

Visual C#®
 For Kids

15th Edition

By
Philip Conrod & Lou Tylee

©2017 Kidware Software LLC

Kidware Software LLC
PO Box 701

Maple Valley, WA 98038
http://www.computerscienceforkids.com

http://www.kidwaresoftware.com

http://www.computerscienceforkids.com/
http://www.kidwaresoftware.com/

Copyright © 2017 by Kidware Software LLC. All rights reserved

Kidware Software LLC
PO Box 701
Maple Valley, Washington 98038
1.425.413.1185
www.kidwaresoftware.com
www.computerscienceforkids.com

All Rights Reserved. No part of the contents of this book may be reproduced or transmitted in any
form or by any means without the written permission of the publisher.

Printed in the United States of America

ISBN-13: 978-1-937161-62-0 (electronic edition)
978-1-937161-70-5 (printed edition)

Previous edition published as “Visual C# Express For Kids – 12th Edition”

Cover Design by Stephanie Conrod
Copy Edit by Jessica Conrod
Illustrations by Kevin Brockschmidt

This copy of “Visual C# For Kids” and the associated software is licensed to a single user. Copies of
the course are not to be distributed or provided to any other user. Multiple copy licenses are available
for educational institutions. Please contact Kidware Software for school site license information.

This guide was developed for the course, “Visual C# For Kids,” produced by Kidware Software,
Maple Valley, Washington. It is not intended to be a complete reference to the Visual C# language.
Please consult the Microsoft website for detailed reference information.

This guide refers to several software and hardware products by their trade names. These references
are for informational purposes only and all trademarks are the property of their respective companies
and owners. Microsoft, Visual Studio, Small Basic, Visual Basic, Visual J#, and Visual C#,
IntelliSense, Word, Excel, MSDN, and Windows are all trademark products of the Microsoft
Corporation. Java is a trademark product of the Oracle Corporation.

The example companies, organizations, products, domain names, e-mail addresses, logos, people,
places, and events depicted are fictitious. No association with any real company, organization,
product, domain name, e-mail address, logo, person, place, or event is intended or should be inferred.

http://www.kidwaresoftware.com/
http://www.computerscienceforkids.com/

This book expresses the author’s views and opinions. The information in this book is distributed on
an "as is" basis, without and expresses, statutory, or implied warranties.

Neither the author(s) nor Kidware Software LLC shall have any liability to any person or entity with
respect to any loss nor damage caused or alleged to be caused directly or indirectly by the
information contained in this book.

About The Authors

Philip Conrod has authored, co-authored and edited numerous computer programming books for
kids, teens and adults. Philip holds a BS in Computer Information Systems and a Master's certificate
in the Essentials of Business Development from Regis University. He also holds a Certificate in
Programming for Business from WarrenTech. Philip has been programming computers since 1977.
He has also held various Information Technology leadership roles in companies like Sundstrand
Aerospace, Safeco Insurance Companies, FamilyLife, Kenworth Truck Company, PACCAR and
Darigold Inc. In his spare time, Philip serves as the President & Publisher of Kidware Software, LLC.
He is the proud father of three “techie” daughters and lives in Maple Valley, Washington.

Lou Tylee holds BS and MS degrees in Mechanical Engineering and a PhD in Electrical
Engineering. Lou has been programming computers since 1969 when he took his first Fortran course
in college. He has written software to control suspensions for high speed ground vehicles, monitor
nuclear power plants, lower noise levels in commercial jetliners, compute takeoff speeds for jetliners,
locate and identify air and ground traffic and to let kids count bunnies, learn how to spell and do
math problems. He has written several on-line texts teaching Visual Basic, Visual C# and Java to
thousands of people. He taught a beginning Visual Basic course for over 15 years at a major
university. Currently, Lou works as an engineer at a major Seattle aerospace firm. He is the proud
father of five children and proud husband of his special wife. Lou and his family live in Seattle,
Washington.

Acknowledgements

I want to thank my three wonderful daughters - Stephanie, Jessica and Chloe, who helped with
various aspects of the book publishing process including software testing, book editing, creative
design and many other more tedious tasks like finding errors and typos. I could not have
accomplished this without all your hard work, love and support. I want to also thank my best friend
Jesus, who has always been there by my side giving me wisdom and guidance. Without you, this
book would have never been printed and published.

I also want to thank my multi-talented co-author, Lou Tylee, for doing all the real hard work
necessary to develop, test, debug, and keep current all the ‘beginner-friendly’ applications, games
and base tutorial text found in this book. Lou has tirelessly poured his heart and soul into so many
previous versions of this tutorial and there are so many beginners who have benefited from his work
over the years. Lou is by far one of the best application developers and tutorial writers I have ever
worked with. Thank you Lou for collaborating with me on this book project.

Table of Contents
Course Description
Course Prerequisites
A Brief Word on the Course
Installing and Using the Downloadable Solution Files
Using Visual C# For Kids
How To Take the Course
Forward by Alan Payne, A Computer Science Teacher

1. Introducing Visual C#
A Story About Bill and Paul
Let’s Get Started
Starting Visual C#
Opening a Visual C# Project
Running a Visual C# Project
Stopping a Visual C# Project
Stopping Visual C#
Summary

2. The Visual C# Design Environment
Review and Preview
Parts of a Visual C# Project
Parts of the Visual C# Environment

Starting a New Visual C# Project
Main Window
Solution Explorer Window
Design Window
Toolbox Window
Properties Window

Moving Around in Visual C#
Solution Explorer Window
Properties Window
Code Window

Summary

3. Your First Visual C# Project
Review and Preview
Steps in Building a Visual C# Project
Placing Controls on the Form

Example
Setting Control Properties (Design Mode)
Naming Controls

Setting Properties in Run Mode
How Control Names are Used in Event Methods

Writing Event Methods
Example

Summary

4. Project Design, Forms, Buttons
Review and Preview
Project Design
Saving a Visual C# Project
On-Line Help
The Form Control

Properties
Example
Events
Typical Use of Form Control

Button Control
Properties
Example
Events
Typical Use of Button Control

C# - The First Lesson
Event Method Structure
Some C# Programming Rules
Assignment Statement
Property Types

Comments
Project - Form Fun

Project Design
Place Controls on Form
Set Control Properties
Write Event Methods
Run the Project
Other Things to Try

Summary

5. Labels, Text Boxes, Variables
Review and Preview
Debugging a Visual C# Project

Syntax Errors
Run-Time Errors
Logic Errors

Label Control
Properties
Example
Events
Typical Use of Label Control

Text Box Control
Properties
Example
Events
Typical Use of Text Box Control

C# - The Second Lesson
Variables
Variable Names
Variable Types
Declaring Variables
Type Casting
Arithmetic Operators
String/Number Conversion Methods
String Concatenation

Project - Savings Account

Project Design
Place Controls on Form
Set Control Properties
Write Event Methods
Run the Project
Other Things to Try

Summary

6. UpDown Control, Decisions, Random
Numbers

Review and Preview
Numeric UpDown Control

Properties
Example
Events
Typical Use of Numeric UpDown Control

C# - The Third Lesson
Logical Expressions
Comparison Operators
Logical Operators
Decisions - The If Statement
Random Number Generator

Project - Guess the Number Game
Project Design
Place Controls on Form
Set Control Properties
Write Event Methods
Run the Project
Other Things to Try

Summary

7. Icons, Group Boxes, Check Boxes, Radio
Buttons

Review and Preview

Icons
Custom Icons
Assigning Icons to Forms

Group Box Control
Properties
Placing Controls in a Group Box
Example
Typical Use of Group Box Control

Check Box Control
Properties
Example
Events
Typical Use of Check Box Control

Radio Button Control
Properties
Example
Events
Typical Use of Radio Button Control

C# - The Fourth Lesson
Decisions – Switch Structure

Project - Sandwich Maker
Project Design
Place Controls on Form
Set Control Properties
Write Event Methods
Run the Project
Other Things to Try

Summary

8. Panels, Mouse Events, Colors
Review and Preview
Panel Control

Properties
Typical Use of Panel Control

Graphics Using the Panel Control
Graphics Methods

Graphics Objects
Colors
Example
Pen Objects
Graphics Coordinates
DrawLine Method
Graphics Review
Example

C# - The Fifth Lesson
Mouse Events
MouseDown Event
Example
MouseUp Event
Example
MouseMove Event
Example

Project - Blackboard Fun
Project Design
Place Controls on Form
Set Control Properties
Write Event Methods
Run the Project
Other Things to Try

Summary

9. Picture Boxes, Arrays
Review and Preview
Picture Box Control

Properties
Image Property
Example
SizeMode Property
Example
Events
Typical Use of Picture Box Control

C# - The Sixth Lesson

Variable Arrays
C# for Loops
Block Level Variables
Method Level Variables
Shuffle Routine

Project - Card Wars
Project Design
Place Controls on Form
Set Control Properties
Write Event Methods
Run the Project
Other Things to Try

Summary

10. Timers, Animation, Keyboard Events
Review and Preview
Timer Control

Properties
Events
Examples
Typical Use of Timer Control

C# - The Final Lesson
Animation - The DrawImage Method
Image Disappearance
Border Crossing
Image Erasure
Collision Detection
Keyboard Events
KeyDown Event
KeyPress Event

Project – Beach Balls
Project Design
Place Controls on Form
Set Control Properties
Write Event Methods
Run the Project

Other Things to Try
Summary

Bonus Projects
Preview
Project 1 – Stopwatch

Project Design
Place Controls on Form
Set Control Properties
Write Event Methods
Run the Project
Other Things to Try

Project 2 - Tic-Tac-Toe
Project Design
Place Controls on Form
Set Control Properties
Write Event Methods
Run the Project
Other Things to Try

Project 3 - Dice Rolling
Project Design
Place Controls on Form
Set Control Properties
Write Event Methods
Run the Project
Other Things to Try

Project 4 - State Capitals
Project Design
Place Controls on Form
Set Control Properties
Write Event Methods
Run the Project
Other Things to Try

Project 5 - Memory Game
Project Design
Place Controls on Form

Set Control Properties
Write Event Methods
Run the Project
Other Things to Try

Bonus Project – Pong!

More Self-Study or Instructor-Led Computer
Programming Tutorials by Kidware Software

Course Description:

Visual C# for Kids is an interactive, self-paced tutorial providing a
complete introduction to the Visual C# programming language and
environment. The tutorial consists of 10 lessons explaining (in simple, easy-
to-follow terms) how to build a Visual C# application. Numerous examples
are used to demonstrate every step in the building process. The tutorial also
includes detailed computer projects for kids to build and try. Visual C# for
Kids is presented using a combination of course notes (written in Microsoft
Word format) and many Visual C# examples and projects.

Course Prerequisites:

To use Visual C# for Kids, you should be comfortable working within the
Windows environment, knowing how to find files, move windows, resize
windows, etc. No programming experience is needed. The course material
should be understandable to kids aged 10 and up. You will also need the
ability to view and print documents saved in Adobe Acrobat format.

Software Requirements

To use Visual C#, you need to have the Visual Studio 2015 Community
Edition product installed on your computer. It is available for free download
from Microsoft. Follow this link for complete instructions for downloading
and installing Visual Studio 2015 Comminity Edition on your computer:

https://www.visualstudio.com/products/free-developer-offers-vs

https://www.visualstudio.com/products/free-developer-offers-vs

A Brief Word on the Course:

Though this course is entitled “Visual C# for Kids,” it is not necessarily
written in a kid’s vocabulary. Computer programming has a detailed
vocabulary of its own and, since adults developed it, the terminology tends
to be very adult-like. In developing this course, we discussed how to
address this problem and decided we would treat our kid readers like adults,
since they are learning what is essentially an adult topic. We did not want to
‘dumb-down’ the course. You see this in some books. We, quite frankly, are
offended by books that refer to readers as dummies and idiots simply
because they are new to a particular topic. We didn’t want to do that here.
Throughout the course, we treat the kid reader as a mature person learning a
new skill. The vocabulary is not that difficult, but there may be times the
kid reader needs a little help. Hopefully, the nearest adult can provide that
help.

Installing and Using the Downloadable Solution
Files:

If you purchased this directly from our website you received an email with
a special and individualized internet download link where you could
download the compressed Program Solution Files. If you purchased this
book through a 3rd Party Book Store like Amazon.com, the solutions files
for this tutorial are included in a compressed ZIP file that is available for
download directly from our website at:

http://www.kidwaresoftware.com/VCS2015kids-registration.html

Complete the online web form at the webpage above with your name,
shipping address, email address, the exact title of this book, date of
purchase, online or physical store name, and your order confirmation
number from that store. After we receive all this information we will email
you a download link for the Source Code Solution Files associated with this
book.

Warning: If you purchased this book “used” or “second hand” you are not
licensed or entitled to download the Program Solution Files. However, you
can purchase the Digital Download Version of this book at a discounted
price which allows you access to the digital source code solutions files
required for completing this tutorial.

http://www.kidwaresoftware.com/VCS2015kids-registration.html

Using Visual C# for Kids:

The course notes and code for Visual C# for Kids are included in one or
more ZIP files. Use your favorite ‘unzipping’ application to write all files to
your computer. The course is included in the folder entitled VCSKids. This
folder contains two other folders: VCSK Notes and VCSK Projects. The
VCSK Projects folder includes all the Visual C# projects developed during
the course.

How To Take the Course:

Visual C# for Kids is a self-paced course. The suggested approach is to do
one class a week for ten weeks. Each week’s class should require about 3 to
6 hours of your time to grasp the concepts completely. Prior to doing a
particular week’s work, open the class notes file for that week and print it
out. Then, work through the notes at your own pace. Try to do each
example as they are encountered in the notes. Work through the projects in
Classes 3 through 10 (and the Bonus class). If you need any help, all
completed projects are included in the VCSK Projects folder.

Foreword by Alan Payne, A Computer Science
Teacher

What is “Visual C# For Kids” … and how it works.

These lessons in Visual C# For Kids are a highly organized and well-
indexed set of tutorials in the Visual C# programming environment meant
for children aged 10 and above. Visual C# is a programming environment
which allows the user to drag and drop buttons, text boxes, scroll bars,
timers and dozens of other visual “controls” to make programs which look
like “Windows” programs. The controls are combined to provide the user
with a GUI – a graphical user interface.

The tutorials provide the benefit of completed age-appropriate applications
for children – fully documented projects from the teacher’s or parents’ point
of view. That is, while full solutions are provided for the adults’ (and child
learner’s) benefit, the projects are presented in an easy-to-follow set of
lessons explaining the rational for the form layout, coding design and
conventions, and specific code related to the problem. The child-learner
may follow the tutorials at their own pace. Every bit of the lesson is
remembered as it contributes to the final solution to a kid-friendly
application. The finished product is the reward, but the student is fully
engaged and enriched by the process. This kind of learning is often the
focus of teacher training. Every computer science teacher knows what a
great deal of work required for projects to work in this manner, and with
these tutorials, the work is done by an author who understands the
classroom and parenting experience. That is extremely rare!

Graduated Lessons for Every Project … Lessons, examples, problems
and projects. Graduated learning. Increasing and appropriate
difficulty… Great results.

With these projects, there are lessons providing a comprehensive, kid-
friendly background on the programming topics to be covered. Once
understood, concepts are easily applicable to a variety of applications.
Then, specific examples are drawn out so that a young learner can practice
with the Visual C# form designer. Then specific coding for the example is
provided so that the user can see all the parts of the project come together
for the finished product.

By presenting lessons in this graduated manner, students are fully engaged
and appropriately challenged to become independent thinkers who can
come up with their own project ideas and design their own forms and do
their own coding. Once the process is learned, then student engagement is
unlimited! I have seen literacy improve dramatically when students cannot
get enough of what is being presented.

Indeed, lessons encourage accelerated learning – in the sense that they
provide an enriched environment to learn computer science, but they also
encourage accelerating learning because students cannot put the lessons
away once they start! Computer science provides this unique opportunity to
challenge students, and it is a great testament to the authors that they are
successful in achieving such levels of engagement with consistency.

My History with Kidware Software products.

I have used Kidware’s Programming Tutorials for over a decade to keep up
my own learning. By using these lessons, I am able to spend time on things
which will pay off in the classroom. I do not waste valuable time ensconced
in language reference libraries for programming environments – help
screens which can never be fully remembered! These projects are examples
of how student projects should be as final products – thus, the pathway to
learning is clear and immediate in every project.

If I want to have students use or expand upon projects, then I take
advantage of site-license options. I have found it very straight forward to
emphasize the fundamental computer science topics that form the basis of
these projects when using them in the classroom. I can list some computer

science topics which everyone will recognize, regardless of where they
teach – topics which are covered expertly by these tutorials:

• Data Types and Ranges
• Scope of Variables
• Naming Conventions
• Decision Making
• Looping
• Language Functions – String, Date, Numerical
• Arrays, Control Arrays
• Writing Your own Methods (subroutines) and more… it’s all

integrated into the tutorials.

In many States or Provinces, the above-listed topics would not be formally
introduced in Middle School computer studies, but would form the basis of
most projects undertaken by students. With these tutorials, you as the
teacher or parent may choose where to put the emphasis, to be sure to cover
the curricular expectations of your curriculum documents.

Any further Middle school computer programming topics derive directly
from those listed above. Nothing is forgotten. All can be integrated with the
lessons provided.

Quick learning curve for teachers! How teachers can use the product:

Having projects completed ahead of time can allow the teacher to present
the design aspect of the project FIRST, and then have students do all of
their learning in the context of what is required in the finished product. This
is a much faster learning curve than if students designed all of their own
projects from scratch. Lessons concentrating on a unified outcome for all
makes for much more streamlined engagement for students (and that is
what they need, in Middle school, and in grades 9 and 10), as they complete
more projects within a short period of time and there is a context for
everything that is learned.

After the process of form-design, naming controls and coding has been
mastered for a given set of Visual C# controls, then it is much more likely
that students can create their own problems and solutions from scratch.
Students are ready to create their own summative projects for your
computer science course – or just for fun, and they may think of projects for
their other courses as well! And what could be wrong with asking the
students’ other teachers what they would like to see as project extensions?

Meets State and Provincial Curriculum Expectations and More

Different states and provinces have their own curriculum requirements for
computer science. With the Kidware Software products, you have at your
disposal a series of projects which will allow you to pick and choose from
among those which best suit your curriculum needs. Students focus upon
design stages and sound problem-solving techniques from a computer-
science, problem-solving perspective. In doing so, they become
independent problem-solvers, and will exceed the curricular requirements
of Middle schools everywhere.

Useable projects – Out of the box!

The specific projects covered in the Visual C# for Kids tutorials are suitable
for students aged 10 and above. Specific kid-friendly tutorials and projects
are found in the Contents document, and include

Bonus Projects

Project 1 – Stopwatch B-2
Project 2 – Tic-Tac-Toe B-8
Project 3 – Dice Rolling B-20
Project 4 – State Capitals B-26
Project 5 – Memory Game B-37
Bonus Project – Pong! B-53

As you can see, there is a high degree of care taken so that projects are age-
appropriate.

You as a parent or teacher can begin teaching the projects on the first day.
It’s easy for the adult to have done their own learning by starting with the
solution files. Then, they will see how all of the parts of the lesson fall into
place. Even a novice could make use of the accompanying lessons.

How to teach students to use the materials.
In a Middle school situation, parents or teachers might be tempted to spend
considerable amounts of time at the projector or computer screen going
over the tutorial – but the best strategy is to present the finished product
first! That way, provided that the adult has covered the basic concepts listed
in the table of contents, then students will quickly grasp how to use the
written lessons on their own. Lessons will be fun, and the pay-off for
younger students is that there is always a finished product which is fun to
use!

Highly organized reference materials for student self-study!
Materials already condense what is available from MSDN (which tends to
be written for adults) and in a context and age-appropriate manner, so that
younger students remember what they learn. The time savings for parents,
teachers and students is enormous as they need not sift through pages and
pages of on-line help to find what they need.

How to mark the projects.
In a classroom environment, it is possible for teachers to mark student
progress by asking questions during the various design and coding stages.
In the early grades (grades 5 to 8) teachers can make their own oral,
pictorial review or written pop quizzes easily from the reference material
provided as a review strategy from day to day. I have found the requirement
of completing projects (mastery) sufficient for gathering information about
student progress – especially in the later grades (grades 10 to 12).

Lessons encourage your own programming extensions.
Once concepts are learned, it is difficult to NOT know what to do for your
own projects. This is true even at the Middle school level – where
applications can be made in as short as 10 minutes (a high-low guessing
game, or a temperature conversion program, for example), or 1 period in

length – if one wished to expand upon any of the projects using the “Other
Things to Try” suggestions.

Having used Kidware Software tutorials for the past decade, I have to say
that I could not have achieved the level of success which is now applied in
the variety of many programming environments which are currently of
considerable interest to kids! I thank Kidware Software and its authors for
continuing to stand for what is right in the teaching methodologies which
work with kids – even today’s kids where competition for their attention is
now so much an issue.”

Regards,
Alan Payne, B.A.H., B.Ed.,
TA Blakelock High School,
Oakville, Ontario
http://chatt.hdsb.ca/~paynea

http://chatt.hdsb.ca/~paynea

1

Introducing Visual C# Express

A Story About Bill and Paul
Back in the early 1970’s, Bill and Paul were friends at
Lakeside School in Seattle, Washington. Bill and Paul
enjoyed working with computers and wrote many games
they could play - games like Tic-Tac-Toe and moon
landing games. These computer games were written in a
computer language called BASIC (which stands for
Beginner’s All-Purpose Symbolic Instruction Code).

When the first small computer was developed in the mid 1970’s, Bill and
Paul had just started college. They had improved their computer skills by
then and were able to tell that new computer how to use the BASIC
language. They actually sold their version of the BASIC language to other
people (it cost $350 and was stored on a cassette tape). They started making
money selling BASIC and decided to start a company. You may have heard
of their company - Microsoft! Bill is Bill Gates, who still runs Microsoft
and is worth many billions of dollars, and Paul is Paul Allen, who no longer
works for Microsoft, but has his own business ventures including computers
and software, professional sports teams, and real estate development.

One of the first products sold by Microsoft was the BASIC computer
programming language. Since then they have developed many other
products and many other programming languages. The product you will
learn in this set of notes is called Visual C#. The word Visual means you
will build Windows-based applications that a user can see and interact with.
The term C# (pronounced “cee sharp”) refers to the particular language
used within the Visual C# environment. This language was developed using
pieces of other languages called C, C++ and Java. Visual C# is one of the
easiest programming languages to learn. Yet, even though it is easy to learn
and to use, Visual C# can also be used to develop very powerful computer
programs. Visual C# provides a sophisticated environment for building and
testing Windows-based applications. You’ve used Windows-based
applications before. Microsoft’s programs like Word, Excel, Internet
Explorer and the windows that appear within these applications (to open
and save files, to print files) are all Windows-based applications. These
applications are not written in Visual C# (they are written in a language

called C++), but they do demonstrate the functionality you can put in your
Visual C# applications.

So, why learn Visual C#? There are several reasons for doing this. First,
if you know how to program, you will have a better understanding of just
how computers work. Second, writing programs is good exercise for your
thinking skills – you must be a very logical thinker to write computer
programs. You must also be something of a perfectionist – computers are
not that smart and require exact, perfect instructions to do their jobs. Third,
computer programmers are in demand and make a lot of money. And, last,
writing computer programs is fun. It’s rewarding to see your ideas for a
certain computer program come to life on the computer screen. In these
notes, you will learn how to use Microsoft’s Visual C# to write your own
Windows-based applications. You may not become a billionaire like Bill
and Paul, but hopefully you’ll have some fun learning a very valuable skill.

Let’s Get Started
Learning how to use Visual C# to write a computer program (like

learning anything new) involves many steps, many new terms, and many
new skills. We will take it slow, describing each step, term, and skill in
detail. Before starting, we assume you know how to do a few things:

• You should know how to start your computer and use the mouse.
• You should have a little knowledge on working with your operating

system.
• You should know how to resize and move windows around on the

screen.
• You should know how to run an application on your computer by

using the Start Menu.
• You should know how to fill in information in Windows that may pop

up on the screen.
• You should know about folders and files and how to find them on your

computer.
• You should know what file extensions are and how to identify them.

For example, in a file named Example.ext, the three letters ext are
called the extension.

• You should know how to click on links to read documents and move
from page to page in such documents. You do this all the time when
you use the Internet.

You have probably used all of these skills if you’ve ever used a word
processor, spreadsheet, or any other software on your computer. If you think
you lack any of these skills, ask someone for help. They should be able to
show you how to do them in just a few minutes. Actually, any time you feel
stuck while trying to learn this material, never be afraid to ask someone for
help. We were all beginners at one time and people really like helping you
learn.

Let’s get going. And, as we said, we’re going to take it slow. In this first
class, we will learn how to get Visual C# started on a computer, how to load

a program (or project) into Visual C#, how to run the program, how to stop
the program, and how to exit from Visual C#. It will be a good introduction
to the many new things we will learn in the classes to come.

Starting Visual C#

We assume you have Visual C# installed and operational on your
computer. If you don’t, you need to do this first. Again, this might be a
good place to ask for someone’s help if you need it. Visual C# is available
for free download from Microsoft.

Visual C# is included as a part of Microsoft Visual Studio 2015
Community Edition. Visual Studio includes not only Visual C#, but also
Visual C++ Express and Visual Basic Express. All three languages use the
same development environment. Follow this link for complete instructions
for downloading and installing Visual Studio 2015 Community Edition on
your computer:

https://www.visualstudio.com/products/free-developer-offers-vs

Once installed, to start Visual C#:

* Click on the Start button on the Windows task bar.
* Click All apps
* Then select Microsoft Visual Studio 2015

The Visual Studio program should start. Several windows will appear on
the screen, with the layout depending on settings within your product.

https://www.visualstudio.com/products/free-developer-offers-vs

This screen displays the Visual C# Integrated Development
Environment (IDE). This is where we build, run and work with our
applications. Let’s point out just a few items on the screen. There are many
windows on the screen. At the top of the screen is the Visual C# Main
Window. At the top of the main window is the Title Bar. The title bar
gives us information about what program we’re using and what Visual C#
program we are working with. Below the title bar is the Main Menu from
where we can control the Visual C# program. You should be familiar with
how menus work from using other programs like word processors and
games. Under the main menu is a Toolbar. Here, little buttons with pictures
also allow us to control Visual C#, much like the main menu. If you put the
mouse cursor over one of these buttons for a second or so, a little ‘tooltip’
will pop up and tell you what that particular button does - try it! Almost all
Windows applications (spreadsheets, word processors, games) have toolbars
that help us do different tasks. This is the purpose of the Visual C# toolbar.
It will help us do most of our tasks. In the middle of the screen is the Start

Page, contained in the Design Window. This page has many helpful topics
you might be interested in pursuing as you learn more about Visual C#. –
especially note the topics under Discover Visual Studio Community 2015.

At any time, your particular screen may look different than ours. The
Visual C# environment can be customized to an infinite number of
possibilities. This means you can make things look anyway you want them
to. You can ‘dock’ windows or ‘float’ windows. You can move windows
wherever you want or you can completely delete windows. And, different
windows will appear at different times. As you become more experienced
with Visual C#, you will learn ways you want things to be. We encourage
you to try different things. Try moving windows. Try docking and floating.
We won’t talk a lot about how to customize the development environment.
(We will, however, always show you how to find the particular window you
need.)

Opening a Visual C# Project

What we want to do right now is open a project. Windows applications
written using Visual C# are referred to as solutions. A solution is made up
of one or more projects. Projects include all the information we need for
our computer program. In this course, our applications (solutions) will be
made up of a single project. Because of this, we will use the terms
application, solution and project interchangeably. Included with these notes
are many Visual C# projects you can open and use. Let’s open one now.

We will open a project using the main menu. Follow these steps:

• Select File from the main menu, then click Open, then
Project/Solution. An Open Project window will appear:

Image

• Find the folder named VCSKids (stands for Visual C# (Sharp) for
Kids). This is the folder that holds the notes and projects for this
course. Open that folder.

• Find and open the folder named VCSK Projects. This folder holds all
the projects for the course

Remember how you got to this folder. Throughout the course, you will go
to this folder to open projects you will need. Open the project folder named
Sample.

In this project folder, among other things is a Visual Studio Solution
file named Sample (with sln extension) and a Visual C# Project file
named Sample (with csproj extension). Open the Sample solution file (as
shown in the example Open Project window). Since there is only one
project in this solution, you could also open the project file and get the same
results, but it is better to always open the solution file.

Once the project is opened, many windows are now on the screen:

Image

Look for the Solution Explorer window (if it is not there, choose View in
the menu and select Solution Explorer). This lists the files in our solution.
Right-click the file Form1.cs and choose Open.

Image

In the Design window will appear a window that looks something like
this:

Image

This is our project named Sample. We’re going to spend a bit of time
explaining everything that is displayed here. This will introduce you to
some of the words, or vocabulary, we use in Visual C#. There are lots of
terms used in Visual C#. Don’t try to memorize everything - you’ll see
these new words many times through the course.

We call the displayed project window a Form. All Visual C# projects or
programs are built using forms. In fact, you have probably noticed that all
Windows applications are built using forms of some type. At the top of the
form is the Title Bar. It has an icon (little picture) related to the form, a
description of what the form does (Visual C# for Kids - Sample), and three
smaller buttons that control form appearance (we won’t worry about these
buttons right now). There are lots of other things on the form. These other
things are the ‘heart’ of a Visual C# computer program.

You see a set of square buttons with toy names next to them. You see
pictures of toys. You see a set of round buttons with color names next to
them. There is a little box you can type in with something called a scroll bar
on the right side. There’s a big button that says Beep! There’s a little device
for picking the value of a number. And, there’s a ball in a big rectangle with
a button that says Start and, below the form, a little thing that looks like a
stopwatch. We call all of these other things on the form Controls or
Objects. Controls provide an interface, or line of communication, between
you (or the user of your program) and the computer. You use the controls to
tell the computer certain things. The computer then uses what it is told to
determine some results and displays those results back to you through
controls. By the way, the form itself is a control. If you’ve used any
Windows applications, you’ve seen controls before - you probably just
didn’t know they were called controls. As examples, buttons on toolbars are
controls, scroll bars to move through word processor documents are
controls, menu items are controls, and the buttons you click on when
opening and saving files are controls.

I think you get the idea that controls are a very important part of Visual
C#, and you’re right. They are the most important part of Visual C# - they
are what allow you to build your applications. We will spend much of this
course just learning about controls. Right now, though, let’s run this
program and get some insight into how a Visual C# project (and its
controls) works.

Running a Visual C# Project
After developing a Visual C# project, you want to start or run the

program. This gets the program going and lets the user interact with the
controls on the form and have the computer do its assigned tasks. We can
run a project using the toolbar under the Visual C# menu. Look for a button
that looks like the Play button on a VCR, CD player, or cassette tape
player:

Image

• Click this button to run Sample (the project we opened previously).

You can also run a project by: (1) selecting the Debug menu heading, then
clicking Start Debugging, or (2) pressing the <F5> function key.

The project form will appear and look something like this. Your form
may appear slightly different depending on the particular Windows
operating system you are using. We use both Windows Vista (seen here)
and Windows XP in these notes:

Image

Notice a few things have changed. All the toys have disappeared. The
background color of the form is blue. The circle button next to Blue has a
black dot in it. The little stopwatch control is not visible. The little ball has
moved near the top of the big rectangle. What happened? We’ll find out
how and why all this happened as we learn more about Visual C#. Also,
notice in the Visual C# title bar (in the main window) that the word
Running appears in parentheses next to the project name. It is important to
always know if you are running (in run mode) or designing a program (in
design mode) – this indication in the title bar will tell you.

Image

The project is now running, but what is it doing? Nothing is happening,
or is it? At this point, Visual C# is waiting for you, the user, to do
something. We say your Visual C# project is waiting for an event to occur.
Nothing can happen in a Visual C# program until an event occurs. We call
Visual C# an event-driven programming language. So, let’s cause an event.

An event occurs when you do something on the form - click on
something with the mouse, type something in places where words can go,
or maybe drag an object across the form. In the upper left corner of the
form is a group of six boxes within a rectangular region with the heading
Toys. Each little box has a toy name printed next to it. Click on one of these
boxes. Notice what happens. A check appears in the selected box,
indicating box selection, and the toy named by that box appears on the
screen. When we click on a box, we cause an event, called a
CheckedChanged event (this means the ‘checked’ status of the box has
changed). The computer recognizes the event and does what you have told
it to do (through your computer program) if that particular event occurs. In
this case, the event tells the computer to display the selected toy. Click on
the box again. The check mark and the toy disappear. You have caused
another event and told the computer to make the toy disappear. This
particular control is called a check box. Notice you can check as many
boxes as you want, picking which toys (if any) you want displayed on your
screen. Check boxes are used when you want to select items from a list.
Two other controls are used in this example. The rectangular region the
check boxes are contained is called a group box. The region each toy
picture is displayed in is called a picture box control. Now, let’s look at
causing events with the other controls on the form.

Near the middle of the screen is a group of four round buttons in a
group box with the heading Color. Each button has a color name printed
next to it. The Blue button has a black dot in it, indicating it is the currently
selected color (notice the form is blue). Click on another of these buttons.
Notice what happens. The form color changes to the selected color. This
CheckedChanged (meaning the ‘checked’ or actually ‘dotted’ status of the
button has changed) event tells the computer to change the form
background color. Notice that when you select a new color, the black dot
appears in the selected button and disappears in the previously selected

button. Unlike the check boxes we saw earlier, you can only select one of
these buttons. This makes sense - the form can only be one color! These
round buttons are called radio buttons. Radio buttons are used when you
need to choose exactly one option from a list of many. They are called radio
buttons because, on a radio, you can only choose one option (station) at a
time.

Image

Under the Toys group box is another group box with the heading Pick a
Number. There we see a control called a numeric up-down control. There
is a label area displaying a number and next to the number is another
control with one arrow pointing up and one pointing down (a scroll bar).
You’ve probably seen scroll bars in other applications you have used. The
scroll bar is used to change the displayed number. Click on the arrow on the
top of the scroll bar. The displayed value will increase by 1. Continued
clicking on that arrow will continue to increase the value. Clicking the
lower arrow will decrease the value. In this example, the computer is
responding to the numeric up-down control’s ValueChanged event, which
occurs each time an arrow is clicked, changing the displayed value.

Under the Pick a Number group box is a region with a scroll bar on the
right side. This control is called a text box. You can click in it, then type in
any text you want. Try it. The text box is like a little word processor in
itself. Each time you type something in the text box, several events occur.
There is a KeyPress event when you press a key and a Change event that is
called each time the text in the box changes.

Image

Next to the text box is a button that says Beep! Click the button and you
should hear a beep on your computer’s speaker. This control is called a
button and is one of the most widely used controls in Visual C#. The Click
event told the computer to make the speaker beep.

The last thing on our form is a tall, yellow, rectangular control called a
panel that contains a picture box control displaying a beach ball. Under the

panel is a button that says Start. Click on that button, that is, cause a Click
event. The ball starts moving down. It continues moving down until it hits
the bottom of the panel, then starts moving back up. It will continue to do
this until you click the button that now says Stop. Remember the little
stopwatch that was below our form in design mode, but disappeared when
we ran the project. It is being used by the bouncing ball example - it is
called a timer control. The Click event on the button, in addition to
changing what the button says to Stop, also started this timer control. The
timer control generates Tick events all by itself at preset time intervals. In
this example, a Tick event is generated every 1/10th of a second and, in that
event, the ball position is changed to give the appearance of movement.
Notice that even while the ball is bouncing, you can change the form color,
make toys appear and disappear, type text, and make the computer beep. So,
Visual C# even has the capability of handling multiple events.

Obviously, this project doesn’t do much more than demonstrate what
can be done with Visual C#, but that is a important concept. It points out
what you will be doing in building your own Visual C# projects. A project
is made up of the controls that let the user provide information to the
computer. By causing events with these controls, the computer will generate
any required results. We haven’t worried about how to use the events to
determine these results, but we will in all the later classes. By the time you
have finished this course, you will be able to build projects that do
everything (and more) that the Sample project does. Let’s look now at how
to stop the project.

Stopping a Visual C# Project
Image

There are many ways to stop a Visual C# project. We will use the
toolbar. Look for a button that looks like the Stop button on a VCR, CD
player, or cassette tape player (you may have to move the project form
down a bit on the screen to see the toolbar):

Image

• Click on this button (you may have to click it twice). The project will
stop and Visual C# will return to design mode.

Alternate ways to stop a project are:

• Selecting the Debug menu heading, then clicking Stop Debugging
• Click the Close button found on the form. It is the little button that

looks like an X in the upper right corner of the form.

Stopping Visual C#
When you are done working with a Visual C# project, you want to leave

the Visual C# program and the design environment. It is the same procedure
used by nearly all Windows applications:

• Select File in the main menu.
• Select Exit (at the end of the File menu).

Stop Visual C# now. Visual C# will close all open windows and you will be
returned to the Windows desktop. In stopping Visual C# with Sample
active, you may be asked if you want to save certain files. Answer No. Like
with stopping a project, an alternate way to stop Visual C# is to click on the
close button in the upper right hand corner of the main window. It’s the
button that looks like an X.

Image

Summary
Whew! Are you tired? We covered a lot of new material here, so if you

are, that’s OK. As we said earlier, you learned a lot of new words and
concepts. Don’t worry if you don’t remember everything we talked about
here. You will see the material many times again. It’s important that you
just have some concept of what goes into a Visual C# project and how it
works. And you know how to start and stop Visual C# itself.

In summary, we saw that a Visual C# project is built upon a form.
Controls (also called objects) are placed on the form that allow the user
and computer to interact. The user generates events with the controls that
allow the computer to do its job. In the next class, you will begin to acquire
the skills that will allow you to begin building your own Visual C# projects.
You will see how the parts of a project fit together. Using project Sample as
an example, you will learn how to locate important parts of a project. Then,
in Class 3, you will actually build your first project!

2

The Visual C# Express Design
Environment

Review and Preview
In Class 1, we learned the important parts of a Visual C# project. We saw
that a project is built on a form using controls (also called objects).

By interacting with the controls using events, we get the computer to do
assigned tasks via instructions we provide. In this second class, we will
learn the beginning steps of building our own Visual C# projects by looking
at the different parts of the project and where they fit in the Visual C#
design environment. Like Class 1, there are also a lot of new terms and
skills to learn.

Parts of a Visual C# Project
In Class 1, we saw that there are four major components in a Visual C#

application: the solution, the project, the form, and the controls. A solution
can contain multiple projects. In this course, solutions will only contain a
single project, so the words solution and project are used interchangeably.
Project is the word used to encompass everything in a Visual C# project.
Other words used to describe a project are application or program. The
form is the window where you create the interface between the user and the
computer. Controls are graphical features or tools that are placed on forms
to allow user interaction (text boxes, labels, scroll bars, command buttons).
Recall the form itself is a control. Controls are also referred to as objects.
Pictorially, a project is:

So, in simplest terms, a project consists of a form containing several (and
some projects contain hundreds) controls.

Every characteristic of a control (including the form itself) is specified
by a property. Example control properties include names, any text on the
control, width, height, colors, position on the form, and contents. Properties
are used to give your project the desired appearance. For each control
studied in this class, we will spend a lot of time talking about properties.

In Class 1, we saw that by interacting with the controls in the Sample
project (clicking buttons, choosing different options, typing text), we could
make things happen in our project by generating control events. We say that
Visual C# is an event-driven language and it is governed by an event
processor. That means that nothing happens in a Visual C# project until
some event occurs. Once an event is detected, the project finds a series of
instructions related to that event, called an event method. That method is
executed, then program control is returned to the event processor:

Event methods associated with various controls are where we do the actual
computer programming. These methods are where we write C# language
statements. You will learn a lot of programming and C# language in this
class.

In summary, the major parts of a Visual C# project are:

• form
• controls
• control properties
• control event methods

Now, let’s take a look at the Visual C# programming environment and
identify where we can access each of these project components.

Parts of the Visual C# Environment
Visual C# is more than just a computer language. It is a project building

environment. Within this one environment, we can begin and build our
project, run and test our project, eliminate errors (if any) in our project, and
save our project for future use. With other computer languages, many times
you need a separate text editor to write your program, something called a
compiler to create the program, and then a different area to test your
program. Visual C# integrates each step of the project building process into
one environment. Let’s look at the parts of the Visual C# environment. To
help in this look, we first need to get a new project started. We won’t do
anything with this project. We just use it to identify parts of the Visual C#
environment.

Starting a New Visual C# Project
Every time you want to build a project using Visual C#, a first step is to

create a new project. Start Visual C# using the procedure learned in Class 1.
We will start a new project using the toolbar under the Visual C# menu.
Look for this button (the first button on the left):

You can also start a new project by selecting File from the menu, then
clicking New, then Project.

Click the New Project button and a New Project box appears:

Under Installed Templates, make sure Visual C# is selected. We will
always be building windows applications, so select Windows Forms
Application.

This window also asks where you want to save your project. In the
Name box, enter the name (I used FirstTry) of the folder to save your
project in. Location should show the directory your project folder will be
in. You can Browse to an existing location or create a new directory by
checking the indicated box. For these notes, we suggest saving each of your
project folders in the same directory. For the course notes, all project
folders are saved in the \BeginVCS\BVCS Projects folder. Once done,
click OK. Your new project will appear in the Visual C# environment,
displaying several windows.

Main Window
The Main Window is used to control most aspects of the Visual C#

project building and running process:

The main window consists of the title bar, menu bar, and toolbars. The title
bar indicates the project name (here, FirstTry). The menu bar has drop-
down menus from which you control the operation of the Visual C#
environment. The toolbars have buttons that provide shortcuts to some of
the menu options. You should be able to identify the New Project button.
Also, look for the button we used in Class 1 to start a project.

Solution Explorer Window
The Solution Explorer Window shows which files make up your

project:

If the Solution Explorer window is not present on the screen, click View on
the main menu, then Solution Explorer. If you select the form file
(Form1.cs), you can obtain a view of the project form by choosing the
View menu, then Designer. Or, you see the actual C# coding within a form
by clicking the View Code button in the Solution Explorer window. We
will look at this code window soon.

Design Window
The Design Window is central to developing Visual C# applications. It

is where you build your form and write actual code. You should see a blank
form in this window:

If the form is not present on the screen, select Form1.cs in the Solution
Explorer window. Then, click View on the main menu, then Designer. Or,
press the <F7> function key while holding down <Shift>.

Toolbox Window
The Toolbox Window is the selection menu for controls used in your

application. Many times, controls are also referred to as objects or tools.
So, three words are used to describe controls: objects, tools, and, most
commonly, controls.

If the toolbox window is not present on the screen, click View on the main
menu, then Toolbox. Make sure you are viewing the Common Controls.
See if you can identify some of the controls we used in Class 1 with our
Sample project.

Properties Window
The Properties Window is used to establish initial property values for

controls. It is also used to establish control events (we will see how in Class
3) – for now, we just look at the properties – to do this make sure the
Properties toolbar button (in the properties window) is selected and not the
Events button (see the picture below):

The drop-down box at the top of the window lists all controls on the
current form. Under this box are the available properties for the currently
selected object (the Form in this case). Different views of the properties are
selected using the toolbar near the top of the window. Two views are
available: Alphabetic and Categorized. We will always used the
Alphabetic view.

If the properties window is not present on the screen, click View on the
main menu, then Properties Window. As an alternate, if the window does
not show up, press the F4 function key. Note the properties window will

only display when the form and any controls are displayed in the Design
window.

You should be familiar with each of the Visual C# environment
windows and know where they are and how to locate them, if they are not
displayed. Next, we’ll revisit the project we used in Class 1 to illustrate
some of the points we’ve covered here.

Moving Around in Visual C#

Solution Explorer Window
Open the project named Sample that we used in Class 1 (use the File

menu option, then select Open and Project/Solution reviewing the steps in
Class 1 if needed). Once Sample is opened (recall it is in the Sample folder
in the \VCSKids\VCSK Projects folder), find and examine the Solution
Explorer window:

The Solution Explorer window indicates we have a solution with a project
file named Sample. The project contains a single form saved as Form1.cs.
The project also includes folders named Properties and References and a
file named Program.cs. There are also several graphics files (the ones with
wmf extensions). The only file we’re really worried about for now is the
form.

Properties Window

Find the Properties window. Remember it can only be shown when the
form is displayed. So, you may have to make sure the form is displayed
first. Review the steps that get the desired windows on your screen. Make
sure the properties and not the events are displayed.

The drop-down box at the top of the properties window is called the control
list. It displays the name (the Name property) of each control used in the
project, as well as the type of control it is. Notice, as displayed, the current
control is the Form and it is named Form1. The properties list is directly
below this box. In this list, you can scroll (using the scroll bar) through the
properties for the selected control. The property name is on the left side of
the list and the current property value is on the right side. Scroll through the
properties for the form. Do you see how many properties there are? You’ll
learn about many of these as you continue through the course. Don’t worry
about them for now, though.

Click on the down arrow in the control list (remember that’s the drop-
down box at the top of the properties window):

Scroll through the displayed list of all the controls on the form. There are a
lot of them. Notice the assigned names and control types. Notice it’s pretty
easy to identify which control the name refers too. For example, picBear is
obviously the picture box control holding a picture of a bear. We always
want to use proper control naming - making it easy to identify a control just
by it’s name. We’ll spend time talking about control naming in the later
classes.

Select a control and scroll through the properties for that control. Look
at the properties for several controls. Notice every control has many
properties. Most properties are assigned by default, that is the values are
given to it by Visual C#. We will change some properties from their default
values to customize them for our use. We will look at how to change
properties in Class 3.

Code Window
Let’s look at a new window. Recall Visual C# is event-driven - when an

event is detected, the project goes to the correct event method. Event
methods are used to tell the computer what to do in response to an event.
They are where the actual computer programming (using the C# language)

occurs. We view the event methods in the Code Window. There are many
ways to display the code window. One way is to use the View Code button
found in the Solution Explorer window. Another is to click View on the
main menu, then Code. Or, as an alternate, press the F7 function key. Find
the code window for the Sample project. It will appear in the design
window under the Form1.cs tab:

At the top of the code window are two drop-down boxes. The one on
the right side is the method lists. It lists all the methods (including event
methods) used in the code. Click on the drop-down arrow in the methods
list. Select rdoBlue_CheckedChanged as the method. You should see this:

Near the top of the code window is the CheckedChanged event method for
the control name rdoBlue. And even though you may not know any C#
right now, you should be able for figure out what is going on here. Since we
will be careful in how we name controls, you should recognize this control
to be the radio button (one with a little circle) with the word Blue next to it
(the word next to a radio button is its Text property). The status of a radio
button (whether it is selected or not) is called its Checked property. So, this
event method is called whenever we click on the Blue radio button and
change its Checked property.

Notice the procedure has a single line of instruction (ignore the other
lines for now):

this.BackColor = Color.Blue;

What this line of C# code says is set the BackColor property of the control
named this (a word used by Visual C# to refer to the form) to Blue
(represented by the words Color.Blue). Pretty easy, huh?

Scroll through the other code in the code window. Much of this code
might look like a foreign language right now and don’t worry - it should!
You’ll be surprised though that you probably can figure out what’s going on
even if you don’t know any C#. In subsequent classes, you will start to learn
C# and such code will become easy to read. You’ll see that most C# code is
pretty easy to understand. Writing C# code is primarily paying attention to
lots of details. For the most part, it’s very logical and obvious. And, you’re
about to start writing your own code!

Summary
In this second class, we’ve learned the parts of the Visual C#

environment and how to move around in that environment. We’ve also
learned some important new terms like properties and event methods.
You’re now ready to build your first Visual C# project. In the next class,
you’ll learn how to place controls on a form, move them around, and make
them appear just like you want. And, you will learn the all-important step of
how to put C# code in the event methods.

3

Your First Visual C# Project

Image

Review and Preview

In the first two classes, you learned about forms, controls, properties, and
event methods. In this class, you’re going to put that knowledge to work in
building your first simple Visual C# project. You’ll learn the steps in
building a project, how to put controls on a form, how to set properties for
those controls, and how to write your own event methods using a little C#.

Image

Steps in Building a Visual C# Project

There are three primary steps in building a Visual C# Project:

1. Place (or draw) controls on the form.

2. Assign properties to the controls.

3. Write event methods for the controls.

Each of these steps is done with Visual C# in design mode.

Start Visual C# and start a new project (review the steps covered in Class 2,
if necessary, naming it whatever you choose). Open the created form in the
Design window. You should see something like this:

Image

You can resize the form if you want. This is one of the ‘Windows’
techniques you should be familiar with. Notice the form has a ‘sizing

handle’ in the lower right corner. If you move the cursor over this handles,
a little ‘double-arrow’ will appear. At that point, you can click and drag the
corner to its desired position. This allows you to increase the width and
height of the form at the same time. If you hold the cursor over the right or
lower edge (until the arrow appears), you can resize the width and height,
respectively. Practice sizing the form.

Image

Placing Controls on the Form

Image

The first step in building a Visual C# project is to place controls on the
form in their desired positions. So, at this point, you must have decided
what controls you will need to build your project. Many times, this is a
time-consuming task in itself. And, I guarantee, you will change your mind
many times. Right now, we’ll just practice putting controls on the form.

Controls are selected from the Visual C# Toolbox window (Windows Form
controls). Click a tool in the toolbox and hold the mouse button down. Drag
the selected tool over to the form. When the cursor pointer is at the desired
upper left corner, release the mouse button and the default size control will
appear. This is the classic “drag and drop” operation. Once the control is on
the form, you can still move or resize the control. To move a control, left-
click the control to select it (crossed-arrows will appear). Drag it to the new
location, then release the mouse button. To resize a control, left-click the
control so that it is selected. If you move the cursor over one its four sizing
handles, a little ‘double-arrow’ will appear. At that point, you can click and
drag the corresponding edge or corner to its desired position.

There are other ways to place a control on the form – you will learn them as
you progress in your programming skills. One way is to simply double-
click the control in the toolbox and it will appear in the upper left corner of
the form. We prefer the drag and drop method since the control is placed
where you want it.

Example

Make sure Visual C# is still running and there is a form on the screen as
well as the Toolbox (click View on the main menu, then Toolbox if it is not
there). Go to the toolbox and find the button control. It looks like this:

Image

Drag and drop the button onto the form. Your form should look something
like this:

Image

Notice the sizing handles around the button. This indicates this is the active
control. Click on the form and those handles disappear, indicating the form
is now the active control. Click on the button again to make it active.

As mentioned, controls can always be moved and resized. To move a
control you have drawn, click the object on the form (a cross with arrows
will appear). Now, drag the control to the new location. Release the mouse
button. To resize a control, click the control so that it is selected (active)
and sizing handles appear. Use these handles to resize the object.

Image

Move the button around and try resizing it. Make a real big button, a real
short button, a real wide button, a real tall button. Try moving the button
around on the form.

Drag and drop another button control on the form. Move and resize it.
Click from button to button noticing the last clicked control has the sizing
handles, making it the active control. Spend some time placing controls on
the form. Use other controls like labels, text boxes, radio buttons, and
check boxes. Move them around, resize them. Try to organize your controls
in nicely lined-up groups. These are skills that will be needed in building
Visual C# projects.

You also need to know how to remove controls from a form. It is an easy
process. Click on the control you want to remove. It will become the active
control. Press the Del (delete) key on your keyboard. The control will be
removed. Before you delete a control, make sure you really want to delete
it. Delete any controls you may have placed on the form.

Setting Control Properties (Design Mode)

Once you have the desired controls on the form, you will want to assign
properties to the controls. Recall properties specify how a control appears
on the form. They establish such things as control size, color, what a
control ‘says’, and position on the form. When you place a control on the
form, it is given a set of default properties by Visual C#. In particular, its
geometric properties (governing size and location) are set when you place
and size the control on the form. But, many times, the default properties are
not acceptable and you will want to change them. This is done using the
Properties Window.

If Visual C# is not running on your computer, start it now. Start another
new project. There should be a blank form in the design window. If it’s not
there, select the View menu and choose Designer. Find the Properties
Window (press <F4> if it’s not there):

Image

Click the Alphabetic view (the button with A-Z on it) if Categorized
properties are displayed. Also make sure the Properties button, next to the
Alphabetic view button is depressed (always make sure this button is
pressed when working with properties). Recall the box at the top of the
properties window is the control list, telling us which controls are present
on the form. Right now, the list only has one control, that being the form
itself. Let’s look at some of the form’s properties.

Image

First, how big is the form? All controls are rectangular in shape and two
properties define the size of that rectangle. Scroll down the list of
properties and find the Size property. You will see two numbers listed
separated by commas. The first number is the Width of the form in pixels (a
pixel is a single dot on the form). The second number is the Height of the
form in pixels. Click on the little plus sign (+) in the box next to the Size
property. The Width and Height properties will be displayed individually.
Resize the form and notice the Height and Width properties change
accordingly. You can also change the width and height of the form by
typing in values for the desired property in the Properties window. Try it.

Scroll to the BackColor property. You probably guessed that this sets the
background color of the form. The value listed for that property is probably
Control (a light gray). To change the BackColor property, click on
BackColor, then on the drop-down arrow that appears in the property side
of the list. Choose one of the three ‘tabs’ that appear: Custom, Web, or
System, then choose a color. My favorite is Custom. With this choice, a
palette of colors will appear, you can choose a new color and notice the
results.

Scroll to the Text property. This property establishes what is displayed in
the form’s title bar. Click on Text, then type in something on the right side
of the property window and press <Enter>. Notice the new Text appears in
the form title bar.

That’s all there is to setting control properties. First, select the control of
interest from the control list. Then, scroll down through properties and find
the property you want to change. Click on that property. Properties may be
changed by typing in a new value (like the Width and Height values and the
Text property) or choosing from a list of predefined options (available as a
drop-down list, like color values).

Let’s look at some of the button properties. Add a button control to your
form. Select the button in the control list of the properties window. Like the
form, the button is also rectangular. Scroll down to the Size property and
click on the little plus (+) sign to expand this property. The Width property
gives its width in pixels and Height gives its height in pixels. Two other
properties specify the location of the button on the form. Scroll down to the

Location property and expand it. Values for X (the Left property) and Y
(the Top property) are displayed. Left gives the horizontal position (in
pixels) of the left side of the button relative to the left side of the form.
Similarly, Top is the vertical position (in pixels) of the top side of the
button relative to the top of the form (the top of the form being defined as
the lower part of the title bar). For a single button, these properties are:

Image

Another important property for a button is the Text property. The text
appearing on the button is the Text. It should indicate what happens if you
click that button. Change the Text property of your button. Put a couple
more buttons on the form. Move and size them. Change their Text and
BackColor properties, if you want.

We have seen that to change from one control to another in the properties
window, we can click on the down arrow in the controls list and pick the
desired control. A shortcut method for switching the listed properties to a
desired control is to simply click on the control on the form, making it the
active control. Click on one of the buttons. Notice the selected control in
the properties window changes to that control. Click on another button -
note the change. Click on the form. The selected control becomes the form.
You will find this shortcut method of switching from one control to another
very useful as you build your own Visual C# projects.

Image

Naming Controls

The most important property for any control is its Name. Because of its
importance, we address it separately. When we name a control, we want to
specify two pieces of information: the type of control and the purpose of
the control. Such naming will make our programming tasks much easier.

In the Visual C# programming community, a rule has been developed for
naming controls. The first three letters of the control name (called a prefix)

specify the type of control. Some of these prefixes are (we will see more
throughout the class):

Control Prefix
Button btn
Label lbl
Text Box txt
Check Box chk
Radio Button rdo

After the control name prefix, we choose a name (it usually starts with an
upper case letter to show the prefix has ended) that indicates what the
control does. The complete control name can have up to 40 characters. The
name must start with a letter (this is taken care of by using prefixes) and
can only contain letters (lower or upper case), numbers, and the underscore
(_) character. Even though you can have 40 character control names, keep
the names as short as possible without letting them lose their meaning. This
will save you lots of typing.

Let’s look at some example control names to give you an idea of how to
choose names. These are names used in the Sample project looked at in
Class 1 and Class 2. Examples:

btnBeep - Button that causes a beep

txtType- Text box where information could be typed

rdoBlue - Radio button that changes background color to Blue

chkTop - Check box that displays or hides the toy top

picTop – Picture box that has the picture of a toy top

This should give you an idea of how to pick control names. We can’t
emphasize enough the importance of choosing proper names. It will make
your work as a programmer much easier.

It is important to note that the Visual C# language is case sensitive. This
means the names picTop and PICTOP are not treated the same. Make sure
you assign unique names to each control. We suggest mixing upper and
lower case letters in your control names for improved readability. Just be
sure when you type in control names that you use the proper case.

Image

Setting Properties in Run Mode

To illustrate the importance of proper control names, let’s look at a
common task in Visual C#. We have seen one of the steps in developing a
Visual C# project is to establish control properties in design mode. You can
also establish or change properties while your project is in run mode. For
example, in the Sample project, when you clicked on a radio button, the
BackColor property of the form was changed. When you clicked on a toy
name, that toy either appeared or disappeared. To change a property in run
mode, we need to use a line of C# code (you’re about to learn your first line
of C#!). The format for this code is:

controlName.PropertyName = PropertyValue;

That is, we type the control’s name, a dot (same as a period or decimal
point), the name of the property we are changing (found in the properties
window), an equal sign (called an assignment operator), and the new value.
Such a format is referred to as dot notation. Make sure the line ends with a
semi-colon (;) – almost every line of code in Visual C# will end with a
semi-colon.

In Sample, the code used to display the toy top on the form is:

picTop.Visible = true;

The Visible property of a control can be true (control is displayed) or false
(control is not displayed). Notice proper control naming makes this line of
code very understandable, even if you don’t know any C#. It says that the
picture box displaying the top has been made visible.

One exception to the rule we just used is when we set Form properties. To
set a form property at run-time, you use the Visual C# keyword this to refer
to the form. For example, in Sample, to set the background color of the
form to blue, we use:

this.BackColor = Color.Blue;

Image

How Control Names are Used in Event Methods

Another place the importance of proper control naming becomes apparent
is when we write event methods (discussed next). We have seen that event
methods are viewed in the code window. The structure for event methods
is:

Image

There’s a lot to look at. The first, long line that takes up two lines here (due
to margin constraints), is the header line. Then the method begins with a
left curly brace ({) and ends with a right curly brace (}). You will see lots
of braces in C#. The actual C# code goes between these two braces.

Image

Let’s look at the header, ignoring the information in parentheses for now.
Notice the control name is used as is the event name. Can you see that, with
proper naming, we can easily identify each control’s event method?

As an example, using Sample again, the CheckedChanged event method for
the rdoBlue control is:

private void rdoBlue_CheckedChanged(object sender, EventArgs e)

{

// change form color to blue

this.BackColor = Color.Blue;

}

We recognize this is the code that is executed when the user changes the
Checked property (clicks on) of the rdoBlue radio button. Proper naming
makes identifying and reading event methods very easy. Again, this will
make your job as a programmer much easier. Now, let’s write our first
event method.

Image

Writing Event Methods

Image

The third step in building a Visual C# application is to write event methods
for the controls on the form. To write an event method, we use the code
window. Review ways to display the code window in your project. This
step is where we need to actually write C# code or do computer
programming. You won’t learn a lot of C# right now, but just learn the
process of finding event methods and typing code.

Each control has many possible events associated with it. You don’t write
C# code for each event method - only the ones you want the computer to
respond to. Once you decide an event is to be ‘coded,’ you decide what you
want to happen in that event method and translate those desires into actual
lines of C# code. As seen earlier, the format for each event method is:

private void controlName_EventName(object sender, EventArgs e)

{

[C# code goes here]

}

In the header line (remember it’s one long line), the word ‘private’
indicates this method is private to the form (only usable by the form - don’t
worry about what this means right now). The word void indicates nothing
is being computed by the method. The words enclosed in parentheses tell
us what information is provided to the event method. These values are
known as the method arguments and we won’t concern ourselves with them
right now. The code goes between the curly braces following this header
line.

Image

Writing the C# code is the creative portion of developing a Visual C#
application. And, it is also where you need to be very exact. Misspellings,
missing punctuation, and missing operators will make your programs
inoperable. You will find that writing a computer program requires
exactness. So, the process to write event methods is then:

• Decide which events you want to have some response to

• Decide what you want that response to be

• Translate that response into C# code

• Establish the event method in the code window

• Type in the C# code

And, it is a process best illustrated by example. This example project is
saved as FirstCode in the course projects folder (\VCSKids\VCSK
Projects).

Example

If Visual C# is not running on your computer, start it and begin a new
project. Name it FirstCode.

• Put a single button on the form.

• Set the Text property of the form to My First Code.

• Set the Name property of the button to btnBeep.

• Set the Text property of the button to Beep!!

Image

At this point in the design process, your form should look something like
this:

Image

We want to write a single event method - the method that responds to the
Click event of the button. When we click on that button, we want to
computer to make a beep sound. Let’s look at how to establish the event
method.

Display the code window (pressing <F7> is one way; choose View, then
Code in the menu is another):

Image

The header line (namespace FirstCode) starts the code. In Visual C#,
everything that makes up your project is called a namespace. Your form is
called a class. The line public Form1() begins the form constructor. The
constructor consists of a single line saying InitializeComponent();. This
code accesses a routine written by the Visual C# environment to set up the
form that you designed. Notice again the use of curly braces to start and
end code segments. You don’t have to worry much about any of this code –
just don’t change any of it. The only code we will change is associated with
event methods we establish and write. Let’s do that now for the button
control.

Recall when we looked at the properties window, we mentioned that, in
addition to establishing control properties, that window is also used to
establish event methods. Be aware that since the properties window has
these two purposes, you should always be aware whether the Properties or

Events button is selected in the window’s toolbar. The steps to establish a
blank event method for a particular control are:

➢ View the application form in design mode.

➢ Make desired control active, so its name appears at top of
properties window.

➢ Go to properties window – select Events button (looks like a
lightning bolt).

➢ Find event of interest.

➢ Double-click the event name.

At this point, the code window will open displaying the newly formed
event method. Let’s follow these steps for our button control.

We want to write code for the button control Click event. Display the form
design window. Select the button control (btnBeep) in the properties
window drop-down box (or click the button control on the form) to make it
active. Scroll down the events list and highlight the Click event:

Image

Any name already assigned to the Click event method would be listed on
the right side of the properties window. There should be no name in that
area – a name will be automatically assigned. Double-click the word Click
in the properties window.

The code window should open and appear as:

Image

Notice the Click method for the btnBeep button is now displayed under the
form constructor code. This is where all event methods will appear. If your
return to the properties window, the method name btnBeep_Click will

appear next to the Click event. We type the code to make the computer
beep between the two curly braces following the method header line.

The code window acts like a word processor. You can type text in the
window and use many of the normal editing features like cut, paste, copy,
find, and replace. As you become a more proficient programmer, you will
become comfortable with using the code window. Click on the region
between the two braces. Type the single line exactly as shown:

System.Media.SystemSounds.Beep.Play();

The code window should now look like this:

Image

Notice after you typed the line, it was indented and parentheses were added
at the end (indicating this is a built-in function). The Visual C#
environment does this additional ‘formatting.’ The long line of code:

System.Media.SystemSounds.Beep.Play();

is a C# instruction that simply tells the computer to beep. You have now
written your first line of C# code.

Your project is now ready to run. Run the project (click the Start button on
the toolbar or press <F5>). The form will appear:

Image

(If it doesn’t, go back and make sure you’ve done all steps properly). Click
the button. The computer should beep or some sound like a beep should be
heard. You caused a Click event on the btnBeep control. The computer
recognized this and went to the btnBeep_Click event method. There it
interpreted the line of code [Console.Beep();] and made the computer beep.
Stop your project. Go back to the code window and find the btnBeep_Click
event. After the ‘beep’ line, add this line:

btnBeep.BackColor = Color.Blue;

Make sure you type it in exactly as shown, paying particular attention to
letter case – code in computer programs must be exact. Run the project
again. Click on the button. Explain what happens in relation to the control,
the event method, and the C# code. Stop your project.

You may have noticed when you added this second line of code that as soon
as you typed btnBeep, then a dot, a little window popped up with lots of
choices for completing the line (BackColor was one of them). Similarly,
once you typed Color, then a dot, a choice of colors (including Blue)
popped up. This is the Visual C# Intellisense feature (you probably also
noticed it when typing the code to make the computer beep). It helps a lot
when it comes to typing code. Intellisense is a very useful part of Visual
C#. You should become acquainted with its use and how to select suggested
values. You usually just scroll down the list (you can type the first few
letters of a choice for faster scrolling), pick the desired item and continue
typing. The choice will be inserted in the proper location. We tell you about
the Intellisense feature now so you won’t be surprised when little boxes
start popping up as you type code.

Image

Image

Summary

You have now finished your first complete Visual C# project. You followed
the three steps of building an application:

1. Place controls on the form

2. Assign control properties

3. Write control event methods

You follow these same steps, whether building a very simple project like
the one here or a very complicated project.

Now, knowing these steps, you’re ready to start working your way through
the Visual C# toolbox, learning what each control does. You can now begin
learning elements of the C# language to help you write programs. And, you
can begin learning new features of the Visual C# environment to aid you in
project development. In each subsequent class, you will do just that: learn
some new controls, learn some C#, and learn more about Visual C#.

4

Project Design, Forms, Buttons

Review and Preview
You have now learned the parts of a Visual C# project and the three steps
involved in building a project:

1. Place controls on the form.
2. Set control properties.
3. Write desired event methods.

Do you have some ideas of projects you would like to build using Visual
C#? If so, great. Beginning with this class, you will start to develop your
own programming skills. In each class to come, you will learn some new
features of the Visual C# environment, some new controls, and elements of
the C# language. In this class, you will learn about project design, the form
and button controls, and build a complete project.

Project Design

You are about to start developing projects using Visual C#. We will give
you projects to build and maybe you will have ideas for your own projects.
Either way, it’s fun and exciting to see ideas end up as computer programs.
But before starting a project, it’s a good idea to spend a little time thinking
about what you are trying to do. This idea of proper project design will
save you lots of time and result in a far better project.

Proper project design is not really difficult. The main idea is to create a
project that is easy to use, easy to understand, and free of errors. That
makes sense, doesn’t it? Spend some time thinking about everything you
want your project to do. What information does the program need? What
information does the computer determine? Decide what controls you need
to use to provide these sets of information. Design a nice user interface
(interface concerns placement of controls on the form). Consider
appearance and ease of use. Make the interface consistent with other
Windows applications, if possible. Familiarity is good in Windows based
projects, like those developed using Visual C#.

Make the C# code in your event methods readable and easy to
understand. This will make the job of making later changes (and you will
make changes) much easier. Follow accepted programming rules - you will
learn these rules as you learn more about C#. Make sure there are no errors
in your project. This may seem like an obvious statement, but many

programs are not error-free. The Windows operating system has many
errors floating around!

The importance of these few statements about project design might not
make a lot of sense right now, but they will. The simple idea is to make a
useful, clearly written, error-free project that is easy to use and easy to
change. Planning carefully and planning ahead helps you achieve this goal.
For each project built in this course, we will attempt to give you some
insight into the project design process. We will always try to explain why
we do what we do in building a project. And, we will always try to list all
the considerations we make.

Saving a Visual C# Project
When a project is created in Visual C#, it is automatically saved in the

location you specify. If you are making lots of changes, you might
occasionally like to save your work prior to running the project. Do this by
clicking the Save All button in the Visual C# toolbar. Look for a button that
looks like several floppy disks. (How much longer do you think people will
know what a floppy disk looks like? – most new machines don’t even have
a floppy disk drive!)

Always make sure to save your project before running it or before leaving
Visual C#.

On-Line Help
Many times, while working in the Visual C# environment, you will have

a question about something. You may wonder what a particular control
does, what a particular property is for, what events a control has, or what a
particular term in C# means. A great way to get help when you’re stuck is
to ask someone who knows the answer. People are usually happy to help
you - they like the idea of helping you learn. You could also try to find the
answer in a book and there are lots of Visual C# books out there! Or,
another great way to get help is to use the Visual C# On-Line Help system.

Most Windows applications, including Visual C#, have help files
available for your use. To access the Visual C# help system, click the Help
item in the main menu, then Contents. At that point, you can search for the
topic you need help on or scroll through all the topics. The Visual C# help
system is just like all other Windows help systems. If you’ve ever used any
on-line help system, using the system in Visual C# should be easy. If you’ve
never used an on-line help system, ask someone for help. They’re pretty
easy to use. Or, click on Start on your Windows task bar, then choose
Help. You can use that on-line help system to learn about how to use an on-
line help system!

A great feature about the Visual C# on-line help system is that it is ‘context
sensitive.’ What does this mean? Well, let’s try it. Start Visual C# and start
a new project. Go to the properties window. Scroll down the window
displaying the form properties and click on the word BackColor. The word
is highlighted. Press the <F1> key. A screen of information about the
Form.BackColor property appears:

The help system has intelligence. It knows that since you highlighted the
word BackColor, then pressed <F1> (<F1> has always been the key to
press when you need help), you are asking for help about BackColor.
Anytime you press <F1> while working in Visual C#, the program will
look at where you are working and try to determine, based on context, what
you are asking for help about. It looks at things like highlighted words in
the properties window or position of the cursor in the code window.

As you work with Visual C#, you will find you will use ‘context-
sensitive’ help a lot. Many times, you can get quick answers to questions
you might have. Get used to relying on the Visual C# on-line help system
for assistance. That’s enough new material about the Visual C#
environment. Now, let’s look, in detail, at two important controls: the form
itself and the button. Then we’ll start our study of the C# language and
build a complete project.

The Form Control
We have seen that the form is the central control in the development of

a Visual C# project. Without a form, there can be no project! Let’s look at
some important properties and events for the form control. The form
appears when you begin a new project.

Properties
Like all controls, the form has many (over 40) properties. Fortunately,

we only have to know about some of them. The properties we will be
concerned with are:

Property Description
Name Name used to identify form. In this course, we

will always use the default Form1 for the
name.

Text Text that appears in the title bar of form.
BackColor Background color of form.
Icon Reference to icon that appears in title bar of

form (we’ll look at creating icons in Class 7).
Width Width of the form in pixels (expand Size

property)
Height Height of form in pixels (expand Size

property)
FormBorderStyle Form can either be sizable (can resize using

the mouse) or fixed size.
StartPosition Determines location of form on computer

screen when application begins (we usually
use a value of CenterScreen).

The form is primarily a ‘container’ for other controls. Being a container
means many controls (the button control, studied next, is an exception)
placed on the form will share the BackColor property. To change this
behavior, select the desired control (after it is placed on the form) and
change the color.

Example
To gain familiarity with these properties, start Visual C# and start a new

project with just a form. Set the Height and Width property values (listed
under Size in the properties window) and see their effect on form size.
Resize the form and notice how those values are changed in the properties
window. Set the Text property. Pick a new background color using the
selection techniques discussed in Class 3. Try centering the form by
changing the StartPosition property. To see the effect of the BorderStyle
property, set a value (either Fixed Single or Sizable; these are the only
values we’ll use in this course) and run the project. Yes, you can run a
project with just a form as a control! Try resizing the form in each case.
Note the difference. Stop this example project.

Events

The form does support events. That is, it can respond to some user
interactions. We will only be concerned with three form events in this
course:

Event Description
Click Event executed when user clicks on the form

with the mouse.
Load Event executed when the form first loads into

the computer’s memory. This is a good place
to set initial values for various properties and
other project values.

FormClosing Event called when the project is ending. This
is a good place to ‘clean up’ your project.

Recall, to create any corresponding event method, make the form the active
control, choose Events in the properties window, then double-click the
name of the event. The event method will appear in the code window. To
view an ‘already-created’ method in the code window, use the Methods List
drop-down box at the top of the code window.

Typical Use of Form Control
For each control in this, and following chapters, we will provide

information for how that control is typically used. The usual design steps
for a Form control are:

➢ Set the Text property to a meaningful title.

➢ Set the StartPosition property (in this course, this property will
almost always be set to CenterScreen)

➢ Set the FormBorderStyle to some value. In this course, we will
mostly use FixedSingle forms.

➢ Write any needed initialization code in the form’s Load event.
➢ Write any needed finalization code in the form’s FormClosing event.

Button Control

The button is one of the more widely used Visual C# controls. Buttons
are used to start, pause, or end particular processes. The button is selected
from the toolbox. It appears as:

In Toolbox:

On Form (default properties):

Properties
A few useful properties for the button are:

Property Description
Name Name used to identify button. Three letter

prefix for button names is btn.
Text Text (caption) that appears on the button.
TextAlign How the caption text is aligned on the button.
Font Sets style, size, and type of caption text.
BackColor Background color of button.
ForeColor Color of text on button.
Left Distance from left side of form to left side of

button (referred to by X in properties window,
expand Location property).

Top Distance from top side of form to top side of
button (referred to by Y in properties window,
expand Location property).

Width Width of the button in pixels (expand Size
property).

Height Height of button in pixels (expand Size
property).

Enabled Determines whether button can respond to user
events (in run mode).

Visible Determines whether the button appears on the
form (in run mode).

Example
Start Visual C# and start a new project. Put a button on the form. Move

the button around and notice the changes in X and Y properties (listed
under Location in the properties window). Resize the button and notice
how Width and Height change. Set the Text property. Change BackColor
and ForeColor properties.

Many controls, in addition to the button, have a Font property, so let’s
take a little time to look at how to change it. Font establishes what the Text
looks like. When you click on Font in the properties window, a button with
something called an ellipsis will appear on the right side of the window:

Click this button and a Font Window will appear:

With this window, you can choose three primary pieces of information:
Font, Font Style, and Size. You can also have an underlined font. This
window lists information about all fonts stored on your computer. To set the
Font property, make your choices in this window and click OK. Try
different fonts, font styles, and font size for the button Text property.

Two other properties listed for the button are Enabled and Visible. Each
of these properties can either be True (On) or False (Off). Most other
controls also have these properties. Why do you need these?

If a control’s Enabled property is False, the user is unable to access that
control. Say you had a stopwatch project with a Start and Stop button:

You want the user to click Start, then Stop, to find the elapsed time. You
wouldn’t want the user to be able to click the Stop button before clicking
the Start button. So, initially, you would have the Start button’s Enabled
property set to True and the Stop button’s Enabled property set to False.
This way, the user can only click Start. Once the user clicked Start, you
would swap property values. That is, make the Start button’s Enabled
property False and the Stop button’s Enabled property True. That way, the
user could now only click Stop.

The effects of a False Enabled property are only evident when Visual
C# is in run mode. When a button is not Enabled (Enabled is False), it will
appear ‘hazy’ and the user won’t be able to click it. When Stop is not
Enabled on the stopwatch, it looks like this:

So, use the Enabled property when you want a control on the form to be
temporarily disabled. This is a decision made in the project design process
we discussed earlier.

The Visible property is a bit more drastic. When a control’s Visible
property is set to False (its default value is True), the control won’t even be
on the form! Now, why would we want a control we just placed on the
form, set properties for, and wrote event methods for, to be invisible? The
answer is similar to that for the Enabled property. Many times in a project,
you will find you want a control to temporarily go away. Remember the
Sample project in Class 1 where check boxes controlled whether toys were
displayed or not. The display of the toys was controlled via the picture box
control’s Visible property. Or, in the little stopwatch example, instead of
setting a button’s Enabled property to False to make it ‘unclickable,’ we
could just set the Visible property to False so it doesn’t appear on the form

at all. Either way, you would obtain the desired result. This is another
project design decision. One more thing - like the Enabled property, the
effects of Visible being False are only evident in run mode. This makes
sense. It would be hard to design a project with invisible controls!

Now, play with the Enabled and Visible properties of the button in the
example you have been working with. Once you set either property, run the
project to see the results. Note with Enabled set to False, you can’t click the
button. Note with Visible set to False, the button isn’t there. When done,
stop the example project.

Events
There is only one button event of interest, but it is a very important one:

Event Description
Click Event executed when user clicks on the button

with the mouse.

Every button will have an event method corresponding to the Click event.

Typical Use of Button Control
The usual design steps for a button control are:

➢ Set the Name and Text property.
➢ Write code in the button’s Click event.
➢ You may also want to change the Font, Backcolor and Forecolor

properties.

C# - The First Lesson

At long last, we are ready to get into the heart of a Visual C# project -
the C# language. You have seen that, in a Visual C# project, event methods
are used to connect control events to actual actions taken by the computer.
These event methods are written using C#. So, you need to know C# to
know Visual C#. In each subsequent class in this course, you will learn
something new about the C# language.

Event Method Structure
You know, by now, that event methods are created using the properties

window and viewed in the Visual C# code window. Each event method has
the same general structure. First, there is a header line of the form:

private void controlName_EventName(object sender, EventArgs e)

This tells us we are working with a private (only accessible from our form)
method, returning no information (word void), that is executed when the
event EventName occurs for the control controlName. Makes sense,
doesn’t it? Again, for now we will ignore the information contained in the
parentheses.

The event method code is enclosed in a matched set of curly braces that
follow the header line. The event method code is simply a set of line-by-
line instructions to the computer, telling it what to do. The computer will
process the first line, then the second, then all subsequent lines.

Some C# Programming Rules

The event method code is written in the C# language. C# is a set of
keywords and symbols that are used to make the computer do things. There
is a lot of content in C# and we’ll try to look at much of it in this course.
Just one warning at this point. We’ve said it before, but it’s worth saying
again. Computer programming requires exactness - it does not allow errors!
The Visual C# environment can point out some errors to you, but not all.
You must especially be exact when typing in event methods. Good typing
skills are a necessity in the computer age. As you learn Visual C#
programming, you might like also to improve your typing skills using some
of the software that’s available for that purpose. The better your typing
skills, the fewer mistakes you will make in building your Visual C#
applications.

Here are some rules to follow as you type in your C# code:

• C# code requires perfection. All keywords must be spelled correctly. If
you type BckColor instead of BackColor, a human may know what
you mean, but a computer won’t.

• C# is case-sensitive, meaning upper and lower case letters are
considered to be different characters. When typing code, make sure

you use upper and lower case letters properly. In C#, the words Blue
and blue are completely different.

• Curly braces are used for grouping. They mark the beginning and end
of programming sections. Make sure your C# code has an equal
number of left and right braces. We call the section of code between
matching braces a block.

• It is good coding practice to indent code within a block. This makes
code easier to follow. Notice in examples we’ve seen, each block is
indented 4 spaces. The Visual C# editor automatically indents code in
blocks for you.

• Every C# statement will end with a semicolon. A statement is a
program expression that generates some action (for example, the
statement used to make the computer beep in the previous class).
Note that not all C# expressions are statements (for example, the line
defining an event method has no semicolon).

We’ll learn a lot more C# programming rules as we progress.

Assignment Statement

The simplest, and most used, statement in C# is the assignment
statement. It has this form:

leftSide = rightSide;

The symbol = is called the assignment operator. You may recognize this
symbol as the equal sign you use in arithmetic, but it’s not called an equal
sign in computer programming. Why is that?

In an assignment statement, we say whatever is on the left side of the
assignment statement is replaced by whatever is on the right side. The left
side of the assignment statement can only be a single term, like a control
property. The right side can be just about any legal C# expression. It might
have some math that needs to be done or something else that needs to be
evaluated. If there are such evaluations, they are completed before the
assignment. We are talking in very general terms right now and we have to.
The idea of an assignment statement will become very obvious as you learn
just a little more C#.

Property Types
Recall a property describes something about a control: size, color,

appearance. Each property has a specific type depending on the kind of
information it represents. When we use the properties window to set a value
in design mode, Visual C# automatically supplies the proper type. If we
want to change a property in an event method using the C# assignment
statement, we must know the property type so we can assign a properly
typed value to it. Remember we use something called ‘dot notation’ to
change properties in run mode:

controlName.PropertyName = PropertyValue;

controlName is the Name property assigned to the control, PropertyName is
the property name, and PropertyValue is the new value we are assigning to
PropertyName. We will be concerned with four property types.

The first property type is the int (stands for integer) type. These are
properties that are represented by whole, non-decimal, numbers. Properties
like the Top, Left, Height, and Width properties are integer type. So, if we
assign a value to an integer type property, we will use integer numbers. As

an example, to change the width property of a form to 1,100 pixels, we
would write in C#:

this.Width = 1100;

Recall the keyword this is used to refer to the form. This says we replace
the current Width of the form with the new value of 1100. Notice you write
1,100 as 1100 in C# - we can’t use commas in large numbers.

A second property type involves colors. We need this to set properties
like BackColor. Fortunately, Visual C# has a set of built-in colors to choose
from. To set a control color (described by ColorPropertyName), we type:

controlName.ColorPropertyName = Color.ColorName;

As soon as we type the word Color and a dot on the right side of the
assignment statement, a entire list of color names to choose from magically
appears. To change the form background color to blue, use:

this.BackColor = Color.Blue;

Another property type is the bool (stands for Boolean) type. It takes its
name from a famous mathematician (Boole). It can have two values: true or
false. We saw that the Enabled and Visible properties for the button have
Boolean values. So, when working with Boolean type properties, we must
insure we only assign a value of true or a value of false. To make a form
disappear (not a very good thing to do!), we would use the assignment
statement:

this.Visible = false;

This says the current Visible property of the form is replaced by the
Boolean value false. We could make it come back with:

this.Visible = true;

There is one possible point of confusion when working with Boolean
values. When setting a Boolean value using the properties window, the two
choices are True or False. When setting Boolean values using C# code, the
two choices are true or false. That is, in one case, upper case words are
used and in the other, lower case words are used. Be aware of this when
writing code. A common error is to use upper case values, rather than the
proper lower case values.

The last property type we need to look at here is the string type.
Properties of this type are simply what the definition says - strings of
characters. A string can be a name, a string of numbers, a sentence, a
paragraph, any characters at all. And, many times, a string will contain no
characters at all (an empty string). The Text property is a string type
property. We will do lots of work with strings in Visual C#, so it’s
something you should become familiar with. When assigning string type
properties, the only trick is to make sure the string is enclosed in quotes (“).
You may tend to forget this since string type property values are not
enclosed in quotes in the properties window. To give our a form a caption in
the title bar, we would use:

this.Text = “This is a caption in quotes”;

This assignment statement says the Text property of the form is replaced by
(or changed to) the string value on the right side of the statement. You
should now have some idea of how assignment statements work.

Comments

When we talked about project design, it was mentioned that you should
follow proper programming rules when writing your C# code. One such
rule is to properly comment your code. You can place non-executable
statements (ignored by the computer) in your code that explain what you
are doing. These comments can be an aid in understanding your code. They
also make future changes to your code much easier.

To place a comment in your code, use the comment symbol, two slashes
(//). Anything written after the comment symbol will be ignored by the
computer. You can have a comment take up a complete line of C# code, like
this:

// Change form to blue
this.BackColor = Color.Blue;

Or, you can place the comment on the same line as the assignment
statement:

this.BackColor = Color.Blue; // Makes form blue

You, as the programmer, should decide how much you want to comment
your code. We will try in the projects provided in this course to provide
adequate comments. Now, on to the first such project.

Project - Form Fun

Project Design
In this project, we will have a little fun with form properties using

buttons. We will have a button that makes the form grow, one that makes
the form shrink, and two buttons that change the form color. We’ll even
have a couple of buttons that make the other buttons disappear and
reappear. This project is saved as FormFun in the course projects folder
(\VCSKids\VCSK Projects).

Place Controls on Form
Start a new project in Visual C#. Size the form so six buttons will fit on

the form. Place six buttons on the form. Resize and move the buttons
around until the form looks something like this:

If you’ve used Windows applications for a while, you have probably used
the edit feature known as Copy and Paste. That is, you can copy something
you want to duplicate, move to the place you want your copy and then paste
it. This is something done all the time in word processing. You may have
discovered, in playing around with Visual C#, that you can copy and paste
controls. Try it here with the button controls and in other projects if you
like. It works pretty nicely.

Set Control Properties
Set the control properties using the properties window. Remember that

to change the selected control in the properties window, you can either use
the controls list at the top of the window or just click on the desired control.
For project control properties, we will always list controls by their default
names (those assigned by Visual C# when the control is placed on the
form).

Form1 Form:
Property Name Property Value

StartPosition CenterScreen
Text Form Fun

button1 Button:
Property Name Property Value

Name btnShrink
Text Shrink Form

button2 Button:
Property Name Property Value

Name btnGrow
Text Grow Form

button3 Button:
Property Name Property Value

Name btnHide
Text Hide Buttons

button4 Button:
Property Name Property Value

Name btnRed
Text Red Form

button5 Button:
Property Name Property Value

Name btnBlue
Text Blue Form

button6 Button:
Property Name Property Value

Name btnShow
Text Show Buttons
Visible False

You can change other properties if you want - maybe change the Font
property of the buttons. When you’re done setting properties, your form
should resemble this:

What we have are six buttons, two to change the size of the form, two to
change form color, one to make buttons go away, and one to make buttons
reappear. Notice the Show Buttons button has a Visible property of False.
We don’t want it on the form at first, since the buttons will already be there.
When we make the buttons go away (by changing their Visible property) by
clicking the Hide Buttons control, we will make the Show Buttons button
appear. Makes sense, doesn’t it? But, why is the Show Buttons button there
if its Visible property is False? Remember a False Visible property will only
be seen in run mode.

Write Event Methods
We have six buttons on our form. We need to write code for the Click

event method for each of these buttons. We’ll also want to write a Click
event method for the form - we’ll explain why. We have a button on the
form that makes the form shrink. What if we shrink it so much, we can’t
click on the button to make it grow again? We can avoid that by allowing a
click on the form to also grow the form. This ‘thinking ahead’ is one of the
project design concepts we talked about.

Each event method is created using the properties window. To create the
method, select the desired control on the form and go to the properties
window. Click the Events button in the toolbar, scroll down to the desired
event (Click in each case here) and double-click the event name. The code
window will open with the method displayed. Then click in the region
between the curly braces following the header line and start typing code.
It’s that easy. But, again, make sure you type in everything just as written in
these notes. You must be exact!

First, let’s type the btnShrink_Click event method. In this event
method, we decrease the form height by 10 pixels and decrease the form
width by 10 pixels:

private void btnShrink_Click(object sender, EventArgs e)
{

// Shrink the form
// Decrease the form height by 10 pixels
this.Height = this.Height - 10;
// Decrease the form width by 10 pixels
this.Width = this.Width - 10;

}

Before looking at the other event methods, let’s look a bit closer at this one
since it uses a few ideas we haven’t clearly discussed. This is the event
method executed when you click on the button marked Shrink Form. You
should easily recognize the comment statements. The non-comment
statements change the form height and width. Look at the statement to
change the height:

this.Height = this.Height – 10;

Recall how the assignment operator (=) works. The right side is evaluated
first. So, 10 is subtracted (using the - sign) from the current form height.
That value is assigned to the left side of the expression, this.Height. The
result is the form Height property is replaced by the Height property minus

10 pixels. After this line of code, the Height property has decreased by 10
and the form will appear smaller on the screen.

This expression also shows why we call the assignment operator (=) just
that and not an equal sign. Anyone can see the left side of this expression
cannot possibly be equal to the right side of this expression. No matter what
this.Height is, the right side will always be 10 smaller than the left side.
But, even though this is not an equality, you will often hear programmers
read this statement as “this.Height equals this.Height minus 10,” knowing
it’s not true! Remember how assignment statements work as you begin
writing your own programs.

Now, let’s look at the other event methods. The btnGrow_Click event
method increases form height by 10 pixels and increases form width by 10
pixels:

private void btnGrow_Click(object sender, EventArgs e)
{

// Grow the form
// Increase the form height by 10 pixels
this.Height = this.Height + 10;
// Increase the form width by 10 pixels
this.Width = this.Width + 10;

}

The btnRed_Click event method changes the form background color to
red:

private void btnRed_Click(object sender, EventArgs e)
{

// Make form red
this.BackColor = Color.Red;

}

while the btnBlue_Click event method changes the form background color
to blue:

private void btnBlue_Click(object sender, EventArgs e)
{

// Make form blue
this.BackColor = Color.Blue;

}

The btnHide_Click event method is used to hide (set the Visible
property to false) all buttons except btnShow, which is made Visible (note
the use of lower case true and false when writing code):

private void btnHide_Click(object sender, EventArgs e)
{

// Hide all buttons but btnShow
btnGrow.Visible = false;
btnShrink.Visible = false;
btnHide.Visible = false;
btnRed.Visible = false;
btnBlue.Visible = false;
// Show btnShow button
btnShow.Visible = true;

}

and the btnShow_Click event method reverses these effects:

private void btnShow_Click(object sender, EventArgs e)
{

// Show all buttons but btnShow
btnGrow.Visible = true;
btnShrink.Visible = true;
btnHide.Visible = true;

btnRed.Visible = true;
btnBlue.Visible = true;
// Hide btnShow button
btnShow.Visible = false;

}

Lastly, the Form1_Click event method is also used to ‘grow’ the form,
so it has the same code as btnGrow_Click:

private void Form1_Click(object sender, EventArgs e)
{

// Grow the form
// Increase the form height by 10 pixels
this.Height = this.Height + 10;
// Increase the form width by 10 pixels
this.Width = this.Width + 10;

}

Save your project by clicking the Save All button (the multiple floppy disks
button) in the toolbar.

You should easily be able to see what’s going on in each of these
methods. Pay special attention to how the Visible property was used in the
btnHide and btnShow button click events. Notice too that many event
methods are very similar in their coding. For example, the Form1_Click
event is identical to the btnGrow_Click event. This is often the case in
Visual C# projects. We encourage the use of editor features like Copy and
Paste when writing code. To copy something, highlight the desired text
using the mouse - the same way you do in a word processor. Then, select
Edit in the Visual C# main menu, then Copy. Move the cursor to where
you want to paste. You can even move to other event methods. Select Edit,
then Paste. Voila! The copy appears. The pasted text might need a little
editing, but you will find that copy and paste will save you lots of time
when writing code. And, this is something you’ll want to do since you

probably have noticed there’s quite a bit of typing in programming, even for
simple project such as this. Also useful are Find and Replace editor
features. Use them when you can.

The Intellisense feature of Visual C# is another way to reduce your
typing load and the number of mistakes you might make. While you are
writing C# in the code window, at certain points little boxes will pop up that
display information that would logically complete the statement you are
working on. This way, you can select the desired completion, rather than
type it.

Run the Project
Go ahead! Run your project - click the Start button on the Visual C#

toolbar. If it doesn’t run properly, the only suggestion at this point is to stop
the project, recheck your typing, and try again. We’ll learn ‘debugging’
techniques in the next class. Here’s a run I made where I grew the form and
made it red:

Try all the buttons. Grow the form, shrink the form, change form color,
hide the buttons, make the buttons reappear. Make sure you try every button
and make sure each works the way you want. Make sure clicking the form
yields the desired result. This might seem like an obvious thing to do but,
for large projects, sometimes certain events you have coded are never
executed and you have no way of knowing if that particular event method
works properly. This is another step in proper project design - thoroughly
testing your project. Make sure every event works as intended. When done
trying out this project, stop it (click the Visual C# toolbar Stop button).

Other Things to Try

For each project in this course, we will offer suggestions for changes
you can make and try. Modify the Shrink Form and Grow Form buttons
to make them also move the form around the screen (use the Left and Top
properties). Change the form color using other color values. Change the
Hide Buttons button so that it just sets the buttons’ Enabled property to
false, not the Visible property. Similarly, modify the Show Buttons button.

Summary
Congratulations! You have now completed a fairly detailed (at least

there’s more than one control) Visual C# project. You learned about project
design, saving projects, details of the form and button controls, and how to
build a complete project. You should now be comfortable with the three
steps of building a project: placing controls, setting properties, and writing
event methods. We will continue to use these steps in future classes to build
other projects using new controls and more of the C# language.

5

Labels, Text Boxes, Variables

Image

Review and Preview

We continue our look at the Visual C# environment and learn some new
controls and new C# statements. As you work through this class, remember
the three steps for building a Visual C# project: (1) place controls on form,
(2) assign properties to controls, and (3) write event methods.

In this class, you will examine how to find and eliminate errors in your
projects, learn about the label and text box controls, and about C#
variables. You will build a project that helps you plan your savings.

Image

Debugging a Visual C# Project

No matter how well you plan your project and no matter how careful you
are in implementing your ideas in the controls and event methods, you will
make mistakes. Errors, or what computer programmers call bugs, do creep
into your project. You, as a programmer, need to have a strategy for finding
and eliminating those bugs. The process of eliminating bugs in a project is
called debugging. Unfortunately, there are not a lot of hard, fast rules for
finding bugs in a program. Each programmer has his or her own way of
attacking bugs. You will develop your ways. We can come up with some
general strategies, though, and that’s what we’ll give you here.

Project errors, or bugs, can be divided into three types:

• Syntax errors

• Run-time errors

• Logic errors

Syntax errors occur when you make an error setting a property in design
mode or when typing a line of C# code. Something is misspelled or
something is left out that needs to be there. Your project won’t run if there
are any syntax errors. Runtime errors occur when you try to run your
project. It will stop abruptly because something has happened beyond its
control. Logic errors are the toughest to find. Your project will run OK, but
the results it gives are not what you expected. Let’s examine each error type
and address possible debugging methods.

Syntax Errors

Image

Syntax errors are the easiest to identify and eliminate. The Visual C#
program is a big help in finding syntax errors. Syntax errors will most
likely occur as you’re setting properties for the controls or writing C# code
for event methods.

Start a new project in Visual C#. Go to the project window and try to set
the form Width property to the word Junk. (Click the plus sign next to the
Size property to see Width.) What happened? You should see a little
window like this:

Image

Click Details and you will see an explanation of the problem. Remember
that property values must be the proper type. Assigning an improper type to
a property is a syntax error. But, we see Visual C# won’t let us make that
mistake. Click Cancel to restore the Width to what it was before you tried
to change it.

What happens if you cause a syntax error while writing code. Let’s try it.
Establish a Form1_Load event method using the properties window (recall:
choose Events button in properties window, scroll down to Load event and
double-click the event name). When the code window opens, under the left
curly brace following the header line, type this line, then press <Enter>:

this.BackColor 0 Color.Red;

This would happen if you typed 0 instead of = in the assignment statement.
What happened? In the code window, part of the line will appear underlined
with a squiggle, similar to what Microsoft Word does when you misspell a
word:

Image

Visual C# has recognized that something is wrong with this statement. You
should be able to see what. Any line with an error will be ‘squiggled’ in
places. Placing the cursor over a squiggled line will give some indication of
your error.

So, if you make a syntax error, Visual C# will usually know you’ve done
something wrong and make you aware of your mistake. The on-line help
system is a good resource for debugging your syntax errors. Note that
syntax errors usually result because of incorrect typing - another great
reason to improve your typing skills, if they need it.

Image

Run-Time Errors

Image

Once you successfully set control properties and write event methods,
eliminating all identified syntax errors, you try to run your project. If the
project runs, great! But, many times, your project may stop and tell you it
found an error - this is a run-time error. You need to figure out why it
stopped and fix the problem. Again, Visual C# and on-line help will usually
give you enough information to eliminate run-time errors. Let’s look at
examples.

Working with the same example as above, try to run the project with the
incorrect line of code. After you click the Start button on the toolbar, the
following window should appear:

Image

This tell us an error has occurred in trying to ‘build’ the project. Click No –
we don’t want to continue. We want to find the error. If ‘build errors’ occur,
they are listed in another Visual C# window – the Error List. This list
shows you all errors detected in trying to run your program. Go to that
window now (if it’s not there already, choose View in menu, select Error
List. Error List appears in the Design window. Yours might be floating or
docked somewhere.

My Error List window is:

Image

It has three errors that must be cleared before the program will run. Note
each error refers to Line 22 on Form1, pointing to the offending line.
Double-click the first error to move to the corresponding line:

Image

Visual C# is telling you that there is something wrong with how you used
this line of code. Using the hints from the task list (the code expected an
end-of-line indicator), you should be able to see that the assignment
operator (=) is missing. If you don’t see the problem, clicking <F1> might
give you more help.

Let’s say we corrected our error by adding the = sign, but we accidentally
left out the letter ‘k’ in the BackColor property name, or we typed:

this.BacColor = Color.Red;

Try running the project and you’ll see another ‘build error’ window.
Choose not to continue and go to the Error List:

Image

The message again points to Line 22, saying ‘BacColor’ is not defined by
the form.

Again, go to Line 22 (double-click the error message) in the code window
and you should see:

Image

The cursor is next to Me.BacColor. Visual C# is telling you it can’t find
this property for the particular control (the form). You should note the
misspelling and correct it.

Now, let’s say you correct the property name, but mess up again and type
thiss instead of this when referring to the form:

thiss.BackColor = Color.Red;

Run the project. You will get another build error, choose not to continue
and view the Task list:

Image

The key message here is ‘thiss does not exist …’ This usually appears
when you have misspelled the assigned name of a control in C# code.
Visual C# is trying to assign a property to something using the ‘dot
notation’:

controlName.PropertyName = Value;

But, it can’t find a control with the given name (thiss in this case). Go to
the code window, correct the error and run the application. You should
finally get a red form!!

The errors we’ve caused here are three of the most common run-time
errors: misspelling an assigned Name property, misspelling a property
name, or leaving something out of an assignment statement. Notice each
run-time error seen was detected prior to running, resulting in a build error.
There are other runtime errors that may occur while your application is
actually running.

Visual C# refers to some run-time errors as exceptions. If a window
appears saying you have some kind of exception, the line with the detected

error will be shown with suggestions for fixing the error. Be sure to stop the
program before trying to fix the error.

We’ve seen a few typical run-time errors. There are others and you’ll see
lots of them as you start building projects. But, you’ve seen that Visual C#
is pretty helpful in pointing out where errors are and on-line help is always
available to explain them. One last thing about run-time errors. Visual C#
will not find all errors at once. It will stop at the first run-time error it
encounters. After you fix that error, there may be more. You have to fix
run-time errors one at a time.

Logic Errors

Image

Logic errors are the most difficult to find and eliminate. These are errors
that don’t keep your project from running, but cause incorrect or
unexpected results. The only thing you can do at this point, if you suspect
logic errors exist, is to dive into your project (primarily, the event methods)
and make sure everything is coded exactly as you want it. Finding logic
errors is a time-consuming art, not a science. There are no general rules for
finding logic errors. Each programmer has his or her own particular way of
searching for logic errors.

With the example we have been using, a logic error would be setting the
form background color to blue, when you expected red. You would then go
into the code to see why this is happening. You would see the color
Color.Blue instead of the desired value Color.Red. Making the change
would eliminate the logic error and the form will be red.

Unfortunately, eliminating logic errors is not as easy as this example. But,
there is help. Visual C# has something called a debugger that helps you in
the identification of logic errors. Using the debugger, you can print out
properties and other values, stop your code wherever and whenever you
want, and run your project line-by-line. Use of the debugger is an advanced
topic and will not be talked about in this course. If you want to improve
your Visual C# skills, you are encouraged to eventually learn how to use
the debugger.

Now, let’s improve your skills regarding Visual C# controls. We’ll look at
two new controls: the label and the text box.

Label Control

A label is a control that displays information the user cannot edit directly. It
is most often used to provide titles for other controls. Or, it is used to
display the results of some computer operation. The label control is
selected from the toolbox. It appears as:

In Toolbox:

Image

On Form (default properties):

Image

Properties

A few useful properties for the label are:

Property Description

Name Name used to identify label. Three letter prefix for label
names is lbl.

Text Text (string type) that appears in the label.
TextAlign Specifies how the label text is positioned.
Font Sets style, size, and type of Text text.
BackColor Sets label background color.
ForeColor Sets color of Text text.

Left Distance from left side of form to left side of label (referred to
by X in properties window, expand Location property).

Top Distance from top side of form to top side of label (referred to
by Y in properties window, expand Location property).

Width Width of the label in pixels (expand Size property).
Height Height of label in pixels (expand Size property).
BorderStyle Determines type of label border.

Visible Determines whether the label appears on the form (in run
mode).

AutoSize If True (default value), label adjusts to size of text. If False,
label can be resized.

Note, by default, the label control has no resizing handles. To resize the
label, set AutoSize to False.

Example

Make sure Visual C# is running and start a new project. Put a label on the
form. Resize it and move it, if desired. Set the Text property. Try different
Fonts. See the difference among the BorderStyle possibilities; notice the
default value (None) makes the button match with the form, Fixed Single
places a box around the label, and Fixed3D gives the label a three-
dimensional inset look. Change the BackColor and ForeColor properties.
You may find certain color combinations that don’t do a very good job of
displaying the Text when in color. Make sure you are aware of
combinations that do and don’t work. You want your user to be able to read
what is displayed.

The most used label property is Text. It holds the information that is
displayed in the label control. There are two things you need to be aware
of.

First, by default, the label will ‘grow’ to hold any Text you might provide
for it. If the label size is not acceptable, you can try things like changing
Font or AutoSize. If the label is made to be larger than the text it holds (by
setting AutoSize to False), you will also want to set the TextAlign property.
Try different values of the TextAlign property; there are nine different
alignments selected from a ‘graphical’ menu:

Image

Vertical choices are: top, middle, and bottom justification. Horizontal
choices are: left, center, and right justification.

The second thing you need to know is that Text is a string type property. It
can only hold string values. When setting the Text property in run mode,
the Text information must be in quotes. For example, if you have a label
control named lblExample and you want to set the Text property to My
Label Box, you would use the C# code (note the dot notation):

lblExample.Text = “My Label Box”;

You don’t have to worry about the quotes when setting the Text in design
mode. Visual C# knows this is a string value.

Events

Image

There is only one label event of interest:

Event Description
Click Event executed when user clicks on the label with the mouse.

With this event, you could allow your user to choose among a set of
displayed label boxes. Why would you want to do this? Example
applications include multiple choice answers in a test or color choices.

Image

Typical Use of Label Control

The usual design steps for the label control to display unchanging text (for
example, to provide titling information) are:

➢ Set the Name (though not really necessary since you rarely
write code for a label control) and Text property.

➢ You may also want to change the Font, Backcolor and
Forecolor properties.

To use the label control for changing text, for example, to show some
computed results, use these steps:

➢ Set the Name property. Initialize Text to desired string.

➢ Set AutoSize to False, resize control and select desired value
for TextAlign.

➢ Assign Text property (String type) in code where needed.

➢ You may also want to change the Font, Backcolor and
Forecolor properties.

Image

Text Box Control

The text box control is used to display information entered in design mode,
by a user in run mode, or assigned within an event method. Just think of a
text box as a label whose contents your user can (or may not be able to)
change. The text box is selected from the Visual C# toolbox. It appears as:

In Toolbox:

Image

On Form (default properties):

Image

Properties

The text box has a wealth of useful properties:

Property Description

Name Name used to identify text box. Three letter prefix for text box
names is txt.

Text Text (string value) that appears in text box.

TextAlign Sets whether Text is left-justified, right-justified, or centered
in text box.

Font Sets style, size, and type of Text.
MultiLine Specifies whether text box displays one line or multiple lines.
ScrollBars Specifies type of displayed scroll bar(s).
MaxLength Maximum length of displayed Text. If 0, length is unlimited.
BackColor Sets text box background color.
ForeColor Sets color of Text.

Left Distance from left side of form to left side of text box (X in
the properties window, expand Location property).

Top Distance from top side of form to top side of text box (Y in
the properties window, expand Location property).

Width Width of the text box in pixels (expand Size property).
Height Height of text box in pixels (expand Size property).

ReadOnly If True, user can’t change contents of text box (run mode
only).

TabStop If False, the control cannot be ‘tabbed’ to.
BorderStyle Determines type of text box border.

Visible Determines whether the text box appears on the form (in run
mode).

Example

Start a new Visual C# project. Put a text box on the form. Resize it and
move it, if desired. Set the Text property. Try different Fonts. Try different
values of the TextAlign property. See the difference among the BorderStyle
possibilities. The label box used None as default, the text box uses
Fixed3D. Change the BackColor and ForeColor properties. Set MultiLine
to True and try different ScrollBars values. I think you can see the text box
is very flexible in how it appears on your form.

Like the Text property of the label control, the Text property of a text box is
a string value. So, when setting the Text property in run mode, we must
enclose the value in quotes (“) to provide a proper assignment. Setting the
Text property in design mode does not require (and you shouldn’t use)
quotes.

Events

Image

The most important property of the text box is the Text property. As a
programmer, you need to know when this property has changed in order to
make use of the new value. There are two events you can use to do this:

Event Description
TextChanged Event executed whenever Text changes.

Leave Event executed when the user leaves the text box and causes
an event on another control.

The TextChanged event is executed a lot - every time a user presses a key
while typing in the text box, the TextChanged event method is called.
Looking at the Text property in this event method will give you its current
value.

The Leave event is the more useful event for examining Text. Remember in
placing controls on the form in design mode, you can make one control
‘active’ by clicking on it. There is a similar concept while an application is
in run mode. A user can have interaction with only one control at a time.
The control the user is interacting with (causing events) is said to have
focus. While a user is typing in a text box, that box has focus. The Leave
event is executed when you leave the text box and another control gets
focus. At that point, we know the user is done typing in the text box and is
done changing the Text property. That’s why this event method is a good
place to find the value of the Text property.

Typical Use of Text Box Control

There are two primary ways to use a text box – as an input control or as a
display control. If the text box is used to accept some input from the user,
the usual design steps:

➢ Set the Name property. Initialize Text property to desired
string.

➢ If it is possible to input multiple lines, set MultiLine property
to True. Also, set ScrollBars property, if desired.

➢ You may also want to change the Font, Backcolor and
Forecolor properties.

If using the control just to display some information (no user modification
possible), follow these usual design steps:

➢ Set the Name property. Initialize Text property to desired
string.

➢ Set ReadOnly property to True (once you do this, note the
background color will change).

➢ Set TabStop to False.

➢ If displaying more than one line, set MultiLine property to
True.

➢ Assign Text property in code where needed.

➢ You may also want to change the Font, Backcolor and
Forecolor properties.

C# - The Second Lesson

Image

In this class, you will learn some new C# concepts. We will discuss
variables (name, type, declaring), arithmetic operations, and some functions
and techniques for working with strings.

Variables

All computer programs work with information of one kind or another.
Numbers, text, colors and pictures are typical types of information they
work with. Computer programs need places to store this information while
working with it. We have seen one type of storage used by Visual C#
projects - control properties. Control properties store information like
control size, control appearance, control position on the form, and control
colors.

But, control properties are not sufficient to store all information a project
might need. What if we need to know how much ten bananas cost if they
are 25 cents each? We would need a place to store the number of bananas,
the cost of each banana, and the result of multiplying these two numbers
together. To store information other than control properties in Visual C#
projects, we use something called variables. They are called variables
because the information stored there can change, or vary, during program
execution. Variables are the primary method for moving information
around in a Visual C# project. And, certain rules must be followed in the
use of variables. These rules are very similar to those we have already
established for control properties.

Variable Names

You must name every variable you use in your project. Rules for naming
variables are:

• No more than 40 characters.

• Can only use letters, numbers, and the underscore (_) character.

• The first character must be a letter. It is customary, though not
required, in Visual C# that this first letter be lower case.

• You cannot use a word reserved by Visual C# (for example, you
can’t have a variable named Form or one named Beep).

The most important rule is to use variable names that are meaningful. You
should be able to identify the information stored in a variable by looking at
its name. As an example, in our banana buying example, good names
would be:

Quantity Variable Name
Cost of each banana bananaCost
Number of bananas purchased bananas
Cost of all bananas totalBananaCost

Image

As mentioned in an earlier class, the Visual C# language is case sensitive.
This means the names BananaCost and bananacost refer to different
variables. Make sure you assign unique, easily identified, names to each
variable. As with control names, we suggest mixing upper and lower case
letters for improved readability. You will notice, as you type code, that the
Visual C# editor will adjust the case of control names, variables and
reserved C# keywords, as necessary.

Variable Types

We need to know the type of information stored by each variable. The same
types used for properties can be applied to variables: int (integer), bool
(Boolean) and string. There are other types too - consult on-line help for
types you might want to use.

Here, we look at one more type we will use with variables: the double type.
Up to now, all the projects we’ve worked with have used integer (or whole
number) values. But, we know most ‘real-world’ mathematics involves
decimal numbers. The double type is just that - a number that has a decimal
point. In computer language, we call it a floating point number. The ‘point’
that is floating (moving around) is the decimal. Examples of double type
numbers are:

2.00 -1.2 3.14159

Variables can appear in assignment statements:

variableName = NewValue;

Only a single variable can be on the left side of the assignment operator (=)
while any legal C# expression, using any number of variables, can be on
the right side of the operator. Recall that, in this statement, NewValue is
evaluated first, then assigned to variableName. The major thing we need to
be concerned with is that NewValue is the same type as variableName. That
is, we must assign a properly typed value to the variable. This is the same
thing we had to do with property values.

Declaring Variables

Image

Once we have named a variable and determined what type we want it to be,
we must relay this information to our Visual C# project. We need to declare
our variables. (We don’t have to declare control properties since Visual C#
already knows about them.) The statement used to declare a variable named
variableName as type type is:

type variableName;

We need a declaration statement like this for every variable in our project.
This may seem like a lot of work, but it is worth it. Proper variable
declaration makes programming easier, minimizes the possibility of
program errors, and makes later program modification easier.

So, where do we put these variable declarations. Start a new Visual C#
project and bring up the code window. The code window will look like this:

Image

We will put variable declaration statements directly beneath form
constructor code (Public Form1) and before any event methods. This

location in the code window is known as the general declarations area and
any variables declared here can be used (the value can be accessed and/or
changed) in any of the project’s event methods.

Try typing some variable declarations in the code window. Here are some
examples to try:

Image

Type Casting

In each assignment statement, it is important that the type of data on both
sides of the operator (=) is the same. That is, if the variable on the left side
of the operator is an int, the result of the expression on the right side should
be int. Visual C# (by default) will try to do any conversions for you. When
it can’t, an error message will be printed. In those cases, you need to
explicitly cast the result. This means convert the right side to the same side
as the left side. Assuming the desired type is type, the casting statement is:

leftSide = (type) rightSide;

You can cast from any basic type (decimal and integer numbers) to any
other basic type. For example, in the statement:

a = (int) (3.14159);

The variable a (an int type) will be assigned a value of 3.

Be careful when casting from higher precision numbers to lower precision
numbers. Problems arise when you are outside the range of numbers.

Arithmetic Operators

Image

One thing computer programs are very good at is doing arithmetic. They
can add, subtract, multiply, and divide numbers very quickly. We need to

know how to make our Visual C# projects do arithmetic. There are five
arithmetic operators in the C# language.

Addition is done using the plus (+) sign and subtraction is done using the
minus (-) sign. Simple examples are:

Operation Example Result
Addition 7 + 2 9
Addition 3 + 8 11
Subtraction 6 - 4 2
Subtraction 11 - 7 4

Image

Multiplication is done using the asterisk (*) and division is done using the
slash (/). Simple examples are:

Operation Example Result
Multiplication 8 * 4 32
Multiplication 2 * 12 24
Division 12 / 2 6
Division 42 / 6 7

Image

I’m sure you’ve done addition, subtraction, multiplication, and division
before and understand how each operation works. The other arithmetic
operator may not familiar to you, though.

The other arithmetic operator we use is called the remainder operator (%).
This operator gives you the remainder that results from dividing two whole
numbers. It may not be obvious now, but the remainder operator is used a
lot in computer programming. Examples:

Example Division Result Remainder Result
7 % 4 1 Remainder 3 3

14 % 3 4 Remainder 2 2
25 % 5 5 Remainder 0 0

Study these examples so you understand how the remainder operator works
in C#.

What happens if an assignment statement contains more than one
arithmetic operator? Does it make any difference? Look at this example:

7 + 3 * 4

What’s the answer? Well, it depends. If you work left to right and add 7 and
3 first, then multiply by 4, the answer is 40. If you multiply 3 times 4 first,
then add 7, the answer is 19. Confusing? Well, yes. But, C# takes away the
possibility of such confusion by having rules of precedence. This means
there is a specific order in which arithmetic operations will be performed.
That order is:

1. Multiplication (*) and division (/)

2. Remainder (%)

3. Addition (+) and subtraction (-)

So, in an assignment statement, all multiplications and divisions are done
first, then remainder operations, and lastly, additions and subtractions. In
our example (7 + 3 * 4), we see the multiplication will be done before the
addition, so the answer provided by C# would be 19.

If two operators have the same precedence level, for example,
multiplication and division, the operations are done left to right in the
assignment statement. For example:

24 / 2 * 3

The division (24 / 2) is done first yielding a 12, then the multiplication (12
* 3), so the answer is 36. But what if we want to do the multiplication
before the division - can that be done? Yes - using the C# grouping

operators - parentheses (). By using parentheses in an assignment
statement, you force operations within the parentheses to be done first. So,
if we rewrite our example as:

24 / (2 * 3)

the multiplication (2 * 3) will be done first yielding 6, then the division (24
/ 6), yielding the desired result of 4. You can use as many parentheses as
you want, but make sure they are always in pairs - every left parenthesis
needs a right parenthesis. If you nest parentheses, that is have one set inside
another, evaluation will start with the innermost set of parentheses and
move outward. For example, look at:

((2 + 4) * 6) + 7

The addition of 2 and 4 is done first, yielding a 6, which is multiplied by 6,
yielding 36. This result is then added to 7, with the final answer being 43.
You might also want to use parentheses even if they don’t change
precedence. Many times, they are used just to clarify what is going on in an
assignment statement.

As you improve your programming skills, make sure you know how each
of the arithmetic operators work, what the precedence order is, and how to
use parentheses. Always double-check your assignment statements to make
sure they are providing the results you want.

Some examples of C# assignment statements with arithmetic operators:

totalBananaCost = numberBananas * bananaCost;

numberOfWeeks = numberOfDays / 7;

averageScore = (score1 + score2 + score3) / 3.0;

Notice a couple of things here. First, notice the parentheses in the
averageScore calculation forces C# to add the three scores before dividing
by 3. Also, notice the use of “white space,” spaces separating operators
from variables. This is a common practice in C# that helps code be more

readable. We’ll see lots and lots of examples of assignment statements as
we build projects in this course.

String/Number Conversion Methods

Image

A common task in any Visual C# project is to take numbers input by the
user, do some arithmetic operations on those numbers, and output the
results of those operations. How do you do this? With the Visual C#
knowledge you have up to this point, you probably see you could use text
box controls to allow the user to input numbers. Then you could use the
arithmetic operators to do the math and label controls to display the results
of the math. And, that’s just what you would do. But, there are two
problems:

Problem One: Arithmetic operators can only work with numbers (for
example, integer variables and integer properties), but the value provided
by a text box control (the Text property) is a string. You can’t add and
multiply string type variables and properties!

Problem Two: The result of arithmetic operations is a number. But the Text
property of a label control (where we want to display these results) is a
string type. You can’t store numerical data in a string quantity!

We need solutions to these two problems. The solutions lie in the C# builtin
methods. We need ways to convert strings to numbers and, conversely,
numbers to strings. With this ability, we could take the Text property from a
text box, convert it to a number, do some math, and convert that numerical
result to a string that could be used as a Text property in a label box. This is
a very common task in C# and C# has a large set of methods that help us do
such common tasks. We will look at these in a bit, but first let’s define just
what a method is.

A C# method is a built-in procedure that, given some information by us,
computes some desired value. The format for using a method is:

methodValue = MethodName(ArgumentList);

MethodName is the name of the method and ArgumentList is a list of
values (separated by commas) provided to the function so it can do its
work. In this assignment statement, MethodName uses the values in
ArgumentList to compute a result and assign that result to the variable we
have named methodValue. We must insure the variable methodValue has
the same type as the value computed by MethodName. How do we know
what C# functions exist, what type of information they provide, and what
type of arguments they require? Use the Visual C# on-line help system and
search for Methods. You’ll see that there are lots of them. We’ll cover some
of them in this class, but you’ll have to do a little studying on your own to
learn about most of them. Now, let’s look at some C# methods that help in
converting numbers to strings and vice versa.

There are two C# methods we will use to convert a string type variable (or
control property) to a numerical value. The method Convert.ToInt32
method converts a string type to an int type (the 32 implies 32 bits are used
to store an int type). The format for using this function is:

yourNumber = Convert.ToInt32(yourString);

The Convert.ToInt32 method takes the yourString variable (remember this
is called an argument of the method), converts it to a numerical value, and
assigns it to the variable yourNumber (which must be an int type). We
could then use yourNumber in any arithmetic statement. Recall strings
must be enclosed in quotes. An example using this method:

yourNumber = Convert.ToInt32(“23”);

Following this assignment statement, the variable yourNumber has a
numerical value of 23.

The corresponding method that converts a string to a double type is
Convert.ToDouble. The format for using this function is:

yourNumber = Convert.ToDouble(yourString);

The Convert.ToDouble method takes the yourString variable, converts it to
a numerical value, and assigns it to the variable yourNumber (which must

be a double type). We could then use yourNumber in any arithmetic
statement. An example using this method:

yourNumber = Convert.ToDouble(“3.14159”);

Following this assignment statement, the variable yourNumber has a
numerical value of 3.14159.

The C# Convert.ToString method will convert any numerical variable (or
control property) to a string. The format for using this method is:

yourString = Convert.ToString(yourNumber);

The Convert.ToString method takes the yourNumber argument, converts it
to a string type value, and assigns it to the string variable named
yourString. In the example:

yourString = Convert.ToString(23);

the variable yourString has a string value of “23”. And, with:

yourString = Convert.ToString(3.14159);

the variable yourString has a string value of “3.14159”.

You should be comfortable with converting numbers to strings and strings
to numbers using these methods. As mentioned, this is one of the more
common tasks you will use when developing Visual C# projects.

String Concatenation

Image

A confession - in the above discussion, you were told a little lie. The
statement was made that you couldn’t add and multiply strings. Well, you
can’t multiply them, but you can do something similar to addition. Many
times in Visual C# projects, you want to take a string variable from one
place and ‘tack it on the end’ of another string. The fancy word for this is

string concatenation. . The concatenation operator is a plus sign (+) and it is
easy to use. As an example:

newString = “Visual C# ” + “is Fun!”;

After this statement, the string variable newString will have the value
“Visual C# is Fun!”.

Notice the string concatenation operator is identical to the addition
operator. We always need to insure there is no confusion when using both.
As you’ve seen, string variables are a big part of Visual C#. As you develop
as a programmer, you need to become comfortable with strings and
working with them. You’re now ready to attack a new project.

Project - Savings Account

Image

Project Design

In this project, we will build a savings account calculator. We will input
how much money we can put into an account each week and the number of
weeks we put money in the account. The project will then compute how
much we saved. We will use text boxes as both the input controls and for
output information. A button will be used to do the computation. This
project is saved as Savings in the course projects folder (\VCSKids\VCSK
Projects).

Place Controls on Form

Start a new project in Visual C#. Place three text box controls, three label
controls, and two buttons on the form. Your form should resemble this:

Image

Again, try using copy and paste for the similar controls.

Set Control Properties

Set the control properties using the properties window (remember, controls
are listed by their default name):

Form1 Form:
Property Name Property Value
Text Savings Account
FormBorderStyle Fixed Single
StartPosition CenterScreen
label1 Label:
Property Name Property Value
Name lblDepositHeading
Text Weekly Deposit
Font Arial
Font Size 10
label2 Label:
Property Name Property Value
Name lblWeeksHeading
Text Number of Weeks
Font Arial
Font Size 10
label3 Label:
Property Name Property Value
Name lblTotalHeading
Text Total Savings
Font Arial
Font Size 10
textbox1 Text Box:
Property Name Property Value
Name txtDeposit
TextAlign Right

Font Arial
Font Size 10
textbox2 Text Box:
Property Name Property Value
Name txtWeeks
TextAlign Right
Font Arial
Font Size 10
textbox3 Text Box:
Property Name Property Value
Name txtTotal
TextAlign Right
Font Arial
Font Size 10
ReadOnly True
BackColor White
TabStop False

(Note the background color changes when setting ReadOnly to True.
Hence, we set BackColor to White to match the appearance of the other
two text boxes.)

button1 Button:
Property Name Property Value
Name btnCompute
Text Compute
button2 Button:
Property Name Property Value
Name btnExit
Text Exit

Note this is the first time you have been asked to change Font properties.
Review the procedure for doing this (Class 4 under Button Control), if
necessary. Change any other properties, like colors, if you would like.
When you are done, your form should resemble this:

Image

Image

Write Event Methods

In this project, the user types an amount in the Weekly Deposit text box.
Then, the user types a value in the Number of Weeks text box. Following
this, the user clicks the Compute button. The project determines the total
amount in the savings account and displays it in the lower text box control.
Hence, the primary event in this project is the Click event on the Compute
button. The only other event is the Click event on the Exit button. It’s
always good to have an obvious way for the user to exit a project.

We need three variables in this project (we will use int types), one to hold
the weekly deposit amount (deposit), one to store the number of weeks
(weeks), and one to store the total savings (total). Open the code window
and find the general declarations area (the area right under the form
constructor code). Declare these three variables:

int deposit;

int weeks;

int total;

Image

The code window should appear as:

Image

The event methods start after the variable declarations.

The btnCompute_Click event implements the following steps:

1. Convert input deposit value (txtDeposit.Text) to a number and
store it in the variable deposit.

2. Convert input number of weeks (txtWeeks.Text) to a number
and store it in the variable weeks.

3. Multiply deposit times weeks and store the result in the
variable total.

4. Convert the numerical value total to a string, concatenate it
with a dollar sign ($), and store it in Text property of txtTotal.

Establish the btnCompute_Click event method using the properties window
and type this code (which translates the steps above):

private void btnCompute_Click(object sender, EventArgs e)

{

// Get deposit amount

deposit = Convert.ToInt32(txtDeposit.Text);

// Get number of weeks

weeks = Convert.ToInt32(txtWeeks.Text);

// Compute total savings

total = deposit * weeks;

// Display Total

txtTotal.Text = "$" + Convert.ToString(total);

}

Notice how is easy it is to translate the listed steps to actual C# code. It is
just paying attention to details. In particular, look at the use of
Convert.ToInt32 and Convert.ToString for string-number conversion.

The btnExit_Click event method is simply one line of code that stops the
program by closing the form:

private void btnExit_Click(object sender, EventArgs e)

{

this.Close();

}

Save your project by clicking the Save All button.

Run the Project

Image

Run the project. Click in the Weekly Deposit text box and type some value.
Do the same with Number of Weeks. Click the Compute button. Your
answer should appear in the Total text box control. Make sure the answer is
correct. Remember, a big step in project design is making sure your project
works correctly! If you say you want to save 10 dollars a week for 10
weeks and your computer project says you will have a million dollars by
that time, you should know something is wrong somewhere! Click Exit to
make sure it works. Save your project if you changed anything. Here’s a
run I made:

Image

This project may not seem all that complicated. And it isn’t. After all, we
only multiplied two numbers together. But, the project demonstrates steps
that are used in every Visual C# project. Valuable experience has been
gained in recognizing how to read input values, convert them to the proper

type, do the math to obtain desired results, and output those results to the
user.

Other Things to Try

Image

Most savings accounts yield interest, that is the bank actually pays you for
letting them use your money. This savings account project has ignored
interest. But, it is fairly easy to make the needed modifications to account
for interest - the math is just a little more complicated. We will give you the
steps, but not show you how, to change your project. Give it a try if you’d
like:

• Define a variable interest to store the yearly savings interest
rate. Interest rates are decimal numbers, so use the double type
for this variable (it’s the first time we’ve used decimals!).

• Add another text box to allow the user to input this interest rate.
Name it txtInterest.

• Add a label control to identify the new text box (set the Text to
Interest Rate).

• Modify the code to use interest in computing total. interest is
found using:

interest = Convert.ToDouble(txtInterest.Text);

Then, total (get ready - it’s messy looking) is computed using:

total = (int) (5200 * (deposit * (Math.Pow((1 + interest / 5200), weeks) - 1)
/ interest));

Make sure you type this all on one line - the word processor has made it
look like it is on two. As we said, this is a pretty messy expression, but it’s
good practice in using parentheses and arithmetic operators. Note also the
use of the int keyword to convert (cast) the computed result to an integer

number. The number ‘5200’ is used here to convert the interest from a
yearly value to a weekly value.

This equation uses a C# method that we haven’t seen yet, the Pow method,
also called the exponentiation method. In exponentiation, a number is
multiplied times itself a certain number of times. If we multiply a number
by itself 4 times, we say we raise that number to the 4th power. The C#
method used for exponentiation is:

Math.Pow(argument1, argument2)

Notice the Pow (stands for power) function has two arguments. argument1
is the number we are multiplying times itself argument2 times. In other
words, this method raises argument1 to the argument2 power. Each
argument and the returned value are double type numbers. Some examples:

Example Result
Math.Pow(4.0, 2.0) 16.0
Math.Pow(-3.0, 3.0) -27.0
Math.Pow(10.0, 4.0) 10000.0

In each example here, the arguments have no decimal parts. We have done
this to make the examples clear. You are not limited to such values. It is
possible to use this function to compute what happens if you multiply 7.654
times itself 3.16 times!! (The answer is 620.99, by the way.)

Now, run the modified project. Type in values for deposit, weeks, and
interest. Click the Compute button. Make sure you get reasonable answers.
(As a check, if you use a Deposit value of 10, a Weeks value of 20, and an
Interest value of 6.5, the Total answer should be $202 - note you’d have
$200 without interest, so this makes sense). The project converts total to an
integer (using the cast) even though there is probably a decimal (some
cents) involved in the answer. Save your project.

Image

Image

Summary

In this class, you have learned a lot of new material. You learned about the
label and text box controls. You learned about variables: naming them, their
types and how to declare them properly. And, you learned functions that
allow you to change from string variables to numbers and from number to
strings. You learned how to do arithmetic in C#. Like we said, a lot of new
material. In subsequent classes, we will stress new controls and new C#
statements more than new features about the Visual C# environment. You
should be fairly comfortable in that environment, by now.

6

UpDown Control, Decisions, Random Numbers

Image

Review and Preview

You’re halfway through the course! You should now feel comfortable with
the project building process and the controls you’ve studied. In the rest of
the classes, we will concentrate more on controls and C# and less on the
Visual C# environment.

In this class, we look at the numeric updown control, at decisions using C#,
and at a very fun topic, the random number. You will build a ‘Guess the
Number’ game project.

Image

Numeric UpDown Control

The Numeric UpDown control is used to obtain a numeric input. It looks
like a text box control with two small arrows. Clicking the arrows changes
the displayed value, which ranges from a specified minimum to a specified
maximum. The user can even type in a value, if desired. These controls are
useful for supplying an integer number, such as a date in a month. The
numeric updown control is selected from the Visual C# toolbox. It appears
as:

In Toolbox:

Image

On Form (default properties):

Image

Properties

The numeric updown properties are:

Property Description

Name Name used to identify numeric updown control. Three letter
prefix for numeric updown name is nud.

Value Value assigned to the updown control (a decimal type).

Increment Amount to increment (increase) or decrement (decrease) the
updown control when the up or down buttons are clicked.

Maximum Maximum value for the updown control.
Minimum Minimum value for the updown control.

TextAlign Sets whether displayed value is left-justified, right-justified or
centered.

Font Sets style, size, and type of displayed value text.
BackColor Sets updown control background color.
ForeColor Sets of color of displayed value text.

Left Distance from left side of form to left side of updown control
(X in properties window, expand Location property).

Top Distance from top side of form to top side of updown control
(Y in properties window, expand Location property).

Width Width of the updown control in pixels (expand Size property).
Height Height of updown control in pixels (expand Size property).

ReadOnly Determines whether the text may be changed by the use of the
up or down buttons only.

Enabled Determines whether updown control can respond to user events
(in run mode).

Visible Determines whether the updown control appears on the form
(in run mode).

Operation of the numeric updown control is actually quite simple. The
Value property can be changed by clicking either of the arrows (value will
be changed by Increment with each click) or, optionally by typing a value
(if ReadOnly is False). If using the arrows, the value will always lie

between Minimum and Maximum. If the user can type in a value, you have
no control over what value is typed.

Image

Example

Start Visual C# and start a new project. We will create a numeric updown
control that provides numbers from 0 to 20. Put a numeric updown control
on the form. (Make sure you choose the numeric updown control and not
the domain updown control.) Resize it and move it, if desired. Set the
following properties:

Property Value
Value 10
Increment 1
Minimum 0
Maximum 20
ReadOnly False

If you like, try changing colors, font and any other properties too. This
numeric updown control has an initial Value of 10. The smallest Value can
be is 0 (Minimum), the largest it can be is 20 (Maximum). Value will
change by 1 (Increment) when an arrow is clicked. The user can type a
value (ReadOnly is False) if desired.

Run the project. The numeric updown control will appear and display a
value of 10. Click the end arrows and see the value change. Notice the
value will not drop below 0 or above 20, the limits established at design
time. Click the display area and type in a value of 100. Note that, even
though this is higher than the maximum of 20, you can type the value. Try
increasing the value, it will not increase. Hit <Enter> or try to decrease the
value and it is immediately adjusted within the limits you set. So, Visual C#
makes some attempts to make sure the user doesn’t type illegal values. Stop
the project.

Events

Image

We will only use a single numeric updown event:

Event Description

ValueChanged Occurs when the Value property has been changed in some
way.

The ValueChanged event is executed whenever Value changes. This is
where you can use the current value. If the user is allowed to type a value
in the control, you might have to check if it is within acceptable limits.

Typical Use of Numeric UpDown Control

The usual design steps for a numeric updown control are:

➢ Set the Name, Minimum and Maximum properties. Initialize
Value property. Decide on value for ReadOnly.

➢ Monitor ValueChanged event for changes in Value.

➢ You may also want to change the Font, Backcolor and
Forecolor properties.

Note, for maximum flexibility, Value is a decimal type, meaning you can
have non-integer numbers (you will need to set the DecimalPlaces property
to some value). If you want an integer value, you need to cast Value to an
int type.

C# - The Third Lesson

In the C# lesson for this class, we learn about one of the more useful
functions of a computer program - decision making. We will discuss
expressions and operators used in decisions and how decisions can be
made. We will also look at a new C# function - the random number. This
function is the heart of every computer game.

Logical Expressions

You may think that computers are quite smart. They appear to have the
ability to make amazing decisions and choices. Computers can beat masters
at chess and help put men and women into space. Well, computers really
aren’t that smart - the only decision making ability they have is to tell if
something is true or false. But, computers have the ability to make such
decisions very quickly and that’s why they appear smart (and because,
unlike the True or False tests you take in school, computers always get the
right answer!). To use C# for decision making, we write all possible
decisions in the form of true or false? statements, called logical
expressions. We give the computer a logical expression and the computer
will tell us if that expression is true or false. Based on that decision, we can
take whatever action we want in our computer program. Note the result of a
logical expression is a bool type value.

Image

Say in a computer program we need to know if the value of the variable
aValue is larger than the value of the variable bValue. We would ask the
computer (by writing some C# code) to provide an answer to the true or
false? statement: “aValue is larger than bValue.” This is an example of a
logical expression. If the computer told us this was true, we could take one
set of C# steps. If it was false, we could take another. This is how decisions
are done in C#.

To make decisions, we need to know how to build and use logical
expressions. The first step in building such expressions is to learn about
comparison operators.

Image

Comparison Operators

Image

In the Class 3, we looked at one type of C# operator - arithmetic operators.
In this class, we introduce the idea of a comparison operator. Comparison

operators do exactly what they say - they compare two values, with the
output of the comparison being a Boolean value (bool). That is, the result
of the comparison is either true or false. Comparison operators allow us to
construct logical expressions that can be used in decision making.

There are six comparison operators. The first is the “equal to” operator
represented by two equal (==) signs. This operator tells us if two values are
equal to each other. Examples are:

Comparison Result
6 == 7 false
4 == 4 true

A common error (a logic error) in C# is to only use one equal sign for the
“equal to” operator. Using a single equal sign simply assigns a value to the
variable making it always true

There is also a “not equal to“ operator represented by a symbol consisting
of an exclamation point (called the not operator) followed by the equal sign
(!=). Examples of using this operator:

Comparison Result
6 != 7 true
4 != 4 false

There are other operators that let us compare the size of numbers. The
“greater than“ operator (>) tells us if one number (left side of operator) is
greater than another (right side of operator). Examples of its usage:

Comparison Result
8 > 3 true
6 > 7 false
4 > 4 false

The “less than“ operator (<) tells us if one number (left side of operator) is
less than another (right side of operator). Some examples are:

Comparison Result
8 < 3 false
6 < 7 true
4 < 4 false

The last two operators are modifications to the “greater than” and “less
than” operators. The “greater than or equal to” operator (>=) compares two
numbers. The result is true if the number on the left of the operator is
greater than or equal to the number on the right. Otherwise, the result is
false. Examples:

Comparison Result
8 >= 3 true
6 >= 7 false
4 >= 4 true

Similarly, the “less than or equal to” operator (<=) tells us if one number
(left side of operator) is less than or equal to another (right side of
operator). Examples:

Comparison Result
8 <= 3 false
6 <= 7 true
4 <= 4 true

Comparison operators have equal precedence among themselves, but are
lower than the precedence of arithmetic operators. This means comparisons
are done after any arithmetic. Comparison operators allow us to make
single decisions about the relative size of values and variables. What if we
need to make multiple decisions? For example, what if we want to know if
a particular variable is smaller than one number, but larger than another?
We need ways to combine logical expressions - logical operators can do
this.

Logical Operators

Logical operators are used to combine logical expressions built using
comparison operators. Using such operators allows you, as the programmer,
to make any decision you want. As an example, say you need to know if
two variables named aValue and bValue are both greater than 0. Using the
“greater than” comparison operator (>), we know how to see if aValue is
greater than zero and we know how to check if bValue is greater than 0, but
how do we combine these expressions and obtain one Boolean result (true
or false)?

We will look at two logical operators used to combine logical expressions.
The first is the and operator represented by two ampersands (&&). The
format for using this operator is (using two logical expressions, x and y,
each with a Boolean (bool type) result):

x && y

This expression is asking the question “are x and y both true?” That’s why
it is called the and operator. The and operator (&&) will return a true value
only if both x and y are true. If either expression is false, the and operator
will return a false. The four possibilities for and (&&) are shown in this
logic table:

Image

Image

Notice the and operator would be used to solve the problem mentioned in
the beginning of this section. That is, to see if the variables aValue and
bValue are both greater than zero, we would use the expression:

aValue > 0 && bValue > 0

The other logical operator we will use is the or operator represented by two
pipes (||). The pipe symbol is the shift of the backslash key (\) on a standard
keyboard. The format for using this operator is:

x || y

This expression is asking the question “is x or y true?” That’s why it is
called the or operator. The or (||) operator will return a true value if either x
or y is true. If both expressions are false, the or operator will return a false.
The four possibilities for or (||) are:

Image

Image

The or operator is second in precedence to the and operator (that is, and is
done before or), and all logical operators come after the comparison
operators in precedence. Use of comparison operators and logical operators
to form logical expressions is key to making proper decisions in C#. Make
sure you understand how all the operators (and their precedence) work.
Let’s look at some examples to help in this understanding.

In these examples, we will have two integer variables aInteger and
bInteger, with values:

aInteger = 14

bInteger = 7

What if we want to evaluate the logical expression:

aInteger > 10 && bInteger > 10

Comparisons are done first, left to right since all comparison operators
share the same level of precedence. aInteger (14) is greater than 10, so
aInteger > 10 is true. bInteger (7) is not greater than 10, so bInteger > 10 is
false. Since one expression is not true, the result of the and (&&) operation
is false. This expression ‘aInteger > 10 && bInteger > 10’ is false. What is
the result of this expression:

aInteger > 10 || bInteger > 10

Can you see this expression is true (aInteger > 10 is true, bInteger > 10 is
false; true || false is true)?

There is no requirement that a logical expression have just one logical
operator. So, let’s complicate things a bit. What if the expression is:

aInteger > 10 || bInteger > 10 && aInteger + bInteger == 20

Precedence tells us the arithmetic is done first (aInteger and bInteger are
added), then the comparisons, left to right. We know aInteger > 10 is true,
bInteger > 10 is false, aInteger + bInteger == 20 is false. So, this
expression, in terms of boolean comparison values, becomes:

true || false && false

How do we evaluate this? Precedence says the and (&&) is done first, then
the or (||). The result of ‘false && false’ is false, so the expression reduces
to:

true || false

which has a result of true. Hence, we say the expression ‘aInteger > 10 || B
> 10 && aInteger + bInteger = 20’ is true.

Parentheses can be used in logical expressions to force precedence in
evaluations. What if, in the above example, we wanted to do the or (||)
operation first? This is done by rewriting using parentheses:

(aInteger > 10 || bInteger > 10) && aInteger + bInteger == 20

You should be able to show this evaluates to false [do the or (||) first].
Before, without parentheses, it was true. The addition of parentheses has
changed the value of this logical expression! It’s always best to clearly
indicate how you want a logical expression to be evaluated. Parentheses are
a good way to do this. Use parentheses even if precedence is not affected.

If we moved the parentheses in this example and wrote:

aInteger > 10 || (bInteger > 10 && aInteger + bInteger == 20)

the result (true) is the same as if the parentheses were not there since the
and (&&) is done first anyway. The parentheses do, however, clearly

indicate the and is performed first. Such clarity is good in programming.

Comparison and logical operators are keys to making decisions in C#.
Make sure you are comfortable with their meaning and use. Always
double-check any logical expression you form to make sure it truly
represents the decision logic you intend. Use parentheses to add clarity, if
needed.

Image

Decisions - The if Statement

We’ve spent a lot of time covering comparison operators and logical
operators and discussed how they are used to form logical expressions. But,
just how is all this used in computer decision making? We’ll address that
now by looking at the C# if statement. Actually, the if statement is not a
single statement, but rather a group of statements that implements some
decision logic. It is conceptually simple.

The if statement checks a particular logical expression with a Boolean
(bool type) result. It executes different groups of C# statements, depending
on whether that expression is true or false. The C# structure for this logic
is:

if (expression)

{

[C# code block to be executed if expression is true]

}

else

{

[C# code block to be executed if expression is false]

}

Let’s see what goes on here. We have some logical expression which is
formed from comparison operators and logical operators. if expression is
true, then the first block of C# statements (marked by a pair of left and right
curly braces) is executed. else (meaning expression is not true, or it is
false), the second block of C# statements is executed. Each block of code
contains standard C# statements, indented by some amount. Whether
expression is true or false, program execution continues with the first line
of C# code after the last right curly brace (}).

The else keyword and the block of statements following the else are
optional. If there is no C# code to be executed if expression is false, the if
structure would simply be:

if (expression)

{

[C# code block to be executed if expression is true]

}

Let’s try some examples.

Image

Pretend you just opened a lemonade stand and you want to let the computer
decide how much you should charge for each cup you sell. Define an int
type variable cost (cost per cup in cents - our foreign friends can use some
other unit here) and another int variable temperature (outside temperature
in degrees F - our foreign friends would, of course, use degrees C). We will
write an if structure that implements a decision process that establishes a
value for cost, depending on the value of temperature.

Look at the C# code:

if (temperature > 90)

{

cost = 50;

}

else

{

cost = 25;

}

We see that if temperature > 90 (a warm day, hence we can charge more), a
logical expression, is true, the cost will be 50, else (meaning temperature is
not greater than 90) the cost will be 25. Not too difficult. Notice that we
have indented the lines of C# code in the two blocks (one line of code in
each block here). This is common practice in writing C# code. It clearly
indicates what is done in each case and allows us to see where an if
structure begins and ends. The Visual C# environment will actually handle
the indenting for you.

We could rewrite this (and get the same result) without the else statement.
Notice, this code is equivalent to the above code:

cost = 25;

if (temperature > 90)

{

cost = 50

}

Here, before the if structure, cost is 25. Only if temperature is greater than
90 is cost changed to 50. Otherwise, cost remains at 25. Even though, in
these examples, we only have one line of C# code that is executed for each
decision possibility, we are not limited to a single line. We may have as
many lines of C# code as needed in the code blocks of if structures.

What if, in our lemonade stand example, we want to divide our pricing
structure into several different cost values, based on several different
temperature values? The if structure can modified to include an else if
statement to consider multiple logical expressions. Such a structure is:

if (expression1)

{

[C# code block to be executed if expression1 is true]

}

else if (expression2)

{

[C# code block to be executed if expression2 is true]

}

else if (expression3)

{

[C# code block to be executed if expression3 is true]

}

else

{

[C# code block to be executed if expression1, expression 2, and
expression3 are all false]

}

Can you see what happens here? It’s pretty straightforward - just work
down through the code. If expression1 is true, the first block of C# code is
executed. If expression1 is false, the program checks to see if expression2
(using the else if) is true. If expression2 is true, that block of code is
executed. If expression2 is false, expression3 is evaluated. If expression3 is
true, the corresponding code block is executed. If expression3 is false, and
note by this time, expression1, expression2, and expression3 have all been
found to be false, the code in the else block (and this is optional) is
executed.

You can have as many else if statements as you want. You must realize,
however, that only one block of C# code in an if structure will be executed.
This means that once C# has found a logical expression that is true, it will
execute that block of code then leave the structure and execute the first line
of code following the last right curly brace (}). For example, if in the above
example, both expression1 and expression3 are true, only the C# statements
associated with expression1 being true will be executed. The rule for if
structures is: only the code block associated with the first true expression
will be executed.

How can we use this in our lemonade example? A more detailed pricing
structure is reflected in this code:

if (temperature > 90)

{

cost = 50;

}

else if (temperature > 80)

{

cost = 40;

}

else if (temperature > 70)

{

cost = 30;

}

Else

{

cost = 25;

}

What would the cost be if temperature is 85? temperature is not greater
than 90, but is greater than 80, so cost is 40.

Image

What if this code was rewritten as:

if (temperature > 70)

{

cost = 30;

}

else if (temperature > 80)

{

cost = 40;

}

else if (temperature > 90)

{

cost = 50;

}

Else

{

cost = 25;

}

This doesn’t look that different - we’ve just reordered some statements.
But, notice what happens if we try to find cost for temperature equal to 85
again. The first if expression is true (temperature is greater than 70), so cost
is 30. This is not the result we wanted and will decrease profits for our
lemonade stand! Here’s a case where the “first true” rule gave us an
incorrect answer - a logic error.

This example points out the necessity to always carefully check any if
structures you write. Make sure the decision logic you want to implement is
working properly. Make sure you try cases that execute all possible
decisions and that you get the correct results. The examples used here are
relatively simple. Obviously, the if structure can be more far more
complicated. Using multiple variables, multiple comparisons and multiple
operators, you can develop very detailed decision making processes. In the
remaining class projects, you will see examples of such processes.

Random Number Generator

Image

Let’s leave decisions for now and look at a fun C# concept - the random
number. Have you ever played the Windows solitaire card game or
Minesweeper or some similar game? Did you notice that every time you
play the game, you get different results? How does this happen? How can

you make a computer program unpredictable or introduce the idea of
“randomness?” The key is the C# random number generator. This generator
simply produces a different number every time it is referenced.

Why do you need random numbers? In the Windows solitaire card game,
the computer needs to shuffle a deck of cards. It needs to “randomly” sort
fifty-two cards. It uses random numbers to do this. If you have a game that
rolls a die, you need to randomly generate a number between 1 and 6.
Random numbers can be used to do this. If you need to flip a coin, you
need to generate Heads or Tails randomly. Yes, random numbers are used to
do this too.

Visual C# has several methods for generating random numbers. We will use
just one of them – a random generator of integers (whole numbers). The
generator uses what is called the Random object. Don’t worry too much
about what this means –just think of it as another variable type. Follow
these few steps to use it. First create a Random object (we’ll name it
myRandom) using the constructor:

Random myRandom = new Random();

This statement is placed with the variable declaration statements.

Now, whenever you need a random integer value, use the Next method of
this Random object we created:

myRandom.Next(limit)

This statement generates a random integer value that is greater than or
equal to 0 and less than limit. Note it is less than limit, not equal to. For
example, the method:

myRandom.Next(5)

will generate random numbers from 0 to 4. The possible values will be 0, 1,
2, 3 and 4.

Let’s try it. Start Visual C# and start a new project. Put a button (default
name button1) and label control (default name label1) on the form. We
won’t worry about properties or names here - we’re just playing around, not
building a real project. In fact, that’s one neat thing about Visual C#, it is
easy to play around with. Open the code window and add this line under
the form constructor to create the random number object:

Random myRandom = new Random();

Then, put this code in the button1_Click event method:

private void button1_Click(object sender, EventArgs e)

{

label1.Text = Convert.ToString(myRandom.Next(10));

}

This code simply generates a random integer between 0 and 9 (Next uses a
limit of 10) and displays its value in the label control (after converting it to
a string type). Run the project. Click the button. A number should appear in
the label control. Click the button again and again. Notice the displayed
number changes with each click and there is no predictability to the number
- it is random. The number printed should always be between 0 and 9. Try
other limit values if you’d like to understand how the random object works.

So, the random number generator object can be used to introduce
randomness in a project. This opens up a lot of possibilities to you as a
programmer. Every computer game, video game, and computer simulation,
like sports games and flight simulators, use random numbers. A roll of a
die can produce a number from 1 to 6. To use our myRandom object to roll
a die, we would write:

dieNumber = myRandom.Next(6) + 1;

For a deck of cards, the random integers would range from 1 to 52 since
there are 52 cards in a standard playing deck. Code to do this:

cardNumber = myRandom.Next(52) + 1;

If we want a number between 0 and 100, we would use:

yourNumber = myRandom.Next(101);

Check the examples above to make sure you see how the random number
generator produces the desired range of integers. Now, let’s move on to a
project that will use this generator.

Project - Guess the Number Game

Image

Back in the early 1980’s, the first computers intended for home use
appeared. Brands like Atari, Coleco, Texas Instruments, and Commodore
were sold in stores like Sears and Toys R Us (sorry, I can’t type the needed
‘backwards’ R). These computers didn’t have much memory, couldn’t do
real fancy graphics, and, compared to today’s computers, cost a lot of
money. But, these computers introduced a lot of people to the world of
computer programming. Many games (usually written in the BASIC
language) appeared at that time and the project you will build here is one of
those classics.

Project Design

Image

You’ve all played the game where someone said “I’m thinking of a number
between 1 and 10” (or some other limits). Then, you try to guess the
number. The person thinking of the number tells you if you’re low or high
and you guess again. You continue guessing until you finally guess the
number they were thinking of.

We will develop a computer version of this game here. The computer will
pick a number between 0 and 100 (using the random number generator).

You will try to guess the number. Based on your guess, the computer will
tell you if you are Too Low or Too High.

Several controls will be needed. Buttons will control game play (one to tell
the computer to pick a number, one to tell the computer to check your
guess, and one to exit the program). We will use a numeric updown control
to set and display your guess. A label control will display the computer’s
messages to you. This project is saved as GuessNumber in the course
projects folder (\VCSKids\VCSK Projects).

Place Controls on Form

Start a new project in Visual C#. Place three buttons, a text box, and a
numeric updown control on the form. Move and size controls until your
form should look something like this:

Image

Set Control Properties

Set the control properties using the properties window:

Form1 Form:
Property Name Property Value
Text Guess the Number
FormBorderStyle Fixed Single
StartPosition CenterScreen
textBox1 Text Box:
Property Name Property Value
Name txtMessage
TextAlign Center
Font Arial
Font Size 16
BackColor White
ForeColor Blue

ReadOnly True
TabStop False
numericUpDown1 Numeric UpDown:
Property Name Property Value
Name nudGuess
Font Arial
Font Size 16
BackColor White
ForeColor Red
TextAlign Center
Value 50
Minimum 0
Maximum 100
Increment 1
ReadOnly True
Enabled False
button1 Button:
Property Name Property Value
Name btnCheck
Text Check Guess
Enabled False
button2 Button:
Property Name Property Value
Name btnPick
Text Pick Number
button3 Button:
Property Name Property Value
Name btnExit
Text Exit

When done, your form should look something like this (you may have to
move and resize a few controls around to get things to fit):

Image

We have set the Enabled properties of btnCheck and nudGuess to False
initially. We do not want to allow guesses until the Pick Number button is
clicked.

Image

Write Event Methods

How does this project work? You click Pick Number to have the computer
pick a number to guess. This click event will ‘enable’ the numeric updown
control and Check Guess button (remember we set their Enabled properties
initially at False). Input your guess using the numeric updown control, then
click Check Guess. The computer will tell you if your guess is too low, too
high, or correct by using the message box (txtMessage). So, we need a
Click event method for each button.

Two variables are needed in this project, both int types. One variable will
store the number selected by the computer (the number you are trying to
guess). We call this variable theNumber. Your current guess will be saved
in the variable myGuess. You will also need a Random object named
myRandom. Open the code window and declare these variables in the
general declarations area under the form constructor method:

int theNumber;

int myGuess;

Random myRandom = new Random();

After typing these lines, the code window should appear as:

When you click Pick Number, the computer needs to perform the following
steps:

• Pick a random integer number between 0 and 100.

• Display a message to the user.

• Enable the numeric updown control to allow guesses.

• Enable the Check Guess button to allow guesses.

And, we will add one more step. Many times in Visual C#, you might want
to change the function of a particular control while the program is running.
In this game, once we click Pick Number, that button has no further use
until the number has been guessed. But, we need a button to tell us the
answer if we choose to give up before guessing it. We will use btnPick to
do this. We will change the Text property and add decision logic to see
which ‘state’ the button is in. If the button says “Pick Number” when it is
clicked (the initial state), the above steps will be followed. If the button
says “Show Answer” when it is clicked (the ‘playing’ state), the answer
will be shown and the form controls returned to their initial state. This is a
common thing to do in Visual C#.

Here’s the btnPick_Click code that does everything:

private void btnPick_Click(object sender, EventArgs e)

{

if (btnPick.Text == "Pick Number")

{

// Get new number and set controls

theNumber = myRandom.Next(101);

txtMessage.Text = "I'm thinking of a number between 0 and 100";

nudGuess.Value = 50;

nudGuess.Enabled = true;

btnCheck.Enabled = true;

btnPick.Text = "Show Answer";

}

else

{

// Just show the answer and re-set controls

txtMessage.Text = "The answer is" + Convert.ToString(theNumber);

nudGuess.Value = theNumber;

nudGuess.Enabled = false;

btnCheck.Enabled = false;

btnPick.Text = "Pick Number";

}

}

Study this so you see what is going on. Notice the use of indentation in the
if structure. Notice in the lines where we set the txtMessage.Text, it looks
like two lines of C# code. Type this all on one line - the word processor is
making it look like two. In fact, keep an eye out for such things in these
notes. It’s obvious where a so-called “word wrap” occurs.

When you click Check Answer, the computer should see if your current
guess (myGuess) is correct (the Value returned by the numeric updown
control needs to be converted to an int type before doing the comparison
with myGuess). If so, a message telling you so will appear and the form
controls return to their initial state, ready for another game. If not, the
computer will display a message telling you if you are too low or too high.
You can then make another guess. The btnCheck_Click event that
implements this logic is:

private void btnCheck_Click(object sender, EventArgs e)

{

// Guess is the updown control value

myGuess = (int) nudGuess.Value;

if (myGuess == theNumber)

{

// Correct guess

txtMessage.Text = "That's it!!";

nudGuess.Enabled = false;

btnCheck.Enabled = false;

btnPick.Text = "Pick Number";

}

else if (myGuess < theNumber)

{

// Guess is too low

txtMessage.Text = "Too low!";

}

else

{

// Guess is too high

txtMessage.Text = "Too high!";

}

}

The last button click event is btnExit_Click:

private void btnExit_Click(object sender, EventArgs e)

{

this.Close();

}

Save the project by clicking the Save All button in the toolbar.

Image

Run the Project

Run the project. Click Pick Number to have the computer to pick a number
to guess. Use the arrows on the numeric updown control to input your
guess. Click Check Guess. Continue adjusting your guess (using the
computer clues) until you get the correct answer. Make sure the proper
messages display at the proper times. Do you see how the text displayed on
btnPick changes as the game ‘state’ changes? Make sure the Show Answer
button works properly. Again, always thoroughly test your project to make
sure all options work. Save your project if you needed to make any
changes.

Here’s what the form should look like in the middle of a game:

Image

Other Things to Try

Image

You can add other features to this game. One suggestion is to add a text box
where the user can input the upper range of numbers that can be guessed.
That way, the game could be played by a wide variety of players. Use a
maximum value of 10 for little kids, 1000 for older kids.

Another good modification would be to offer more informative messages
following a guess. Have you ever played the game where you try to find
something and the person who hid the item tells you, as you move around
the room, that you are freezing (far away), cold (closer), warm (closer yet),
hot (very close), or burning up (right on top of the hidden item)? Try to
modify the Guess the Number game to give these kind of clues. That is, the
closer you are to the correct number, the warmer you get. To make this
change, you will probably need the C# absolute value method, Math.Abs.
This function returns the value of a number while ignoring its sign (positive
or negative). The format for using Math.Abs is:

yourValue = Math.Abs(inputValue);

If inputValue is a positive number (greater than zero), yourValue is
assigned inputValue. If inputValue is a negative number (less than zero),
yourValue is assigned the numerical value of inputValue, without the minus
sign. A few examples:

value Math.Abs(value)
6 6
-6 6
0 0
-1.1 1.1

In our number guessing game, we can use Math.Abs to see how close a
guess is to the actual number. One possible decision logic is:

if (myGuess == theNumber)

{

[C# code block for correct answer]

}

else if (Math.Abs(myGuess - theNumber) <= 1)

{

[C# code block when burning up - within 1 of correct answer]

}

else if (Math.Abs(myGuess - theNumber) <= 2)

{

[C# code block when hot - within 2 of correct answer]

}

else if (Math.Abs(myGuess - theNumber) <= 3)

{

[C# code block when warm - within 3 of correct answer]

}

else

{

[C# code block when freezing - more than 3 away]

}

A last possible change would be the make the project into a math game,
and tell the guesser “how far away” the guess is. I’m sure you can think of
other ways to change this game. Have fun doing it.

Image

Summary

In this class, you learned about a useful input control for numbers, the
numeric updown control. You’ll learn about other input controls in the next
class. And, you learned about a key part of C# programming - decision
making. You learned about logical expressions, comparison operators,
logical operators, and if structures. And, you will see that the random
number object is a fun part of many games. You are well on your way to
being a Visual C# programmer.

7

Icons, Group Boxes, Check Boxes,
Radio Buttons

Review and Preview
You should feel very comfortable working within the Visual C#
environment by now and know the three steps of building a project.

In this class, we learn about three more controls relating to making choices
in Visual C#: group boxes, check boxes, and radio buttons. We will look at
another way to make decisions using the switch structure. We’ll have some
fun making icons for our projects. And, you will build a sandwich making
project.

Icons
Have you noticed that whenever you design or run a Visual C# project,

a little picture appears in the upper left hand corner of the form. This picture
is called an icon. Icons are used throughout the Windows environment.
There are probably lots of icons on your Windows desktop - each of these
represents some kind of application. Look at files using Windows Explorer.
Notice every file has an icon associated with it. Here is a blank Visual C#
form:

The icon seen is the default Visual C# icon for forms. It’s really kind of
boring. Using the Icon property of the form, you can change this displayed
icon to something a little flashier. Before seeing how to do this, though,
let’s see how you can find other icons or even design your own icon.

Custom Icons

An icon is a special type of graphics file with an ico extension. It is a
picture with a specific size of 32 by 32 pixels. The internet has a wealth of
free icons you can download to your computer and use. Do a search on ‘free
32 x 32 ico files’. You will see a multitude of choices. One site we suggest
is:

http://www.softicons.com/toolbar-icons/32x32-free-design-icons-by-aha-
soft/

At such a site, you simply download the ico file to your computer and save
it.

It is possible to create your own icon using Visual Studio. To do this,
you need to understand use of the Microsoft Paint tool. We will show you
how to create a template for an icon and open and save it in Paint. To do
this, we assume you have some basic knowledge of using Paint. For more
details on how to use Paint, go to the internet and search for tutorials.

To create an icon for a particular project, in Solution Explorer, right-click
the project name, choose Add, then New Item. This window will appear:

http://www.softicons.com/toolbar-icons/32x32-free-design-icons-by-aha-soft/

As shown, expand Visual C# Items and choose General. Then, pick Icon
File. Name your icon and click Add.

A generic icon will open in the Microsoft Paint tool:

The icon is very small. Let’s make a few changes to make it visible and
editable. First, resize the image to 32 x 32 pixels. Then, use the magnifying
tool to make the image as large as possible. Finally, add a grid to the
graphic. When done, I see:

At this point, we can add any detail we need by setting pixels to particular
colors. Once done, the icon is saved by using the File menu. The icon will
be saved in your project file and can be used by your project. The icon file
(Icon1.ico in this case) is also listed in Solution Explorer:

Assigning Icons to Forms
As mentioned, to assign an icon to a form, you simply set the form’s

Icon property. Let’s try it.

Start Visual C# and start a new project. A blank form should appear. Go
to the properties window and click on the Icon property. An ellipsis (...)
button appears. Click that button and a window that allows selection of icon
files will appear. Look for an icon you downloaded or created and saved (if
you did it). Select an icon, click Open in the file window and that icon is
now ‘attached’ to your form. Easy, huh? In the \VCSKids\VCS
Projects\Sandwich folder is an icon we will use for a project
(Sandwich.ico). When I attach my sandwich icon, the form looks like this:

You’ll have a lot of fun using unique icons for your projects. It’s nice to see
a personal touch on your projects.

Group Box Control
A group box is simply a control that can hold other controls. Group

boxes provide a way to separate and group controls and have an overall
enable/disable feature. This means if you disable the group box, all controls
in the group box are also disabled. The group box has no events, just
properties. The only events of interest are events associated with the
controls in the group box. Writing event methods for these controls is the
same as if they were not in a group box. The group box is selected from the
toolbox. It appears as:

In Toolbox:

On Form (default properties):

Properties
The group box properties are:

Property Description
Name Name used to identify group box. Three letter

prefix for group box names is grp.
Text Title information at top of group box.
Font Sets style, size, and type of title text.
BackColor Sets group box background color.
ForeColor Sets color of title text.

Left Distance from left side of form to left side of
group box (X in property window, expand
Location property).

Top Distance from top side of form to top side of
group box (Y in property window, expand
Location property).

Width Width of the group box in pixels (expand Size
property).

Height Height of group box in pixels (expand Size
property).

Enabled Determines whether all controls within group
box can respond to user events (in run mode).

Visible Determines whether the group box (and
attached controls) appears on the form (in run
mode).

Like the Form object, the group box is a container control, since it ‘holds’
other controls. Hence, controls placed in a group box will share BackColor,
ForeColor and Font properties. To change this, select the desired control
(after it is placed on the group box) and change the desired properties.

Moving the group box control on the form uses a different process than
other controls. To move the group box, first select the control. Note a ‘built-
in’ handle (looks like two sets of arrows) for moving the control appears at
the upper left corner:

Click on this handle and you can move the control.

Placing Controls in a Group Box

As mentioned, a group box’s single task is to hold other controls. To put
controls in a group box, you first position and size the group box on the
form. Then, the associated controls must be placed in the group box. This
allows you to move the group box and controls together. There are several
ways to place controls in a group box:

• Place controls directly in the group box using any of the usual
methods.

• Draw controls outside the group box and drag them in.
• Copy and paste controls into the group box (prior to the paste

operation, make sure the group box is selected).

To insure controls are properly place in a group box, try moving it (use the
move handle) and make sure the associated controls move with it. To
remove a control from a group box, simply drag it out of the control.

Example
Start Visual C# and start a new project. Put a group box on the form and

resize it so it is fairly large. Select the button control in the Visual C#
toolbox. Drag the control until it is over the group box. Drop the control in
the group box. Move the group box and the button should move with it. If it
doesn’t, it is not properly placed in the group box. If you need to delete the
control, select it then press the Del key on the keyboard. Try moving the

button out of the group box onto the form. Move the button back in the
group box.

Put a second button in the group box. Put a numeric updown control in
the group box. Notice how the controls are associated with the group box. A
warning: if you delete the group box, the associated controls will also be
deleted! Run the project. Notice you can click on the buttons and use the
numeric updown control. Stop the project. Set the group box Enabled
property to False. Run the project again. Notice the group box title (set by
the Text property) is grayed and all of the controls on the group box are
now disabled - you can’t click the buttons or updown control. Hence, by
simply setting one Enabled property (that of the group box), we can enable
or disable a number of individual controls. Stop the project. Reset the group
box Enabled property to True. Set the Visible property to False (will remain
visible in design mode). Run the project. The group box and all its controls
will not appear. You can use the Visible property of the group box control to
hide (or make appear) some set of controls (if your project requires such a
step). Stop the project.

Change the Visible property back to True. Place a label control in the
group box. Change the BackColor property of the group box. Notice the
background color of the label control takes on the same value, while the
button controls are unaffected. Recall this is because the group box is a
‘container’ control. Sometimes, this sharing of properties is a nice benefit,
especially with label controls. Other times, it is an annoyance. If you don’t
want controls to share properties (BackColor, ForeColor, Font) with the

group box, you must change the properties you don’t like individually.
Group boxes will come in very handy with the next two controls we look at:
the check box and the radio button. You will see this sharing of color
properties is a nice effect with these two controls. It saves us the work of
changing lots of colors!

Typical Use of Group Box Control
The usual design steps for a group box control are:

➢ Set Name and Text property (perhaps changing Font, BackColor
and ForeColor properties).

➢ Place desired controls in group box. Monitor events of controls in
group box using usual techniques.

Check Box Control
A check box provides a way to make choices from a group of things.

When a check box is selected, a check appears in the box. Each check box
acts independently. Some, all, or none of the choices in the group may be
selected. An example of where check boxes could be used is choosing from
a list of ice cream toppings. You might want it plain, you might want a
couple of toppings, you might want it with the works - you decide. Check
boxes are also used individually to indicate whether a particular project
option is active. For example, it might indicate if a control’s text is bold
(checked) or not bold (unchecked).

Check boxes are usually grouped in a group box control. The check box
control is selected from the toolbox. It appears as:

In Toolbox:

On Form (default properties):

Properties
The check box properties are:

Property Description
Name Name used to identify check box. Three letter

prefix for check box names is chk.
Text Identifying text next to check box.
TextAlign Specifies how the displayed text is positioned.
Font Sets style, size, and type of displayed text.
Checked Indicates if box is checked (True) or

unchecked (False).
BackColor Sets check box background color.
ForeColor Sets color of displayed text.
Left If on form, distance from left side of form to

left side of check box. If in group box,
distance from left side of group box to left side
of check box (X in properties window, expand
Location property).

Top If on form, distance from top side of form to
top side of check box. If in group box, distance
from top side of group box to top side of check
box (Y in properties window, expand
Location property).

Width Width of the check box in pixels (expand Size
property).

Height Height of check box in pixels (expand Size
property).

Enabled Determines whether check box can respond to
user events (in run mode).

Visible Determines whether the check box appears on
the form (in run mode).

Pay particular attention to the Left and Top properties. Notice if a check box
is in a group box, those two properties give position in the group box, not
on the form.

Example
Start Visual C# and start a new project. Draw a group box - we will

always use group boxes to group check boxes. Place three or four check
boxes in the group box using techniques discussed earlier. Move the group
box to make sure the check boxes are in the group box. Run the project.
Click the check boxes and see how the check marks appear and disappear.
Notice you can choose as many, or as few, boxes as you like. In code, we
would examine each check box’s Checked property to determine which
boxes are selected. Stop the project. Change the BackColor of the group
box. Notice the check box controls’ background color changes to match.
This is a nice result of using the group box as a container.

Did you notice we didn’t have to write any C# code to make the check
marks appear or go away? That is handled by the check box control. There
are check box events, however. Let’s look at one.

Events
The only check box event of interest is the CheckedChanged event:

Event Description

CheckedChanged Event executed when Checked property of a
check box changes.

The event occurs each time a user clicks on a check box, either placing a
check mark in the box or removing one.

Typical Use of a Check Box Control
Usual design steps for a check box control are:

➢ Set the Name and Text property. Initialize the Checked property.
➢ Monitor CheckChanged event to determine when control is clicked.

At any time, read Checked property to determine check box state.
➢ You may also want to change the Font, Backcolor and Forecolor

properties.

Radio Button Control

A radio button provides a way to make a “mutually-exclusive” choice
from a group of things. This is a fancy way of saying only one item in the
group can be selected. When a radio button is selected, a filled circle
appears in the button. No other button in the group can be selected, or have
a filled circle. There are many places you can use radio buttons - they can
be used whenever you want to make only one choice from a group. Say you
have a game for one to four players - use radio buttons to select the number
of players. Radio buttons can be used to select background colors. Radio
buttons can be used to select difficulty levels in arcade type games. As you
write more Visual C# programs, you will come to rely on the radio button
as a device for choice.

Radio buttons always work in groups and each group must be in a
separate group box control. Radio buttons in one group box act
independently of radio buttons in another group box. So, by using group
boxes, you can have as many groups of radio buttons as you want. The
radio button control is selected from the toolbox. It appears as:

In Toolbox:

On Form (default properties):

Properties
The radio button properties are:

Property Description
Name Name used to identify radio button. Three

letter prefix for radio button names is rdo.
Text Identifying text next to radio button.
TextAlign Specifies how the displayed text is positioned.
Font Sets style, size, and type of displayed text.
Checked Indicates if button is selected (True) or not

selected (False). Only one button in a group
can have a True value.

BackColor Sets radio button background color.
ForeColor Sets color of displayed text.
Left If on form, distance from left side of form to

left side of radio button. If in group box,
distance from left side of group box to left side
of radio button (X in properties window,
expand Location property).

Top If on form, distance from top side of form to
top side of radio button. If in group box,
distance from top side of group box to top side
of radio button (Y in properties window,
expand Location property).

Width Width of the radio button in pixels (expand
Size property).

Height Height of radio button in pixels (expand Size
property).

Enabled Determines whether all controls within radio
button can respond to user events (in run
mode).

Visible Determines whether the radio button appears
on the form (in run mode).

One button in each group of radio buttons should always have a Checked
property set to True in design mode. And, again, if a radio button is in a
group box, the Left and Top properties give position in the group box, not
on the form.

Example
Start Visual C# and start a new project. Draw a group box. Remember,

each individual group of radio buttons (we need one group for each
decision we make) has to be in a separate group box. Place three or four
radio buttons in the group box using techniques discussed earlier. Set one of
the buttons Checked property to True. Run the project. Notice one button
has a filled circle (the one you initialized the Checked property for). Click
another radio button. That button will be filled while the previously filled
button will no longer be filled. Keep clicking buttons to get the idea of how
they work. In event methods, we would examine each radio button’s
Checked property to determine which one is selected. Stop the project. Did
you notice that, like for check boxes, we didn’t have to write any C# code
to make the filled circles appear or go away? That is handled by the control
itself. Change the group box BackColor property and notice all the
‘contained’ radio buttons also change background color.

Draw another group box on the form. Put two or three radio buttons in
that group box and set one button’s Checked property to True. As always,
make sure the buttons are properly placed in the group box. Run the project.
Change the selected button in this second group. Notice changing this group
of radio buttons has no effect on the earlier group. Remember that radio
buttons in one group box do not affect radio buttons in another. Group
boxes are used to implement separate choices. Try more group boxes and
radio buttons if you want. Stop the project.

Events

The only radio button event of interest is the CheckedChanged event:

Event Description
CheckedChanged Event executed when the Checked property

changes.

When one radio button acting in a group attains a Checked property of
True, the Checked property of all other buttons in its group is set to False.
We don’t have to write C# code to do this - it is automatic.

Typical Use of a Radio Button Control
Usual design steps for a radio button control are:

➢ Establish a group of radio buttons by placing them in the same group
box control

➢ For each button in the group, set the Name (give each button a
similar name to identify them with the group) and Text property. You
might also change the Font, BackColor and Forecolor properties.

➢ Initialize the Checked property of one button to True.
➢ Monitor the CheckChanged event of each radio button in the group

to determine when a button is clicked. The ‘last clicked’ button in the
group will always have a Checked property of True.

C# - The Fourth Lesson
By now, you’ve learned a lot about the C# language. In this class, we

look at just one new idea - another way to make decisions.

Decisions – Switch Structure

In the previous class, we studied the if structure as a way of letting
Visual C# make decisions using comparison operators and logical
operators. We saw that the if structure is very flexible and allows us to
implement a variety of decision logics. Many times in making decisions, we
simply want to examine the value of just one variable or expression. Based
on whatever values that expression might have, we want to take particular
actions in our C# code. We could implement such a logic using if and else if
statements. C# offers another way to make decisions such as this.

An alternative to a complex if structure when simply checking the value
of a single variable is the C# switch structure. The parts of the switch
structure are:

• The switch keyword
• A controlling variable

• One or more case statements followed by an value terminated by a
colon (:). After the colon is the code to be executed if the variable
equals the corresponding value.

• An optional break statement to leave the structure after executing the
case code.

• An optional default block to execute if none of the preceding case
statements have been executed.

The general form for this structure is:

switch (variable)
{
case value1:

[C# code to execute if variable == value1]
break;

case value2:
[C# code to execute if variable == value2]
break;

.

.
default:

[C# code to execute if no other code has been executed]
break;

}

In this example, if variable = value1, the first code block is executed. If
variable = value2, the second is executed. If no subsequent matches
between variable and values are found, the code in the default block is
executed.

This code is equivalent to the following if structure:

if (variable == value1)

{
[C# code to execute if variable = value1]

}
else if (variable == value2)
{

[C# code to execute if variable = value2]
}
.
.
else
{

[C# code to execute if no other code has been executed]
}

A couple of comments about switch. The break statements, though
optional, will almost always be there. If a break statement is not seen at the
end of a particular case, the following case or cases will execute until a
break is encountered. This is different behavior than seen in if statements,
where only one “case” could be executed. Second, all the execution blocks
in a switch structure are enclosed in curly braces, but the blocks within each
case do not have to have braces (they are optional). This is different from
most code blocks in C#. Look at the use of the switch structure in the next
project to see an example of its use.

Project - Sandwich Maker

The local sandwich shop has heard about your fantastic Visual C#
programming skills and has hired you to make a computer version of their
ordering system. What a great place to try out your skills with group boxes,
check boxes, and radio buttons!

Project Design
In a project like this, making a computer version of an existing process

(ordering a sandwich), the design steps are usually pretty straightforward.
We asked the sandwich shop how they do things and this is what they told
us:

• Three bread choices (can only pick one): white, wheat, rye
• Five meat choices (pick as many as you want): roast beef, ham, turkey,

pastrami, salami
• Three cheese choices (can only pick one): none, American, Swiss
• Six condiment choices (pick as many as you want): mustard,

mayonnaise, lettuce, tomato, onion, pickles

It should be obvious what controls are needed.

We will need a group of three radio buttons for bread, a group of five
check boxes for meat, a group of three radio buttons for cheese, and six
check boxes for condiments. We’ll add a button for clearing the menu
board, a button to ‘build’ the sandwich, and a text box, with a label for
titling information, where we will print out the sandwich order. This project
is saved as Sandwich in the course projects folder (\VCSKids\VCSK
Projects).

Place Controls on Form
Start a new project in Visual C#. Place and resize four group boxes on

the form. Place three radio buttons (for bread choices) in the first group box
(remember how to properly place controls in a group box). Place five check
boxes (for meat choices) in the second group box. Place three radio buttons
(for cheese choices) in the third group box. Place six check boxes (for
condiment choices) in the fourth group box. Add two buttons, a label and a
text box. My form looks like this:

Yes, there are lots of controls involved when working with check boxes and
radio buttons, and even more properties. Get ready!

Set Control Properties
Set the control properties using the properties window:

Form1 Form:
Property Name Property Value

Text Sandwich Maker
FormBorderStyle Fixed Single
StartPosition CenterScreen
Icon [Pick one you make with IconEdit or you can use

my little sandwich icon]

groupBox1 Group Box:
Property Name Property Value

Name grpBread
Text Bread
Font Size 10
Font Style Bold

radioButton1 Radio Button:
Property Name Property Value

Name rdoWhite
Text White
Font Size 8
Font Style Regular
Checked True

radioButton2 Radio Button:

Property Name Property Value

Name rdoWheat
Text Wheat
Font Size 8
Font Style Regular

radioButton3 Radio Button:
Property Name Property Value

Name rdoRye
Text Rye
Font Size 8
Font Style Regular

groupBox2 Group Box:
Property Name Property Value

Name grpMeats
Text Meats
Font Size 10
Font Style Bold

checkBox1 Check Box:
Property Name Property Value

Name chkRoastBeef
Text Roast Beef
Font Size 8
Font Style Regular

checkBox2 Check Box:
Property Name Property Value

Name chkHam

Text Ham
Font Size 8
Font Style Regular

checkBox3 Check Box:
Property Name Property Value

Name chkTurkey
Text Turkey
Font Size 8
Font Style Regular

checkBox4 Check Box:
Property Name Property Value

Name chkPastrami
Text Pastrami
Font Size 8
Font Style Regular

checkBox5 Check Box:
Property Name Property Value

Name chkSalami
Text Salami
Font Size 8
Font Style Regular

groupBox3 Group Box:
Property Name Property Value

Name grpCheese
Text Cheese
Font Size 10
Font Style Bold

radioButton4 Radio Button:
Property Name Property Value

Name rdoNone
Text None
Font Size 8
Font Style Regular
Checked True

radioButton5 Radio Button:
Property Name Property Value

Name rdoAmerican
Text American
Font Size 8
Font Style Regular

radioButton6 Radio Button:
Property Name Property Value

Name rdoSwiss
Text Swiss
Font Size 8
Font Style Regular

groupBox4 Group Box:
Property Name Property Value

Name grpCondiments
Text Condiments
Font Size 10
Font Style Bold

checkBox6 Check Box:

Property Name Property Value

Name chkMustard
Text Mustard
Font Size 8
Font Style Regular

checkBox7 Check Box:
Property Name Property Value

Name chkMayo
Text Mayonnaise
Font Size 8
Font Style Regular

checkBox8 Check Box:
Property Name Property Value

Name chkLettuce
Text Lettuce
Font Size 8
Font Style Regular

checkBox9 Check Box:
Property Name Property Value

Name chkTomato
Text Tomato
Font Size 8
Font Style Regular

checkBox10 Check Box:
Property Name Property Value

Name chkOnions

Text Onions
Font Size 8
Font Style Regular

checkBox11 Check Box:
Property Name Property Value

Name chkPickles
Text Pickles
Font Size 8
Font Style Regular

label1 Label:
Property Name Property Value

Name lblOrder
Text Order:
Font Size 10
Font Style Bold

textBox1 Text Box:
Property Name Property Value

Name txtOrder
MultiLine True
ScrollBars Vertical

button1 Button:
Property Name Property Value

Name btnOrder
Text Order

button2 Button:
Property Name Property Value

Name btnClear
Text Clear

When done, my form looks like this:

Image

As we said, there is a lot of work involved when working with check boxes
and radio buttons - many controls to place in group boxes and many
properties to set. This is a part of developing computer applications. Many
times, the work is tedious and uninteresting. But, you have the satisfaction
of knowing, once complete, your project will have a professional looking
interface with controls every user knows how to use. Now, let’s write the
event methods - they’re pretty easy.

Write Event methods
In this project, you use the check boxes and radio buttons in the various

group boxes to specify the desired sandwich. When all choices are made,
click Order and the ingredients for the ordered sandwich will be printed in
the text box (for the sandwich makers to read). Clicking Clear will return
the menu board to its initial state to allow another order. So, we need Click
events for each button control.

We also need some way to determine which check boxes and which
radio buttons have been selected. How do we do this? Notice the final state
of each check box is not established until the Order button is clicked. At
this point, we can examine each check box Checked property (set
automatically by Visual C#) to see if it has been selected. So, we don’t need
really event methods for these boxes.

Radio button value properties are established when one of the buttons in
a group is clicked, changing its Checked property. For radio buttons, we
will have CheckedChanged events that keep track of which button in a
group is currently selected. Two integer variables are needed, one to keep

track of which bread (breadChoice) is selected and one to keep track of
which cheese (cheeseChoice) is selected. We will use these values to
indicate choices:

breadChoice: cheeseChoice:
Value Selected Bread Value Selected Cheese
1 White 0 None
2 Wheat 1 American
3 Rye 2 Swiss

Using variables to indicate radio button choices is common.

We will add two more variables (numberMeats and
numberCondiments) to count how many meats and condiments are
selected. Open the code window and declare these variables in the general
declarations area under the form constructor method:

int breadChoice;
int cheeseChoice;
int numberMeats;
int numberCondiments;

The code window should look like this:

Image

breadChoice and cheeseChoice must be initialized to match the initially
selected radio buttons: rdoWhite (white bread) has an initial True value
(for Checked property) in the bread group, so BreadChoice is initially 1;
rdoNone (no cheese) has an initial True value (for Checked property) in the
cheese group, so CheeseChoice is initially 0. Set these initial values in the
Form1_Load method (recall this is always a good place to set values the
first time you use them):

private void Form1_Load(object sender, EventArgs e)

{
// Initialize bread and cheese choices
breadChoice = 1;
cheeseChoice = 0;

}

After all choices have been input on the sandwich menu board, you
click Order. At this point, the computer needs to do the following:

• Decide which bread was selected
• Decide which meats (if any) were selected
• Decide which cheese (if any) was selected
• Decide which condiments (if any) were selected
• Place ‘order’ in text box

Image

Let’s look at how each decision is made.

The bread and cheese decisions are similar - they both use radio buttons.
The selected bread is given by the variable breadChoice. breadChoice is
established in the CheckedChanged events for each of the three bread radio
buttons. It is easy code. First, rdoWhite_CheckedChanged:

private void rdoWhite_CheckedChanged(object sender, EventArgs e)
{

// White bread selected
breadChoice = 1;

}

rdoWheat_CheckedChanged:

private void rdoWheat_CheckedChanged(object sender, EventArgs e)
{

// Wheat bread selected
breadChoice = 2;

}

rdoRye_CheckedChanged:

private void rdoRye_CheckedChanged(object sender, EventArgs e)
{

// Rye bread selected
breadChoice = 3;

}

Similar code is used to determine CheeseChoice. The
rdoNone_CheckedChanged event method:

private void rdoNone_CheckedChanged(object sender, EventArgs e)
{

// No cheese selected
cheeseChoice = 0;

}

rdoAmerican_CheckedChanged:

private void rdoAmerican_CheckedChanged(object sender, EventArgs
e)
{

// American cheese selected
cheeseChoice = 1;

}

rdoSwiss_CheckedChanged:

private void rdoSwiss_CheckedChanged(object sender, EventArgs e)

{
// Swiss cheese selected
cheeseChoice = 2;

}

With the above code, we see that by the time Order is clicked, the bread
and cheese choices will be known. We do not know the meat and condiment
choices, however. The only way to determine these choices is to examine
each individual check box Checked property to see if it is checked or not.
This is done in the btnOrder_Click event method. We also place the
complete order in the text box control in this method. Let’s see how.

The displayed information in the text box is stored in its Text property.
We build this multi-line Text property in stages. The stages are:

• Establish bread type in Text property (use switch).
• Replace Text property with previous value plus any added meat(s) (use

an if statement for each meat).
• Replace Text property with previous value plus any added cheese (use

switch).
• Replace Text property with previous value plus any added

condiments(s) (use an if statement for each condiment).
• Text property is complete.

As items are added to the Text property (we’ll be using lots of
concatenations), we would also like to put each item on a separate line. We
use a combination of two Visual C# control characters to do that – \r\n.
This is a value (stands for carriage return and new line – a throwback to
typewriter days) that tells the Text property to move to a new line – simply
append it to a string where you want a new line. Here’s the
btnOrder_Click event method that implements the steps of determining
meat and condiments and building the Text property of txtOrder:

private void btnOrder_Click(object sender, EventArgs e)
{

// Start Text with bread type
txtOrder.Text = "Sandwich Order:\r\n";
switch (breadChoice)
{

case 1:
txtOrder.Text = txtOrder.Text + "White Bread\r\n";
break;

case 2:
txtOrder.Text = txtOrder.Text + "Wheat Bread\r\n";
break;

case 3:
txtOrder.Text = txtOrder.Text + "Rye Bread\r\n";
break;

}
// Add and count meats
numberMeats = 0;
if (chkRoastBeef.Checked)
{

numberMeats = numberMeats + 1;
txtOrder.Text = txtOrder.Text + "Roast Beef\r\n";

}
if (chkHam.Checked)
{

numberMeats = numberMeats + 1;
txtOrder.Text = txtOrder.Text + "Ham\r\n";

}
if (chkTurkey.Checked)
{

numberMeats = numberMeats + 1;
txtOrder.Text = txtOrder.Text + "Turkey\r\n";

}

if (chkPastrami.Checked)
{

numberMeats = numberMeats + 1;
txtOrder.Text = txtOrder.Text + "Pastrami\r\n";

}
if (chkSalami.Checked)
{

numberMeats = numberMeats + 1;
txtOrder.Text = txtOrder.Text + "Salami\r\n";

}
// If no meats picked, say so
if (numberMeats == 0)
{

txtOrder.Text = txtOrder.Text + "No Meat\r\n";
}
// Add cheese type
switch (cheeseChoice)
{

case 0:
txtOrder.Text = txtOrder.Text + "No Cheese\r\n";
break;

case 1:
txtOrder.Text = txtOrder.Text + "American Cheese\r\n";
break;

case 2:
txtOrder.Text = txtOrder.Text + "Swiss Cheese\r\n";
break;

}
// Finally, add and count condiments
numberCondiments = 0;
if (chkMustard.Checked)

{
numberCondiments=numberCondiments+1;
txtOrder.Text = txtOrder.Text + "Mustard\r\n";

}
if (chkMayo.Checked)
{

numberCondiments=numberCondiments+1;
txtOrder.Text = txtOrder.Text + "Mayonnaise\r\n";

}
if (chkLettuce.Checked)
{

numberCondiments=numberCondiments+1;
txtOrder.Text = txtOrder.Text + "Lettuce\r\n";

}
if (chkTomato.Checked)
{

numberCondiments=numberCondiments+1;
txtOrder.Text = txtOrder.Text + "Tomato\r\n";

}
if (chkOnions.Checked)
{

numberCondiments=numberCondiments+1;
txtOrder.Text = txtOrder.Text + "Onions\r\n";

}
if (chkPickles.Checked)
{

numberCondiments=numberCondiments+1;
txtOrder.Text = txtOrder.Text + "Pickles\r\n";

}
// If no condiments picked, say so
if (numberCondiments == 0)

{
txtOrder.Text = txtOrder.Text + "No Condiments\r\n";

}
}

Wow! That’s one long event method. And, after we’re done, all we really
have is just one very long txtOrder.Text property. But, with your C#
knowledge, you should be able to see it’s really not that complicated, just
long. Each step in the method is very logical.

A few comments. First, as you type in the method from these notes, be
aware of places the word processor ‘word wraps’ a line because it has gone
past the right margin. It appears there is a new line, but don’t start a new
line in your C# code. Type each line of code on just one line in the Visual
C# code window. Second, this is a great place to practice your copying and
pasting skills. Notice how a lot of the code is very similar. Use copy and
paste (highlight text, select Edit menu, then Copy - move to paste location,
select Edit menu, then Paste). Once you paste text, make sure you make
needed changes to the pasted text! Third, for long methods like this, I
suggest typing in one section of code (for example, the cheese choice),
saving the project, and then running the project to make sure this section
works. Then, add another section and test it. Then, add another section and
test it. Visual C# makes such incremental additions very easy. This also
lessens the amount of program “debugging” you need to do.

Image

We need one last event method - the btnClear_Click event. Clicking
Clear will reset the bread and cheese choices, clear all the check boxes, and
clear the text box. This event is:

private void btnClear_Click(object sender, EventArgs e)
{

// Set bread to white
breadChoice = 1;

rdoWhite.Checked = true;
// Clear all meat choices
chkRoastBeef.Checked = false;
chkHam.Checked = false;
chkTurkey.Checked = false;
chkPastrami.Checked = false;
chkSalami.Checked = false;
// Set cheese to none
cheeseChoice = 0;
rdoNone.Checked = true;
// Clear all condiment choices
chkMustard.Checked = false;
chkMayo.Checked = false;
chkLettuce.Checked = false;
chkTomato.Checked = false;
chkOnions.Checked = false;
chkPickles.Checked = false;
// Clear text box
txtOrder.Text = "";

}

You’re done! Save your project by clicking the Save All button in the
toolbar.

Image

Run the Project
Run the project. Make choices on the menu board, then click Order.

Pretty cool, huh? Here’s my favorite sandwich:

Image

As always, make sure all check boxes and radio buttons work and provide
the proper information in the text box. Make sure the Clear button works.
Notice the text box scroll bar is active only when there is a long sandwich
order. If something doesn’t work as it should, recheck your control
properties and event methods. Save your project if you needed to make any
changes.

Other Things to Try
Image

Notice the only ways to stop this project are to click on the Visual C#
toolbar’s Stop button or to click the box that looks like an X in the upper
right corner of the Sandwich Maker form. We probably should have put an
Exit button on the form. Try adding one and its code. Remember the C#
this.Close() statement stops a project.

The sandwich shop owner liked your program so much, she wants to
hook it up to her cash register. She wants you to modify the program so it
also prints out (at the bottom) how much the sandwich cost. We’ll give the
steps - you do the work. The owner says a sandwich costs $3.95. There is
an additional $0.75 charge for each extra meat selection (one meat is
included in the $3.95 price) and there is an 8% sales tax. Now, the steps: (1)
define a double type variable cost to compute the sandwich cost and (2)
after setting the text box Text property, compute cost using this code
segment (place this at the end, right before the final right curly brace in the
btnOrder_Click event method):

// Start with basic cost cost = 3.95;
// Check for extra meats
if (numberMeats > 1)
{

cost = cost + (numberMeats - 1) * 0.75;
}
// Add 8 percent sales tax

cost = cost + 0.08 * cost;
// Add cost to text property
txtOrder.Text = txtOrder.Text + Convert.ToString(cost);

Can you see how this works? Particularly, look at the if structure used to see
if we need to charge for extra meat. Now, run the project and see the cost
magically appear (my favorite sandwich costs 5.886). Note the cost value
may have more or less than the two decimals we like to see when working
with money. Using the Convert.ToString method to convert decimal
numbers to strings, we have no control on how many (if any) decimals are
displayed. There is another C# method that will help us do that - - the C#
Format function. We’ll show you how to use Format to display dollar
amounts. To find out more about Format (and it is a very useful function -
we just don’t use it in this course), consult the Visual C# on-line help
system. To display two decimals for cost, replace the last line of code with:

txtOrder.Text = txtOrder.Text + String.Format(“{0:f2}”, cost);

One last modification to this project might be to add some way to enter
how much money the customer gave you for the sandwich and have the
computer tell you how much change the customer gets. Can you think of a
way to do this? Try it. You would want to use the Format method here. It’s
difficult to give $1.2345 in change!

Image

Summary
In this class, we learned about three very useful controls for making

choices: the group box, check boxes, and radio buttons. And, we looked at
another way to make decisions: the switch structure. Using these new tools,
you built your biggest project yet - the Sandwich Maker. This project had a
lot of controls, a lot of properties to set, and a lot of C# code to write. But,
that’s how most projects are. But, I think you see that with careful planning
and a methodical approach (following the three project steps), building such
a complicated project is not really that hard. In the next class, we start
looking at a really fun part of Visual C# - graphics!

8

Panels, Mouse Events, Colors

Image

Review and Preview

You’ve seen and learned how to use lots of controls in the Visual C#
toolbox. In this class, we begin looking at a very fun part of Visual C# -
adding graphics capabilities to our projects.

A key control for such capabilities is the panel. We will look at this control
in detail. We will also look at ways for Visual C# to recognize mouse
events and have some fun with colors. You will build an electronic
blackboard project.

Image

Panel Control

The Panel control is another Visual C# ‘container’ control. It is nearly
identical to the GroupBox control (seen in Class 7) in behavior. Controls
are placed in a Panel control in the same manner they are placed in the
GroupBox. Radio buttons in a panel work as an independent group. Yet,
panel controls can also be used to display graphics (lines, rectangles,
ellipses, polygons, text). In this class, we will look at these graphic
capabilities of the panel control. The panel is selected from the toolbox. It
appears as:

In Toolbox:

Image

On Form (default properties):

Image

Properties

The panel properties are:

Property Description

Name Name used to identify panel. Three letter prefix for panel
names is pnl.

BackColor Sets panel background color.

Left Distance from left side of form to left side of panel (X in
properties window, expand Location property).

Top Distance from top side of form to top side of panel (Y in
properties window, expand Location property).

Width Width of the panel in pixels (expand Size property).
Height Height of panel in pixels (expand Size property).

Enabled Determines whether all controls within panel can respond to
user events (in run mode).

Visible Determines whether the panel (and attached controls) appears
on the form (in run mode).

Like the form and group box objects, the panel is a container control, since
it ‘holds’ other controls. Hence, many controls placed in a panel will share
the BackColor property (notice the panel does not have a Text property). To
change this, select the desired control (after it is placed on the group box)
and change the background color. Also, note the panel is moved using the
displayed ‘handle’ identical to the process for the group box in the previous
class.

Typical Use of Panel Control

The usual design steps for using a panel control are:

➢ Set Name property.

➢ Place desired controls in panel control.

➢ Monitor events of controls in panel using usual techniques.

Graphics Using the Panel Control

As mentioned, the panel control looks much like a group box and its use is
similar. Panels can be used in place of group box controls, if desired. A
powerful feature of the panel control (a feature the group box does not
have), however, is its support of graphics. We can use the control as a blank
canvas for self-created works of art! There are many new concepts to learn
to help us become computer artists. Let’s look at those concepts now.

Graphics Methods

Image

To do graphics (drawing) in Visual C#, we use the built-in graphics
methods. A method is a procedure or function, similar to the event methods
we have been using, that imparts some action to an object or control. Most
controls have methods, not just the panel. With the panel, a graphics
method can be used to draw something on it. Methods can only be used in
run mode. The C# code to use a method is:

objectName.MethodName(Arguments);

where ObjectName is the object of interest, MethodName is the method
being used, and there may be some arguments or parameters (information
needed by the method to do its task). Notice this is another form of the dot
notation we use to set control properties in code. In this class, we will look
at graphics methods that can draw colored lines. As you progress in your
programming skills, you are encouraged to study the many other graphics
methods that can draw rectangles, ellipses, polygons and virtually any
shape, in any color. To use the panel for drawing lines, we need to
introduce another concept, that of a graphics object.

Graphics Objects

You need to tell Visual C# that you will be using graphics methods with the
panel control. To do this, you convert the panel control to something called
a graphics object. Graphics objects provide the “surface” for graphics
methods. Creating a graphics object requires two simple steps. We first
declare the object using the standard declaration statement. If we name our
graphics object myGraphics, the form is:

Graphics myGraphics;

This declaration is placed in the general declarations area of the code
window, along with our usual variable declarations. Once declared, the
object is created using the CreateGraphics method:

myGraphics = controlName.CreateGraphics();

where controlName is the name of the control hosting the graphics object
(in our work, the Name property of the panel control). We will create this
object in the form Load event of our projects.

Once a graphics object is created, all graphics methods are applied to this
newly formed object. Hence, to apply a graphics method named
GraphicsMethod to the myGraphics object, use:

myGraphics.GraphicsMethod(Arguments);

where Arguments are any needed arguments, or information needed by the
graphics method.

There are two important graphics methods we introduce now. First, after all
of your hard work drawing in a graphics object, there are times you will
want to erase or clear the object. This is done with the Clear method:

myGraphics.Clear(Color);

This statement will clear a graphics object (myGraphics) and fill it with the
specified Color. We will look further at colors next. The usual color
argument for clearing a graphics object is the background color of the host
control (controlName), or:

myGraphics.Clear(controlName.BackColor);

Once you are done drawing to an object and need it no longer, it should be
properly disposed to clear up system resources. To do this with our example
graphics object, use the Dispose method:

myGraphics.Dispose();

This statement is usually placed in the form FormClosing event method.

Our drawing will require colors and objects called pens, so let’s take a look
at those concepts. Doesn’t it make sense we need pens to do some drawing?

Colors

Image

Colors play a big part in Visual C# applications. We have seen colors in
designing some of our previous applications. At design time, we have
selected background colors (BackColor property) and foreground colors
(ForeColor property) for different controls. Such choices are made by
selecting the desired property in the properties window. Once selected, a
palette of customizable colors appears for you to choose from.

Most graphics methods and graphics objects use color. For example, the
pen object we study next has a Color argument that specifies just what
color it draws with. Unlike control color properties, these colors cannot be
selected at design time. They must be defined in code. How do we do this?
There are two approaches we will take: (1) use built-in colors and (2) create
a color.

The colors built into Visual C# are specified by the Color structure. We
have seen a few colors in some our examples and projects. A color is
specified using:

Color.ColorName

where ColorName is a reserved color name. There are many, many color
names (I counted 141). There are colors like BlanchedAlmond, Linen,
NavajoWhite, PeachPuff and SpringGreen. You don’t have to remember
these names.

Whenever you type the word Color, followed by a dot (.), in the code
window, the Intellisense feature of Visual C# will pop up a list of color
selections. Just choose from the list to complete the color specification. You
will have to remember the difference between BlanchedAlmond and Linen
though!

If for some reason, the selection provided by the Color structure does not fit
your needs, there is a method that allows you to create over 16 million
different colors. The method (FromArgb) works with the Color structure.
The syntax to specify a color is:

Color.FromArgb(Red, Green, Blue)

where Red, Green, and Blue are integer measures of intensity of the
corresponding primary colors. These measures can range from 0 (least
intensity) to 255 (greatest intensity). For example, Color.FromArgb(255,
255, 0) will produce yellow. Sorry, but I can’t tell you what values to use to
create PeachPuff.

It is easy to specify colors for graphics methods using the Color structure.
Any time you need a color, just use one of the built-in colors or the
FromArgb method. These techniques to represent color are not limited to
just providing colors for graphics methods. They can be used anywhere
Visual C# requires a color; for example, BackColor and ForeColor
properties can also be set (at runtime) using these techniques. For example,
to change your form background color to PeachPuff, use:

this.BackColor = Color.PeachPuff;

You can also define variables that take on color values. It is a two step
process. Say we want to define a variable named myRed to represent the
color red. First, in the general declarations area, declare your variable to be
of type Color:

Color myRed;

Then, define your color in code using:

myRed = Color.Red;

From this point on, you can use myRed anywhere the red color is desired.

Image

Example

Go the course project folder (\VCSKids\VCSK Projects) and open a project
named RGBColors. Run this project. Three numeric updown controls are
there: one to control the Red (R =) content, one to control the Green (G =)
content, and one to control the Blue (B =) content. Set values for each and
see the corresponding color assigned using the FromArgb function. Play
with this project and look at all the colors available with this function. How
long does it take to look at all 16 million combinations? A long time! The
running project looks like this:

Image

Stop the project when you’re done playing with the colors. See if you can
figure out how this little project works.

Pen Objects

Image

As mentioned, many of the graphics methods (including the method to
draw lines) require a Pen object. This virtual pen is just like the pen you use
to write and draw. You can choose color and width. You can use pens built
into Visual C# or create your own pen.

In many cases, the pen objects built into Visual C# are sufficient. These
pens will draw a line 1 pixel wide in a color you choose (Intellisense will

present the list to choose from). If the selected color is ColorName (one of
the 141 built-in color names), the syntax to refer to such a pen is:

Pens.ColorName

Creating your own pen is similar to creating a graphics object, but here we
create a Pen object. To create your own Pen object, you first declare the pen
using:

Pen myPen;

This line goes in the general declarations area. The pen is then created
using the Pen constructor function:

myPen = new Pen(Color, Width);

where Color is the color your new pen will draw in and Width is the integer
width of the line (in pixels) drawn. The pen is usually created in the form
Load method. This pen will draw a solid line. The Color argument can be
one of the built-in colors or one generated with the FromArgb function.

Once created, you can change the color and width at any time using the
Color and Width properties of the pen object. The syntax is:

myPen.Color = newColor;

myPen.Width = newWidth;

Here, newColor is a newly specified color and newWidth is a new integer
pen width.

Like the graphics object, when done using a pen object, it should be
disposed using the Dispose method:

myPen.Dispose();

This disposal usually occurs in the form FormClosing method.

We’re almost ready to draw lines – be patient! Just one more concept and
we’re on our way.

Graphics Coordinates

We will use Visual C# to draw lines using a method called the DrawLine
method. Before looking at this method, let’s look at how we specify the
points used to draw and connect lines. All graphics methods use a default
coordinate system. This means we have a specific way to refer to individual
points in the control (a panel in our work) hosting the graphics object. The
coordinate system used is:

Image

We use two values (coordinates) to identify a single point in the panel. The
x (horizontal) coordinate increases from left to right, starting at 0. The y
(vertical) coordinate increases from top to bottom, also starting at 0. Points
in the panel are referred to by the two coordinates enclosed in parentheses,
or (x, y). Notice how x and y, respectively, are similar to the Left and Top
control properties. All values shown are in units of pixels.

At long last, we’re ready to draw some lines.

DrawLine Method

The Visual C# DrawLine method is used to connect two points with a
straight-line segment. It operates on a previously created graphics object. If
that object is myGraphics and we wish to connect the point (x1, y1) with
(x2, y2) using a pen object myPen, the statement is:

myGraphics.DrawLine(myPen, x1, y1, x2, y2);

The pen object can be either one of the built-in pens or one you create
using the pen constructor just discussed. Each coordinate value is an integer
type. Using a built-in black pen (Pens.Black), the DrawLine method with
these points is:

myGraphics.DrawLine(Pens.Black, x1, y1, x2, y2);

This produces on a panel (MyGraphics object):

Image

To connect the last point (x2, y2) to another point (x3, y3), use:

myGraphics.DrawLine(Pens.Black, x2, y2, x3, y3);

This produces on a panel (MyGraphics object):

Image

For every line segment you draw, you need a separate DrawLine statement.
To connect one line segment with another, you need to save the last point
drawn to in the first segment (use two integer variables, one for x and one
for y). This saved point will become the starting point for the next line
segment. You can choose to change the pen color at any time you wish.
Using many line segments, with many different colors, you can draw
virtually anything you want! We’ll do that with the blackboard project in
this class.

Graphics Review

Image

We’ve covered lots of new material here, so it’s probably good to review
the steps necessary to use the DrawLine method to draw line segments:

• Declare a graphics object in the general declarations area.

• Create a graphics object in the form Load event method.

• Select a pen object using the built-in Pens object or create your
own pen object.

• Draw to graphics object using DrawLine method and specified
coordinates.

• Dispose of graphics object and pen object (if created) in the
form FormClosing event method.

The process is like drawing on paper. You get your paper (graphics object)
and your pens. You do all your drawing and coloring and then put your
supplies away!

Example

Start a new project in Visual C#. Place a panel control (name panel1) on the
form. Make it fairly large. Set its BackColor property to white. Place a
button control (name button1) on the form. My form looks like this:

Image

Write down the Width and Height properties of your panel control (look at
the Size property; my values are Width = 270 and Height = 170).

In the general declarations area of the code window, declare your graphics
object using:

Graphics myGraphics;

In the Form1_Load event, add this line of code to create the graphics
object:

myGraphics = panel1.CreateGraphics();

In the button1_Click event, write a line of code that draws a line starting at
the point (10, 10) and goes to a point (Width – 10, Height – 10), where
Width and Height are the dimensions of your panel control. Using a black
pen, this line of code for my panel is:

myGraphics.DrawLine(Pens.Black, 10, 10, 260, 160);

And, in the Form1_FormClosing event, dispose of your graphics object
using:

myGraphics.Dispose();

Make sure your code window looks like this:

Image

Especially note the placement of the statement declaring the graphics
object.

Run the project. Click the button. The code draws a black line from (10,
10), near the upper left corner, to (260, 160), near the lower right corner:

Image

Stop the project and add this line after the current line in the button1_Click
event:

myGraphics.DrawLine(Pens.Red, 260, 160, 260, 10);

Run the project again. A red line, connecting the last point to (260, 10) is
added:

Image

Stop the project. Let’s create a wide pen. Add this line in the general
declarations area to declare myPen:

Pen myPen;

Add this line of code in the Form1_Load event to create myPen as a blue
pen with a drawing width of 10:

myPen = new Pen(Color.Blue, 10);

Add this line of code in the Form1_FormClosing event to dispose of
myPen:

myPen.Dispose();

Now add this line after the lines already in the button1_Click event to draw
a ‘wide’ blue line that completes a little triangle:

myGraphics.DrawLine(myPen, 260, 10, 10, 10);

Run the project, click the button and you should see:

Image

Add more line segments, using other points and colors if you like. Try
creating other pens with different colors and drawing widths. Save this
project – we’ll continue working with it. I think you get the idea of
drawing. Just pick some points, pick some colors, and draw some lines.
But, it’s pretty boring to just specify points and see lines being drawn. It
would be nice to have some user interaction, where points could be drawn
using the mouse. And, that’s just what we are going to do. We will use our
newly gained knowledge about graphics methods to build a Visual C#
drawing program. To do this, though, we need to know how to use the
mouse in a project. We do that now.

C# - The Fifth Lesson

In the C# lesson for this class, we examine how to recognize mouse events
(clicking and releasing buttons, moving the mouse) to help us build a
drawing program with a panel control.

Mouse Events

Image

Related to graphics methods are mouse events. The mouse is a primary
interface for doing graphics in Visual C#. We've already used the mouse to
Click on controls. Here, we see how to recognize other mouse events in
controls. Many controls recognize mouse events - we are learning about
them to allow drawing in panel controls.

MouseDown Event

The MouseDown event method is triggered whenever a mouse button is
pressed while the mouse cursor is over a control. The form of this method
is:

private void controlName_MouseDown(object sender, MouseEventArgs e)

{

[C# code for MouseDown event]

}

This is the first time we will use the arguments (information in parentheses)
in an event method. This is information C# is supplying, for our use, when
this event method is executed. Note this method has two arguments: sender
and e. sender is the control that was clicked to cause this event
(MouseDown) to occur. In our case, it will be the panel control. The
argument e is an event handler revealing which button was clicked and the
coordinate of the mouse cursor when a button was pressed. We are
interested in three properties of the event handler e:

Value Description

e.Button Mouse button pressed. Possible values are: MouseButtons.Left,
MouseButtons.Center, MouseButtons.Right

e.X X coordinate of mouse cursor in control when mouse was clicked
e.Y Y coordinate of mouse cursor in control when mouse was clicked

Only one button press can be detected by the MouseDown event - you can’t
tell if someone pressed the left and right mouse buttons simultaneously. In
drawing applications, the MouseDown event is used to initialize a drawing
process. The point clicked is used to start drawing a line and the button
clicked is often used to select line color.

Image

Example

Let’s try the MouseDown event with the example we just used with
graphics methods. Recall we just have a panel control and a button on a
form. Delete the button control from the form. Add two label boxes (one
with default Name label1 and one with default name label2) near the
bottom of the form- we will use these to tell us which button was clicked
and display the mouse click coordinate. My form looks like this:

Image

Put these lines of code in the panel1_MouseDown event (select the event
from the properties window for the panel control):

private void panel1_MouseDown(object sender, MouseEventArgs e)

{

switch (e.Button)

{

case MouseButtons.Left:

label1.Text = "Left";

break;

case MouseButtons.Middle:

label1.Text = "Middle";

break;

case MouseButtons.Right:

label1.Text = "Right";

break;

}

label2.Text = Convert.ToString(e.X) + "," + Convert.ToString(e.Y);

}

Here, we use a switch structure to specify which button was clicked
(displayed in label1 Text property) and we display e.X and e.Y (separated
by a comma) in the label2 Text property. Run the project. Click the panel
and notice the displayed button and coordinate. Here’s an example of a
point I clicked:

Image

Try different mouse buttons. Click various spots in the panel and see how
the coordinates change. Click near the upper left corner. Is (X, Y) close to
(0, 0)? It should be. Play with this example until you are comfortable with
how the MouseDown event works and what the coordinates mean. Stop and
save the project.

Image

MouseUp Event

The MouseUp event is the opposite of the MouseDown event. It is
triggered whenever a previously pressed mouse button is released. The
method format is:

private void controlName_MouseUp(object sender, MouseEventArgs e)

{

[C# code for MouseUp event]

}

Notice the arguments for MouseUp are identical to those for MouseDown.
The only difference here is e.Button tells us which mouse button was
released. In a drawing program, the MouseUp event signifies the halting of
the current drawing process.

Example

Cut the code from the panel1_MouseDown method in our example
(highlight the code, click the Edit menu, then Cut) and paste it in the
panel1_MouseUp method (click Edit, then Paste). Make sure you select the
correct method from the properties window before pasting. Run the project.
Click the panel, move the mouse, then release the mouse. Note the
displayed button and coordinates. Become comfortable with how the
MouseUp event works and how it differs from the MouseDown event. Stop
and save the project.

MouseMove Event

Image

The MouseMove event is continuously triggered whenever the mouse is
being moved. The event method format is:

private void controlName_MouseMove(object sender, MouseEventArgs e)

{

[C# code for MouseMove event]

}

And, yes, the arguments are the same. e.Button tells us which button is
being pressed (if any) as the mouse is moving over the control and (e.X,
e.Y) tell us the mouse position. In drawing processes, the MouseMove
event is used to detect the continuation of a previously started line. If
drawing is continuing, the current point is connected to the previous point
using the current pen.

Example

Cut the code from the panel1_MouseUp method in our example and paste it
in the panel1_MouseMove method. Run the project. Move the mouse over
the panel. Notice the coordinates (X, Y) appear and continuously change as

the mouse is moving. Click the panel and move the mouse. Notice the label
boxes tell you which button was pressed and the current coordinates of the
mouse in the panel. Stop the project.

You should now know how the three mouse events work and how they
differ. Now let’s use the panel control, DrawLine method, mouse events,
pens and colors we’ve studied to build a fun drawing project.

Image

Project - Blackboard Fun

Image

Have you ever drawn on a blackboard with colored chalk? You’ll be doing
that with the “electronic” blackboard you build in this project. This project
is saved as Blackboard in the course projects folder (\VCSKids\VCSK
Projects).

Project Design

This is a simple project in concept. Using the mouse, you draw colored
lines on a computer blackboard. A panel control will represent the
blackboard. Radio buttons will be used to choose “chalk” color. Mouse
events will control the drawing process. Two command buttons will be
used: one to erase the blackboard and one to exit the program.

Place Controls on Form

Start a new project in Visual C#. Place a panel control (make it fairly
large), a group box, and two command buttons on the form. Place eight
radio buttons (used for color choice) in the group box. When done, my
form looks like this:

Image

Set Control Properties

Set the control properties using the properties window:

Form1 Form:
Property Name Property Value
Text Blackboard Fun
FormBorderStyle Fixed Single
StartPosition CenterScreen
panel1 Panel:
Property Name Property Value
Name pnlBlackboard
BorderStyle Fixed3D
BackColor Black (Of course! It’s a Blackboard!)
groupBox1 Group Box:
Property Name Property Value
Name grpColor
Text Color
BackColor Black
ForeColor White
Font Size 10
Font Style Bold
radioButton1 Radio Button:
Property Name Property Value
Name rdoGray

Text 10 to 15 spaces (need some blank space to display
color)

radioButton2 Radio Button:
Property Name Property Value
Name rdoBlue
Text 10 to 15 spaces
radioButton3 Radio Button:
Property Name Property Value

Name rdoGreen
Text 10 to 15 spaces
radioButton4 Radio Button:
Property Name Property Value
Name rdoCyan
Text 10 to 15 spaces
radioButton5 Radio Button:
Property Name Property Value
Name rdoRed
Text 10 to 15 spaces
radioButton6 Radio Button:
Property Name Property Value
Name rdoMagenta
Text 10 to 15 spaces
radioButton7 Radio Button:
Property Name Property Value
Name rdoYellow
Text 10 to 15 spaces
radioButton8 Radio Button:
Property Name Property Value
Name rdoWhite
Text 10 to 15 spaces
button1 Button:
Property Name Property Value
Name btnErase
Text Erase
button2 Button:
Property Name Property Value
Name btnExit
Text Exit

Image

My form looked like this when I was done:

Image

You may be asking – are you crazy? All the radio button Texts are empty
spaces - how can these be used for picking colors? Wait a minute and you’ll
see.

Write Event Methods

Image

This project will work like any paint type program you may have used.
Click on a color in the Color group box (we’ll see colors there soon) to
choose a color to draw with. Then, move to the blackboard, left-click to
start the drawing process. Drag the mouse to draw lines. Release the mouse
button to stop drawing. It’s that easy. Clicking Erase will clear the
blackboard and clicking Exit will stop the program. Every step, but
initializing a few things and stopping the program, is handled by the panel
mouse events.

Three variables are used in this project. We need a Boolean variable
(mousePress) that tells us whether the left mouse button is being held
down. This lets us know if we should be drawing or not. We need two
variables (xLast and yLast) that save the last point drawn in a line (we will
always connect the “current” point to the “last” point). We also need a
graphics object (myGraphics) and a pen object (myPen). Open the code
window and declare these variables in the general declarations area:

bool mousePress;

int xLast;

int yLast;

Graphics myGraphics;

Pen myPen;

We need to establish some initial values. First, we create the graphics
object (myGraphics) we will draw on and our pen object (myPen). We will
set the pen to an initial drawing color of gray. How will we pick colors?
Each radio button has a BackColor property. We set each BackColor
property to its corresponding color using C# code. The user then sees each
actual color and not some word describing it. The eight colors we will use
are values from the Color structure. These colors were selected to look
good on a black background. As seen, the initial color will be Gray, so we
set the rdoGray radio button Checked property to true. We also initialize
mousePress to false (we aren’t drawing yet). All this is done in the
Form1_Load method:

private void Form1_Load(object sender, EventArgs e)

{

// Create graphics and pen objects

myGraphics = pnlBlackboard.CreateGraphics();

myPen = new Pen(Color.Gray, 1);

// Initialize the eight radio button colors

rdoGray.BackColor = Color.Gray;

rdoBlue.BackColor = Color.Blue;

rdoGreen.BackColor = Color.LightGreen;

rdoCyan.BackColor = Color.Cyan;

rdoRed.BackColor = Color.Red;

rdoMagenta.BackColor = Color.Magenta;

rdoYellow.BackColor = Color.Yellow;

rdoWhite.BackColor = Color.White;

// Set initial color

rdoGray.Checked = true;

mousePress = false;

}

You’ll see that this is pretty cool in how it works. This is a very common
thing to do in Visual C# - initialize lots of properties in the form Load
method instead of using the properties window at design time. It makes
project modification much easier.

Each radio button needs a CheckedChanged event method to set the
corresponding myPen.Color values. These eight one-line click events are:

private void rdoGray_CheckedChanged(object sender, EventArgs e)

{

// Gray

myPen.Color = rdoGray.BackColor;

}

private void rdoBlue_CheckedChanged(object sender, EventArgs e)

{

// Blue

myPen.Color = rdoBlue.BackColor;

}

private void rdoGreen_CheckedChanged(object sender, EventArgs e)

{

// Green

myPen.Color = rdoGreen.BackColor;

}

private void rdoCyan_CheckedChanged(object sender, EventArgs e)

{

// Cyan

myPen.Color = rdoCyan.BackColor;

}

private void rdoRed_CheckedChanged(object sender, EventArgs e)

{

// Red

myPen.Color = rdoRed.BackColor;

}

private void rdoMagenta_CheckedChanged(object sender, EventArgs e)

{

// Magenta

myPen.Color = rdoMagenta.BackColor;

}

private void rdoYellow_CheckedChanged(object sender, EventArgs e)

{

// Yellow

myPen.Color = rdoYellow.BackColor;

}

private void rdoWhite_CheckedChanged(object sender, EventArgs e)

{

// White

myPen.Color = rdoWhite.BackColor;

}

We’ll code the two buttons before tackling the drawing process. The
btnErase button simply clears the panel. The btnErase_Click method is:

private void btnErase_Click(object sender, EventArgs e)

{

// Clear the blackboard

myGraphics.Clear(pnlBlackboard.BackColor);

}

And, the btnExit_Click method is, as always:

private void btnExit_Click(object sender, EventArgs e)

{

this.Close();

}

Image

Now, let’s code the drawing process. There are three events we look for:

• Left mouse button click - starts drawing

• Mouse moving with left mouse button pressed - continues
drawing

• Left mouse button release - stops drawing

Each of these is a separate mouse event.

The pnlBlackboard_MouseDown event is executed when the left mouse
button is clicked. When that happens, we set mousePress to true (we are
drawing) and initialize the “last point” variables, xLast and yLast. That
event method is:

private void pnlBlackboard_MouseDown(object sender, MouseEventArgs
e)

{

// Start drawing if left click

if (e.Button == MouseButtons.Left)

{

mousePress = true;

xLast = e.X;

yLast = e.Y;

}

}

The pnlBlackboard_MouseMove event is executed when the left mouse
button is being pressed (mousePress is true) and the mouse is moving over

the panel. In this event, we connect the last point (xLast, yLast) to the
current point (e.X, e.Y) using the DrawLine method with myPen. Once
done drawing, the “last point” becomes the “current point.” This code is:

private void pnlBlackboard_MouseMove(object sender, MouseEventArgs
e)

{

// Draw a line if drawing

if (mousePress)

{

myGraphics.DrawLine(myPen, xLast, yLast, e.X, e.Y);

xLast = e.X;

yLast = e.Y;

}

}

The pnlBlackboard_MouseUp event is executed when the left mouse
button is released. When that happens, we draw the last line segment and
set mousePress to false (we are done drawing). That event method is:

private void pnlBlackboard_MouseUp(object sender, MouseEventArgs e)

{

// Finish line

if (e.Button == MouseButtons.Left)

{

myGraphics.DrawLine(myPen, xLast, yLast, e.X, e.Y);

mousePress = false;

}

}

We’re almost done. A last step is to dispose of our graphics and pen objects
in the Form1_FormClosing event:

private void Form1_FormClosing(object sender, FormClosingEventArgs e)

{

myGraphics.Dispose();

myPen.Dispose();

}

Save the project by clicking the Save All button in the toolbar.

Image

Run the Project

Run the project. See how the radio button BackColor property is used to
display colors? If the color choice areas are not very wide, make sure you
set the Text property of each radio button to some blank space. Choose a
color. Draw a line in the panel control. Try other colors. Draw something.
Here’s my attempt at art (a self-portrait):

Image

I’ve had students draw perfect pictures of Fred Flintstone and Homer
Simpson using this program. Make sure each color works. Make sure Erase
works. Make sure Exit works. As always, thoroughly test your project.
Save it if you had to make any changes while running it.

Do you see how simple the drawing part of this program is? Most of the
code is used just to set and select colors. The actual drawing portion of the
code (MouseDown, MouseMove, MouseUp events) is only a few lines of
C#! This shows two things: (1) those drawing programs you use are really
not that hard to build and (2) there is a lot of power in the Visual C#
graphics methods.

Image

Other Things to Try

Image

The Blackboard Fun project offers lots of opportunity for improvement
with added options. Have an option to set the pen Width property. This way
you can draw with very skinny lines or very fat lines. Use a numeric
updown control to set the value.

Add the ability to change the background color of the blackboard.
Determine and build logic that allows drawing different colored lines
depending on whether you press the left or right mouse button. For this, I’d
suggest creating a left pen and a right pen. You will also need some way for
the user to choose colors for each pen. Then, apply the appropriate pen in
the various mouse events depending on what button is pressed.

See if you can figure out ways to get special effects. Here’s one possibility
to try. Delete (or ‘comment out’) these lines in the
pnlBlackboard_MouseMove event:

xLast = e.X;

yLast = e.Y;

By doing this, the first point clicked (in the MouseDown event) is always
the last point and all line drawing originates from this original point. Now,
run the project again. Notice the “fanning” effect. Pretty, huh? Play around
and see what other effects (change colors randomly, change pen width
randomly). Have fun!

There is one effect of the Blackboard Fun project that is annoying. You
may have discovered it. You may not have. In the upper right corner of the
form is a small button with an “underscore” called the minimize button:

Image

When you click this button, your application window disappears (is
minimized) and is moved to the Windows task bar at the bottom of the
screen. When you click your application name in the task bar, it will return
to the screen. Go ahead and try it. Run the project and draw a few lines.
Don’t draw anything too elaborate – you’ll soon find out why. Minimize
your application, then restore your application by clicking the appropriate
button in the Windows task bar. Where did your lines go?

Why did the lines disappear when the project went away for a bit? Visual
C# graphics objects have no memory. They only display what has been last
drawn on them. If you reduce your form to an icon on the task bar and
restore it (as we just did), the graphics object cannot remember what was
displayed previously – it will be cleared. Similarly, if you switch from an
active Visual C# application to some other application, your Visual C#
form may become partially or fully obscured. When you return to your
Visual C# application, the obscured part of any graphics object will be
erased. Again, there is no memory. Notice in both these cases, however, all
controls are automatically restored to the form. Your application remembers
these, fortunately! The controls are persistent. We also want persistent
graphics.

The topic of persistent graphics is beyond the scope of this course. To
eliminate this annoyance in the blackboard project, however, we will show
you coding changes needed to add persistence. Only a few lines need to be
changed. Make the changes if you like. In each case, the modified and/or
new code is shown as shaded in gray. The idea is that we create a type of
graphics object with memory (maintained in the BackgroundImage
property of the panel control). The new Form1_Load method to do this is:

private void Form1_Load(object sender, EventArgs e)

{

// Create graphics and pen objects

pnlBlackboard.BackgroundImage = new Bitmap(pnlBlackboard.Width,
pnlBlackboard.Height,
System.Drawing.Imaging.PixelFormat.Format24bppRgb);

myGraphics =

Graphics.FromImage(pnlBlackboard.BackgroundImage);

myPen = new Pen(Color.Gray, 1);

// Initialize the eight radio button colors

rdoGray.BackColor = Color.Gray;

rdoBlue.BackColor = Color.Blue;

rdoGreen.BackColor = Color.LightGreen;

rdoCyan.BackColor = Color.Cyan;

rdoRed.BackColor = Color.Red;

rdoMagenta.BackColor = Color.Magenta;

rdoYellow.BackColor = Color.Yellow;

rdoWhite.BackColor = Color.White;

// Set initial color

rdoGray.Checked = true;

mousePress = false;

}

We also need to add a single line (shaded) to the
pnlBlackboard_MouseMove event, pnlBlackboard_MouseDown event and
btnErase_Click event. This line refreshes the added memory after each
graphics method. The modified event methods are:

private void pnlBlackboard_MouseMove(object sender, MouseEventArgs
e)

{

// Draw a line if drawing

if (mousePress)

{

myGraphics.DrawLine(myPen, xLast, yLast, e.X, e.Y);

pnlBlackboard.Refresh();

xLast = e.X;

yLast = e.Y;

}

}

private void pnlBlackboard_MouseUp(object sender, MouseEventArgs e)

{

// Finish line

if (e.Button == MouseButtons.Left)

{

myGraphics.DrawLine(myPen, xLast, yLast, e.X, e.Y);

pnlBlackboard.Refresh();

mousePress = false;

}

}

private void btnErase_Click(object sender, EventArgs e)

{

// Clear the blackboard

myGraphics.Clear(pnlBlackboard.BackColor);

pnlBlackboard.Refresh();

}

Try running the project again. You should now be able to minimize the
project window without fear of losing your lovely work of art!

Image

Summary

You’ve now had your first experience with graphics programming in Visual
C# using the DrawLine method. You learned about the versatility of the
panel control. You learned about three important control events to help in
drawing: MouseDown, MouseMove, and MouseUp. And, you learned a lot
about colors. In the next class, we’ll continue looking at using graphics in
projects. And, we’ll look at some ways to design computer games.

9

Picture Boxes, Arrays

Review and Preview
In the last class, we introduced the panel control and ways to draw colored
lines in a Visual C# project. We continue looking at graphics in this class.
The picture box control is studied.

In particular, we use that control to display graphics files – photos, drawing,
pictures. In our C# lesson, we look at a new way to declare variables and
ways to count and loop. And, as a project, we build a version of the card
game War.

Picture Box Control
Many times in projects, you want to display pictures or drawings saved

as a graphics file on your computer. Maybe you have a little kid’s program
where if you type an A, an apple appears, B, a ball, and so on. Maybe you
want to show a map of the United States (or some other country) for a
geography lesson. Maybe you want to see some of the photos you took
using a digital camera. The picture box is the control for that use. The
picture box is selected from the toolbox. It appears as:

In Toolbox:

On Form (default properties):

Properties
The picture box control properties are:

Property Description
Name Name used to identify picture box control.

Three letter prefix for picture box names is
pic.

Image Establishes the graphics file to display in the
picture box.

SizeMode Indicates how the image is displayed.
BorderStyle Determines type of picture box border.
Left Distance from left side of form to left side of

picture box (X in properties window, expand
Position property).

Top Distance from top side of form to top side of
picture box (Y in properties window, expand
Position property).

Width Width of the picture box in pixels (expand Size
property).

Height Height of picture box in pixels (expand Size
property).

Enabled Determines whether picture box can respond
to user events (in run mode).

Visible Determines whether the picture box appears on
the form (in run mode).

The Image property is used to select the graphic file to display in the
picture box and the SizeMode property affects how the file is displayed.
Let’s look at both properties.

Image Property
The picture box Image property specifies the graphics file to display. To

set the Image property at design time, simply display the Properties
window for the picture box control and select the Image property. An
ellipsis (…) will appear. Click the ellipsis and a Select Resource window
will appear. Select Import and an Open File dialog box will appear. Use
that box to locate the graphics file to display. The picture box can display

pictures stored in several different graphics formats. The formats we study
are:

Bitmap A bitmap is an image represented by pixels (screen
dots) and stored as a collection of bits in which each
bit corresponds to one pixel. It usually has a bmp
extension. You can also display icon files (ico
extension) since they are essentially bitmap files.

GIF A GIF (Graphic Interchange Format, pronounce ‘jif’
like the peanut butter) file is a compressed bitmap
format originally developed by the Internet provider
CompuServe. Most graphics you see on the Internet
are GIF files. A GIF file has a gif extension.

JPEG A JPEG (Joint Photographic Experts Group,
pronounced ‘jay-peg’) file is a compressed bitmap
format that is popular on the Internet and is the
format usually used to store digital photographs. A
JPEG file has a jpg extension.

These are standard graphics file types and there are other types that can be
displayed. There are many programs (Paint Shop Pro by JASC, Eden
Prairie, Minnesota is a good one) available that will convert a file from one
type to another that you may find useful.

A good place to find sample bitmap and GIF files is on the Internet. To
save a displayed Internet graphic as a file, right-click the graphic and
choose the Save Picture As option (make sure it has a bmp or gif
extension). If you have a digital camera, you probably have hundreds of
JPEG files.

In the \VCSKids\VCSK Projects\Graphics folder, we have included
one file of each type for use with our examples:

ball.bmp Bitmap picture of a ball
kidware.gif GIF file with the logo our company (KIDware)

uses on its website

mexico.jpg Digital picture from a Mexican vacation

Example
Start Visual C# and start a new project. Place a picture box control on

the form. Make it fairly large. Click the Image property and the ellipsis (...)
button that appears. A Select Resource window will appear. Make sure the
Project resource file radio button is selected and click the button marked
Import and a file open window will appear. Move (as shown) to the
\VCSKids\VCSK Projects\Graphics folder and you will see our sample
files listed:

Note six file types are displayed including bitmaps, gifs, and jpegs. Other
file types include metafiles (wmf extensions) and portable network graphics
(png extension) – you might like to learn about these other file types on
your own. One type not displayed is icon files (ico extension). To see these
files, which will display just fine, you need to click Files of type and
choose All Files.

Choose the ball bitmap file and click Open. You will be returned to the
Select Resource window and it should look like this:

Click the OK button.

On your form, you should see something like this (depending on the
size of your picture box):

The image is in the upper left hand corner of the picture box. It appears in
full-size.

Return to the properties window and choose the kidware logo gif file
for the picture box Image property (following the same procedure using the
Select Resource window):

In this example, the picture box is shorter than the graphic, so the picture is
vertically “cropped.” It is located in the upper left hand corner and appears
in full-size. If the picture is cropped in your example too, you can resize the
picture box control to see the entire graphic.

Lastly, load and view the mexico JPEG file:

There’s not much to see here. The picture box is smaller than the photo, so
only the sky is seen. The picture appears in full-size and is seriously
cropped.

We see that the bitmap file seems to display satisfactorily. The GIF and
JPEG files had cropping problems though. The SizeMode property of the
picture box control gives us some control on how we want a graphic to
display. This will help us solve some of the problems we’ve seen. We look
at that property next, but first a quick look at how to remove a graphic from
a picture box.

There are times you may want to delete the graphic displayed in a
picture box. To do this, click Image in the properties window. In the right
side of the window will be the current file (with a very tiny copy of the
graphic). Select this information (double-click to highlight it) and press the
keyboard Del key. The displayed picture will vanish and the property will
read (None).

SizeMode Property
The SizeMode property dictates how a particular image will be

displayed in a picture box. There are five possible values for this property:
Normal, CenterImage, StretchImage, AutoSize, Zoom. The effect of
each value is:

SizeMode Effect
Normal Image appears in original size. If picture box is

larger than image, there will be blank space. If

picture box is smaller than image, the image
will be cropped.

CenterImage Image appears in original size, centered in
picture box. If picture box is larger than image,
there will be blank space. If picture box is
smaller than image, image is cropped.

StretchImage Image will ‘fill’ picture box. If image is
smaller than picture box, it will expand. If
image is larger than picture box, it will scale
down. Bitmap files do not scale nicely. JPEG
and GIF files do scale nicely.

AutoSize Reverse of StretchImage - picture box will
change its dimensions to match the original
size of the image. Be forewarned – some files
are very large!

Zoom Similar to StretchImage. The image will adjust
to fit within the picture box, however its actual
height to width ratio is maintained.

In the previous example, the SizeMode property had its default value of
Normal, so all the images appeared in their original size. In the case of the
bitmap file, there was lots of blank space. With the GIF and JPEG files,
there was cropping. Similar results would have been seen with the
SizeMode property changed to CenterImage. The most useful (in my
opinion) of the SizeMode property choices is StretchImage. With this
property, the image always fills the space you give it.

Example
Continue the previous project. Change the SizeMode property of the

picture box control to CenterImage. Reload each of the three sample
graphics files. Note when you click the ellipsis next to Image in the picture
box properties window, the Select Resources window will appear as:

Since each graphic already appears in the Select Resource window (these
graphics have become part of the project), there is no need to reload the
actual graphics files. You can choose the Image property directly from this
window. The process is – select the desired graphic (resource) and click
OK.

With the CenterImage SizeMode property, note the difference in how
the files are displayed. In particular, the GIF and JPEG files are still
cropped, but now they’re centered in the control. For example, here is the
kidware logo graphic with the image centered:

Change the SizeMode to StretchImage. Reload each of the sample
graphics files. Notice how the graphic takes up the entire picture box.
Here’s the mexico graphic:

Try resizing the picture box control. How do the different graphics types
resize? After resizing the picture box control, does the picture still look
recognizable? You should find that bitmaps (in most cases) scale poorly,
while GIF and JPEG graphics scale very nicely. Change the SizeMode to
Zoom. Notice the graphic displays are very similar to those seen with
StretchImage. The mexico graphic appears clearer, since the height to width
ratio are correct:

Lastly, change the SizeMode to AutoSize. Load each graphic example
and see the results. Watch out! The Mexico photo is very large. AutoSize
should only be used when you know the size of your images and you allow
for that size on your project form. If you like, try finding other graphic files
on your computer and view them in the picture box with different SizeMode
properties.

Events
The picture box control supports a few events. The important ones are:

Event Description
Click Event executed when user clicks on picture

box.
MouseDown Event executed when user presses mouse

button while cursor is over picture box.
MouseMove Event executed when user moves cursor over

picture box.
MouseUp Event executed when user releases mouse

button while cursor is over picture box.

You would use the Click event when you are choosing from a group of
picture box controls in a multiple choice environment. You would use the
mouse events when you need to know which mouse button was pressed or
released and/or where the cursor was when a mouse click, move, or release
occurred.

Typical Use of Picture Box Control

The usual design steps to use a picture box control for displaying a
graphic file are:

➢ Set the Name and SizeMode property (most often, StretchImage).
➢ Set Image property, either in design mode or at run-time.

C# - The Sixth Lesson
In this C# lesson, we look at ways to store large numbers of variables, a

technique for counting, and some code for shuffling a deck of cards (or
randomly sorting a list of numbers).

Variable Arrays
Your school principal has recognized your great C# programming skills

and has come for your help. Everyone (352 students) in the school has just
taken a C# skills test. The principal wants you to write a program that stores
each student’s name and score. The program should rank (put in order) the
scores and compute the average score. The code to do this is not that hard.
The problem we want to discuss here is how do we declare all the variables
we need? To write this test score program, you need 352 string variables to
store student names and 352 int variables to store student scores. We are
required to declare every variable we use. Do you want to type 704 lines of
code something like this?:

string student1;
string student2;
string student3;

.

.
string student352;
int score1;
int score2;
int score3;

.

.
int score352;

I don’t think so.

C# provides a way to store a large number of variables under the same
name - variable arrays. Each variable in an array, called an element, must
have the same data type, and they are distinguished from each other by an
array index. A variable array is declared in a way similar to other variables.
To indicate the variable is an array, you use two square brackets ([]) after
the type. Square brackets are used a lot with arrays. At the same time you
declare an array, it is good practice to create it using the new keyword. For
352 student names and 352 student scores, we declare and create the needed
arrays using:

string[] student = new string[352];
int[] score = new int[352];

The number in brackets is called the array dimension. These two lines have
the same effect as the 704 declaration lines we might have had to write!
And, notice how easy it would be to add 200 more variables if we needed
them. You can also declare and create an array in two separate statements if
you prefer. For the student name array, that code would be:

string[] student; // the declaration;
student = new string[352]; // the creation

We now have 352 student variables (string type) and 352 score
variables (int type) available for our use. A very important concept to be
aware of is that C# uses what are called zero-based arrays. This means
array indices begin with 0 and end at the dimension value minus 1, in this
case 351. Each variable in an array is referred to by its declared name and
index. The first student name in the array would be student[0] and the last
name would be student[351], not student[352]. If you try to refer to
student[352], you will get a run-time error saying an array value is out of
bounds. This is a common mistake! When working with arrays in C#,
always be aware they are zero-based.

As an example of using an array, to assign information to the student
with index of 150 (actually, the 151st student in the array because of the
zero base), we could write two lines of code like this:

student[150] = “Billy Gates”;
score[150] = 100;

Array variables can be used anywhere regular variables are used. They can
be used on the left side of assignment statements or in expressions. To add
up the first three test scores, you would write:

sum = score[0] + score[1] + score[2];

Again, notice the first score in the array is score[0], not score[1]. I know
this is confusing, but it’s something you need to remember. We still need to
provide values for each element in each array, but there are also some
shortcuts we can take to avoid lots of assignment statements. One such
shortcut, the for loop, is examined next. You will find variable arrays are
very useful when working with large numbers (and sometimes, not so large
numbers) of similar variables.

C# for Loops

A common computer programming task is counting. We might like to
execute some C# code segment a particular number of times - we would
need to count how many times we executed the code. In the school score
example from above, we need to go through all 352 scores to compute an
average. C# offers a convenient way to do counting: the for loop.

The C# for loop has this unique structure:

for (initialization; expression; update)
{

[C# code block to execute]
}

After the word for are three parts separated by semicolons: initialization,
expression, and update. The first, initialization, is a step executed once
and is used to initialize a counter variable (usually an int type). A very
common initialization would start a counter i at zero:

i = 0

The second part, expression, is a step executed before each iteration
(repetition) of the code in the loop. If expression is true, the code is

executed; if false, program execution continues at the line following the end
of the for loop. A common expression would be:

i < iMax

The final part, update, is a step executed after each iteration of the code in
the loop; it is used to update the value of the counter variable. A common
update would be:

i = i + 1

Using these example steps, a for loop appears as:

for (i = 0; i < iMax; i = i +1)
{

[C# code block to execute]
}

In this example, the counter i is initialized at 0 and is then incremented
(changed) by 1 each time the program executes the loop. For each execution
of the loop, any code between the two curly braces is repeated. The loop is
repeated as long as i remains smaller than iMax. When the loop is
completed, program execution continues after the closing brace. To leave
the loop before completion, you can use the break statement introduced
with the switch structure.

A few examples should clear things up. Assume we want to set the
value of 10 elements of some array, myArray[10], to 0. The for loop that
would accomplish this task is:

For (i = 0; i < 10; i = i + 1)
{

myArray[i] = 0;
}

In this loop, the counter variable i (declared to be an int variable prior to
this statement) is initialized at 0. With each iteration, i is incremented by
one. The loop is repeated as long as i remains smaller than 10 (remember
myArray[9] is the last element of the array).

How about a rocket launch countdown? This loop will do the job:

For (i = 10; i <= 0; i = i - 1)
{

[C# code block for the countdown]
}

Here i starts at 10 and goes down by 1 (i = i -1) each time the loop is
repeated. Yes, you can decrease the counter. And, you can have counter
increments that are not 1. This loop counts from 0 to 200 by 5’s:

For (i = 0; i <= 200; i = i + 5)
{

[C# code block to execute]
}

In each of these examples, it is assumed that i has been declared prior to
these loops.

How about averaging the scores from our student example. This code
will do the job:

scoreSum = 0;
for (studentNumber = 0; studentNumber < 352; studentNumber =
studentNumber + 1)
{

scoreSum = scoreSum + score[StudentNumber];
}
average = scoreSum / 300;

(Again, it is assumed that all variables have been declared to have the
proper type). To find an average of a group of numbers, you add up all the
numbers then divide by the number of numbers you have. In this code,
scoreSum represents the sum of all the numbers. We set this to zero to start.
Then, each time through the loop, we add the next score to that “running“
sum. The loop adds up all 352 scores making use of the score array. The
first time through it adds in score[0], then score[1], then score[2], and so on,
until it finishes by adding in score[351]. Once done, the average is
computed by dividing scoreSum by 352. Do you see how the for loop
greatly simplifies the task of adding up 352 numbers? This is one of the
shortcut methods we can use when working with arrays. Study each of these
examples so you have an idea of how the for loop works. Use them when
you need to count.

Before leaving the for loop, let’s look at one more thing. A very
common update to a counter variable is to add one (increment) or subtract
one (decrement). C# has special increment and decrement operators that do
just that. To add one to a variable named counterVariable, you can simply
write:

counterVariable++;

This statement is equivalent to:

counterVariable = counterVariable + 1;

Similarly, the decrement operator:

counterVariable--;

Is equivalent to:

counterVariable = counterVariable – 1;

The increment and decrement operators are not limited to for loops. They
can be used anywhere they are needed in a C# program.

Block Level Variables
Let’s address another issue. Notice, at a minimum, the for loop requires

the declaration of one variable, the loop counter, usually an int type
variable. This variable is only used in the code block associated with this
loop - it’s value is usually of no use anywhere else. When we declare a
variable in the general declarations area of the code window, as we have
been doing, its value is available to all event methods. We say such
variables have form level scope. Such declarations are not necessary with
for loop counters and it becomes a headache if you have lots of for loops.
Loop counters can be declared in the initialization part of the for statement.
We give these variables block level scope - their value is only known
within that loop’s code block.

As an example of declaring block level variables, look at a modification
to the student average example:

scoreSum = 0;
for (int studentNumber = 0; studentNumber < 352; studentNumber++)
{

scoreSum = scoreSum + score[StudentNumber];
}
average = scoreSum / 300;

Notice how the counter (studentNumber) is declared and initialized, all in
one step, in the for statement. This is perfectly acceptable in C# - whenever,
you declare a variable, you can also assign an initial value. Once the for
loop is complete, the value of studentNumber is no longer known or
available. As you write C# code, you will often give your loop variables
such block level scope. Also, notice how we’ve modified this example to
include the increment operator (++).

Method Level Variables

In addition to block level and form level variables, there is one other
level of variable scope we can use – method level variables. If a variable
only has used within a particular method, there is no need to declare it in
the general declarations area. Variables with method level scope are
declared immediately following the opening curly brace for a method.

As an example of declaring method level variables, assume we have a
button control (named btnAverage) on a form that computes the student
average score in our example. The btnAverage_Click method procedure
would look like this:

private void btnAverage_Click(object sender, EventArgs e)
{

int scoreSum;
scoreSum = 0;
for (int studentNumber = 0; studentNumber < 352;

studentNumber++)
{

scoreSum = scoreSum + score[StudentNumber];
}
average = scoreSum / 300;

}

In this example, scoreSum is only used and needed in this method, hence is
declared as a method level variable. The variable average should be
declared in the general declarations area so it has form level scope and is
available everywhere in your project. As you write C# code, decide whether
you want your variables to have block level, method level or form level
scope and declare them in the proper area in the code window.

Shuffle Routine

Let’s use our new knowledge of arrays and for loops to write a very
useful method. A common task in any computer program is to randomly
sort a list of consecutive integer values. Why would you want to do this?
Say you have four answers in a multiple choice quiz. Randomly sort the
integers 1, 2, 3, and 4, so the answers are presented in random order. Or,
you have a quiz with 30 questions. Randomly sort the questions for printing
out as a worksheet. Or, the classic application is shuffling a deck of
standard playing cards (there are 52 cards in such a deck). In that case, you
can randomly sort the integers from 0 to 51 to “simulate” the shuffling
process. Let’s build a “shuffle” routine. We call it a shuffle routine,
recognizing it can do more than shuffle a card deck. Our routine will sort
any number of consecutive integers.

Usually when we need a computer version of something we can do
without a computer, it is fairly easy to write down the steps taken and
duplicate them in C# code. We’ve done that with the projects built so far in
this course. Other times, the computer version of a process is easy to do on
a computer, but hard or tedious to do off the computer. When we shuffle a
deck of cards, we separate the deck in two parts, then interleaf the cards as
we fan each part. I don’t know how you could write C# code to do this.
There is a way, however, to write C# code to do a shuffle in a more tedious
way (tedious to a human, easy for a computer).

We will perform what could be called a “one card shuffle.” In a one card
shuffle, you pull a single card (at random) out of the deck and lay it aside
on a pile. Repeat this 52 times and the cards are shuffled. Try it! I think you
see this idea is simple, but doing a one card shuffle with a real deck of cards
would be awfully time-consuming. We’ll use the idea of a one card shuffle
here, with a slight twist. Rather than lay the selected card on a pile, we will
swap it with the bottom card in the stack of cards remaining to be shuffled.
This takes the selected card out of the deck and replaces it with the
remaining bottom card. The result is the same as if we lay it aside.

Here’s how the shuffle works with n numbers:

• Start with a list of n consecutive integers.
• Randomly pick one item from the list. Swap that item with the last

item. You now have one fewer items in the list to be sorted (called the
remaining list), or n is now n - 1.

• Randomly pick one item from the remaining list. Swap it with the item
on the bottom of the remaining list. Again, your remaining list now
has one fewer items.

• Repeatedly remove one item from the remaining list and swap it with
the item on the bottom of the remaining list until you have run out of
items. When done, the list will have been replaced with the original
list in random order.

Confusing? Let’s show a simple example with n = 5 (a very small deck of
cards).

The starting list is (with 5 remaining items):

We want to pick one item, at random, from this list. Using the C# random
number generator, we would choose a random number from 1 to 5. Say it
was 3. We take the third item in the list (the 3) and swap it with the last item
in the list (the 5). We now have:

There are 4 items in the remaining list. Pick a random number from 1 to 4 -
say it’s 4. The fourth item in the remaining list is 4. Swap it with the last
item in the remaining list. Wait a minute! The last item in the remaining list
is the 4. In this case, we swap it with itself, or it stays put. If the random
number was something other than 4, there really would have been a swap
here. We now have:

There are 3 items in the remaining list. Pick a random number from 1 to 3 -
say it’s 1. The first item in the list is 1. Swap the 1 with the last item in the
remaining list (the 5), giving us:

There are 2 items in the remaining list. Pick a random number from 1 to 2 -
say it’s 1. The first item in the list is 5. Swap the 5 with the last item in the
remaining list (the 2), giving us the final result, the numbers 1 to 5
randomly sorted:

Pretty neat how this works, huh?

We want to describe the one card shuffle with C# code. Most of the
code is straightforward. The only question is how to do the swap involved
in each step. This swap is easy on paper. How do we do a swap in C#?
Actually, this is a common C# task and is relatively simple. At first thought,
to swap variable aVariable with variable bVariable, you might write:

aVariable = bVariable;
bVariable = aVariable;

The problem with this code is that when you replace aVariable with
bVariable in the first statement, you have destroyed the original value of
aVariable. The second statement just puts the newly assigned aVariable
value (bVariable) back in bVariable. Both aVariable and bVariable now have
the original bVariable value! Actually, swapping two variables is a three
step process. First, put aVariable in a temporary storage variable (make it
the same type as aVariable and bVariable). Then, replace aVariable by
bVariable. Then, replace bVariable by the temporary variable (which holds
the original aVariable value). If tVariable is the temporary variable, a swap
of aVariable and bVariable is done using:

tVariable = aVariable;
aVariable = bVariable;
bVariable = tVariable;

You use swaps like this in all kinds of C# applications.

Now, we’ll see the C# code that uses a one card shuffle to randomly sort
N consecutive integer values. When done the random list of integers is in
the array numberList, which should be declared in the general declarations
area of your project with the proper dimension. Also declare the variable,
numberOfItems, which is the length of the list. For a deck of cards, these
declarations would be:

int[] numberList = new int[52];
int numberOfItems;

You need to make sure to assign a value (52) to numberOfItems
somewhere, most likely in the form Load procedure. We need a random
number object (myRandom) with method level scope to do all the random
number generation. And four variables will have block level scope within
the particular for loops implementing the shuffle:

loopCounter - integer loop counter variable
remaining - integer loop variable giving number of items in remaining list
itemPicked - integer variable giving item picked in remaining list
tempValue - temporary integer variable used for swapping

One note – recall arrays in C# are zero-based. In this code, if you ask it
to shuffle n consecutive integers, the indices on the returned array range
from 0 to n – 1 and the randomized integers will also range from 0 to n – 1,
not 1 to n. If you need integers from 1 to n, just simply add 1 to each value
in the returned array! The code is:

// Variable declarations (put at top of method)
Random myRandom = new Random();

// One card shuffle code
// initialize NumberList
for (int loopCounter = 0; loopCounter < numberOfItems;
loopCounter++)
{

numberList[loopCounter] = loopCounter;
}
// Work through remaining values
// Start at numberOfItems and swap one value
// at each for loop step
// After each step, remaining is decreased by 1
for (int remaining = numberOfItems; remaining >= 1; remaining--)
{

// Pick item at random
int itemPicked = myRandom.Next(remaining);
// Swap picked item with bottom item
int tempValue = numberList[itemPicked];
numberList[itemPicked] = numberList[remaining - 1];

numberList[remaining - 1] = tempValue;
}

Study this code and see how it implements the procedure followed in the
simple five number example. It’s not that hard to see. Understanding how
such code works is a first step to becoming a good C# programmer. Notice
this bit of code uses everything we talked about in this class’ C# lesson:
arrays, for loops, and block and method level variables.

Project - Card Wars

In this project, we create a simplified version of the kid’s card game -
War. You play against the computer. You each get half a deck of cards (26
cards). Each player turns over one card at a time. The one with the higher
card wins the other player’s card. The one with the most cards at the end
wins. Obviously, the shuffle routine will come in handy here. We call this
project Card Wars! This project is saved as CardWars in the projects folder
(\VCSKids\VCSK Projects).

Project Design
We will use a panel control to represent the outline of each player’s

card. A label control will show the card’s value and a picture box control
will display the card’s suit (hearts, diamonds, clubs, spades). A button will
control starting a new game or drawing a new card, depending on game
state. Another button will control stopping the game, if playing, or stopping
the program, if not playing. The current score (number of cards each player
has) will be displayed in a labeled text box control.

Place Controls on Form
Start a new project in Visual C#. Place two panel controls on the form.

Size them to represent the two displayed cards. Place a label and picture
box control in each panel. Add two buttons to the form. Add two labels and

two text boxes that will be used for the scoring system. Add a large text box
to tell us when the game is over. And, add four more picture boxes that will
be used to hold the images for each card suit. When done, my form looks
like this:

Set Control Properties
Set the control properties using the properties window:

Form1 Form:
Property Name Property Value

Text Card Wars
FormBorderStyle Fixed Single
StartPosition CenterScreen

panel1 Panel:
Property Name Property Value

Name pnlPlayer
BackColor White

BorderStyle FixedSingle

panel2Panel:
Property Name Property Value

Name pnlComputer
BackColor White
BorderStyle FixedSingle

picture Box1 Picture Box:
Property Name Property Value

Name picPlayer
SizeMode StretchImage

picture Box2 Picture Box:
Property Name Property Value

Name picComputer
SizeMode StretchImage

pictureBox3 Picture Box:
Property Name Property Value

Name picHeart
Image Heart.ico (in \VCSKids\VCSK

Projects\CardWars folder)
SizeMode AutoSize
Visible False

pictureBox4 Picture Box:
Property Name Property Value

Name picDiamond
Image Diamond.ico (in

\VCSKids\VCSKProjects\CardWars folder)
SizeMode AutoSize

Visible False

pictureBox5 Picture Box:
Property Name Property Value

Name picClub
Image Club.ico (in \VCSKids\VCSK Projects\CardWars

folder)
SizeMode AutoSize
Visible False

pictureBox6 Picture Box:
Property Name Property Value

Name picSpade
Image Spade.ico (in \VCSKids\VCSK

Projects\CardWars folder)
SizeMode AutoSize
Visible False

The Visible properties for these four picture box controls (picHeart,
picDiamond, picClub, picSpade) are purposely False. We don’t want them
to show up on the form in run mode - we just want to use their stored
picture for our card displays. This is done a lot in Visual C#. When setting
the Image property, in the Open File Dialog, you will need to make sure
you view All Files and not just the Image Files. Icon files will not appear
unless you make this change.

label1 Label:
Property Name Property Value

Name lblYou
Text You
Font Size 10

textBox1 Text Box:
Property Name Property Value

Name txtYouScore
Text 0
Font Size 12
Font Style Bold
ReadOnly True
TextAlign Center
BackColor White

label2 Label:
Property Name Property Value

Name lblComp
Text Computer
Font Size 10

textBox2 Text Box:
Property Name Property Value

Name txtCompScore
Text 0
Font Size 12
Font Style Bold
ReadOnly True
TextAlign Center
BackColor White

label3 Label:
Property Name Property Value

Name lblPlayer
Text [Blank]
Font Size 18

Font Style Bold
TextAlign MiddleCenter

label4 Label:
Property Name Property Value

Name lblComputer
Text [Blank]
Font Size 18
Font Style Bold
TextAlign MiddleCenter

textBox3 Text Box:
Property Name Property Value

Name txtOver
Text Game Over
Font Size 14
Font Style Bold
ReadOnly True
TextAlign Center
BackColor White
ForeColor Red

button1 Button:
Property Name Property Value

Name btnNew
Text New Game

button2 Button:
Property Name Property Value

Name btnExit
Text Exit

When done, my form looks like this:

Write Event methods
The idea of this game is quite simple. You click the New Game button

to start. This shuffles the cards, resets the scores to zero and changes the
button’s Text to Next Card. It also changes the Exit button Text to Stop

(for stopping the current game). A card for you (upper card) and a card for
the computer (lower card) are displayed. The computer decides which card
is higher. The player with the higher card gets two points. If it’s a tie, each
player gets one point. Scores are displayed under You (txtYouScore has
your score) and Computer (txtCompScore has computer’s score). Click
Next Card. A new card is displayed for each player and the scores updated.
Continue clicking Next Card until the game is over (each player has shown
26 cards). At that point, the ‘Game Over’ message is displayed and the
button captions are reset to their original values. By checking the score, a
winner can be determined. You can stop the game early by clicking Stop.
There are only two event methods - one for btnNew_Click and one for
btnExit_Click. Before looking at these events, let’s look at needed
variables.

We only need two variables (well, really 53, but, arrays help out) for
this project. The first is an integer array (cardNumber) that has the 52
shuffled numbers representing each card in the deck. The first half
(cardNumber[0] – cardNumber[25]) will be your cards while the second
half (cardNumber[26] – cardNumber[51]) will be the computer’s. The
second variable is cardIndex, an integer indicating which card to display.
Open the code window and declare these variables in the general
declarations area:

int [] cardNumber = new int[52];
int cardIndex;

Now, let’s outline the steps involved in the btnNew_Click event. First,
we are letting this command button have two purposes. It either starts a new
game (Text is New Game) and or gets a new card (Text is Next Card). So,
the Click event has two segments. If Text is New Game, the steps are:

• Hide ‘Game Over’ notice
• Set btnNew Text to “Next Card”
• Set btnExit Text to “Stop”
• Set scores to zero
• Shuffle cards

• Initialize cardIndex to zero
• Display first card for each player
• Compare cards - update score

If Text is Next Card, the steps are:

• Display two new cards
• Compare displayed cards - update scores
• Increment CardIndex
• If there are no cards left, stop game - display ‘Game Over’ message,

change button captions. Otherwise, wait for click on Next Card
button.

Most of these steps are easily done now that we know how to shuffle a deck
of cards. The only tough part is deciding how to display and compare cards.
Let’s look at that in some detail.

Displaying a card consists of answering two questions: what is the card
suit and what is the card value? The four suits are hearts, diamonds, clubs,
and spades. The thirteen card values, from lowest to highest, are: 2, 3, 4, 5,
6, 7, 8, 9, 10, Jack (J), Queen (Q), King (K), Ace (A). We’ve seen in our
shuffle routine that a card number will range from 0 to 51. How do we
translate that card number to a card suit and value? (Notice the distinction
between card number and card value - card number ranges from 0 to 51,
card value can only range from 2 to Ace.) We need to develop some type of
translation rule. This is done all the time in C#. If the number you compute
with or work with does not directly translate to information you need, you
need to make up rules to do the translation. For example, the numbers 1 to
12 are used to represent the months of the year. But, these numbers tell us
nothing about the names of the month. We need a rule to translate each
number to a month name.

We know we need 13 of each card suit. Hence, an easy rule to decide
suit is: cards numbered 0 - 12 are hearts, cards numbered 13 - 25 are
diamonds, cards numbered 26 - 38 are clubs, and cards numbered 39 - 51
are spades. Suit is represented on the displayed card by the two picture

boxes: picPlayer (your card) and picComputer (computer’s card). For card
values, lower numbers should represent lower cards. A rule that does this
for each number in each card suit is:

Card Numbers

Hearts Diamonds Clubs Spades Card Value
0 13 26 39 Two
1 14 27 40 Three
2 15 28 41 Four
3 16 29 42 Five
4 17 30 43 Six
5 18 31 44 Seven
6 19 32 45 Eight
7 20 33 46 Nine
8 21 34 47 Ten
9 22 35 48 Jack
10 23 36 49 Queen
11 24 37 50 King
12 25 38 51 Ace

As examples, notice card 22 is a Jack of Diamonds. Card 30 is a 6 of Clubs.
The card values are displayed in the lblPlayer and lblComputer label
controls. We now can display cards. How do we compare them?

Card comparisons must be based on a numerical value, not displayed
card value - it’s difficult to check if K is greater than 7, though it can be
done. So, one last rule is needed to relate card value to numerical value. It’s
a simple one - start with a 2 having a numerical value of 0 (lowest) and go
up, with an Ace (A) having a numerical value of 12 (highest). This makes
numerical card comparisons easy. Notice hearts card numbers already go
from 0 to 12. If we subtract 13 from diamonds numbers, 26 from clubs
numbers, and 39 from spades numbers, each of those card numbers will
also range from 0 to 12. This gives a common basis for comparing cards.

This all may seem complicated, but look at the C# code and you’ll see it
really isn’t.

The C# code that implements the btnNew_Click event method is:

private void btnNew_Click(object sender, EventArgs e)
{

// Method level variables
Random myRandom = new Random();
int yourNumber = 0; // Your card number
int computerNumber = 0; // Computer card number
if (btnNew.Text == "New Game")
{

// New game clicked
txtOver.Visible = false;
btnNew.Text = "Next Card";
btnExit.Text = "Stop";
// Zero out scores
txtYouScore.Text = "0";
txtCompScore.Text = "0";
// Shuffle cards using one card shuffle code
// Initialize CardNumbers
for (int loopCounter = 0; loopCounter < 52; loopCounter++)
{

cardNumber[loopCounter] = loopCounter;
}
// Work through remaining values
// Start at 52 and swap one value
// at each for loop step
// After each step, remaining is decreased by 1
for (int remaining = 52; remaining >= 1; remaining--)

{
// Pick item at random
int itemPicked = myRandom.Next(remaining);
// Swap picked item with bottom item
int tempValue = cardNumber[itemPicked];
cardNumber[itemPicked] = cardNumber[remaining - 1];
cardNumber[remaining - 1] = tempValue;

}
// Set CardIndex to zero
cardIndex = 0;

}
// Display cards
// Display your card's suit
// Determine your card's number for comparisons
if (cardNumber[cardIndex] >= 0 && cardNumber[cardIndex] <=

12)
{

picPlayer.Image = picHeart.Image;
yourNumber = cardNumber[cardIndex];

}
else if (cardNumber[cardIndex] >= 13 && cardNumber[cardIndex]

<= 25)
{

picPlayer.Image = picDiamond.Image;
yourNumber = cardNumber[cardIndex] - 13;

}
else if (cardNumber[cardIndex] >= 26 && cardNumber[cardIndex]

<= 38)
{

picPlayer.Image = picClub.Image;
yourNumber = cardNumber[cardIndex] - 26;

}
else if (cardNumber[cardIndex] >= 39 && cardNumber[cardIndex]

<= 51)
{

picPlayer.Image = picSpade.Image;
yourNumber = cardNumber[cardIndex] - 39;

}
// Display your card's value
switch (yourNumber)
{

case 9:
lblPlayer.Text = "J";
break;

case 10:
lblPlayer.Text = "Q";
break;

case 11:
lblPlayer.Text = "K";
break;

case 12:
lblPlayer.Text = "A";
break;

default:
lblPlayer.Text = Convert.ToString(yourNumber + 2) + " ";
break;

}
// Display computer's card suit
// Determine computer's number for comparisons
if (cardNumber[cardIndex + 26] >= 0 && cardNumber[cardIndex +

26] <= 12)
{

picComputer.Image = picHeart.Image;
computerNumber = cardNumber[cardIndex + 26];

}
else if (cardNumber[cardIndex + 26] >= 13 &&

cardNumber[cardIndex + 26] <= 25)
{

picComputer.Image = picDiamond.Image;
computerNumber = cardNumber[cardIndex + 26] - 13;

}
else if (cardNumber[cardIndex + 26] >= 26 &&

cardNumber[cardIndex + 26] <= 38)
{

picComputer.Image = picClub.Image;
computerNumber = cardNumber[cardIndex + 26] - 26;

}
else if (cardNumber[cardIndex + 26] >= 39 &&

cardNumber[cardIndex + 26] <= 51)
{

picComputer.Image = picSpade.Image;
computerNumber = cardNumber[cardIndex + 26] - 39;

}
// Display computer card's value
switch (computerNumber)
{

case 9:
lblComputer.Text = "J";
break;

case 10:
lblComputer.Text = "Q";
break;

case 11:

lblComputer.Text = "K";
break;

case 12:
lblComputer.Text = "A";
break;

default:
lblComputer.Text =

Convert.ToString(computerNumber + 2) + " ";
break;

}
// Compare displayed cards
if (yourNumber > computerNumber)
{

// You win
txtYouScore.Text =

Convert.ToString(Convert.ToInt32(txtYouScore.Text) + 2);
}
else if (computerNumber > yourNumber)
{

// Computer win
txtCompScore.Text =

Convert.ToString(Convert.ToInt32(txtCompScore.Text) + 2);
}
else
{

// a tie!
txtYouScore.Text =

Convert.ToString(Convert.ToInt32(txtYouScore.Text) + 1);
txtCompScore.Text =

Convert.ToString(Convert.ToInt32(txtCompScore.Text) + 1);
}

cardIndex++;
// Check to see if all cards have been used
if (cardIndex > 25)
{

// Game over
txtOver.Visible = true;
btnNew.Text = "New Game";
btnExit.Text = "Exit";

}
}

You should be able to see each outlined step in this code. Notice
particularly the shuffle routine and how cardIndex is used with the
cardNumber array to display your card and the computer card. Remember
the computer card is 26 elements ahead of your card in the cardNumber
array. Look at how the card numbers are found and how comparisons are
made. Check out the tricky way scores are updated without using any
variables! Notice, too, how as your programming knowledge expands,
there’s a lot more happening in the code we write. Remember to use cut and
paste where you can - it will make your work easier.

We now need to code the btnExit_Click event. Like btnNew, It also
has two purposes. If the button Text property is Exit, the program stops. If
the Text is Stop, the current game stops. That code is pretty simple:

private void btnExit_Click(object sender, EventArgs e)
{

if (btnExit.Text == "Exit")
{

// Stop program
this.Close();

}
else

{
// Stop game
txtOver.Visible = true;
btnExit.Text = "Exit";
btnNew.Text = "New Game";

}
}

Save the project by clicking the Save All button in the toolbar.

Image

Run the Project
Run the project. Click New Game to get started. Click Next Card to

display each pair of cards. Notice how the different controls are used to
make up the cards. Make sure the program works correctly. Here’s what my
screen looks like in the middle of a game:

Image

Play through one game and check each comparison to make sure you get
the correct result and score with each new card. Make sure the Stop and
Exit buttons work properly. Go through the usual process of making sure
the program works as it should. Once you’re convinced everything is OK,
have fun playing the game. Share your creation with friends. If you made
any changes during the running process, make sure you save the project.

Other Things to Try
Possible changes to the Card Wars project are obvious, but not easy.

One change would be to have more than two players. Set up three and four
player versions. You could also add a message after each comparison to

way which player won (or whether it was a tie). You could use the txtOver
control that’s already there.

In Card Wars, we stop the game after going through the deck one time.
In the real card game of War, after the first round, the players pick up the
cards they won, shuffle them, and play another round. Every time a player
uses all the cards in their “hand,” they again pick up their winnings pile,
reshuffle and continue playing. This continues until one player has lost all
of their cards. Another change to Card Wars would be to write code that
plays the game with these rules. As we said, it’s not easy. You would need
to add code to keep track of which cards each player won, when they ran
out of cards to play, how to reshuffle their remaining cards, and new logic
to see when a game was over. Such code would use more arrays, more for
loops, and more variables. If you want a programming challenge, go for it!

And, while you’re tackling challenges, here’s another. In the usual War
game, when two cards have the same value - War is declared! This means
each player takes three cards from their “hand” and lays them face down.
Then another card is placed face up. The higher card at that time wins all 10
cards! If it’s still a tie, there’s another War. Try adding this logic to the
game. You might need to change the display to allow more cards. You’ll
need to figure out how to lay cards “face down” in C#. You’ll need to check
if a player has enough cards to wage War. Another difficult task, but give it
a try if you feel adventurous.

Image

Summary
This class presented one of the more challenging projects yet. The code

involved in shuffling cards and displaying cards, though straightforward,
was quite involved. The use of panel and picture box controls helped in the
display. The use of arrays and for loops made the coding a bit easier. If you
completely understood the Card Wars project, you are well on your way to
being a good Visual C# programmer. Now, on to the last class.

10

Timers, Animation, Keyboard Events

Image

Review and Preview

It’s the last class. By now, you should have some confidence in your
abilities as a Visual C# programmer. In this class, we’ll look at one more
control that’s a lot of fun - the timer control.

It’s a key control for adding animation (motion) to graphics in projects. We
study some animation techniques and we’ll examine how to recognize user
inputs from the keyboard via keyboard events. Then, you’ll build one last
project (at least, the last project in this class) - your first video game!

Image

Timer Control

The Visual C# timer control has an interesting feature. It is the one control
that can generate events without any input from the user. Timer controls
work in your project’s background, generating events at time intervals you
specify. This event generation feature comes in handy for graphics
animation where screen displays need to be updated at regular intervals.
The timer control is selected from the toolbox. It appears as:

In Toolbox:

Image

Below Form (default properties):

Image

There is no user interface (nothing to click or nothing to look at) for the
timer control, so it will not appear on the form. Such controls are placed in
the “tray area” below the form in the design window.

Properties

The timer control properties are:

Property Description

Name Name used to identify timer control. Three letter prefix for timer
names is tim.

Interval Number of milliseconds between timer events. There are 1000
milliseconds in one second.

Enabled Used to turn timer control on and off. When True, timer continues
to generate events until set to False.

Events

The timer control has a single event:

Event Description

Tick Event method executed every Interval milliseconds when timer
control Enabled property is True.

Examples

A few examples should clarify how the timer control works. It’s very
simple and very powerful. Here’s what happens. If a timer control’s
Enabled property is True (the timer is on), every Interval milliseconds,
Visual C# will generate an event and execute the corresponding Tick event
method. No user interaction is needed. If your timer is named timExample,
the Timer event method has the form:

private void timExample_Tick(object sender, EventArgs e)

{

[C# code to be executed every Interval milliseconds]

}

Whatever C# code you want to execute is put in this method.

The Interval property is the most important timer control property. This
property is set to the number of milliseconds between timer events. A
millisecond is 1/1000th of a second, or there are 1,000 milliseconds in a
second. If you want to generate N events per second, set Interval to 1000 /
N. For example, if you want a timer event to occur 4 times per second, set
Interval to 250. About the lowest practical value for Interval is 50 and
values that differ by 5, 10, or even 20 are likely to produce similar results.
It all depends on your particular computer.

The only other property to worry about is the Enabled property. It is used to
turn the timer on (true) or off (false). In design mode, the timer control
Enabled property is given a default value of False. We will always leave
this at False. It is good programming practice to control timers
programmatically. This simply means turn your timers on and off in C#
code. It’s a matter of changing the Enabled property. And, always make
sure if you turn a timer on that you turn it off when you need to. Now, the
first example.

Start Visual C# and start a new project. Add a timer control (it will appear
below the form) and button to the form. In this example, we will use the
timer control to make your computer beep every second. The button will
turn the timer on and off. Set the timer control (timer1 default name)
Interval property to 1000 (1000 milliseconds equals one second). Put this
code in the timer1_Tick event method (it will be one of the few events
listed for the timer control in the code window):

private void timer1_Tick(object sender, EventArgs e)

{

System.Media.SystemSounds.Beep.Play();

}

Beep is the C# function that makes the computer beep, or is that obvious?

Put this code in the button (default name Button1) Button1_Click event
method:

private void button1_Click(object sender, EventArgs e)

{

if (timer1.Enabled)

{

timer1.Enabled = false;

}

else

{

timer1.Enabled = true;

}

}

What does this code do? If the timer is on (timer1.Enabled = true), it turns
it off (timer1.Enabled = false), and vice versa. We say this code “toggles”
the timer. Run the project. Click the button. Your computer will beep every
second (the Tick event is executed every 1000 milliseconds, the Interval
value) until you click the button again. Notice it does this no matter what
else is going on. It requires no input (once the timer is on) from you, the
user. Click the button. The beeping will stop. Remember to always let your
C# code turn timer controls on and off. Stop the project when you get tired
of the beeping.

Add the two shaded lines of code to the timer1_Tick event, so it now reads:

private void timer1_Tick(object sender, EventArgs e)

{

System.Media.SystemSounds.Beep.Play();

Random myRandom = new Random();

this.BackColor = Color.FromArgb(myRandom.Next(256),
myRandom.Next(256), myRandom.Next(256));

}

This extra code randomly changes the form (name this) background color
using the FromArgb method (using random red, green and blue values).
Run the project. Click the button. Now, every second, the computer beeps
and the form changes color. Stop the timer. Stop the project.

What if we want the computer to beep every second, but want the form
color to change four times every second? If events require different
intervals, each event needs its own timer. Add another timer control to the
form (default name timer2). We’ll use this timer to control the form color.
Set timer2’s Interval to 250 (Tick event executed every 0.25 seconds, or 4
color changes per second). Cut and paste the lines of code in timer1_Tick
that sets color into the timer2_Tick event. The two timer Tick events are
now:

private void timer1_Tick(object sender, EventArgs e)

{

System.Media.SystemSounds.Beep.Play();

}

private void timer2_Tick(object sender, EventArgs e)

{

Random myRandom = new Random();

this.BackColor = Color.FromArgb(myRandom.Next(256),
myRandom.Next(256), myRandom.Next(256));

}

We also need to add code to the button1_Click event to toggle (turn it on
and off) this new timer. We could copy and paste the five lines of code
there for timer1 and change all the timer1 words to timer2. And, this would
work. But, let me show you a quick way to toggle Boolean (bool type)
variables, like the Enabled property. We’ll be able to replace five lines of
code with one!

Image

Way back in Class 6, we studied logical operators - operators that work
with Boolean variables. Remember and (&&)? Remember or (||)? Well,
there’s another logical operator that comes in handy - the not operator,
represented by the exclamation point (!).. This operator works on a single
Boolean variable. If we have a Boolean variable (bool type) named x, it can
have two values, true or false. !x has the opposite value of X as shown in
this simple logic table:

Image

Notice the not operator toggles the Boolean variable x. If x is on (true), the
not operator turns x off (false). If x is off (false), the not operator turns x on
(true). So, we can use the not operator to turn timer controls on and off. Use
this code in the button1_Click event method in our example:

private void button1_Click(object sender, EventArgs e)

{

timer1.Enabled = !(timer1.Enabled);

timer2.Enabled = !(timer2.Enabled);

}

Notice how the not operator simplifies using timer controls. Do you see
that one line of C# code using not has exactly the same effect as the five
lines of code we used earlier to toggle the timer? Run the project. Click the
button. Do you see how the two timer events are interacting? You should
hear a beep every four times the screen changes color. Stop the project
when you’re done playing with it.

Let’s use the timer to do some flashier stuff. Start a new project. Add a
panel control (default name panel1). Make the panel fairly big – make it
wider than it is tall. Add a button (default name button1), and a timer
control (default name timer1). Set the timer control Interval property to 50.
Declare and initialize an int type variable delta in the general declarations
area:

int delta = 0;

Toggle the timer in the Button1_Click event:

private void button1_Click(object sender, EventArgs e)

{

timer1.Enabled = !(timer1.Enabled);

}

Put this code in the Timer1_Tick event:

private void timer1_Tick(object sender, EventArgs e)

{

Graphics myGraphics;

Pen myPen;

Random myRandom = new Random();

myGraphics = panel1.CreateGraphics();

myPen = new Pen(Color.FromArgb(myRandom.Next(256),
myRandom.Next(256), myRandom.Next(256)), 2);

myGraphics.DrawEllipse(myPen, delta, delta, panel1.Width - 2 * delta,
panel1.Height - 2 * delta);

delta = delta + (int) myPen.Width;

if (delta > panel1.Height / 2)

{

delta = 0;

myGraphics.Clear(panel1.BackColor);

}

myPen.Dispose();

myGraphics.Dispose();

}

You should recognize most of what’s here. We’ve created a graphics object
and pen object (with a random color) to do some drawing. Notice, though,
we use a graphics method (DrawEllipse) we haven’t seen before. You
should be able to understand it and you’ll see it gives a really neat effect in
this example. The DrawEllipse method has the form:

myGraphics.DrawEllipse(myPen, x, y, width, height);

Here, myGraphics is the graphics object. This command draws an ellipse,
with a width width and height height, in the graphics object starting at the
point (x, y). A picture shows the result:

Image

In your work with Visual C#, you will often see code you don’t recognize.
Learn to use the on-line help facilities (try it with DrawEllipse) in these
cases.

Back to the code, you should see the DrawEllipse method draws the first
ellipse around the border of the panel control (x = 0 initially). The
surrounding rectangle moves “in” an amount delta (in each direction) with
each Tick event, resulting in a smaller rectangle (the width and height are
decreased by both 2*delta). Once delta (incremented by the pen width in
each step) exceeds half of the panel height, it is reset to 0, the panel is
cleared and the process starts all over. Run the project. Click the button.
Are you hypnotized? Here’s a sample of a run I made:

Image

Can you think of other things you could draw using other graphics
methods? Look at DrawRectangle for example. Try your ideas.

In this last example, the periodic (every 0.050 seconds) changing of the
display in the graphics object, imparted by the timer control, gives the
appearance of motion – the ellipses seem to be moving inward. This is the
basic concept behind a very powerful graphics technique - animation. In
animation, we have a sequence of pictures, each a little different from the
previous one. With the ellipse example, in each picture, we add a new
ellipse. By displaying this sequence over time, we can trick the viewer into
thinking things are moving. It all has to do with how fast the human eye
and brain can process information. That’s how cartoons work - 24 different
pictures are displayed every second - it makes things look like they are
moving, or animated. Obviously, the timer control is a key element to
animation, as well as for other Visual C# timing tasks. In the C# lesson for
this class, we will look at how to do simple animations and some other
things.

Typical Use of Timer Control

The usual design steps to use a timer control are:

➢ Set the Name property and Interval property.

➢ Write code in Tick event.

➢ At some point in your application, set Enabled to True to start
timer. Also, have capability to reset Enabled to False, when
desired.

Image

C# - The Final Lesson

Image

In this last C# lesson, we study some simple animation techniques, look at
math needed with animations, and learn how to detect keyboard events.

Animation - DrawImage Graphics Method

In the last example, we saw that by using a timer to periodically change the
display in a panel control, a sense of motion, or animation, is obtained. We
will use that idea here to do a specific kind of animation - moving objects
around. This is the basis for nearly every video game ever made. The
objects we move will be images contained in Visual C# picture box
controls.

Moving images in a panel is easy to do. First, establish an image (set the
Image property) in the picture box. This image is then placed in the panel
control using the DrawImage graphics method. Like the other graphics
methods we’ve seen (DrawLine and DrawEllipse), before using
DrawImage, you need to establish a graphics object to draw to. The
graphics object is declared in the usual manner (usually in the general
declarations area):

Graphics myGraphics;

We then create the graphics object (assume myControl is the host control;
we’ll use a panel):

myGraphics = myControl.CreateGraphics();

This creation usually occurs in the form Load method. You dispose of the
object in the form FormClosing method.

Now, assume we have an image in a picture box control named
picExample. At this point, we can draw picExample.Image in myGraphics,
using DrawImage. The DrawImage method that does this is:

myGraphics.DrawImage(picExample.Image, x, y, w, h);

where x is the horizontal position of the image within myGraphics and y is
the vertical position. The image will have a width value w and a height h.
The width and height can be the original image size or scaled up or down.
It’s your choice.

A picture illustrates what’s going on with DrawImage:

Image

Note how the transfer of the rectangular image occurs. Successive transfers
(always erasing the previous position of the image) gives the impression of
motion, or animation. Where do we put the DrawImage statement?

Each picture box image to be moved must have an associated timer control.
If desired, several images can use the same timer. The DrawImage
statement is placed in the corresponding timer control Tick event.
Whenever a Tick event is triggered, the image is erased at its old position
(by putting a “blank” image in that position), a new image position is
computed and the DrawImage method executed. This periodic movement is
animation. Let’s look at an example to see how simple it really is.

Start Visual C# and start a new project. Put a panel (default name panel1)
on the form - make it fairly tall with a white background color. Put a small
picture box (name pictureBox1) on the form. Set its Image property (I used

the soccer ball bitmap graphic in the \VCSKids\VCSK Projects\Graphics
folder). Place a timer control (default name timer1) on the form. Use an
Interval property of 100. Place a button (default name button1) on the form
for starting and stopping the timer. We will use this example a lot. Try to
make it look something like this:

Image

Define the needed graphics object in the general declarations area. Also
include a variable (imageY) to keep track of the vertical position of the
image:

Graphics myGraphics;

int imageY;

And create the object in the Form1_Load event method:

private void Form1_Load(object sender, EventArgs e)

{

myGraphics = panel1.CreateGraphics();

}

Dispose of the graphics object in the Form1_FormClosing event method:

private void Form1_FormClosing(object sender, FormClosingEventArgs e)

{

myGraphics.Dispose();

}

Use button1_Click to toggle the timer and initialize the position (imageY)
of pictureBox1.Image at the top of the panel control:

private void button1_Click(object sender, EventArgs e)

{

timer1.Enabled = !(timer1.Enabled);

imageY = 0;

}

Now, move the image in the timer1_Tick event:

private void timer1_Tick(object sender, EventArgs e)

{

int imageX = 10;

int imageW = 30;

int imageH = 25;

myGraphics.Clear(panel1.BackColor);

imageY = imageY + panel1.Height / 40;

myGraphics.DrawImage(pictureBox1.Image, imageX, imageY, imageW,
imageH);

}

In this event, the image width (imageW) and height (imageH) are given
values, as is the horizontal location (imageX). Then, the graphics object is
cleared to erase the previous image. The vertical position of the image
(ImageY) is increased by 1/40th of the panel height each time the event is
executed (every 0.1 seconds). The picture box image is moving down. It
should take 40 executions of this routine, or about 4 seconds, for the image
to reach the bottom. Let’s try it.

Run the example project. Click the button to start the timer. Watch the
image drop. Notice the image is scaled to fit the area defined by the
DrawImage method. Pretty easy, wasn’t it? How long does it take the
image to reach the bottom? What happens when it reaches the bottom? It
just keeps on going down through the panel, through the form and out
through the bottom of your computer monitor to who knows where! We
need to be able to detect this disappearance and do something about it.
We’ll look at two ways to handle this. First, we’ll make the image reappear
at the top of the panel, or scroll. Then, we’ll make it bounce. Stop the
project. Save it too. We’ll be using it again.

Image Disappearance

When images are moving in a panel, we need to know when they move out
of the panel across a border. Such information is often needed in video type
games. We just saw this need with the falling ball example. When an image
disappearance happens, we can either ignore that image or perhaps make it
“scroll” around to other side of the panel control. How do we decide if an
image has disappeared? It’s basically a case of comparing various positions
and dimensions.

We need to detect whether a image has completely moved across one of
four panel borders (top, bottom, left, right). Each of these detections can be
developed using this diagram of a picture box image (myImage) within a
panel (myPanel):

Image

Notice the image is located at (imageX, imageY), is imageW pixels wide
and imageH pixels high.

If the image is moving down, it completely crosses the panel bottom border
when its top (imageY) is lower than the bottom border. The bottom of the
panel is myPanel.Height. C# code for a bottom border disappearance is:

if (imageY > myPanel.Height)

{

[C# code for bottom border disappearance]

}

If the image is moving up, the panel top border is completely crossed when
the bottom of the image (imageY + imageH) becomes less than 0. In C#,
this is detected with:

if ((imageY + imageH) < 0)

{

[C# code for top border disappearance]

}

If the control is moving to the left, the panel left border is completely
crossed when image right side (imageX + imageW) becomes less than 0. In
C#, this is detected with:

if ((imageX + imageW) < 0)

{

[C# code for left border disappearance]

}

Image

If the image is moving to the right, it completely crosses the panel right
border when its left side (imageX) passes the border. The right side of the
panel is myPanel.Width. C# code for a right border disappearance is:

if (imageX > myPanel.Width)

{

[C# code for right border disappearance]

}

Let’s add disappearance detection to our “falling soccer ball” example.
Return to that project. Say, instead of having the image disappear when it
reaches the bottom, we have it magically reappear at the top of the panel.
We say the image is scrolling. Modify the timer1_Tick event to this (new
lines are shaded):

private void timer1_Tick(object sender, EventArgs e)

{

int imageX = 10;

int imageW = 30;

int imageH = 25;

myGraphics.Clear(panel1.BackColor);

imageY = imageY + panel1.Height / 40;

myGraphics.DrawImage(pictureBox1.Image, imageX, imageY, imageW,
imageH);

if (imageY > panel1.Height)

{

imageY = -imageH;

}

}

We added the bottom border disappearance logic. Notice when the image
disappears, we reset its imageY value so it is repositioned just off the top of
the panel. Run the project. Watch the image scroll. Pretty easy, wasn’t it?
Stop and save the project.

Border Crossing

Image

What if, in the falling image example, instead of scrolling, we want the
image to bounce back up when it reaches the bottom border? This is
another common animation task - detecting the initiation of border
crossings. Such crossings are used to change the direction of moving
images, that is, make them bounce. How do we detect border crossings?

The same diagram used for image disappearances can be used here.
Checking to see if an image has crossed a panel border is like checking for
image disappearance, except the image has not moved quite as far. For top
and bottom checks, the image movement is less by an amount equal to its
height value (imageH). For left and right checks, the control movement is
less by an amount equal to its width value (imageW). Look back at that
diagram and you should see these code segments accomplish the respective
border crossing directions:

if (imageY < 0)

{

[C# code for top border crossing]

}

if ((imageY + imageH) > myPanel.Height)

{

[C# code for bottom border crossing]

}

if (imageX < 0)

{

[C# code for left border crossing]

}

if ((imageX + imageW) > myPanel.Width)

{

[C# code for right border crossing]

}

Let’s modify the falling image example to have it bounce when it reaches
the bottom of the panel. Declare an integer variable imageDir in the general
declarations area:

int imageDir;

imageDir is used to indicate which way the image is moving. When
imageDir is 1, the image is moving down (imageY is increasing). When
imageDir is -1, the image is moving up (imageY is decreasing). Change the
button1_Click event to (new line is shaded):

private void button1_Click(object sender, EventArgs e)

{

timer1.Enabled = !(timer1.Enabled);

imageY = 0;

imageDir = 1;

}

We added a single line to initialize imageDir to 1 (moving down).

Change the timer1_Tick event to this (again, changed and/or new lines are
shaded):

private void timer1_Tick(object sender, EventArgs e)

{

int imageX = 10;

int imageW = 30;

int imageH = 25;

myGraphics.Clear(panel1.BackColor);

imageY = imageY + imageDir * panel1.Height / 40;

myGraphics.DrawImage(pictureBox1.Image, imageX, imageY, imageW,
imageH);

if (imageY + imageH > panel1.Height)

{

imageY = panel1.Height - imageH;

imageDir = -1;

}

}

We modified the calculation of imageY to account for the imageDir
variable. Notice how it is used to impart the proper direction to the image
motion (down when imageDir is 1, up when imageDir is –1). We have also
replaced the code in the existing if structure for a bottom border crossing.
Notice when a crossing is detected, the image is repositioned (by resetting
imageY) at the bottom of the panel (panel1.Height - imageH) and imageDir
is set to -1 (direction is changed so the image will start moving up). Run the
project. Now when the image reaches the bottom of the panel, it reverses
direction and heads back up. We’ve made the image bounce! But, once it
reaches the top, it’s gone again!

Add top border crossing detection, so the timer1_Tick event is now
(changes are shaded):

private void timer1_Tick(object sender, EventArgs e)

{

int imageX = 10;

int imageW = 30;

int imageH = 25;

myGraphics.Clear(panel1.BackColor);

imageY = imageY + imageDir * panel1.Height / 40;

myGraphics.DrawImage(pictureBox1.Image, imageX, imageY, imageW,
imageH);

if (imageY + imageH > panel1.Height)

{

imageY = panel1.Height - imageH;

imageDir = -1;

System.Media.SystemSounds.Beep.Play();

}

else if (imageY < 0)

{

imageY = 0;

imageDir = 1;

System.Media.SystemSounds.Beep.Play();

}

}

In the top crossing code (the else if portion), we reset imageY to 0 (the top
of the panel) and change imageDir to 1. We’ve also added a couple of Beep
statements so there is some audible feedback when either bounce occurs.
Run the project again. Your image will now bounce up and down, beeping
with each bounce, until you stop it. Stop and save the project.

Image

The code we’ve developed here for checking and resetting image positions
is a common task in Visual C#. As you develop your programming skills,
you should make sure you are comfortable with what all these properties
and dimensions mean and how they interact. As an example, do you see
how we could compute imageX so the image is centered in the panel? Try
this in the timer1_Tick method:

imageX = (int) (0.5 * (panel1.Width - imageW));

Make sure you put this line after the line declaring imageW. Note the use of
the cast (conversion) of the computation to an int type. Save the project one
more time.

You’ve now seen how to do lots of things with animations. You can make
images move, make them disappear and reappear, and make them bounce.
Do you have some ideas of simple video games you would like to build?
You still need two more skills – image erasure and collision detection -
which are discussed next.

Image Erasure

Image

In the little example we just did, we had to clear the panel control (using
the Clear graphics method) prior to each DrawImage method. This was
done to erase the image at its previous location before drawing a new
image. This “erase, then redraw” process is the secret behind animation.
But, what if we are animating many images? The Clear method would clear
all images from the panel and require repositioning every image, even ones
that haven’t moved. This would be a slow, tedious and unnecessary
process. It would also result in an animation with lots of flicker.

We will take a more precise approach to erasure. Instead of erasing the
entire panel before moving an image, we will only erase the rectangular
region previously occupied by the image. To do this, we will use the
FillRectangle graphics method, a new concept. This method is
straightforward and, with your Visual C# knowledge, you should easily
understand how it is used. If applied to a graphics object named
myGraphics, the form is:

myGraphics.FillRectangle(myBrush, x, y, width, height);

This line of code will “paint” a rectangular region located at (x, y), width
wide, and height high with a brush object (myBrush).

And, yes, there’s another new concept – a brush object. A brush is like a
“wide” pen. It is used to fill areas with a color. A brush object is declared
(assume an object named myBrush) using:

Brush myBrush;

Then, a solid brush (one that paints with a single color) is created using:

myBrush = new SolidBrush(Color);

where you select the Color of the brush. Once done with the brush, dispose
of the object using the Dispose method.

So, how does this work with the problem at hand? We will create a “blank”
brush (we’ll even name it blankBrush) with the same color as the

BackColor property of the panel (myPanel) control. The code to do this
(after declaring the brush object) is:

blankBrush = new SolidBrush(myPanel.BackColor);

Then, to erase an image located in myGraphics at (imageX, imageY),
imageW pixels wide and imageH pixels high, we use:

myGraphics.FillRectangle(blankBrush, imageX, imageY, imageW,
imageH);

This will just paint the specified rectangular region with the panel
background color, effectively erasing the image that was there.

Open up the “bouncing soccer ball” example one more time. Add this line
of code in the general declarations area:

Brush blankBrush;

Add this line in the Form1_Load method:

blankBrush = new SolidBrush(panel1.BackColor);

And, add this line in the Form1_FormClosing method:

blankBrush.Dispose();

These three lines declare, create and dispose of the brush object at the
proper times. Finally, in the Timer1_Tick method, replace the line using the
Clear method with this new line of code (selective erasing):

myGraphics.FillRectangle(blankBrush, imageX, imageY, imageW,
imageH);

Rerun the project. You probably won’t notice much difference since we
only have one object moving. But, in more detailed animations, this image
erasing approach is superior.

Collision Detection

Image

Another requirement in animation is to determine if two images have
collided. This is needed in games to see if a ball hits a paddle, if an alien
rocket hits its target, or if a cute little character grabs some reward. Each
image is described by a rectangular area, so the collision detection problem
is to see if two rectangles collide, or overlap. This check is done using each
image’s position and dimensions.

Here are two images (image1 and image2) in a panel control:

Image

image1 is positioned at (image1X, image1Y), is image1W wide and
image1H high. Similarly, image2 is positioned at (image2X, image2Y), is
image2W wide and image2H high.

Looking at this diagram, you should see there are four requirements for the
two rectangles to overlap:

1. The right side of image1 (image1X + image1H) must be
“farther right” than the left side of image2 (image2X)

2. The left side of image1 (image1X) must be “farther left” than
the right side of image2 (image2X + image2W)

3. The bottom of image1 (image1Y + image1H) must be “farther
down” than the top of image2 (image2Y)

4. The top of image1 (image1Y) must be “farther up” than the
bottom of image2 (image2Y + image2H)

All four of these requirements must be met for a collision.

The C# code to check if these rectangles overlap is:

if ((image1X + image1W) > image2X)

{

if (image1X < (image2X + image2W))

{

if ((image1Y + image1H) > image2Y)

{

if (image1Y < (image2Y + image2H))

{

[C# code for overlap, or collision]

}

}

}

}

This code checks the four conditions for overlap using four “nested” if
structures. The C# code for a collision is executed only if all four
conditions are found to be true.

Let’s try some collision detection with the bouncing soccer ball example.
Add a button (default name button2) control near the bottom of the panel –
narrow the width a bit. Blank out the Text property of the button so no text
is on it. Make sure the button is “attached” to the panel. Yes, we know a
button is not an image, but it is a rectangle and the same overlap rules
apply. We want to see if the image will collide with the button control and
bounce up. Your form should look something like this:

Image

Change the timer1_Tick event code to (added code is shaded):

private void timer1_Tick(object sender, EventArgs e)

{

int imageX = 10;

int imageW = 30;

int imageH = 25;

bool collision;

myGraphics.FillRectangle(blankBrush, imageX, imageY, imageW,
imageH);

imageY = imageY + imageDir * panel1.Height / 40;

myGraphics.DrawImage(pictureBox1.Image, imageX, imageY, imageW,
imageH);

collision = false;

if ((imageX + imageW) > button2.Left)

{

if (imageX < (button2.Left + button2.Width))

{

if ((imageY + imageH) > button2.Top)

{

if (imageY < (button2.Top + button2.Height))

{

collision = true;

}

}

}

}

if (collision)

{

imageY = button2.Top - imageH;

imageDir = -1;

System.Media.SystemSounds.Beep.Play();

}

else if (imageY < 0)

{

imageY = 0;

imageDir = 1;

Console.Beep();

}

}

We declare a method level bool variable collision to indicate an overlap
(true for overlap, false for no overlap). The overlap code [using the button
control properties for location (Left, Top) and size (Width, Height)] follows
the DrawImage method. If a collision is detected, the image is repositioned
so it just touches the top of button2, its direction is reversed and a beep is
played. The code for bouncing off the top of the panel is unchanged. Run
the project. Notice the image now bounces off the button. Stop the project.

Move button2 out of the panel control so the image won’t collide with it.
The image should just drop off the screen. See how close the image can
pass by button2 without colliding to make sure the overlap routine works
properly. Stop and save the project.

Now that you know how to detect collisions, you’re well on your way to
knowing how to build a simple video game. Next, we’ll learn how to detect
keyboard events from the user. One possible use for these events, among
many, is to allow a user to move a little paddle to “hit” a dropping ball. The
collision technique we just learned will come in handy for such a task.

Image

Keyboard Events

In Class 8, we looked at ways for a user to interact with a Visual C# project
using the mouse for input. We studied three mouse events: MouseDown,
MouseMove, and MouseUp. Another input device available for use is the
computer keyboard. Here we look at keyboard events which give our
projects the ability to detect user input from the keyboard. Two keyboard
events are studied: the KeyDown event and the KeyPress event.

Several Visual C# controls can recognize keyboard events, notably the
form and the text box. Yet, only the control that has focus can receive a
keyboard event. (Recall the control with focus is the active control.) When
trying to detect a keyboard event for a certain control, we need to make
sure that control has focus. We can give a control focus by clicking on it
with the mouse. But, another way to assign focus to a control is with the
Focus method. The format for such a statement is:

controlName.Focus();

This command in C# will give controlName focus and make it the active
control. It has the same effect as clicking on the control. The control can
then recognize any associated keyboard events. We use the Focus method
with keyboard events to insure proper execution of each event.

To detect keyboard events on the form, you need to set the form
KeyPreview property to True. This bypasses any keystrokes used by the
controls to generate events.

KeyDown Event

The KeyDown event has the ability to detect the pressing of any key on the
computer keyboard. It can detect:

• Special combinations of the Shift, Ctrl, and Alt keys

• Insert, Del, Home, End, PgUp, PgDn keys

• Cursor control keys

• Numeric keypad keys (it can distinguish these numbers from
those on the top row of the keyboard)

• Function keys

• Letter, number and character keys

The KeyDown event for a control controlName is executed whenever that
control has focus and a key is pressed. The form of this event method is:

private void controlName_KeyDown(object sender, KeyEventArgs e)

{

[C# code for KeyDown Event]

}

The KeyDown event has two arguments: sender and e. We won’t be
concerned with the sender argument in this class. And, we won’t be
concerned with the status of any of the control keys (such as Shift, Ctrl,
Alt). We only want to know what key was pressed down to invoke this
method.

The property e.KeyCode can be used to determine which key was pressed
down. There is a KeyCode value for each key on the keyboard. By
evaluating the e.KeyCode argument, we can determine which key was
pressed. There are nearly 100 KeyCode values, some of which are:

e.KeyCode Description
Keys.Back The BACKSPACE key.
Keys.Cancel The CANCEL key.
Keys.Delete The DEL key.
Keys.Down The DOWN ARROW key.
Keys.Enter The ENTER key.
Keys.Escape The ESC key.
Keys.F1 The F1 key.
Keys.Home The HOME key.
Keys.Left The LEFT ARROW key.
Keys.NumPad0 The 0 key on the numeric keypad.
Keys.PageDown The PAGE DOWN key.
Keys.PageUp The PAGE UP key.
Keys.Right The RIGHT ARROW key.
Keys.Space The SPACEBAR key.
Keys.Tab The TAB key.
Keys.Up The UP ARROW key.

Using the KeyDown event is not easy. There is a lot of work involved in
interpreting the information provided in the KeyDown event. For example,
the KeyDown event cannot distinguish between an upper and lower case
letter. You need to make that distinction in your C# code. You usually use a
switch or if structure (based on e.KeyCode) to determine which key was
pressed. Let’s see how to use KeyDown to recognize some keys.

Start Visual C# and start a new project. Put a text box control (textBox1) on
the form. Use this textBox1_KeyDown event (make sure you pick the
correct event):

private void textBox1_KeyDown(object sender, KeyEventArgs e)

{

textBox1.Text =

Convert.ToString(Convert.ToInt32(e.KeyCode));

}

Run the project. Type a letter. The letter and its corresponding e.KeyCode
(a numeric value) are shown (there is no space between the two values).
Press the same letter while holding down the <Shift> key. The same code
will appear – there is no distinction between upper and lower case. Press
each of the four arrow keys to see their different values. Notice for such
‘non-printable’ keys, only a number displays in the text box. Type numbers
using the top row of the keyboard and the numeric keypad (make sure your
NumLock key is selected). Notice the keypad numbers don’t display and
have different KeyCode values than the “keyboard numbers.” This lets us
distinguish the keypad from the keyboard. Try various keys on the
keyboard to see which keys have a KeyCode (all of them). Notice it works
with function keys, cursor control keys, letters, number, everything! Stop
the project.

Add a second text box (textBox2) to the form. Run the project. Click on
this new text box and type some text. Notice the textBox1_KeyDown event
does not detect any key press. Why not? textBox2 has focus - textBox1
does not. The textBox2_KeyDown event is being executed instead (but,
there’s no code there). Click on textBox1 with the mouse - this gives it
focus. Now, press a key. The key detection works again. Remember, for a
keyboard event to be detected, the corresponding control must have focus.

KeyPress Event

Image

The KeyPress event is similar to the KeyDown event, with one distinction.
Many characters in the world of computers have what are called Unicode
values. Unicode values are simply numbers (ranging from 0 to 255) that
represent all letters (upper and lower case), all numbers, all punctuation,

and many special keys like Esc, Space, and Enter. The KeyPress event can
detect the pressing of any key that has a corresponding Unicode code. A
nice thing about the KeyPress event is that you immediately know what the
user input is - no interpretation of any other key(s) is required (like with the
KeyDown event). For example, there are different Unicode values for
upper and lower case letters. Unicode values are related to ASCII
(pronounced “askey”) codes you may have seen in other languages.

The KeyPress event method for a control named controlName has the form:

private void controlName_KeyPress(object sender, KeyEventArgs e)

{

[C# code for KeyPress Event]

}

Again, there are two arguments, sender and e. We are interested in what key
was pressed. That information is in the value of e.KeyChar. e.KeyChar is a
char type variable (a type we haven’t seen before), returning a single
character, corresponding to the pressed key. The pressed key can be a
readable character (letter, number, punctuation) or a non-readable character
(Esc, Enter). It’s easy to look at a readable character and know what it is.
How can we distinguish one non-readable character from another?

Recall each possible key recognized by the KeyPress event has a Unicode
value. If you want to know a Unicode value of a particular character, you
simply cast the character to an int type. So, to determine the Unicode
(myCode) value for a char type variable (named myChar), use:

myCode = (int) myChar;

For example:

myCode = (int) ‘A’;

returns the Unicode value (myCode) for the upper case A (65, by the way).
Notice a character (char) type variable is enclosed in a pair of single quotes.

To convert a Unicode value (myValue) to the corresponding character, cast
the value to a char type::

myChar = (char) myCode;

For example:

myChar = (char) 49;

returns the character (myChar) represented by a Unicode value of 49 (a
“1”).

So, to recognize key presses of non-readable characters, known as control
keys, we can examine the corresponding Unicode values. Two values we
will use are:

Definition Unicode Value
Backspace 8
<Enter> 13

Let’s try an example with the KeyPress event. Start a new project. Add a
label control (label1) and a text box (textBox1) control. Add this code to
the textBox1_KeyPress event method:

private void textBox1_KeyPress(object sender, KeyPressEventArgs e)

{

label1.Text = Convert.ToString(e.KeyChar) + " " + Convert.ToString((int)
e.KeyChar);

}

Run the project. Press a key. The character typed (if it’s printable) and its
corresponding Unicode value (a space separates the two values) will appear
in the label control. Press as many keys as you like. Notice different values
are displayed for upper and lower case letters. Notice not every key has a
Unicode value. In particular, press a function key or one of the arrow keys.

What happens? Nothing. You can’t detect function key or arrow key
presses with a KeyPress event. That’s why we needed to talk about the
KeyDown event. Stop and save the project.

Let’s look at a very powerful use of the KeyPress event. Say we have an
application where we only want the user to be able to type numbers in a
text box. In that text box’s KeyPress event, we would like to examine
e.KeyChar and determine if it’s a number. If it is a number, great! If not, we
want to ignore that key! This process of detecting and ignoring unwanted
key strokes is called key trapping. By comparing the input e.KeyChar with
acceptable values, we can decide (in C# code) if we want to accept that
value as input. Key trapping is a part of every sophisticated Visual C#
application.

The only question remaining is: if we decide a pressed key is not
acceptable, how do we ignore it? We do that using the e.Handled property.
If an unacceptable key is detected, we set e.Handled to true. This ‘tricks’
Visual C# into thinking the KeyPress event has already been handled and
the pressed key is ignored. If a pressed key is acceptable, we set the
e.Handled property to false. This tells Visual C# that this method has not
been handled and the KeyPress should be allowed (by default, e.Handled is
false, allowing all keystrokes).

Go back to the Visual C# example we’ve been using. Change the code in
the example textBox1_KeyPress event to this:

private void textBox1_KeyPress(object sender, KeyPressEventArgs e)

{

if (e.KeyChar < '0' || e.KeyChar > '9')

{

e.Handled = true;

label1.Text = "Not a number";

}

else

{

e.Handled = false;

label1.Text = Convert.ToString(e.KeyChar) + " " +
Convert.ToString((int)e.KeyChar);

}

}

Look at what’s happening here. If e.KeyChar is outside the range of values
from ‘0’ to ‘9’ (again, note char types are enclosed in single quotes),
e.Handled is set to true, ignoring this key press. This method will only
accept a typed value from 0 to 9. We are restricting our user to just those
keys. This comes in handy in applications where only numerical input is
allowed. Run the project. Try typing numbers. Try typing non-numerical
values - nothing will appear in the text control, indicating the key press was
ignored.

Image

Project – Beach Balls

Image

In our final class project, we will build a little video game. Colorful beach
balls are dropping from the sky. You maneuver your popping device under
them to make them pop and get a point. You try to pop as many balls as you
can in one minute. This project is saved as BeachBalls in the projects folder
(\VCSKids\VCSK Projects).

Project Design

All of the game action will go on in a panel control. There will be five
possible balls, the image used is contained in a picture box. An picture box
control will also hold the “popping arrow” image. This image will be
moved using keys on the keyboard. A button will control starting and
stopping the game. Another button will stop the program. The current score
(number of balls popped) will be displayed in a titled text box.

Place Controls on Form

Start a new project in Visual C#. Place a panel control on the form - make it
fairly wide and tall. This is where the game will be played. Place two
picture box controls on the form. Add a label control. Add a text box under
the label for keeping score. Add larger text box to tell us when the game is
over. Add two buttons. And, add two timer controls to use for animation
and for timing the overall game.

Try to make your form look something like this when done:

Image

Set Control Properties

Set the control properties using the properties window:

Form1 Form:
Property Name Property Value
BackColor Light Red
Text Beach Balls
FormBorderStyle FixedSingle
StartPosition CenterForm
KeyPreview True (this allows us to detect key presses)
panel1 Panel:
Property Name Property Value
Name pnlBeachBalls

BackColor Light Blue
BorderStyle FixedSingle
pictureBox1 Picture Box:
Property Name Property Value
Name picBall

Image ball.gif (in \VCSKids\VCSK Projects\BeachBalls
folder)

SizeMode StretchImage
Visible False
pictureBox2 Picture Box:
Property Name Property Value
Name picArrow

Image arrow.gif (in \VCSKids\VCSK Projects\BeachBalls
folder)

SizeMode StretchImage
Visible False
label1 Label:
Property Name Property Value
Name lblHead
Text Balls Popped
Font Size 10
Font Style Bold
textBox1 Text Box:
Property Name Property Value
Name txtScore
Text 0
Font Size 18
ReadOnly True
TabStop False
TextAlign Center
BackColor White
ForeColor Blue

textBox2 Text Box:
Property Name Property Value
Name txtOver
Text Game Over
Font Size 18
ReadOnly True
TabStop False
TextAlign Center
BackColor White
ForeColor Red
button1 Button:
Property Name Property Value
Name btnStart
BackColor Light Yellow
Text Start
button2 Button:
Property Name Property Value
Name btnExit
BackColor Light Yellow
Text Exit
timer1 Timer:
Property Name Property Value
Name timBalls
Interval 100
timer2 Timer:
Property Name Property Value
Name timGame
Interval 60000

Image

When done setting properties, my form looks like this:

Image

We have used gif files for our graphics (the ball and the arrow). With such
graphics types, you can select one color to be transparent, allowing the
background color to come through. How this is done is beyond the scope of
this course. Do a little study on your own using paintbrush programs –
PaintShop Pro by JASC (look on the Internet) is a great program for
graphics.

Write Event Methods

The Beach Balls game is simple, in concept. To play, click the Start button.
Five balls will drop down the panel, each at a different speed. Use the
keyboard to move the arrow. If the arrow is under a ball when a collision
occurs, the ball pops and you get a point. Balls reappear at the top after
popping or after reaching the bottom of the screen without being popped.
You pop as many balls as you can in 60 seconds. At that point, a ‘Game
Over’ message appears. You can click Start to play again or click Exit to
stop the program.

It looks like there are only three events to code, clicking the Start button,
clicking the Exit button, or using picBalls_KeyDown to check for arrow
key presses. But, recall there are two timer controls on the form. The
control named timBalls controls the ball animation, updating the panel 10
times a second (Interval is 100). The timer control named timGame
controls the overall time of the game. It generates a Tick event only once -
when the game is over (Interval is 60000 - that’s 60 seconds). So, in
addition to button clicks and key down events, we need code for two Timer
events. There is a substantial amount of C# code to write here, even though
you will see there is a lot of repetition. We suggest writing the event
methods in stages. Write one method or a part of a method. Run the project.
Make sure the code you wrote works. Add more code. Run the project
again. Make sure the added code works. Continue adding code until
complete. Building a project this way minimizes the potential for error and
makes the debugging process much easier. Let’s go.

Image

Each ball will occupy a square region. We will compute the size (ballSize)
of the ball to fit nicely on the panel. We need array variables to keep track
of each ball’s location (ballX, ballY) and dropping speed (ballSpeed). We
need to know the arrow’s size (arrowSize) and position (arrowX). We also
need a graphics object to draw the balls (myGraphics) and a blank brush
object (blankBrush, for erasing balls). Lastly, we need a random number
object (myRandom). Add this code to the general declarations area:

int ballSize;

int[] ballX = new int[5];

int[] ballY = new int[5];

int[] ballSpeed = new int[5];

int arrowSize;

int arrowX;

Graphics myGraphics;

Brush blankBrush;

Random myRandom = new Random();

The array ballSpeed holds the five speeds, representing the number of
pixels a ball will drop with each update of the viewing panel. We want each
ball to drop at a different rate. In code, each speed will be computed using:

myRandom.Next(4) + 3

Or, it will be a random value between 3 and 6. A new speed will be
computed each time a ball starts its trip down the panel. How do we know
this will be a good speed, providing reasonable dropping rates? We didn’t
before the project began. This expression was arrived at by ‘trial and error.’
We built the game and tried different speeds until we found values that
worked. You do this a lot in developing games. You may not know values
for some numbers before you start. So, you go ahead and build the game

and try all kinds of values until you find ones that work. Then, you build
these numbers into your code.

Use this Form1_Load method:

private void Form1_Load(object sender, EventArgs e)

{

int x;

// Have the balls spread across the panel with 20 pixels borders

ballSize = (int) ((pnlBeachBalls.Width - 6 * 20) / 5);

x = 10;

for (int i = 0; i < 5; i++)

{

ballX[i] = x;

x = x + ballSize + 20;

}

// Make arrow one-half the ball size

arrowSize = (int) (ballSize / 2);

myGraphics = pnlBeachBalls.CreateGraphics();

blankBrush = new SolidBrush(pnlBeachBalls.BackColor);

// Give form focus

this.Focus();

}

In this code, initial horizontal positions for each of the balls are computed
(ballX array). The balls are spread evenly across the panel (see if you can
understand the code). The arrow is made to be one-half the ball size
(arrowSize). Lastly, the graphics object and brush object are created and the
form is given focus so KeyDown events can occur.

Add this code to the Form1_FormClosing event to dispose of our objects:

private void Form1_FormClosing(object sender, FormClosingEventArgs e)

{

myGraphics.Dispose();

blankBrush.Dispose();

}

To move the arrow (using DrawImage), we need a Form1_KeyDown event
method (the panel control does not have a KeyDown event). Make sure you
have set the form’s KeyPreview property to True, so the KeyDown event
will be “seen.” Pick a key that will move the arrow to the left and a key that
will move it to the right. I chose F for left movement and J for right
movement. Why? The keys are in the middle of the keyboard, with F to the
left of J, and are easy to reach with a natural typing position. You could
pick others. The arrow keys are one possibility. I hardly ever use these
because they are always at some odd location on a keyboard and just not
“naturally” reached. Also, the arrow keys are often used to move among
controls on the form and this can get confusing. The code I use is (change
the key code values if you pick different keys for arrow motion):

private void Form1_KeyDown(object sender, KeyEventArgs e)

{

// Erase arrow at old location

myGraphics.FillRectangle(blankBrush, arrowX, pnlBeachBalls.Height -
arrowSize, arrowSize, arrowSize);

// Check for F key (left) and J key (right) and compute arrow position

if (e.KeyCode == Keys.F)

{

arrowX = arrowX - 5;

}

else if (e.KeyCode == Keys.J)

{

arrowX = arrowX + 5;

}

// Position arrow

myGraphics.DrawImage(picArrow.Image, arrowX, pnlBeachBalls.Height -
arrowSize, arrowSize, arrowSize);

}

Notice if the F key is pressed, the arrow (imgArrow) is moved to the left by
5 pixels. The arrow is moved right by 5 pixels if the J key is pressed.
Again, the 5 pixels value was found by ‘trial and error’ - it seems to
provide smooth motion. After typing in this method, save the project, then
run it. Make sure the arrow moves as expected. Press the J key to see it. It
should start at the left side of the form (arrowX = 0) since we have not
given it an initial position. This is what we meant when we suggested
building the project in stages. Notice there is no code that keeps the arrow
from moving out of the panel - you could add it if you like. You would
need to detect a left or right border crossing. Stop the project. Now, let’s do
the button events.

The btnExit_Click method is simple, so let’s get it out of the way first. It’s
the usual one line (well, two with the comment) that stops the project:

private void btnExit_Click(object sender, EventArgs e)

{

this.Close();

}

Let’s outline the steps involved in the btnStart_Click event. We use this
button for two purposes. It either starts the game (Text is Start) or stops the
game (but, not the program - Text is Stop). So, the Click event has two
segments. If Text is Start, the steps are:

• Hide ‘Game Over’ message

• Set btnStart Text to “Stop”

• Disable btnExit button

• Clear balls off screen

• Set score to 0

• Initialize each ball’s position and speed

• Initialize arrow position

• Give form focus (so KeyDown can be recognized)

• Start the timers

If the Text is Stop when the button is clicked, the program steps are:

• Display ‘Game Over’ message

• Set btnStart Text to “Start”

• Enable btnExit button

• Stop the timers

Look at the btnStart_Click event method and see if you can identify all of
the outlined steps. Notice the balls are positioned just above the panel and
the speeds are set using the formula given earlier:

private void btnStart_Click(object sender, EventArgs e)

{

if (btnStart.Text == "Start")

{

// New Game

myGraphics.Clear(pnlBeachBalls.BackColor);

txtOver.Visible = false;

btnStart.Text = "Stop";

btnExit.Enabled = false;

txtScore.Text = "0";

// set each ball off top of panel and give new speed

for (int i = 0; i < 5; i++)

{

ballY[i] = -ballSize;

ballSpeed[i] = myRandom.Next(4) + 3;

}

// Set arrow near center

arrowX = (int)(pnlBeachBalls.Width / 2);

myGraphics.DrawImage(picArrow.Image, arrowX, pnlBeachBalls.Height -
arrowSize, arrowSize, arrowSize);

// Give form focus so it can accept KeyDown events

this.Focus();

}

else

{

// Game stopped

txtOver.Visible = true;

btnStart.Text = "Start";

btnExit.Enabled = true;

}

// Toggle timers

timBalls.Enabled = !(timBalls.Enabled);

timGame.Enabled = !(timGame.Enabled);

}

Save and run the project. There should be no balls displayed. Make sure
you get no run-time errors. The arrow should be centered on the panel.
Make sure the arrow motion keys (F and J) still work OK. Stop the project.

The btnStart_Click event method toggles the two timer controls. What goes
on in the two Tick events? We’ll do the easy one first. Each game lasts 60

seconds. This timing is handled by the timGame timer. It has an Interval of
60000, which means it’s Tick event is executed every 60 seconds. We’ll
only execute that event once - when it is executed, we stop the game. The
code to do this is identical to the code executed if the btnStart button is
clicked when its Text is Stop. The timGame_Tick event method should be:

private void timGame_Tick(object sender, EventArgs e)

{

// 60 seconds have elapsed - stop game

timBalls.Enabled = false;

timGame.Enabled = false;

txtOver.Visible = true;

btnStart.Text = "Start";

btnExit.Enabled = true;

}

Save the project. Run it. Click Start. Play with the arrow motion keys or
just sit there. After 60 seconds, you should see the ‘Game Over’ notice pop
up and see the buttons change appearance. If this happens, the timGame
timer control is working properly. If it doesn’t happen, you need to fix
something. Stop the project.

Now, to the heart of the Beach Balls game - the timBalls_Tick event. We
haven’t seen any dropping balls yet. Here’s where we do that, and more.
The timBalls timer control handles the animation sequence. It drops the
balls down the screen, checks for popping, and checks for balls reaching
the bottom of the panel. It gets new balls started. There’s a lot going on.
The method steps are identical for each ball. They are:

• Move the ball.

• Check to see if ball has popped. If so, sound a beep, make the
ball disappear, increment score and make ball reappear at the top
with a new speed.

• Check to see if ball has reached the bottom without being
popped. If so, start a new ball with a new speed.

The steps are easy to write, just a little harder to code. Moving a ball
simply involves erasing it at its old location and redrawing it at its new
location (determined by the ballY value). To check if the ball has reached
the bottom, we use the border crossing logic discussed earlier. The trickiest
step is checking if a ball has popped. One way to check for a ball pop is to
check to see if the ball image rectangle overlaps the arrow rectangle using
the collision detection logic developed earlier. This would work, but a ball
would pop if the arrow barely touched the ball. In our code, we modify the
collision logic such that we will not consider a ball to be popped unless the
entire width of the arrow is within the width of the ball.

Here’s the complete timBall_Tick event implementing these steps. The
balls are handled individually within the structure of a for loop:

private void timBalls_Tick(object sender, EventArgs e)

{

for (int i = 0; i < 5; i++)

{

// erase ball

myGraphics.FillRectangle(blankBrush, ballX[i], ballY[i], ballSize,
ballSize);

// move ball

ballY[i] = ballY[i] + ballSpeed[i];

// check if ball has popped

if ((ballY[i] + ballSize) > (pnlBeachBalls.Height - arrowSize))

{

if (ballX[i] < arrowX)

{

if ((ballX[i] + ballSize) > (arrowX + arrowSize))

{

// Ball has popped

// Increase score - move back to top

System.Media.SystemSounds.Beep.Play();

txtScore.Text =

Convert.ToString(Convert.ToInt32(txtScore.Text) + 1);

ballY[i] = -ballSize;

ballSpeed[i] = myRandom.Next(4) + 3;

}

}

}

// check for moving off bottom

if ((ballY[i] + ballSize) > pnlBeachBalls.Height)

{

// Ball reaches bottom without popping

// Move back to top with new speed

ballY[i] = -ballSize;

ballSpeed[i] = myRandom.Next(4) + 3;

}

// redraw ball at new location

myGraphics.DrawImage(picBall.Image, ballX[i], ballY[i], ballSize,
ballSize);

}

}

Do you see how all the steps are implemented? We added a Beep statement
for some audio feedback when a ball pops.

Image

Image

Run the Project

Run the project. Make sure it works. Make sure each ball falls. Make sure
when a ball reaches the bottom, a new one is initialized. Make sure you can
pop each ball. And, following a pop, make sure a new ball appears. Make
sure the score changes by one with each pop. Here’s what my screen looks
like in the middle of a game:

Image

By building and testing the program in stages, you should now have a
thoroughly tested, running version of Beach Balls. So relax and have fun
playing it. Show your friends and family your great creation. If you do find
any bugs and need to make any changes, make sure you resave your
project.

Other Things to Try

Image

I’m sure as you played the Beach Balls game, you thought of some changes
you could make. Go ahead - give it a try! Here are some ideas we have.

When a ball pops, it just disappears from the screen. Can you think of a
more dramatic way to show popping? Maybe change the Image property of
the picture box control. Or flash the panel background color.

Add selectable difficulty levels to the game. This could be used to make the
game easy for little kids and very hard for experts. What can you do to
adjust the game difficulty? One thing you could do is adjust the size of the
popping arrow. To pop a ball, the entire arrow width must fit within the
width of a ball. Hence, a smaller (narrower) arrow would make it easier to
pop balls before they reach the bottom of the picture box. A larger (wider)
arrow makes popping harder. The ball dropping speed also affects game
difficulty. Slowly dropping balls are easy to pop - fast ones are not. Play
with the game to see what speeds would work for different difficulty levels.

Make it possible to play longer games and, as the game goes on, make the
game more difficult using some of the ideas above (smaller arrow, faster
balls). You’ve seen this in other games you may have played - games
usually get harder as time goes on.

Players like to know how much time they have left in a game. Add this
capability to your game. Use a text box control to display the number of
seconds remaining. You’ll need another timer control with an Interval of
1000 (one second). Whenever this timer’s Tick event is executed, another
second has gone by. In this event, subtract 1 from the value displayed in the
label. You should be comfortable making such a change to your project.

Another thing players like to know is the highest score on a game. Add this
capability. Declare a new variable to keep track of the highest score. After
each game is played, compare the current score with the highest score to
see if a new high has been reached. Add a text box control to display the
highest score. One problem, though. When you stop the program, the

highest score value will be lost. A new high needs to be established each
time you run the project. As you become a more advanced Visual C#
programmer, you’ll learn ways to save the highest score.

Image

Image

Summary

In this final class, we found that the timer control is a key element in
computer animation. By periodically changing the display in a panel
control, the sensation of motion was obtained. We studied “animation
math” - how to detect if an image disappeared from a panel, how to detect
if an image crosses the border of a panel, and how to detect if two images
(rectangles) collide. We learned how to detect keyboard events. And, you
built your first video game.

The Visual C# for Kids class is over. You’ve come a long way. Remember
back in the first class when you first learned about events? You’re an event
expert by now. But, that doesn’t mean you know everything there is to
know about programming. Computer programming is a never-ending
educational process. There are always new things to learn - ways to
improve your skills. Believe it or not, you’ve just begun learning about
Visual C#.

Our company, Kidware Software, offers several other Visual C# courses
that cover some advanced topics and lets you build more projects-
Programming Games With Visual C# and Visual C# Homewok Projects.
These courses are both self-paced, study guides that provide an overview of
Visual C# and detailed programming instruction. Fun projects are built with
step-by-step details. What would you gain from these courses? Here are a
few new things you would learn:

• More C# and more controls

• How to do many programming tasks using Visual C#

• Object-oriented programming concepts

• How to distribute your projects (develop SETUP programs)

• How to use the Visual C# debugger

• How to read files from disk and write files to disk (this could be
used to save high scores in games)

• How to do more detailed animations

• How to play elaborate sounds (the Beep is pretty boring)

• How to add menus and toolbars to your projects

• How to use your printer

• Lastly, you will have many practical projects you can use (or
modify).

Contact us if you want more information. Or, visit our website - the address
is on the title page for this course. Before you leave, try the bonus projects.
They give you some idea of what you can learn in the next Visual C# class.

Bonus Projects

Image

Preview

By now, you should feel pretty comfortable with the steps involved in
building a Visual C# project. In this bonus chapter, we give you more
projects you can build and try. We’ll present the steps involved in building
each project - Project Design, Place Controls on Form, Set Control
Properties, Write Event Methods, Run the Project, and Other Things to Try.
But, we won’t give you detailed discussion of what’s going on in the code
(we will point out new ideas). You should be able to figure that out by now
(with the help of the code comments). Actually, a very valuable
programming skill to have is the ability to read and understand someone
else’s code.

The five new projects included are: Computer Stopwatch, Tic-Tac-Toe,
Dice Rolling, State Capitals, and Memory Game. And, as another bonus,
we’ll throw in a Visual C# version of the first video game ever – Pong!

Project 1 - Computer Stopwatch

Project Design

Image

In this project, we will build a computer stopwatch that measures elapsed
time in seconds. One button will start and stop the timing and one will reset
the display (a label). Elapsed time is measured using the C# Now function
that provides the current time and date in a Date type function. The project
you are about to build is saved as Stopwatch in the project folder
(\VCSKids\VCSK Projects).

Place Controls on Form

Start a new project in Visual C#. Place a text box control on the form. Then
place two buttons on the form. Add a timer control. When done, your form
should look something like this:

Image

Set Control Properties

Set the control properties using the properties window:

Form1 Form:
Property Name Property Value
Text Stopwatch
FormBorderStyle Fixed Single
StartPosition CenterScreen
textBox1 Text Box:
Property Name Property Value
Name txtTime
Text 00:00:00
BackColor White
Font Arial
Font Size 24
Font Style Bold
ReadOnly True
TextAlign Center
TabStop False
button1 Button:
Property Name Property Value
Name btnStartStop
Text Start
Font Arial
Font Size 12
button2 Command Button:

Property Name Property Value
Name btnReset
Text Reset
Enabled False
Font Arial
Font Size 12
timer1 Timer:
Property Name Property Value
Name timDisplay
Interval 1000

When done setting properties, my form looks like this (I resized the text
box a bit):

Image

Write Event Methods

To start the stopwatch, click Start. To stop, click Stop. Click Reset to reset
the display to zero. Each of these buttons has a Click event. The timer
control Tick event controls the display of the time.

Add this code to the general declarations area:

DateTime startTime; // time when stopwatch started

The btnStartStop_Click event method:

private void btnStartStop_Click(object sender, EventArgs e)

{

// Starting timer?

if (btnStartStop.Text == "Start")

{

// Reset Text on Start/Stop button

btnStartStop.Text = "Stop";

// Start timer and get starting time

timDisplay.Enabled = true;

startTime = DateTime.Now;

}

else

{

// Stop timer

timDisplay.Enabled = false;

// Disable Start/Stop button, enable Reset button

btnStartStop.Enabled = false;

btnReset.Enabled = true;

}

}

The btnReset_Click event method:

private void btnReset_Click(object sender, EventArgs e)

{

// Reset display to zero

txtTime.Text = "00:00:00";

// Reset button Text and enable Start, disable Reset

btnStartStop.Text = "Start";

btnStartStop.Enabled = true;

btnReset.Enabled = false;

}

The timDisplay_Tick event method:

private void timDisplay_Tick(object sender, EventArgs e)

{

TimeSpan elapsedTime;

// Determine elapsed time since Start was clicked

elapsedTime = DateTime.Now - startTime;

// Display time in label box

txtTime.Text = Convert.ToString(elapsedTime);

}

Image

Run the Project

Save your work. Run the project. Click Start to start the timer. Make sure
the display updates every second. Here’s a run I made:

Image

Study the Tick event if you’re unsure of how this is done – especially look
at how to subtract two date (DateTime) types (using the C# TimeSpan type)

to get the elapsed time. Click Stop to stop the timer. Make sure the Reset
button works properly.

Other Things to Try

Many stopwatches allow you to continue timing after you’ve stopped one
or more times. That is, you can measure total elapsed time in different
segments. Modify this project to allow such measurement. You’ll need a
separate Stop button and a variable to keep track of total elapsed time.
You’ll also need to determine which buttons you want to have enabled at
different times in the project. Add a “lap timing” feature by displaying the
time measured in each segment (a segment being defined as the time
between each Start and Stop click).

Project 2 - Tic-Tac-Toe

Project Design

Image

In this project, you build a form where you and someone else can play the
classic Tic-Tac-Toe game against each other. You take turns marking a 3 x
3 grid with X’s and O’s. The computer will monitor play. The project you
are about to build is saved as TicTacToe in the project folder
(\VCSKids\VCSK Projects).

Place Controls on Form

Start a new project in Visual C#. Place one larger text box (textBox1), four
very skinny text box controls (textBox2 - textBox5) to be used for the game
grid), nine square text box controls (textBox6 – textBox14), and two
buttons on the form. When done, your form should look something like
this:

Image

Set Control Properties

Set the control properties using the properties window:

Form1 Form:
Property Name Property Value
Text Tic-Tac-Toe
FormBorderStyle FixedSingle
StartPosition CenterScreen
textBox1 TextBox:
Property Name Property Value
Name txtMessage
Text X’s Turn
BackColor White
Font Arial
Font Size 24
TextAlign Center
ReadOnly True
TabStop False
textBox2 Text Box:
Property Name Property Value
BackColor Black
ReadOnly True
TabStop False
textBox3 Text Box:
Property Name Property Value
BackColor Black
ReadOnly True
TabStop False
textBox4 Text Box:
Property Name Property Value
BackColor Black

ReadOnly True
TabStop False
textBox5 Text Box:
Property Name Property Value
BackColor Black
ReadOnly True
TabStop False
textBox6 Text Box:
Property Name Property Value
Name txtTopLeft
ForeColor Blue
Font Comic Sans MS
Font Style Bold
Font Size 28
TextAlign Center
ReadOnly True
TabStop False
textBox7 Text Box:
Property Name Property Value
Name txtTopMiddle
ForeColor Blue
Font Comic Sans MS
Font Style Bold
Font Size 28
TextAlign Center
ReadOnly True
TabStop False
textBox8 Text Box:
Property Name Property Value
Name txtTopRight
ForeColor Blue
Font Comic Sans MS

Font Style Bold
Font Size 28
TextAlign Center
ReadOnly True
TabStop False
textBox9 Text Box:
Property Name Property Value
Name txtMiddleLeft
ForeColor Blue
Font Comic Sans MS
Font Style Bold
Font Size 28
TextAlign Center
ReadOnly True
TabStop False
textBox10 Text Box:
Property Name Property Value
Name txtMiddleMiddle
ForeColor Blue
Font Comic Sans MS
Font Style Bold
Font Size 28
TextAlign Center
ReadOnly True
TabStop False
textBox11 Text Box:
Property Name Property Value
Name txtMiddleRight
ForeColor Blue
Font Comic Sans MS
Font Style Bold
Font Size 28

TextAlign Center
ReadOnly True
TabStop False
textBox12 Text Box:
Property Name Property Value
Name txtBottomLeft
ForeColor Blue
Font Comic Sans MS
Font Style Bold
Font Size 28
TextAlign Center
ReadOnly True
TabStop False
textBox13 Text Box:
Property Name Property Value
Name txtBottomMiddle
ForeColor Blue
Font Comic Sans MS
Font Style Bold
Font Size 28
TextAlign Center
ReadOnly True
TabStop False
textBox14 Text Box:
Property Name Property Value
Name txtBottomRight
ForeColor Blue
Font Comic Sans MS
Font Style Bold
Font Size 28
TextAlign Center
ReadOnly True

TabStop False
button1 Button:
Property Name Property Value
Name btnReset
Text Reset Game
button2 Button:
Property Name Property Value
Name btnMark

Image

Now, resize the form so the second button (btnMark) does not appear on
the form – you’ll see why when we discuss coding. When done setting
properties, my form looks like this:

Image

Notice how the “skinny text boxes” form the playing grid.

Write Event Methods

We need Click event methods for each of the text boxes where the X’s and
O’s will be drawn. And, we need a Click event for the Reset button.

Add this code to the general declarations area:

bool xTurn; // if true, it's X's turn

TextBox squareClicked; // tells which text box is clicked

Use this in the Form1_Load event to initialize the XTurn variable:

private void Form1_Load(object sender, EventArgs e)

{

// make it X's turn

xTurn = true;

}

The btnReset_Click event method clears the grid and starts another game:

private void btnReset_Click(object sender, EventArgs e)

{

// Clear board

txtTopLeft.Text = "";

txtTopMiddle.Text = "";

txtTopRight.Text = "";

txtMiddleLeft.Text = "";

txtMiddleMiddle.Text = "";

txtMiddleRight.Text = "";

txtBottomLeft.Text = "";

txtBottomMiddle.Text = "";

txtBottomRight.Text = "";

// Make it X's turn

xTurn = true;

txtMessage.Text = "X's Turn";

}

Whenever one of the nine text box controls is clicked, we need to first
make sure there is no mark there yet. If there is no mark, we decide

whether to place an X or an O in the space. Then, we make it the other
player’s turn. Notice you would need essentially the same code in nine
different text box Click events. I don’t think you want to write lots of
duplicate code. We’ll create what is known as a general method (one not
directly accessible to the user through some event) to do this check. We’ll
do this with the “hidden” button we placed on the form named btnMark. In
this button’s Click event, we write the code to go through the marking
method. Then, each time a text box is clicked, we will go to this general
method to do the marking. The form level variable (a TextBox type)
squareClicked tells us which particular text box control has been clicked
and should be marked.

For our problem, the btnMark_Click event method is:

private void btnMark_Click(object sender, EventArgs e)

{

// Place mark in SquareClicked (if none there already)

if (squareClicked.Text == "")

{

if (xTurn)

{

squareClicked.Text = "X";

xTurn = false;

txtMessage.Text = "O's Turn";

}

else

{

squareClicked.Text = "O";

xTurn = true;

txtMessage.Text = "X's Turn";

}

}

}

Now that we have the btnMark_Click method, how and when do we access
it? It’s simple. In each text box Click event, we will identify which text box
has been clicked (using SquareClicked) and then add this single line of
code:

btnMark.PerformClick();

This code simulates clicking our hidden button and the general method
code is executed. Pretty neat, huh?

Image

The code for each text box control’s Click event is straightforward:

private void txtTopLeft_Click(object sender, EventArgs e)

{

squareClicked = txtTopLeft;

btnMark.PerformClick();

}

private void txtTopMiddle_Click(object sender, EventArgs e)

{

squareClicked = txtTopMiddle;

btnMark.PerformClick();

}

private void txtTopRight_Click(object sender, EventArgs e)

{

squareClicked = txtTopRight;

btnMark.PerformClick();

}

private void txtMiddleLeft_Click(object sender, EventArgs e)

{

squareClicked = txtMiddleLeft;

btnMark.PerformClick();

}

private void txtMiddleMiddle_Click(object sender, EventArgs e)

{

squareClicked = txtMiddleMiddle;

btnMark.PerformClick();

}

private void txtMiddleRight_Click(object sender, EventArgs e)

{

squareClicked = txtMiddleRight;

btnMark.PerformClick();

}

private void txtBottomLeft_Click(object sender, EventArgs e)

{

squareClicked = txtBottomLeft;

btnMark.PerformClick();

}

private void txtBottomMiddle_Click(object sender, EventArgs e)

{

squareClicked = txtBottomMiddle;

btnMark.PerformClick();

}

private void txtBottomRight_Click(object sender, EventArgs e)

{

squareClicked = txtBottomRight;

btnMark.PerformClick();

}

Run the Project

Save your work. Run the project. Playing the game is obvious. X goes first
and clicks the desired square. Then, it’s O’s turn. Alternate turns until there
is a winner or the grid is full without a winner (a tie). Click Reset at any
time to start a new game. Here’s the middle of a game I tried:

Image

Other Things to Try

Image

Two adaptations to this project jump out. First, there is no logic to detect a
win. The players must look at the grid and decide if someone has won. See
if you can add logic to check if there is a winner after each move. The code
would be added at the end of the existing btnMark_Click general method.
This code would see if the symbols in the three horizontal directions, three
vertical directions or two diagonal directions are the same. If so, a win is
declared and the game is stopped.

The second modification (a much tougher one) would be to program the
computer to play the game against a human player. You could let the
computer have either X’s or O’s and use some kind of logic (maybe even
just random moves for a simple minded computer) for the computer to use
in generating moves. You would probably want another general method to
compute the computer moves. This is one of the first games ever
programmed by little Billy Gates!

Project 3 – Dice Rolling

Project Design

Image

It happens all the time. You get your favorite game out and the dice are
missing! This program comes to the rescue – it uses the C# random number
generator to roll two dice for you. Simply click a button to see the two dice

displayed. A group of picture box controls will hold the six possible die
values. This project is saved as DiceRoll in the project folder
(\VCSKids\VCSK Projects).

Place Controls on Form

Start a new project in Visual C#. Place two large picture box controls (to
display the dice) and six small picture box controls (to hold the six possible
die pictures) on the form. Place one button on the form. When done, you
form should resemble this:

Image

Set Control Properties

Set the control properties using the properties window:

Form1 Form:
Property Name Property Value
Text Dice Rolling
BackColor Red
FormBorderStyle FixedSingle
StartPosition CenterScreen
pictureBox1 Picture Box:
Property Name Property Value
Name picDice1
SizeMode StretchImage
pictureBox2 Picture Box:
Property Name Property Value
Name picDice2
SizeMode StretchImage
pictureBox3 Picture Box:
Property Name Property Value
Name picDots1

Image Dice1.gif (in \VCSKids\VCSK Projects\DiceRoll
folder)

SizeMode StretchImage
Visible False
pictureBox4 Picture Box:
Property Name Property Value
Name picDots2

Image Dice2.gif (in \VCSKids\VCSK Projects\DiceRoll
folder)

SizeMode StretchImage
Visible False
pictureBox5 Picture Box:
Property Name Property Value
Name picDots3

Image Dice3.gif (in \VCSKids\VCSK Projects\DiceRoll
folder)

SizeMode StretchImage
Visible False
pictureBox6 Picture Box:
Property Name Property Value
Name picDots4

Image Dice4.gif (in \VCSKids\VCSK Projects\DiceRoll
folder)

SizeMode StretchImage
Visible False
pictureBox7 Picture Box:
Property Name Property Value
Name picDots5

Image Dice5.gif (in \VCSKids\VCSK Projects\DiceRoll
folder)

SizeMode StretchImage
Visible False

pictureBox8 Picture Box:
Property Name Property Value
Name picDots6

Image Dice6.gif (in \VCSKids\VCSK Projects\DiceRoll
folder)

SizeMode StretchImage
Visible False
button1 Button:
Property Name Property Value
Name btnRoll
Text Roll Dice

When, done my form looks like this:

Image

Notice we use two sets of picture boxes. The first, picDice1 and picDice2,
is used to display the two dice. The second, picDots1 – picDots6, is used to
store the six possible die pictures. This second group has a Visible property
of False. Hence, you only see them displayed at design time.

Image

Write Event Methods

To roll the dice, simply click Roll Dice.

Declare an array of images (named dots) in the general declarations area.
This array will be used to choose which of the six possible images to
display. You also need a random number object:

Image[] dots = new Image[6];

Random myRandom = new Random();

Add this code to the Form1_Load event. Here, we establish the image array
and ‘click’ the btnRoll button to ‘roll’ the dice before the display is

activated:

private void Form1_Load(object sender, EventArgs e)

{

// initialize display

dots[0] = picDots1.Image;

dots[1] = picDots2.Image;

dots[2] = picDots3.Image;

dots[3] = picDots4.Image;

dots[4] = picDots5.Image;

dots[5] = picDots6.Image;

btnRoll.PerformClick();

}

The btnRoll_Click event method:

private void btnRoll_Click(object sender, EventArgs e)

{

// Roll Dice 1 and set display

picDice1.Image = dots[myRandom.Next(6)];

// Roll Dice 2 and set display

picDice2.Image = dots[myRandom.Next(6)];

}

Run the Project

Save your work. Run the project. Click Roll Dice to see the dice change
with each click. Look at the code to see how the random number (1 through
6) is generated and how the image array (Dots) sets the display. Here’s one
of my rolls:

Image

Other Things to Try

Image

The game of Yahtzee requires 5 dice. Modify the project to roll and display
five dice. Or, let the user decide how many dice to display (you could more
‘display’ picture boxes and use the Visible property to specify whether a
particular die is displayed). Add a label control that displays the sum of the
displayed dice.

A fun change would be to have the die displays updated by a Timer control
to give the appearance of rolling dice. You would need a Timer control for
each die (every 100 milliseconds or so, randomly display from 1 to 6 dots).
And, then you would need a Timer control to stop the ‘rolling’ (use an
Interval of about 2000 milliseconds). The btnRoll button would control
enabling on the Timer controls. All Timer controls are turned off (Enabled
is set to false) by the Timer event that stops the rolling.

Project 4 – State Capitals

Image

Project Design

In this project, we build a fun game for home and school. You will be given
the name of a state in the United States and four possible choices for its
capital city. You click on the guess of your choice to see if you are right.

(We apologize to our foreign readers – perhaps you can modify this project
to build a similar multiple choice type game). Click on Next State for
another question. This project is saved as StateCapitals in the project folder
(\VCSKids\VCSK Projects).

Image

Place Controls on Form

Start a new project in Visual C#. Place two label controls, five text boxes
and two buttons on the form. When done, you form should resemble this:

Image

Set Control Properties

Set the control properties using the properties window:

Form1 Form:
Property Name Property Value
Text State Capitals
FormBorderStyle FixedSingle
StartPosition CenterScreen
label1 Label:
Property Name Property Value
Name lblHeadState
Text State:
Font Size 14
Font Style Italic
textBox1 Text Box:
Property Name Property Value
Name txtState
BackColor White
Font Size 14
ReadOnly True

TextAlign Center
TabStop False
label2 Label:
Property Name Property Value
Name lblHeadCapital
Text Capital:
Font Size 14
Font Style Italic
textBox2 Text Box:
Property Name Property Value
Name txtCapital0
BackColor White
Font Size 14
ReadOnly True
TextAlign Center
TabStop False
textBox3 Text Box:
Property Name Property Value
Name txtCapital1
BackColor White
Font Size 14
ReadOnly True
TextAlign Center
TabStop False
textBox4 Text Box:
Property Name Property Value
Name txtCapital2
BackColor White
Font Size 14
ReadOnly True
TextAlign Center
TabStop False

textBox5 Text Box:
Property Name Property Value
Name txtCapita3
BackColor White
Font Size 14
ReadOnly True
TextAlign Center
TabStop False
button1 Button:
Property Name Property Value
Name btnNext
Text Next State
button2 Button:
Property Name Property Value
Name btnCheck

Resize the form so btnCheck does not appear (we’ll use this as a general
method button). When done, the form looks like this :

Image

Write Event Methods

To display a state and possible capitals, click Next State. Click on your
choice for answer.

Put this code in the general declarations area:

int answer;

string[] state = new string[50];

string[] capital = new string[50];

TextBox[] listedCapital = new TextBox[4];

int capitalClicked;

Random myRandom = new Random();

Add this code to the Form1_Load event (yes, it’s a lot of typing or just
copy and paste from these notes):

private void Form1_Load(object sender, EventArgs e)

{

// load state and capital arrays

state[0] = "Alabama"; capital[0] = "Montgomery";

state[1] = "Alaska"; capital[1] = "Juneau";

state[2] = "Arizona"; capital[2] = "Phoenix";

state[3] = "Arkansas"; capital[3] = "Little Rock";

state[4] = "California"; capital[4] = "Sacramento";

state[5] = "Colorado"; capital[5] = "Denver";

state[6] = "Connecticut"; capital[6] = "Hartford";

state[7] = "Delaware"; capital[7] = "Dover";

state[8] = "Florida"; capital[8] = "Tallahassee";

state[9] = "Georgia"; capital[9] = "Atlanta";

state[10] = "Hawaii"; capital[10] = "Honolulu";

state[11] = "Idaho"; capital[11] = "Boise";

state[12] = "Illinois"; capital[12] = "Springfield";

state[13] = "Indiana"; capital[13] = "Indianapolis";

state[14] = "Iowa"; capital[14] = "Des Moines";

state[15] = "Kansas"; capital[15] = "Topeka";

state[16] = "Kentucky"; capital[16] = "Frankfort";

state[17] = "Louisiana"; capital[17] = "Baton Rouge";

state[18] = "Maine"; capital[18] = "Augusta";

state[19] = "Maryland"; capital[19] = "Annapolis";

state[20] = "Massachusetts"; capital[20] = "Boston";

state[21] = "Michigan"; capital[21] = "Lansing";

state[22] = "Minnesota"; capital[22] = "Saint Paul";

state[23] = "Mississippi"; capital[23] = "Jackson";

state[24] = "Missouri"; capital[24] = "Jefferson City";

state[25] = "Montana"; capital[25] = "Helena";

state[26] = "Nebraska"; capital[26] = "Lincoln";

state[27] = "Nevada"; capital[27] = "Carson City";

state[28] = "New Hampshire"; capital[28] = "Concord";

state[29] = "New Jersey"; capital[29] = "Trenton";

state[30] = "New Mexico"; capital[30] = "Santa Fe";

state[31] = "New York"; capital[31] = "Albany";

state[32] = "North Carolina"; capital[32] = "Raleigh";

state[33] = "North Dakota"; capital[33] = "Bismarck";

state[34] = "Ohio"; capital[34] = "Columbus";

state[35] = "Oklahoma"; capital[35] = "Oklahoma City";

state[36] = "Oregon"; capital[36] = "Salem";

state[37] = "Pennsylvania"; capital[37] = "Harrisburg";

state[38] = "Rhode Island"; capital[38] = "Providence";

state[39] = "South Carolina"; capital[39] = "Columbia";

state[40] = "South Dakota"; capital[40] = "Pierre";

state[41] = "Tennessee"; capital[41] = "Nashville";

state[42] = "Texas"; capital[42] = "Austin";

state[43] = "Utah"; capital[43] = "Salt Lake City";

state[44] = "Vermont"; capital[44] = "Montpelier";

state[45] = "Virginia"; capital[45] = "Richmond";

state[46] = "Washington"; capital[46] = "Olympia";

state[47] = "West Virginia"; capital[47] = "Charleston";

state[48] = "Wisconsin"; capital[48] = "Madison";

state[49] = "Wyoming"; capital[49] = "Cheyenne";

// Set listed capital labels

listedCapital[0] = txtCapital0;

listedCapital[1] = txtCapital1;

listedCapital[2] = txtCapital2;

listedCapital[3] = txtCapital3;

// set first question

btnNext.PerformClick();

}

The btnNext_Click event method generates the next multiple choice
question:

private void btnNext_Click(object sender, EventArgs e)

{

int[] vUsed = new int[50];

int[] index = new int[4];

int j;

// Generate the next question at random

btnNext.Enabled = false;

answer = myRandom.Next(50);

// Display selected state

txtState.Text = state[answer];

// Vused array is used to see which state capitals have

// been selected as possible answers

for (int i = 0; i < 50; i++)

{

vUsed[i] = 0;

}

// Pick four different state indices (J) at random

// These are used to set up multiple choice answers

// Stored in the Index array

for (int i = 0; i < 4; i++)

{

// Find index not used yet and not the answer

//Find value not used yet and not the answer

do

{

j = myRandom.Next(50);

}

while (vUsed[j] != 0 || j == answer);

vUsed[j] = 1;

index[i] = j;

}

// Now replace one index (at random) with correct answer

index[myRandom.Next(4)] = answer;

// Display multiple choice answers in text boxes

for (int i = 0; i < 4; i++)

{

listedCapital[i].Text = capital[index[i]];

}

}

A new concept in this routine is the do loop (shaded line) to pick the
different possible answers. Let’s explain how this particular loop works.

The form used in this code is:

do

{

[C# code]

}

while condition;

In this “loop,” the C# code between the do line and the while line is
repeated as long as the specified condition is true. See if you can see how
this loop allows us to pick four distinct capital cities for the multiple choice
answers (no repeated values).

Image

The event methods for clicking the capital city text box controls simply
identify which text box was clicked and “clicks” the hidden btnCheck
button:

private void txtCapital0_Click(object sender, EventArgs e)

{

capitalClicked = 0;

btnCheck.PerformClick();

}

private void txtCapital1_Click(object sender, EventArgs e)

{

capitalClicked = 1;

btnCheck.PerformClick();

}

private void txtCapital2_Click(object sender, EventArgs e)

{

capitalClicked = 2;

btnCheck.PerformClick();

}

private void txtCapital3_Click(object sender, EventArgs e)

{

capitalClicked = 3;

btnCheck.PerformClick();

}

We write a btnCheck_Click “hidden” general method to check the answer
(when it is selected by clicking a text box control):

private void btnCheck_Click(object sender, EventArgs e)

{

// If already answered, ignore click

if (listedCapital[capitalClicked].Text != "" && btnNext.Enabled == false)

{

// Check clicked answer

if (listedCapital[capitalClicked].Text == capital[answer])

{

// Correct answer - clear out other answers and enable Next button

for (int i = 0; i < 4; i++)

{

if (i != capitalClicked)

{

listedCapital[i].Text = "";

}

}

btnNext.Enabled = true;

btnNext.Focus();

}

else

{

// Incorrect answer - clear out selected answer

listedCapital[capitalClicked].Text = "";

}

}

}

Run the Project

Save your work. Run the project. A state name and four possible capital
cities will be displayed. (Study the code used to choose and sort the
possible answers – this kind of code is very useful.) Choose an answer. If
correct, the other answers will be cleared. Click Next State to continue. If
incorrect, your choice will be cleared. Keeping answering until correct.
Here’s a run I made where I missed on my first guess:

Image

Other Things to Try

Image

This would be a fun project to modify. How about changing it to display a
capital city with four states as the multiple choices? Allow the user to type
in the answer (use a text box) instead of picking from a list. Add some kind
of scoring system.

This program could also be used to build general multiple choice tests from
any two lists. You could do language translations (given a word in English,
choose the corresponding word in Spanish), given a book, choose the
author, or given an invention, name the inventor. Use your imagination.

Project 5 – Memory Game

Image

Project Design

In this game for little kids, sixteen squares are used to hide eight different
pairs of pictures. The player chooses two squares on the board and the
pictures behind them are revealed. If the pictures match, those squares are
removed from the board. If there is no match, the pictures are recovered
and the player tries again. The play continues until all eight pairs are
matched up. The game is saved as MemoryGame in the project folder
(\VCSKids\VCSK Projects).

Image

Place Controls on Form

Start a new project in Visual C#. Place sixteen large picture box controls
and nine smaller picture box controls on the form. Place two buttons and a
timer on the form. When done, you form should resemble this:

Image

Set Control Properties

Set the control properties using the properties window:

Form1 Form:
Property Name Property Value
Text Memory Game
FormBorderStyle FixedSingle
StartPosition CenterScreen
pictureBox1 Picture Box:
Property Name Property Value
Name picHidden0
SizeMode StretchImage
pictureBox2 Picture Box:
Property Name Property Value
Name picHidden1

SizeMode StretchImage
pictureBox3 Picture Box:
Property Name Property Value
Name picHidden2
SizeMode StretchImage
pictureBox4 Picture Box:
Property Name Property Value
Name picHidden3
SizeMode StretchImage
pictureBox5 Picture Box:
Property Name Property Value
Name picHidden4
SizeMode StretchImage
pictureBox6 Picture Box:
Property Name Property Value
Name picHidden5
SizeMode StretchImage
pictureBox7 Picture Box:
Property Name Property Value
Name picHidden6
SizeMode StretchImage
pictureBox8 Picture Box:
Property Name Property Value
Name picHidden7
SizeMode StretchImage
pictureBox9 Picture Box:
Property Name Property Value
Name picHidden8
SizeMode StretchImage
pictureBox10 Picture Box:
Property Name Property Value
Name picHidden9

SizeMode StretchImage
pictureBox11 Picture Box:
Property Name Property Value
Name picHidden10
SizeMode StretchImage
pictureBox12 Picture Box:
Property Name Property Value
Name picHidden11
SizeMode StretchImage
pictureBox13 Picture Box:
Property Name Property Value
Name picHidden12
SizeMode StretchImage
pictureBox14 Picture Box:
Property Name Property Value
Name picHidden13
SizeMode StretchImage
pictureBox15 Picture Box:
Property Name Property Value
Name picHidden14
SizeMode StretchImage
pictureBox16 Picture Box:
Property Name Property Value
Name picHidden15
SizeMode StretchImage
pictureBox17 Picture Box:
Property Name Property Value
Name picBack
SizeMode StretchImage

Image Back.gif (in
\VCSKids\VCSKProjects\MemoryGamefolder)

Visible False

pictureBox18 Picture Box:
Property Name Property Value
Name picChoice0
SizeMode StretchImage

Image Ball.gif (in
\VCSKids\VCSKProjects\MemoryGamefolder)

Visible False
pictureBox19 Picture Box:
Property Name Property Value
Name picChoice1
SizeMode StretchImage

Image Gift.gif (in
\VCSKids\VCSKProjects\MemoryGamefolder)

Visible False
pictureBox20 Picture Box:
Property Name Property Value
Name picChoice2
SizeMode StretchImage

Image Bear.gif (in
\VCSKids\VCSProjects\MemoryGamefolder)

Visible False
pictureBox21 Picture Box:
Property Name Property Value
Name picChoice3
SizeMode StretchImage

Image Block.gif (in
\VCSKids\VCSKProjects\MemoryGamefolder)

Visible False
pictureBox22 Picture Box:
Property Name Property Value
Name picChoice4
SizeMode StretchImage

Image Ducky.gif (in
\VCSKids\VCSKProjects\MemoryGamefolder)

Visible False
pictureBox23 Picture Box:
Property Name Property Value
Name picChoice5
SizeMode StretchImage

Image Burger.gif (in
\VCSKids\VCSKProjects\MemoryGamefolder)

Visible False
pictureBox24 Picture Box:
Property Name Property Value
Name picChoice6
SizeMode StretchImage

Image Hotdog.gif (in
\VCSKids\VCSKProjects\MemoryGamefolder)

Visible False
pictureBox25 Picture Box:
Property Name Property Value
Name picChoice7
SizeMode StretchImage

Image Cake.gif (in
\VCSKids\VCSKProjects\MemoryGamefolder)

Visible False
button1 Button:
Property Name Property Value
Name btnNew
Text New Game
button2 Button:
Property Name Property Value
Name btnCheck
timer1 Timer:

Property Name Property Value
Name timDelay
Interval 1000

The completed form appears like this:

Before continuing, resize the form to hide btnCheck, a button we use for a
general method. A few of the graphics will disappear, but that’s okay since
their Visible property is False anyway.

Write Event Methods

When the game starts, pick one box, then another. The game stops when all
matching picture pairs have been found. A delay is used to display the
pictures for one second before deciding whether or not there is a match. At
any time, click New Game to start again.

Add this code to the general declarations area:

int choice;

int[] picked = new int[2];

int[] behind = new int[16];

PictureBox[] displayed = new PictureBox[16];

PictureBox[] choices = new PictureBox[8];

Random myRandom = new Random();

The Form1_Load event establishes images to pick from

private void Form1_Load(object sender, EventArgs e)

{

//establish display and choices picture boxes

displayed[0] = picHidden0;

displayed[1] = picHidden1;

displayed[2] = picHidden2;

displayed[3] = picHidden3;

displayed[4] = picHidden4;

displayed[5] = picHidden5;

displayed[6] = picHidden6;

displayed[7] = picHidden7;

displayed[8] = picHidden8;

displayed[9] = picHidden9;

displayed[10] = picHidden10;

displayed[11] = picHidden11;

displayed[12] = picHidden12;

displayed[13] = picHidden13;

displayed[14] = picHidden14;

displayed[15] = picHidden15;

choices[0] = picChoice0;

choices[1] = picChoice1;

choices[2] = picChoice2;

choices[3] = picChoice3;

choices[4] = picChoice4;

choices[5] = picChoice5;

choices[6] = picChoice6;

choices[7] = picChoice7;

// start new game

btnNew.PerformClick();

}

The btnNew_Click event method sets up the hidden pictures:

private void btnNew_Click(object sender, EventArgs e)

{

for (int i = 0; i < 16; i++)

{

// replace with card back

displayed[i].Image = picBack.Image;

displayed[i].Visible = true;

behind[i] = i;

}

// Randomly sort 16 integers (0 to 15) using Shuffle routine from Class 9

// behind array contains indexes (0-7) for hidden pictures

// Work through remaining values

// Start at 16 and swap one value

// at each for loop step

// After each step, remaining is decreased by 1

for (int remaining = 16; remaining >= 1; remaining--)

{

// Pick item at random

int itemPicked = myRandom.Next(remaining);

// Swap picked item with bottom item

int tempValue = behind[itemPicked];

behind[itemPicked] = behind[remaining - 1];

behind[remaining - 1] = tempValue;

}

for (int i = 0; i < 16; i++)

{

if (behind[i] > 7)

{

behind[i] = behind[i] - 8;

}

}

choice = 0;

}

The Click event methods for the 16 picture boxes:

private void picHidden0_Click(object sender, EventArgs e)

{

picked[choice] = 0;

btnCheck.PerformClick();

}

private void picHidden1_Click(object sender, EventArgs e)

{

picked[choice] = 1;

btnCheck.PerformClick();

}

private void picHidden2_Click(object sender, EventArgs e)

{

picked[choice] = 2;

btnCheck.PerformClick();

}

private void picHidden3_Click(object sender, EventArgs e)

{

picked[choice] = 3;

btnCheck.PerformClick();

}

private void picHidden4_Click(object sender, EventArgs e)

{

picked[choice] = 4;

btnCheck.PerformClick();

}

private void picHidden5_Click(object sender, EventArgs e)

{

picked[choice] = 5;

btnCheck.PerformClick();

}

private void picHidden6_Click(object sender, EventArgs e)

{

picked[choice] = 6;

btnCheck.PerformClick();

}

private void picHidden7_Click(object sender, EventArgs e)

{

picked[choice] = 7;

btnCheck.PerformClick();

}

private void picHidden8_Click(object sender, EventArgs e)

{

picked[choice] = 8;

btnCheck.PerformClick();

}

private void picHidden9_Click(object sender, EventArgs e)

{

picked[choice] = 9;

btnCheck.PerformClick();

}

private void picHidden10_Click(object sender, EventArgs e)

{

picked[choice] = 10;

btnCheck.PerformClick();

}

private void picHidden11_Click(object sender, EventArgs e)

{

picked[choice] = 11;

btnCheck.PerformClick();

}

private void picHidden12_Click(object sender, EventArgs e)

{

picked[choice] = 12;

btnCheck.PerformClick();

}

private void picHidden13_Click(object sender, EventArgs e)

{

picked[choice] = 13;

btnCheck.PerformClick();

}

private void picHidden14_Click(object sender, EventArgs e)

{

picked[choice] = 14;

btnCheck.PerformClick();

}

private void picHidden15_Click(object sender, EventArgs e)

{

picked[choice] = 15;

btnCheck.PerformClick();

}

The btnCheck_Click “hidden” general method that displays the choices for
a match:

private void btnCheck_Click(object sender, EventArgs e)

{

// Only execute if not trying to pick same box

if (choice == 0 || (choice == 1 && picked[0] != picked[1]))

{

// Display selected picture

displayed[picked[choice]].Image = choices[behind[picked[choice]]].Image;

displayed[picked[choice]].Refresh();

if (choice == 0)

{

// first choice - just display

choice = 1;

}

else

{

// Delay for one second before checking

timDelay.Enabled = true;

}

}

}

The timDelay_Tick method that checks for matches after a delay:

private void timDelay_Tick(object sender, EventArgs e)

{

timDelay.Enabled = false;

// After delay, check for match

if (behind[picked[0]] == behind[picked[1]])

{

// If match, remove pictures

displayed[picked[0]].Visible = false;

displayed[picked[1]].Visible = false;

}

else

{

// If no match, blank picture, restore backs

displayed[picked[0]].Image = picBack.Image;

displayed[picked[1]].Image = picBack.Image;

}

choice = 0;

}

Run the Project

Save your work. Run the project. Sixteen boxes appear. Click on one and
view the picture. Click on another. If there is a match, the two pictures are
removed (after a delay). If there is no match, the boxes are restored (also

after a delay). Once all matches are found, click New Game to play again.
Here’s the middle of a game I was playing (notice the form has been
resized at design time to hide the lower of the two button controls:

Other Things to Try

Image

Some things to help improve or change this game: add a scoring system to
keep track of how many tries you took to find all the matches, make it a
two player game where you compete against another player or the
computer, or set it up to match other items (shapes, colors, upper and lower
case letters, numbers and objects, etc.).

Bonus Project - Pong!

Image

In the early 1970’s, while Bill Gates and Paul Allen were still in high
school, a man named Nolan Bushnell began the video game revolution. He
invented a very simple game - a computer version of Ping Pong. There
were two paddles, one on each side of the screen. Players then bounced the
ball back and forth. If you missed the ball, the other player got a point.

This first game was called Pong. And, Nolan Bushnell was the founder of
Atari - the biggest video game maker for many years. (Nolan Bushnell also
founded Chucky Cheese’s Pizza Parlors, but that’s another story!) In this
bonus project, I give you my version of Pong written with Visual C#. I
don’t expect you to build this project, but you can if you want. Just load the
project (named Pong) and run it. Skim through the C# code - you should be
able to understand a lot of it. The idea of giving you this project is to let
you see what can be done with Visual C#.

In this version of Pong, a ball moves from one end of a panel to the other,
bouncing off side walls. Players try to deflect the ball at each end using a
controllable paddle. In my simple game, the left paddle is controlled with
the A and Z keys on the keyboard, while the right paddle is controlled with
the K and M keys (detected using KeyPress events). My solution freely
borrows code and techniques from several reference sources. The project
relies heavily on lots of coding techniques you haven’t seen. You will learn
about these as you progress in your Visual C# studies.

Start Visual C#. Open the project named Pong in the project folder
(\VCSKids\VCSK Projects). Look at the form. Here’s what my finished
form looks like (with control names identified):

Image

The graphics (paddles and ball) are loaded from files stored with the
application. Try to identify controls you have seen before. Go to the
properties window and look at the assigned properties. Run the project and
play the game with someone. In particular, notice the cool sounds (if you
have a sound card in your computer). This is something that should be a
part of any Visual C# project – these sounds are also loaded from files.
Have fun with Pong! Can you believe people used to spend hours
mesmerized by this game? It seems very tame compared to today’s video

games, but it holds a warm spot in many people’s gaming hearts. Here’s a
game I was playing:

Image

Image

More Self-Study or Instructor-Led Computer Programming Tutorials by
Kidware Software

Image

Small Basic For Kids is an illustrated introduction to computer
programming that provides an interactive, self-paced tutorial to the new
Small Basic programming environment. The book consists of 30 short
lessons that explain how to create and run a Small Basic program.
Elementary students learn about program design and many elements of the
Small Basic language. Numerous examples are used to demonstrate every
step in the building process. The tutorial also includes two complete games
(Hangman and Pizza Zapper) for students to build and try. Designed for
kids ages 8+.

Image

Programming Games with Microsoft Small Basic is a self-paced second
semester “intermediate" level programming tutorial consisting of 10
chapters explaining (in simple, easy-to-follow terms) how to write video
games in Microsoft Small Basic. The games built are non-violent, family-
friendly, and teach logical thinking skills. Students will learn how to
program the following Small Basic video games: Safecracker, Tic Tac Toe,
Match Game, Pizza Delivery, Moon Landing, and Leap Frog. This
intermediate level self-paced tutorial can be used at home or school.

Image

The Developer’s Reference Guide to Microsoft Small Basic While
developing all the different Microsoft Small Basic tutorials we found it
necessary to write The Developer's Reference Guide to Microsoft Small
Basic. The Developer's Reference Guide to Microsoft Small Basic is over
500 pages long and includes over 100 Small Basic programming examples
for you to learn from and include in your own Microsoft Small Basic
programs. It is a detailed reference guide for new developers.

Image

http://www.computerscienceforkids.com/microsoft-small-basic
http://www.computerscienceforkids.com/microsoft-small-basic
http://www.computerscienceforkids.com/microsoft-small-basic
http://www.computerscienceforkids.com/microsoft-small-basic

Basic Computer Games - Small Basic Edition is a re-make of the classic
BASIC COMPUTER GAMES book originally edited by David H. Ahl. It
contains 100 of the original text based BASIC games that inspired a whole
generation of programmers. Now these classic BASIC games have been re-
written in Microsoft Small Basic for a new generation to enjoy! The new
Small Basic games look and act like the original text based games. The
book includes all the original spaghetti code and GOTO commands!

Image

The Beginning Microsoft Small Basic Programming Tutorial is a self-study
first semester "beginner" programming tutorial consisting of 11 chapters
explaining (in simple, easy-to-follow terms) how to write Microsoft Small
Basic programs. Numerous examples are used to demonstrate every step in
the building process. The last chapter of this tutorial shows you how four
different Small Basic games could port to Visual Basic, Visual C# and Java.
This beginning level self-paced tutorial can be used at home or at school.
The tutorial is simple enough for kids ages 10+ yet engaging enough for
adults.

Image

Programming Home Projects with Microsoft Small Basic is a self-paced
programming tutorial explains (in simple, easy-to-follow terms) how to
build Small Basic Windows applications. Students learn about program
design, Small Basic objects, many elements of the Small Basic language,
and how to debug and distribute finished programs. Sequential file input
and output is also introduced. The projects built include a Dual-Mode
Stopwatch, Flash Card Math Quiz, Multiple Choice Exam, Blackjack Card
Game, Weight Monitor, Home Inventory Manager and a Snowball Toss
Game.

Image

David Ahl's Small Basic Computer Adventures is a Microsoft Small Basic
re-make of the classic Basic Computer Games programming book
originally written by David H. Ahl. This new book includes the following
classic adventure simulations; Marco Polo, Westward Ho!, The Longest

http://www.computerscienceforkids.com/microsoft-small-basic
http://www.computerscienceforkids.com/microsoft-small-basic
http://www.computerscienceforkids.com/microsoft-small-basic

Automobile Race, The Orient Express, Amelia Earhart: Around the World
Flight, Tour de France, Subway Scavenger, Hong Kong Hustle, and Voyage
to Neptune. Learn how to program these classic computer simulations in
Microsoft Small Basic.

Image

Java™ For Kids is a beginning programming tutorial consisting of 10
chapters explaining (in simple, easy-to-follow terms) how to build a Java
application. Students learn about project design, object-oriented
programming, console applications, graphics applications and many
elements of the Java language. Numerous examples are used to
demonstrate every step in the building process. The projects include a
number guessing game, a card game, an allowance calculator, a state
capitals game, Tic-Tac-Toe, a simple drawing program, and even a basic
video game. Designed for kids ages 12 and up.

Image

Learn Java™ GUI Applications is a 9 lesson Tutorial covering object-
oriented programming concepts, using an integrated development
environment to create and test Java projects, building and distributing GUI
applications, understanding and using the Swing control library, exception
handling, sequential file access, graphics, multimedia, advanced topics such
as printing, and help system authoring. Our Beginning Java or Java For
Kids tutorial is a pre-requisite for this tutorial.

Image

Java™ Homework Projects is a Java GUI Swing tutorial covering object-
oriented programming concepts. It explains (in simple, easy-to-follow
terms) how to build Java GUI project to use around the home. Students
learn about project design, the Java Swing controls, many elements of the
Java language, and how to distribute finished projects. The projects built
include a Dual-Mode Stopwatch, Flash Card Math Quiz, Multiple Choice
Exam, Blackjack Card Game, Weight Monitor, Home Inventory Manager
and a Snowball Toss Game. Our Learn Java GUI Applications tutorial is a
pre-requisite for this tutorial.

http://www.computerscienceforkids.com/java
http://www.computerscienceforkids.com/java
http://www.computerscienceforkids.com/java

Image

Beginning Java™ is a semester long "beginning" programming tutorial
consisting of 10 chapters explaining (in simple, easy-to-follow terms) how
to build a Java application. The tutorial includes several detailed computer
projects for students to build and try. These projects include a number
guessing game, card game, allowance calculator, drawing program, state
capitals game, and a couple of video games like Pong. We also include
several college prep bonus projects including a loan calculator, portfolio
manager, and checkbook balancer. Designed for students age 15 and up.

Image

Programming Games with Java™ is a semester long "intermediate"
programming tutorial consisting of 10 chapters explaining (in simple, easy-
to-follow terms) how to build a Visual C# Video Games. The games built
are non-violent, family-friendly and teach logical thinking skills. Students
will learn how to program the following Visual C# video games:
Safecracker, Tic Tac Toe, Match Game, Pizza Delivery, Moon Landing, and
Leap Frog. This intermediate level self-paced tutorial can be used at home
or school. The tutorial is simple enough for kids yet engaging enough for
beginning adults. Our Learn Java GUI Applications tutorial is a required
pre-requisite for this tutorial.

Image

Visual Basic® For Kids is a beginning programming tutorial consisting of
10 chapters explaining (in simple, easy-to-follow terms) how to build a
Visual Basic Windows application. Students learn about project design, the
Visual Basic toolbox, and many elements of the BASIC language. The
tutorial also includes several detailed computer projects for students to
build and try. These projects include a number guessing game, a card game,
an allowance calculator, a drawing program, a state capitals game, Tic-Tac-
Toe and even a simple video game. Designed for kids ages 12 and up.

Image

http://www.computerscienceforkids.com/java
http://www.computerscienceforkids.com/java
http://www.computerscienceforkids.com/visual-basic
http://www.computerscienceforkids.com/visual-basic

Programming Games with Visual Basic® is a semester long "intermediate"
programming tutorial consisting of 10 chapters explaining (in simple, easy-
to-follow terms) how to build Visual Basic Video Games. The games built
are non-violent, family-friendly, and teach logical thinking skills. Students
will learn how to program the following Visual Basic video games:
Safecracker, Tic Tac Toe, Match Game, Pizza Delivery, Moon Landing, and
Leap Frog. This intermediate level self-paced tutorial can be used at home
or school. The tutorial is simple enough for kids yet engaging enough for
beginning adults.

Image

LEARN VISUAL BASIC is a comprehensive college level programming
tutorial covering object-oriented programming, the Visual Basic integrated
development environment, building and distributing Windows applications
using the Windows Installer, exception handling, sequential file access,
graphics, multimedia, advanced topics such as web access, printing, and
HTML help system authoring. The tutorial also introduces database
applications (using ADO .NET) and web applications (using ASP.NET).

Image

Beginning Visual Basic® is a semester long self-paced "beginner"
programming tutorial consisting of 10 chapters explaining (in simple, easy-
to-follow terms) how to build a Visual Basic Windows application. The
tutorial includes several detailed computer projects for students to build and
try. These projects include a number guessing game, card game, allowance
calculator, drawing program, state capitals game, and a couple of video
games like Pong. We also include several college prep bonus projects
including a loan calculator, portfolio manager, and checkbook balancer.
Designed for students age 15 and up.

Image

Visual Basic® Homework Projects is a semester long self-paced
programming tutorial explains (in simple, easy-to-follow terms) how to
build a Visual Basic Windows project. Students learn about project design,

http://www.computerscienceforkids.com/visual-basic
http://www.computerscienceforkids.com/visual-basic
http://www.computerscienceforkids.com/visual-basic

the Visual Basic toolbox, many elements of the Visual Basic language, and
how to debug and distribute finished projects. The projects built include a
Dual-Mode Stopwatch, Flash Card Math Quiz, Multiple Choice Exam,
Blackjack Card Game, Weight Monitor, Home Inventory Manager and a
Snowball Toss Game.

Image

VISUAL BASIC AND DATABASES is a tutorial that provides a detailed
introduction to using Visual Basic for accessing and maintaining databases
for desktop applications. Topics covered include: database structure,
database design, Visual Basic project building, ADO .NET data objects
(connection, data adapter, command, data table), data bound controls,
proper interface design, structured query language (SQL), creating
databases using Access, SQL Server and ADOX, and database reports.
Actual projects developed include a book tracking system, a sales invoicing
program, a home inventory system and a daily weather monitor.

Image

Visual C#® For Kids is a beginning programming tutorial consisting of 10
chapters explaining (in simple, easy-to-follow terms) how to build a Visual
C# Windows application. Students learn about project design, the Visual C#
toolbox, and many elements of the C# language. Numerous examples are
used to demonstrate every step in the building process. The projects include
a number guessing game, a card game, an allowance calculator, a drawing
program, a state capitals game, Tic-Tac-Toe and even a simple video game.
Designed for kids ages 12+.

Image

Programming Games with Visual C#® is a semester long "intermediate"
programming tutorial consisting of 10 chapters explaining (in simple, easy-
to-follow terms) how to build a Visual C# Video Games. The games built
are non-violent, family-friendly and teach logical thinking skills. Students
will learn how to program the following Visual C# video games:
Safecracker, Tic Tac Toe, Match Game, Pizza Delivery, Moon Landing, and
Leap Frog. This intermediate level self-paced tutorial can be used at home

http://www.computerscienceforkids.com/visual-basic
http://www.computerscienceforkids.com/visual-c
http://www.computerscienceforkids.com/visual-c

or school. The tutorial is simple enough for kids yet engaging enough for
beginning adults

Image

LEARN VISUAL C# is a comprehensive college level computer
programming tutorial covering object-oriented programming, the Visual C#
integrated development environment and toolbox, building and distributing
Windows applications (using the Windows Installer), exception handling,
sequential file input and output, graphics, multimedia effects (animation
and sounds), advanced topics such as web access, printing, and HTML help
system authoring. The tutorial also introduces database applications (using
ADO .NET) and web applications (using ASP.NET).

Image

Beginning Visual C#® is a semester long “beginning" programming tutorial
consisting of 10 chapters explaining (in simple, easy-to-follow terms) how
to build a C# Windows application. The tutorial includes several detailed
computer projects for students to build and try. These projects include a
number guessing game, card game, allowance calculator, drawing program,
state capitals game, and a couple of video games like Pong. We also include
several college prep bonus projects including a loan calculator, portfolio
manager, and checkbook balancer. Designed for students ages 15+.

Image

Visual C#® Homework Projects is a semester long self-paced programming
tutorial explains (in simple, easy-to-follow terms) how to build a Visual C#
Windows project. Students learn about project design, the Visual C#
toolbox, many elements of the Visual C# language, and how to debug and
distribute finished projects. The projects built include a Dual-Mode
Stopwatch, Flash Card Math Quiz, Multiple Choice Exam, Blackjack Card
Game, Weight Monitor, Home Inventory Manager and a Snowball Toss
Game.

Image

http://www.computerscienceforkids.com/visual-c
http://www.computerscienceforkids.com/visual-c
http://www.computerscienceforkids.com/visual-c
http://www.computerscienceforkids.com/visual-c

VISUAL C# AND DATABASES is a tutorial that provides a detailed
introduction to using Visual C# for accessing and maintaining databases for
desktop applications. Topics covered include: database structure, database
design, Visual C# project building, ADO .NET data objects (connection,
data adapter, command, data table), data bound controls, proper interface
design, structured query language (SQL), creating databases using Access,
SQL Server and ADOX, and database reports. Actual projects developed
include a book tracking system, a sales invoicing program, a home
inventory system and a daily weather monitor.

This book was downloaded from AvaxHome!

Visit my blog for more new books:

www.avxhm.se/blogs/AlenMiler

https://tr.im/avaxhome

	Course Description
	Course Prerequisites
	A Brief Word on the Course
	Installing and Using the Downloadable Solution Files
	Using Visual C# For Kids
	How To Take the Course
	Forward by Alan Payne, A Computer Science Teacher
	1. Introducing Visual C#
	A Story About Bill and Paul
	Let’s Get Started
	Starting Visual C#
	Opening a Visual C# Project
	Running a Visual C# Project
	Stopping a Visual C# Project
	Stopping Visual C#
	Summary
	2. The Visual C# Design Environment
	Review and Preview
	Parts of a Visual C# Project
	Parts of the Visual C# Environment
	Starting a New Visual C# Project
	Main Window
	Solution Explorer Window
	Design Window
	Toolbox Window
	Properties Window
	Moving Around in Visual C#
	Solution Explorer Window
	Properties Window
	Code Window
	Summary
	3. Your First Visual C# Project
	Review and Preview
	Steps in Building a Visual C# Project
	Placing Controls on the Form
	Example
	Setting Control Properties (Design Mode)
	Naming Controls
	Setting Properties in Run Mode
	How Control Names are Used in Event Methods
	Writing Event Methods
	Example
	Summary
	4. Project Design, Forms, Buttons
	Review and Preview
	Project Design
	Saving a Visual C# Project
	On-Line Help
	The Form Control
	Properties
	Example
	Events
	Typical Use of Form Control
	Button Control
	Properties
	Example
	Events
	Typical Use of Button Control
	C# - The First Lesson
	Event Method Structure
	Some C# Programming Rules
	Assignment Statement
	Property Types
	Comments
	Project - Form Fun
	Project Design
	Place Controls on Form
	Set Control Properties
	Write Event Methods
	Run the Project
	Other Things to Try
	Summary
	5. Labels, Text Boxes, Variables
	Review and Preview
	Debugging a Visual C# Project
	Syntax Errors
	Run-Time Errors
	Logic Errors
	Label Control
	Properties
	Example
	Events
	Typical Use of Label Control
	Text Box Control
	Properties
	Example
	Events
	Typical Use of Text Box Control
	C# - The Second Lesson
	Variables
	Variable Names
	Variable Types
	Declaring Variables
	Type Casting
	Arithmetic Operators
	String/Number Conversion Methods
	String Concatenation
	Project - Savings Account
	Project Design
	Place Controls on Form
	Set Control Properties
	Write Event Methods
	Run the Project
	Other Things to Try
	Summary
	6. UpDown Control, Decisions, Random Numbers
	Review and Preview
	Numeric UpDown Control
	Properties
	Example
	Events
	Typical Use of Numeric UpDown Control
	C# - The Third Lesson
	Logical Expressions
	Comparison Operators
	Logical Operators
	Decisions - The If Statement
	Random Number Generator
	Project - Guess the Number Game
	Project Design
	Place Controls on Form
	Set Control Properties
	Write Event Methods
	Run the Project
	Other Things to Try
	Summary
	7. Icons, Group Boxes, Check Boxes, Radio Buttons
	Review and Preview
	Icons
	Custom Icons
	Assigning Icons to Forms
	Group Box Control
	Properties
	Placing Controls in a Group Box
	Example
	Typical Use of Group Box Control
	Check Box Control
	Properties
	Example
	Events
	Typical Use of Check Box Control
	Radio Button Control
	Properties
	Example
	Events
	Typical Use of Radio Button Control
	C# - The Fourth Lesson
	Decisions – Switch Structure
	Project - Sandwich Maker
	Project Design
	Place Controls on Form
	Set Control Properties
	Write Event Methods
	Run the Project
	Other Things to Try
	Summary
	8. Panels, Mouse Events, Colors
	Review and Preview
	Panel Control
	Properties
	Typical Use of Panel Control
	Graphics Using the Panel Control
	Graphics Methods
	Graphics Objects
	Colors
	Example
	Pen Objects
	Graphics Coordinates
	DrawLine Method
	Graphics Review
	Example
	C# - The Fifth Lesson
	Mouse Events
	MouseDown Event
	Example
	MouseUp Event
	Example
	MouseMove Event
	Example
	Project - Blackboard Fun
	Project Design
	Place Controls on Form
	Set Control Properties
	Write Event Methods
	Run the Project
	Other Things to Try
	Summary
	9. Picture Boxes, Arrays
	Review and Preview
	Picture Box Control
	Properties
	Image Property
	Example
	SizeMode Property
	Example
	Events
	Typical Use of Picture Box Control
	C# - The Sixth Lesson
	Variable Arrays
	C# for Loops
	Block Level Variables
	Method Level Variables
	Shuffle Routine
	Project - Card Wars
	Project Design
	Place Controls on Form
	Set Control Properties
	Write Event Methods
	Run the Project
	Other Things to Try
	Summary
	10. Timers, Animation, Keyboard Events
	Review and Preview
	Timer Control
	Properties
	Events
	Examples
	Typical Use of Timer Control
	C# - The Final Lesson
	Animation - The DrawImage Method
	Image Disappearance
	Border Crossing
	Image Erasure
	Collision Detection
	Keyboard Events
	KeyDown Event
	KeyPress Event
	Project – Beach Balls
	Project Design
	Place Controls on Form
	Set Control Properties
	Write Event Methods
	Run the Project
	Other Things to Try
	Summary
	Bonus Projects
	Preview
	Project 1 – Stopwatch
	Project Design
	Place Controls on Form
	Set Control Properties
	Write Event Methods
	Run the Project
	Other Things to Try
	Project 2 - Tic-Tac-Toe
	Project Design
	Place Controls on Form
	Set Control Properties
	Write Event Methods
	Run the Project
	Other Things to Try
	Project 3 - Dice Rolling
	Project Design
	Place Controls on Form
	Set Control Properties
	Write Event Methods
	Run the Project
	Other Things to Try
	Project 4 - State Capitals
	Project Design
	Place Controls on Form
	Set Control Properties
	Write Event Methods
	Run the Project
	Other Things to Try
	Project 5 - Memory Game
	Project Design
	Place Controls on Form
	Set Control Properties
	Write Event Methods
	Run the Project
	Other Things to Try
	Bonus Project – Pong!
	More Self-Study or Instructor-Led Computer Programming Tutorials by Kidware Software

