








A Parent-friendly Guide to Python Programming

B r y s o n P a y n e

Teach
Your Kids
To Code

Teach
Your Kids
to Code

www.allitebooks.com

http://www.allitebooks.org

Advance Praise for

Teach Your Kids to Code

“The text is clear, the graphics are engaging, and the apps are

awesome. This is the programming guide for parents and kids to

enjoy together.”

—Aaron Walker, Cybersecurity Expert, NASA

 “The energy and excitement Bryson brings to teaching is captured

perfectly in Teach Your Kids to Code, with colorful, captivating

games and graphics that help develop real-world skills.”

—Bindy Auvermann, Executive Director, Next Generation Youth

Development, Inc.

“Provides the building blocks of a great future in the rapidly

changing world of technology.”

—JoAnne Taylor, former Vice President, Global

Telecommunications, IBM

“The concepts in Teach Your Kids to Code can help any young

person enhance their college prospects and expand their career

opportunities, and Dr. Payne presents these skills through fun,

challenging games and apps.”

—Dr. Raj Sunderraman, Department Chair of Computer Science,

Georgia State University

“Every child on the planet should have this book, and so should

every parent.”

—James E. Daniel, Jr., Founder, App Studios, LLC

“An innovative, motivating guide . . . Builds skills that can last a

lifetime.”

—Dr. Steven Burrell, Vice President for Information Technology &

CIO, Georgia Southern University

“The kind of book I wish I’d had as a kid.”

—Scott Hand, Software Engineer, CareerBuilder

www.allitebooks.com

http://www.allitebooks.org

“Dr. Bryson Payne is a computer scientist and professor of the

highest caliber, and with Teach Your Kids to Code, he brings the

power of computers within easy reach for readers young and old.”

—Dr. Antonio Sanz Montemayor, Informatics Professor,

Universidad Rey Juan Carlos, Spain

 “A brilliant combination of engaging, imaginative apps and

valuable, lifelong skills.”

—Ted Cunningham, author of The Power of Home

 “Teach Your Kids to Code and the logical thinking it introduces

will help build the next generation of technology leaders.”

—N. Dean Meyer, author and executive coach

“This book can jump-start your child’s success in a high-tech

world.”

—Ken Coleman, leadership author and former radio host of

The Ken Coleman Show

“Dr. Payne set us on the path that led us to our dream jobs! With

Teach Your Kids to Code, he’s providing parents and teachers

everywhere the chance to do the same for the next generation of

creative problem-solvers.”

—Shah and Susan Rahman, Riot Games

“Bryson helps people improve their lives with technology. His book

does the same.”

—Ash Mady, Technical Manager, RedHat, Inc.

“Enjoyable and accessible to parents and children alike.”

—Steve McLeod, Deputy CIO, University of North Georgia

“Dr. Payne used robots, games, and fun programs to motivate me

in college, and Teach Your Kids to Code extends that same passion

for coding cool apps beyond the walls of the campus.”

—Bobby Brown, Lead Developer, GetUWired

www.allitebooks.com

http://www.allitebooks.org

Teach Your Kids to Code

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Teach

Your Kids

to Code
A Parent-Friendly Guide to

Python Programming

By Bryson Payne

San Francisco

www.allitebooks.com

http://www.allitebooks.org

TeAch Your Kids To code. Copyright © 2015 by Bryson Payne.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any

means, electronic or mechanical, including photocopying, recording, or by any information storage

or retrieval system, without the prior written permission of the copyright owner and the publisher.

19 18 17 16 15 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-614-1

ISBN-13: 978-1-59327-614-0

Publisher: William Pollock

Production Editor: Riley Hoffman

Cover Illustration: Josh Ellingson

Illustrator: Miran Lipovac� a
Developmental Editors: Tyler Ortman and Leslie Shen

Technical Reviewers: Michelle Friend and Ari Lacenski

Copyeditor: Rachel Monaghan

Compositor: Riley Hoffman

Proofreader: Paula L. Fleming

Indexer: BIM Indexing & Proofreading Services

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.

245 8th Street, San Francisco, CA 94103

phone: 415.863.9900; info@nostarch.com

www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Payne, Bryson.

 Teach your kids to code : a parent-friendly guide to Python programming / by Bryson Payne. -- 1st edition.

 pages cm

 Includes index.

 Summary: "A guide to teaching basic programming skills for parents and teachers, with step-by-step

explanations, visual examples, and exercises. Covers programming concepts including loops, lists, functions,

and variables, and how to build games and applications"-- Provided by publisher.

 ISBN 978-1-59327-614-0 -- ISBN 1-59327-614-1

 1. Python (Computer program language)--Study and teaching (Elementary) 2. Computer programming--Study

and teaching (Elementary) 3. Python (Computer program language)--Study and teaching (Middle school) 4.

Computer programming--Study and teaching (Middle school) I. Title.

 QA76.73.P98P39 2015

 005.13'3--dc23

 2015006794

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.

Other product and company names mentioned herein may be the trademarks of their respective

owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are

using the names only in an editorial fashion and to the benefit of the trademark owner, with no inten-

tion of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precau-

tion has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall

have any liability to any person or entity with respect to any loss or damage caused or alleged to be

caused directly or indirectly by the information contained in it.

www.allitebooks.com

http://www.allitebooks.org

To Alex and Max,

my two favorite coders

www.allitebooks.com

http://www.allitebooks.org

About the Author

Dr. Bryson Payne is a tenured professor of computer science at the

University of North Georgia, where he has taught aspiring coders

for more than 15 years. His students have built successful careers

at Blizzard Entertainment, Riot Games, Equifax, CareerBuilder,

and more. He was the first department head of computer science at

UNG, and he holds a PhD in computer science from Georgia State

University. In addition, he works extensively with K–12 schools to

promote technology education.

Dr. Payne has been programming for more than 30 years. The

first program he sold was to RUN magazine (Commodore 64) for

their “Magic” column in 1985, for $10.

Dr. Payne lives north of Atlanta, Georgia, with his wife, Bev,

and two sons, Alex and Max.

About the Illustrator

Miran Lipovac� a is the author of Learn You a Haskell for Great

Good!. He enjoys boxing, playing bass guitar, and, of course,

 drawing. He has a fascination with dancing skeletons and the

number 71, and when he walks through automatic doors he pre-

tends that he’s actually opening them with his mind.

About the Technical Reviewer

Ari Lacenski is a developer of Android applications and Python

software. She lives in San Francisco. She writes about Android

programming at http://gradlewhy.ghost.io/, mentors with Women

Who Code, and plays songs about space pirates on guitar.

www.allitebooks.com

http://www.nostarch.com/lyah.htm
http://www.nostarch.com/lyah.htm
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

BRIEF CONTENTS

Acknowledgments . xix

Introduction: What Is Coding and Why Is It Good for Your Kids? xxi

Chapter 1: Python Basics: Get to Know Your Environment 1

Chapter 2: Turtle Graphics: Drawing with Python 11

Chapter 3: Numbers and Variables: Python Does the Math 31

Chapter 4: Loops Are Fun (You Can Say That Again) 53

Chapter 5: Conditions (What If?) . 77

Chapter 6: Random Fun and Games: Go Ahead, Take a Chance! 105

Chapter 7: Functions: There’s a Name for That . 141

Chapter 8: Timers and Animation: What Would Disney Do? 175

Chapter 9: User Interaction: Get into the Game . 207

Chapter 10: Game Programming: Coding for Fun 231

Appendix A: Python Setup for Windows, Mac, and Linux 263

Appendix B: Pygame Setup for Windows, Mac, and Linux 279

Appendix C: Building Your Own Modules . 289

Glossary . 295

Index . 301

CONTENTS IN DETAIL

Acknowledgments xix

Introduction
What Is Coding and Why Is It Good for Your Kids? xxi

Why Should Kids Learn to Code? . xxii

Coding Is Fun . xxii

Coding Is a Valuable Job Skill . xxii

Where Can Kids Learn to Code? . xxiii

How to Use This Book . .xxiv

Explore! .xxiv

Do It Together! . xxv

Online Resources . xxv

Coding = Solving Problems . .xxvi

1
Python Basics: Get to Know Your Environment 1

Getting Started with Python . 3

1 . Download Python . 4

2 . Install Python . 5

3 . Test Python with a Program . 5

Writing Programs in Python . 6

Running Programs in Python . 6

What You Learned . 7

Programming Challenges . 8

#1: Mad Libs . 8

#2: More Mad Libs! . 9

2
Turtle Graphics: Drawing with Python 11

Our First Turtle Program . 12

How It Works . 13

What Happens . 14

Turtle on a Roll . 16

Turtle Roundup . 17

Adding a Touch of Color . 19

A Four-Color Spiral . 20

Changing Background Colors . 23

One Variable to Rule Them All . 25

xiv Contents in Detail

What You Learned . 27

Programming Challenges . 27

#1: Changing the Number of Sides . 27

#2: How Many Sides? . 28

#3: Rubber-Band Ball . 28

3
Numbers and Variables: Python Does the Math 31

Variables: Where We Keep Our Stuff . 32

Numbers and Math in Python . 34

Python Numbers . 34

Python Operators . 35

Doing Math in the Python Shell . 36

Syntax Errors: What Did You Say? . 37

Variables in the Python Shell . 38

Programming with Operators: A Pizza Calculator 39

Strings: The Real Characters in Python . 42

Improving Our Color Spiral with Strings . 44

Lists: Keeping It All Together . 46

Python Does Your Homework . 48

What You Learned . 50

Programming Challenges . 52

#1: Circular Spirals . 52

#2: Custom Name Spirals . 52

4
Loops Are Fun (You Can Say That Again) 53

Building Your Own for Loops . 55

Using a for Loop to Make a Rosette with Four Circles 56

Modifying Our for Loop to Make a Rosette with Six Circles 58

Improving Our Rosette Program with User Input . 59

Game Loops and while Loops . 61

The Family Spiral . 64

Putting It All Together: Spiral Goes Viral . 68

What You Learned . 73

Programming Challenges . 74

#1: Spiral Rosettes . 74

#2: A Spiral of Family Spirals . 75

Contents in Detail xv

5
Conditions (What If?) 77

if Statements . 79

Meet the Booleans . 81

Comparison Operators . 81

You’re Not Old Enough! . 84

else Statements . 85

Polygons or Rosettes . 86

Even or Odd? . 88

elif Statements . 91

Complex Conditions: if, and, or, not . 92

Secret Messages . 95

Messin’ with Strings . 96

The Value of Character(s) . 97

Our Encoder/Decoder Program . 99

What You Learned . 101

Programming Challenges . 102

#1: Colorful Rosettes and Spirals . 102

#2: User-Defined Keys . 102

6
Random Fun and Games: Go Ahead, Take a Chance! 105

A Guessing Game . 106

Colorful Random Spirals . 109

Pick a Color, Any Color . 110

Getting Coordinated . 111

How Big Is Our Canvas? . 113

Putting It All Together . 114

Rock-Paper-Scissors . 116

Pick a Card, Any Card . 119

Stacking the Deck . 119

Dealing Cards . 120

Counting Cards . 121

Keeping It Going . 123

Putting It All Together . 125

Roll the Dice: Creating a Yahtzee-Style Game . 126

Setting Up the Game . 126

Sorting the Dice . 127

Testing the Dice . 128

Putting It All Together . 129

Kaleidoscope . 132

xvi Contents in Detail

What You Learned . 136

Programming Challenges . 138

#1: Random Sides and Thickness . 138

#2: Realistic Mirrored Spirals . 139

#3: War . 139

7
Functions: There’s a Name for That 141

Putting Things Together with Functions . 142

Defining random_spiral() . 143

Calling random_spiral() . 144

Parameters: Feeding Your Function . 146

Smileys at Random Locations . 146

Putting It All Together . 151

Return: It’s What You Give Back That Counts . 153

Returning a Value from a Function . 153

Using Return Values in a Program . 154

A Touch of Interaction . 157

Handling Events: TurtleDraw . 158

Listening for Keyboard Events: ArrowDraw 160

Handling Events with Parameters: ClickSpiral 163

Taking It One Step Further: ClickandSmile 166

ClickKaleidoscope . 168

The draw_kaleido() Function . 168

The draw_spiral() Function . 169

Putting It All Together . 170

What You Learned . 172

Programming Challenges . 173

#1: Mirrored Smileys . 173

#2: More Ping-Pong Calculations . 173

#3: A Better Drawing Program . 173

8
Timers and Animation: What Would Disney Do? 175

Getting All GUI with Pygame . 176

Drawing a Dot with Pygame . 177

What’s New in Pygame . 180

The Parts of a Game . 181

Timing It Just Right: Move and Bounce . 185

Moving a Smiley . 186

Animating a Smiley with the Clock Class . 188

Bouncing a Smiley Off a Wall . 190

Bouncing a Smiley Off Four Walls . 197

Contents in Detail xvii

What You Learned . 201

Programming Challenges . 203

#1: A Color-Changing Dot . 203

#2: 100 Random Dots . 203

#3: Raining Dots . 205

9
User Interaction: Get into the Game 207

Adding Interaction: Click and Drag . 208

Clicking for Dots . 208

Dragging to Paint . 211

Advanced Interaction: Smiley Explosion . 215

Smiley Sprites . 215

Setting Up Sprites . 218

Updating Sprites . 220

Bigger and Smaller Smileys . 221

Putting It All Together . 222

SmileyPop, Version 1 .0 . 224

Detecting Collisions and Removing Sprites 224

Putting It All Together . 226

What You Learned . 227

Programming Challenges . 228

#1: Randomly Colored Dots . 228

#2: Painting in Colors . 229

#3: Throwing Smileys . 229

10
Game Programming: Coding for Fun 231

Building a Game Skeleton:

Smiley Pong, Version 1 .0 . 232

Drawing a Board and Game Pieces . 234

Keeping Score . 235

Showing the Score . 241

Putting It All Together . 243

Adding Difficulty and Ending the Game: Smiley Pong, Version 2 .0 245

Game Over . 246

Play Again . 246

Faster and Faster . 247

Putting It All Together . 250

Adding More Features: SmileyPop v2 .0 . 252

Adding Sound with Pygame . 252

Tracking and Displaying Player Progress . 254

Putting It All Together . 257

xviii Contents in Detail

What You Learned . 260

Programming Challenges . 261

#1: Sound Effects . 261

#2: Hits and Misses . 262

#3: Clear the Bubbles . 262

A
Python Setup for Windows, Mac, and Linux 263

Python for Windows . 264

Download the Installer . 264

Run the Installer . 265

Try Out Python . 269

Python for Mac . 271

Download the Installer . 271

Run the Installer . 272

Try Out Python . 275

Python for Linux . 276

B
Pygame Setup for Windows, Mac, and Linux 279

Pygame for Windows . 280

Pygame for Mac . 284

Python 2 .7 and Pygame 1 .9 .2 . 284

Pygame for Linux . 287

Pygame for Python 2 . 287

C
Building Your Own Modules 289

Building the colorspiral Module . 290

Using the colorspiral Module . 291

Reusing the colorspiral Module . 292

Additional Resources . 294

Glossary 295

Index 301

Acknowledgments

This book would not have been possible without the exceptional

support of the No Starch Press team. Thanks especially to Bill

Pollock for believing in the project; to Tyler Ortman for champion-

ing and editing; and to Leslie Shen, Riley Hoffman, Lee Axelrod,

Mackenzie Dolginow, Serena Yang, and Laurel Chun for their

indefatigable editing, reviewing, marketing, and production prowess

and for the countless ways they helped me improve this book from

my original manuscript. And thanks to Rachel Monaghan and

Paula Fleming for their help copyediting and proofreading.

Thanks to Michelle Friend and Ari Lacenski for their thought-

ful and thorough technical review, and to Conor Seng for being the

first to read the book and try out the programs—at 10 years old.

Thanks to Miran Lipovac� a for his amazing illustrations—they

bring the kind of life to the text that I could only have dreamed of.

Thanks to my father-in-law, Norman Petty, a retired IBM’er,

who began teaching himself Python using an early draft of the book.

Special thanks to my wife and best friend, Bev, for her con-

stant support, and to my amazing sons, Alex and Max, for helping

test every program and suggesting improvements. This book and

my entire life are infinitely better because of the three of you.

Finally, thanks to my mom, Esta, who encouraged me to love

learning and solving puzzles.

www.allitebooks.com

http://www.allitebooks.org

Introduction
WHAT IS CODING AND WHY

IS IT GOOD FOR YOUR KIDS?

Computer programming, or coding, is a crucial skill

every child should be learning. We use computers

to solve problems, play games, help us work more

effectively, perform repetitive tasks, store and recall

information, create something new, and connect with

our friends and the world. Understanding how to code

puts all this power at our fingertips.

xxii Introduction

Everyone can learn to code; it’s just like solving a puzzle or a

riddle. You apply logic, try a solution, experiment a little more, and

then solve the problem. The time to start learning to code is now!

We are at an unprecedented time in history: never before could bil-

lions of people connect with one another every day like we do now

with computers. We live in a world of many new possibilities, from

electric cars and robot caregivers to drones that deliver packages

and even pizza.

If your children start learning to code today, they can help

define this fast-changing world.

Why Should Kids Learn to Code?

There are many great reasons to learn computer programming,

but here are my top two:

•	 Coding is fun.

•	 Coding is a valuable job skill.

Coding Is Fun

Technology is becoming a part of everyday life. Every company,

charitable organization, and cause can benefit from technology.

There are apps to help you buy, give, join, play, volunteer, connect,

share—just about anything you can imagine.

Have your children wanted to build their own level for their

favorite video game? Coders do that! What about create their own

phone app? They can bring that idea to life by programming it on

a computer! Every program, game, system, or app they’ve ever

seen was coded using the same programming building blocks

they’ll learn in this book. When kids program, they take an active

role in technology—they’re not just having fun, they’re making

something fun!

Coding Is a Valuable Job Skill

Coding is the skill of the 21st century. Jobs today require more

problem-solving ability than ever before, and more and more

careers involve technology as an integral requirement.

The US Bureau of Labor Statistics predicts that more

than 8 million technology jobs will be created in just the next

five years. Seven of the ten fastest-growing occupations in the

What Is Coding and Why Is It Good for Your Kids? xxiii

2014–2015 Occupational Outlook Handbook that do not require

master’s or doctoral degrees are in the computer science or infor-

mation technology (IT) fields.

Mark Zuckerberg was a college student working from his dorm

room when he developed the first version of Facebook in 2004. Just

10 years later, 1.39 billion people were using Facebook every month

(source: http://newsroom.fb.com/company-info/). Never before in

history had an idea, product, or service been able to engage a billion

people in under a decade. Facebook demonstrates the power of tech-

nology to reach more people, faster, than ever before.

Where Can Kids Learn to Code?

This book is only the beginning. There are more places than ever

to learn programming; websites like Code.org, Codecademy (see

Figure 1), and countless others teach basic to advanced program-

ming in a variety of in-demand programming languages. Once

you’ve completed this book with your kids, your children can take

free courses through websites like EdX, Udacity, and Coursera to

extend their learning even further.

Figure 1: Codecademy teaches you how to program step by step in a
variety of languages.

“Coding clubs” are a great way to have fun learning with

friends. Getting a college degree in a relevant field is still one of

the best ways to prepare for a career, but even if college isn’t an

option at the moment, your kids can begin building a program-

ming portfolio and demonstrating their skills as a programmer

and problem-solver today.

http://newsroom.fb.com/company-info/

xxiv Introduction

How to Use This Book

This book isn’t just for kids—it’s for parents, teachers, students,

and adults who want to understand the basics of computer pro-

gramming, both to have fun and to gain access to new jobs in the

high-tech economy. No matter what your age, you can have a

great time learning the basics of programming. The best way to do

this is to experiment and work together.

Explore!

Learning to program is exciting if you’re willing to try new things.

As you and your kids follow along with the programs in this book,

try changing numbers and text in the code to see what happens to

the program. Even if you break it, you’ll learn something new by

fixing it. In the worst case, all you have to do is retype the example

from the book or open the last saved version that worked. The point

of learning to code is to try something new, learn a new skill, and

solve problems in a new way. Make sure your kids are playing

around—testing their code by changing something, saving the pro-

gram, running it, seeing what happens, and fixing any errors.

The point of learning to code is to try something new, learn

a new skill, and solve problems in a new way. Test your code by

changing something, saving the program, running it, seeing what

happens, and fixing errors if needed.

For example, I wrote some code to make a colorful drawing

(Figure 2) and then went back, changed some numbers here and

there, and tried running the program again. This gave me another

drawing that was completely different but just as amazing. I went

back again, changed some other numbers, and got yet another beau-

tiful, unique drawing. See what you can do just by playing around?

Figure 2: Three colorful spiral drawings I created by trying different values in a line of code in
one program

What Is Coding and Why Is It Good for Your Kids? xxv

Do It Together!

Experimenting with code is a great way to learn how programs

work, and it’s even more effective if you work with someone else.

Whether you’re teaching a child or student or studying for yourself,

it’s not just more fun to play with code together—it’s also more

effective.

For example, in the Suzuki Method of music instruction, par-

ents attend lessons with their child and even study ahead so they

can help their child between lessons. Starting early is another

hallmark of the Suzuki Method; kids can start formal study by the

age of three or four.

I began introducing my two sons to programming when they

were two and four, and I encouraged them to have fun by changing

small parts of each program, like the colors, shapes, and sizes of

shapes.

I learned to program at the age of 13 by typing program

examples from books and then modifying them to make them do

something new. Now, in the computer science courses I teach, I

often give students a program and encourage them to play around

with the code to build something new.

If you’re using this book to teach yourself, you can work with

others by finding a friend to work through examples with you or

by starting an after-school or community coding club (see http://

coderdojo.com/ or http://www.codecademy.com/afterschool/ for

ideas and tips). Coding is a team sport!

Online Resources

All the program files for

this book are available at

http://www.nostarch.com/

teachkids/, as well as sample

solutions for the Programming

Challenges and other informa-

tion. Download the programs

and experiment with them

to learn even more. Use the

sample solutions if you get

stumped. Check it out!

http://coderdojo.com/
http://coderdojo.com/
http://www.codecademy.com/afterschool/
http://www.nostarch.com/teachkids/
http://www.nostarch.com/teachkids/

xxvi Introduction

Coding = Solving Problems

Whether your child is 2 years old and learning to count or 22

and looking for a new challenge, this book and the concepts it

introduces are a great pathway to a rewarding, inspiring pastime

and better career opportunities. People who can program—and

thus solve problems quickly and effectively—are highly valued in

today’s world, and they get to do interesting, fulfilling work.

Not all of the world’s problems can be solved with technology

alone, but technology can enable communication, collaboration,

awareness, and action at a scale and speed never before imagined.

If you can code, you can solve problems. Problem-solvers have the

power to make the world a better place, so start coding today.

1
PYTHON BASICS:

GET TO KNOW YOUR ENVIRONMENT

Just about anything could have a computer in

it—a phone, a car, a watch, a video game console,

an exercise machine, a medical device, industrial

equipment, a greeting card, or a robot. Computer pro-

gramming, or coding, is how we tell a computer to

perform a task, and understanding how to code puts

the power of computers at your fingertips.

2 Chapter 1

Computer programs—also called applications, or apps—tell

computers what to do. A web app can tell the computer how to keep

track of your favorite music; a game app can tell the computer how

to display an epic battlefield with realistic graphics; a simple app

can tell the computer to draw a beautiful spiral like the hexagon in

Figure 1-1.

Figure 1-1: A colorful spiral graphic

Some apps are composed of thousands of lines of code,

while others may be just a few lines long, like the program

NiceHexSpiral.py in Figure 1-2.

Python Basics: Get to Know Your Environment 3

Figure 1-2: NiceHexSpiral.py, a short Python
program that draws the spiral in Figure 1-1

This short program draws the colorful spiral shown in Fig-

ure 1-1. I wanted a pretty picture to use as an example in this

book, so I decided to solve that problem using a computer pro-

gram. First I sketched out an idea, and then I started coding.

In this chapter, we’ll download, install, and learn to use the

programs that will help us write code to build any kind of app you

can imagine.

Getting Started with Python

To begin coding, we have to speak the computer’s language.

Computers need step-by-step instructions, and they can only

understand certain languages. Just like a person from Russia

might not be able to understand English, computers only

understand languages made for them.

Computer code is written in program-

ming languages like Python, C++, Ruby,

or JavaScript. These languages allow us

to “talk” to our computer and give it com-

mands. Think about when you teach a

dog to do tricks—when you give the “sit”

command, he sits; when you say “speak,”

he barks. The dog understands those

simple commands, but not much else

you say.

4 Chapter 1

Likewise, computers have their own limitations, but they can

do whatever you tell them to do in their language. The language

we’ll use in this book is Python, a simple, powerful programming

language. Python is taught in introductory computer science

courses in high school and college, and it’s used to run some of

the most powerful apps in the world, including Gmail, Google Maps,

and YouTube.

To get you started using Python on your

computer, we’ll go through these three steps

together:

1. Download Python.

2. Install Python on your computer.

3. Test Python with a simple program

or two.

1. Download Python

Python is free and easy to get from the Python website, shown in

Figure 1-3.

Figure 1-3: The Python website makes it easy to download Python.

www.allitebooks.com

http://www.allitebooks.org

Python Basics: Get to Know Your Environment 5

In your web browser, go to https://www.python.org/. Hover

your mouse over the Downloads menu button near the top and

click the button that begins with Python 3.

2. Install Python

Find the file you just downloaded (it’s probably in your Downloads

folder) and double-click it to run and install Python and the IDLE

editor. IDLE is the program we’ll use to type and run our Python

programs. For detailed installation instructions, see Appendix A.

3. Test Python with a Program

In your Start menu or Applications folder, find the IDLE program

and run it. You’ll see a text-based command window like the one

shown in Figure 1-4. This is called the Python shell. A shell is

a window or screen that lets the user enter commands or lines

of code.

Figure 1-4: The IDLE Python shell—our command center for learning Python

The >>> is called a prompt, and it means that the computer is

ready to accept your first command. The computer is asking you to

tell it what to do. Type

print("Hello, world!")

and press enter or return on your keyboard. You should see

the Python shell respond by printing the text in quotes that you

entered inside the parentheses: Hello, world!. That’s it—you’ve

written your first program!

https://www.python.org/

6 Chapter 1

Writing Programs in Python

You’ll usually want to write programs that are longer than a single

line, so Python comes with an editor for writing longer programs.

In IDLE, go to the File menu and select File4New Window

or File4New File. A blank screen will pop up, with Untitled at

the top.

Let’s write a slightly longer program in Python. In the new,

blank window, type the following three lines of code:

YourName.py
name = input("What is your name?\n")
print("Hi, ", name)

The first line is called a comment. Comments, which begin

with a hash mark (#), are programming notes or reminders that

the computer ignores. In this example, the comment is just a note

to remind us of the program’s name. The second line asks the

user to input their name and remembers it as name. The third line

prints "Hi, " followed by the user’s name. Notice that there’s a

comma (,) separating the quoted text "Hi, " from the name.

Running Programs in Python

Go to the Run option on the menu above your program and select

Run4Run Module. This will run, or carry out, the instructions

in your program. It will first ask you to save the program. Let’s

call our file YourName.py. This tells your computer to save the pro-

gram as a file called YourName.py, and the .py part means this is

a Python program.

Python Basics: Get to Know Your Environment 7

When you save the file and run it, you’ll see your Python shell

window start the program by showing the question What is your

name?. Type your name on the next line and press enter. The pro-

gram will print Hi, followed by the name you typed. Since this is

all that you asked your program to do, the program will end, and

you’ll see the >>> prompt again, as shown in Figure 1-5.

Figure 1-5: The computer knows my name!

For younger learners, like my three-year-old son, it’s fun to

explain that the program is asking them to type their name. Max

knows the letters in his name, so he types m-a-x on the keyboard,

and he loves it when I tell him the program said Hi, max back to

him. Ask your young learner if she’d like the program to say some-

thing different. Max said “Hello,” so I edited the earlier program

on the third line to say Hello, instead of Hi,.

Then I changed the third line to read:

print("Hello, ", name, name, name, name, name)

Max loved it when the program replied to him with Hello, max

max max max max. Try experimenting with the second and third lines

of the program to have the computer ask different questions and

print different answers.

What You Learned

Learning to code is like learning to solve puzzles, riddles, or

brainteasers. You start with a problem, apply what you know,

and learn new things along the way. By the time you finish, you’ve

8 Chapter 1

exercised your mind, and you’ve answered a question. Hopefully,

you’ve also had fun.

In this chapter, we solved our first major problem: we installed

the Python programming language on our computers so that we

could start coding. It was as easy as downloading a file, installing

it, and running it.

In the chapters that follow, you’ll learn how to solve problems

using code. You’ll start with simple visual puzzles, like drawing

shapes on the computer screen (or a tablet or phone), and then

find out how to create simple games like Guess a Number, Rock-

Paper-Scissors, and Pong.

From the foundation you’ll build in these first programs, you

can go on to code games, mobile apps, web apps, and more.

At this point, you should . . .

•	 Have a fully functional Python programming environment and

text editor.

•	 Be able to enter programming commands directly into the

Python shell.

•	 Be able to write, save, run, and modify short programs

in IDLE.

•	 Be ready to try more advanced, fun programs in Chapter 2.

Programming Challenges

At the end of each chapter, you can practice what you’ve

learned—and make even cooler programs!—by trying a

couple of challenges. (If you get stuck, go to http://www

.nostarch.com/teachkids/ for sample answers.)

#1: Mad Libs

The simple YourName.py app has all the necessary compo-

nents for us to build a much more interesting program, like

the old-fashioned Mad Libs word games (go to http://www

.madlibs.com/ if you’ve never tried one before).

http://www.nostarch.com/teachkids/
http://www.nostarch.com/teachkids/
http://www.madlibs.com/
http://www.madlibs.com/

Python Basics: Get to Know Your Environment 9

Let’s modify the program YourName.py and save it as

MadLib.py. Instead of asking for the user’s name, we’ll ask

for an adjective, a noun, and a past-tense verb and store

them in three different variables, just as we did for name in

the original program. Then, we’ll print out a sentence like

“The adjective noun verb over the lazy brown dog.” Here’s

what the code should look like after these changes.

MadLib.py

adjective = input("Please enter an adjective: ")
noun = input("Please enter a noun: ")
verb = input("Please enter a verb ending in -ed: ")
print("Your MadLib:")
print("The", adjective, noun, verb, "over the lazy brown dog.")

You can enter any adjective, noun, and verb you

wish. Here’s what you should see when you save and run

MadLib.py (I’ve entered smart, teacher, and sneezed):

>>>
Please enter an adjective: smart
Please enter a noun: teacher
Please enter a verb ending in -ed: sneezed
Your MadLib:
The smart teacher sneezed over the lazy brown dog.
>>>

#2: More Mad Libs!

Let’s make our Mad Lib game a little more interesting. Start

a new version of MadLib.py by saving it as MadLib2.py.

Add another input line that asks for a type of animal. Then,

change the print statement by removing the word dog and

adding the new animal variable after the end of the quoted

sentence (add a comma before your new variable inside the

print statement). You can change the sentence more, if you’d

like. You could wind up with The funny chalkboard burped over

the lazy brown gecko—or something even funnier!

2
TURTLE GRAPHICS:

DRAWING WITH PYTHON

In this chapter, we’ll write short, simple programs to

create beautifully complex visuals. To do this, we’ll use

turtle graphics. In turtle graphics, you write instruc-

tions that tell a virtual, or imaginary, turtle to move

around the screen. The turtle carries a pen, and you

can instruct the turtle to use its pen to draw lines

wherever it goes. By writing code to move the turtle

around in cool patterns, you can make it draw amaz-

ing pictures.

12 Chapter 2

Using turtle graphics, not only can you create impressive

visuals with a few lines of code, but you can also follow along with

the turtle and see how each line of code affects its movement. This

will help you understand the logic of your code.

Our First Turtle Program

Let’s write our first program using turtle graphics. Type

the following code into a new window in IDLE and save it

as SquareSpiral1.py. (You can also download this program,

and all the others in the book, at http://www.nostarch.com/

teachkids/.)

SquareSpiral1.py

SquareSpiral1.py - Draws a square spiral
import turtle
t = turtle.Pen()
for x in range(100):
 t.forward(x)
 t.left(90)

When we run this code, we get a pretty neat picture

(Figure 2-1).

Figure 2-1: A hypnotic square spiral, created with
the short program SquareSpiral1.py

http://www.nostarch.com/teachkids/
http://www.nostarch.com/teachkids/

Turtle Graphics: Drawing with Python 13

How It Works

Let’s break the program down line by line to see how it works.

The first line of SquareSpiral1.py is a comment. As you

learned in Chapter 1, a comment begins with a hash mark (#).

Comments allow us to write notes in our programs to ourselves or

to other humans who might read the program later. The computer

doesn’t read or try to understand anything after the hash mark;

the comment is just for us to write something about what the pro-

gram is doing. In this case, I’ve put the name of the program in

the comment, as well as a brief description of what it does.

The second line imports the ability to draw turtle graph-

ics. Importing code that’s already been written is one of the

coolest things about programming. If you program something

interesting and useful, you can share it with other people and

even reuse it yourself. Some cool Python programmers built

a library—a reusable set of code—to help other programmers

use turtle graphics in Python, even

though turtle graphics are originally

from the Logo programming language

of the 1960s.1 When you type import

turtle, you’re saying that you want your

program to be able to use the code that

those Python programmers wrote. The

little black arrow in Figure 2-1 repre-

sents the turtle, drawing with its pen

as it moves around the screen.

The third line of our program, t = turtle.Pen(), tells the

computer that we’ll use the letter t to stand for the turtle’s pen.

This will allow us to draw with the turtle’s pen as the turtle

moves around the screen just by typing t.forward() instead of

writing out turtle.Pen().forward(). The letter t is our shortcut for

telling the turtle what to do.

The fourth line is the most complex. Here we’re creating a

loop, which repeats a set of instructions a number of times (it

loops through those lines of code over and over again). This par-

ticular loop sets up a range, or list, of 100 numbers from 0 to 99.

1. The Logo programming language was created in 1967 as an educational programming lan-

guage, and five decades later, it’s still useful for learning the basics of coding. Cool, huh?

14 Chapter 2

(Computers almost always start counting at 0, not 1 like we

usually do.) The loop then steps the letter x through each of the

numbers in that range. So x starts as 0, and then it becomes 1,

then 2, and so on as it counts all the way up to 99, for a total of

100 steps.

This x is called a variable.2 (In the program YourName.py in

Chapter 1, name was a variable.) A variable stores a value that can

change, or vary, as we move through our program. We’ll be using

variables in almost every program we write, so it’s good to get to

know them early.

The next two lines are indented, or spaced over from the left.

That means that they are in the loop and go with the line above,

so they’ll be repeated each time x gets a new number in the range

from 0 to 99, or 100 times.

What Happens

Let’s see what happens the first time Python reads this set of

instructions. The command t.forward(x) tells the turtle pen to

move forward x dots on the screen. Because x is 0, the pen doesn’t

move at all. The last line, t.left(90), tells the turtle to turn left by

90 degrees, or a quarter turn.

Because of that for loop, the pro-

gram continues to run, and it goes

back to the starting position of our

loop. The computer adds 1 to move x to

the next value in the range, and since

1 is still in the range from 0 to 99,

the loop continues. Now x is 1, so the

pen moves forward 1 dot. The pen then

moves again to the left by 90, because

of t.left(90). This continues again and

again. By the time x gets to 99, the last

time through the loop, the pen is draw-

ing the long lines around the outside of

the square spiral.

2. Younger readers may recognize x as the unknown, like when they solve x + 4 = 6 to find

the unknown x. Older readers may recognize x from an algebra class or another mathematics

course; this is where early programmers borrowed the concept of a variable from. There’s a lot

of good math in coding: we’ll even see some cool geometry examples as we move forward.

www.allitebooks.com

http://www.allitebooks.org

Turtle Graphics: Drawing with Python 15

Here is a step-by-step visual of the loop as x grows from 0

toward 100:

for x in range(100):
 t.forward(x)
 t.left(90)

Loops 0 to 4: The first four lines are drawn (after x = 4).

Loops 5 to 8: Another four lines are drawn; our square emerges.

Loops 9 to 12: Our square spiral grows to 12 lines (three squares).

The dots, or pixels, on your computer screen are probably too

tiny for you to see them very well. But, as x gets closer to 100, the

turtle draws lines consisting of more and more pixels. In other

words, as x gets bigger, t.forward(x) draws longer and longer lines.

The turtle arrow on the screen draws for a while, then turns

left, draws some more, turns left, and draws again and again, with

longer lines each time.

By the end, we have a hypnotizing square shape. Turning left

90 degrees four times gives us a square, just like turning left four

times around a building will take you around the building and

back where you started.

The reason we have a spiral in this example is that every time

we turn left, we go a little farther. The first line that’s drawn is

just 1 step long (when x = 1), then 2 (the next time through the

loop), then 3, then 4, and so on, all the way through 100 steps,

when the line is 99 pixels long. Again, the pixels are probably so

tiny on your screen that you can’t easily see the individual dots,

but they’re there, and you can see the lines get longer as they con-

tain more pixels.

By making all the turns 90-degree angles, we get the perfect

square shape.

16 Chapter 2

Turtle on a Roll

Let’s see what happens when we change one of the numbers in the

program. One way to learn new things about a program is to see

what happens when you change one part of it. You won’t always

get a pretty result, but you can learn even when something goes

wrong.

Change just the last line of the program to t.left(91) and save

it as SquareSpiral2.py.

SquareSpiral2.py

import turtle
t = turtle.Pen()
for x in range(100):
 t.forward(x)
 t.left(91)

I mentioned that a 90-degree left turn creates a perfect

square. Turning just a little more than 90 degrees—in this case,

91 degrees every turn—throws the square off just a bit. And

because it’s already off a bit when it makes the next turn, our new

shape looks less and less like a square as the program continues.

In fact, it makes a nice spiral shape that starts to swirl to the left

like a staircase, as you can see in Figure 2-2.

Figure 2-2: The square spiral program with
one tiny change becomes a spiral staircase.

Turtle Graphics: Drawing with Python 17

This is also a nice visual to help

you understand how being off by just

one number can drastically change the

result of your program. One degree

doesn’t seem like a big deal, unless

you’re off by one degree 100 times

(which adds up to 100 degrees), or

1,000 times, or if you’re using a pro-

gram to land an airplane . . .

If you don’t know how degrees work yet, don’t worry about

it for now. Just play with the numbers and see what happens.

Change the number of lines the program draws to 200, or 500,

or 50, by changing the value in parentheses after range.

Also try changing the angle in the last line to 91, 46, 61, or

121, and so on. Remember to save the program each time. Then

run it to see how your changes affect what the program draws.

Older readers who know a bit of geometry will see some familiar

shapes based on the angles used and may even be able to predict

the shape based on the angle before the program runs. Younger

readers can just enjoy changing things up a bit, and this exer-

cise might come back to them when they’re in a geometry class

someday.

Turtle Roundup

Speaking of geometry, turtle graphics can draw lots more interest-

ing shapes than just straight lines. We’ll come back to the square

shape again in the next section, but let’s take a short detour to

check out more of the Python Turtle library.

Let’s change one more line of code: t.forward(x). We saw earlier

that this command, or function, moves the turtle’s pen forward

x pixels and draws a straight line segment; then the turtle turns

and does it again. What if we changed that line of code to draw

something more complex, like a circle?

Fortunately for us, the command to draw a circle of a certain

size, or radius, is as simple to code as the command to draw a

straight line. Change t.forward(x) to t.circle(x), as shown in the

following code.

18 Chapter 2

CircleSpiral1.py

import turtle
t = turtle.Pen()
for x in range(100):
 t.circle(x)
 t.left(91)

Wow! Changing one command from t.forward to t.circle gave

us a much more complex shape, as you can see in Figure 2-3. The

t.circle(x) function tells the program to draw a circle of radius x

at the current position. Notice that this drawing has something in

common with the simpler square spiral shape: there are four sets

of circle spirals just like there were four sides to our square spiral.

That’s because we’re still turning left just a little over 90 degrees

with the t.left(91) command. If you’ve studied geometry, you know

that there are 360 degrees around a point, like the four 90-degree

corners in a square (4 × 90 = 360). The turtle draws that spiral

shape by turning just a little more than 90 degrees each time

around the block.

Figure 2-3: Just one more change gives us a
beautiful set of four spiraling circles.

One difference you’ll see is that the circle spiral is larger than

the square spiral—about twice the size, in fact. This is because

t.circle(x) is using x as the radius of the circle, which is the dis-

tance from the center to the edge, or one-half of the circle’s width.

Turtle Graphics: Drawing with Python 19

A radius of x means that the diameter, or total width, of the circle

will be two times x. In other words, t.circle(x) draws a circle 2 pix-

els across when x is equal to 1, 4 pixels across when x is 2, all the

way up to 198 pixels across when x is 99. That’s almost 200 pix-

els across, or twice the size of our biggest side in the square, so

the circle spiral is about double the size of our square spiral—and

maybe twice as cool, too!

Adding a Touch of Color

These spirals are nice shapes, but wouldn’t it be cooler if they were

a bit more colorful? Let’s go back to our square spiral code and add

one more line to our program, right after the t = turtle.Pen() line,

to set the pen color to red:

SquareSpiral3.py

import turtle
t = turtle.Pen()
t.pencolor("red")
for x in range(100):
 t.forward(x)
 t.left(91)

Run the program, and you’ll see a more colorful version of our

square spiral (Figure 2-4).

Figure 2-4: The square spiral gets a little
more colorful.

Try replacing "red" with another common color, like "blue"

or "green", and run the program again. You can use hundreds of

20 Chapter 2

different colors with the Turtle library, including some weird ones

like "salmon" and "lemon chiffon". (Visit http://www.tcl.tk/man/

tcl8.4/TkCmd/colors.htm for a full list.) Making the whole spiral

a different color is a nice step, but what if we wanted to make each

side a different color? That’s going to take a few more changes to

our program.

A Four-Color Spiral

Let’s think through the algorithm—that is, the set of steps—that

will turn our one-color spiral into a four-color spiral. Most of the

steps are the same as in our previous spiral programs, but there

are a few added twists:

1. Import the turtle module and set up a turtle.

2. Tell the computer which colors we’d like to use.

3. Set up a loop to draw 100 lines in our spiral.

4. Pick a different pen color for each side of the spiral.

5. Move the turtle forward to draw each side.

6. Turn the turtle left to get ready to draw the next side.

First, we need a list of color names instead of a single color, so

we’re going to set up a list variable called colors and put four colors

in the list, like this:

colors = ["red", "yellow", "blue", "green"]

This list of four colors will give us one

color for each side of our square. Notice we

put the list of colors inside square brackets,

[and]. Make sure that each color name

is inside quote marks just like the words

we printed out in Chapter 1, because these

color names are strings, or text values,

that we will pass to the pencolor function

shortly. As noted, we’re using a variable

called colors to store our list of four colors,

so whenever we want to get a color from the

list, we’ll use the colors variable to stand for

the color of the pen. Remember, variables

store values that change. It’s right in their

name: they vary!

http://www.tcl.tk/man/tcl8.4/TkCmd/colors.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/colors.htm

Turtle Graphics: Drawing with Python 21

The next thing we need to do is change the pen color every time

we step through the drawing loop. To do this, we need to move the

t.pencolor() function into the group of instructions under the for

loop. We also need to tell the pencolor function that we want to use

one of the colors from the list.

Type the following code and run it.

ColorSquareSpiral.py

import turtle
t = turtle.Pen()
colors = ["red", "yellow", "blue", "green"]
for x in range(100):
 t.pencolor(colors[x%4])
 t.forward(x)
 t.left(91)

The list of four colors makes sense, and we can see them in the

running example (Figure 2-5). So far, so good.

Figure 2-5: A much more colorful version of
our square spiral program

The only new part is the (colors[x%4]) in the pencolor function.

The x inside the statement is the same variable we’re using else-

where in the program. So x will continue to grow from 0 to 99, just

like we’ve seen before. The colors variable name inside the paren-

theses tells Python to choose a color from the list of color names

called colors that we added earlier in the program.

The [x%4] part tells Python that we will use the first four colors

in the colors list, numbered 0 through 3, and rotate through them

22 Chapter 2

every time x changes. In this case, our color list only has four colors,

so we’ll rotate through these four colors over and over:

colors = ["red", "yellow", "blue", "green"]
 0 1 2 3

The % symbol in [x%4] is called the modulo, or mod, operator

and represents the remainder in long division (5 ÷ 4 equals 1 with

a remainder of 1, because 4 goes evenly into 5 once with 1 left over;

6 ÷ 4 has a remainder of 2; and so on). The mod operator is useful

when you want to rotate through a certain number of items in a

list, like we’re doing with our list of four colors.

In 100 steps, colors[x%4] will loop through four colors (0, 1, 2,

and 3, for red, yellow, blue, and green) a total of 25 times. If you

have the time (and a magnifying glass), you could count 25 red,

25 yellow, 25 blue, and 25 green segments in Figure 2-5. The first

time through the drawing loop, Python uses the first color in the

list, red; the second time, it uses yellow; and so on. Then the fifth

time through the loop, Python goes back to red, then yellow, and

so on, and always cycles back around to red after every fourth pass

through the loop.

Turtle Graphics: Drawing with Python 23

Changing Background Colors

Let’s mix things up a bit again to see if we can create some-

thing even more beautiful than Figure 2-5. For example, as my

five-year-old son Alex pointed out, the yellow sides are hard to

see. That’s because, just like yellow crayons on white drawing

paper, the yellow pixels on the screen don’t show up well against

the white background color. Let’s fix that by changing the back-

ground color to black. Type the following line of code anywhere

after the import line in our program:

turtle.bgcolor("black")

Adding this one line gives us an even neater picture: all of

the colors now stand out on the black background. Notice that

we’re not changing anything about the turtle’s pen (represented

by the variable t in our program). Instead, we’re changing some-

thing about the turtle screen, namely the background color. The

turtle.bgcolor() command allows us to change the color of the

entire drawing screen to any of the named colors in Python. In

the line turtle.bgcolor("black"), we’ve chosen black as the screen

color, so the bright red, yellow, blue, and green show up nicely.

While we’re at it, we can change the range() in our loop to

200, or even more, to make larger squares in our spiral. See

Figure 2-6 for the new version of our picture with 200 lines on

a black background.

Figure 2-6: Our square spiral has come a long
way from its simple beginnings.

24 Chapter 2

Always willing to help make my programs more awesome, Alex

asked for one more change: what if we replaced the line segments

with circles now? Wouldn’t that be the coolest picture of all? Well,

yes, I have to agree—it is even cooler. Here’s the full code.

ColorCircleSpiral.py

import turtle
t = turtle.Pen()
turtle.bgcolor("black")
colors = ["red", "yellow", "blue", "green"]
for x in range(100):
 t.pencolor(colors[x%4])
 t.circle(x)
 t.left(91)

You can see the result in Figure 2-7.

Figure 2-7: Alex’s awesome color circle spiral—
eight lines of code, simple and elegant

www.allitebooks.com

http://www.allitebooks.org

Turtle Graphics: Drawing with Python 25

One Variable to Rule Them All

So far, we’ve used variables to change the color, size, and turning

angle of our spiral shapes. Let’s add another variable, sides, to rep-

resent the number of sides in a shape. How will this new variable

change our spiral? To find out, try this program, ColorSpiral.py.

ColorSpiral.py

import turtle
t = turtle.Pen()
turtle.bgcolor("black")
You can choose between 2 and 6 sides for some cool shapes!
sides = 6
colors = ["red", "yellow", "blue", "orange", "green", "purple"]
for x in range(360):
 t.pencolor(colors[x%sides])
 t.forward(x * 3/sides + x)
 t.left(360/sides + 1)
 t.width(x*sides/200)

You can change the value of sides from 6 down to 2 (one

side’s not very interesting, and you won’t be able to use bigger

numbers unless you add more colors to the list in the sixth line of

the program). Then save and run the program as many times as

you’d like. Figure 2-8 shows the pictures created with sides = 6,

sides = 5, all the way down to sides = 2, which is the weird, flat

spiral shown in Figure 2-8(e). You can change the order of the

colors in the list, and you can use bigger or smaller numbers in

any of the functions in the drawing loop. If you break the program,

just go back to the original ColorSpiral.py and play some more.

The ColorSpiral.py program uses one new command, t.width();

this changes the width of the turtle’s pen. In our program, the

pen gets wider (its lines get thicker) as it draws larger and larger

shapes. We’ll revisit this program and others like it in Chapters 3

and 4 as you learn the skills needed to create programs like this

from scratch.

26 Chapter 2

a)

b) c)

d) e)

Figure 2-8: Five colorful shapes created by changing the variable sides
from 6 (a) down to 2 (e)

Turtle Graphics: Drawing with Python 27

What You Learned

In this chapter, we drew impressive, colorful shapes in Python using

the Turtle library of tools. We brought this library into our program

by using the import command, and you learned that reusing code

in this way is one of the most powerful things about programming.

Once we’ve written something useful, or borrowed code that some-

one else has been kind enough to share, we not only save time but

can also use that imported code to do neat new things.

You’ve also been introduced to variables like x and sides in

our programs. These variables store, or remember, a number or

value so that you can use it multiple times in a program and even

change the value as you go. In the next chapter, you’ll learn more

about the power of variables and how Python can even help you do

your math homework!

At this point, you should be able to do the following:

•	 Draw simple graphics with the Turtle library.

•	 Use variables to store simple number values and strings.

•	 Change, save, and run programs in IDLE.

Programming Challenges

Try these challenges to practice what you’ve learned in this

chapter. (If you get stuck, go to http://www.nostarch.com/

teachkids/ for sample answers.)

#1: Changing the Number of Sides

We used a variable, sides, in the ColorSpiral.py program

on page 25, but we didn’t vary it much or change its value

except for editing, saving, and running the program again.

Try changing the value of sides to another number, say 5.

Save and run the program to see how this affects your

drawing. Now try 4, 3, 2, and even 1! Now, add two or more

colors, in quotes, separated by commas, to the list of colors

in the sixth line of the program. Increase the value of sides

to use this new number of colors—try 8 or 10 or more!

continued

http://www.nostarch.com/teachkids/
http://www.nostarch.com/teachkids/

28 Chapter 2

#2: How Many Sides?

What if you want to let a user decide the number of

sides while the program runs? Using what you learned in

Chapter 1, you can ask the user for a number of sides and

store that input in the variable sides. Our only extra step

is to evaluate the number the user enters. We can find out

which number the user typed with the eval() function,

like this:

sides = eval(input("Enter a number of sides between 2 and 6: "))

Replace the line sides = 6 in ColorSpiral.py with the

preceding line. Your new program will ask how many sides

the user wants to see. Then, the program will draw the

shape the user asks for. Give it a try!

#3: Rubber-Band Ball

Try changing the ColorSpiral.py program into a more

tangled and abstract shape just by adding an extra turn

inside the end of the drawing loop. Add a line like t.left(90)

to the bottom of the for loop to make the angles sharper

(remember to indent, or space over, to keep the statement

in the loop). The result, shown in Figure 2-9, looks like

a geometric toy or perhaps a ball made of colored rubber

bands.

Turtle Graphics: Drawing with Python 29

Figure 2-9: Adding an extra 90 degrees to each turn in ColorSpiral.py
turns it into RubberBandBall.py.

Save this new version as RubberBandBall.py, or go to

http://www.nostarch.com/teachkids/ and find the program

in the source code for Chapter 2.

http://www.nostarch.com/teachkids/

3
Numbers aNd Variables:

PythoN does the math

We’ve used Python to do really fun things, like make

colorful pictures in just a few lines of code, but our

programs have been limited. We just ran them and

watched them make pictures. What if we wanted to

interact with our Python programs? In this chapter,

we’ll learn how to have Python ask the user’s name

and even offer to do the user’s math homework!

32 Chapter 3

Variables: Where We Keep our stuff

In Chapters 1 and 2, we used a few variables (you might remem-

ber name from our first program in Chapter 1 or x and sides from

Chapter 2). Now let’s look at what variables really are and how

they work.

A variable is something you want the computer to remem-

ber while your program is running. When Python “remembers”

something, it’s storing that information in the computer’s memory.

Python can remember values of several types, including number

values (like 7, 42, or even 98.6) and strings (letters, symbols, words,

sentences, or anything you can type on the keyboard and then

some). In Python, as in most modern programming languages, we

assign a value to a variable with the equal sign (=). An assignment

like x = 7 tells the computer to remember the number 7 and give

it back to us anytime we call out x. We also use the equal sign to

assign a string of keyboard characters to a variable; we just have to

remember to put quotation marks (") around the string, like this:

my_name = "Bryson"

Here, we assign the value "Bryson" to the variable my_name.

The quotation marks around "Bryson" tell us that it is a string.

Whenever you assign a value to a variable, you write the

name of the variable first, to the left of the equal sign, and then

write the value to the right of the equal sign. We name variables

something simple that describes their contents (like my_name when

I’m storing my name) so we can easily

remember them and use them in our

programs. There are a few rules to

keep in mind as we make up names

for variables.

First, we always begin variable

names with a letter. Second, the rest

of the characters in the variable name

must be letters, numbers, or the under-

score symbol (_); that means you can’t

have a space inside a variable name

(for example, my name will give you a

syntax error because Python thinks

Numbers and Variables: Python Does the Math 33

you’ve listed two variables separated by a space). Third, variable

names in Python are case sensitive; that means that if we use all

lowercase letters in a variable name (like abc), then we can only

use the value stored in the variable if we type the variable name

exactly the same way, with the same capitalization. For example,

to use the value in abc, we have to write abc; we can’t use uppercase

letters like ABC. So My_Name is not the same as my_name, and MY_NAME

is a different variable name altogether. In this book, we’ll use all

lowercase letters in our variable names, separating words with

the _ symbol.

Let’s try a program using some variables. Type the following

code in a new IDLE window and save it as ThankYou.py.

ThankYou.py

my_name = "Bryson"
my_age = 43
your_name = input("What is your name? ")
your_age = input("How old are you? ")
print("My name is", my_name, ", and I am", my_age, "years old.")
print("Your name is", your_name, ", and you are", your_age, ".")
print("Thank you for buying my book,", your_name, "!")

When we run this program, we’re telling the computer to

remember that my_name is "Bryson" and that my_age is 43. We then

ask the user (the person running the program) to enter their name

and age, and we tell the computer to remember these as the vari-

ables your_name and your_age. We’re using Python’s input() function

to tell Python that we want the user to enter (or input) something

with the keyboard. Input is what we call information that’s entered

into a program while it’s running—in this case, the user’s name

and age. The part in quotes inside the parentheses, ("What is your

name? "), is called the prompt because it prompts the user, or asks

them a question requiring their input.

In the last three lines, we tell the computer to print out the

value we stored in my_name and the other three variables. We even

use your_name twice, and the computer remembers everything cor-

rectly, including the parts the user typed as input.

This program remembers my name and age, asks the user for

theirs, and prints a nice message to them, as shown in Figure 3-1.

34 Chapter 3

Figure 3-1: A program with four variables and the output it creates

Numbers and math in Python

The computer is great at remembering values. We can use the

same variable hundreds or thousands of times in the same pro-

gram, and the computer will always give us the right value as

long as we’ve programmed it correctly. Computers are also great

at performing calculations (addition, subtraction, and so on). Your

computer is able to perform over one billion (1,000,000,000, or a

thousand million) calculations every second!

That’s much faster than we can compute numbers in our

heads; although we’re still better than computers at some tasks,

fast math is a contest the computer will win every time. Python

gives you access to that mathematical computing power with two

main types of numbers, and it also lets you use a whole set of sym-

bols to do math with those numbers, from + to - and beyond.

Python Numbers

The two primary types of numbers in Python are called integers

(whole numbers, including negatives, like 7, -9, or 0) and floating-

point numbers (numbers with decimals, like 1.0, 2.5, 0.999, or

3.14159265). There are two additional number types that we won’t

use much in this book. The first is Booleans, which hold true

or false values (sort of like the answers on a “true or false” test

at school), and the second is complex numbers, which hold even

imaginary number values (this might excite you if you know some

advanced algebra, but we’re keeping it real here—pun intended).

Integers, or whole numbers, are useful for counting (our vari-

able x in Chapter 2 counted the number of lines as we drew the

spiral) and for basic math (2 + 2 = 4). We usually state our age in

whole numbers, so when you say you’re 5 or 16 or 42, you’re using

an integer. When you count to 10, you’re using integers.

www.allitebooks.com

http://www.allitebooks.org

Numbers and Variables: Python Does the Math 35

Floating-point, or decimal, numbers are great when we want

fractions, like 3.5 miles, 1.25 pizzas, or $25.97. Of course, in

Python, we don’t include the units (miles, pizzas, dollars), just the

number with the decimal. So if we want to store a variable with

the cost of our pizza (cost_of_pizza), we might assign it as follows:

cost_of_pizza = 25.97. We’ll just have to remember that the units

we’re using there are dollars, euros, or some other currency.

Python operators

The math symbols like + (plus) and - (minus) are called operators

because they operate, or perform calculations, on the numbers in

our equation. When we say “4 + 2” aloud or enter it on our calcu-

lator, we want to perform addition on the numbers 4 and 2 to get

their sum, 6.

Python uses most of the same operators that you would use

in a math class, including +, -, and parentheses, (), as shown in

Table 3-1. However, some operators are different from what you

may have used in school, like the multiplication operator (the

asterisk, *, instead of ×) and the division operator (the forward

slash, /, instead of ÷). We’ll get to know these operators better in

this section.

Table 3-1: Basic Math Operators in Python

Math

symbol

Python

operator

Operation Example Result

+ + Addition 4 + 2 6

– - Subtraction 4 - 2 2

× * Multiplication 4 * 2 8

÷ / Division 4 / 2 2.0

4
2 ** Exponent or power 4 ** 2 16

() () Parentheses

(grouping)

(4 + 2) * 3 18

36 Chapter 3

doing math in the Python shell

This is a great time to give Python math a try; let’s use the

Python shell this time. As you might remember from Chapter 1,

the Python shell gives you direct access to Python’s power without

writing a whole program. It’s sometimes called the command line

because you can type commands

line by line and instantly see

the result. You can type a math

problem (called an expression in

programming) like 4 + 2 directly

at the command prompt (the >>>

symbol with the flashing cursor)

in the Python shell, and when

you press enter, you’ll see the

result of the expression, or the

answer to the math problem.

Try typing some of the examples listed in Table 3-1 and see

what Python says; Figure 3-2 shows some sample output. Feel free

to try your own math problems as well.

Figure 3-2: Type the example math
problems (expressions) from Table 3-1,
and Python gives the answers!

Numbers and Variables: Python Does the Math 37

syntax errors: What did you say?

While we’re typing in the Python shell, we have a chance to learn

about syntax errors. Whenever Python, or any programming lan-

guage, can’t understand the command you typed, it may respond

with a message like "Syntax Error". This means there was a prob-

lem with the way you asked the computer to do something, or your

syntax.

Syntax is the set of rules we follow in building sentences or

statements in a language. When we program computers, we call a

mistake in a statement a syntax error; when we make a mistake

in a sentence in English, we might call it bad grammar. The differ-

ence is that, unlike English speakers, computers can’t understand

bad grammar at all. Python, like most programming languages,

is very good at performing calculations as long as we follow syntax

rules, but it can’t understand anything we’re saying if we mess up

the syntax. Take a look at Figure 3-3 to see some examples of syn-

tax errors, followed by the expressions stated in a way that Python

can understand.

Figure 3-3: Learning to speak Python’s language

When we ask Python “What is 4 + 2?” in regular English,

Python responds with "SyntaxError: invalid syntax" to let us know

that it can’t understand what we’ve asked it to do. When we give

Python the correct expression, 4 + 2, Python will answer correctly

every time: 6. In the same way, an extra character, like the equal

sign at the end of the statement 3 + 3 =, confuses Python because

Python sees the equal sign as an assignment operator to assign a

value to a variable. When we type 3 + 3 and press enter, Python

understands and will always give the right answer: 6.

38 Chapter 3

The fact that we can rely on a computer to answer correctly

and quickly every time we give it proper input is one of the most

powerful aspects of coding. We can count on computers for fast,

accurate calculations, as long as we program them correctly in a

language they understand. That’s what you’re learning to do as

you learn to code in Python.

Variables in the Python shell

As we’ve discussed, the Python shell gives us direct access to the

programming power of Python without having to write entire

stand-alone programs. We can even use variables, like x and my_age,

when we’re typing in the Python shell; we just have to assign them

values, as you learned to do in this chapter’s opening example.

If you type x = 5 at the command prompt (>>>), Python will

store the value 5 in memory as the variable x and will remember it

until you tell Python to change the value (for example, by entering

x = 9 to give x a new value of 9). See the examples in the Python

shell in Figure 3-4.

Figure 3-4: Python remembers our
variable’s value for as long as we want.

Numbers and Variables: Python Does the Math 39

Notice that in the last assignment statement, we used x on

both sides of the equal sign: x = x - 7. In an algebra class, this

would be an invalid statement, since x can never equal x - 7. But

in a program, the computer evaluates the right side of the equation

first, calculating the value of x - 7 before it assigns that value to

the x on the left side. Variables on the right side of the equal sign

get substituted with their values; here, the value of x is 9, so the

computer plugs 9 into x - 7 to get 9 - 7, which is 2. Finally, the vari-

able on the left side of the equal sign, x, is assigned the result of the

calculation from the right side. The value of x changes only at the

end of the assignment process.

Before we move on to a programming example, let’s go over

one additional feature of math in Python. In Table 3-1 and in

Figures 3-2 and 3-4, we used the division operator—the for-

ward slash (/)—and Python responded with a decimal value. For

4 / 2, Python gave us 2.0, not the 2 that we might expect. This is

because Python uses what it calls true division, which is meant

to be easier to understand and less likely to cause errors.

We see the positive effect of Python’s true division in Figure 3-4

when we ask Python to calculate x / 2, with x equal to 5. Python

tells us that 5 divided by 2 is equal to 2.5, which is the result we

expect. This division is like dividing five pizzas equally between

two teams: each team gets 2.5 pizzas (the result of 5 / 2). In some

programming languages, the division operator returns only the

whole number (that would be 2 in this case). Just remember that

Python does “pizza division.”

Programming with operators:

a Pizza Calculator

Speaking of pizza, now let’s imagine you own a pizzeria.

Let’s write a small program to figure out the total cost of

a simple pizza order, including sales tax. Say we’re ordering

one or more pizzas that all cost the same, and we’re ordering in

Atlanta, Georgia, in the United States. There’s a sales tax that’s

not included in the menu price but is added at the end of the pur-

chase. The rate is 8 percent, meaning that for every dollar we pay

for the pizza, we must also pay eight cents in sales tax. We could

model this program in words as follows:

1. Ask the person how many pizzas they want.

2. Ask for the menu cost of each pizza.

40 Chapter 3

3. Calculate the total cost of the pizzas as our subtotal.

4. Calculate the sales tax owed, at 8 percent of the subtotal.

5. Add the sales tax to the subtotal for the final total.

6. Show the user the total amount due, including tax.

We’ve seen how to ask the user for input. To calculate with

numbers we’ve entered as input, we need one more function: eval().

The eval() function evaluates, or figures out the value of, the input

that we typed. Keyboard input in Python is always received as a

string of text characters, so we use eval() to turn that input into a

number. So if we type "20" into our program, eval("20") would give

us the number value 20, which we can then use in math formulas

to calculate new numbers, like the cost of 20 pizzas. The eval()

function is pretty powerful when it comes to working with num-

bers in Python.

Now that we know how to turn user input into numbers that

we can calculate with, we can convert the numbered steps of our

program plan into actual code.

Note For each programming example, you can try writing your own pro-

gram first, before you look at the code in the book. Start by writing

comments (#) outlining the steps you’ll need to solve the problem.

Then fill in the programming steps below each comment, checking

the code in the book when you need a hint.

Type this into a new window and save it as AtlantaPizza.py.

AtlantaPizza.py

AtlantaPizza.py - a simple pizza cost calculator

Ask the person how many pizzas they want, get the number with eval()
number_of_pizzas = eval(input("How many pizzas do you want? "))

Ask for the menu cost of each pizza
cost_per_pizza = eval(input("How much does each pizza cost? "))

Calculate the total cost of the pizzas as our subtotal
subtotal = number_of_pizzas * cost_per_pizza

Calculate the sales tax owed, at 8% of the subtotal
tax_rate = 0.08 # Store 8% as the decimal value 0.08
sales_tax = subtotal * tax_rate

Numbers and Variables: Python Does the Math 41

Add the sales tax to the subtotal for the final total
total = subtotal + sales_tax

Show the user the total amount due, including tax
print("The total cost is $",total)
print("This includes $", subtotal, "for the pizza and")
print("$", sales_tax, "in sales tax.")

This program combines what you’ve learned about variables

and operators into a single powerful program. Read through

it and make sure you understand how each part works. How

would you change the program to make it work for a different

rate of sales tax?

Notice that we have included the steps of our program as

comments, using the # (hash mark). Remember that comments are

there for humans to read; the IDLE editor colors comments red

to remind us that Python will ignore those parts. This practice of

spelling out our programs step by step in words first, then putting

those steps into our program as comments, can be very helpful as

we build longer and more complex programs. This is our algorithm,

the set of steps to be followed in our program. Algorithms are like

recipes: if we follow all the steps in the right order, our program

turns out great!

When we write our algorithm

in words (as # comments) and in

code (as programming statements),

we’re accomplishing two goals.

First, we’re reducing errors in our

program by making sure we don’t

leave out steps. Second, we’re mak-

ing our program easier for us and

others to read and understand

later. You should get in the habit

of writing clear comments in your

programs from the very beginning,

and we’ll do this often throughout

the book. If you don’t want to type

all of the comments, the program

will still run; they’re just there to

help you understand what the pro-

gram is doing.

42 Chapter 3

When you’ve written your program, you can run it and inter-

act with it by going to Run4Run Module. Figure 3-5 shows some

sample output.

Figure 3-5: A sample run of our AtlantaPizza.py pizza calculator program

strings: the real Characters
in Python

We’ve seen that Python is terrific at working with numbers, but

what about when we want to communicate with people? People

are better at understanding words and sentences, rather than

just numbers all by themselves. To write programs that people

can use, we need another variable type known as strings. Strings

are what we call text, or keyboard characters, in a programming

language; they are groups (or “strings”) of letters, numbers, and

symbols. Your name is a string, as is your favorite color—even this

paragraph (or this whole book) is a long string of letters, spaces,

numbers, and symbols all mixed together.

One difference between strings and numbers is that we can’t

calculate with strings; they’re usually names, words, or other

information that can’t go into a calculator. A common way to use

strings is in printing. For example, we asked the user for their

name in our program at the beginning of the chapter so that we

could print it out later.

Let’s do that again with a new program. We’ll ask the user

for their name, store their name in a variable called name, and

then print their name on the screen 100 times. As in our cool spi-

ral drawing examples in Chapters 1 and 2, we’re using a loop to

repeat the printing of the user’s name 100 times. Type the follow-

ing code into a new IDLE window and save it as SayMyName.py.

Numbers and Variables: Python Does the Math 43

SayMyName.py

SayMyName.py - prints a screen full of the user's name

Ask the user for their name
name = input("What is your name? ")

Print their name 100 times
for x in range(100):
 # Print their name followed by a space, not a new line
 print(name, end = " ")

There’s something new in the print() statement in this pro-

gram’s last line: it contains a keyword argument. In this case, the

keyword is end, and we’re telling the program to end each print()

statement with a space (there’s a space between our quotes: " ")

instead of the regular end-of-line character. Print statements

in Python usually end with the newline character, which is like

pressing enter on your keyboard, but with this keyword argu-

ment we are telling Python we don’t want every printout of our

name to be on a new line.

To see this change a little more clearly, modify the last line of

the program to the following, and then run the program:

print(name, end = " rules! ")

If you run this, you’ll see "Your Name rules!" printed 100 times!

The keyword argument end = " rules! " lets us change how the

print() statement works. The end of every print() statement is now

" rules! " instead of a return or enter newline character.

In programming languages, an argument

isn’t a bad thing; it’s simply how we tell a

function, like print(), to do something. We do

so by putting extra values inside the paren-

theses for that function. Those values inside

the print() statement’s parentheses are the

arguments, and the special keyword argu-

ment means that we’re using the keyword

end to change the way print() ends each line

it prints. When we change the end of the

line from the newline character to a simple

space character, words are added to the end

44 Chapter 3

of the current line without returning, or starting a new line, until

the current line fills up completely and wraps around to the next

one. Take a look at the result in Figure 3-6.

Figure 3-6: Python prints a screen full of my name when I run SayMyName.py.

improving our Color spiral
with strings

Strings are so popular that even turtle graphics in Python have

functions for taking strings as input and writing them to the

screen. The function to ask a user for a string, or text, in the

Turtle library is turtle.textinput(); this opens a pop-up window

asking the user for text input and lets us

store that as a string value. Figure 3-7 shows

the nice graphical window that Turtle pops

up for us when we use turtle.textinput("Enter

your name", "What is your name?"). There are

two arguments in Turtle’s textinput() func-

tion. The first argument, "Enter your name", is

the window title for the pop-up window. The

second argument, "What is your name?", is the

prompt that asks the user for the information

we want.

The function for writing a string on the turtle screen is write();

it draws text in the turtle’s pen color and at the turtle’s location on

the screen. We can use write() and turtle.textinput() to combine

Figure 3-7: A text in-
put window in turtle
graphics

www.allitebooks.com

http://www.allitebooks.org

Numbers and Variables: Python Does the Math 45

the power of strings with colorful turtle graphics. Let’s give it a

try! In the following program, we’ll set up turtle graphics just like

in our earlier spirals, but instead of drawing lines or circles on the

screen, we’ll ask the user for their name and then draw it on the

screen in a colorful spiral. Type this into a new window and save it

as SpiralMyName.py.

SpiralMyName.py

SpiralMyName.py - prints a colorful spiral of the user's name

import turtle # Set up turtle graphics
t = turtle.Pen()
turtle.bgcolor("black")
colors = ["red", "yellow", "blue", "green"]

Ask the user's name using turtle's textinput pop-up window
u your_name = turtle.textinput("Enter your name", "What is your name?")

Draw a spiral of the name on the screen, written 100 times
for x in range(100):
 t.pencolor(colors[x%4]) # Rotate through the four colors

v t.penup() # Don't draw the regular spiral lines
w t.forward(x*4) # Just move the turtle on the screen
x t.pendown() # Write the user's name, bigger each time
y t.write(your_name, font = ("Arial", int((x + 4) / 4), "bold"))

 t.left(92) # Turn left, just as in our other spirals

Most of the code in SpiralMyName.py looks just like our earlier

color spirals, but we ask the user their name in a turtle.textinput

pop-up window at u and store the user’s answer in your_name. We’ve

also changed the drawing loop by lifting the turtle’s pen off the

screen at v so when we move the turtle forward at w, it doesn’t

leave a trail or draw the normal spiral line. All we want in the

spiral is the user’s name, so after the turtle moves at w, we tell it

to start drawing again with t.pendown() at x. Then with the write

command at y, we tell the turtle to write your_name on the screen

every time through the loop. The final result is a lovely spiral; my

son Max ran the one shown in Figure 3-8.

46 Chapter 3

Figure 3-8: A colorful text spiral

lists: Keeping it all together

In addition to strings and number values, variables can also con-

tain lists. A list is a group of values, separated by commas, between

square brackets, []. We can store any value type in lists, including

numbers and strings; we can even have lists of lists.

In our spiral programs, we stored a list of strings—["red",

"yellow", "blue", "green"]—in the colors variable. Then, when our

program needed to use a color, we just called the t.pencolor() func-

tion and told it to use the list colors to find the name of the color

it should use next. Let’s add some more color names to our list of

colors and learn one more input function in the Turtle package:

numinput().

To red, yellow, blue, and green, let’s add four more named colors:

orange, purple, white, and gray. Next, we want to ask the user how

many sides their shape should have. Just as the turtle.textinput()

Numbers and Variables: Python Does the Math 47

function asked the user for a string, turtle.numinput() allows the

user to enter a number.

We’ll use this numinput() function to ask the user for the number

of sides (between 1 and 8), and we’ll give the user a default choice of

4, meaning that if the user doesn’t enter a number, the program will

automatically use 4 as the number of sides. Type the following code

into a new window and save it as ColorSpiralInput.py.

ColorSpiralInput.py

import turtle # Set up turtle graphics
t = turtle.Pen()
turtle.bgcolor("black")
Set up a list of any 8 valid Python color names
colors = ["red", "yellow", "blue", "green", "orange", "purple", "white", "gray"]
Ask the user for the number of sides, between 1 and 8, with a default of 4
sides = int(turtle.numinput("Number of sides",
 "How many sides do you want (1-8)?", 4, 1, 8))
Draw a colorful spiral with the user-specified number of sides
for x in range(360):

u t.pencolor(colors[x % sides]) # Only use the right number of colors
v t.forward(x * 3 / sides + x) # Change the size to match number of sides
w t.left(360 / sides + 1) # Turn 360 degrees / number of sides, plus 1
x t.width(x * sides / 200) # Make the pen larger as it goes outward

This program uses the number of sides the user entered to do

some calculations every time it draws a new side. Let’s look at the

four numbered lines inside the for loop.

At u, the program changes the turtle’s pen color, matching

the number of colors to the number of sides (triangles use three

colors for the three sides, squares use four colors, and so on). At v,

we change the lengths of each line based on the number of sides

(so that triangles aren’t too much smaller than octagons on our

screen).

At w, we turn the turtle by the correct number of degrees.

To get this number, we divide 360 by the number of sides, which

gives us the exterior angle, or the angle we need to turn to draw a

regular shape with that number of sides. For example, a circle is

360 degrees with one “side”; a square is made up of four 90-degree

angles (also 360 degrees total); you need six 60-degree turns to go

around a hexagon (also 360 degrees total); and so on.

48 Chapter 3

Finally, at x, we increase the width or thickness of the pen

as we get farther from the center of the screen. Figure 3-9 shows

the drawings that result from entering eight sides and three

sides.

Figure 3-9: The picture from ColorSpiralInput.py with eight sides (left)
and three sides (right)

Python does your homework

We’ve seen that Python is a powerful and fun programming lan-

guage that can handle all sorts of data: numbers, strings, lists,

and even complex math expressions. Now you’re going to put

Python’s power to work to do something very practical: your

math homework!

We’re going to write a short program that combines strings

and numbers, using the eval() function to turn math problems

into answers. Earlier in the chapter, I said that the eval() function

could turn the string "20" into the number 20. As promised, eval()

can do even more than that: it can also turn "2 * 10" into the num-

ber 20. When the eval() function operates on a string of keyboard

characters, it evaluates them just like the Python shell would. So

when we enter a math problem as input, running eval() on that

input can give us the answer to the problem.

By printing the original problem that the user entered, then

outputting eval(problem), we can show the original problem and

the answer all on one line. Remember the operators in Table 3-1:

if you needed the answer to 5 ÷ 2, you’d type 5 / 2, and for 42,

Numbers and Variables: Python Does the Math 49

you’d type 4 ** 2. Here’s what our program, MathHomework.py,

looks like when we put it together:

MathHomework.py

print("MathHomework.py")
Ask the user to enter a math problem
problem = input("Enter a math problem, or 'q' to quit: ")
Keep going until the user enters 'q' to quit
while (problem != "q"):
 # Show the problem, and the answer using eval()
 print("The answer to ", problem, "is:", eval(problem))
 # Ask for another math problem
 problem = input("Enter another math problem, or 'q' to quit: ")
 # This while loop will keep going until you enter 'q' to quit

This while statement will keep asking for problems and print-

ing answers until the user presses the Q key to quit the program.

While this short program can’t help us with algebra yet, it can

do more than basic math. Remember our discussion about Python’s

true division? We called it “pizza division,” because it let us split

pizzas evenly among any number of people. Well, Python can still

do integer division (whole-number division); we just need to learn

two new operators.

When would you want to do integer division? Let’s say your

teacher gives you and your three friends 10 cartons of chocolate

milk to enjoy, and you want to divide the milk fairly so that each

of you gets the same number of cartons. There are four of you (you

plus three friends), so 10 ÷ 4 equals 2.5. Unfortunately, you can’t

just cut a carton of milk in half. If you had cups, you could split

a carton between two friends, but let’s pretend there are no cups

around. If you wanted to be fair, you would have to take two car-

tons each, and give the teacher back the remaining two cartons.

That sounds a lot like long division: the two leftover cartons that

you return to the teacher are the remainder when you divide 10

by 4. In math, we sometimes note the remainder from long division

like this: 10 ÷ 4 = 2 R2. In other words, 10 divided by 4 equals a

quotient of 2, with a remainder of 2. This means that 4 goes into

10 evenly 2 times, with 2 remaining.

In Python, integer division is performed with the double-

forward slash operator, //. So 10 // 4 equals 2, and 7 // 4 equals 1

(because 4 goes into 7 only 1 time, with a remainder of 3). The //

operator gives us our quotient, but what about the remainder? To

50 Chapter 3

get the remainder, we use the modulo operator, which we repre-

sent in Python with the % symbol. Don’t confuse % with percent—in

Python, you’ll write percentages as decimals (5% becomes 0.05),

and the % operator is always the modulus, or remainder result-

ing from integer division. To get the remainder of long division

in Python, type 10 % 4 (gives a remainder of 2) or 7 % 4 (equals a

remainder of 3). Figure 3-10 shows the result of several math oper-

ations, including integer division and remainders using the // and %

operators.

Figure 3-10: Python tackles your math homework.

As we continue through the book, we’ll be using the % operator

in programs like our spiral drawings to keep numbers fixed in a

certain range.

What you learned

In this chapter, you’ve seen how to store different types of infor-

mation, including numbers, lists, and strings, in variables. You

learned the rules for naming variables in Python (letters, under-

scores, numbers; case sensitive; no spaces) and how to assign

values to them with the equal sign operator (my_name = "Alex" or

my_age = 5).

You also learned about integers (whole numbers) and floating-

point numbers (decimal values). You learned about the various

math operators in Python and how they differ from the symbols

you might use in a math textbook. You saw how to use strings of

Numbers and Variables: Python Does the Math 51

words, letters, characters, and sym-

bols, including how to make Python

understand and evaluate certain

strings, like when we wanted to use

a number that the user entered to

perform calculations.

You saw a few examples of syn-

tax errors and learned how to avoid

some of them when you program. You

learned about the list variable type,

which you can use to store lists of

all kinds of values, such as colors =

["red", "yellow", "blue", "green"].

You even found out how Python can

help you with simple calculations,

including long division.

You’ll build on your understanding of variables and data

types as you learn how to use variables to create your own loops

in Chapter 4, use the computer to make decisions in Chapter 5,

and even program the computer to play games in Chapter 6 and

beyond. Variables are the first, crucial programming tools that

help us break down the most complex problems, from video games

to satellites to medical software, into small chunks that we can

solve with code. Work on the samples from this chapter, and create

your own examples, until you’re familiar enough with variables to

dig in to the next chapter.

At this point, you should be able to do the following:

•	 Create your own variables to store numbers, strings, and lists.

•	 Discuss the differences between number types in Python.

•	 Use basic math operators in Python to perform calculations.

•	 Explain the difference between strings, numbers, and lists.

•	 Write out short programs as steps in English and then write

those steps as comments to help you build your code.

•	 Ask for user input in a variety of situations and use that input

in your programs.

52 Chapter 3

Programming Challenges

To practice what you’ve learned in this chapter, try these

challenges. (If you get stuck, go to http://www.nostarch

.com/teachkids/ for sample answers.)

#1: Circular spirals

Look back at the ColorCircleSpiral.py program in Chapter 2

(page 24) that drew circles instead of lines on each side

of the spiral. Run that example again and see if you can

determine which lines of code you’d need to add to and

delete from the ColorSpiralInput.py program (page 47)

to be able to draw circular spirals with any number of sides

between one and eight. Once you get it working, save the

new program as CircleSpiralInput.py.

#2: Custom Name spirals

Wouldn’t it be cool to ask the user how many sides their

spiral should have, ask for their name, and then draw

a spiral that writes their name in the correct number of

spiral sides and colors? See if you can figure out which

parts of SpiralMyName.py (page 45) to incorporate

into ColorSpiralInput.py (page 47) to create this new,

impressive design. When you get it right (or come up

with something even cooler), save the new program as

ColorMeSpiralled.py.

http://www.nostarch.com/teachkids/
http://www.nostarch.com/teachkids/

4
Loops Are Fun

(You CAn sAY ThAT AgAin)

We’ve used loops since our very first program to

draw repeating shapes. Now it’s time to learn how to

build our own loops from scratch. Whenever we need

to do something over and over again in a program,

loops allow us to repeat those steps without having to

type each one separately. Figure 4-1 shows a visual

example—a rosette made up of four circles.

54 Chapter 4

Figure 4-1: A four-circle rosette pattern

Let’s think about how we might write a program to draw four

circles overlapping as shown. As you saw in Chapter 2, Turtle’s

circle() command draws a circle with the radius we specify inside

its parentheses. Those circles look like they’re at the north, south,

east, and west of the screen, 90 degrees apart, and we know how

to turn left or right 90 degrees. So we could write four pairs of

statements to draw a circle, then turn 90 degrees, and then draw

another circle, as in the following code. Type this into a new win-

dow and save it as Rosette.py.

Rosette.py

import turtle
t = turtle.Pen()
t.circle(100) # This makes our first circle (pointing north)
t.left(90) # Then the turtle turns left 90 degrees
t.circle(100) # This makes our second circle (pointing west)
t.left(90) # Then the turtle turns left 90 degrees
t.circle(100) # This makes our third circle (pointing south)
t.left(90) # Then the turtle turns left 90 degrees
t.circle(100) # This makes our fourth circle (pointing east)

Loops Are Fun (You Can Say That Again) 55

This code works, but doesn’t it feel repetitive? We typed the

code to draw a circle four times and the code to turn left three

times. We know from our spiral examples that we should be able to

write a chunk of code once and reuse that code in a for loop. In this

chapter, we’re going to learn how to write those loops ourselves.

Let’s try it now!

Building Your own for Loops

To build our own loop, we first need to identify the repeated steps.

The instructions that we’re repeating in the preceding code are

t.circle(100) to draw a turtle circle with a radius of 100 pixels and

t.left(90) to turn the turtle left 90 degrees before drawing the next

circle. Second, we need to figure out how

many times to repeat those steps. We

want four circles, so let’s start with four.

Now that we know the two repeated

instructions and the number of times

to draw the circle, it’s time to build our

for loop.

A for loop in Python iterates over

a list of items, or repeats once for each

item in a list—like the numbers 1

through 100, or 0 through 9. We want

our loop to run four times—once for

each circle—so we need to set up a list

of four numbers.

The built-in function range() allows us to easily create lists of

numbers. The simplest command to construct a range of n num-

bers is range(n); this command will let us build a list of n numbers

from 0 to n – 1 (from zero to one less than our number n).

For example, range(10) allows us to create a list of the 10 num-

bers from 0 to 9. Let’s enter a few sample range() commands in the

IDLE command prompt window to see how this works. To see our

lists printed out, we’ll need to use the list() function around our

range. At the >>> prompt, enter this line of code:

>>> list(range(10))

IDLE will give you the output [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]: a

list of 10 numbers, starting from 0. To get longer or shorter lists of

56 Chapter 4

numbers, you can enter different numbers inside the parentheses

of the range() function:

>>> list(range(3))
[0, 1, 2]
>>> list(range(5))
[0, 1, 2, 3, 4]

As you can see, entering list(range(3)) gives you a list of three

numbers starting at 0, and entering list(range(5)) gives you a list

of five numbers starting at 0.

using a for Loop to Make a rosette

with Four Circles

For our four-circle rosette shape, we need to repeat drawing a

circle four times, and range(4) will help us do that. The syntax,

or word order, of our for loop will look like this:

for x in range(4):

We start with the keyword for and then we give a variable,

x, that will be our counter or iterator variable. The in keyword

tells the for loop to step x through each of the values in the range

list, and range(4) gives the loop a list of the numbers from 0 to 3,

[0,1,2,3], to step through. Remember that the computer usually

starts counting from 0 instead of starting from 1 as we do.

To tell the computer which instructions are supposed to be

repeated, we use indentation; we indent each command that we

want to repeat in the loop by pressing the tab key in the new

file window. Type this new version of our program and save it as

Rosette4.py.

Rosette4.py

import turtle
t = turtle.Pen()
for x in range(4):
 t.circle(100)
 t.left(90)

This is a much shorter version of our Rosette.py program,

thanks to the for loop, yet it produces the same four circles as

the version without the loop. This program loops through lines 3,

Loops Are Fun (You Can Say That Again) 57

4, and 5 a total of four times, generating a rosette of four circles

on the top, left, bottom, and right sides of our window. Let’s take

a step-by-step look through the loop as it draws our rosette, one

circle at a time.

1. The first time through the loop,

our counter x has a starting value

of 0, the first value in the range

list [0, 1, 2, 3]. We draw our first

circle at the top of the window with

t.circle(100) and then turn the

turtle to the left by 90 degrees with

t.left(90).

2. Python goes back to the beginning

of the loop and sets x to 1, the sec-

ond value in [0, 1, 2, 3]. Then it

draws the second circle on the left

side of the window and turns the

turtle left by 90 degrees.

3. Python goes back through the loop

again, increasing x to 2. It draws the

third circle at the bottom of the win-

dow and turns the turtle left.

4. On the fourth and final time through

the loop, Python increases x to 3, then

runs t.circle(100) and t.left(90) to

draw our fourth circle on the right side

of the window and turn the turtle. The

rosette is now complete.

58 Chapter 4

Modifying our for Loop to Make

a rosette with six Circles

Now that we’ve built our own for

loop together from scratch, could

you modify the program on your

own to draw something new? What

if we wanted to draw a rosette with

six circles instead of four? What

might we need to change in our

program? Take a moment to think

about how you might solve this

problem.

  

Did you come up with some

ideas? Let’s walk through the prob-

lem together. First, we know that

we need six circles this time instead

of four, so our range will need to

change to range(6) in our for loop. But if we just change that, we’re

not going to see any difference in our drawing, because we’ll con-

tinue to draw over the same four circles separated by 90 degrees.

If we want six circles around the rosette, we’ll need to divide the

rosette into six left turns instead of four. There are 360 degrees

around the center of our drawing: four 90-degree turns took us

4 × 90 = 360 degrees all the way around. If we divide 360 by 6

instead of 4, we get 360 ÷ 6 = 60 degrees for each turn. So in

our t.left() command, we need to turn left 60 degrees each time

through the loop, or t.left(60).

Modify your rosette program and save it as Rosette6.py.

Rosette6.py

import turtle
t = turtle.Pen()

u for x in range(6):
v t.circle(100)
w t.left(60)

This time, the for loop statement in u will step x through the

list of six values from 0 to 5, so we’ll repeat the indented steps v

Loops Are Fun (You Can Say That Again) 59

and w six times each. At v, we’re still drawing a circle with a

radius of 100. At w, though, we’re turning only 60 degrees each

turn, or one-sixth of 360 degrees, so we get six circles around the

center of the screen this time, as shown in Figure 4-2.

Figure 4-2: A rosette of six circles

The rosette with six circles is even prettier than the one with

four circles, and thanks to our for loop, we didn’t have to write

any more lines of code to get six circles than we did to get four—we

just changed two numbers! Because we varied those two numbers,

you may be tempted to replace them with a variable. Let’s give in

to that temptation. Let’s give the user the power to draw a rosette

with any number of circles.

improving our rosette program
with user input

In this section, we’ll use the turtle.numinput() function that we

saw in Chapter 3 (see ColorSpiralInput.py on page 47) to write

a program that asks the user to enter a number and then draws a

rosette with that number of circles. We’ll set the user’s number as

the size of our range() constructor. Then, all we have to do is divide

60 Chapter 4

360 degrees by that number, and we’ll find the number of degrees

to turn left each pass through the loop. Type and run the following

code as RosetteGoneWild.py:

RosetteGoneWild.py

import turtle
t = turtle.Pen()
Ask the user for the number of circles in their rosette, default to 6

u number_of_circles = int(turtle.numinput("Number of circles",
 "How many circles in your rosette?", 6))

v for x in range(number_of_circles):
w t.circle(100)
x t.left(360/number_of_circles)

At u, we assign a variable called number_of_circles using a

couple of functions together. We’re using Turtle’s numinput() func-

tion to ask the user how many circles to draw. The first value,

Number of circles, is the pop-up window’s title; the second, How many

circles in your rosette?, is the text that will appear in the box;

and the last, 6, is a default value in case the user doesn’t enter

anything. The int() function outside numinput() turns the user’s

number into an integer we can use

in our range() function. We store the

user’s number as number_of_circles to

use as the size of the range() in our

drawing loop.

The for statement at v is our loop.

It uses the number_of_circles variable to

loop x through a list of that many num-

bers. The command to draw a circle

is still the same at w and will draw

circles with a radius of 100 pixels.

At x, we’re dividing a full turn of

360 degrees by the number of circles so

we can draw the circles evenly spaced

around the center of the screen. For

example, if the user enters 30 as the

number of circles, 360 ÷ 30 would give

us a 12-degree turn between each of

the 30 circles around our center point,

as shown in Figure 4-3.

Loops Are Fun (You Can Say That Again) 61

Run the program and try your own numbers. You can even

make a rosette of 90 circles, or 200 (but you’ll be waiting a while

as Python draws that many circles!). Customize the program to

make it your own: change the background color or the rosette

color, make the circles bigger or smaller, or make them bigger and

smaller! Play with your programs as you create them and as you

think of fun things you’d like them to do. Figure 4-4 shows what

my five-year-old son, Alex, dreamed up by adding just three extra

lines of code to RosetteGoneWild.py. Go to http://www.nostarch

.com/teachkids/ for the source code.

game Loops and while Loops

The for loop is powerful, but there are limits to its power. For

instance, what if we wanted to stop our loop when some event

occurred, instead of going all the way through a long list of num-

bers? Or what if we weren’t sure how many times to run our loop?

For example, consider a game loop—when we write a pro-

gram, especially a game, where the user gets to choose whether

to keep playing or to quit. We, as programmers, can’t know in

advance how many times users will choose to play our game or

 Figure 4-3: A user-defined rosette of
30 circles

Figure 4-4: A little imagination and a touch
of code can turn our rosette program into a
lot of colorful fun!

http://www.nostarch.com/teachkids/
http://www.nostarch.com/teachkids/

62 Chapter 4

run our program, but we need to give them the ability to play

again without having to reload and run the program every time.

Can you imagine if you had to restart an Xbox or PlayStation

every time you wanted to play a game again, or if you always had

to play a game exactly 10 times before moving on to a different

one? That might make it less fun.

One way we solve the game loop problem is by using another

type of loop, the while loop. Instead of iterating over a predefined

list of values, as the for loop does, a while loop can check for a

condition or situation and decide whether to loop again or end the

loop. The syntax of the while statement looks like this:

while condition:
 indented statement(s)

The condition is usually a Boolean expression, or true/false test.

One everyday example of a while loop is eating and drinking. While

you are hungry, you eat. When the answer to the question “Am I

hungry?” is no longer yes, that means the condition “I am hungry”

is no longer true, and you stop eating. While you are thirsty, you

take another drink of water. When you stop feeling thirsty, you quit

drinking. Hunger and thirst are conditions, and when those condi-

tions become false, you exit the eating and drinking “loops.” A while

loop continues repeating the statements in the loop (the indented

statements) as long as the condition is true.

The true/false conditions in

while loops often involve comparing

values. We might say, “Is the value

of x bigger than 10? As long as it is,

run this code. When x isn’t bigger

than 10 anymore, stop running the

code.” In other words, we run the

code while the condition x > 10

evaluates to True. The greater-

than symbol (>) is a comparison

operator, a different kind of

operator from arithmetic opera-

tors like + (plus) and – (minus).

Comparison operators—such

as > (greater than), < (less than),

== (equal to), or != (not equal to)—

let you compare two values to see

Loops Are Fun (You Can Say That Again) 63

if one of them is greater or less than the other, or if they are equal

or not equal. Is x less than 7? Yes or no? True or False? Based on

the result, True or False, you can tell your program to run different

pieces of code.

The while loop shares some features with the for loop. First,

like the for loop, it repeats a set of statements over and over as

needed. Second, with both while loops and for loops, we tell Python

which statements to repeat by indenting them to the right with the

tab key.

Let’s try a program with a while loop to see it in action. Type

the following code (or download it from http://www.nostarch.com/

teachkids/), and run it:

SayOurNames.py

Ask the user for their name
u name = input("What is your name? ")

Keep printing names until we want to quit
v while name != "":

 # Print their name 100 times
w for x in range(100):

 # Print their name followed by a space, not a new line
x print(name, end = " ")
y print() # After the for loop, skip down to the next line

 # Ask for another name, or quit
z name = input("Type another name, or just hit [ENTER] to quit: ")
{ print("Thanks for playing!")

We begin the program by asking the user their name at u and

storing their answer in the variable name. We need a name to test as

the condition of our while loop, so we have to ask once before the loop

starts. Then, at v, we start our while loop, which will run as long as

the name the user enters is not an empty string (represented by two

double quotes with nothing between them: ""). The empty string is

what Python sees as the input when the user presses enter to quit.

At w, we start our for loop, which will print the name

100 times, and at x, we tell the print() statement to print a space

after the name each time. We’ll keep going back to w and checking

to see if x has reached 100, then printing at x until the name fills

a few lines of the screen. When our for loop has finished printing

the name 100 times, we print a blank line without a space y, mov-

ing the printout down to the next clear line. Then, it’s time to ask

for another name z.

http://www.nostarch.com/teachkids/
http://www.nostarch.com/teachkids/

64 Chapter 4

Because z is the last line indented under the while loop v, the

new name that the user enters is passed back up to v so the while

loop can check whether it’s an empty string. If it’s not empty, our

program will start the for loop to print the new name 100 times. If

the name is an empty string, that means the user pressed enter

to end the program, so the while loop at v skips down to {, and we

thank the user for playing. Figure 4-5 shows the output of the pro-

gram when my sons ran it.

Figure 4-5: My sons ran SayOurNames.py and put in the names of everyone
in our family!

The Family spiral

Now that we can ask for a list of names and print them to the

screen, let’s combine the name printer loop with one of our pro-

grams from Chapter 3, SpiralMyName.py on page 45, to create

a colorful spiral of our family’s or friends’ names.

Our new, combined program will be different from the name

repeater in SayOurNames.py in a few ways, but the most important

Loops Are Fun (You Can Say That Again) 65

difference is that we can’t just print each name one by one; to draw

our spiral, we need to have all the names at once so that we can

draw each name in sequence as we wind around our spiral.

In SayOurNames.py, we were able to ask for one name at a

time, but for our graphical spiral name program, we’ll need to keep

all of the names in a list, just as we do with our colors. Then, as we

go around the loop, we can change the names and colors together

at each corner of the spiral. To do this, we’ll set up an empty list:

family = [] # Set up an empty list for family names

Whenever we’ve made a list of colors in our programs, we’ve

known the color names that we wanted to use, like red, yellow,

blue, and so on. In our family list, though, we have to wait until

the user enters the names. We use an empty list—a pair of square

brackets, []—to let Python know that we’re going to use a list

called family but that we don’t know what will be in the list until

the program runs.

Once we have an empty list, we can

ask for names in a while loop like we did in

SayOurNames.py, and we will append those

names to the list. To append means to add

items to the end of the list. In this program,

the first name the user enters will be added

to the empty list, the second name will be

appended after the first, and so on. When the

user has entered all the names they want in

their spiral, they will press enter to tell the

program that they’ve finished entering names.

Then we’ll use a for loop to draw the names

on the screen in a colorful spiral shape.

Type and run the following code to see

a while loop and a for loop do some beautiful

work together:

SpiralFamily.py

import turtle # Set up turtle graphics
t = turtle.Pen()
turtle.bgcolor("black")
colors = ["red", "yellow", "blue", "green", "orange",
 "purple", "white", "brown", "gray", "pink"]

u family = [] # Set up an empty list for family names

66 Chapter 4

Ask for the first name
v name = turtle.textinput("My family",

 "Enter a name, or just hit [ENTER] to end:")
Keep asking for names

w while name != "":
 # Add their name to the family list

x family.append(name)
 # Ask for another name, or end
 name = turtle.textinput("My family",
 "Enter a name, or just hit [ENTER] to end:")

Draw a spiral of the names on the screen
for x in range(100):

y t.pencolor(colors[x%len(family)]) # Rotate through the colors
z t.penup() # Don't draw the regular spiral lines
{ t.forward(x*4) # Just move the turtle on the screen
| t.pendown() # Draw the next family member's name
} t.write(family[x%len(family)], font = ("Arial", int((x+4)/4), "bold"))
~ t.left(360/len(family) + 2) # Turn left for our spiral

At u, we set up an empty list [] called family that will hold

the names the user enters. At v, we ask for the first name in a

turtle.textinput window and start the while loop to gather all the

names in the family at w. The command to add a value to the

end of a list is append(), shown at x. This takes the name the user

entered and appends it to the list called family. We then ask for

another name and keep repeating the while loop w until the user

presses enter to let us know they’re finished.

Our for loop starts out like previous spirals, but we use a new

command at y to set our pen color. The len() command is short for

length and tells us the length of the list of names stored in family.

For example, if you entered four names for your family, len(family)

would return 4. We use the modulo operator, %, with this value

to rotate through four colors, one for each name in family. Larger

families would rotate through more colors (up to the 10 colors in

our list), while smaller families would need fewer colors.

At z, we use the penup() command to “lift” the turtle’s pen

off the screen so that when we move forward at {, the turtle won’t

draw anything; we’ll be drawing names at the corners of the spi-

ral, with no lines in between. At |, we put the turtle’s pen down

again so that our names will be drawn.

At }, we’re doing a lot. First, we tell the turtle which name to

draw. Notice that family[x%len(family)] uses the modulo operator, %,

Loops Are Fun (You Can Say That Again) 67

to rotate through the names the user entered in the family list. The

program will start with the first name entered, family[0], and con-

tinue with family[1], family[2], and so on until it reaches the final

name in the list. The font = portion of this statement tells the com-

puter we want to use the Arial font, in bold style, for our names.

It also sets the font size to grow as x grows; our font size of (x+4)/4

means that when the loop finishes with x = 100, the font size will

be (100 + 4) / 4 = 26-point font—a nice size. You can make the fonts

bigger or smaller by changing this equation.

Finally, at ~, we turn the turtle left by 360/len(family) degrees

plus 2. For a family with four members, we would turn 90 degrees

plus 2 for a nice square spiral; a family of six would get 60-degree

turns plus 2 for a six-sided spiral, and so on. The extra 2 degrees

make the spiral spin to the left a bit for the swirl effect we’ve

seen in our other spirals. In Figure 4-6, we ran this program

and entered our family’s names, including our two cats, Leo and

Rocky, to get a wonderful family spiral picture.

Figure 4-6: The Payne family spiral, including our two cats, Leo and Rocky

68 Chapter 4

putting it All Together:
spiral goes Viral

We’ve seen the power of loops: they take pieces of code and repeat

them over and over to do repetitive work that we wouldn’t want

to do by hand, like typing a name 100 times. Let’s take loops one

step further and build our own nested loop, which is a loop inside

another loop (like Russian nesting dolls—look inside one doll, and

there’s another doll).

To explore nested loops, let’s draw a spiral not of names or

lines but of spirals! Instead of drawing a name at every corner of

our spiral like we did in Figure 4-6, we could draw a smaller spi-

ral. To accomplish that, we need a big loop to draw a big spiral on

the screen and a little loop inside to draw small spirals around the

big spiral.

Before we write a program to do that, let’s learn how to nest a

loop inside another loop. First, start a loop as usual. Then, inside

that loop, press tab once and start a second loop:

This is our first loop, called the outer loop
for x in range(10):
 # Things indented once will be done 10 times
 # Next is our inner loop, or the nested loop
 for y in range(10):
 # Things indented twice will be done 100 (10*10) times!

The first loop is called the outer loop, because it surrounds our

nested loop. The nested loop is called the inner loop, because it sits

inside the other loop. Notice that in our nested loop, any lines of code

that are indented twice (so they’re inside the second loop) will be

repeated 10 times for y and 10 times for x, or 100 times total.

Let’s start writing our program, ViralSpiral.py. We’ll write it

step by step—the finished program is shown on page 72.

Loops Are Fun (You Can Say That Again) 69

import turtle
t = turtle.Pen()

u t.penup()
turtle.bgcolor("black")

The first few lines of our program look like the other spirals

we’ve programmed, except that we won’t be drawing lines for the

big spiral. We plan to replace those with smaller spirals, so we

have a t.penup() at u to lift the turtle’s pen off the screen right

from the beginning. We then set the background color to black.

Keep typing: we’re not done! Next we’ll ask the user for the

number of sides they want using turtle.numinput(), with a default

of 4 if the user doesn’t choose something different, and we’ll restrict

the range of allowable sides to between 2 and 6.

sides = int(turtle.numinput("Number of sides",
 "How many sides in your spiral of spirals (2-6)?", 4,2,6))
colors = ["red", "yellow", "blue", "green", "purple", "orange"]

The turtle.numinput() function allows us to specify a title for

our input dialog; a prompt question; and default, minimum, and

maximum values, in that order: turtle.numinput(title, prompt,

default, minimum, maximum). Here, we specify a default value of 4, a

minimum of 2, and a maximum of 6. (If the user tries to enter 1

or 7, for example, they’ll get a warning that the minimum allowed

value is 2 and the maximum allowed value is 6.) We also set up our

colors list with six colors.

Next we’ll write our outer spiral loop. The outer loop will posi-

tion the turtle at each corner of the big spiral.

v for m in range(100):
 t.forward(m*4)

w position = t.position() # Remember this corner of the spiral
x heading = t.heading() # Remember the direction we were heading

Our outer loop takes m from 0 to 99 for 100 total passes v. In

our outer loop, we move forward just like in our other spiral pro-

grams, but when we reach each corner of our big spiral, we stop to

remember our position w and heading x. The position is the turtle’s

(x, y) coordinate location on the screen, and the heading is the

direction the turtle is moving in.

Our turtle is taking a bit of a detour at every spot along the

large spiral in order to draw the smaller spirals, so it must return

70 Chapter 4

to this position and heading after finishing each small spiral in

order to maintain the shape of the big spiral. If we didn’t remem-

ber the location and direction of the turtle before starting to draw

the small spirals, our turtle would wander all over the screen,

starting each small spiral relative to where it left off with the last

small spiral.

The two commands that will tell us the turtle’s location and

direction are t.position() and t.heading(). The turtle’s position is

accessed through t.position(), and it consists of both the x (horizon-

tal) and y (vertical) coordinates of the turtle’s location on the screen,

just like on a coordinate graph. The direction the turtle is heading

is available through the command t.heading() and is measured from

0.0 degrees to 360.0 degrees, with 0.0 degrees pointing up toward

the top of the screen. We will store these pieces of information in the

variables position and heading before we start each small spiral so

that we can pick up where we left off on the big spiral each time.

It’s time for the inner loop. We’re indented even farther here.

This inner loop will draw a small spiral at each corner of the big-

ger spiral.

y for n in range(int(m/2)):
 t.pendown()
 t.pencolor(colors[n%sides])
 t.forward(2*n)
 t.right(360/sides - 2)
 t.penup()

z t.setx(position[0]) # Go back to the big spiral's x location
{ t.sety(position[1]) # Go back to the big spiral's y location
| t.setheading(heading) # Point in the big spiral's heading
} t.left(360/sides + 2) # Aim at the next point on the big spiral

Our inner loop y begins with n = 0 and stops when n = m/2,

or one-half of m, to keep the inner spirals smaller than the outer

spiral. The inner spirals look like our previous spirals, except that

we put the pen down before drawing each line and lift it after each

line is drawn so that our big spiral stays clean.

After we draw our inner spiral from y, we pick back up at z

by setting the horizontal position of the turtle to the one we stored

at w. The horizontal axis is commonly called the x-axis, so when

we set the horizontal location, we use t.setx(), or set the x-axis posi-

tion of our turtle’s location on the screen. At {, we set the y-axis

location, or vertical position, that we stored at w. At |, we turn

Loops Are Fun (You Can Say That Again) 71

the turtle to the heading we stored at x before going on to the next

part of the big spiral at }.

When our big loop ends after m has gone from 0 to 99, we will

have drawn 100 small spirals in a big spiral pattern for a nice

kaleidoscope effect, as shown in Figure 4-7.

Figure 4-7: A square spiral with square spirals at every
corner (top) and a five-sided (pentagonal) spiral of
spirals (bottom) from our ViralSpiral.py program

72 Chapter 4

You’ll notice the one drawback to nested loops while you’re

waiting for this program to run: the shapes shown in Figure 4-7

take longer to draw than our simple spirals did. That’s because

we’re performing so many more steps than we did with our

simple spirals. In fact, when we draw the six-sided version of our

ViralSpiral.py, the final drawing consists of 2,352 separate lines!

All those drawing commands, plus the turning and setting the

pen color, add up to a lot of work, even for a fast computer. Nested

loops are useful, but remember that

the extra steps can slow our programs

down, so we use nested loops only

when the effect is worth the wait.

Here’s the completed code for

ViralSpiral.py.

ViralSpiral.py

import turtle
t = turtle.Pen()
t.penup()
turtle.bgcolor("black")
Ask the user for the number of sides, default to 4, min 2, max 6
sides = int(turtle.numinput("Number of sides",
 "How many sides in your spiral of spirals? (2-6)", 4,2,6))
colors = ["red", "yellow", "blue", "green", "purple", "orange"]
Our outer spiral loop
for m in range(100):
 t.forward(m*4)
 position = t.position() # Remember this corner of the spiral
 heading = t.heading() # Remember the direction we were heading
 print(position, heading)
 # Our "inner" spiral loop
 # Draws a little spiral at each corner of the big spiral
 for n in range(int(m/2)):
 t.pendown()
 t.pencolor(colors[n%sides])
 t.forward(2*n)
 t.right(360/sides - 2)
 t.penup()
 t.setx(position[0]) # Go back to the big spiral's x location
 t.sety(position[1]) # Go back to the big spiral's y location
 t.setheading(heading) # Point in the big spiral's heading
 t.left(360/sides + 2) # Aim at the next point on the big spiral

Loops Are Fun (You Can Say That Again) 73

What You Learned

In this chapter, you learned to build your own loops by identify-

ing repeated steps in a program and moving those repeated steps

inside the right kind of loop. With a for loop, you can run your

code a set number of times, like looping 10 times with for x in

range(10). With a while loop, you can run your code until a condi-

tion or event occurs, like the user entering nothing at an input

prompt with while name != "".

You learned that the flow of a program is changed by the loops

that you create. We used the range() function to generate lists of

values that allow us to control the number of times our for loops

repeat, and we used the modulo operator, %, to loop through the

values in a list to change colors in a list of colors, pick names out

of a list of names, and more.

We used an empty list, [], and the append() function to add

information from the user into a list that we then used in a pro-

gram. You learned that the len() function can tell you the length

of a list—that is, how many values the list contains.

You learned how to remember the turtle’s current position and

the direction it’s heading with the t.position() and t.heading() func-

tions, and you learned how to get the turtle back to this location

and heading with t.setx(), t.sety(), and t.setheading().

Finally, you saw how you can use nested loops to repeat one

set of instructions inside another set, first to print a list of names

on a screen and then to create spirals of spirals in a kaleidoscope

pattern. Along the way, we’ve drawn lines, circles, and strings of

words or names on the screen.

At this point, you should be able to do the following:

•	 Create your own for loops to repeat a set of instructions a cer-

tain number of times.

•	 Use the range() function to generate lists of values to control

your for loops.

•	 Create empty lists and add to lists using the append() function.

•	 Create your own while loops to repeat while a condition is True

or until the condition is False.

•	 Explain how each type of loop works and how you code it in

Python.

74 Chapter 4

•	 Give examples of situations in which you would use each type

of loop.

•	 Design and modify programs that use nested loops.

programming Challenges

Try these challenges to practice what you’ve learned in this

chapter. (If you get stuck, go to http://www.nostarch.com/

teachkids/ for sample answers.)

#1: spiral rosettes

Think about how you might modify the ViralSpiral.py

program to replace the small spirals with rosettes like

those in Rosette6.py (page 58) and RosetteGoneWild.py

(page 60). Hint: first replace the inner loop with an inner

loop that will draw a rosette. Then, add the code to change

the colors and sizes of the circles in each rosette. As an

added touch, change the width of the pen slightly as your

circles get bigger. When you finish, save the new program as

SpiralRosettes.py. Figure 4-8 shows a drawing produced by

one solution to this challenge.

Figure 4-8: A spiral of rosettes from one solution
to Programming Challenge #1

Loops Are Fun (You Can Say That Again) 75

#2: A spiral of Family spirals

Wouldn’t it be cool to draw a spiral of spirals of your family’s

names? Take a look at SpiralFamily.py (page 65) and then

refer back to the code for ViralSpiral.py. Create an inner

loop inside the for loop in SpiralFamily.py that draws the

smaller spiral. Then, modify your outer loop to remember

the position and heading of the turtle before drawing each

small spiral, and set it back before continuing to the next big

spiral location. When you get it right, save the new program

as ViralFamilySpiral.py.

5
CONDITIONS (WHAT IF?)

In addition to speed and accuracy, one quality that

makes computers powerful is their ability to evalu-

ate information and make small decisions quickly: a

thermo stat checks the temperature continuously and

turns on heating or cooling as soon as the temperature

goes below or above a certain number; sensors on new

cars react and apply brakes more quickly than we can

when another car suddenly stops ahead; spam filters

turn away dozens of emails to keep our inboxes clean.

78 Chapter 5

In each of these cases, the computer checks a set of conditions:

Is the temperature too cold? Is there something in the path of the

car? Does the email look like spam?

In Chapter 4, we saw a statement that uses a condition to

make a decision: the while statement. In those examples, the condi-

tion told the while loop how many times to run. What if we wanted

to make decisions about whether to run a set of statements at all?

Imagine if we could write one program and let the user decide

whether they wanted circles or other shapes on their spiral. Or

what if we wanted circles and other shapes, like in Figure 5-1?

Figure 5-1: A spiral of rosettes and smaller spirals,
courtesy of an if statement

The statement that makes all this

possible is the if statement. It asks if

something is true, and based on the

answer, it decides whether to perform a

set of actions or skip over them. If the

temperature in a building is fine, the

heating and cooling system doesn’t run,

but if it’s too hot or too cold, the system

turns on. If it’s raining outside, you

Conditions (What If?) 79

bring an umbrella; otherwise, you don’t. In this chapter, we’ll learn

how to program the computer to make decisions based on whether

a condition is true or false.

if Statements
The if statement is an important programming tool. It allows us

to tell the computer whether to run a group of instructions, based

on a condition or set of conditions. With an if statement, we can

tell the computer to make a choice.

The syntax of the if statement—that is, the way we code an if

statement so the computer understands it—looks like this:

if condition:
 indented statement(s)

The condition we’re testing in an if statement is usually a

Boolean expression, or a true/false test. A Boolean expression

evaluates to either True or False. When you use a Boolean expres-

sion with an if statement, you specify an action or set of actions

that you want performed if the expression is true. If the expression

is true, the program will run the indented statement(s), but if it’s

false, the program will skip them and continue with the rest of the

program at the next unindented line.

IfSpiral.py shows an example of an if statement in code:

IfSpiral.py

u answer = input("Do you want to see a spiral? y/n:")
v if answer == 'y':
w print("Working...")

 import turtle
 t = turtle.Pen()
 t.width(2)

x for x in range(100):
y t.forward(x*2)
z t.left(89)
{ print("Okay, we're done!")

The first line of our IfSpiral.py program u asks the user

to enter y or n for whether they would like to see a spiral and

stores the user’s response in answer. At v, the if statement checks

to see if answer is equal to 'y'. Notice that the operator to test “is

80 Chapter 5

equal to” uses two equal signs together, ==, to distinguish it from

the assignment operator, which is a single equal sign like at u.

The == operator checks to see if answer and 'y' are equal. If they

are, the condition in our if statement is true. We use a pair of

single quotation marks (') around a letter or other character when

we’re testing a variable to see if it contains a single character

entered by the user.

If our condition at v is true, we print Working... on the screen

at w, then draw a spiral on the screen. Notice that the print state-

ment at w and the statements that draw the spiral all the way

down to z are indented. These indented statements will be exe-

cuted only if the condition at v is true. Otherwise, the program

will skip all the way to { and just print Okay, we're done!.

The statements after our for loop at x are indented farther

(y and z). This is because they belong to the for statement. Just

as we added a loop inside another loop in Chapter 4 by indenting

the nested loop, we can put a loop inside an if statement by indent-

ing the whole loop.

Once the spiral is complete, our program picks back up at { and

tells the user we’re done. This is also the line our program jumps

to if the user typed n or anything other than y at u. Remember, the

whole if block from w through z is skipped if the condition at v is

False.

Type IfSpiral.py in a new IDLE window or download it from

http://www.nostarch.com/teachkids/, and run it a few times, test-

ing different answers. If you enter the letter y when prompted,

you’ll see a spiral like the one in Figure 5-2.

http://www.nostarch.com/teachkids/

Conditions (What If?) 81

Figure 5-2: If you answer y to the question in
IfSpiral.py, you’ll see a spiral like this one.

If you enter a character other than a lowercase y—or more than

one character—the program prints Okay, we're done! and ends.

Meet the Booleans
Boolean expressions, or conditional expressions, are important pro-

gramming tools: the computer’s ability to make decisions depends

on its ability to evaluate Boolean expressions to True or False.

We have to use the computer’s language to tell it the condition

we’d like to test. The syntax of a conditional expression in Python

is this:

expression1 conditional_operator expression2

Each expression can be a variable, a value, or another expres-

sion. In IfSpiral.py, answer == 'y' was a conditional expression, with

answer as the first expression and 'y' as the second. The conditional

operator was ==, to check if answer was equal to 'y'. There are many

other conditional operators in Python besides ==. Let’s learn about

some of them.

Comparison Operators

The most common conditional operators are comparison operators,

which let you test two values to see how they compare to each

other. Is one of the values bigger or smaller than the other? Are

82 Chapter 5

they equal? Each comparison you make using a comparison opera-

tor is a condition that will evaluate to True or False. One real-world

example of a comparison is when you enter a passcode to access a

building. The Boolean expression takes the passcode you entered

and compares it to the correct passcode; if the input matches (is

equal to) the correct passcode, the expression evaluates to True,

and the door opens.

The comparison operators are shown in Table 5-1.

Table 5-1: Python Comparison Operators

Math

symbol

Python

operator

Meaning Example Result

< < Less than 1 < 2 True

> > Greater than 1 > 2 False

≤ <= Less than or equal to 1 <= 2 True

≥ >= Greater than or equal to 1 >= 2 False

= == Equal to 1 == 2 False

≠ != Not equal to 1 != 2 True

As we saw with math operators in Chapter 3, some of the oper-

ators in Python are different from math symbols to make them

easier to type on a standard keyboard. Less than and greater than

use the symbols we’re used to, < and >.

For less than or equal to, Python uses the less than sign and

equal sign together, <=, with no space in between. The same goes for

greater than or equal to, >=. Remember not to put a space between

the two signs, as that will cause an error in your program.

The operator to see if two values are

equal is the double equal sign, ==, because

the single equal sign is already used as the

assignment operator. The expression x = 5

assigns the value 5 to the variable x, but

x == 5 tests to see if x is equal to 5. It’s help-

ful to read the double equal sign out loud as

“is equal to” so you can avoid the common

mistake of writing the incorrect statement

if x = 5 instead of the correct if x == 5

(“if x is equal to five”) in your programs.

Conditions (What If?) 83

The operator that tests to see if two values are not equal is !=,

an exclamation point followed by the equal sign. This combination

may be easier to remember if you say “not equal to” when you see

!= in a statement. For example, you might read if x != 5 aloud as

“if x is not equal to five.”

The result of a test involving a conditional operator is one of

the Boolean values, True or False. Go to the Python shell and try

entering some of the expressions shown in Figure 5-3. Python will

respond with either True or False.

Figure 5-3: Testing conditional expressions
in the Python shell

We start by going to the shell and entering x = 5 to create a

variable called x that holds the value 5. On the second line, we

check the value of x by typing it by itself, and the shell responds

with its value, 5. Our first conditional expression is x > 2, or “x is

greater than two.” Python responds with True because 5 is greater

than 2. Our next expression, x < 2 (“x is less than two”), is false

when x is equal to 5, so Python returns False. The remaining con-

ditionals use the <= (less than or equal to), >= (greater than or

equal to), == (is equal to), and != (not equal to) operators.

Every conditional expression will evaluate to either True or

False in Python. Those are the only two Boolean values, and the

capital T in True and capital F in False are required. True and False

84 Chapter 5

are built-in constant values in Python. Python will not understand

if you type True as true without the capital T, and the same goes for

False.

You’re Not Old Enough!

Let’s write a program that uses Boolean conditional expressions to

see if you’re old enough to drive a car. Type the following in a new

window and save it as OldEnough.py.

OldEnough.py

u driving_age = eval(input("What is the legal driving age where you live? "))
v your_age = eval(input("How old are you? "))
w if your_age >= driving_age:
x print("You're old enough to drive!")
y if your_age < driving_age:
z print("Sorry, you can drive in", driving_age - your_age, "years.")

At u, we ask the user for the legal driving age in their area,

evaluate the number they enter, and store that value in the vari-

able driving_age. At v, we ask for the user’s current age and store

that number in your_age.

The if statement at w checks to see if the user’s current age

is greater than or equal to the driving age. If w evaluates to True,

the program runs the code at x and prints, "You're old enough

to drive!". If the condition at w evaluates to False, the program

skips x and goes to y. At y, we check if the user’s age is less than

the driving age. If so, the program runs the code at z and tells the

user how many years it’ll be until they can drive by subtracting

driving_age from your_age and printing the result. Figure 5-4 shows

the results of this program for my son and me.

Conditions (What If?) 85

Figure 5-4: I’m old enough to drive in the United States, but my five-year-old
son isn’t.

The only catch is that the last if statement at y feels redun-

dant. If the user is old enough at w, we shouldn’t need to test to

see if they’re too young, because we already know they’re not. And

if the user isn’t old enough at w, we shouldn’t need to test to see if

they’re too young at y, because we already know they are. If only

Python had a way of getting rid of that unnecessary code . . . well,

it just so happens that Python does have a shorter, faster way to

handle situations like this one.

else Statements
Often we want our program to do one thing if a condition evaluates

to True and something else if the condition evaluates to False. This

is so common, in fact, that we have a shortcut, the else statement,

that allows us to test if the condition is true without having to per-

form another test to see if it’s false. The else statement can only be

used after an if statement, not by itself, so we sometimes refer to

the two together as an if-else. The syntax looks like this:

if condition:
 indented statement(s)
else:
 other indented statement(s)

If the condition in an if statement is true, the indented state-

ments under the if are executed, and the else and all its statements

are skipped. If the condition in the if statement is false, the program

skips directly to the else’s other indented statements and runs those.

We can rewrite OldEnough.py with an else statement to

remove the extra conditional test (your_age < driving_age). This not

86 Chapter 5

only makes the code shorter and easier to read, but it also helps

prevent coding errors in the two conditions. For example, if we

test your_age > driving_age in the first if statement and your_age <

driving_age in the second if statement, we might accidentally leave

out the case where your_age == driving_age. By using the if-else

statement pair, we can just test if your_age >= driving_age to see if

you’re old enough to drive and inform you if you are, and otherwise

go to the else statement and print how many years you must wait

to drive.

Here’s OldEnoughOrElse.py, a revised version of OldEnough.py

with an if-else instead of two if statements:

OldEnoughOrElse.py

driving_age = eval(input("What is the legal driving age where you live? "))
your_age = eval(input("How old are you? "))
if your_age >= driving_age:
 print("You're old enough to drive!")
else:
 print("Sorry, you can drive in", driving_age - your_age, "years.")

The only difference between the two programs is that we

replaced the second if statement and condition with a shorter,

simpler else statement.

Polygons or Rosettes

As a visual example, we can ask the user to input whether they’d

like to draw a polygon (triangle, square, pentagon, and so on) or a

rosette with a certain number of sides or circles. Depending on the

user’s choice (p for polygon or r for rosette), we can draw exactly the

right shape.

Let’s type and run this example, PolygonOrRosette.py, which

has an if-else statement pair.

PolygonOrRosette.py

import turtle
t = turtle.Pen()
Ask the user for the number of sides or circles, default to 6

u number = int(turtle.numinput("Number of sides or circles",
 "How many sides or circles in your shape?", 6))
Ask the user whether they want a polygon or rosette

v shape = turtle.textinput("Which shape do you want?",
 "Enter 'p' for polygon or 'r' for rosette:")

Conditions (What If?) 87

w for x in range(number):
x if shape == 'r': # User selected rosette
y t.circle(100)
z else: # Default to polygon
{ t.forward (150)
| t.left(360/number)

At u, we ask the user for a number of sides (for a polygon) or

circles (for a rosette). At v, we give the user a choice between p for

polygon or r for rosette. Run the program a few times, trying each

option with different numbers of sides/circles, and see how the for

loop at w works.

Notice that x through | are indented, so they are part of the

for loop at w and are executed the number of times the user entered

as the number of lines or circles at u. The if statement at x checks

to see if the user entered r to draw a rosette, and if that’s true, y is

executed and draws a circle at this location as part of the rosette. If

the user entered p or anything other than r, the else statement at z

is selected and draws a line at { by default, to make one side of a

polygon. Finally, at | we turn left by the correct number of degrees

(360 degrees divided by the number of sides or rosettes) and keep

looping from w to | until the shape is finished. See Figure 5-5 for

an example.

Figure 5-5: Our PolygonOrRosette.py program with
user input of 7 sides and r for rosette

88 Chapter 5

Even or Odd?

The if-else statement can test more than user input. We can use it

to alternate shapes, like in Figure 5-1, by using an if statement to

test our loop variable each time it changes to see if it’s even or odd.

On every even pass through the loop—when our variable is equal

to 0, 2, 4, and so on—we can draw a rosette, and on every odd pass

through the loop, we can draw a polygon.

To do this, we need to know how to check if a number is odd or

even. Think about how we decide if a number is even; that means

the number is divisible by two. Is there a way to see if a number

is evenly divisible by two? “Evenly divisible” means there’s no

remainder. For example, four is even, or evenly divisible by two,

because 4 ÷ 2 = 2 with no remainder. Five is odd because 5 ÷ 2 = 2

with a remainder of 1. So even numbers have a remainder of zero

when they’re divided by two, and odd numbers have a remainder

of one. Remember the remainder operator? That’s right: it’s our old

friend the modulo operator, %.

In Python code, we can set up a loop variable m and check to

see if m is even by testing m % 2 == 0—that is, checking to see if the

remainder when we divide m by two is equal to zero:

for m in range(number):
 if (m % 2 == 0): # Tests to see if m is even
 # Do even stuff
 else: # Otherwise, m must be odd
 # Do odd stuff

Let’s modify a spiral program to draw rosettes at even corners

and polygons at odd corners of a big spiral. We’ll use a big for loop

for the big spiral, an if-else statement to check whether to draw

a rosette or a polygon, and two small inner loops to draw either a

rosette or a polygon. This will be longer than most of our programs

so far, but comments will help explain what the program is doing.

Type and run the following program, RosettesAndPolygons.py, and

be sure to check that your indentation is correct for the loops and

if statements.

RosettesAndPolygons.py

RosettesAndPolygons.py - a spiral of polygons AND rosettes!
import turtle
t = turtle.Pen()

Conditions (What If?) 89

Ask the user for the number of sides, default to 4
sides = int(turtle.numinput("Number of sides",
 "How many sides in your spiral?", 4))
Our outer spiral loop for polygons and rosettes, from size 5 to 75

u for m in range(5,75):
 t.left(360/sides + 5)

v t.width(m//25+1)
w t.penup() # Don't draw lines on spiral

 t.forward(m*4) # Move to next corner
x t.pendown() # Get ready to draw

 # Draw a little rosette at each EVEN corner of the spiral
y if (m % 2 == 0):
z for n in range(sides):

 t.circle(m/3)
 t.right(360/sides)
 # OR, draw a little polygon at each ODD corner of the spiral

{ else:
| for n in range(sides):

 t.forward(m)
 t.right(360/sides)

Let’s look at how this program works. At u, we set up a for

loop over the range 5 to 75; we’re skipping 0 to 4 because it’s hard

to see shapes that are 4 pixels across or smaller. We turn for our

spiral; then, at v we use integer division to make the pen wider

(thicker) after every 25th shape. Figure 5-6 shows the lines getting

thicker as the shapes get bigger.

At w, we lift our turtle’s pen off the screen and move forward

so we don’t draw lines between rosettes and polygons. At x, we put

the pen back down and get ready to draw a shape at the corner

of the big spiral. At y, we test our loop variable m to see if we’re

drawing at an even corner. If m is even (m % 2 == 0), we draw the

rosette with the for loop at z. Otherwise, the else at { tells us to

draw a polygon using the for loop beginning at |.

90 Chapter 5

Figure 5-6: Two runs of our RosettesAndPolygons.py program
with user inputs of 4 sides (top) and 5 sides (bottom)

Conditions (What If?) 91

Notice that when we use an even number of sides, the alter-

nating shapes form separate legs of the spiral, as shown at the

top in Figure 5-6. But when the number of sides is odd, each leg

of the spiral alternates with the even (rosette) shape and the odd

(polygon) shape. With color and some thought, you can make this

program draw a design like the one in Figure 5-1. The if-else

statements add another dimension to our programming toolkit.

elif Statements
There’s one more useful add-on to an if statement: the elif clause.

No, that’s not one of Santa’s helpers! An elif is a way to string

together if-else statements when you need to check for more

than two possible outcomes. The keyword elif is short for “else if.”

Think about letter grades in school: if you score 98 percent on an

exam, the teacher might assign a grade of A or A+ depending on

the grading scale. But if you score lower, there’s not just one grade

(there are more options than A or F, thank goodness). Instead,

there are several possible grades your teacher might use: A, B, C,

D, or F.

This is a case where an elif statement or a set of elif state-

ments can help. Let’s take the example of a 10-point grading scale,

where 90 or above is an A, 80–89 is a B, and so on. If your score

is 95, we can print the letter grade A and skip all other options.

Similarly, if you earned an 85, we don’t need to test further than

a B. The if-elif-else construct helps us do this in a straight forward

way. Try running the following program, WhatsMyGrade.py, and

entering different values between 0 and 100.

WhatsMyGrade.py

u grade = eval(input("Enter your number grade (0-100): "))
v if grade >= 90:

 print("You got an A! :) ")
w elif grade >= 80:

 print("You got a B!")
x elif grade >= 70:

 print("You got a C.")
y elif grade >= 60:

 print("You got a D...")
z else:

 print("You got an F. :(")

92 Chapter 5

At u, we ask the user for a numeric grade from 0 to 100 with

an input() prompt, convert it to a number with the eval() func-

tion, and store it in the variable grade. At v, we compare the

user’s grade to the value 90, the cutoff for a letter grade of A. If

the user entered a score of 90 or greater, Python will print You

got an A! :), skip the other elif and else statements, and continue

with the rest of the program. If the score is not 90 or greater, we

proceed to w to check for a grade of B. Again, if the score is 80 or

greater, the program prints the correct grade and skips past the

else statement. Otherwise, the elif statement at x checks for a C,

the elif statement at y checks for a D, and, finally, any score less

than 60 makes it all the way to z and results in the else state-

ment’s You got an F. :(.

We can use if-elif-else statements to test a variable across mul-

tiple ranges of values. Sometimes, though, we need to test multiple

variables. For example, when deciding what to wear for the day, we

want to know the temperature (warm or cold) and the weather (sun

or rain). To combine conditional statements, we need to learn a few

new tricks.

Complex Conditions: if, and, or, not
There are times when a single conditional statement isn’t enough.

What if we want to know if it’s warm and sunny or cold and rainy?

Think back to our first program in this chapter, in which we

answered y if we wanted to draw a spiral. The first two lines asked

for input and checked to see if that input was y:

answer = input("Do you want to see a spiral? y/n:")
if answer == 'y':

To see a spiral, the user has to enter y exactly; only this one

answer is accepted. Even something similar, like capital Y or the

word yes, doesn’t work because our if statement checks only for y.

One easy way to solve the Y versus y problem is to use the

lower() function, which makes strings all lowercase. You can try it

in IDLE:

>>> 'Yes, Sir'.lower()
'yes, sir'

Conditions (What If?) 93

The lower() function changed the capital Y and capital S in Yes,

Sir to lowercase, leaving the rest of the string unchanged.

We can use lower() on the user’s input so that no matter which

they enter, Y or y, the condition in our if statement will be True:

if answer.lower() == 'y':

Now, if a user enters either Y or y, our program checks to see if

the lowercase version of their answer is y. But if we want to check

for the full word Yes, we need a compound if statement.

Compound if statements are like compound sentences: “I’m

going to the store, and I’m going to buy some groceries.” Compound

if statements are useful when we want to do a bit more than just

test whether one condition is true. We might want to test if this

condition and another condition are both true. We might test if

this condition or another condition is true. And we might want to

see if the condition is not true. We do this in everyday life, too. We

say, “If it’s cold and raining, I’ll wear my heavy raincoat,” “If it’s

windy or cold, I’ll wear a jacket,” or “If it’s not raining, I’ll wear my

favorite shoes.”

When we build a compound if statement, we use one of the

logical operators shown in Table 5-2.

Table 5-2: Logical Operators

Logical

operator

Usage Result

and if(condition1 and condition2): True only if both

condition1 and condition2

are True

or if(condition1 or condition2): True if either of

condition1 or condition2

are True

not if not(condition): True only if the condition

is False

We can use the or operator to check if the user entered y or yes;

either one will do.

answer = input("Do you want to see a spiral? y/n:").lower()
if answer == 'y' or answer == 'yes': # Checks for either 'y' or 'yes'

94 Chapter 5

Now we’re testing if either of two conditions is True. If either

is True, the user gets to see the spiral. Notice that we write the

full conditional on either side of the or keyword: answer == 'y' or

answer == 'yes'. One common error for new programmers is try-

ing to shorten or conditions by leaving out the second answer ==. To

remember the right way to use an or statement, think about each

condition separately. If any of the conditions joined by an or evalu-

ates to True, the whole statement is true, but each condition has to

be complete for the statement to work.

A compound condition using and looks similar, but and requires

every condition in the statement to be true for the overall statement

to evaluate to True. For an example, let’s write a program to decide

what to wear based on the weather. Type WhatToWear.py in a new

window or download it from http://www.nostarch.com/teachkids/,

and run it:

WhatToWear.py

u rainy = input("How's the weather? Is it raining? (y/n)").lower()
v cold = input("Is it cold outside? (y/n)").lower()
w if (rainy == 'y' and cold == 'y'): # Rainy and cold, yuck!

 print("You'd better wear a raincoat.")
x elif (rainy == 'y' and cold != 'y'): # Rainy, but warm

 print("Carry an umbrella with you.")
y elif (rainy != 'y' and cold == 'y'): # Dry, but cold

 print("Put on a jacket, it's cold out!")
z elif (rainy != 'y' and cold != 'y'): # Warm and sunny, yay!

 print("Wear whatever you want, it's beautiful outside!")

At u, we ask the user whether it’s raining outside, and at v,

we ask if it’s cold or not. We also make sure the answers stored in

rainy and cold are lowercase by adding the lower() function to the

end of the input() functions on both lines. With these two condi-

tions (whether it’s rainy and whether it’s cold), we can help the

user decide what to wear. At w, the compound if statement checks

to see if it’s both rainy and cold; if it is, the program suggests a

raincoat. At x, the program checks to see if it’s both rainy and not

cold. For rainy but not cold weather, the program recommends an

umbrella. At y, we check to see if it’s not raining (rainy not equal

to 'y') but still cold, requiring a jacket. Finally, at z, if it’s not

raining and it’s not cold, wear whatever you want!

http://www.nostarch.com/teachkids/

Conditions (What If?) 95

Secret Messages
Now that we understand how to use conditions, we’re going to

learn to encode and decode secret messages using a Caesar cipher.

A cipher is a secret code, or a way of changing messages to make

them harder to read. The Caesar cipher is named after Julius

Caesar, who is said to have liked sending private messages by

shifting letters in the alphabet:

SECRET MESSAGES ARE SO COOL! -> FRPERG ZRFFNTRF NER FB PBBY!

We can create a simple Caesar cipher by using an encoder ring

like the one shown in Figure 5-7. To create the encoded message,

decide on the key, or the number of letters you want to shift each let-

ter by. In the coded message and in Figure 5-7, each letter is being

shifted by a key value of 13, meaning we take the letter we want

to encode and count 13 letters past it in

the alphabet to get our encoded letter.

An A becomes an N, a B becomes an O,

and so on.

We sometimes call this shift a

rotation because by the time we get to

M (which becomes Z), we’re at the end

of the alphabet. To be able to encode an

N, we wrap around to A again. O wraps

around to B, all the way to Z, which

becomes an M. Here’s an example of a

Caesar cipher lookup table for the key

value of 13, where each letter is shifted

by 13 letters for encoding or decoding:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
N O P Q R S T U V W X Y Z->A B C D E F G H I J K L M

Notice a pattern? The letter A is encoded as an N, and N is

encoded as an A. We call this a symmetric cipher or symmetric code

because it has symmetry—it’s the same in both directions. We can

encode and decode messages using the same key of 13 because the

English alphabet has 26 letters, and the key value of 13 means that

we shift every letter exactly halfway around. You can try it with a

message of your own: HELLO -> URYYB -> HELLO.

A B C

D
E
F
G
H
I
J

K
LMNOPQ

R
S
T
U
V
W

X
Y Z

ABC
D

E
F
G
H
I
J

K L
M N O P Q

R
S
T
U
V
W

XYZ

Figure 5-7: A Caesar cipher

96 Chapter 5

If we can write a program that looks at each letter in a secret

message, then encodes that letter by shifting it 13 letters to the

right, we can send encoded messages to anyone who has the same

program (or who can figure out the pattern in the cipher). To write

a program that manipulates individual letters in a string, we need

to pick up more skills for working with strings in Python.

Messin’ with Strings

Python comes with powerful functions for working with strings.

There are built-in functions that can change a string of characters

to all uppercase, functions that can change single characters into

their number equivalents, and functions that can tell us whether a

single character is a letter, number, or other symbol.

Let’s start with a function to change a string to uppercase let-

ters. To make our encoder/decoder program easier to understand,

we’re going to change the message to all uppercase so that we’re

encoding only one set of 26 letters (A to Z) instead of two (A to Z

and a to z). The function that converts a string to all uppercase let-

ters is upper(). Any string followed by the dot (.) and the function

name upper() will return the same string with letters in uppercase

and other characters unchanged. In the Python shell, try typing

your name or any other string in quotes, followed by .upper(), to

see this function in action:

>>> 'Bryson'.upper()
'BRYSON'
>>> 'Wow, this is cool!'.upper()
'WOW, THIS IS COOL!'

As we saw earlier, the lower() function does the opposite:

>>> 'Bryson'.lower()
'bryson'

You can check to see whether a single character is an upper-

case letter with the isupper() function:

>>> 'B'.isupper()
True
>>> 'b'.isupper()
False
>>> '3'.isupper()
False

Conditions (What If?) 97

And you can check whether a character is a lowercase letter

with the islower() function:

>>> 'P'.islower()
False
>>> 'p'.islower()
True

A string is a collection of characters, so looping through a string

in Python with a for loop will break the string into individual char-

acters. Here, letter will loop through each character in the string

variable message:

for letter in message:

Finally, we can use the regular addition operator + (plus) to

add strings together or add letters onto a string:

>>> 'Bry' + 'son'
'Bryson'
>>> 'Payn' + 'e'
'Payne'

Here, we add the second string onto the end of the first.

Adding strings together is called appending. You may also see

string addition referred to as concatenation; just remember that’s

a fancy word for adding two or more strings together.

The Value of Character(s)

The final tool we need to build our encoder/decoder program is the

ability to perform math on individual letters, like adding 13 to the

value of the letter A to get the letter N. Python has a function or

two that can help.

Every letter, number, and symbol is turned into a number

value when stored on a computer. One of the most popular number-

ing systems is ASCII (American Standard Code for Information

Interchange). Table 5-3 shows the ASCII values of some keyboard

characters.

98 Chapter 5

Table 5-3: Numeric Values for Standard ASCII Characters

Value Symbol Description Value Symbol Description

32 Space 65 A Uppercase A

33 ! Exclamation mark 66 B Uppercase B

34 " Double quote 67 C Uppercase C

35 # Hash mark 68 D Uppercase D

36 $ Dollar sign 69 E Uppercase E

37 % Percent 70 F Uppercase F

38 & Ampersand 71 G Uppercase G

39 ' Single quote, apostrophe 72 H Uppercase H

40 (Opening parenthesis 73 I Uppercase I

41) Closing parenthesis 74 J Uppercase J

42 * Asterisk 75 K Uppercase K

43 + Plus 76 L Uppercase L

44 , Comma 77 M Uppercase M

45 - Hyphen 78 N Uppercase N

46 . Period, dot, full stop 79 O Uppercase O

47 / Slash or divide 80 P Uppercase P

48 0 Zero 81 Q Uppercase Q

49 1 One 82 R Uppercase R

50 2 Two 83 S Uppercase S

51 3 Three 84 T Uppercase T

52 4 Four 85 U Uppercase U

53 5 Five 86 V Uppercase V

54 6 Six 87 W Uppercase W

55 7 Seven 88 X Uppercase X

56 8 Eight 89 Y Uppercase Y

57 9 Nine 90 Z Uppercase Z

58 : Colon 91 [Opening bracket

59 ; Semicolon 92 \ Backslash

60 < Less than 93] Closing bracket

61 = Equals 94 ^ Caret, circumflex

62 > Greater than 95 _ Underscore

63 ? Question mark 96 ` Grave accent

64 @ At symbol 97 a Lowercase a

Conditions (What If?) 99

The Python function to turn a character into its ASCII num-

ber value is ord():

>>> ord('A')
65
>>> ord('Z')
90

The reverse function is chr():

>>> chr(65)
'A'
>>> chr(90)
'Z'

This function turns a numeric value into the corresponding

character.

Our Encoder/Decoder Program

With all these pieces, we can put together a program that takes in

a message and makes it all uppercase. It then loops through each

character in the message and, if the character is a letter, shifts it

by 13 to encode or decode it, adds the letter to an output message,

and prints the output message.

EncoderDecoder.py

message = input("Enter a message to encode or decode: ") # Get a message
u message = message.upper() # Make it all UPPERCASE :)
v output = "" # Create an empty string to hold output
w for letter in message: # Loop through each letter of the message
x if letter.isupper(): # If the letter is in the alphabet (A-Z),
y value = ord(letter) + 13 # shift the letter value up by 13,
z letter = chr(value) # turn the value back into a letter,
{ if not letter.isupper(): # and check to see if we shifted too far
| value -= 26 # If we did, wrap it back around Z->A
} letter = chr(value) # by subtracting 26 from the letter value
~ output += letter # Add the letter to our output string

print("Output message: ", output) # Output our coded/decoded message

The first line prompts the user for an input message to

encode or decode. At u, the upper() function makes the message

all uppercase to make the letters easier for the program to read

and to make the encoding simpler to write. At v, we create an

empty string (nothing between the double quotes, "") named output,

100 Chapter 5

in which we’ll store our encoded message, letter by letter. The for

loop at w makes use of the fact that Python treats strings like col-

lections of characters; the variable letter will iterate over, or loop

through, the string message one character at a time.

At x, the isupper() function checks each character in the mes-

sage to see if it’s an uppercase letter (A to Z). If it is, then at y we

get the numeric value of the letter in ASCII using ord() and add

13 to that value to encode it. At z, we turn the new, encoded value

back into a character with chr(), and at {, we check to see if it’s

still a letter from A to Z. If not, we wrap the letter back around to

the front of the alphabet at | by subtracting 26 from the encoded

value (that’s how Z becomes an M), and we turn the new value into

its letter equivalent in }.

At ~, we add the letter to the end of the output string (append-

ing the character onto the end of the string) using the += operator.

The += operator is one of a handful of shortcut operators that

combine math (+) and assignment (=), and output += letter means

output gets letter added to it. This is the last line in our for loop, so

the whole process is repeated for each character in the input mes-

sage until output has been built up one letter at a time to hold the

encoded version of the entire message. When the loop is finished,

the last line of the program prints the output message.

You can use this program to

send coded messages for fun, but

you should know that it’s not as

secure as modern ways of encoding

messages—anyone who can solve

a puzzle in the Sunday paper can

read the encoded messages you’ve

sent—so use it only for fun with

friends.

Do a web search for encryption

or cryptography to learn about the

science of making secret messages

secure.

Conditions (What If?) 101

What You Learned
In this chapter, you learned how to program a computer to make

decisions based on conditions in code. We saw that the if state-

ment lets a program execute a set of statements only if a condition

is true (like age >= 16). We used Boolean (true/false) expressions

to represent the conditions we wanted to check for, and we built

expressions using conditional operators like <, >, <=, and more.

We combined if and else statements to run one piece of code

or the other, so that if our if statement is not executed, the else

statement runs. We extended this further by selecting among mul-

tiple options using if-elif-else statements, like in our letter grade

program that gave out grades of A, B, C, D, or F depending on the

numeric score entered.

We learned how to test multiple conditions at the same time

using the and and or logical operators to combine conditions (like

rainy == 'y' and cold == 'y'). We used the not operator to check

whether a variable or expression is False.

In our secret message program at the end of the chapter, you

learned that all letters and characters are converted into numeric

values when stored on a computer and that ASCII is one method

of storing text as number values. We used the chr() and ord() func-

tions to convert characters into their ASCII values and back again.

We changed strings of letters to all uppercase or lowercase with

upper() and lower(), and we checked whether a string was upper-

case or lowercase with isupper() and islower(). We built a string

by adding letters one at a time onto the end of the string using

the + operator, and we learned that adding strings together is

sometimes called appending or concatenating.

At this point you should be able to do the following:

•	 Use if statements to make decisions using conditionals.

•	 Use conditionals and Boolean expressions to control

program flow.

•	 Describe how a Boolean expression evaluates to True or False.

•	 Write conditional expressions using comparison operators (<, >,

==, !=, <=, >=).

•	 Use if-else statement combinations to choose between two

alternative program paths.

102 Chapter 5

•	 Test a variable to see if it is odd or even using the modulo

operator, %.

•	 Write if-elif-else statements that select from among a number

of options.

•	 Use and and or to test multiple conditions at once.

•	 Use the not operator to check whether a value or variable is

False.

•	 Explain how letters and other characters are stored as

numeric values in computers.

•	 Use ord() and chr() to convert characters into their ASCII

equivalents and vice versa.

•	 Manipulate strings using various string functions like lower(),

upper(), and isupper().

•	 Add strings and characters together using the + operator.

Programming Challenges

To practice what you’ve learned in this chapter, try these

challenges. (If you get stuck, go to http://www.nostarch

.com/teachkids/ for sample answers.)

#1: Colorful Rosettes and Spirals

For a more visual challenge, look back at the colorful spiral

and rosette image in Figure 5-1 on page 78. You should

be able to modify RosettesAndPolygons.py on page 88 to

make it more colorful and, if you like, replace the polygons

with small spirals to match the illustration in Figure 5-1.

#2: User-Defined Keys

For a more text-based challenge, create an advanced ver-

sion of our EncoderDecoder.py program by allowing the

user to input their own key value, from 1 to 25, to deter-

mine how many letters to shift the message by. Then, at the

line marked y in EncoderDecoder.py (page 99), instead of

shifting by 13 every time, shift by the user’s key value.

http://www.nostarch.com/teachkids/
http://www.nostarch.com/teachkids/

Conditions (What If?) 103

To decode a message sent with a different key (let’s use 5

as a key value, so A becomes F, B becomes G, and so on), the

person receiving the message needs to know the key. They

retrieve the message by encoding again with the reverse

key (26 minus the key value, 26 – 5 = 21) so that F wraps

around to A, G becomes B, and so on.

If you’d like to make this program easier to use, start

by asking the user whether they’d like to encode or decode

(e or d) and then ask them for a key value that you store as

key (the number of letters to shift by). If the user chooses

to encode, add the key value to each letter at y, but if they

choose to decode, add 26 - key to each letter. Send this pro-

gram to a friend and message away!

6
RANDOM FUN AND GAMES:

GO AHEAD, TAKE A CHANCE!

In Chapter 5, we programmed the computer to make

decisions based on conditions. In this chapter, we’ll

program the computer to pick a number between 1

and 10, to play Rock-Paper-Scissors, and even to roll

dice or pick a card!

106 Chapter 6

The common element in these games is the idea of randomness.

We want the computer to pick a number at random between 1 and

10, and we guess what that number is. We want the computer to

randomly pick rock, paper, or scissors, and then we choose what

to play and see who wins. These examples—plus dice games, card

games, and so on—are called games of chance. When we roll five

dice to play Yahtzee, we usually get a different result every time

we roll. That element of chance is what makes these games fun.

We can program the computer to behave randomly. Python has

a module called random that allows us to simulate random choices.

We can use the random module to draw random shapes on the screen

and program games of chance. Let’s start with a guessing game.

A Guessing Game

We can use random numbers in the classic Hi-Lo guessing game.

One player picks a number between 1 and 10 (or 1 and 100), and

the other tries to guess the number. If the guess is too high, the

guesser tries a lower number. If they guessed too low, they try a

higher number. When they guess the right number, they win!

We already know how to compare numbers with the if state-

ment, and we know how to keep guessing using input() and a while

loop. The only new skill we need to learn is how to generate a ran-

dom number. We can do this with the random module.

First, we have to import the random module with the command

import random. You can try this in the Python shell by typing import

random and pressing enter. The module has a few different func-

tions for generating a random number. We’ll use randint(), short

for random integer. The randint() function expects us to give it

two arguments—that is, two pieces of information—between its

parentheses: the lowest and highest numbers we want. Specifying

Random Fun and Games: Go Ahead, Take a Chance! 107

a lowest number and a highest number in the parentheses will

tell randint() what range to choose randomly from. Type the fol-

lowing in IDLE:

>>> import random
>>> random.randint(1, 10)

Python will respond with a random number between 1 and 10,

inclusive (which means the random number can include 1 and 10).

Try the random.randint(1, 10) command a few times and see the dif-

ferent numbers you get back. (Tip: you can use alt-P, or control-P

on a Mac, to repeat the most recently entered line without having

to type it all again.)

If you run that line enough (at least 10 times), you’ll notice

that numbers sometimes repeat, but there’s no pattern in the num-

bers as far as you can tell. We call these pseudorandom numbers

because they’re not actually random (the randint command tells the

computer what number to “pick” next based on a complex math-

ematical pattern), but they seem random.

Let’s put the random module to work in a program called

GuessingGame.py. Type the following in a new IDLE window or

download the program from http://www.nostarch.com/teachkids/:

GuessingGame.py

u import random
v the_number = random.randint(1, 10)
w guess = int(input("Guess a number between 1 and 10: "))
x while guess != the_number:
y if guess > the_number:

 print(guess, "was too high. Try again.")
z if guess < the_number:

 print(guess, "was too low. Try again.")
{ guess = int(input("Guess again: "))
| print(guess, "was the number! You win!")

At u, we import the random module, which gives us access to all

functions defined in random, including randint(). At v, we write the

module name, random, followed by a dot and the name of the func-

tion we want to use, randint(). We pass randint() the arguments

1 and 10 so it generates a pseudorandom number between 1 and 10,

and we store the number in the variable the_number. This will be

the secret number the user is trying to guess.

http://www.nostarch.com/teachkids/

108 Chapter 6

At w, we ask the user for a guess between 1 and 10, evalu-

ate the number, and store it in the variable guess. Our game loop

starts with the while statement at x. We’re using the != (not equal

to) operator to see if the guess is not equal to the secret number.

If the user guesses the number on the first try, guess != the_number

evaluates to False and the while loop doesn’t run.

As long as the user’s guess is not equal to the secret number,

we check with two if statements at y and z to see if the guess

was too high (guess > the_number) or too low (guess < the_number) and

then print a message to the user asking for another guess. At {,

we accept another guess from the user and start the loop again,

until the user guesses correctly.

At |, the user has guessed the number, so we tell them it was

the right number, and our program ends. See Figure 6-1 for a few

sample runs of the program.

Figure 6-1: Our GuessingGame.py program, asking the user to guess
higher or lower for three random numbers

In the first run of the program in Figure 6-1, the user

guessed 5, and the computer responded that 5 was too high.

The user guessed lower with 2, but 2 was too low. Then the user

gave 3 a shot, and that was right! Guessing halfway between

the lowest and highest possible numbers each time, as in the

examples in Figure 6-1, is a strategy called a binary search.

Random Fun and Games: Go Ahead, Take a Chance! 109

If players learn to use this strategy, they can guess a number

between 1 and 10 in four tries or less, every time! Give it a shot!

To make the program more interesting, you could change the

arguments you pass to the randint() function to generate a number

between 1 and 100 or an even higher number (be sure to change

the input() prompts as well). You could also make a variable called

number_of_tries and add 1 to it every time the user guesses, to keep

track of the user’s number of tries. Print the number of tries at

the end of the program to let the user know how well they did. For

an additional challenge, you could add an outer loop that asks the

user if they want to play again after they guess the number cor-

rectly. Try these on your own, and go to http://www.nostarch.com/

teachkids/ for sample solutions.

Colorful Random Spirals

The random module has other handy functions besides randint(). Let’s

use them to help us create an interesting visual: a screen full of

spirals of random sizes and colors like the one in Figure 6-2.

Figure 6-2: Spirals of random sizes and colors at random locations
on the screen, from RandomSpirals.py

http://www.nostarch.com/teachkids/
http://www.nostarch.com/teachkids/

110 Chapter 6

Think about how you could write a program like the one that

created Figure 6-2. You know almost all of the tricks needed to draw

random spirals like these. First, you can draw spirals of various

colors using loops. You can generate random numbers and use one

to control how many times each spiral’s for loop runs. This changes

its size: more iterations create a bigger spiral, while fewer iterations

create a smaller spiral. Let’s look at what else we’ll need and build

the program step by step. (The final version is RandomSpirals.py

on page 115.)

Pick a Color, Any Color

One new tool we’ll need is the ability to choose a random color.

We can easily do this with another method in the random module,

random.choice(). The random.choice() function takes a list or other

collection as the argument (the part inside the parentheses), and

it returns a randomly selected element from that collection. In our

case, we could create a list of colors, and then pass that list to the

random.choice() method to get a random color for each spiral.

You can try this in the command line shell in IDLE:

>>> # Getting a random color
>>> colors = ["red", "yellow", "blue", "green", "orange", "purple", "white", "gray"]
>>> random.choice(colors)
'orange'
>>> random.choice(colors)
'blue'
>>> random.choice(colors)
'white'
>>> random.choice(colors)
'purple'
>>>

In this code, we created our old friend colors and set it equal

to a list of color names. Then we used the random.choice() function,

passing it colors as its argument.

The function chooses a color at

random from the list. The first

time, we got orange, the second

time blue, the third time white,

and so on. This function can give

us a random color to set as our

turtle’s pen color before it draws

each new spiral.

Random Fun and Games: Go Ahead, Take a Chance! 111

Getting Coordinated

One remaining problem is how to get the spirals to spread out all

over the screen, including the upper-right and lower-left corners. To

place spirals randomly on the turtle screen, we need to understand

the x- and y-coordinate system used in our Turtle environment.

Cartesian Coordinates

If you’ve taken a geometry course, you’ve seen (x, y) coordinates

drawn on graph paper as in Figure 6-3. These are Cartesian coor-

dinates, named after French mathematician René Descartes, who

labeled points on a grid with a pair of numbers we call the x- and

y-coordinates.

In the graph in Figure 6-3, the

dark horizontal line is called the

x-axis, and it runs from left to

right. The dark vertical line is the

y-axis, running from bottom to top.

We call the point where these lines

meet, (0, 0), the origin because all

other points on the grid are labeled

with coordinates measured from, or

originating from, that point. Think

of the origin, (0, 0), as the center of

your screen. Every other point you

want to find can be labeled with an

x- and y-coordinate by starting at

the origin and moving left or right,

down or up.

We label points on a graph with this pair of coordinates inside

parentheses, separated by a comma: (x, y). The first number, the

x-coordinate, tells us how far to move left or right, while the sec-

ond number, the y-coordinate, tells us how far to move up or down.

Positive x-values tell us to move right from the origin; negative

x-values tell us to move left. Positive y-values tell us to move up

from the origin, and negative y-values tell us to move down.

Look at the points labeled in Figure 6-3. The point in the upper

right is labeled with the x- and y-coordinates (4, 3). To find the loca-

tion of this point, we start at the origin (0, 0) and move 4 spaces to

the right (because the x-coordinate, 4, is positive) and then 3 spaces

up (because the y-coordinate, 3, is positive).

y

x(0, 0)

(4, 3)

(3, −3)

(−3, −2)

(−4, 2)

Figure 6-3: A graph with four
points and their Cartesian (x, y)
coordinates

112 Chapter 6

To get to the point in the lower right, (3, –3), we go back to

the origin and then move right 3 spaces or units. This time, the

y-coordinate is –3, so we move down 3 units. Moving right 3 and

down 3 puts us at (3, –3). For (–4, 2), we move left 4 units from the

origin and then up 2 units to the point in the upper left. Finally,

for (–3, –2), we move left 3 units and then down 2 units to the

lower-left point.

Setting a Random Turtle Position

In turtle graphics, we can move the turtle from the origin (0, 0) to

any other location by telling the computer the x- and y-coordinates

of the new location with the turtle.setpos(x,y) command. The

function name setpos() is short for set position. It sets the position

of the turtle to the x- and y-coordinates we give it. For example,

turtle.setpos(10,10) would move the turtle right 10 units and up

10 units from the center of the screen.

On the computer, the unit we usually use is our old friend the

pixel. So turtle.setpos(10,10) would move the turtle right 10 pixels

and up 10 pixels from the center of the screen. Because pixels are

so tiny—about 1/70 of an inch (0.3 millimeters) or smaller on most

displays—we might want to move 100 pixels or more at a time.

setpos() can handle any coordinates we give it.

To move the turtle to a random location on the screen, we’ll gen-

erate a random pair of numbers, x and y, then use turtle.setpos(x,y)

to move the turtle to those coordinates. Before we move the turtle,

though, we’ll need to lift the turtle’s pen with turtle.penup(). After

we’ve set the new position, we’ll call turtle.pendown() to put the pen

back down and enable the turtle to draw again. If we forget to lift

the pen, the turtle will draw a line as it moves to wherever we tell

it to go with setpos(). As you can see in Figure 6-2, we don’t want

extra lines between our spirals. Our code will look like this:

 t.penup()
 t.setpos(x,y)
 t.pendown()

The setpos() function combined with a couple of random

numbers as (x, y) coordinates will let us place spirals in different

locations, but how do we know what range to use for our random

numbers? That question brings us to the last issue we have to

resolve in our quest for random spirals.

Random Fun and Games: Go Ahead, Take a Chance! 113

How Big Is Our Canvas?

Now that we know how to position spirals at random locations on

the window, or canvas, we have one problem remaining: how do we

know how big our canvas is? We can generate a random number

for the x- and y-coordinates of a location and draw a spiral at that

location, but how can we make sure that the location we choose is

on the visible window—not off the window to the right, left, top, or

bottom? Then, how can we make sure we cover the entire drawing

window, from left to right, top to bottom?

To answer the question about canvas size, we need to use two

more functions, turtle.window_width() and turtle.window_height().

First, window_width() tells us how wide our turtle window is, in pixels.

The same goes for window_height(); we get the number of pixels from

the bottom of our turtle window to the top. For example, our turtle

window in Figure 6-2 is 960 pixels wide and 810 pixels tall.

turtle.window_width() and turtle.window_height() will help us

with random x- and y-coordinates, but we have one more obstacle.

Remember that in turtle graphics, the center of the window is the

origin, or (0, 0). If we just generate random numbers between 0

and turtle.window_width(), the first problem is that we will never

draw anything in the lower left of the window: the coordinates

there are negative in both the x- and y-directions (left and down),

but a random number between 0 and our window_width() value is

always positive. The second problem is that if we start from the

center and go window_width() to the right, we’ll end up off the right-

hand edge of the window.

We have to figure out not just

how wide and tall the window is but

also what the range of the coordi-

nates is. For example, if our window

is 960 pixels wide and the origin

(0, 0) is at the center of our window,

we need to know how many pixels we

can move to the right and left without

leaving the visible window. Because

(0, 0) is in the middle of our window,

halfway across, we just divide the

width in half. If the origin is in the

middle of a window that is 960 pix-

els across, there are 480 pixels to the

right of the origin and 480 pixels to

114 Chapter 6

the left of the origin. The range of x-coordinate values would be

from –480 (left 480 pixels from the origin) to +480 (480 pixels

right of the origin) or, in other words, from –960/2 to +960/2.

To make our range work for any size window, we would say the

x-coordinates go from -turtle.window_width()//2 to +turtle.window_

width()//2. Our origin is also in the middle of the window from

bottom to top, so there are turtle.window_height()//2 pixels above

and below the origin. We use integer division, the // operator, in

these calculations to make sure we’ll get an integer result when

we divide by 2; a window could measure an odd number of pixels

wide, and we want to keep all our pixel measurements in whole

numbers.

Now that we know how to calculate the size of our canvas,

we can use these expressions to limit the range of our random

coordinates. Then we can be sure that any random coordinates

we generate will be visible in our window. The random module in

Python has a function that lets us generate a random number

within a specified range: randrange(). We just tell the randrange()

function to use negative one-half the window width as the start

value for the range and positive one-half the window width as the

end value for the range (we’ll have to import both turtle and random

in our program to make these lines work):

 x = random.randrange(-turtle.window_width()//2,
 turtle.window_width()//2)
 y = random.randrange(-turtle.window_height()//2,
 turtle.window_height()//2)

These lines of code will use the randrange() function to gener-

ate a pair of (x, y) coordinate values that are always on the viewing

window and cover the full area of the viewing window from left to

right, bottom to top.

Putting It All Together

Now we have all the pieces—we just have to put them together to

build a program that will draw random spirals in different colors,

sizes, and locations. Here’s our finished RandomSpirals.py program;

in just about 20 lines, it creates the kaleidoscope-like picture in

Figure 6-2.

Random Fun and Games: Go Ahead, Take a Chance! 115

RandomSpirals.py

import random
import turtle
t = turtle.Pen()
turtle.bgcolor("black")
colors = ["red", "yellow", "blue", "green", "orange", "purple",
 "white", "gray"]
for n in range(50):
 # Generate spirals of random sizes/colors at random locations

u t.pencolor(random.choice(colors)) # Pick a random color
v size = random.randint(10,40) # Pick a random spiral size

 # Generate a random (x,y) location on the screen
w x = random.randrange(-turtle.window_width()//2,

 turtle.window_width()//2)
x y = random.randrange(-turtle.window_height()//2,

 turtle.window_height()//2)

y t.penup()
z t.setpos(x,y)
{ t.pendown()
| for m in range(size):

 t.forward(m*2)
 t.left(91)

First we import the random and turtle modules and set up our

turtle window and a list of colors. At our for loop (n will go from

0 to 49 to give us 50 spirals total), things get interesting. At u,

we pass colors to random.choice() to have the function choose a

random color from the list. We pass the random color choice to

t.pencolor() to set the turtle’s pen color to that random color. At v,

random.randint(10,40) picks a random number from 10 to 40. We

store that number in the variable size, which we’ll use at | to tell

Python how many lines to draw in a spiral. The lines at w and x

are exactly the ones we built earlier to generate a random pair of

coordinate values (x, y) that give us a random location on our view-

ing window.

At y, we lift the turtle’s pen off the virtual paper before we

move the turtle to its new random location. At z, we move the

turtle to its new location by setting its position to x and y, the

random coordinates chosen by randrange() earlier. Now that the

turtle is in position, we put the pen back down at { so we’ll be

able to see the spiral we’re about to draw. At |, we have a for loop

116 Chapter 6

to draw each line of the spiral. For m in range(size), the turtle will

move forward a distance of m*2, drawing a line segment of length

m*2 (m is 0, 1, 2, 3, and so on, so the length of the segment is 0, 2,

4, 6, and so on). The turtle will then rotate left 91 degrees and get

ready to draw the next segment.

The turtle starts in the center of the spiral, draws a segment

(length 0), and rotates left; that’s the first time through the loop.

The next time through, m is 1, so the turtle draws a segment of

length 2, then rotates. As Python iterates through the loop, the

turtle will move outward from the center of the spiral, drawing

longer and longer line segments. We use the randomly generated

size, an integer between 10 and 40, as the number of lines we draw

in our spiral.

After we finish drawing the current spiral, we go back to the

top of our outer for loop. We pick a new random color, size, and

location; lift the pen; move it to the new location; put down the pen;

and go through the inner for loop to draw a new spiral of some new

random size. After drawing this spiral, we go back to the outer

loop and repeat the entire process. We do this 50 times, giving us

50 spirals of assorted colors and shapes spread randomly across

the screen.

Rock-Paper-Scissors

One game that we have the skills to program now is Rock-Paper-

Scissors. Two players (or one player and the computer) each pick

one of three possible items (rock, paper, or scissors); both show

their choice; and the winner is decided by three rules: rock crushes

scissors, scissors cut paper, paper covers rock.

To simulate this game, we’ll create a list of choices (like our

colors list in RandomSpirals.py) and we’ll use random.choice() to pick

one of the three items from the list as the computer’s choice. Then,

we’ll ask the user for their choice and use a series of if statements

to determine the winner. The user will be playing against the

computer!

Let’s jump into the code. Type RockPaperScissors.py into a

new window in IDLE or download it from http://www.nostarch

.com/teachkids/.

http://www.nostarch.com/teachkids/
http://www.nostarch.com/teachkids/

Random Fun and Games: Go Ahead, Take a Chance! 117

RockPaperScissors.py

u import random
v choices = ["rock", "paper", "scissors"]

print("Rock crushes scissors. Scissors cut paper. Paper covers rock.")
w player = input("Do you want to be rock, paper, or scissors (or quit)? ")
x while player != "quit": # Keep playing until the user quits

 player = player.lower() # Change user entry to lowercase
y computer = random.choice(choices) # Pick one of the items in choices

 print("You chose " +player+ ", and the computer chose " +computer+ ".")
z if player == computer:

 print("It's a tie!")
{ elif player == "rock":

 if computer == "scissors":
 print("You win!")
 else:
 print("Computer wins!")

| elif player == "paper":
 if computer == "rock":
 print("You win!")
 else:
 print("Computer wins!")

} elif player == "scissors":
 if computer == "paper":
 print("You win!")
 else:
 print("Computer wins!")
 else:
 print("I think there was some sort of error...")
 print() # Skip a line

~ player = input("Do you want to be rock, paper, or scissors (or quit)? ")

At u, we import the random module to get access to the func-

tions that help us make random choices. At v, we set up the list

of the three items—rock, paper, and scissors—and call the list

choices. We print the simple rules of the game to make sure the

user knows them. At w, we prompt the user to input their choice

of rock, paper, scissors, or quit and store their choice in the variable

player. At x, we begin the game loop by checking whether the user

chose quit at the input prompt; if they did, the game ends.

As long as the user has not entered quit, the game begins. After

changing the player’s input to lowercase for easy comparison in our

if statements, we tell the computer to pick an item. At y, we tell the

computer to pick at random one of the items in the list choices and

store the item in the variable computer. Once the computer’s choice

is stored, it’s time to begin testing to see who won. At z, we check

118 Chapter 6

whether the player and the computer picked the same item; if so, we

tell the user that the outcome was a tie. Otherwise, we check at {

whether the user selected rock. Inside the elif statement at {, we

nest an if statement to see whether the computer picked scissors.

If our player picks rock and the computer chooses scissors, rock

crushes scissors, and the player wins! If it’s not rock and rock, and

if the computer didn’t pick scissors, then the computer must have

picked paper, and we print that the computer wins.

At the remaining two elif statements, | and }, we do the

same testing to check for wins when the user picks paper or scis-

sors. If none of those statements was true, we let the user know

they’ve entered something that did not compute: either they made

a choice that doesn’t exist, or they misspelled their choice. Finally,

at ~, we ask the user for their next choice before beginning the

game loop all over again (a new round). See Figure 6-4 for a

sample run of the program.

Figure 6-4: Thanks to random choices by the computer,
RockPaperScissors.py is a fun game!

Sometimes the user wins, sometimes the computer wins, and

sometimes they tie. Because the outcome is somewhat random, the

game is fun enough to play to pass a little time. Now that we have

a sense of how a game with two players can use the computer’s

random choices, let’s try creating a card game.

Random Fun and Games: Go Ahead, Take a Chance! 119

Pick a Card, Any Card

One thing that makes card games fun is randomness. No two

rounds turn out exactly the same (unless you’re bad at shuffling),

so you can play again and again without getting bored.

We can program a simple card game with the skills we’ve

learned. Our first try at this won’t show graphical playing cards

(we need to learn more tricks to make that possible), but we can

generate a random card name (“two of diamonds” or “king of

spades,” for example) just by using an array, or list, of strings, like

we did with color names in our spiral programs. We could pro-

gram a game like War in which two players each pull a random

card from the deck, and the player with the higher card wins;

we just need some way of comparing cards to see which is higher.

Let’s see how that might work, step by step. (The final program is

HighCard.py on page 125.)

Stacking the Deck

First, we need to think about how to build a virtual deck of cards

in our program. As I mentioned, we won’t draw the cards yet, but

we at least need the card names to simulate a deck. Fortunately,

card names are just strings ("two of diamonds", "king of spades"),

and we know how to build an array of strings—we’ve done it with

color names since the very first chapter!

An array is an ordered or numbered collection of similar things.

In many programming languages, arrays are a special type of col-

lection. In Python, though, lists can be used like arrays. We’ll see

how to treat a list like an array in this section, accessing individ-

ual elements in the array one at a time.

We could build a list of all the card names by creating an array

name (cards) and setting it equal to a list of all 52 card names:

cards = ["two of diamonds",
 "three of diamonds",
 "four of diamonds",
 # This is going to take forever...

But ouch—we’re going to have to type 52 long strings of card

names! Our code will be 52 lines long before we even program the

game part, and we’ll be so tired from typing that we won’t have

energy left to play the game. There’s got to be a better way. Let’s

think like a programmer! All of that typing is repetitive, and we

120 Chapter 6

want to let the computer do the repetitive work. The suit names

(diamonds, hearts, clubs, spades) are going to be repeated 13 times

each, for the 13 cards in each suit. The face values (two through

ace) are going to be repeated 4 times each, because there are 4

suits. Worse, we’re typing the word of 52 times!

When we ran into repetition before, we used loops to make the

problem easier. If we wanted to generate the whole deck of cards,

a loop would do the job nicely. But we don’t need the whole deck to

play a single hand of War: we just need two cards, the computer’s

card and the player’s. If a loop won’t help us avoid repeating all

those suits and face values, we need to break the problem down

further.

In War, each player shows one card, and the higher card wins.

So as we’ve discussed, we need just 2 cards, not 52. Let’s start

with one card. A card name consists of a face value (two through

ace) and a suit name (clubs through spades). Those look like good

possibilities for lists of strings: one list for faces and one for suits.

Instead of using a list of 52 repeated entries for each separate

card, we pick a face value at random from the list of 13 possibili-

ties, then pick a suit name at random from the 4 possible choices.

This approach should let us generate any single card in the deck.

We replace our long array cards with two much shorter arrays,

suits and faces:

suits = ["clubs", "diamonds", "hearts", "spades"]
faces = ["two", "three", "four", "five", "six", "seven", "eight", "nine",
 "ten", "jack", "queen", "king", "ace"]

We reduced 52 lines of code to about 3! That’s smart program-

ming. Now let’s see how to use these two arrays to deal a card.

Dealing Cards

We already know how to use

the random.choice() function

to pick an item at random

from a list. So to deal a card,

we simply use random.choice()

to pick a face value from a

list of faces and a suit name

from a list of suits. Once

Random Fun and Games: Go Ahead, Take a Chance! 121

we have a random face and a random suit, all we do to complete a

card name is add the word of between them (two of diamonds, for

example).

Notice that we might deal the same card twice or more in a

row using random.choice() this way. We’re not forcing the program to

check whether a card has already been dealt, so you might get two

aces of spades in a row, for example. The computer’s not cheating;

we’re just not telling it to deal from a single deck. It’s like this pro-

gram is dealing cards from an infinite deck, so it can keep dealing

forever without running out.

import random
suits = ["clubs", "diamonds", "hearts", "spades"]
faces = ["two", "three", "four", "five", "six", "seven", "eight", "nine",
 "ten", "jack", "queen", "king", "ace"]
my_face = random.choice(faces)
my_suit = random.choice(suits)
print("I have the", my_face, "of", my_suit)

If you try running this code, you’ll get a new, random card

every time. To deal a second card, you’d use similar code, but you’d

store the random choices in variables called your_face and your_suit.

You’d change the print statement so it printed the name of this new

card. Now we’re getting closer to our game of War, but we need

some way to compare the computer’s card and the user’s card to

see who wins.

Counting Cards

There’s a reason we listed face card values in ascending order,

from two through ace. We want the cards’ faces list to be ordered

by value from lowest to highest so that we can compare cards

against each other and see which card in any pair has the higher

value. It’s important to determine which of two cards is higher,

since in War the higher card wins each hand.

Finding an Item in a List

Fortunately, because of the way lists and arrays work in Python, we

can determine where a value occurs in a list, and we can use that

information to decide whether one card is higher than another. The

position number of an item in a list or array is called the index of

that item. We usually refer to each item in an array by its index.

122 Chapter 6

For a visual representation of the suits array and the index of

each suit, see Table 6-1.

Table 6-1: The suits Array

value "clubs" "diamonds" "hearts" "spades"

index 0 1 2 3

When we create our list suits, Python automatically assigns

an index to each value in the list. The computer starts counting at

zero, so the index of "clubs" is 0, "diamonds" is at index 1, and so on.

The function to find the index of an item in a list is .index(), and it

can be used on any list or array in Python.

To find the index of the suit name "clubs" in the list suits, we

call the function suits.index("clubs"). It’s like we’re asking the suits

array which index corresponds to the value "clubs". Let’s try that

in our Python shell. Enter the following lines:

>>> suits = ["clubs", "diamonds", "hearts", "spades"]
>>> suits.index("clubs")
0
>>> suits.index("spades")
3
>>>

After we create the array of suit values, suits, we ask Python

what the index of the value "clubs" is, and it responds with the

correct index, 0. In the same way, the index of "spades" is 3, and

diamonds and hearts are at index locations 1 and 2, respectively.

Which Card Is Higher?

We created our faces array with values in order from two to ace, so

the value two, the first item in faces, would get the index 0, all the

way through the ace at index 12 (the 13th location, starting from 0).

We can use the index to test which card value is higher—in other

words, which face value’s index is larger. Our lowest card is two,

and its index is the smallest, 0; the ace is our highest card, and its

index is the largest, 12.

If we generate two random face card values (my_face and

your_face), we can compare the index of my_face with the index

of your_face to see which card is higher, as follows.

Random Fun and Games: Go Ahead, Take a Chance! 123

import random
faces = ["two", "three", "four", "five", "six", "seven", "eight", "nine",
 "ten", "jack", "queen", "king", "ace"]
my_face = random.choice(faces)
your_face = random.choice(faces)
if faces.index(my_face) > faces.index(your_face):
 print("I win!")
elif faces.index(my_face) < faces.index(your_face):
 print("You win!")

We use random.choice() twice to pull two random values out

of the faces array, and then we store the values in my_face and

your_face. We use faces.index(my_face) to find the index of my_face in

faces, and we use faces.index(your_face) to get the index of your_face.

If the index of my_face is higher, my card has a higher face value,

and the program prints I win!. Otherwise, if the index of my_face is

lower than the index of your_face, your card’s face value is higher,

and the program prints You win!. Because of the way we ordered

our list, a higher card will always correspond to a higher index.

With this handy tool, we’ve got almost everything we need to build

a “high card” game like War. (We haven’t added the ability to test

for a tie game yet, but we’ll add that as part of the complete pro-

gram in “Putting It All Together” on page 125.)

Keeping It Going

The final tool we need is a loop so the user can keep playing as

long as they want. We’re going to build this loop a little differently

so that we can reuse it in other games.

First, we need to decide which kind of loop to use. Remember

that a for loop usually means we know exactly the number of

times we want to do something. Because we can’t always predict

how many times someone will want to play our game, a for loop is

not the right fit. A while loop can keep going until some condition

becomes false—for example, when the user presses a key to end

the program. The while loop is what we’ll use for our game loop.

The while loop needs a condition to check, so we’re going to

create a variable that we’ll use as our flag, or signal, to end the

program. Let’s call our flag variable keep_going and set it equal to

True to start:

keep_going = True

124 Chapter 6

Because we start with keep_going = True, the program will

enter the loop at least the first time.

Next we’ll ask the user if they want to keep going. Rather

than make the user enter Y or yes every time they want to play,

let’s make it easier by just asking them to press enter.

answer = input("Hit [Enter] to keep going, any other keys to exit: ")
if answer == "":
 keep_going = True
else:
 keep_going = False

Here we set a variable answer equal to an input function. Then

we use an if statement to check whether answer == "" to see if the

user pressed enter only or if they pressed other keys before enter.

(The empty string "" tells us the user didn’t type any other char-

acters before pressing enter.) If the user wants to exit, all they

have to do is make answer equal anything other than the empty

string, "". In other words, they just have to press any key or keys

before pressing enter, and the Boolean expression answer == "" will

evaluate to False.

Our if statement checks whether answer == "" is True, and if so,

it stores True in our flag variable keep_going. But do you notice some

repetition there? If answer == "" is True, we assign the value True to

keep_going; if answer == "" evaluates to False, we need to assign the

value False to keep_going.

It would be simpler if we just set keep_going equal to whatever

answer == "" evaluates to. We can replace our code with the follow-

ing, more concise code:

answer = input("Hit [Enter] to keep going, any other keys to exit: ")
keep_going = (answer == "")

The first line hasn’t changed. The second line sets keep_going

equal to the result of the Boolean expression answer == "". If that’s

True, keep_going will be True, and our loop will continue. If that’s

False, keep_going will be False, and our loop will end.

Let’s see the whole loop together:

keep_going = True
while keep_going:
 answer = input("Hit [Enter] to keep going, any key to exit: ")
 keep_going = (answer == "")

Random Fun and Games: Go Ahead, Take a Chance! 125

Here we add the while statement, so our loop will continue as

long as keep_going evaluates to True. In the final program, we will

“wrap” this while loop around the code to play a single hand. We’ll

do this by putting the while statement before the code that chooses

the cards, and by putting the prompt to hit a key after the code

that tells who wins. Remember to indent the code inside the loop!

Putting It All Together

Putting all those components together, we can build a War-like

game that we’ll call HighCard.py. The computer draws a card for

itself and a card for the player, checks to see which card is higher,

and declares the winner. Type the code for HighCard.py into a

new IDLE window or go to http://www.nostarch.com/teachkids/

to download it and play.

HighCard.py

import random
suits = ["clubs", "diamonds", "hearts", "spades"]
faces = ["two", "three", "four", "five", "six", "seven", "eight", "nine",
 "ten", "jack", "queen", "king", "ace"]
keep_going = True
while keep_going:
 my_face = random.choice(faces)
 my_suit = random.choice(suits)
 your_face = random.choice(faces)
 your_suit = random.choice(suits)
 print("I have the", my_face, "of", my_suit)
 print("You have the", your_face, "of", your_suit)
 if faces.index(my_face) > faces.index(your_face):
 print("I win!")
 elif faces.index(my_face) < faces.index(your_face):
 print("You win!")
 else:
 print("It's a tie!")
 answer = input("Hit [Enter] to keep going, any key to exit: ")
 keep_going = (answer == "")

Run the game, and it’ll print the computer’s card and your

card, followed by an announcement of who won and a prompt that

offers you the opportunity to play again or exit. Play a few rounds

and you’ll notice that the cards are random enough to make the

outcome fun—sometimes the computer wins, sometimes you win,

but it’s a fun game thanks to the element of chance.

http://www.nostarch.com/teachkids/

126 Chapter 6

Roll the Dice: Creating a
Yahtzee-Style Game

We used arrays in our card game to help simplify the code needed

to deal a card, and to test which card was higher in value based on

its position in the list of cards. In this section, we’ll use the array

concept to generate five random dice and check to see if we roll

three of a kind, four of a kind, or five of a kind, like a simplified

version of the dice game Yahtzee.

In Yahtzee, you have five dice. Each die has six sides, with

each side showing a number of dots from one to six. In the full

game, the user rolls all five dice, trying to get points by rolling

three dice of the same value (which we call three of a kind) and

other various “hands,” similar to the card game poker. Rolling

five of the same value (say, all five dice land with the six-dot side

facing up) is called a Yahtzee and scores the highest points pos-

sible. In our simplified version of the game, we’re just going to

simulate the roll of five dice and check whether the user rolled

three of a kind, four of a kind, or Yahtzee and let them know the

outcome.

Setting Up the Game

Now that we understand the game’s objective, let’s talk about

how we’ll code the game. First, we’ll need to set up a game loop

so that the user can keep rolling until they want to quit. Second,

we’ll need to set up a hand of five simulated dice as an array that

can hold five random values, from 1 to 6, representing the value

Random Fun and Games: Go Ahead, Take a Chance! 127

of each of the rolled dice. Third, we’ll simulate the roll of the dice

by assigning a random value from 1 to 6 in each of the five array

slots. Finally, we need to compare the five rolled dice to each other

to see whether we have three, four, or five of the same value and

let the user know the outcome.

That last part is perhaps the most challenging. We could

check for a Yahtzee by seeing if all five dice are a 1, or if all five

dice are a 2, and so on, but that would mean a long list of complex

if statement conditions. Since we don’t care whether we have five

1s, five 2s, or five 6s—we just care that we have five of a kind—we

could simplify this process by checking to see if the first die’s value

equals the second die’s value and the second die’s value equals the

third die’s value, all the way to the fifth die. Then, no matter what

the value of the five of a kind, we know all five dice are the same,

and we have a Yahtzee.

Five of a kind seems easy enough to test for, but let’s try to

figure out how we might test for four of a kind. A possible hand

for four of a kind might be an array of values like [1, 1, 1, 1, 2]

(here we rolled four 1s and a 2). However, the array [2, 1, 1, 1, 1]

would also be a four of a kind with four 1s, as would [1, 1, 2, 1, 1],

[1, 2, 1, 1, 1], and [1, 1, 1, 2, 1]. That’s five possible configura-

tions just to test for four 1s! That sounds like it’s going to take a

long set of if conditions. . . .

Fortunately, as a skilled programmer, you know that there’s

usually an easier way to do things. What all five arrays in the pre-

vious paragraph have in common is that there are four 1s in the

list of values; the problem is that the fifth value, the 2, can be in

any of the five different array positions. We could test for four of

a kind much more easily if the four 1s were side by side, with the

other value (the 2) off by itself. If we could sort the array in order

from lowest to highest or highest to lowest, for example, all of the

1s would be grouped together, reducing the five different cases to

just two: [1, 1, 1, 1, 2] or [2, 1, 1, 1, 1].

Sorting the Dice

Lists, collections, and arrays in Python have a built-in sort func-

tion, sort(), that allows us to sort the elements in the array by

value in order from smallest to largest or vice versa. For example,

if our dice array were called dice, we could sort the values with

dice.sort(). By default, sort() will order the elements in dice from

smallest to largest, or in ascending order.

128 Chapter 6

For our test to see if the array of dice contains four of a kind,

sorting the array means we only have to test for two cases: four

matching low values and a high value (as in [1, 1, 1, 1, 2]), or a

low value and four matching high values (like [1, 3, 3, 3, 3]). In

the first case, we know that if the dice are sorted and the first and

fourth dice are equal in value, we have four of a kind or better. In

the second case, again with sorted dice, if the second and fifth dice

are equal in value, we have four of a kind or better.

We say four of a kind or better, because the first and fourth

dice are also the same in a five of a kind. This brings us to our

first logic challenge: if a user rolls five of a kind, they have also

rolled four of a kind, and we only want to give them credit for the

larger score. We’ll handle this with an if-elif chain so that if a

user gets Yahtzee, they don’t also get four of a kind and three of a

kind; only the highest hand wins. Combining this if-elif sequence

with what we learned about sorting the dice to check for four of a

kind, the code would look like this:

if dice[0] == dice[4]:
 print("Yahtzee!")
elif (dice[0] == dice[3]) or (dice[1] == dice[4]):
 print("Four of a kind!")

First, if we have already sorted the dice array, we notice a

shortcut: if the first and last dice have the same value (if dice[0]

== dice[4]), we know we have a Yahtzee! Remember that we num-

ber our array positions from 0 through 4 for the first through fifth

dice. If we don’t have five of a kind, we check for both cases of four

of a kind (the first four dice are the same, dice[0] == dice[3], or the

last four dice are the same, dice[1] == dice[4]). We use the Boolean

operator or here to recognize four of a kind if either of the two cases

evaluates to True (the first four or the last four).

Testing the Dice

We’re referring to each die in the array individually by its index,

or position: dice[0] refers to the first item in the dice array, and

dice[4] refers to the fifth item because we start counting from zero.

This is the way we can check the value of any of the dice individu-

ally or compare them to one another. Just as in our suits[] array

back in Table 6-1, each entry in the dice[] array is an individual

value. When we call on dice[0] to see if it’s equal to dice[3], we’re

Random Fun and Games: Go Ahead, Take a Chance! 129

looking at the value in the first dice element and comparing it to

the value in the fourth dice element. If the array is sorted, and

these are the same, we have four of a kind.

To test for three of a kind, we add another elif statement,

and we put the three-of-a-kind test after the four-of-a-kind test so

that we test for three of a kind only if there’s no five of a kind and

no four of a kind; we want the highest hand to be reported. There

are three possible cases of three of a kind if we’re working with

sorted dice: the first three dice match, the middle three, or the last

three. In code, that would be:

elif (dice[0] == dice[2]) or (dice[1] == dice[3]) or (dice[2] == dice[4]):
 print("Three of a kind")

Now that we can test for various winning hands in our dice

game, let’s add the game loop and the dice array.

Putting It All Together

Here’s the complete FiveDice.py program. Type the code in a new

window or download it from http://www.nostarch.com/teachkids/.

FiveDice.py

import random
Game loop
keep_going = True
while keep_going:
 # "Roll" five random dice

u dice = [0,0,0,0,0] # Set up an array for five values dice[0]-dice[4]
v for i in range(5): # "Roll" a random number from 1-6 for all 5 dice
w dice[i] = random.randint(1,6)
x print("You rolled:", dice) # Print out the dice values

 # Sort them
y dice.sort()

 # Check for five of a kind, four of a kind, three of a kind
 # Yahtzee - all five dice are the same
 if dice[0] == dice[4]:
 print("Yahtzee!")
 # FourOfAKind - first four are the same, or last four are the same
 elif (dice[0] == dice[3]) or (dice[1] == dice[4]):
 print("Four of a kind!")
 # ThreeOfAKind - first three, middle three, or last three are the same
 elif (dice[0] == dice[2]) or (dice[1] == dice[3]) or (dice[2] == dice[4]):
 print("Three of a kind")
 keep_going = (input("Hit [Enter] to keep going, any key to exit: ") == "")

http://www.nostarch.com/teachkids/

130 Chapter 6

After we import the random module and start the game loop

with a while statement, the next few lines deserve a little explana-

tion. At u, we set up an array called dice that holds five values,

and we initialize all those values to zero. The square brackets,

[and], are the same ones we used for our very first lists of colors,

as well as for the arrays of card face values and suit names ear-

lier in this chapter. At v, we set up a for loop to run five times

for the five dice, using the range from 0 to 4; these will be the

array positions, or index numbers, of the five dice.

At w, we set each individual die, from dice[0] to dice[4], equal

to a random integer from 1 to 6 to represent our five dice and their

randomly rolled values. At x, we show the user what dice they

rolled by printing the contents of the dice array; the result of this

print statement is shown in Figure 6-5.

Figure 6-5: A sample run of our dice program. Notice that
we rolled several three of a kinds and one four of a kind.

Random Fun and Games: Go Ahead, Take a Chance! 131

At y, we call the .sort() function on the dice array. This

makes it easy to test for various hands—like five of a kind, four

of a kind, and so on—by arranging the rolled dice values from

smallest to largest, grouping like values. So, for example, if

we roll [3, 6, 3, 5, 3], the dice.sort() function turns that into

[3, 3, 3, 5, 6]. The if statement checks if the first value is equal

to the fifth value; in this case, since the first and fifth values

(3 and 6) aren’t equal, we know not all the dice landed on the same

value and it’s not five of a kind. The first elif checks for four of a

kind by comparing the first and fourth values (3 and 5) and second

and fifth values (3 and 6); again, there are no matches here, so it’s

not four of a kind. The second elif checks for three of a kind; since

the first and third values, 3 and 3, are equal, we know the first

three values are equal. We inform the user that they got three of

a kind and then prompt them to press keys depending on whether

they want to continue playing or exit, as shown in Figure 6-5.

Run the program and press enter several times to see what

you roll.

You’ll notice that you roll three of a kind fairly often, as much

as once every five or six rolls. Four of a kind is rarer, occurring

about once every 50 rolls. We rolled four of a kind only once in a

screen full of attempts in Figure 6-5. The Yahtzee is even rarer:

you could roll several hundred times before getting a Yahtzee, but

because of the random-number generator, you might roll one the

first few times you try. Even though it’s not as complex as the real

game, our simplified version of Yahtzee is interesting enough to

play because of its random nature.

We’ve seen how randomness can make a game interesting

and fun by adding the element of chance to dice and card games,

Rock-Paper-Scissors, and a guessing game. We also enjoyed the

kaleidoscope-like graphics we

created using a random number

generator to place colorful spirals

all over the screen. In the next

section, we’ll combine what you’ve

learned about random numbers and

loops with a bit of geometry to turn

the random spirals program into a

true virtual kaleidoscope that gen-

erates a different set of reflected

images every time you run it!

132 Chapter 6

Kaleidoscope

The random spiral color graphic from Figure 6-2 looked a bit like

a kaleidoscope. To make it look more like a real kaleidoscope, let’s

add an important feature that our spiral program was missing:

reflections.

In a kaleidoscope,

it’s the positioning of the

mirrors that makes ran-

dom colors and shapes

into a lovely pattern. In

this closing example,

we’re going to mimic the

mirror effect by modify-

ing our RandomSpiral.py

program to “reflect” the

spirals four times on the

screen.

Running the Numbers on Yahtzee

If you’re interested in the math behind Yahtzee and why five

of a kind is so rare, here’s a quick explanation. First, there

are five dice, each with six sides, so the number of possible

combinations is 6 × 6 × 6 × 6 × 6 = 65 = 7,776. There are

7,776 ways to roll five normal, six-sided dice. To figure out

the probability of rolling five dice with the same face value

(five of a kind), we have to figure out how many possible

Yahtzees there are: five 1s, five 2s, and so on up through

five 6s. So there are six possible Yahtzee hands of five of a

kind that we can roll with our five dice. Divide 6 Yahtzees

by the 7,776 total possible rolls, and you get the probability

that you’ll roll five of a kind: 6/7,776, or 1/1,296.

That’s right: the odds that you’ll roll five of a kind on a

single roll are just 1 out of 1,296. So don’t get discouraged

if you roll for a long time before you get your first five of a

kind. On average, you’ll get one every 1,300 rolls or so. No

wonder they give 50 points for a Yahtzee!

Random Fun and Games: Go Ahead, Take a Chance! 133

To understand how to achieve

this mirror effect, we need to talk

more about Cartesian coordinates.

Let’s take a look at four points,

(4, 2), (–4, 2), (–4, –2), and (4, –2),

as shown in Figure 6-6.

Compare (4, 2) and (–4, 2),

the top two points. If the vertical

y-axis were a mirror, these two

points would be mirror images of

each other; we call (4, 2) a reflec-

tion of (–4, 2) about the y-axis.

Something similar occurs with

(4, 2) and (4, –2), the two points on

the right, but with the horizontal

x-axis as the imaginary mirror:

(4, –2) is the reflection of (4, 2)

about the x-axis.

If you look at each pair of (x, y) coordinates in Figure 6-6,

you’ll notice something: all four (x, y) coordinates use the same

numbers, 4 and 2, just with different signs, + or –, depending on

their location. We can create any four reflected points around

the x- and y-axes by changing the signs on the two coordinates

as follows: (x, y), (–x, y), (–x, –y), (x, –y). If you’d like, you can try

drawing this on a piece of graph paper with any pair of (x, y)

coordinates. Try (2, 3), for example: (2, 3), (–2, 3), (–2, –3), and

(2, –3) are four reflected points above and below the x-axis and

on either side of the y-axis.

With this knowledge, we can build the outline of a kaleidoscope

program as follows:

1. Pick a random location (x, y) in the upper right of the screen

and draw a spiral there.

2. Draw the same spiral at (–x, y) in the upper left of the screen.

3. Draw the same spiral at (–x, –y) in the lower left of the screen.

4. Draw the same spiral at (x, –y) in the lower right of the screen.

If we repeat these steps over and over, we’ll have a lovely kalei-

doscope effect with our random spirals.

y

x(0, 0)

(4, 2)

(4, −2)(−4, −2)

(−4, 2)

Figure 6-6: Four points reflected
about the x- and y-axes starting
with (4, 2)

134 Chapter 6

Let’s step through the full code for Kaleidoscope.py and see

this in action.

Kaleidoscope.py

import random
import turtle
t = turtle.Pen()

u t.speed(0)
turtle.bgcolor("black")
colors = ["red", "yellow", "blue", "green", "orange", "purple", "white", "gray"]
for n in range(50):
 # Generate spirals of random sizes/colors at random locations on the screen
 t.pencolor(random.choice(colors)) # Pick a random color from colors[]
 size = random.randint(10,40) # Pick a random spiral size from 10 to 40
 # Generate a random (x,y) location on the screen

v x = random.randrange(0,turtle.window_width()//2)
w y = random.randrange(0,turtle.window_height()//2)

 # First spiral
 t.penup()

x t.setpos(x,y)
 t.pendown()
 for m in range(size):
 t.forward(m*2)
 t.left(91)
 # Second spiral
 t.penup()

y t.setpos(-x,y)
 t.pendown()
 for m in range(size):
 t.forward(m*2)
 t.left(91)
 # Third spiral
 t.penup()

z t.setpos(-x,-y)
 t.pendown()
 for m in range(size):
 t.forward(m*2)
 t.left(91)
 # Fourth spiral
 t.penup()

{ t.setpos(x,-y)
 t.pendown()
 for m in range(size):
 t.forward(m*2)
 t.left(91)

Random Fun and Games: Go Ahead, Take a Chance! 135

Our program begins with the turtle and random modules

imported as usual, but at u we do something new: we change the

speed of the turtle to the fastest value possible with t.speed(0). The

speed() function in turtle graphics takes an argument from 0 to 10,

with 1 as the slow animation setting, 10 as the fast animation set-

ting, and 0 meaning no animation (draw as fast as the computer

can go). It’s an odd scale from 1 to 10, then 0, but just remember

that if you want the fastest turtle possible, set the speed to 0. You’ll

notice when you run the program that the spirals appear almost

instantly. You can make this change to any of our previous draw-

ing programs if you’d like the turtle to move faster.

Our for loop looks just like the one from our RandomSpirals.py

program, until we get to v and w. At v, we cut the horizontal range

for our random number in half, to just the positive x-coordinate

values (the right side of the screen, from x = 0 to x = turtle.window_

width()//2), and at w, we restrict the vertical range to the upper half

of the screen, from y = 0 to y = turtle.window_height()//2. Remember

that we’re doing integer division with the // operator to keep our

pixel measurements in whole numbers.

These two lines of code give us a random (x, y) coordinate pair

in the upper right of the screen every time. We set the turtle pen’s

position to that point at x, and we draw the first spiral with the

for loop immediately after. Then, we change the signs of each of

the coordinate values, like we did in Figure 6-6, to create the

three reflections of this point in the upper left (–x, y) at y, lower

left (–x, –y) at z, and lower right (x, –y) at {. See Figure 6-7 for

an example of the patterns Kaleidoscope.py can produce.

You can find the three reflections for each spiral by looking in

the other three corners of the screen. These are not true mirror

images: we don’t start at the same angle for each spiral, and we

don’t turn right in our reflected spirals and left in the originals.

However, these are tweaks you can make to the program if you’d

like. See this chapter’s Programming Challenges for ideas to make

this kaleidoscope program even cooler.

136 Chapter 6

Figure 6-7: The mirrored/repeated effect in Kaleidoscope.py.

What You Learned

Before this chapter, we had no way of making a computer behave

randomly. Now we can make a computer roll dice; draw random

cards from a deck; draw spirals of random color, shape, size, and

location; and even beat us now and then at Rock-Paper-Scissors.

The tool that made these programs possible was the random

module. We used random.randint(1, 10) to generate a random

number between 1 and 10 in our guessing game. We added the

random.choice() function to pick a random color out of a list in our

random spirals program. You learned how to use the functions

turtle.window_width() and turtle.window_height() to find the width

and height of our turtle screen.

You also learned how to use Cartesian coordinates to find an

(x, y) location on the screen, and you used the random.randrange()

function to generate a number in the range between our left and

right x-coordinate values and top and bottom y-coordinate values.

We then used turtle.setpos(x,y) to move the turtle to any position

on the drawing screen.

Random Fun and Games: Go Ahead, Take a Chance! 137

We combined our ability to choose an item from a list at random

using random.choice() with our ability to test and compare variables

using if-elif statements to build a “user versus computer” version of

Rock-Paper-Scissors.

You learned the concept of an array, and we made our card

game easier to code by building one array of suit names and one

array of face values. We used random.choice() on each array to

simulate dealing a card. We ordered the face values from least

to greatest and used the .index() function to find the location of

an element in an array. We used the index of each of two card

face values to see which card had a higher index value and which

player won a hand of the card game War. We built a reusable game

loop with user input, a flag variable keep_going, and a while state-

ment; we can put the loop into any game or app that a user might

want to play or run multiple times in a row.

We extended our understanding of arrays by building a sim-

plified version of Yahtzee. We created an array of five values from

1 to 6 to simulate five dice, used randint() to simulate rolling the

dice, and used sort() on the dice array to make it easier to check

for winning hands. We saw that, in a sorted array, if the first and

last values are the same, all elements in the array are the same.

In our game, this meant we had five of a kind. We used compound

if statements joined by the or operator to test for two cases of

four of a kind and three cases of three of a kind. We used if-elif

statements to control the logic of our program so that five of a kind

wasn’t also counted as four of a kind, and so on.

We worked more with Cartesian coordinates in the kaleido-

scope program and simulated the effect of reflections by changing

the signs of (x, y) coordinate values. We repeated each spiral of

random size, color, and location four times on the screen to create

our kaleidoscope effect. You learned how to increase the turtle’s

drawing speed with t.speed(0).

Random numbers and choices add an element of chance to make

a game more interesting. Just about every game you’ve played has

an element of chance. Now that you can build randomness into pro-

grams, you can code games people love to play.

At this point, you should be able to do the following:

•	 Import the random module into your programs.

•	 Use random.randint() to generate a random integer number in a

given range.

138 Chapter 6

•	 Use random.choice() to pick a value at random out of a list or

array.

•	 Use random.choice() to generate 52 card values from two arrays

of strings containing only the faces and suits.

•	 Determine the size of your drawing window with turtle.window_

width() and turtle.window_height().

•	 Move the turtle to any position on the drawing screen with

turtle.setpos(x,y).

•	 Use the random.randrange() function to generate a random

number in any range.

•	 Find the index of an element in a list or array with the .index()

function.

•	 Build a while game loop using a Boolean flag variable like

keep_going.

•	 Construct an array of similar types of values, assign values to

elements in the array by their index (as in dice[0] = 2), and use

array elements like regular variables.

•	 Sort lists or arrays with the .sort() function.

•	 Reflect points about the x- and y-axes by changing the signs of

the points’ (x, y) coordinate values.

•	 Change the turtle’s drawing speed with the .speed() function.

Programming Challenges

For this chapter’s challenge problems, we’ll extend the

Kaleidoscope.py and HighCard.py programs. (If you get

stuck, go to http://www.nostarch.com/teachkids/ for

sample answers.)

#1: Random Sides and Thickness

Add more randomness to Kaleidoscope.py by adding two

more random variables. Add a variable sides for the number

of sides and then use that variable to change the angle we

turn each time in the spiral loop (and therefore, the number

of sides in the spiral) by using 360/sides + 1 as your angle

instead of 91. Next, create a variable called thick that will

store a random number between 1 and 6 for the turtle pen’s

Random Fun and Games: Go Ahead, Take a Chance! 139

thickness. Add the line t.width(thick) in the right place to

change the thickness of the lines of each spiral in our ran-

dom kaleidoscope.

#2: Realistic Mirrored Spirals

If you know some geometry, two more tweaks make this

kaleidoscope even more realistic. First, keep track of the

direction (between 0 and 360 degrees) the turtle is point-

ing before drawing the first spiral by getting the result of

t.heading() and storing it in a variable called angle. Then,

before drawing each mirrored spiral, change the angle to

the correct mirrored direction by pointing the turtle with

t.setheading(). Hint: the second angle will be 180 - angle, the

third spiral’s angle will be angle - 180, and the fourth will be

360 - angle.

Then, try turning left after each drawn line for the

first and third spirals and turning right each time for the

second and fourth spirals. If you implement these improve-

ments, your spirals should really look like mirror images of

each other in size, shape, color, thickness, and orientation.

If you like, you can even keep the shapes from overlapping

so much by changing the range of the x- and y-coordinate

values to random.randrange(size,turtle.window_width()//2) and

random.randrange(size,turtle.window_height()//2).

#3: War

Turn HighCard.py into the full game of War by making

three changes. First, keep score: create two variables to

keep track of how many hands the computer has won and

how many the user has won. Second, simulate playing one

full deck of cards by dealing 26 hands (perhaps by using a

for loop instead of our while loop or by keeping track of the

number of hands played so far) and then declare a winner

based on which player has more points. Third, handle ties

by remembering how many ties have happened in a row;

then, the next time one of the players wins, add the number

of recent ties to that winner’s score and set the number of

ties back to zero for the next round.

7
Functions:

there’s a name For that

We’ve made use of a number of functions so far—

everything from print() to input() to turtle.forward().

But all of these functions have been either built-in or

imported from Python modules and libraries. In this

chapter, we’ll write our own functions to do anything

we want, including responding to user actions like

mouse-clicking and keypresses.

142 Chapter 7

Functions are helpful because they give us the ability to orga-

nize pieces of reusable code, then refer to those pieces later in our

programs by a single short name or command. Take input() as

an example: it prints a text prompt to ask a user for input, col-

lects what the user types, and passes it to our program as a string

that we can store in a variable. We reuse the input() function any-

time we want to know something more from the user. If we didn’t

have this function, we might have to do all that work ourselves

every time we wanted to ask the user for information.

The turtle.forward() function is

another great visual example: every

time we move the turtle forward to

draw one of the sides of our spirals,

Python draws one pixel at a time

in the direction our turtle is cur-

rently heading on the screen, to the

exact length we ask for. If we didn’t

have the turtle.forward() function,

we would have to figure out how to

color pixels on the screen, keep track

of locations and angles, and do some

fairly complex math to draw a cer-

tain distance every time.

Without these functions, our programs would be longer, harder

to read, and harder to write. Functions let us take advantage of

the previous programming work of lots of fellow coders. The good

news is that we can also write our own functions to make our code

shorter, easier to read, and more reusable.

In Chapter 6, we built programs that drew random spirals and

a kaleidoscope pattern. We can use functions to make the code in

these programs easier to read and to make parts of the code more

reusable.

Putting things together with
Functions

Look back at RandomSpirals.py on page 115. Everything in the

first for loop is the code to create just one random spiral. The for

loop uses that code to draw 50 spirals of random color, size, and

location.

Functions: There’s a Name for That 143

Say we want to use that random spiral code in another program,

like a game or a screensaver app. In RandomSpirals.py, it’s not

easy to tell where the actual spiral drawing starts or stops, and we

just wrote that code a few pages ago. Imagine coming back to this

program in three months! We would have a hard time figuring out

what the app is supposed to do and which lines we need to copy over

into a new program if we want to draw random spirals again.

To make a piece of code reusable later, or just easier to read

now, we can define a function and give it an easy-to-understand

name, just like input() or turtle.forward(). Defining a function is

also called declaring the function, and it just means that we’re

telling the computer what we want the function to do. Let’s create

a function to draw a random spiral on the screen; we’ll call it

random_spiral(). We can reuse this function anytime we want to

draw random spirals, in any program.

Defining random_spiral()
Open RandomSpirals.py (Chapter 6), save it as a new file called

RandomSpiralsFunction.py, and begin this function definition

after setting up the turtle’s pen, speed, and colors but before the

for loop. (You can refer to the final program on page 145 to see

how this should look.) Our definition of random_spiral() should

go after the turtle setup because the function will need to use the

turtle pen t and the list of colors. The definition should go before

the for loop because we’ll be using random_spiral() in the for loop,

and you have to define a function before you can use it. Now that

we’ve found the right place in our program, let’s start defining the

random_spiral() function.

We define a function in Python using the keyword def (short for

definition), followed by the name of the function, parentheses (), and

a colon (:). Here’s the first line of the random_spiral() function we’ll

build:

def random_spiral():

The rest of the function definition will be one or more

statements, indented from the left, just like when we grouped

statements in our for loops. To draw a random spiral, we need to

set a random color, a random size, and a random (x, y) location

144 Chapter 7

on the screen, and then move the pen there and draw the spiral.

Here’s the code to complete our random_spiral() function:

def random_spiral():
 t.pencolor(random.choice(colors))
 size = random.randint(10,40)
 x = random.randrange(-turtle.window_width()//2,
 turtle.window_width()//2)
 y = random.randrange(-turtle.window_height()//2,
 turtle.window_height()//2)
 t.penup()
 t.setpos(x,y)
 t.pendown()
 for m in range(size):
 t.forward(m*2)
 t.left(91)

Note that the computer doesn’t actually run the code when the

function is being defined. If we type the function definition into

IDLE, we won’t get a spiral—yet. To actually draw a spiral, we

need to call the random_spiral() function.

calling random_spiral()
A function definition tells the computer what we want to do when

someone actually calls the function. After defining a function,

we call it in our program using the function’s name followed by

parentheses:

random_spiral()

You’ve got to remember the parentheses, because that tells the

computer you want to run the function. Now that we’ve defined

random_spiral() as a function, when we call random_spiral() like this

in our program, we’ll get a random spiral drawn on a turtle screen.

Now, to draw 50 random spirals, instead of using all the code

in RandomSpirals.py, we can shorten our for loop to this:

for n in range(50):
 random_spiral()

This loop is easier to read, thanks to our use of a function that

we built all by ourselves. We’ve made our code easier to understand,

and we can easily move the random spiral code over into another

program by copying and pasting the function definition.

Functions: There’s a Name for That 145

Here’s the whole program together; type this into IDLE and

save it as RandomSpiralsFunction.py or download it from http://

www.nostarch.com/teachkids/.

RandomSpiralsFunction.py

import random
import turtle
t = turtle.Pen()
t.speed(0)
turtle.bgcolor("black")
colors = ["red", "yellow", "blue", "green", "orange", "purple",
 "white", "gray"]
def random_spiral():
 t.pencolor(random.choice(colors))
 size = random.randint(10,40)
 x = random.randrange(-turtle.window_width()//2,
 turtle.window_width()//2)
 y = random.randrange(-turtle.window_height()//2,
 turtle.window_height()//2)
 t.penup()
 t.setpos(x,y)
 t.pendown()
 for m in range(size):
 t.forward(m*2)
 t.left(91)

for n in range(50):
 random_spiral()

In addition to a more readable program, we also get a reusable

random_spiral() function that we can copy, modify, and easily use in

other programs.

If you find yourself reusing a chunk of code again and again,

convert it into a function like we did with random_spiral() using def,

and you’ll find it much easier to port the code—that is, carry it

over and reuse it—into new applications.

note You can even create your own module full of

functions and import your module just like

we’ve imported turtle and random in our pro-

grams (see Appendix C on how to create a

module in Python). That way you can share

your code with friends.

http://www.nostarch.com/teachkids/
http://www.nostarch.com/teachkids/

146 Chapter 7

Parameters: Feeding Your Function
When creating a function, we can define parameters for that

function. Parameters allow us to send information to the func-

tion by passing values to it as arguments inside its parentheses.

We’ve been passing arguments to functions since our first print()

statement. When we code print("Hello"), "Hello" is an argument

representing the string value that we want printed to the screen.

When we call the turtle function t.left(90), we’re passing the value

90 as the number of degrees we want our turtle to turn left.

The random_spiral() function didn’t need parameters. All the

information it needed was in the code inside the function. But if we

want, functions that we build can take information in the form of

parameters. Let’s define a function, draw_smiley(), to draw a smiley

face at a random location on the screen. This function will take

a pair of random coordinates and draw the smiley face at those

coordinates. We’ll define and call draw_smiley() in a program called

RandomSmileys.py. The complete program is shown on page 151—

but let’s build it step by step.

smileys at random Locations
We want to write a program that, rather than drawing random

spirals, draws smiley faces. It’ll take a bit more planning to draw

a smiley face than it did to randomly pick a color and size and

draw a spiral. Let’s go back to our friend from Chapter 6, a piece

of graph paper. Because we haven’t drawn something as compli-

cated as a smiley face in our programs before, it’s best to draw

this on paper first and then trans-

late it into code, one part at a time.

Figure 7-1 shows a smiley face on a

graph-paper grid that we can use to

plan our drawing.

Our program will draw smileys

like this one all over the screen at

random (x, y) coordinates. The func-

tion definition for draw_smiley() will

take two parameters, x and y, for the

location where the smiley is to be

drawn. As shown in Figure 7-1, we

will draw the smiley face as if it were

0

0 10 20 30 40 50−10−20−30−40−50

10

20

30

40

50

60

70

80

90

100

Figure 7-1: We’re planning
our program by drawing a
smiley face on graph paper
first.

Functions: There’s a Name for That 147

sitting on the (x, y) location, so picture moving this smiley face

template around by placing its origin (0, 0) over any other point

(x, y) on the screen. Let’s figure out how to draw each smiley face

starting from a given point.

Drawing a head

Each smiley face has a yellow circle for the head, two small blue

circles for eyes, and some black lines for the mouth. Given a point

on the screen, our draw_smiley() function will need to draw a head,

eyes, and a mouth at the correct positions relative to the given

point. To figure out the code that will go in our function definition,

let’s plan the head, eyes, and mouth separately, starting with the

head. We’ll draw the head first so that it doesn’t cover the eyes and

mouth we’ll draw next.

We’ll count each grid line in Figure 7-1 as 10 pixels, so the

smiley we’ve drawn would measure 100 pixels tall; that will equal

around an inch, give or take, on most computer screens. Since

the diameter, or height and width, of the circle is 100 pixels, that

means it has a radius (one-half the diameter) of 50 pixels. We

need the radius because the turtle module’s circle() command

takes the radius as its parameter. The command to draw a circle

with a radius of 50 (which makes a diameter of 100) is t.circle(50).

The circle() function draws a circle directly above the turtle’s cur-

rent (x, y) location. We’ll need to know this to correctly place the

eyes and mouth, so I’ve drawn my smiley face with the bottom

edge resting on the origin, (0, 0). We can figure out where we

need to draw everything else by adding the coordinates of each

part to that starting (x, y) location of (0, 0).

To draw the big yellow head, we’ll make the pen color yellow,

make the fill color yellow, turn on the paint fill for our shape, draw

the circle (which gets filled with yellow because we turned on the

paint fill), and turn off the paint fill when we’re done. Assuming

we have a turtle pen named t defined earlier in the program, the

code to draw the yellow circle as the head of our smiley face at the

current (x, y) location looks like this:

Head
t.pencolor("yellow")
t.fillcolor("yellow")
t.begin_fill()
t.circle(50)
t.end_fill()

148 Chapter 7

To fill the circle with yellow, we add four lines of code

around our t.circle(50) command. First, we set the pen color to

yellow with t.pencolor("yellow"). Second, we set the fill color with

t.fillcolor("yellow"). Third, before we call the t.circle(50) com-

mand to draw the face of our smiley, we tell the computer that we

want to fill the circle we’re drawing. We do this with the t.begin_

fill() function. Finally, after we draw our circle, we call the

t.end_fill() function to tell the computer that we’re done with the

shape that we want to fill with color.

Drawing eyes

First, we need to figure out where to position the turtle to draw

the left eye in the correct place, then set the fill color to blue,

and finally draw a circle of the correct size. The eyes are about

20 pixels (two grid lines) tall, and we know that a diameter of 20

means that we need a radius of half that amount, or 10, so we’ll

use the t.circle(10) command to draw each eye. The tricky part is

deciding where to draw them.

Our (x, y) starting point will be the local origin of each smiley

face, and you can locate the left eye in Figure 7-1. It looks like it

starts about 6 grid lines above the origin (60 pixels up, in the posi-

tive y-direction), and it’s sitting about 1.5 grid lines to the left of

the y-axis (or about 15 pixels left, in the negative x-direction).

To tell our program how to get to the right place to draw the

left eye, starting from the bottom of the big yellow circle at a given

(x, y) passed to our function as a pair of arguments, we need to

start at x and move left 15 pixels, start at y and move up 60 pixels,

or move to (x-15, y+60). So, calling t.setpos(x-15, y+60) should put

the turtle where we need to start drawing our left eye. Here’s the

code for the left eye:

Left eye
t.setpos(x-15, y+60)
t.fillcolor("blue")
t.begin_fill()
t.circle(10)
t.end_fill()

An easy mistake might be writing the setpos command with

just (–15, 60) as arguments, but remember that we want to draw

lots of smiley faces at various (x, y) positions on the screen; not all

Functions: There’s a Name for That 149

the faces will begin at (0, 0). The command t.setpos(x-15, y+60) will

make sure that wherever our yellow face is being drawn, our left

eye will be in the upper left of that face.

The code to draw the right eye is almost identical to the

code for drawing the left eye. We can see that the right eye is

15 pixels (1.5 grid lines) to the right of our (x, y) location, and still

60 pixels up. The command t.setpos(x+15, y+60) should place the

eye symmetrically. Here’s the code for the right eye:

Right eye
t.setpos(x+15, y+60)
t.begin_fill()
t.circle(10)
t.end_fill()

The fill color is still blue from the left eye, so we just have to

set the turtle to the correct position (x+15, y+60), turn the fill on,

draw the eye, and finish filling it.

Drawing a mouth

Now let’s plan the most important part of the smiley face: the smile.

To make the smile simpler, we’re going to draw the mouth with just

three thick, black lines. The left side of the mouth looks like it starts

about 2.5 grid lines to the left of and 4 grid lines above our point

(x, y), so we’ll position the turtle at (x-25, y+40) to start drawing the

smile. We’ll set the pen color to black and the width to 10 so that

the smile is thick and easy to see. From the upper-left corner of the

smile, we need to go to (x-10, y+20), then to (x+10, y+20), and finally

to the upper-right corner of the smile at (x+25, y+40). Notice that

150 Chapter 7

these pairs of points are mirror images of one another across the

y-axis; this makes our smiley face nice and even.

Here’s the code for the mouth:

Mouth
t.setpos(x-25, y+40)
t.pencolor("black")
t.width(10)
t.goto(x-10, y+20)
t.goto(x+10, y+20)
t.goto(x+25, y+40)

u t.width(1)

After we set the turtle at the upper-left corner of the mouth, we

change the pen color to black and the width to 10. We start draw-

ing by telling the turtle to go to each of the other three points of

the smile. The turtle module’s goto() function does the same thing

as setpos(): it moves the turtle to a given point. I’m using it here

just so you can see there’s an alternative to setpos(). Finally, at u,

t.width(1) sets the pen width back down to 1 so that our shapes

aren’t too thick when the next face is drawn.

Defining and calling draw_smiley()

All that remains is to define the draw_smiley() function with all the

code to draw a smiley face, set up a loop to generate 50 random

(x, y) locations on the screen, and call the draw_smiley(x,y) function

to draw smileys at all 50 locations.

The function definition for draw_smiley() will need to take two

parameters, x and y, for the location where the smiley is to be

drawn, and it will need to lift the turtle’s pen, move the turtle

to that (x, y) position, and then put the pen back down to get

ready to draw. After that, we just need to add our code snippets

for drawing the big yellow face, the left and right eyes, and the

mouth.

def draw_smiley(x,y):
 t.penup()
 t.setpos(x,y)
 t.pendown()
 # All of your drawing code goes here...

Functions: There’s a Name for That 151

The final piece will be our for loop to generate 50 random

locations for the smiley faces and call the draw_smiley() function

to draw each face. It will look like this:

for n in range(50):
 x = random.randrange(-turtle.window_width()//2,
 turtle.window_width()//2)
 y = random.randrange(-turtle.window_height()//2,
 turtle.window_height()//2)
 draw_smiley(x,y)

Our random x- and y-coordinate values are just like those we

saw in Chapter 6, generating random points from the left half to the

right half of the screen, and from the bottom half to the top half.

With draw_smiley(x,y), we’re passing these random coordinates as

arguments to the draw_smiley() function, which will draw a smiley

at that random spot.

Putting it all together
Put the program together, and it looks something like this:

RandomSmileys.py

import random
import turtle
t = turtle.Pen()
t.speed(0)
t.hideturtle()
turtle.bgcolor("black")

u def draw_smiley(x,y):
 t.penup()
 t.setpos(x,y)
 t.pendown()
 # Head
 t.pencolor("yellow")
 t.fillcolor("yellow")
 t.begin_fill()
 t.circle(50)
 t.end_fill()
 # Left eye
 t.setpos(x-15, y+60)
 t.fillcolor("blue")
 t.begin_fill()
 t.circle(10)
 t.end_fill()

152 Chapter 7

 # Right eye
 t.setpos(x+15, y+60)
 t.begin_fill()
 t.circle(10)
 t.end_fill()
 # Mouth
 t.setpos(x-25, y+40)
 t.pencolor("black")
 t.width(10)
 t.goto(x-10, y+20)
 t.goto(x+10, y+20)
 t.goto(x+25, y+40)
 t.width(1)

v for n in range(50):
 x = random.randrange(-turtle.window_width()//2,
 turtle.window_width()//2)
 y = random.randrange(-turtle.window_height()//2,
 turtle.window_height()//2)
 draw_smiley(x,y)

As usual, we import the modules we need and set up our turtle,

setting its speed to 0 (the fastest). We use hideturtle() so the turtle

itself doesn’t show up on the screen; this speeds up drawing too.

At u, we define our draw_smiley() function so that its job is to

draw the smiley’s face, left eye, right eye, and smile, using all that

code we wrote before. All it needs to do its job is an x-coordinate

and a y-coordinate.

In our for loop at v, a random x and y are chosen and passed

to draw_smiley(), which then draws a smiley with all features in the

correct locations relative to that random point.

The RandomSmileys.py program will draw 50 smiley faces at

random positions on the drawing screen, as shown in Figure 7-2.

You can customize the program to draw just about any shape

you want, as long as you design a function to draw that shape

starting from any (x, y) location. Start with graph paper like we

did in this example to make it easier to find the important points.

If it bothers you that some of the smiley faces are halfway off the

screen on the left and right, or almost all the way off the screen

at the top, you can use a bit of math in the x and y randrange()

statements to keep your smileys completely on the screen. Go to

http://www.nostarch.com/teachkids/ for a sample answer to this

challenge.

http://www.nostarch.com/teachkids/

Functions: There’s a Name for That 153

Figure 7-2: The RandomSmileys.py program produces a
happy result.

return: it’s What You Give Back
that counts

We can send information to a function using arguments, but

what if we want to receive information back from a function? For

example, what if we build a function to convert inches to centime-

ters, and we want to store the converted number to use in further

calculations, rather than just printing it directly to the screen? To

pass information from a function back to the rest of our program,

we use a return statement.

returning a Value from a Function
There are lots of times when we want to get information back from

a function. For example, let’s actually build the function to convert

inches to centimeters and call it convert_in2cm(). We can imagine

the parameter that we might want to accept in the function: a

measurement in inches. But this function is a perfect candidate

for giving information back to the rest of our program—namely,

the converted measurement in centimeters.

154 Chapter 7

To convert a length in inches to its equivalent in centimeters,

we multiply the number of inches by 2.54—the approximate num-

ber of centimeters in an inch. To pass that calculation back to the

rest of the program, we would use a return statement. The value

after the keyword return will be passed back to the program as the

function’s return value, or result. Let’s define our function:

def convert_in2cm(inches):
 return inches * 2.54

If you type these two lines into the Python shell and then type

convert_in2cm(72) and press enter, Python will respond with 182.88.

There are about 182.88 centimeters in 72 inches (or 6 feet—my

height). The value 182.88 is returned by the function, and in the

command line shell, we see the return value printed on the next

line after we call a function.

We could also perform

another useful conversion:

pounds to kilograms. To con-

vert pounds to kilograms, we

divide the weight in pounds

by 2.2, the approximate num-

ber of pounds in 1 kilogram.

Let’s create a function called

convert_lb2kg() that will take a

value in pounds as its param-

eter and return the converted

value in kilograms:

def convert_lb2kg(pounds):
 return pounds / 2.2

The return statement is sort of like using parameters in

reverse, except that we can return only one value, not a set of

values like the parameters we take in. (That one value can be a

list, however, so with some work you can pass multiple values back

in a single return variable.)

using return Values in a Program
Using these two conversion functions, let’s build a silly application:

a Ping-Pong-ball height and weight calculator. This program will

Functions: There’s a Name for That 155

answer the questions “How many Ping-Pong balls tall am I?” and

“What is my weight in Ping-Pong balls?”

An official Ping-Pong ball weighs 2.7 grams (0.095 ounces) and

measures 40 millimeters (4 centimeters, or 1.57 inches) in diameter.

To calculate how many Ping-Pong balls it would take to match our

height and weight, we need to divide our height in centimeters by 4

and divide our weight in grams by 2.7. But not everyone knows their

weight in grams or height in centimeters: in the United States, we

usually measure our weight in pounds and our height in feet and

inches. Fortunately, the two conversion functions we just developed

will help us convert those measurements to their equivalents in the

metric system. We can then use these numbers to perform the con-

version to Ping-Pong-ball units.

Our program will define the two conversion functions

convert_in2cm() and convert_lb2kg(). Then it will ask the user for

their height and weight, calculate the user’s height and weight in

Ping-Pong balls, and display the calculations on the screen. Type

and run the following code:

PingPongCalculator.py

u def convert_in2cm(inches):
 return inches * 2.54

def convert_lb2kg(pounds):
 return pounds / 2.2

v height_in = int(input("Enter your height in inches: "))
weight_lb = int(input("Enter your weight in pounds: "))

w height_cm = convert_in2cm(height_in)
x weight_kg = convert_lb2kg(weight_lb)

y ping_pong_tall = round(height_cm / 4)
z ping_pong_heavy = round(weight_kg * 1000 / 2.7)

{ feet = height_in // 12
| inch = height_in % 12

} print("At", feet, "feet", inch, "inches tall, and", weight_lb,
 "pounds,")
print("you measure", ping_pong_tall, "Ping-Pong balls tall, and ")
print("you weigh the same as", ping_pong_heavy, "Ping-Pong balls!")

156 Chapter 7

At u, we enter the two conversion formulas we developed.

Both functions take an input parameter (inches and pounds), and

each function returns a value. At v, we ask the user for a height

and weight and store those values in height_in and weight_lb.

At w, we call the convert_in2cm() function, passing height_in as

the value we want to convert, and we store the converted answer

in the variable height_cm. We perform another conversion calcula-

tion at x using the convert_lb2kg() function to convert the person’s

weight in pounds (abbreviated as lbs) into the equivalent in kilo-

grams (kg).

The equation at y does two things: first, it divides the user’s

height in centimeters by 4 to find their height in Ping-Pong balls;

then, it rounds that answer to the nearest whole number with the

round() function and stores the result in the variable ping_pong_tall.

At z, we do something similar by converting the user’s weight in

kilograms to grams by multiplying by 1,000 and then dividing that

amount by 2.7—the mass in grams of a standard Ping-Pong ball.

That number is rounded to the nearest whole number and stored

in the variable ping_pong_heavy.

At { and |, we do just a little more math by figuring out the

person’s height in feet and inches. As I mentioned previously, this

is normally how we express our height in the United States, and

it will be a nice finishing touch as well as a way for the person to

check that they entered the correct information. The // operator

does integer division, so 66 inches, or 5.5 feet, would result in just 5

being stored in the variable feet, and the % operator (modulo) would

store the remainder, 6 inches. The print statements at } print out

the user’s height and weight, both in standard units and in Ping-

Pong balls.

Here are the results from a few sample runs of the Ping-Pong

calculator program, with Ping-Pong-ball measurements for my

sons, Max and Alex, and me. (The only downside is that now my

kids want to get 31,000 Ping-Pong balls.)

>>> ================================ RESTART ================================
>>>
Enter your height in inches: 42
Enter your weight in pounds: 45
At 3 feet 6 inches tall, and 45 pounds,
you measure 27 Ping-Pong balls tall, and
you weigh the same as 7576 Ping-Pong balls!

Functions: There’s a Name for That 157

>>> ================================ RESTART ================================
>>>
Enter your height in inches: 47
Enter your weight in pounds: 55
At 3 feet 11 inches tall, and 55 pounds,
you measure 30 Ping-Pong balls tall, and
you weigh the same as 9259 Ping-Pong balls!
>>> ================================ RESTART ================================
>>>
Enter your height in inches: 72
Enter your weight in pounds: 185
At 6 feet 0 inches tall, and 185 pounds,
you measure 46 Ping-Pong balls tall, and
you weigh the same as 31145 Ping-Pong balls!
>>>

Any function we create can return a value, just like any func-

tion that we define can take parameters as input. Depending on

what you want your function to do, use one or both of these fea-

tures to write exactly the code for the function you need.

a touch of interaction
We’ve coded some nice-looking graphical apps, but we’re still a step

or two away from building the next video game or mobile app. One

of the remaining skills we need to learn is coding for user interac-

tion: making our programs respond to mouse clicks, keypresses,

and so on.

Most apps are interactive—they allow the user to touch, click,

drag, press buttons, and feel in control of the program. We call

these event-driven apps because they wait for the user to perform

an action, or event. The code that responds to a user event, like

opening a window when the user clicks an icon or starting a game

when they touch a button,

is referred to as an event

handler because it handles

or responds to an event from

the user. It’s also called an

event listener because it’s

as if the computer is sit-

ting patiently, listening

158 Chapter 7

for the user to tell it what to do. We’re going to learn to handle

user events and make our programs even more engaging and

interactive.

handling events: turtleDraw
There are lots of ways to make apps handle user events. Python’s

turtle module includes some functions for handling user events,

including mouse clicks and keypresses. The first one we’ll try is

the turtle.onscreenclick() function. As the name suggests, this

function allows us to handle events created by the user clicking

on the turtle’s screen.

There’s a difference between this function and the ones

we’ve used and built before: the argument that we send to turtle

.onscreenclick() isn’t a value—it’s the name of another function:

turtle.onscreenclick(t.setpos)

Remember the setpos() function that we’ve used to move the

mouse to a certain (x, y) location on the screen? Now we’re telling

the computer that when the turtle screen gets a mouse click, it

should set the turtle to the position of that click on the screen. A

function we pass as an argument to another function is sometimes

called a callback function (because it gets called back by the other

function). Notice that when we send a function as an argument to

another function, the inside function doesn’t need the parentheses

after its name.

By sending the function name t.setpos to turtle.onscreenclick(),

we’re telling the computer what we want screen clicks to do: we

want to set the position of the turtle to wherever the user clicked.

Let’s try it in a short program:

TurtleDraw.py

import turtle
t = turtle.Pen()
t.speed(0)
turtle.onscreenclick(t.setpos)

Type these four lines into IDLE, run the program, and then

click different places around the screen. You just created a drawing

program in four lines of code! Figure 7-3 shows a sample sketch

I drew.

Functions: There’s a Name for That 159

Figure 7-3: A TurtleDraw.py sketch (there’s a reason
I’m an author and not an artist)

The reason this works is that we’ve told the computer to do

something when the user clicks the mouse on the screen: set the

position of the turtle to that location. The turtle’s pen is down by

default, so when the user clicks on the drawing window, the turtle

moves there and draws a line from its old location to the location

where the user clicked.

You can customize TurtleDraw.py by changing the background

color of the screen, the turtle’s pen color, the width of the pen, and

more. Check out the version my four-year-old son created (with

some help from his dad):

TurtleDrawMax.py

import turtle
t = turtle.Pen()
t.speed(0)
turtle.onscreenclick(t.setpos)
turtle.bgcolor("blue")
t.pencolor("green")
t.width(99)

Max liked the drawing program (a lot), but he wanted the

screen to be blue and the pen to be green and really thick, so

we set the bgcolor(), pencolor(), and width() to blue, green, and 99,

respectively. We made an arbitrary choice to set these after we told

the computer what to do with mouse clicks on the screen (t.setpos).

160 Chapter 7

This is fine, because the program keeps running even while it’s lis-

tening for mouse clicks, so by the time the user clicks for the first

time, the screen and pen are correctly colored and sized, as shown

in Figure 7-4.

Figure 7-4: A drawing I produced by clicking a few
times with TurtleDrawMax.py

Using the setpos() function as the callback for turtle

.onscreenclick(), we’ve built a fun paint program that interacts

with the user when they click the mouse by drawing lines to

wherever they click. Try customizing the app with different colors,

widths, or anything else you can think of to make it your own.

Listening for Keyboard events:
arrowDraw
With our turtle drawing program, we saw how listening for mouse

clicks can make the user feel like they’re more in control of the

program. In this section, we’ll learn to use keyboard interaction

to give the user even more options. We’ll also define our own func-

tions to use as event handlers.

In the TurtleDraw.py program, we passed t.setpos as the

callback function to tell the computer what to do when an

onscreenclick() event happened; we wanted to set the turtle’s

Functions: There’s a Name for That 161

position to the location of that mouse click on the screen. The

setpos() function is already given to us in the turtle module, but

what if we want to create our own functions to handle events?

Say we want to build a program that lets the user move the turtle

on their screen by pressing the arrow keys instead of clicking the

mouse button. How would we do that?

First, we have to build functions for moving the turtle for

each arrow keypress on the keyboard, and then we have to tell the

computer to listen for those keys to be pressed. Let’s write a pro-

gram that will listen for the up (), left (), and right () keyboard

arrow keys and let the user move the turtle forward or turn left or

right with those keys.

Let’s define some functions—up(), left(), and right()—that

will move and turn the turtle:

def up():
 t.forward(50)
def left():
 t.left(90)
def right():
 t.right(90)

Our first function, up(), moves the turtle forward 50 pixels.

The second, left(), turns the turtle left 90 degrees. Finally, right()

turns the turtle right 90 degrees.

To run each of these functions when the user presses the correct

arrow key, we have to tell the computer which function goes with

which key and tell it to start listening for keypresses. To set the

callback function for a keypress event, we use turtle.onkeypress().

This function usually takes two parameters: the name of the call-

back function (the event handler functions we created) and the

specific key to listen for. To connect each of the three functions to

its corresponding arrow key, we would write:

turtle.onkeypress(up, "Up")
turtle.onkeypress(left, "Left")
turtle.onkeypress(right, "Right")

The first line sets the up() function as the event handler for

"Up" arrow keypresses; the function (up) goes first, and "Up" is the

name of the up arrow key, . The same goes for the left and right

162 Chapter 7

arrow keypresses. The final step is telling the computer to begin

listening for keypresses, which we do with this command:

turtle.listen()

 We need this last line for a couple of reasons. First, unlike

with mouse clicks, simply pressing a key doesn’t ensure that our

turtle window will receive the keypress. When you click a window

on your desktop, that window moves to the front and receives the

focus, meaning that window will receive input from the user. When

you click the mouse on the turtle window, it automatically makes

that window the focus of the screen and of any mouse events that

follow. With the keyboard, though, just pressing keys doesn’t make

a window receive those keypresses; the turtle.listen() command

makes sure our turtle’s window is the focus of the desktop so that

it will be able to hear keypresses. Second, the listen() command

tells the computer to start handling keypress events for all keys

that we connected to functions with the onkeypress() function.

Here’s the complete ArrowDraw.py program:

ArrowDraw.py

import turtle
t = turtle.Pen()
t.speed(0)

u t.turtlesize(2,2,2)
def up():
 t.forward(50)
def left():
 t.left(90)
def right():
 t.right(90)
turtle.onkeypress(up, "Up")
turtle.onkeypress(left, "Left")
turtle.onkeypress(right, "Right")
turtle.listen()

At u, the only new line in ArrowDraw.py, we make the

turtle arrow twice as big, and give it a thicker outline with

t.turtlesize(2,2,2). The three parameters are the horizontal

stretch (2 means to make it twice as wide), the vertical stretch

(2 times as tall), and the outline thickness (2 pixels thick).

Figure 7-5 shows the result.

Functions: There’s a Name for That 163

Figure 7-5: The ArrowDraw.py program lets the user draw
using the up, right, and left arrow keys. The larger turtle
arrow makes it easier to see where the turtle is headed.

This app is a bit like the old Etch-A-Sketch toy: you can draw

fun shapes using just those three arrow keys, and you can retrace

your steps. Feel free to customize the app with your own colors,

pen width, and any other features you’d like to add. One extra fea-

ture you could add, which is included as a challenge at the end of

this chapter, is the ability to click to move the turtle to a new loca-

tion. Dream up new features and give them a try—that’s the best

way to learn something new!

handling events with Parameters:
clickspiral
In TurtleDraw.py, we let the user click to draw by telling the

turtle.onscreenclick() listener to call the t.setpos function anytime

the user clicked the screen. Let’s build a new program named

ClickSpiral.py that will draw spirals wherever the user clicks, as

shown in Figure 7-6.

The onscreenclick() listener passes the x- and y-coordinates

of every mouse click as arguments to the callback function we

specify. When we want to handle mouse click events with a func-

tion of our own, we simply write a function that accepts those

values—the x- and y-coordinates of the mouse click—as a pair of

parameters.

164 Chapter 7

Figure 7-6: A smiley face drawn using the ClickSpiral.py app

RandomSpiralsFunction.py (page 145) contained a function

called random_spiral() that drew colorful spirals in random places

on the screen. Now, however, instead of spirals at random loca-

tions, we want a spiral to appear where the user clicks the mouse.

To do this, we can rewrite the random_spiral() function to take two

parameters, x and y, from the turtle.onscreenclick() listener. We’ll

rename the function spiral(x,y):

def spiral(x,y):
 t.pencolor(random.choice(colors))
 size = random.randint(10,40)
 t.penup()
 t.setpos(x,y)
 t.pendown()
 for m in range(size):
 t.forward(m*2)
 t.left(91)

Functions: There’s a Name for That 165

In this new version, we change the function’s definition to

reflect the new name and the two parameters that we will receive to

draw at chosen positions on the screen as spiral(x,y). We still choose

a random color and size for each spiral, but we have removed the

two lines that generate a random x and y, because we will get the x

and y as arguments from the onscreenclick() listener. Just as with

the random_spiral() function, we move the pen to the correct (x, y)

position and then draw the spiral.

The only step left is to set up our turtle window and the list

of colors, and then tell our turtle.onscreenclick() listener to call the

spiral function whenever the user clicks the mouse button over the

drawing window. Here’s the complete program:

ClickSpiral.py

import random
import turtle
t = turtle.Pen()
t.speed(0)
turtle.bgcolor("black")
colors = ["red", "yellow", "blue", "green", "orange", "purple",
 "white", "gray"]
def spiral(x,y):
 t.pencolor(random.choice(colors))
 size = random.randint(10,40)
 t.penup()
 t.setpos(x,y)
 t.pendown()
 for m in range(size):
 t.forward(m*2)
 t.left(91)

u turtle.onscreenclick(spiral)

As in TurtleDraw.py, we leave out the parentheses and param-

eters for our callback function u: turtle.onscreenclick(spiral) tells

our program that it should call our spiral(x,y) function every time

the user clicks the mouse on the screen, and the event listener

automatically sends two arguments—the x-position and y-position

of that click—to the spiral callback function. The same thing hap-

pened in TurtleDraw.py with the t.setpos callback, but this time,

we created our own function to draw a spiral of a random color and

size at the location of the mouse button click.

166 Chapter 7

taking it one step Further:
clickandsmile
Let’s extend this interactive app by making one more change.

Instead of drawing a spiral, say we want to draw a smiley face

wherever the user clicks the mouse on the drawing screen.

The code will look a lot like our RandomSmileys.py program

from page 151, but instead of a loop that draws 50 smiley faces

at random locations on the screen, this program will handle the

mouse click event by drawing a smiley at the location the user

chooses, as many or as few times as the user wishes to click.

In fact, because our draw_smiley() function already takes two

parameters (the x- and y-coordinates of the location where we

wish to draw the smiley face), the code for ClickAndSmile.py is

identical to RandomSmileys.py, except for the last section. Just

replace the for loop that draws 50 random smileys with a call

to turtle.onscreenclick(draw_smiley). Remember how the turtle

.onscreenclick() function allows us to pass the name of a function

(like setpos) as the event handler for mouse clicks? We can pass

it draw_smiley so that when the user clicks, our draw_smiley() func-

tion will do its work at the location of the click. We do not include

draw_smiley’s parentheses, or any arguments, inside the parentheses

for turtle.onscreenclick().

ClickAndSmile.py

import random
import turtle
t = turtle.Pen()
t.speed(0)
t.hideturtle()
turtle.bgcolor("black")
def draw_smiley(x,y):
 t.penup()
 t.setpos(x,y)
 t.pendown()
 # Face
 t.pencolor("yellow")
 t.fillcolor("yellow")
 t.begin_fill()
 t.circle(50)
 t.end_fill()
 # Left eye
 t.setpos(x-15, y+60)
 t.fillcolor("blue")

Functions: There’s a Name for That 167

 t.begin_fill()
 t.circle(10)
 t.end_fill()
 # Right eye
 t.setpos(x+15, y+60)
 t.begin_fill()
 t.circle(10)
 t.end_fill()
 # Mouth
 t.setpos(x-25, y+40)
 t.pencolor("black")
 t.width(10)
 t.goto(x-10, y+20)
 t.goto(x+10, y+20)
 t.goto(x+25, y+40)
 t.width(1)
turtle.onscreenclick(draw_smiley)

Now, instead of drawing random smiley faces all over the

screen, the user can draw a smiley face wherever they click the

mouse; they can even draw a big smiley face out of little smiley

faces, as shown in Figure 7-7.

Figure 7-7: We’ve made our smiley program more interactive, drawing
wherever the user clicks.

168 Chapter 7

Whatever kinds of apps you want to build, you’re probably going

to rely on user interaction to drive the experience. Think of the

games or other apps that you spend the most time playing: what

they all have in common is that you have some kind of control over

what happens and when. Whether you’re moving a paddle to hit a

ball; pressing the mouse button or touching and dragging to fire

something through the air; or clicking, swiping, and tapping to clear

a screen, you’re generating user events—and the programs you love

handle those events by doing something cool. Let’s build one more

interactive app for practice, and then we’ll build even more of the

kinds of apps we play with every day.

clickKaleidoscope
Let’s combine our ability to create functions and our ability to

handle interactive clicks to create an interactive kaleidoscope.

The user will be able to click anywhere on the screen, and four

reflected spirals of a random shape and color will be drawn start-

ing from the point where the user clicked. The result will look like

our Kaleidoscope.py program from page 134, but the user will be

able to create their own unique patterns using this kaleidoscope.

the draw_kaleido() Function
Let’s talk about the challenges in building a customized kalei-

doscope program. We know we want to allow the user to click

the screen to begin the drawing process, so we’ll use the turtle

.onscreenclick() function from the previous section. We know that

this function will give us an (x, y) location on the screen that we

can use in our callback function. And we can look back at our orig-

inal kaleidoscope program to see that all we have to do is draw a

spiral at each of the four points (x, y), (–x, y), (–x, –y), and (x, –y) to

achieve the desired reflection effect.

Each of our four reflected spirals should be the same color and

size to create the mirror illusion. We will call our function draw_

kaleido() and define it as follows:

u def draw_kaleido(x,y):
v t.pencolor(random.choice(colors))
w size = random.randint(10,40)

 draw_spiral(x,y, size)

Functions: There’s a Name for That 169

 draw_spiral(-x,y, size)
 draw_spiral(-x,-y, size)
 draw_spiral(x,-y, size)

At u, we name our function draw_kaleido, and we allow it to

take the two parameters, x and y, from the turtle.onscreenclick()

event handler so that our four reflected spirals will start at the

(x, y) location where the user clicked the mouse. Then, at v, we

randomly choose a pen color for all four reflected spirals in a set

from our usual list of colors, colors.

At w, we pick a random size for all four reflected spirals and

store it in size. Finally, we draw all of the four spirals at their

(x, y), (–x, y), (–x, –y), and (x, –y) locations with a new function

we’ve yet to actually write, called draw_spiral().

the draw_spiral() Function
Our draw_spiral() function will need to draw a spiral starting at

a custom (x, y) location on the screen. Python’s turtle pen will

remember the color once it’s set, so we don’t have to pass that

information as a parameter to our draw_spiral() function, but we

do need the (x, y) location and the size of the spiral that we want

to draw. So we’ll define our draw_spiral() function to take three

parameters:

def draw_spiral(x,y, size):
 t.penup()
 t.setpos(x,y)
 t.pendown()
 for m in range(size):
 t.forward(m*2)
 t.left(92)

170 Chapter 7

This function takes the parameters x and y for the location to

start drawing each spiral, and the parameter size to tell us how

big to make the spiral. Inside the function, we lift the turtle’s pen

so that we can move without leaving a trail, we move the pen to

the given (x, y) location, and we put the pen back down to prepare

for the spiral. Our for loop will iterate m over the values from 0 to

size, drawing a square spiral up to that side length.

All we’ll have to do in our program, besides importing random

and turtle and setting up our screen and list of colors, is tell the

computer to listen for clicks on the turtle screen and call the draw_

kaleido() function whenever a click event happens. We can do that

with the command turtle.onscreenclick(draw_kaleido).

Putting it all together
Here’s the full ClickKaleidoscope.py program. Type it in IDLE or

download it from http://www.nostarch.com/teachkids/ and run it.

ClickKaleidoscope.py

import random
import turtle
t = turtle.Pen()
t.speed(0)
t.hideturtle()
turtle.bgcolor("black")
colors = ["red", "yellow", "blue", "green", "orange", "purple",
 "white", "gray"]
def draw_kaleido(x,y):
 t.pencolor(random.choice(colors))
 size = random.randint(10,40)
 draw_spiral(x,y, size)
 draw_spiral(-x,y, size)
 draw_spiral(-x,-y, size)
 draw_spiral(x,-y, size)
def draw_spiral(x,y, size):
 t.penup()
 t.setpos(x,y)
 t.pendown()
 for m in range(size):
 t.forward(m*2)
 t.left(92)
turtle.onscreenclick(draw_kaleido)

We begin with our normal import statements and then set

up our turtle environment and list of colors. Next, we define our

http://www.nostarch.com/teachkids/

Functions: There’s a Name for That 171

draw_spiral() function, followed by draw_kaleido(), and we finish

by telling the computer to listen for clicks on the turtle screen

and call draw_kaleido() when click events occur. Now, whenever

the user clicks a location on the drawing window, a spiral will be

drawn there and reflected across the x- and y-axes for a total of

four spirals of the same random shape and size.

The result is a fully interactive version of our spiral kaleido-

scope program that allows the user to control the reflected pattern

by clicking only in parts of the screen where they want spirals

to appear. Figure 7-8 shows a sample run of the program with

reflected patterns made of spirals.

Figure 7-8: With our interactive kaleidoscope program, you
can create any reflected pattern you wish!

Try your own patterns (like your first initial!) and take a

screenshot of your results (in Windows, hold down the alt and

print screen keys to copy the turtle window and then paste into

Word or your favorite drawing program; on a Mac, press and hold

the command [z], shift, and 4 keys, then press the spacebar, and

then click the turtle drawing window to save a copy of the pic-

ture to your desktop as Screenshot <date and time>.png). Tweet

your best screenshots to me at @brysonpayne on Twitter with the

hashtag #kidscodebook, and I’ll do my best to respond!

172 Chapter 7

What You Learned
In this chapter, you learned how to organize chunks of reusable

code into functions, call your own functions from anywhere in your

programs, pass information as parameters to those functions, and

get information back from functions as return values. We wrote

our first event-driven programs by telling the computer to listen

for mouse clicks and keypresses, and you learned how to write

your own callback functions to respond to user events.

We’ve developed our first fully interactive programs. Using the

skills you’ve gained in this chapter, you’re ready to begin writing

even more advanced apps. The apps we frequently enjoy give users

the experience of being in control of the program by responding to

clicks, touches, keypresses, and more.

After mastering the concepts in this chapter, you should be

able to do the following:

•	 Make code more reusable using functions.

•	 Organize and group code into functions.

•	 Define functions in Python using the def keyword.

•	 Call your own functions from programs that you write.

•	 Define and use functions that accept parameters as input

values.

•	 Write functions that return values when called.

•	 Convert a mathematical formula into a function that returns

the function’s value.

•	 Explain some features of event-driven programs.

•	 Write a basic event-driven app that uses an event handler.

•	 Write an app that accepts mouse clicks and draws on the

screen.

•	 Code event handlers for keyboard events.

•	 Program event handler functions that take parameters.

•	 Use x- and y-coordinates on the screen to draw specific

patterns, such as kaleidoscopes.

Functions: There’s a Name for That 173

Programming challenges
Here are three challenges to extend what you learned in

this chapter. For sample answers to these challenges, go to

http://www.nostarch.com/teachkids/.

#1: mirrored smileys

Create a mashup of the programs ClickAndSmile.py and

ClickKaleidoscope.py to draw a smiley face in four mirrored

corners of the screen when you click, just like the kaleido-

scope program did with spirals. If you’d like an advanced

challenge, draw two of the smiley faces flipped upside down

so that they really look mirrored across the x-axis.

#2: more Ping-Pong calculations

Modify the Ping-Pong calculator so it asks the user for a

number of Ping-Pong balls as input. Have it tell the user

both how tall those Ping-Pong balls would be if stacked on

top of one another and how much that number of Ping-Pong

balls would weigh.

#3: a Better Drawing Program

Change the ArrowDraw.py program to allow the user to

turn the turtle in smaller increments—say 45 degrees

(or even 30 or 15)—to give them finer control of the turtle.

Then, add more key options, like allowing the user to press

the greater-than symbol (>) to make the drawing length

longer, the less-than symbol (<) to shorten the drawing

length, the W key to make the pen wider, and the T key to

make the pen thinner. To make it a great drawing program,

add feedback in the form of drawing a string on the screen

to show the pen width, segment length, and turtle’s direc-

tion after every change.

For a finishing touch, add the ability to click to reposi-

tion the turtle. (Hint: create a function that accepts two

parameters (x, y), lifts the turtle’s pen, moves to (x, y), then

puts the pen back down. Then, pass the name of this func-

tion to turtle.onscreenclick() to complete the app.)

http://www.nostarch.com/teachkids/

8
TIMERS AND ANIMATION:
WHAT WOULD DISNEY DO?

One way that I learned to program in my teens was by

programming short games and animations, and then

changing the code to do something new. I was amazed

that I could immediately see my code make graphics

appear on the screen, and I think you’ll enjoy it as

much as I did.

176 Chapter 8

Games and animations have several things in common. First,

they’re fun! Second, they both involve drawing graphics on the

screen and changing those graphics over time to give the illusion of

motion. We’ve been able to draw graphics from the beginning of this

book, but the Turtle library is too slow to use for a lot of animation

or moving objects. In this chapter, we’re going to install and work

with a new module, Pygame, that lets us draw, animate, and even

create arcade-style games using the skills you’ve picked up so far.

Getting All GUI with Pygame

A graphical user interface (GUI, sometimes pronounced “gooey”)

includes all the buttons, icons, menus, and windows that you see

on your computer screen; it’s how you interact with a computer.

When you drag and drop a file or click an icon to open a program,

you’re enjoying a GUI. In games, when you press keys, move your

mouse, or click, the only reason you can expect anything to happen

(like running, jumping, rotating your view, and so on) is because a

programmer set up the GUI.

Like the Turtle library, Pygame is very visual, perfect for

GUIs for games, animations, and more. It’s portable to just about

every operating system, from Windows to Mac to Linux and beyond,

so the games and programs you create in Pygame can run on pretty

much any computer. Figure 8-1 shows the Pygame website, where

you’ll go to download Pygame.

Figure 8-1: Pygame is free, and so are the tutorials and sample games on
its website.

Timers and Animation: What Would Disney Do? 177

To get started, install the pygame module by downloading the

installer from the Downloads page at http://www.pygame.org/.

For Windows, you’ll probably want to download pygame-1.9.1

.win32-py3.1.msi, but see Appendix B for help if you have any

trouble. For Mac and Linux, the installation is more involved; see

Appendix B or go to http://www.nostarch.com/teachkids/ for

step-by-step instructions.

You can check that Pygame installed with no errors by enter-

ing the following into the Python shell:

>>> import pygame

If you get a regular >>> prompt in response, you know that

Python was able to find the pygame module without error and the

Pygame library is ready to use.

Drawing a Dot with Pygame

Once you have Pygame installed, you can run a short sample pro-

gram to draw a dot on the screen, like the one in Figure 8-2.

Figure 8-2: The ShowDot.py program at work

http://www.pygame.org/
http://www.nostarch.com/teachkids/

178 Chapter 8

Type the following in a new IDLE window or download it from

http://www.nostarch.com/teachkids/:

ShowDot.py

import pygame

u pygame.init()
v screen = pygame.display.set_mode([800,600])

w keep_going = True
x GREEN = (0,255,0) # RGB color triplet for GREEN

radius = 50

y while keep_going:
z for event in pygame.event.get():
{ if event.type == pygame.QUIT:

 keep_going = False
| pygame.draw.circle(screen, GREEN, (100,100), radius)
} pygame.display.update()

~ pygame.quit()

Let’s step through this program line by line. First, we import

the pygame module to gain access to its features. At u, we initialize

Pygame, or set it up for use. The command pygame.init() will need

to be called every time you want to use Pygame, and it always

comes after the import pygame command and before any other

Pygame functions.

At v, pygame.display.set_mode([800,600]) creates a display

window 800 pixels wide by 600 pixels tall. We store it in a vari-

able called screen. In Pygame, windows and graphics are called

surfaces, and the display surface screen is the main window where

all of our other graphics will be drawn.

At w, you might recognize our looping variable, keep_going:

we used this in our HighCard.py and FiveDice.py game loops in

Chapter 6 as a Boolean flag to tell our program to keep playing.

Here in our Pygame example, we use a game loop to continue

drawing the graphics screen until the user closes the window.

At x, we set up two variables, GREEN and radius, for use in

drawing our circle. The GREEN variable is set to the RGB triplet

value (0,255,0), a bright green. (RGB, or Red Green Blue, is one

of many ways to specify a color. To pick a color, you choose three

numbers, each between 0 and 255. The first number determines

http://www.nostarch.com/teachkids/

Timers and Animation: What Would Disney Do? 179

how much red is in your color, the second number is the amount

of green, and the third is blue. We picked 255 as our value for

green and 0 for red and blue, so our RGB color is all green and no

red or blue.) Our variable GREEN is a constant. We sometimes write

constants—variables we don’t intend to change—in all caps. Since

the color should stay the same throughout our program, we’ve used

all caps for GREEN. We set the radius variable equal to 50 pixels, for a

circle 100 pixels in diameter.

The while loop at y is our game loop, and it will keep running

the Pygame window until the user chooses to exit. The for loop

at z is where we handle all the interactive events that the user

can trigger in our program. In this simple example, the only event

we’re checking for is whether the user clicked the red X to close the

window and exit the program {. If so, keep_going gets set to False

and our game loop ends.

At |, we draw a green circle with a radius of 50 on the screen

window at position (100,100): right 100 and down 100 pixels from

the upper-left corner of the window (see “What’s New in Pygame”

on page 180 for more information on how Pygame’s coordinate

system is different from Turtle’s). We’re using pygame.draw, a

Pygame module for drawing shapes like circles, rectangles, and

line segments. We pass four arguments to the pygame.draw.circle()

function: the surface on which we want to draw the circle (screen),

the color for our circle (GREEN), the coordinates of its center point,

and the radius. The update() function at } tells Pygame to refresh

the screen with the drawing changes.

Finally, when the user exits the game loop, the pygame.quit()

command at ~ clears the pygame module (it undoes all the setup

from u) and closes the screen window so that the program can exit

normally.

180 Chapter 8

You should see an image like the one in Figure 8-2 when you

run ShowDot.py. Take some time to play around with this dot

program—create a different RGB color triplet, draw the dot in a

different location on the screen, or draw a second dot. You’ll begin

to see the power and ease of drawing graphics with Pygame, and

you’ll have fun along the way.

This first program contains the foundation that we’ll build

on to create more complex graphics, animation, and, eventually,

games.

What’s New in Pygame

Before we dive deeper into the exciting world of Pygame, it’s worth

noting some important differences between Pygame and our old

friend turtle graphics:

•	 We have a new coordinate system, as shown in Figure 8-3.

Back in turtle graphics, the origin was at the center of the

screen, and y got larger as we went up the screen. Pygame

uses a more common window-oriented coordinate system (we

see this in many other GUI programming languages, includ-

ing Java, C++, and more). The upper-left corner of a window

in Pygame is the origin, (0, 0). The x-coordinate values still

increase as you move to the right (but there are no negative

x-coordinate values, as they would be off the screen to the

left); y-coordinate values increase as you move down (and nega-

tive y-coordinate values would be off the top of the window).

(0, 0)

y

x

10

20

30

40

50

60

70

10 20 30 40 50 60 70

Figure 8-3: Pygame uses a window-oriented
coordinate system.

Timers and Animation: What Would Disney Do? 181

•	 The game loop is always used in Pygame. In our earlier pro-

grams, we used a loop only if we wanted to keep playing or go

back and do something again, but Pygame requires the game

loop to keep updating the screen and handling events (even if

the only event we handle is closing the window).

•	 We handle events in Pygame by calling pygame.event.get() to

fetch a list of events that the user has performed. These events

could be mouse clicks, key presses, or even window events

like the user closing the window. We use a for loop to handle

everything in this list of events from pygame.event.get(). In our

turtle programs, we used callback functions to handle events.

In Pygame, we can still create functions and call them in our

event handler code, but we can process events just using if

statements for those events that we care to listen for.

These differences make Pygame a new way of solving prob-

lems, and that’s what we’re always looking for! The more tools we

have, the more problems we can solve.

The Parts of a Game

In this section, we’ll change our ShowDot.py program to display a

smiley face image instead of a green circle, as shown in Figure 8-4.

Figure 8-4: ShowPic.py draws the image CrazySmile.bmp on the
screen.

182 Chapter 8

As we build our ShowPic.py program, we’ll learn about the

three main parts of a game or animation in Pygame. First, there’s

the setup, where we import modules we need, create our screen,

and initialize some important variables. Then comes the game

loop, which handles events, draws graphics, and updates the dis-

play. This game loop is a while loop that keeps running as long as

the user doesn’t quit the game. Finally, we need a way to end the

program when the user quits the game.

Setting Up

First, download the smiley face image and save it in the same

folder as your Python programs. Go to http://www.nostarch.com/

teachkids/ to find the source code downloads and save the image

CrazySmile.bmp to the folder where you’ve been saving your .py

files. It doesn’t really matter where you keep your .py files; just

make sure to save the BMP (short for bitmap, a common image

file format) image file to the same location.

Next, let’s take care of the setup:

import pygame # Setup
pygame.init()
screen = pygame.display.set_mode([800,600])
keep_going = True

u pic = pygame.image.load("CrazySmile.bmp")

As always, we import the pygame module and then initialize

using the pygame.init() function. Next, we set up our screen to be a

new Pygame window 800×600 pixels in size. We create our Boolean

flag keep_going to control our game loop and set it equal to True.

Finally, we do something new: at u, we use pygame.image.load(),

which loads an image from a file. We create a variable for our

image file and load CrazySmile.bmp, which we’ll refer to as pic in

our program.

Creating a Game Loop

At this point, we haven’t drawn anything, but we’ve set up Pygame

and loaded an image. The game loop is where we’ll actually display

the smiley face image on the screen. It’s also where we’ll handle

events from the user. Let’s start by handling one important event:

the user choosing to quit the game.

http://www.nostarch.com/teachkids/
http://www.nostarch.com/teachkids/

Timers and Animation: What Would Disney Do? 183

while keep_going: # Game loop
 for event in pygame.event.get():

u if event.type == pygame.QUIT:
 keep_going = False

Our game loop will keep running as long as keep_going is True.

Inside the loop, we immediately check for events from the user. In

advanced games, the user can trigger a lot of events at the same

time, like pressing the down arrow on the keyboard while moving

the mouse left and scrolling the mouse wheel.

In this simple program, the only event we’re listening for is

whether the user clicked the close window button to quit the pro-

gram. We check for this at u. If the user triggered the pygame.QUIT

event by trying to close the window, we want to tell our game loop

to exit. We do this by setting keep_going to False.

We still need to draw our picture to the screen and update the

drawing window to make sure everything appears on the screen,

so we’ll add these two final lines to our game loop:

 screen.blit(pic, (100,100))
 pygame.display.update()

The blit() method draws pic, the image that we’ve loaded

from disk (our smiley face), onto our display surface, screen. We’ll

use blit() when we want to copy pixels from one surface (like the

image we loaded from disk) onto another (like the drawing win-

dow). Here, we need to use blit() because the pygame.image.load()

function works differently than the pygame.draw.circle() function we

used earlier to draw our green dot. All pygame.draw functions accept

a surface as an argument, so by

passing screen to pygame.draw

.circle(), we were able to have

pygame.draw.circle() draw to our

display window. But pygame.image

.load() doesn’t take a surface as an

argument; instead, it automatically

creates a new, separate surface

for your image. The image won’t

appear on the original drawing

screen unless you use blit().

184 Chapter 8

In this case, we’ve told blit() that we want to draw pic at the loca-

tion (100,100), or right 100 pixels and down 100 pixels from the

upper-left corner of the screen (in Pygame’s coordinate system, the

origin is the upper-left corner; see Figure 8-3 on page 180).

The final line of our game loop is the call to pygame.display

.update(). This command tells Pygame to show the drawing win-

dow with all the changes that have been made during this pass

through the loop. That includes our smiley face. When update()

runs, the window will be updated to show all the changes to our

screen surface.

So far, we’ve taken care of our setup code, and we have a game

loop with an event handler that listens for the user hitting the

close window button. If the user clicks the close window button, the

program updates the display and exits the loop. Next, we’ll take care

of ending the program.

Exiting the Program

The last section of our code will exit the program once the user has

chosen to quit the game loop:

pygame.quit() # Exit

If you leave this line out of your programs, the display window

will stay open even after the user tries to close it. Calling pygame

.quit() closes the display window and frees up the memory that

was storing our image, pic.

Putting It All Together

Put it all together, and you’ll see our CrazySmile.bmp image file—

as long as you’ve saved the image in the same directory as your

ShowPic.py program file. Here’s the full listing:

ShowPic.py

import pygame # Setup
pygame.init()
screen = pygame.display.set_mode([800,600])
keep_going = True
pic = pygame.image.load("CrazySmile.bmp")

Timers and Animation: What Would Disney Do? 185

while keep_going: # Game loop
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 keep_going = False
 screen.blit(pic, (100,100))
 pygame.display.update()

pygame.quit() # Exit

When you click the close window button, the display window

should close.

This code has all the basic components we’ll build on to make

our programs even more interactive. In the rest of this chapter and

in Chapter 9, we’ll add code to our game loop to respond to differ-

ent events (for example, making images on the screen move when

the user moves the mouse). Now let’s see how to create a program

that draws an animated bouncing ball!

Timing It Just Right: Move and Bounce

We already have the skills needed to create animation, or the illu-

sion of motion, by making one small change to our ShowPic.py

app. Instead of showing the smiley face image at a fixed location

every time through the game loop, what if we change that loca-

tion slightly every frame? By frame, I mean each pass through the

game loop. The term comes from one way people make animations:

they draw thousands of individual pictures, making each picture

slightly different from the one before it. One picture is considered

one frame. The animators then put all the pictures together on

a strip of film and run the film

through a projector. When the pic-

tures are shown one after another

very quickly, it looks like the char-

acters in the pictures are moving.

With a computer, we can cre-

ate the same effect by drawing a

picture on the screen, clearing the

screen, moving the picture slightly,

and then drawing it again. The

effect will look a bit like Figure 8-5.

186 Chapter 8

Figure 8-5: In this first attempt at animation, our
smiley image will streak off the screen.

We still call each drawing a frame, and the speed of our

animation is how many frames per second (fps) we draw. A video

game might run 60–120 frames per second, like high-definition

television. Older, standard-definition TVs in the United States

run at 30 fps, and many film projectors run at 24 fps (newer high-

definition digital projectors can run at 60 fps or higher).

If you’ve ever made or seen a flip-book animation (in which you

draw on the corners of pages in a notebook and then flip through

them to create a mini-cartoon), you’ve seen that the illusion of

motion can be created at many different frame rates. We’ll aim

for a rate around 60 fps, fast enough to create smooth animations.

Moving a Smiley

We can create simple motion in our while loop by drawing the smiley

face image at different locations over time. In other words, in our

game loop, we just need to update the (x, y) location of the picture

and then draw it at that new location each time through the loop.

We’ll add two variables to ShowPic.py: picx and picy, for the

x- and y-coordinates of the image on the screen. We’ll add these

at the end of the setup portion of our program and then save the

Timers and Animation: What Would Disney Do? 187

new version of the program as SmileyMove.py (the final version is

shown on page 190).

import pygame # Setup
pygame.init()

u screen = pygame.display.set_mode([600,600])
keep_going = True
pic = pygame.image.load("CrazySmile.bmp")

v colorkey = pic.get_at((0,0))
w pic.set_colorkey(colorkey)

picx = 0
picy = 0

NOTE The lines at v and w are an optional fix for a minor issue. If the

CrazySmile.bmp image looks like it has square black corners on

your screen, you can include these two lines to make sure those

corners look transparent.

Notice that we’ve also changed our window screen to 600×600

pixels to make the window square at u. The game loop will begin

the same way it did in ShowPic.py, but we’ll add code to change

the picx and picy variables by 1 pixel every time the loop runs:

while keep_going: # Game loop
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 keep_going = False

 picx += 1 # Move the picture
 picy += 1

The += operator adds something to the variable on the left

side (picx and picy), so with += 1, we’ve told the computer we want

to change the x- and y-coordinates of the picture, (picx, picy), by

1 pixel every time through the loop.

Finally, we need to copy the image onto the screen at the new

location, update the display, and tell our program what to do to exit:

 screen.blit(pic, (picx, picy))
 pygame.display.update()
pygame.quit() # Exit

If you run those lines, you’ll see our image take off! In fact,

you’ll have to look fast because it will move right off the screen.

188 Chapter 8

Look back at Figure 8-5 for a glimpse of the smiley image before it

slides out of view.

This first version may leave streaks of pixels on the display even

when the smiley image has left the drawing window. We can make

the animation cleaner by clearing the screen between each frame.

The streaking lines we’re seeing behind our smiley are the upper-

left pixels of the smiley image; every time we move down and over

each frame to draw a new version of our image and update the dis-

play, we’re leaving behind a few stray pixels from the last picture.

We can fix this by adding a screen.fill() command to our

drawing loop. The screen.fill() command takes a color as an argu-

ment, so we need to tell it what color we’d like to use to fill the

drawing screen. Let’s add a variable for BLACK (using all uppercase

for BLACK to show that it’s a constant) and set it equal to black’s

RGB color triplet, (0,0,0). We’ll fill the screen surface with black

pixels, effectively clearing it off, before we draw each new, moved

copy of our animated image.

Add this line to your setup right after picy = 0 to create the

black background fill color:

BLACK = (0,0,0)

And add this line right before the screen.blit() that draws our

pic image on the screen:

 screen.fill(BLACK)

Our smiley face still speeds off the screen, but this time

we’re not leaving a trail of pixels behind our moving image. By

filling the screen with black pixels, we’ve created the effect of

“erasing” the old image from the screen every frame, before we

draw the new image at the new location. This creates the illusion

of smoother animation. On a relatively fast computer, though, our

smiley flies off the screen way too fast. To change this, we need a

new tool: a timer or clock that can keep us at a steady, predictable

rate of frames per second.

Animating a Smiley with

the Clock Class

The final piece to make our SmileyMove.py app behave like an

animation we might see in a game or movie is to limit the number

Timers and Animation: What Would Disney Do? 189

of frames per second our program draws.

Currently, we’re moving the smiley image

only 1 pixel down and 1 pixel to the right

each time through the game loop, but

our computer can draw this simple scene

so fast that it can produce hundreds of

frames per second, causing our smiley to

fly off the screen in an instant.

Smooth animation is possible with

30 to 60 frames of animation per second,

so we don’t need the hundreds of frames

zooming past us every second.

Pygame has a tool that can help us control the speed of our

animation: the Clock class. A class is like a template that can be

used to create objects of a certain type, with functions and values

that help those objects behave in a certain way. Think of a class

as being like a cookie cutter and objects as the cookies: when we

want to create cookies of a certain shape, we build a cookie cutter

that can be reused anytime we want another cookie of the same

shape. In the same way that functions help us package reusable

code together, classes allow us to package data and functions into

a reusable template that we can use to create objects for future

programs.

We can add an object of the Clock class to our program setup

with this line:

timer = pygame.time.Clock()

This creates a variable called timer linked to a Clock object. This

timer will allow us to gently pause each time through the game loop

and wait just long enough to make sure we’re not drawing more

than a certain number of frames per second.

Adding the following line to our game loop will keep the frame

rate at 60 fps by telling our Clock named timer to “tick” just 60 times

per second:

 timer.tick(60)

The following code, SmileyMove.py, shows the whole app put

together. It gives us a smooth, steady animated smiley face slowly

gliding off the lower right of the screen.

190 Chapter 8

SmileyMove.py

import pygame # Setup
pygame.init()
screen = pygame.display.set_mode([600,600])
keep_going = True
pic = pygame.image.load("CrazySmile.bmp")
colorkey = pic.get_at((0,0))
pic.set_colorkey(colorkey)
picx = 0
picy = 0
BLACK = (0,0,0)
timer = pygame.time.Clock() # Timer for animation

while keep_going: # Game loop
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 keep_going = False

 picx += 1 # Move the picture
 picy += 1

 screen.fill(BLACK) # Clear screen
 screen.blit(pic, (picx,picy))
 pygame.display.update()
 timer.tick(60) # Limit to 60 frames per second

pygame.quit() # Exit

The remaining problem is that the smiley still goes all the way

off the screen in a few seconds. That’s not very entertaining. Let’s

change our program to keep the smiley face on the screen, bounc-

ing from corner to corner.

Bouncing a Smiley Off a Wall

We’ve added motion from one frame to the next by changing the

position of the image we were drawing on each pass through our

game loop. We saw how to regulate the speed of that animation

by adding a Clock object and telling it how many times per second

to tick(). In this section, we’ll see how to keep our smiley on the

screen. The effect will look a bit like Figure 8-6, with the smiley

appearing to bounce back and forth between two corners of the

drawing window.

Timers and Animation: What Would Disney Do? 191

Figure 8-6: Our goal is to keep the smiley “bouncing”
between the corners of the screen.

The reason our image ran off the screen before is that we

didn’t set boundaries, or limits, for our animation. Everything we

draw on the screen is virtual—meaning it doesn’t exist in the real

world—so things don’t really bump into one another. If we want

the virtual objects on our screen to interact, we have to create

those interactions with programming logic.

Hitting the Wall

When I say that we want the smiley face to “bounce” off the edge

of the screen, what I mean is that when the smiley comes to the

edge of the screen, we want to change the direction it’s moving so

that it looks like it bounces off the solid edge of the screen. To do

this, we need to test whether the (picx,picy) location of the smiley

has reached the imaginary boundary at the edge of the screen. We

call this logic collision detection because we’re trying to detect, or

notice, when a collision occurs, like the smiley face image “hitting”

the edge of the drawing window.

We know that we can test for conditions using an if statement,

so we could see if our image is touching, or colliding with, the

right side of the screen by checking whether picx is greater than

some value.

192 Chapter 8

Let’s figure out what that value might be. We know our

screen is 600 pixels wide because we created our screen with

pygame.display.set_mode([600,600]). We could use 600 as our bound-

ary, but the smiley face would still go off the edge of the screen

because the coordinate pair (picx,picy) is the location of the top-left

pixel of our smiley face image.

To find our logical boundary—that is, the virtual line that picx

has to reach for our smiley face to look like it has hit the right edge

of the screen window—we need to know how wide our picture is.

Because we know picx is the top-left corner of the image and it con-

tinues to the right, we can just add the width of our picture to picx,

and when that sum equals 600, we’ll know that the right edge of

the image is touching the right edge of the window.

One way to find the width of our image is by looking at the

properties of the file. In Windows, right-click the CrazySmile.bmp

file, select the Properties menu item, and then click the Details

tab. On a Mac, click the CrazySmile.bmp file to select it, press z-I

to get the file info window, and then click More Info. You’ll see the

width and height of the picture, as shown in Figure 8-7.

Figure 8-7: To determine our virtual boundaries so our smiley face
can bounce off them, we need to know the width of our image file.

Timers and Animation: What Would Disney Do? 193

Our CrazySmile.bmp file measures 100 pixels across (and

100 pixels down). So if our screen is currently 600 pixels wide and

the pic image needs 100 pixels to display the full image, our picx

has to stay left of 500 pixels in the x-direction. Figure 8-8 shows

these measurements.

600px

(picx,picy)

100px

Boun
ce!

500px

Figure 8-8: Calculating a bounce against the right side
of the window

But what if we change our image file or want to handle images

of different widths and heights? Fortunately, Pygame has a conve-

nient function in the pygame.image class that our picture variable pic

uses. The function pic.get_width() returns the width in pixels of the

image stored in the pygame.image variable pic. We can use this func-

tion instead of hardcoding our program to handle only an image

that measures 100 pixels wide. Similarly, pic.get_height() gives us

the height in pixels of the image stored in pic.

We can test whether the image

pic is going off the right side of the

screen with a statement like this:

if picx + pic.get_width() > 600:

In other words, if the starting

x-coordinate of the picture, plus

the picture’s width, is greater

than the width of the screen, we’ll

know we’ve gone off the right edge

of the screen, and we can change

the image’s direction of motion.

194 Chapter 8

Changing Direction

“Bouncing” off the edge of the screen means going in the oppo-

site direction after hitting that edge. The direction our image is

moving is controlled by the updates to picx and picy. In our old

SmileyMove.py, we just added 1 pixel to picx and picy every time

through the while loop with these lines:

 picx += 1
 picy += 1

However, these lines kept our image moving right and down

1 pixel every time; there was no “bounce,” or changing direction,

because we never changed the number added to picx and picy.

Those two lines mean we’re guaranteed to move right and down

at a speed of 1 pixel per frame, every frame, even after the smiley

has left the screen.

Instead, we can change the constant value 1 to a variable that

will represent the speed, or number of pixels the image should

move each frame. Speed is the amount of movement in a period of

time. For example, a car that moves a lot in a short time is moving

at a high speed. A snail that barely moves in the same period of

time is moving at a low speed. We can define a variable called speed

in the setup portion of our program for the amount of movement in

pixels that we want for each frame:

speed = 5

Timers and Animation: What Would Disney Do? 195

Then, all we have to do in our game loop is change picx and

picy by this new speed amount (instead of the constant amount 1)

every time through the loop:

 picx += speed
 picy += speed

One pixel per frame seemed a bit too slow at 60 frames per

second in SmileyMove.py, so I’ve increased the speed to 5 to make

it move faster. But we’re still not bouncing off the right edge of the

screen; we just move off the screen quickly again, because the speed

variable doesn’t change when we hit the edge of the screen.

We can solve that final problem by adding our collision detection

logic—that is, our test to see if we’ve hit the imaginary boundary at

the left or right edges of the screen:

 if picx <= 0 or picx + pic.get_width() >= 600:
 speed = -speed

First, we’re checking both the left and right boundaries of the

screen by seeing if picx is trying to draw at a negative x-coordinate

value (off the left of the screen where x < 0) or if picx + pic.get_

width() totals more than the 600-pixel width of the screen (meaning

the picture’s starting x-coordinate plus its width have gone off the

right edge of the screen). If either of these happens, we know we’ve

gone too far and we need to change the direction we’re going in.

Notice the trick we’re using if either of those boundary tests

evaluates to True. By setting speed = -speed, we’re changing the

direction of the movement in our while loop by multiplying speed

by –1, or by making it the negative of itself. Think of it this way:

if we keep looping with speed equal to 5 until our picx plus the

image’s width hits the right edge of the screen at 600 pixels (picx +

pic.get_width() >= 600), setting speed = -speed will change speed from 5

to -5 (negative five). Then, whenever our picx and picy change in the

next pass through the loop, we’ll add -5 to our location. This is the

same as subtracting 5 from picx and picy, or moving left and up on

our screen. If this works, our smiley face will now bounce off the

lower-right corner of the screen and start traveling backward, back

up to (0, 0) at the upper-left corner of the screen.

196 Chapter 8

But that’s not all! Because our if statement is also checking

for the left screen boundary (picx <= 0), when our smiley face looks

like it has hit the left side of the screen, it will change speed to

-speed again. If speed is -5, this will change it to -(-5), or +5. So if

our negative speed variable was causing us to move to the left and

up 5 pixels every frame, once we hit picx <= 0 at the left edge of

the screen, speed = -speed will turn speed back to positive 5, and the

smiley image will start moving to the right and down again, in the

positive x- and y-directions.

Putting It All Together

Try version 1.0 of our app, SmileyBounce1.py, to see the smiley face

bounce from the upper-left corner of the window to the lower-right

corner and back again, never leaving the drawing screen.

SmileyBounce1.py

import pygame # Setup
pygame.init()
screen = pygame.display.set_mode([600,600])
keep_going = True
pic = pygame.image.load("CrazySmile.bmp")
colorkey = pic.get_at((0,0))
pic.set_colorkey(colorkey)
picx = 0
picy = 0
BLACK = (0,0,0)
timer = pygame.time.Clock()
speed = 5

while keep_going: # Game loop
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 keep_going = False
 picx += speed
 picy += speed

 if picx <= 0 or picx + pic.get_width() >= 600:
 speed = -speed

 screen.fill(BLACK)
 screen.blit(pic, (picx,picy))
 pygame.display.update()
 timer.tick(60)

pygame.quit() # Exit

Timers and Animation: What Would Disney Do? 197

With this first version of the program, we have created what

looks like a smoothly animated smiley face bouncing back and

forth between two corners of a square drawing window. We are

able to achieve this effect precisely because the window is a per-

fect square, 600×600 pixels in size, and because we always change

our picx and picy values by the same amount (speed)—our smiley

face travels only on the diagonal line where x = y. By keeping our

image on this simple path, we only have to check whether picx

goes past the boundary values at the left and right edges of the

screen.

What if we want to bounce off all four edges (top, bottom, left,

and right) of the screen, in a window that isn’t a perfect square—

say, 800×600? We’ll need to add some logic to check our picy variable

to see if it passes an upper or lower boundary (the top or bottom of

the screen), and we’ll need to keep track of horizontal and vertical

speed separately. We’ll do that next.

Bouncing a Smiley Off Four Walls

In SmileyBounce1.py, we kept the horizontal (left-right) and ver-

tical (up-down) motion locked so that whenever the image was

moving right, it was also moving down, and when it was moving

left, it was also moving up. This worked well for our square win-

dow because the width and height of the screen were the same.

Let’s build on that example to create a bouncing animation that

rebounds realistically off all four sides of the drawing window.

We’ll make the window 800×600 pixels in size with screen =

pygame.display.set_mode([800,600]) to make the animation more

interesting.

Horizontal and Vertical Speed

First, let’s separate the horizontal and vertical components of the

speed. In other words, let’s create one speed variable, speedx, for

the horizontal speed (how fast the image is moving to the right or

left), and another speed variable, speedy, for the vertical speed (how

fast the image is moving down or up). We can accomplish this by

changing the speed = 5 entry in the setup section of our app to ini-

tialize a speedx and speedy as follows:

speedx = 5
speedy = 5

198 Chapter 8

We can then modify our image position updates in the

game loop:

 picx += speedx
 picy += speedy

We change picx (the horizontal or x-position) by speedx (the

horizontal speed) and picy (the vertical or y-position) by speedy (the

vertical speed).

Hitting Four Walls

The last part to figure out is the boundary collision detection for

each of the four edges of the screen (top and bottom in addition to

right and left). First, let’s modify the left and right boundaries to

match the new screen size (800 pixels wide) and to use the new

horizontal speed speedx:

 if picx <= 0 or picx + pic.get_width() >= 800:
 speedx = -speedx

Notice that our left-edge-boundary case remains the same

at picx <= 0, because 0 is still the left boundary value when picx is at

the left of the screen. This time, though, our right-edge-boundary

case has changed to picx + pic.get_width() >= 800, because our screen

is now 800 pixels wide, and our image still starts at picx and then

draws its full width to the right. So when picx + pic.get_width()

equals 800, our smiley face looks like it is touching the right side of

the drawing window.

We slightly changed the action that our left and right boundar-

ies trigger, from speed = -speed to speedx = -speedx. We now have two

components of our speed, and speedx will control the left and right

directions and speeds (negative

values of speedx will move the

smiley face left; positive values

will move it right). So when the

smiley hits the right edge of the

screen, we turn speedx negative to

make the image go back toward

the left, and when it hits the

left edge of the screen, we turn

speedx back to a positive value to

rebound the image to the right.

Timers and Animation: What Would Disney Do? 199

Let’s do the same thing with picy:

 if picy <= 0 or picy + pic.get_height() >= 600:
 speedy = -speedy

To test whether our smiley has hit the top edge of the screen,

we use picy <= 0, which is similar to picx <= 0 for the left edge. To

figure out whether our smiley has hit the bottom edge of the screen,

we need to know both the height of the drawing window (600 pixels)

and the height of the image (pic.get_height()), and we need to see if

the top of our image, picy, plus the image’s height, pic.get_height(),

totals more than the height of our screen, 600 pixels.

If picy goes outside these top and bottom boundaries, we need

to change the direction of the vertical speed (speedy = -speedy). This

makes the smiley face look like it’s bouncing off the bottom edge of

the window and heading back up, or bouncing off the top and head-

ing back down.

Putting It All Together

When we put the whole program together in SmileyBounce2.py, we

get a convincing bouncing ball that is able to rebound off all four

edges of the screen for as long as we run the app.

SmileyBounce2.py

import pygame # Setup
pygame.init()
screen = pygame.display.set_mode([800,600])
keep_going = True
pic = pygame.image.load("CrazySmile.bmp")
colorkey = pic.get_at((0,0))
pic.set_colorkey(colorkey)
picx = 0
picy = 0
BLACK = (0,0,0)
timer = pygame.time.Clock()
speedx = 5
speedy = 5

while keep_going: # Game loop
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 keep_going = False

200 Chapter 8

 picx += speedx
 picy += speedy

 if picx <= 0 or picx + pic.get_width() >= 800:
 speedx = -speedx
 if picy <= 0 or picy + pic.get_height() >= 600:
 speedy = -speedy

 screen.fill(BLACK)
 screen.blit(pic, (picx, picy))
 pygame.display.update()
 timer.tick(60)

pygame.quit() # Exit

The rebounds look realistic. If the smiley is coming toward the

bottom edge at a 45-degree angle down and to the right, it bounces

off at a 45-degree angle up and to the right. You can experiment

with different values of speedx and speedy (say, 3 and 5, or 7 and 4) to

see the angles change for every bounce.

Just for fun, you can comment out the line screen.fill(BLACK) in

SmileyBounce2.py to see the path traveled by our smiley face as it

bounces off each edge of the screen. When you comment out a line,

you turn it into a comment by putting a hash mark at the begin-

ning, as follows:

 # screen.fill(BLACK)

This tells the program to ignore the instruction on that line.

Now the screen is not erased after each smiley face is drawn, and

you’ll see a pattern created by the trail your animation is leaving

behind, like in Figure 8-9. Because each new smiley is drawn over

the previous one, the result looks like cool, retro 3-D screensaver

artwork as it draws.

Our collision-detection logic has allowed us to create the illusion

of a solid smiley face bouncing off all four edges of a solid drawing

screen. This is an improvement over our original version, which

let the smiley slide off into oblivion. When we create games that

allow the user to interact with pieces on the screen, and that allow

those pieces to look as if they’re interacting with one another—like

in Tetris, for example—we’re using the same kind of collision detec-

tion and boundary checking that we built here.

Timers and Animation: What Would Disney Do? 201

Figure 8-9: If we comment out the line that clears our screen after each
frame, our smiley face leaves a bouncing trail behind in a cool pattern.

What You Learned

In this chapter, you learned how to create the illusion of motion,

what we call animation, by drawing images in different locations

on the screen over time. We saw how the Pygame module can make

programming a game or animation much quicker, since it has hun-

dreds of functions that can make almost everything in a game app

easier, from drawing images to creating timer-based animation—

even checking for collisions. We installed Pygame on our computer

so we could use its features to create fun apps of our own.

You learned about the structure of a game or app that we might

build in Pygame, with a setup section; a game loop that handles

events, updates and draws graphics, and then updates the display;

and finally an exit section.

We started our Pygame programming by drawing a simple

green dot on the screen at a chosen location, but we quickly moved

on to drawing a picture from an image file on disk, saved in the

same folder as our program, to our display screen. You learned

202 Chapter 8

that Pygame has a different coordinate system from the Turtle

library, with the origin (0, 0) in the upper-left corner of the screen

and positive y-coordinate values as we move down.

You learned how to create animation by drawing objects on

the screen, clearing the screen, and then drawing the objects in

a slightly different location. We saw that the pygame.time.Clock()

object could make our animations steadier by limiting the num-

ber of times our animation draws each second, which is called the

frames per second, or fps.

We built our own collision detection to check for objects “hit-

ting” the edge of the screen, and then we added the logic to make

objects look like they’re bouncing back by changing the direction

of their speed or velocity variables (by multiplying them by −1).

Programming the cool apps in this chapter has given us the

skills to do the following:

•	 Install and use the pygame module in our own Python programs.

•	 Explain the structure of a Pygame app, including the setup,

game loop, and exit.

•	 Build a game loop that handles events, updates and draws

graphics, and updates the display.

•	 Draw shapes to the screen using pygame.draw functions.

•	 Load images from disk with pygame.image.load().

•	 Draw images and objects to the screen with the blit() function.

•	 Create animations by drawing objects to the screen repeatedly

in different locations.

•	 Make animations smooth, clean, and predictable using a

pygame.time.Clock() timer’s tick() function to limit the number

of frames per second in our animations.

•	 Check for collision detection by building the if logic to check

for boundary cases, like a graphic hitting the edge of the

screen.

•	 Control the horizontal and vertical speeds of moving objects on

the screen by changing the amount of movement in the x- and

y-directions from one frame to the next.

Timers and Animation: What Would Disney Do? 203

Programming Challenges

Here are three challenge problems to extend the skills you

developed in this chapter. For sample answers, go to http://

www.nostarch.com/teachkids/.

#1: A Color-Changing Dot

Let’s explore RGB color triplets further. We worked

with some RGB colors in this chapter; remember, green

was (0,255,0), black was (0,0,0), and so on. At http://

colorschemer.com/online/, enter different red, green, and

blue values from 0 to 255 to see the colors you can create by

combining different amounts of red, green, and blue light

from your screen’s pixels. Start by choosing your own color

triplet to use in the ShowDot.py program. Then modify the

program to draw the dot larger or smaller and at differ-

ent locations on the screen. Finally, try creating a random

RGB color triplet using random.randint(0,255) for each of the

three color components (remember to import random at the top

of your program) so that the dot changes colors every time it

draws on the screen. The effect will be a color-changing dot.

Call your new creation DiscoDot.py.

#2: 100 Random Dots

As a second challenge, let’s replace the single dot with

100 dots in random colors, sizes, and locations. To do this,

let’s set up three arrays capable of storing 100 values each

for the colors, locations, and sizes:

Colors, locations, sizes arrays for 100 random dots
colors = [0]*100
locations = [0]*100
sizes = [0]*100

Then, fill those three arrays with random color triplets,

location pairs, and size/radius values for 100 random dots:

import random
Store random values in colors, locations, sizes

continued

204 Chapter 8

for n in range(100):
 colors[n] = (random.randint(0,255),random.randint(0,255),
 random.randint(0,255))
 locations[n] = (random.randint(0,800),
 random.randint(0,600))
 sizes[n] = random.randint(10, 100)

Finally, instead of drawing one dot in our while loop, add

a for loop to draw the 100 random dots by using the colors,

locations, and sizes arrays:

 for n in range(100):
 pygame.draw.circle(screen, colors[n], locations[n],
 sizes[n])

Call your new creation RandomDots.py. The final app

should look something like Figure 8-9 when complete.

Figure 8-9: An advanced version of our dot program, RandomDots.py,
gives us 100 dots of random color, location, and size.

Timers and Animation: What Would Disney Do? 205

#3: Raining Dots

Finally, let’s take RandomDots.py one step further by pro-

gramming the dots to “rain” off the bottom and right sides

of the screen and reappear along the top and left. You’ve

learned in this chapter that we create animation by chang-

ing the location of an object over time. We have the location

of each dot in an array called locations, so if we change each

dot’s x- and y-coordinates, we can animate our dots. Change

the for loop from RandomDots.py to calculate a new x- and

y-coordinates for each dot based on the previous value,

like this:

 for n in range(100):
 pygame.draw.circle(screen, colors[n], locations[n],
 sizes[n])
 new_x = locations[n][0] + 1
 new_y = locations[n][1] + 1
 locations[n] = (new_x, new_y)

This change calculates new x- and y-coordinates (new_x

and new_y) for each dot every pass through the game loop,

but it lets the dots fall off the right and bottom edges of the

screen. Let’s fix this by checking whether each dot’s new_x or

new_y is beyond the right or bottom edges of the screen and,

if so, move the dot back up or back to the left before we store

the new location:

 if new_x > 800:
 new_x -= 800
 if new_y > 600:
 new_y -= 600
 locations[n] = (new_x, new_y)

The combined effect of these changes will be a steady

flow of random dots “raining” down and to the right, disap-

pearing off the bottom right of the screen and popping back

up on the top or left edge. Four frames in this sequence are

shown in Figure 8-10; you can follow groups of dots as they

move down and to the right across the three images.

Save your new app as RainingDots.py.

continued

206 Chapter 8

Figure 8-10: Four frames showing 100 random dots as they move
right and down across the screen

9
User InteractIon:
Get Into the Game

In Chapter 8, we used some of the Pygame library’s

features to draw shapes and images on the screen.

We were also able to create animation by drawing

shapes in different locations over time. Unfortunately,

we weren’t able to interact with our animated objects

like we might in a game; we expect to be able to click,

drag, move, hit, or pop objects on the screen to affect

or control the elements of a game while it runs.

208 Chapter 9

Interactive programs give us this sense of control in an app or

game, because we can move or interact with a character or other

object in the program. That’s exactly what you’ll learn to do in

this chapter: we’ll use Pygame’s ability to handle user interaction

from the mouse to make our programs more interactive and more

engaging for the user.

adding Interaction: click and Drag

Let’s add user interaction by developing two programs that will

allow the user to draw interactively on the screen. First, we’ll build

on our Pygame foundation to handle events like mouse-button clicks

and to enable the user to draw dots on the screen. Then, we’ll add

logic to handle mouse-button presses and releases separately and

let the user drag the mouse with the button pressed to draw, like

in a paint program.

clicking for Dots

We’ll build our ClickDots.py program using the same steps as

in ShowPic.py (page 184) with a setup, a game loop, and an exit.

Pay extra attention to the event-handling portion of the game loop,

since that’s where we’ll add the if statement that will process

mouse clicks.

setup

Here are our first few lines of setup. Start a new file and save it as

ClickDots.py (the final program is shown on page 210).

import pygame # Setup
pygame.init()
screen = pygame.display.set_mode([800,600])
pygame.display.set_caption("Click to draw")

Our setup begins with import pygame and pygame.init() as usual,

and then we create a screen object as our drawing window display.

This time, though, we’ve added a title, or caption, to the window

with pygame.display.set_caption(). This lets the user know what

the program is. The argument we pass to set_caption() is a string

of text that will appear on the title bar of the window, as shown at

the top of Figure 9-1.

User Interaction: Get into the Game 209

Figure 9-1: The title bar at the top of ClickDots.py tells the user,
“Click to draw.”

The rest of our setup creates our game loop variable, keep_going;

sets a color constant (we’ll draw in red for this program); and creates

a radius for our drawing dots:

keep_going = True
RED = (255,0,0) # RGB color triplet for RED
radius = 15

Now let’s move on to our game loop.

Game Loop: handling mouse clicks

In our game loop, we need to tell the program when to quit and

how to handle mouse-button presses:

while keep_going: # Game loop
 for event in pygame.event.get(): # Handling events

u if event.type == pygame.QUIT:
 keep_going = False

v if event.type == pygame.MOUSEBUTTONDOWN:
w spot = event.pos
x pygame.draw.circle(screen, RED, spot, radius)

210 Chapter 9

At u, we handle the pygame.QUIT event by setting our loop vari-

able keep_going to False.

The second if statement, at v, handles a new event type: the

pygame.MOUSEBUTTONDOWN event that tells us that the user has pressed

one of the mouse buttons. Whenever the user presses a mouse but-

ton, this event will appear in the list of events that our program

gets from pygame.event.get(), and we can use an if statement both

to check for the event and to tell the program what to do when the

event occurs. At w, we create a variable called spot to hold the x-

and y-coordinates of the mouse’s position. We can get the location

of the mouse-click event with event.pos; event is the current event in

our for loop. Our if statement has just verified that this particular

event is of type pygame.MOUSEBUTTONDOWN, and mouse events have a pos

attribute (in this case, event.pos) that stores the (x, y) coordinate

pair telling us where the mouse event occurred.

Once we know the location

on the screen where the user clicked

the mouse button, at x we tell the

program to draw a filled circle on

the screen surface, in the RED color

from our setup, at the location spot,

with the radius of 15 we specified in

our setup.

Putting It all together

The only thing left to do is update the display and tell our pro-

gram what to do when it’s time to exit. Here’s the full program for

ClickDots.py.

ClickDots.py

import pygame # Setup
pygame.init()
screen = pygame.display.set_mode([800,600])
pygame.display.set_caption("Click to draw")
keep_going = True
RED = (255,0,0) # RGB color triplet for RED
radius = 15

while keep_going: # Game loop
 for event in pygame.event.get(): # Handling events
 if event.type == pygame.QUIT:
 keep_going = False

User Interaction: Get into the Game 211

 if event.type == pygame.MOUSEBUTTONDOWN:
 spot = event.pos
 pygame.draw.circle(screen, RED, spot, radius)
 pygame.display.update() # Update display

pygame.quit() # Exit

This program is short but enables the user to draw pictures

one dot at a time, as shown back in Figure 9-1. If we want to draw

continuously as we drag the mouse with the button pressed, we just

need to handle one more type of mouse event, pygame.MOUSEBUTTONUP.

Let’s give that a try.

Dragging to Paint

Now let’s create a more natural drawing program, DragDots.py,

that lets the user click and drag to draw smoothly, as with a paint-

brush. We’ll get a smooth, interactive drawing app, as shown in

Figure 9-2.

Figure 9-2: Our DragDots.py program is a fun way to paint!

To create this effect, we need to change the logic of our pro-

gram. In ClickDots.py, we handled MOUSEBUTTONDOWN events by just

drawing a circle at the location of the mouse button click event. To

draw continuously, we need to recognize both the MOUSEBUTTONDOWN

212 Chapter 9

and MOUSEBUTTONUP events; in other words, we want to separate

mouse button clicks into presses and releases so that we know

when the mouse is being dragged (with the button down) versus

just being moved with the button up.

One way to accomplish this is with another Boolean flag vari-

able. We can set a Boolean called mousedown to True whenever the

user presses the mouse button and to False whenever the user

releases the mouse button. In our game loop, if the mouse but-

ton is down (in other words, when mousedown is True), we can get

the mouse’s location and draw a circle on the screen. If the pro-

gram is fast enough, the drawing should be smooth like in a

paintbrush app.

setup

Make the setup section of your code look like this:

import pygame # Setup
pygame.init()
screen = pygame.display.set_mode([800,600])

u pygame.display.set_caption("Click and drag to draw")
keep_going = True

v YELLOW = (255,255,0) # RGB color triplet for YELLOW
radius = 15

w mousedown = False

The setup portion of our app looks like ClickDots.py, except for

the different window caption u, the YELLOW color we’ll be drawing

with v, and the very last line w. The Boolean variable mousedown

will be our flag variable to signal to the program that the mouse

button is down, or pressed.

User Interaction: Get into the Game 213

Next, we’ll add event handlers to our game loop. These event

handlers will set mousedown to True if the user is holding down the

mouse and False if not.

Game Loop: handling mouse Presses and releases

Make your game loop look like this:

while keep_going: # Game loop
 for event in pygame.event.get(): # Handling events
 if event.type == pygame.QUIT:
 keep_going = False

u if event.type == pygame.MOUSEBUTTONDOWN:
v mousedown = True
w if event.type == pygame.MOUSEBUTTONUP:
x mousedown = False
y if mousedown: # Draw/update graphics
z spot = pygame.mouse.get_pos()
{ pygame.draw.circle(screen, YELLOW, spot, radius)
| pygame.display.update() # Update display

The game loop starts just like our other Pygame apps, but

at u, when we check to see whether the user has pressed one of

the mouse buttons, instead of drawing immediately, we set our

mousedown variable to True v. This will be the signal our program

needs to begin drawing.

The next if statement at w checks whether the user has

released the mouse button. If so, the line at x changes mousedown

back to False. This will let our game loop know to stop drawing

whenever the mouse button is up.

At y, our for loop is over (as we can see by the indentation),

and our game loop continues by checking whether the mouse button

is currently pressed (that is, if mousedown is True). If the mouse button

is down, the mouse is currently being dragged, so we want to allow

the user to draw on the screen.

At z, we get the current location of the mouse directly, with

spot = pygame.mouse.get_pos(), rather than pulling the position of the

last click, because we want to draw wherever the user is dragging

the mouse, not just at the location where they first pressed the but-

ton. At {, we draw the current circle on the screen surface, in the

color specified by YELLOW, at the (x, y) location spot where the mouse

is currently being dragged, with the radius of 15 that we specified

in the setup section of our code. Finally, we finish the game loop

at | by updating the display window with pygame.display.update().

214 Chapter 9

Putting It all together

The last step is to end the program with pygame.quit() as usual.

Here’s the full program.

DragDots.py

import pygame # Setup
pygame.init()
screen = pygame.display.set_mode([800,600])
pygame.display.set_caption("Click and drag to draw")
keep_going = True
YELLOW = (255,255,0) # RGB color triplet for YELLOW
radius = 15
mousedown = False

while keep_going: # Game loop
 for event in pygame.event.get(): # Handling events
 if event.type == pygame.QUIT:
 keep_going = False
 if event.type == pygame.MOUSEBUTTONDOWN:
 mousedown = True
 if event.type == pygame.MOUSEBUTTONUP:
 mousedown = False
 if mousedown: # Draw/update graphics
 spot = pygame.mouse.get_pos()
 pygame.draw.circle(screen, YELLOW, spot, radius)
 pygame.display.update() # Update display

pygame.quit() # Exit

The DragDots.py app is so fast and responsive that it almost

feels like we’re painting with a continuous brush instead of a series

of dots; we have to drag the mouse pretty quickly to see the dots

drawn separately. Pygame allows us to build much faster and more

fluid games and animation than the turtle graphics we drew in

previous chapters.

Even though the for loop handles every event during every

pass through the while loop that keeps our app open, Pygame

is efficient enough to do this dozens or even hundreds of times

per second. This gives the illusion of instantaneous motion and

reaction to our every movement and command—an important

consideration as we build animations and interactive games.

Pygame is up to the challenge and is the right toolkit for our

graphics-intensive needs.

User Interaction: Get into the Game 215

advanced Interaction: smiley explosion

One fun animation that my students and my sons enjoy building is

a scaled-up version of SmileyBounce2.py called SmileyExplosion.py.

It takes the bouncing smiley to a fun new level by allowing the

user to click and drag to create hundreds of bouncing smiley faces

of random sizes that travel in random directions at random speeds.

The effect looks like Figure 9-3. We’ll build this program step by

step; the final version is on page 222.

Figure 9-3: Our next app looks like an explosion of smiley face
balloons bouncing all over the screen.

As you can see, we will have dozens to hundreds of smiley

balloons bouncing all over the screen at any given time, so we’re

going to need to draw graphics quickly and smoothly for hun-

dreds of objects per frame. To achieve this, we’re going to add one

more tool to our toolkit: sprite graphics.

smiley sprites

The term sprite goes back to the early days of video games. Moving

graphical objects on the screen were called sprites because they

floated over the background, like the imaginary fairy sprites they

were named after. These light, fast sprite graphics enabled the

quick, smooth animation that made video games so popular.

216 Chapter 9

Pygame includes support for sprite graphics through its pygame

.sprite.Sprite class. Remember from Chapter 8 that a class is like

a template that can be used to create reusable objects, each with

its own full set of functions and properties. In SmileyMove.py on

page 190, we used the Clock

class, along with its tick()

method, to make our animations

smooth and predictable. In the

smiley explosion app, we’ll use a

few handy Pygame classes, and

we’ll build a class of our own to

keep track of each individual smi-

ley face as it moves around the

screen.

more on classes and objects

In Chapter 8 you learned that classes are like cookie cutters, and

objects are like the cookies we create using a particular cookie

cutter. Whenever we need several items with similar functions and

characteristics (like moving smiley face images with various sizes

and locations), and especially when we need each item to contain

different information (like the size, location, and speed of each

smiley), a class can provide the template to create as many objects

of that type as we need. We say that objects are instances of a par-

ticular class.

The Pygame library has dozens of reusable classes, and each

class has its own methods (what we call a class’s functions) and

attributes or data, the variables and values stored in each object.

In the Clock class in Chapter 8, the tick() method was our func-

tion for making animation happen at a certain frame rate. For the

floating smiley Sprite objects in this app, the attributes we care

about are each smiley’s location on the screen, its size, and the

speed it’s moving in the x- and y-directions, so we’ll create a Smiley

class with those attributes. We can create our own classes when-

ever we need a reusable template.

Breaking a problem or program down into objects, and then

building classes that create those objects, is the foundation of

object-oriented programming. Object-oriented programming is a

way of solving problems using objects. It is one of the most popular

approaches used in software development, and one reason for that

popularity is the concept of code reuse. Reusability means that

User Interaction: Get into the Game 217

once we write a useful class for one programming project, we can

often reuse that class in another program instead of starting from

scratch. For example, a game company can write a Card class to

represent the cards in a standard deck. Then, every time the com-

pany programs a new game—like Blackjack, War, Poker, Go Fish,

and so on—it can reuse that Card class, saving time and money by

using the same code in future apps.

The Sprite class in Pygame is a great example. The Pygame

team wrote the Sprite class to contain many of the features we

need when we program a game object, from a running character

to a spaceship to a floating smiley face. By using the Sprite class,

programmers like us no longer need to write all the basic code to

draw an object on the screen, detect when objects collide with one

another, and so on. The Sprite class handles many of those func-

tions for us, and we can focus on building the unique qualities of

our app on top of that foundation.

Another handy Pygame class we’ll use is the Group class. Group

is a container class that lets us store Sprite objects together as a

group. The Group class helps us keep all our sprites together in one

place (accessible through a single Group object), and that’s impor-

tant when we have dozens or possibly hundreds of sprites floating

around the screen. The Group class also has convenient methods

for updating all the sprites in a group (such as moving the Sprite

objects to each of their new locations each frame), adding new

Sprite objects, removing Sprite objects from the Group, and so on.

Let’s see how we can use these classes to build our smiley explo-

sion app.

Using classes to Build our app

We’re going to create Sprite objects for our smiley face balloons that

take advantage of the Sprite class’s properties to produce quick ani-

mation around the screen, even when hundreds of sprites are being

moved in the same frame. I mentioned that Pygame also has sup-

port for groups of sprites that can all be drawn and handled as a

collection; this group of sprites will be of type pygame.sprite.Group().

Let’s look at the setup section of our app:

import pygame
import random

BLACK = (0,0,0)
pygame.init()

218 Chapter 9

screen = pygame.display.set_mode([800,600])
pygame.display.set_caption("Smiley Explosion")
mousedown = False
keep_going = True
clock = pygame.time.Clock()
pic = pygame.image.load("CrazySmile.bmp")
colorkey = pic.get_at((0,0))
pic.set_colorkey(colorkey)

u sprite_list = pygame.sprite.Group()

The setup looks like SmileyBounce2.py, but we’re adding a

variable called sprite_list at u that will contain our group of

smiley face sprites. Storing the sprites in a Group will make it

faster and easier to do things like draw all the smileys on the

screen every frame, move all the smileys for each step of the ani-

mation, and even check to see if the smiley sprites are colliding

with objects or with one another.

To create sprite objects for complex animations and games,

we will create our own Sprite class that extends, or builds on,

Pygame’s Sprite class, adding the variables and functions that we

want for our custom sprites. We’ll name our sprite class Smiley,

and we’ll add variables for the position of each smiley (pos), its

x- and y-velocity (xvel and yvel; remember velocity is another word

for speed), and its scale, or how big each smiley will be (scale):

class Smiley(pygame.sprite.Sprite):
 pos = (0,0)
 xvel = 1
 yvel = 1
 scale = 100

Our Smiley class definition starts with the keyword class,

followed by the name we want for our class, plus the type we’re

extending (pygame.sprite.Sprite).

setting Up sprites

The next step after starting our Smiley class and listing the data

variables that we’d like each smiley sprite object to remember is

called initialization, sometimes also referred to as the constructor

for our class. This will be a special function that is called every

time a new object of our Smiley class is created, or constructed, in

our program. Just like initializing a variable gives it a starting

value, the initialization function, __init__(), in our Smiley class will

User Interaction: Get into the Game 219

set up all the starting values we

need in our sprite object. The

two underscores on either side

of the __init__() function name

have special meaning in Python.

In this case, __init__() is the spe-

cial function name that is used to

initialize a class. We tell Python

how each Smiley object should be

initialized in this function, and

every time we create a Smiley,

this special __init__() function

does its job behind the scenes,

setting up variables and more

for each Smiley object.

There are a number of items we need to set up in our __init__()

function. First, we’ll determine what parameters we need to pass

to our __init__() function. For our random smiley faces, we might

pass in a position and the starting x- and y-velocities. Because

our Smiley is a class and all our smiley face sprites will be objects

of the Smiley type, the first parameter in all the functions in the

class will be the smiley sprite object itself. We label this parameter

self, because it connects __init__() and the other functions to the

object’s own data. Look at the code for our __init__() function:

 def __init__(self, pos, xvel, yvel):
u pygame.sprite.Sprite.__init__(self)
v self.image = pic

 self.rect = self.image.get_rect()
w self.pos = pos
x self.rect.x = pos[0] - self.scale/2

 self.rect.y = pos[1] - self.scale/2
y self.xvel = xvel

 self.yvel = yvel

The four parameters for our __init__() function are the object

itself, self; the position where we want the smiley to appear, pos;

and xvel and yvel, its horizontal and vertical speed values. Next,

at u, we call the initialization function for the main Sprite class

so that our object can take advantage of the properties of sprite

220 Chapter 9

graphics without coding them from scratch. At v, we set the image

of the sprite object (self.image) to the pic graphic that we loaded

from disk (CrazySmile.bmp—you’ll need to make sure that file

is still in the same folder as this new program), and we get the

dimensions of the rectangle that contains the 100×100 picture.

At w, the statement self.pos = pos stores the position that

was passed into the __init__() function in the object’s own pos

variable. Then, at x, we set the x- and y-coordinates of the

sprite’s drawing rectangle to the x- and y-coordinates stored in

pos, shifted by half the size of the image (self.scale/2) so that

the smiley is centered on the spot the user clicked with the

mouse. Finally, we store the x- and y-velocities that were passed

to the __init__() function in the object’s xvel and yvel variables

(self.xvel and self.yvel) at y.

This __init__() constructor function will set up everything

we need for drawing each smiley face on the screen, but it doesn’t

handle the animation needed to move our sprites around the screen.

For that, we’ll add another handy function for our sprites, update().

Updating sprites

Sprites are built for animation, and we’ve learned that animation

means updating the location of a graphic each frame (each time

we pass through the game loop). Pygame sprites have an update()

function built in, and we can override, or customize, this function

to program the behavior that we want from our custom sprites.

Our update() function is pretty simple; the only updates to our

bouncing smiley sprites for each frame are changing the position

of each sprite according to its speed and checking to see whether it

has collided with the edge of the screen:

 def update(self):
 self.rect.x += self.xvel
 self.rect.y += self.yvel
 if self.rect.x <= 0 or self.rect.x > screen.get_width() - self.scale:
 self.xvel = -self.xvel
 if self.rect.y <= 0 or self.rect.y > screen.get_height() - self.scale:
 self.yvel = -self.yvel

User Interaction: Get into the Game 221

The update() function takes one parameter—the sprite object

itself, self—and the code for moving the sprite looks a lot like our

animation code from SmileyBounce2.py. The only real difference

is that we refer to the sprite’s (x, y) location with self.rect.x and

self.rect.y, and the x- and y-velocities as self.xvel and self.yvel.

Our collision detections for the boundaries of the screen also make

use of screen.get_width() and screen.get_height() so they can func-

tion for any size window.

Bigger and smaller smileys

The last feature we’ll add to this first version of the app is

changing the scale, or size, of the image. We’ll make this modi-

fication to our __init__() function right after setting self.image

to pic. First, we’ll change our object’s scale variable to a random

number between 10 and 100 (for a finished smiley sprite that

measures between 10×10 and 100×100 pixels in size). We’ll apply

this change in scale, also known as a transformation, by using

the pygame.transform.scale() function, as follows:

 self.scale = random.randrange(10,100)
 self.image = pygame.transform.scale(self.image, (self.scale,self.scale))

Pygame’s transform.scale() function takes an image (our

self.image of the smiley graphic) and the new dimensions (our

new random self.scale value as the width and height of the trans-

formed image), and it returns the scaled (up or down, bigger or

smaller) image, which we’re storing as the new self.image.

With this last change, we should now be able to use our Smiley

sprite class to draw smiley faces of random sizes and speeds all

over our screen with drawing code similar to our DragDots.py

drawing app, plus a few changes.

222 Chapter 9

Putting It all together

Here’s our full SmileyExplosion.py app:

SmileyExplosion.py

import pygame
import random

BLACK = (0,0,0)
pygame.init()
screen = pygame.display.set_mode([800,600])
pygame.display.set_caption("Smiley Explosion")
mousedown = False
keep_going = True
clock = pygame.time.Clock()
pic = pygame.image.load("CrazySmile.bmp")
colorkey = pic.get_at((0,0))
pic.set_colorkey(colorkey)
sprite_list = pygame.sprite.Group()

class Smiley(pygame.sprite.Sprite):
 pos = (0,0)
 xvel = 1
 yvel = 1
 scale = 100

 def __init__(self, pos, xvel, yvel):
 pygame.sprite.Sprite.__init__(self)
 self.image = pic
 self.scale = random.randrange(10,100)
 self.image = pygame.transform.scale(self.image, (self.scale,self.scale))
 self.rect = self.image.get_rect()
 self.pos = pos
 self.rect.x = pos[0] - self.scale/2
 self.rect.y = pos[1] - self.scale/2
 self.xvel = xvel
 self.yvel = yvel

 def update(self):
 self.rect.x += self.xvel
 self.rect.y += self.yvel
 if self.rect.x <= 0 or self.rect.x > screen.get_width() - self.scale:
 self.xvel = -self.xvel
 if self.rect.y <= 0 or self.rect.y > screen.get_height() - self.scale:
 self.yvel = -self.yvel

User Interaction: Get into the Game 223

while keep_going:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 keep_going = False
 if event.type == pygame.MOUSEBUTTONDOWN:
 mousedown = True
 if event.type == pygame.MOUSEBUTTONUP:
 mousedown = False
 screen.fill(BLACK)

u sprite_list.update()
v sprite_list.draw(screen)

 clock.tick(60)
 pygame.display.update()
 if mousedown:
 speedx = random.randint(-5, 5)
 speedy = random.randint(-5, 5)

w newSmiley = Smiley(pygame.mouse.get_pos(),speedx,speedy)
x sprite_list.add(newSmiley)

pygame.quit()

The code for the game loop in SmileyExplosion.py is similar to

our drawing app DragDots.py, with a few notable changes. At u,

we’re calling the update() function on the list of smiley sprites

stored in sprite_list; this single line will call the update func-

tion to move every smiley face on the screen and check for edge

bounces. Similarly, the code at v will draw every smiley face on

the screen in its proper location. It takes only two lines of code to

animate and draw potentially hundreds of sprites—that’s a huge

time savings, and it’s just part of the power of sprite graphics in

Pygame.

In our mousedown drawing code, we generate a random speedx

and speedy for the horizontal and vertical speed of each new smiley

face, and at w, we create a new smiley face, newSmiley, by call-

ing the constructor for our class Smiley. Notice that we don’t have

to use the function name __init__(); rather, we use the name of

the class, Smiley, whenever we’re constructing or creating a new

object of the Smiley class or type. We pass the constructor func-

tion the position of the mouse, along with the random speed we

just created. Finally, at x, we take our newly created smiley face

sprite, newSmiley, and add it to our Group of sprites called sprite_list.

We’ve just created a fast, fluid, interactive animation for dozens

or even hundreds of smiley face sprite graphics, floating around the

screen like balloons of various sizes, traveling at random speeds

224 Chapter 9

in every direction. In the final upgrade to this app, we’ll see an

even more impressive and powerful feature of sprite graphics that

handles detecting collisions.

smileyPop, Version 1.0

For our closing example, we’ll add one crucial bit of fun to the

SmileyExplosion.py program: the ability to “pop” the smiley

balloons/bubbles by clicking the right mouse button (or by pressing

the control key and clicking on a Mac). The effect is like a balloon-

popping game or Ant Smasher, Whack-a-Mole, and so on. We’ll be

able to create smiley balloons by dragging the left mouse button,

and we’ll pop them (that is, remove them from the screen) by click-

ing the right mouse button over one or more of the smiley sprites.

Detecting collisions and

removing sprites

The great news is that the Sprite class in Pygame comes with

collision detection built in. We can use the function pygame.sprite

.collide_rect() to check whether the rectangles holding two sprites

have collided; we can use the collide_circle() function to check

whether two round sprites are touching; and if we’re just check-

ing to see whether a sprite has collided with a single point (like

the pixel where the user just clicked the mouse), we can use a

sprite’s rect.collidepoint() function to check whether a sprite

overlaps, or collides with, that point on the screen.

If we’ve determined that the user clicked a point that touches

one or more sprites, we can remove each of those sprites from our

sprite_list group by calling the remove() function. We can handle

all the logic for popping smiley balloons in our MOUSEBUTTONDOWN event

handler code. To turn SmileyExplosion.py into SmileyPop.py, we’ll

just replace these two lines:

 if event.type == pygame.MOUSEBUTTONDOWN:
 mousedown = True

with the following seven lines of code:

 if event.type == pygame.MOUSEBUTTONDOWN:
u if pygame.mouse.get_pressed()[0]: # Regular left mouse button, draw

 mousedown = True

User Interaction: Get into the Game 225

v elif pygame.mouse.get_pressed()[2]: # Right mouse button, pop
w pos = pygame.mouse.get_pos()
x clicked_smileys = [s for s in sprite_list if s.rect.collidepoint(pos)]
y sprite_list.remove(clicked_smileys)

The if statement for MOUSEBUTTONDOWN events remains the same,

but now, we’re interested in which button was pressed. At u, we

check to see if the left mouse button was pressed (the first button,

at index [0]); if so, we turn on the mousedown Boolean flag, and the

game loop will draw new smiley faces. At v, we see if the right

mouse button is pressed, beginning the logic to check whether

the mouse was clicked over one or more smileys in our sprite_list.

First, at w, we get the mouse’s location and store it in the vari-

able pos. At x, we use a programming shortcut to generate a list

of sprites from sprite_list that collide with, or overlap, the point

the user clicked at pos. If a sprite s in the group sprite_list has

a rectangle that collides with the point pos, group it together as a

list [s] and store the list as clicked_smileys. That ability to create

one list, collection, or array from another based on an if condi-

tion is a powerful feature of Python, and it makes our code much

shorter for this app.

Finally, at y, we call the handy remove() function on our Group

of sprites called sprite_list. This remove() function is different

from Python’s regular remove() function, which removes a single

item from a list or collection. The pygame.sprite.Group.remove()

function will remove any number of sprites from a list. In this

case, it will remove all the sprites from our sprite_list that col-

lide with the point the user clicked on the screen. Once these

sprites are removed from sprite_list, when sprite_list is drawn to

the screen in our game loop, the clicked sprites are no longer in the

list, so they don’t get drawn. It’s like they’ve disappeared—or we’ve

popped them like balloons or bubbles!

226 Chapter 9

Putting It all together

Here’s the complete SmileyPop.py code.

SmileyPop.py

import pygame
import random

BLACK = (0,0,0)
pygame.init()
screen = pygame.display.set_mode([800,600])
pygame.display.set_caption("Pop a Smiley")
mousedown = False
keep_going = True
clock = pygame.time.Clock()
pic = pygame.image.load("CrazySmile.bmp")
colorkey = pic.get_at((0,0))
pic.set_colorkey(colorkey)
sprite_list = pygame.sprite.Group()

class Smiley(pygame.sprite.Sprite):
 pos = (0,0)
 xvel = 1
 yvel = 1
 scale = 100

 def __init__(self, pos, xvel, yvel):
 pygame.sprite.Sprite.__init__(self)
 self.image = pic
 self.scale = random.randrange(10,100)
 self.image = pygame.transform.scale(self.image, (self.scale,self.scale))
 self.rect = self.image.get_rect()
 self.pos = pos
 self.rect.x = pos[0] - self.scale/2
 self.rect.y = pos[1] - self.scale/2
 self.xvel = xvel
 self.yvel = yvel

 def update(self):
 self.rect.x += self.xvel
 self.rect.y += self.yvel
 if self.rect.x <= 0 or self.rect.x > screen.get_width() - self.scale:
 self.xvel = -self.xvel
 if self.rect.y <= 0 or self.rect.y > screen.get_height() - self.scale:
 self.yvel = -self.yvel

User Interaction: Get into the Game 227

while keep_going:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 keep_going = False
 if event.type == pygame.MOUSEBUTTONDOWN:
 if pygame.mouse.get_pressed()[0]: # Regular left mouse button, draw
 mousedown = True
 elif pygame.mouse.get_pressed()[2]: # Right mouse button, pop
 pos = pygame.mouse.get_pos()
 clicked_smileys = [s for s in sprite_list if s.rect.collidepoint(pos)]
 sprite_list.remove(clicked_smileys)
 if event.type == pygame.MOUSEBUTTONUP:
 mousedown = False
 screen.fill(BLACK)
 sprite_list.update()
 sprite_list.draw(screen)
 clock.tick(60)
 pygame.display.update()
 if mousedown:
 speedx = random.randint(-5, 5)
 speedy = random.randint(-5, 5)
 newSmiley = Smiley(pygame.mouse.get_pos(),speedx,speedy)
 sprite_list.add(newSmiley)

pygame.quit()

Remember that you’ll have to have the CrazySmile.bmp image

file stored in the same folder or directory as the code to make it

work. Once it does work, this program is so much fun to play with,

it’s almost addictive! In the next chapter, we’ll learn about the

elements of game design that make games fun, and we’ll build a

complete game from scratch!

What You Learned

In this chapter, we combined user interaction with animation to

create an explosion of smileys on the screen, and we used sprite

graphics to make even hundreds of smiley images easy and fast to

animate. We learned how to build our own Sprite class so that we

could customize sprites with the features and behaviors we wanted,

including data variables, an initialization function, and a custom

update function. We also learned how to scale images in Pygame so

that our smileys could come in all different shapes and sizes, and we

learned the advantages of using pygame.sprite.Group() to store all our

sprites for quick updating and drawing on the screen.

228 Chapter 9

In our closing example, we added sprite-based collision detec-

tion to see whether the user right-clicked the mouse over one or

more smiley sprites. We saw how to check for events on the left

mouse button separately from the right mouse button. We learned

that Python has powerful features for selecting items out of a list

based on an if condition, and we saw how to remove sprites from a

Group using the remove() function.

We created fun apps in this chapter, topped off by a SmileyPop

app that we’ll make even more game-like in Chapter 10. Pygame

has given us the final skills we need to program awesome games!

Programming the cool apps in this chapter has given us the

skills to do the following:

•	 Use sprite graphics by customizing the pygame.sprite.Sprite()

class.

•	 Access, modify, update, and draw a list of sprites using pygame

.sprite.Group() and its functions.

•	 Transform an image by applying the pygame.trasform.scale()

function to increase or decrease the image’s size in pixels.

•	 Detect sprite collisions using rect.collidepoint() and similar

functions from the Sprite class.

•	 Remove sprites from a Group using the remove() function.

Programming challenges

Here are three challenge problems to extend the skills

developed in this chapter. For sample answers to these

challenges, go to http://www.nostarch.com/teachkids/.

#1: randomly colored Dots

Start by choosing your own color triplet to use in the

DragDots.py program. Then modify the program to draw

randomly colored dots by creating a triplet of three random

numbers between 0 and 255 to use as your colors. Call your

new creation RandomPaint.py.

http://www.nostarch.com/teachkids/

User Interaction: Get into the Game 229

#2: Painting in colors

Let the user draw in two or more consistent colors using any

of the following options:

•	 Change the current drawing color each time the user

presses a key, either to a random color each time or to a

specific color for certain keys (like red for R, blue for B,

and so on).

•	 Draw with different colors for each of the mouse buttons

(red for the left mouse button, green for the middle but-

ton, and blue for the right mouse button, for example).

•	 Add some colored rectangles to the bottom or side of the

screen, and modify the program so that if the user clicks

in a rectangle, the drawing color changes to the same

color as the rectangle.

Try one approach, or all three, and save your new file as

ColorPaint.py.

#3: throwing smileys

Pygame has a function called pygame.mouse.get_rel() that

will return the amount of relative motion, or how much

the mouse’s position has changed in pixels since the last

call to get_rel(), in the x- and y-directions. Modify your

SmileyExplosion.py file to use the amount of relative mouse

motion in the x- and y-directions as the horizontal and ver-

tical speeds of each smiley (instead of generating a pair of

random speedx and speedy values). This will look like the user

is throwing smileys because they will speed off in the direc-

tion the user is dragging the mouse!

To add another realistic effect, slow the smileys slightly

by multiplying xvel and yvel by a number smaller than 1.0

(like 0.95) in the update(self) section every time the smileys

bounce off an edge of the screen. The smileys will slow

down over time, as if friction from each wall bounce is

making them move slower and slower. Save your new app

as SmileyThrow.py.

10
GAME PROGRAMMING:

CODING FOR FUN

In Chapter 9, we combined animation and user inter-

action to make a fun app. In this chapter, we’ll build

on those concepts and add elements of game design to

create a game from the ground up. We’ll combine our

ability to draw animations on the screen with our abil-

ity to handle user interaction, like mouse movement, to

create a classic Pong-type game we’ll call Smiley Pong.

232 Chapter 10

Games that we enjoy playing have certain elements of game

design. Here is a breakdown of our Smiley Pong design:

A playing field or game board A black screen represents

half a Ping-Pong board.

Goals and achievements The player tries to score points

and avoid losing lives.

Playing pieces (game characters and

objects) The player has a ball and a

paddle.

Rules The player scores a point if the ball

hits the paddle, but the player loses a life if

the ball hits the bottom of the screen.

Mechanics We’ll make the paddle move

left and right with the mouse, defending

the bottom of the screen; the ball may move

faster as the game progresses.

Resources The player will have five

lives or turns to score as many points as

they can.

Games use these elements to engage players. An effective

game has a mix of these elements, making the game easy to play

but challenging to win.

Building a Game Skeleton:
Smiley Pong, Version 1.0

Pong, shown in Figure 10-1, was one of the earliest arcade video

games, dating back to the 1960s and ’70s. More than 40 years

later, it’s still fun to play.

Game Programming: Coding for Fun 233

W
ik

im
e

d
ia

 C
o

m
m

o
n

s

Figure 10-1: Atari’s famous Pong game from 1972

The gameplay for a single-player version of Pong is simple.

A paddle moves along one edge of the screen (we’ll place our

paddle at the bottom) and rebounds a ball, in our case a smiley

face. Players gain a point each time they hit the ball, and they

lose a point (or a life) every time they miss.

We’ll use our bouncing smiley face program from Chapter 8 as

the foundation for the game. Using SmileyBounce2.py (page 199)

as our base, we already have a smoothly animated smiley ball

bouncing off the sides of the window, and we’ve already taken

care of the while loop that keeps the animation going until the

user quits. To make Smiley Pong, we’ll add a paddle that follows

the mouse along the bottom of the screen, and we’ll add more col-

lision detection to see when the smiley ball hits the paddle. The

final touch will be to start with zero points and five lives, give the

player a point when they hit the ball, and take away a life when

the ball bounces off the bottom of the screen. Figure 10-2 shows

what we’re working toward. When we’re finished, our final pro-

gram will look like the one on page 243.

234 Chapter 10

Figure 10-2: The Smiley Pong game we’ll build

The first feature we’ll add to the former SmileyBounce2.py app

is the paddle.

Drawing a Board and Game Pieces

In our finished game, the paddle will move along the bottom of the

screen, following the mouse’s movement as the user tries to keep

the ball from hitting the bottom edge.

To get the paddle started, we’ll add this information to the

setup section of our app:

WHITE = (255,255,255)
paddlew = 200
paddleh = 25
paddlex = 300
paddley = 550

These variables will help us create a paddle that is simply a

white rectangle of width 200 and height 25. We’ll want the coordi-

nates of its top-left corner to start at (300, 550) so that the paddle

starts off slightly above the bottom edge and centered horizontally

on the 800 × 600 screen.

Game Programming: Coding for Fun 235

But we’re not going to draw this rectangle yet. Those variables

would be enough to draw a rectangle on the screen the first time,

but our paddle needs to follow the user’s mouse movements. We

want to draw the paddle on the screen centered around where the

user moves the mouse in the x direction (side to side), while keep-

ing the y-coordinate fixed near the bottom of the screen. To do this,

we need the x-coordinates of the mouse’s position. We can get the

position of the mouse by using pygame.mouse.get_pos(). In this case,

since we care only about the x-coordinate of get_pos(), and since x

comes first in our mouse position, we can get the x-coordinate of

the mouse with this:

 paddlex = pygame.mouse.get_pos()[0]

But remember that Pygame starts drawing a rectangle at the

(x, y) position we provide, and it draws the rest of the rectangle to

the right of and below that location. To center the paddle where the

mouse is positioned, we need to subtract half the paddle’s width

from the mouse’s x-position, putting the mouse halfway through

the paddle:

 paddlex -= paddlew/2

Now that we know the center of the paddle will always be

where the mouse is, all we need to do in our game loop is to draw

the paddle rectangle on the screen:

 pygame.draw.rect(screen, WHITE, (paddlex, paddley, paddlew, paddleh))

If you add those three lines before the pygame.display.update()

in the while loop in SmileyBounce2.py and add the paddle color,

paddlew, paddleh, paddlex, and paddley to the setup section, you’ll see

the paddle follow your mouse. But the ball won’t bounce off the

paddle yet because we haven’t added the logic to test whether the

ball has collided with it. That’s our next step.

Keeping Score

Keeping score is part of what makes a game fun. Points, lives,

stars—whatever you use to keep score, there’s a sense of achieve-

ment that comes from seeing your score increase. In our Smiley

Pong game, we want the user to gain a point every time the ball

hits the paddle and lose a life when they miss the ball and it hits

236 Chapter 10

the bottom of the screen. Our next task is to add logic to make the

ball bounce off the paddle and gain points, as well as to subtract a

life when the ball hits the bottom of the screen. Figure 10-3 shows

what your game might look like after a player gains some points.

Notice how the point display has been updated to 8.

Figure 10-3: As the smiley ball bounces off the paddle at the bottom,
we’ll add points to our player’s score.

As mentioned earlier, we’ll start our game with zero points and

five lives in the setup portion of our code:

points = 0
lives = 5

Next we have to figure out when to add to points and when to

take away from lives.

Subtracting a Life

Let’s start with subtracting a life. We know that if the ball hits

the bottom edge of the screen, the player has missed it with the

paddle, so they should lose a life.

Game Programming: Coding for Fun 237

To add the logic for subtracting a life when the ball hits the

bottom of the screen, we have to break our if statement for hitting

the top or bottom of the screen (if picy <= 0 or picy >= 500) into

two parts, top and bottom separately. If the ball hits the top of the

screen (picy <= 0), we just want it to bounce back, so we’ll change

the direction of the ball’s speed in the y direction with -speedy:

 if picy <= 0:
 speedy = -speedy

If the ball bounces off the bottom (picy >= 500), we want to

deduct a life from lives and then have the ball bounce back:

 if picy >= 500:
 lives -= 1
 speedy = -speedy

Subtracting a life is done, so now we need to add points. In

“SmileyPop, Version 1.0” on page 224, we saw that Pygame con-

tains functions that make it easier to check for collisions. But

since we’re building this Smiley Pong game from scratch, let’s see

how we can write our own code to check for collisions. The code

might come in handy in a future app, and writing it is a valuable

problem-solving exercise.

Hitting the Ball with the Paddle

To check for the ball bouncing off the paddle, we need to look at

how the ball might come into contact with the paddle. It could hit

the top-left corner of the paddle,

it could hit the top-right corner

of the paddle, or it could bounce

directly off the top of the paddle.

When you’re figuring out the

logic for detecting collisions, it

helps to draw it out on paper and

label the corners and edges where

you need to check for a possible

collision. Figure 10-4 shows a

sketch of the paddle and the

two corner collision cases with

the ball.

238 Chapter 10

(picx, picy)

(paddlex, paddley)

(paddlex, paddley)

paddlew

(picw/2) (picw/2)

(picx, picy)

Figure 10-4: Two collision cases between the paddle and our smiley ball

Because we want the ball to bounce realistically off the paddle,

we want to check for the cases where the bottom center of the ball

just touches the corners of the paddle at the left and right extremes.

We want to make sure the player scores a point not only when the

ball bounces directly off the top of the paddle but also whenever it

bounces off the paddle’s corners. To do this, we’ll see if the ball’s

vertical location is near the bottom of the screen where the paddle

is, and if so, we’ll check whether the ball’s horizontal location would

allow it to hit the paddle.

First, let’s figure out what range of x-coordinate values would

allow the ball to hit the paddle. Since the middle of the ball would

be half the width of the ball across from its (picx, picy) top-left

corner, we’ll add the width of the ball as a variable in the setup

section of our app:

picw = 100

As shown in Figure 10-4, the ball could hit the top-left corner

of the paddle when picx plus half the width of the picture (picw/2)

touches paddlex, the x-coordinate of the left corner of the paddle.

In code, we could test this condition as part of an if statement: picx

+ picw/2 >= paddlex.

We use the greater than or equal to condition because the ball

can be farther right (greater than paddlex in the x direction) and

still hit the paddle; the corner case is just the first pixel for which

the player gets a point for hitting the paddle. All the x-coordinate

values between the left corner and the right corner of the paddle

are valid hits, so they should award the user a point and bounce

the ball back.

To find that top-right corner case, we can see from the figure

that we’re requiring the middle of the ball, whose x-coordinate

Game Programming: Coding for Fun 239

is picx + picw/2, to be less than or equal to the top-right corner of

the paddle, whose x-coordinate is paddlex + paddlew (or the starting

x-coordinate of the paddle plus the paddle’s width). In code, this

would be picx + picw/2 <= paddlex + paddlew.

We can put these two together into a single if statement,

but that’s not quite enough. Those x-coordinates cover the whole

screen from the left corner of the paddle to the right corner, from

the top of the screen to the bottom. With just the x-coordinates

determined, our ball could be anywhere in the y direction, so

we need to narrow that down. It’s not enough to know that our

ball is within the horizontal limits of the paddle; we also have

to know that our ball is within the vertical range of y-coordinate

values that could allow it to collide with the paddle.

We know that the top of our paddle is located at 550 pixels in

the y direction, near the bottom of the screen, because our setup

includes the line paddley = 550 and the rectangle begins at that

y-coordinate and continues down for 25 pixels, our paddle’s height

stored in paddleh. We know our picture is 100 pixels tall, so let’s

store that as a variable, pich (for picture height), that we can add to

our setup section: pich = 100.

For our ball’s y-coordinate to hit the paddle, the picy loca-

tion plus the picture’s height, pich, needs to be at least paddley or

greater for the bottom of the picture (picy + pich) to touch the top

of the paddle (paddley). Part of our if statement for the ball hitting

the paddle in the y direction would be if picy + pich >= paddley. But

this condition alone would allow the ball to be anywhere greater

than paddley, even at the bottom edge of the screen. We don’t want

the user to be able to get points for moving the paddle into the

ball after the ball has hit the bottom edge, so we need another

if condition that sets the maximum y-coordinate value we’ll give

points for.

A natural choice for the maximum

y-coordinate value for earning a point might be

the bottom of the paddle, or paddley + paddleh

(the paddle’s y-coordinate, plus its height). But

if the bottom of our ball is past the bottom of

the paddle, the player shouldn’t get a point for

hitting the ball, so we want picy + pich (the

bottom of the ball) to be less than or equal to

paddley + paddleh—in other words, picy + pich

<= paddley + paddleh.

240 Chapter 10

There’s just one more condition to check. Remember that the

ball and paddle are virtual; that is, they don’t exist in the real world,

don’t have actual edges, and don’t interact like real game pieces do.

We could move our paddle through the ball even when it’s bouncing

back up from the bottom edge. We don’t want to award points when

the player has clearly missed the ball, so before awarding a point,

let’s check to make sure the ball is headed down, in addition to being

within the vertical and horizontal range of the paddle. We can tell

the ball is headed down the screen if the ball’s speed in the y direc-

tion (speedy) is greater than zero. When speedy > 0, the ball is moving

down the screen in the positive y direction.

We now have the conditions we need to create the two if state-

ments that will check whether the ball hit the paddle:

 if picy + pich >= paddley and picy + pich <= paddley + paddleh \
 and speedy > 0:
 if picx + picw/2 >= paddlex and picx + picw/2 <= paddlex + \
 paddlew:

First, we check whether the ball is within the vertical range

to be able to touch the paddle and whether it’s heading downward

instead of upward. Then, we check whether the ball is within the

horizontal range to be able to touch the paddle.

In both of these if statements, the compound conditions made

the statement too long to fit on our screen. The backslash charac-

ter, \, allows us to continue a long line of code by wrapping around

to the next line. You can choose to type a long line of code all on a

single line, or you can wrap the code to fit the screen by ending the

first line with a backslash \, pressing enter, and continuing the

code on the next line. We have some long lines of logic in the games

in this chapter, so you’ll see the backslash in several of the code

listings. Just remember that Python will read any lines separated

by a backslash as a single line of code.

Adding a Point

Let’s build the logic to bounce the ball and award a point. To com-

plete our paddle logic, we add two more lines right after the two if

statements:

 if picy + pich >= paddley and picy + pich <= paddley + paddleh \
 and speedy > 0:

Game Programming: Coding for Fun 241

 if picx + picw/2 >= paddlex and picx + picw/2 <= paddlex + \
 paddlew:
 points += 1
 speedy = -speedy

Adding a point is easy: points += 1. Changing the direction of

the ball so it looks like it bounced off the paddle is easy too; we

just reverse our speed in the y direction to make it go back up the

screen: speedy = -speedy.

You can run the program with those changes and see the ball

bounce off the paddle. Each time the paddle hits the ball, you’re

earning a point, and whenever the ball misses the paddle, you’re

losing a life, but we’re not showing those on the screen yet. Let’s do

that next.

Showing the Score

We have the logic we need to add points and subtract lives, but we

don’t see the points on the screen as we play. In this section, we’ll

draw text to the screen to give the user feedback while they’re

playing, as shown in Figure 10-5.

Figure 10-5: Smiley Pong, version 1.0, is becoming a real game!

242 Chapter 10

The first step is putting

together the string of text that we

want to display. In a typical video

game, we’d see our points and how

many lives or turns we have left—

for example, Lives: 4, Points: 32.

We already have variables with the

number of lives (lives) and total

points (points). All we have to do is

use the str() function to turn those

numbers into their text equivalent

(5 becomes "5") and add text to

indicate what the numbers mean in

each pass through our game loop:

 draw_string = "Lives: " + str(lives) + " Points: " + str(points)

Our string variable will be called draw_string, and it contains

the text we’d like to draw on the screen to display to users as they

play. To draw that text on the screen, we need to have an object or

variable that is connected to the text-drawing module pygame.font.

A font is another name for a typeface, or the style characters are

drawn in, like Arial or Times New Roman. In the setup section of

your app, add the following line:

font = pygame.font.SysFont("Times", 24)

This creates a variable we’ll call font that will allow us to draw

on the Pygame display in 24-point Times. You can make your text

larger or smaller, but for now, 24 points will work. Next we’ll draw

the text; that should be added into the game loop, right after our

draw_string declaration. To draw the text on the window, we first

draw the string on a surface of its own with the render() command

on the font object we created:

 text = font.render(draw_string, True, WHITE)

This creates a variable called text to store a surface that con-

tains the white pixels that make up all the letters, numbers, and

symbols of our string. The next step will get the dimensions (width

and height) of that surface. Longer strings will render or draw

wider, while shorter strings will take fewer pixels to draw. The

Game Programming: Coding for Fun 243

same goes for larger fonts versus smaller fonts. The text string

will be rendered on a rectangular surface, so we’ll call our variable

text_rect for the rectangle that holds our drawn string:

 text_rect = text.get_rect()

The get_rect() command on our text surface will return the

dimensions of the drawn string. Next we’ll center the text rect-

angle text_rect horizontally on the screen, using the .centerx

attribute, and position the text rectangle 10 pixels down from the

top of the screen so it’s easy to see. Here are the two commands to

set the position:

 text_rect.centerx = screen.get_rect().centerx
 text_rect.y = 10

It’s time to draw the text_rect image to the screen. We’ll do

this using the blit() function like we did for our picture pic:

 screen.blit(text, text_rect)

With those changes, our Smiley Pong game has become like

the classic version of the game, but with our smiley face as the

ball. Run the app, and you’ll see something like Figure 10-5. We’re

on our way to an arcade-quality game!

Putting It All Together

We’ve used many coding skills to make this game. Variables, loops,

conditions, math, graphics, event handling—almost our full tool-

kit. Games are an adventure for both the coder and the player.

Producing a game is challenging and rewarding; we get to build

the gameplay we want, then share it with others. My sons loved

version 1.0 of the Smiley Pong game, and they gave me great ideas

for extending it to version 2.0.

Here’s the full version 1.0, SmileyPong1.py:

SmileyPong1.py

import pygame # Setup
pygame.init()
screen = pygame.display.set_mode([800,600])
pygame.display.set_caption("Smiley Pong")
keepGoing = True

244 Chapter 10

pic = pygame.image.load("CrazySmile.bmp")
colorkey = pic.get_at((0,0))
pic.set_colorkey(colorkey)
picx = 0
picy = 0
BLACK = (0,0,0)
WHITE = (255,255,255)
timer = pygame.time.Clock()
speedx = 5
speedy = 5
paddlew = 200
paddleh = 25
paddlex = 300
paddley = 550
picw = 100
pich = 100
points = 0
lives = 5
font = pygame.font.SysFont("Times", 24)

while keepGoing: # Game loop
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 keepGoing = False
 picx += speedx
 picy += speedy

 if picx <= 0 or picx + pic.get_width() >= 800:
 speedx = -speedx
 if picy <= 0:
 speedy = -speedy
 if picy >= 500:
 lives -= 1
 speedy = -speedy

 screen.fill(BLACK)
 screen.blit(pic, (picx, picy))

 # Draw paddle
 paddlex = pygame.mouse.get_pos()[0]
 paddlex -= paddlew/2
 pygame.draw.rect(screen, WHITE, (paddlex, paddley, paddlew, paddleh))

 # Check for paddle bounce
 if picy + pich >= paddley and picy + pich <= paddley + paddleh \
 and speedy > 0:

Game Programming: Coding for Fun 245

 if picx + picw / 2 >= paddlex and picx + picw / 2 <= paddlex + \
 paddlew:
 points += 1
 speedy = -speedy

 # Draw text on screen
 draw_string = "Lives: " + str(lives) + " Points: " + str(points)

 text = font.render(draw_string, True, WHITE)
 text_rect = text.get_rect()
 text_rect.centerx = screen.get_rect().centerx
 text_rect.y = 10
 screen.blit(text, text_rect)
 pygame.display.update()
 timer.tick(60)

pygame.quit() # Exit

Our gameplay is nearly complete: the ball bounces off the

paddle, points are awarded, and players lose a life if they miss the

ball and it hits the bottom edge of the screen. All the basic com-

ponents are there to make this an arcade-style game. Now think

about what improvements you would like to see, work out the logic,

and try adding code to version 1.0 to make your game even more

fun. In the next section, we’ll add three more features to create a

fully interactive, video game–like experience that we can share

with others.

Adding Difficulty and Ending the
Game: Smiley Pong, Version 2.0

Version 1.0 of our Smiley Pong game is playable. Players can score

points, lose lives, and see their progress on the screen. One thing

we don’t have yet is an end to the game. Another is the sense of

greater challenge as the game progresses. We’ll add the following

features to Smiley Pong, version 1.0, to create a more complete

game in version 2.0: a way to show that the game is over when

the last life is lost, a way to play again or start a new game with-

out closing the program, and a way to increase the difficulty as

the game goes on. We’ll add these three features one at a time,

winding up with a fun, challenging, arcade-style game! The final

version is shown on page 250.

246 Chapter 10

Game Over

Version 1.0 never stopped playing because we didn’t add logic to

handle the game being over. We know the condition to test for: the

game is over when the player has no lives left. Now we need to fig-

ure out what to do when the player loses their last life.

The first thing we want to do is stop the game. We don’t want

to close the program, but we do want to stop the ball. The sec-

ond thing we want to do is change the text on the screen to tell

the player that the game is over and give them their score. We

can accomplish both tasks with an if statement right after the

draw_string declaration for lives and points.

 if lives < 1:
 speedx = speedy = 0
 draw_string = "Game Over. Your score was: " + str(points)
 draw_string += ". Press F1 to play again. "

By changing speedx and speedy (the horizontal and vertical

speed of the ball, respectively) to zero, we’ve stopped the ball

from moving. The user can still move the paddle on the screen,

but we’ve ended the gameplay visually to let the user know the

game is over. The text makes this even clearer, plus it tells the

user how well they did this round.

Right now, we’re telling the user to press F1 to play again, but

pressing the key doesn’t do anything yet. We need logic to handle

the keypress event and start the game over.

Play Again

We want to let the user play a new game when they’ve run out of

lives. We’ve added text to the screen to tell the user to press the

F1 key to play again, so let’s add code to detect that keypress and

start the game over. First, we’ll check if a key was pressed and if

that key was F1:

 if event.type == pygame.KEYDOWN:
 if event.key == pygame.K_F1: # F1 = New Game

In the event handler for loop inside our game loop, we add an

if statement to check if there was a KEYDOWN event. If so, we check

the key pressed in that event (event.key) to see if it’s equal to the

Game Programming: Coding for Fun 247

F1 key (pygame.K_F1). The code that follows this second if statement

will be our play again or new game code.

NOTE You can get a full list of the Pygame keycodes, such as K_F1, at

http://www.pygame.org/docs/ref/key.html.

“Play again” means that we want to start over from the begin-

ning. For Smiley Pong, we started with 0 points, 5 lives, and the

ball coming at us at 5 pixels per frame from the top-left corner of

the screen, (0, 0). If we reset these variables, we should get the new

game effect:

 points = 0
 lives = 5
 picx = 0
 picy = 0
 speedx = 5
 speedy = 5

Add these lines to the if statement for the F1 key KEYDOWN

event, and you’ll be able to restart the game anytime. If you’d like

to allow restarting only when the game is already over, you can

include an additional condition that lives == 0, but we’ll leave the

if statements as they currently are in our version 2.0 so that the

user can restart anytime.

Faster and Faster

Our game lacks one final element

of game design: it doesn’t get more

challenging the longer it’s played,

so someone could play almost for-

ever, paying less and less attention.

Let’s add difficulty as the game

progresses to engage the player and

make the game more arcade-like.

We want to increase the speed

of the ball slightly as the game advances, but not too much, or the

player might get frustrated. We want to make the game just a bit

faster after each bounce. The natural place to do this is within the

code that checks for bounces. Increasing the speed means making

speedx and speedy greater so that the ball moves farther in each

direction each frame. Try changing our if statements for collision

http://www.pygame.org/docs/ref/key.html

248 Chapter 10

detection (where we make the ball bounce back from each edge of

the screen) to the following:

 if picx <= 0 or picx >= 700:
 speedx = -speedx * 1.1
 if picy <= 0:
 speedy = -speedy + 1

In the first case, when the ball is bouncing off the left and

right sides of the screen in the horizontal direction, we increase

the horizontal speed, speedx, by multiplying it by 1.1 (and we still

change the direction with our minus sign). This is a 10 percent

increase in speed after each left and right bounce.

When the ball bounces off the top of the screen (if picy <= 0),

we know that the speed will become positive as it rebounds off the

top and heads back down the screen in the positive y direction, so

we can add 1 to speedy after we change the direction with the minus

sign. If the ball came toward the top at 5 pixels per frame in speedy,

it will leave at 6 pixels per frame, then 7, and so on.

If you make those changes, you’ll see the ball get faster and

faster. But once the ball starts going faster, it never slows back

down. Soon the ball would be traveling so quickly that the player

could lose all five lives in just a second.

We’ll make our game more playable (and fair) by resetting the

speed every time the player loses a life. If the speed gets so high

that the user can’t hit the ball with the paddle, it’s probably a good

time to reset the speed to a slower value so the player can catch up.

Our code for bouncing off the bottom of the screen is where we

take away one of the player’s lives, so let’s change the speed after

we’ve subtracted a life:

 if picy >= 500:
 lives -= 1
 speedy = -5
 speedx = 5

This makes the game more reasonable, as the ball no longer

gets out of control and stays that way; after the player loses a life,

the ball slows down enough that the player can hit it a few more

times before it speeds back up.

One problem, though, is that the ball could be traveling so fast

that it could “get stuck” off the bottom edge of the screen; after play-

ing a few games, the player will run into a case in which they lose

Game Programming: Coding for Fun 249

all of their remaining lives on a single bounce off the bottom edge.

This is because the ball could move way below the bottom edge of

the screen if it’s traveling really quickly, and when we reset the

speed, we might not get the ball completely back on the screen by

the next frame.

To solve this, let’s add one line to the end of that if statement:

 picy = 499

We move the ball back onto the screen completely after a lost

life by setting the picy to a value, like 499, that places the ball com-

pletely above the bottom boundary of the screen. This will help our

ball move safely back onto the screen no matter how fast it was

traveling when it hit the bottom edge.

After these changes, version 2.0 looks like Figure 10-6.

Figure 10-6: Version 2.0 of our Smiley Pong game features faster gameplay,
game over, and play again functionality.

Version 2.0 is like a real arcade game, complete with the game

over/play again screen.

250 Chapter 10

Putting It All Together

Here’s our finished version 2.0, SmileyPong2.py. At just under

80 lines of code, it’s a full arcade-style game that you can show off

to friends and family. You can also build on it further to develop

your coding skill.

SmileyPong2.py

import pygame # Setup
pygame.init()
screen = pygame.display.set_mode([800,600])
pygame.display.set_caption("Smiley Pong")
keepGoing = True
pic = pygame.image.load("CrazySmile.bmp")
colorkey = pic.get_at((0,0))
pic.set_colorkey(colorkey)
picx = 0
picy = 0
BLACK = (0,0,0)
WHITE = (255,255,255)
timer = pygame.time.Clock()
speedx = 5
speedy = 5
paddlew = 200
paddleh = 25
paddlex = 300
paddley = 550
picw = 100
pich = 100
points = 0
lives = 5
font = pygame.font.SysFont("Times", 24)

while keepGoing: # Game loop
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 keepGoing = False
 if event.type == pygame.KEYDOWN:
 if event.key == pygame.K_F1: # F1 = New Game
 points = 0
 lives = 5
 picx = 0
 picy = 0
 speedx = 5
 speedy = 5

Game Programming: Coding for Fun 251

 picx += speedx
 picy += speedy

 if picx <= 0 or picx >= 700:
 speedx = -speedx * 1.1
 if picy <= 0:
 speedy = -speedy + 1
 if picy >= 500:
 lives -= 1
 speedy = -5
 speedx = 5
 picy = 499

 screen.fill(BLACK)
 screen.blit(pic, (picx, picy))

 # Draw paddle
 paddlex = pygame.mouse.get_pos()[0]
 paddlex -= paddlew/2
 pygame.draw.rect(screen, WHITE, (paddlex, paddley, paddlew, paddleh))

 # Check for paddle bounce
 if picy + pich >= paddley and picy + pich <= paddley + paddleh \
 and speedy > 0:
 if picx + picw/2 >= paddlex and picx + picw/2 <= paddlex + \
 paddlew:
 speedy = -speedy
 points += 1

 # Draw text on screen
 draw_string = "Lives: " + str(lives) + " Points: " + str(points)
 # Check whether the game is over
 if lives < 1:
 speedx = speedy = 0
 draw_string = "Game Over. Your score was: " + str(points)
 draw_string += ". Press F1 to play again. "

 text = font.render(draw_string, True, WHITE)
 text_rect = text.get_rect()
 text_rect.centerx = screen.get_rect().centerx
 text_rect.y = 10
 screen.blit(text, text_rect)
 pygame.display.update()
 timer.tick(60)

pygame.quit() # Exit

252 Chapter 10

You can continue to build on the game elements in this

example (see “Programming Challenges” on page 261), or you can

use these building blocks to develop something new. Most games,

and even other apps, have features like the ones you added in this

chapter, and we usually follow a process similar to the one we used

to build Smiley Pong. First, map out the skeleton of the game, and

then build a working prototype, or a version 1.0. Once that’s work-

ing, add features until you get the final version you want. You’ll

find iterative versioning—adding features one at a time to create

new versions—useful as you build more complex apps.

Adding More Features: SmileyPop v2.0

We’ll follow our iterative versioning process one more time by add-

ing features that my son Max and I wanted to see in the SmileyPop

app in Chapter 9. First, he wanted a sound effect whenever a smiley

face bubble (or balloon) was popped by a mouse click. Second, we

both wanted some kind of feedback and display (maybe how many

bubbles had been created and how many had been popped), and I

wanted some sign of progress, like the percentage of bubbles we’d

popped. The SmileyPop app was already fun, but these elements

could make it even better.

Look back at SmileyPop.py on page 226; we’ll start with this

version of the app, and we’ll build our second version (v2.0, short

for version 2.0) by adding code. The final version, SmileyPop2.py,

is shown on page 257.

We’ll begin by adding Max’s request: the popping sound.

Adding Sound with Pygame

At http://www.pygame.org/docs/, you’ll find modules, classes, and

functions that can make your games more fun to play and easier to

program. The module we need for sound effects is pygame.mixer. To

use this mixer module to add sound to your game, you first need

a sound file to use. For our popping sound effect, download the

pop.wav file from http://www.nostarch.com/teachkids/ under the

source code and files for Chapter 10.

We’ll add these two lines to the setup section of SmileyPop.py,

right below sprite_list = pygame.sprite.Group():

pygame.mixer.init() # Add sounds
pop = pygame.mixer.Sound("pop.wav")

http://www.pygame.org/docs/
http://www.nostarch.com/teachkids/

Game Programming: Coding for Fun 253

We begin by initializing the mixer (just like we initialize

Pygame with pygame.init()). Then we load our pop.wav sound

effect into a Sound object so we can play it in our program.

The second line loads pop.wav as a pygame.mixer.Sound object

and stores it in the variable pop, which we’ll use later when we

want to hear a popping sound. As with image files, you’ll need

pop.wav saved in the same directory

or folder as your SmileyPop.py pro-

gram for the code to be able to find

the file and use it.

Next we’ll add logic to check

whether a smiley was clicked and

play our pop sound if a smiley was

popped. We’ll do this in the event

handler section of our game loop, in

the same elif statement that pro-

cesses right-mouse-button events (elif

pygame.mouse.get_pressed()[2]). After

the sprite_list.remove(clicked_smileys)

that removes clicked smileys from the

sprite_list, we could check to see if

there were actually any smiley colli-

sions, then play a sound.

The user could right-click the mouse in an area of the screen

with no smiley faces to pop, or they might miss a smiley when try-

ing to click. We’ll check whether any smileys were actually clicked

by seeing if len(clicked_smileys) > 0. The len() function tells us the

length of a list or collection, and if the length is greater than zero,

there were clicked smileys. Remember, clicked_smileys was a list of

the smiley sprites that collided with or were drawn overlapping the

point where the user clicked.

If the clicked_smileys list has smiley sprites in it, then the user

correctly right-clicked at least one smiley, so we play the popping

sound:

 if len(clicked_smileys) > 0:
 pop.play()

Notice that both lines are indented to align correctly with the

other code in our elif statement for handling right-clicks.

These four lines of added code are all it takes to play the pop-

ping sound when a user successfully right-clicks a smiley. To

254 Chapter 10

make these changes and hear the result, make sure you’ve down-

loaded the pop.wav sound file into the same folder as your revised

SmileyPop.py, turn your speakers to a reasonable volume, and

pop away!

Tracking and Displaying Player Progress

The next feature we want to add is some way to help the user feel

like they’re making progress. The sound effects added one fun kind

of feedback (the user hears a popping sound only if they actually

clicked a smiley sprite), but let’s also track how many bubbles the

user has created and popped and what percentage of the smileys

they’ve popped.

To build the logic for keeping track of the number of smileys

the user has created and the number they’ve popped, we’ll begin by

adding a font variable and two counter variables, count_smileys and

count_popped, to the setup section of our app:

font = pygame.font.SysFont("Arial", 24)
WHITE = (255,255,255)
count_smileys = 0
count_popped = 0

We set our font variable to the Arial font face, at a size of

24 points. We want to draw text on the screen in white letters, so

we add a color variable WHITE and set it to the RGB triplet for white,

(255,255,255). Our count_smileys and count_popped variables will store

the number of created and popped smileys, which both start at

zero when the app first loads.

Smileys Created and Popped

First, let’s count smileys as they’re added to the sprite_list. To do

that, we go almost to the bottom of our SmileyPop.py code, where

the if mousedown statement checks whether the mouse is being

dragged with the mouse button pressed and adds smileys to our

sprite_list. Add just the last line to that if statement:

 if mousedown:
 speedx = random.randint(-5, 5)
 speedy = random.randint(-5, 5)
 newSmiley = Smiley(pygame.mouse.get_pos(), speedx, speedy)
 sprite_list.add(newSmiley)
 count_smileys += 1

Game Programming: Coding for Fun 255

Adding 1 to count_smileys every time a new smiley is added

to the sprite_list will help us keep track of the total number of

smileys drawn.

We’ll add similar logic to the if statement that plays our

popping sound whenever one or more smileys have been clicked,

but we won’t just add 1 to count_popped—we’ll add the real num-

ber of smileys that were clicked. Remember that our user could

have clicked the screen over two or more smiley sprites that are

overlapping the same point. In our event handler for the right-

click event, we gathered all these colliding smileys as the list

clicked_smileys. To find out how many points to add to count_popped,

we just use the len() function again to get the correct number of

smileys the user popped with this right-click. Add this line to the

if statement you wrote for the popping sound:

 if len(clicked_smileys) > 0:
 pop.play()
 count_popped += len(clicked_smileys)

By adding len(clicked_smileys) to count_popped, we’ll always have

the correct number of popped smileys at any point in time. Now,

we just have to add the code to our game loop that will display the

number of smileys created, the number popped, and the percentage

popped to measure the user’s progress.

Just like in our Smiley Pong display, we’ll create a string of

text to draw on the screen, and we’ll show the numbers as strings

with the str() function. Add these lines to your game loop right

before pygame.display.update():

 draw_string = "Bubbles created: " + str(count_smileys)
 draw_string += " - Bubbles popped: " + str(count_popped)

256 Chapter 10

These lines will create our draw_string and show both the num-

ber of smiley bubbles created and the number popped.

Percentage of Smileys Popped

Add these three lines, right after the two draw_string statements:

 if (count_smileys > 0):
 draw_string += " - Percent: "
 draw_string += str(round(count_popped/count_smileys*100, 1))
 draw_string += "%"

To get the percentage of smileys popped out of all the smileys

that have been created, we divide count_popped by count_smileys

(count_popped/count_smileys), then multiply by 100 to get the percent

value (count_popped/count_smileys*100). But we’ll have two problems

if we try to show this number. First, when the program starts

and both values are zero, our percentage calculation will produce

a “division by zero” error. To fix this, we’ll show the percentage

popped only if count_smileys is greater than zero.

Second, if the user has created three smileys and popped one

of them—a ratio of one out of three, or 1/3—the percentage will be

33.33333333. . . . We don’t want the display to get really long every

time there’s a repeating decimal in the percentage calculation, so

let’s use the round() function to round the percentage to one deci-

mal place.

The last step is to draw the string in white pixels, center those

pixels on the screen near the top, and call screen.blit() to copy

those pixels to the game window’s drawing screen:

 text = font.render(draw_string, True, WHITE)
 text_rect = text.get_rect()
 text_rect.centerx = screen.get_rect().centerx
 text_rect.y = 10
 screen.blit (text, text_rect)

You can see the effect of these changes in Figure 10-7.

The smaller smileys are more difficult to catch and pop,

especially when they’re moving fast, so it’s hard to pop more than

90 percent. That’s exactly what we want. We’ve used this feedback

and challenge/achievement component to make the app feel more

like a game we might play.

Game Programming: Coding for Fun 257

Figure 10-7: The SmileyPop app is more like a game now that we’ve
added sound and a progress/feedback display.

The popping sound and progress display feedback have made

SmileyPop feel like a mobile app. As you’re popping smiley faces by

right-clicking, you can probably imagine tapping the smileys with

your finger to pop them on a mobile device. (To learn how to build

mobile apps, check out MIT’s App Inventor at http://appinventor

.mit.edu/.)

Putting It All Together

Here’s the complete code for SmileyPop, version 2.0. Remember to

keep the .py source code file, the CrazySmile.bmp image file, and

the pop.wav sound file all in the same folder.

At almost 90 lines, this app might be a bit too long to type by

hand. Go to http://www.nostarch.com/teachkids/ to download the

code, along with the sound and picture files.

SmileyPop2.py

import pygame
import random

BLACK = (0,0,0)
WHITE = (255,255,255)

http://appinventor.mit.edu/
http://appinventor.mit.edu/
http://www.nostarch.com/teachkids/

258 Chapter 10

pygame.init()
screen = pygame.display.set_mode([800,600])
pygame.display.set_caption("Pop a Smiley")
mousedown = False
keep_going = True
clock = pygame.time.Clock()
pic = pygame.image.load("CrazySmile.bmp")
colorkey = pic.get_at((0,0))
pic.set_colorkey(colorkey)
sprite_list = pygame.sprite.Group()
pygame.mixer.init() # Add sounds
pop = pygame.mixer.Sound("pop.wav")
font = pygame.font.SysFont("Arial", 24)
count_smileys = 0
count_popped = 0

class Smiley(pygame.sprite.Sprite):
 pos = (0,0)
 xvel = 1
 yvel = 1
 scale = 100

 def __init__(self, pos, xvel, yvel):
 pygame.sprite.Sprite.__init__(self)
 self.image = pic
 self.scale = random.randrange(10,100)
 self.image = pygame.transform.scale(self.image,
 (self.scale,self.scale))
 self.rect = self.image.get_rect()
 self.pos = pos
 self.rect.x = pos[0] - self.scale/2
 self.rect.y = pos[1] - self.scale/2
 self.xvel = xvel
 self.yvel = yvel

 def update(self):
 self.rect.x += self.xvel
 self.rect.y += self.yvel
 if self.rect.x <= 0 or self.rect.x > screen.get_width() - self.scale:
 self.xvel = -self.xvel
 if self.rect.y <= 0 or self.rect.y > screen.get_height() - self.scale:
 self.yvel = -self.yvel

while keep_going:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 keep_going = False

Game Programming: Coding for Fun 259

 if event.type == pygame.MOUSEBUTTONDOWN:
 if pygame.mouse.get_pressed()[0]: # Left mouse button, draw
 mousedown = True
 elif pygame.mouse.get_pressed()[2]: # Right mouse button, pop
 pos = pygame.mouse.get_pos()
 clicked_smileys = [s for s in sprite_list if
 s.rect.collidepoint(pos)]
 sprite_list.remove(clicked_smileys)
 if len(clicked_smileys) > 0:
 pop.play()
 count_popped += len(clicked_smileys)
 if event.type == pygame.MOUSEBUTTONUP:
 mousedown = False
 screen.fill(BLACK)
 sprite_list.update()
 sprite_list.draw(screen)
 clock.tick(60)
 draw_string = "Bubbles created: " + str(count_smileys)
 draw_string += " - Bubbles popped: " + str(count_popped)
 if (count_smileys > 0):
 draw_string += " - Percent: "
 draw_string += str(round(count_popped/count_smileys*100, 1))
 draw_string += "%"

 text = font.render(draw_string, True, WHITE)
 text_rect = text.get_rect()
 text_rect.centerx = screen.get_rect().centerx
 text_rect.y = 10
 screen.blit (text, text_rect)

 pygame.display.update()
 if mousedown:
 speedx = random.randint(-5, 5)
 speedy = random.randint(-5, 5)
 newSmiley = Smiley(pygame.mouse.get_pos(), speedx, speedy)
 sprite_list.add(newSmiley)
 count_smileys += 1

pygame.quit()

The more programs you write, the better you’ll get at coding.

You may start by coding games that you find interesting, writing

an app that solves a problem you care about, or developing apps for

other people. Keep coding, solve more problems, and get better and

better at programming, and you’ll soon be able to help create prod-

ucts that benefit users around the world.

Whether you’re coding mobile games and apps; writing pro-

grams that control automobiles, robots, or drones; or building the

260 Chapter 10

next social media web application, coding is a skill that can change

your life.

You have the skills. You have the ability. Keep practicing, keep

coding, and go out there and make a difference—in your own life,

in the lives of the people you care about, and in the world.

What You Learned

In this chapter, you learned about elements of game design, from

goals and achievements to rules and mechanics. We built a single-

player Smiley Pong game from scratch and turned our SmileyPop

app into a game we could picture playing on a smartphone or tab-

let. We combined animation, user interaction, and game design to

build two versions of the Smiley Pong game and a second version of

SmileyPop, adding more features as we went.

In Smiley Pong, we drew our board and game pieces, added

user interaction to move the paddle, and added collision detection

and scoring. We displayed text on the screen to give the user infor-

mation about their achievements and the state of the game. You

learned how to detect keypress events in Pygame, added “game

over” and “play again” logic, and finished version 2.0 by making

the ball speed up as the game progressed. You now have the frame-

work and parts to build more complex games.

In SmileyPop, we started with an app that was already fun to

play with, added user feedback in the form of a popping sound using

the pygame.mixer module, and then added logic and a display to keep

track of the user’s progress as more bubbles are created and popped.

The apps you’ll create with your programming skills will also

start with a simple version, a proof of concept, that you can run

and use as a foundation for new versions. You can begin with any

program and add features one at a time, saving each new version

along the way—a process called iterative versioning. This process

helps you debug each new feature until it works correctly, and

it helps you keep the last good version of a file even when the new

code breaks.

Sometimes a new feature will be a good fit, and you’ll keep it

as the foundation of the next version. Sometimes your new code

won’t work, or the feature won’t be as cool as you expected. Either

way, you build your programming skills by trying new things and

solving new problems.

Happy coding!

Game Programming: Coding for Fun 261

After mastering the concepts in this chapter, you should be

able to do the following:

•	 Recognize common game design elements in games and apps

that you use.

•	 Incorporate game design elements into apps that you code.

•	 Build a skeleton of a game by drawing the board and playing

pieces and adding user interaction.

•	 Program collision detection between game pieces and keep

score in an app or game.

•	 Display text information on the screen using the pygame.font

module.

•	 Write game logic to determine when a game is over.

•	 Detect and handle keypress events in Pygame.

•	 Develop the code to start a new game or play again after a

game ends.

•	 Use math and logic to make games progressively more difficult

•	 Add sounds to your apps with the pygame.mixer module.

•	 Display percentages and rounded numbers to keep users

informed of their progress in a game.

•	 Understand the process of iterative versioning: adding features

to an app one at a time and saving it as a new version (1.0, 2.0,

and so on).

Programming Challenges

For sample answers to these challenges, and to download

the sound files for this chapter, go to http://www.nostarch

.com/teachkids/.

#1: Sound Effects

One feature we could add to Smiley Pong, version 2.0, is

sound effects. In the classic Pong console and arcade game,

the ball made a “blip” noise when players scored a point and

a “buzz” or “blap” noise when they missed. For one of your

continued

http://www.nostarch.com/teachkids/
http://www.nostarch.com/teachkids/

262 Chapter 10

final challenges, use the skills you learned in version 2.0 of

the SmileyPop app to upgrade Smiley Pong v2.0 to v3.0 by

adding sound effects to the point and miss bounces. Save

this new file as SmileyPong3.py.

#2: Hits and Misses

To make the SmileyPop app even more game-like, add logic

to keep track of the number of hits and misses out of the

total number of clicks. If the user hits any smiley sprites

when they right-click, add 1 to the number of hits (1 hit

per click—we don’t want to duplicate count_popped). If the

user right-clicks and doesn’t hit any smiley sprites, record

that as a miss. You could program the logic to end the

game after a certain number of misses, or you could give

the user a certain number of total clicks to get the high-

est percentage they can. You might even add a timer and

tell the player to create and pop as many smiley bubbles

as they can in, say, 30 seconds. Save this new version as

SmileyPopHitCounter.py.

#3: Clear the Bubbles

You might want to add a “clear” feature (or cheat button) to

pop all the bubbles by hitting a function key, sort of like our

“play again” feature in Smiley Pong. You could also make

the bouncing smiley faces slow down over time by multiply-

ing their speed by a number less than 1 (like 0.95) every

time they bounce off an edge. The possibilities are endless.

A
PYTHON SETUP FOR

WINDOWS, MAC, AND LINUX

This appendix will walk you through each step

of installing Python on Windows, Mac, or Linux.

Depending on your operating system version, what

you see here might be slightly different from what’s

on your screen, but these steps should get you up and

running.

264 Appendix A

If you’re installing Python on a computer at school or work,

you may need help or permission from the IT department to per-

form the installation. If you run into issues installing Python

at school, ask for IT help and let them know you’re studying

programming.

Python for Windows

For Windows, we’ll use Python version 3.2.5 so that our Pygame

installation (in Appendix B) for the programs in Chapters 8 to 10

will be easier.

Download the Installer

1. Go to http://python.org/, and hover your mouse over the

Downloads link. You’ll see a drop-down list of options, as

shown in Figure A-1.

Figure A-1: Hover your mouse over Downloads to display a list of
options.

2. In the drop-down list, click the Windows link. This will take

you to a Python Releases For Windows page, as shown in

Figure A-2.

http://python.org/

Python Setup for Windows, Mac, and Linux 265

Figure A-2: The Python downloads page for Windows

3. Scroll down until you see the link that begins with

Python 3.2.5. Under that link, you’ll see several items,

as shown in Figure A-3.

Figure A-3: Under Python Releases For Windows, find the Python 3.2.5
installer.

4. Under Python 3.2.5, click Windows x86 MSI installer. This

will download the installer program.

Run the Installer

1. Wait until the download finishes, then open your Downloads

folder. You should see the python-3.2.5 Windows Installer pro-

gram file, as shown in Figure A-4.

266 Appendix A

Figure A-4: Double-click the installer in your Downloads folder.

2. Double-click the python-3.2.5 Windows Installer program file

to begin installation.

3. A Security Warning dialog might come up, as shown in

Figure A-5. If you see a Security Warning window, click Run;

Windows is just letting you know the software is trying to

install something on your computer.

Figure A-5: Click Run to allow the installation.

4. The installer may ask if you would like to install Python for

all users or just yourself, as shown in Figure A-6. It’s usually

best to choose Install for all users, but if that isn’t allowed at

your school or office, or if you can’t get it to work, try Install

just for me. Then click Next >.

Python Setup for Windows, Mac, and Linux 267

Figure A-6: Install for all users.

5. Next you’ll see a Select Destination Directory window like the

one shown in Figure A-7. This is where you can choose which

folder to install Python in. The program will try to install on

your C:\ drive under a folder called Python32, and this should

work for your laptop or home PC. Click Next > to keep install-

ing. (If you’re installing at school or work and run into trouble,

your IT staff might tell you to install in a different folder, like

User or Desktop.)

Figure A-7: Choose a folder to install Python in.

268 Appendix A

6. Now you’ll see a window like the one shown in Figure A-8

asking you to customize Python. You don’t need to change

anything here. Just click Next >.

Figure A-8: Don’t change anything; just click Next >.

7. You’re now finished with the installer, and you should see a

window like the one shown in Figure A-9. Click Finish.

Figure A-9: Click Finish to exit the installer.

You’ve installed Python! Next, you can try it out to make sure

it works properly.

Python Setup for Windows, Mac, and Linux 269

Try Out Python

1. Go to Start4Programs4Python 3.24IDLE (Python GUI),

as shown in Figure A-10. (On Windows 8 and later, you can

click the Windows/Start button, go to the Search tool, and

type IDLE).

Figure A-10: Open IDLE from the Start menu.

2. The Python shell editor screen should appear. This Python

shell program is where you can enter code and see results right

away. If you’re curious, you can start trying out some code.

Type print("Hello, Python!") and press enter. The Python shell

should respond with Hello, Python!, as shown in Figure A-11.

Try an addition statement, like 2 + 3. Press enter, and Python

will respond with the answer!

Figure A-11: Trying some commands in the Python shell

270 Appendix A

3. Finally, you may want to change the size of the text in IDLE

to make it easier to read. Go to Options4Configure IDLE….

Under Fonts/Tabs, as shown in Figure A-12, change the Size

option to 18 or whatever size is easiest for you to read. You

can also check the Bold checkbox to make the text thicker.

Customize the font so it’s comfortable for your eyes.

Figure A-12: Configuring preferences in IDLE

4. Once you’ve chosen font and size options to make your IDLE

input easy to read, click Apply, and then click Ok to return to

the IDLE Python shell screen. Now when you type, you should

see text appear in the font and size you chose.

Now you’re ready to tackle Chapters 1 through 7. To use the

programs from Chapters 8 through 10, go to Appendix B and

follow the steps to install Pygame. Happy coding!

Python Setup for Windows, Mac, and Linux 271

Python for Mac

Most Apple computers come with an earlier version of Python

already installed, but we want to install version 3.4.2 to use the

new features of Python 3 to run the sample code from the book.

Download the Installer

1. Go to http://python.org/, and hover your mouse over the

Downloads link to see a drop-down list of options. You’ll see

Mac OS X on this list, as shown in Figure A-13.

Figure A-13: Hover your mouse over the Downloads link. You should see
a Mac OS X link in the drop-down list.

2. Click the Mac OS X link in the drop-down list. This will take

you to a Python Releases For Mac OS X page.

3. On the Python Releases For Mac OS X page, find the link that

starts with Python 3.4.2 and click it. This will download the

installer program.

http://python.org/

272 Appendix A

Run the Installer

1. Wait for the download to finish. Then open your Downloads

folder to find the python-3.4.2 Mac Installer program file,

as shown in Figure A-14. Double-click the file to begin

installation.

Figure A-14: Double-click the installer in your Downloads folder.

2. Double-clicking the installer file will open an Install Python

window. You’ll see a welcome screen like the one shown in

Figure A-15. Click Continue.

Figure A-15: Click Continue on the welcome screen.

Python Setup for Windows, Mac, and Linux 273

3. Read and click Agree on the software license pop-up dialog, as

shown in Figure A-16.

Figure A-16: Read and click Agree on the software
license dialog.

4. You’ll be taken to a Select a Destination screen, as shown in

Figure A-17, where you’ll choose which disk to install Python

on. The program will usually be installed on your Mac HD

hard drive, and this should work for your MacBook or home

Mac. Click Continue to keep installing. (If you’re installing at

school or work and run into trouble, your IT staff may tell you

to install in a different folder; ask them for help if needed.)

Figure A-17: Click Continue to keep installing.

274 Appendix A

5. Click Install on the next screen, as shown in Figure A-18.

Figure A-18: Click Install.

6. You should see a screen confirming that the installation is

complete, like the one shown in Figure A-19. Click Close to

exit the installer.

Figure A-19: To exit the installer, click Close.

You’ve installed Python! Next, you can try it out to see if it

works.

Python Setup for Windows, Mac, and Linux 275

Try Out Python

1. Go to your Launchpad and click IDLE, or go to Finder4

Applications, double-click the Python 3.4 folder, and double-

click IDLE to open the Python shell, as shown in Figure A-20.

Figure A-20: Open IDLE from Launchpad (left) or the Applications folder (right).

2. The Python shell editor screen should appear. You’re ready to

try coding in the shell. Type print("Hello, Python!") and press

return; the Python shell should respond with Hello, Python!,

as shown in Figure A-21. Try an addition statement, like 2 + 3.

Press return, and Python will respond with the answer.

Figure A-21: Trying some commands in the Python shell

3. You may want to change the size of the text in the IDLE

window to make it easier to read on your computer. Go to

IDLE4Preferences…. Under Fonts/Tabs, change the Size

option to 20, as shown in Figure A-22, or adjust it larger or

smaller until it’s easy to read. You can check the Bold checkbox

to make the text thicker if it helps. Customize the font to any-

thing that’s comfortable for your eyes.

276 Appendix A

Figure A-22: Configuring preferences in IDLE

Now you’re ready to tackle Chapters 1 through 7. To use the

programs from Chapters 8 through 10, go to Appendix B and

follow the steps to install Pygame. Happy coding!

Python for Linux

Most Linux distributions, including Ubuntu and even the Linux OS

that comes installed on the Raspberry Pi, come with an earlier ver-

sion of Python already installed. However, most of the apps in this

book require Python 3. To install Python 3 on Linux, follow these

steps:

1. In the Dash menu, go to System Tools and run the Ubuntu

Software Center or similar application for your version of

Linux. Figure A-23 shows the Software Center running on

Lubuntu.

Python Setup for Windows, Mac, and Linux 277

Figure A-23: Installing Python 3 on a computer running Lubuntu Linux

2. Search for python3 and find Idle 3. Click Add to the Apps

Basket.

3. Open the Apps Basket tab and click Install Packages, as

shown in Figure A-24.

Figure A-24: Install the Idle 3 package, which includes Python 3.

4. After the installation completes, open a file window, select

Applications, then Programming, and you should see

IDLE (using Python-3.4), as shown in Figure A-25.

278 Appendix A

Figure A-25: IDLE, the Python shell program

5. Test IDLE by running it and typing 2 + 3 and pressing enter.

Type print("Hello, world.") and press enter. IDLE should

respond as shown in Figure A-26.

Figure A-26: Test Python by running IDLE. You’re ready to code!

You’re ready to try all the programs from Chapters 1 through 7.

To use the programs from Chapters 8 through 10, see Appendix B

on how to install Pygame for Linux. Happy coding!

B
PYGAME SETUP FOR

WINDOWS, MAC, AND LINUX

After installing Python (see Appendix A), you’ll want

to install Pygame to run the animations and games

in Chapters 8 through 10. This appendix will get

you up and running. If you’re installing Pygame on

a computer at school or work, you may need help or

permission from the IT department to perform the

installation. If you run into issues, ask IT for help.

280 Appendix B

Pygame for Windows

For Windows, we’ll use Pygame 1.9.2 for Python 3.2 (see Appendix A

for help setting up Python 3.2.5).

1. Go to http://pygame.org/ and click the Downloads link on the

left, as shown in Figure B-1.

Figure B-1: Click the Downloads link.

2. Under the Windows section, find the link for pygame-1.9.2a0

.win32-py3.2.msi and click it to download the installer pro-

gram, as shown in Figure B-2.

Figure B-2: Download the installer program for Windows.

http://pygame.org/

Pygame Setup for Windows, Mac, and Linux 281

3. When the download finishes, open your Downloads folder to

find the pygame-1.9.2a0.win32-py3.2 Windows Installer pro-

gram file, as shown in Figure B-3. Double-click the file to

begin installation. If a Security Warning window comes up,

click Run. Windows is just letting you know the software is

trying to install on your computer.

Figure B-3: Double-click the installer in your Downloads folder.

4. The installer might ask if you would like to install Pygame for

all users or just for yourself. It’s usually best to choose Install

for all users, but if that isn’t allowed at your school or office or

you can’t get it to work, try Install just for me. Click Next >,

as shown in Figure B-4.

Figure B-4: Install for all users.

282 Appendix B

5. The program should find your Python 3.2.5 installation from

Appendix A. Select Python 3.2 from registry. Click Next >

to keep installing, as shown in Figure B-5. (If you’re installing

at school or work and run into trouble, your IT staff may need

to select the option for Python from another location.)

Figure B-5: Select Python 3.2 from registry.

6. Once you’ve completed the installer, click Finish to exit, as

shown in Figure B-6.

Figure B-6: Click Finish to exit.

7. Go to Start4Programs4Python 3.24IDLE (Python GUI),

as shown in Figure B-7. (On Windows 8 and later, you can

press the Windows/Start button, go to the Search tool, and

type IDLE).

Pygame Setup for Windows, Mac, and Linux 283

Figure B-7: Open IDLE from the
Start menu.

8. In the Python shell editor, type import pygame and press

enter. The Python shell should respond with >>>, as shown

in Figure B-8. If it does, then you know Pygame installed

correctly and is ready to use.

Figure B-8: Import Pygame in the Python shell.

Now you’re ready to run the programs from Chapters 8

through 10. Happy coding!

284 Appendix B

Pygame for Mac

Installing Pygame on a Mac is more complicated than on a PC.

You have three options:

1. If you have access to a Windows PC, you may find it easier

to install the Windows versions of Python and Pygame in

order to run the programs from Chapters 8 through 10. If you

choose this option, follow the steps in “Python for Windows”

on page 264. Then follow the steps in “Pygame for Windows”

on page 280.

2. You can install an older version of Python, like Python 2.7.9,

along with Pygame 1.9.2 for OS X in order to run the Pygame

programs in Chapters 8 through 10. Installing Python 2.7.9

and Pygame 1.9.2 is easier than making Pygame work with

Python 3.4.2. But there are differences between Python 2

and 3, so for Chapters 1 through 7, I recommend sticking

to Python 3.4.2 to make sure the examples work. Then,

for Chapters 8 through 10, you can use Python 2.7 and

Pygame 1.9.2 to run the Pygame examples. If you choose

this option, follow the steps under “Python 2.7 and Pygame

1.9.2” in the next section.

3. To install Pygame for Python 3.4 on your Mac, see the instruc-

tions online at http://www.nostarch.com/teachkids/. If you’re

doing this at school or work, you will almost certainly need IT

support. Give your IT professional the online instructions to

use as a guide.

Python 2.7 and Pygame 1.9.2

Newer Macs come with a version of Python 2.7 preinstalled by

Apple as part of OS X. But the version of Python that Apple

provides may not work with the Pygame installer. I recommend

installing the latest version of Python 2.7 from http://python.org/

before you try to install Pygame.

1. To install Python 2.7 on your Mac, go back to Appendix A and

start following the steps under “Python for Mac” on page 271

again. But this time, instead of downloading the 3.4.2 installer

from the Mac downloads page at http://python.org/, download

and run the 2.7 installer (2.7.9 as of this writing), as shown in

Figure B-9.

http://www.nostarch.com/teachkids/
http://python.org/
http://python.org/

Pygame Setup for Windows, Mac, and Linux 285

Figure B-9: Install Python 2.7.

2. The installation process for Python 2.7 should be similar to the

installer for 3.4. Continue following the steps under “Python

for Mac” in Appendix A until you complete the installation.

3. Check your Applications folder. There should now be a

Python 2.7 folder in addition to your Python 3.4 folder, as

shown in Figure B-10.

Figure B-10: You should have both Python 2.7 and Python 3.4.

4. Go to http://pygame.org/, go to the Downloads page,

and download the Pygame 1.9.2 installer for Python 2.7:

pygame-1.9.2pre-py2.7-macosx10.7.mpkg.zip.

http://pygame.org/

286 Appendix B

5. Run the Pygame installer by holding down the control key,

clicking the file, and selecting Open with4Installer from the

pop-up menu that appears. The steps will be similar to those

for installing Python: click Continue a few times, accept the

license, and choose the installation drive. Click Close when

the installer finishes.

6. To test your Pygame installation, go to your Applications folder,

select Python 2.7, and open IDLE. In IDLE for Python 2.7,

type import pygame. IDLE should respond with >>>, as shown in

Figure B-11.

Figure B-11: Import Pygame in the Python shell.

7. You might get a pop-up notice like the one in Figure B-12 say-

ing that you need to install X11, a windowing system used by

Pygame. Click Continue to go to the XQuartz website, http://

xquartz.macosforge.org/. Download XQuartz-2.7.7.dmg, open the

file, and run the installer package.

Figure B-12: Click Continue to install X11.

8. To run the Pygame programs in Chapters 8 through 10, use

Python 2.7 IDLE instead of Python 3.4 IDLE.

NOTE On newer Macs with Retina displays, using Pygame with Python 2.7

looks a bit different than it does on other computers because Retina

displays use a higher screen resolution. Your programs should work

fine, but they will appear in a smaller area of the screen.

http://xquartz.macosforge.org/
http://xquartz.macosforge.org/

Pygame Setup for Windows, Mac, and Linux 287

Pygame for Linux

Similar to installing Pygame on a Mac, you have two options for

Pygame on Linux:

1. You can install Pygame for Python 2, the version of Python that

is likely to have come pre-installed as part of your version of

Linux. For Chapters 1 through 7, you’ll need to use Python 3,

so follow the instructions in Appendix A and use that version

of IDLE for the apps in the first seven chapters. Then, for

Chapters 8 through 10, you can use Pygame for Python 2 to

run the Pygame examples in those chapters. If you choose this

option, follow the steps under “Pygame for Python 2” in the next

section.

2. To install Pygame for Python 3.4 on Linux, see the instructions

online at http://www.nostarch.com/teachkids/. If you’re doing

this at school or work, you will likely need IT support. Give your

IT professional the online instructions to use as a guide.

Pygame for Python 2

Most Linux operating systems come with Python installed already,

usually Python 2. The game-based and graphical apps in Chapters 8

through 10 can run just fine on this older version of Python. The

following steps will get Pygame up and running on your Linux

system.

1. In the Dash menu, go to System Tools and run the Synaptic

Package Manager or similar application for your version of

Linux. Figure B-13 shows the package manager running on

Lubuntu.

Figure B-13: Installing Pygame for Python 2 on Linux

288 Appendix B

2. Search for python-pygame. Check the box next to python-

pygame in the search results and click Apply to complete the

installation.

3. Run System Tools4Terminal (or XTerm or a similar

application for your version of Linux). You can start Python 2

by entering python2 in the terminal window. Then test your

Pygame installation by entering import pygame at the >>> prompt

as shown in Figure B-14. Python should reply with >>> to let

you know that Pygame was successfully imported.

Figure B-14: You can test your installation of Pygame
for Python 2 from the Linux command line terminal.

4. You can use the Software Center (as shown in “Python for

Linux” on page 276) or the Synaptic Package Manager shown

in Figure B-13 to search for and install IDLE for Python 2.

Use this version of IDLE when running the Pygame apps from

Chapters 8 through 10.

C
BUILDING YOUR OWN

MODULES

Throughout this book, you’ve imported modules like

turtle, random, and pygame into your programs to add

functions for drawing, generating a random number,

and animating graphics without having to code them

from scratch. But did you know that you can also

write your own modules and import them into your

programs? Python makes it easy to build modules so

you can save useful code and use it in many programs.

290 Appendix C

To create a reusable module, we write the module in IDLE’s

file editor window just like other program files we’ve built, and

we save it as a new .py file with the name of the module as the

filename (for example, colorspiral.py might be the filename for a

module that draws color spirals). We define functions and vari-

ables in our module. Then, to reuse them in another program,

we import the module into the program by typing import and the

name of the module (for example, import colorspiral would let a

program use the code in colorspiral.py to draw color spirals).

To practice writing our own module, let’s create an actual

colorspiral module and see how it saves us from having to

rewrite code.

Building the colorspiral Module

Let’s create a colorspiral module to help us draw spirals quickly and

easily in our programs just by calling import colorspiral. Type the

following code into a new IDLE window and save it as colorspiral.py.

colorspiral.py

u """A module for drawing colorful spirals of up to 6 sides"""
import turtle

v def cspiral(sides=6, size=360, x=0, y=0):
w """Draws a colorful spiral on a black background.

 Arguments:
 sides -- the number of sides in the spiral (default 6)
 size -- the length of the last side (default 360)
 x, y -- the location of the spiral, from the center of the screen
 """
 t=turtle.Pen()
 t.speed(0)
 t.penup()
 t.setpos(x,y)
 t.pendown()
 turtle.bgcolor("black")
 colors=["red", "yellow", "blue", "orange", "green", "purple"]
 for n in range(size):
 t.pencolor(colors[n%sides])
 t.forward(n * 3/sides + n)
 t.left(360/sides + 1)
 t.width(n*sides/100)

Building Your Own Modules 291

This module imports the turtle module and defines a function

called cspiral() for drawing colorful spirals of different shapes,

sizes, and locations. Let’s look at differences between this mod-

ule and the other programs we’ve written. First, at u, we have a

special comment called a docstring. A docstring is a way of add-

ing documentation to files that we intend to reuse or share with

others; in Python, modules should have docstrings to help future

users understand what the module does. The docstring will always

be the first statement in a module or function, and each docstring

starts and ends with triple double quotes (""", three double quotes

in a row with no spaces in between). After the docstring, we import

the turtle module—yes, we can import modules into our modules!

At v, we define a function called cspiral() that accepts up to

four arguments—sides, size, x, and y—for the number of sides in

the spiral, the size of the spiral, and the (x, y) location of the spiral

starting from the center of the turtle screen. A docstring for the

cspiral() function begins at w; this multiline docstring provides

more specific information about the function. The first line of the

docstring begins with triple double quotes and describes the func-

tion overall. Next we leave a blank line, followed by a list of the

arguments accepted by the function. With this documentation, a

future user can easily read which arguments are accepted by the

function and what each one means. The rest of the function is the

code to draw a colorful spiral, similar to code from Chapters 2, 4,

and 7.

Using the colorspiral Module

Once we’ve completed colorspiral.py and saved it, we can use it

as a module by importing it into another program. Create a new

file in IDLE and save it as MultiSpiral.py in the same folder as

colorspiral.py.

MultiSpiral.py

import colorspiral
colorspiral.cspiral(5,50)
colorspiral.cspiral(4,50,100,100)

This three-line program imports the colorspiral module we

created and uses the module’s cspiral() function to draw two

spirals on the screen, as shown in Figure C-1.

292 Appendix C

Figure C-1: Two colorful spirals created with a three-
line program, thanks to the colorspiral.py module

With the colorspiral module, anytime a programmer wants to

create colorful spirals, all they have to do is import the module and

call colorspiral.cspiral()!

Reusing the colorspiral Module

Let’s reuse the colorspiral module to draw 30 random, colorful

spirals. To do that, we’ll import another module we’ve used before,

random. Type the following eight lines of code into a new file in

IDLE and save the file as SuperSpiral.py.

SuperSpiral.py

import colorspiral
import random
for n in range(30):
 sides = random.randint(3,6)
 size = random.randint(25,75)
 x = random.randint(-300,300)
 y = random.randint(-300,300)
 colorspiral.cspiral(sides, size, x, y)

This program begins with two import statements: one for the

colorspiral module we created and the other for the random module

we’ve used throughout the book. The for loop will run 30 times.

The loop generates four random values for the number of sides

Building Your Own Modules 293

(between 3 and 6), the size of the spiral (between 25 and 75), and

the x- and y-coordinates to draw the spiral on the screen, between

(–300, –300) and (300, 300). (Remember that the turtle’s origin,

(0, 0), is at the center of the drawing screen.) Finally, each pass

through the loop calls the colorspiral.cspiral() function from our

module, drawing a colorful spiral with the randomly generated

attributes from the loop.

Although this program is only eight lines long, it produces

stunning graphics like Figure C-2.

Figure C-2: The colorspiral module allows SuperSpiral.py to produce a
lovely multispiral collage with only eight lines of code.

The ability to create reusable modules means that you can

spend more time solving new problems and less time recoding

previous solutions. Whenever you build a useful function or set

of functions that you want to use over and over, you can create a

module to use for yourself or share with fellow coders.

294 Appendix C

Additional Resources

The official documentation for Python at http://docs.python.org/3/

includes more information on modules and the Python language.

The Python Tutorial has a section on modules at http://docs

.python.org/3/tutorial/modules.html. As you learn new Python

programming skills, make use of these resources to add to your

coding tool set.

http://docs.python.org/3/
http://docs.python.org/3/tutorial/modules.html
http://docs.python.org/3/tutorial/modules.html

Glossary

Many of the terms you encounter in learning to code

are everyday words that you already understand.

Some terms, though, are brand new or have special

meaning to computer programmers. This glossary

defines several of the newer terms you’ll come across

in the book, as well as familiar words that take on new

meanings in the world of coding.

296 Glossary

algorithm A set of steps for performing a task, like a recipe.

animation The illusion of motion created when similar images

are displayed quickly one after the other, as in a cartoon.

app Short for application, a computer program that does some-

thing useful (or fun!).

append To add something to the end; for example, adding letters

onto the end of a string or adding elements to the end of a list or

array.

argument A value passed to a function; in the statement

range(10), 10 is an argument.

array An ordered list of values or objects, usually of the same

type, accessed by their index, or position in the list.

assignment Setting the value of a variable, as in x = 5, which

assigns the value 5 to the variable x.

block A group of programming statements.

Boolean A value or expression that can be either true or false.

class A template defining the functions and values to be con-

tained in any objects of that type.

code Statements or instructions written by a programmer in a

language that computers can understand.

collision detection Checking to see if two virtual objects are

touching, or colliding, on the screen, like the ball and paddle

in Pong.

concatenate To combine two strings of text into a single string.

conditional expression A statement that allows the computer

to test a value and perform different actions depending on the out-

come of that test.

constant A named value in a computer program that stays the

same, like math.pi (3.1415...).

declaration A statement or group of statements that tell a com-

puter what a variable or function name means.

Glossary 297

element A single item in a list or array.

event An activity that a computer can detect, like a mouse

click, value change, keypress, timer tick, and so on. Statements or

functions that respond to events are called event handlers or event

listeners.

expression Any valid set of values, variables, operators, and

functions that produces a value or result.

file A collection of data or information stored by a computer on

some kind of storage device, like a hard disk, DVD, or USB drive.

for loop A programming statement that allows a block of code to

be repeated for a given range of values.

frame A single image in a moving sequence for animation, video,

or computer graphics.

frames per second (fps) The rate or speed that images are

drawn on the screen in an animation, video game, or movie.

function A named, reusable set of programming statements to

perform a specific task.

import To bring reusable code or data into a program from

another program or module.

index An element’s position in a list or array.

initialize To give a variable or object its first, or initial, value.

input Any data or information entered into a computer; input

can come from a keyboard, mouse, microphone, digital camera, or

any other input device.

iterative versioning Repeatedly making small changes or

improvements to a program and saving it as a new version, like

Game1, Game2, and so on.

keyword A special, reserved word that means something in a

particular programming language.

list A container for an ordered group of values or objects.

loop A set of instructions that is repeated until a condition is

reached.

298 Glossary

module A file or set of files with related variables, functions,

and classes that can be reused in other programs.

nested loop A loop inside another loop.

object A variable containing information about a single instance

of a class, such as a single sprite from the Sprite class.

operator A symbol or set of symbols that represents an action

or comparison and returns a result, such as +, -, *, //, <, >, ==,

and so on.

parameter An input variable to a function, specified in the

function’s definition.

pixel Short for picture element, the small dots of color that make

up images on a computer screen.

program A set of instructions written in a language computers

can understand.

pseudorandom A value in a sequence that seems to be random

or unpredictable, and is random enough to simulate rolling dice or

flipping coins.

random numbers An unpredictable sequence of numbers

evenly distributed over a certain range.

range An ordered set of values between a known start and end

value; in Python, the range function returns a sequence of values,

such as 0 through 10.

RGB color Short for red-green-blue color, a way of represent-

ing colors by the amount of red, green, and blue light that can be

mixed to re-create each color.

shell A text-based command line program that reads commands

from the user and runs them; IDLE is Python’s shell.

sort To put elements of a list or array in a certain order, such as

alphabetical order.

string A sequence of characters, which can include letters, num-

bers, symbols, punctuation, and spacing.

syntax The spelling and grammar rules of a programming

language.

Glossary 299

transparency In graphics, the ability to see through portions of

an image.

variable In a computer program, a named value that can change.

while loop A programming statement that allows a block of code

to be repeated as long as a condition is true.

Note: Page numbers

followed by f, n, or t

indicate figures, notes,

and tables, respectively.

Symbols

+= (addition and assignment

operator), 100, 187

+ (addition operator), 35, 35t

\ (backslash), 240

/ (division operator), 35,

35t, 39

= (equal sign), 32

== (equal to operator), 62,

79–80, 82–83, 82t

> (greater than operator),

62, 82–83, 82t

>= (greater than or equal to

operator), 82–84, 82t

() (grouping operator),

35, 35t

(hash mark), 6

// (integer division

operator), 49–50,

114, 156

< (less than operator), 62,

82–84, 82t

<= (less than or equal to

operator), 82–83, 82t

% (modulo [mod] operator),

21–22, 49–50,

88–89, 156

* (multiplication operator),

35, 35t

!= (not equal to operator),

62, 82t, 83

** (power [exponent]

operator), 35t

" (quotation marks), 32

' (single quotation

marks), 80

[] (square brackets), 46

- (subtraction operator),

35, 35t

A

addition and assignment

operator (+=),

100, 187

addition operator (+), 35, 35t

algorithms, defined, 20,

41, 296

American Standard Code

for Information

Interchange (ASCII)

values, 97, 98t

and (logical operator),

93–94, 93t

animation, 175–206. See

also drawing

bouncing

changing direction,

194–196

off four walls, 197–201

off one wall, 190–197

speed, 194–199

boundaries, 191–193, 198

collision detection, 191,

195, 198, 200, 221,

224–225, 237–240,

238f, 247–248

defined, 296

frames, 185–186

game loop, 182–184

movement, 186–190

Pygame, 176–181

append() function, 66

appending, 65, 97, 296

applications (apps;

programs),

defined, 2, 296

arguments, 43, 110,

146, 296

arrays, 119–122, 122t,

126–128

defined, 119, 296

ArrowDraw.py program,

161–163, 163f, 173

ASCII (American Standard

Code for Information

Interchange) values,

97, 98t

assignment, of values to

variables, 32

defined, 296

AtlantaPizza.py program,

39–42, 42f

attributes, defined, 216

B

backslash (\), 240

bgcolor() function, 23, 159

binary search, 108

BLACK variable, 188

blit() function, 183, 188,

243, 256

BMP format, 182

Boolean (conditional)

expressions, 62, 79,

81–85

comparison operators,

81–84

defined, 296

Boolean numbers, 34

bouncing (animation)

changing direction,

194–196

off four walls, 197–201

off one wall, 190–197

speed, 194–199

boundaries, for animations,

191–193, 198

Index

302 INDEX

C

Caesar cipher, 95, 95f

callback functions, 158

calling functions,

defined, 144

canvas size, determining,

113–114

Cartesian coordinates,

111–112, 111f,

133, 133f

case sensitivity, 33

characters, 97–99

choice() function, 110, 115,

116, 120–121

chr() function, 100

ciphers, 95–100

circle() function, 17–19,

54–55, 57, 148,

179, 183

CircleSpiral1.py program,

17–19, 18f

CircleSpiralInput.py

program, 52

classes, 216–219. See also

names of specific

classes

constructed, 218

container, 217

defined, 189, 296

extending, 218

ClickAndSmile.py program,

166–167, 167f, 173

ClickDots.py program,

208–211, 209f

ClickKaleidoscope.py

program, 170–171,

171f, 173

ClickSpiral.py program,

163–165, 164f

close window button (event),

182–184

Clock class, 188–190

coding, defined, 1

collide_circle()

function, 224

collidepoint() function, 224

collide_rect() function, 224

collision detection, 191,

195, 198, 200, 221,

224–225, 237–240,

238f, 247–248

defined, 296

ColorCircleSpiral.py

program, 23–24, 52

ColorMeSpiralled.py

program, 52

ColorPaint.py program, 229

colors, 19

changing background, 23

using multiple, 20–22

colors argument, 110

colorspiral module

building, 290–291

reusing, 292–293

using, 291–292

ColorSpiralInput.py

program, 47–48,

48f, 52

ColorSpiral.py program, 25,

26f, 27–28

ColorSquareSpiral.py

program, 21–22, 21f

colors variable, 20–21, 46

comments, 13

defined, 6

docstrings, 291

usefulness of, 40–41

comparison operators,

62–63, 81–84,

82t, 83f

complex conditions, 92–94

complex numbers, 34

compound if statements, 93

concatenation, 97, 296

conditional expressions,

defined, 296.

See also Boolean

expressions;

conditions

conditions, 77–103

Boolean expressions, 62,

79, 81–85

ciphers, 95–100

complex, 92–94

elif statements, 91–92,

118, 253

else statements, 85–91

if statements. See if

statements

while statements, 62–64

constants, 179, 188, 296

constructors, 218

container classes, 217

convert_in2cm() function,

153–156

convert_lb2kg() function,

154–156

count_popped variable,

254–256

count_smileys variable,

254–256

cspiral() function, 291–293

D

declaring (defining)

functions, 143–144,

150–151

defined, 296

def keyword, 143

Descartes, René, 111

diameter, 19

DiscoDot.py program, 203

division operator (/), 35,

35t, 39

docstrings, 291

downloading Python, 4–5

DragDots.py program,

211–214, 211f, 228

drawing, 11–29. See also

animation

circles, 17–19

colors, 19

changing

background, 23

using multiple, 20–22

dots, 177–180

multi-sided spirals, 25–26

square spirals

adjusted, 16–17

basic, 12–15

INDEX 303

draw_kaleido() function,

168–169, 171

draw_smiley() function, 146,

150–151, 166

draw_spiral() function,

169–171

draw_string variable, 242

driving_age variable, 85f

E

element, defined, 297

elif statements, 91–92,

118, 253

else statements, 85–91

EncoderDecoder.py program,

99–100, 102–103

end_fill() function, 148

end keyword, 43

equal sign (=), 32

equal to operator (==), 62,

79–80, 82–83, 82t

eval() function, 28, 40, 48

evaluation, 28, 40

event, defined, 297

event handlers (event

listeners), 157–158,

160–165, 183–184

close window button,

182–184

defined, 157

keyboard events,

160–163, 246–247

mouse clicks, 158–160,

163–171, 209–210

mouse presses and

releases, 213

parameters, 163–171

in Pygame, 181

exponent (power)

operator (**), 35t

expressions

Boolean, 62, 79, 81–85

defined, 36, 297

in shell, 36, 36f

extending classes, 218

F

False value, 83–84

fillcolor() function, 148

fill() function, 148, 188

FiveDice.py program,

129–131, 130f

flags, 123–124, 212, 225

floating-point numbers,

defined, 34–35

focus, 162

fonts (typefaces), 242–243

for loops, 14, 55–59, 65,

80, 135, 142, 144,

179, 214

defined, 297

forward() function, 13–15,

17, 142–143

frames, 185–186, 297

frames per second (fps),

186, 297

functions, 141–173. See also

names of specific

functions

callback, 158

calling, 144

defined, 17, 297

defining, 143–144,

150–151

interaction, 157–171

parameters, 146

returning values from,

153–154

using return values in

programs, 154–157

utility of, 142

G

game keycodes, 247

game loops, 61–62, 108, 130,

135, 181

animation, 182–184

handling mouse clicks,

209–210

handling mouse presses

and releases, 213

ongoing play, 123–124

game programming,

231–262. See also

names of specific

games

adding difficulty, 247–249

adding points, 240–241

board and pieces,

234–241

displaying score, 241–245

elements of design, 232

game over, 246

hitting ball with paddle,

237–240

playing again, 246–247

sound, 252–254

subtracting lives,

236–237

tracking and displaying

progress, 254–257

get() function, 181, 210

get_height() function, 193,

199, 221

get_pos() function, 213, 235

get_pressed() function, 253

get_rect() function, 243

get_rel() function, 229

get_width() function, 193,

195, 221

goto() function, 150

greater than operator (>),

62, 82–83, 82t

greater than or equal

to operator (>=),

82–84, 82t

GREEN variable, 178–179

Group class, 217–218

grouping operator (()),

35, 35t

GuessingGame.py program,

107–109, 108f

guess variable, 108

H

hash mark (#), 6

heading() function,

69–70, 139

304 INDEX

height_cm variable, 156

height_in variable, 156

"Hello, world!" program, 5

hideturtle() function, 152

HighCard.py program,

125, 139

Hi-Lo guessing game,

106–109

I

IDLE editor, 5, 269–270,

275–276, 277–278,

282–283, 286

if-elif-else statements,

91–92, 128

if-else statements, 85–91

IfSpiral.py program,

79–81, 81f

if statements, 78–81, 78f,

239–241, 247–248

defined, 78

games, 108, 124

syntax, 79

importing code, defined,

13, 297

indentation, 56

indexes

finding items in lists,

121–122

testing which value is

higher, 122–123

index() function, 122

init() function, 178, 182,

208, 253

__init__() function,

218–220, 223

initialization, 178, 218, 297

in keyword, 56

inner and outer loops, 68

input, defined, 297

input() function, 33, 92, 94,

142–143

installing Pygame

for Linux, 287–288

for Mac, 284–286

for Windows, 280–283

installing Python, 5

for Linux, 276–278

for Mac, 271–274

for Windows, 264–268

integer division operator

(//), 49–50, 114, 156

integers, defined, 34

interaction, 207–229. See

also event handlers

(event listeners)

classes and objects,

216–219

clicking, 208–211

collision detection,

224–225

dragging, 211–214

sprites, 215–216

removing, 224–225

scaling, 221

setting up, 218–220

updating, 220–221

int() function, 60

islower() function, 97

isupper() function, 96, 100

iteration, 55

iterative versioning,

defined, 252, 297

K

kaleidoscope mirror effect,

132–136, 139

Kaleidoscope.py program,

134–135, 136f,

138–139, 168

keep_going variable,

123–125, 178,

182–183, 209

keyboard events, 160–163,

246–247

keycodes, Pygame, 247

KEYDOWN event, 246–247

keyword arguments, 43, 297

L

left() function, 13–14,

16, 18, 28, 55,

57–58, 161

len() function, 66–67,

253, 255

less than operator (<), 62,

82–84, 82t

less than or equal to

operator (<=),

82–83, 82t

libraries, defined, 13

listen() function, 162

listeners. See event handlers

(event listeners)

list() function, 55–56

lists, 46–48, 120

defined, 46, 297

finding items in,

121–122, 122t

load() function, 182–183

logical operators, 93, 93t

Logo programming

language, 13n

loops, 53–75

defined, 13–14, 297

for, 14, 55–59, 65, 80,

135, 142, 144, 179,

214, 297

game. See game loops

nested, 68–72, 298

repeating variables

through, 42

user input, 59–61

using to cycle through

colors, 21–22

while, 62–64, 65–66, 78,

108, 123–125, 130,

179, 214, 235, 299

lower() function, 92–94, 96

M

MadLib.py program, 8–9

MadLib2.py program, 9

math, in the Python shell,

36, 36f. See also

numbers

MathHomework.py program,

48–50, 50f

methods, defined, 216

mobile apps, 257

INDEX 305

modules. See also names of

specific modules

building, 290–291

defined, 298

reusing, 292–293

using, 291–292

modulo (mod) operator (%),

21–22, 49–50,

88–89, 156

MOUSEBUTTONDOWN event,

210–211, 224–225

MOUSEBUTTONUP event, 212

mouse clicks (events),

158–160, 163–171,

209–210

mouse presses and releases

(events), 213

movement (animation),

186–190

multiplication operator (*),

35, 35t

multi-sided spirals, 25–26

MultiSpiral.py program,

291–292, 292f

my_face variable, 123

my_name variable, 32–33

N

name variable, 42

nested loops, 68–72, 298

NiceHexSpiral.py program,

2f–3f

not (logical operator), 93, 93t

not equal to operator (!=),

62, 82t, 83

number_of_circles

variable, 60

numbers, 34–42

Booleans, 34

complex, 34

doing math in shell,

36, 36f

floating-point, 34–35

integers, 34

operators, 35

syntax errors, 37–38, 37f

numinput() function, 46–47,

59–60, 69

O

object-oriented

programming, 216

objects, defined, 298

OldEnoughOrElse.py

program, 86

OldEnough.py program,

84–85, 85f

onkeypress() function,

161–162

onscreenclick() function,

158, 160, 163–166,

168–169, 173

operators

comparison, 62–63,

81–84, 82t, 83f

defined, 35, 298

logical, 93, 93t

math, 35t

programming with, 39–42

or (logical operator), 93, 93t

ord() function, 99–100

origin, 111, 180

P

parameters, 146–153

defined, 298

for event handlers,

163–171

pencolor() function, 20–21,

46, 115, 148, 159

pendown() function, 46, 112

penup() function, 66, 69, 112

picx variable, 186–187,

192–193, 193f,

194–195, 197–198

picy variable, 186–187,

192–193, 193f,

194–195, 197–198

PingPongCalculator.py

program,

154–157, 173

ping_pong_heavy

variable, 156

ping_pong_tall variable, 156

pixels, defined, 15, 298

PolygonOrRosette.py

program, 86–87, 87f

Pong (game), 232–233, 233f

porting code, defined, 145

position() function, 69–70

pos parameter, 219–220, 225

power (exponent) operator

(**), 35t

print() function, 43, 63, 156

programming languages,

defined, 3–4

programs (applications;

apps), defined,

2, 298

prompt

command, 5

input, 33

prototypes, defined, 252

pseudorandom numbers,

107, 298

Pygame, 176, 176f, 180f

classes and objects, 216

Clock class, 189

collision detection, 224

event handlers, 181

exiting program, 184

game loop, 181–184

get_height() function,

193, 199, 221

get_width() function, 193,

195, 221

Group class, 217

initializing, 178

installing, 177

for Linux, 287–288

for Mac, 284–286

for Windows, 280–283

keycodes, 247

scale() function, 221

setup, 181

sound, 252–253

Sprite class, 216–218, 224

306 INDEX

Pygame, continued

surfaces, 178

turtle graphics vs.,

180–181, 214

update() function, 220

pygame.draw module, 179, 183

pygame module, 177–179, 182

Python

defined, 4

documentation for, 294

downloading, 4–5

installing, 5

for Linux, 276–278

for Mac, 271–274

for Windows, 264–268

setup

for Linux, 278

for Mac, 275–276

for Windows, 269–270

website, 4f, 5

Q

QUIT event, 183, 210

quit() function, 179,

184, 214

quotation marks ("), 32

R

radius, 17–18

RainingDots.py program,

205, 206f

randint() function, 106–107,

109, 115

RandomDots.py program,

203–205, 204f

random module, 106

choice() function, 110,

115, 116, 120–121

importing, 106

randint() function,

106–107, 109, 115

randrange() function,

114–115, 152

randomness, 105–139

Hi-Lo guessing game,

106–109

kaleidoscope mirror

effect, 132–136

random spirals, 109–116

choosing random

colors, 110

coordinates, 111–112

determining canvas

size, 113–114

Rock-Paper-Scissors

game, 116–118

War-style card game,

119–125

building deck of cards,

119–120

continuing play,

123–125

counting cards,

121–123

dealing cards, 120–121

Yahtzee-style game,

126–132

probabilities, 131–132

setting up, 126–127

sorting dice, 127–128

testing dice, 128–129

RandomPaint.py

program, 228

RandomSmileys.py function,

146–152, 146f,

153f, 166

random_spiral() function,

164–165

calling, 144–145

defining, 143–144

RandomSpiralsFunction.py

program,

143–145, 164

RandomSpirals.py program,

109–116, 109f, 132,

142–143

randrange() function,

114–115, 152

range, defined, 298

range() function, 17, 23,

55–56, 58, 59–60

remove() function,

224–225, 253

render() function, 242

returning (to new line), 44

return statement, 154

return values, 153–157

reusing code, 13, 142–143,

145, 189, 216–217,

292–293

RGB color triplets, 178,

188, 203, 298

right() function, 161

Rock-Paper-Scissors game,

116–118

RockPaperScissors.py

program,

116–118, 118f

Rosette4.py program, 56–57

Rosette6.py program, 58–59,

59f, 74

RosetteGoneWild.py

program, 60–61,

61f, 74

Rosette.py program, 54, 54f

RosettesAndPolygons.py

program, 88–89, 90f,

91, 102

rotations, 95

round() function, 156, 256

RubberBandBall.py

program, 28, 29f

running programs, 6–7

S

SayMyName.py program,

42–44, 44f

SayOurNames.py program,

63–65, 64f

scale() function, 221

score

adding points, 240–241

displaying in game,

241–245

subtracting lives,

236–237

screenshots, 171

self parameter, 219–221

set_caption() function, 208

setheading() function, 70–71

INDEX 307

set_mode() function, 178,

192, 197

setpos() function, 112,

148–150, 158–160,

163, 166

setx() function, 70

sety() function, 70–71

shell, 5f, 269, 275

defined, 5, 298

doing math in, 36, 36f

syntax errors, 37–38, 37f

variables in, 38–39, 38f

ShowDot.py program,

177–180, 177f, 203

ShowPic.py program,

181–185, 181f

sides variable, 25, 26f,

27–28, 138

single quotation marks

('), 80

size variable, 115–116

SmileyBounce1.py program,

190–197, 191f, 192f

SmileyBounce2.py program,

197–200, 201f,

233–234

Smiley class, 218–219

SmileyExplosion.py

program, 215–224,

215f, 229

SmileyMove.py program,

186–190

SmileyPong1.py program,

233–245, 234f, 236f,

238f, 241f

SmileyPong2.py program,

245–252, 249f,

261–262

SmileyPong3.py

program, 262

SmileyPopHitCounter.py

program, 262

SmileyPop.py program,

224–227

SmileyPop2.py program,

252–259

SmileyThrow.py

program, 229

sorting, defined, 298

sort() function, 127, 131

sound, adding with Pygame,

252–254

speed, 194–199

speed() function, 135

SpiralFamily.py program,

65–67, 67f, 75

spiral() function, 165

SpiralMyName.py program,

44–45, 46f, 52

SpiralRosettes.py program,

74, 74f

spot variable, 210

Sprite class, 216–218

sprites

defined, 215

removing, 224–225

scaling, 221

setting up, 218–220

updating, 220–221

square brackets ([]), 46

square spirals

adjusted, 16–17

basic, 12–15

SquareSpiral1.py program,

12–15, 12f

SquareSpiral2.py program,

16–17, 16f

SquareSpiral3.py program,

19–20, 19f

statements

defined, 37

syntax errors, 37–38

str() function, 242, 255

strings, 32, 42–44, 96–97

defined, 20, 42, 298

subtraction operator (-),

35, 35t

SuperSpiral.py program,

292–293, 293f

surfaces, 178

symmetric ciphers

(symmetric

codes), 95

symmetry, 95

syntax

defined, 37, 298

errors, 37–38, 37f

T

textinput() function,

44–45, 44f

text variable, 242

ThankYou.py program,

33, 34f

tick() method, 190, 216

timer variable, 189

transformation, defined, 221

transparency, defined, 299

true division, 39

True value, 83–84

TurtleDrawMax.py program,

159–160, 160f

TurtleDraw.py program,

158–159, 159f,

163, 165

turtle graphics, 11–29

circles, 17–19

colors, 19

changing

background, 23

using multiple, 20–22

defined, 11–12

multi-sided spirals, 25–26

Pygame vs., 180–181

setting random

positions, 112

square spirals

adjusted, 16–17

basic, 12–15

website, 20

turtle module, 12–13.

See also drawing;

functions; loops;

randomness

circle() function, 147

308 INDEX

turtle module, continued

forward() function,

142–143

listen() function, 162

numinput() function, 47,

59–60, 69

onkeypress() function, 161

onscreenclick() function,

158, 160, 163–166,

168–170

pendown() function, 112

penup() function, 112

setpos() function, 112

textinput() function,

44–45, 66

window_height() function,

113–114

window_width() function,

113–114

write() function, 44

turtlesize() function, 162

typefaces (fonts), 242–243

U

update() function, 179, 184,

213, 220–221, 223,

235, 255

up() function, 161

upper() function, 96, 99

V

values, 32

variables, 32–34. See also

names of specific

variables

assigning values to, 32

defined, 14, 32, 298

naming, 32–33

order of operations, 39

in shell, 38–39, 38f

true division, 39

ViralFamilySpiral.py

program, 75

ViralSpiral.py program,

68–72, 71f, 74–75

W

War-style card game,

119–125

building deck of cards,

119–120

continuing play, 123–125

counting cards, 121–123

dealing cards, 120–121

weight_lb variable, 156

WhatsMyGrade.py program,

91–92

WhatToWear.py program, 94

while loops, 62–64, 65–66,

78, 108, 123–125,

130, 179, 214, 235

defined, 299

width() function, 25,

150, 159

window_height() function,

113–114, 135, 139

window_width() function,

113–114, 135, 139

write() function, 44

X

x-axis, 70, 111, 180

x variable, 14, 14n2, 38–39

xvel parameter, 219–221

Y

Yahtzee-style game,

126–132

probabilities, 131–132

setting up, 126–127

sorting dice, 127–128

testing dice, 128–129

y-axis, 70–71, 111, 180

your_age variable, 84

your_face variable, 121, 123

YourName.py program,

6–7, 7f

your_name variable, 33, 46

your_suit variable, 121

yvel parameter, 219–221

UPDATES

Visit http://www.nostarch.com/teachkids/ for updates, errata, program

files for the projects and programming challenges, and other information.

DOING MATH WITH PYTHON
Use Programming to Explore Algebra,
Statistics, Calculus, and More!
by amit saha

spring 2015, 304 pp., $29.95

isbn 978-1-59327-640-9

THE LEGO® MINDSTORMS ® EV3
DISCOVERY BOOK
A Beginner’s Guide to Building and
Programming Robots
by laurens valk

jun 2014, 396 pp., $34.95

isbn 978-1-59327-532-7

full color

PYTHON FOR KIDS
A Playful Introduction to Programming
by jason r. briggs

dec 2012, 344 pp., $34.95

isbn 978-1-59327-407-8

full color

JAVASCRIPT FOR KIDS
A Playful Introduction to Programming
by nick morgan

dec 2014, 336 pp., $34.95

isbn 978-1-59327-408-5

full color

LEARN TO PROGRAM
WITH SCRATCH
A Visual Introduction to Programming
with Games, Art, Science, and Math
by majed marji

feb 2014, 288 pp., $34.95

isbn 978-1-59327-543-3

full color

LAUREN IPSUM
A Story About Computer Science
and Other Improbable Things
by carlos bueno

dec 2014, 192 pp., $16.95

isbn 978-1-59327-574-7

full color

800.420.7240 or 415.863.9900 | sales@nostarch.com | www.nostarch.com

MORE SMART BOOKS FOR CURIOUS KIDS!

	Advance Praise for Teach Your Kids to Code
	About the Author

	Brief Contents

	Contents in Detail

	Acknowledgments
	Introduction: What Is Coding and Why Is It Good for Your Kids?
	Why Should Kids Learn to Code?
	Coding Is Fun
	Coding Is a Valuable Job Skill

	Where Can Kids Learn to Code?
	How to Use This Book
	Explore!
	Do It Together!
	Online Resources

	Coding = Solving Problems

	Chapter 1: Python Basics: Get to Know Your Environment
	Getting Started with Python
	1. Download Python
	2. Install Python
	3. Test Python with a Program

	Writing Programs in Python
	Running Programs in Python
	What You Learned
	Programming Challenges
	#1: Mad Libs
	#2: More Mad Libs!

	Chapter 2: Turtle Graphics: Drawing with Python
	Our First Turtle Program
	How It Works
	What Happens

	Turtle on a Roll
	Turtle Roundup
	Adding a Touch of Color
	A Four-Color Spiral
	Changing Background Colors

	One Variable to Rule Them All
	What You Learned
	Programming Challenges
	#1: Changing the Number of Sides
	#2: How Many Sides?
	#3: Rubber-Band Ball

	Chapter 3: Numbers and Variables: Python Does the Math
	Variables: Where We Keep Our Stuff
	Numbers and Math in Python
	Python Numbers
	Python Operators
	Doing Math in the Python Shell
	Syntax Errors: What Did You Say?
	Variables in the Python Shell
	Programming with Operators:
A Pizza Calculator

	Strings: The Real Characters in Python
	Improving Our Color Spiral with Strings
	Lists: Keeping It All Together
	Python Does Your Homework
	What You Learned
	Programming Challenges
	#1: Circular Spirals
	#2: Custom Name Spirals

	Chapter 4: Loops Are Fun (You Can Say That Again)
	Building Your Own for Loops
	Using a for Loop to Make a Rosette with Four Circles
	Modifying Our for Loop to Make a Rosette with Six Circles

	Improving Our Rosette Program with User Input
	Game Loops and while Loops
	The Family Spiral
	Putting It All Together:
Spiral Goes Viral
	What You Learned
	Programming Challenges
	#1: Spiral Rosettes
	#2: A Spiral of Family Spirals

	Chapter 5: Conditions (What If?)
	if Statements
	Meet the Booleans
	Comparison Operators
	You’re Not Old Enough!

	else Statements
	Polygons or Rosettes
	Even or Odd?

	elif Statements
	Complex Conditions: if, and, or, not
	Secret Messages
	Messin’ with Strings
	The Value of Character(s)
	Our Encoder/Decoder Program

	What You Learned
	Programming Challenges
	#1: Colorful Rosettes and Spirals
	#2: User-Defined Keys

	Chapter 6: Random Fun and Games: Go Ahead, Take a Chance!
	A Guessing Game
	Colorful Random Spirals
	Pick a Color, Any Color	
	Getting Coordinated
	How Big Is Our Canvas?
	Putting It All Together

	Rock-Paper-Scissors
	Pick a Card, Any Card
	Stacking the Deck
	Dealing Cards
	Counting Cards
	Keeping It Going
	Putting It All Together

	Roll the Dice: Creating a
Yahtzee-Style Game
	Setting Up the Game
	Sorting the Dice
	Testing the Dice
	Putting It All Together

	Kaleidoscope
	What You Learned
	Programming Challenges
	#1: Random Sides and Thickness
	#2: Realistic Mirrored Spirals
	#3: War

	Chapter 7: Functions: There’s a Name for That
	Putting Things Together with Functions
	Defining random_spiral()
	Calling random_spiral()

	Parameters: Feeding Your Function
	Smileys at Random Locations
	Putting It All Together

	Return: It’s What You Give Back That Counts
	Returning a Value from a Function
	Using Return Values in a Program

	A Touch of Interaction
	Handling Events: TurtleDraw
	Listening for Keyboard Events: ArrowDraw
	Handling Events with Parameters: ClickSpiral
	Taking It One Step Further: ClickandSmile

	ClickKaleidoscope
	The draw_kaleido() Function
	The draw_spiral() Function
	Putting It All Together

	What You Learned
	Programming Challenges
	#1: Mirrored Smileys
	#2: More Ping-Pong Calculations
	#3: A Better Drawing Program

	Chapter 8: Timers and Animation: What Would Disney Do?
	Getting All GUI with Pygame
	Drawing a Dot with Pygame
	What’s New in Pygame
	The Parts of a Game

	Timing It Just Right: Move and Bounce
	Moving a Smiley
	Animating a Smiley with
the Clock Class
	Bouncing a Smiley Off a Wall
	Bouncing a Smiley Off Four Walls

	What You Learned
	Programming Challenges
	#1: A Color-Changing Dot
	#2: 100 Random Dots
	#3: Raining Dots

	Chapter 9: User Interaction: Get into the Game
	Adding Interaction: Click and Drag
	Clicking for Dots
	Dragging to Paint

	Advanced Interaction: Smiley Explosion
	Smiley Sprites
	Setting Up Sprites
	Updating Sprites
	Bigger and Smaller Smileys
	Putting It All Together

	SmileyPop, Version 1.0
	Detecting Collisions and Removing Sprites
	Putting It All Together

	What You Learned
	Programming Challenges
	#1: Randomly Colored Dots
	#2: Painting in Colors
	#3: Throwing Smileys

	Chapter 10: Game Programming: Coding for Fun
	Building a Game Skeleton:
Smiley Pong, Version 1.0
	Drawing a Board and Game Pieces
	Keeping Score
	Showing the Score
	Putting It All Together

	Adding Difficulty and Ending the Game: Smiley Pong, Version 2.0
	Game Over
	Play Again
	Faster and Faster
	Putting It All Together

	Adding More Features: SmileyPop v2.0
	Adding Sound with Pygame
	Tracking and Displaying Player Progress
	Putting It All Together

	What You Learned
	Programming Challenges
	#1: Sound Effects
	#2: Hits and Misses
	#3: Clear the Bubbles

	Appendix A: Python Setup for Windows, Mac, and Linux
	Python for Windows
	Download the Installer
	Run the Installer
	Try Out Python

	Python for Mac
	Download the Installer
	Run the Installer
	Try Out Python

	Python 3 for Linux

	Appendix B: Pygame Setup for Windows, Mac, and Linux
	Pygame for Windows
	Pygame for Mac
	Python 2.7 and Pygame 1.9.2

	Pygame for Linux
	Pygame for Python 2 on Linux

	Appendix C: Building Your Own Modules
	Building the colorspiral Module
	Using the colorspiral Module
	Reusing the colorspiral Module

	Additional Resources

	Glossary
	Index
	Updates

