, II:719–720

Validation, out of sample, II:711
Valuation

arbitrage-free, I:216–217, I:220–222,
I:221t

and cash flows, I:223
defined, I:209
effect of business cycle on, I:303–304
fundamental principle of, I:209
with Monte Carlo simulation,

III:6–12
of natural gas/oil storage, I:560–561
of non-Treasury securities,

I:222–223
relative, I:225, II:34–40, II:44–45
risk-neutral, I:557, III:595–596,

III:601
total firm, II:21–23
uncertainty in, II:15
use of lattices for, I:240

Value
absolute vs. relative basis of,

I:259–260
analysis of relative, I:225
arbitrage-free, I:221
book vs. market of firms, II:559–560
determining present, II:600–601
formulas for analysis of, II:238–239
identification of relative, I:405
intrinsic, I:484–485
present, discounted, II:601f
relative, I:405, II:37–38
vs. price, I:455n

Value at risk (VaR). See also CVaR
(credit value at risk)

in backtesting, II:748
backtesting of, II:749f, III:325–327,

III:365–367
boxplot of, III:325f
and coherent risk measures, III:329
conditional, III:332, III:355–356,

III:382
deficiencies in, I:407, III:321,

III:331–332, III:347
defined, II:754n, III:319–322
density and distribution functions,

III:320f
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Value at risk (VaR) (Continued )
determining from simulation,

III:639f
distribution-free confidence

intervals for, III:292–293
estimation of, II:366, III:289–290,

III:373–376, III:644, III:644t
exceedances of, III:325–326
IDD in, III:290
interest rate covariance matrix in,

III:403
levels of confidence with,

III:290–291
liquidity-adjusted, III:374, III:376
in low market volatility, II:748
measurements by, II:354
methods of computation, III:323
modeling of, II:130–131, III:375–376
and model risk, II:695
normal against confidence level,

III:294f
portfolio problem, I:193
in practice, III:321–325
relative spreads between

predictions, II:750f, II:751f,
II:752f

as safety-first risk measure,
III:355

standard normal distribution of,
III:324t

use of, II:365
vs. deviation measures, III:320–321

Value of operations, process for
finding, II:30t

Values, lagged, II:130
Van der Korput sequences, III:650
Variables

antithetic, III:647–648
application of macro, II:193n
behavior of, III:152–153
categorical, II:333–334, II:350
classification, II:176
declaration of in VBL, III:457–458
dependence between, II:306–307
dependent categorical, II:348–350
dependent/independent in CAPM,

I:67
dichotomous, II:350
dummy, II:334
exogenous vs. endogenous, II:692
fat-tailed, III:280
independent and identically

distributed, II:125
independent categorical, II:333–348
interactions between, II:378
large numbers of, II:147
macroeconomic, II:54–55, II:177
in maximum likelihood

calculations, II:312–313

mixing of categorical and
quantitative, II:334–335

nonstationary, II:388–393
as observation or measurement,

II:306
random, I:159n
in regression analysis, II:330
separable, II:647
slope, III:553
split formation of, III:130f
spread, II:336
standardization of, II:205
stationary, II:385, II:386
stationary/nonstationary, II:384–386
stochastic, III:159–164
use of dummy, II:335, II:343–344

Variables, random, II:297
α-stable, III:242–244, III:244–245
Bernoulli, III:169
continuous, III:200–201, III:205–206
on countable spaces, III:160–161,

III:166
defined, III:162
discrete, III:165
infinitely divisible, III:253
in probability, III:159–164
sequences of, I:389
on uncountable spaces, III:161–162
use of, I:82

Variance gamma process, III:499,
III:504

Variance matrix, II:370–371
Variances

addressing inequality of, I:168
based on covariance matrix, II:161t,

II:163t, II:164f
conditional, I:180
conditional/unconditional, II:361
in dispersion parameters,

III:202–203
equal, I:164
as measure of risk, I:8
in probablity, III:167–169
reduction in, III:647–651
unequal, I:167–168, I:172

Variances/covariances, II:112–113,
II:302–303, III:395–396

Variance swaps, I:545–547, I:549,
I:552

Variational formulation, and finite
element space, II:670–672

Variation margins, I:478
Vasicek model

with change of time, III:523–524
for coupon-bond call options,

I:501–502
distribution of, I:493
in history, I:491
for short rates, III:545–546

use of, I:89, I:497
valuing zero-coupon bond calls

with, I:499–500
VBA (Visual Basic for Applications)

built-in numeric functions of, III:456
comments in, III:453
control flow statements, III:458–460
debugging in, III:461
debugging tools of, III:461, III:477
example programs, III:449–452,

III:461–466
in Excel, III:449, III:450f
FactorialFun1, III:455–456
functions, user-defined, III:463f
functions in, III:477
generating Brownian motion paths

in, III:463–465
If statements, III:459
For loops, III:458–459
methods (actions) in, III:452–453
modules, defined, III:455
as object-oriented language, III:452,

III:466
objects in, III:452
operators in, III:459–460
Option Explicit command, III:458
pricing European call options,

III:465–466
programing of input dialog boxes,

III:460–461
programming tips for, III:454–461
properties in, III:453
random numbers in, III:464–465
subroutines and user-defined

functions in, III:466–477
subroutines vs. user-defined

functions in, III:455–457
use of Option Explicit command,

III:458
user-defined functions, III:463f
user interaction with, III:460–461
variable declaration in, III:457–458
With/End structure in, III:453–454
writing code in, III:453–454

Vech notation, II:371–372
VEC model, II:372
Vector autoregressive (VAR) model,

II:393
Vectors, II:621–622, II:625–626, II:628
Vega, I:521
Vichara Technology, III:41–42, III:43t
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