


Foreword 

At the invitation of the authors, it is my privilege to contribute a Foreword to 
this book. It is an English-language version of the French-language Acoustique 
G~n~rale, published in 1994 (which I reviewed in JSV 186(5)), translated into 
English and revised by the authors to make its contents more accessible to English 
speakers. 

Its contents are what is important. No other English-language book on acoustics 
contains as much concise information, both physically and mathematically 
rigorous, on the basic physical and theoretical concepts of acoustics and the 
methods of obtaining solutions applicable to practical problems of the mathema- 
tical problems of acoustics. 

Although acoustics is presented in the book as a collection of mathematical 
problems and how to solve them, the physical bases of these problems are initially 
spelled out in generality in the first chapter, in the context of continuum mechanics 
(which is not done in any other books on acoustics). In the subsequent seven 
chapters, both mathematically rigorous and approximate methods of solving the 
acoustical equations thus described are presented, including both analytical and 
numerical methods. The presentation throughout is very concise, and so the book is 
like a diamond mine for those willing to dig deep enough to find diamonds which 
encapsulate the problems they wish to solve. Since the authors, however, have all 
been brought up in the French tradition of 'rational mechanics', rather than the 
'empirical mechanics' tradition favoured among most English speakers, I have to 
conclude by saying that 'English-speakers' must be prepared to dig deep into the 
book if they want to find their diamonds. If they do so, I am sure that they will be 
duly rewarded. 

P.E. Doak 



Preface 

These lecture notes were first written in French, while the authors were teaching 
Acoustics at the University of Aix-Marseille, France. They correspond to a 6-month 
course given to postgraduate students before they begin a Ph.D. thesis. 

The reason for writing this book was, at the time we began, the lack of textbooks. 
Most of the books were either too specialized, and thus almost incomprehensible 
for students, or too exhaustive. We needed a basic course which could be presented 
within a rather short period of time to students who had a fair background in 
Mathematics and Mechanics but often no knowledge of Acoustics. 

The purpose of this book is to present the main basis of modelling in Acoustics. 
The expression 'modelling' used here includes the procedures used to describe a 
physical phenomenon by a system of equations and then to solve this system by 
analytical and/or  numerical methods. The unknown function of the equations is 
generally the sound pressure itself or some related function. First (and most) of all 
we wish to stress that when modelling a phenomenon it is necessary to have a good 
knowledge of the approximations introduced at each step, the kind of neglected 
phenomena and the conditions of validity of the solution methods. In wave 
propagation, for example, the unit length that is well adapted to the description of 
the phenomenon is the wavelength. Then there are 'low frequency' and 'high 
frequency' methods, and all dimensions must be compared with the wavelength. It 
is always essential to choose 'reasonable' approximations and the methods adapted 
to the problem. It is obviously a nonsense to develop or run a big routine in order 
to compute results which can be obtained simply through analytical methods. The 
book tries to give a clear overview on these aspects. 

Throughout the book we insist also on the properties of the solutions - mainly 
existence and uniqueness. One and only one solution corresponds to a stable 
physical phenomenon. It is therefore both natural and essential that the 
corresponding system of equations has one and only one solution. It must not be 
believed that because almost all problems must be solved with a computer, there is 
no need to examine the properties of the solutions. We attempt to show that 
mathematical theorems cannot be ignored when modelling physical phenomena 
and solving equations. 

Another purpose of this book is to provide the reader with basic and main 
concepts in order that he could read more specialized publications. 

Apart from corrections or improvements, the content has only been slightly 
modified from the French version. Chapter 1 has been reduced and Chapter 8, 
originally written by C. Lesueur and J.L. Guyader, is replaced by a chapter on the 
same subject written by P. Filippi. 
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The book is split into nine chapters. The aim of Chapter 1 is to establish wave 
equations in fluids and solids by linearizing the equations of conservation of mass, 
momentum and energy. The equations are obtained for homogeneous and 
heterogeneous media, boundary conditions, moving sources, etc. 

Chapter 2 is devoted to Acoustics in bounded domains. Methods to solve the 
Helmholtz equation are presented: method of separation of variables, image method 
and Green's representations. They are applied to several examples. The respective 
roles of eigenmodes and resonance modes are also shown and detailed in an example. 
The results are applied to the description of the establishment and extinction of sound. 

Chapter 3 is dedicated to boundary value problems solved by methods based on 
Green's kernels and integral representations. The radiation of simple sources in free 
space is expressed by using Green's kernels. Then Green's representations of the 
sound field, layer potentials and boundary integral equations are examined in 
detail. As an example of application, the Neumann problem for a circular 
boundary is considered. 

Chapter 4 is devoted to outdoor Acoustics. Phenomena of outdoor sound 
propagation are divided into three parts: propagation above ground, diffraction by 
an obstacle and propagation in an heterogeneous medium. For each of them a 
general survey of solution techniques is presented. 

Chapter 5 is a general presentation of (partly) analytical methods used in 
Acoustics. They are all based on analytical representations or approximations. 
Most of them are related to asymptotic expcmsions. They are all characterized by 
particular conditions of validity which must not be forgotten when using them. 
These conditions are described for each method. 

Chapter 6 contains the numerical aspects of the methods presented in chapter 3. 
It is dedicated to boundary integral equations: solution techniques, eigenvalue 
problems and singularities. 

Chapter 7 is dedicated to Acoustics in waveguides. Various aspects of sound 
propagation in ducts are examined. Most of the results are obtained through the 
method of separation of variables which leads to modal representations. 

Chapter 8 is devoted to a simple problem of interaction between a fluid and a 
vibrating structure - namely, sound transmission and radiation by thin plates. This 
is a coupled problem for the sound pressure in the fluid and the displacement on the 
plate. The different aspects of the physical phenomenon are examined on various 
examples. 

Exercises are gathered in Chapter 9. They provide complementary notions and 
illustrative examples of the course. 

Because in most chapters expressions related to Mathematical Analysis are used, 
a mathematical appendix is added to present in some detail the general interest of 
this theory when applied to Acoustics. This appendix also contains many of the 
notations used in the book. 

Each chapter as well as the appendix is ended by a list of books and publications 
in which more detailed information can be found, and the reader is highly 
recommended to refer to them. These lists are not exhaustive. They include most of 
the references used by the authors when preparing the present text. 
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Publishing this manuscript has been a long story. The first discussions between 
the authors date back to 1986. It was first an internal publication of the 
Laboratoire de M6canique et d'Acoustique. Then, with the strong help of Bernard 
Poir6e, it was published by the Soci6t6 Fran~aise d'Acoustique and the Editions de 
Physique in 1994. The present edition is mainly due to Professor Doak, who has 
been kind enough to appreciate the French version. He has dedicated himself to 
convincing Academic Press to publish it, and he does us the honour of writing the 
Foreword of this book. 

Finally, we are happy to take the opportunity to thank all the persons who 
contributed to the successive versions of the manuscript. We would particularly like 
to thank all the secretaries who helped us for the early drafts; they probably had the 
worst part of the work. We are also very grateful to the Academic Press staff for 
their very efficient help and courtesy and, finally, thanks again to Phil Doak for his 
friendly enthusiasm. 

Dominique Habault, Paul Filippi, Jean-Pierre Lefebvre and AimO Bergassoli 
Marseille, May 1998 
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Physical Basis of Acoustics 

J.P. Lefebvre 

Introduction 

Acoustics is concerned with the generation and space-time evolution of small 
mechanical perturbations in a fluid (sound waves) or in a solid (elastic waves). Then 
equations of acoustics are simply obtained by linearization of the equations of the 
mechanics of continua. 

The main phenomenon encountered in acoustics is wave propagation. This 
phenomenon is the only one that occurs in an infinite homogeneous medium. A 
second important phenomenon is scattering, due to the various obstacles and 
inhomogeneities encountered by the wave. A third, more tenuous, phenomenon is 
absorption and dispersion of waves, due to dissipation processes. 

The first and second phenomena need only a simple methodology: derivation of a 
wave equation and of a boundary condition from the linearized equations of the 
mechanics of continua for a homogeneous, steady, perfect simple fluid or elastic 
solid. That simple methodology allows us to solve a lot of problems, as other 
chapters of the book show. The third phenomenon, more subtle, needs many more 
conceptual tools, since it must call upon thermodynamics. 

In a first step, we recall basic equations of the mechanics of continua for the 
rather general case of a thermo-viscous fluid or a thermo-elastic solid. One obtains 
all material necessary for derivation of the acoustic equations in complex 
situations. 

In a second step we restrict ourselves to perfect simple fluids or elastic solids and 
linearize equations around an initial homogeneous steady state, leading to basic 
equations of elementary acoustics and elastic waves. Development of these simple 
cases are then proposed. 

1.1 Review of Mechanics of Continua 

Since acoustics is defined as small dynamic perturbations of a fluid or a solid, it is 
useful to make a quick recapitulation of the mechanics of continua in order to 
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establish equations that are to be linearized. Those equations are conservation 
equations, the state equation and behaviour equations. 

1.1.1. Conservat ion equations 

Conservation equations describe conservation of mass (continuity equation), 
momentum (motion equation) and energy (from the first law of thermodynamics). 

Let us consider a portion of material volume f~ filled with a (piecewise) 
continuous medium (for greater generality we suppose the existence of a 
discontinuity surface E - a shock wave or an interface - moving at velocity V); 
the equations of conservation of mass, momentum, and energy are as follows. 

Mass conservation equation (or continuity equation). The hypothesis of contin- 
uous medium allows us to introduce the notion of a (piecewise continuous) density 
function p, so that the total mass M of the material volume f~ is M = f~ p dft; the 
mass conservation (or continuity) equation is written 

p df~ - O (1.1) 

where d/dt is the material time derivative of the volume integral. 

Momentum conservation equation (or motion equation). Let ~7 be the local velocity; 
the momentum of the material volume f~ is defined as fn p~7 dft; and, if a is the 
stress tensor and ff the supply of body forces per unit volume (or volumic force 
source), the momentum balance equation for a volume f~ of boundary S with 
outward normal ff is written 

- -  p g  d f t  - a . f f  d S  + F dCt 
dt 

(1.2) 

Energy conservation equation (first law of thermodynamics). If e is the specific 
internal energy, the total energy of the material volume f~ is f~ p(g + �89 2) df~; and, 
if ~ is the heat flux vector and r the heat supply per unit volume and unit time (or 
volumic heat source), the energy balance equation for a volume 9t of boundary S 
with outer normal ff is written 

dt p(e + �89 ~2) d ~  - s (or. ~7- ~) .  ff dS + (F. ~ + r) d~t (1.3) 

Using the lemma on derivatives of integrals over a material volume 9t crossed by a 
discontinuity E of velocity V: 

re; - -  ~b df~ - - - +  V .  (~bg) df~ + [~b(~7- V ) .  ff]z df~ 
fl fl Ot r, 
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where [~I,]~ designates the jump ~ ( 2 )  _ r of the quantity ~ at the crossing of the 
discontinuity surface ~; or 

) ~ d a -  ~ + ~ V - ~  d a +  [ ~ ( ~ - P ) - ~ l ~ d ~  

with 

dr O~ 
- = ~ + ~ . V ~  

dt Ot 

the material time derivative of the function 4~. Using the formula 

VU. U. ff d S -  V . U d ft + [U. ff]r~ do- 

one obtains 

) - ~ + pv .  ~ da  + [p(~- v).,71~ d~ = o 

- I~ V " ~ d~ + J [~" ~]~ d~ + J~ P d~ 

j a ~ p(e + �89 + p(e + �89 �9 df~ + ~ [p(e + 1~2)(~_ 17). ~ de 

- I~ v .  ( ~ . ~ - ~ ) d ~ +  I~ [(~. V-q-). ~]~ d~+ I~ ( ~  ~+ r)d~ 

o r  

) + pV.  ~ d~ + ~ [p(~- ~). ,7]~ d ~ -  o 

(p~) + p ~ v .  ~ -  v . ~  - Y da + [(p~ | (,~- P) - ~). ~1~ d ~ -  o 

~ (p(e + lg2)) + p(e + lg2)V- g -  V .  (o.. g -  ~) - (ft. g + r) d a  

+ I [(p(e + l g 2 ) ( g _  p) _ (o.. g _  ~)). nlr, do - 0 
2 
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The continuity hypothesis states that all equations are true for any material volume 
f~. So one finds the local forms of the conservation equations: 

dp + pV . ~ -  0 [p(~- ~). ~1~ - 0 
dt 

d --, 
- -  (p~7) + p g ~ 7 .  ~ -  ~7. cr - F - -  0 [(p~7 | 0 7 -  V) - a ) .  ff]z - 0 
dt 

d 
_ (p(e + �89 + p(e + � 8 9  ~ _  v .  (~ .  ~ -  '7) - (Y" ~ + 0 - o 
dt 

[(p(e + �89 12) - (~r-~7- g)).  ff]r~ -- 0 

So at the discontinuities, one obtains 

[p@7- P). ~l~ = 0 

[(p~7 | 0 7 -  12) - ~r). if] z = 0 (1.4) 

[(p(e + �89 _ I2) - ((7. ]V - t~)). ff]z - 0 

Away from the discontinuity surfaces combining the first three local forms of the 
conservation equations above, one obtains 

o r  

[9+ pV.O--O 

p O - V . a = F  

p k + V . ~ = a ' D + r  

Op 
- -  + v . ( p ~ )  - o 

Ot 

( 0 ~  ) -. 
p -~- t+g .~7g - ~ 7 . c r - F  

(0e) p ~ + ~ - V e  + V . 4 - ~ ' m + r  

with D -  l(v~7 + T~7~) the strain rate tensor. 

(1.5) 

(1.6) 

1.1.2.  S tate  equation 

The state equation is the equation that describes the thermodynamic state of the 
material being considered. In particular, it describes whether it is a solid or a fluid. 

A material admits a certain number of independent thermodynamic state 
variables. Given this number, one can choose any as primary ones, provided that 
they are independent. The others will become secondary state variables and are 
generally called state functions, since they become functions of the primary state 
variables. The state equation is then the equation that describes the dependance of 
the specific internal energy e upon the chosen primary state variables. 
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In acoustics, since motions are isentropic, it is judicious to choose as a first 
primary state variable the specific entropy s, whose existence is postulated by the 
second law of thermodynamics. For  the choice of the others, one must distinguish 
between fluids and solids. 

Simple fluid 
A simple fluid is a medium that has the same response to loads from any two reference 
configurations having the same density. Thus the density p - or its inverse v -  p - l ,  
the specific volume - constitutes another natural primary thermodynamic state 
variable. 

The (caloric) state equation is the equation that describes the functional dependance 
of the specific internal energy upon the chosen pair of primary state variables (s, v): 

e -  e(s, v) or e -  e(s, p) 

Generally this equation does not exist  explicitly (except for a perfect gas), but some 
measures allow us to reach some local f o r m  (gradient and Hessian) of the function 
around a given state point, sufficient to describe small perturbations, such as 
acoustic movements are, around a state. For  example, the measurement of 
temperature T and pressure p at a given state point allows us to obtain the 
differential of the function e(s, v) at this point: 

d e -  T d s - p  dv (1.7) 

This equation, called the Gibbs equation, defines the (thermodynamic) tempera- 
ture T = (Oe/Os)v and the (thermodynamic) pressure p =- (Oe/Ov)s .  A new general 
writing of the state equation is: 

T =  T(s, v) or T =  T(s, p) 

p = p(s, v) or p = p(s, p) 

The Gibbs equation also allows us to rewrite the energy conservation equation as: 

Tp~ -- r " D - V . g + r 

having defined the viscosity stress tensor: 

(1.8) 

~ - -  a + p I  (I  is the unit tensor) (1.9) 

Other measures allow us to obtain the second derivatives of the function e(s, v), 
i.e. the first derivatives of the functions T(s, v) and p(s, v). With the chosen pair of 
primary state variables (s, v), they are the specific heat at constant volume, Cv, the 
isentropic (or adiabatic) compressibility Xs, and the isentropic (or adiabatic) 
expansivity as. These can be written in the synthetic form: 

d T - m  

d p  ~ m  

T 1 
d s - ~  dv 

Cv ~s v 

1 1 
d s - ~  dv 

OLs~ XsV 

o r  

T 1 
d T - - -  ds + ~  dp 

Cv asp 

1 ap-Z ap 
as XsP 

(1.10) 
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where 

(O e) (o:) 
Cv Os 2 

1.) 23 

defines the specific heat at constant volume, Cv = T(Os/OT)v; 

s 

defines the isentropic (or adiabatic) compressibility, X~ =-(1/v)(Ov/Op)s;  

, _ 
asV Os Ov s ,., 

defines the isentropic (or adiabatic) expansivity as =-(1 /v) (Ov/OT)s .  
For acoustics, since one is concerned with very small fluctuations (typically 10 -7, 

always less than 10-3), it will be sufficient to give these quantities at the chosen 
working state point To, Po, .... 

Elastic solid. A solid exhibits different responses to loads from reference 
configurations involving deformation of the material in going from one to the 
other. So the strain tensor c -  �89 + T~7zT) (ff being the displacement), constitutes 
another natural primary variable, and the state equation takes the form, for an 
elastic solid (which is adequate to describe the small deformations involved in 
acoustics): 

e = e(s, ~) 

Here also, one knows no explicit formulation of such an equation and, for acoustics, 
one needs only the first and second derivatives of e. 

The f i r s t  derivative of the state equation can be written 

defining temperature T - ( O e / O s ) ~  and stress tensor o0--p(Oe/Oeo.)s,~t(~t/o~. This 
allows us to rewrite the energy conservation equation as 

T pA-- - V .  ~ +  r (1.12) 

Remark:  One can decompose strain and stress tensors into spherical (index S) 
and deviatoric (index D) parts where tr D stands for the trace of the tensor D: 

e - -  e S -~- e D, ( 7 " -  O "S + O "D, with e s - �89 a)I, a s - �89 a)L 

so that tr r = tr r tr r = 0, tr a s =  tr or, tr a D = 0. 
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The first differential becomes 

with P - - � 8 9  o- being the hydrostatic pressure and d v / v -  tr(&) the dilatation. 
The hydrostatic pressure is defined by an expression similar to that for the 

thermodynamic pressure for a fluid: P =-(Oe/Ov)~,~  
Second derivatives of the state equation can be written in the synthetic form 

with 

T 
d T - ~  ds + Z / 3 o  de gj 

d --/~i.l" as -[- ~ 'Tijkl gEM 
kl 

o r  da o. - p/3ij ds + ~ Cijkl dekt 
kl 

(02e  l ( 2e l 
m m 

, ek l ( k l  r O) , e k l ( k l  r O) 

: / 

Cijkl--P'Tijkl- O'ij~kl (with 6a the Kronecker symbol) or, in tensoral notation, 
C = p ~ - a  | I) defining the specific heat C6 = T(Os/OT)~ and the stiffness tensor 
C : Cukt = (O~o. /&kt)~  

The equations for second derivatives can be rewritten, in tensorial notation, 

T 
d T - ~ d s + ~ ' &  

Cs (1.13) 

d ~ -  p3 & + C" de 

For an isotropic elastic solid the stiffness tensor will present only two 
independent components, and one can write Cijkt = A606kt + 2#6ik6jt with A, # 
being Lam6 coefficients. Then 

da = pfl ds + A tr(de)I + 2# de 

and, for isentropic deformations, 

dr = A tr(de)I + 2# de (1.14) 

These two examples of fluid and solid state equations are the simplest one can 
write, since they involve the minimum allowable number of independent state 
variables: specific entropy and specific volume for a simple fluid; specific entropy 
and strain tensor for an ideal elastic solid. 
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If one has to take into account other phenomena than purely thermo-mechanical 
phenomena, such as electrical or chemical effects, one has to introduce other 
independent state variables. For example, if a fluid is not a pure substance and is 
subjected to chemical reactions involving N species c~, one has to introduce, in 
addition to specific entropy s and specific volume v, the N - 1  independent 
concentrations ca, c~ E [1, N - 1] (since ~-~U= 1 ca -- 1). Then the state equation 
is e = e ( s , v ,  Cl, Cz, . . . ,cu_l)  and its first differential is d e = T d s - p d v  

N - 1  + Y ' ~ =  1 #~ dc~, defining temperature T, pressure p, and chemical potentials #~. 

1.1.3. Constitutive equations 

Constitutive equations give details of the behaviour of the material, specifying all 
the transport phenomena that occur in the medium; they are often called the 
phenomenological equations or the transport equations. Often the state equation is 
considered as one of them, simply more general than the others. The constitutive 
equations close the system of equations: with them one has the same number of 
equations as of unknowns. 

A simple way to generate the constitutive equations is to use the concepts of 
generalized irreversible forces and fluxes and their proportionality in the frame- 
work of linear irreversible thermodynamics, which is widely sufficient for acoustics. 

We begin by rewriting the energy conservation equation transformed by the state 
equation (i.e. with specific entropy instead of specific energy as state variable) in the 
shape of a balance equation: 

p~ + V . ,Is - dps (1.15) 

where Js and 4~s are the input flux and source of entropy. This form of the result is 
not unique, but all formulations are equivalent. For example: 

For a simple viscous fluid: 

p~ + ~7. (T-I~)  - 7-" (T-1D) + ~. V(T -1) + r T  -1 

giving 

aT~ - T - l (  and qSs - 7." (T-1D) + ~. ~7(T -1) + r T  -1 

For a simple elastic solid" 

pA + ~7. (T -1 ~) - ~. ~7(T -1) + r T  -1 

giving 

Js - T - l q  and C~s - + ~ .  ~ ( T  -1) + r T  -1 

If now one decomposes the heat source r into its two components, an external one 
r e and an internal o n e  r i (due to heat radiation or thermal relaxation processes for 
example), the entropy source ~bs is decomposed into two terms: one of external 
origin 

~e _ r e T - 1  
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and one of internal origin 

~b / -- 7-" (T-1D) + ~- V(T -1) + riT -1 for a simple viscous fluid 

g b/--  4" X7(T-l) + riT-1 for a simple elastic solid. 

The second law of thermodynamics postulates that, due to irreversible processes 
(dissipation phenomena), the internal entropy production rate 4~ / is always positive 
or null (null when no irreversible processes occur or at equilibrium): 

4~ / I> 0 (Claus ius-Duhem inequality) 

Within the framework of linear irreversible thermodynamics, which is sufficient for 
acoustics - i.e. assuming the system to be always in the vicinity of an equilibrium 
state Pe, Te, etc. - one can linearize equations with respect to deviations from that 
reference state 5p, 6T, etc.: 

q~/-- (7-)" (T-1D)  + (T - I~ )  �9 ( - T  -1 XTT) + ( T - l r i ) ( - T  -1 6T) 

q~/= (T-14)  �9 ( - T  -1 V T )  + ( T - l r i ) ( - T  -1 tST) 

for a thermo-viscous fluid 

for a thermo-elastic solid 

Then noting that 

X = ( T - 1 D , - T  -1 ~TT , -T  -1 6T) 

X - - ( - r  -1 ~ 7 T , - T  -1 6T) for a solid 

for a fluid 

where the components Xj are called generalized thermodynamic forces, and 

Y-(7-, T-I~, T - i t  i) for a fluid 

Y - ( T - 1 4 ,  T- l r  i) for a solid 

where the components Yi are called generalized thermodynamic fluxes, one can write 
the internal entropy production as a bilinear functional: 

~ / -  Y .  X or ~ = Y~X~. 

Within the framework of linear irreversible thermodynamics, i.e. assuming we 
remain in the vicinity of an equilibrium state (where both fluxes and forces vanish), 
one assumes proportionality of fluxes with forces: 

Y =  L .  X or Yi = LoXj (1.16) 

so that generalized fluxes and forces, the former generally considered as 
consequences of the latter, vanish together at equilibrium. 

The equations Yi = LoXj are the desired constitutive equations, or phenomen- 
ological equations; the coefficients L O. are called the phenomenological coefficients. 
These coefficients must satisfy certain laws: 

�9 The Curie principle that states that there may exist no coupling between fluxes 
and forces having a different tensorial nature (a vector can be coupled only with 
vectors, etc.). 

�9 The Onsager reciprocal relations: L O. = Lji. 
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Thus the phenomenological equations can be written, with suitable choice of 
parameters, as follows. 

For a simple thermo-viscous fluid: 

"r-- A T I  tr(T-1D) + 2 # T ( T - 1 D ) ,  T - I ~  - k ( - T  -1 VT), 

T _ l r  i pc T -  1 - - - ( -  ~r)  
7" 

leading to the classical Newtonian law of viscosity, Fourier's law of heat 
conduction, and Newton's law of cooling: 

~- AI tr D + 2/zD, q - k  V T, r i pC  - -" - ' -  = 6 T  (1 .17 )  

For a simple thermoelastic solid, one obtain the same relations for heat 
conduction and heat radiation. 

Here, since there is only one representative of each tensorial order in generalized 
forces and fluxes, there is no coupling. It would have been different if one has taken 
into account, for example, diffusion of species in a chemically reactive medium 
since species diffusion, like heat diffusion, results in a vector generalized flux, 
according to Fick's law of diffusion. So there would be coupling between heat 
diffusion and species diffusion: the so-called Dufour's and Soret's effects. 

Remark:  The framework of linear thermodynamics provides a domain of validity 
considerably wider than acoustics: it allows all classical linear constitutive relations. 
Only highly non-linear irreversible processes, strong departures from equilibrium 
and instabilities are excluded. 

With conservation equations, state equations and constitutive equations, one 
now has as many equations as unknowns. We are ready for the linearization. 
Before that, we look at equations at discontinuities founded during the establish- 
ment of the conservation equations, since they play a prominent role in acoustics, 
for problems with interfaces and boundary problems. 

1.1 .4 .  E q u a t i o n s  at  d i s c o n t i n u i t i e s  

We return to equations at discontinuities established when deriving local equations 
of conservation from the global ones for a material volume: 

[p(~-  v ) .  ,7]~ - o 

[(p~7 | 07- IT)-a) ff]~ - 0 (1.18) 

[(p(e + �89 17) - (or-~7- ~)) ff]~ - 0 

where [~]~ designates the jump <b (2) - ~(1) of the quantity �9 at the crossing of the 
discontinuity surface E. 
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Discontinuities can be encountered in two cases" 
interfaces. 

shock waves and 

Shock waves 
Such waves are characterized by the fact that matter effectively crosses the 
discontinuity surface. The earlier equations do not simplify. 

Interfaces 
In the case of an interface between two immiscible media (a perfect interface), 
matter does not cross the discontinuity surface and g .  i f -  IF. ff (17-  velocity of the 
discontinuity surface E) in either direction. 

Hence, g~l). i f _  ~2).  i f _  I7. if, or [g-ff]z - 0 :  there is continuity of the normal 
velocity of the medium. The second equation (1.18) becomes [a. f f ] z -  0: there is 
continuity of the normal stress. The third equation (1.18) becomes [tT. f f ] z -  0: 
there is continuity of the normal heat flux. So at the crossing of a perfect interface, 
normal velocity, normal stress and normal heat flux are continuous. 

Solid-solid interface. For an adhesive interface, ~7 (~) - 17, ~ 2 ) _  If, so [g]z = 0: 
there is continuity of the velocity (and of the normal stress: [~. ff]z - 0). For  a non- 
adhesive interface (sliding interface), g~l)~: g~2), but [g. f f ] z - 0 :  there is only 
continuity of the normal velocity (and of the normal stress: [a. f f ] z -  0). 

Fluid-solid interface. For a viscous fluid, there is adhesion and the conditions are 
the same as for adhesive bond between two solids: continuity of velocity and of 
normal stress, [~]z = 0, [a. ff]z = 0. For a non-viscous fluid, there is sliding at the 
interface and only continuity of the normal velocity ([~. ff]z = 0) and of normal 
stress, [~-ff]z - 0 ;  that is _ p 0 ) f f -  ~2) .  ft. 

Fluid-fluid h~terface. For two viscous fluids, there is adhesion at the interface, 
and the conditions are the same as for a bond between two solids: continuity of the 
velocity and of the normal stress, [g]z = 0, [~r. ff]z = 0. If one of the fluids is viscous 
and the other not, there is sliding, and the conditions are the same as for an 
interface between a non-viscous fluid and a solid: continuity of the normal velocity 
and of the normal stress, [~. ff]z = 0, [a. ff]z = 0. If the two fluids are perfect, i.e. 
non-viscous, there is also sliding and so continuity of the normal velocity only, 
[~7. ff]z = 0 ,  and of the normal stress, [a. ff]~ = 0 ;  that is _p(1)ff= _p(Z)K ' i.e. 
p(1) __p(2), or [p]E : 0, i.e. continuity of the pressure. 

These last continuity conditions are classical in acoustics: generally one considers 
continuity of pressure and normal velocity at interfaces. 

1.2. Elementary Acoustics 

Here we are interested in the simplest acoustics, linear acoustics (which describes 
low energy phenomena only) of a perfect simple fluid (subject to no dissipative 
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phenomena) in an initial stationary homogeneous equilibrium. The main tool is 
linearization of equations, which reveals the main feature of sound: its wave nature. 
This wave propagation is the first phenomenon encountered in acoustics. The 
subsequent ones are wave refraction, reflection and diffraction, consecutive to 
interaction with interfaces and boundaries. 

1.2.1. Linearization for a lossless homogeneous steady simple fluid 

For a general (visco-thermal) fluid, the conservation equations are, from (1.6), 
(1.8) and (1.9) 

Op 
- - +  v .  (p~) = 0 
Ot 

p +~ .V~7  + V p = V . T + F  (1.19) 

(0s) 
- - + g .  Vs - T ' D - V . 4 + r  

TO Ot 

where T - - a  + p I  is the viscosity tensor and D = �89 + TV~7) strain rate tensor. 
For a perfect fluid, one has T = 0 (no viscosity), ~ =  0 (no heat conduction), 

r i - 0 (no heat radiation) and so (omitting the index e for the external volumic heat 
source re): 

Op 
- - +  V . ( p ~ ) = o  
Ot 

p + ~7. V~7 + Vp = f (1.20) 

(o;,) 
Tp  + ~7. Vs - r  

One can now linearize these equations around the homogeneous steady state 
pO _ ct, ~o = 6, pO _ ct, T ~ = ct, s ~ - ct, f f  - O, r ~  

Let p l, ~71, p l, T 1, s 1 be the perturbations from that equilibrium induced by 
the source perturbations f l ,  ffl, r 1 (f l  describes a small volumic source of mass)" 
p = p O  + p l ,  ~ _ ~ 1  , p _ . p O  + p l  , T =  T~  + T 1 , s = s ~  + s 1 . Identifying terms of the 
same order with respect to the perturbation, one obtains" 

�9 At zeroth order, the equations governing the initial stationary homogeneous 
state, i.e. the tautology 0 - 0. 
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�9 At first order, the first order equations governing perturbations, i.e. the 
equations of linear acoustics" 

Op 1 
+ V .  (pO~l) = f l  

Ot 

p0 ~ _+_ ~Tpl _ f f l  (1.21) 
Ot 

Os 1 
TOpO -- r 1 

Ot 

with, by a first order development of the state equations T -  T(s, p), p -  p(s, p) 
around (so, p0), i.e. assimilating finite difference and differential in expressions of 
dT, dp in (1.10)" 

T O 1 
T 1 - -  S 1 _.[_ ~ p l  

co  op0 

p0 1 1 
p l - - ~ s l + ~ p  

xopo 

(1.22) 

1.2.2. Equations for entropy and vorticity: fundamental character of acoustic motion 

The linearized entropy balance equation can be directly integrated: 

s 1 - (p~176 J r 1 dt (1.23) 

This shows that s 1 and r 1 have the same spatial support, i.e. that s 1 vanishes 
outside the heat source r 1. One thus has the first property of acoustic movements 
(in perfect homogeneous fluids): acoustic movements (in perfect homogeneous 
fluids) are isentropic (or adiabatic) out of heat sources. This property is true only 
outside heat sources. In fact we will show later that acoustic entropy spreads out of 
heat sources (diffusion by heat conduction), so that there exists around heat sources 
a small zone of diffusion where entropy does not vanish. If there is no heat source, 
the isentropy property is valid everywhere, even at the location of other sources. 

The linearized momentum balance equation gives, after applying the curl operator, 

p0 0 ~1 ~1  ) = v •  

and so 

V • ~ 1 _  (p o)-1 J X7 • ffl dt (1.24) 
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Thus V • O l vanishes outside curl sources V • ~1, and one has the second property of 
acoustic movements: acoustic movements (in perfect homogeneous fluids) are 
irrotational out of velocity curl sources. As for entropy, one shows that in fact acoustic 
velocity curl spreads out of the curl sources (diffusion by viscosity), so that there exists 
around curl sources a small zone of diffusion where velocity curl does not vanish. 

Consequence o f  isentropy. One has 

T1 = ~ 1  1 ~ 1  I 1 
a~ ~ p +COp ~ r dt 

p l = ~ l  1 ~ 1  I 1 
X~ ~ p + aOT ~ r dt 

(1.25) 

Also, by extracting p l from the second equation, 

0 0 1 xOp0 f 1 p l 
J - Xs P P a ~ T O r dt (1.26) 

and substituting it in the first one, 

1 
__~0~ 1 1 0--,0 o 

T 1 
ao P + C op0 1 - ~(aO)ZT ~ r dt (1.27) 

Alternatively, introducing isobaric thermal expansivity a p = - ( 1 / v ) ( O v / O T ) p ,  
specific heat at constant pressure Cp = T(Os/OT)p, and ratio of specific heats 
"7 = C p / C ,  (and noting that a~ = a p / ( 7 -  1)): 

r:_~  ~  1 .y__~o f 
- .OpO p + COpO r'  dt  

oo , oOlr,  __ o) 
- X, P P CO ao T0 CO (1.28) ( 000) 

CpX~ _ 70 1 T1 a ~ T O 1 1 ~ _ _ 
= ~ ~ r dt since (OlO) 2 T O p0co p' + COp0 

One sees that, out of heat sources, all scalar components o f  the acoustic f ie ld  are 
proportional to each other (in a perfect fluid). The only exception is acoustic 
entropy, which moves alone, independently of the acoustic field, and vanishes out 
of heat sources. 

1.2.3. Equations for pressure and other acoustic quantities: wave equations 

Acoustic pressure is the main quantity that characterizes acoustic fields, since most 
acoustic gauges, such as the ear for example, are pressure sensitive. Hence one is first 
interested in that quantity. 
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By replacing in the linearized system (1.21) the acoustic density p l by its value 
taken from (1.28), 

one has 

pl 0 0 l____ceO J r l  dt 
-- Xs P P Co 

0 0 0191._ b pO~7 " ~1 = f l +  _ _  tvO~p r 1 
X~ P Ot C o 

pO 0~1 ffl  - - - + -  V p  1 -  
Ot 

By applying -(O/Ot)(first equat ion)+ V.  (second equation), one obtains 

0 0 0 2 p l  oqfl . ~1 ozO Or l 
- X s P  -+- x(72p 1 . . . .  F ~' + - - - -  

Ot 2 Ot C ~ Ot 

Applying -x~ equation) + (1/p~ equation), one obtains 

0 0 02~1 1 00qffl ceO 1 
-Jr- ~7 ( ~ . ~1) __ ~T f 1 -- X s - -  + V r 

p ot= ot pOCO 

(1.29) 

following. 

For the acoustic pressure: 

10Zp ~ 

c 2 0 t  2 

~ V 2 P  1 o f l  . f f l  t'vO'~p Orl 
. . . .  ~ V + - -  

Ot C ~ Ot 
(1.30) 

So acoustic pressure (and all other scalar components of the acoustic field) is 
governed by a wave equation (also named D'Alembert's equation), with wave 
velocity 

c0 - ~ (1.31) v/xOpO 
This velocity is the velocity of acoustic waves, or the speed of sound in the case of 
sound waves. 

The acoustic field is then a wave field and exhibits the phenomenology of wave 
fields: propagation, reflection/refraction, and diffraction. 

For the acoustic velocity, using the identity: Vff, ~72/~ = ~7-(~7/~) = 
V ( V g ) -  V x V x ~: 

1 02~  1 1 [ 1 0 F  1 
l- ~727] 1 - - -  ~ X(7f 1 

ot2 pO ot 
I ~ X ~ X ffl  dt + c~~ X7r 1)  

CO (1.32) 

With X~ ~  1/c 2, where co has the dimension of a velocity, one has the 
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For other acoustic quantities, one obtains similar wave equations, the only 
changing term being the source" 

1 0 2 T 1 

c 20t 2 

,o o, 1(o,, ool 
]-- V 2 p  1 . . . .  --t- V - ~  V dt (1.33) 

cg or2 cg ot co 

~ 7 2 T  1 =~~176 0c0 ____~_~.ffl OflOt ) - c2p 0C01 (Or lot .),0c2 [ ~2rl dt) 

(1.34) 

1.2.4 .  V e l o c i t y  potent ia l  

Without  restriction, one can always decompose a vector into its rotational 
component  and its irrotational component: Vfi', f i ' -V4~+  V • ~. So for the 
acoustic velocity, one can set 

~71 - VO + V x ~ (1.35) 

where r and �9 are called the scalar and vector potentials. For the applied forces one 
can similarly set 

�9 ffl  _ V G  1 + V x ~ l  (1 .36)  

Then the starting equations of acoustics (linearized conservation equations (1.21)) 
become 

Op 1 
-~t + P~ = f  

04) 0 ~  
p~ ~ - + -  p~ x ~ - b  Vp 1 -- VG 1 + V • 

Ot Ot 

Os 1 
TOpO _ r 1 

Ot 

o r  

Op 1 
--~-t + p~ = f 1 

pO Oep 1 1 - G  

O~ pO _ g l  

Ot 

T~ ~ 
OS 1 
Ot 

D r 

(1.37) 
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So 

O~ 
pl  __ _pO + G 1 and 

Ot 
-'=--pol I ~ l  d t 

and since from (1.28) 

p 1 _ p  Ox~pO 1 _ __C ~176 I r 1 dt - - ( p  o) 2xo -~t +pOoh OXs Go 1 N r i d /  

q 
the first equation of (1.37) becomes 

- p ~ 1 7 6  
-I'- V2(I ) 1 1 pO 0 0 0~0 1 . . . .  G 1 + ~ r  

Ot 2 pO - Xs Ot C ~ 

One sees that the acoustic field, in a perfect homogeneous fluid, is determined by 
only one quantity, termed the (scalar) velocity potential. 

In the whole space one has 

1 I ~l __ VO-~ pO V X ~1 dt 

pl _pO O~ - -  ~ + G  1 

Ot 

o 0 ~  1 
p l =  P t 

c 2 0 t  c 2 
G 1 

T1 ~176 T~ Or og~ T 0 -- + 
C ~ Ot p~176 

r 1 dt 
CO 

G l + ~  1 J 1 r dt 
COpO 

(1.38) 

and 

S 1 -- (p0T0)-I  J r 1 dt (1.39) 

with a (scalar) potential governed by 

1 02~ ----~1 ( f  1 1 0 G l + ~ r a ~  (1.40) 
cg p o cg co 

where ~1 = VG 1 + V •  

Domestic acoustics. With the usual sources of 'domestic' acoustics (usually 
electro-acoustic transducers), one can model sources as simple assemblages of 
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volumic source of mass, so that one writes the simple equations: 

0~  pl  _ _pO _ _  
Ot 

and 

p l _  

T 1 _ 

o 0,~ P 

c 2 0 t  

a~ T ~ Off 

COp Ot 
S 1 - -0  

1 02~ 

c 2 0 t  2 
~- V2(I ) -- p~O f l  

(1.41) 

(1.42) 

1.2.5. Acoustic energy, acoustic intensity 

Acoustic energy 
Acoustic energy is defined as the variation of energy produced by the acoustic 
perturbation. The energy density is w - p(e + 1~72). In the general case (of a simple 
fluid), w -  w(p, s, ~). Making a second order development of w" 

Ow Ow 3 Ow 
5 W - - - -  5p ~ - -  5S -~- ~ ,  5'Ui 

Op OS ~'= OVi 

l[02w 02W i~l + -  tSp 2 + -  5s 2 + 

OZw 3 02W 
+ ~ 6p 6s + 

Op OS ~1"= Op OVi 

3 3 OZw 

-'[- i~ l  j~ l  5Vi 6Vj �9 = = OViOVj 
jr 

3 02W 
5p 5V i + 

~1"= OS OV i 
~S ~V i 

For a perfect homogeneous fluid at rest, 6 s -  s 1 = 0 (isentropicity of the acoustic 
perturbation outside heat sources) and g 0 _  0, so 

i (0 )1 l 3 6 w -  e + p  6 P + 2  2 + P  - -  6P2+ E � 8 9  p6v2 
OP 2 i= 1 

s s 
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and since 

p2 ~ p2 

and 

1(0 ) Op2 p, p2 

we have 

6w = e + 6 p - + - - -  (Sp 2 + ~ lp ~v2 
2 p  i=1 

and since in the previous notations 6 p - p l =  (1/c~)pl,  6 g _  ~1, 

[ ,;]11,, ,,2, 
~w-  e ~  co 2p + ~ 2(p + pO(V~)2 2 p 2 (1.43) 

Since acoustic perturbations are generally null mean-valued (@l) = 0), the first 
term, proportional to the acoustic pressure, has a null mean value. It is eliminated 
by taking the mean value of the energy density perturbation: w a - (6w). 

Acoustic energy (density) is defined as the mean value of the energy density 
perturbation: 

w a = (6w) = _1 ~ 1  1)2) 1 p0((~l)2 
2 p~ ((p + 2 ) (1.44) 

Equation (1.43) is the expression of the acoustic energy (density) (for a perfect 
homogeneous fluid at rest). 

Acoustic intensity 
Acoustic intensity is defined as the variation of the energy flux produced by the 
acoustic perturbation. The energy flux density is I - - ( a .  ~ - ~ ) .  For a perfect 
fluid, since ~ - - a  + p I - 0  and ~ - O ,  then I - p ~ .  

The variation of the energy flux is to second order, 

6 1 -  ~p~ + p ~ + ~p ~ 

For a fluid initially at rest (~0_  0) and noting 6 p - p  1, and 6 ~ - ~ 1 ,  

tS~_ p0~l + p l ~ l  (1.45) 

As for acoustic energy, since acoustic perturbations are generally null mean- 
valued ( ( ~ ) -  0), the first term, proportional to the acoustic velocity, has a null 
mean value. It is eliminated by taking the mean value of the energy flux: [A _ (6I). 
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Acoustic intensity is defined as the mean value of the energy flux 
perturbation" 

fA = (6 f )=  (pl,~l) (1.46) 

Equation (1.45) is the expression of the acoustic intensity (for a perfect 
homogeneous fluid at rest). 

1.2.6. General solutions of the wave equation in free space 

We consider the medium to be of infinite extent, in one or three dimensions. We are 
not interested in the two-dimensional case, which needs more mathematical tools 
(special functions) and does not introduce any further concepts. 

One-dimensional case 
The homogeneous wave equation (i.e. without source term) for a potential ff is 

1 02tI ~ 02t~ 
+ - ~ - 0  

C 2 0 t 2  OX2 
(1.47) 

One can show that it admits a general solution: (x) 
�9 = f +  t - - -  + f - t +  (1.48) 

co 

The demonstration is very simple. Let us consider the variable change 
(x, t) --* ((, n), where ~ = t - (x/co) and rl = t + (x/co),  and let f(( ,  r/) = ~(x, t). 
The wave equation is transformed to 02 f /O(  0r /=0 .  This equation can be 
integrated: 

f = f + ( ~ )  + I F07) dr /=f+(~)  + f - ( r / )  
of 
- - =  F(~)  
0~7 

with f - ( r / ) =  f F07) dr/. 
f +(t - (x/co))  a n d f - ( t  + (x/co)) are called respectively progressive and regressive 

waves (the first one propagates in the direction of positive x and the second one in 
the direction of negative x). 

Green's function.  With this result, one can show, using distribution theory, that 
the one-dimensional Green's function for an unbounded medium, i.e. the solution 
G(l)(x, x ' ,  t, t') of the inhomogeneous wave equation with a Dirac source at point x'  
and time t', S(x,  t ) -  6x,(X) 6t,(t), 

1 02G (1) 02G (1) 
= 6x,(X) 6t,(t) (1.49) 

c~ Ot 2 Ox 2 
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c 0 ( 2  m _ _ y  G(1)(x, x' ,  t, t') = t--  t ' - - ~  I x-c0x' l)  (1.50) 

where Y ( t ) =  0 (t < 0), Y ( t ) =  1 (t > 0) is the Heaviside function. 

Acoustic impedance. For a progressive wave, one has ~ = f + ( t -  (x/co)). So from 
(1.41), withf+(t)  - (O/Ot)(f+(t)): 

(:0) (x) x 1 0ff 1 f +  t p l = _ p O  Ocb _ p O f  +' t -  v 
Ot Ox co co 

so that 

1 

v l =  P (1.51) 
p~ 

The quantity Z - - p l / / v  1 ' homologous to an electric impedance in the electrical 
analogy of acoustics (where velocity and pressure are considered to be equivalent 
respectively to current and voltage), is called the acoustic impedance o f  the wave. 
The quantity Z 0 -  p~ characteristic of the propagation medium, is called the 
characteristic (acoustic) impedance o f  the medium. In the case of a progressive wave, 
the two quantities are equal: Z -  Z0. 

For a harmonic progressive wave of angular frequency w with time dependence 
e -u~t (classical choice in theoretical acoustics), one has f + ( O -  A+e-U~ and so 

= A+e -~~176 = A+e-O~te +~kx with k = w / c o  the wavenumber 

Thus 

p l  __ _pO ~ = twpOA+e-a~te+~kx = twpO62 and 
Ot 

O~ 
v l - - ~  

Ox 
= ~kA + e -~ t e  +,kx = ck~ 

For a time dependence in e +~~ one obtains (for a progressive wave) 

= A + e +tw(t - x/co) = A +e +u.ate -~kx 

Three-dimens ional  case  

Plane waves. One can again consider solutions of the same type as obtained in one 
dimension, i.e. waves propagating along a direction ~0 (unit vector) and constant 
along directions normal to this direction. These are called plane waves, since 
wavefronts (planes of same field) are planes. 
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p l  _ _ p O  

A plane wave propagating in the direction t70 can be described by the potential 

( n'0 
= f +  t - ~  + t (1.52) 

Co c 

One can verify that this solution actually satisfies the homogeneous wave equation 

1 0 2 ~  
Jr ~72(I) ---~ 0 (1 .53)  

c g Ot 2 

One then has from (1.41), with f + '  (t) - O ( f + ( t ) ) / O t ,  

0(~ _ p O f + ' t and = V(I)= t -  
Ot co co co 

So 

"u I p l  
-" --  if0 (1 .54)  

p ~  

Relation (1.54) shows on the one hand that plane waves are longitudinally 
polarized (the acoustic velocity is colinear with the propagation direction fro), and 
on the other that acoustic velocity and pressure are in phase and that their ratio 
Z = p l / v ~ ,  i.e. the acoustic impedance of the wave, equals the characteristic 
impedance of the medium Z0 - p0c0. 

For a plane harmonic wave of angular frequency co with time dependence e -~t  
(classical choice in theoretical acoustics), one has f + ( O  = A +e - ~  and so 

~b = A + e - ~ ( t  - (~o . Z/co)) = A + e - ~ t  e +f '  " ~ 

with k -  (a;/co)ffo w a v e v e c t o r ,  the modulus of which is the wavenumber k -  a; /co.  

Then 

p l  _ p O  06~ 
= ~ - -  t~wp~ + e - ~ " t e  + f '  ~ - -  t~wp~ and 

Ot 

For a time dependence e +,ot, one obtains 

~b - A + e +~( t  - (~. X/co)) = A + e + ~ t  e - , k  . 

S p h e r i c a l  w a v e s .  One can also consider solutions of the homogeneous wave 
equation of the type if(Y, t ) =  ~(I y 1, t), i.e. depending only upon the distance 
r - l Y  I- These are called s p h e r i c a l  w a v e s .  They are solutions of the equation 

lO2O 1 oo (2O;r) 
c 2 0 t  2 ~_ mr 2 ~Or r - -  0 (1.55) 
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By the function change ~(r, t) =f(r ,  t)/r, one obtains the classical one-dimensional 
wave equation 

l OZf oZf 

c~ Ot 2 Or 2 
- -0  (1.56) 

the general solution of which is 

f = f +  t -  + f -  t+ 

i.e. 

1 ( r )  1 (t+)r 
~b(r , t )=- f  + t - - -  + f -  

r Co r co 
(1.57) 

The solution {+(r,  t ) - -(1/r) f+(t-(r /co))  is called the diverging or exploding 
spherical wave; the solution { - ( r ,  t) - (1 / r ) f - ( t  + (r/co)) is called the converging or 
imploding spherical wave. Both have a dependence in 1/r. 

Green's function. With this result, one can show, using distribution theory, that 
the three-dimensional Green's function for an unbounded medium, i.e. the solution 
G 3(y, y,, t, t') of the inhomogeneous wave equation with a Dirac source at point Y' 
and instant t', S(Y, t ) -  6x,(Y) 6t,(t), 

1 02G (3) 

c 2 Ot 2 
F V 2 G  (3) - 6x ' (X)  6t,(t) (].58) 

satisfying a condition of no radiation coming from infinity (Sommerfeld condition) 
is 

6(t-t' ~co I) 
G(3)(2, ~', t, t ' ) -  (1.59) 

47r I .~ - .~ '  I 

Asymptotic behaviour of spherical waves. 
originating from 0, one has 1+( 

�9 (Y, t) -- ~ f 

For a diverging spherical wave 

t_ I~[) . . . . . .  

c0 
(1.60) 
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so, from (1.40), with f+'(t)= ooc+(t))/Ot, 

0 t  = i ~ l f  +' t -  co 

~71 = V ~ - -  t -  + ~  
[~12 c0 

and 

1 ( 
c 0 l Y [ f  +' t -  co ff 

where i f - Y / I  Y I is the unit radial vector, i . e .  the normal to the wavefront. 
Far  from the source, i.e. for l Y If+'/cof + ~> 1, one has 

, 
~7 l ~ - ~ f + '  t -  ff 

c01 ~1 c0 

and so 
pl 

Ol . . ~ ~  ff (1.61) 
p~ 

This is the same result as for a plane wave, replacing the unit direction vector of the 
plane wave by the unit radial vector of the spherical wave. 

Relation (1.61) shows that, at large distance, on the one hand spherical diverging 
waves are longitudinally polarized (the acoustic velocity is colinear with the unit 
radial vector if), and on the other that acoustic velocity and pressure are in phase 
and their ratio Z = p l ~v l, i.e. the acoustic impedance of the wave, equals, as for 
plane waves, the characteristic impedance of the medium Z0 = p~ 

At large distance a spherical wave behaves locally like a plane wave. 
For  a spherical diverging harmonic wave of angular frequency ~ with time 

dependence e -"~ (classical choice in theoretical acoustics), one h a s f + ( ~ ) =  A +e - ~  
and so 

A + A + 
- - - e  -~(t-(lxl/c~ = - - e - ~ / e  +~klxl, with k - - -  the wave number 

I~1 [~[ co 

Thus, 

0,I~ A + pl  _ _p0 _ _  = ca)p0 
at lYl 

e-UOte+~kl gl = cwp0~, 

[ 1]A+ I 1] e-~te+,kl ~lff= ck 1 ~ff 

and the relation between acoustic pressure and acoustic velocity becomes: 

1 ] p l  -. 
- n 

U1 1 ~kl~l p~ 
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and the large distance condition becomes k I Y I-> 1, or, introducing the wavelength 
- 2 r r l k ,  I~1~> A/Zrr. 
For a time dependence in e +~ot, one obtains (for a diverging wave) 

A + A + 
- ~ e +~(t - (I g I/c0)) = ~ e +~Ote -~kl g l 

Energy and intensity of plane waves and of spherical diverging waves at large 
distance. In the two cases, one has seen that ,71 ,~(pl/p~ with ff the unit 
vector normal to the wavefront. So the acoustic energy density is 

1 
W A - - ~  1)2 p0 12) 

P ~ ~ ((p )--  ( (~)  (1.62) 

and the acoustic intensity 

1 
[A = ~  ((pl)Z)ff= p0c0((~71)Z)ff (1.63) 

pOco 

and the following relation between acoustic intensity and acoustic energy density: 

yA = co wA ff (1.64) 

Thus, acoustic intensity measures local energy density and local direction of  
propagation of acoustic waves. 

1.2 .7 .  H a r m o n i c  w a v e s  

Let us consider pure sounds with angular  frequency co with time dependence 
e -~ t  (classical choice in theoretical acoustics), i.e. sounds produced  by sources 
of type S(Z, t ) -  S~o(Y)e -~~ then solutions of the wave equat ion will be of the 
same type ~(Y,, t) - 8~(Y)e -~t, pl(y, t) -~l(y)e-~~ ~l(y, t) - vl(y)e -~~ and so 

on. 
If one considers the simpler case of 'domestic' acoustics (simple volumic source 

of mass fl(Y, t )= f l (y )e -~~  one has from (1.41): 

~1(~)_ v,i,~(~) 

p~o(Y)- LcopOS~o(y) 

p0 
~(~)-  ~ -  ~(~) (1.65) 

~1(~)_ ~ ~~176 
CO 

~,~(~) 
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with, from (1.42), 

1 N 1 ~0 

v 2~ (~ )  + k2~'~(x) - ~ f~(~)' ~ - -c0 (1.66) 

where k is the wavenumber. 
Equation (1.66) is named a Helmholtz equation. 
Major scattering problems are solved with this formalism, even for complex 

sounds. Indeed any time signal can be represented by the Fourier integral 
x ( t ) -  f _~  ~(u)e ~2~rut du, with ~(u)=  f_+~ ~:(t)e -*2~wt dt the Fourier transform of 
x(t), u being the frequency. In the same way space-time functions such as the 
potential and other components of the field can be represented by the Fourier 
integrals ~(Y, t) - f_+~ ~,(Y, u)e ~2~v/du with ~,(~, u ) =  ~_+~ ~(Y, t)e -'2~vt dt the 

time Fourier transform of ~(Y, t); pl(y,  t) = f_+~ b l(y, u)e'2"~t du with 
/~1(.~, t,,)- f_+~ pl(~, t)e-~27rut dt; /~1(~, t) - f_+~ ~l(y, u)e~ZTwt du with /~1(~.//)-- 
f_+~ ~71(Y, t)e-'2~t dt; and so on. Each component ~(:7, u)e'Z'vt, b l(y, u)e'Z~t, 

v , etc., will behave like a harmonic signal ~,(Y)e -"~ pl(y)e-U~ 
~)l(.~')e-U~t, etc., with an angular frequency w =-27ru:  

~,~(~)= ~(~, u), p~(Y)=bl(Y,u) ,  ~ ( ~ ) - ~ I ( Y ,  u), ... with w - - 2 7 r u  

Since acoustic equations are linear, each frequency component of the field will 
satisfy (1.65) and (1.66), allowing the calculation of these frequency components 
and then, by Fourier synthesis, the space-time field. 

Remark. One sees that the traditional convention of acousticians of choosing a 
harmonic dependence in e -u~t results in a negative frequency u - - ~ / 2 7 r  in the 
signal processing sense. 

To solve scattering problems, it is often convenient to use the Green's functions of 
the Helmholtz equation: 

~72g~(y) + k2gw(y) = 6x,(Y), k = --  (1.67) 
c0 

For an unbounded medium this is: 

e+~klx- x'l 
(1)(X, one-dimensional" g~ , x') - (1.68) 

2ok 

e+~k I.~- ~' I 
three-dimensional: ,,(3)tY ~') - - (1 69) 

4 7 r l ; - ~ '  I 

One must keep in mind, when returning to the time domain, that calculation with 
these Green's functions gives access to the v = - w / 2 7 r  component of frequency of 
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the signal. Otherwise, exploding waves will be transformed into imploding waves 
and conversely. 

1.2.8. Acoustic sources 

In acoustics one is mainly concerned with acoustic pressure. Most usual detectors, 
beginning with the ear, are pressure sensitive, so we are interested here only in 
acoustic pressure sources, i.e. the source term of the equation that governs acoustic 
pressure. 

From (1.30), but now taking into account non-linear terms describing acoustic 
emission by turbulence (Lighthill's theory), this source term is 

Sp Oi l  . f f l  ~176 Orl 
1 . . . .  +- V -~ V . V .  (p~7 | ~) (1.70) 

Ot C ~ Ot 

The first term -O f  1 lot  results from time fluctuations o f f  1, the time rate input of 
mass density (i.e. time rate input of mass per unit volume, or mass injection per unit 
volume per unit time: dimension M L - 3 T  -1 in mass M, length L, time T). The 
radiation condition of mass flow inputs is their non-stationarity. In this category 
one finds unsteady or transient flows and all usual sources of 'domestic' acoustics 
(vibrating surfaces acting as pistons injecting matter). 

The second term V - f f l  results from space fluctuations offf 1, the time rate input 
of momentum density (or volumic density of supplied forces, i.e. supply of body 
forces per unit volume, dimension ML-ZT-2) .  The radiation condition for supplied 
forces is their space non-uniformity. In this category one finds most aerodynamic 
forces on bodies moving through fluids. 

The third term (a~176 results from time fluctuations of r 1 , the time rate 
input of heat density (i.e. time rate input of heat per unit volume, or heat injection 
per unit volume per unit time, dimension ML-1T-3) .  The radiation condition of 
heat flow inputs is their non-stationarity. The efficiency is proportional to the ratio 
of expansivity over specific heat, 0 0 ap/Cp. In this category one finds thermal shocks 
and impulsive or modulated laser beams. 

The fourth term - V .  V.(p~7| results from space fluctuations of the 
Reynolds tensor (p~7 | ~7), i.e. from shear stresses within the fluid. The radiation 
condition for shear stresses is their space non-uniformity. This term explains 
acoustic emission by turbulence (jets, drags, wakes, boundary layers). 

1.2.9. Boundary conditions 

Generally media are homogeneous only over limited portions of space. On the 
other hand, one is often concerned with closed spaces (rooms, etc.) and various 
obstacles (walls, etc.). It is then necessary to distinguish interfaces between the fluid 
and an elastic object from interfaces between the fluid and a perfectly rigid obstacle 
(or so little penetrable that there is no need to consider what happens behind the 
interface). 
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Interface between two propagating media 
We have found the general continuity conditions at an interface between two media 
(Section 1.1.4): 

[~3. if]r, - 0  continuity of normal velocity 

[cr. ff]r~ = 0 continuity of normal stress 

For an interface between a perfect (i.e. non-viscous) fluid (1) and a solid (2), the 
second condition becomes 

_ p ( 1 ) / ~  __ O.(2) . /~  

and for an interface between two perfect fluids 

[P]r, = 0 continuity of pressure 

By linearization, one obtains the acoustic continuity conditions: 

[ ~71" ff]r~- 0 continuity of normal acoustic velocity 
(1.71) 

[c rl �9 ff]r~ - -0  continuity of normal acoustic stress 

For an interface between a perfect (i.e. non-viscous) fluid (1) and a solid (2), the 
second condition becomes 

_p I (l)/~ - -O"  l (2) .n-" 

and for an interface between two perfect fluids 

[p l]r~ = 0 continuity of acoustic pressure. 

The general conditions of continuity for interfaces between perfect fluids are then 

{ [  ~71" f f ] z -  0 continuity of normal acoustic velocity 
(1.72) 

[p 1]r~ - 0 continuity of acoustic pressure 

In terms of the acoustic velocity potential, 

{ [ v ~ .  ~]r~ - 0 

[p~ - 0  

In terms of the acoustic pressure only, 

[p 1]r~ = 0 

= 0  

(1.73) 

(1.74) 

Plane interface between two perfect fluids. Consider a plane interface E between 
two perfect fluids denoted (1) (density p(1), wave velocity c (1)) and (2) (density p(2), 
wave velocity c(2)). An orthonormal flame (O, x, y, z) is chosen so that E lies in the 
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plane (O, y, z) with Ox colinear with the normal ff to the surface in the direction 
(1) ~ (2) ( f f -  (1, 0, 0)). Consider a plane harmonic wave impinging from (1) on the 
surface with velocity potential ff~i of amplitude ~I'0, unit propagation vector 
n-'/= (cos 01, sin 01, 0) (such that (if, if1)-Oi), angular frequency w (with time 
dependence e -U" t ) ,  wavenumber k (1) - - ~ 3 / c  (1)" 

t~l ~ '~oe-U~ +~k~ ~ --  t~oe-tWte +~k~ cos  01 + y  sin 01) 

The two media being half-infinite, this wave gives rise to two plane waves" 

�9 In medium (1) a reflected wave ~g with direction vector fig - (cos 0g, sin OR, O) 

(such that (if, f i g ) -  0g) and amplitude r~" 

t~)R _. t~0e -twt e -k-t,k(1)KR �9 ~- ~ r~ t~0e  - /~ t  e +t~k(1)(x cos OR d- y sin 0R) 

�9 In medium (2) a reflected wave ff)r with direction vector f iT-  (cos 0r, sin 0r, 0) 
(such that (if, f iT)-  OT) and amplitude t~" 

ff~T m ~boe -U~ q-t~k(Z)ffT" "~ -'-- t ~ o e  -U~ +t~k(Z)(x cos OT -[- y sin OT) 

r~ and t~ are called reflection and transmission coefficients for the velocity 
potential (of the interface E). 

The velocity potential is: 

medium (1) �9 ~, (1) = (i)i _3 w (I)R __ ( i ) 0 [ e - ~ t  e -k-t~k(1)(x COS OI _3f_ y sin 01) 

_+_ r,~e-aOte+~k(1)(x cos oR + y  sin oR)] 

medium (2) �9 ~I ,(2) - ~bT -- t~'boe-~~ +~k(2)(x cos 0T + y sin 0T) 

The conditions of continuity at the interface: 

{ [ v o .  ~]:~ - 0 

[pOO]~ - 0  
ie 0 

E 

[ p~ - 0  

o r  

give 

Ox x:O \ Ox x=O 

( p (1 )~ (1 ) )x  = 0 - -  (p  (2) ~ (2) )x = 0 

k ( 1 ) ( c o s  Oie+~k(1)y sin0i __[_ r~ c o s  ORe +~k~ sin O R ) _  k(2)t,i, c o s  OTe +~k(z)y sin0r 

p(1)(e+~k(1)y sin 0i _~_ r,~e+~k(1)y sin OR) m p(2)t~e+~k(2)y sin Or 

Since these relations must be satisfied Vy, one has, first, 

k(1)y sin O I -  k(1)y sin OR-  k(2)y sin 0T 

s in  O i -  s i n  OR, i .e .  O R - - T r -  Oi 

(sin 0,) 
k (~ sin Oi = k (2~ sin Or, i.e. - 

C (1) 

that is 

sin 0r~ 
C(2) ] 

(1.75) 
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called the Snel l -Descar tes  laws. Then 

k (1) cos Oi(1 - r e ) -  k(2)te cos OT 

p(1)(1 + r e ) -  p(Z)te 

so that  

p(1) 1 + re 
to =p--~ (1 + re) and 1 - re 

z(2) 

Z(1) 

with 

Z(1) - -  
Z (1) p(1)c(1) 

= ~ and 2 (2) - -  
c o s  Ol c o s  OI 

Z (2) 

cos Or 

p(2)C(2)  

cos Or 

giving 

Z(2) _ Z(1) 
t . e ~  

Z (2) -t- Z (1) 

t o  - -  2 p(1) Z(2) 

p(2)  Z(2) _+_ Z(1) (1.76) 

In practice one is interested in reflection and transmission coefficients for the 
acoustic pressure p l. Since p l _ _pO O~/Ot, one has 

i . e .  

1(1) 

1 (2) 

_ uJp(1)~0(e-UOte -3Lbk(l)(x COS Ol -Jr- y sin 0t) nt_ ree-U~te +~k(I)(x cos OR + y sin OR)) 

- -  /X, O p  (2) to Doe -UJte +~k (2)(x cos Or + y sin Or) 

p 1 (l) _ _  Po(e-,,,te + t , k ( l ) ( x  c o s  Ol q- y sin 0t) _[_ rpe-,Vte + t , k ( l ) ( x  c o s  OR n t- y sin 0R)) 

p 1 (2) = Potpe-,~te +~k(2~(x cos Or + y sin Or) with P 0  - -  bo-;P(l)(I)0 

where rp and tp are defined as the reflection and transmission coefficients for the 
acoustic pressure (of the interface E). 

Then one has 

rp - -  r e m 
Z(2) _ Z(1) 

Z(2) -~- Z (1) 

p(2) 2z(2) 

tp -- - ~  to - z (2) n t- z (1) 

(1.77) 

One sees that  the reflection coefficient for pressure and potential  are the same and 
can be denoted r, but  the transmission coefficients for pressure and potential are 
different. 
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Various cases 

�9 If medium (2) has a smaller velocity than (1) (C 2 < C 1), then, 

C (2) 
sin Or = sin 0i < sin 0i, so Or < Oi 

c(1) 

There is always a transmitted wave. 
�9 If medium (2) has a larger velocity than (1) (C 2 > C 1), then, 

C (2) 
sin Or= ,, s i n O i >  sinOi, so Or>Oi 

C (1) 

There is a critical incidence angle (0i)c beyond which there is no transmitted wave. 
This critical angle is reached when Or = 7r/2, that is for sin (Oi)c = c(1)/c (2), i.e. 

(C(1) ~ 
(0 I )c -  sin -1 

~C (2) ] 
(1.78) 

Interface with a non-propagating medium: boundary conditions 
Consider the most  frequently met case of a locally reacting surface, i.e. a surface 
such that the acoustic field at a given point of the surface depends only on the 
properties of the surface at this point. These properties can be summarized in the 
ratio of pressure over normal velocity of the wave at the surface, termed the normal 
impedance of the surface 

Z n =  ~ l ' g z  r~ 

For  a harmonic wave of velocity potential ~I, with angular frequency ~o and time 
dependence e -~t ,  one has from (1.65) (o) (o) 

= t'wP~ ~n~ -- twp~ 
Zn -- twp O V ~ : nE E E Onp l E 

Then 

with Vr (O.r -= ( V r  h'r~)r~ 

O~p 1 ~op~  - ~kp~ - ~-k 

with ~ = Zn/Zo the reduced (dimensionless) normal  impedance of the surface or the 
specific normal impedance of the surface. 

Let us now consider a plane harmonic wave (angular frequency w, time dependence 
e -~ t )  impinging with incidence if1 = (cos 0i, sin 0/, 0) on an impenetrable interface of 
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specific normal  impedance ft. As for the penetrable interface, the impinging plane 
wave gives rise to a reflected plane wave with direction fir - ( c o s  OR, sin OR, 0) with 
OR--Tr-  0i, i.e. with direction f i r -  ( - c o s  0i, sin Oi, 0). Then one has, using the 
same notat ion as for the penetrable interface, 

- ~oe-tWte +&Y sin O,[e +~kx cos O, + re- 'kx cos o,] 

with r the reflection coefficient for pressure or potential. Thus 

(Onr -- -- ck c o s  Old~oe-tWte +Lky sin Ol(e +Lkx c o s  Ol 

x = 0  

= ck cos Otd~e -tWte +~Y sin oi(1 - r) 

and 

that is 

- -  r e  

1 l + r  

ck 0 - ~  z ck COS OI 1 - r 

- & x  c o s  0 i )  x ___ 0 

1 1 + r - 1  + ff c o s  O l 
= or r - 

COS 01 1 - r 1 + ff cos 0 
(1.80) 

Connection with the mathematical formulation o f  boundary conditions. 
mathemat ical  boundary  condit ions are as follows. 

Dirichlet condition for  a soft boundary: 

(p 1)z _ 0, i.e. (~b)z - 0 

Neumann condition for  a rigid boundary: 

Robin condition: 

( g l  . f f ) z  _ 0 i . e .  ( O n ~ ) z  - 0 

(a~ + bO,,~)z - 0  i . e .  - - 
a 

including Dirichlet ( b / a -  0) and Ne um a nn  ( b / a -  e~). 
One sees that  

that  is 

ck a 

b 
r  - c k -  

a 

The usual 

(1.81) 

(1.82) 

(~.83) 

(1.84) 
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Thus the Dirichlet condition corresponds to an infinitely small specific normal 
impedance, i.e. to a surface with normal impedance infinitely smaller than the 
characteristic impedance of the propagation medium (sea surface in underwater 
acoustics for example). The Neumann condition corresponds to the inverse 
situation: a surface with normal impedance infinitely larger than the characteristic 
impedance of the propagation medium (rigid wall in aeroacoustics for example). 

1.2.10. Units, orders of magnitude 

The two main propagation media are air (aeroacoustics) and water (underwater 
acoustics). A third important  medium, with properties close to those of water, is the 
human body, i.e. biological media (ultrasonography). The characteristics of the two 
main fluids, air and water, can also be considered as references for the two states of 
fluids" the gaseous and liquid states. These two states, the first characterized by 
strong compressibility and the second by weak compressibility, have homogeneous 
characteristics within a state and characteristics that differ greatly from one state to 
the other. 

Characteristics are given at standard pressure and temperature: p 0 _  1 a t m -  
10 5 N m -2, T o - - 2 0 ~  293 K. Air behaves like a perfect gas with R - p / p T ~  
286.9: p ~  1.2 kg m-3,  Xs ~ 7.2 x 10 -6 m 2 N -1, so that c ~ 340 m s -1 and Z = pc 
408 k g m  -2 s -1 (408 rayls). For water, p ~  103 k g m  -3, Xs "-~ 4.5 x 10 -l~ m 2 N -1, 
so that c ~ 1482 m s -1 and Z - pc ~ 1.48 x 106 kg m -2 s -1 (1.48 x 106 rayls). 

In aeroaeousties, the reference pressure level is p A _  2 X 10 -5 N m -2, the 
approximate heating threshold of the human ear. The reference intensity level is then 
164 - 10 -12 W m -2, the intensity of a plane wave of pressure p64 - 2 x !0 -5 N m -2 
propagating in an atmosphere at 20~ and normal pressure. Sound levels are given 
in decibels (dB) with respect to the reference intensity level and denoted IL 
(intensity level): IL ( d B ) -  10 log (IA/IA).  Acoustic pressures are also given in 
decibels (dB) with respect to the reference pressure level and denoted SPL (sound 
pressure level): SPL ( d B ) -  20 log (pA/p~) .  For a plane wave, the two measures 
are identical: IL = SPL. 

One may note that 20 dB is the noise level of a studio room, 40 dB the level of a 
normal conversation, 60 dB the level of an intense conversation, 90 dB the level of a 
symphony orchestra, 100 dB the noise level of a pneumatic drill at 2 m, 120 dB the noise 
level of a jet engine at 10 m, and 130-140 dB the pain threshold for the human ear. 

A sound of 70 dB (mean level between hearing and pain thresholds) corresponds 
to an acoustic pressure of p A - - 6  • 10 -2 N m -2, i.e. to a relative pressure 
fluctuation (with respect to the atmospheric pressure) of p A / p o -  6 X 10 -7. All 
other relative fluctuations (density, temperature, etc.) are also of magnitude 10 -7. 
One sees that the linearization hypothesis is widely valid. 

In underwater acoustics, the reference pressure level is p64 = 1 N m-2.  The reference 
intensity level corresponding to this pressure level is I A = 6.51 x 10 -7 W m -z, the 
intensity level of a plane wave of reference pressure propagating in 3% salted sea 
water at 20~ and normal pressure (corresponding to water of the Pacific Ocean) 
( p -  1.013 x 10 3 k g m  -3 c -  1516 m s - 1  Z -  p c -  1.536 x 10 -6 rayls) ~ �9 
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A 70 dB sonar pulse produces an acoustic pressure pA _ 3.16 x 103 N m -2, i.e. a 
relative pressure fluctuation p A / p  o = 3.16 x 10 -2. All other relative fluctuations 
are of magnitude 10 -6-10  -7, widely justifying the linearization conditions. 

1.2.11. Perfect gas 

Most gases behave over a wide temperature and pressure range like a perfect gas 
with constant heat capacity. This is the case for air. 

A perfect gas is a gas that obeys the laws p v  - - f ( T )  and e - g(T). This implies the 
well-known relation p v  = R T ,  and also 

d T  dv  
de - C~( T )  dT ,  ds = C~( T )  ~ + R - - ,  

T v 
Cp( T )  - Cv( T)  = R 

Then a perfect gas with constant heat capacity obeys the laws 

pv e s so=  logl ( o) l 

Thus isentropic motion, peculiarly acoustic motion, satisfy 

p v  ~ = ct, T v  ~ - 1 : c t ,  T p - ( ~ -  1) / '7  = ct 

Isentropic compressibility is then X s -  1/ 'yP,  and acoustic wave velocity is 

c =  ~/ - = v @ R T  
P 

For air in particular one has 

c ~ 2Or@ 

with 7 - ~  
c~ 

(1.85) 

(1.86) 

a formula often used in aeroacoustics. 

1.3. Elementary Acoustics of Solids: Elementary Elastic Waves 

One is interested here in the elementary acoustics of solids, i.e. with small movements 
of perfect, homogeneous, isotropic elastic solids, with no dissipative phenomena. 

1.3.1. Linearization for an isotropic, homogeneous, purely elastic solid 

From (1.5) and (1.12), one has to linearize (if there is no heat source) 

/ /~+ pV.  ~7= 0 

p ~ ) - V  o = F  

Tp~ = 0 

(1.87) 
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that is 

Op 
- -  + v . ( p ~ )  - o 

Ot 

The result is 

- -  + ~7. V~7 - V . ~ - f f  
P O t  

m + ~7. Vs - 0  
Tp Ot 

(1.88) 

O p  1 

--~--t + p O V . ~  1 - 0  

0~ 1 (1.89) 
pO V.o .1  _ / ~ l  

Ot 

S 1 - -  c t -O 

As for perfect fluids, small perfectly elastic movements  are isentropic. 
As a first consequence, assimilating finite difference and differential (1.14), 

1 _ A~ tr (e 1)i + 2#~ 1, and if one chooses as variable the elementary displace- 
ment  gl.  

/~l _ ~ ,  e 1 -- I(V/~I --F TV/~I) and tr (e l) -- Vff 1 
Ot 

Then 

V" O "1 - - /~0V(V �9 _3L. #0(V " (V/~I) _3t_ V" (Tvu'I))  

-- (A 0 d- #O)v(V �9 + ],t ~  (V/~ 1) 

= (AO + 2 # o ) v ( V .  ~,1) _ ~0~7 X ~7 X ~,1, 

since V .  (VzT)-  V ( V .  zT) - V x V x z7 

and the linearized equat ion of  mot ion  becomes 

02/~ 1 
p0 (A ~ + 2 # ~  �9 z71) + # ~  x V x ffl _ ffl (1.90) 

Ot 2 

1.3.2. Compression/expansion waves and shear/distorsion waves 

Without  restriction, one can decompose the displacement vector into its rotat ional  
componen t  and its i r rotat ional  component :  ffl _fi,~ + ill, with f f~ -V4~ and 
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fi '~- V z ~, i.e. with V • f f l _  0 and V .  fi '~- 0, where 4~ and ~ are the scalar and 
vector potentials. Similarly for the applied forces: ffl _ VG 1 + V x / q l .  

Then the linearized motion equation is decomposed into 

p0 ~O2ffl _ (A0 + 2/z0)V(V . ff~) = VG 1 
Ot 2 

pO 02 ffl 0 V +u xVx~s ~=vx#~ 
Ot 2 

or, since V2ff - V .  (V f f )=  V ( V .  i f ) -  V x V x #, V x # ~ -  0 and V .  f f~ -  O, 

p0 

Ot 2 

pO 02ul  

Ot 2 

_ (A ~ + 2#~ 1 = VG 1 

0,--, 2 --,1 /_~1 # v  U s - V •  

(1.91) 

o r  

with 

1 02t~ 1 1 
F V 2 U  1 = -  V G  1 

c 2 0 t 2  A~ + 2#~ 

1 02ff 1 1 ~-v2a~- v •  ~ 
c~ Ot 2 #o 

(1.92) 

~A O + 2#0 ~ #o 
cp = pO ; Cs - 7 (1.93) 

For the potentials, one has 

1 02q~ 1 

c 2 0 t  2 A 0 + 2# 0 

1 02~ 1 
~ -~- ~ 7 2 ~  - B 1 

C 2 0 t  2 #0 

G 1 

(1.94) 

Equations (1.92) and (1.94) are wave equations. They show the existence of two 
types of waves, propagating at different wave velocities" 

�9 Compression/expansion, i.e. pressure waves zT~, derived from a scalar potential 
4~ by ff~ - V4~, characterized by V • ff~ - 0 and V .  z71 ~ 0, and propagating at 
velocity ce. 

�9 Shear/distorsion waves fi'~, derived from a vector potential ~ by zT~- V • ~, 
characterized by V .  ffs 1 - 0 and V x ff~ -r 0, and propagating at velocity cs < ce. 
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In seismology, pressure waves are also called primary waves (P-waves) and shear 
waves secondary waves (S-waves), since the latter propagate  at lower speed and so 
arrive later than the former. 

1.3.3. Plane waves: Longitudinal and transverse waves 

Consider a plane pressure wave propagat ing in direction ff with velocity ce, 
d?=dp+( t - f f .Y /ce ) .  One can verify that this is a solution of equation (1.94) 
without source term. Then 

t -  
Cp 

z71 is collinear with ft. The vibration is parallel to the direction of propagation:  one 
says that  the wave is longitudinal. 

Consider now a plane shear wave propagat ing in direction ff with velocity cs and 
polarization of potential ~'~, ~ p - ~ ' ~ p + ( t -  ft. Y/cs). One can verify that  this is a 
solution of equation (1.94) for the vector potential. Then 

• t -  
Cs 

ff~ is perpendicular to ft. The vibration is perpendicular to the direction of 
propagation: one says that the wave is a transverse. 

1.3.4. Orders of magnitude 

Wave velocities 

~ A0 + 2#0 ~ #0 
CP ~ r 

pO ' --~ 

can also be written as functions of Young 's  modulus E ~ and Poisson's ratio u~ 

E o _ #o 3A~ + 2#o and u ~ - A~ 
A0 + #0 2(A0 + #0) 

i.e. 

and 

A o = E~176 E o and #o = 
(1 + u~ - 2u ~ 2(1 + u ~ 

E~ - u ~ 
c e -  o( u~ 1 2uO), c s -  p 1 +  - 

E0 

2p~ + u ~ 
(1.95) 
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Generally one has roughly: 

r  
c s  ,'~ - -  (1.96) 

2 

Typical values at 20~ are: 

�9 Aluminium: c e  - 6300 m s -1 c s  - 3080 m s -1 
Z p -  p c p -  1.7 • 107 rayls, Z s - - p c s -  0.8 x 107 rayls. 

�9 Copper: cp  - 4700 m s -1, c s  - 2260 m s -1, 
Z p -  p c e -  4.2 • 107 rayls, Z s -  p c s -  1.6 x 10 7 rayls. 

�9 Steel: c e  - 5900 m s -1 c s  - 3230 m s -1 
Z p  - p c e  - 4.5 x 107 rayls, Z s  - p c s  - 2.5 x 107 rayls. 

�9 Plexiglas: c e  2730 m s -1 c s -  1430 m s -1 
Z p - - p c p -  3.2 x 107 rayls, Z s - - p c s -  1.7 x 10 7 rayls. 

p - 2 . 7  x 103 k g m  -3, 

p - 8.9 x 103 kg m-3,  

p - - 7 . 7  x 103 k g m  -3, 

p - -  1.18 x 10 3 k g m  -3, 

1.3.5. General behaviour 

Elastic waves in solids behave like acoustic waves in fluids: they are subjected to 
propagation,  refraction, reflection and scattering phenomena.  Simply, they are 
polarized waves (vector waves). One has merely to consider independently pressure 
waves and shear waves and make them interact at discontinuities. 

1.4. Conclusion 

We have given the material necessary to derive acoustic equations in rather general 
cases but have treated only the simplest case of perfect simple fluid or elastic solid 
initially homogeneous and at rest. This leads to classical wave equations and 
constitutes elementary acoustic and elastic wave theory. 

More complex situations can also be treated on the basis of given equations of 
mechanics: non-homogeneous media, non-steady initial states, dissipative media. 
The recipe is simple - linearization - but developments are numerous and have 
given rise to an abundant  bibliography that it is not possible to summarize within 
the context of this book. 
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C H A P T E R  2 

Acoustics of Enclosures 

Paul J.T. Filippi 

Introduction 

This chapter deals with a few methods of common use for the study of the sound 
field inside an enclosure: factory halls, concert halls, theatres, airplane cabins, cars, 
trucks .... 

In the first section, the equations which govern the phenomena are presented 
and the conditions for existence and uniqueness of the solution are stated" the 
notions of resonance frequencies and resonance modes (flee oscillations), as well as 
eigenfrequencies and eigenmodes are introduced. The following section is devoted 
to the simple example of a parallelepipedic enclosure: in particular, it is shown 
that the response of the room to a harmonic excitation can be expanded into a 
series of eigenmodes. In the third section, the response of an enclosure to a 
transient signal (sound establishment and sound decay) is calculated: it is 
expressed as a series of resonance modes which, if there is energy absorption by 
the walls, for instance, are different from the eigenmodes. In Section 2.4, 
the interest is focused on a very academic problem: a two-dimensional circular 
enclosure. It provides the opportunity to introduce the rather general method of 
separation of variables, and to compare the corresponding solution with the 
eigenmodes series. Section 2.5 introduces briefly the method of images: it is an 
approximation which comes from geometrical optics, which is mainly valid at 
high frequency and for polyhedral boundaries only (for simplicity, convex 
polyhedra will be considered, only). In the last section, the Green's representation 
of the sound field inside an enclosure is introduced: this is one of the most general 
mathematical representations of the solution in which the acoustic pressure 
reflected by the boundaries is expressed as the radiation of fictitious sources 
located on the enclosure boundaries. 

The classical mathematical proofs concerning the theory of partial differential 
equations and boundary value problems are not given in this manual. The reader 
can find them in specialized textbooks such as those which are mentioned in the 
short bibliographic list at the end of the chapter. 
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2.1. General Statement  of  the Problem 

Let us consider a domain f~, with a regular boundary cr. By regular boundary we 
mean, for example, a piecewise indefinitely differentiable surface (or curve in R2). 
This allows us to define almost everywhere a unit vector if, normal to ~r and 
pointing out to the exterior of f~. This bounded domain is filled with a 
homogeneous isotropic perfect fluid, characterized by a density po and a sound 
velocity co. Acoustic sources are present: they are described by a function (or, more 
generally, a distribution) denoted F(M,  t), depending on the space variable 
M ( x ,  y, z) and the time variable t. 

2.1.1. The wave equation 

The acoustic pressure ~b(M, t) generated by the sources satisfies the following wave 
equation: 

A ~2(M, t) -- F(M,  t) M E 9t, t E ]--cxz, +c~[ 
c 2 0 t  2 (2.1) 

~(M, t) = Ot~b(M, t) = 0 t < to 

where to is the time at which the sources F(M,  t) start. In general, the sources stop 
after a bounded duration. But this is not a reason for the fluid motion to stop, too. 
In fact, the energy conservation equations used to describe the phenomenon show 
that, after the sources have stopped, the acoustic energy inside the enclosure 
decreases more or less exponentially. Indeed, when a wave front arrives on an 
obstacle, it gives it a certain amount of its energy, the remaining part being 
reflected; the motion of the fluid lasts indefinitely with an amplitude which is 
reduced each time the wave encounters an obstacle. In practice, the sound level 
decreases rapidly under the hearing threshold. 

The description of the influence of the boundary cr must be added to the set of 
equations (2.1). Two simple cases can be considered which correspond to a 
conservative (no energy loss) physical system (for such an ideal system, the sound 
field keeps a constant level when the sources have been turned off). 

The Neumann boundary condition. Assume that the boundary cr is made of a 
perfectly rigid solid which forces the normal particle velocity ft. V(M,  t) to be zero. 
The momentum equation 

OV 
Po ~ + V~p - O 

Ot 

shows that the acoustic pressure ~b(M, t) must satisfy the boundary condition 

On~(M, t ) -  0, M E or, Vt (2.2) 
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where the normal derivative On~(M, t) is defined by the scalar product 

On~(M, t) = if(M). V~(M, t) 

The corresponding boundary value problem is called the Neumann problem. 

The Dirichlet boundary condition. Assume that the fluid which the acoustic wave is 
propagating in is a liquid which is in contact with a gas along a (an example is the 
surface of the sea). An excellent approximation of the influence of such a boundary 
on the sound field is to neglect the transmission of acoustic energy into the gas. 
Thus, the gas exerts on the liquid boundary a constant pressure (the atmospheric 
pressure in the example of the sea) and, as a consequence, the acoustic pressure is 
zero, that is: 

~b(M, t) = 0, M E or, Vt (2.3) 

The corresponding boundary value problem is called the Dirichlet problem. 
It is shown that equation (2.1) together with one of the two conditions (2.2) or 

(2.3) has one and only one solution. The same result is valid if the Neumann 
condition is imposed on a part or' of cr and the Dirichlet condition is assumed on the 
other part a".  The proof is a classical result of the theory of boundary value 
problems. 

For  a boundary which absorbs energy, the expression of the boundary condition 
is not so easy to establish. To be totally rigorous, it is necessary to mathematically 
describe how the acoustic energy is transmitted to the boundaries of the 
propagation domain: this implies solving a problem which involves a coupling 
between a fluid and an elastic (possibly viscous) solid. This is, for instance, the case 
in building acoustics: rooms are often bounded by thin elastic structures (light 
walls, doors, windows ...) which allow sound energy transmission. In many real life 
situations, the signals involved have a narrow frequency spectrum (no more than an 
octave)" a reasonable approximation is to consider that the ratio of the acoustic 
pressure to the normal particle velocity (impedance) is a constant, which, of course, 
depends on the central frequency of the signal. More realistic signals can be 
considered as a linear combination of narrow frequency spectrum components 
which satisfy different boundary conditions. 

2.1.2. The Helmholtz equation 

Many realistic considerations have led scientists to focus their efforts on the 
response of physical systems to periodic (and mainly harmonic) excitations. A 
physical time function can, in general, be expressed as an inverse Fourier transform 
(the validity conditions are not constraining in physics): this means that almost 
every deterministic acoustic excitation can be considered as the linear combination 
- in fact, an integral - of elementary harmonic components. Many real life acoustic 
phenomena have a periodic (or quasi periodic) time dependency, that is they are 
linear combinations of harmonic components, the number of which can be 
considered as finite. Typical examples include electric converters, machine tools, 
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thermal or electric motors. Under certain conditions, the sound emitted by a 
musical instrument can also be considered as a quasi periodic excitation. In room 
acoustics engineering, the first step for the designer is to investigate the room 
response to a sine excitation and to try to make it as independent as possible of the 
frequency; then, the response to transient excitations is examined, sometimes with 
much less precise methods, the attention being mainly focused on the propagation 
of the wave fronts. 

Assume that the source F(M, t) has a harmonic time dependency and is 
represented by a complex function f(M)e -~t, where t is ~ 1. The physical quantity 
is given by 

F(M, t )=  ~[f(M)e -~~ (2.4) 

It is shown that the acoustic pressure can equally be represented by a complex 
function p(M)e -~t which is related to the physical pressure by 

r t) = ~.[p(M)e -~t] (2.5) 

The functions f(M) and p(M) are respectively called the complex amplitudes of the 
source and of the sound pressure. It must be kept in mind that a microphone or the 
ear is sensitive to the function ~b(M, t) and not to its complex representation. 
Finally, the particle velocity I?(M, t) is associated to a complex function O(M)e -~t 
by 

IT(M, t) -- ~[~7(M)e -"~ (2.6) 

Expressions (2.4) and (2.5) are introduced into the wave equation (2.1) to get (lO ) 
A - -  ~ ~ [ p ( M ) e - " ~ q  = ~ [ ~ M ) e  -"~ 

c 2 0 t  2 

Elementary considerations show that this equation is satisfied if and only if the 
complex pressure amplitude is a solution of 

(A + k2)p(M)=f(M), MEf~,  k 2 = -  (2.7) 
cg 

This equation is called the Helmholtz equation. 

2.1.3. Boundary condition for harmonic regimes 

A perfectly rigid boundary remains characterized by the Neumann condition; the 
liquid-gas interface is still described by a Dirichlet condition. 

In many practical situations of an absorbing boundary, it is possible to adopt the 
Robin boundary condition which we write: 

Op(M) ~k 

0 ~ ( M )  ~(M)  
p(M) = 0, M E cr (2.8) 
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This relationship states that, at any point M E a, the normal component of the 
acoustic pressure gradient (which is proportional to the normal component of the 
particle velocity) is proportional to the acoustic pressure itself. The quantity ((M), 
which can vary from point to point, is called the specific normal impedance of the 
boundary; its inverse is called the specific normal admittance. The Robin boundary 
condition is, like the Neumann and the Dirichlet ones, a local condition. It 
describes accurately the physical phenomenon as far as the acoustic wave is rapidly 
attenuated inside the boundary material in the tangential direction. This is, in 
particular, the behaviour of the porous materials commonly used as acoustic 
absorbers. 

The specific normal impedance is a complex quantity the real part of which is 
necessarily positive. Indeed, let us calculate the energy flux 6E which flows across a 
boundary element dcr during one period T. It is given by 

~E- d~ ~(pe-"~ ,Te -~') dt (2.9) 

The momentum equation expresses the particle velocity in terms of the pressure 
gradient: 

-~po~7 + Vp - 0 

Let/)  and ( (resp. b and ~) be the real parts (resp. the imaginary parts) of the 
acoustic pressure p and of the impedance (. One obtains 

1 0 3  

,7. V p -  - - - - -~  [(b~ + ~ )  + ~(~ -b~)] 
col~l 

or equivalently 

n . , o  M 

1 

poco I~12 [(b~ + ~ )  + ~ ( ~ -  p~)] 

Using this last equality, the energy flux is written 

6E = ( b ~ (  + P~) cos2 ~t + b(/3~ - P~) sin2 a;t 
p0~01 ~ [2 
+ [2b/~ + (/3 2 _/)  2)~] sin ~t cos a;t} dt (2.10) 

The integration interval being one period, the last term has a zero contribution. The 
first two terms lead to 

Tdcr 
~g-  }p12~ (2.11) 

2poco I C I 2 

If the boundary element de absorbs energy, the flux 6E which flows across it must 
be positive. This implies that the real part 4 of the specific normal impedance is 
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positive. The quantity ~ is called the acoustic resistance, while the imaginary part of 
the normal specific impedance is called the acoustic reactance. 

The specific normal impedance is a function of frequency. It is useful to have an 
idea of its variations. As a rough general rule, at low frequencies, every material is 
perfectly reflecting ([ ff I ---~ c~) while, at high frequencies, every material is perfectly 
absorbing (ff ~ 1, ff---~0). The surface of a porous material can be accurately 
characterized by such a local boundary condition. Delany and Bazley have 
proposed a simple model of the specific normal impedance of a porous medium 
which is expressed as a function of the frequency by (;)0 

- 1. + 9.08 + cl 1.9 

where the parameter s, called the flow res&tance, characterizes the porosity of the 
medium. Figure 2.1 corresponds to the value s = 300 and represents the impedance 
curve of standard materials used as ceiling covering. This simple model of 
impedance is quite satisfactory in many practical situations providing the thickness 
of material used is large enough. There are, of course, many other models which 
provide a more accurate description of acoustic porous materials by taking into 
account more details: thickness of the material layer, variations of the porosity, 
vibrations and damping of the solid structure, etc. 
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Fig. 2.1. Delany and Bazley's model of impedance: real and imaginary parts of ~ as a function of 
frequency (s = 300). 
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The three types of boundary conditions can be gathered in a unique 
expression: 

with 

aO,,p(M) + ~p(M) = O, M E cr (2.12) 

a = 1,/3 = 0 ~ Neumann boundary condition 

a = 0,/3 = 1 --* Dirichlet boundary condition 

a = 1,/3 # 0 ~ Robin boundary condition 

When the boundary is composed of several panels with different homogeneous 
materials, the coefficients a and /3 are piecewise constant functions. It is also 
possible to consider a boundary with continuously varying properties: then a and/3 
are continuous functions. The most general case is to consider piecewise continuous 
functions a and/3. 

2.1.4. Eigenmodes and eigenfrequencies, condition for existence and uniqueness of the 
solution 

Let us consider the following boundary value problem: 

(A + kZ)p(M) = f ( M ) ,  M C Ft (2.7) 

aOnp(M) + ~p(M) = O, M E a (2.12) 

where cr, the boundary of the domain f~ is assumed to be a piecewise indefinitely 
differentiable surface (or curve in ~2). The following theorem stands: 

Theorem 2.1 (Existence and uniqueness of the solution) 

(a) There exists a countable sequence kn(n = 1, 2 , . . . ,  oo) of wavenumbers such that 
the homogeneous boundary value problem (2.7, 2.12) has non-zero solutions. 
To each such wavenumber, called an eigenwavenumber, a frequencyfn, called an 
eigenfrequency is associated. 

(b) For  each eigenwavenumber kn, the homogeneous boundary value problem 
has a finite number Nn of non-zero solutions tPnm(n=l,2,... ,O0; 
m = 1, 2,. . . ,  Nn < oo), which are linearly independent. These solutions are 
called eigenmodes of the Laplace operator for the boundary condition (2.12). 
The number Nn of independent solutions corresponding to the wavenumber kn 
is called its order of multiplicity. 

(c) The eigenwavenumbers kn are real if the ratio a/13 is real; if ~(a//3) # 0, then 
.,~kn T~ O. 

(d) If k is equal to any eigenwavenumber, then the non-homogeneous boundary 
value problem (2.7, 2.12) has no solution. If k is not equal to any 
eigenwavenumber, then the solution p(M) exists and is unique for any source 
term f (m).  
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Remark. It is equally possible to consider a boundary value problem with a 
homogeneous Helmholtz equation (f(M)=-O) and a non-homogeneous boundary 
condition: 

aOnp(M) + 3p(M) = g(M), M E 

Such a boundary condition appears when the energy is furnished to the enclosure 
by a motion of the boundary (or a part of the boundary). As an example, assume 
that a part al of cr is the external surface of a rotating machine. This surface is 
mechanically excited by the vibrations induced by the rotating parts of the machine. 
It thus has a non-zero normal velocity which is transmitted to the surrounding 
fluid. This energy transmission is expressed by the boundary condition 

u(M) 
O,p(M) = ~ ,  VM E O'l 

rcapo 

On the remaining part of the boundary, a homogeneous condition is assumed. It 
can be shown that the former theorem is still valid: the solution exists and is unique 
for any source term u(M) if and only if k ~ kn. 

2.2. Sound Field inside a Parallelepipedic Enclosure: Free Oscillations 
and Eigenmodes 

In an enclosure, the fluid oscillations which can occur without any source contribution 
are called free oscillations, or free regimes, or resonance modes. Such non-causal 
phenomena can, of course, appear as a purely intellectual concept; but, in fact, they 
correspond to a certain aspect of the physical reality, as will be explained. It is well 
known that if someone sings a given note close to a piano, when he stops he can hear 
the corresponding string, which continues to produce sound. Though the mechanical 
energy given by the singer to the piano string is very small, the resulting sound is quite 
easy to hear. The physical phenomenon which occurs in this experiment is that the 
infinitely small amount of energy absorbed by the string is quite sufficient to excite its 
free oscillation mode or resonance mode, which has a very low damping constant. 

For an enclosure, the eigenmodes are purely mathematical functions which, in 
general, are not simply related to the resonance modes which, in a certain way, 
describe the physical properties of the system. In mathematics, an eigenfunction (or 
eigenmode) of an operator A is a non-trivial solution of the equation A U = A U, 
where the constant A is called an eigenvalue. For an acoustics problem, the 
phenomenon is governed by the combined Laplace operator and boundary 
condition operator. It is obvious that, in the general case, this operator is frequency 
dependent because of the frequency dependence of the boundary conditions. This 
implies that the eigenfunctions (usually called eigenmodes by acousticians) and 
eigenvalues are frequency dependent, too. 

This section starts with the Neumann problem: the eigenfrequencies and 
eigenmodes, as defined in Section 2.1.4, are calculated. Because the boundary 
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condition is independent of the frequency, these modes also describe the free 
oscillations of the fluid contained in the enclosure: in this case, eigenmodes and 
resonance modes are identical. Then, the Robin problem is considered. The free 
oscillations regimes (resonance modes) are looked for: it is necessary to consider 
that the impedance can vary with frequency, which implies that the different 
resonance modes satisfy different boundary conditions. 

The next step is to show that the response of the enclosure to a harmonic 
excitation can be expanded into a series of eigenmodes, that is into a series of 
functions which satisfy the same boundary condition: an explicit expression of the 
coefficients of the series is obtained. For  the Robin problem, these modes are 
different from the resonance modes. 

It must be noticed that, for the Dirichlet problem, the resonance modes are 
identical to the eigenmodes. The calculations, which are essentially the same as 
those developed for the Neumann problem, are left to the reader. 

The parallelepipedic domain f~ which is considered here is defined by 

a a b b c c 
- - < x < + - ,  - - < y < + - ,  - - < z < + -  

2 2 2 2 2 2 

2.2 .1 .  E igenfrequene ies  and e i g e n m o d e s  for the N e u m a n n  problem 

Let us look for the existence of wavenumbers k such that the following 
homogeneous boundary value problem has a non-zero solution: 

lag I (A -k- k2)p(x, y, z) - O, x E - - ,  + - , y E 
2 2 

Oxp(-a/2,  y, z) - O, 

ayp(x, - b / Z ,  z) = 0 ,  

Ozp(X, y, - c / 2 )  = O, 

Let us consider a function R(x) solution of 

-f- k 2 R ( x )  - -  O, x E 
d x  2 

d x R ( - a / 2 )  = 0 ,  

] b b[ ] c c[ 
- - , + -  , zE -- + 

2 2 2 '  2 

Oxp(+a/2, y, z) : 0 (2.13) 

Oyp(X, +b/Z, z) -- 0 

Ozp(X, y, +c/2)  = 0 

]aa[ 
dxR(+a/2)  = 0  

(2.14) 

It is obvious that such a function, if it exists, satisfies system (2.13) too. This 
suggests seeking a solution of this system in a separate variables form: 

p(x, y, z) = n(x)S(y)  ~(z) (2.15) 

Introducing this expression into the Helmholtz equation leads to 

R"(x)  S"(y)  r"(z)  
t ~ + ~ + k 2 . ~  0 (2 .16)  

R(x) S(y) T(z) 
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Because k 2 is a constant, this equation can be satisfied if and only if each term 
R " / R ,  S " / S  and T " / T  is independent of the variables (x, y, z). The homogeneous 
boundary value problem (2.13) is thus reduced to three one-dimensional boundary 
value problems: 

R"(x) 

R(x) 
+ a 2 -- O, R ' ( - a / 2 )  = O, R ' ( + a / 2 )  = 0 (2.17) 

S " ( y )  

S ( y )  
+ ,32 - O, S ' ( - b / 2 )  = O, S ' ( + b / 2 )  = 0 (2.17') 

r"(z) 

l"(z) 
+ ,3/'2 = O, T ' ( - c / 2 )  = O, T ' ( + c / 2 )  = 0 (2.17") 

Then, the function p given by expression (2.15) is a solution of (2.13) with 

k 2 = a2 + 132 + ,),2 (2.18) 

The general solution of the differential equation (2.17) is 

R ( x )  = Ae  -"~x + Be +~,~x (2.19) 

in which expression the coefficients A and B must satisfy the following system of 
homogeneous equations: 

Ae  +,,~a/2 _ Be-"~ = 0 

Ae  -~a/2  - Be +,,o,a/2 = 0 

This system has a non-zero solution if and only if its determinant is zero; this occurs 
if a satisfies 

sin a a  - 0 

that is if a belongs to the following sequence: 

7r 
OL r - -  r - ,  r - 0, 1, . . . ,  ~ (2.20) 

a 

The corresponding solution is written 

Rr -- 2Be  -~a~a/2 cos OLr(X- a / 2 )  (2.21) 

where the coefficient B is arbitrary. One of the most useful choices is to impose that 
the function Rr(x )  has an L Z-norm equal to 1" 

+a/2 D [+a/2 
I Rr (x )  12 dx 4IB  12 cos 20Lr(X -- a/2) d x -  1 

3-a/2 3-a/2 
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Choosing B = e ~ara/2/~/~), one gets: 

1 r z r (x -  a/2) 
Rr(x) -- - ~ a  cos a , r -- O, 1 , . . . ,  cxz (2.22) 

In the same way, the functions S(y) and T(z) are given by 

1 sTr(y-  b/2) 
S~(x) = ~ c o s  , s = 0 ,  1,..., 

v/2b b 

1 tzr (z -  c/2) 
T,(x) - ~ c o s  c , t - O,  1 , . . . ,  c ~  

(2.23) 

So, a countable sequence of solutions of the homogeneous boundary value problem 
(2.13) can be defined by 

1 rTr(x- a/2) szr(y - b/2) tTr(z- c/2) 
P r s t ( X ,  Y, z) - - - - - ~  cos cos cos 

x/8abc a b c (2.24) 

r, s, t integers I> 0 

The corresponding wavenumbers are written 

~ r 2 s 2 t 2 

krst  - "/r ~ -}- ~ -~- 
a 2 b 2 c 2 

(2.25) 

Let us recall that the eigenmodes are defined up to an arbitrary amplitude factor: 
with the choice here adopted, they have an LZ-norm equal to unity. 

Remark. If b is a multiple of a, say b = 3a for instance, then the eigenmodes 

1 rTr(x-  a/2) 
P r  0 o(X, y, Z) -- ~ a  COS a 

1 3rzr(.y- b/2) 
PO 3r o(X, y, Z) -- - ~  COS 

and 

correspond to the same wavenumber  rTr/a which is said to have a multiplicity order 
equal to 2. But for this wavenumber,  the homogeneous Neumann  problem has 
two linearly independent solutions. It is also possible to have wavenumbers with 
a multiplicity order of 3, to which three linearly independent eigenmodes are 
associated. 
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2.2.2. Resonance frequencies and resonance modes for the Robin problem 

Let us consider the following boundary value problem: 

(A  + k2)p(x,  y , z )  -- O, x E - - - , + - ,  y E -  + 
2 2 2 '  2 '  

Oxp(x, y, z) - t&ap(x, y, z) = 0 at 

-Oxp(x ,  y, z) - Lkap(x, y, z) = 0 at 

Oyp(X, y, z) - ~k3p(x, y, z) = 0 at 

-Oyp(X, y, z) - ~k3p(x, y, z) = 0 at 

Ozp(X, y, z) - ~k'yp(x, y, z) = 0 at 

-Ozp(X, y, z) - ~k'yp(x, y, z) = 0 at 

z E  

x = + a / 2  

x - - a / 2  

y = + b / 2  

y = - b / 2  

z = + c / 2  

z = - c / 2  

] c c[ 
-2,+2 

(2.26) 

A solution of system (2.26), if it exists, describes the free oscillations of the fluid 
which fills the domain f~. Such an oscillation is called a resonance mode; the 
corresponding wavenumber (resp. frequency) is called a resonance wavenumber 
(resp. resonance frequency).  The role of these resonance modes will appear clearly 
in the calculation of transient regimes. It must be noticed that, if two resonance 
modes correspond to two different resonance frequencies, they satisfy different 
boundary conditions: indeed, the coefficients ~ka, t~k/3 and ~k7 are generally 
frequency dependent (through the factor k but also because the impedance of a 
material depends on the frequency). To simplify the following calculations, it is 
assumed that the three admittances a , /3  and 3' are constants independent of the 
frequency. 

The technique of separation of variables used for the Neumann problem is again 
applied: the solution is sought as a product R(x)S(y )T(z )  of three functions, each of 
them depending on one variable only. Thus, the function R(x)  must satisfy the 
following boundary value problem: 

R"(x )  + ~2R(x) - 0, x E ]--a/2, +a/2[  

O x R ( x ) -  c k a R ( x ) =  0 at x = + a / 2  (2.27) 

- O x R ( x )  - ckaR(x)  = 0 at x = - a / 2  

Its general expression is 

R(x)  = Ae ~x + B e - ~ x  

and system (2.27) has a non-zero solution if and only if ~ is one of the roots of the 
following equation 

e 2 ~  a _ q- k a  (2.28) 
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It must be noticed that expression (2.28) depends on the parameter k, and so do the 
solutions of this equation. 

In the same way, it is possible to define S(y )  and T(z) by 

S ( y )  = Ce ,,Ty + De-,,Ty 

T(z) = Ee ,r + Fe- 'r  
(2.29) 

where ~ and ff must be solutions of the following two equations: ( )2 
e2~r/b _ 77 + k/3 (2.30) 

~ -  k~ 

e 2~ _ + k3' (2.31) 
- k3' 

Any function of the form R ( x ) S ( y ) T ( z )  satisfies a homogeneous Helmholtz 
equation, the wavenumber of which is 

k 2 ___ ~2 _+_ ?72 + .)/2 (2.32) 

Thus, the parameters ~, r /and ff are defined by the four equations (2.28, 2.30, 2.31, 
2.32). It does not seem possible to obtain an analytic expression of the solution of 
this system, even under the hypothesis of reduced admittances c~, /3 and 
independent of the frequency. The proof of the existence of a countable sequence of 
solutions is not at all an elementary task. The existence of such a sequence (~r, r/s, fit) 
is stated without proof. To each solution, a wavenumber krst is associated by the 
definition 

kr2st __ ~2 +7.]2 _.1_ ~2 

krst > 0 if kr2st > O, ",~(krst) > 0 else 

r, s, t, integers 

The corresponding resonance mode is written 

~r -- krstCe 
erst(X,  y, z) - Arst e ~r(X - a/2) _jr_ ~r + krstO~ 

F" 
X [e 'o~(y - b/2) + ~s -- krstt~ 

I rl~ + kr~t~ 

e-g~(x - a / 2 )  

~t -- krst')/ e ~,(z - c/2) + 

~t + krst7 

e-~o'(Y- b/2) 

e-~r c/2) (2.33) 
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2.2.3. Forced regime for the Neumann problem: Eigenmodes series expansion of the 
solution 

Let us now try to establish an expression for the solution of the non-homogeneous 
equation 

(A  + kZ)p(x, y, z) = f i x ,  y, z), m = (x, y, z) E f~ (2.34) 

which satisfies a homogeneous Neumann boundary condition. It can be proved 
that the sequence of functions Prst(x, y, z) as given by (2.24) is a basis of the Hilbert 
space which p(x, y, z) belongs to: the space of functions which are square integrable 
in f~ together with their first derivatives and which satisfy a homogeneous 
Neumann boundary condition on ~, the boundary of ft. If the source term f ( x ,  y, z) 
is a square integrable function, it can be expanded into a series of the eigenmodes: 

o o  

f ( x ,  y, z) = Z frsterst(X, y, z) 
r, s, l = 0 

f i s t =  I f ( x ,  y ,  z )Prs t (X,  y ,  z)  d x  d y  dz  
f~ 

(2.35) 

The acoustic pressure p ( x , y , z )  is sought as a series expansion of the same 
functions: 

p(x, y, z) - ~ %stPrst(X, Y, z) (2.36) 
r, s, t = 0 

Expression (2.36) is introduced into (2.34), leading to 

O(3 OO 

Z %st(kZ - kZst)Prst(x' y'  z) - y ~  frstPrst(X, Y, Z) (2.37) 
r ,  s,  t = 0 r,  s,  t = 0 

Intuitively, this equation is satisfied everywhere in f~ if and only if the coefficients of 
the terms Prst(X, y, Z) on both sides of the equality are equal, that is if 

~ r s t ( k  2 - k2st)Prst(X, y, z) = frst , r, s, t -- O, 1 , 2 , . . . ,  c~ 

If k is different from any eigenwavenumber krst, o n e  gets: 

frst 
f f f f  r s t  = ~ , ?', S, t -- 0, 1, 2 , . . . ,  C~ (2.38) 

k z _ k  2 
r s t  

and, thus, the series which represents the response p(x, y, z) of the fluid to the 
excitation f i x ,  y, z) is uniquely determined. A priori, this series does not converge 
to the solution at each point but it converges in the sense of the L Z-norm. It can 
be shown that there is a point convergence outside the support  of the source 
term. 
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The hypothesis that f(x, y, z) is a square integrable function can be relaxed and 
replaced by the less restrictive one that f is a distribution with compact support: for 
example, an isotropic small source located around a point (u, v, w) can be very 
accurately described as a Dirac measure 

f (x, y, z) = ~u(X) | ~ (  y) | ~w(Z) 

Rigorously, equation (2.37) must be solved in the weak sense. This means that it 
must be replaced by 

I~ ~ - y, z)~(x, y, z) dy ~ r s t ( k  2 kZst)Pr~t(x, dx dz 
r, s, t = 0 

- -  f r s t e r s t ( X ,  y, z)~(x, y, z) dx dy dz 
r, s, t = 0 

where ~(x, y, z) is any function of the Hilbert space which p(x, y, z) belongs to. If we 
chose the sequence of eigenmodes e r , s , t , ( x ,  y ,  z ) ,  the result already given is 
straightforward. If f is a distribution, the integrals in the former equality are 
replaced by the duality products and ~I,(x, y, z) is any indefinitely differentiable 
function with compact support in 9t: in particular, the eigenmodes are such 
functions. Then, for a Dirac measure the following result is easily established: 

f rs t  = ers t (U,  v ,  w )  

Expressions of the coefficients t~rs  t and of the series (2.36) remain unchanged. 
Nevertheless, the series which represents the acoustic pressure converges in the 
distribution sense. Practically, there is a point convergence outside the source term 
support. Such an elementary result is a direct application of the basic concepts of 
the theory of distributions developed in the book by L. Schwartz [10] referenced at 
the end of this chapter. 

2.2.4. Forced regime for the Robin problem: Expansion into a series of the 
eigenmodes of the Laplace operator 

Let us consider now the non-homogeneous Helmholtz equation 

(A + k2)p(x, y, z) =f ix ,  y, z), M = (x, y, z) c f~ (2.34) 

associated to the Robin boundary conditions (2.26). It is not possible - at least in a 
straightforward way - to expand the solution into a series of the resonance modes 
presented in subsection 2.2.2 since these functions satisfy different boundary 
conditions as, for example, 

OxPrst(X,  y, z) - t~krstOZPrst(X, y, z) = 0 for x = a/2 

It is much simpler to introduce the eigenmodes of the boundary value problem 
defined by the Laplace operator and the Robin conditions for a fixed wavenumber k. 
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They are defined by the homogeneous set of equations 

] [ ] a a b 
(A -I- xZ)(I)(x, y,  z) -- O, X e  - - - , - q - -  , y E - -  

2 2 2 

Ox~(X, y, z) - tka~(x,  y, z) = 0 at 

-Ox~(X, y, z) - t k ~ ( x ,  y, z) = 0 at 

Oy~(X, y, z) - tk/3~(x, y, z) = 0 at 

-Oy~(X, y, z) - tk/J,~(x, y, z) = 0 at 

Oz.(X, y, z) - tk'),~(x, y, z) = 0 at 

-Oz'(X,  y, z) - tk'y~(x, y, z) = 0 at 

b[ 
' + 2  ' Z 6  

x = +a/2 
x : - a / 2  
y : +b/2 
y = - b / 2  
z = +c/2 
z = - c / 2  

] c c[ 
-2,+2 

(2.39) 

It will be assumed that there exists a countable sequence of solutions ~rst, called 
eigenmodes corresponding to a sequence of wavenumbers Xrst called eigenwave- 
numbers, which depend on the wavenumber k. The method of separation of 
variables can again be used and ~,.~t(x, y, z; k) is sought as a product of three 
functions each of which depends on one variable only: 

~rst(X, y, Z; k )=  Rr(x; k)gs(y; k)Tt(z; k) 

Each function is sought as a linear combination of two exponential functions. For  
example, we have 

~ ~ 

Rr(x; k )=  Are ~"x + B,.e -~'rx (2.40) 

in which expression ~r is a function of k, solution of 

e + ( ~  - kc~) 2 _ e-'~h(~ + kc~) 2 = 0 (2.41) 

This equation cannot be solved analytically. We assume, without a proof, that it 
has a countable sequence of solutions which depend analytically on the parameter 
k. The coefficients Ar and Br are related by 

Br - Are ~ra ~r_ -- kc~ 
~r + ko~ 

Finally, the function Rr is written 

[ - ] ~ ~,. - koL --d.rX (2.42) R,.(x; k) = A,. e ,s + _ e 
~r + ka 

Let us now prove that these functions are orthogonal to each other. To this aim, use 
is made of the obvious equalities 

j 'wa/2 { [ d2~r ] -  [ d2~q ] } 
I -[-- ~-2kr Rq -- Rr -[- ~2qkq d x -  0 (2.43) 

dx 2 dx 2 ~ a / 2  l 
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] Rq -- Rq ZxLdx 
d 2 R q ~  r d [dRq ] 

dx 2 ---~x L-~x kr 

dR r dRq 

dx dx 

dRq dRr 

dx dx 

Expression (2.43) is equivalent to 

I+a/2d FdRr dRq] [+a/2 
_'---7- l{q -- Rr dx + (?) -- ?2) RrRq d x -  0 

Z la/2 L~x dx d-a~2 

The first integral is easily shown to be zero" an integration by parts leaves boundary 
terms only which cancel out because the two functions Rr and Rq satisfy the same 
boundary condition. This implies that the second term is zero too. As a 
consequence, if r # q the second integral is zero, and the functions k~ and Rq are 
orthogonal. The amplitude coefficients Ar are commonly chosen so that the 
functions Rr satisfy 

i +a/~ k~ dx--1 
-a/2 

The functions Ss(y; k) and Tt(z; k) are determined in the same way. The 
eigenmodes are thus given by 

~rst(X, y, Z; k ) -  Rr(x; k)Ss(y; k)Tt(z; k) 

and satisfy a homogeneous Helmholtz equation with a wavenumber Xrst(k) defined 
by 

- 2  x~,(k)- ~(k) + ~; (k) + ~(k) 
~[Xrst(k)] >I 0 

Let fret be the coefficients of the expansion of the source function f in terms of the 
(~ rst 

frst -- f(x, y, Z)~rst(X,  y, z; k) dx dy dz (2.44) 

The solution of equation (2.34), which satisfies the Robin boundary conditions 
(2.39), is given by the series 

(x~ f rst X-" 
p(x, y, z) - 

k 2 2 r, , =0 m )(,rst 
~r~t(X, y, Z; k) (2.45) 

This points out a new difficulty which appears with the Robin problem: for each 
wavenumber, it is necessary to determine a set of eigenwavenumbers; being the 
solution of a transcendental equation, they cannot be determined analytically like 
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those of the Neumann  and the Dirichlet problems. It must  be recalled that the 
eigenmodes ~rst(x, y, z; k) depend on the wavenumber  k even if the impedance of 
the boundary  of the domain does not depend on this parameter.  

2.3.  Trans ient  P h e n o m e n a  - Reverberat ion T ime  

This section deals with the solution of the wave equation inside an enclosure, for 
two particular transient sources: the source produces a harmonic signal with 
angular frequency w0 which starts at t = 0 (sound establishment) or which stops at 
t - -0  (sound stopping). It is assumed that the boundary of the propagat ion domain 
absorbs energy. It is shown that, during sound establishment, the acoustic pressure 
tends asymptotically to the forced harmonic response of the enclosure, following 
roughly an exponential law. When the source is stopped, it goes asymptotically to 
zero, following a very similar exponential law. This will lead to the introduction of 
the notion of reverberation time and the Sabine formula: this formula enables us to 
approximately relate the time rate of energy decrease to a mean absorption 
coefficient of the walls. 

2.3.1. A simple one-dimensional example: Statement of the problem 

Let us consider a waveguide with constant  cross section, extending over the 
domain  0 < x < ~ .  The sub-domain 0 < x < L - which will be considered as the 
enclosure - contains a fluid with density p and sound velocity c. The remaining 
part  L < x < c~ is occupied by a fluid with density p' and sound velocity c'. It is 
assumed that  ( =  pc/p~ct> 1 (this assumption is not essential). The boundary  
x = 0 is perfectly rigid. A sound source is located at x -  s < L and emits plane 
longitudinal  harmonic  waves, with angular  frequency ~o0, starting at t - 0 ;  it 
is modelled by the distr ibution 6s cos ~0t = 6,~(e-"~176 The equations to solve are: 

02 1 02 ] [a(X, t) -- Y(t)~(e-'~~ E ]0, L[, t E ]0 c~[ x 
Ox 2 c 2 0 t  2 J ' , 

[ 0 2 1 0 2 ] p ' ( x , t )  - O x E ] L , c ~ z [ , t E ] O , c ~ [ O x  2 C 2 0 t  2 

(2.46) 
Ox/'(x, t) = 0 at x = 0, Vt 

/5(x, t ) = / 5 ' ( x ,  t) at x = L, Vt 

17"(x, t ) =  V'(x, t) at x = L, Vt 

outgoing waves condit ions at x--~ c~, Vt 
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p,c iO t ~ C t 

0 L 

Fig. 2.2. Scheme of the one-dimensional enclosure. 

where /5(x, t) (resp. /5'(x, t)) stands for the acoustic pressure in the first (resp. 
second) fluid; l?(x, t) and V'(x, t) are the corresponding particle velocities; Y(t) is 
the Heaviside step function (=  0 for t < 0, = 1 for t > 0). Because the aim of this 
academic problem is to point out the main phenomena which occur in room 
acoustics, attention will be paid to the function P(x, t) only. 

It is useful to associate to /5(x, t) (resp. /5'(x, t)) the complex pressure P(x, t) 
(resp. e'(x, t)) and to l?(x, t) (resp. (/'(x, t)) the complex particle velocity V(x, t) 
(resp. V'(x, t)) which are solutions of the following system: 

0 1 0 2 ] 
OX 2 C 2 0 t  2 

P(x, t ) -  Y(t)e-~~ x E ]0, L[, t E ]0, c~[ 

0 1 0 ~ ] 
OX 2 C 2 0 t  2 

P'(x, t ) -  0, x E ]L, cx~[, t E ]0, c~[ 

OxP(x, t) - 0 at x - O, Vt 
(2.46a) 

P(x, t ) -  P'(x, t) at x -  L, Vt 

V(x, t ) -  V'(x, t) at x -  L, Vt 

outgoing waves conditions at x ~ c~, Vt 

This system is somewhat simpler to solve, and the real part  of its solution is the 
physical acoustic pressure and acoustic particle velocity. 

To solve equations (2.46a), the Laplace transform is used. In a first step the 
transformed equations are solved and, in a second step, the inverse Laplace 
transform of the obtained solution is calculated. Let us recall that the direct and 
inverse Laplace transforms of a function are defined by: 

f (q)- -  F(t)e -qt dt 

1 I i  +~cxD 
F(t) - - ~  - ~  f(q)eqt dq 
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The transformed system of equations is: 

d q2] 1 

dx 2 c 2 p(x, q) - q + covo 
~S~ x E 10, L[ (2.47) 

d q2 ] 
dx 2 c'---22 p'(x,  q) - O, 

x E ]L, c~[ (2.47a) 

dxp(x, q) = 0 at x = 0 (2.47b) 

p(x, q) = p'(x,  q) at x = L (2.47c) 

1 1 
- dxp(X q) - dxp'(x, q) at x -  L (2.47d) 
p ' 

Equality (2.47d) has been obtained by using the momentum equation which relates 
the acoustic pressure to the particle velocity. The 'outgoing waves condition', which 
expresses that the energy entering the domain L < x < ~ propagates toward the 
increasing abscissae only, implies that the function p '  must remain finite. This is 
achieved by choosing the following form: 

p'(x,  q )=  A 
e -qx/c' 

2qc' 

This results in the following relationship between p'  and its derivative with respect 
to x: 

@'(x, q) q 

d x  c t 
- - -  p ' ( x ,  q )  

The continuity conditions (2.47b, 2.47c) enable us then to write a Robin boundary 
condition for the pressure p: 

dp(x ,q)+  q p(x ,q)  0, a t x  L, with~ p'c '  . . . . . .  (2.48) 
dx ~c pc 

We are thus left with the boundary value problem governed by equations 
(2.47,2.48). 

2.3.2. Eigenmodes expansion of the solution 

Following the method used in subsection 2.2.4, the eigenmodes of the one- 
dimensional Robin problem are defined by: 

Pro(x, q ) -  Am 2~km/C + 2~Km/c (2.49) 
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where Km is the solution of the transcendental equation 

e2tgmL/c(q -F blC~m~) --[- (q - blC~m~) -- 0 (2.50) 

The choice of the coefficients Am is made by the second of the following 
relationships: 

~ bm(X, q)Pn(X, q) m =fin dx 0 for 

= 1  for m - n  

The solution p(x ,  q) is given by the series 

C2 ~ pm(S, q)pm(X, q) ( 2 . 5 1  

p(x,  q) - - ~m q2 - 
) 

q + La;o + K 2(q) 

To get the time response of the system, it is now necessary to calculate the inverse 
Laplace transform of each term of this series, that is to calculate the following integrals: 

C 2 f- + cc~ pm(S, q)pm(X, q) 
Pm(x, t ) - -  Je - eqtdq (2.52) 

2crr -~o~ (q -+- t~0.;0)(q 2 -+- K 2) 

The residues theorem is a suitable tool. The integration contours, which consist of a 
half-circle and its diameter, are shown on Fig. 2.3: the path 0'- is adopted for t < 0 
and the path "y + is adopted for t > 0. Thus, the term e qt decreases exponentially along 
the half-circle as its radius R tends to infinity. The physical phenomenon must be 
causal, that is the pressure signal cannot start before the source. To prove that the 
mathematical solution satisfies this condition, it must be shown that the functions to 
be integrated have their poles located in the half-plane ~(q) < 0, that is the solutions of 

q2 + Rm2 (q) _ 0 (2.53) 

have a negative imaginary part. This equation leads us to look for solutions of 
equation (2.50) which satisfy one of the following two equalities: 

c K m ( q ) -  q or t~Km(q) -- - q  

These two relationships lead, in fact, to a unique equation 

e2~RmL/c(1 -Jr- ~) + (1 -- if) - -0  (2.54) 

which is deduced from (2.50) with q = cKm- The solutions will be denoted by 
K m - - f ~ m  + c'rm. It is easily shown that one has 

c 1 + ~  
Tm : ~  In ,, 

21; 1 

mTrc 
'~m - - - ~ ~  

L 
m - - o o , . . . ,  - 2 , - 1 ,  0, 1 ,2 , . . . ,  +oo 

(2.55) 
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~(q) 

-),+ 

~(q) 

Fig. 2.3. Integration contours for the inverse Laplace transforms. 

It is clear that these solutions are located in the correct half of the complex plane. 
Two other remarks must be made: the damping factors Tm are positive and have the 
same value denoted by T; the resonance wavenumbers can be gathered by pairs, ~-~m 
and 9t-m, which are symmetrical with respect to the imaginary axis. The acoustic 
pressure P(x, t) is readily shown to be given by: 

m=-cxD 2(w0 -- ~-'~m _Jr_ bT)(__~r~m + t,T)(1 -q- t, K m ( - ~  m -Jr- t,T)) 

pm(X ' - -bO' )O)Pm(S ' - -b~O)  ] } 
+ w2 _ k z ( - t ~ 0 )  e -~~  

dgm(q) 
with Km(q) - ~ (2.56) 

aq 

The first series of terms contains the resonance modes - or free oscillation 
regimes - of the cavity; it tends exponentially to zero as t ~ ~ .  The second series 
of terms is the response of the cavity to a harmonic  excitation with angular 
frequency ~0: it is expressed in terms of the eigenmodes associated to the Robin 
boundary  condition. 
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Remark. In the book by Ph. Morse and U. Ingard [8] cited in the bibliography of 
this chapter, a similar calculation is presented, but the term Km(-ftm + c~-) which 
appears in the denominators  of the first series is missing. 

2.3.3. The 'boundary sources' method 

The boundary value problem (2.47, 2.48) can be solved by a method which provides 
a good image of the physical reality: the effect of the boundary  x = L is modelled by 
a point source A~L the amplitude of which is chosen so that  the Robin boundary 
condition is satisfied. The perfectly rigid boundary at x = 0 is accounted for by the 
fields corresponding to the image sources ~-s and A~_L, located at the points 
x = - s  and x = - L  respectively. 

The function p(x, q) takes the form: 
I 

1 [ e -q ls -  x I/c e-q(~ + x)/c 1 
p(x, q ) -  - ~  ~ + 

q + L~o 2q/c 2q/e 

A {eq Lx Jceq L+x Jc} 
~ ~ _31.. 

q + u~o 2q/c 2q/c 

and the coefficient A is given by 

(2.57) 

A = (~ + 1) - (~ - 1)e-2qL/c [e-q(L - s)/c _~ e-q(L + s)/c] (2.58) 

This leads to the final result 
f 

1 [ e - q l s -  x I/c e-q(s + x)/c 

p(x, q) - - ~  I + q + ~ o  2q/e 2q/e 

e-q(2L- s -  x)/c e-q(2L + s -  x)/c 

• 2q/c + 2q/c 

1 ~ - 1  

q + Lwo (~ + 1) - (~ - 1)e -2qL/~ 

e-q(2L- s + x)/c 
+ + 

2q/c 
e-q(2L2q/c + s + x)/c I 

(2.59) 

The successive terms of equality (2.59) have the following interpretation (see 
Fig. 2.4): 

1. direct wave; 
2. wave reflected at x = 0; 
3. wave reflected at x = L; 
4. wave reflected at x = 0 and then at x = L; 
5. wave reflected at x = L and then at x = 0; 
6. wave reflected at x = 0, then at x = L and again at x = 0. 
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Fig. 2.4. Scheme of the successive wavefronts. 

This decomposition is, of course, not unique. For example, it is possible to point 
out an infinite number of successive reflections at each end of the guide. This simple 
expression shows the first and most important steps of sound establishment in a 
room. 

The inverse Laplace transform of the first two terms is readily obtained using the 
residue theorem. The result is 

1 I i  +~~176 e - q l s •  
. . . . .  e qt d q  

2~7r -~o~ (q  + t w o ) q / c  

c c e ~ ~  Is + x I/c 
= Y(t - I s  + x I/c) + Y ( t -  I s + x [/c) e -~~ (2.60) 

two 2tw0 

In a similar way, the residue theorem enables us to obtain the inverse Laplace 
transform of the other terms: 

1 Ji +~~ ~ - 1  
2crr - ~ (~ + 1) - (~ - 1 )e -2qL /c  

e - q ( 2 L  • s + x) /c  e qt 

2 q / c  q + two 
d t  

c 

= - Y ( t  - (2L + s + x ) / c )  - 4 two  (~ - 1) 

_ _  

C 2 e--(/,~')m -Jr r)(2L + s + x) /c  

4L ~ (Cf~m + T)[c(~0 - f~m) - r] 
e -cf~mte - T t  

+ c  
- 1 e tzo0(2L + s + x) /c  

(~ + 1) - (~ - 1)e 2~oL/c 2tw0 
e -~~ } (2.61) 
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Gathering equalities (2.60) and (2.61) and keeping the real parts only, the following 
result is obtained: 

- { e~~ 
P(x, t ) -  c r ( t -  I s -  x I/c)~ 2~o e -uoot 

+ c Y ( t -  (s + x)/c)~R { 
e "~176 + x)/c 

2u~o 
e -uoot 

[ (ff + 1) - ( f f -  1)e 2~~ Y ( t -  (2L - s -  x)/c)  

+ Y(t - (2L + s - x)/c)  
e ~o(2L + s -  x)/c 

2t, wo 

e two(2L- s -  x)/c 

2t~o 

+ Y ( t -  (2L - s + x)/c)  

+ Y ( t -  (2L + s + x)/c)  

e u.oo(2L- s + x)/c 

2bwo 

e t.wo(ZL2Lw0 + s + x)/c] e -~ot } 

I 
C 2 / +.-~ e (ts + T)(2L --S -- X)/C 

+ ~ ~R i Y ( t -  ( 2 L -  s -  x)/c) ~ e -~amt 
4L m = - ~  (~9tm + T)[L(W0 -- f~m)- "1"] 

+ ~  e (~f~m + 7)(2L + s -  x ) / c  

+ Y ( t -  ( 2 L  + s - x)/c)  m=E-co (Lam -+- T)[t.(C00 --  a m )  --  7-] 

+ ~  e (~f~m + T)(2L- S + X)/C 

+ Y ( t -  (2L - s + x ) / c )  m=E-cx~ (b~~m + T)[L(~0 -- ~~m) -- 7"] 

e --t,~mt 

+ ~  e (~f~m + T)(2L + S + X)/C 

+ Y ( t -  (2L + s + x)/c) m ~ =  - ~  (,,am + ")['-(~o - am) - "1 

e --t.f~mt 

--t,~mt e --Tt 

(2.62) 

The sum of the first three groups of terms (with the factor e -~~ represents the 
permanent regime which is set up for t > (2L + s + x)/c.  The series of terms with 
e -~t as common factor represents the transient part  of the signal: mathematically, 
it lasts indefinitely; but, from a physical point of view, because it decreases 
exponentially, it becomes more or less rapidly undetectable and can be considered 
as having a finite duration (it can be considered as zero when its level is about 
60 dB less than that of the permanent  signal). 
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This representation of the transient response of an enclosure shows some 
important features of sound establishment. The main point to be noticed is that 
sound establishment is not a continuous phenomenon: the energy level increases by 
steps corresponding to the arrival of the direct sound and of the waves successively 
reflected at each end of the guide; expression (2.62) points out the first five reflected 
waves. In a three-dimensional room, the phenomenon is essentially the same: the 
first signal which arrives on a receiver is the direct wavefront; then this wavefront 
impinges on a boundary and a reflected attenuated secondary wave appears, which 
provides an additional signal on the receiver; the process goes on indefinitely, but, 
in practice, a permanent regime is rapidly reached. 

It is possible to expand the solution described by formula (2.62) into a series of 
successive reflected waves only, but the permanent regime will not appear. This is 
the topic of the next subsection. 

2.3.4. Description of  sound establishment by a series of successive reflections 

The coefficient of the second group of terms in the Laplace transform p(x, q) given 
by expression (2.59) can be expanded into a formal series: ( )n 

- 1 ~ -  1 ~ ~ -  1 -2nqL/c 
= ,2~  e 

( f f + l ) - ( f f - 1 ) e  -2qL/r ~ + 1  ,=0 f f + l  

This series contains two factors: 

�9 e -2qL/c which is less than 1 as soon as ~q is positive; 
�9 ( ( -  1)/(( + 1) the modulus of which is always less than 1 (it represents the 

reflection coefficient of the boundary at x -  L). 

Thus, the series is convergent in the half-plane ~q > 0. The inverse Laplace 
transform can be calculated by integrating each term of its series representation. 
The following result is obtained: 

P(x, t ) - -  

-c Y(t-  Is - x I/c)  [ 
1 

e~o Is -  x I/r | 
e - t ~ o t  

J 2c~o0 

[ e ~0(s + x)/c ] 
-- c Y(t - (s + x) / c ) ~  e -.o0t 

2~aJ0 

+ c  .•o r[t  - (2(n 4- 1)L - s - x ) /c]~ ( - 1 
_ ( + l  

e ~o[(2(, + 1)L - s -  x)/c] 

bcoo 

e - u ~ o t  
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+ 1  

I( )n + Y [ t -  (2(n + 1)Z - s + x)/c]~ ~ - 1 
~+1 

+ 1  

I( )n+l + Y [ t -  (2(n + 1)L + s + x)/c]~ ~ -  1 
ff+l 

3 
e ,~0[(2(n + 1)L + s -  x)/c] ] 

e - u,.,o t ] /,03 0 

1 
e ~o[(2(n + 1)L - s + x)/c] | 

e -~o0t 

J bOO0 

3 
e ~co0[(2(n + 1)L + s + x)/cl ] | 

e - u J 0 t  ] bOO 0 

(2.63) 

This shows clearly that the sound is set up after an infinite number of steps which 
correspond to the successive reflections of the initial wavefront at each end of the 
waveguide. After m reflections at the boundary x = L, the amplitude of the wave 
is I ( ~ -  1)/(~ + 1)[m and decreases to 0 as m--~ oo. This series representation has 
two disadvantages: first, the permanent regime which is reached asymptotically 
does not appear; second, the fundamental role of the resonance modes has totally 
disappeared. 

As a conclusion of these last two subsections, it is obvious that the mathematical 
representation of the physical phenomenon which must be adopted depends on the 
properties the physicist is interested in. 

2.3.5.  Sound decay - reverberation time 

This is the complementary phenomenon of sound establishment. Let us assume that 
a sound source, emitting a harmonic signal, is stopped at t = 0. The first equation in 
(2.46) is replaced by 

[ 0 2 1 0 2 ] t ) ( x , t ) - [ 1 - Y ( t ) ] ~ (  e - ~ c ~ 1 7 6 1 7 6 1 7 6  2 C 2 0 t  2 

(2.64) 

The other equations remain unchanged. It is obvious that the solution of this 
problem is obtained by subtracting the expression of the sound establishment from 
that of the permanent regime. Using representation (2.56), one gets: 

P(x, t)= - c  
2 Y(t)~ m = -  2(co0 - -  ~'-~m 

fire(X, ~Km)~m(S, ~Km)e -,~a,.t } --,-t 
. . . . . . . . . . . .  e 
+ t.'r')(-f~m + t.'r)(1 + ~Km(-f~m + ~r)) 

(2.65) 

The time signal is a series of harmonic damped signals which, in the present 
example, have the same damping factor ~-. Instead of this factor, the enclosure is 
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more conveniently characterized by a reverberation time Tr. It is defined as the time 
delay which is required for the amplitude level of the acoustic pressure to decay 
60 dB, that is: 

3 6.91 
6 0 -  20 log e ~rr or equivalently Tr . . . .  (2.66) 

r log e ~- 

In this simple example, the reverberation time is a perfectly defined quantity 
which is related to the physical constants which define the system by exact 
relationships. In an actual room, the various resonance modes each have their 
own damping factors: as a consequence, when a harmonic source is cut off, the 
various resonance components of the signal decrease with different rates and it is 
not possible to define a unique reverberation time. Nevertheless, some restrictive 
but realistic assumptions can be made which allow us to define a reverberation 
time. 

2.3 .6 .  Reverberat ion t ime in a room 

For any enclosure, the existence of a sequence of resonance frequencies and 
resonance modes can be established: this is a difficult mathematical task which is 
beyond the scope of this course. From the point of view of the physicist, it is 
just necessary to know that the results established on the former one-dimensional 
example are valid for two- and three-dimensional domains. Let us consider a 
domain f~ in ~3. Its boundary cr has (almost everywhere) an external unit normal 
vector ft. We look for the values of co such that the homogeneous boundary value 
problem 

A + c--- ~ p(M, co) - 0, M E f~ (2.67) 

g(p(M), O,p(M)) = O, M E cr 

has a non-zero solution. In equation (2.67), g(p(M),O,p(M)) is any linear 
relationship between the pressure p(M) and its normal gradient, which expresses 
that there is an energy loss through or. A linear combination of these two functions 
(with piecewise continuous coefficients) is a local boundary condition; a 
relationship involving an integral operator is necessary for non-local boundary 
conditions. Furthermore,  the energy loss is generally frequency dependent. The 
existence of a sequence of resonance angular frequencies can be proved. To each 
such frequency 

COm --- ~r~m + bTm, Tm > 0 (2.68) 

corresponds a resonance mode Pm(M). 
Let us assume that the room was initially excited by a harmonic source with 

angular frequency coo which stops at t -  0. It can be shown that the acoustic 
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pressure can then be expressed as a series of terms which are the product of a 
harmonic function and an exponentially decreasing amplitude: 

a m P m ( M )  _t~amte_rm t 
P(M, t)- Y(t) Em t~(6dO -- ~ m )  -- Tm e (2.69) 

where the coefficients am depend on the function which represents the source. It is 
obvious that such an expression does not allow us to define a reverberation time as 
was done in the former subsection. Nevertheless, this concept can be used in most 
real life situations. Assume that the boundary cr of the room absorbs a rather low 
rate of energy. This implies that the values of ~-m are small. If the driving angular 
frequency w0 is equal to the real part f~q of a given resonance angular frequency, an 
excellent approximation of the acoustic pressure is given by 

P(M, t) Y(t) aqPq(M) _(~q + ~q)t - e (2.70) 
~-q 

the other terms having a denominator  c(w0 - f~m) - 7-m which has a modulus large 
compared with Tq. In such a case, the acoustic pressure decrease follows a law very 
close to an exponential one. The notion of reverberation time is quite meaningful. 

Assume now that w0 satisfies the double inequality f~q < w0 < f~q +~ with f~q +~ 
close to f~q, then P(M, t) is accurately approximated by 

P(M, t) Y(t) ~ aqPq(M)e-(~f~q + ~-q)t aqPq + l(M)e-(~f~q +l + ~q + 1)t 
+ (2.71) 

[ ~(~o - ~ q )  - ~q ~(o~o - ~q  + l )  - ~q + 1 J 
In addition, suppose that the following inequalities are satisfied 

aqPq(M) aq + 1Pq + I(M) 
> , T q > T q + l  

/,(~d 0 - -  ~'~q) - -  Tq b(030 - -  ~'~q + 1 )  - -  7"q + 1  

Thus, in a first step, the acoustic pressure is mainly governed by the first term and a 
first reverberation time corresponding to ~-q can be defined. Then, the second term 
becomes the most important one and a second reverberation corresponding to ~-q + 1 
is pointed out. The model can obviously be improved by defining three, four, ... 
reverberation times. But the physical meaning of such a complicated model is no 
longer satisfying. In general, to describe the sound pressure level decrease, 
acousticians use laws having no more than two different slopes: this simple model is 
quite sufficient in practice. 

2 .3 .7 .  T h e  f o r m u l a  o f  S a b i n e  

When experiment shows that the sound level decrease in a room can be 
approximated by a linear function of time (exponential decrease of the pressure 
amplitude), the slope of this curve is easily related to the mean absorption of the 
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room walls. We will give the main steps to establish this relationship, which was 
obtained by Sabine and is called the formula of Sabine. 

Let us consider a room with volume V. The total area of its walls is S. The walls 
are assumed to have roughly constant acoustic properties; they can be characterized 
by a mean energy absorption coefficient ~-. Using an optical analogy, it is possible 
to adopt  acoustic rays for modelling the sound field emitted by a source: each time 
a ray impinges on the room boundary,  it is reflected as by a mirror and its energy is 
reduced by the factor (1 - ~ .  Between two successive reflections, a ray travels on a 
straight line of variable length. But it is possible to define a mean free path with 
length gin, 

gm = 4 V/S (2.72) 

After one time unit, the length of the ray travel is equal to co, the value of the sound 
velocity. This corresponds to a total number  of reflections equal to co/f.m. Then, 
after one second, the energy of the ray is reduced by the factor (1 -~co/em. It is 
reasonable to assume that  statistically all the rays which reach a given point follow 
the same energy loss law. Thus, the law which governs the energy decrease in a 
room after the source is stopped is given by the expression 

E = E0(1 - -~)cot/gm (2.73) 

where E0 is the energy initially contained in the room. This leads to the following 
law for the sound pressure level N: 

cot 
N - No + 10 ~ lOgl0 (1 - ~-) 

gm 

The sound pressure level decay is 60 dB after a time Tr, which is called reverberation 
time, and given by 

24V 
Tr = - (2.74) 

coS loglo (1 - ~-) 

This formula is known as the formula of Eyring. 
Conversely, from the measurement  of the reverberation time, a Sabine absorption 

coefficient ~s can be defined: it represents the mean energy absorption coefficient of 
the room walls, and is given by: 

24V 
c ~ - - s - - ~  In 10 (2.75) 

coSTr 

This expression is obtained under the assumption that the mean energy absorption 
coefficient ~- of the walls is small, so leading to 

- l o g l o  (1  - ~ - )  

~- _+_ ~(~-2) 

In 10 
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and expression (2.74) reduces to 

24V V 
Tr ~ : 0.16 (2.76) 

coSts S~ 

This approximation of the formula of Eyring is known as the formula of  Sabine. 
The Sabine absorption coefficient, which is equal to - ln(1 - ~ ,  is always greater 
than ~-. It can be larger than 1: this is a priori in contradiction with the notion of 
absorption coefficient. This shows that the concept of a reverberation time does not 
correspond to a rigorous modelling of the physical phenomenon: various 
hypotheses are necessary to justify its use as a good approximation of physical 
reality. Though they are generally valid, it is necessary to keep in mind that we are 
dealing with an approximation which is quite useful in room acoustics for concert 
halls or conference room design and characterization, for noise control in factory 
halls or offices as well as any acoustic problem in an enclosure. 

2.4. Acoustic Field inside a Circular Enclosure: Introduction to the 
Method of Separation of Variables 

Let us consider the following two-dimensional boundary value problem: the domain 
of propagation 9t is a disc with radius p0; its boundary cr has an exterior normal unit 
vector ff (see Fig. 2.5). We seek a function p(M) solution of the Neumann problem: 

(A + k2)p(M) = f ( M ) ,  M E f~ 
(2.77) 

Onp(M) = O, M E cr 

In what follows, use will be made of cylindrical coordinates with origin the centre of 
f~: the coordinates of a point M inside the propagation domain are denoted by 
(p, 0) while those of a point P on cr are denoted by (/90, 00). Two analytic methods to 
solve this problem are proposed: the eigenmodes are calculated and the solution is 
expanded into a series of these functions; the solution of the problem is sought as a 
series of functions of the form Rn(p)q~n(O). These two representations are very much 
similar. Nevertheless, it will be shown that, for a given accuracy, the second one - 
called variables separation representation - requires many fewer terms than the first 
one (the first series is less rapidly convergent that the second one). 

2.4.1. Determination of the eigenmodes of the problem 

Because of the geometry of the domain, it is interesting to write the Helmholtz 
equation in cylindrical coordinates with origin at the centre of the domain f~. It is a 
classical result that the Laplace operator is written as follows: 

A = - - -  p + - - - -  (2.78) 
p Op -~p p2 O0 2 
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n 
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Oo 

~ x  

Fig .  2.5. G e o m e t r y  o f  the  c i r cu l a r  d o m a i n .  

Let us look for the existence of solutions of the homogeneous Neumann problem of 
the form ,~(p, O) - R(p)t~(O). The two functions R(p) and ~(0) must first satisfy the 
homogeneous partial differential equation 

1 d dR(p) q~(O) + R(p) - -  ~ + k2R(p)q~(O) - 0 
p dp P dp p2 dO 2 

Dividing by Rt~/p2 one gets 

{ ( ) p d dR(p) +kZp2 -~ = 0  (2.79) 
R(p) dp P dp ~(0) dO 2 

The first term in (2.79) is independent of 0, while the second one does not depend 
on p. Thus, this equation can be satisfied if and only if each term is equal to the 
same constant, that is if R and �9 are solutions of the equations 

0 
R(p) dp P dp 

(2.80) 
1 d2~(O) 

~ ~ --~- 0~2 - -  0 

�9 (o) do 2 
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where O~ 2 is a separation constant to be determined. Any solution of a 
homogeneous partial differential equation with analytical coefficients must be an 
analytical function. This implies that ~(p, 0) and, as a consequence, ~(0) must be 
periodic functions of the angular variable. The only possible solutions for the 
second equation (2.80) are given by 

c~ = n, t~(O) = e ~nO 
(2.81) 

n = - c ~ , . . . ,  - 2 ,  - 1 ,  0, +1, +2, . . . ,  +c~ 

Then the first equation (2.80) becomes: 

dz 2 + z dz + 1 R(z) O, with z kp (2.82) 

This equation is known as the Bessel equation (the theory of Bessel functions is 
presented in many textbooks, for example the book by Ph.M. Morse and K.U. 
Ingard cited in the bibliography). It has a solution which is regular at z = 0 and 
which is denoted by Jn(z) and called the Bessel function o f  order n; among all its 
properties, we just recall the equality J-n(Z) = (-1)nJn(Z). The boundary condition 
will be satisfied if 

J: (kpo) - 0 (2.83) 

It is shown that for any n there exists a countable sequence knm (m = 1, 2, . . . ,  oG) 
such that the former equality is satisfied and which provides a countable sequence 
of functions 

Rnm(P) = Jn(knmP) (2.84) 

From (2.81) and (2.84), the eigenmodes of the problem are built up 

~nm(P, O) = AnmJn(knmp)e ~nO 

n = - c ~ , . . . ,  - 2 ,  - 1, 0, + 1, + 2 , . . . ,  +c~ (2.85) 

m = 1, 2, . . . ,  c~ 

the corresponding eigenwavenumbers being knm. The coefficients Anm are chosen so 
that each eigenmode has an L Z-norm equal to 1. 

Orthogonality o f  the eigenmodes. Let ~nm and ~pq be two different eigenfunctions. 
If n ~ p, then the orthogonality of the functions e ,nO and e ,po implies that of the two 
eigenfunctions. Let us now calculate the scalar product of ~nm and ~nq'~ w e  have: 

I--(kn2m - k2p) Jf~ ~nm~n*q d a  

~ ~o 
2 , 2 2 | -- 7rAnmAnq(knm - knp ) 

J0 
Rnm(p)Rnq(p)p dp (2.86) 
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Equation (2.82) implies the following equalities: 

which lead to: 

n 2 l d ( d R n m ( f i ) )  
kn2Rnm(P) = 7 Rnm(P) p~p P ~ d p  

n 2 1 d (dRnq(P))  
kn2qRnq(P) -- 7 Rnq(P) - p 

} I-- 27rAnmAn*q -p --~p p ~ Rnm(P) p p ~ Rnq(P) p dp 

This expression is integrated by parts: 

dgnm(P) dRnq(P) Rnm(P)- p Rnq(P) I-- 27rAnmAn*q p dp dp o 

p dp 

(2.87) 

(2.88) 

The integrated term is zero because: (1) the coefficient p is zero at the first end of 
the integration interval; (2) the derivatives of Rnm(P) and Rnq(P) are zero at the other 
end. In the remaining integral, the term to be integrated is zero. Thus the 
eigenfunctions ~nm(P, O) are orthogonal to each other. 

Normalization coefficients. The set of eigenmodes is a basis for the functional 
space which any solution of the Neumann problem belongs to. It is generally 
simpler to deal with a basis of functions having a unit norm. To this end, the value 
of the coefficients Anm must be {So }1 2 1 po [Jn(knmP)]2P dp (2.89) Anm = v ~  

2.4.2. Representation of the solution of equation (2.77) as a series of the eigenmodes 

Let us first expand the second member of equation (2.77) into a series of the 
eigenmodes ~nm: 

+c~ +oo 
f ( M ) -  Z Z fnmAnmSn(knmp)etnO 

n -- --(x) m= 1 

f nm -- A nm Ii ~ 
~0 

-tnO dO f(p,  O)Jn(knmp)p dp 

(2.90) 
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The function p(M) is sought as a similar series expansion: 

-I-cx) -k-cx~ 

p(m) - Z Z PnmAnmJn(knmp)e ~n~ (2.91) 
n=-oo m= 1 

and it is easily proved that the coefficients Pnm are given by: 

L m  
P n m =  ( 2 . 9 2 )  

- kn m 

These coefficients, and, as a consequence, the solution p(M), are all defined if and 
only if the wavenumber k is different from all the eigenwavenumbers knm of the 
Neumann problem. 

In the simple situation where the source is a point source located at point 
S(ps, Os) (Dirac measure located at S), the coefficients fnm a r e  

fnm -- AnmJn(knmPs) e-~nOs 

and series (2.91) takes the form 

2 
p(M) -- Z+~176 Z+~ AnmJn(knmPs)Jn(knmP) ecn(~ Os) (2.93) 

n = - o o  m = l  k 2 - k 2 m  

It must be remarked that p(M) has a logarithmic singularity at the source location, 
that is at the point (p = ps, 0 = Os): this singularity is that of the sound pressure that 
a point source radiates in free space. For  this reason, the convergence rate of the 
series decreases as the point M draws nearer to S: the number of terms required to 
evaluate the pressure with a given accuracy rapidly becomes large in the vicinity of 
the point source. 

2.4.3. The method of separation of variables 

Let us pay attention to the simple example of the response of the system to a point 
isotropic source of unit amplitude located at a point S. The solution is sought in the 
following form: 

p(M) = po(M) + ~(M) 

b 
po(M)-  H(ol)(k l MS I) 

4 

(2.94) 

where H~I)(k[MS 1) is the Hankel function of the first kind and I MS[  is the 
distance between the two points M and S (for details on the Hankel functions, the 
reader can refer to the book by Ph.M. Morse and K.U. Ingard); po(M) represents 
the radiation of a point isotropic source in free space. The function ~(M),  which 
represents the sound field reflected by the boundary cr of the domain f~, satisfies a 
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non-homogeneous Neumann boundary value problem: 

(A + k2)~(M)= 0, M C f~ 
(2.95) 

Opr = -OpPo(m), M E a 

The reflected field r  is sought as a series of products of functions depending on 
one variable only: 

-q--oo 

r  Z anRn(p)dpn(O) 
n - -  --cx:) 

Following the same method as in subsection 2.4.1, it is easily seen that the functions 
Rn(p) must satisfy the first equation (2.80) while the functions ~n(O) must be 
solutions of the second one. The necessary regularity of ~(M) (solution of a 
homogeneous partial differential equation with analytic coefficients) implies that 
this function, and, as a consequence, the 4~n(0), must be 27r-periodic, that is 

C~n(O) = et~n~ n = - ~ , . . . ,  -2 ,  -1 ,  0, 1, 2, +c~ 

To each of these functions, there corresponds a solution of the Bessel equation 
which must be regular at p- -0 ;  we can take: 

b 

R,(p) = Jn(kp) 
4 

Thus, the reflected field can be sought as a series expansion of the form 

b +cx~ 

~2(M) = 4 Z anJn(kp)e~n~ (2.96) 
n =  --0r 

The coefficients an are determined by the boundary condition. To this end, use is 
made of the following classical result from the Bessel functions theory: 

--1-oo 

H~l)(k] M S  l) -- Z H(n')(kps)Jn(kp)e~n(~176 for p < Ps 
n =  - -cx~ 

+ c ~  

-- ~ H(nl)(kp)Jn(kps)e ~n(~176 for P<Ps  (2.97) 

The Neumann boundary condition can thus be written 

+cx3 + o o  

Z anJn(kp~176 Z n(nl)'(kP~176176 
n = - c x ~  n = - c ~  

(2.98) 

This equation is satisfied if and only if the equalities 

anJn (kpo) - n(nl)'(kpo)Jn(kps)e -~nOs 
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stand for any n. It is obvious that, if Jn (kpo) ~: OVn, that is if k ~: knmV(n, m), then 
the coefficients an are all uniquely defined by 

a n = 

H(nO' (kpo)Jn(kps)e -~n~ 

J~(kpo) 

The solution of the problem is given by the series 

L ~ H (1)'(kp0)Jn(kps)e -~n~ 

p(M)  - 4 ~ H~~ ] M S  1) + 4  n = - - c x ~  Jn(kpo) Jn(kp)e `n~ (2.99) 

This solution is defined for any value of k different from an eigenwavenumber. The 
series involved in the equality (2.99) represents a regular (analytical) function: it is 
convergent everywhere. From a numerical point of view, experience shows that the 
number of terms required for a given accuracy is almost independent of the point M 
at which it is evaluated and of the source position S. More precisely, if P0 is about 2 
to 3 times the wavelength, a 1 dB accuracy requires roughly 150 eigenmodes, while 
in the representation (2.99) the series can be reduced to about 10 terms. 

2.5. Enclosures Bounded by Plane Surfaces: Introduction to the 
Method of  Images 

The method here proposed is identical to geometrical optics. It is well known that 
when a light source is placed in front of a plane mirror the total lighting is identical 
to what could be obtained by removing the mirror and placing a second light source 
in a location symmetrical to the original one with respect to the mirror plane. 
Though this solution is an approximation of the governing equations, the result is 
quite good. In many situations, optical phenomena are governed by the Helmholtz 
equation. This has led acousticians to adopt the methods which have proved to be 
efficient in optics. In particular, the principles of geometrical optics are used in 
acoustics as far as the wavelengths involved are short compared to the dimensions 
of the reflecting structures. The results so obtained cannot have the same accuracy 
as in optics because the ratio of wavelength to reflecting structure dimensions is 
always much larger. Nevertheless, geometrical acoustics is a powerful tool for 
sound level chart predictions: it enables low cost calculation of noise pollution in 
cities or factory halls where complex geometries as well as complex sources are 
involved (errors are less than about 3 to 4 dB); many efficient computation 
programs for concert-hall design are based on geometrical approximations of the 
wave propagation equation and of the energy attenuation by boundaries. 

2.5.1. Reflection of a spherical wave by an infinite plane: The 'plane wave' and the 
'geometrical acoustics' approximations 

Let f~ - (z > 0) be the propagation domain of a harmonic (e -twt) wave radiated by 
a point isotropic unit source located at S(0, 0, s). The acoustic properties of the 



78 ACOUSTICS:  B A S I C  P H Y S I C S ,  T H E O R Y  AND M E T H O D S  

plane E(z = O) are characterized by a normal specific impedance ~. The acoustic 
pressure p ( M )  at a point M(x ,  y, z) is the solution of a Robin problem: 

( A  + k 2 ) p ( M )  = 6s (M) ,  M E f~ 

ck 
Ozp(M) + ? p(M) = 0, M E ~ (2.100) 

Sommerfeld condition (all radiated energy goes towards infinity) 

The solution of this problem can be decomposed into two terms: 

e Lkr(M, S) 

p ( M )  = - + ~b(M) (2.101) 
47rr(M, S) 

In this expression, the first term represents the acoustic pressure radiated by the 
source in free space; the second term is the sound pressure reflected by the 
boundary E of the half-space Ft. 

Assume first that E is a perfectly hard surface (1/[ ~1=  0). Then the function 
~(M) is given by 

e ~kr(M, S') 

r  = - 
47rr(M, S') 

where S', the point with coordinates (0, 0 , - s ) ,  is the image of S with respect the 
plane z - -0 .  A simple result would be that, for any boundary conditions, the 
function ~p(M) could be correctly approximated by a similar expression, that is by 

e ~kr(M, S ~) 

r  "~ - A  
47rr(M, S ' )  

where the amplitude coefficient A is a function of impedance. A simple argument 
can intuitively justify this approximation. Let ,~ be the wavelength. Assume that 
s-> )~ and z-> )~, that is both points S and M are 'far away' from the reflecting 
surface. Thus, when the wavefront reaches E, its radius of curvature is very large 
and the incident spherical wave can be considered as a plane wave with an angle of 
incidence 0 (see Fig. 2.6). The reflected wave goes back in the specular direction, 
that is in the direction of the line symmetrical with the incident direction with 
respect to the normal to the plane z = 0. The natural reflection coefficient to be 
adopted is that of a plane wave and it is given by 

A = ( cos 0 -  1 

cos 0 + 1 

The approximation of the total acoustic pressure is written 

e ckr(M, S) ~ COS 0 - 1 e ckr(M, S') 
p ( M )  "~ - - (2.102) 

47rr(M, S) ( cos 0 + 1 47rr(M, S ' )  
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Fig 2.6. Geometry of the propagation domain. 
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and is often called the plane wave approximation. This result can be rigorously 
established by looking at an asymptotic series expansion of p(M) in terms of the 
successive powers of 1/kr(M, S'). It is then shown that the difference between the 
exact solution and approximation (2.102) decreases at least as fast as 1/[kr(M, S')] 2. 

If interference phenomena are not present (or are not relevant) - this is, for 
example, the case for traffic noise - the amplitude of the sound pressure field is 
sufficient information. The former formula can then be much simplified. An 
approximation of the form 

1 B 
J p(M) J ~ + (2.103) 

47rr(M, S) 47rr(M, S') 

is looked at. Energy considerations lead us to adopt for B the modulus of the 
complex reflection coefficient: 

B ~  

cos 0 -  1 

cos 0 + 1 
(2.104) 

This last expression can again be simplified by neglecting the variations with respect 
to the angle of incidence: 

B ~ 

Approximation (2.103) is very similar to those in use in optics. 
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2.5.2. Forced regime in a polyhedral enclosure: series representation of the response 
by the image method 

For the sake of simplicity, let us consider a parallelepipedic domain f~ defined by 

] [ 1 [ a a b b 
x c  - - , + -  , y E  - + zE  

2 2 21 2 1 

]cc[ 
m m  + m  

2 2 

The boundary of the domain is characterized by a normal specific impedance (, 
which is independent of the space variables. Let S(xo, yo, zo) be a point isotropic 
source with unit amplitude, which generates a signal containing all frequencies 
belonging to the interval [ f0 -  Afo,fo + Af0]. The relative frequency bandwidth 
2Afo/fo is supposed to be small enough that the reflection coefficient 
B =  I ( - 1  l / l ( +  I I of the boundary of the domain can be considered as 
independent of frequency. 

The first order images are defined by 

Sx 1+ = (a - x0, y0, z0), 

Sy 1+ - (xo, b - yo, zo), 

Sz 1+ = (x0, Y0, c - z0), 

S 1- = ( - a  - x0, Y0, z0) 

s l -  - ( x 0 , - b  - y0 ,  z0)  

Sz 1- - (xo, Yo, - c  - zo) 

The corresponding approximation of the sound field is 

1{1  E 1 1 1 
I P(M) I ~ ~ r(S, M) + B r( Sl+, M) + r(S 1-, M) + r(S j+, M)  

+ 
r(S~+, M) 

1 1 ] }  (2.105) 
+ r(Slz +, M) + r(S l+ , M) 

In this expression, the waves accounted for have been reflected only once on the 
boundary of the domain ft. This approximation can be improved by adding waves 
which have been reflected twice. For that purpose, second order images must be 
used. As an example, the image of S l+ in the plane y = b / 2  is located at 
SxyZ++__(.a_ xo, b - y o ,  zo), and its contribution is Bz/47rr(SZ++,M). So, the 
contribution of all second order images is of the form Bzf2(S, M)/47r. Accounting 
for the images of successive orders, the acoustic pressure field is approximated by 
an expression of the form 

l{ 1 } 
I p ( M )  I ~ ~ r(S, M )  + n = l  ~ Bnfn(S' M) (2.106) 

It can be shown that if the boundaries absorb energy (B < 1), this series is 
convergent. It is shown, too, that as the frequency is increased, the error on I p(M) I 
decreases: the image method thus provides a 'high frequency' or 'short wavelength' 
approximation. For instance, for a concert hall or a theatre, the prediction of the 
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various acoustical quantities is almost perfect (errors less than a few dB) above 
500 Hz. 

In this method that we have briefly described, the acoustic properties of the 
boundaries of the domain can vary from one wall to another, each one being 
described by a given reflection coefficient. It is easy to consider any convex 
polyhedral boundary. Additional difficulties occur when the surface which bounds 
the propagation domain is no longer convex (this, for example, is the case in a 
concert hall with mezzanines). Not  all the image sources are 'seen' from everywhere 
in the room: thus, the representation of the pressure field includes the contribution 
of sets of images which are different from one region to another. Finally, if the 
boundary is not a polyhedral surface, it is no longer possible to define image 
sources: an equivalent method is provided by the ray theory which is a 
simplification of the geometrical theory of diffraction due to J.B. Keller (see 
chapters 4 and 5). 

2.6. General Case: Introduction to the Green's Representation of 
Acoustic Fields 

The aim of this last section is to show how the acoustic field reflected by the 
boundary of an enclosure can be represented as the radiation of sources located on 
this boundary. It is established that the function which describes this source is the 
solution of a boundary integral equation: this solution exists and is unique if and 
only if the boundary value problem has one and only one solution. This means that 
the boundary integral equation has no solution if and only if the wavenumber of 
the excitation signal equals one of the eigenwavenumbers of the initial problem. 

2.6.1. Green's representation of the acoustic pressure 

Let f~ be a bounded domain of •n (n = 2 or 3), with a boundary a which is assumed 
to be 'sufficiently regular': in particular, this implies that a unit vector if, normal to 

and pointing out to the exterior of 9t, can be defined almost everywhere; from a 
practical point of view, any piecewise twice differentiable surface fits the required 
conditions. Let f (M)  be the space density of a harmonic (e-~~ source and p(M) the 
corresponding pressure field. This function is the solution of the following 
boundary value problem: 

(A + kZ)p(M) = t i M ) ,  M E f~ (2.107) 

aOnp(M) + tip(M) = O, M E a (2.107') 

A representation o fp (M)  is sought as the sum of the free field pressure p0(M), that 
is the pressure radiated by the source t iM)  in an unbounded domain which is a 
particular solution of equation (2.107), and a function ff~(M), often called the 
'diffracted field', which is a solution of the homogeneous Helmholtz equation. This 
last function must be such that the boundary condition (2.107') is satisfied. 
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Let G(M, M ~) be the pressure field radiated, in the unbounded space R n, by a 
point isotropic unit source 6M,(M) located at point M'. G(M, M') satisfies the 
equation 

(AM + k2)G(M, M') = 6M,(M), M E ~n 

where the symbol AM means that the derivatives are taken with respect to the 
variable M. It is proved that, with the time dependence which has been chosen, the 
solution of this equation which satisfies the principle of energy conservation (which 
the acoustics equations are based on) is 

G(M, M') - - -~ H~l)[kr(M, M')], M C ~2 
4 

e ~kr(M, M') 
- , M E R  3 (2.108) 

47rr(M, M') 

where r(M, M ~) is the distance between the two points M and M'. 
Let us first show briefly that, iff(M) is an integrable function, po(M) is given by 

po(M) - J f(M')G(M, M') d~(M') (2.109) 
R ~ 

It is intuitive that the source f (M t) can be decomposed into a set of elementary 
isotropic point sources with amplitudes f(M')df~(M ~) located at M ~. Then, 
formula (2.109) looks natural. A more correct validation consists in applying the 
Helmholtz operator to this expression 

(A + k2)po(M) - (A + k 2) ~ .  f(M')G(M, M') d~(M') 

-I~ f(M')(AM + k2)G(M, M') dft(M') 

The second equality is obtained by inverting differentiation and integration and 
requires a mathematical justification. Using the equation satisfied by G(M, M') one 
gets the following formal equalities: 

(A + k2)po(M) -- IR" f(M')6M,(M) dQ(M') 

=f (M)  [property of the Dirac measure] 

The lack of rigour of this proof is that the integral of a Dirac measure is not 
defined; it can be used just as a symbolic expression. This formal proof can be 
justified rigorously with basic theorems of the theory of distributions as will be seen 
in chapter 3. 
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Let us now look for an integral representation of the diffracted field q,(M). Let 
b(M) be the function which is equal to p(M) in ft, and to zero in the exterior G~ of 
this domain. The proof is established for n = 3, but remains valid for n = 2. Let 
I(M) be the integral defined by 

I(M) - - IR 3 [G(M, M')(A + k2)b(M ') - p ( M t ) ( A  M, q- k2)G(M, M')] df~(M') 

(2.110) 

Accounting for the equations satisfied by p(M) and G(M, M'), this expression 
becomes (formally) 

I(M) -- - JR 3 [G(M, M') f (M')  -/3(M')6M(M')] df~(M') = p(M) - po(M) = r  

Let us show now that ~(M) can be expressed by surface integrals which involve the 
values of the functions p(M) and Onp(M) on a. To do so, expression (2.110) is 
integrated by parts. To get a simplified proof, the surface a is assumed to be 
indefinitely differentiable and convex, which implies that each coordinate axis cuts 
it at two points only. 

(a) Integration with respect to the variable x. Let xl(y,z) and x2(y,z) the 
intersection points between the line (y = constant, z = constant) and a. One gets 

I 02G(M, M') df~(M') II(M) -- /3(M') R 3 OX '2 

0 2 G(M, M') 
p(M') dx' 

OX '2 

! ! j+ i+ fx2 y,z,, 
= dy' dz' 

! ! -cr -c~ J x 1 (y , z') 

Int-cx.3 I-t'-oo [ 
- dy' dz' p(M')  

- -  (X) - - 0 0  

! 

OG(M,ox, M')]  x2 (y',z') 

x 1' (y', z') 
f O~(M') OG(M, M') 

- I dFt(M') (2.111) 
J R 3 O x '  O x '  

In this expression, the double integral is, in fact, an integral over or; denoting by 
01(M') the angle between the normal vector if(M') and the x-axis, the last 
expression becomes 

f OG(M, M') 
II(M) = | p(M') 

Jo Ox' 
COS O1 (M') do(M') 

f Ob(M') OG(M, M') 

JR Ox' Ox' 
d~(M')  
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We finally obtain the following equality: 

IR ] 0 2G(M, M') G(M, M') O2p(M') dft(M') 
~(M' )  Ox t2 - Oxt-------- ~ 

o" -- COS O1 (M') da(M') 
= p(M') Ox' Ox' 

(2.112) 

(b) Integration by parts with respect to the three variables. Let 02(M') (resp. 
03(M')) be the angle between ff and the y-coordinate axis (resp. the z-coordinate 
axis). Integrations by parts with respect to y' and z' finally lead to 

- G(M, M ' )  

OG(M, M') OG(M, M') OG(M, M') 
COS O1 "~- COS 02 -~- 

Ox' Oy' Oz' 

[Op(M') Op(M') Op(M') ] }  
COS 01 + ~  COS 02 + ~  COS 03 

Ox' Oy' Oz' 

COS 03 ] 

a~(M') 

(the dependence of the angles 0 i with the integration point M'  has been omitted). 
The following notation is then introduced: 

Op( M ') Op( M ') Op( M ') 
On,p(M') = if" Vp(M') = ~ cos 01 + ~ cos 02 + ~ cos 03 

Ox' Oy' Oz' 

and then the integral I(M) is written 

I(M) - J~ [p(M')On,G(M, M') - G(M, M')O,,p(M')] da(M') (2.113) 

(c) Green's representation of p(M). 
(2.110) and (2.113), which gives 

This is obtained by gathering the equalities 

p(M) - po(M) + Io [p(M')O,,G(M, M') - G(M, M')O,,p(M')] da(M') (2.114) 

This expression represents the solution of the boundary value problem (2.107), 
when it exists. Three remarks must be made. The function given by (2.114) is 
defined in the whole space and is identically zero inside 0 ~  the complement of 
9t U cr (that is the space domain which is outside or). It is completely determined as 
soon as the functions p(M') and On,p(M') are known on o: it must be noticed that 
these two functions are not independent since they are related by the boundary 
condition (2.107'). Finally, the expression (2.114) remains valid when the 
boundary cr is a piecewise regular surface (or curve) as for example a polyhedron: 
for such a surface, the edges, being of zero measure, do not give any contribution 
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to the surface integral (but their presence diminishes the regularity of the pressure 
field). 

2.6.2. Simple layer and double layer potentials 

The expression (2.114) of the acoustic pressure p(M) contains two types of 
integrals: 

qO1 (M) -- J,~ On,p(M')G(M, M') clo(M') (2.115) 

qo2(M) - - Ia p(M')On,G(M, M') dcr(M') (2.116) 

The function q91(M) can be interpreted as the sound field radiated by point 
isotropic sources with amplitude On,p(M')dcr(M') and supported by cr: for this 
reason, it is called simple layer potential; the function On,p(M') is called the density 
of the simple layer. 

The interpretation of the function ~2(M) is less straightforward: it is first 
necessary to define the radiation of a slightly more complicated point source, the 
acoustic doublet. Let S+(+e, 0, 0) and S- ( - e ,  0, 0) two infinitely closed points 
supporting isotropic point sources with respective amplitudes 1/2e and -1 /2e .  The 
resulting field at a point M(x, y, z) of •3 is 

1 ( eLkr+___ e~kr-) 
~b~(M)- 2e 47rr + 47rr 

with r + - V/(x + e) 2 + y2 + z 2. It is obvious that the function ~ ( M )  has a limit for 
e---~ 0: 

0 (e~kr~ 
~b(M)-  lim ~ ( M ) -  , r -  V/X 2 -~-y2 -k-Z 2 

0x 

The source which has this radiation is called the acoustic doublet (by analogy with 
electrostatics) and is represented by the x-derivative of a Dirac measure located at 
the origin. If such a source is located at point S(xo, yo, zo), the corresponding field is 

OG(M, S) OG(M, S) 
~bs(M) - -- - 

Ox Oxo 

It is now easy to give an interpretation of the function qoz(M): it is the radiation of a 
set of acoustic doublets, oriented along the unit vector fit normal to cr and with 
amplitude p(M') dcr(M'). For this reason, the function ~2(M) is called double layer 
potential and p(M t) is the density of the double layer. 
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The integrals which define ~1 (M) and ~2(m) are Riemann integrals in so far as 
the point M does not belong to a. If M E a, the functions G(M, M') and 
On,G(M, M') have a singularity at M = M'. The values on cr of the simple and 
double layer potentials, together with their normal derivatives, must be evaluated 
by a limit procedure. The following results can be established: 

lim ~I(M) = Io On,p(M')G(Q, M') da(M') (a) 
M e f ~ - - ~ Q e a  

where the integral is of Riemann type 

lim 
MEf~-->QEa 

p(Q) 
qDz(M) - I p(M')On,G(Q, M') da(M') (b) 

2 Jo 

lim 
MEf~-->QEa 

Onp(Q) + Io On,p(M')OnG(Q, M') da(M') (b') Onqtgl ( m )  --- - T 

the integrals being Cauchy principal values; 

f 
lim Oncpz(M) = -Pf .  / p(M')OnOn,G(Q, M') da(M') (c) 

M E f~---~ Q E a Ja 

is defined as a Hadamard finite part (Pf.): for this particular case, the standard 
definition given in classical textbooks (as, for example, L. Schwartz's textbook cited 
here) does not apply, and a limit process must be used for an analytical or a 
numerical evaluation. 

2.6.3. Boundary integral equations associated with the Green's representation of the 
pressure field 

The boundary condition (2.107') shows that as soon as one of the two functions 
p(M) or O~(M) is known, the other one is known too; the Green's representation 
(2.114) of the acoustic pressure field is then completely determined. By introducing 
the boundary condition into the Green's formula, one of the two unknown 
functions is eliminated and an equation is needed to determine the remaining one. 
Assume, for example, a -C0  and introduce the notation -y=a/ /3 .  Expression 
(2.114) becomes 

p(M) = po(M) + f p(M')[On,G(M, M') + 3'G(M, M')Ido'(M'), M E f~ 
Jo 

Taking the limit M E f~ ~ Q E cr leads to: 

p(Q) 
[ p(M')[On,G(Q, M') + "yG(Q, M')] da(M') - -po(Q), 

2 Jo 

(2.114') 

Q E a  

(2.117) 
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which equation is obtained by accounting for property (b) of the double layer 
potential. This equation determines the unique value on cr of the pressure p(M) if 
the boundary value problem which it is deduced from has a unique solution. The 
following theorem can be established. 

Theorem 2.2 (Existence and uniqueness of the solution of the B.LE.) 

(a) If k is an eigenwavenumber of the initial boundary value problem (2.107), with 
multiplicity order N (the homogeneous problem has N linearly independent 
solutions), the homogeneous equation (2.117) has N linearly independent 
solutions. The non-homogeneous equation (po(Q)~ 0) has no solution. 

(b) If k is not an eigenwavenumber of the initial boundary value problem, then 
equation (2.117) has a unique solution for any po(Q). 

(c) Conversely, there exists a countable sequence of wavenumbers kn such that the 
homogeneous equation (2.117) has a finite number of linearly independent 
solutions. Each of these solutions defines a solution of the homogeneous 
boundary value problem by expression (2.114) with po(M) = O. If k is different 
from all the kn, then the non-homogeneous equation (2.117) has a unique 
solution which, by (2.114), defines the corresponding unique solution of the 
boundary value problem. 

If/3 is assumed to be different from zero, then it is possible to define ~ = all3 and 
one is left with the following Green's representation of p(M): 

p(M) --po(M) - I,~ On,p(M')[~5On,G(M, M') + G(M, M')] da(M'), M E g t  

(2.114 p ) 

An integral equation to determine the function On,p(M p) is obtained by taking the 
limit of this expression for M E f~ ~ Q E ~r: 

qEcr 

(2.117') 

r 
+ Io On,p(M')[cSOn,G(Q, M') + G(Q, M')] dcr(M') -p0(Q), 

The former theorem remains true for this last boundary integral equation. 
We will see in the next chapter that it is possible to derive other boundary 

integral equations from the Green's formula. It will be shown too that different 
boundary integral representations of the diffracted field can be defined which lead 
to boundary integral equations obeying the same theorem of existence and 
uniqueness of the solution. 

Bibliography 

[1] BOWMAN, J.J., SENIOR, T.B.A. and USLENGHI, P.L.E., 1969. Electromagnetic and acoustic 
scattering by simple shapes. North Holland, Amsterdam. 



88 ACOUSTICS: BASIC PHYSICS,  T H E O R Y  AND METHODS 

[2] BRUNEAU, M., 1983. Introduction aux theories de racoustique. Universit6 du Maine Editeur, 
Le Mans, France. 

[3] JEFFREYS, H. and JEFFREYS, B., 1972. Methods of mathematical physics. University Press, 
Cambridge. 

[4] COLTON, D. and KRESS, R., 1983. Integral equations methods in scattering theory. Wiley- 
Interscience, New York. 

[5] COLTON, D. and KRESS, R., 1992. Inverse acoustic and electromagnetic scattering theory. 
Springer-Verlag, Berlin. 

[6] MARSDEN, J.E. and HOFFMANN, M.J., 1993. Elementary classical analysis. Freeman, New 
York. 

[7] MORSE, PH.M. and FESHBACH, H., 1953. Methods of  theoretical physics. McGraw-Hill, New 
York. 

[8] MORSE, PH.M. and INGARD, K.U., 1968. Theoretical acoustics. McGraw-Hill, New York. 
[9] PIERCE, A.D., 1981. Acoustics: an introduction to its physical principles and applications. McGraw- 

Hill, New York. 
[10] SCHWARTZ, L., 1961. M~thodes math~matiques pour les sciences physiques. Hermann, Paris. 



CHAPTER 3 

Diffraction of Acoustic Waves and 
Boundary Integral Equations 

Paul J.T. Filippi 

Introduction 

This chapter is devoted to the most general representation of an acoustic field. The 
acoustic pressure radiated in free space by any source is expressed, in general, by a 
convolution product (source density described by a distribution), or by an integral 
extended to the space domain occupied by the source if the source density is a 
sufficiently regular function (at least a square integrable function). When the 
propagation domain is bounded or when obstacles are present, the influence of the 
boundaries can always be represented by the radiation of sources, the supports of 
which are the various surfaces which limit the propagation domain. These sources, 
often called diffraction sources, are chosen such that the total field satisfies the 
conditions that the physical properties of the boundaries material impose. Their 
determination requires the solution of a boundary integral equation (or a system of 
B.I.E. if the propagation domain is limited by several disjoint surfaces): it must be 
noticed that such boundary integral equations can be solved analytically when and 
only when there exists direct analytical methods (mainly, the method of separation 
of variables) which provide an exact solution. 

The main interest of the approach here proposed is as follows. 

�9 The boundary value problem to be solved is reduced to an equation along the 
boundary of the propagation domain; thus, the equation to be solved 
numerically extends along a surface (or a curve if a two-dimensional problem 
is considered), which, in general, is bounded while the propagation domain can 
extend up to infinity. 

�9 The numerical approximations are made of functions defined on the boundary 
only; the acoustic pressure (as well as the particle velocity or the intensity vector) 
is given by an analytical expression which satisfies exactly the propagation 
equation and satisfies approximately the boundary condition. 

�9 The analytical approximation of the acoustic field presents many advantages 
compared to other numerical approximations such as those obtained by finite 
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element methods: for example, it provides very easily an analytical approxima- 
tion of the far field directivity pattern of a diffracting or a radiating object. 

This chapter has four sections. First, the radiation of a few simple sources is 
described. Then, the Green's representation of the solution of any boundary value 
problem encountered in linear acoustics is presented: this is the most commonly 
used representation of a diffracted field by boundary integrals and, historically, the 
oldest. It is shown that the Green's representation is not the only possible boundary 
integral expression of a diffracted field. Finally, boundary integral equations are 
established which are governed by the same theorem of existence and uniqueness of 
the solution as the boundary value problem initially considered. This is illustrated 
by two examples: the propagation of a harmonic wave inside and outside a 
perfectly rigid cylinder (two-dimensional domains). 

This chapter requires the knowledge of the basis of the theory of distributions. 
Among the French books which present this theory from a physical point of view, 
we must recommend L'outil mathOmatique by R. Petit. Most of the results are not 
proved here: the reader who is interested in the mathematics of the diffraction 
theory must refer to the books cited in the short bibliography at the end of this 
chapter or to any treatise on partial differential equations and integral equations. 

3.1. Radiation of Simple Sources in Free Space 

In Chapter 2, it was seen that a harmonic (e -~t)  source radiates an acoustic 
pressure p(M) which satisfies the Helmholtz equation: 

(A + k2 )p (M)=t iM)  (3.1) 

wheref(M) is a function or, more generally, a distribution which describes the physical 
system which the acoustic wave comes from. The principle of energy conservation, 
which the wave equation is based upon, is expressed by the Sommerfeld condition: 

lim p = 0(r (1 - n)/2) 
r -----~ o o  

lim (Orp -- ckp) = o(r (1 - n)/2) 
r-----~oo 

(3.2) 

where r is the distance between the observation point M and the origin of the 
coordinates, and n is the dimension of the space (n = 1, 2 or 3). Let us recall the 
meaning of the notations used: u = O(e) means that u tends to zero as fast as e; 
u = o(e) means that u tends to zero faster than e. 

3.1.1. Elementary solution of the Helmholtz equation 

A function ~ is called an elementary solution of the Helmholtz equation if it satisfies 
the non-homogeneous equation 

(A + k2)~ = ~5 (3.3) 
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where ~ is the Dirac measure located at the origin of coordinates. A function ~s is 
called an elementary kernel  o f  the Helmhol tz  equation if it satisfies 

( A  -k- k2)~bs --  ~5s (3.3') 

where ~s is the Dirac measure located at point S. The elementary kernel G(S, M )  of 
the Helmholtz equation which satisfies the Sommerfeld condition is called the f ree  
space Green's funct ion o f  the Helmhol tz  equation. The following results can be 
established: 

e ~kr(S, M) 
G(S, M )  - ~  in N (3.4) 

2ok 

c . (1)r ' 2 G(S, M )  - H~ , M ) )  in ~ (3.5) 
4 

e ~kr( S, M) 
G(S, M )  - - in N3 (3.6) 

47rr(S, M)  

In these expressions, r(S, M )  represents the distance between the two points S and 
M. H~l)(z) is the Hankel function of order zero and of the first kind" in what 
follows, unless confusion is possible, it will be simply denoted by Ho(z). The 
function G ( S , M )  describes the radiation, in free space, of a source whose 
dimensions are small compared to the wavelength and which emits the same energy 
flux density in any direction (isotropic source). 

Let us show that expression (3.4) satisfies the one-dimensional form of equation 
(3.3 ~). Let s and x be the abscissae of points S and M respectively. One has 

r ( S , M ) - I x - s  I 

The derivation rule in the distributions sense leads to 

d e ~klx-sl  e ~klx-sl  
m ~ = ck ~ sgn(x - s) 
dx 2ck 2ck 

d 2 e~klx-s l  e~klx-s l  
-- - k  2 ~ -+- ~Ss 

d x  2 2ck 2ck 

(3.7) 

The second equality is equation (3.3'). 
To prove that expression (3.6) satisfies equation (3.3') in [~3, a less direct method 

must be used. There is no lack of generality in assuming that the point source S is 
located at the coordinates origin O: by a change of variables (a translation), this 
situation can always be obtained. The function G as given by (3.6) not being defined 
at point O, we first consider a domain ft~ which is the exterior of the sphere B~ with 
radius e and centred in O. In this domain, the function G is indefinitely 
differentiable. Let ~ be an indefinitely differentiable function with compact 
(bounded) support (test function); and denote by G~ the function which is equal to 
G in f~, and to zero in the interior of B~. In the distributions sense, the Laplace 
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operator is defined by 

(Aa~, �9 ) -  Ia a a e  dfl 
r 

where (., .) stands for the duality product. Thus, one has 

((A + k2)Ge, 6~ ) - In G(A + k2)~ d f ~ - I e  
E 

Let (r, 0, ~) be the spherical coordinates of the integration point, in a system 
centred at O. The integral I~ is written 

If" l0 Ii'~e~kr { 1 0 ( O )  I~----  d~ sin 0 dO ~ r 2 
47rr r-ZOrr Orr 

1 o ( o )  1 o2 } 
+ ~ m s i n  0 -+- ~ + k 2 (I)r 2 dr ( 3 . 8 )  

r 2 sin 0 O0 ~ r 2 sin 2 0 oq~o 2 

A double integration by parts of the term 

leads to 

S:~ 1 0 ( 0 )  
I 1 - - - -  ~ 2 

47rr r 2 Or r -fir ~br2 dr 

e~r OOl~l~ O0 

I1 = -- ~ r 2 ~ + r dr 
4rrr Or 

20(ekr) o0 
Or 4rrr Or 

2O(e r) 
Or 47rr 

r 0(e r } -- r 2 + r �9 -- r 2 6~r 2 dr 
47rr O r  e r20r -~r G /  

(3.9) 

The function q~ being compactly supported, the upper bounds of the integrated 
terms are zero. Thus the integral Ie is written 

12 ~ I :  e 'k~{ 0~ ( ~ )  } I~ - -  -- d~ e 2 (e, 0, qS) + ~k - ~(e, 0, 9~) sin 0 dO 
47re 

e t.kr I 
+ [3a~ (A + k 2) - ~ r ]  ~ da (3.10) 

The integral over f~ is zero because, in this domain, the function G satisfies a 
homogeneous Helmholtz equation. The function ~(e, 0, ~) being indefinitely 



CHAPTER 3. DIFFRACTION AND BOUNDARY INTEGRAL EQUATIONS 93 

differentiable, it can be expanded into a Taylor series around the origin: 

�9 (e, o, ~,) - ~,(o, o, o) + e 
0~ 

(o, o, ~) + c(e 2) 
Oe 

This expansion is introduced into (3.10) and then the limit e --~ 0 is taken. The result 
is 

I2 ~ I[ e i, ke { Ot ~ 
lim Ie - - lim dqD e 2 (0, 0, qS) 
e-~ 0 e-~ 0 47re -~e 

( 1)( 0o 2,} 
+ & - q~(0, 0, 0) + e (0, 0, ~) + ~(e sin 0 dO 

0e 

= lilm d~ - ~ -  ~(0,  0, 0) sin 0 dO + 0(e) - ~(0,  0, 0) (3.11) 

So, the distribution (A + k2)G satisfies 

((A + k2)G, r  = lim I~ = r 0, 0) (3.12) 
e ----~ 0 

It is, thus, equal to the Dirac measure located at the coordinate's origin (definition 
of the distribution 6). A similar proof establishes that the Green's function given by 
(3.5) satisfies equation (3.3') in ~2. 

3.1.2. Point sources 

It has been mentioned that the elementary solution defined in the preceding 
subsection represents the sound field radiated by a small isotropic physical source. 
A source which can be represented by a Dirac measure is called a point isotropic 
source. 

Experience shows that the small physical sources do not, in general, have 
isotropic radiation. It is thus necessary to pay attention to sources which radiate 
most of their energy in given directions. Let us consider the system composed of 
two harmonic isotropic sources, close to each other and having opposite phases. 
Assume that they are located at S - ( x = - e , y = O , z = O )  and S+(x=+e,  
y = 0, z = 0) and that their respective amplitudes are - 1 / 2 e  and + l / 2 e .  In free 
space, the corresponding acoustic pressure is the solution of the equation 

1 
(A + k2)p~ = -  (~s+ - 6 s - )  

2e 

and satisfies the Sommerfeld condition. It is given by 

P~= 2e &rr+ 47rr_ 
(3.13) 
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with  r 2 - (x T c)2 y2 2 + + + z . If  e is small enough, each term in this expression is 
accurately approximated by the first two terms of its Taylor series- 

( - - - -  1 T e ck  -- %- O(E 2) 
47rr+ 47rr 

with r 2 - x  2 %-y2 %- z 2. This leads to the approximation of p~: 

( 1) e rx 
Pe = Lk . . . .  %- O(e) (3.14) 

r 47rr r 

It appears clearly that p~ is close to zero in the plane x = 0 while it is maximum 
along the x-axis. For  this reason, the limit, for ~ ~ 0, of p~ is called the dipole 
radiation, which is given by 

( ~) e~kr X 0 ( e  ~kr) 
lim p ~ -  ck . . . . . . .  (3.15) 
s~0  47rr r 0~ 47rr 

The corresponding source is called the dipole oriented along the x-axis; it is 
represented by -06/Ox, the opposite of the derivative, with respect to x, of the 
Dirac measure. Indeed, one has 

+ - - + - - 0 x  

Obviously, a dipole can have any orientation and can be located anywhere. Let S be 
the location of a dipole and ff the unit vector which defines its orientation. The 
acoustic pressure radiated is given by 

e ckr(S, M) 
p ( M ) - - f t .  VM 

4zrr(S, M) 

where V M m e a n s  that the gradient of the function is taken with respect to the 
coordinates of the point M. 

The modulus of p(M) is given by 

1/2 
Ixl 

47rr 2 

For  fixed r, it is equal to zero in the x-plane and it has a maximum along the x-axis: 
the energy flux density is maximum in both directions x < 0 and x > 0. 

The acoustic sources encountered in physics have, very often, much more 
complicated directivity patterns. The number  of directivity lobes (directions in 
which the energy flux density reaches a maximum) can be rather high. For sources 
with small dimensions, it is necessary to introduce the notion of a multipolar point 
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source which is a linear combination of derivatives of the Dirac measure: 

0 mnq 
Amnq 

m, n, q Oxm OY n Ozq 

Each term generates the acoustic field 

0 mnq e ckr 
Pm, n,q = -Amnq (3.16) 

Ox m Oy n Ozq 47rr 

with r 2 = x 2 -+- y2 _+_ Z2. When the source is located at a point S, r is the distance 
between this point and the observation point. 

3.1.3. Cylindrical and spherical harmonics 

There exists a particular class of multipolar sources which have extremely useful 
mathematical properties (they will be given at the end of this subsection). Among 
their various advantages, it must be mentioned that they can easily describe the 
radiation of any physical source when the observation point is far enough from it. 

In [~2, let (r, ~) be the cylindrical coordinates of a point M. The functions 
e ~n~, (n -- - c x z , . . . , - 1 ,  0, + 1 , . . . ,  +c~) are called cylindrical harmonics.  The follow- 
ing set of linearly independent functions, which satisfy a homogeneous Helmholtz 
equation in the complement of the origin, can be associated with the cylindrical 
harmonics: 

~(1)(M) = H(1)(kr)e m~, @(2)(M)-- H(2)(kr)e ~n~~ (3.17) 

where the function Hn(1)(u)= Jn(U)+ c Yn(u) (resp. Hn(2)(u)= J n ( U ) -  C Yn(U)) is the 
Hankel function of order n and of the first (resp. second) kind. Using the expression 
of the Laplace operator in cylindrical coordinates and the definition of the Hankel 
functions, it is easily shown that these functions are solutions of the homogeneous 
Helmholtz equation in any domain which does not contain the origin. Furthermore, 
~(1)(M) satisfies the Sommerfeld condition (3.2), while ~(2)(M) satisfies the complex 
conjugate of (3.2). These elementary proofs are left to the reader. The source 
distribution associated to either of these two pressure fields is a linear combination of 
the first n derivatives of the Dirac measure located at r - - 0 .  

Similarly in R 3, let (r, 0, ~) be the spherical coordinates of a point M. The 
functions 

U2(O ' ~)  _ elnm I( cos 0)e ~m~ 

n = - c~ ,  . . . ,  - 1,0, +1, . . . ,  +c~, m = - co ,  . . . ,  - 1,0, +1, . . . ,  +c~ 

where plnm I(COS 0) is the regular Legendre function of degree n and order i m I, are 
called spherical harmonics.  To each spherical harmonic, two linearly independent 
functions are associated" 

~)n (1) --- h(1)(kr)elnm I( cos 0)e ~m~o m ~(n22 -- h(n2)(kr)elnml(cos O)e ~m~~ (3.18) 
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where h(nl)(u)=jn(U)+ byn(U) (resp. (2) U) h n ( ---jn(U)- byn(U)) is the spherical Hankel 
function of order n and of the first (resp. second) kind. The functions (3.18) satisfy a 
homogeneous Helmholtz equation in the complement of the origin: the first 
one satisfies the Sommerfeld condition at infinity (3.2), while the second one 
satisfies the complex conjugate condition. In the whole space, they satisfy a non- 
homogeneous equation, the source term of which is a linear combination of the 
successive derivatives of the Dirac measure up to order n. 

If there is no ambiguity, we will refer to 1/)(1,2) (resp. ~ ;  2)) as cylindrical (resp. 
spherical) harmonics. These functions have the following fundamental property: 

Theorem 3.1 (Solutions of  the homogeneous Helmholtz equation) Let ~b(M) be a 
function which satisfies the homogeneous Helmholtz equation 

(A + k2)4)(M)= 0 

inside the domain limited by the two circles (resp. spheres) with radii r0 and rl > r0 
and centred at the coordinates origin. Then, for any r such that r0 < r < rl, 4~(M) 
can be expanded into a convergent series of cylindrical (resp. spherical) harmonics: 

OO OO 

dp(M)- Z anH(nl)(kr)e'n~~ + Y~ bnH(n2)(kr)e~nq~ M E [~2 (3.19) 
n = -oo n = -oo 

(X) n 

qS(M) -- Z h(1)(kr)  Z amenn [m [( cos  O)e ~m~~ 
n = 0  m =  - n  

-F Z h(2)(kr)  n Iml O)e~m~o 3 ,) bme n (cos , M E N (3.19 
n = 0  m= -n 

For fixed r, the expansion (3.19) is a Fourier series with respect to the variable ~; 
the expansion (3.19') behaves like a Fourier series with respect to the two variables 

and 0. Thus, these two expansions are L2-convergent for fixed r: this means that 
the speed of convergence depends on the value of the radial variable. 

Throughout this book, the time dependence of a harmonic acoustic field is 
assumed to be e -~t. Thus the functions H(nl)(kr)e ~n~~ and h(nl)(kr)plnm l( cos O)e ~mq~ 
represent elementary waves which carry energy towards infinity (outgoing waves). 

(2) ~nqo (2) I ml The functions H n (kr)e and h n (kr)Pn (cos 0)e~mq~ represent elementary waves 
which carry energy from infinity (incoming waves). These two types of waves are 
necessary to represent the pressure field inside a bounded domain whose boundaries 
reflect a part of the energy. If all the sources are inside the domain r < r0, the total 
field can be split into two components: a series of outgoing elementary waves with 
amplitudes (an - bn) which is the field that the sources produce in free space; and a 
series of regular terms (Bessel functions Jn(kr) or jn(kr)) with amplitudes 2bn which 
represents the sound field reflected by the boundaries of the propagation domain. 

If the propagation domain is unbounded, and does not contain any source or 
obstacle outside the domain r < r0, the former expansions contain Hankel functions 
of the first kind only and are valid for r0 < r < c~. 
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Notation. In what follows, the symbols Hn(u) and h,(u) stand for the Hankel 
functions of the first kind; only in case of a possible confusion are the superscripts 
used. 

3.1.4. Surface sources 

Sounds and noise are often generated by vibrating structures: the exterior boundary of 
a machine, the table of a stringed musical instrument, etc. Thus, it appears necessary 
to give a mathematical description of such sources. An intuitive method is to try to 
extend to a surface the notion of monopole and dipole point sources. Denote by cra 
radiating surface which is assumed to be composed of N elementary surfaces crj with 
areas #j and centre of gravity Pj. A point isotropic harmonic source with amplitude 
#j~j is located at each point Pj. The corresponding acoustic field is given by 

N e tkr(M, Pj) 
#j 

j---1 47rr(M, Pj) 

A natural limit process appears clearly: an isotropic point source is associated to 
the infinitesimal surface element &r(P), its amplitude being #(P)&r(P). The 
function #(P) is called the source surface density. The corresponding acoustic 
radiation is given by the integral 

Io e tkr(M, P) 
~I(M) - - Iz(P) 47rr(M, P) dtr(P), M q[ tr (3.20) 

The function ~bl(M) is called the simple layer potential (see chapter 2, section 6.2); 
the function/z(P) is called the simple layer density. The definition of expression 
(3.20) is meaningful if both the surface cr and the function #(P) are sufficiently 
smooth. In practice, this does not induce any physical restriction: the required 
smoothness is deduced from the necessity to attach a finite radiated energy to such 
surface sources. 

Assume that cr is a piecewise smooth surface (piecewise smooth implies that cr can 
have edges). Thus, a unit normal vector if(P) can be defined almost everywhere (in 
practice, everywhere but along the edges). Using the same set of surface elements crj, 
a dipole point source with amplitude vj#j is located at each point Pj. This system 
radiates the following pressure: 

N e tkr(M, Pj) 
$ ( M ) -  Z l]jff(Pj)" Vpj O'j 

j= 1 47rr(M, Pj) 

(XTej means that the derivatives are taken with respect to the coordinates of Pj.) 
Using the same limit process, we obtain the definition of the double layer potential 
(see chapter 2, section 6.2): 

Icr e tkr(M, P) 
- da(P), M f[ ~r (3.21) ~b2(M) Lt(P)On(p) 47rr(M, P) 
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in which expression the normal derivative of the kernel is defined by 

e tkr(M, P) e tkr(M, P) 

On(p) = if(P). Ve 
47rr(M, P) 47rr(M, P) 

Remark. If two-dimensional problems are looked at, the notion of surface sources 
is replaced by that of curve sources. Simple and double layer potentials are defined 
in the same way by using the two-dimensional elementary kernel. The properties of 
the three-dimensional layer potentials that are presented in the next subsection 
remain unchanged in R 2. 

3.1.5. Properties of the simple and double layer potentials 

Let us recall a classical definition. A surface er splits the neighbourhood 9t of any 
regular point P (that is a point where a normal unit vector is defined) into two 
domains: 9t + which contains the unit normal vector and f~- which does not contain 
it. The side of ~r in contact with 9t + is called the positive side, the other one being 
called the negative side of the surface. 

The source which generates a simple layer potential will be denoted by # | G, 
where 6o is the Dirac measure attached to the surface cr and | stands for the tensor 
product. The source which generates the double layer potential will be denoted by 
u | 6~. These notations are defined by: 

(lz @ 6o,f) - L #(P)f(P) &r(P) 

(v | 6/~,f) -- - L u(P)On(p)f(P) &r(P) 

where f is any indefinitely differentiable function with compact support. The 
functions ~I (M)  and ~2(M) satisfy non-homogeneous Helmholtz equations: 

(A + k2)~l --/z @ 6r~ 

(A + k 2)~ 2 - / / @  ~; 

(3.22) 

(3.23) 

They are defined in the whole space. It can be shown that they are indefinitely 
differentiable in any domain which does not intersect the surface er. As will be 
shown, they have a discontinuous behaviour across a. 

Let 6 be a function which is twice differentiable outside a given surface a. The 
Laplacian, in the distributions sense, of this function is shown to be 

A 6 -- {A6} + [Tr + 6 - T r -  6] | 6~ + [Tr + 0n6 - T r -  0,6] | G 

In this expression, {A6} is the Laplacian of 6 in the classical sense which is defined 
outside of ~ only; the symbol Tr + 6 (resp. T r -  6) is the limit of 6(M) when the 
point M reaches a by its positive (resp. negative) side. Similarly, one defines the 
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symbols Tr + Ongp and T r -  0,~b by 

Tr + OnO(P)= lim if(P). VO(M) 
ME~+---~pEo 

Outside cr, the functions ~1 and ~2 satisfy a homogeneous Helmholtz equation, that 
is 

{ A ~ l , 2 }  -+- k2~) l ,  2 = 0 

Thus, they can have a singularity along the layer support only. Using the definition 
of the Laplacian in the distributions sense, we have 

(A + kZ)~bl - [ T r  + ~bl - T r -  ~bl] | 6~ + [Yr + On~bl - T r -  On,hi] @ 6o (3.24) 

( A  -}- k 2 ) ~ 2  - [Tr + ~2 -- T r -  ~b2] | 6~ + [Tr + On~b2 - T r -  On~b2] | 6o (3.25) 

By comparing these equations with (3.22) and (3.23), we can state the following 
result. 

Theorem 3.2 (Discontinuities o f  the simple and double layer potentials) 

1. The simple layer potential is a continuous function. Its normal derivative is 
discontinuous across the layer support r and is equal to the layer density #: 

Tr + ~bl-  T r -  ~1 = O, T r  + Oqn?/)l - -  T r -  On2/)l - -  

2. The double layer potential has a continuous gradient. It has a discontinuity 
across the layer support cr which is equal to the layer density u: 

T r  + ~32 - T r -  ~ 2  = //, T r  + One2 - T r -  0n~32 = 0 

It is now necessary to give the expressions of these various limits. This is not a 
trivial task: due to the singularity of the Green's kernels given by (3.5) and (3.6), the 
values on ~r of the layer potentials and of their normal derivatives must be defined 
by limit procedures. 

On the layer support or, the singularity of the Green's kernel is integrable in the 
Riemann sense. Thus the value of a simple layer potential is given by: 

Tr + ~1 (P) - T r -  @1 (P) -- Tr~bl(P) = Io lz(P')O(P, P')  da (e ' )  (3 .26) 

b 
G(P, P')  - - - Ho[kr(P, P')] in [~2 

4 
with 

e ~kr(P, P') 
- in R 3 

G(P, P')  - 47rr(P, P')  

The expressions of the double layer potential and of the normal gradient of the 
simple layer potential involve the normal derivative of the kernel which can present 
a stronger singularity. Thus, the calculation of the values on a of these functions 
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requires a little care and attention must be paid to the fact that the limits on the 
positive and negative sides of the layer support are different. 

We first consider the normal gradient of the simple layer potential. Let ~ be the 
straight line which is normal to r at a point P, and M and M'  be two points on 
symmetrical to each other with respect to P. Let ~b(M) be the function defined by 

~b(M) - lo #(P')ff(P)" [VMG(M, P') + VM, G(M I, P')] dg(P') 

When M crosses over the surface cr from the negative side to the positive one, the 
point M I crosses it over from the positive side to the negative one. The first term in 
4~(M) has a jump equal to +#,  while the second term has a jump equal to - # .  So the 
function 4~(M) is continuous, that is 

Tr + ~b(P) = T r -  ~b(P)= Tr ~b(P) 

But the value of ~b(M) on a is the sum Tr + Ong'(M) + T r -  O,~b(M). It is shown that 
Tr ~b(M) is expressed by a Cauchy principal value: 

Tr ~b(P) - 2 Jo #(P')On(?)G(P, P') dg(P') 

This leads to the following result: 

Tr + 0n~l (P) = + 
#(P) 

T r -  On~) l (P )  = 
u(P) 

+ J~ #(P')On(p)G(P, P') dg(P') 

- ~ + L #(P')On(e)G(P, P') dcr(P') 

(3.27) 

In a similar way, the values on cr of a double layer potential are shown to be given 
by 

T r  + ~b2(P) = - r  

T r -  ~ 2 ( P ) =  

.(P) 

u(P) 

I u(P')On(p,)G(P, P') dcr(P') 

I u(P')On(e,)G(P, P') de(P') 

(3.28) 

The last expression to be established is that of the value on cr of the normal 
derivative of a double layer potential. The normal gradient of a double layer 
potential involves a double derivative of the Green's kernel: it is easily shown that 
this double derivative is not integrable on or. Nevertheless, it can be established that 
the limit for M E 9t ~ P E a (f~ is the propagation domain) exists, that is 

Tr On~)2(P)---- M~-,e~lim if(P)" I~r VM[On(p,)G(M, P')] dcr(P') (3.29) 
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If cr is a closed curve (in R 2) or a closed surface (in R3), this function can be 
expressed by convergent integrals. For simplicity we will show it in R 2. Let r(M, P') 
be the distance between a point M outside ~r and a point P on tr. The Hankel 
function of the first kind Ho(kr) has a logarithmic singularity given by 

2b 
Ho(kr) = -  In r + regular function 

71" 

The double layer potential can thus be written 

2/32(M ) - b'(P) L On(p') 
In r(M, P') 

do'(P') 

-F- Icr On(p') 

271" 

In r(M, p') 

27r 
[v(P') - v(P)] dcr(P') 

L [ In r(M, P ' ) ]  + v(et)On(p,) G(M, P') - do-(P') (3.30) 
27r 

In this expression, P is the point which M will tend to. The kernel which appears in 
the third integral has such a regularity that the gradient of this term is defined 
everywhere by a convergent integral, in particular for M - P .  In the second 
integral, the function v(P ~) - v ( P )  is zero when P coincides with P~: it is shown 
that, if u(P) is sufficiently regular (at least continuously differentiable) the value on 
cr of the normal derivative of this integral is expressed by a Cauchy principal value. 
Let us now examine the first integral. One has 

I In r(M, P')  j" cos(F, if) 
On(p') do'(e') -- &r(e') (3.31) 

o 27r ,, r(M, P') 
) 

where (V, if) is the angle between the vector V = P'M and the unit vector ff normal to 
a at P~. The quantity cos(?', if) &r(P')/r is the elementary angle under which the 
elementary arc dcr(P t) is seen from the point M. As a consequence, the integral 
(3.31) is the angle under which the closed contour ~r is seen from M: it is equal to 27r 
if M lies in the domain inside this contour, and to 0 if M lies inside the outer 
domain. Its gradient is thus identically zero. The final result is 

Tr On~)2(P)- L On(P)On(p')a(P, P')[u(P' ) -  u(P)] &r(P') 

+ L Y(Pt)On<P)On<P')[G(P' P') - Cr(P, P')] dcr(P') (3.32) 

with G(P, P') -- 
In r(P, P') 

27r 
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In [~3, the same result is valid for a closed surface a, the functions G and (~ being 
given by 

e Lkr(M, M') 1 
G(P, P')  = - , G(M, M ' )  = - 

47rr(M, M ' )  47rr(M, M ' )  

Expression (3.32) is interesting for numerical purposes: it provides an analytical 
expression for the finite part of the integral. Roughly speaking, the other methods 
consider a geometrical approximation of a boundary element and a local 
approximation of the unknown function; then use is made of the necessary limit 
procedure to get an approximation - and not an exact value - of the finite part of 
the integral; furthermore, this always requires some care. 

3.2. Green's Representation of the Solution of Linear Acoustics 
Boundary Value Problems 

In chapter 2, various analytical methods were presented which provide either exact or 
approximate representations of the solutions of boundary value problems which 
describe the sound field due to a harmonic (e -"~ excitation. The disadvantage of 
these methods is that they can be used for simple geometrical configurations only. 
This chapter deals with the most general representations of a harmonic sound field: 
the sound pressure is sought as the sum of the incident pressure (the pressure field 
that the sources generate in free space) and a pressure field due to fictitious sources, 
the support of which is the boundary of the propagation domain (usually called the 
reflected or diffracted or scattered field). These sources are chosen so that the total 
sound pressure satisfies the boundary conditions which are imposed. 

3.2.1. Statement of the problem 

Let f~ be a domain of R n (n = l, 2 or 3), with a regular boundary a. It is assumed 
that a unit normal vector if, pointing out to the exterior of 9t, can be defined almost 
everywhere on a. If f~ is bounded, we have an interior problem; if f~ extends up to 
infinity, we have an exterior problem. Let f be the distribution which represents 
the energy harmonic sources. The acoustic pressure p is the solution of the non- 
homogeneous equation: 

(A  + k 2 ) p ( M ) = f ( M ) ,  M E f~ (3.33) 

where k is, as usual, the wavenumber. The boundary cr is assumed to satisfy a local 
boundary condition: 

aTr  Onp(M) +/3Tr  p ( M )  = O, M E cr (3.34) 

Very often, the symbol 'Tr'  can be omitted. But, as has been seen already, the sound 
field can be represented by surface integrals which are discontinuous or have a 
discontinuous normal gradient or involve, on a, a finite part of the integral: in these 
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cases, the symbol 'Tr'  is absolutely necessary to indicate that the value on cr of the 
function is obtained as the limit of a Riemann integral. The possible existence of a 
solution of this boundary value problem is beyond the scope of this book; among 
the best textbooks dealing with boundary value problems of classical physics and in 
which such a proof  is given, we can mention Methods of Mathematical Physics by 
R. Courant and D. Hilbert [7]. 

Some remarks must be made on the mathematical requirements on which 
mathematical physics is based. The basic hypothesis which is always made in 
physics is that any system has a finite energy density and its behaviour is based on 
the Hamilton principle (energy conservation). In acoustics, this implies that the 
sound pressure and its gradient are described by functions which are (at least 
locally) square integrable. Furthermore, an energy flux density across any 
elementary surface of the propagation domain boundary must be defined. The 
consequences are: (a) the value on the boundary of the function which represents 
the sound pressure inside the propagation domain can be different from the value 
of the sound pressure; (b) the value of the pressure field (or of its gradient) on the 
boundary of the propagation domain is obtained as a limit of a function defined 
inside the propagation domain; (c) the limits on the boundary of the functions 
representing the pressure field and its gradient need to be (at least locally) square 
integrable functions. These remarks justify the necessity to use the symbol 'Tr '  as a 
reminder of the mathematical requirements which must be respected to get a 
description of the physical phenomena. 

If a - -  1 and/3 = 0, we are left with the Neumann problem (cancellation of the 
normal component of the particle velocity); a = 0 and /3 - -  1 describe the Dirichlet 
problem (cancellation of the sound pressure). Finally, let us recall that, in most 
situations, an absorbing boundary can be characterized by a specific normal 
impedance ff which is defined by 

-- -ok  
Tr a ,p  

This corresponds to a = 1 and fl ~ 0. Such a boundary condition is generally called 
the Robin condition. 

In what follows, it is assumed that a and /3 can be piecewise continuous 
functions: this allows the boundary cr to be made of different materials (for 
example, one part  is rather hard, another one being highly absorbent). To ensure 
the uniqueness of the solution for any real frequency when the domain f~ is 
unbounded, the principle of energy conservation must be respected: this is done by 
adding a Sommerfeld condition at infinity (which has already been given) or by 
using either the principle of limit absorption or the principle of limit amplitude. 

Limit absorption principle. Let r be a positive parameter and p~ be the unique 
bounded solution corresponding to a wavenumber k~ =k(1  + cr For  a real 
wavenumber k, the solution which satisfies the energy conservation principle is the 
limit, for c ~ 0, of p~. 
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Limit amplitude pr&ciple. Let us consider the unique solution P~(M; t) of the 
wave equation which corresponds to a harmonic source with angular frequency w 
starting at a time t -- 0. The solution of the Helmholtz equation which satisfies the 
energy conservation principle is the limit for t ~ c~ of P~(M; t). 

3.2.2. Green's representation of the acoustic pressure 

Let b be the function which is equal to p in f~ and to zero in its complement 0f~. Out 
of the sources support, the possible discontinuities of/5 and of its gradient are 
located on cr. The equation satisfied (in the distributions sense) by/5 is 

(A + k2)/3 = f +  (Tr + b - T r -  t5) | 6~ + (Tr + Onp -- T r -  Onp ) ~ 6tr 

This equation is valid in the whole space R ". But b is identically zero in 0f~; we are 
thus left with 

(A + kZ)b = f -  Tr p | 6~ - Tr O,p | 6o (3.35) 

where T r - b  (resp. T r -  0,/5) has been replaced by Tr p (resp. Tr Onp). Let G be 
the elementary solution of the Helmholtz equation which satisfies the required 
Sommerfeld condition. Then, the solution of equation (3.35) is expressed by a space 
convolution product. In f~, we can write 

p = G �9 ( f -  Tr p | 6~ - Tr Onp | 6~ 

where �9 is the convolution product symbol. Elementary solutions and Green's 
functions have the following property: 

G �9 gp(M) - (G(M, P), d)(P)) = IR . G(M, P)ck(P) drY(P) 

(the last form is valid as far as the function G(M, P)O(P) is integrable). Let recall 
the expressions of the Green's function used here: 

e t.kr(M, P) 

G(M, P) = ~ in R 
2ok 

Ho(kr(M, P)) in ~2 

e ~kr(M, P) 

47rr(M, P) 
in ~3 

where r(M, P) is the distance between the points M and P. Let po(M) be the 
incident field, that is 

po(M) = G , t i M )  
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The total acoustic pressure can be represented by the following expression which is 
called the Green's representation: 

p(M) - p o ( M )  - J~ [Tr On,p(P')G(M, P') - Tr p(P')On,G(M, P')] dcr(P') (3.36) 

(On, means that the derivative is taken with respect to the variable P'). This 
expression is valid in R2 and ~ 3. In one dimension, the boundary reduces to one or 
two points; if, for example, f~ = x E ]a, +c~[, Green's formula gives 

p(x) = po(x) + Oxp(a)G(x - a) -p(a)OaG(x - a) (3.36") 

In the Green's representation, the diffracted field is the sum of a simple layer 
potential with density - T r  On,p(P') and a double layer potential with density 
- T r  p(P'). These two functions are not independent of each other: they are related 
through the boundary condition. 

Expression (3.36) simplifies for the following two boundary conditions: 

1. Dirichlet problem (Tr p = 0): 

p(M) - po(M) - I,~ Tr O,,,p(P')G(M, P') dcr(P') (3.36') 

2. Neumann problem (Tr Onp = 0): 

p(M) --po(M) + [ Tr p(P')On,G(M, P') dcr(P') (3.36") 

The function p is known once the layer densities are known. 

3.2.3. Transmission problems and non-local boundary condition 

Energy is absorbed by a boundary because the incident wave generates a motion of 
the boundary material. Due to this motion, the boundary gives back a part of 
its vibratory energy to the fluid. But it must be noted that the motion of the 
fluid/boundary material interface depends on the motion of the whole volume of 
material which constitutes the frontier of the fluid domain. If, inside the boundary, 
the vibrations can propagate without too much damping, it is not possible to use a 
local boundary condition: a non-local boundary condition is required. 

Let us consider a simple example. The propagation domain f~ is bounded and 
contains a fluid with density p and sound speed e. Its complement 09t is occupied 
by an isotropic homogeneous porous medium. For a harmonic excitation with 
angular frequency 02, the acoustic pressure in the fluid satisfies a Helmholtz 
equation: 

(A + k2)p(M) = f (M) ,  
02 2 

M Eft, with k 2 = m (3.37) 
r 
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A porous medium is composed of a solid matrix with pores which are small 
compared to the wavelength and filled up with a fluid. A detailed description of 
such a complex system is quite impossible and totally useless. To describe the 
propagation of a wave inside a porous medium, various approximations are made 
to replace this non-homogeneous system by an equivalent homogeneous medium. 
The simplest models describe a porous medium as a homogeneous fluid with a 
complex density /9' and a complex sound speed c', which are both frequency 
dependent. Thus the acoustic pressure inside Cf~ is the solution of a Helmholtz 
equation: 

2 

(A + k'2)p'(M)- 0, M c f~, with k '2 - ~  (3.38) 
Ct2 

Furthermore, it is shown that the energy transfer between the external fluid and the 
porous medium is governed by the continuity, along the common boundary of the 
two media, of the acoustic pressures and of the normal accelerations" 

Tr p(M)= Tr p ' (M),  
Tr Onp(M) Tr Onp'(M) 

p pt 
, M E ~r (3.39) 

We are going to show that the system (3.37, 3.38,3.39) can be replaced by a 
boundary value problem for p only, with a non-local boundary condition. Let 
G'(M, P) be the Green's kernel of equation (3.38) which is bounded at infinity: it 
represents the radiation of a point isotropic source located at P inside the porous 
medium occupying the whole space. Using the result of the former subsection, the 
Green's representation of p '  is 

p' (M)-  So [Tr On,p'(P')G'(M, P') - Tr p'(P')On,G(M, P')] dcr(P') 

Accounting for the continuity conditions, this last expression becomes 

p'(M) - I~ Tr On,p(P')G'(M, P') - Tr p(P')On,G(M, P') dcr(P') 

Let us now take the value on cr of p '  and of its normal derivative and use the 
continuity conditions; one gets two expressions which the pressure p must satisfy on 
the boundary of the propagation domain: 

�9 r,,,, I - - -  Tr O,,,p(P')G'(P, P') 
P 

- Tr p(P')On,G(P, P')] dcr(P') - O, P Etr (3.40) 
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p' Tr Onp(P) 

p 2 

] } - Tr p(P')On,G(P, P') d~(P') - O, P E a  (3.40') 

It can be proved that equation (3.37) with either of the two boundary conditions 
(3.40) or (3.40') has a unique solution for any real angular frequency ~v (the 
resonance frequencies of the physical system have a non-zero imaginary part  due to 
the energy loss into the porous medium). 

3.3.  R e p r e s e n t a t i o n  o f  a D i f f r a c t e d  F ie ld  by a L a y e r  P o t e n t i a l  

The Green's representation is a particular form of integral representation of the 
acoustic field diffracted by a boundary a: indeed, it consists in building a function 
which is defined in the whole space, which is equal to the diffracted field inside the 
propagation domain and which is zero outside. But it is not necessary at all that 
an integral representation of the diffracted field fulfil this last condition: any 
representation which is defined in the whole space and is equal to the diffracted 
field inside the propagation domain is quite convenient. 

3.3.1. Representation of the field diffracted by a closed surface in ~ 3 or a closed curve 
in R 2 

Let consider a domain f~, with boundary cr which is either a bounded domain or the 
exterior of a 'thick' bounded domain: by 'thick' we exclude the acoustic thin screens 
which are modelled by surfaces in R 3 or curves in E2 (this particular case is 
examined in the next subsection). It is a priori possible to consider three types of 
integral representations of the sound field reflected by ~r: 

(a) Simple layer potential: 

f 
p(M) -po(M) + J,.,. #(P)G(M, P) da(P), 

(b) Double layer potential: 

M E f ~  (3.41) 

p(M) -po(M) - I #(P)On(p)G(M, P) do'(P), M E 9t (3.42) 
O" 

(c) Hybrid layer potential: 

p(M) --po(M) + I,r #(P)[-On(p)G(M, P) + 7G(M, P)] do'(P), 

M E 9t (3.43) 
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In this last expression, -), is a priori an arbitrary constant. In general, the functions 
defined by (3.41,3.42,3.43) are not identically zero ou t s ide  the propagation 
domain. The only condition which is required is that the layer density # is such that 
the total field satisfies the boundary condition imposed on or. 

It must  be recalled that  these representations have discontinuities across tr: the 
first one is continuous with a discontinuous normal gradient; the second one is 
discontinuous with a continuous normal gradient; the third one is discontinuous 
together with its normal gradient. 

3.3.2. Diffraction by an infinitely thin screen 

There are many real life cases of diffracting obstacles whose thickness is small 
compared to the other dimensions and to the wavelength (acoustic screens along 
roads or train tracks, diffracting structures in concert halls, etc.) This leads to 
modelling of such structures as infinitely thin obstacles: the diffracted effect is 
represented by a layer potential which must  have a discontinuity or a discontinuous 
normal gradient (or both). Let us give a formal justification of such a model. For 
simplicity, let us consider a two-dimensional obstacle defined as follows. Let cr0 be a 
curve segment parametrized by a curvilinear abscissa - a  < t < +a;  and let if(t) be 
the unit vector normal to tr0 at point t. This unit vector enables us to define a 
positive side of cr0 and a negative side. Let h(t) be a positive function which is zero 
at t - - a  and t -  + a  and e a positive parameter.  They define two curves cr + and tr- 
by (see Fig. 3.1): 

) 

cr + = set of points P+(t) such that P+P = eh(t)ff(t) 

c r - - s e t  of points P - ( t )  such that P - P - - e h ( t ) ~ ( t )  

It is assumed that eh(t) is small compared to the total length of the curve arc or0 and 
sufficiently regular so that an exterior unit vector ~7 normal to e - cr + U or- can be 
defined everywhere. Let fro be the exterior of the bounded domain limited by e and 

Fig. 3.1. The infinitely thin screen as the limit of a screen with small thickness. 
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consider the Neumann problem 

(A + k2)p,~(M) = t iM) ,  M E f't,~ 

Tr O,~po(M) -- O, M E o 

Sommerfeld condition 

(3.44) 

The solution p~ is unique. Let us see if it has a limit when the parameter ~ tends to 
zero. If such a limit p(M) exists, it satisfies the following boundary value problem: 

(A + k2)p(M) = t iM) ,  M E f't -- C, cro 

Tr Onp = 0, M E or0 (3.45) 

Sommerfeld condition 

We just present here a formal proof, since a rigorous proof  requires too much 
functional analysis. It can be immediately remarked that p must have a continuous 
gradient: this implies that it can be represented by a double layer potential only. 

The Green's representation of p~ is 

p,,(M) --po(M) - I,, Tr p,,(P)O~,(e)G(M, P) do(P) 

- po(M) - I,~- Tr p,,(P-)O~,(e-)G(M, P- )  do(P-)  

- Io+ Tr po(P+)O~<p+)G(M, P+) do(P +) (3.46) 

For e---~0, the vector Y(P+) tends to if(P) while Y(P-) tends to -if(P). Using a 
Taylor series of the kernel G(M, P+) for ch/a ~ 1, it is easily seen that the sum of 
the integrals over cr- and ~+ in (3.46) is close to 

- j~ [Tr po(P+) - Tr po(P-)]On(e)G(M, P) do'o(P) 
o 

It is proved that the functions Tr p,~(P+) and Tr p,~(P-) have different limits 
Tr+p(P) and Tr -p(P)  respectively, and that the solution p(M) (3.45) exists and is 
given by 

p(M) - p o ( M )  - I~ [Tr+ P(P) - T r -  p(P)]On(t,)G(M, P) dcro(P) 
o 

(3.47) 

This shows that a thin screen can be geometrically approximated by a curve 
(diffracting obstacle with zero thickness) and that the corresponding diffracted field 
is described by a double layer potential, the layer support being this curve. Another 
important result is the behaviour of the solution of equation (3.45). It is shown that, 
close to the edges t = i a  of the screen, the diffracted pressure is zero but that its 
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tangent gradient is singular. More precisely, one has 

p(M) -po(M) = r In r + regular function 

where r is the distance between the point of abscissa t and any of the two edges. 
Thus, to define rigorously the boundary value problem (3.45) an edge condition 
must be added. If the solution is sought as a double layer potential as in (3.47), it is 
sufficient to state that the layer density has the behaviour indicated above. 

These results remain in ~3: it is shown that the pressure field diffracted by an 
infinitely thin and perfectly rigid screen can be expressed by a double layer 
potential, the density of which cancels along the screen edge. For the Dirichlet 
problem, the integral representation of the diffracted field is a simple layer 
potential. The layer density is singular along the screen edges. A general theory of 
the singular behaviour of the solution induced by discontinuities of the boundary of 
the domain can be found in the book by P. Grisvard; the results concerning the 
theory of diffraction are presented in many classical textbooks and articles. 

3.4. Boundary Integral Equations 

We have given various possible representations of the sound field diffracted by the 
boundary of a propagation domain. They all involve a boundary source which must 
be determined. The aim of this section is to establish the equations which determine 
the layer density of the different boundary sources and to state theorems of existence 
and uniqueness of the solutions. The results are illustrated by a simple two- 
dimensional example for which an analytical solution is known: the boundary is a 
circle and the propagation domain is either the interior of the circle or its exterior. 

3.4.1. Integral equations deduced from the Green's representation of the pressure 
field 

Let a be a closed surface (or curve). It splits the space into an interior domain ~"~i, 
which is bounded, and an unbounded exterior domain f~e. A unit vector if, normal 
to a and pointing out to f~e, is defined everywhere but along the edges (if cr has 
any): thus, ff is an exterior normal for f~i and an interior normal for f~e. We consider 
both an interior problem and an exterior problem. 

�9 Interior problem: 

(A + k2)pi(M)=f.(M), M E ~i 
(3.48) 

aTr  OnPi(M) +/3Tr pi(M)= 0, M E cr 

�9 Exterior problem: 

(A + k2)pe(M) = fe(M), M E ~e 

aTr  OnPe(M) +/3Tr pe(M)= 0, M E a (3.49) 

Sommerfeld condition 
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The Green's representations of Pi and Pe are 

p i ( M )  - ~ i ( M )  -- I~r [Tr On(p)pi(P)G(M, P) 

- Tr pi(P)On(p)G(M, P)] dcr(P), 

pe(M) = Ce(M) -k Ia [Tr On(p)pe(e)G(M, P) 

- Tr pe(P)On(p)G(M, P)] do'(P), 

M E ~ i  (3.50) 

M E ~ e  (3.51) 

In these expressions, ~i (resp. @e) represents the free field produced by the source 
density J} (resp. fe). 

Assume now a r 0 everywhere on or. The boundary conditions lead us to express 
the normal derivative of each pressure field in terms of the pressure itself; thus, the 
Green's representations are written 

pi(M)-~i(M)+I~Trpi(P)Ifl--G(M'P)+On(t")G(M'P) &r(P), MErCi 

M E f~e 

(3.52) 

(3.53) 

Let us take the values, on tr of pi and Pe; accounting for the discontinuity of the 
double layer potentials involved, one gets: 

Trpi(M)2 - J~Trpi(P)[~G(M'P)+On(I')G(M'P)] d c r ( P ) - ~ b i ( M ) ' - a  MEg 

(3.54) 

MEo 

(3.55) 

These are the boundary integral equations which Tr pi and Tr Pe satisfy. The value, 
on or, of the normal derivatives of the pressure fields can equally be calculated, 
leading to a second set of boundary integral equations: 

/3 Tr pi(M) [ Tr pi(P) fl -- -- On(M)G(M, P) &r(P) 
a 2 J~ a 

- Tr On(M) I Tr pi(P) fl-- On(p)G(M, P) do'(P) - O n ( M ) ~ ) i ( M ) ,  
cr OI. 

M E c r  (3.56) 
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/3 Tr pe(M) f 
+ | Tr pe(P) - On(M)G(M, P) dot(P) 

a 2 Jor a 

+ Tr On(M) Jor Tr pe(P)/3 -- On(p)G(M, P) da(P) = On(M)~e(M),  
og 

ME a (3.57) 

Equations (3.54) to (3.57) describe both the Robin problem (a = 1,/3-r 0) and the 
Neumann problem (a = 1, /3 = 0). For the Dirichlet problem (a = 0, /3 = 1), the 
Green's representations are 

pi(M) -- ~2i(M) - Jor Tr On(p)pi(P)G(M, P) da(P), M E ~-~i (3.50') 

pe(M) = Ce(M) + Ior Tr On(p)pe(P)G(M, P) dot(P), M E Qe (3.51') 

This leads to the following boundary integral equations: 

J Tr On(e)pi(P)G(M, P) da(P) - ~i(M), 
or 

M E a (3.58) 

Ior Tr On(e)Pe(e)G(M, P) do(P)--~be(M), M E a (3.59) 

Tr OnPi(M) 

Tr OnPe(M) 

+ Ior Tr On(p)pi(P)Tr On(M)G(M, P) da(P)- On,hi(M), 

- lo Tr On(e)Pe(e)Tr On(M)G(M, P) da(P)= On~)e(M), 

ME ~r 

M E o  

(3.60) 

(3.61) 

3.4.2. Existence and uniqueness of the solutions 

For the interior problems, it can be shown that for equations (3.54), (3.56), 
(3.58) and (3.60) the conditions of existence and uniqueness of the solution are 
the same as for the boundary value problem (3.48). We can state the following 
theorem: 

Theorem 3.3 (Green's representation for the interior problem and B.LE.) The 
boundary integral equations deduced from the Green's representation of the 
solution of the interior problem satisfy the following properties: 

(a) There exists a countable sequence of wavenumbers k/, called 'eigenwave- 
numbers', (real if a//3 is real) for which the homogeneous B.I.E. have a finite 
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number of non-identically zero, linearly independent solutions; to each of these 
solutions, called 'eigensolutions', there corresponds a solution of the homo- 
geneous boundary value problem (3.48), called again 'eigensolutions' of the 
boundary value problem. The sequence ki is identical to the sequence of 
eigenwavenumbers of the boundary value problem; the eigensolutions of the 
B.I.E. generate all the eigensolutions of the boundary value problem, and vice 
versa. 

(b) If k is equal to one of the eigenwavenumbers, the non-homogeneous boundary 
integral equations have no solution. If this is not the case, they have a unique 
solution for any second member. 

(c) The solution of the boundary value problem (with a zero or a non-zero source 
term) is given by expression (3.50). 

For the exterior problem, things are a little different. We know that the boundary 
value problem (3.49) has one and only one solution whatever the source term is. It 
would be useful if the boundary integral equations deduced from the Green's 
representation of the sound pressure - equations (3.55), (3.57), (3.59) and (3.61) - 
had the same property. Unfortunately, this is not true. Let us consider, for example, 
equation (3.59) which corresponds to the exterior Dirichlet problem: it involves the 
same boundary integral operator as equation (3.58) which corresponds to the 
interior Dirichlet problem. Thus, it has the same eigenwavenumbers. A classical 
result of the theory of operators states that when k is equal to any of these 
eigenwavenumbers, the equation has a (non-unique) solution for any second 
member which is orthogonal to the eigensolutions of the adjoint equation: this is 
always the case for any ~e(M) which is the value on cr of an incident field (that is 
the value on cr of a function which satisfies a homogeneous Helmholtz equation in 
its neighbourhood). Any solution Tr OnPe(e) of equation (3.59) generates a unique 
pressure field pe(M) given by (3.51~) and which is the solution of the exterior 
Dirichlet boundary value problem. Furthermore, two solutions which differ by a 
solution of the homogeneous B.I.E. generate the same exterior pressure field. The 
following theorem can be stated: 

Theorem 3.4 (Green's representation for the exterior problem and B.LE.) The 
boundary integral equations deduced from the Green's representation of the 
solution of the exterior problem have at least one solution for any second member 
which is the value on the boundary of either an incident pressure or its normal 
derivative, depending on the equation considered. More precisely, they satisfy the 
following properties: 

(a) The integral operators defined by (3.55), (3.57), (3.59) and (3.61) have a 
countable sequence of eigenwavenumbers which are real if the ratio c~//3 is real; 
to each of these eigenwavenumbers there corresponds a finite number of 
linearly independent eigensolutions. 

(b) If k is equal to any of these eigenwavenumbers, the boundary integral equation 
has a solution which is determined up to an arbitrary linear combination of the 
corresponding eigensolutions. 
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(c) The unique solution of the boundary value problem is always given by 
(3.51). 

3.4.3. Boundary integral equations deduced from the representation of the diffracted 
field by a hybrid layer potential 

For exterior problems, it has been seen that the Green's representation of the 
diffracted field leads to boundary integral equations which have real eigenwave- 
numbers for a real ratio a//3. This induces instabilities in numerical procedures: it 
is, indeed, never easy to get an approximate solution of an equation which has an 
infinite number of solutions. Among all the methods which have been proposed to 
overcome this difficulty, the simplest one is to adopt an integral representation of 
the diffracted field which leads to a boundary integral equation with non-real 
eigenwavenumbers: thus, the wavenumber of a physical excitation being real, such 
B.I.E. can be solved for any physical data. 

Let us consider the exterior Dirichlet problem and look for a representation of 
the diffracted field as a hybrid layer potential: 

pe(M) - ~be(M) - Ja #(P)[On(p)G(M, P) + tG(M, P)] dcr(P), M E ~'~e (3.62) 

The boundary condition leads to 

lz(M) 
I- J~ #(P)[O,(e)G(M, P) + tG(M, P)] da(P) - Oe(M), MEcr (3.63) 

This equation involves the same operator as equation (3.54) for /3 /a  = t. So it 
has the eigenwavenumbers of the interior problem with the boundary condition 

OnPi(M) + tp(M) -- 0 

These wavenumbers all have a non-zero imaginary part. Thus, for any real 
frequency, equation (3.63) has a unique solution. This result is valid for any 
boundary condition: 

Theorem 3.5 (Hybrid potential for the exterior problem and B.I.E.) For any real 
wavenumber k, the solution of the exterior boundary value problem (3.49) can 
always be expressed with a hybrid layer potential by formula (3.62). The boundary 
condition leads to a boundary integral equation which solution # exists and is 
unique whatever the source term is. 

Remark. The solution of any interior problem can also be expressed with a hybrid 
layer potential. The B.I.E. thus obtained has the following convenient properties: 
the sequence of eigenwavenumbers is identical to that of the boundary value 
problem; the solution is unique if the excitation wavenumber differs from any of the 
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eigenwavenumbers. Nevertheless, this representation is, in general, less interesting 
than the Green's formula: indeed, for the Neumann and the Robin boundary 
conditions, the B.I.E. involves the normal derivative of a double layer potential, 
which is a highly singular integral. 

3.5. Two-dimensional Neumann Problem for a Circular Boundary 

Let us consider a circle cr with radius R0 and centred at the coordinates origin; it 
splits the plane into an interior domain f~i, which is bounded, and an exterior 
unbounded domain f~e. Using a cylindrical coordinate system with origin the centre 
of or, a point M is defined by (R, 0). 

We consider both the interior and the exterior Neumann problems. It is assumed 
that point isotropic sources are located at Si(19i < R0, qoi) (interior problem) and at 
Se(Pe > RO, ~ge) (exterior problem). 

3.5.1. Interior problem and Green's representation 

We look for the solution of the following equations: 

(A + ke)pi(M)= 6si, M E ~i 
(3.64) 

Tr OnPi(M) = O, M C cr 

The Green's representation of the solution is written 

b 
n o ( k l S i M  I) c [ pi(M) -- -- 4 -- 4 Jo Tr pi(e)On(e)no(k l MP I) dot(P), M E ~-~i 

(3.65) 

where I SiM! (resp. IMP I) is the distance between the two points Si and M (resp. 
M and P). 

Let us first recall the expansion formulae of the Hankel function Ho(k lMM'  I) 
where the coordinates of the two points M and M'  are (R, 0) and (R', 0'), respectively: 

H o ( k l M M '  I ) =  ~ n n ( k R ) J n ( k R ' )  e~n(O- 0') if R > R' 
n =  -cx~ 

__ y ~  nn(kR,)Jn(kR)e~n(O - o') if R < R'  (3.66) 
n =  -cx~ 

Let (R0, ~) be the coordinates of a point P on cr. The kernel which appears in (3.65) 
is written 

+cxz 

On(e)Ho[k l MP I ] -  k y ~  nn(kRo)Jn(kR)e ~n(O-~) (3.67) 
n--- -cx~ 
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where Hn(u ) is the derivative of Hn(u) with respect to u. The integral thus becomes 

I Tr pi(P)On(p)Ho(klMP I) do'(P) 
o" 

= k  Z Hn(kR~176 Tr pi(P)e-~n~Ro dqo 
n - -  --(:x3 

-q-(x) 

=27rR0k Z anHn(kR~176 
n =  -cx~ 

(3.68) 

where the an are the Fourier coefficients of Tr Pi(P) defined by 

Tr p i (P)  -- Z ane t~nqo 
1j2  

an - - m  Tr pi(Ro, qo)e -~n~~ d~ 
27r o 

The expansion of the incident field for R > Pi is given by 

H0(k[ a i M  1) - -  

b + o o  

Z Jn(kpi)Hn(kR)e t ,n(O - qoi) 

H - ~  --(X3 

Finally, for Pi < R < R0, expression (3.65) becomes: 

b +cxz 
pi(M) - 4 Z {J,(kpi)H,(kR)e~n(~ ~i) + 27rkRoa, Hn(kRo)J,(kR)e~nO} 

t l - -  - - 0 0  

(3.69) 

Now, let us set the normal derivative ofpi(M), that is its derivative with respect to 
R, to zero on a. One gets 

-[-co 

Z {Jn(kpi)Hn(kR~176 -Jr 27rkRoa, Hn(kRo)J~(kRo)}e ~"~ - O, VO (3.70) 
n - -  - - (x3 

This equation is satisfied if and only if each term is zero, that is if 

Jn(kpi)H~(kRo)e -~n~i + 27rkRoanHn(kRo)J~(kRo ) - O, Vn (3.71) 

Assume that k is real (this is always the case in physics); then the functions H n(kRo) 
never cancel (their roots have non-zero imaginary parts). Thus equation (3.71) is 
equivalent to 

27rkRoanJn (kRo) -- -Jn(kpi)e -t~ndpi Vn (3.72) 

(a) Eigenwavenumbers and eigenfunctions. Each function Jn(kRo) has a countable 
sequence of real zeros Znp(P = 1, 2 , . . . ,  c~) which define a countable sequence of 
eigenwavenumbers knp - Znp/Ro. For each of these eigenwavenumbers, one of the 
equations (3.72) has no bounded solution an. Thus, the non-homogeneous problem 
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has no solution, while the homogeneous one has the following non-trivial solution: 

~np = Jn(knpR)e ~nO 

(b) Solution of  the non-homogeneous problem. 
eigenwavenumber, the coefficients an are all defined and given by 

J n ( k p i ) e  -~nqoi 
an = - 

27rkRoJn(kRo) 

The solution of the boundary integral equation takes the form 

1 +v~, Jn(kpi) ~n(~o - -  ~ i )  

, e 

Tr pi (e)- -  27rkRo n - -  Jn(kRo) 

and the Green's representation of the solution leads to 

_ _ t, + ~  J n ( k p i )  H n  ( k R o ) J n ( k R ) e  ~n(O - qoi) 
b a0 (k l  ai  M I) -]'- 4 Jn ( k R o )  p i ( M ) =  4 n=- 

If k is not equal to an 

(3.73) 

(3.74) 

3.5.2. Exterior problem and Green's representation 

We are looking for the pressure field pe(M) which satisfies the system 

(A + k2 )pe (M)-  6Se, M C ~e 

Tr pe(M) = O, M E cr 
(3.75) 

and the convenient Sommerfeld condition. The following representation is adopted: 

_ c n0(kl SeM I) + Tr pe(M)On(t,)Ho(klMP l) d~r(P), M E ~~e p e ( M ) =  4 4 

(3.76) 

Following the same method as in the former subsection, the pressure field is 
represented, for R < Pe, by the following series: 

pe(M) = 
b +c~ 

( n n ( k p e ) J n ( k R )  e-cnqge - 4 n=-~  27rkR~176176 

(3.77) 

with an = -  Tr OnPe(P)e -~n~~ d~ 
21r 

The boundary condition leads to the following equalities: 

{nn(kpe)e -~n~e -- 27rkRoanHn(kRo)}Jn(kRo ) -- 0, 'v'n (3.78) 
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It is obvious that, if k is not equal to an eigenwavenumber of the interior Neumann 
problem (that is if Jn (kRo) r 0, Vn), expression (3.78) determines all the coefficients 
by 

Hn(kpe)e --t, nqOe 

an -- (3.79) 
27rkRoHn(kRo) 

Then, the Green's representation of pe(M) takes the form 

Js (kRo) Hn(kpe)Hn(kR)e 0~(o - q P e )  
l, 

pe(M)- Ho(kISeM 1) + (3.80) 
4 4 n=-~ Hn(kRo) 

It must be remarked that, in accordance with the existence and uniqueness theorem 
which has been given, this expression is defined for any real k. 

Assume now that k is equal to an eigenwavenumber kqr of the interior Neumann 
problem. Then, for n -  q, expression (3.78) is satisfied whatever the value of aq is; 
thus, this coefficient is arbitrary. The solution of the boundary integral equation is 
the sum of 

+o~ H n ( k p e )  

.~~ 27rkRoH~(kRo) 
e ~n(qo - qOe) 

and an arbitrary function proportional to e~q~: it is thus not uniquely determined. 
Nevertheless, in the series (3.80), the coefficient of the qth term is zero. Thus, the 
expansion (3.80) of the solution is uniquely determined. This shows that the 
Green's representation of the solution of the exterior problem leads to a unique 
solution even though the corresponding B.I.E. has eigenwavenumbers. 

3.5.3. Exterior problem and hybrid layer potential 

Let us now look for a representation of the diffracted field as a hybrid layer 
potential: 

b 
p e ( M )  = no(k l SeM I) 

4 

4 #(P)[On(p)Ho(kIMP 1) + tHo(klMP I)] da(P), M E Qe 

(3.81) 

As done in the former subsections, the two kernels and the incident field are 
expanded into series: 

+ o c  

On(p)Ho(k I MP 1)- k Z Jn(kRo)Hn(kR)eLn(~162 
n-- -oc 
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-t'-oo 

Ho(k l MP l) - ~ Jn(kRo)Hn(kR)em(O-~o) 
n= -c~ 

~t-CX) 

Ho(k I SeM l ) -  ~ J~(kR)Hn(kpe) e~n(~ ~ge), f o r  R < Pe 

n - -  ~ o o  

The unknown function #(P) is expanded into a Fourier series of the angular variable" 

--~-OC 

# ( P ) - -  Z bne~n~" 
n-- - ~  

b n - - - -  # ( e ) e  -~n~ d ~  
27r 

Expression (3.81) of the pressure field reduces thus to 

b +cx~ 
_ _ ~V" Jn(kn)Hn(kpe)e ~n(O --  )ge) 

pe(M)--  4 n = - e c  

-~-OO 

27rR0 Z bn[kJ~ (kR~ + Jn(kR~176 
n =  - c ~  

for R < pe 

(3.82) 

The boundary condition leads to the following equations: 

Jn (kRo)Hn(kpe)e --~n~e + 27rRobn[kJ n (kRo) + CJn(kRo)]H n (kRo) - 0 (3.83) 

For real k, the functions J~(kRo) and Jn(kR) are real; thus the linear combination 
kJ~(kRo) + Jn(kRo) cannot cancel. This implies that the coefficients bn are always 
uniquely determined by 

Jn (kRo)Hn(kpe )e  - t ~ e  
b n  ~ -  m 

27rRo[kJ~ (kRo) + t, Jn(kRo)]H n (kRo) 

When this value is introduced into the expression of the diffracted field given in 
(3.82), one gets, of course, the same expression as in (3.80). But none of the 
coefficients b, has an undetermined form. 

Finally, let us remark that the denominator of b~ is zero for the non-real values 
knr of the wavenumber defined by 

knrJn(knrRo) n t- t, Jn(knrRo) - 0 

The function 

Pnr(R, O) -- Jn(knrR)e mo 

satisfies, in 9ti, a homogeneous Helmholtz equation and, on or, the following Robin 
condition: 

Tr ORPnr(R, O) + t..Pnr(R, O) --O,  for R -  R0 

This is the result which has been given previously. 
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CHAPTER 4 

Outdoor Sound Propagation 

Dominique Habault 

Introduction 

Studies of outdoor sound propagation are essential nowadays since they are linked 
to problems of environmental noise pollution which appear everywhere (transpor- 
tation noise, plant and factory noise, etc.). 

The prediction of sound levels emitted around a factory which is to be set up is a 
classical example of engineering acoustics. Such a problem is in general quite 
complicated. It must take into account various phenomena which can be divided 
into three groups: ground effect, diffraction by obstacles, propagation in an 
inhomogeneous medium (i.e. characterized by a varying sound speed). Each of 
these three aspects corresponds to a section of this chapter. 

Obviously, studying each aspect separately leads to a great simplification of the 
complete problem and to a more detailed analysis. Indeed, there are two ways to 
solve it: 

�9 taking all the aspects into account; this leads to heavy, highly time-consuming 
computer programs, which are not suitable for quick studies of the respective 
effect of the (acoustic, geometrical) parameters of the problem; 

�9 dividing the problem into several sub-problems for which simple solutions or at 
least general characteristics can be obtained. 

Explicit solutions or simple computation methods are now well known for each 
of the three aspects but they still correspond to elementary problems. The computer 
programs developed for the prediction of outdoor propagation are still quite heavy 
(both for computing time and storage). 

It is then essential to get a priori  estimations of the relative influence of each 
phenomenon, in order to neglect those with minor effect. For instance, for the 
prediction of sound levels emitted close to the ground, the ground effect dominates 
and the propagation medium can be modelled as a homogeneous medium (constant 
sound speed) if the wind speed and temperature gradient are weak. Obviously, the 
choice of the phenomena to be neglected depends on the accuracy required for the 
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prediction of the sound levels. Generally speaking, the accuracy does not need to be 
higher than the accuracy obtained from experiment. 

For a given problem, a highly accurate method is generally not required, because 
of all the neglected phenomena, the accuracy of the experimental results or the kind 
of results needed. For example, to evaluate the efficiency of a barrier, the 
interesting curve is mainly the envelope of the maximum sound levels obtained 
behind the barrier (opposite side to the source): an accurate description of the 
interference pattern is not necessary. 

In this chapter, only harmonic signals are studied. For non-harmonic signals, it is 
possible to solve the wave equation (d'Alembert equation) directly or to solve the 
Helmholtz equation and use a Fourier transform. 

4.1. Ground effect in a homogeneous atmosphere 

4.1.I. Introduction 

The study of the ground effect has straightforward applications, such as noise 
propagation along a traffic axis (road or train). 

The propagation medium is air; in the simplest cases, it is modelled as a 
homogeneous fluid (characterized by a constant density and a constant sound 
speed). In the case of a wind or temperature gradient, the sound speed is a function 
of the space variables. This leads to a Helmholtz equation with varying coefficients 
(see Section 4.3). Furthermore, if turbulence phenomena cannot be neglected, a 
deterministic model is inadequate and random processes must be included. 

In this section, only the homogeneous model is considered. In a quiet atmosphere 
and if there are no obstacles on the ground, the sound propagation problem can be 
modelled and solved rather simply. 

The aim of a complete study of the ground effect is to determine the acoustical 
characteristics of the ground and then to evaluate the sound field for these 
characteristics. The propagation above a homogeneous plane ground is presented 
in Section 4.1.2. The propagation above an inhomogeneous plane ground 
(that is a plane described by discontinuous boundary conditions) is presented in 
Section 4.1.3. 

4.1.2. Propagation above a homogeneous plane ground 

The most classical ground model (the simplest) is the locally reacting surface. The 
ground is characterized by a complex parameter which depends on frequency: the 
normal specific impedance. The sound pressure emitted above the ground is then 
the solution of the following system: 

Helmholtz equation above the plane 

impedance condition on the plane 

Sommerfeld conditions 
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The solution can be obtained by using a space Fourier transform. Depending on 
the technique chosen to evaluate the inverse Fourier transform, several kinds of 
representations of the sound pressure (exact or approximate) are found. The 
approximations are often available for large values of kR, the ratio of the distance 
between source and observation point and the wavelength. 

When an exact representation of the sound pressure is available (and numerically 
efficient) new techniques can be developed to evaluate the ground impedance. In 
the case of a homogeneous plane ground, the study then leads to a complete 
description of the ground effect: expression of the sound field for any position of 
the source and the observation point, identification of the acoustic parameters of 
the ground. 

Analytic expressions of the sound pressure emitted above the ground 
In the case of a plane surface, the classical method is based on a space Fourier 
transform. It is indeed easy to obtain the Fourier transform of the sound pressure. 
The most difficult part is to evaluate its inverse transform to obtain a 
representation of the sound pressure. 

(a) Expression o f  the Fourier transform o f  the sound pressure. In the three- 
dimensional space (O, x, y ,  z), the plane (z = 0) represents the ground surface. The 
propagation medium (z > 0) is characterized by a constant density pl and a 
constant sound speed Cl. Let S be an omnidirectional point source located at 
(0, 0, z0 > 0). The emitted signal is harmonic ((exp(-tcot)).  The sound pressure 
p(x, y, z) is the solution of the following system: 

(A + k 2)p(x, y, z) - 6(x)(5(y)6(z - zo) for z > 0 

Op(x, y, z) ~k 
+--  p(x, y, z) - 0 on z - 0 (4.1) 

0g 
Sommerfeld conditions 

where ff is the unit vector, normal to (z = 0), interior to the propagation domain. 
is the reduced specific normal impedance, that is the ratio between the normal 
impedance of the ground and the product pl el,  impedance of a plane wave in the 
fluid. 

, ) 

Because Oz is a symmetry axis, the sound pressure only depends on z and the 
radial coordinate p - v / x 2 +  y2. Then/?(~, z), the Fourier transform of p with 
respect to p, is defined by 

~(~, z) - 2zr p(p, z)Jo(~p)p dp (4.2) 

and conversely 

p( p, z) = ~ _ z)no (r162 d~ (4.3) 
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J0 is the Bessel function of zero order. H~ l) is the Hankel function of first kind 
and zero order, which satisfies H ~ l ) ( - z ) -  H~l)(ze'~). b(~, z), also called Hankel 
transform of p, is the solution of the Fourier transform of system (4.1). The 
Helmholtz equation becomes a one-dimensional differential equation, b(~ c, z) can 
then be written as the sum of a particular solution of the inhomogeneous equation 
and the general solution of the homogeneous equation: 

e ' K  I z - zo l  e ~K I z + zol  e t,K I z + zol  

p(~, z) - +/](~c) +/}(~) for z >i 0 (4.4) 
2tK 2cK 2tK 

with K 2 -  (k 2 -  ~2) and ~(K)>  0. Because of Sommerfeld conditions, /~(~c)= 0. 
j(~c) is deduced from the boundary condition on ( z -  0). Here [2]: 

K - k / r  
/](~) = ~ (4.5) 

K + k / r  

b(~, z) is then written as the sum of a plane wave emitted by the source S and a 
plane wave emitted by a source S' - (0, 0, -z0), the image of S relative to the plane 
( z -  0). A is the plane wave reflection coefficient. 

(b) Exact representations of the sound pressure. Several kinds of representations 
can be obtained, depending on the method used to evaluate the inverse Fourier 
transform of P. They are equivalent but have different advantages. 

b(~ c, z) can be written as a sum of Fourier transforms of known functions; the 
expression for p(M) then includes a sum of layer potentials [2]: 

p(M) - - 
e t, kR(S, M) e t&R(S', M) 

47rR(S, M) 47rR(S', M) 

Iz e tkr(M, P) tk2 H(ol)(o~p(P)) dot(P) 
+ 2~2 '=-zo 47rr(M, P) 

Jz e ~kr(M, P) k 0 H(ol)(c~p(p) ) dcr(P) (4.6) 
2r Oz '=-zo 47rr(M, P) 

with O~ 2 - - k 2 ( 1 -  1/~ 2) and ~(c~)>0. M = ( x , y , z )  is a point of the half-space 
(z i> 0), P is a point of the plane ( z ' = - z 0 ) ,  with coordinates (p(P), z'). 

The pressure p(M) is written as the sum of an incident wave emitted by S, a 
reflected wave 'emitted' by S', a simple layer potential and the derivative of a 
simple layer potential. This representation is quite convenient for obtaining analytic 
approximations. From a numerical point of view, it is not suitable because it 
contains double integrals on an infinite domain. 

By using integration techniques in the complex ~c plane, it is also possible to 
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express p as in [3]: 

e~kR(S,M) etkR(S',M) 
p ( M )  = - 

47rR(S, M )  47rR(S', M )  

k 
+ - -  [1 + sgn(~)] Y(O - Oo)H~ol)(ap(M))e -~k(z + zo)/r 

4r 

k e ~kR(S',M) f,-c~ e-kR(S',M)t 

t 2( 7r Jo eV/W(t) dt (4.7) 

where ( = ~ + ~;  sgn(~) is the sign of ~. 0 is the angle of incidence, measured from 
the normal ft. 00 is defined by 

1r 

Y is the Heaviside function: 

Y(O) = 

cos 0o + ~ sin 0o = 1 

1 i f y > O  

0 if not ( )2 ( 1 
W(t) - - +  cos0  + 2 t t  

r 

I [2 1r 

e = {  - 1  
+1 

1 + ~  

cos0) 

\ 
cos 0 ]  _ t2 

r } 

cos 0 
[r 

if ~(W(to)) < O, t > to, ~ > 0 

if not 

e is introduced in order to ensure the continuous determination chosen for v /W( t ) .  
In (4.7), the pressure is written as the sum of an incident wave, a reflected wave, a 

surface wave term and a Laplace type integral. 
The surface wave term has the form aH(ol)(ap(M))e ~(z + zo) where a and/3 are 

complex numbers with a positive imaginary part. It represents a wave with an 
amplitude which is an exponentially decreasing function of both the horizontal 
distance between source and observation point and the heights z and z0. If the 
radial coordinate p ( M )  is fixed, the amplitude is maximum on the ground surface. 

The expression (4.7) is particularly convenient from a numerical point of view. For 
the surface wave term only the computation of the Hankel function H~ 1) is needed. 
For example, if [u I > 1, H~l)(u) can be computed by using Pad6 approximations" 

n~ l)(u) ,.,., e,,(u-7r/4) P(u) 

v/-ff Q(u) 



126 ACOUSTICS: BASIC PHYSICS, THEORY AND METHODS 

where P(u) and Q(u) are polynomials of order n (n = 3 leads to a correct 
approximation for this type of problem). In [4], Y. Luke gives the values of the 
coefficients of the polynomials, along with the accuracy obtained for some values of 
the complex variable u. 

Furthermore, for values of kR 'not too small', the Laplace type integral can be 
computed by using a 4-point integration technique based on Laguerre polynomials 
[5]. For small values of kR, it can be computed through a Gauss integration 
technique with a varying step. 

The expression (4.7) can then be computed very quickly. 

(c) Approximations of  the sound pressure. For practical applications, the most 
interesting geometries correspond to large distances (kR ,> 1) from the source, 
whether at grazing incidence (0 ~ 90 ~ or not. It is then useful to obtain very simple 
approximations. 

As seen previously, the expression (4.7) can be computed very quickly for kR ,> 1. 
However, analytic approximations can also be deduced from the exact expressions; 
they give the analytic behaviour of the sound pressure at large distances. 

A classical method to obtain these approximations is the steepest descent 
method. It is applied to the Fourier transform b(~, z). One of the oldest articles 
devoted to sound propagation above an impedance plane is the one by Ingard [6]. p 
is approximated by: 

p(M) ~_ - 
e tkR(S, M) e tkR(S', M) 

- [ R 0  + (1  - R0)F] 
47rR(S, M)  47rR(S', M)  

where R0 is the plane wave reflection coefficient (r cos 0 -  1)/(r cos 0 + 1) and 
/ 

1 - F = kR(S',  M)  ~ 1 
\ r 

I( 

+ cos 0 )  

e-kR(S' ,M)t  

2 I 1/2 cos0 ) 
l + ~ + t t  - ( 1 -  cos2 O) 1 -  

r 

dt 

Simpler approximations have also been obtained (see Brekhovskikh [7], for 
example) for various types of boundary conditions: 

p(M) ~_ - 

etkR(S' M) _ etkR(S" M) [ ~ b 

47rR(S, M)  47rR(S', M)  V(O)  2kR(S t, M)  

] 
(V"(O) + V'(O) cot 0)] 

i 

(4.8) 

where V(O) is the plane wave reflection coefficient, and V t and V" its derivatives 
with respect to 0. The same approximations can also be deduced from the exact 
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expression (4.6) by using an asymptotic approximation of the Green's kernel (see 
chapter 5, section 5.1). For a locally reacting surface, p is obtained as 

e~kR(S' M) ~ COS 0 -- 1 e~kR(S" M) 
p(M)  = - 

47rR(S, M)  ~ cos 0 + 1 47rR(S', M) 

2c ~(~ + cos O) e~kR(S', M) 
+ O ( R - 3 ( S ' , M ) )  (4.9) 

k (~ cos 0 + 1) 3 47rR2(S ', M) 

This approximation is valid for kR ~> 1 but the exact limit of kR for which it is valid 
is not known. It depends on the ground properties. At grazing incidence (source 
and observation point on the ground), expression (4.9) becomes 

l,~ 2 e ~kR(S', M ) 
p ( M )  = - ~ + O(R-3(S ', M))  (4.10) 

k 27rR2(S', M)  

The terms in 1/R disappear. 
The efficiency of these approximations is shown in some examples presented in 

the next section. 

Description of the acoustic field 
In this section, the sound levels presented in the figures are obtained from the 
formula 

[Pa[ 
N dB = 20 log (4.11) 

I Pa [ is the modulus of the pressure measured above the absorbing plane. ]PR ] isthe 
modulus of the pressure measured above a perfectly reflecting plane (i.e. described 
by a Neumann condition) or in infinite space, for the same source and the same 
position of the observation point. With this choice, it is possible to eliminate the 
influence of the characteristics of the source. Obviously, N does not depend on the 
amplitude of the source. Let us emphasize that ( - N )  corresponds to the definition 
of 'excess attenuation' sound levels. In the following, PR is the sound pressure 
obtained above a perfectly reflecting plane: 

e ~kR(S, M) e ~kR(S', M) 

pR(M) -- -- 
47rR(S, M)  47rR(S', M)  

For the particular case of grazing incidence, the curves which present sound levels 
versus the distance R(S, M )  for a given frequency have the general behaviour 
shown in Fig. 4.1. In region 1, close to the source, the sound levels are zero, as if the 
ground were perfectly reflecting. In region 2, they begin to decay. In region 3, the 
asymptotic region, they decay by 6 dB per doubling distance. In this region, 
expression (4.10) gives a correct description of the sound field. The lengths of these 
three regions depend on the frequency and the ground properties. 
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N(dB) 

(i) 

I 

logn(S,M) 

Fig. 4.1. Example of curve of sound levels obtained at grazing incidence, versus distance R(S, M). 

Figures 4.2 and 4.3 present two examples of curves obtained above grass. In Fig. 
4.2 (580 Hz), the three regions clearly appear, the asymptotic region begins further 
than 32 m (about 55A). In Fig. 4.3, at higher frequency (1670 Hz), the ground is 
much more absorbing, there is no region 1 and the asymptotic region begins at 2 m 
(about 10A). 

Determination of the normal impedance of the ground 
The impedance of an absorbing material (rock wool, fibreglass, etc.) can generally 
be measured by using a Kundt's tube (or stationary wave tube). It is not so easy for 

N(dB) 

0-c 

- 2 0  

- 4 0  

- 6 0  

- 8 0  
2 4 8 16 32 64 D(m) 

Fig. 4.2. F = 580 Hz, ( = 2.3 + c3.3. Sound levels versus distance between source and receiver. Source 
and receiver on the ground. (�9 measured; ( - - )  computed. 
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Fig. 4.3. F = 1670 Hz, ~ = 1.0 + c. Sound levels versus distance between source and receiver. Source and 
receiver on the ground. (O) measured; ( - - )  computed. 

the ground. Many studies have been dedicated to this problem. Several methods 
have been suggested and tested: Kundt 's  tube, sound pressure measurements in 
free-field (for plane wave or spherical wave), and so on. The impedance values are 
deduced from measurements of the plane wave reflection coefficient. 

The Kundt's tube method consists in placing a sample of material at the end of 
the tube and measuring the minima and maxima inside the tube created by the 
harmonic motion of a membrane. The diameter of the tube must be smaller than a 
quarter of a wavelength so that the plane wave assumption can be applied. This 
method has been applied in situ to evaluate the impedance of the ground. P. 
Dickinson and P.E. Doak [8] present measurements carried out in situ and describe 
the drawbacks of the method: the tube, when dug into the ground, changes the 
properties of the ground; the measurements are made only on a very small sample 
of ground; the exact position of the surface of the ground cannot be determined if 
the ground is grassy or not flat, and this leads to an error in the evaluation of the 
phase of the impedance. 

Free-field methods have also been tested. One of them [9, 10] consists in 
emitting a transient wave above the ground. The incident wave and the wave 
reflected by the ground are recorded with a microphone located between the 
source and the ground. Both signals (direct and reflected) are separated by time- 
filtering and the reflection coefficient is deduced from the ratio of the spectra. The 
authors point out that this is again a local method which leads to errors when the 
ground is not too absorbing. 

Global methods, taking into account a larger ground surface, have also been 
proposed [11]. Those based on a least-squares minimization consists in evaluating 
the value ~ of the impedance which makes the function F ( 0  minimum: 

N 

F( (~) -- Z ( Yi - 20 log I P(Xi, C) I) 2 (4.12) 
i=1 



130 ACOUSTICS: BASIC PHYSICS,  T H E O R Y  AND M E T H O D S  

is the specific normal impedance. (Xi), i = 1 , . . . ,  N represent the measurement 
points. Yi is the sound level measured at Xi. g(Xi, if) = 20 log ]p(Xi, ~) ]is the sound 
level computed at Xi. F(~) represents the difference between the measured and 
computed levels at N points above the ground. 

The first step is then to measure, for a given frequency, N sound levels at N 
points above the ground. These sound levels and the coordinates of the 
measurement points are the input data of a minimization algorithm which provides 
the impedance value ft. The simplest way, if possible, is to choose the points Xi on 
the ground surface; then, no more than six or eight points are needed. From this 
value if, the sound pressure can be computed for any position of the source and the 
observation point. 

Such a method has several advantages: a larger sample of ground is taken into 
account; it does not change the properties of the ground; it does not require any 
measurements of the phase of the pressure. 

This method can be modified [12] to determine the impedance on a frequency 
band from only one experiment. A large frequency band signal is emitted and the 
sound levels are measured at one or several points. An impedance model versus 
frequency (4.13) is then needed. The parameters of the model are computed in order 
to minimize the difference between measured and computed levels at one or several 
points and for N'  frequencies. The numerical and experimental procedure is then 
faster but can lead to less accuracy (depending on the limitations of the impedance 
model, for example). 

Figures 4.4 and 4.5 show an example of results, at frequency 1298 Hz. By taking 
into account six measurement points located on the ground (source located on the 
ground as well), the minimization algorithm provides the value ff = 1.4 + cl.8. The 
measured sound levels are close to the theoretical curve, which is computed with 
formula (4.7). The same value ff also provides an accurate description of the sound 
field, when source and measurement points are 22 cm above the surface. These 

N(dB) 
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- 2 0  

. 

- 4 0  

- 6 0  

- 8 0  
2 4 8 16 32 64 D(m) 

Fig. 4.4. Sound levels versus horizontal distance between source and receiver. F = 1298 Hz. Source and 
receiver on the ground. (O) measured; ( - - )  computed with ~ = 1.4 + L1.8. 
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Fig. 4.5. Sound levels versus horizontal  distance between source and receiver. F = 1298 Hz. Height  of  

source and receiver h = 0.22 m. (O) measured;  ( - - )  computed  with ~ = 1.4 + ~1.8. 

results show that, for this ground (grassy field), and this frequency, the local 
reaction model is correct. 

Ground models 
The 'local reaction' model, which is characterized by a complex parameter ~, a 
function of frequency, is very often satisfactory for many kinds of ground (grassy, 
hard, sandy ground, and others) on large frequency bands, that is it provides a 
prediction of the sound field with an error no greater than the measurement 
errors. 

This local reaction model is often used along with the empirical model, proposed 
by Delany and Bazley [13], which expresses the impedance as a function of 
frequency. The reduced normal impedance is given by 

~ -  1 + 9.08 + ~11.9 - (4.13) 

where f is the frequency and a the flow-resistivity. This model has been tested for 
classical absorbing materials and several frequency bands. Its efficiency for real 
grounds can only be deduced from comparisons between measurements and 
theoretical results. 

For 'particular' ground (deep layer of grass, several layers of snow, etc.), the 
model can be inaccurate; for example, there are situations for which it cannot 
describe an interference pattern above a layered ground. Other models have been 
studied, mostly a layer of porous material, with finite depth or not, with constant 
porosity or porosity as a function of depth. They can provide a better prediction of 
the sound field. However, because they are based on more parameters (2 or 4), their 
use is not so straightforward. 
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4.1.3. Propagation above an inhomogeneous plane ground 

In this chapter, an inhomogeneous ground is a plane ground characterized by 
discontinuous boundary conditions, for example a plane made of two surfaces 
described by different impedances. The sound field emitted by a point source 
cannot be obtained as simply as in the case of a homogeneous surface. The aim of 
the prediction methods is to find analytic approximations (as rigorous as possible) 
or to use numerical methods (often based on boundary integral equations). 

Boundary integral equation methods 
The boundary integral equation methods are described in detail in chapter 3 and 
their solution techniques in chapter 6. 

The sound pressure at any point above the ground can be written as an integral 
which involves the pressure and its normal derivative on the surface. The unknown 
functions on the surface are obtained by using the boundary conditions and solving 
an integral equation. 

(a) An example of  an integral equation. Let us assume that the plane (z = 0) is 
made of two half-planes, each one described by a constant reduced specific normal 
impedance. The half-plane ~l ,  (x, y < 0) is described by an impedance if1, the half- 
plane ~2, (x ,y  > 0) is described by an impedance ff2. Let G1, be the Green's 
function such that 

(A + k2)Gl(P, M )  - 6p(M) 

tk OGI (e, M ) + m GI (P, M ) - 0 

Sommerfeld conditions 

for z > 0  

on z = 0 (4.14) 

where M = (x, y, z) and ff is the inward unit vector normal to (z = 0). The Green's 
representation of p(M) ,  in the case of a point source, gives (l 

p ( M )  -- al  (S, M ) + tk p(P')GI (P', M ) d~r(P') (4.15) 
~1 ~2 2 

at any point M of the half-space (z > 0). 
p ( M )  is then related to the value o fp(P ' )  on ~2. When M tends towards a point 

P0 of ~2, (4.15) becomes 

P(Po) -- G1 (S, Po) + tk (P', Po) da(P') (4.16) 

This is an integral equation. Exact representations of G1 can be found in Section 
4.1.2. The unknown is the value of p on ~2. Once it is obtained by solving the 
integral equation, the Green's representation (4.15) can be used to evaluate the 
sound pressure at any point of (z > 0). 
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Let G2 be the Green's function which satisfies (4.14) with (1 replaced by ff2. By 
using G2 instead of G1, the Green's representation and the integral equation will 
include an integral on ~1 instead of ~2. For one problem, several integral equations 
can be obtained. They are equivalent. Depending on the boundary conditions, the 
Green's function can be chosen in order to simplify the numerical solution of the 
integral equation (see example in chapter 6, section 6.1). 

(b) An example o f  results. Let us consider the case of a plane ground made of a 
perfectly reflecting strip, of constant width, which separates two half-planes 
described by the same normal impedance ff [14] (see Fig. 4.6). The sound source is 
cylindrical, with axis parallel to the symmetry axis of the strip. The signal is 
harmonic. 

This example is a very simple model of sound propagation due to a traffic road 
separating two grassy fields. The strip represents the traffic road. It is characterized 
by a homogeneous Neumann condition. The sound pressure can be obtained by a 
boundary integral equation method. The theoretical and numerical aspects of this 
problem are presented in detail in chapter 6. 

The experiment was carried out in an anechoic room. The ground surface was 
made of two absorbing surfaces (polyether foam) separated by a perfectly reflecting 
strip of 38 cm width. Nine omnidirectional point sources (pressure drivers) were 
located on the symmetry axis of the strip, regularly spaced. The measurement 
microphone was moved on the surface, on the axis orthogonal to the symmetry axis 
of the strip and passing through the central source (see Fig. 4.7). 

Two series of experiments were conducted: one with the nine sources turned on, 
the other one with only the central source turned on. Figure 4.8 presents a 
comparison between theoretical and experimental results at 5840 Hz. The sound 
levels are computed as in the previous section. When the nine sources are turned on, 

_Source axis 

edance edanc , 

Op/Og=O 

Fig. 4.6. Inhomogeneous plane ground. 
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Fig. 4.7. Experiment conducted in an anechoic room. 
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Fig. 4.8. Sound levels versus distance between source and receiver. Sources and microphones on the 
ground. F = 5840 Hz. 
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an interference pattern is obtained: the curve presented in Fig. 4.8 is the difference 
of the envelopes of the maxima measured above the inhomogeneous plane and a 
perfectly reflecting plane. The experimental curves obtained with one and nine 
sources are quite similar and are close to the theoretical curve: except for a few 
points, the difference between measured and computed levels is less than 1.5 dB. 
Above the strip, the sound levels are equal to zero (this is not surprising), then 
they decay above the absorbing surface by 7 dB/doubling distance. The integral 
equation techniques provide a good description of the sound field above an 
inhomogeneous plane. 

Approximation techniques 

(a) Approximation in the integral representation. To avoid solving the integral 
equation, one can imagine replacing the unknown function in the Green's 
representation by an approximate expression (first terms of a Neumann's series, 
for example) as described in chapter 5, section 5.3. Let us consider the sound 
propagation above the ( z - 0 )  plane made of a perfectly reflecting half-plane 
~l(x, y < 0), with a homogeneous Neumann condition, and an absorbing half- 
plane ~J~2(x, y > 0) described by a normal impedance ~. The i,,:,.,~_d source is an 
omnidirectional point source S located on ~1. Let GR be r.he ~:een's function 
which satisfies a homogeneous Neumann condition on the "vhoh: ;.: :.:~ne (z - 0). The 
Green's representation of the sound pressure p is 

f p(M) -- GR(S, M) - p(pt)GR(P', M) do( r ' )  
---~ J~2 

Since the integration domain is the half-plane characterized by an impedance, one 
can imagine replacing p(pt) by Pa(P'), the sound pressure that would exist on ~2 if 
the whole plane were characterized by the same impedance ~. The validity of the 
approximation then obtained for p(M) is difficult to estimate. It is a kind of 
'geometrical optics' approximation. A similar example ispresented in [15] Durnin 
and Bertoni who have tested several types of approximations for several integral 
equations. 

(b) Wiener-Hopf method. This method is presented in detail in chapter 5, 
section 5.7. It can be seen that it is well adapted to propagation above planes 
with discontinuous boundary conditions. However, even for the simple case of 
two half-planes, it is generally not possible to obtain an expression of the 
pressure suitable for numerical computations. The decomposition problems, 
described in chapter 5, which are simple in the case of a plane wave, become 
much more difficult in the case of a spherical source. Nevertheless, approxima- 
tions of the sound field can be obtained close to the discontinuities or at large 
distances from the source. 

In the case of two half-planes characterized by two different impedance 
values, Heins and Feschbach [16] present a far-field approximation, for the plane 
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wave case. The Wiener -Hopf  method leads to an approximation of the Fourier 
transform of the pressure. The approximation of the pressure is then deduced 
through a stationary phase method. When the Wiener -Hopf  method provides an 
expression of the Fourier transform of the pressure, it is possible to obtain an 
approximation of the pressure, by using the results of chapter 5 on asymptotic 
expansions. 

4.2. Diffraction by an Obstacle  in Homogeneous  Atmosphere 

4.2.1. Introduction 

A well-known application of outdoor diffraction is the evaluation of the efficiency 
of acoustical barriers which protect the inhabitants from traffic noise. 

Even in the case of a homogeneous atmosphere, an exact expression of the sound 
field diffracted by an obstacle can only be obtained for very simple cases: particular 
geometry of the obstacle (cylinder, ellipse), local boundary conditions, etc. It is 
then possible to use a method of separation. The sound pressure is obtained as a 
series, whose convergence is not always as fast as suitable for numerical 
computations. 

For more complex problems, there are mainly two kinds of methods: 

�9 methods which are here termed 'numerical' such as integral equations or finite 
element methods; they can provide an accurate evaluation of the sound field, for 
any kind of geometry and any frequency band; 

�9 the geometrica~ k theory of diffraction (G.T.D.) which provides analytic 
approximations of the sound field, at high frequency. 

For some particular problems, other kinds of approximations have been 
proposed. Some of them are presented for the case of the acoustical thin barriers 
in Section 4.2.4. 

The efficiency and the advantages of these methods generally depend on the 
frequency band, the dimensions of the obstacle compared with the wavelength and 
the distance between the obstacle and the observation point. 

In Section 4.2.2, an example of application of the separation method is 
presented. Section 4.2.3 is devoted to the diffraction by a convex cylinder, using 
the G.T.D., and Section 4.2.4 is devoted to the particular case of screens and 
barriers. 

4.2.2. Diffraction of a plane wave by a circular cylinder 

This two-dimensional example is chosen to present an application of the separation 
method. Many other examples can be found in the books by Morse and Feschbach 
[17] and Bowman et al. [18]. 

Let us consider a circular cylinder of radius r = a. Its boundary is assumed to be 
described by a homogeneous Dirichlet condition. An incident wave emitted in a 
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plane perpendicular to the cylinder axis can be represented by 

Pinc(M) -- e 
tax 

O(3 

~-" Z cmbmJm(kR) cos (m~b) 
m - - O  

M - (r, ~b) is a point outside the cylinder, em -- + 1. Jm is the Bessel function of order 
m. The diffracted field is expressed as 

oo 

P d i f ( m ) - -  E A m H m ( k R )  cos(m~b) 
m = O  

The coefficients Am are deduced from the boundary condition Pinc q-Pdif--O. 
Because the cosines are orthogonal functions 

Jm(ka) 
Am = ~ Eml, m 

Hm(ka)  

4.2.3. Geometrical theory of diffraction: Diffraction by a convex cylinder 

The geometrical theory of diffraction (G.T.D.) was established by J. Keller (see [19] 
for example). It can be seen as an extension of the laws of geometrical optics to take 
into account diffraction phenomena. Indeed, the principles of geometrical optics 
(which are briefly summarized in chapter 5, section 5.5.2) do not provide a correct 
description of the sound field in the shadow zone behind an obstacle. For example, 
in Fig. 4.9, the geometrical optics laws imply that the sound pressure is equal to 
zero in f~', which is obviously wrong. 

Like geometrical optics, G.T.D. assumes that the wave propagation can be 
modelled by rays but it includes new types of rays: diffracted rays, curved rays, 
etc. The basic equations of G.T.D. are presented in chapter 5 (section 5.5.3) for 

S 

Fig. 4.9. Regions f~ (illuminated by the source) and f~' (the shadow zone). 
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the general case of an inhomogeneous propagation medium (the homogeneous 
case is a particular case). By solving these equations, one obtains an asymptotic 
expansion of the sound pressure (in 1/k"). The approximations are then valid at 
high frequency. 

G.T.D. is presented here for the particular case of diffraction by a convex cylinder 
in a homogeneous medium. The sound source is assumed to be cylindrical, with the 
axis parallel to the axis of the cylinder. The problem is then reduced to a two- 
dimensional problem. The boundary of the cylinder is characterized by a homogeneous 
Dirichlet condition. The sound pressure p satisfies the following equations: 

I (A + k Z)p(M)- 6s(M) in 

p(M) - 0 on E (4.17) 

Sommerfeld conditions 

where S is the point source, E is the boundary of the obstacle and ~ is the region of 
the plane outside the cylinder (air = f~ U 9t' in Fig. 4.9). The shadow zone 9t' is the 
region located between the two tangents to E, passing through S. 

Outside the shadow zone f~ ~, the sound pressure is written as p =Pinc + Pref -1- Pdif. 
Pinc, Pref and pd/f are respectively the incident, reflected and diffracted pressure. In 
the shadow zone, p = paif. 

Each of these terms represents the sum of the sound pressures corresponding to 
incident, reflected and diffracted rays, respectively. 

To evaluate the pressure at a point M, it is then necessary to determine the paths 
of all the rays emitted by S and passing through M and the sound pressure 
(amplitude and phase) corresponding to each ray. In the homogeneous case 
(constant sound speed), rays are straight lines and the phase of the pressure is the 
product of the wavenumber and the distance (see chapter 5). 

Incident field 
Let us consider a thin beam composed of incident rays emitted by S (Fig. 4.10). 
This thin beam passes through M and, because it is incident, does not strike the 
obstacle. Let p be the distance SM. Let A0 and A be the amplitudes on this beam 
at distances 1 and p respectively. The law of energy conservation on the beam 

S" 

Fig. 4.10. Incident ray. 
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leads to 

A2p dO - Ag dO 

where dO is the angle of the beam. 
Let us assume for simplicity that the phase of the pressure is zero at S; the 

incident pressure is then given by 

e t, kp  

Pinc = Ao (4.18) 

It must be noted that Pine is not a solution of the Helmholtz equation. It is the first 
term of the asymptotic expansion of the solution (-cH~l)(kp)/4), for kp ,> 1. 

Reflected field 
In Fig. 4.11, the ray P M  represents a reflected ray. ~ is the incidence angle of the 
ray SP made with the normal to the boundary E. Then, according to the laws of 
geometrical optics, (t7, P M ) - - ~ .  

In order to calculate the amplitude at point M, let us consider a thin beam of 
parallel rays (S1P1 - $2P2 in Fig. 4.12). When reflected on the obstacle, they lead to 
a divergent beam ( P I M 1 -  P2M2). P1M1 and P2M2 generally cross 'inside' the 
object at a point I, because of the curvature of E. Let b be the radius of curvature of 

at  P1; a, p~, p" are the distances IP1, S1P1 and P1M respectively; dO is the angle 
P11P2. dO is assumed to be small enough that points P1 and P2 are close to a middle 
point P and points M1 and M2 are close to a middle point M. 

The principle of energy conservation leads to 

A ( M  ) 2(a + p')dO - A(P) 2a dO ~ 2 

A ( M )  is the amplitude at point M. 3t is the reflection coefficient, which depends on 
the boundary condition on E. For example, the homogeneous Dirichlet (resp. 
Neumann) condition corresponds to ~ = -  1 (resp. 3 t -  1). 

Also, from the previous paragraph, 

A ( p )  2 - A 2o 

So-- 

pt 

Fig. 4.11. Reflected ray. 
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M2 

M1 

l /  

Fig. 4.12. Reflected rays. 

Then 

Ao ~ ~  1 
, 4 ( M )  = , / -Y 1 + 

In formula (4.19), p' and pl, are known and a is obtained from 

(4.19) 

1 2 1 _ - - ~ + _  
a b cos qD p/ 

The phase on the ray S P M  has increased from 0 to k(p t + p") since (p' + p") is the 
total length of the ray. Then 

I 1 
Prey- AO~ '( 

p 1 + p"/a,) 
e ~k(p' + p") (4.20) 

It must be noted that, for the particular case of an infinite plane boundary 
described by a homogeneous Dirichlet or Neumann condition, this formula 
provides the first term of the asymptotic expansion of the exact reflected pressure. 

Diffracted field 
Figure 4.13 presents two diffracted rays emitted by S and arriving at M. The two 
rays SQi arrive tangentially to the obstacle, pass along the boundary and part 
tangentially. The total diffracted field is obtained as the sum of the fields 
corresponding to these two rays and the rays which follow the same path and 
include 1, 2 , . . . ,  N , . . .  turns around the obstacle. 



C H A P T E R  4. O U T D O O R  S O U N D  P R O P A G A T I O N  141 

Q1 

S 
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!ili i!ii:i !ii !iii ,ii! i i! Uij! ii', !i!i !i!iii !!iiiil i!ii 
Fig. 4.13. Diffracted rays. 

On each ray, the amplitude is again calculated by using the law of energy 
conservation. 

Let us consider the ray SQ1P1M. This ray arrives at Q1 with an amplitude equal 
to A o / v ~  where pl is the distance SQ1 and A0 is the amplitude at distance unity 
from the source. At point Q1, this amplitude is multiplied by a coefficient 5~(Q1) 
called diffraction coefficient (by analogy with the reflection coefficient). The 
function 5~ will be determined later. For  symmetry reasons, the same coefficient is 
also introduced at point P1 and denoted 5~(P1). Then if A is the amplitude at point 
P1, the amplitude at point M will be: 

~(Pl lA / ~ I  

where p~ is the distance P1M. 
The behaviour of the amplitude along Q1P1 is still to be found. Let t be the 

abscissa along the obstacle, such that t = 0 at Q1 and t = tl at P1. It is assumed that 
the energy along this path decreases in accordance with 

A 2(t -+- dt)= A 2(t) - 2(x(t)A 2(t) dt 

where a is a proportionality factor still to be found. This means that between t and 
t + dt, a part of the energy goes away (on other rays) and is assumed to be 
proportional to the amount of energy at t. Then it is easy to find 

A(t) -  A(O) exp - a(~-) d~- 

Finally, it is shown that the diffracted pressure corresponding to the ray SQ.1P1 M is 
given by: 

A0 1 ~k(pl + tl + P()~(P1)~(Q1) exp a( r )  dT p~/f ( M ) -  ~/~ ~ e 
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By summing all the diffracted rays, the total diffracted pressure is obtained as 

pd/f (M) = 
Ao 

/ p i p ;  

e ~k(pl + t, + P " ) ~ ( P 1 ) ~ ( Q 1  ) 

][1 • exp - a(7-) tiT- 1 - exp - a(7") tiT" + LkT 

+ 
A0 ! 

e,k(p2 + t2 + P2 )~(P2)~(Q2) 

V/p p; 
(4.21) 

7-0 = 1.855 7571 e LTr/3 and 71 = 3.244 6076 e ~7r/3 

Co = 0.910 7193 and C1 = 0.694 2728 

It must be noted that  this expression for Pdif becomes infinite when pl or p~ tends to 
zero, that is for S or M on the obstacle, but later results have been obtained to 

b(Q) is the radius of curvature at point Q. The coefficients Cn are given in [19]. The 
first coefficients are 

A0e~Tr/12 
kl/3e~k(pl + tl + P")(b(P1)b(Q1))1/6 

2kp ' lPl 

x ~~0= C~ exp l, Tn k l / 3  b-2/3(T) aCT 

1 

[(So  )]- • 1 - exp t~kT + t, Tnk 1/3 b-2/3(7)  aCT 

+ analogous terms for the rays passing through P2 and Q2 

(4.22) 

Pdif(M) ~-- 

Keller [19] uses the term 'cylinder mode'  for each diffracted field corresponding 
to one value an. For  each an, the expression 5~, 5~,  is obtained. It is proportional to 
an Airy integral. 

The total diffracted field is then the sum of all these modes for all the rays passing 
along Q1P1 and all the rays passing along Q2P2. Finally 

where index 2 corresponds to the ray SQzP2M. T is the length of the boundary of the 
obstacle. The next step is to determine ~ and a.  They are obtained by comparing, for 
the canonical case of a disc, the expansion (4.21) and the asymptotic expansion for 
large k of the exact solution obtained by the separation method. 

For a,  there exists an infinite number  of solutions a .  = - t ,  k l /3b-Z/3Tn with 

Tn = �89 [37r(n + 3/4)]2/3e~Tr/3 for n i> 0 
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avoid these drawbacks ([20], U.T.D., etc). G.T.D. can similarly be used to describe 
the diffraction (in 2 or 3 dimensions) of a wave by a convex or concave obstacle, a 
half-plane, a wedge, etc. (see [21], for example). 

4.2.4. Diffraction by screens 

Many studies have been devoted to this problem, since screens and barriers are useful 
tools against noise. The aim of these studies is to evaluate the efficiency of the screen, 
which is defined as the difference of sound levels obtained with and without the screen. 

A priori, the laws of geometrical optics imply that a region will be well protected 
against noise if it is located in the shadow zone of the screen. In practice, this 
shadow zone phenomenon exists but it is not so sharp. 

Diffraction by a thin screen 
Most studies have been devoted to the infinitely thin screen since it is the simplest 
case. The term 'infinitely thin' means that the thickness of the screen is small 
compared with the acoustic wavelength. 

(a) Comparison between a boundary &tegral equation method and analytic 
approximations. The example chosen here is diffraction by an infinitely thin 
screen on a perfectly reflecting plane (see [22]). For  simplicity, only the two- 
dimensional model is considered. 

The sound pressure satisfies the following system: 

(A + k2)p(M) -- ~Ss(M) in ((y > 0 ) -  E0) 

Op(M) 

Off 
= 0 on E0 and on ( y -  0) (4.23) 

Sommerfeld conditions 

where S - (x0, y0), E0 represents the screen and ff is the unit vector normal to E0 or 
to the axis (y = 0) (see Fig. 4.14). 

Sx 

O ! 

Eo 

x M  = (~,y)  

Fig. 4.14. Geometry of the problem. 
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Since the screen is characterized by a Neumann condition, p(M) is equal to the 
pressure emitted by two sources S and S t = (x0, -Y0), in the presence of a screen E, 
centred at 0 and with double height (see Fig. 4.15). 

The total sound pressure can be written p = pl + p2, where pl is the incident 
pressure emitted by S and S ~ when there is no screen: 

[H~l)(kd(S, M)) + H~l)(kd(S ' M))] Pl = - 4  

= Pos(M) + Pos,(M) (4.24) 

The diffracted field is obtained by solving an integral equation, p2 is written as a 
double layer potential (see chapter 3 and [23, 24]): 

I OG(M, P) 
p2(M) - #(P)  do(P) (4.25) 

z0 u z~ 0ff(P) 

# is the density of the potential; it is determined by writing the Neumann condition 
on ~20 U E~. This leads to the following integral equation: 

0 f 0 2 G(P,  P~) 

J Off(P) Pl(P) + P.F. #(P') da(P') 0 (4.26) 
~o u ~[~ Off(pt)off(P) 

y -" 

S x  

S t X 

O ? 

Eo 

~'o 

O i l  

x M - ( x , y )  

Fig. 4.15. Geometry of the modified problem. 
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P and P '  are points of 520 U 52~. The term P.F. indicates that the second derivative of 
G - -~(H~l)(kr))/4 is not integrable and that the integral is only defined as a finite part. 
The difficulties with and results of this type of equation are presented in [22, 23, 24]. 

The integral equation is solved by a collocation method (see chapter 6). # is 
obtained everywhere on 52o U 52~ and the sound field can be computed at any point 
of the half-plane by using (4.25). 

An approximate expression of p(M) has also been obtained using the exact 
formulae obtained for the diffraction of a wave by a semi-infinite plane [18]. This 
kind of approximation has been proposed by Maekawa [25] for example. The total 
field p(M) is approximated by the asymptotic behaviour (at large distance) of the 
two fields e l ( M )  and r  where r (i = 1, 2) is the field emitted by both sources 
S and S' in the presence of the semi-infinite screen Y]i (see Fig. 4.16). 

Each r can be written r = r 523 + r  Ei) where each term represents the 
field emitted by S or S' in the presence of Ei. 

Using the results obtained for the diffraction of a cylindrical wave by a semi- 
infinite screen, for distances [OS + OM[ ~> A, it is found that the field emitted by S 
in the presence of E1 can be written as [26] 

e -~Tr/4 e ~kd(S, M) 

p~(M)--+ 
v/k(d(S, M) + A) 

[(1 _ 
, - cos dv x 
2 a0 2 

+ (1 - Cs(M)) 
e ~kd(S, M) 

v/kd(S, M) 

+~ 
- - sin dv 

2 

(4.27) 

S •  

y -~ 

S t • 

O' 

X 

M - - ( x , y )  

~(M) 

S x  

y <  

S t x 

E2 

0 "  

• 

M -- (x, y) 

~2(M) 

Fig. 4.16. Screens Y]I and E 2. 
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with  A = d(S, 0') + d(O', M ); 6 = A - d(S, M) 

1 if M is in the geometr ica l  shadow of  E1 

Cs(M)= 0 if no t  

The  + (resp. - )  sign co r responds  to cos a < 0 (resp. cos a > 0), wi th  a = (0 - 3 ) / 2  
def ined as in Fig. 4.17. 

By add ing  the four  terms co r r e spond ing  to b o t h  sources S and  S t and  bo th  
screens E1 a n d  E2, p(M) is ob t a ined  as 

~7r/4 e ~kd(S' M) e ~kd(S" M) 

p(M) e ~_ (1 - Cs(M)) v/kd( S, M) + (1 - Cs,(M)) v/kd( S', M) 

4 I Dj e~kDJ + Z - cos a j  x 

j = l  I cos~jl ~Dj+Aj v/-k~j 

) - cos dv + ~ - f v/~-~ 
2 Jo 2 Jo 

)] sin ~ dv 
2 

(4.28) 

y <  

3 

J 

Fig. 4.17. Determination of the angle a. 
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where index j corresponds to the four cases (S and S', E1 and E2). Oj = d(s, M) and 
Aj = d(s, Oj) + d(Oj, M)  with s - S or S', Oj = O' or O" depending on the screen, 
and aj is defined similarly to a. 

An experimental study has been carried out in an anechoic room. Figure 4.18 
shows the positions of source and receivers. 

The curves in Fig. 4.19 show the efficiency of the screen for one position of the 
source and three receiver heights (lines D1, D2 and D3). The efficiency of the screen 
is defined by 

EFF  = 20 log 
p(M) 

2pos(M) 

EFF represents the comparison between the pressure obtained with the screen and 
the pressure obtained when there is no screen. The full lines correspond to the 
solution of the integral equation, the dashed lines correspond to the approximation 
(4.28) and the circles represent the measurements. 

(b) Other k&ds of approximations. G.T.D. of course provides 'high frequency' 
approximations. Other kinds of approximations can be found. They are often based 
on the Kirchhoff-Fresnel  approximation. In [27], many references can be found 
along with a comparison of several approximations for one geometry. It must be 
noticed, however, that for the case of a screen on an absorbing plane, the curves are 
not compared with an exact solution. 

Let us end this section with the curves proposed by Maekawa [28], established 
from several experiments in the case of an infinite half-plane. The author provides 
a typical attenuation curve versus the number N =  26/A. A is the wavelength. 
6 = d(O, S) + d(O, M )  - d(S, M )  where S is the source and O the end of the screen. 
Although quite elementary, these curves provide a rough idea of the efficiency of 
the screen. Kirchhoff approximations or others give similar results within 3 dB. 

x 

( 

O' D3 

D2 

< 27.94A 

! /  1/111111111 /1111/III 

73.53A 

Fig. 4.18. Experiment conducted in an anechoic room. 
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Fig. 4.19. Efficiency of  the screen versus distance between screen and receiver [22]. 
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Diffraction by thick screens 
High frequency approximations can again be obtained by using G.T.D. 
Comparisons with experimental results show that these approximations are quite 
satisfactory. The boundary integral equation methods can provide an accurate 
prediction of the sound field for any shape or thickness of the screen. However, 
they are used mainly at low and middle frequencies since computer time and 
storage increase with frequency. For the particular case of a wedge, results can be 
found in [29] and [30] for example. 

4.3. Sound Propagation in an Inhomogeneous Medium 

4.3.1. Introduction 

The main application of this paragraph is wave propagation in air and in water. 
The study of sound propagation in these media is quite complicated. For 

propagation in air, two phenomena can become important: (1) gradients of 
temperature and wind, which imply a varying sound speed; (2) turbulence effects, 
which imply a random model. The acoustical effects of the inversion of a gradient 
of temperature are qualitatively well known. They appear, for example, on summer 
evenings; it is a kind of guided wave phenomenon, the rays propagate within a 
finite depth layer and their energy is reinforced. Figure 4.20 presents an example of 
temperature profile as a function of the height above the ground. 

The propagation phenomena in water are at least as complex as in air. Because 
the ocean is non-homogeneous (particles in suspension, changes of temperature, 
etc.) the density and the sound speed of the medium are functions of space. Because 
of swell, the surface is in random motion. The model must also take into account 

(m) 

2.0 

1.5 

1.0 

0.5 

20 24 28 
> 

(~c) 

Fig. 4.20. Example of temperature profile in air. 
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the bottom of the ocean (its geometrical and acoustical or mechanical properties). 
Also, in real-life problems, all kinds of obstacles are present (from small particles to 
fish and submarines). 

To predict the sound field in such a medium, it is necessary to use simplified 
models taking into account only the main phenomena of interest. The following 
sub-sections present several techniques which provide a description of the 
propagation in an inhomogeneous medium. Their limitations are reviewed and 
some numerical examples are presented. Random models are not included here: 
some basic ideas along with references can be found in [31]. A more recent article 
[32] presents a detailed survey of the models mostly used for underwater 
propagation. For  a quite extensive presentation of the computational aspects of 
underwater sound propagation, the reader is also referred to the book by Jensen 
et al. [33]. 

These models can generally be applied to propagation in air. In the following, the 
propagation medium is characterized by its refractive index (inverse of sound 
speed) which is a function of depth only. All the techniques can be applied to both 
media, air and water. The surface of the ocean is assumed to be a plane surface 
which does not depend on time. It is described by a homogeneous Dirichlet 
condition. The bottom of the ocean (water-sediment interface) can be character- 
ized by a Neumann condition (perfectly reflecting surface), and an impedance 
condition (absorbing surface). However, a much better prediction is obtained if the 
propagation in the sediments is also taken into account, with conditions of 
continuity (pressure and velocity, or displacement and stress). 

All these simplified assumptions provide a first description of the propagation 
phenomena in an inhomogeneous medium. 

Section 4.3.2 is devoted to plane wave propagation. Section 4.3.3 is devoted to 
cylindrical and spherical wave propagation. In what follows, the index n(z) is 
defined by n(z)= co/c(z), c(z) is the sound speed at depth z and co = c(zo) is a 
reference value. 

4.3.2. Plane wave propagation 

The plane wave case corresponds to simple problems but the results obtained can 
be used to find the solutions of the spherical wave case or their asymptotic 
behaviour. 

Layered medium 
In some cases, the propagation medium can be modelled as a multi-layered medium 
(Fig. 4.21). Within each layer j, the index n(z) is assumed to be a constant nj. Each 
layer j is characterized by an impedance Zj and a thickness dj. 

When a plane wave impinges on the interface Ip with an angle of incidence Op + 1, 
a reflected wave is emitted in layer (p + 1) and a transmitted wave is emitted in 
layer p. This transmitted wave then impinges on interface Ip_ 1 and two waves (one 
reflected and one transmitted) are created, and so on. At interface/1, there will 
finally appear a transmitted wave in medium 1, with an angle 01. At each interface, 
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p + l  

/3 

h 

Fig. 4.21. Layered medium. Media (1) and (p + 1) are semi-infinite. 

the angles Oj are given by Snell's law: 

sin Oj nj + 1 
= ~ (4.29) 

sin Oj + 1 nj 

The reflection and transmission coefficients can be expressed as functions of 
impedances Zj by using the conditions of continuity of pressure and normal 
velocity at each interface/j (Zj = pjcj/ cos Oj). 

For example, if Ap § 1 is the amplitude of the incident wave and A1 the amplitude 
of the transmitted wave in layer 1, then [7] 

p 
A 1 _ H (Z(J') - in + Z j ) / ( Z ~  ) + Zj  + 11 e ~J (4.30/ 

A p + l  j--1 

where qoj-  kjdj cos Oj and Z~ ) is the impedance at interface/j: 

Z ~ - 1 1 _  ~Zj tan ~j 

Z ~  ) -- Z j  - ~  . -  l, ZiOn. - 1) tan qoj 

Infinite medium characterized by a varying index. Exact solutions 
Let n(z), a continuous function of depth, be the index of the propagation medium. 
For some particular functions n(z), exact representations of the sound field can be 
obtained. They are based on special functions, such as Airy functions, 
hypergeometric functions, etc. Their advantage is mainly to provide an asymptotic 
behaviour of the sound field. In [7], L. Brekhovskikh presents a list of such 
functions n(z) for which there exist exact solutions. The author considers the 
following two-dimensional problem. 



152 ACOUSTICS." BASIC PHYSICS, THEORY AND METHODS 

The propagat ion is characterized by a function k(z), (k(z)=w/c(z)) .  The 
inhomogeneities of the medium are assumed to be concentrated in a layer and 
constants k0 and kl are the limits of k(z) when z tends to ( -oo )  and to (+oo) 
respectively. An incident plane wave, of amplitude 1, propagates with an angle 00 
from the z-axis: 

Pinc(X, Z)"-- exp [c(k0x sin 00 - k o z  cos 00)] 

Because of the limits k0 and kl of k(z), there is a reflected wave in the region 
(z---*-oo), which can be written as 

Prey(X, z) -- V exp [c(k0x sin 00 + koz cos 00)] 

and a transmitted wave in the region (z---* +oo), written as 

pt(x, z)--- W exp [c(klx sin 01 - k l z  COS 01) ]  

where 01 is defined by k0 sin 00 = kl sin 01. V and W are the reflection and 
transmission coefficients. 

In the layer, p(x, z) must be a solution of the propagation equation 

(A + k2(z))p(x, z) = 0 (4.31) 

It is expressed as p(x, z )=  A(z) exp (c(x). Then A is the solution of the following 
equation 

A"(z) + (k2(z) - ~2)A(z) -- 0 (4.32) 

If k(z) corresponds to an Epstein profile, that is if n is such that 

nZ(z) - 1 - Nemz/(1 + e mz) - 4Memz/(1 + emz) 2 

where N, M and m are constants, A(z) is a hypergeometric function. Figure 4.22 
shows two examples of function (1 - nZ(z)). 

If k(z) is such that nZ(z)= 1 + az, with a equal to a constant, A(z) is an Airy 
function. 
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Fig. 4.22. Functions (1 - n2(z))  for N=0, M= 1 and M=0, N= 1. 
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The expressions for V and W can be deduced from the conditions of continuity of 
the sound field at the boundaries of the layer. In [7], some examples present the 
behaviour of V and W as functions of frequency, of the angle of incidence and of 
the width of the domain in which k varies. 

Infinite medium characterized by a varying index. W.K.B. method 
In most cases, the solution of (4.31) cannot be obtained in a closed form, but the 
W.K.B. method can be used to find its asymptotic behaviour for (()~/A) ~ 1), where 

is the acoustic wavelength and A the characteristic length of the index and of the 
solution. 

The basic features of the method are presented in chapter 5, section 5.4.1. Let us 
consider the simple problem of determining the function p(x, z) solution of a Helmholtz 
equation, where n(z) is a slowly varying function compared with the wavelength: 

(A + k2nZ(z))p(x, z) - 0 

ko -w/co,  co is a reference value of the sound speed, p is then written as 

p(x, z) -- e ~kox sin 0 e ~koM(z) 

where M(z) is a series in (k0) -1. 
Substituting this representation into the Helmholtz equation, the left-hand side 

becomes a series and the right-hand side is still zero. By equating each term of the 
series to zero, it is possible to find the coefficients of M(z). Using only the first 
terms, p can be approximated by 

p(x, z) "~ (n 2 - sin 2 0) -1/4 e x p  (ckox sin 0) 

exp(  0  n sin O z) 
+ C 2 e x p ( - ~ k ~  Iio V / n 2 - s i n 2 0 d z ) }  (4.33) 

p is expressed as the sum of two waves propagating in opposite directions, with no 
interaction. It must be noted that (4.33) cannot be used if nZ(z) is close to sin 2 0. In 
this last case, it is still possible to find another representation of p, by using the first 
terms of the Taylor expansion of nZ(z) for example (see chapter 5). 

This kind of representation (4.33) can also be used as the initial data of an 
iterative algorithm (see [34] for example). Some applications of the W.K.B. method 
can be found in [35] where several examples of propagation in an inhomogeneous 
medium are studied, and in [36] for underwater sound propagation. 

4.3.3. Propagation of cylindrical and spherical waves 

The books by J. Keller [31] and by Jensen et al. [33] present a very good survey of 
the methods used in underwater acoustics. The same methods can also be applied in 
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air. If the index is a function of depth z only and if the surface and bottom of the 
ocean are planes (z = constant) described by 'local reaction' conditions, it is 
possible to obtain a representation of the sound pressure by using a spatial Fourier 
transform (as in Section 4.1.2), or a series of modes. 

At high frequency, the W.K.B. method and ray methods also provide 
approximations of the sound pressure. A ray method is used, for example, in [37] 
to describe the sound propagation above the (perfectly reflecting) surface of a 
lake, with a wind profile. A comparison between experimental and theoretical 
results shows that the method is quite satisfactory for source and receiver 
above the surface. For  receiver heights equal to 5 and 12 m and a horizontal 
distance source-receiver equal to 750 m, the attenuation is about 60 dB for a 
wind speed equal to 4 m/s.  The difference of sound levels (15 dB) for a receiver 
in the wind direction and a receiver in the opposite direction is also correctly 
predicted. 

When n is a function of both radial distance and depth and when the surface or 
the bottom of the ocean are not parallel planes, two main methods are left: G.T.D. 
and parabolic approximation. 

Geometrical theory of diffraction 
With G.T.D.,  it is possible to take into account the reflection phenomena on the 
boundaries and the refraction phenomena caused by the inhomogeneities of 

Fig. 4.23. Water-sediment boundary 200 Hz. 
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the medium. The general procedure is presented in chapter 5, section 5.5.3. The 
sound field is expressed as a sum of sound fields evaluated along incident, 
reflected and diffracted rays as well as complex rays. Because the equations are 
quite difficult to solve (like the transport equation which gives the amplitude of 
the field on the ray) other methods are also used: a method using normal modes 
(in depth) and horizontal rays [31] or the parabolic approximation (especially at 
low frequency). 

Parabolic approximation 
This method consists in replacing the Helmholtz equation by a parabolic equation, 
which is easier to solve numerically. Details on the procedure and the advantages of 
the method are presented in chapter 5, section 5.6, along with references. 

The parabolic equation can be solved by a split-step Fourier method, based on 
an FFT-method as in [31]. One of the examples presented in [31] corresponds to the 
ocean medium with a bilinear speed profile. The sound speed decreases from the 
surface down to h = 1200 m and then increases from h = 1200 m to the bottom of 
the ocean (h = 4800 m). Figures which present the ray pattern for horizontal 
distances up to 150 km and for frequencies between 25 and 200 Hz clearly point 
out the shadow zones caused by the curvature of the rays. 

The parabolic equation can also be solved by techniques based on the finite 
difference method (see [33] for example and Figs 4.23 and 4.24 [38]). 

Fig. 4.24. Oblique bottom 10 Hz. 
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CHAPTER 5 

Analytic Expansions and Approximation 
Methods 

Dominique Habault 

Introduction 

This chapter presents a general survey of the main approximation methods used 
in acoustics. The methods used to solve acoustics problems can be very roughly 
divided into two groups: 

�9 The methods here called 'purely numerical', such as finite element or boundary 
integral equation methods. They consist in solving the Helmholtz equation or an 
equivalent equation in a straightforward way. They can be used with no 
particular assumptions. 

�9 The analytical and asymptotic methods such as the method of steepest descent 
or geometrical theory of diffraction which provide approximate expressions of 
the solution or simpler equations (parabolic approximation) which are then 
solved by a numerical procedure. They are based on assumptions such as low or 
high frequency, large distance, etc. 

The methods presented in this chapter belong to the second group. 
Most of them provide asymptotic expansions of the solution and can be a good 

tool for studying the respective influence of the parameters of a problem. This is 
quite interesting because of the following observation. Complicated problems are 
always difficult to solve satisfactorily even with powerful numerical means and it 
is useless to include a complete description in all details. Thus before using a 
numerical procedure, it is necessary to analyse all the aspects of the phenomena and 
their relative influence on the behaviour of the solution in order to reduce the initial 
problem to as simple a model as possible. 

These approximation methods can be used in computer programs in several 
ways: 

�9 approximate expressions can be used as input data of an iterative algorithm; 
�9 simple problems for which approximate solutions are known can be used as 

'benchmarks' to validate numerical algorithms; 
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�9 approximate expressions can be used to provide a pr ior i  estimates of the solution 
and the behaviour can be introduced in test functions to speed up the 
convergence of an algorithm. 

All these remarks point out that even though 'real-life' problems are too complex 
to be solved by some of the methods presented in this chapter, these methods must 
not be ignored, even nowadays with regularly increasing computer power. 

Each method is applied here to the Helmholtz equation, for a time-harmonic 
signal (exp ( - c w t ) ) .  Most of the approximation methods consist in expressing the 
solution as a series, with a large or small parameter. This series can be convergent. 
In most cases, it is an asymptotic series. Let us recall that the series ~ff= 0 anUn(X) is 
an asymptotic expansion of u(x)  of order N when x tends to x0, if 

N 

U(X) -- ~ anUn(X) -+- O(UN) when x ~ x0 
n = 0  

that is the first neglected term UN +1 is small compared with the last included term 
UN. From a mathematical point of view, the relation UN + 1 = O(UN) when x tends to 
x0 means that for any e > 0, there exists a neighbourhood D~ of x0 such that 
l uN§ ~ I<  luNI for every x in O~ [1]. 

The term 'asymptotic' means that the sum of the first N terms is a better 
approximation when x is closer to x0. From a numerical point of view, this means 
that for x fixed, taking more terms of the series into account does not necessarily 
improve the approximation of u(x) ,  as is the case for a convergent series. In [2], G. 
Arfken presents the asymptotic behaviour of the exponential integral E1 (x) when x 
tends to infinity. A numerical example shows that, for x equal to 5, the sum of the 
first N terms provides a correct approximation for N = 6 and then diverges for 
N > 6 .  

Let us also emphasize that it is difficult to know a pr ior i  the exact limitations of 
an approximation. For example, 'high frequency approximation' means that the 
accuracy of the approximation increases when frequency increases but it may be 
also satisfactory at middle or even low frequency. An approximation method is 
considered to be satisfactory if predicted results are close to measured results. In 
that sense, comparisons between calculations and measurements provide a better 
practical knowledge of the limitations of a method. 

Section 5.1 is devoted to some methods which provide asymptotic expansions 
from integral representations. Section 5.2 presents the Kirchhoff approximation 
for diffraction by a hole or a plane screen; it corresponds to the geometrical 
optics approximation. Section 5.3 shows how to use a Neumann series to obtain 
an approximation of the solution of an integral equation. Section 5.4 presents 
approximation techniques applied to propagation in a slowly varying medium. 
Section 5.5 is devoted to image and ray methods and to the geometrical theory of 
diffraction (G.T.D.). G.T.D. extends the geometrical optics laws to take into 
account diffraction phenomena. It applies to wave propagation in inhomogeneous 
media and wave diffraction by obstacles. The parabolic approximation method is 
presented in Section 5.6. It applies to wave propagation in inhomogeneous media. 
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It consists in replacing the Helmholtz equation by a parabolic equation which is 
then solved numerically. It is mainly a numerical method but it is based on some 
assumptions such as narrow- or wide-angle aperture, large distances, etc. Finally, 
a description of the Wiener-Hopf  method is included in Section 5.7. Strictly 
speaking, the Wiener-Hopf  method is not an approximation method but in most 
cases only provides approximations of the solution. 

To get a more detailed knowledge of the methods presented here, the reader will 
find references at the end of the chapter. It must be noted that most of these 
methods come from other fields of physics (optics, electromagnetism, etc.). 

5.1. Asymptotic Expansions Obtained from Integral Expressions 

For propagation and diffraction problems, the sound pressure can sometimes be 
obtained as an integral expression by using a spatial Fourier transform or a Green's 
representation, for example. As seen in chapter 4, section 4.1, in some typical cases 
(infinite plane boundaries) it is easier to find the Fourier transform of the solution; 
the solution is then expressed as an inverse Fourier transform of a known function. 

For certain types of propagation problems, the sound pressure can be expressed 
by using integrals of the kind 

I(x)-  g(t) exp (xh(t)) dt 

where g and h are two real or complex functions, a and b are finite or infinite, and x 
is a 'large' parameter. 

This kind of integral can be obtained, for example, by using Fourier or Laplace 
transforms. In acoustics, the 'large' parameter is often a distance R or the product 
kR of the wavenumber and the distance. 

The methods which provide the asymptotic expansions of this kind of integral are 
presented in detail in [1], see also [6]. The last three sections present a brief survey of 
the main results. 

5.1.1. Elementary kernels 

Let p(M) be the solution of 

(A + k2)p(M)=f(M) in ~3 

Sommerfeld conditions 

f represents the sources. M is a point of the 3-dimensional space ~ 3, with spherical 
coordinates (R, ~, 0). Let G(M, M') be the elementary kernel which satisfies 

(A + k2)G(M, M') = 6~(M') in [~ 3 

Sommerfeld conditions 
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p(M) can then be expressed as 

- J f(M')G(M, M')dcr(M') (5.1) p(M) 

where M ' =  (R', qD', 0') is another point of •3. The integration domain is ~3 but 
obviously reduces to the support of the sources (domain where f r  0). The series 
expansion of G provides an asymptotic expansion of p. Indeed [3] 

" (n - m)! 
G(M, M') - 2Trek n ~  ~ (2n + 1) mZ= 0 en (n + m)! cos m(qo - qo')Pnm(cos 0) 

j,,(kR')h,,(kR) if R > R' 
(5.2) • pro(cos 0') j.(kR)hn(kR') if R' > R 

Pn m is the Legendre function of degree n and of order m. jn and h. are the spherical 
Bessel functions of first and third kind respectively and of order n. h. is written for 
h (1) - j n  + t~yn. 

Using: 

hn(kR) = /, + l kR p ! F ( n + l  p) 2ckR 
b p = 0  - -  

and the expansion 

exp[ -&R' ( s in  0 sin O' cos (q9-  ~ ' ) +  cos 0 cos 0')] 

~ (n - m)! 
= Z (2n + 1) Z.., en ~ cos (m(qo - ~'))pm(cos O)P~(cos O')jn(kR') 

n=0 m=0 (n+m)! 

the first term of the asymptotic series of G (for R > R') can easily be obtained: 

e t~kR 
G(M, M') = exp(-&R'(s in  0 sin O' cos (qD - q0') + cos 0 cos 0')) + (~(R -2) 

27rR 
(5.3) 

To find the asymptotic behaviour of p(M) when R tends to infinity, the procedure 
is the following: 

�9 the expansion of G (5.2) is substituted into the integral expression (5.1); 
�9 two integrals are obtained, one on [0, R] • [0, 27r] • [ - 7r/2, 7r/2], the other one 

on [R, oc] x [0, 27r] x [ -  7r/2, 7r/2]; 
�9 since R tends to infinity, the second integral is neglected and the approximation 

(5.3) is introduced in the first integral; 
�9 the integral terms are expressed as a Fourier transform off .  

This leads, for instance, to 

t, kR e 
p ( M ) - - ~ f ( k  sin 0 cos ~o, k sin 0 sin q), k cos 0 )+  ~3(R) -2 (5.4) 

27rR 
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where 97 is the spatial Fourier transform off(x,  y, z) defined by 

I+~ I+~ l "+~ 
f (~, rl, ~) -- e ~(x~ + y~ + zO f (x, y, z) dx dy dz 

-- 00 -- 00 -- (X) 

The asymptotic expansion of G then provides, when introduced in relation (5.2), 
an expression of the asymptotic field radiated (at large distance) by a source 
distribution f. I f f  is known, it is generally easy to find its Fourier transform 97. The 
same method can of course provide higher order approximations, if necessary. 

The particular case of  layer potentials. The same method still applies. For example, 
let ~b(M) be a simple layer potential, with a density # which depends only on the 
radial coordinate p: 

~b(M)-  Ix #(p(M'))  

e~kR(M, M')  

47rR(M, M') 
d~(M') 

M' is a point of the plane E: (z = 0). Then ~b(M) can be approximated by [4] 

e~kR(O, M)  I 

~(M)  47rR(O, M) ~(k sin 0) 
k 

1 (0   sin0  
+ 2ckR(O, M) O0 cot 0 -~- 020 

0 is the angular coordinate of M, measured from the normal to the surface E. 
In the previous chapters, it has been shown that, for several kinds of propagation 

problems, the sound pressure can be expressed as a sum of layer potentials. In [4] 
and [5], two examples of this kind of expansion are presented. The first one is 
applied to the prediction of sound propagation above the ground, the second to the 
sound radiation of a plate immersed in a fluid. Similar results have also been 
obtained in two dimensions by using the expansion of the Green's kernel Ho(kR) in 
cylindrical harmonics. 

5.1.2. Integration by parts, Watson's lemma 

The asymptotic expansion of some integrals can be simply obtained by a method of 
integration by parts. Let us consider the following example: 

Ji -~ exp ( - x t )  
I(x) = (1 + t) dt (5.6) 

Integrating N times by parts leads to: 

N (n -- 1)! )N N! Ji -~ exp ( - x t )  
I(x) -- Z (-1)n ~ - + -  ( -1  

n= 1 x n  ~ (1 7 t- t)  N +  1 
dt 
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It can be shown that the integral on the right-hand side behaves as (1/x) when x 
tends to infinity. The sum of the N first terms is then an asymptotic expansion of 
I(x) when x tends to infinity. Another way to obtain this asymptotic expansion of 
I(x) is to replace (1 + t) -1 by its convergent series: 

1 U 
~ - -  Z ( -  1)ntn for [ t ] < l  (5.7) 
l + t  n=0 

Although this series is not convergent for all t real and positive, by introducing (5.7) 
in expression (5.6) and by integrating term by term, one obtains an asymptotic 
expansion of I(x) for large x. 

This result is more general, following Watson's lemma: 

Watson's lemma. Let I ( x ) -  ~o tmf(t) exp( -x t )  dt wheref(t) is an analytic function 
on [0, A] such that f(0) -r 0. A is real and can be infinite, m is real and greater than ( -  1). 
Let us assume that I(x) exists for at least one value x0 of x. If f (t) can be written as 

f ( t ) -  Z antn 
n~O 

with the series convergent for I t [ <  to, then I(x) has the following asymptotic 
expansion: 

I(x) ~ ~ (m + n)!a, 
n;~O xm+n+ l 

when x tends to infinity. The '~ '  sign is used instead of the equals sign because the 
series is asymptotic (often not convergent). 

Remark [7]. The lemma still holds i f f  is finite on [0, A] or i f f  is infinite only at 
some points of [0, A]. Essentially, I(x) must exist for some value x0. 

5.1.3. The method of stationary phase 

This method applies to rapidly oscillating integrals such as 

J2 I ( x ) -  g(t) exp (~xh(t)) dt 

a, b and x are real, x is 'large'. h is a real function, twice continuously differentiable. 
g is a continuous, real function. I(x) can also be written 

Ii g(t) d 
I(x) - [exp (cxh(t)) ]dt 

cxh'(t)dt 

Then by integrating by parts, one obtains 

[ ] b ia (g( t )~ '  1 g(t)e ~xh(t) 1 b 
I(X) . . . .  e cxh(t) dt 

cx h'(t) a bX ~ h'(t) ] 
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It can be shown that if h'(t) never equals zero on [a, b], this is an asymptotic 
expansion in (1 Ix)  for x large. However, if there exists a point to on [a, b] such that 
h'(to) = 0 (to is called a stationary point), the method of stationary phase shows that 
the first term of the asymptotic expansion is of order (1 /x)  -1/2. The book by F.W.J. 
Olver [8] presents this method in detail, along with several examples of applications 
and a brief history. 

In the following, the main steps used to evaluate the first term of the expansion 
are described without mathematical proof. 

It is assumed that to such that (a < to < b) is the only stationary point on [a, b] 
and that h"(to):/: O. With the following change of variable 

1 
h ( t ) -  h(to) + 2  h"(t~ 

I(x) can be expressed as: 

fu(b) g(t(u)) 
I(x) = h"(to)e ~xh(t~ u exp (~xu2h"(to)/2) du 

Ju(a) h'(t(u)) 

Then u tends to zero when t tends to to. The main idea of the method is that, when x 
tends to infinity, the major contribution for I(x) is given by the behaviour of the 
expression under the integral sign around the stationary point (t _~ to or u _~ 0). 
Indeed, because of the exponential term (and as far as the behaviour of g does not 
cancel this exponential behaviour), the function under the integral sign has a 
behaviour similar to the curve shown in Fig. 5.1 (~(e~Xt2)). The integrations on the 
domains with rapid oscillations almost cancel one another. Only the integration on 
the neighbourhood of the stationary point provides a significant term. I(x) is then 
approximated by 

i u2 g(t(u)) 2h h"(to)e ~xh(t~ u exp (~xu "(to)/2) du 
u_~ h'(t(u)) 

where Ul and u2 are the real positive roots of (u(to - e)) 2 and (u(to + e)) 2. Because 
of the definition of u, these two squared terms are real and positive. 

The function ug/h '  is approximated by its limit when u tends to zero. By using 
also h'(t) = h'(t) - h'(to) ~- (t - to)h"(to), I(x) is written as 

~ 2 

I(x) ~ g(to)e ~xh(t~ exp (~xu2h"(to)/2) du 
1 

By using the same argument as previously, the integration domain is now extended 
to ] -c~,  +c~[. It can be shown [6] that this corresponds to adding terms of order 
( I /x)  which are then small compared with a term in x -1/2. Finally, 

I(x) -- g(to)e ~xh(t~ exp (~xu2h"(to)/2) du + 
- -  ( X 3  
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By introducing another change of variable and the result 

j oo exp ( - t  2) dt = x/~ 
- - O O  

I(x) is finally obtained as 

1/2 

I(x) ~ g(to)e ~xh(t~ ( 27r ) 
xlh"(to)l 

e + ~ / 4  : ao 
x l / 2  

(5.8) 

when x tends to infinity. The + sign corresponds to h"(to) positive or negative. 

Remarks." 

�9 If there are several stationary points on [a, b], their contributions must be added. 
This result can be seen immediately by dividing [a, b] into subintervals which 
include only one stationary point. 

�9 If a (or b) is a stationary point itself, its contribution must be divided by 2. 
�9 If a = - c ~  and b =  + ~ ,  I(x) has an expansion of the form y]~,~o(a,/x "+ 1/2) 

where the first term a0 is defined by (5.8). If a or b is finite, I(x) has an expansion 
of the kind ao/x 1/2 + O(1/x); the finite ends give terms of order (l /x).  

5.1.4. The method of steepest descent 

The method of stationary phase is a particular case of the method of steepest 
descent which is used to evaluate the asymptotic expansions, for Ix[ large, of 



C H A P T E R  5. A N A L  YTIC E X P A N S I O N S  A N D  A P P R O X I M A T I O N  M E T H O D S  167 

integrals of the type 

I ( x ) -  I~ g(z) exp (xf(z)) dz (5.9) 

where qg is an integration contour in the complex plane. The parameter  x can be 
complex but is assumed to be real here, for simplicity. 

The results of the method of steepest descent have been proved rigorously. They 
are based on the theory of analytic functions. The aim of this section is only to 
provide a general presentation of the method and how it can be used. The reader 
will find in [6] a very good description of the method for simple cases and an 
application to a classical diffraction problem in acoustics. 

In the following, f is assumed to be analytic (then twice continuously differentiable). 
The first step of the method is to draw a map off .  More precisely, if z -- x + cy and 
f ( z )  = u(x, y ) +  w(x, y), the first step is to represent the values of u and v (and in 
particular the curves u = constant and v -- constant) in the complex plane (x, y). Let us 
consider, for example, the functionf(z) = z 2. The curves u = constant and v =constant  
correspond respectively to the equations x 2 - y2 _ C' and xy = C (see Fig. 5.2). The 
dotted lines and the full lines respectively correspond to u = C' and v - -  C. 

Because f is analytic, u and v satisfy the Cauchy-Riemann  equations. Then 
V u V v = O ,  that is the curves u = constant and v =  constant are orthogonal. 
Furthermore, if there exists a stationary point z0 -- x0 + ty0 (such that f ' (zo) -- 0 and 
f"(zo) r 0), then Ou(xo, yo)/Ox = Ou(xo, yo)/Oy = 0 but u(xo, Yo) is not a global 
extremum. Indeed, depending on the way chosen in the plane (x, y) to go to u(xo, yo), 
its value can be a maximum or a minimum. In the example in Fig. 5.2, f (z )  = z 2 has a 
stationary point (or saddle point) at z = 0. The arrows show the direction of increasing 
u. On the contour x = y, u(0) is a maximum. On x = - y ,  u(0) is a minimum. 

The general idea of the method is to change the initial contour  ~ into a contour  
passing through z0 and such that  u(xo, Yo) is a max imum on this new contour.  
Indeed, because of the exponential behaviour of the function under the integral sign 
in I(x) (and as far as g does not cancel this behaviour), the main contr ibution for 
I(x), when x tends to infinity, is given by the neighbourhood of z0. Fur ther  from z0 
on the contour,  the function under the integral sign exponentially decreases and the 
decrease is faster when x is larger. 

The second step is to find a contour,  called the steepest descent path. This 
contour  is by definition orthogonal  to the curve u(x, y ) =  u(xo, yo) around z0 and 
then corresponds to a curve v(x, y) = v(xo, yo). In Fig. 5.2, the steepest descent path  
coincides with the curve x - - - y .  Let us call this path %1. Then, 

I(x) = L g(z) exp [xf(z)] dz + F(x) 
1 

(5.10) 

where F(x) includes, if necessary, the contributions of the poles a n d / o r  branch 
points o f f  and g. F(x) is a sum of residues a n d / o r  of branch integrals. For  example, 
F(x) - O, i f f a n d  g are uniquely defined and if g has no poles in the domain  between 
% and %1. This is a classical result of the theory of complex functions. 
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Let us assume for simplicity that F is identically zero. The following change of 
variable is used: 

f ( z )  - f ( z o )  = - t  2 

Because u has a maximum on %1, t is real. Then, 

l +~176 I ( x )  = exp (x f ( zo ) )  ~o(t) exp ( - s t  2) dt (5.11) 
--IX) 

with ~o(t) dt = g(z)  dz  andf ' (z)  dz = - 2 t  dt. The integration domain is ] -co,  +co[ if 
the integration contour coincides exactly with the steepest descent path. It is 
restricted to a finite interval if they partly coincide. 

The explicit expression of function ~ is often difficult to obtain. However, since 
the main contribution for I (x )  comes from the neighbourhood of z0 (t ~_ 0), only the 
behaviour of ~o and its derivatives around 0 is needed. Then, 

i 
oo 

I (x )  "~ exp (x f ( zo) )  [~(0) + t~ ' (0 )+  .-. ] exp ( - s t  2) dt 
--OO 

and 

v/~ ~o(0) +--4x ~o'(0) + 0 ~ when x --+ co (5.12) 
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The terms ~o(n)(0) are evaluated from the Lagrange theorem [6, 7] by using 
Taylor's expansions o f f  and g around z0. In particular, 

( ~p (O) = f"?zo) g(zo) (5.13) 

5.2. Kirchhoff Approximation 

The Kirchhoff approximation is a kind of 'geometrical optics' approximation; it is 
then valid at high frequency. It provides an approximate expression of the solution 
of the Helmholtz equation with constant coefficients. It was first used to describe 
the diffraction by a thin screen of finite dimensions [9]. 

In three-dimensional space, the screen corresponds to the domain ~2 of the plane 
(z = 0). The sound sources are located in the half-space (z < 0). By analogy with 
optics, the side (z < 0) of the screen is called the illuminated side. Let P0 be 
the incident field (field in the absence of the screen) and G ( M , P ) =  
--e~kr(M,e)/(47rr(M, P)) the classical Green's kernel. The Green's representation 
of the total field can be written as (see chapter 3, section 3.2) 

p(M)  - po(M) - I~+ u ~_ [p(P)On(p)G(M, P) - G(M, P )On(p )p(e )] dY] (5.14) 

E+ and E_ denote the two sides of the screen (z > 0) and (z < 0) respectively, ff is 
the unit vector normal to E and interior to the propagation domain. The functions 
p and O,(p)p(P) which appear under the integral sign are then approximated by: 

p = p0 and Onp = OnPO on )-~_ 

p = 0 and Onp = 0 on )--~+ 

This seems 'reasonable' under the geometrical optics approximation, but it is not 
rigorous since for a Helmholtz equation (elliptic of degree 2) it is not possible to fix 
both p and Onp on the same surface. The sound field p at any point of the space is 
then obtained by simply integrating the right-hand side of (5.14). There is no longer 
an integral equation to solve. 

The Kirchhoff approximation also applies to the case of a thin plane screen of 
infinite dimensions, perfectly rigid, with a hole of dimensions large compared with 
the acoustic wavelength. 

Let the infinite screen coincide with plane (z = 0). It is characterized by the 
homogeneous Neumann condition. Let D denote the surface of the hole. If a 
sound wave is emitted on the (z < 0) side, the sound pressure and its normal 
derivative are equal to zero on the screen and equal to the incident pressure and 
its normal derivative on the surface D. More precisely, if P0 denotes the incident 
pressure: 

p = 0 and Onp = 0 on the screen, for z > 0 

p = p0 and Onp = Onpo on D, for z > 0 
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Fig. 5.3. Aperture in an infinite screen. 

For the reasons presented previously, any representation of p which is based on 
these assumptions cannot be a solution of the Helmholtz equation. The domain of 
validity of this approximation is not precisely defined. I t  corresponds a priori to the 
'geometrical optics' domain: high frequency, large dimensions of the hole compared 
with the wavelength, and, in the case of Fig. 5.3, observation point M such that the 
axis O M  is close to the z-axis (incidence close to the normal). 

5.3. Neumann series 

The aim of the method presented in this paragraph is to express the solution of the 
Helmholtz equation as a series. In practice, only the first term or the first two terms 
are used. The series is called the Neumann series. 

Let us consider the general case of a function r solution of an integral equation: 

r  -- r - KO(x) (5.15) 

for all x in a domain F. K is an integral operator on F. 
Any kind of diffraction problem described by a Helmholtz equation with 

constant coefficients can be replaced by an integral problem of this type, by using a 
Green's formula for example. r could represent the sound field emitted in the 
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presence of an obstacle, r would be the incident field and F the boundary of the 
obstacle. 

Instead of solving integral equation (5.15), one constructs a sequence of functions 
~b(p), p I> 0, defined by: 

r176 = Co(x) 

r -- (r -- K r  (p -1 ) ) (x )  for p I> 1 

Each function r is an approximation of r If there is any convergence r is a 
better approximation than r 

With this method, it is possible to avoid solving the integral equation. Each r 
is the sum of the first p terms of a series. Indeed, the integral equation (5.15) can be 
written ( Id  + K ) r  - ~0, where Id  is the identity operator. If the series is convergent, 

can be written as 
OO 

r = ( Id  + K ) - 1 r  -- ( I d -  K + K 2 . . . .  )r -- ~ ( - 1 ) J K J r  (5.16) 
j=0 

with K ~ - Id. This series is called a Neumann series. For  the case of the Helmholtz 
equation, it is proved that there exists a wavenumber k0 such that the series 
converges for any k less than k0. The first terms of the series then provide an 
approximation valid at low frequency, which is really interesting if only the first 
term or the first two terms are needed. 

5.4. W.K.B. Method. Born and Rytov Approximations 

5.4.1. W.K.B. method 

The W.K.B. (or W.K.B.J.) method is named after the works of G. Wentzel, K. 
Kramers, L. Brillouin and H. Jeffreys. It is presented here in outline, on a simple 
case. A much more detailed presentation as well as references can be found in the 
classic book [10]. 

The W.K.B. method consists in developing an approximation of the solution of a 
Helmholtz equation with varying coefficients, under two assumptions: 

�9 k-> 1 ('geometrical optics' approximation); 
�9 the index n(z) and the solution are functions which vary slowly over a distance 

equal to one wavelength. 

The index n ( M )  is the function equal to the ratio of the sound speeds e ( M o ) / e ( M )  

where c(Mo) is chosen as a reference sound speed. 
The W.K.B. method belongs to the group of multi-scale methods. 
Let us consider the one-dimensional Helmholtz equation: 

d2r 
dz 2 (z) + k~n 2(z)~b (z) - 0 (5.17) 
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where ko=~/co ,  eo=c(zo) is the sound speed at a reference point z0 and 
n(z) = co/c(z). The solution ~ is first expressed as 

~(z) = exp (tAoM(z)) 

where M(z) is a series in (ko) -m. For example, M can be chosen as in [10]: 

M ( z )  - Am(z)  

0 m = 0  k6  ~ 

dz 

It is then easier to determine the coefficients of the series. They are obtained by 
introducing this representation of ~ into the Helmholtz equation and by equating 
term by term. The first coefficients are 

Ao(z) = 4- n(z) 

d 
A l(z) - L dzz ( In (n(z)) 1/2 ) 

d 2 
Az(z )  - • in(z) -1/2 (n(z) -1/2 ) 

d2 2 

Using the first three terms, ~ is approximated by 

[ ] ~(z) ~-- n(z) -1/2 exp -t-~k0 (1 + e(z))n(z) dz 
0 

with 

1 d 2 
C(Z) ---~0 n(z)-3/2 dz2 (n(z)-l/2) 

is often approximated by the first terms only: 

[ ] ~(z) ~ n(z) -1/2 exp +~k0 n(z) dz (5.18) 
0 

The right-hand side term corresponds to two waves travelling in opposite 
directions. This approximat ion cannot  be used in the neighbourhood of a point z 
such that n(z) tends to zero. Such points are called ' turning points' .  If z0 is a 
turning point, then the representation (5.18) is used for z far from z0. Closer to 
z0, the Helmholtz equation is t ransformed by using changes of variable and a 
limited expansion of n(z) around z0. In [10], the approximation of the solution of 
the t ransformed Helmholtz equation is obtained as an Airy function [11]. 
~ is then approximated by two expressions: one for z close to z0 and the other 
one for z far from z0. Obviously, it must be checked that  they match in 
between. 
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5.4.2. Born approximation and Rytov approximation 

These approximations are used to describe the solution of a Helmholtz equation in 
a medium with a slowly varying index. Let e denote the 'small' parameter which 
describes the variation of the index. For the sound speed profile shown in Fig. 5.4, 
e can be chosen as e = a. 

Let us present these approximations in the one-dimensional case: 

) + kZn2(x, e) r e) - 0 
d x  2 

First, ~ is written as 

where k(e) is a series in e": 

~(x, e) = exp (t~k(e)x) 

O(3 

Z kj J 
j=0 

Such an approximation is called the Rytov approximation: 

~(x, e ) -  exp tx Z kjeJ (5.19) 
j = 0  

The Born approximation is then obtained by replacing in (5.19) the exponential 
by its series and re-ordering the terms in increasing powers of e. Then: 

p (t ,X) q 
~(x, e ) -  e ~k~ eP Z ~ kjl ... kjq (5.20) 

p = 0  q = 0  q! jl + "'" +jq =P 

As an example, a comparison of these two methods can be found in [12] where J. 
Keller shows that the error obtained with the first n terms of each series is of order 
(ex)" +1 for the Born formula and (e" +Ix) for the Rytov formula. 

n2(~) 

I+~ ~....= - 

Fig. 5.4. Index n2(x) = 1 for x < 0 and  = (1 + a tanh(x))  for  x > 0. 
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In [13], the authors compare both approximations with exact solutions obtained 
for Epstein profiles (in the case of Fig. 5.4, particularly). They show that the first 
order approximations coincide. 

5.5 Image method, ray method, geometrical theory of diffraction 

5.5.1. Image method 

A particular case: exact solution. The image method is based on the following 
remark. Let p(M) be the sound pressure emitted by a source S at a point M above 
a plane E. Let S' be symmetrical to S with respect to E. If ~ is characterized 
by a homogeneous Dirichlet condition (p = 0) the pressure p(M) is exactly equal 
to: 

p(M) --ps(M) - p s , ( M )  

where ps(M) and ps,(M) are the sound pressures emitted at M by S and S' 
respectively. 

If ~ is characterized by a homogeneous Neumann condition (Onp = 0 on E), 
p(M) is then equal to 

p(M) = ps(M) + ps,(M) 

The general case. The image method a priori applies to any problem of 
propagation between two or more plane surfaces. It is an approximation method 
and its limitations are specified at the end of the paragraph. 

The simplest applications correspond to propagation between two parallel planes 
(waveguide), four or six parallel surfaces (room acoustics). 

Each surface is characterized by a reflection coefficient. Let S be the point source 
and M the observation point. Sm, (m = 1, ..., oe) denotes the images of S relative to 
the boundaries. Each ray 'emitted' by the image source Sm is considered as a ray 
emitted by S and reflected n times by the boundaries (see Fig. 5.5). n obviously 
depends on the index m. The sound pressure p, solution of a Helmholtz equation 
with constant coefficients, is written as 

e~kR(S'M) c~ ( I  I ) e~krm 
p(M) = 47rR(S, M)  § Oj(Omj) (5.21) 

= j = 1 47rrm 

where rm--R(Sm, M) is the arclength on ray m emitted by Sm, n = number of 
reflections on ray m, Omj=angle of incidence of ray m at j th reflection, 
Qj(Omj) = reflection coefficient for ray m at j th reflection. 

Application to two parallel planes. In three-dimensional space, let the planes 
(z = 0) and (z = h) denote the boundaries of the domain. A harmonic signal (e -"~t) 
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Fig. 5.5. The case of two parallel planes. 

is emitted by an omnidirectional, point source S -  (0, 0, 0 < z0 < h) (see Fig. 5.5). 
The sound pressure p is the solution of the following system: 

(A + k 2)p(x, y, z) = 6(x)6(y)6(z - zo) 0 < z < h 

+ p(x ,  y, z) - 0 on z - 0 

~ + - -  p ( x , y , z ) = O  on z - h  

Sommerfeld conditions 

(1 and r are the reduced specific normal impedances which characterize planes 
(z = 0) and (z = h) respectively. They can be equal to zero or infinity to include 
Dirichlet or Neumann  conditions. 

The first step is to define the set of the sources Smj, images of S, with their 
coordinates. In this simple case, they are given by 

(0, O , -mh  + zo) 

Sml - (0, O, - ( m  - 1)h - zo) 

(0, 0, mh + zo) 

Sm2 -"  (0, O, (m + 1)h - z0) 

for even m 

for odd m 

for even m 

for odd m 

Let A1 and A2 denote the plane wave reflection coefficients of planes ( z -  0) and 
( z -  h) respectively: 

Aj ~ . c o s O - 1  
= with j = 1, 2 

cos 0 + 1 
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0 is the angle of incidence from the normal vector to each plane. The sound pressure 
p is then 

etkR(S, M) c~ 2 etkR(Smj, M) 

p ( m ) = -  - Z Z amj 
47rR(S, M)  m = 1 j= l 47rR(Smj, M) 

Qmj is the reflection coefficient on ray mj which comes from Smj. It is equal to 

Q2m,j -- A'~A~' if j - -  1, 2 

A~ '+ 1A~" if j -  1 
Qzm + 1,j = 

A~A~ '+l i f j - 2  

Limitations of the method. The approximation obtained by the image method is 
particularly interesting at short distance from the source, in the region where the 
incident field is almost dominating and only the first sources must be taken into 
account. Far  from the source, the series is not so efficient from a numerical point of 
view since it becomes a sum of terms with almost equal phases (see [14], for 
example). 

It must also be emphasized that the series is not always convergent. In the case 
of two parallel planes described by a homogeneous Neumann condition, it 
becomes 

etkR(S, M) oo 2 etkR(S,,j, M) 
- - Z Z  

p(M) - 47rR(S, M) m = 1 j =  1 47rR(Smj, M) 

which is not convergent because when m tends to infinity, the distance R(Smj, M) is 
of order mh. 

5.5.2. Ray method 

This method is also based on the laws of geometrical optics, that is it is a high 
frequency approximation. For the case of plane obstacles, it is similar to the image 
method. The ray method consists in representing the sound field by using direct, 
reflected and refracted rays. It is based on the classical laws (Fig. 5.6): 

�9 in a homogeneous medium, direct ray paths are straight lines; 
�9 when an incident ray impinges on a surface, with an angle of incidence 0, a 

reflected ray is emitted, located in the plane defined by the incident ray and the 
normal to the surface, with an angle (-0);  

�9 when an incident ray impinges at the boundary between two media (1) and (2) 
described by indices nl and n2, with an angle of incidence 01, a refracted ray is 
emitted with an angle 02 defined by Snell's law: 

sin 01 nl 

sin 02 n2 
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Fig. 5.6. Plane wave on a plane boundary. 

The amplitude of a reflected ray at a point P on a surface is the product of the 
amplitude of the incident ray and the reflection coefficient which describes the 
surface at P. Similarly, the amplitude of a refracted ray at a point P on a surface is 
the product of the amplitude of the incident ray and the transmission coefficient 
which characterizes the surface. 

The method consists in taking into account a large number of rays Rm, which come 
from the source with an energy Em (the number of rays, their initial directions and 
the values Em depend on the characteristics of the source). To evaluate the sound 
pressure at a point M, only the rays which pass close to M are taken into account. 
The amplitude on each of these rays must be calculated. It depends on the trajectory. 

In room acoustics, the ray method is easier to use than the image method, in 
particular if the room has more than six faces, if obstacles must be taken into 
account, and if the faces are not fiat. 

No more details are given here on this method since it is a particular case of the 
geometrical theory of diffraction which is presented in the next paragraph. 

5.5.3. Geometrical theory of diffraction 

The geometrical theory of diffraction was developed by J. Keller [14]. It generalizes 
the laws of geometrical optics to include the phenomenon of diffraction and 
describe the propagation around obstacles in a homogeneous or inhomogeneous 
medium. It leads to high frequency approximations (wavelength ,k ~ 1). 

For this purpose, new types of rays (diffracted and curved rays) are introduced. 
The sound field is expressed as a sum of sound fields, each one corresponding to 

one ray: 

p ( M )  = ~ A (J)(M)e ~k~'~j~(~) (5.22) 
j~o 
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where M =  (xl, X2, X3) is a point of the propagation medium. The amplitude AO) 
and phase ~ (J) correspond to each ray j which passes close to M. To compute p(M), 
one must evaluate: 

�9 the trajectories of all the rays emitted by S and passing close to M; 
�9 the amplitude and phase on each ray. 

On each ray j, the sound field ~ is written as an expansion in (1/k)m: 

oo Am(M) 
~b(m) - -  e ~ k ~ ~  ~ (5.23) 

m = 0  (~k) m 

In general, ~b is approximated by the first term of the expansion. 
The main features of the method are presented in the next paragraph, for the 

most general case of propagation in inhomogeneous media. A few remarks are 
added for propagation in a homogeneous medium, which is only a particular case 
and is presented in more detail in chapter 4 for diffraction problems. 

Propagation in an inhomogeneous medium. Each field ~b is the solution of a 
Helmholtz equation: 

( A  + k 2 n 2 ( x l ,  x2, x 3 ) ) ~ ) ( X l ,  x2 ,  x 3 )  - -  F 

F represents the source, n ( x ) -  n(xl, x2, x3) is the index of the medium. Let us 
assume that F is zero; the source term can equivalently be introduced in the 
boundary conditions. 

Replacing ~p by its expansion (5.23) leads to the following equations" 

( ~ 7 ~ )  2 --- n 2 (5.24) 

2V~.VAm + Am.A~ - - A A m _  1 for m I> 0, with A-1 - 0 (5.25) 

The eikonal equation (5.24) provides the phase ~. The coefficients Am are then 
evaluated recursively by solving equations (5.25). 

One more system of equations is needed to determine the trajectories of the rays, 
which are orthogonal to the surfaces Q - c o n s t a n t .  Introducing a system of 
coordinates (s, u, v) where s denotes the arclength along the ray, the equations which 
express the orthogonality of the rays and the surfaces of constant phase are [14] 

n - -  n = V(n f o r i = l  2 3 (5.26) 
d, Z 2 ' '  

From these equations, parametrical representations of the ray trajectories are 
deduced. 

In [14], Keller gives the general expressions of the phase ~ and the coefficients 
Am. In particular, 

I; ~(s, u, v) -- ~(so, u, v) + n(x(s', u, v)) ds' (5.27) 
o 
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and 

where J is the Jacobian: 

Ao(s) = 
n(so)J(so) 

n(s)J(s) 

1/2 

Ao(so) (5.28) 

O(Xl, X2, X3) 

O(s, u, v) 

so - s(xo), xo is the initial point on the ray path. For an incident ray, x0 can be the 
source. 

Remark: In a homogeneous medium, n(x) = 1. From (5.26) and (5.27), it is easy 
to check that the rays are straight lines (s is proportional to the radial distance r) 
and that the phase is proportional to the distance r. 

The initial values ~(s0) and Ao(so) are deduced from the initial conditions on each 
ray. These conditions depend on the type of the ray (incident, reflected, refracted). To 
take into account the boundaries of the medium and its inhomogeneity, one must 
include rays reflected by the boundaries and diffracted. In an inhomogeneous 
medium, the phase ~ may be complex; this corresponds to evanescent rays. 

Propagation in a homogeneous medium. As seen in the previous section, in a 
homogeneous medium (n(x)=_ 1), the ray trajectories are straight lines. They are 
then easily determined. Rays can be incident, reflected, refracted (in the case of 
obstacles in which rays can penetrate) and diffracted. 

The calculation of phase and amplitude on each ray follows the laws presented in 
chapter 4 for the particular case of a convex cylinder. A description of the general 
procedure and some applications can be found in [15] and [16]. 

One of the drawbacks of the G.T.D. is that the sound field obtained is infinite on 
caustics. However, several kinds of improvements have been proposed to avoid this 
problem (see [17] for example). 

5.6. Parabolic approximation 

After being used in electromagnetism or plasma physics, the parabolic approxima- 
tion is now extensively used in acoustics, especially to describe the sound 
propagation in the sea or in the atmosphere. The main idea is to replace the 
Helmholtz equation with varying index (elliptic equation) by a parabolic equation 
which is more convenient from a numerical point of view. The parabolic equation 
obtained is not unique, it depends on the assumptions made on the propagation 
medium and the acoustical characteristics. It is then solved by techniques based on 
FFT or on finite difference methods. 

It must be pointed out that the parabolic equation is only valid at large distance 
from the source; it is then a priori necessary to evaluate the near-field in another 
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way. A description of all these aspects can be found in [14] and [18], along with 
references. Many articles are still published on this subject (see [19] to [22], for 
example). 

5.6.1. Replacing the Helmholtz equation by a parabolic equation 

To transform the Helmholtz equation into a parabolic equation, two types of 
methods have been developed. The method presented here is the most extensively 
used now and the most general. It is based on the approximation of operators. 

Let p denote the sound pressure solution of 

(A + kZnZ(r, z))p(r, z) - f (r ,  z) (5.29) 

z is depth, r is the horizontal distance. Sound speed c depends on these two 
coordinates and the refractive index n(r, z) is defined by n = c0/c, where c0 is a 
reference sound speed, k0 = w/co. 

The basic assumptions of the parabolic approximation are 

�9 large distance between source and receiver (kor ,> 1); 
�9 depth of the sound channel is small compared with the propagation distance or 

small aperture angle 0, i.e. 

I Ol '~ (I z -  zo I / r )  ~ 1 (5.30) 

It is first assumed that p, far from the source, can be expressed as the product of a 
Hankel function H(ol)(kor) and a function ~(r, z) which varies slowly with r: 

p(r, z) ~(r, (1) 
- z )H o (kor) 

Since kor ,> 1, H~ l) can be approximated by its asymptotic behaviour: 

p(r, z) ~ ~(r, z) e ~~ 
~kor 

By introducing the expression in (5.29), one obtains 

02//3 0~ 02~3 
+ 2ok0 ~ + ~ + kZ(n 2 - 1)~b --- 0 (5.31) 

Or 2 Or OZ 2 

The source term is omitted at this stage and is actually taken into account in the 
initial conditions (see Section 5.6.3). Let P and Q denote the following operators: 

0 
P = - -  and 

Or 
( , Q =  n2 + k---~ 

Then equation (5.31) can be written 

(p2 _.[_ 2ckoP + kZ(Q 2 - 1))~b--0 

1/2 

(5.32) 
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o r  

(P + &o - &oQ)(P + Lko + &oQ)~ - Lko(PQ - QP)~  = 0 

If the index n is a slowly varying function of r, the ( P Q -  QP) term can be 
neglected. In particular, this term is zero if n depends only on z. By taking into 
account only 'outgoing' waves, it is possible to replace equation (5.31) by 

Let us now define 

(P + ~k0 - ~k0 Q)~ = 0 

1 0 2 
q = n 2 -  1 - I - -  ~ then Q = x/'l + q 

kg 0 2 2  

If I ql < 1, Q can be formally approximated by the first terms of its Taylor series 

V/1 + q ~-- 1 + q/2  -- q2/8 § ""  

Taking into account only the first two terms, equation (5.32) becomes ( ' 
o~ _ _  o2~ 

2 ~ - &o (n 2 _ _  1)~ -~ -- 0 
Or k 20Z2/ (5.33) 

which is the most classical parabolic equation used to describe the sound propagation 
[14]. This equation is a better approximation if q is small, that is if the index is close 
to 1 and the aperture angles are small. However, it must be noticed that this way of 
using operators also leads to parabolic equations with a wider range of validity. To 
obtain such equations, it is possible to take into account more terms in the Taylor 
series of Q or to chose other approximations of Q (Pad6 approximants, for example). 
These approximations lead to equations which are more complicated but which are 
still valid for large aperture angles. Numerous studies are devoted to this aspect of 
parabolic approximation, and the reader is highly recommended to refer to them (in 
the Journal o f  the Acoustical Society o f  America, for example). 

Because of the assumption of 'outgoing wave' in (5.32), let us emphasize that 
equation (5.33) cannot take into account backscattering effects. For example, if 
there is an obstacle at r -  R0 and if the equation is solved up to r -  R1 < R0, the 
result does not take into account the presence of the obstacle. 

5.6.2. Solution techniques 

There are two main methods for solving the parabolic equation. 

�9 One is called the 'split-step Fourier' method [14]; the z-Fourier transform of the 
field is first computed and then the inverse Fourier transform. 

�9 The other is based on finite difference methods [18, 19]. In the plane (r, z), the 
propagation domain is discretized by drawing lines r --- constant and z = constant. 
The points of the grid are then (lr, mz), 1 - 0, ..., N and m -- 0, ..., M. At each 
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step l, a linear system of order M is solved. For more details on the calculation of 
the coefficients and the properties of the matrices, see [18]. 

5.6.3. A word about starters 

The parabolic equation is valid only at large distances from the source (let us say 
r > r0). On the other hand, a parabolic equation cannot be solved without an initial 
condition; here it must be the sound field at r -  r0. To find the initial data, it is 
possible to use the methods based on rays or modes. It is, however, far too 
complicated. The first and simplest technique used has been to approximate the 
sound field at r0 by a Gaussian law. This representation corresponds to a small 
angle of aperture. A great number of studies have also been published on the 
improvement of the initial condition. 

5.6.4. Error estimates 

The errors made on the computation of the sound field are first caused by the use 
of the parabolic approximation. In [14], F. Tappert gives for a simple case a 
comparison between an exact solution and the solution of the parabolic equation. 
The errors are also caused by the technique used to solve the parabolic equation. 

Finally it must be noted that, because of the mathematical properties of the 
parabolic equations, the error increases with distance. 

5.7. W i e n e r - H o p f  method 

Strictly speaking, the Wiener-Hopf  method [23] is not an approximation method. 
From a theoretical point of view, it leads to an exact expression of the solution. 
But, except for very simple cases, the expressions are not adapted to numerical or 
analytical computations. A method such as the method of stationary phase is then 
used to obtain an asymptotic behaviour (see [24], for example). 

The Wiener-Hopf  method is based on partial Fourier transforms. It is quite 
suitable for propagation problems with discontinuous boundary conditions such as 
sound propagation above an inhomogeneous surface (see chapter 4, section 4.1.3). 

5.7.1. Description 

The general procedure is as follows: 

�9 Using partial Fourier transforms, the initial system of equations is replaced by 
an equation of the following kind: 

g(~)b+(~) + b-(~)-/~(~) for all real ~ (5.34) 

The functions P+ and P- are unknown. The notations/3+ and/~_ correspond to 
the properties of these functions: t5+ and/~_ are analytic functions in the upper 
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half-plane (~ + or, r > 0) and in the lower half-plane (~ + or, T < 0) respectively. 
They are both continuous for r - 0. g and h depend on the data. Equation (5.34) 
is called a Wiene r -Hopf  equation; the way to find it is presented in detail in 
Section 5.7.2. 

�9 g is then written as a product g_g+ where g_ and g+ have no zeros and are 
analytic in the lower (7 < 0) and the upper (7-> 0) half-plane respectively. This 
leads to: 

(5.35) 

�9 (/~/g_) is in turn written as a sum (~+ + ~_), ~+ and ~_ must have the same 
properties as t5+ and p_. Then 

g+(~)P+(~) - ~+(~) = -P-(~~) + ~_(~) (5.36) 

The left-hand side of this equation is analytic in the upper half-plane, the right- 
hand side is analytic in the lower half-plane. Both functions are equal and 
continuous for 7 - -  0. 

The theorem of analytic continuation [25] implies that they can be extended to 
two functions equal in the whole complex plane. This leads to 

/+(~)/~+(~) - 0+(~) - / ~ ( ~ ) -  _ b - ( ~ ) +  0-(~) (5.37) 

where/~(~) is an analytic function which is deduced by examining the asymptotic 
behaviour of the right-hand side and left-hand side terms. The unknown functions 
/~+ and/~_ are determined from the first and the second equality respectively. 

5.7.2. Obtaining a Wiener-Hopf equation 

Several procedures can be used to replace the initial system of equations by a 
Wiener -Hopf  equation. Three of them are presented here. The first two correspond 
to the following two-dimensional problem. A point source is located in the half- 
plane (y, z > 0) at S -  (0, z0). The boundary of the half-plane is characterized by a 
homogeneous Dirichlet condition on (y < 0, z -  0) and a homogeneous Neumann 
condition on (y > 0, z - 0 ) .  The signal is harmonic (exp (-cwt)). The sound 
pressure p is the solution of 

(A + k2)p(y, z ) -  5(y)5(z- zo) for z > 0 

p(y, z) = 0 for y < 0 and z - 0 

Op(y, z) (5.38) 
= 0  for y > 0 and z - 0  

Oz 
Sommerfeld conditions 
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(a) One of the methods consists in writing an integral equation equivalent to the 
differential system (5.38) and using partial Fourier transforms. Let G denote the 
Green's function which satisfies the homogeneous Neumann condition on (z = 0). 
The Green's representation applied to p and G leads to 

f 
0 0 

p(y,  O) = G(y, 0; 0, z0) + ~ p(y ' ,  z' = O) G(y' ,  0; y, 0) dy' 
-c~ OZ t 

(5.39) 

for all y. Let us define the following transforms: 

Ji I ~ ~+(~, z) = p(y,  z)e 4y dy; /?_((, z) = p(y,  z)e 4y dy (5.40) 

and 

f'-~ Op(y, z) 
Ozp+(~, z) = Jo Oz 

to  Op(y, Z) 
e ~'y dy; Ozp_ (~, z) | A - ~ e ~'y dy (5.41) 

J_ Oz 

The Paley-Wiener theorem applies and shows that function b+(~, z) (resp. p_(~, z)) 
can be extended to a function b+(~ + ~T, z) (resp. b-(~ + ~r, z)), analytic for 7- > 0 
(r~esp. for r < 0) and continuous for r >i 0 (resp. r ~; 0). Functions Ozp+(~, z) and 
Ozp_(~, z) obviously have the same properties. 

The y-Fourier transform applied to equation (5.39) leads to 

~Kb+((, O) = e ̀ Kz~ + 0"~_(~, O) 

with K 2 = k 2 - ~2, ~(K) > 0, since the y-Fourier transform of the kernel G(S, M )  
is: exp (~K I z - zo)/t~K. 

The equation is of the same kind as (5.34) with g(() - 2~K. It must be noticed that 
the decomposition of g in g_ g+ is readily obtained (it is not unique)" 

g + ( ( ) -  2~ v/k + ( and g _ ( ( ) -  v/k - 

(b) Another method consists in applying the Fourier transform to the 
differential system (5.38). Let 

i 
+c~ 

h((, z) = p(y,  z)e 4y dy 
- - ( X )  

b is the solution of 

-+-K 2 /~(~,z)=t~(z-z0) 

with K defined as in the previous section. Then 

e~/r z-  z0l e~/r z + z01 
~(~, z) - + J(~)  

2~K 2LK 

for z > 0  

for z~>0 
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where A is the plane wave reflection coefficient, to be deduced from the boundary 
conditions. For functions/3+ and Ozp+, one obtains: 

p+(~, 0) +b- (~ ,  0) --p+(~, 0) = (1 + A(0) 
e ,~/~o 

2~K 

cO"~+(~, O) + 0"~_(~, O) -- 0~_(,~, O) - ( -1  + A(r 
e ,Kzo 

2oK 

and by eliminating ~]" 

cK/3+(~, O) = e *Kz~ + 0"~_(~, O) 

which is the same equation as previously. 
(c) The third method generalizes the previous one. It is presented here for the 

same problem in a 3-dimensional space. 
Let p(x, y, z) be the pressure, solution of 

(A + k 2)p(X, y, z) = 0 for z > 0  

p(x, y, z) =f (x ,  y) at (x, y < 0, z = 0) 

0 (5.42) 
-~z p(x, y, z) = g(x, y) at (x, y > 0, z = 0) 

Sommerfeld conditions 

p satisfies non-homogeneous boundary conditions, f and g are square integrable, 
known functions. Let us define the following Fourier transforms: 

j0(j ) h+(~, z) = h(x, y)e b~lX dx e ~2y dy 
--00 

[~_ (~, z) - h(x, y)e ~'x dx e 4~y dy 

with ~ = (~1, (2) and r = (rl, r2). 
Let f be any continuation o f f  that is such that 

f (x ,  y ) = f ( x ,  y) if y < 0 

The function (p(x, y, O) - f ( x ,  y)) is zero for y negative. Let E+(0  denote its Fourier 
transform, E+(0  can be extended to E+((1,(2 + ~r2), analytic for r2 > 0 and 
continuous for r2 >I 0. Similarly, if ~ is any continuation of g, that is: 

~(x, y) - g(x, y) if y > 0 

F_, the Fourier transform of (Op(x,y, O)/Oz- ~(x, y)), can be extended to an 
analytic function in the lower half-plane (r2 < 0) and continuous for (r2 ~< 0). b(~, z) 
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is such that 

~z2-k-K 2 /~(~,Z)--0 then p(~, z) = J(~)e 'Kz 

The boundary conditions lead to 

~] - ) =  E+ and ~KJ - ~ , -  P_ 

By eliminating A, one obtains 
% 

, K ( E +  + J )  - : e_ 

where E+ and F_ are the unknowns. 
The three methods presented in this section provide for the same problem 

Wiener-Hopf equations which are identical or equivalent. 

5 .7 .3 .  The  d e c o m p o s i t i o n  theorem 

The main difficulty of the Wiener-Hopf method is the decomposition of g and/~ in 
a product g+ g_ or a sum h+ + h_. 

If the decomposition of g is not obvious as in the previous example, it can be 
deduced from Cauchy integrals in the complex plane. 

T h e o r e m  5.1 ( [ 2 3 ] ) .  

7-_ < r < r+, such that 
Let rico be a function of c~ = ~ + ~r, analytic in the strip 

[f(~ + CT) I < c 1~ [-P,p > 0, for l~ I ~ c~ 

the inequality is uniformly true for all T in the strip r_ + e ~< r ~< r+ - e, e > 0. Then, 
f o r  T_ < c < - r  < d < 7+, 

f(~)  =f+(~) + f - ( ~ )  

where f+ and f_ are analytic respectively for T > r_ and T < T+. They are given by 

1 j+~+~c f ix)  

f+(c0 2~7r - ~ + ~  x -  c~ 
- 1 I +~ + ,a f ( x )  dx 

dx;  f - ( c O  = 2~7r - ~  + ~d x -- c~ 
~ 

The decomposition of/~ into a sum (/~+ +/~_) is based on the same theorem, using a 
logarithmic function. 

5.7 .4 .  The  main  diff icult ies  o f  the m e t h o d  

The function g depends on the operators which correspond to the boundary 
conditions. For example, a Neumann condition and an 'impedance' condition 



CHAPTER 5. ANAL YTIC EXPANSIONS AND APPROXIMATION METHODS 187 

lead to 

~K 
= 

(oK + c~) 

where c~ is a complex number. It is then not easy to obtain the factorization of g(~). 
Furthermore, in the Wiener-Hopf  equation (5.34),/~ depends on the right-hand 

side members of the differential system. The decomposition of h is then simple if the 
incident wave is a plane wave and becomes much more complicated otherwise. 
These difficulties can sometimes be partly overcome. It is then possible to obtain 
the solution of the Wiener-Hopf  equation as an integral, and asymptotic 
expressions are deduced through methods like the method of stationary phase. 
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CHAPTER 6 

Boundary Integral Equation Methods 
Numerical Techniques 

Dominique Habault 

Introduction 

This chapter is devoted to the description of the main numerical aspects of the 
integral equation methods. 

The theoretical aspect of these methods is presented in chapter 3: writing of an 
integral equation, existence and uniqueness of the solution, and so on. Several 
applications are described in chapter 4. 

The main advantage of these methods in acoustics is that they can deal with 
propagation problems in domains with any kind of geometry. However, there is 
an essential limitation: the propagation medium must be homogeneous. This 
restriction comes from the fact that the integral equations are based on the use of 
a Green's function which must be at least in a suitable form for numerical 
computations. Up to now, such functions are known only for homogeneous media 
(Helmholtz equation with constant coefficients). 

From a theoretical point of view, these methods can be used for any frequency 
band. From a numerical point of view, they are mainly used at low frequency since 
the computation time and storage needed increase with frequency. Then at higher 
frequency, specific 'high frequency' methods such as G.T.D. are often preferred. 

In this chapter, we will not describe again how to obtain an integral equation. 
However, let us point out how essential it is to check that the integral equation is 
equivalent to the initial differential system, that is that they both lead to the same 
solution and that the conditions for existence and uniqueness of the solution are the 
same. 

Section 6.1 is devoted to the methods used to solve integral equations. They 
consist in replacing the integral equation by an algebraic linear system of order N. 
To do so, the boundary of the propagation domain is divided into sub-intervals and 
the function, solution of the integral equation, is approximated by a linear 
combination of known functions (called 'approximation functions'). The 
coefficients of the combination are the unknowns of the linear system. 
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Section 6.2 is devoted to the particular problem of eigenvalues. Interior and 
exterior problems are defined in chapter 3. The 'interior' term is used to 
characterize a problem of propagation in a closed domain. For this kind of 
problem, there exist eigenvalues (eigenfrequencies). They cannot be obtained by 
separation methods if the geometry of the domain is too complicated. The integral 
equation methods are a good tool for finding these eigenfrequencies which are 
obtained by looking for the zeros of the determinant of the linear system. For 
exterior problems, the propagation domain extends up to infinity and there are no 
(real) eigenfrequencies. Nevertheless, as explained in chapter 3, the same integral 
equation can correspond to an interior problem and an exterior problem. Then, it 
has eigenfrequencies of the interior problem. To avoid this, one of the simplest and 
most rigorous methods consists in representing the solution of the differential 
problem as a linear combination of simple and double potentials with complex 
coefficients. 

Section 6.3 presents a brief survey of problems of singularity. The problems of 
the singularity of the Green's kernel are examined in chapter 3. Generally speaking, 
discontinuities of the boundary or the boundary conditions imply a singular 
behaviour of the solution around these discontinuities. From an analytical study of 
this asymptotic behaviour, it is possible to introduce some a priori  information in 
the system to be solved and then to improve the convergence of the algorithms. 

Although finite element methods (F.E.M.) are not presented here, it is interesting 
to compare the advantages and drawbacks of these methods and boundary integral 
equation methods (B.I.E.M.). 

The main advantage of B.I.E.M. is that the initial differential system written in a 
domain ft is replaced by an equation or a system of equations on the boundary of 
f~. The integral equation is then written on a domain of dimension n (n-- 1 or 2) 
instead of a domain of dimension (n + 1). This property is essential from a 
numerical point of view. For the same reason, there is no difficulty in solving 
problems of propagation in infinite media, while with F.E.M. the need to mesh the 
whole domain leads to a problem of a boundary at infinity (it is solved by using 
infinite finite elements, matching the numerical solution with asymptotic 
expressions, etc.). 

On the other hand, F.E.M. apply to propagation problems in inhomogeneous 
media. 

These properties of both methods are deduced from the following observation. 
The formulation of an integral equation is based on an a priori  partial knowledge of 
the solution (representation of the pressure as a layer potential by using a known 
Green's function). This use of a known function leads to a simplified formulation 
on the boundary. In contrast, no a priori  knowledge is required for F.E.M. and 
then they can be used to solve the Helmholtz equation with varying coefficients. 

From a purely numerical point of view, both methods are similar and are based 
on the mesh of a domain, the use of approximation functions and the solution of a 
linear system. But for B.I.E.M. there is no use of special techniques to number the 
nodes or the elements: the matrix of the linear system is generally a full matrix, but 
it must be noted that the terms of the diagonal are larger than the others. 
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Finally, let us point out that F.E.M. and B.I.E.M. can be used jointly to solve 
problems such as sound radiation by a vibrating structure immersed in a fluid. If 
the structure is quite complex, it is described by using finite elements and the effect 
of the fluid is taken into account by an integral equation on the surface of the 
structure. 

We end this introduction with a quite philosophical remark. The increasing 
complexity of the problems along with the increasing power of computers lead to 
an extensive use of F.E.M. and B.I.E.M. However, this does not mean that analytic 
expansions and approximations are no longer useful. On the contrary, they cannot 
be ignored. First, they provide tests of software on simple cases. They can also lead 
to a better choice of the approximation functions. Before solving a quite complex 
problem, it is very often useful to consider, as a first step, a simplified version for 
which partial analytical expansions can be obtained or simple computations can 
be carried out. Such a step can consist, for example, in changing the values of 
some parameters to evaluate their respective influence and then identifying the 
hypotheses to add to simplify the initial problem, depending on the aim of the study 
(frequency bands, accuracy required, and so on). 

6.1 Techniques of Solution of Integral Equations 

The methods presented in this section transform the integral equation into an algebraic 
linear system. There are mainly two types of methods: the collocation method and the 
Galerkin method. A third has been proposed which is a mixture of the first two. 

Any integral equation can be expressed in the general form 

Kp(P) = f ( P ) ,  VP E F (6.1) 

1 ~ is the boundary of a domain 9t of ~n (mainly n -  2 or 3). p is the unknown 
function, f is known and defined on F. The integral operator K is defined by 

Kp(P) = cp(P) + Ir p(P')G(P, P') dcr(P') 

P and P '  are points of F, G is any kernel (Green's kernel, its derivative). r is a 
constant and can be equal to zero. 

6.1.1. Collocation method 

With the collocation method, the solution is expressed as 

N 

P(P) = Z ue'ye(P) (6.2) 
g = l  

Functions "ye, (t = 1, ..., N)  are the approximation (or test) functions. Coefficients 
re, (g - 1, ..., N)  are the unknowns. The collocation method consists in choosing a 



192 a CO USTICS: BASIC PHYSICS,  THEOR Y AND M ET HODS 

set of N points Pj of F. The integral equation is then written at these points Pj and 
this leads to the following linear system: 

N 

Z ueK'~e(Pj) =f (P j )  for j -  1, ..., N 
g = l  

This system is solved to obtain the coefficients ve and then the solution p on F. 
Points Pj are called collocation points. 

Choice of the collocation points and the approximation functions 
This choice obviously depends on the kind of problem to be solved and on the 
a priori information on the behaviour of the solution. This information can be 
obtained from physical or mathematical considerations. 

The functions "ye are often chosen as spline functions (i.e. often piecewise 
polynomial functions). In acoustics, applications of the collocation method (see [1] 
and [2] for example) show that very often piecewise constant functions give quite 
satisfactory results. 

The numerical procedure is as follows: 

�9 F is divided into N sub-intervals Fj, such that  the Fj are disjoint and that 
their sum is equal to F. For  simplicity, the Fj can be chosen of the same 
length or area, unless special at tention must be given to some particular parts 
of F. Let Pj be a point of Fj; it is often chosen as the centre. In R, numerical 
tests show that the length of Fj must be of order of a sixth of the acoustic 
wavelength. 

�9 p is approximated by constants: 

p(P) = p(P})= #j for P 6 r ' j , j  = 1, ..., N 

�9 The integral equation is written at the N points P}, leading to the linear 
system of order N: A# = B. # is the vector of the unknowns. B is the vector 
given by Bj=f (P j ) , j=  1,...,N. The matrix A given later in an example 
depends on all the data of the problem (frequency, geometry of the domain, 
boundary conditions, ...) except on the source which appears only in vector 
B. 

Example. Let p(y, z) be the pressure, solution of the two-dimensional problem: 

(A + k2)p(y, z) = 6(y)6(z - zo) if z > 0 

Op(y, z) 
= 0 if z - 0  and a < y  < b 

0ff 

+ - -  p ( y , z ) - O  i f z - O a n d y < a o r y > b  

Sommerfeld conditions 

(6.3) 
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A harmonic signal (exp (-twO) is emitted by an omnidirectional point source S, 
located at (0, z0). 

This example describes the sound propagation above an inhomogeneous ground, 
made of a constant-width strip characterized by a Neumann condition and two 
absorbing half-planes characterized by the same normal impedance r (a complex 
constant, see chapter 4, section 4.1.3). If the source is cylindrical and its axis parallel 
to the axis of the strip, the three-dimensional problem can be replaced by the 
two-dimensional problem (6.3). ff is the normal to the plane (z = 0). 

Let G be the Green's kernel which satisfies the same impedance condition on 
(z = 0): 

(A + k 2)G(S, M) = ~Ss(M) if M -  (y, z > 0) 

~ + G ( S ,  M )  - 0 i f  z = 0 
Off 

Sommerfeld conditions 

The Green's formula applied to p and G leads to the following representation: 

p ( M )  -- G(S, M )  + 7 p(P')G(P' ,  M )  do(P') (6.4) 

M is a point of the half-plane (z > 0) and p1 is a point of the interval [a, b]. An 
integral equation is obtained by letting M tend to a point P0 of [a, b]: 

P(Po) - G(S, Po) + 7 p(P')G(P' ,  Po) dcr(P') (6.5) 

The unknown is the value of the sound pressure on [a, b]. Once this equation is 
solved, the sound pressure can be calculated anywhere in the half-plane (z > 0) by 
using the integral representation (6.4). 

Equation (6.5) is solved by the simplest collocation method: 

�9 The interval [a, b] is divided into N sub-intervals 1-'j = [aj, aj+ 1[ of the same 
length, such that al = a and aN +1 --b.  Pj is the middle of Ej. N is chosen such 
that [aj+l - -  aj['-' A/6. 

�9 The pressure p on [a, b] is approximated by a function constant on each sub- 
interval: p(P) = p(Pj) = # j , j  = 1, ..., N. 

�9 The integral equation is written at points Pj. This leads to the linear system 
A# = B, where A is a N • N matrix given by 

ck ISn+l 
Ann = (~mn -~ , G(P, Pm) d~r(P), m -- 1, ..., N; n = 1,..., N 

6mn is the Kronecker symbol. B is the vector given by 

Bm = G(S, Pm), m -- 1, ..., N 
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The next step is to compute A and B and then to solve the linear system. The 
pressure at any point M of the half-plane (z > 0) can be written 

p(M) = G(S, M) 
bk N llm+ 1 

- Z ]Am G(P', M) dcr(P') (6.6) 
(~ m=l  m 

An example of this result is presented in Fig. 4.8 of chapter 4 where the solid curve 
is obtained from (6.6). 

Integration on an infinite domain 
The boundary F may be infinite (straight line, plane, ...). Let us consider an integral 
equation of the following type: 

P(Po) =f(Po) + Iv p(P')G(Po, P') dcr(P') 

F denotes the boundary ( z -  0) and f is a known function (the incident field, for 
example). P '  and Po are two points of F. 

The integral can be divided into two integrals: one on [-A, A] and the other on 
]-c~,-A[U]A, +o~[, where A is a large positive number. With the collocation 
method, the first integral is divided into a sum of N integrals which are evaluated 
numerically. The other one is evaluated numerically or analytically, using the 
asymptotic behaviour of G. In some cases, if A is large enough, it can be neglected. 

In the previous example, there appears an integration on an infinite domain if, 
instead of G, use is made of the Green's kernel D(S, M) which satisfies the 
homogeneous Neumann condition on (z = 0). Another integral equation is then 
obtained (it is equivalent to (6.5)): 

P(Po) - D(S, Po) 7 + p(P')D(Po, P') dcr(P') (6.7) 
- - 0 0  

The unknown is the value of p on ]-c~, a[U]b, +c~[. The integration domain is 
divided into ]-oo, A[ and ]A, a[ for the first part and ]b, B[ and ]B, +oo[ for the 
second. A is a negative number and B a positive number. The intervals of finite 
length are divided into sub-intervals F] to apply the collocation method. On the 
intervals ]-oo, A[ and ]B, +oo[, the integration can be made by using asymptotic 
behaviours. If the values of lA [ and B are greater than several wavelengths, both 
integrals are ignored. But it must be emphasized that such a sharp truncation can 
lead to numerical oscillations around A and B. 

6.1.2. Galerkin method 

The Galerkin method applied to equation (6.1) consists in choosing an 
approximation space for p. p is written as previously (6.2) where the functions 'tim 
are a basis of this space. The coefficients Vm are determined by the equation 

(Kp, "fin) = ( f ,  "fin), n = 1, ..., N (6.8) 
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where (,) represents the scalar product defined in the approximation space. This 
leads to the following linear system: 

N 

Z llm(K")'m' ~n) -- ( f ,  ")In), n : 1, ..., N (6.9) 
m = l  

The numerical procedure is similar to the one developed for the collocation 
method: evaluation of a matrix A and a vector B before solving the linear system. 
The matrix A is given by 

Amn = ( K ' ) ' m , % ) ,  m =  1, ..., N; n =  1, . . . ,N 

The scalar product (,) is generally defined as an integral. This means that the 
evaluation of A leads to the computation of integrals of order (d + 1) for the 
Galerkin method and integrals of order d for the collocation method. The 
collocation method then leads to simpler computations. However, Wendland [3] 
shows that when spline functions are chosen as approximation functions, it is 
necessary to use spline functions of order (2m + 1) for the collocation method and 
order m for the Galerkin method to obtain the same rate of convergence. The 
choice of the method depends on the type of problem, the accuracy required and 
the computer power. Generally speaking, in acoustics, the simplest collocation 
method often gives satisfactory results. 

6.1.3. Method of Galerkin-collocation 

This method has been proposed by Wendland among others. It consists in 
separating the kernel of the integral equation into a singular part and a remaining 
part (which is regular): G = Gs + Gr. The equation which includes the singular part 
is solved by a Galerkin method. The other one is solved by a collocation method. 
An example of this technique is presented in [4] by Atkinson and de Hoog. The aim 
of the method is to obtain a good accuracy for the integration of the singular part, 
because the influence of this singular part is greater than that of the regular part, 
which can then be computed more roughly. Let us finally point out that the 
collocation method can be seen as a particular case of the Galerkin method where 
the second integration is computed through a one-point integration formula, that is 
by approximating the integrals by 

I] f(t) dt ~ (~ - a)f(7-) with r a point of [a,/3] 

6.2. Eigenvalue Problems 

6.2.1. Interior problems 

When the domain of propagation is bounded (i.e. it does not extend to infinity), the 
system of differential equations has eigenvalues, the wavenumbers k for which there 
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is no existence or uniqueness of the solution. Since the integral equation deduced 
from this system is equivalent to it, it has the same eigenvalues which are then 
solutions of 

I det A I=  0 

if A is the matrix of the linear system deduced from the integral equation. For 
numerical reasons, the eigenvalues k are the wavenumbers for which [ det A [ has a 
minimum value. To point out the efficiency of the method, let us chose a two- 
dimensional problem of sound propagation inside a disc, for which an exact 
representation of the solution is known. The eigenvalues obtained from this exact 
representation are compared with the values obtained from the integral equation. 
This example has been studied by Cassot [5] (see also [6]). 

It is convenient to use polar coordinates. The disc D with radius a is centred at 0. 
A point source S -  (R, 0) is located inside D. The boundary F of D is described by a 
homogeneous Neumann condition. The sound pressure inside the disc is the 
solution of 

(A + k2 )p (M)-  6s(M) inside D 

Op(M) 
~ = 0  on F 

Off 

is the outward unit vector normal to F. 

Exact solution. 
method: 

An exact expression for p can be obtained by using the separation 

+ ~  ~Hm(ka) Jm(kR)Jm(kr)e ~m~ (6.10) H(ol)(kd(S, M)) + 4 Jm(ka) p ( M ) -  4 m = -  

where M -  (r, O) is a point of the disc. Jm and Hm are respectively the Bessel and 
Hankel functions of order m. J'm(ka)- Jm(Z) for z -  ka. 

The eigenvalues are the eigenwavenumbers k such that Jm(ka)-  O. 

Numerical solution. 
potential: 

The pressure p can also be expressed by using a simple layer 

c H(ol)(kd(S ' M)) + Iz(P)Ho(kd(M, P)) dcr(P) 
p ( M ) -  4 4 

P is a point of F. The integral equation is obtained by writing the boundary 
condition: 

#(Po) ~ f"~ OHo(kd(Po, P)) ~ OHo(kd(Po, S)) 

Jo #(P) a d O -  _ 
2 4 Oro 4 Oro 
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P = (a, 0) and P0 = (r0 ~ a, 00) are two points of F. The unknown is the function # 
on F. 

The linear system is obtained by a collocation method and # is approximated by 
a piecewise constant  function. The boundary  F is divided into N sub-intervals Yy. 
This leads to A# = B with 

�9 the vector (# j ) , j  = 1, ..., N is the unknown ( # j - - # ( P j ) )  
�9 Bj given by 

Bj = ckHl(kpj) cos (~, ~-), 

�9 Ajt given by 

dje - -ckH1 (kd O) cos (dej, ~.)L(Fj) 

and 

) 

with ~ - -  SPj and p j - I I  ~11 

i f g # j , g -  1, ..., N; j - -  1, ..., N 

Ate - 2 - 
~TrL(re) 

4a 
{So(z)H1 (z) - Ho(z)S1 (z)} 

L(Ft) 
with z -  k and g -  1, ..., N 

~ - ~(e#); do -  eee#; d o -  II de# II; L(Fj) -- length of Fj 

So and S1 are the Struve functions [7]. 
The problem has a symmetry but this symmetry is ignored for demonstrat ion 

purposes. Table 6.1 presents a comparison between the first eigenvalues ke obtained 
from the exact representation and the eigenvalues ka obtained from the integral 
equation (i.e. such that I det A I is minimum). 

Table 6.1. 

N--  20 N -  40 

Ak Ak 
kr ka ka 

k k 

1.841 18 1.841 05 7.06(-5) 1.841 165 0.815(-5) 
3.054 24 3.053 93 1.015(-4) 3.054 19 1.64(-5) 
3.831 71 3.831 38 8.61(-5) 3.831 75 1.04(-5) 
4.201 19 4.200 52 1.57(-4) 4.201 10 2.14(-5) 
5.317 55 5.316 50 1.97(-4) 5.317 38 3.13(-5) 
5.331 44 5.330 83 1.14(-4) 5.331 39 0.938(-5) 
6.415 62 6.414 04 2.46(-4) 6.415 79 2.72(-5) 
6.706 13 6.705 16 1.44(-4) 6.706 00 1.94(-5) 
7.015 59 7.014 62 1.38(-4) 7.015 42 2.42(- 5) 
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For N- -  20, the relative error (Ak/k)  on the eigenvalues is less than 2.5 • 10 -4. 
For N -  40, this error is less than 3.2 • 10 -5. These results are quite satisfactory for 
engineering purposes. 

6.2.2. Exterior problems 

To avoid the spurious eigenvalues which appear when solving an exterior problem 
by an integral equation method, several methods have been proposed (see [8], [9], 
[10] for example). Among the simplest and most rigorous methods is the one 
presented in [9]. It consists in representing the solution as a linear combination of 
a simple and a double layer potential, with a complex coefficient. The example 
presented here shows the efficiency of this method. 

An incident plane wave, travelling in the plane (O, x, y) is represented by a 
function p o ( x ) -  exp (~kx). It is diffracted by a cylindrical obstacle of radius a and 
boundary F. F is described by a Dirichlet condition. Let p(M) denote the pressure 
at any point M, outside the obstacle, p(M) can be written as 

J Op(P') 
p(M) - po(M) - G(M, P') dcr(P') 

r Off(P') 

P' is a point of F and G(M, P')--t~H(ol)(kd(M, P'))/4. An integral equation is 
obtained by deriving this expression and letting M tend to a point P of F: 

10p(P) f Op(P') OG(P, P') Opo(P) 
~- Jr dcr(e') - ~ ,  VPCF (6.11) 

2 0ff(P) 0ff(P') 0ff(P) 0ff(P) 

This integral equation has eigenvalues which are the eigenvalues of the 
corresponding interior problem with a homogeneous Neumann condition, studied 
in the previous section. 

To avoid this difficulty, the solution p is expressed as a sum of a simple and a 
double layer potential, with a complex coefficient: 

p(M) - po(M) + #(P') Off(P') - 

for any point M exterior to the obstacle. The integral equation is obtained from the 
Dirichlet condition: 

- - - - 2 -  O~(P') - ~G(M, P d~(P')  - - p 0 ( P )  (6 .12 )  

for any point P of I'. 
For comparison, both integral equations (6.11) and (6.12) have been solved by a 

collocation method. 
Figure 6.1 presents the behaviour of] det A I versus ka, where A is the matrix 

of the linear system obtained from (6.11) and (6.12). Clearly, the linear system 
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]detAI 
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10-30 

~ . ( a )  

/ 
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1 2 3 4 ka 

Fig. 6.1. [ det A I versus ka: (a) equation (6.12), (b) equation (6.11). 
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Fig. 6.2. Modulus of the sound pressure: ( - - )  exact curve and curve deduced from (6.12), ( ....... ) curve 
deduced from (6.11). 
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deduced from (6.12) does not have real eigenvalues. In contrast, the determinant of 
A deduced from (6.11) has minima which correspond to the wavenumbers such that 
Jn(ka) = 0, the eigenvalues of the interior problem with a Neumann condition. 

Figure 6.2 presents the total pressure, computed for the eigenvalue k such that 
ka = 3.8317. The dotted curve corresponds to the pressure obtained from the 
Green's representation (6.11). The solid curve corresponds to the representation 
(6.12). It is quite similar to the curve obtained from the exact representation in 
a series of Bessel functions for the exterior problem. The curves are drawn 
versus kx, and x is the distance from the centre of the obstacle to the observation 
point. 

6.3.  Singularit ies  

6.3.1. Singularity of the kernel 

All the integral equations deduced from the Helmholtz equation correspond to a 
Green's kernel which is singular: G(M, P) tends to infinity when distance r(M, P) 
tends to zero. For this reason, all the numerical computations must be carried out 
with care. For the collocation method, this difficulty appears when computing the 
diagonal terms of matrix A. 

The integrals corresponding to a simple layer potential are well defined because 
the kernel is integrable. For example, in two dimensions, the Hankel function 
Ho(kr) behaves as In r. For numerical computations, the kernel can then be 
approximated by the first terms of its asymptotic behaviour when r tends to zero. 
This leads to an integral which can be analytically evaluated. 

The integrals corresponding to a double layer potential are defined as Cauchy 
principal values (see chapter 3). A presentation of the numerical procedure and 
some examples can be found in [10]. 

The integrals corresponding to a derivative of a double layer potential can only 
be defined as the finite part of an integral following Hadamard's works. This leads 
to the difficulty of an intrinsic definition of the limit. The theory of pseudo- 
differential operators is a good tool for defining this limit and proving that the 
techniques used in the case of diffraction by a thin screen, for example [11], are 
rigorous. 

6.3.2. Domains with corners, polygons 

The singular behaviour of the solutions of boundary value problems in polygonal 
domains has been studied by Grisvard [12], among others. For example, let 9t 
denote a polygonal domain in the plane (0, y, z) and let p(y, z) be the solution of the 
system: 

Ep - 0 inside 9t 

Bjp--gj on Fj,j-- 1, . . . ,N 
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Fig. 6.3. Domain ft. 

where the sum of the intervals Fj is equal to the boundary F of f~. E is a differential 
operator, of degree 2, with constant coefficients. The operators Bj are defined on 
the boundary and correspond to the boundary conditions. The gj are functions 
defined and known on Fj. 

The existence and uniqueness of the solution p are proved. Around each corner, p 
has a singular behaviour and is written p = ps + pr where ps is a singular function 
which is explicitly given and Pr is a regular rest. 

The number and the behaviour of the singular functions depend on the values of 
the angles wj and on the type of the boundary conditions. Similar results have also 
been obtained in three dimensions. 

Discontinuous boundary conditions, cracks. Problems described by partial differ- 
ential equations and mixed discontinuous boundary conditions have been studied 
by Eskin [13]. For  example, let p be the solution of the following two-dimensional 
problem in the half-plane (z i> 0): 

Ep(y, z ) =  0 if z > 0 

Blp(y, z) =f(y)  if y < 0 and z - 0 

B2p(y, z) - g(y) if y > 0 and z = 0 

conditions at infinity 

where E is a differential operator. B1 and B2 are boundary operators. The functions 
f and g are defined respectively on (y < 0, z = 0) and (y > 0, z = 0). 

This problem is similar to those presented in chapter 5 where the Wiene r -Hopf  
method is described. The proofs of the existence and the uniqueness are partly based 
on the Wiener -Hopf  method. The discontinuity of the boundary conditions implies 
that p has a singular behaviour around (0, 0) which can be obtained explicitly. 

Example." L e t  ( y < 0 ,  z - 0 )  be described by a Neumann condition and 
(y > 0, z -  0) be described by an impedance condition. It can be shown [14] that 
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the solution p around (0, O) behaves as 

p(y, O) = O(y log y) + constant, when y---* 0 

The method proposed by Eskin to obtain the behaviour of the solution around such 
discontinuities is quite general. It applies, for example, to propagation problems 
and problems with cracks, when the conditions on both sides of the crack are 
different. Let us also note that Achenbach ([15] for example) has developed 
applications of integral equations and Wiener-Hopf  methods to mixed boundary 
value problems such as diffraction of elastic waves by a slit. 

It is always interesting to obtain a priori information on the solution such as its 
singular behaviour. Introducing this information into the numerical solution 
technique leads to more efficient algorithms. 
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CHAPTER 7 

Introduction to Guided Waves 

AimO Bergassoli* 

Introduction 

This chapter presents an introduction to the study of guided waves. Our aim is to 
present some basic results in order to help the reader to get a better understanding 
of more specialized publications. 

We have tried to give more importance to the explanation of the physical 
phenomena than to numerical calculations, sometimes purely academic. This 
chapter has been written for both engineering and research purposes. 

Only modal methods are described here. They are suitable for numerical 
computations. The straightforward study of the propagation of guided plane waves 
with more classical techniques such as electrical analogies and variational methods 
applied to discontinuities is still the most practical method. 

Finally, let us point out that finite element methods are a good tool when the 
previous methods cannot be used. 

7.1. Definitions and General Remarks 

7.1.1. Guided waves 

If the sound field emitted by a simple source has larger values at an observation point 
than it would have at the same point in an isotropic, homogeneous, infinite medium, 
this means that there is a guiding phenomenon along the path. This very general 
definition includes reflection by obstacles, diffraction, focusing effects in the propa- 
gation medium, and so on (of course, a more restrictive definition could be chosen). 

From this, it can be seen that any kind of propagation in a realistic medium is more 
or less guided. Guiding effects have been observed for a long time, even before a 
theoretical description was proposed: short waves in electromagnetism, acoustic ducts. 

Guided wave phenomena are quite similar in electromagnetism and in acoustics 
in fluids and solids (surface of the earth). Actually, many theoretical results were 

* Chapter translated by Dominique Habault and Paul Filippi. 
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obtained during World War II, especially for the study of large distance radio 
communications and radar applications. At the same period, a better knowledge of 
underwater sound propagation was obtained because of applications to target 
detection. The phenomenon of waves guided by the surface of the earth was also 
extensively studied when the first nuclear explosion tests were carried out underground. 

Let us point out that artificial guides (ducts) often have simple shapes, with 
finite length. They are used to produce or guide sounds (musical instruments, 
stethoscope) but more often they are used to carry gas, smokes or liquids from one 
point to another. The acoustical phenomenon is then added: it can be a nuisance 
(sound radiation from the walls or the ends of the guide) or it can be used for 
measurements (detection of cracks or defects). 

Let us also briefly note that a tube of varying section and irregular shape (along 
its axis or/and in the section) can be as efficient as a circular cylinder with a straight 
axis. However, in this more complicated case, separation methods cannot apply, 
even in the direction of the axis. It must be noted that even a slowly varying section 
produces backward reflections. But if the angular frequency ~o is small enough, the 
plane wave is filtered everywhere so that, in a finite length tube, there is a standing 
wave system which can include energy loss by the guide ends. If the tube is quite 
long, the stationary regime will appear after some time. In real cases, only a 
transient regime is present. The stationary regime corresponds mainly to academic 
problems (room acoustics, machinery noise). 

All these remarks will appear again in the problems studied in the following 
sections. But it is always essential to determine how the chosen model fits the 
problem. 

On the contrary, if the angular frequency w is large, all the reflections which can 
be modelled by a random model will produce a backward flow. If the emitted signal 
is quite complicated, this leads to many difficulties and restrictions. 

Finally, when a simple model cannot be used, the solution must be computed 
through a finite element method. As far as possible, one must try to mix both 
methods: separation methods for simple parts of ducts and finite element methods 
for more complicated volumes. When numerical methods are used, it is essential to 
obtain estimates of the errors. Furthermore, without an enormous number of runs 
with different values of the parameters (which is too much work and quite 
unrealistic), numerical computations alone seldom provide a good aid to a better 
understanding of the observed physical phenomena and their possible consequences. 

This is the reason why the study of simple guides is essential. It must also be 
noted that many natural guides (surface of the earth, shallow water, etc.) as well as 
artificial guides (rigid tubes) can be described as simple guides. Even a slow 
variation of the axis or planes of symmetry does not change the results. 

In the following, the behaviour of the sound pressure is assumed to be harmonic 
with time and is described by the term (exp (-twO). 

7.1.2. Boundaries 

Only results related to wave guides are presented here. 
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Preamble 
The first problem to solve is the total reflection of a wave by an interface. Except in 
particular cases such as quasi-rigid tubes, when flexural waves cannot be excited, 
the reflection coefficient depends on the angle of incidence. Indeed, the reflected 
field is rapidly attenuated since the incident energy is absorbed in the pores of the 
material. These losses are much larger than the classical losses caused by viscosity 
and thermoconduction in the fluid. The guiding phenomenon no longer exists. Let 
us consider the interface between two media characterized by different physical 
properties. Both media may have properties varying with width. If they vary 
rapidly (with the wavelength A), the interface is sharp; if they vary slowly, it is a 
'soft' interface. For  particular conditions, media with varying properties can 
correspond to a total reflection case: deep ocean, atmosphere, ionosphere, deep 
layers of the earth. 

We first consider the case of two infinite half-planes. The notion of an 'infinite 
half-space' is a good model of a deep layer: deep enough that any wave inside is 
sufficiently attenuated from one side of the layer to the other. 

The sharp, plane interface between two fluids 
Both fluids are characterized by a density pi and a sound speed Ci, i -  1, 2. Any 
source radiation can formally be decomposed into plane waves (propagative, 
evanescent, inhomogeneous). Let us then consider an incident plane wave on the 
boundary ( z -  0). The incident, reflected and transmitted fields can be written as 

~i(X, Z) -- e ~k~(x sin 01 - z cos 01). ~r(X, Z) -- ~ e  ~k~(x sin 01 + z cos 01). 

~t(x, z) - ~-e ,k2(x sin 0: - z cos 0:) 

with k j -  ~/cj ,  j -  1,2. The functions 4) are in general complex. The angles Oj are 
the angles measured from the normal direction to the surface. ~ and ~- are the 
reflection and transmission coefficients respectively. 

The boundary conditions on ( z - 0 )  are the conditions of continuity of the 
pressure and the normal velocity: 

0 ~ 1  0q~2 
Pl  t ~ l  - -  p2~b2 and ~ = 

Oz Oz 

with ~1 - -  ~ i  7 t- ~r  and ~2  - -  ~ t .  

This leads to the Snell-Descartes law and ~t and ~- are given by 

~ , _  plCl COS 01 --  p2C2 COS 02 = (P2/Pl) COS 01 --  ~/(Cl/C2) 2 -- sin 2 01 (7.1) 

(PZ/Pl) COS 01%- ~/(Cl/C2) 2 -  s in  2 01 plCl COS 01 -Jr p2c2 COS 02 

2(p2/Pl) cos 01 
3- = __ (7.2) 

(P2/Pl) COS 01 + ~/(Cl/C2) 2 -  sin 2 01 

The relations still hold for complex parameters. By analogy with electromagnetism 
(E.M.), the ratio Cl/C2 is called the index. 
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In the particular case of an air/water boundary, r  " "  345 m s -1, 
c2 "~ 1500 ms  -1, P l -  1.29, P 2 -  10 3, formulae (7.1) and (7.2) show that if the 
source is in water, the interface is perfectly reflecting for any real 0. If the source is 
in air, a plane wave cannot propagate in water if the angle is greater than 13 ~ 

From these results, it is possible to check that the law of energy conservation is 
satisfied. In both media, the intensi ty/ j  of the plane wave is equal to 

( pj) l j I 
~ =  , j = l , 2  
2&cj 2&cj 

The normal components of the energy vector are continuous. 
Expression (7.1) shows that the reflection is total for 01> arcsin(cl/c2). In this 

case, the amplitude of the transmitted wave tends to zero when z tends to (-oo).  In 
this medium, for the evanescent waves, the surfaces of equal amplitudes are parallel 
to the interface and the surfaces of equal phases (wave surfaces) are oblique, 
following Snell's law. 

It must also be noticed that gt can be zero for an angle called Brewster's angle. 
This is a fundamental solution for radio waves to penetrate the ionosphere. The 
condition is 

(p2/Pl )  2 -- (Cl/C2) 2 
O< < 1  

(p2/Pl )  2 -  | 

which is always true if c~ > c2 and always false if not. For the air/water interface, 
this angle does not exist. It can exist for the water/solid interface. 

Sharp interface between a fluid and a solid 
The elastic properties of the solid medium are characterized by Lam6 coefficients. 
This approximation is correct for metals but not so much for rocky grounds and 
even less for sediments. Let ~bl(x, z) denote the potential in the fluid and ~b2(x, z) 
and ~2(x, z) the scalar and vector potentials in the solid. Let us introduce: 

Ul ----Vq~l; U2---Vq52 -+- V X ~2 

In the case of a harmonic plane wave, the continuity of the stress components 
(rzz-pressure in the fluid, and "rzx-0 for no tangential coupling) and the 
continuity of the normal velocity uz leads to 

02052 
/~IA~I --/~2A~2 -~- 2#2 0z 2 

Oq2~32 / 

OXOZ OX 2 0,7, 2 

0~1 0(//)2 0~2 

Oz Oz Ox 

02~)1 02~2 Oq2~l 
2 t = 0  
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In the solid, the velocities 22,L and r T of the longitudinal and transverse waves 
are given by pzC2, L -  /~2-k-2/12 and p2 c2, T-- /12-  If 02 and 3'2 are the angles of 
refraction for both waves, the reflection coefficient in the fluid can be written as 

sin 2 (23'2)(p2c2, T~ COS 3'2 -- P2r 02) %- P2r L/COS 02 -- plC1,L/COS 01 

sin 2 (23"2)(p2CZ, T/COS 3'2 -- p2C2, L/COS 02) + p2C2, L/COS 02 q- plC1,L/COS 01 

(7.3) 

By using Snell's law, it is possible to express ~t as a function of one angle only. For  
a source in the solid, the same method can be used to evaluate the reflection 
coefficient of the longitudinal and transverse waves in the solid. Polarization 
phenomena are then observed. 

This model of two infinite half-spaces is quite academic but can often be used to 
describe deep layers (deep compared with the wavelength A) if there is enough 
attenuation. No attenuation term is explicitly introduced here but it must be taken 
into account to describe realistic cases. 

Let us remark that the case studied in the previous section is a particular case of 
the interface fluid/solid with/12---0. 

Two particular values of the angles must be considered: arcsin(cl/cz, L) and 
arcsin(cl/c2,7;). For a metallic medium, c2,L is about 6000 ms  -1 and c2, r about 
3000 m s -1, then 72 < 02. In the particular case of water/solid: 

arcsin(cl/cz, L) ~- 14 ~ > arcsin(cl/cz, T) ~- 30 ~ 

The water/solid interface is perfectly reflecting for 01 > 30 ~ and (almost) perfectly 
reflecting for any value of 01. 

For  seismic applications, it is interesting to study the case of a longitudinal 
wave travelling in the solid and transformed into a transverse wave after 
reflection on the boundary.  These surface waves are similar to Rayleigh waves 
which exist at the sol id/vacuum boundary.  Such surface waves are 'free' 
solutions of the Helmholtz equation. In other words, following Brekhovskikh [3], 
there exists an angle such that the denominator  of fit and 3- (such as in (7.3)) is 
equal to zero. Since their numerators are not zero for this angle, the coefficients 
tend to infinity. Formally,  there can be reflection and transmission in the absence 
of excitation. 

This surface wave which is the sum of a longitudinal and a transverse wave (with 
an elliptic trajectory) can easily be observed in the far field, in earthquakes. It is a 
wave guided by the interface. 

It must be noted that the velocity of Rayleigh waves, VR, is smaller than c2, v and 
that their phase velocity, parallel to the boundary, is c2, ~/s in  3'2. It is then possible 
to solve the equation for this variable. 72 necessarily has the form (7r/2 - c0, which 
means that the amplitude of the surface wave exponentially decreases with depth. 
This is the reason why it is called a surface wave and it satisfies the law of 
conservation of energy. 

This wave exists if (c2,L/Cl,L)< X/2/2 which is generally true. Furthermore, it 
can be shown that a solution exists also in the fluid, close to the boundary; its 
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velocity is smaller than Cl, L. This type of wave does not exist at the boundary 
between two fluids since it is based on the existence of transverse waves. For plates 
immersed in a fluid, surface waves also exist around boundaries; they are called 
Lamb waves. 

Soft interface 
In this section, the sound field is evaluated from a ray method but the quantitative 
study must be based on a wave approach. Anyhow in some cases, the analysis based 
on a ray method appears to be very similar to that based on plane wave 
decomposition. Soft interfaces are encountered in media such as the ionosphere 
(E.M.), troposphere (E.M. and infra-sound) and ocean (sound waves). 

Let us consider an (almost) infinite layer in which the wave propagation is 
characterized by parameters slowly varying in the direction O z  perpendicular to the 
boundaries of the layer. This layer is assumed to be suitably modelled as a multi- 
layered medium, with constant physical properties in each sub-layer. 

If the velocity of an acoustic wave varies with the depth z, it is easy to imagine 
that the ray path will behave as shown in Fig. 7.1. A plane wave has, in the 

. . . #  

reference medium, the velocity c. Its wavevector k makes an angle ~ with the 
boundary Ox.  qa is the complementary of the angle 0 previously used; this is a 
notation classically used in E.M. and in underwater acoustics. Snell's law then 
gives 

COS ~ COS qOj COS q0j+l 1 

C Cj Cj+l Co 

-J•o 

0 

1 
. .  

2 

3 

~ x  

j + l  

Fig. 7.1. Ray curving. 
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The last term corresponds to a layer in which ~ -  0 if it exists. Let us define the 
index by n j -  c/cj or kj = n j  k. The velocity potential  in each sub-layer can be 
written 

~b(x, z) - 4~j exp [&fix cos ~j + z sin ~bj)] 

= ~bj exp[cw(x cos ~j + z sin ~j)/c A 

= 4~j exp(~kx cos 99)exp ~ -  z sin 99j 
r 

If qj is equal to nj sin 99j, Snell's law implies q2 _ n  2 _ cos 2 99. qj has been 
introduced in E.M. by Booker. It is generally complex. I f / 3  denotes the total 
complex phase 3 - kx(cos 99 + qjz) and if 99j is assumed to be a constant for any z, 
4~(x, z) = 4~ exp (c/3) and there necessarily exists a reflection plane with [ ~ [ -  1. 

The variations of/3 in the multi-layered medium are given by 

n 

A 3 -  k ~ qj~Sz 
j = l  

for n sub-layers. Let & tend to zero and the number  of layers tend to infinity, then 
A 3 - -k  fzZ 2 q dz depends only on q and 

Z 

q~(x, z) = q~ exp - & ( x  cos ~ + q dz) 

This formula is called a phase integral. It means that  the phase term is cumulative. 
A more detailed study shows that  the pressure can be written 

p(x, z) - Pref q 1/2 exp ~k(x cos 99 + q dz) 

where k and Pref are evaluated close to the surface. 
This solution is correct in the optics approximation:  it is called W.K.B.  (after 

Wentzel, Kramers,  Brillouin). It is valid if the sound speed varies slowly over a 
wavelength along the path. This can be seen, for example, from a comparison with 
an exact solution. Then this method cannot  be used in the case of a sharp interface. 

The problem is, as before, to compute the reflection coefficient and incidentally 
the level at which 99(z) is zero. 

Since q is in general complex, it is necessary to find the right zero of q, denoted 
q0, among the zeros of q(z) in the complex plane and to evaluate the phase integral 
on a contour, which can be difficult to determine if q0 is not an isolated point, q0 is 
called a reflection point. This technique is an extension of the ray theory for 
complex indices. 

In order to use the geometrical approximation,  let us assume that  nZ(z), cos 99 
and q(z) are real and that  n 2 varies slowly with z and is equal to 1 in the reference 
medium. At the level z0 for which 99 becomes zero and the z-direction of the ray 
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changes, the reflected potential can be written 

d/)r(X, Z) = all) exp Lkx cos qO - q dz 
0 

This leads to, ~ t -  exp [2& ~o ~ q dz], which corresponds to total reflection with a 
phase change. 

The exact theory shows that fit is given by f f t -~  exp[2~k f o ~  dz]. This 
additional rotation term ~ is in general small compared with the integral. It can be 
neglected if the integral is evaluated in distance and time, that is for the study of a 
wavefront propagation. 

The following example is quite classical: 

n 2 ( z  ) = [ 1 for Z < Z1 

t 1 - a ( z -  Zl) for z > Zl 

q _ v/sin 2 ~ __ Og(Z --  Z1) 

a is real, positive. Then 

The reflection level is such that 

sin 2 ~ 1",-0 2 sin 3 
z 0 = z l + ~  and Jz q d z = -  

a , 3 a 

This leads to 

( ~  sin3 ~P) 
-- ~ exp ~k 

a 

if the factor c is introduced, even though its existence has not been proved up to 
here. To do so, the solutions are assumed to be of the following form: 

~b(x, z ) =  ~b(z) exp (~'y(z)) exp (t.kx cos qD) 

When substituting this expression into the propagation equation, derivatives -~' and 
-)," appear. They are assumed to vary slowly compared with a wavelength. This 
leads to a correct W.K.B. approximation. If Zl = 0 the equation for ~b is 

02 q~ Jr-k2[n2(z) c o s  2 ~]t~ 0 
Oz 2 

If ~ is defined as ( -  sin2 qo- az, the equation becomes 

02r 
-~- k2f~b - -  0 

Oz 2 

This is a classical equation [1, 2, 3]. Its solution is expressed in terms of Bessel 
functions of order 1/3, also called Airy functions. These functions appear in all 



C H A P T E R  7. I N T R O D U C T I O N  TO GUIDED W A V E S  211 

cases where the phase is stationary; this is the case at the level for which ~ becomes 
zero. 

with w = 2(k/oL)(3/2. For z > zo, or ( < 0: 

2 k  
(1) W t __ _ __ (__r  3/2 O(z) [ -CH1/3(w')]; 3 c~ 

The solution H (2) " t) 1/3tW m u s t  be discarded because of its behaviour when z tends to 
infinity. 

The unknowns are B/A', C/A and ~.  They are found after adding two relations 
on z = z0 (continuity of ~b and Odp/Oz). It is found that 

L 2 / 3  - -  I2/3 + / ' ( /1 /3  - ~ - / - 1 / 3 )  ~ =  
I - 2 / 3  - -  I2/3 -- L(I1/3 q - / - 1 / 3 )  

with Iv(z) = modified Bessel function = exp(-t, uTr/2)J,,,(ze'~/2). The argument of 
the I functions is w for z = 0. The phase of ~ is ~, -- (4k/3c0 sin 3 ~ _ 7r/2, where 
the coefficient c appears. 

To summarize this section, it has been shown how to evaluate the complex 
reflection coefficients (along with the transmission coefficient) for sharp or soft 
boundaries between two semi-infinite media. It must be noticed that the method of 
phase integral is very general and the W.K.B. method is quite convenient for 
propagation in a slowly varying medium. 

Reflection on an elastic thin plate 
The elastic waveguide (plate, cylinder), immersed in a fluid (air, water) is studied 
with the same method used for the fluid waveguide, which is only a particular case 
of the elastic waveguide. The propagation is described using discrete modes and the 
expressions for the cut-off frequencies, phase and group velocities are given. 
Because it is possible to excite transverse waves, a mode is a combination of 
longitudinal and transverse waves. 

If this thin elastic waveguide is the boundary of a fluid waveguide, the 
interesting case is when this boundary is reflecting. Generally speaking, for audio 
frequencies, the thicknesses of the boundaries of artificial waveguides are quite 
small (a few millimetres). Actually, these boundaries are made of plastic or metal 
and these thicknesses are large enough that the guide cannot be bent and is self- 
supporting. 

Even at 10 kHz, the wavelength in the plastic or metal is greater than 25 cm 
and then only simple flexural waves must be taken into account (these frequencies 
are well below the cut-off frequency of the first transverse mode). This case is 
examined in chapter 8; the main result is that, for an infinite plate, the coincidence 
of the phase velocities in the fluid and in the plate leads to an almost total 
transparency. Then, to avoid this strong coupling effect between fluid and plate, 
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one must try to move the coincidence frequency out of the frequency band of 
interest or, if necessary, to limit the propagation of the flexural wave by adding 
stiffeners or supports at particular locations. In the case of plates of finite 
dimensions (at least in one direction) perturbing flexural modes must be taken 
into account, especially on the parts of boundaries isolated by stiffeners or 
supports. 

Finally, far from the resonance or coincidence frequencies, the transmission 
through the plate is given by the mass law and, even for thin plates, the reflection 
coefficient is close to 1. Let us go into more details. 

The plate is characterized by a surface density M~. Let Pi denote the incident 
pressure corresponding to a wave which impinges on the plate with an angle 0. Let 
pr and pt respectively denote the reflected pressure on the plate and the transmitted 
pressure through the plate. For symmetry reasons, the transmission angle is 0. The 
impedance of a plane wave in the fluid is pc. The continuity conditions for the 
pressure and the normal velocity u lead to 

Pi  - Pr  = P t  - -  p c  ~ ; 
cos 0 

Pi  -+- Pr  - -  P t  ~ t w M s u  

In the case of low rigidity, that is of a locally reacting plate" 

Pr - t w M s / p c  

Pi (1 - t, wMs/pc)  

In the elastic plate, if w is not too large, the velocity of flexural waves is 
approximated by 1 

Vii cf = .8c~f with c L - 
CL 

1 - - 0  .2 

/ E 
, and CL = 41 

M~ 

Ms is the density, cr the Poisson's ratio (a ~ 0.3), E the Young's modulus and h the 
! 

thickness of the plate, c L is equal to several thousands of metres per second 
(5000 m s -1, for example). It is easy to show that the mass impedance ( - t w M s )  is 
replaced by the impedance: 

-ca;Ms I 

and then 

_ _  ( 0)41 cf sin c 

( -uvMs/pc)[1 - ((cf/c) sin 0) 4 COS 0] 

1 - (-t, wMs/pc)[1 - (cf/c) s in  0) 4 COS 0] 

I This is the reason why stiffeners and supports must be irregularly spaced in the direction of propagation. 
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The transmission is total for cf= c/sin 0, this occurs at the critical frequency f~: 

c 2 

f~= 
1.8hc~ sin 2 0 

If cf < c, the simplified formula of mass reactance is a correct approximation. 
When the mass law applies, the losses by transmission are quite small, for 

example 10 -3 of the incident energy. They must be compared with the classical 
losses in the propagation phenomenon. 

7.2. The Problem of the Waveguide 

7.2.1. General remarks 

It has been seen in the previous section that, for particular conditions, natural or 
artificial boundaries can be considered as perfectly reflecting. This must be so in 
order that a wave can propagate a long distance, taking advantage of successive 
reflections. But it is also necessary that the waves reflected from either boundaries 
add in a constructive way. This means that all the components must have a 
common propagation term. In such conditions, a propagation mode appears. The 
simplest waveguide consists of a fluid domain bounded by two reflecting parallel 
planes. More precisely the planes are characterized by I ~ [ =  1, the phase change 
can be different on both boundaries. 

7.2.2. The condition for mode propagation 

Let qD still denote the angle (7 r /2 -  0). Let ~t0 and ~f-1 be the complex reflection 
coefficients on boundaries (z = 0) and (z - H)  respectively. An incident plane wave 
on ( z -  0) and the corresponding reflected plane wave on ( z -  H) can be written 

r  Z) --  r ~k(x cos qo + z sin qo) and 

Cr, 1 (x, z) - r  1 e ~k(x cos ~ - z sin ~)e  2~kH sin 

This corresponds to 

r  1 
~ 1  ~ o n  z - H  

r 

Similarly, when ~br, 1 impinges on ( z -  0), the reflected wave must be identical to ~bi, 
and then 

~ 0  ~'1,1 e 2t, kH sin q0 ~ 1 

This is the fundamental equation of the theory of modes in this waveguide. It is also 
written [2]: 

log ~0 + log ~ 1  d- 2~kH sin ~ = 27 rm where n is an integer 
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The existence of modes is determined from the existence of solutions qD of this 
equation. In particular, real values of qOn correspond to propagation modes. 
For gt0 = ~ 1  = 1, then H sin (~o)/A = n/2 .  For fit0 = - 1 and ~ 1  - -  1, then 
H sin (~o)/A = (2n + 1)/4. 

When gt is expressed in the more general form with a phase integral, the possible 
waves (propagative, evanescent, inhomogeneous, ...) can be deduced from the study 
of the poles (real and complex), the branch integrals and the integrals on the 
imaginary axis. The next step is then to separate the waves which provide the main 
contribution. In the far-field the main contributions come from the propagative 
modes. This is why the simple problems (in air, for instance) can be solved by a 
straightforward method. 

7.2.3. Solution of some simple problems 

It is assumed in this section that fit - + 1, with possibly the condition that the angle 
of incidence 0 is larger than 0L (limit angle). 

Infinite plane waveguide 
The fluid medium is characterized by p and c and bounded by two perfectly 
reflecting, parallel planes. First, we solve the equation of propagation and then, by 
adding the boundary conditions, we find the eigenvalues which lead to the 
determination of the modes. The system of equations is 

Ar z) + k 2r z) = 0 

0r z) (7.4) 
= 0 on y = 0 and y - H  

Off 

The Neumann condition on (y = 0) could be replaced by a Dirichlet condition 
(r = 0) in the case of a layer of water. A more general form of boundary condition 
would be (mixed conditions) 

0r 
~ - t -  gr = 0 
Off 

Particular solutions of (7.4) can be found by using the method of separation of 
variables: 

r z) -- Y ( y ) Z ( z )  

This leads to 

yll Z It 
(y) + - -  (z) + k 2 - -  0; 

Y Z 
Y ' ( y ) -  0 on y = 0 and y -  H 

and to 
yH 

(y)  = _/32, 
Y 

Z H 
( z ) -  - k  2 -+- i~ 2 = - K  2 

Z 
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f12 can be complex. It is a separation constant still to be determined. Notice that 
writing (+/32 ) obviously leads to the same final result. 

Y is then obtained as 

Y(y) - A cos fly + B sin fly; Y'(y) = ~ ( - A  sin fly + B cos fly) 

The boundary conditions lead to B = 0 and s i n / 3 H =  0. The equation for the 
eigenvalues i s / 3 . -  m r / H  where n is an integer. 

Z ( z )  - -  A n e  ~k"z + B n e  -~k'z 

(X3 

q~(y, Z) -- Z (Ane ~k,,z .+_ B n e - ' k " z )  cos 
n=0 

nzry 

H 

with k 2 - (w/c) 2 - / 3  2. 

If k, is imaginary, the mode is evanescent. The mode (n = 0) is a plane wave with 
wavefronts perpendicular to the planes xy. If there is a reflection for some value of 
z, there are two plane waves travelling in opposite directions. 

It must be noticed that the mode filtering which appears because of the definition 
of the cut-off frequencies implies that a reflection on any obstacle will provide, far 
from it, a plane wave (mode 0) in the opposite direction. Then the diffraction of the 
incident wave (mode 0) on an obstacle will be expressed by a modal decomposition 
in which all the modes except one are attenuated. 

When solving a problem with real sources, An and B, are still to be evaluated. 
They can be obtained, for example, by equating the normal velocities on the surface 
of the source and in the general expression of the sound field. The phase velocity 
c~,, of mode n is such that 

w ~ n271-2 
kn - -  ~ - -  k 2 

r n H 2 

and then 

r 

r n V~ 1 _ n 2 / ~ 2 / 4 H 2  

It becomes infinite for the cut-off frequency fc, n = nc/2H. For  c = 345 m s -1, and 
H = 0.4, fc, 1 = 431 Hz andfc, 2 = 862 Hz. The phase velocity is always greater than 
c and tends to c when f tends to infinity. For  a fixed w, there is at least one possible 
velocity (c for mode 0), and several in general. Figure 7.2 shows these properties. 
Figure 7.3 presents the transverse distribution of the pressure. 

In general, the coefficients ~n, C~o,n and kn have a small imaginary part, simply 
because of classical losses. This means that the propagative modes are 'slightly' 
attenuated and the evanescent modes are 'slightly' propagative. 

Not all the modes are necessarily excited at given angular frequency w0. This 
depends on the spatial distribution of the source. Formally, the spatial repartition 
of the source can be decomposed on the cos (tory/H) functions. For  a complicated 
real source, it is easy to understand that information about the form of the source is 
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Fig. 7.3. Acoustic pressure in the waveguide. 

partly lost because of the spatial filtering of the guiding phenomenon.  For example, 
when a plane wave is observed in a wave guide, it is not possible to know whether 
the source is a point source or a plane section which vibrates like a piston. 

The geometrical aspects of the guiding phenomenon can be understood with the 
help of Fig. 7.4. The wavefronts are represented by two plane waves symmetrical 
with z. At any intersection point, it is possible to draw planes parallel to O z  on 
which ~ = + 1. The following relations hold: 

n A  A 
H cos On - ~ ; A~o, n = 

2 sin On 

Cqa, n --- 
c nTrc 

; O n -  arccos ~ = arccos 
sin 0n coil 

nA 

2H 
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Fig. 7.4. Geometrical interpretation. 

At a cut-off frequency, %, n is infinite and then all the points located on a parallel to 
Oz have the same phase. This is generally not observed, because of classical losses 
for instance. The discontinuities of On are attenuated. 

In the case of propagation of a pulse or a narrow-band signal (+Au;), the group 
velocity Cg corresponds to the velocity of energy circulation. By definition: 

d~ 
Cg~ n ~ m  

d k n  

If c~, n is replaced by its expression 

Cg, n - -  C sin O n 

o r  
1 

Cg, n 

2 and then Cg, n C~p, n - -  C 

The notion of group velocity is interesting in the case of narrow-band signals or 
when the phase is stationary. 

�9 Mode 0 is of great importance. From a historical point of view, it was the first 
studied. It is the only useful propagation mode in acoustical instruments or in 
artificial guides at low frequencies. For this mode, it is easy to deal with 
problems of perturbation of the propagation with z without necessarily 
considering the whole modal theory [5]. 

�9 It is interesting to evaluate the trajectory of the particle of fluid in the guide. 
Apart  from a coefficient (~w) the velocity of the particle is given by 

Odpn(y,  Z) ____ t, k n ( A n e  bknZ + B n  e -~knz)  c o s  nTry 
OZ 

O~n(y, z) FlTr 

H 

Oy 14 
(Ane ~knz + Bne -~k"z) sin 

nTry 

H 
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If/3n is real, these two components  are in quadrature" the pa th  is elliptic. If/3n is 
imaginary,  the two components  have the same phase: the pa th  is a par t  of  a 
straight line. 

Figure 7.5 shows this pa th  for the mode  n -  1, propagat ive or evanescent. 

Rectangular duct with reflecting walls 
Let a • b denote the section of the duct. The solution of  the 3D Helmholtz  equation 
is expressed as r y, z ) =  X(x)Y(y )Z( z ) .  The boundary  condit ions are 

Or y, z) Or y, z) 
= 0  on x - O , x = a ;  

Ox Oy 
= 0  on y - O , y - b  

With the same method  as above, we find two separat ion constants  a 2 and/3  2. 

X t t  ytt mTr nTr 
(x) -- - a 2 ;  ==(y) -- -/32; a -- ~ ; /3 -- --7- (m, n integers i> O) 

X Y a b 

mTrx nTry 
Xm(X) Yn(Y) -- cos cos ~ - -  ~r)mn(X, y) 

a b 

with 

r y, z) -- Z ~)mn(X,  y)(amne I~kmn2 + nmne-l'kmn2) 
m, n 

kZn - k 2 - (m27r2~-k-~n27r2) - -  w 2  

\ a 2 b 2 r m n 

Cqo, m n is the phase velocity along Oz for the mode (m, n). It is given by 

Cqo, mn -- 
c r 

V/1 - (Tr2/k2)(m2/a 2 -k- n2/b  2) 

V/l --L2, mn/f  2 

V/1 - (A2/4) (m2/a  2 + n2/b 2) 

-~A 
r 

Evanescent 
mode 

Propagative 
mode 

Fig. 7.5. Fluid particle trajectories for n = 1. 
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i f  fc, mn is the cut-off frequency for the mode (m, n), 

c / m2 n2 

f c ,  mn 2 a 2 + b 2 

For  example, with c = 345 m s -1, a - v/2, b = 1, m - 3, n - 2: 

for f =  1000 Hz, fc,32 = 572 Hz and c~,32 = 4 2 0  m s  -l" 

for f =  1144 Hz, c~,32-  398 m s  -1. 

F rom a geometrical point of view, there would be four incident plane waves with 
angles On and On such that O n -  arcsin (mTrc/wa), O n -  arcsin (nTrc/wb). 

Figure 7.6 shows the stationary regime in the cross section. 
If two perfectly reflecting conditions are added at z - - 0  and z - d ,  they are used 

to evaluate the coefficients A m n  and Bmn. We find 

mTrx nTry qTrz 
C~mnq(X, y,  z) -- cos cos cos - - ,  m, n, q, integers I> 0 

a b d 

k mnq 2 (m2 2n2 2q2 2) + + a2 b2 
These relations provide a description of the modes in a rectangular parallelepipedic 
enclosure. If the sound excitation inside the enclosure is represented by a plane 
wave and begins at time to, then a mode is established at to + At when the 
wavefront coincides again after several reflections with the incident wavefront. The 
eigenfrequencies are given by 

~ ~  m2 n 2 n 2 
f mnq = - -  + ~ -~- - -  

a 2 b 2 b 2 

y 

b 

a 

Fig. 7.6. Pressure distribution for the mode m = 3, n = 2. 
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The circular duct 
Let us call Oz the axis of  the cylinder and a the radius of  the cross section. In 
cylindrical coordinates  (r, 0, z), the system of  equat ions  for the field is 

( 0 2 1 0 0 2 0 2  ) 
~ + -  ~ -k -  ~ - f -  ~ if- k 2 cb(r ,O,z)-O 
Or 2 r Or 002 022 

Odp(r, O, z) 
= 0  on r - - a  

Or 

4~ bounded  everywhere 

05 is writ ten as R(r)O(O)Z(z). This leads to 

1 1 1 1 k 2  - 1 ( 0 2 Z ~  
. . . . .  

R(r) (R"(r) + r R'(r)) -t 0(0) r 2 0"(0) + - Z \ ~ ) (z) 

The r ight-hand side term is a funct ion of  z only. Both sides mus t  be equal to a 
(separat ion) constant  which is denoted ( -k2 ) .  The equat ion for Z is a one- 
dimensional  Helmhol tz  equation.  Let us also remark  that  the solution must  be 27r 
periodic with 0. This leads to :O"/O - - m  2 or 0 - ( sin mO) or (cos  mO) with m an 
integer. The equat ion for R is then 

R" 1 R '  
(r) + -  - -  

R r R 

(02 m2) ~0 r 2 
where o~ 2 - k 2 _ k 2. 

This is a Bessel equation.  The general solution can be expressed as 

R(r) = AmJm(~r) + Bm Ym(o~r) 

The solution Ym must  be discarded because it tends to infinity when r = 0 for all m. 
Let us notice that  it must  be kept  if the p ropaga t ion  domain  does not include the 
axis of  the cylinder (co-axial duct). The boundary  condit ions for r - - a  lead to the 
equat ion  for the eigenvalues C~mn: 

Rt(r) -- AmaJm(ar) - 0 for r - a 

' ' i / a .  If  Ogmn are the roots of  Jm, then C~mn- C~m, 
Finally, the general solution is writ ten as 

~b(r, 0, 2) -- Z Z (Ame&m"Z -k- Bme-~km"z)(Clem~ -k- C2e-~nO)Jm(oLmnr) 
m n 

with k2n - k2 2 -- OLmn. 
If  a sound source emits a signal of  increasing frequency, the first cut-off frequencies 

I l I I 

will be deduced successively f rom Ogl0-1.84,  oL20-3.05, o l01-  3.83,..., OLmn = 
7r(n + m/2  - 3/4), as far as the source is able to excite the successive modes. 
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These cut-off frequencies are such that the phase velocity of c~, m, is infinite, that 
is k 2 m n -  o32/Cm n2 is zero o r  

k 2 2 ' ' - -  O~mn, fmn  - -  Ot, mn C/27ra,  )kmn = 27ra/Ol.mn 

For a - 5 cm, c - 345 m s -1, fl0 ~ 2020 Hz, A10 - 17 cm, the diameter is slightly 
larger than half the wavelength. 

As for rectangular ducts, this approximation provides good estimates of the cut- 
off frequencies with very simple computations. 

7.3.  Radiat ion  of  Sources  in D u c t s  with 'Sharp' Interfaces  

7.3.1. General remarks 

The general solutions obtained previously for several types of ducts in terms of 
modes provide a mathematical base and then they can be used to describe the 
radiation of a source inside a duct. 

It has been mentioned previously (bis repe t i ta  p lacen t )  that far from the source the 
sound field can be expressed as the sum of some propagative modes (if they exist!; in a 
duct with free-boundary, there is no plane wave). The radiation of the source is filtered 
and replaced by a more or less accurate description depending on how many modes 
are taken into account. To determine the field close to the source, the attenuated 
modes must be taken into account (in practice, a 'sufficiently large' number of them). 

Let us represent an omnidirectional point source located at M0 by ~ ( M ) .  From 

this elementary source, it is possible to represent any kind of more complicated 
sources. Let us recall that in the three-dimensional infinite space R3: 

( M )  - 6 ( x  - xo )6 (y  - y o ) 6 ( z  - zo) in rectangular coordinates 
M0 

1 
~5 ( M )  - ~  6 ( r -  r o ) 6 ( O -  Oo)6(z - zo) in cylindrical coordinates 

M0 27rr 

1 
6 ( M )  - - ~  6(r - ro)6(O - 0o )6 (~  - ~0) in spherical coordinates 

M0 r 2 sin 0 

with classical notations. 
The denominators are the Jacobians when changing the coordinate system. They 

actually appear because of the conservation of elementary surfaces and volumes. 
These expressions are quite suited to the separation method because the 
integrations on each 6 are easy to evaluate. 

7.3.2. Point source and Green's function in the duct 

Let a • b denote the cross section of a rectangular duct. The source is located at 
point M0. The sound field ~b(x, y, z) is the solution of 

A~(x, y, z) + k 2 q~(x, y ,  z )  - -~5(x  - xo)~5(y - yo)~5(z - zo) (7.5) 
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4~ is called the Green's function of the problem. Let us write it as 

mTrx nTry 
cb(x, y, z) = y ~  Z(Z)~mn(X, y) with ~bmn(X, y) -- cos cos 

m,n=O a b 

Equation (7.5) becomes 

oo 
2 Z [Ztt(Z)r y) + kmnZ(z)r y)] -- - 6 ( x  - xo)6(y - yo)6(z - zo) 

m,n=0  

with 

(7.6) 

k mn= 2 (m2 2n2 2) + a2 b2 
Because the modes in (x, y) are orthogonal, the next step is to multiply both sides of 
(7.6) by ~mn(Xo, Yo) and to integrate on the cross section. This leads to 

Cmn(XO, YO) 
z " ( z )  + k 2 m . Z ( z )  - -  --  ,5(z --  Zo) 

Amn 

where Amn=[ab(1 + ~ ) ( 1  +6~') /4]  is the normalization coefficient with the 
Kronecker symbol, not to be confused with the Dirac function. 

This expression of Amn is easy to find from the equality 

IO j ~ l +  cos(2mTrx/a) a a[sin(2mTrx/a)]~ 
COS 2 (mTrx/a) dx = dx - - + - 

2 2 2 2mTr/a 

The solution varies as exp(+t,  k m n ( Z -  zo)). When the wave is attenuated (for kin, 
imaginary) the amplitude must be decreasing for both z > z0 and z < z0; the 
solution is then written as 

Z(z)  = A exp (t, kmn [ z -  zo [) 

After integration on the z-axis, 4~ is found as 

2/)mn(XO, yo)~mn(X, Y) exp (t~kmn ] z - zo l) (7.7)  
b 

~bG(X, y,  z) -- 2 kmnAmn m,n=O 

For the infinite waveguide, 4~c is symmetrical with M and M0. 
Remark:  The presence of the term 1/2 in the integration is not a priori obvious. It 

must be noted that, with this method, the singularity of the source in the three- 
dimensional space is replaced by a singularity on the z-axis only. Then the 
integration is carried out as if the source is an infinitely thin layer, located between 
two cross sections and which is infinite for z > z0 and z < z0. The velocity 
Vz =-Vz(4~c)  is then discontinuous as can be seen by deriving 4~c. 

When adding two perfectly reflecting boundaries at z = 0 and z = d, the Green's 
function can be found by the same method. The variables x, y, z play the same role. 
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The Green's function for a parallelepipedic enclosure with perfectly reflecting walls 
is given by 

l, ~ ~)mnq(XO, yo)~)mnq(X, y)  

c~at,(x, y, z) - 2 ~ V/ 2 a 
m,n=O Amn kmnq - (O2/r 

with ?/3mnq(X , y, z) = cos 
m~x mr), q~z 

COS COS 
a b d 

Similar results can be obtained for locally reacting boundaries, since the 
orthogonality of the modes is still true (see chapter 2). 

7.3.3. Radiation impedance of the source in the duct 

The radiation impedance of a real source gives information on the effect of the near 
field on the source. From a practical point of view, a source is a system with a 
vibrating surface, driven by a generator which has a finite internal resistance. The 
effect of the near field is to change this internal impedance in an electrical (or 
mechanical) circuit equivalent to the complete radiating system. This is the only 
way to model the radiation of a source in a closed domain, at least partially. 
Indeed, let us consider the example of a closed volume with reflecting walls. If the 
variation of the field had no effect on the motion of the source, that is if this were a 
forced motion with constant displacement, whatever the variation, the pressure and 
the temperature would increase. A non-linear regime would then appear and the 
results presented here would not apply. This assumption of forced motion with 
constant velocity must be used cautiously, except, in a steady regime, if all the losses 
by radiation or viscosity dissipation compensate the power delivered by the source 
at each time and if the system remains quasi-linear. In other words, for a steady 
regime such a balance is likely to happen, while for a transient regime the power 
given by the source varies while the regime is establishing. When a source begins to 
radiate in a closed volume, its behaviour is similar to that in infinite space until the 
emitted wave impinges on a boundary which then radiates a part of the incident 
energy towards the source. 

To evaluate the radiation impedance of a point source, the source is described as 
a small pulsating sphere of radius r0 which tends to zero, as done in free space. To 
determine the total field on the vibrating surface of the source, all the evanescent 
modes (an infinite number) and (some) propagative modes must be taken into 
account. 

The comparison of the results for an infinite space and a closed volume is quite 
interesting. The very detailed computation is of no interest here. It consists in 
comparing the expansion of the singular term (1/4"xr) with the singular term of ~ba 
in the duct. It is found that the real part of the impedance for the first mode (plane 
wave) is Rduct-- pc(87r2r~)/S, where S is the area of the cross section. 

This relation is still valid for r0 small compared with the smallest transverse 
dimension of the duct. It is equal to a constant while the radiation resistance of a 
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Fig. 7.7. Radiation resistance of a spherical source. 

~-60 

point source in free space is R L -  pck2r2/(1 + k2r 2) when ~o tends to zero. This 
means that RL tends to zero with k. 

It can also be shown that the imaginary part of the impedance is only slightly 
modified compared with the expression obtained in free space. 

For higher modes, the impedance Zmn is given by 

--/zOPCrnn 
Z m  n - -  ~ : p c ~ ,  ran, w i t h  c~,  mn - w / k m n  

--veto. 

The value of the impedance gives information on the efficiency of the radiation 
when ~ varies. The variations of C~,m, are known. Figure 7.7 presents the resistance 
of radiation of a small spherical source in a one-dimensional duct for the first 
modes and in free space. At very low frequencies, the source is still efficient in the 
duct. 

7.3 .4 .  E x t e n d e d  sources  - P i s tons  

When the Green's function Ca is known, it is possible, at least theoretically, to 
evaluate the sound field radiated by an extended source. Extended sources are 
mainly encountered in artificial guides but also sometimes in natural guides. 

Pis ton  at one end o f  the duct 

Let us consider a plane rigid piston, with surface S1, part of the cross section S at 
z -  O. w(~) denotes its normal velocity. On S1, w(~) must be equal to the normal 
velocity in the fluid. The remaining part ( S - S 1 )  is assumed to be perfectly 
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reflecting (see Fig. 7.8). One  has 

r  y, z > O) -- 

which leads to 

Z Amn~.Ymn(X, y)e  l , k m n Z  - -  ~)mn(X, y, z) 
m,n=O 

O<3 

Vz - -Vzr y, O) -- E (-bkmn)~mn 
m,n=0 

Vz - w(~) on S1, 
= 0 on ( S -  S1) 

Mult ip ly ing  Vz by 2/3mn and  in tegra t ing  on  S leads to 

IJ N Amn __ w(&)r y)  d S  

$1 t, kmnAmn D 

A m n -  1] Cmn II 2 is the n o r m  of  Cmn. W i t h  the no t a t i ons  def ined in Fig. 7.8, for  a 
rec tangula r  duct:  

If + al Id + bl mTrx nTry 
N - cos cos 

a 

4ab (mTr2e+al)  
= ~ cos sin 

mnTr 2 a 2 

ab 
Amn -- - -  (1 + 6~")(1 + 6~") 

4 

dxdy 
b 

nTrbl ( nTr 2d + bl ) 
cos m sin 

2b b 2 

m'na l 

2a 

y 

x .~ . . . ,  z 

O 

Fig. 7.8. Piston at the end of a waveguide. 
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Let ZR denote the radiation impedance. For  any ~, its real part is equal to pc if 
al - - a  and bl = b. It is always less than pc if the piston is smaller than the cross 
section, roughly in the proportion a l b l / a b  for the plane mode. As mentioned 
before, to describe the diffraction on the (small) piston and evaluate ZR, all the 
attenuated modes and some propagative modes must be taken into account. The 
global effect of the field on the source is 

F =--1 J p(x,y,O) 
w(~) S1 s, w(u) 

dS 

The results for ZR are not the same for this geometry and for a piston located in an 
infinite plane, especially when w tends to zero. Indeed, because of the reflections on 
the walls of the duct, the model for the piston in an infinite plane is a plane with an 
infinite number of pistons with the same phase. This describes the diffraction 
pattern due to the images of the piston. This result must obviously be related to the 
result obtained for the point source in a duct. 

Piston on a wall of  the duct 
Only the particular case of a rectangular duct with perfectly reflecting walls is 
studied here. The case of a piston clamped in the wall is especially interesting when 
the fluid is in motion. The presence of the source does not generate perturbation on 
the flow. As said above, only propagative modes must be taken into account in the 
far field. The position and the shape of the source have no significant effects on the 
mode (0, 0). This remark still holds, at least roughly, for sensors. However when the 
sensors are located in a wall they are inside the boundary layer and then a more 
detailed study of the problem is necessary. 

The expression of ~bG has been given before (equation (7.7)). Let us consider a 
piston of length g (0 < z0 ~< g) and width b, the same width as the duct (see Fig. 7.9). 

In the plane (z - z0), the velocity has a discontinuity D = -2V~b. Since each point 
of the piston radiates in both directions z > z0 and z < z0, there is necessarily an 
interference between two elementary sources corresponding to different z. This 
leads to suppression of the 'absolute value' signs in the propagative terms, but the 
velocity must be discontinuous. Let P and V be some reduced variables of ~b and V~b 
for a mode (m, n) and let us consider the propagative term with z. If the indices are 
omitted, P and V are expressed as 

P -  A e  ~kz + Be-~kz; V - -  t&(Ae ~kz - Be -~kz) 

P(O) - a + B; V(O) - ~k(A - B)  

V(O) 
P(g) - P(O) cos kg + ~ sin kg; V(g) - - k P ( O )  sin kg + V(O) cos kg 

k 

This can be written as 
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t . ~ m  
. , ~ , . , ~  . . . . . . . . .  

I ! 

0 ~ g 
~ z  

Fig. 7.9. Piston a long the side of  a waveguide. 

if T is the matrix 

cos kg (sin kg)/k ) 
T = - k  sin kg cos kg 

This relation is easily extended to the abscissas (z + g) and z. Since there is a 
discontinuity at (z = z0), the relation must also be written between ( z 0 -  e) and 
(z0 + e), with e ---+ 0. If D = -2~7z~b(z = z0), we get 

(')Z _ T - 1  + T -1  
V e V + D  V 

= =zo +~" =g  

The last step is to integrate over g. It is necessary to take the coefficients of P and V 
into account to describe the evolution of the pressure and the velocity along the 
duct as well as the impedance Z = ca)pP/V. 

These expressions are quite convenient for numerical computations. For  
electrical lines, similar results have long been used. 

7.3.5. Interference pattern in a duct 

Let us add another piston, similar to the first one and located in the cross section 
z -  z0 (see Section 7.3.4), in order that they are placed symmetrically with x - a/2. 

On the surfaces S1 and $2 of the pistons, their velocities Wl (~) and wz(aJ) must be 
equal to the normal velocity V~bz(Z- z0) in the fluid. 

With the method used in the previous sections, we find 

Wl - - ( - - 1 ) m + n w 2  albl  
A m n  - -  

t, kmn(1 -k 6~n)(1 + 6~) mnTr 2 

When W l -  w2, if the pistons have the same phase, the real part of the impedance 
is ~(Z(0, 0 ) )~  2albl/ab but its imaginary part is not zero. If their phases are 
opposite, ~(Z(0, 0)) is zero, and there is no radiation below the cut-off frequency of 
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the first mode, whatever the dimensions al and bl. The diffraction around the 
pistons is only described by attenuated modes. 

It is possible to observe experimentally the decreasing resistance of radiation and 
the increasing reactance by examining the complex currents in the electrical circuit 
of the transducers when changing the phase of one of the pistons. 

7.3.6. Impulse response in a duct 

The impulse response plays a similar part in the time domain to that of the Green's 
function in space. With these two functions, it is possible, at least from a theoretical 
point of view, to solve any kind of problem. Because the phase velocity of the 
guided waves depends on frequency, the propagation of a transient signal depends 
on the modes excited. If P(z, ~) denotes the transfer function for the pressure in a 
duct, and Po(w) is the Fourier transform of the excitation signal po(t), the time 
dependent pressure p(z,  t) is written 

1 j+~ 
p(z,  t) = m Po(a;)P(z, ~)e -twt dw 

27r -oo 

For a mode n (n can stand for one or two indices): 

1 I +~176 Pn(z, t) -~ Cn(X, y) ~ - ~  p0(w)e-~ZVG2-(ck,) 2 - ,ot dw 

If po(t) = 6(0, P0(aJ) = 1 and 

Pn(z, t )--~2n(X,Y)[6(t-Z-c)  - 

where Y is the Heaviside function. 

( z ) ]  Jl(knV/C2t2-z 2) 
Y t -- - knz 

c v/c2t 2 -- z 2 

(7.8) 

(7.9) 

If it were possible to describe the propagation of a Dirac function with one mode 
only, the signal observed far from the source would be similar to the curves 
presented in Fig. 7.10. This kind of theoretical response can be observed by using 
two loudspeakers (to simulate the pistons of Section 7.3.5) and sending them an 
impulse. It is then possible, for a sufficiently low frequency, to excite the mode 
(0, 1). Functions 6 and Y are replaced by smoother functions. In the general case, 
several modes must be taken into account. The final result is that, at the 
observation point, there arrive successively several impulses and the higher the 
mode, the shorter the duration. 

Remarks  
(1) The experiment discussed in Sections 7.3.5 and 7.3.6 is easier to carry out if 

the width b of the duct is small. This corresponds to a duct with only one transverse 
dimension a (b ~ a). 

(2) Adding the contributions of the modes can be cumbersome. It is easier to add 
the contributions of the images of the source through the perfectly reflecting walls. 
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A A 
j 

> t  

t = z / c  t = z/c 
Mode (0,0) Mode (1,0) 

Fig. 7.10. Impulse responses for the modes (0,0) and (1,0). 

~ t  

If b is quite small, the source and its image are close to line sources. Their radiation 
is of the form H~ol)(kz cos 0). The previous integration (7.8) of P,  is then easier [2]: 

P - - f ( x ,  t) 
c o s  ( k ~ c / c 2 t 2  - z 2) 

V / C 2 t  2 _ ,7, 2 

The curve is then quite similar to the curve previously obtained since J (a ) /a  is 
similar to (cos a ) / a .  

(3) One way to explain the presence of the Dirac function in the exact solution 
(7.9) is the following: for high order modes, the group velocity is close to c. Adding 
all these contributions leads to a Dirac function. The curve corresponding to the 
attenuated oscillating part  (with the Y term) depends on the curve c~(w). For  ducts 
with 'sharp' interfaces, Cg is a monotone function which increases from zero to c. 
Then as the observation time (t + At) increases, c~ decreases and w tends to zero. 
Indeed at time (t + At), the angular frequencies w observed correspond to the group 
velocity cg = z / ( t  + At). This result no longer holds for an interface between two 
fluids (shallow water case). 

7.4. Shallow Water Guide 

7.4.1. Properties of the shallow water guide 

Underwater measurements show that the velocity of the acoustic waves depends on 
the depth. More precisely, it depends on the salinity, the temperature and other 
local parameters. Let us call cj(z) this velocity in a medium j. 

A very simple case is that of a shallow layer of water with depth H (H must be 
compared with A(w)) where cj and the density pj are assumed to be constant. The 
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bottom of the layer is supposed to be the interface with another fluid: this fluid can 
be, for example, a medium with water-saturated sand and with a thickness large 
compared with the wavelength. Generally speaking, the sound speed in this fluid is 
greater than the sound speed in the layer of water. 

Some authors use the term 'shallow water' only for layers with thickness around 
A/4, which is often the case at low frequency. Phenomena are then more difficult to 
analyse because of the different types of waves which can propagate around the 
first mode. 

In the following, the parameters pj and cj are real. This assumption can be 
somewhat restrictive for providing a satisfactory interpretation of the phenomena 
observed. Actually, it leads to some academic aspects which are not useful for 
applications. 

The case of the shallow water guide has been studied extensively because of the 
many applications in underwater propagation, seismology or E.M. propagation in 
the ionosphere. This last aspect was first developed during World War II. 

7.4.2. The Pekeris model 

The Pekeris model is the simple model presented in the previous section. The 
parameters are/91 and cl for the layer of water (medium l) and/92 and c2 for the 
fluid (medium 2), H is the thickness of medium (1) and z0 is the z-coordinate of 
the point source in the layer, pj and cj are assumed to be constant. The domain 
z < 0 is air. The boundary (z = 0) with the layer (1) is then characterized by a 
homogeneous Dirichlet condition. 

Let us note that the behaviour of the sound field is assumed to be, as before, 
(e -~t)  as in [2], while the term (e +~t) is assumed in [1]. With this last choice, the 

(2) fucntion H~ 1) is replaced by H 0 and the integration paths in the complex K plane 
are symmetrical with the axis ~(K), if K 2 is the separation constant (introduced 
below). 

The unknowns of the problem are the scalar potentials ~1 and ~2. The coordinate 
system is (r, z). Particular solutions of the form ~j(r, z ) =  R(r)~j(z) can be found 
with the separation method. This method is not the one used by Pekeris but it leads 
to a much simpler analysis that is sufficient here. 

From a theoretical point of view, it should be proved that this solution is quite 
general. Indeed, it would be more rigorous to write two different solutions in (1) 
and (2) and use continuity conditions at the boundary. It might be feared that 
the lateral wave which appears on the boundary z - H would not appear in the 
analysis. This wave appears when studying the radiation of a source in the 
presence of a (sharp) interface. It is a consequence of the impedance change due to 
the presence of the interface; it is experimentally observed in seismology and 
underwater acoustics. Its amplitude decreases more rapidly than the surface 
wave amplitude which appears when the source is in the elastic medium. Its 
contribution becomes quite essential when there is no propagative wave 
(H < A/4). 
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The system of equations is ( O(rO) ) 
-fir + z +j  ( r , z ) : 0 

r z) -- 0 on z -- 0 

Pl r (r, z) -- P2r z) on z -- H 

0r (r, z) 0r z) 
~ = ~  o n z - H  

Oz Oz 

Sommerfeld conditions 

with kj - w/cj. The condition of continuity of the normal velocities corresponds to 
non-viscous media. The separation method leads to 

- K21 Cs(z) - 0 

l d  

rdr  
(rR'(r)) + K 2 R ( r ) -  0 

where K 2 is a separation constant to be determined. 
The general solutions are H(ol'Z)(Kr). For large Kr, these solutions take the simple 

asymptotic form V/2/TrKR e x p ( + ~ ( K R -  7r/2)): for fixed Kr, this implies that r is 
large enough (r ~> A) and, thus, r ~> H. 

7.4.3. Solutions ~bj(z) 

Let/32 be defined by 32 -(~/r K 2. 
If/31 is real positive, A1 sin 31z is the solution in (1). 
If/32 is negative, 32 can be written (+~c0. Only the solution e -~z is kept since the 

other one, e ~z, does not satisfy the conditions at infinity. It has previously been 
shown for the sharp interface that it corresponds to a total reflection. Then for all 
possible values for/31, there exists a propagative mode in fluid (1). 

If 322 is positive, 2/32 c a n  be written 2/) 2 : A2 sin /32 Z for z > H. We keep this 
solution, which remains finite when z tends to ( -c~) .  

7.4.4. Eigenvalues 

First it is assumed that /32 is negative. The eigenvalues are deduced from the 
boundary conditions written for the solutions r  sin 31z and r  
Aze -~32z, (/32 imaginary and negative). The continuity of the pressure leads to 

Pl -t432H r = A I m sin (31H) e 
P2 
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and the continuity of the normal  velocity gives 

pl 
Alfll cos (/~IH) -- - t f l 2 A 2  -- - t ~ 2 A 1  - -  sin (/31H) 

P2 

This leads to the eigenvalue equation: 

tan (fllH) -- t 

The right-hand member  is positive. 

#ip2 

~2p, 

If/3 2 is negative, there are no eigenvalues K 2, and then there is no guided wave in 
the layer (1). 

Let us now assume that /3 2 is positive. In this case r can be written as 2 
r = A2 sin (/32z + B2). The boundary conditions then lead to 

plA1 sin (/31H) = A2pz sin (#2H + B2) 

AI#I cos (/31H) = A2#2 cos (/32H + B2) 

and the eigenvalue equation is 

tan (/31H) /31p2 
/32PI [ tan (/32 H + B2)] 

This equation always has solutions and there are continuous modes. The 
eigenvalues K 2 are located on a part of the real axis and on the imaginary axis, 
as shown in Fig. 7.11. 

~(k ~) 

~ continuous 
modes 

no mode discrete 
modes / 

- O O O O O O O �9 

C2 Cl 

Fig. 7.11. Propagation in shallow water: localization of the eigenvalues. 

~(k ~) 
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7.4.5. Eigenmodes 

If/91 and p2 are not constant functions, ~)l and 2/3 2 associated with these eigenvalues 
K 2 are not orthonormal except if/91 ~-/92, which is generally not true. But it can 
be shown that functions x/&~J provide a basis of functions useful to develop 
particular solutions [6]. These functions are normalized with 

m n  j ,  m n  d z  - -  1 

7.4.6. Solutions R(r) 

When K is known, the equation for R is quite classical: 

1 s (rR'(r)) + KZR(r) -- 0; K 2 = -/312 
rdr 

To any real value of /32 there corresponds a real or imaginary K and 
R(r ) -  AH~I)(Kr). The amplitude decreases as l /x/7 when r increases. 

7.4.7. Essential remark 

In the complex K plane, there is no difficulty with the integration path. The method 
of Pekeris leads to more complicated paths with branches parallel to the negative 
imaginary axis [0 , -m~[  for K=w/Cl and ~/c2. The integrals on these branches 
give the lateral wave. Obviously, the paths must be equivalent. 

It remains to explain the presence of continuous modes on the contour shown in 
Fig. 7.11. They correspond to attenuated modes. 

7.4.8. Radiation of a harmonic point source 

The method consists in developing the singularity on the set of the orthonormal 
functions previously obtained. The point source M0 is located at z0 < H (this is the 
usual case, but M0 can be anywhere on the axis, as long as the presence of a fluid 
for z < 0 is taken into account). 

~bl (r, z) is the solution of a Helmholtz equation: lo(o l rz,) O  l rz, 
r d- -Jr- q~l (r, z) -- --2 6(z -- Zo) (7.1 0) 

r Or Or 022 r 

Let us write 

~bl(r, z ) -  y~  Rn(r)r + Iv R(r)r dK 
n 

where F is the path already discussed and presented in Fig. 7.11. 
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By replacing r with this expression in (7.10), multiplying by ~/r~l/) n and 
integrating with z, it is found that 

R n ( r ) -  ~rcp(Mo) On(ZO) H~l)(Knr) (discrete modes) 
Amn 

p(Mo) K A 2 H~I) 
R(r) - 2~ A l~b(z0) - -  (Kr) (continuous modes) 

A1/A2 is known and A1 is chosen to be equal to 1. Finally 

(O(K r ~l,n sin(~l,nZ0) sin(~l,nz)H o . ~ ) 
r Z) 2c7r 

~ n  ~l ,nH sin (il l ,nil)  cos ( ~ , n H )  - p21 sin 2 (f l l , .H) tan (~l,.H)/p22 

- 2~ Pl Ir [32 sin (/~1Z0) sin (/31 z) H) 2 

P2 [3 2 COS 2 (i l l  H)  -'[-/~?p? sin 2 (/31 /P2 

r is again symmetrical with z and z0. 

7.4.9. Propagation of a pulse 

To describe the propagation of a signal resulting from an explosion, it is necessary 
to know the group velocity. The eigenvalue equation for K 2 is implicitly an 
equation for c~o,n (through/3 2 1, n) which can be solved by successive approximations. 
The first iteration can be obtained by introducing some values of flirt  
corresponding to a reflecting boundary for z - H .  Figure 7.12 presents some 

r 

C2 

C1 

I 

i (Airy) 

i >,,. 

L f 
Phase and group velocities 

k . /  > t  

Example of time signal 

Fig. 7.12. Qualitative aspects of phase velocity c ~, group velocity C g and time signal. 
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classical results for the phase velocity c , , ,  such that Kn - w/C~,n. C,,n is equal to c2 at 
the cut-off frequency of mode n. For  example, for the first mode, this frequency is 

L C2 

4Hv/1 - c2 /c  2 

which can also be written as a function of (H/,~I). This simple result is obtained by 
considering the critical angle of total reflection for a plane wave ( arcsin Cl/c2). This 
may be done because in the far field the source can be approximated by a sum of 
plane waves. 

The group velocity Cg is equal to 

dw d dc~o 
= ~ = ( K c ~ ) -  c~o + K 

Cg d K  d K  d K  

Cg has a minimum which is less than Cl. For Cg less than Cl, there are two solutions 
for a;. In the neighbourhood of the minimum, the phase is stationary. The 
contributions of the corresponding waves tend to add. These waves are called Airy 
waves and can clearly be observed in the signal s(t) at any point. 

The contributions which arrive first at the observation point have the highest 
velocity c2. They correspond to the cut-off frequency (fc + e) and to the lowest 
possible frequency for the mode: it is the ground wave. With a delay At 
(c2/z  < A t  < Cl/Z), low frequency waves arrive along with high frequency waves. 
The Airy wave arrives later. 

These results are outlined in Fig. 7.12. They correspond to experimental results 
obtained in shallow water. An Airy wave is associated with each mode. These Airy 
waves come out of the signal enough to be used for multichannel transmission of 
signals (one each per mode which can be excited). 

A classical application corresponds to 

0 i f t < O  

f ( t )  - exp ( - s t )  if not 

It describes a damped discharge of a transducer. The Laplace transform of f ( t )  is 
well known and 

1 ~ e -twt 
f ( t )  _ da; 

If 
~ ) 

p(r, z, t) = ~ e - ~ t  + ~Knr- 7r/4 dw 
S--tAM 

Sn(w) is the radiation of the source for mode n. 
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7.4.10. Extension to a stratified medium 

In general, cj is not constant in the whole layer of fluid. If cj depends only on z, it 
is still possible to find a solution. The propagation medium (z < 0) is divided into 
sub-layers in which cj can be assumed to be constant. This leads to 

~2j (z) + - tbj(z) = 0 (7.11) 

Let us define as previously 3~ = (w/c j )2  _ K 2. Then 

+ - vj) j(z): 0 

with Vj = (w/Cy)2 _ (O.)/C)2. This is a Schr6dinger equation (with potentials Vj). The 
equation is solved in each layer. For  the first and the last layers, the method is 
similar to the one used in the previous section. 

Equation (7.11) written as above is interesting because solutions are known when 
Vj is a constant and also when Vj is of the form 

Vj = az + b or Vj - az  2 + bz + c 

with a, b, c equal to constants. 
Because of this, it is possible to reduce the number of sub-layers to approximate 

correctly the sound speed profile as a function of z. 
Nowadays, the power of computers is such that it could be simpler to 

approximate c(z) by a piecewise constant or a piecewise linear function. This is 
an interesting problem, from a numerical point of view, which must take into 
account the errors introduced by each method, including artificial backscattering 
errors caused by the discontinuities of the approximations. Software based on such 
approximations has been developed and used for a long time. 

7.5.  Duc t  with Absorbing  Wal l s  

Generally speaking, the internal boundaries of a duct are not perfectly rigid. They 
have a finite impedance. In particular, the viscosity effects which cannot be 
neglected close to the wall can be taken into account by adding a correcting term in 
the normal admittance. 

Also, sometimes, in order to attenuate the wave which propagates, some parts of 
the walls (or all the walls) are covered with absorbing materials or with resonators. 
Such a situation also appears in natural waveguides but the modelling is not so 
simple. 

Let us assume that the acoustic properties of the wall are fully described by Z(w) ,  
the normal impedance. It is often a correct approximation of more complicated 
cases, except perhaps for particular frequency bands for which there is a strong 
coupling between the vibrations in the fluid and inside the wall. 
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7 . 5 . 1 .  D u c t  w i th  p l a n e ,  a b s o r b i n g  w a l l s  

The fluid, in the duct, is characterized by p0 and co. The sound field 4~(Y, z) is the 
solution of 

(A + k2)4)(y, z) - 0 

Or y, z) 
Z0 ~ + u~p0~b(y, z) = 0 on y = 0 and y = b 

Off 

4) bounded 

where k 0 -  ~o/e0 and ff is the normal vector exterior to the duct. By separating the 
variables, we find for Y(y) 

Y"(y) = -/3 2 y(y); Zo Y' (O) = -twpo Y(0); Zb Y'(b) = +twpo Y(b); 

where/3 2 -  k 2 - k  2, k 2 is the separation constant. 
The general form of the solution is Y ( y ) =  cos( /3y+ 'y) .  The boundary  

conditions are 

for y = 0, Z0/3 sin -), = ~wpo cos 7 or tan 7 = twpo/(3Zo); 

for y = b, --Zb/3 sin (/3b + 7) = twp0 cos (/3b + 7). 

This leads to 

--Zbfl[tan (/3b) + tan 7] = twp0[1 - tan (/3b) tan 7] 

In the simple case Z0 = Z6: 

-- -2L~p0 tan (/3b) Z0/3 + Z0/3 

o r  

/ 

tan (/3b) ( Zo /3 

\ poco ko 

\ 

ko poco ] _ -2~ 

Zo J 
The reduced impedance Zo/poco of an absorbing layer on a perfectly reflecting 
surface can be evaluated from Kund t ' s  tube measurements ,  for example. The 
solutions of the equat ion for the eigenvalues /3, are complex numbers  in 
the general case. % is deduced from /3, by using the boundary  condit ion at 
y = 0 .  

If  the surface y = 0  is rigid, then tan ~ , = 0  and the eigenvalue equat ion 
becomes 

/3 t a n  (/3b) = - - -  
twp0 

Zb 

and the propagative terms which depend on z are expressed with k, - ~ k  2 -/32. 
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In the case of a low admittance and for only one absorbing wall y -  b, the 
eigenvalue equation becomes 

with tan(/3b) ~/3b, 

/3 tan (/3b) - -~k0 
poco 

Zb 

/~2__ t, ko poco and k 2 - k ~  -t t, ko poco 
b Zb b Zb 

For example, if Zo/poco -0 .2  + 10c, for f =  100 Hz, b -  0.1 and c o -  345 m s -1, 
then kz "~ 1.82(1 + c5 x 10-3). 

It is easy to extend these results to three dimensions and, for a duct with circular 
cross section with radius a, the eigenvalue equation is 

[ /3aJm(~a) = - ~koa poc---~ ] Jm(/3a) (7.12) 

If the wall r - a  is rigid (Zo(a)= cxD) and m = 0, (7.12) is the equation which is 
obtained for the circular waveguide (7.2.3). The eigenvalues are the roots of Jm(~a). 

If only a part of the wall is covered with an absorbing coating (let us say, for 
0 < 0 < 00) the study is much more complicated. The discontinuous function of 0 
would have first to be decomposed on the basis (cos (mO), sin (mO)) before solving 
for the eigenvalues. An interesting application of this problem is to obtain an 
absorbing effect with a minimum of surface coating. It can be shown that the 
absorbing effect rapidly increases when 00 increases above a small value 0s and 
becomes 'not so interesting' when 00 tends to 27r. In other words, it is not necessary 
to cover the whole internal surface of the duct. 

7.5.2. Orthogonality of the modes 

The method and computations previously shown are quite efficient if the basis 
functions associated with the eigenvalues kn are orthogonal. If they are not, an 
orthogonalization procedure can be used but the physical meaning of the orthogonal 
projection should be considered. For the locally reacting boundary conditions it can 
be shown that the functions are orthogonal. Each ~n is the solution of 

I (A +/32n)~n(y)- 0 

O~b,,(y) Z = tko~,,(y) on y -  0 and y -  b 
Off poco 

Z may have different values on y = 0 and y = b. 
Let us consider two functions ~b~ and ~bp, with n ~:p. By multiplying their 

corresponding Helmholtz equations by ~bp and ~bn respectively, integrating on [0, b] 
and subtracting, the following expression is obtained: 

]i (~)Pm~fln-- ~flnm~)P) dY-(~2 -/32) .1orb ~)n~flm dy 
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Applying the Green's formula, the right-hand side becomes 

At y -  b, this term is equal to 

O~Dp O~Dn] ~bn I I I~ - ~p II I~ j 

ok0 ] 
t~ko ~p(b)  - ~p(b)  ~n(b)  - 0 

pOCO ~)n(b) Zb Zb 

A similar expression is obtained for y -  0. It is obviously equal to zero also. This 
proves the orthogonality. 

Then in the general case where/3n is complex 

f i ~.yn~.3~ dy - O, n :/=p 

Let us now evaluate the norm App of ~ in the case of an absorbing surface (y = b) 
and a rigid surface ( y -  0). In this case, 7 -  0 [ ]b 

~b 2 dy  - cos 2 (/3ny) dy  - 2 y + 2~,, 

o 

7.5.3. Losses on the walls of the duct 

In an impedance tube (Kundt's tube), it is easy to observe that the minima of sound 
pressure become smoother further from the reflecting end. This is the effect of the 
walls. Close to the walls, the gradient of the tangential velocity leads to losses by 
viscosity while energy is transmitted from the incident wave to the wall by thermal 
conductivity. 

Theory [1] shows that these effects can be characterized by equivalent layer 
boundaries of thickness dvisc and dth. If it is assumed that the normal of the gradient 
of the tangential velocity and the amplitude of the thermal mode (which represents 
thermal losses) are exponentially decreasing functions, the thickness of the 
boundary layers corresponds to a decrease of (l/e), that is 1 neper or 8.6 dB: 
( 1 -  1/(2.71)2)-0.86 part of the energy is dissipated in the layer. In classical 
situations, 

0.25 0.21 
dvisc = ~ and dth -- 

v'Y vY 
expressed in centimetres. 

In a rigid tube with smooth boundaries, dvgsc = 0.1 mm at 625 Hz. This is about 
the size of the irregularities of the surface. In a natural guide, the most interesting 
phenomena often correspond to the lowest frequencies. For a wave emitted by a 
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thermonuclear explosion at 10 -4 Hz and propagating to the antipodes, 
dth "~ 20 cm, which is again the size of the 'small' irregularities of the surfaces. 
The thickness of these layers is very small compared with the wavelength (about 
10-2 to 10-3 A). It is then necessary to modify the impedance of the wall to take into 
account this kind of loss. 

First, let us remark that the viscosity effect depends on the tangential particle 
velocity (not to be confused with flow velocity). In a one-dimensional duct , i t  has 
been shown previously that the angle between the propagative wave vector kn and 
the normal is such that c o s  O n "-' nA/2H. For a high propagative frequency, O n tends 
to 7r/2. On the contrary, for mode (0,0) the particle velocity is purely tangential so 
that, if this mode is present and n is small, the viscosity losses can be taken into 
account with the mode (0,0) only (this is, of course, an approximation). 

The losses by thermal conductivity depend only on the pressure close to the wall. 
The pressure is constant in the boundary layer because its thickness d is small 
compared with A. Then the losses do not depend on the angle of incidence 0. 

A formula [1] for the corrected admittance of the wall has been obtained: 

1 [wdvisc wdth] 
"-- /~corr : /~ + (1 - b) s i n  2 0 + (3' - 1) 

Zc 2c0 ~-c0 J 

0 is the angle of incidence (0n for mode n). 0 = 7r/2 for the plane wave. -y is the ratio 
of specific heats for the fluid (-y = 1.4 in air). 

For example, for Z - 1 0 + ~ 0 . 1 ,  f = 6 2 5  Hz and c 0 - 3 4 5  m s  -1 , /3corr ~ 
0.16 - 0.06c and Zc "~ 6.25 + 2.34~. 

Then, because of the losses, an impedance I z l  > 100 for the wall is not realistic 
for the audio-frequency band in an artificial duct. 

7.6. Ducts  with Varying Cross Section 

7.6.1. Linear duct with discontinuous cross section 

Let us consider a duct made of two ducts of parallel axes, of cross sections S / an d  
S//. The interface is the cross section on ( z -  0) with a reflecting condition on 
(Sit - St). In each duct, it is assumed that the separation method applies. This leads 
to 

~I(uI, 23',Z) - ~ ~ (Amne~km"z-k- Omne-~km"z)~In(U,, 231 ) 
m n 

~II(u2, 232, 2 ) -  Z Z (Cpqe*kpqz + Opqe-*kpqz'')~)pq[,U2'II" 232) 
p q 

with unambiguous notation. The mode decomposition is different for z < 0 and 
z > 0 .  
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At ( z - 0 ) ,  a point of the cross section can be written (Ul, Vl) o r  (u2, "/32) and 
relations are available to go from one coordinate system to the other. It is then 
possible to write all the functions in the same system. Let us write 

Ul -- U1 (u2, "u2); 
u2 - U2(ul, 'u1); 

231 -- Wl(u2, u2) 

'u2 --- V2(Ul, Vl) 

or globally (u2, v2)-T21(Ul,  231). T 21 and T 12 c a n  be easily evaluated for simple 
geometries. 

On the cross section z -  0, the pressures and normal velocities can be written 

pI Z (--I~MPI)(Amn -'[- Bmn)2/)lmn; 
m, n 

--- (-bkmn)(Am n - Bmn)r 
m, n 

pH ~ (_l~Pli)(apq Af_ apq)2/)plI; uH ~ (_  H H -- -- t, kpq)(Cpq - Dpq)~pq 
p, q p, q 

The condition of continuity for the pressure leads to 

I Pl Z Z (Amn -[- gmn)~3mn(Ul' "UI) --/92 Z Z (Cpq -[- Vpq)~c)plIq(r21(Ul, 231) ) 
m n p q 

I* By multiplying on both sides by ~brs (Ul, 231) and integrating on $I, we find 

Ars -[- Brs - PiP2 Is1 Zp Zq ~)Iq(r21(Ul' 2:l))2/:rI;(Ul'h: s 2)l)(Cpq -~- apq) dSI 

with Ar' s - II ~r / II 2 - I s ,  r 1 6 2  dSI 

(7.13) 

The same kind of formula is obtained for the velocity. But in order to make the 
relations symmetrical with ~ i  and ~b II, use is made of the orthogonality property of 

I U2))2/)pq (U2, 2)2) Z Z t, kmn(Amn - gmn) ~fllmn(Zl2(u2' H* Z21 dSi! 
m n Si! Ap~ 

H -- l,kpq(apq - apq) (7.14) 

Except for the simplest cases, the integrals must be evaluated numerically. The 
expressions for the pressure and the velocity are quite adapted to a transfer matrix 
formulation, as done in a previous section to take into account the presence of a 
source. Then numerical computations can be developed to take into account 
geometrical discontinuities and sources and also tube ends described by an 
impedance Z(M). 

The case of an end radiating in free space has not been studied here. It is a 
complex diffraction problem which can be solved for simple (cylindrical) ducts for 
mode (0,0). For  higher modes, semi-infinite elements should be used to match with 
free space. Also, approximations are available by considering that the free end is 
clamped in a reflecting infinite plane. 
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A particular case can be correctly solved: a tube of small diameter connected to 
the reflecting end of a duct. First, it must  be checked that, for all the modes to be 
taken into account, the phase varies slowly in the opening. It is then assumed that 
the normal  velocity is constant,  that  is it is assumed that  the opening can be 
modelled as if there were a small piston with no mass. This problem has been 
solved. To obtain better accuracy, its solution can be used as an initial guess in an 
iterative procedure. 

7.6.2. Rectangular and circular cross sections 

As an example, let us consider two ducts with rectangular cross sections al x bl and 
a2 x bE respectively. The walls are parallel. Then T 21 is given by 

X2 - -  Xl -~" e and Y2 - - Y l  + d 

and the integral on SI in (7.13) can be written 

I i ' l i ' p T r ( x l + e )  q T r ( y l + d ) m T r x l n y r Y  1 
I I -  4 cos cos cos ~ cos 

a2 b2 al bl 

1 1 al 
• - -  d x l  dy 1 

( 1 + 6 ~  n ) ( l + 6 g ) b l  

The same kind of result can be obtained for I / / i n  (7.14) and it is shown that 

a2b2(1 + 6P)(1 + 6~))I I - albl(1 + 6g)(1 + 6~)I II 

In the case of two ducts with circular cross sections of radius rl and r2, Fig. 7.13 
shows that 

sin 02 sin 01 

r l  r2 
) ) 

With ~ -  (O102, Ox), it is then possible to evaluate the integrals on S / a n d  SII. 

7.6.3. Connection between an absorbing duct and a lossless duct 

This is an application of the results previously shown. It corresponds to the 
absorption of sound in a duct of fluid. The wall is partially coated. 

To describe the general procedure, let us consider a two-dimensional problem 
(Oy,Oz) and two semi-infinite ducts connected at z = 0. The incident field which 
comes from the (z < 0) duct can be decomposed on a basis associated with the 
variable y (0 < y < b). To take advantage of the orthogonali ty of the eigenfunc- 
tions, it is assumed that the absorbing surface can be described by a local reaction 
condition. For  simplicity, it is also assumed that there are no waves propagating 
backwards in the (z > 0) duct. This is quite realistic if the coating is efficient. If the 
coating is not used on an (almost) infinite length, a more general form of the sound 
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x 

A 

Fig. 7.13. Junction between two cylindrical waveguides. 

field must be introduced. It would be easily seen that the mode decomposition is 
significantly modified in the case of a finite length coating part. 

The continuity of the field at z - - 0  leads to 

nTry 
Z (An + Bn)cos ~ =  Z Cp cos(/3py) 
n=0  b p = 0  

O(3 

n y, Z (An - Bn) c o s  ~ kn, z : Cp c o s  (~py) kp"z 
n=0 b p = 0  

k o - - -  ; kn, z - k 2 b2 ; kpffz k 2 
co 

In the (z < 0) duct, the An are known (they depend on the source). The /3, and 
Cp, for n and p finite, are then deduced. The convergence can be checked by 
computing again with n' > n and p '  > p. The computation takes advantage of the 
orthogonality of the cosine functions. The norm is 

j: App = cos2 (epy) dy - 2 1 +  2/~p 

sin (2/3pb) is then expressed as a function of tan (/3pb) which is known from the 
eigenvalue equation (see Section 7.5.1). If the wall (z = O) is rigid and the wall 
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( z -  b) characterized by a normal impedance Z, it has been seen previously that 

tan (/3b) = - 
~ko twpo 

Zb/3/pOco Zb~  

7.6.4. Changes in direction 

A natural or artificial waveguide with an axis moderately bent (radius of 
curvature-> A) in terms of a wavelength can be often modelled as a straight duct. 
If long distances are considered, the geometry must be taken into account. This is 
the case of propagation in the ionosphere (for electromagnetic waves) and in the 
troposphere (for infra-sound). 

Also, artificial guides (such as ducts of fluid or smoke) can present sharp 
variations of section and direction. 

For  some simple cases (there are quite a number), satisfactory approximate 
solutions can be obtained by determining a connecting volume in which the 
variables can be separated. Figure 7.14 shows this procedure. When this connecting 
volume is not so simple, the equations can be solved by a finite element method in 
the connecting zone and matched with mode decomposition at the boundaries. The 
problem is quite a good example to validate an algorithm, at least in cases I and IV 
of Fig. 7.14. In cases II and III, the connecting zone is not correctly taken into 
account by the calculus. 

The analysis becomes quite complicated if a fluid flow must be taken into 
account in the duct, which is a classical case in industrial applications. There are 
then two possibilities. In the first one, the flow is correctly introduced with a 
realistic velocity profile and only the plane wave case is considered. In the second, 
the flow is assumed to be laminar with a uniform velocity U in the cross section; it is 
then easy to find the corrections to extend the computation for a fluid at rest, for all 
the modes. Indeed, the flow velocities in ducts are generally kept low to avoid 
pressure drops. The turbulence, if it exists, can be neglected except perhaps around 
the discontinuities. The boundary layer is quite small compared with the transverse 
dimensions. For  these reasons, the uniform flow velocity U is assumed to be much 

--i-- 
t 

I II III IV 

Fig. 7.14. Examples of waveguides junctions. 
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smaller than c, (U_~ 15 m s -1 ,  for instance); this corresponds to a Mach number 
M -  U/c  no greater than 0.05. Even if this assumption does not clearly appear in 
the calculus, the results cannot be extended to higher M, since the assumption of 
uniform flow would not be correct for large M. Let us consider a duct with 
rectangular cross section a • b. The flow, of velocity U, goes in the (z > 0) 
direction. Use is made of a description of the phenomenon related to the observer, 
along with the changes of variables: 

z = z '  + Ut'; t' ~ t; (x, y) ~ (x, y) 

Only the time derivatives are modified: 

de 0r  Ot Or Oz 0r  0r  
. . . .  + . . . .  + U - -  
dt' Ot Ot' Oz Ot' Ot Oz 

and the d'Alembert equation becomes 

(Ott Oz)  2 0 r 2M 0 
1 0 UO _ _ 2  _ M2) 2t~ 

- -  + r = A r  or 
C 2 Oz ~(1 c OtOz 

In a rectangular duct, separating the transverse variables leads to 

02r M 0r ko 2 
- - +  2~ko t 
OZ 2 1 - -  M 2 0 z  1 - -  m 2 

m27r n2712 / 
r  ~ + ~  r 

a 2 b 2 

kmn ~ - 

1 0 2 r  
= A r  

C 2 0 t  2 

ko - co~co 

Cmn 

{ [ ) ]}1,2 
1 - M 2 m271-2 n271-2 

ko - M + ~  . . . . .  + 62 - 1 
1 - M  2 k 2 \ a 2 

For  M -  0, the formula is the one previously obtained. The expression of kmn shows 
that there is always a propagative term, even for evanescent waves. The cut-off 
frequency fc, mn of mode (m, n) is changed. If the propagative term of kmn is set to 
zero, then 

m27r2 n2712 , 27rf'c, mn 27r 
x/1 - M 2 ~ + ~ = k 0 . . . .  

a 2 b 2 co )kmn 

If M is small, x/1 - M 2 _~ 1 - M2/2,  then f "  m n  - -  (1 - M2/2)fc,  mn . For M = 0.06 
and f =  1000 Hz, f ~ , m n -  1000(1 - 18 • 10-4) '. The shift is equal to 1.8 Hz only. 

The changes in the representation of the transient regime are more complex. This 
representation can be obtained in a straightforward way or from the Fourier 
transform of the solution r (obtained as in Section 7.3.6). 

The time excitation for a mode (m, n) can be expressed as 

m T r x  
A ~ ) m n ( X  , y)6(t) -- A cos cos 

tory 
6(t) 

b 
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Because the solution in z does not depend on x and y, it must have the general form: 
Z(7,)Al~mn(X, y) .  It must be a solution of the d'Alembert equation (written above) 
and initial conditions, for example 4~ = 0 and Oc~/Ot = 0 at t = 0. The solution is 
obtained through a Laplace transform. It is similar to the expression obtained for a 
fluid at rest, with the following changes: 

�9 the arrival times ( t -  x/c) and (t + x/c) are replaced by 

( x ) ( 
t - c(1 + M) and 

X ) 
t + c ( 1  + M )  ; 

�9 the eigenvalues are multiplied by (1 - M2). 

The formula is not quite so simple to interpret. Let us notice, however, that these 
changes are quite small if M is quite small and cannot be observed experimentally. 

Finally, let us point out that the rigorous study of a flow when the acoustic mode 
(0, 0) is present is a problem of fluid mechanics. 

7.7. Conclusion 

Many problems have been studied in this chapter. Many more problems have not 
even been mentioned. For example, only deterministic cases have been considered. 
What can be said for a non-periodic signal? for a random signal? How do we deal 
with the irregularities of a surface when they are not too small and not periodically 
spaced, when they are randomly spaced? What must be added to a model if the 
fluid is highly turbulent? 

Clearly, the models presented in this chapter are more or less convenient. The 
methods proposed previously cannot be used to study random propagation of a 
random signal in a duct with such a geometry that variables cannot be separated. 
Global energy methods must be developed to obtain qualitative information on 
propagation. This was not the purpose of this chapter. 
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Transmission and Radiation of Sound by 
Thin Plates 

Paul J. T. Filippi 

Introduction 

In many practical situations, a sound wave is generated by the vibrations of an 
elastic structure: let us mention musical instruments like a guitar, a violin, a piano, 
a drum, etc.; industrial machines like an electric transformer, a tool machine, all 
sorts of motors, etc.; in a building, noise is transmitted through the structures 
(windows, floors, walls) because, for some reason, they are set into vibrations; there 
are also a lot of domestic noise and sound sources, like a door bell, a loudspeaker, a 
washing machine, a coffee grinder, etc., the vibrations of which generate noise. This 
is a very short list of noise generation by vibrating structures. 

A reciprocal aspect of this phenomenon is the vibration of a structure generated 
by an incident acoustic wave. A classical example is commonly reported. A flautist 
or violinist is playing in a party while people are drinking champagne in crystal 
glasses; suddenly he plays a note exactly tuned on a resonance frequency of one of 
the glasses which starts vibrating with such a large amplitude that it breaks apart 
and the champagne is for the rug. Another very old and excessively common 
example is the mechanics of the ear: the air, excited by an acoustic wave, makes the 
eardrum move and, in its turn, the eardrum generates a motion of the ear bones 
which excite the auditory nerve. Finally, let us mention that the fundamental part 
of a microphone is a membrane which is set into vibrations by sound fields. 

These two aspects of the phenomenon can occur at the same time: a sound field 
excites a structure which then creates a second sound field. This is why it is possible 
to hear external noises inside a room. 

All these phenomena are, in fact, various aspects of a single one: the interaction 
between a compressible fluid and a vibrating structure. This part of mechanics is 
often called vibro-acoustics. 

This chapter starts with a very simple one-dimensional example: a wave guide 
separated into two parts by a mass/spring system which can move in the axial 
direction. Sound can be generated by this structure or transmitted through it. The 
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interest of this academic case is twofold: the equations can be solved analytically; 
and the behaviour of this system provides the fundamental laws which govern 
vibro-acoustic phenomena. The second example is that of an infinite plate, 
embedded in a fluid; it is excited either by an incident plane wave or by a point 
force. Then the example of a plate of finite dimension extended by an infinite 
perfectly rigid plane (baffled plate) is examined. In a first step, the solution of the 
problem is expanded as series of either the eigenmodes or the resonance modes. 
When the fluid is a gas, a light fluid approximation is presented which accounts for 
the fact that the presence of the fluid has a very small influence on the vibration of 
the plate, and can, thus, be considered as a small perturbation. Finally, it is shown 
how the problem is reduced to a set of boundary integral equations which can be 
solved by various numerical methods similar to those described for acoustics 
problems: as an example, the approximation of the unknown functions by 
truncated series of orthogonal polynomials is presented and discussed. 

8.1. A Simple One-dimensional Example 

The system is an infinite waveguide with constant cross section of unit area. The 
abscissa of a cross section is denoted by x. The guide is separated into two parts by 
an infinitely thin but perfectly rigid panel located at x = 0. This wall is supported by 
a system of springs which exerts a force on it when it is moved back and forth in the 
x-direction (see Fig. 8.1). 

It is assumed that the two half-spaces x < 0 and x > 0 are filled with a fluid 
characterized by a density p and a sound speed c. The panel has a mass m and the 
springs system has a rigidity r. It is assumed that the panel can move in the x 
direction only, which implies that it can generate only plane acoustic waves. 

8.1.1. Governing equations 

Let /~(t) be the total force acting on the wall in the x-direction. The wall 
displacement ~(t) obeys the following differential equation: 

dE~(t) 
m + r~(t) -- F(t) (8.1) 

dt  2 

x < 0  x > 0  
m a s s  

spring 

x - 0  

Fig. 8.1. Scheme of the one-dimensional vibro-acoustic system. 
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In general, the force/~(t) is the sum of two terms" an external force [~e(t) (which can 
be zero); the difference /3(t) between the acoustic pressure exerted by the fluid 
contained in the half-guide x < 0 and that exerted by the fluid contained in the 
x > 0 half-guide. 

Let S - ( x , t )  and S+(x, t)  be acoustic sources located in x < 0  and x > 0  
respectively. The acoustic pressures in the two half-guides p - (x ,  t) and p+(x, t) 
satisfy wave equations: 

O2/~-(X, t) 1 02/)-(x, t) 

O x  2 c 2 Ot 2 

oZb +(x, t) 1 oZb +(x, t) 

O x  2 c 2 Ot  2 

= S - ( x ,  t) in x < 0 

= S+(x ,  t) in x > 0 

(8.2) 

We thus have 

/3( t) - /5 - (0 , t) -/5+(0, t) (8.3) 

A continuity relationship at x -  0 is required to express the fact that the fluid 
particles remain in contact with the elastically supported piston. This is achieved by 
letting the particle acceleration be equal to the piston acceleration, that is 

dEft(t) 
dt 2 = ~ - (0 ,  t) - ~/+(0, t) (8.4) 

where -~-(x, t) (resp. -~+(x, t)) is the fluid particle acceleration in the half-guide 
x < 0 (resp. x > 0). Then, it is necessary to express the fact that the energy 
conservation principle is satisfied. This is done by requiring that the acoustic waves 
radiated and reflected by the panel are purely outgoing waves in the two half- 
guides. Finally, initial conditions must be given. It will be assumed that, for t < 0, 
all source terms are zero and the system is at rest. 

With these conditions, the solution of equations (8.1, 8.2) exists and is unique. 
An easy method for obtaining the solution is first to solve the time Fourier- 
transformed equations (this is done in the following subsection) and then to go 
back to the time dependent solution by an inverse transform (last subsection). 

8.1.2. Fourier-transformed Equations and Response of the System to a Harmonic 
Excitation 

The Fourier transform classically adopted in acoustics is defined by 

I 
+ o o  

f ( w ) =  f ( t)e ~t dt 
- - 0 0  

_ 1 J + ~  f ( t) - ~-~ -co f (~)e -~ t  d~o 
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Let Fe(~V), S - ( x ,  ~v) and S+(x, ~v) be the Fourier transforms of the source terms. The 
Fourier transform (u(a;) ,p- (x ,  aJ),p+(x, ~v)) of the solution satisfies the following 
system of equations: 

(-moo 2 + r)u(co) = Fe(w) + p - ( 0 ,  co) - p + (0, co) (8.5) 

d2p -(x, 
dx 2 + k Z p - ( x ,  ~v) -- S - ( x ,  cv), x E ] - o<z, 0[ 

d2p + (x, w) (8.6) 

dx 2 + k2p+(x,  o r ) -  S+(x,  or), x E ]0, +c~[ 

with k = a;/c. Introducing the momentum equation into (8.4), these relationships 
become: 

coZpu(~) _ dp-(O, w) _ _ d p  +(0, w) (8.7) 

dx dx 

Remark.  The solution (u(co),p-(x,  co), p + (x, w)) is the response of the system to 
the harmonic excitation (Fe(cO)e -"~ S - ( x ,  co)e -u~/, S + ( x ,  co)e-U~ 

Equation (8.5) points out a particular angular frequency 

coo- v/-r/m (8.8) 

which is the /n  vacuo angular resonance frequency of the system composed of the 
mass and the spring system. It will be seen that it plays an important role in the 
vibro-acoustic behaviour of this simple system. 

The analysis of the phenomenon is simplified by distinguishing two cases. First, 
it is assumed that there are no acoustic sources ( S - =  S + = 0) and the energy is 
due to the force Fe(cO) applied to the panel: this aspect is referred to as acoustic 
radiation by a vibrating structure. Then it is assumed that there is no external force 
acting on the panel and that the acoustic source in the half-guide x > 0 is zero: this 
aspect of the phenomenon is referred to as sound transmission through an elastic 
structure and acoustic excitation o f  an elastic structure. 

Acoustic radiation of an elastically supported piston in a waveguide 
In this section, it is assumed that the only energy source is the external force Fe(~V) 
acting on the panel. The energy conservation principle implies that the acoustic 
waves must travel away from the piston. Thus, they have the form 

p - (x, ~v) - A -e -~x, p + (x, ~v) - A +e ~kx 

Equations (8.5) governing the mass displacement and the continuity conditions 
(8.7) are written 

A + - A -  - m(ov 2 - cv2)u - Fe(oV) 

ckA + - pco2u - 0 (8.9) 

- L k A -  - pw2u = 0 
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The determinant of this system is 

O = ] 2tw - -  + 032 - 03 2 m 
m 

It is different from zero for any real value of the angular frequency 03, that is for any 
physical angular frequency of the excitation. Thus, the solution of (8.9) exists and is 
unique, and is given by: 

1 

p c  2 
u -- - F e ( w ) m - 1  __ + 03 _ w5 

m [ ]1 
twpc  pc 2 

A - -- -Fe(03) 2cw - -  + w - w 3 (8.1 O) 
m m [ ]1 

t, wpc  pc 
2 tw - -  + 0 3  2 - -  033 

m m 
A + = Fe(w)  

It can first be noted that the pressures p - ( x )  and p + ( x )  have the same modulus, 
which was a p r i o r i  obvious. A second remark is that the pressures p - ( - x )  and 
p + ( x )  have phases with opposite signs, which could also be found a priori:  indeed, 
when the piston creates a positive pressure in the x > 0 half-guide, it automatically 
creates a negative pressure in the other half-guide. 

It is useful to look at the mean value, over any integer number of periods, of the 
various powers involved. The instantaneous power provided by the excitation force 
to the system is 

d 
~[Fe(w)e  - ~ t ]  ~[ue-~t] 

which is the product of the instantaneous external force by the instantaneous panel 
velocity. The mean value over one period is 

9~~ I~ 
r 

~[Fe(w)e  -U~ t~03ue -t~t] d t  

The instantaneous power flow which crosses over the guide cross section with 
abscissa x in the x > 0 direction is 

~[p + (x)e -~t]~[v + (x)e -~t] 

where v + ( x )  is the complex amplitude of the particle velocity. The momentum 
equation 

1 d p + ( x )  
v + ( x )  = 

twp  d x  
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leads to the expression of the mean power flow: 

[ ] ~'+ - - -  ~ e dt T ~[P +(x)e-twt]S}~ 1 dp +(x) -~t  
~cop dx 

The mean power flow 9 ~- across any cross section of the half-guide in the x < 0 
direction is defined in a similar way. The result is: 

e~ = [ Fe(co) 12pc 
, 9 ~ -  = 9 ~ +  = � 8 9  ( 8 . 1 1 )  

mZ[4pZcZ/m 2 + co2(1 - co0:'/co2)] 

Expressions (8.10) and (8.11) point out that the in vacuo resonance angular 
frequency coo of the system panel/spring has a particular role in the behaviour of 
the coupled system. Indeed, the quantities l u l, I A -  I, [A+I and ~0 have a 
maximum at co = co0. 

If the fluid is a gas, and the panel a solid, the parameter e = pc/m is small 
compared to unity. It is, thus, tempting to expand the expressions of the system 
response into a Taylor series of this parameter and to keep the first order term 
only: this is commonly called the light fluid approximation of order one. The 
result is 

Fe(CO) [ 2twe 2)] 
- -  - 1 - ~ + (~(c 

u m(co2 _cog) co2 _co2 
(8.12) 

re(~) 
A + = - A  - = ~coe[1 + 0(e2)] 

(03 2 -- COg) 
It is clear from this result that the condition e ~ 1 is not sufficient to ensure the 
convergence of the Taylor series expansion. The parameter which is involved is 
2uvr _ co2). Thus the condition for the Taylor series to converge is 

~2 
e<-- 1 -  

2 

This shows that the light fluid approximation is meaningless for co = coo. 
This approximation can equally be introduced in a more intuitive way. If the 

fluid density is small compared to the panel mass, the panel displacement is, as a 
first approximation, the same as in the absence of the fluid, that is 

U "~" UO - -  - -  

r e ( c O )  

m(co 2 - co~) 

Such a displacement induces pressure fields with amplitudes 

A + - - A  - ~ A ~- - - A  { - - ~ c o p c u o  - 
~ e F e ( ~ )  

_ 
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Then, from the corresponding acoustic fields, a first order correcting term for the 
panel displacement is obtained 

U l - - - - U  0 
2t,60eFe(60) 

602 _ COg 

The iterative calculation can be continued to get higher order correcting terms. It is 
to be noticed that the Taylor series expansion and the iterative process provide 
identical results. For this particular one-dimensional example, correction terms of 
any order are easily evaluated. But it seems that, for two- or three-dimensional 
structures, only the first order correcting term can be used; the higher order ones 
are generally difficult to evaluate numerically. 

Acoustic transmission through an elastically supported piston in a waveguide 
All sources are assumed to be identically zero. The energy is provided by an 
incident plane wave of unit amplitude in the half-guide x < O; thus, the acoustic 
pressure is written 

p - (x ,  60) = e ~kx + P7 (x, 60) 

where P7 (x, 60) is the wave reflected by the panel. This function and the transmitted 
acoustic pressure p +(x, 60) satisfy a homogeneous Helmholtz equation. The energy 
conservation principle implies that these acoustic fields have the following forms: 

P7 (x, 60) = R(60)e -~kx, p +(x, 60) -- T(60)e ~kx (8.13) 

With such a choice, the reflected wave travels in the direction x < 0, while the 
transmitted one travels in the x > 0 direction. The panel displacement u(60), the 
reflection coefficient R(60) and the transmission coefficient T(60) are the solutions of 
the following system of linear equations: 

One gets 

R(60) - T(60) q- m(60 2 - 60~)u(60) - -~1 

t, k R ( 6 0 )  + 602pu(60) = ck 

- t, k T(60) -Jr- 602pu(60) = 0 

1 

2 p c  2 
u ( c o )  - - - +  ~o - co6  

m m [ ]1 
( ) pc 2 

R ( ~ o ) -  ~o 2 - ~Oo ~ 2 ~ o  - +  ~o - ~Oo ~ 
m 

1 [ ] p c  p c  
T(60) - 2t~60 ~ 2t,60 ~ + 60 2 - -  6 0 2  

m m 

(8.14) 

(8.15) 
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Here again, the in vacuo resonance angular frequency of the mass/spring system 
plays an important role. Indeed for ~ -  ~0, one has 

u(wo) - ~  , R(wo) - O, T(wo) - 1 
twopc 

The system behaves as if there were no separating wall: the mass displacement is 
identical to the fluid particle displacement induced by the incident wave only. 

Let us now introduce basic notions of architectural acoustics: 

�9 Definition 1: The ratio T(w) of the transmitted mean power flow to the incident 
mean power flow is called the energy transmission rate of the wall. 

�9 Definition 2: The difference ~(~v) between the incident mean power level and the 
transmitted mean power level is called the insertion loss index of the wall. 

These concepts are rigorously defined for a one-dimensional system. For walls in a 
three-dimensional space, their definitions cannot be as rigorous and require some 
approximations; nevertheless, they are very helpful, and, probably, necessary to 
qualify the insulation properties of walls and floors. From formulae (8.15), the 
following result is established" 

4 ~ 2 ( p c / m )  2 
T ( ~ )  - 

4 ~ 2 ( p c / m ) 2  + (~2 _ ~2)2 (8.16) 

~(w) = 10 log (1/r(~)) 

It is interesting to introduce two reduced parameters # -  p c / m ~ o  and f ~ -  ~/,J0. 
Then the energy transmission rate is written 

4# 2 
7-m 

4#2 + f~2(1 _ ~-~2) 

Figure 8.2 shows the insertion loss index as a function of fl for # -  10 -3. 
It is interesting to examine the asymptotic case e -  p c / m  e 1, for which the 

fluid is a gas and the wall is an elastic structure. The lowest order term of 
the Taylor series expansion of the transmission coefficient leads to the 
approximation 

4p2c 2 
~-(~) ~ 

m2~o2(1 _ ~g/~2)2 

Under the hypothesis ~2/~2 e 1, that is for frequencies much higher than the in 

vacuo resonance frequency of the wall, one gets 

4p2c 2 
~-(~) ~ 

m26v 2 
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Fig. 8.2. Insertion loss index of an elastically supported piston in a waveguide as a function of the 
reduced frequency parameter f~. 

This approximation shows that, asymptotically, the amplitude of the transmitted 
acoustic wave is inversely proportional to the wall mass. This is called the mass law, 
which can be defined as a good approximation of the high frequency behaviour of 
building walls. In the example shown, the mass law provides an almost perfect 
prediction for f~ > 2.5. 

8.1.3. Transient response of the system to a force acting on the panel 

Let us now find the solution of equations (8.1) to (8.4) with S+(x, t) - S - (x ,  t) - 0, 
and Fe(t) non-zero on a bounded time interval ]0, T[. The panel displacement is 
given by the Fourier integral 

1 I +~ Fe(w) fi(t) = e-~t dw (8.17) 
27r -~ m[2t, wpc/m + w 2 --  W 2] 

The integrand being a meromorphic function, the integration can be performed by 
using the residue theorem. A priori, two integration contours are necessary: for 
t < 0, the real axis is closed by a half-circle with radius R ~ :xD in the half-plane 
,~(w) > 0; for t > 0, it is closed by a half-circle in the other half-plane. The 
denominator of the integrand is a polynomial of order 2 in w with a discriminant 
equal to (w 2 - p 2 c 2 / m 2 )  that we assume to be positive (the other case is left as an 
exercise). The roots of the denominator are 

pc t p2C2 pc I p2C2 
- _fi _ ' 
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These two roots lie in the complex half-plane ~(~o) < 0, thus, fi(t) is zero for t < 0. 
For  t > 0, one has 

fi(t) - ,~ e -t~(]t e -S t  t > 0 (8.18) 
m f~ + + cpc/m 

(the proof  is left to the reader). This is a damped oscillation. 
The acoustic pressure b +(x, t) is given by the integral 

+ (x, t) 1 f + c x ~  lZadpCFe(o3) -tw(t - x/c) 
P - e d~v ( 8 . 1 9 )  

27r J -~  m[2c~vpc/m + w 2 - wg] 

Owing to the term e x p ( - t w ( t -  x/c)), this signal is zero for t < x/c: this time 
corresponds to the delay which is necessary for the wavefront to reach the point of 
abscissa x. For  t > x/c, the acoustic pressure is 

~+(x, t) P c [  ~2+Fe(f~+) ] = _ __ ~ e-,fi(t- x/c) e-(~(t- x/e) t > x /c  (8.20) 
rn 9t + + ~pc/m 

(the proof  is again left to the reader). 
These results require a few comments. The poles 9t + and f~- of the integrands in 

(8.17) and (8.19) have a physical interpretation. Let us look for free oscillations of 
the system, that is for solutions of equations (8.1) to (8.4) in the absence of any 
excitation. It is easily proved that the only non-zero solutions have a time 
dependence of the form exp (-cgt + t) or exp ( - d ~  - t). For  that reason, these angular 
frequencies are called resonance angular frequencies. The corresponding responses 
of the system are 

U+(t) = e -~ft• P+(x, t) - sgn(x)pcgt+e -~f~• Ix I/c) 

They are called the resonance modes of the system composed of the elastically 
supported piston coupled to the fluid. 

8.2. Equation Governing the Normal Displacement of a Thin Elastic 
Plate 

An elastic solid is called a thin plate if one of its three dimensions - called the 
thickness of the plate - is small compared to the other two and if all physical 
quantities (displacement vector, stress, ...) vary very slowly through the 
thickness. Geometrically,  a plate is a cylinder with base a surface ~2, bounded 
by a contour  0E - called the mean surface - and with a height - called the 
thickness - described by a positive function h(xl, x2), the domain of variation of 
the variable x3 being ] - h(xl, x2)/2, +h(xl ,  x2)/2[. The thickness is equal to a few 
per cent of the dimensions of E and, here, it will be assumed to be constant.  The 
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elastic solid is characterized by a density p, a Young's  modulus E and a Poisson 
ratio u. 

The equations of elasticity are obtained through the Hamilton principle by 
taking the variation of the total energy of the solid. To get an approximation of 
these equations under the thin plate hypothesis, it is necessary to have 
approximations of the strain and stress tensors. 

Let (Ul, u2, u3) be the components of the displacement vector of the plate, d O. the 
strain tensor components and 0.~ the stress tensor components. Using the classical 
notation f , i  for the derivative Of/Oxi,  one has 

1 
dij - -  -- (Ui, j -1"- Uj, i) 

2 

0.11 
E 

(1 + u)(1 - 2u) 
[(1 - / / ) d l l  q--//(d22 + d33)] 

0.22 
E 

(1 + u)(1 - 2u) 
[(1 - u)d22 +//(d33 -+- d l l ) ]  

0.33 
E 

(1 + u)(1 - 2u) 
[(1 - / ~ ) d 3 3  --[- u(dll + d22)] 

E E E 
0.12 m dl 2 m 0.21, 0.13 ~ ~  d13 ~--0.31, 0.23 - ~  d23 ---0.32 

l + u  l + u  l + u  

The first hypothesis is that both boundaries X 3 = - h / 2  and X3 -- + h / 2  are flee, 
which leads to 0.i3 = 0 along these surfaces. The second hypothesis which is used is 
that, h being small, all quantities can be expanded into Taylor series of the variable 
x3 around zero and terms of order 1 are sufficient to describe the potential energy. 
From this assumption, it follows that the displacement components ul and u2 can 
be approximated by expressions which involve the lowest order approximation ~ of 
the component u3 only (which, of course, does not depend on x3): 

Ul ~ --X3W~ 1, /12 ~ --X3W, 2 

This leads to the following approximation of the strain tensor: 

d l l  "~ - x 3 w ,  11, d22 ~ - x 3 w ,  22 

d12 ~ - x 3  w, 12, d13 ~ 0, d23 "~ 0 (8.21) 

X3// 
d33 ~ (w, 11 -~- w, 22) 

1 - u  

The potential energy density e is thus approximated by 

E 
e -  Z aijdq "" x 2 

i,j 24(1 - u 2) 
{[W, 11 + W, 22] 2 -~- 2(1 - u)[~, 22 - ~, 11 w, 22]} 
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and the total potential and kinetic energies of the plate are approximated by 

+h/2 
f %- dx3 J ~ e dE 

a-h/2 

Eh 3 I 
"" {[14', 11 -+- 1,V, 22] 2 + 2(1 - u)[~, 22 - ~, 111~, 22]} dE (8.22) 

24(1 - v 2 ) 

1 +h/2 l Phi w2 
2 J-h~2 ~ 2 

where j~ is the derivative of f with respect to the time variable. Let/~ be a force 
density applied to the plate in the normal direction; it is also assumed that no effort 
is applied along the plate boundary. The Hamilton principle gives 

E 

where 6f stands for the variation of the quantity f. Using expressions (8.22), one 
obtains 

E 12( 1 - / , , 2 )  [(14,, 11 + 14,, 22)(~1,v, 11 -J- ~14,, 22) + (1 - v ) ( 2 r  12 ~I'V, 12 

' x  

-- 1,~', l l ~1,~', 22 -- 1,~', 22 ~14', 11)] q- phw ~w ~ ~ -- f P dE (8.23) 
J d 

Assume that the boundary 0E of the plate is piecewise differentiable (for 
example, it is composed of arcs of analytical curves). Thus, a unit normal vector ff 
and a unit tangent vector 3" can be defined almost everywhere. Performing 
integrations by parts in the first term of equation (8.23), one gets 

i { Eh 3 
12(1 - -  / , , 2 )  

A 2~ + phw } ~5~ dE + Eh' 
[ g l ( 1 4 ' )  Tr 0n 6# 

12(1 - u 2) p~ 

- T r  0n A #  Tr 5# + g2(l~) Os Tr a#] d s -  J /~ a# dE (8.24) 

In this equation, the various symbols are defined as follows" 

04 04 04 
A 2 - - ~ +  2 

Ox Ox 2 

Tr # ( M ) -  lim ~,(P), 
PE~---*MEO~ 

Tr ~ n  14,' - -  lim if(M). Vp+(P) 
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Tr Os# = lim g'(M). Vev?(P) 
PE~---*MEO~ 

Tr 0~2# = lim g'(M). Ve[g'(M). Ve#(P)] 
PEN---* M E 0N 

Tr On 0~v? = lim if(M). Ve[g'(M). Vev?(P)] 
PEN---*MCON 

gl(#) = Tr A # -  ( 1 -  u) Tr 0~#,  g2(#) = ( 1 -  u) Tr On 0~# 

These results are very easy to obtain for rectangular or circular plates; they are 
established for any boundary in classical textbooks (see the short bibliography at 
the end of the chapter). The terms which occur in the boundary integral represent 
different densities of work; their components have an interpretation in terms of 
boundary efforts: 

�9 Eh 3/12(1- //2)Tr On AI~,  being the factor of 6#, represents the density of ! 
shearing forces that the plate boundary exerts on its support. 

�9 -Eh 3/12(1 -/ /2)[Tr A # -  (1 - / / )  Tr 0~2#], being the factor of Tr On(5~v, ! 
represents the density of bending moments (rotation around the tangential 
direction). 

�9 -(1 -//)Eh3/12(1 -//2) Tr On Os~v, being the factor of 0~ Tr 6#, represents the 
density of twisting moments (rotation around the normal direction). 

If the boundary 0E has no angular point, the tangent unit vector g" is defined 
everywhere and the last integral in the left-hand side of (8.24) can be integrated by 
parts, leading to 

l 
" { Eh 3 
r~ 12(1 -- //2) 

A2w + phw }(5~, dE 

+ 
Eh 3 f 

/ {[Tr Av~- (1-//)Tr0~2~]Tr 0nt~l~ 
12(1 - u2) jot 

- [ (1  - u )  0 ~ T r  O,,Os~ + Tr OnA~] Tr 6v?} d s -  J" [~ 6~i, dE (8.25) 

This equality must be satisfied for any displacement variation 6~, which implies 
that the sum of integrals over E and the sum of integrals over 0E must be zero 
independently of each other. This first leads to the well-known time dependent 
plate equation and harmonic plate equation 

D A 2 + #  # - - F  

(8.26) 
Eh 3 

with D = , /z = ph 
12(1 - u 2) 
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F (m2 __ A4)w=-- 
D 

i+e~z i+oo with w - ~ve~tdt ,  F -  [~e~,,tdt, ~ 4 __ __ ] 1 ' ~ 2  

-o~ - ~  D 

(8.27) 

By analogy with the Helmholtz equation, the parameter A is called the plate 
wavenumber and a pseudo-velocity of flexural waves (generally simply called 
'flexural wave velocity') is defined by Cp = ~o/A: it is frequency dependent and it 
does not correspond to a genuine wave velocity, that is to the speed of a wavefront. 
The cancellation of the boundary integrals is obtained by assuming that the 
displacement satisfies two independent boundary conditions. The most classical 
ones are: 

�9 Clamped boundary: 

Tr w = 0, 

�9 Free boundary: 

Tr Aw - (1 - u) Tr 0s2 w = 0, 

�9 Simply supported boundary: 

Tr w = 0 ,  

Tr Onw = 0 

Tr O n A w  + (1 -- v)  Os Tr OnO~ = 0 

Tr A w -  (1 - u) Tr Os2w = 0 

8.3. Infinite Fluid-loaded Thin Plate 

The second example of a fluid-loaded structure is that of an infinite thin plate 
embedded in a fluid extending to infinity. In a first subsection, attention is paid to 
free waves which can propagate along the plate. A second subsection is devoted 
to the transmission of a plane acoustic wave through the plate. And finally, 
the radiation of the fluid-loaded plate excited by a point harmonic force is 
studied. 

It will be seen that the behaviour of such a structure is very similar to that of 
the elastically supported piston in the waveguide. In particular, for a given 
incident plane wave, there exists a frequency (which depends on the angle of 
incidence) for which the reflection coefficient is zero while the transmission 
coefficient is equal to one: this frequency is analogous to the in vacuo  resonance 
frequency of the elastically supported piston. If the fluid is a gas, it is possible 
to use a light fluid approximation which leads, at high frequencies, to a mass 
law. 

Let us consider an infinite thin plate, characterized by a rigidity D and a surface 
mass #, located in the plane E = ( z = 0 ) .  The two half-spaces 9t + = ( z  > 0) 
and ~ - =  (z < 0) are occupied by a fluid characterized by a density #0 and a 
sound speed r The time-dependent displacement of the plate is ~(x, y; t); the 



CHAPTER 8. T R A N S M I S S I O N  AND RADIATION OF SOUND B Y  THIN PLATES  261 

corresponding pressure fields are denoted by p+(x, y, z; t) in f~+ and p-(x ,  y, z; t) 
in f~-. The harmonic regimes are denoted by w(x, y), p+(x, y, z) and p-(x ,  y, z). 
The source terms are F(x,y; t) (or F(x,y)) on the plate, S+(x,y,z; t) and 
S-(x,  y, z; t) (or S+(x,y,z)  and S- (x , y , z ) )  in the fluid. In what follows, we 
sometimes adopt the notation f(Q) for f (x ,  y, z) and f (M)  for f (x ,  y). 

The governing equations are 

D A 2 + # ~ t 2  #(M; t )+b+(M;  t ) - b - ( M ;  t ) - / ? (M;  t), M E  E 

(lO ) 
A p+(Q; t ) -  S+(Q; t), Q e f~+ (8.28) 

co Ot 2 

Op+(x, y, z; t) [ OZw(x ,  y; t) 

I - - # o  on E 
Oz z = 0  Ot2 ' 

D(A 2 - A4)w(M) +p+(M) - p - ( M )  - F(M), M E E 

(A - k2)p+(Q)-  S+(Q), Q E 9t + (8.29) 

Of • y, z) 

Oz 
z = 0  

- -  #0CO2W(X,  y), on E 

The plate equations express the fact that the plate excitation is partly due to the 
difference between the acoustic pressures existing in the two domains f~- and f~ +. 
The continuity equations express the fact that the acoustic pressures satisfy a non- 
homogeneous Neumann boundary condition on E, the excitation term being 
proportional to the plate acceleration. To ensure the uniqueness of the solution, it is 
necessary to add an 'outgoing wave condition' for both the acoustic fields and the 
displacement field; for harmonic regimes, this is expressed by a Sommerfeld 
condition or, equivalently, by the limit absorption principle. Finally, for transient 
regimes, initial conditions must be given. 

8.3.1. Free plane waves in the plate 

Let us look for free plane waves propagating within the fluid-loaded plate. They 
must be solutions of equations (8.29) with no sources (homogeneous equations). 
The plate displacement is sought in the following form: 

w -- e -~Ax (8.30) 

Then, the sound pressure fields satisfy the following boundary conditions: 

Ozp-(x, y, O) -- Ozp+(x, y, 0) -- co2/zoe -~Ax (8.31) 
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The functions p-(x, y, z) and p+(x, y, z) are solutions of a homogeneous Helmholtz 
equation which, in fact, are independent of y, and one must have 

e ~(Ax - a z )  

p -  (x, y, z) -- p -  (x, z) - -  _ & 2 / z  0 
bOg 

e ~(hx + az) 
p+(x, y, z) --p+(x, z) - -  o32~0  (8.32) 

bOg 

Og defined by k 2 - A 2 _}_ Og2 

Introducing these expressions of the plate displacement and of the acoustic 
pressures into the plate equation, one gets the fluid-loaded plate dispersion 
equation" 

~(A) - cOgD(A 4 _ /~ 4) ._[_ 2a~2/z0 _ 0 (8.33) 

The roots of this equation give the possible wavenumbers A and Og of the free plane 
waves. It can be remarked first that if A is a solution, - A  is also a solution: thus, 
only one set of solutions needs to be determined. Then, we notice that Og2 is the 
parameter which is known in terms of A, so that Og can be arbitrarily chosen a s  x//--~ 2 

or -x/-a 2" thus equation (8.33) can be replaced by 

(k 2 _ AZ)(A 4 _ / ~ 4 ) 2  _ 4 &4]tg - -  0 (8.33') 
D 2 

Roots of the dispersion equation 
Considered as an equation in A 2, the dispersion equation has five roots. It is useful 
to determine the number of real roots and their respective positions on the real axis 
relative to k and )~. This is easily done by drawing the curve 

~(A) - 

(k  2 _ A2)(A 4 _ )~4)2 

k2 ,k  8 

It is obvious that two cases must be distinguished: k < A and k > A. The value of the 
angular frequency for which the wavenumber in the fluid is equal to that of the 
flexural wave in the plate obviously has a particular role. The corresponding 
frequency fc is called the critical frequency and is given by 

f 

f ~ -  mc~ 41 -- # (8.34) 
27r ~ D 

Both situations are shown in Fig. 8.3. The plate is made of compressed wood 
characterized by h - 2  cm, # - 1 3  k g m  -2, E - 4 . 6  109 Pa, u - 0 . 3 .  The fluid is 
air, with # 0 - 1 . 2 9  k g m  -3, c o - 3 4 0  m s  -1. The critical frequency is 1143 Hz. 
Equation (8.33') is satisfied for positive values of the function ~(A). This function 
has two zeros A -  k and A -  A, and, for A larger than both k and A, it is positive 
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Fig. 8.3. Dispers ion  curves for  k < A and  k > A. 

and grows to infinity. Thus, the roots of equation (8.33') are 

�9 in any situation, there is a pair of real roots +A[ with modulus larger than both 
k and A; 

�9 for k < A, there are either two other pairs of real roots, +A~ and +A~ such that 
k < A~ < A~ < A and two pairs of complex roots +A~ and +A~ *, or four pairs of 
complex roots +A~, +AS*, +A~ and • 

�9 for k > A, there are four pairs of complex roots +A~, +A~*, +A~ and +A~*. 

Interpretation of free waves corresponding to the different roots 
For the following discussion, it is sufficient to consider only the roots with a 
positive real part, that is those which correspond to waves propagating in the 
direction x > 0; the waves corresponding to the other roots propagate in the reverse 
direction. 

The flexural wave which corresponds to the largest real root, W l -  exp tA~'x, 
does not lose any energy. It behaves as a purely propagating wave with a pseudo- 
velocity r - -  w / A ~  which is smaller than co and than the pseudo-velocity ~/A of the 
in vacuo free waves which can propagate in the plate. The corresponding acoustic 
pressure in ~2 is 

e ~(A(x + ~lZ) 
p ~ ( x ,  z)  --  ~o2#0 , with c~ 2 -- k 2 - (a[) 2 < 0 

tO~l 

If we choose a l - ~v/(A[ 2 - k2), the pressure decreases exponentially with respect 
to the variable z: it is interpreted as an evanescent wave. For the other possible 
choice, a l - - ~ v / ( A { 2 -  k2), the pressure is exponentially increasing with z, and 
there does not seem to be any interesting physical interpretation. 

The other real roots, A 5 and A 5, when they exist, correspond to flexural waves 
which propagate with a pseudo-velocity smaller than the sound speed but larger 
than the in vacuo  structural free waves. As in the previous case, the acoustic fields 
can be either evanescent or exponentially increasing with the variable z. 

A complex root, for example A~ = Ag + ~Ag, induces a damped structural wave 

W4 - -  exp (t~i~x) exp (-A~x) 
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which propagates in the x > 0 direction. Two solutions of the equation a 2 =  
k 2 -  (A~) 2 are associated with this root: 

a ' =  & - ~&, a " =  -& + ~&, with & > 0 and & > 0 

The corresponding acoustic pressures in f~ + are 

e ~A~xe +~6Ze +8z e ~n~xe -~6Ze -&z 
p~-' = o32]./,o , p~-" - -  - - ~ 2 H ,  O 

b~  t bO~ t 

Both are damped in the direction x > 0. The first one propagates towards the 
positive z and increases exponentially, while the second one propagates in the 
reverse direction and has an amplitude which decreases exponentially with z. It is 
interesting to calculate the mean energy density exchanged by the fluid and the 
plate during one period. It is defined by 

6% - - - -  ~ [ T r  p + e - " t ]  ~ [ -  twwe -~ t ]  dt 
T 

For both possible pressure fields, one obtains 

W 3 # 0  - 2 h ~ x  
6 % ' = ~ e  

2 I 12>~ 
~v 3 & 

tt IJ'O -2h~x = - ~ e  ~ < 0  
2 I~12 

This result has the following interpretation: in the first case, the plate gives energy 
to the fluid; in the second case, the fluid provides energy to the plate. 

The light f l u i d  approximation 
When the fluid is a gas, it is intuitive that it has, in most situations, a very small 
influence on the vibrations of the elastic solid. Let us introduce the parameter 
e - #0/#,  the ratio between the fluid density and the surface mass of the plate, and 
assume that it is 'small'. The dispersion equation (8.33) can be rewritten as 

b a ( A  4 _ ]1032) __ -2A 4g (8.33") 

The roots of this equation are obviously close to +A, +~A and +k. A classical 
perturbation method for finding approximations of these roots is to look for a 
formal expansion in successive powers of s a where a is a constant to be determined. 
Here, we will calculate the lowest order correcting terms for k < A (the case k > A is 
left as an exercise). 

Let us first examine the possible roots close to A, that is roots of the form 
A ~ A(1 + 71e a + 72e 2a + . . . ) .  This expansion is introduced into equation (8.33") 
and the successive powers of e a are set equal to zero. Recalling that a has two 
possible determinations, the first order equation is 

+4v/A2 _ k 2 A4,'yl g a  - -  _2A4c 
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This leads to a = 1 and the corresponding roots are 

( ) ( ) r A i- "-' A 1 2v/A 2 k 2 A~- " A 1 + 2v/A 2 _ k 2 , - _ 

It appears clearly that, due to the term v/A 2 _ k2 in the denominator,  the light fluid 
approximation cannot  be valid in the neighbourhood of the critical frequency. 
Similarly, we get 

( ) ( ) A~- '--' t,A 1 + 2v"A 2 _+_ k2 ' A 2 '--' t,A 1 2v/A 2 + k2 

Let us now look for a root  of the form A "-~ k ( 1 -  7 1 ~ a q  - 72~" 
order equation is: 

+ck(k 2 - A2)(k 2 + )k2)~c a/2: --2A4~ 

which implies a = 2 and leads to a unique root  

I ( )k4 )2~1 A3 - k 1 + k(A2 _ k2)(A2 + k 2) 

2a+...). The first 

In accordance with the analysis made in the previous section, we have found two 
real roots between k and A and a third real root  larger than A. There are also five 
other roots which are opposite in sign to those which have been defined above. 

To conclude this subsection, let us say that the solutions of the dispersion 
equation have a fundamental  importance in solving the problems of sound 
radiation and sound transmission by plates. 

8.3.2.  Reflection and transmission of  a harmonic plane acoustic wave 

It is again assumed that  there is no source at finite distance but there exists an 
incident harmonic plane wave in the fluid domain f~ +, with wavenumber k; thus, 
the acoustic pressure p + is 

p+(x ,y , z )=e ,~k(x  sin0-z cos0) + p r ( x , y , z  ) (8.35) 

where 0 is the angle of incidence of the incoming wave. 
It is intuitive that, because the incident field is independent of the variable y, the 

reflected and transmitted pressures, together with the plate displacement, are 
independent of this variable also. A mathematical  reason which can be used is that  
the equations and the data are unchanged after any translation parallel to the y 
axis. It is equally intuitive that the reflected and transmitted pressures are plane 
waves: this result can be obtained by looking for a representation of these functions 
as plane waves. Nevertheless, it seems better to establish this result directly. To this 
end, use can be made of the two-dimensional Fourier  t ransform of the equations. 
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Let f(~c, 7; z) denote the Fourier transform of a function f ( x ,  y,  z) defined by 

f(~, 7; z ) -  [ [  f ( x , y , z ) e  -2~(x~+yn) dx  dy 
,l ,J 

R 2 

The Fourier t ransform of the incident field is 

~e,kr sin 0- z cos 0) = 6(~ -- k sin 0/270 | 6(7)e -`kz cos 0 

where 6(u - a) stands for the one-dimensional Dirac measure at the point u -  a, and 
| denotes the tensor product of two distributions. Then, equations (8.29) become 

I ] _+_ k 2 _ 47r2(~2 + 7.]2) p r (~ ,  7; z) - 0, 2 > 0 
dz 2 

+ k 2 - 47r2(~ 2 -t- 7 2) /~-(~ ,  7; z) = 0 z < 0 
dz 2 

[1671"4(~ 4 -+- 7 4) -- )k4lw(~, 7) ._~_ p r (~ ,  7; 0) - - / ~ - ( ~ ,  7; 0) (8 .36)  

= -6(~ c - k sin 0/270 @ 6(7)e -`kz cos 0 

@-(~, ~; o) @ +(~, ,7; o) 
= -~k  cos 0 6(~ c - k sin 0/270 | 6(7) + 

dz dz 
= 6U 2/z 01~(~, 7]) 

The solution of this system of equations is obviously proportional  to 6(7). Thus, its 
inverse Fourier transform is independent of the variable y. The solution is also 
proportional  to 6 ( ( -  k sin 0/270: this implies that its inverse Fourier transform is 
proportional  to e ~kx sin 0. We can conclude that the solution of equations (8.29) has 
the following form: 

p r ( x ,  y ,  z) - - p r ( x ,  z)  = Re"(kx sin O+a+z), ot + > 0  

p - ( x ,  y,  z) - p - ( x ,  z) - Te ~(kx sin o-,~-z),  c~- > 0 (8.37) 

w(x,  y)  -- w(x)  -- We"kx sin 0 

Using the plate equation and the continuity conditions, one obtains the following 
solution: 

ck cos O(k4 sin4 0 -- )k4) 
pr (x ,  Z) -- e ,l,~x sin 0 + z cos 0) 

~ (k  sin 0) 

2~2/z0 
p - ( x ,  z) - e ck(x sin 0- z cos 0) (8.38) 

~ (k  sin 0) 

2ok cos 0 
w(x)  - - e ckx sin 0 

~(k  sin 0) 

with ~ (k  sin 0) - 2w 2/.t0 A- ckD cos O(k4 sin 4 0 -- )~ 4) 

The function ~ ( k  sin 0) is the same as in the dispersion equation. 
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The energy transmission factor [ T] 2 is the squared modulus of the ratio between 
the transmitted wave amplitude and the incident wave amplitude. The insertion loss 
index is defined as the level in dB of 1/I T 12, that is 

2 
2w2#0 

~(~, 0) = -- 10 log 
2~2/z0 -+- ckD cos O(k 4 sin4 0 - /~4 )  

It depends on the frequency and on the angle of incidence. Its behaviour is similar 
to that of the elastically supported piston that was studied at the beginning of this 
chapter. Indeed, it is equal to zero if 

cg I" k 4 sin4 0 -  / ~ 4  0 that is for c o -  f~c(0)-  sin2 0 D 

where f~c(0) is called the coincidence angular f r equency .  This frequency depends on 
the angle of incidence and does not exist for 0 = 0. At the coincidence frequency, 
the in vacuo pseudo-wavelength of the plate flexural waves is equal to the product 
of the wavelength in the fluid and sin 0. Figure 8.4 shows the function ~(co, 0) for 
three values of the angle of incidence: the mechanical data of the fluid and of the 
plate are the same as in Fig. 8.3 (compressed wood in air). 

At high frequency, the insertion loss index takes the asymptotic form 

2#oco 
~(co, 0) --~ - 2 0  log 

#a) cos 0 

This is the mass law which is identical to that which has been found for the 
elastically supported piston. Figure 8.4 shows that this asymptotic behaviour is 

3"(d B) 

70 

60 

50 

40 

30 

20 

10 

/f;----, ,',! 
I 

" i! I! 
I! t 

. . . .  i ,~ , ,~ , | . . . .  i , , 

1000  2 0 0 0  3000  

. , ~ f l  
s f  I 

,..--t 

. . . . . .  f (Hz) 
4 0 0 0  5 0 0 0  

0=zd3 0=7r/6 0=0 

Fig. 8.4. Insertion loss index of an infinite plate for three angles of incidence. 
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reached around 2500 Hz for 0 = 0, while it appears for frequencies larger than 
5000 Hz for the other two angles of incidence. 

8.3.3. Infinite plate excited by a point harmonic force 

We consider now the case of an infinite fluid-loaded plate excited by a point 
harmonic force of amplitude F and located at the coordinate origin. It is embedded 
in a fluid which extends to infinity and does not contain any acoustic source. Owing 
to the simple geometry, the Green's representation of the acoustic fields p +(Q) and 
p-(Q) in terms of the plate displacement is known: 

I e ~kr(Q, M') 
p~:(Q) = T2ov2#0 w(M') dE(M') (8.39) 

E 4~rr(Q, M') 

Introducing this expression into the first equation (8.29), one gets an integro- 
differential equation for the plate displacement: 

D(A 2 + A 4 ) w ( M ) -  4w2/~ [ etkr(M'M') w(M') dE(M')= F6, M E ~2 (8.40) 
J r~ 47rr(M, M') 

Fourier transform of the solution 
To solve this equation, use is made of the space Fourier transform. Because the 
governing equations and the data have a cylindrical symmetry, the solution 
(w,p-,p+)^has the same symmetry. It is known that the two-dimensional Fourier 
transform f of a function f, depending on the radial variable p only, is a function of 
the dual radial variable ~ only; furthermore, the corresponding direct and inverse 
Fourier transforms are expressed as Bessel transforms: 

~(~) = 2~ f(p)Jo(2~r ap 

e tlr 

where Jo(u) is the Bessel function of order 0 and Ho(u) is the Hankel function of 
order 0 and of the first kind. 

The Fourier transform of the squared Laplace operator is 167r4~ 4. The Fourier 
transform of the integral operator is not so straightforward to get. Let us remark 
that the integral term can be written as 

[( ) ] I e i, kr(M, M') e i, kr 
- w(M') d2(M') = lim - ~  �9 w | 6~ (Q) 

r~ 47rr(M, M') Q e a+ ~ M ~ r~ 47rr 

where �9 stands for the space convolution product  and w | 6z is the simple layer 
source supported by the plane ~ and with density w. Thus, the Fourier  transform 
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of this integral involves the product of the Fourier transforms of each term, that 
is 

e&r ~ _ e,~ z l 
w i t h  K 2 - k 2 _ 4 r r2{  2 

~ w  | 6z - # (~ )  | 6z 

Iz  e ~kr(M, M') 1 
w(M') d E ( M ' ) -  #(~) 

47rr(M, M') 2oK 

(8.41) 

The determination of K is chosen by applying the limit absorption principle. 
Finally, the Fourier transformed equation is written 

[ D(167r4~ 4 --  A 4) + ~ 1~(~) - -  f 
cK 

which leads to the Fourier transform of the plate displacement: 

F t, KD 
~(~) = -- (8.42) 

D cKD(16rr4~ 4 -  A 4) -+- 2w2#0 

Expression of the plate displacement 
The inverse Fourier transform of the last expression is written 

F J~' tKD 
w ( r ) - - -  7r H0(27r@)~ d~ (8.43) 

D e '~ t K D ( 1 6 7 r 4 ~  4 - A 4) + 2 w 2 # o  

It can be evaluated by a contour integration method. First, the angular frequency is 
assumed to have a small positive imaginary part - that is to be of the form 
w(1 + re) - which is then decreased to zero (limit absorption principle). The 
integration contour is shown in Fig. 8.5" it is composed of the parts of the real axis 
- R  < ~ < - e '  and e' < ~ < R, the half circle 1~1 -  R in the half-plane . ~  > 0 
(where R grows up to infinity), and a branch contour which turns around the point 
k - w(1 + ce)/co. This last part of the contour defines the branch integral due to the 
term K which is multiply defined. It is obvious that there are residue terms which 
correspond to the poles of the integrand inside the contour, that is to the zeros of 
the dispersion equation which have a positive imaginary part. It is easily seen that, 
if 27r~ is real and larger than both k and A, then the term t, KD(167r4~ 4 --  A n) is real 
and negative" this implies that the only real positive pole is larger than both k/27r 
and A/27r. It is also easily shown that if E is a complex root of the dispersion 
equation, then - E *  is also a root. As a conclusion, three roots will give residues 
(the detailed proof is left as an exercise): 

E 1 > k/27r and A/27r, E2 and '~'3 = - - E ~  with -,~E2 > 0 
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Fig. 8.5. Integration contour for the evaluation of expression (8.43). 

The plate displacement can, thus, be written as follows 

w(r) 2c7r 2 F -- -- AnHo(27r•nr) + branch integral 
D ~ =  

[ ] An - (8.44) 
(O/O()[~go(167r4(4 - "X4) + 2~~176 ~=z, 

with K >  0 i f K  2 > 0, ~ K >  0 else 

The branch integral cannot be calculated analytically. Different expressions, in 
terms of layer potentials for example, are found in the literature. But a numerical 
computation is always requested. It is outside the scope of this textbook to 
undertake such a difficult task. Let us just mention that the contribution of the 
poles becomes predominant a few wavelengths away from the source. 

The far field acoustic pressure 
It is, of course, sufficient to pay attention to one of the two pressure fields since 
they are simply opposite in sign. The pressure field p+(Q) cannot be expressed 
simply in terms of known special functions: various expressions, suitable for 
numerical computation or analytical approximations, can be found in the literature 
which all involve integrals which require numerical computation. But the large 
distance asymptotic expansion of this function can be analytically expressed in 
terms of the Fourier transform of the plate displacement. 

Let (R, 0, ~) be the spherical coordinates of a point Q in a coordinate system 
centred at the origin of the initial Cartesian axes, the plane E being defined by 
( 0 = 7 r / 2 , 0 <  ~<27r). The asymptotic series for R---~c~ of p+(Q) is obtained 
through the following classical steps (see chapter 5): 

�9 The kernel exp[ckr(Q,M')]/47rr(Q,M'),  involved in expression 
expanded into a series of spherical functions hn(kR)jn(kr')plml(cos 
exp [Lm(~ - ~')] where (R', 7r/2, ~') are the coordinates of M'  

(8.39), is 
o)e lnml (o )  
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Fig. 8.6. Directivity pattern of  an infinite plate excited by a point force for three different frequencies. 

�9 The spherical Hankel functions hn(kR) are expressed as the product of 
exp (t&R)/kR and a polynomial of degree n in 1/kR. 

�9 The series is reordered as a series of the successive powers of 1/kR and then 
integrated term by term leading to an asymptotic series representation. 

The first order term can be written very simply 

e ikR 

p+(Q) = -2w2#0 ~(k sin 0/270 + O(R -2) (8.45) 
47rR 

The directivity pattern of the radiating plate is the coefficient of the term 
- e x p  (t&R)/47rR. It is commonly represented in a dB scaling. Figure 8.6 presents 
the directivity pattern of an infinite plate excited by a point unit force at three 
different frequencies: the data are the same as in the former numerical examples. 
The first two diagrams are smooth while the third one presents a sharp peak for 
0 = 7r/4.23. The presence of such a peak corresponds to a real minimum of the 
following expression 

ck cos OD(k 4 sin 0 4 --  /~4)_Jr_ 2w2#0 

which occurs in the denominator of ~(k sin 0). This function is nothing but the 
function ~(k  sin0) which appears in the dispersion equation (8.33). Such a 
minimum corresponds to a real zero of (k4 sin 04 - A4). It is obvious that real zeros 
occur for frequencies larger that the critical frequency only. 

8.4. Finite-dimension Baffled Plate: Expansions of the Solution into a 
Series of Eigenmodes and Resonance Modes 

Let us consider a thin elastic plate which occupies a region ~ of the plane z - 0. The 
plane complement C~ of E is perfectly rigid. The system is immersed in a gas 
extending to infinity. The boundary of the plate has almost everywhere a unit 
normal vector ff pointing out to CE and a unit tangent vector Y which makes an 
angle +7r/2 with the normal vector. The notation is the same as in the previous 
section. 



272 ACOUSTICS:  BASIC  PHYSICS ,  T H E O R Y  AND M E T H O D S  

It is assumed that the time dependence is harmonic and that the only source is 
S-(Q) in f~-. The governing equations are 

(A + k2)p+Q- O, Q E 9t + 

(A + k Z ) p - Q -  S-(Q), Q E f~- 

(DA 2 _/zwZ)w(m) _+_ P(M) -- O, m E 

Tr Ozp-(M) - Tr Ozp+(M) - co2/z0w(M), M E E (8.46) 

=o, 
gw(M) = g'w(M) = O, M E O~ 

Sommerfeld condition on p + and p -  

where P(M)= Tr p + ( M ) -  Tr p-(M),  and g and g' are two boundary operators 
which express the boundary conditions for the plate. 

The non-dimensional equations 
Very often in the literature use is made of what are called non-dimensional 
equations. They are obtained by the following change of units: 

�9 the time unit is the reciprocal of the critical frequency, that is T = 27rco 2 v/D/p; 
�9 the length unit is the wavelength in the fluid at the critical frequency, that is 

L = 2rtcg' v/D/#. 

Introducing these units into equations (8.46), one obtains a system of equations 
which has exactly the same form. Of course, the quantities involved have the same 
physical dimensions and the equations are not really dimensionless. The advantage 
of adopting such units is that, instead of dealing with a particular problem, we 
consider a particular class of problems. So, in what follows, the equations used can 
be considered as written with any system of units, in particular with the system 
which is defined on the basis of the critical frequency. 

Let ~ ( Q ,  Q') be the Green's function of the Neumann problem in f~+, that is 

e&r(a, O') e~kr(a, O") 
~ ( Q ,  Q ' ) = _  

4rrr(Q, O') 4rrr(Q, Q") 

where r(Q, Q') stands for the distance between the two points Q and Q'; Q" and Q' 
are symmetrical points with respect to the plane z = 0. The Green's representations 
of the acoustic fields are 

p+(Q) - wz/z0 f w(M')qa~o(Q, M') &r(M'), Q E f~+ 
Jp~ 

P- (Q) - Po (Q) - w2#o J w(M')q3~(Q, M') &r(M'), Q E f~- (8.47) 

with P o ( Q ) -  J S-(Q')Wa~(Q, Q') df~(Q') 
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By introducing these expressions into the plate equation, we are left with an 
integro-differential equation for the plate displacement only: 

(DA 2 _ lZOV2)w(M) + 2cv2#0 I w(M')~o.,(M, M') dcr(M') - Po (M), M E 
E 

(8.48) 

Associated with the boundary conditions, this equation has a unique solution. 
We intend to expand the displacement w(M) into series of either the eigenmodes 

or the resonance modes. So, it is better to use the weak form of the equation, that is 
the integral form deduced from the principle of energy conservation. Let us define 
the following bilinear forms: 

(w, v) - Jz w(M)v*(M) do(M) 

v ) - - D  J~ { A w A v * + ( 1 - u )  a(w, 
~k 

&r(M) (8.49) 
x 20xOyOxOy Ox2 0y2 Oy2 0x2 

/3~(w,v)-- I~ Iz w(M)Cg~(M'M')v*(M') &r(M) do(M') 

where v is any function in the functional space which w belongs to, that is the space 
of functions which are square integrable together with their derivatives up to order 
2 and which satisfy the same boundary conditions as the plate displacement. The 
weak form of the fluid-loaded plate equation is 

a(w, v) - ~o.3 2 [ (W, 'u) - 2 #0 flo.,(w, v)] - (Po, v) (8.50) 

1 1 

/ # 1 
For v -- w, the first term represents the potential energy of the plate, the second one 
is the kinetic energy and the third one is the radiated energy. 

8.4.1. Expansion of the solution in terms of the fluid-loaded plate eigenmodes 

Let us introduce the parameter c = #0/#. The eigenvalues and the eigenmodes are 
defined by 

a(Un, v)= A n [ ( U n ,  v )  - 2c/3o.,(Un, v)] (8.51) 

The first remark is that these eigenvalues and eigenmodes depend on the angular 
frequency which appears in the coupling term/30:(U,, v). 



274 ACOUSTICS." BASIC PHYSICS,  T H E O R Y  AND M E T H O D S  

For simplicity, it is assumed that to each eigenvalue there corresponds only one 
eigenmode. The eigenmodes satisfy an orthogonality relationship: 

( Un, U'm) - 2e/3~(Un, U'm) -- 0 for m :/: n 

or a(Un, U*) = 0 for m # n 

The quantity 

a(U,,, U,*)- An[(U,, U , ~ -  2e/3~(U,, Un*)] 

plays the role of a norm. A pressure field is associated with each eigenmode by 

pn(Q) - w2#0 f Un(M')qD~(Q, M') da(M'), Q E ~+ 
J E 

Then the plate displacement and the pressure fields are expanded into a series of 
eigenmodes. The following result is easy to establish and the proof is left to the 
reader: 

OO 

w(M) = n ~  1 An ( P o ,  Un*) U n ( m )  
= An-p~2a--(U~,Un *) 

An (Po, u.*) 
P+(O)-  .. _~ An - #w 2 a(U-n, Un*) Pn(O), O E a + (8.52) 

An (Po, v.*) 
P - ( Q ) - p o ( O ) -  n~l An - lzo.~ 2 ff'~n, Un*) pn(O), O E f~- 

The interest of this expansion is that the coefficients are expressed analytically 
in terms of the eigenvalues and the eigenmodes. But it has the disadvantage 
that the functions involved are frequency dependent. It is, thus, useful to look 
at an expansion in terms of the resonance modes, that is the free oscillations, 
which depend only on the geometrical and mechanical properties of the 
system. 

8.4.2. Expansion of the solution as a series of the resonance modes 

The resonance frequencies and resonance modes of the fluid-loaded plate, 
corresponding to free oscillations, are defined by 

a(Wn, ~ 3 ) -  lZCd2[(Wn, ~3) -- 2e/3wn(Wn, /3)1 (8 .53)  

Comparing this equation to equation (8.51), it is obvious that the resonance 
frequencies are solutions of the equations 

An(a J)-/zo) 2 

It can be shown that each of these equations has two solutions 

COn -'-~)n -- bTn~ O3-n ~ --COn -- bTn 
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which are symmetrical with respect to the imaginary axis. Furthermore, because the 
free oscillations must be damped (energy loss into the fluid), their imaginary part 
must be negative (rn > 0). The resonance modes are related to the eigenmodes by 

Wn = Un(con) 

To each resonance mode corresponds a pressure field given by 

~n(Q) - #o co2 IE wn(Mt)C~Wn (Q' M') dE(M')  

The following relationships are easily established: 

W-n(M) = Wn*(M), ff~-n(Q) = ~n~Q) 

If we look for an expansion of the plate displacement in terms of the resonance 
modes, we are left with an infinite full system of linear equations because no 
orthogonality relationship, similar to that satisfied by the resonance modes, exists. 
This system can, of course, be approximately solved by a classical truncation 
method. There is another method which leads to an analytical result. 

Let us first look for the response of the system to a transient real excitation 
S-(Q,  t). It is obtained by taking the inverse Fourier transform, with respect to w, 
of expression (8.52). Assuming that the source is zero for t < 0, and applying the 
residue theorem, one finds that the response of the system starts for t > 0 and is 
given by 

I~(M, t ) -  -6 E #co2 . (Po(con), Wn*) wn(M)e_~nt_  Tn t 

n=l A'(~,,)- 2#COn a(Wn, Wn~ 

#COn .2 ( P o ( COn ) , W n*) * I -- Wn*(M)e t'~nt -- Tnt (8.54) ; At *(con) - 21ZCOn* a(Wn, Wn*) * 

~ #CO2 (Po(COn),Wn*) 
p+(O, t ) -  -~ ~ ~n(O)e-~nt-rnt  

L Ant(COn) 2#con a(Wn Wn~ n 

I-I'COn .2 (P o (COn ) , W n*) * I 
-- At  *(con) - 2#co* a(Wn, Wn~ * ~n~Q)e L~Ont- Tnl ] (8.54') 

# 2n 
p-(Q, t) -po (Q,  t) + c E ~n(Q)e -~z"t-~nt 

[ Anl (con) 21ZCOn a(Wn W n*) n l 

! "zcon~2 (Po (COn), Wn ~) * I 
- A" *(Wn) - 2#w* a(Wn, Wn*)* ~n*(Q)e ~n'-- ~-n' (8.54") 

) 

In these expressions, An~(con) is the value, at con, of the derivative of An with respect 
to w. The notation Po(con) has been used to point out that, in the function Po, the 
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angular frequency is ~ = 03 n. It must be noted that, if the source term is a real 
function (and this is always the case in physics), then the response of the system is 
real. 

The expansion of the response of the system to a harmonic excitation in terms 
of the resonance modes is readily obtained by taking the Fourier transform of 
expression (8.54): 

oo { p,032 ( p o ( COn ) , W n*) w n ( m ) 

w ( M ) - -  t~ n:lZ An,(~n) _ 2pro n a(Wn, Wn*) t.,(O3 -- YOn) -- "in 

_ t-t~n *2 ( p o ( ~ n ) ,  Wn~ * w n ~ m  ) } 

A~ *(OJn) - 2p~* a(w,,, w3  * c(ov + YOn) - "i. 

o,z { p, w2 ( p o ( w n l ,  Wn* ) q~n(Q) 

p + ( Q ) -  t, n=lZ Anl(~n) -- 2pZVn a(Wn, Wn*) t,(oV -- YOn) -- Tn 

_ lu,v~ (po(~n), w*) * q~n*(a) } 
A t *@On) - 2lzw* a(Wn, Wn*) * L((M -a t- YOn) -- "In 

{ p~2 (po(oV,,),Wn*) ~p,,(Q) 

p - ( Q ) - p o ( Q )  - t. n~l= A'(~n) - 2#~n a(Wn, Wn~ t.(O;- YOn) -- "in 

/g~n .2 (po(~.),  W,,*) * ~I,~Q) } 

A" * ( O.) n ) -- 2 p~  * a ( W n , W n~ * b ( O.) + YOn) -- "In 

(8.55) 

(8.55') 

(8.55") 

This result is not as interesting as it seems. Indeed, it requires evaluation of the 
derivative of the eigenvalues with respect to the angular frequency. This can be 
achieved approximately by a numerical procedure which is, in general, rather time 
consuming. Nevertheless, in the case of a gas, a perturbation method can be 
developed and the series (8.55) are expressed analytically in terms of the in vacuo 
eigenfrequencies and eigenmodes of the plate. 

8.4.3. The light f luid approximation 

The difficulty in using the resonance modes series is the evaluation of the resonance 
frequencies and the resonance modes. Assume that the in vacuo resonance 
frequencies and resonance modes of the plate are known either analytically or 
through any numerical approximation. Are there situations for which the fluid- 
loaded resonance frequencies and modes can be deduced simply from the in vacuo 
ones? 

As we did for the elementary example of the elastically supported piston, we can 
look for a simple approximation when the fluid density is small compared to the 
surface mass of the plate, that is when e = #0/# ~ 1. 



CHAPTER 8. TRANSMISSION AND RADIATION OF SOUND BY THIN PLATES 277 

Let f~n be an in vacuo angular resonance frequency of the plate and Wn the 
corresponding resonance mode. It must  be noticed first that  - 9 t *  is a resonance 
frequency, too, which corresponds to the same resonance mode. The resonance 
frequencies and modes of the fluid-loaded plate are sought as formal Taylor series 
of the small parameter  e: 

2 _  ftn(0)2(1 + C~(1)_~_ C2~n(2)nt - I~(C3)), Wn W(0)-1 - cW(1)-+ - c2 W(2)-[ - l~(c 3) ~o n 

These formal expansions are introduced into the fluid-loaded resonance equation 
(8.53) and the successive powers of e are set equal to zero. The first two equations 
are 

a(W~ (~ v) - #a~(~ (W~ (~ v) - 0 
(8.56) 

a ( m  (1), ' O ) -  ~ a ( 0 ) Z [ ( m  (1), u) -+- ~(1)(W(~ ~) - 2/3a(0)(W~(~ v ) l -  0 

Obviously we have 

a.(~ 2 - a2 . ,  w ( .  ~ - w .  

that is the zero-order approximations of the fluid-loaded resonance frequency and 
resonance mode coincide with the in vacuo ones. We first determine the parameter  
~(1) by writing the second equation (8.56) for v -  Wn" the first two terms cancel and 
one gets 

~5~1 ) 2/3an(Wn, Wn) 

(w., w.) 

with the corresponding first order approximat ion of the resonance frequency 

COn ~ an((1 + erln)- t, e l~n I) (8.57) 

Then, the function W~ (1) is sought as a series of the in vacuo modes Wq; the 
coefficients aq are given by: 

c~q[a( Wq, v ) -  #aZ ( Wq, v ) ] -  2 # a  2 /3an(W,, Wn) 
q= 1 (Wn, mn) (mn,  'u) - / ~ a n ( m n ,  13) 

= 0  

Let us recall that  the in vacuo resonance modes Wq form an or thogonal  basis of 
the funct ional  space to which any plate displacement  belongs. The last equat ion 
is satisfied for any function v if it is satisfied for all the Wq. This leads to the 
result 

Wq) 
a q = for q -r n 

( a  2 -- a 2 ) ( m q ,  mq) 

n 0: this _ n _  0. Thus, we can choose a n - For  q n the equation has the form 0 x a n 
only changes the norm of the approximation of the corresponding fluid-loaded 



278 ACOUSTICS." BASIC  PHYSICS,  T H E O R Y  AND M E T H O D S  

mode which is, thus, given by 

2#0f~ 2 
Wn ,",-' Wn -~- 

(f~2 n f~2) 

/~'~n ( Wn, Wq) 
( Wq, Wq) 

Wq (8.58) 

These approximat ions  of the resonance frequencies and resonance modes can 
easily be used for any shape of plate and any boundary  condit ions for which an 
analytical exact or approximate  method provides the in vacuo resonance 
frequencies and resonance modes. For  example, for a rectangular clamped plate, 
Warbur ton ' s  method provides an excellent approximat ion  of the in vacuo 

resonance regimes. This solution can be corrected as described here to get 
an approximat ion  of the fluid-loaded resonance regimes. Then introducing 
(8.57, 8.58) into the expressions (8.55), one gets a good approximat ion of the 
forced response of the fluid-loaded baffled plate. Figures 8.7 and 8.8 show a 
comparison between the light fluid approximat ion and experimental results. The 
plate is made of stainless steel and has the following geometrical and mechanical 
characteristics: dimensions = 1.54 • 1.00 • 0.0019 m3, E = 2.21 1011 Pa, u = 0.3, 
# = 14.8 kg m-2;  its critical frequency is 6012 Hz; it is centred at the coordinates 
origin. The sound source is located at x = 0.26 m, y = -0 .17  m, z -- -3 .0  m; a first 
microphone,  which is located at x = -0 .26  m, y - -  -0 .17  m, z = -0 .25  m, records 
the sum of the incident and reflected fields; a second microphone,  which is located 
at x = - 0 . 2 6  m, y = - 0 . 1 7  m, z = 0.25 m, records the transmit ted field. In Fig. 
8.7, the difference between the pressure level in dB on the microphone in z > 0 and 
the pressure level on the microphone in z < 0 is computed and compared with the 
experimental data. In Fig. 8.8, a similar comparison is made between third octave 
mean levels. This second curve is much more significant from the point of view of 
architectural acoustics: indeed, in practice pure tones are almost never present; 
most of the noises encountered in real life have a large bandwidth spectrum 
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Fig. 8.7. Comparison between the measured transfer function and the light fluid approximation. 
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Fig. 8.8. Comparison between the measured mean (third octaves) transfer function and the light fluid 
approximation.  

and third octave or octave analysis is more suitable for describing the nuisance 
produced by noises. 

The light fluid approximation is, of  course, a very powerful tool, but it has a 
restricted domain of validity. It has been mentioned that the parameter e = #0 /#  
must be small. But the meaning of 'small' is not precisely defined: no upper bound is 
given. On the simple example of  the elastically supported piston in a waveguide, it 
appeared clearly that such an approximation is not valid in the neighbourhood of the 
in vacuo resonance frequency of the piston. The same restriction applies for the 
baffled plate in the neighbourhood of the critical frequency. It is reasonable to 
assume that the validity domain of a light fluid approximation depends mainly on the 
plate and the fluid physical characteristics, and not too much on the geometrical 
data. So, to determine the domain of application of such an approximation, we only 
need to examine the simple case of an infinite plate. As has been seen in Section 8.3, 
the Fourier transform of the solution is easily obtained. This Fourier transform can 
be expanded into a formal Taylor series of e. The validity domain of the series 
truncated at order 1 is an excellent estimation of the validity domain of the 
approximation given by expressions (8.57, 8.58) established in the present subsection. 

8.5.  F in i te -d imens ion  Baf f l ed  Plate:  B o u n d a r y  Integrals  
Representa t ion  of  the So lu t ion  and B o u n d a r y  Integra l  Equat ions  

In this section, the plate is excited by a harmonic force with density f ( M )  and there 
is no acoustic source in the fluid domains. By using the Green's kernel of the in 

vacuo plate operator, the Green's representation of the plate displacement is 
obtained. It involves four fields: the in vacuo radiation of  the external force f,  and of 
the pressure difference p -  - p  +; and two in vacuo boundary layer potentials which 
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enable us to account for the boundary conditions. As in the previous sections, the 
Green's representation of the pressure fields in terms of the plate displacement is 
introduced. Then the system of partial differential equations is replaced by a system 
of boundary integral equations: two over the plate domain E and two along its 
boundary 0E. This system can be solved by numerical methods very similar to the 
method presented for the diffraction problems already studied (see chapter 6). For 
the case of a rectangular plate, we present a slightly different method" the unknown 
functions are approximated by truncated series of orthogonal polynomials; the 
system of boundary integral equations is approximated by a system of collocation 
equations which are equivalent to the Ritz-Galerkin equations. To illustrate the 
efficiency of this numerical technique, the response of the plate to the wall pressure 
of a turbulent flow is considered" it is shown that this problem reduces to solving 
the harmonic equations over a wide frequency bandwidth; a comparison between 
numerical results and experiment is shown. 

For the sake of simplicity, the plate is supposed to be clamped along its 
boundary. The equations governing the system are thus 

(A + kZ)p+Q -- O, QEf~ + 

(A + k Z ) p - Q -  O, Q E f't- 

( D A  2 _ / z c o Z ) w ( m )  _~_ P ( M )  - f ( m ) ,  m E 2 

Ozp- (M)  - Tr Ozp+(M) - co2#0w(M), M E 2 (8.59) 

=0,  M E C 2  

w(M) - O,,w(M) - O ,  M E 0 2  

Sommerfeld condition on p + and p -  

8.5.1. Green's kernel of the in vacuo infinite plate 

This Green's function ~/of the plate equation is the solution of 

(DA 2 _ ]j, Oj2),.),_ ~ (8.60) 

which satisfies the limit amplitude principle (which ensures that the principle of 
energy conservation is satisfied). We first replace aJ by aJ(1 + ~e), with e > 0; and we 
introduce the parameter A~- A(1 + co') defined by 

/ZCO2(1 + re) 2 
A 4 -  , with A > 0 and e' > 0 

D 

The Fourier transform of the solution of equation (8.60) is written 

m 

1 , [ 1 1 ] 
D(167r4~4 A4) 2DA2 47r2~2 + A2 47r2~2_ A2 

where ~ is the radial variable in the plane associated with the plane (x, y) through 
the Fourier transform. The function 1/(47r2~2 + A 2) is the Fourier transform of 
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the Green's function of a Helmholtz equation with wavenumber A~, that is 
-~/4Ho(A~r), r being the distance between M and the coordinates origin. Similarly, 
1/(47r2~2-+ - A 2) is the Fourier transform of-~/4Ho(~A~r).  These two Hankel 
functions are finite at infinity: they both decrease exponentially as r ~ e~. Thus, 
they define the unique bounded solution of equation (8.60) with A replaced by A~. 
By taking the limit for e ~ 0, one gets 

7 = [Ho(Ar) - Ho(cAr)] (8.61) 
8DA 2 

The Green's kernel 7(M, M')  of the in vacuo plate operator is the plate response to 
a point unit force located at M '. It is given by (8.61) in which r is the distance 
between M and M ~. 

8.5.2. Green's representation of the fluid-loaded plate displacement 

Let us introduce the bilinear form a(w, 7") defined in (8.49) and perform two kinds 
of integration by parts. This gives 

a(w, 7") -- I~ DA 2w(M'),7(M, M') dX(M') + Ia~ De, (w(M'))'7(M, M') 

- Tr O~,Aw(M')9,(M, M') + g2(w(M'))O~,~/(M, M')] ds(M') (8.62) 

I" I "  
.(w, / DA2M'7( M, M')w(M') d~(M') + I D[g,M,(7(M, M')) Tr w(M') 

J JO 

- On,AM,'7(M, M')  Tr w(M') + g2M,(9/(M, M'))Os, Tr w(M') ds(M') 

(8.62') 

where the subscript M ~ in the second equality means that the derivatives are taken 
with respect to the coordinates of this point, and if' and ~*' are the unit normal and 
tangent vectors at Mr; gl and g2 are the boundary operators defined in section 8.2. 
The trivial equality 

a(w, "7*)- # aJ2 (w, ~/) = a(w, "7*) - # aJ2 (w, "),) 

is written with (8.62) on one side and (8.62') on the other. Accounting for the 
equations satisfied by w and -y and for the boundary conditions verified by w, the 
Green's representation of the plate displacement is obtained as 

w ( M )  - w o ( M )  - + D[el M ' )  

- Tr O~,Aw(M').y(M, M') + g2(w(M'))O,,'),(M, M')] ds(M') (8.63t 

with wo(M) - ('),(M, M') , f (M'))  - J" 7(M, M') f (M')  d~(M')  
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This representation depends on three boundary layers: gl(W(M')), - T r  O,,Aw(M') 
and gz(w(M')) which could be determined by writing the value on 0E of w, O,,w and 
g2w to get three boundary integral equations. But it is possible to reduce the system 
to two equations only. To this end, the last boundary integral is integrated by parts. 
Two cases must be considered: 

�9 The contour 0E is continuously differentiable (no angular point), then 

.[or~ g2(w(M'))Os,'y(M, M') ds(M')--lor~ Osg2(w(M'))'7(M, M') ds(M') 

�9 The contour 0E has angular points Mi: let g2(w(Mi)) be the corresponding jump 
of gz(w(M)), then 

lor~ g2(w(M'))Os,')'(M, M') ds(M')=- Ior~ Osg2(w(M'))'y(M, M') ds(M') 

-+- Z g2(w(Mi))")'(M, Mi) 
i 

Introducing the explicit expressions of the boundary operators gl and g2, the 
Green's representation of the fluid-loaded clamped plate, limited by a contour with 
angular points, has the form 

w(M) - wo(M) - J "y(M, M')P(M') d~(M') 
E 

+ Io~ D{[Tr Aw(M')- ( 1 -  v) Tr Os2w(M')]On,'7(M, M') 

- [Tr On,Aw(M') + (1 - v)Os Tr OnOsw(M')]'y(M, M')} ds(M') 

+ (1 - v) Z Tr OnOsw(Mi)7(M, Mi) (8.64) 
i 

This shows that the plate displacement depends on two boundary layers if the plate 
boundary has no angular point; when angular points are present, additional point 
forces must be introduced at each of them. This result can equally be written in a 
condensed form: 

w(M) = wo(M) - (,~(M, M') ,  P(M'))  

-(7(M, M'), X.1 @ 6;~(M')) - (7(M, M'), X2 | 6o~(M')) 
Xl = Tr Aw - (1 - v)Tr Os2 w 

~ 2  : Tr On,AW --[- (1 - u)0s Tr OnOs W -- (1 - v) ~ Tr OnOsW(Mi)6Mi 
i 

(8.64') 
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8.5.3. Boundary integral equations and polynomial approximation 

Boundary integral equations 
In the case of a regular contour, there are three unknown functions: the pressure 
jump P defined on the plate domain 2, and the two layer densities X1 and )~2 
defined along the plate boundary 02. It is useful to introduce w as a fourth 
unknown function. 

Expression (8.64) or (8.64 t) provides a first integral equation on 2. A second 
equation is given by the integral expression of P in terms of w: 

P(M) - 2co 2#0 Ir~ w(M')q3~(M' M') d2(M') (8.65) 

Two other equations along 02 are provided by the boundary conditions 

Tr { I~ 7(M, M')P(M') d2(M') - Iox D{X'On'7(M' M') 

M')} ds(M') } - Tr wo(M), M E 02 X27(M, (8.66) 
] 

Tr O, { ]'r~ 7(M, M')P(M') d2(M')- jo~ D{XIOn,7(M, M') 

M')} ds(M') } - Tr O, wo(M), M E 02  (8.66') Xz"/ ( M ,  

J 

When 02 has angular points, additional equations are obtained by using expression 
(8.64) to evaluate the steps Tr OnOsw(Mi). Because second order derivatives of the 
kernel -y are involved, some caution is required to evaluate these functions correctly. 
No more will be said on this; the study of the discontinuities of the layer potentials 
in plate theory is beyond the purpose of the present chapter. 

Very often, equations (8.66, 8.66') are used even for contours with angular 
points: the integral of the last term must be interpreted as a formal representation 
of the sum of the distribution dual products along each regular part OEi of the 
boundary 02: 

Io 0s Tr OnO~w(M')'7(M, M') ds(M')- Z ('y(M, M'), O~ Tr O,O~w(M')) 
i 

This last expression allows each layer density to be a distribution: in particular, it 
can include Dirac measures at each end of the contour elements 02i. In a numerical 
procedure, the layer density is generally approximated by regular functions. This 
implies that the Dirac measures are approximated by regular functions too, which 
is quite correct: indeed, it is classically shown that a Dirac measure is the limit of, 
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for example, a sequence of indefinitely derivable functions with compact support. 
Nevertheless, such a numerical approximation of the layer density will not converge 
to the exact solution in the neighbourhood of the contour angular points as fast as 
it does elsewhere. 

Polynomial approximation 
Among the various possible numerical methods to solve system (8.64, 8.65, 8.66, 
8.66 ~), the polynomial approximation method is certainly one of the most powerful 
when rectangular domains are involved. 

Let ~,(z) be any classical set of polynomials defined on the interval ] -1,  +1[ 
(Legendre, Chebyshev or Jacobi polynomials) and which satisfy an orthogonality 
relationship 

dz  = II II 2 
-1 

where ~(z) is a weight function. 
Let the plate domain ~ be defined by ( - a  < x < a; - b < y < b), with boundary 

0Z] = ( - a  < x < a, y = +b) tO (x = +a, - b  < y < b). The plate displacement and the 
pressure jumps are approximated by truncated expansions: 

N, M 

n =0,  m = 0  

N, M 

P(x, y) ~ Z Pnm~,,(x/al~m(y/b) 
n = O , m = O  

The layer densities are also approximated by truncated expansions" 

N 

Xl(x, • ~ ~ X~n(X/a ) ,  x E l - a ,  +a[ 
n--O 

M 
X:l(+a,y)~ ~ 2• 

~lm ~m(y/b), y �9 ]-b, +b[ 
m=O 

N 

~2(x, +b)~ ~ ~ l ~ ( x / a ) ,  x e ]-a, +a[ 
n=O 

M 

~ 2 ( + a , y ) ~  ~ 2• )~2m ~m(y/b), y �9 ]-b, +b[ 
m=O 

These expressions are introduced into the boundary integral equations. Then a 
collocation method is used. Let Xi ( i -  1,..., N + 1) be the zeros of ~U+ l(x/a) and 
Yj, ( j -  1, . . . ,  M + 1) those of ~M+ l(y/b). The following collocation points are 
a d o p t e d :  ( • i ,  Yj') on 2, Xi on y -  +b and Yj. on x -  • It can be shown that, 
because of a fundamental property of orthogonal polynomials, the solution so 

w(x, y) ~ Z Wnm~n(x/a)glm(y/b) 
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obtained is identical to that given by the Ritz-Galerkin method based on the scalar 
product associated with the polynomials q~n(Z). The main advantage is that it 
avoids the numerical evaluations of multiple integrals. 

Let us show this result on a one-dimensional integral equation: 

.•_'-1 u(x) + u(y)K(x, y) dy -- v(x), 
1 

x E ] - l ,  +1[ 

The function u(x) is approximated by a truncated series of orthogonal polynomials: 

N 
U(X) "" Z Un ffff n(X) 

n=0 
The Ritz-Galerkin method consists in minimizing the norm, as defined by the 
weighted scalar product associated with the ~n, of the difference 

[ s +l ] E u, ,~,(x) + '~n(y)K(x. y) ay - v(x) 
= -1 

This is achieved if the following system of equations is satisfied: 

N i + l [  l+l 1 I+l n~o Un ffffn(X)-+- ~ n ( y ) K ( x ,  y)  dy lI~m(X)'Cu(z ) d x -  V(X)~m(X)~TU(Z ) dx 
= -1 -1 -1 

m = 0, 1, . . . ,  N 

Let xi be the zeros of the polynomial ~N+ l(x). The Gauss-Legendre quadrature 
formula associated with this polynomial leads to the replacement of the former 
system by: 

i~o Z Un ~n(Xi) + ~n(y)K(xi, y)dy ~m(Xi)IIi = Z 2)(xi)ffffm(Xi)IIi 
�9 n=0 -1 -1 i=0 

m--  0, 1 , . . . ,  N 

where IX i are known weights. This quadrature formula is exact as far as the 
functions to be integrated are polynomials of degree less than N + 1. It is obvious 
that this last system is satisfied if the following collocation equations are satisfied: 

[ s +1 ] E bin ~n(Xi) -~- qdn(y)K(xi, y) dy -- v(xi) , i-- O, 1,..., N 
= -1 i=0 

Thus, the collocation equations are equivalent to the Ritz-Galerkin ones and they 
avoid an extra integration. 

Remark. the integral of the product ~n(y)g(xi, y) can be performed by any 
numerical method but it is much more consistent to use the quadrature formula 
associated with the polynomial ~N + 1 (Y). 
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8.5.4. Response of a rectangular baffled plate to the wall pressure exerted by a 
turbulent boundary layer 

The excitation of a vibrating structure by a flow occurs in many real life situations. 
This is in particular the case inside a fast car or a plane: in the neighbourhood of 
such a moving obstacle, vortices and turbulence appear which create a fluctuating 
pressure on its external boundary; this pressure induces vibrations of the elastic 
boundary (the vehicle walls) which then generates noise in the interior of the 
structure. The same phenomenon appears commonly with liquids: pipes carrying 
liquids generate noise; the performance of a pulled sonar is reduced due to the noise 
generated by the external flow inside the shell enclosing the sensors, etc. 

Let us consider the simple problem of a thin baffled elastic plate; the notation is 
that of the former subsection. The fluid in the domain 9t + moves in the x direction, 
with a velocity U away from the plane z = 0. It is assumed that close to this plane 
there exists a turbulent layer (for more details about turbulence, the reader must 
refer to classical fluid mechanics books). From the point of view of vibro-acoustics, 
it is sufficient to know that such a flow exerts on the plane z = 0, and thus on the 
plate, a wall pressure which is correctly described as a random process which 
depends randomly on both the time variable and the space variables. Furthermore, 
the influence of the vibrations of the plate on the flow is negligible: indeed, the 
pressure induced by the plate motion is much lower than the turbulent wall pressure 
(by several tens of dB). Finally, as far as the plate vibration and the transmitted 
sound field are concerned, the motion of the fluid can be neglected in the vibro- 
acoustics equations (at least in a first approach). So, this subsection deals with the 
response of a baffled plate to a random excitation, the turbulent wall pressure being 
just an example among others. 

Let f(x, y; t) be a sample function of the random process which describes the 
turbulent wall pressure. It is characterized by a cross power spectrum density 
Sf(M, M'; ~) which is, roughly speaking, the mean value of f(M; ~)f*(M' ;  ~) 
where f(M; ~) is defined as a Fourier transform 

f(M; ~ ) -  I f (M;  t)e ~t dt 

Experiments show that Sf(M, M'; ~) depends on the space separation between the 
points M and M' ,  that is it is a function of the two variables X = x -  x '  and 
Y = y - y' .  The space Fourier transform of the function Sf(X, Y; ~) is then defined 
by 

Su(X, Y; w)e -2*~(x~ + r'~) dX dY 

Various models of the function Sf(~, r/; ~) have been proposed, among which the 
best-known is due to Corcos. It is a product of three functions: the auto-spectrum 
Sf(O, 0; ~) (which can be either modelled analytically or measured); a function of 
27r~/k and a function of 27rrl/k (k is the acoustic wavenumber) which depends on 
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the fluid and the flow characteristics. Figure 8.9 shows the aspect of SU(~, r/; ~) for 
fixed ~ and w as a function of the ratio 27r~/k: the fluid is air, the flow velocity is 
130 m s -1 and the frequency is 1000 Hz. 

The response of the system to a random excitation must be characterized by 
power cross spectra which have to be related to the power cross spectrum of the 
excitation. Such relationships are formally established as follows. For each sample 
function of the excitation process, the Fourier transform (w, p - ,  p+) of the system 
response satisfies equations (8.59). Let F(M, Q; ~) be the operator which expresses 
w in terms of the excitation, that is w is written 

w(M; ~)-  I~ F(M, Q; w)f(Q; w)dE(Q) 

For the given sample function, the power cross spectrum of w is defined as 

sw(M, M'; w)= w(M; w)w*(M'; w) 

f F(M, Q; w)f(Q; w)f*(Q'; w)F*(M', Q'; w)dE(Q)dE(Q') 
J~  J~  

The (mean) power cross spectrum density Sw(M, M'; ~) is the mean value of the 
former expression in which the only random quantity is f(Q; ~). Thus, by inverting 
the operations 'averaging' and 'integration', one gets 

Sw(M, M'; w)- I~ I~ r(M, Q; ~)Sf(Q, Q'; ~)r*(M' ,  Q'; ~ ) d E ( Q ) d E ( Q ' )  

The function Sf(Q, Q'; ~) is then replaced by its expression in terms of S/(~, r/; ~)" 

Su(Q' Q'; ~ 1 -  I Di(~, r/; ~o)e 2~(xr + to) d~ d~7 
[~2 

(dB) 

_~n  -. - - - - - - - - ,  uv  

- 8 0  - "~" " ~ ' ~ ~  . ~  

- 1 0 0  

- 1 2 0  
0.062 0.250 1.00 4.00 16.00 

Corcos model for ~ > 0 

64.00 256 (2Try/k) 

Corcos model for ~c < 0 

Fig. 8.9. Fourier transform of the power cross spectrum density of a turbulent layer wall pressure after 
the Corcos model, for fixed r/(flow velocity = 130 m s -1, f requency--  1000 Hz). 



288 A CO USTICS." BASIC PHYSICS,  THEOR Y AND METHODS 

Introducing this last equality into the expression of Sw(M, MI; ~), one gets the 
following result: 

f 
Sw(M, M'; w)-  | W(M, ~, r/; w)Sf(~, ~7; w) W*(M', ~, rl; d~ d, 

.I ~2 

with W(M, ~, r/; w ) -  I F(M, Q; w)e 2~(xQ~ + YQ~) dE(Q) 
E 

Similar expressions can be established for the power cross spectrum densities of the 
pressure fields. 

This result shows that the statistic characteristics of the baffled plate response 
can be determined as soon as its response to the deterministic plate excitation 
e Z~Tr(x~ + Yr/) is known on a large domain of variations of the three parameters ~, 
and w. The amount of computation is always important whatever the numerical 
method which is used. The method developed here, based on polynomial 
approximations of a system of boundary integral equations, is particularly 
efficient. As an illustration, numerical predictions have been compared to 
experimental results due to G. Robert. The plate dimensions are 0.30 m in the 
direction of the flow and 0.15 m in the other direction; its thickness is 0.001 m. It is 
made of steel characterized by E - 1 . 9 6  x 10 !1 Pa, v -  0.3, # -  7.7 k g m  -2. The 
fluid is air ( / t o -  1.29 k g m  -3, c o -  340 m/s)  and the flow velocity is 130 ms  -1. 
Figure 8.10 shows that there is a good agreement between the theoretical curve and 
the experimental one. 

(dB) 

- 7 0  

- 9 0  

- 1 1 0  

A 

s l: l 
i ._, ",,,7 

, | "  | , , i | , 

| 

' , � 9  _ .  , ' ~  

i w , , 

75O 250 500 1000 1250 (Hz) 

Numerical results . . . . . . . . . . . . . . . . .  G. Robert experiments 

Fig. 8.10. Rectangular plate excited a turbulent flow of air: power density spectrum of a plate velocity 
(flow velocity at infinity = 130 m s -1" Corcos model of wall pressure; point coordinates on the plate: 

x/2a = 0.326, y/2b = 0.386). 
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8.6. Conclusion 

In this chapter, we have presented very simple examples of fluid/vibrating structure 
interactions, covering both aspects of the phenomenon: radiation and transmission 
of sound. 

In real life, the structures involved are much more complicated. In buildings, plane 
walls are made of non-homogeneous materials, generally damped and very often with 
stiffeners; furthermore, double walls are very common. A plane fuselage is a very thin 
shell, with an array of stiffeners of various sizes, and covered with several layers of 
different visco-elastic materials. Analogous structures are used in the car, ship or 
train industries. A machine (machine tools as well as domestic equipment) is an 
assembly of plates, shells, bars, etc. A wide variety of materials are used. 

Nevertheless, the phenomena of sound radiation or sound transmission follow 
the main rules which have been pointed out on the simple example of the elastically 
supported piston in a waveguide. Analytical approximations can be developed for 
such structures. The numerical method of prediction proposed here can be extended 
to those cases. 

An alternative numerical approach is based on finite element approximations in 
which both the structure equations and the sound equation are approximated in the 
same way: the main difficulty is to create elements which account for the coupling 
between the solid and the fluid. Finally, mixed methods, in which the structure 
equations are approximated by finite elements and the acoustic equation by 
boundary elements have been developed successfully: here again, the coupling 
between finite elements and boundary elements is not quite a classical task. 

It must be mentioned that the methods described here cannot be used for high 
frequencies. More precisely, they are limited to a frequency bandwidth within 
which the resonance frequency density remains rather small (this bandwidth 
depends, of course, of the elementary structures involved). Another limitation is the 
number of elementary substructures, which cannot be too large. For those cases of 
high frequencies or /and complex structures, a statistical method, when it can be 
used, is obviously much more suitable. A very well known approach of that class is 
called the statistical energy analysis, or, simply the S.E.A. method. When the 
underlying basic hypotheses are fulfilled by the structure, the predictions that it 
provides are quite reliable. This method, which could have been the topic of an 
additional chapter, is presented in many classical textbooks. 
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CHAPTER 9 

Problems 

Common Data for Problems 1 to 5 

The first five following problems concern a parallelepipedic enclosure f~, with 
boundary a, defined by: 

] a a[ ] ] c c[ 
xE - 2 ,  + 2  , yE - 2 ,  + 2  , zE - 2 ,  + 2  

The unit vector, normal to a and pointing out to the exterior of f~, is denoted by g 
(it is defined almost everywhere). 

1. Eigenmodes for the Dirichlet Problem 

Assume that the acoustic pressure satisfies a homogeneous Dirichlet condition along 
the boundary a of the propagation domain. Calculate the set of eigenfrequencies and 
normalized eigenmodes (eigenmodes with unit L Z-norm). 

2. Forced Regime for the Dirichlet Problem 

Let f ( x ,  y, z) be a harmonic (e -"~ source distribution located inside 9t and assume 
that a homogeneous Dirichlet boundary condition is imposed on a. Establish the 
eigenmodes series expansion of the sound pressure p(x, y, z) which satisfies the 
corresponding non-homogeneous Helmholtz equation. 

3. Green's Function for the Helmholtz Equation Inside a 
ParaHelepipedic Enclosure 

Let GN(M,M'),  GD(M, M') and GR(M,M')  be the Green's functions of the 
Neumann, Dirichlet and Robin problems respectively, which are defined by: 

(AM, + k2)GN(M, M') = ~M,(M), M E f~ 

ft. VGN(M, M') = O, M C a 
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(A M, + k2)GD(M, M ' ) -  r 

GD(M, M')  - 0, M E a 

(A M, -+- k2)GR(M, M')  - 6M,(M), 

ck 
ft. VGR(M, M')  - - -  GR(M, M') = 0, 

M ~ g t  

M E f ~  

M E  cr 

Find the eigenmodes series expansions of these Green's functions. 

4. Green's Formula 

Let pN(M), pD(M) and pR(M) be the solutions of the following boundary value 
problems: 

(A + k 2 ) p u ( M ) = f ( M ) ,  M E Q (,) 

ft. VpN(M) = g(M),  M E a 

(A + k 2 ) p D ( M ) = f ( M ) ,  

pD(M) -- g(M),  

MEf~ (**) 

M E a  

(A + k 2 ) p R ( M ) = f ( M ) ,  

ck 
ft. VpR(M) - - - p R ( M )  -- g(M), 

M c:_ gl 

Mc:_ a 
***) 

Using the Green's function GN(M, M')  (respectively Go(M, M'), GR(M, M')), show 
that pN(M)  (respectively pD(M), pR(M))  can be represented by a Green's formula 
similar to (2.114). 

5. Green's Representations of the Solutions of the Neumann, Dirichlet 
and Robin Problems 

Using the Green's representations established in Problem 4, give the solutions of 
the boundary value problems (*), (**) and (***). 

6. Green's Kernel of the Helmholtz Equation in ~2 

Show that the function G(M, S ) - - - ( c /4 )H(o l ) ( k ISMI )  satisfies the following 
Helmholtz equation 

(AM + k2)G(S, M)  = 6s(M) 

in ~2 and the Sommerfeld condition (3.2). This problem requires the knowledge 
of the fundamental properties of the Hankel function Ho(x), in particular: its 
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behaviour in the neighbourhood of x = 0 and the asymptotic series expansion for 
x ~ c~. The proof starts by a change of variables to get the coordinates origin at S 
and, then, cylindrical coordinates are used. 

7. Singular Solutions of the Helmholtz Equation in ~2 

Show that the functions H(1)(kp) exp (/n~) and H(n2)(kp) exp (inq~): 

�9 satisfy a homogeneous Helmholtz equation in the complement of the coordinates 
origin; 

�9 satisfy complex conjugate Sommerfeld conditions. 

This problem requires the knowledge of the fundamental properties of the 
cylindrical Hankel functions: in particular, their behaviour in the neighbourhood of 
the origin and their asymptotic series expansion at infinity. 

8. Singular Solutions of the Helmholtz Equation in ~3 

Show that the functions h(nl)(kp)pnl m I ( COS 0)  exp cm~b and h(n2)(kp)pnl m I 

(cos 0 )exp cm~b: 

�9 satisfy a homogeneous Helmholtz equation in the complement of the coordinates 
origin; 

�9 satisfy complex conjugate Sommerfeld conditions. 

This problem requires the knowledge of the fundamental properties of the spherical 
Hankel functions: in particular, their behaviour in the neighbourhood of the origin 
and their asymptotic series expansion at infinity. 

9. Expression of the Normal Derivative of a Double Layer Potential 
in [~3 

In subsection 3.1.5 it was shown that the normal derivative of a double layer 
potential in R 2 has a value on the source support which can be expressed by 
convergent integrals (slightly restrictive conditions must be fulfilled). 

Consider the double layer potential radiated by a source supported by a closed 
surface. The Green's kernel is written as the following sum: 

e ~kr 1 
. . . . .  + regular function 

47rr 47rr 

The same steps as in 3.1.5 lead to (a) the singular term reduces to the solid angle 
from which the source support is seen; (b) under slightly restrictive conditions, the 
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value, on the source support, of the normal derivative of the double layer potential 
is expressed with convergent integrals. 

10. Green's Representation of the Exterior Dirichlet and Neumann 
Problems 

In Theorem 3.4 it is stated that the B.I.E. deduced from the Green's representation 
of the pressure field can have real eigenwavenumbers, in particular for the Dirichlet 
and Neumann problems. 

As stated in the theorem, show that, for these two boundary conditions, the 
second member, which corresponds to an incident field, is orthogonal to the 
eigenfunctions of the adjoint operator. (If A( f )=  fo K(M,P)f(P)do(P) is an 
integral operator, its adjoint is defined by A(f) - ,[o K*(M, P )f(M) de(M), where 
K* is the complex conjugate of K.) 

11. Interior Problem and Hybrid Potential Representation 

Consider the Dirichlet and the Neumann boundary value problems for a bounded 
domain (interior problem) and look for the representation of the diffracted field by 
a hybrid layer potential. Show that the corresponding B.I.E. satisfy the same 
conditions of existence and uniqueness of the solution as the boundary value 
problem. (The proof is based on the remark that the hybrid layer potential satisfies 
a homogeneous Helmholtz equation and a Sommerfeld condition in the space 
region exterior to the propagation domain.) 

12. Propagation in a Stratified Medium. Spatial Fourier Transform 

We consider the following two-dimensional problem (O,y,z). Medium (1) 
corresponds to (z < 0 and z > h). Medium (2) corresponds to the constant depth 
layer (0 < z < h). Each medium (j) is characterized by a density pj and a sound 
speed cj. An omnidirectional point source S = (0, s) is located in medium (2). The 
emitted signal is harmonic with an (exp (-twO) behaviour. From questions (a) to 
(d), the parameters p/and c/are assumed to be constant. 

(a) What is the system of equations for the sound pressures in (1) and (2)? 
(b) A y-Fourier transform is applied to this system. What is the system obtained? 
(c) What is the general form of the solutions of the equations of propagation in (1) 

and (2)? How many coefficients are to be determined? What are the boundary 
conditions to determine them? 

(d) For which simple condition is the sound pressure the same at M -- (y, - a )  and 
M'  = (y, h + a), for any a? 

(e) If the sound speeds c/are functions of z, how far can the previous method go? 
What is the difficulty? Answer the same questions if c/are functions of y and z. 
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13. Asymptotic Expansions 

Let us consider the integral: 

J1 ( Z ) : -  exp (cz cos 0) cos 0 dO 
bTr 

J1 is the Bessel function of order 1. Find the asymptotic behaviour of J1 when z is 
real and tends to infinity. Can a method of integration by parts be applied? Why? 
What is the first term of the asymptotic expansion obtained through the method of 
stationary phase? 

14. Parabolic Approximation 

Let us consider the two-dimensional Helmholtz equation with a constant 
wavenumber: 

(A  -+- k2)p(x ,  z) --- r z) (9.1) 

S = (0, s) is an omnidirectional point; the signal is harmonic (exp (-twO). The aim 
of this exercise is to compare the exact solution of this equation (with Sommerfeld 
conditions) and the expansion obtained from the parabolic approximation. 

(a) What is the parabolic equation obtained from (9.1) if p is written as 
p(x,  z) = "r z) exp (ckx)? 

(b) The parabolic equation for ~b can be solved by using a z-Fourier transform. 
What is the expression for ~b? 

(c) Compare the exact solution and its approximation. For which conditions is the 
approximation valid? 

15. Method of Images 

Let us consider the part of the plane (0, x, y) corresponding to (x > 0, y > 0). S is an 
omnidirectional point source, located at ( x s > 0 , y s > 0 ) .  The boundaries 
( x > 0 , y = 0 )  and ( x = 0 ,  y > 0 )  are described by a homogeneous Dirichlet 
condition and a homogeneous Neumann condition respectively. 

(a) What is the expression of the sound pressure p? Is it an exact representation 
(check that it satisfies the right Helmholtz equation and the boundary 
conditions). 

(b) If A is the amplitude of the source, what is the level measured on the wall at 
M = (x > 0, 0)? 

(c) Is the expression of p still valid if the boundaries are of finite length L? 
Comment. 
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16. Integral Equation and Fourier Transform 

Let us consider the sound propagation in the half-plane (z > 0). The boundary 
(z = 0) is characterized by a reduced specific normal impedance. An omnidirec- 
tional point source is located at S = (y = 0, z~ > 0). 

(a) What is the y-Fourier transform of the sound pressure p(y, z)? 
(b) What is the integral equation obtained for p by using the Green's formula and 

the classical Green's kernel? 
(c) By applying the y-Fourier transform to the integral equation, give the 

expression of b(~, z). Check that both methods lead to the same expression. 

17. Born Method 

Let us consider the equation: 

p"(z) + k2nZ(z)p(z) : 0 

with 

for any real z 

1 + a tanh (kz/2s) if z > 0 
n2(z) = 1 if not 

a and s are parameters, a is 'small'. p(z) represents the sound pressure emitted by an 
incident plane wave. 

(a) p(z)can be written: 

exp (~kz) + RE exp (-~kz) if z < 0 

p(z) - TE exp (~kz)L(z) if z > 0 

L(z) is known explicitly but its expression is of no interest here. Why can p(z) be 
expressed like this? What are the expressions of the coefficients RE and TE? 

(b) An approximate expression of p can be written 

( ) p(z) ~ exp (Lkz) 1 + anpn(Z) for z i> 0 
n = l  

Functions pn(Z) can be expressed as 

pn(z) = exp (-~kz)Fn(z)/2~k 

What is the equation satisfied by each Fn? Give a representation of Fn as a 
function of p ,_ 1. 

18. Diffraction by a Thin Screen 

Let p be the sound pressure diffracted by an infinitely thin screen described by a 
homogeneous Neumann condition. Show that the Green's formula applied to p and 
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the classical Green's kernel leads to a double layer potential on one side of the 
screen. 

19. Integral Equation 

Let p be the sound pressure emitted by a point source above the plane (z = 0). The 
plane is described by an impedance condition. Write the integral representations of 
p obtained by applying Green's formula to p and the following Green's kernels: 

(a) G1 solution of the Helmholtz equation in the whole space and satisfying 
Sommerfeld conditions. 

(b) G2 satisfying the homogeneous Neumann condition on (z = 0). 
(c) G3 satisfying the same impedance condition on ( z -  0). 
(d) Write the corresponding integral equations and comment. What are the 

advantages of each one? 

20. Method of Wiener-Hopf 

Let us consider the following two-dimensional problem. In the half-plane (y > 0), 
an incident plane wave impinges on the boundary (y = 0) which is described by a 
reduced normal impedance (1 on (x < 0) and (2 on  (x > 0). (1 and (2 are assumed to 
be constants. 

(a) By using Green's formula and partial Fourier transforms, write a Wiener-  
Hopf equation equivalent to the initial differential problem. The solution can 
be found in ref. [24] of chapter 5. 

(b) For the particular case of (1 = 0 and (2 tends to infinity, find the expression of 
the Fourier transform of the sound pressure. 

21. Neumann Condition 

Give the expression of the sound pressure emitted by an omnidirectional point 
source above a plane described by the homogeneous Neumann condition. Show by 
a detailed calculation that this expression is the solution of the Helmholtz equation 
and satisfies the boundary condition. Can this solution be used to find the solution 
in the case of a non-homogeneous Neumann condition? 

22. Integral Equations in an Enclosure 

A point source S=(xs, ys) is located in a rectangular enclosure (0 < x < a, 
0 < y < b). Each boundary Nj is characterized by an impedance c~j. 

(a) Write an integral equation to evaluate the sound pressure by applying Green's 
formula to the sound pressure and the classical Green's kernel. 
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(b) Let us assume that Oz2, OL3 and O~4 have the same value/3. Which kernel, denoted 
L, must be chosen to obtain the following integral representation for p: 

p(M) = pgnc(M) + f K(M, P)p(P) d~2 (P) 
J E1 

What are the expressions of Pine and K versus L. How can this kernel L be 
calculated? Is it easier to obtain than p? 

23. Propagation in a Waveguide 

Let us consider an infinite tube of rectangular cross section (0 < x ~< a; 0 < z < d) 
with the axis parallel to the y-axis. The boundaries (0 < x < a, z = 0) and (x = 0, 
0 < z < d) are described by a homogeneous Dirichlet condition. The other two are 
described by a homogeneous Neumann condition. 

(a) Give the expressions of the eigenfrequencies and eigenmodes in x and z. Give 
the general expressions of the sound pressure if the source is an incident plane 
wave. 

(b) What is the condition for which all the modes are attenuated except the first 
one? 

(c) If a point source is located in the tube, give the expression of the sound pressure. 

24. Propagation in a Layer 

Let us consider the sound propagation in a layer of fluid of constant thickness. A 
point source is located in the layer. Describe the methods which can be used to 
obtain an exact or approximate expression of the sound pressure. Comment on 
their respective advantages and conditions of validity (frequency band, source, 
sound speed, boundary conditions, ...). 

25. Fourier Transform and Separation Method 

Let us consider the case of propagation between two parallel planes. One plane is 
described by a homogeneous Dirichlet condition, the other one by a homogeneous 
Neumann condition. Show that the method of spatial Fourier transform and the 
method of separation of variables lead to the same solution. 

26. Integral Equations 

Let us consider an integral equation on a straight line written with the classical 
Green's kernel. Check that the elements Agy of the matrix of the equivalent linear 
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system are functions of l i - j l .  Which property of the kernel is responsible for 
this? 

27. Geometrical Theory of Diffraction 

Show that when the sound speed profile of a medium is a linear function of 
depth z, the trajectories of the rays are circular. This case is studied in ref. [18] 
of chapter 5. 

28. Elastically Supported Piston in a Waveguide 

Let us consider a system similar to that of Section 8.1: an elastically supported 
piston is located at x = 0; the half-guide x < 0 contains a fluid characterized by a 
density p and a sound velocity c; the half-guide x > 0 contains a different fluid 
characterized by p' and c'. Do the same analysis as in Section 8.1 and comment on 
the results for the two cases pc > p'c'  and pc < p'c'.  

29. Roots of the Dispersion Equation 

Consider the dispersion equation (8.33"). 

(1) Prove that it has two complex roots which are symmetrical with respect to the 
imaginary axis. 

(2) Using the light fluid approximation, evaluate the roots for k > A. 

30. Infinite Fluid-loaded Plate with Two Different Fluids (a) 

The system is almost the same as in Section 8.3: an infinite plate separates the space 
into f~-, which contains a fluid characterized by (p, c), and f~+, which contains a 
fluid characterized by (p', c'). Write the dispersion equation and analyse the 
positions of the roots. Assuming that both fluids are gases, calculate the roots by a 
light fluid approximation. 

31. Infinite Fluid-loaded Plate with Two Different Fluids (b) 

The system is almost the same as in Section 8.3: an infinite plate separates the space 
into [2- which contains a fluid characterized by (p, c), and 9t + which contains a 
fluid characterized by (p', c'). As in subsection 8.3.2, analyse the reflection and the 
transmission of a plane wave p+(x, y, z) = e ~k~x sin 0- z cos 0). Comment on the results 
for the two cases pc > p'c'  and pc < p'c'.  
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32. Fluid-loaded Baffled Plate: Eigenmodes 

(1) Prove that the eigenmodes defined by equation (8.51) satisfy the orthogonality 
relationship 

(Un, Um) - 2r U m) --- 0 for m -7r n 

o r  a(Un, Urn) = 0 for m -7(= n 

(2) Establish the expansions (8.52). 

33. Fluid-loaded Baffled Plate: Light Fluid Approximation 

Consider a rectangular baffled plate with a simply supported boundary. 

(1) Using the method of separation of variables, determine the set of the in vacuo 
resonance frequencies and resonance modes. 

(2) Using the light fluid approximation, calculate the fluid-loaded baffled plate 
resonance frequencies and resonance modes (first order approximation). 

(3) Assuming that the system is excited by an incident plane wave p+(x, y, z )=  
e~k(x sin 0 -  z cos 0), give the expressions of the plate displacement and the reflected 
and transmitted acoustic pressure fields. 

(4) Write the corresponding computer program. 



Mathematical Appendix: 
Notations and Definitions 

Dominique Habault and Paul J.T. Filippi 

Introduction 

The main aim of this appendix is to present some mathematical definitions and 
theorems in order to help the reader who is not familiar enough with some of the 
expressions used in this book. It also contains the main notations used in most of 
the chapters. 

The mathematical terms used in this book are often related to mathematical 
analysis or functional analysis. This is why we first present some ideas on how this 
theory applies in acoustics and vibrations. 

To describe a physical phenomenon, the usual procedure is to model it by 
differential or integral equations and boundary conditions. The mathematical 
equations are then approximated and solved numerically. The numerical solution is 
obtained from calculations on computers. Then the following questions arise: 

�9 How do we write properly a system of equations for functions which can be 
discontinuous or not defined everywhere, especially when these functions must 
be differentiated? 

�9 How do we approximate the 'exact' equations by equations which can be solved 
numerically? How 'close' are these approximations from the exact system? 

�9 Do both exact and approximate systems of equations have solutions? What 
are the properties of the solutions (uniqueness, smoothness, finite energy, 
continuity, differentiation, ...)? 

These questions are essential and computers are not able to provide answers. 
Functional analysis can answer these questions. From the properties of the 
operators involved in the equations and the boundary conditions and from the 
properties of the source terms (right-hand sides of the equations), we can deduce 
the properties of the solutions and determine the accuracy of approximations. 

In order to do this, function spaces have been defined. Hilbert spaces and Sobolev 
spaces are two of them. To be useful, these function spaces must include 
discontinuous functions or generalized functions like the Dirac distribution. In these 
spaces are defined norms and inner products with which it is possible to 'measure' the 
distance between two functions (a solution and its approximation, for instance). The 
definition of the distance depends on the space the functions belong to. 
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The definitions and theorems presented here have been chosen among the basic 
results of the mathematical theory. To provide a better understanding of the text, 
they are illustrated whenever possible by examples chosen in acoustics. 

Section A. 1 is a list of notations used in this book. Section A.2 recalls briefly the 
definitions of some classical mathematical terms. Section A.3 is a presentation of 
some of the most relevant function spaces in mechanics. Section A.4 is devoted to 
the theory of distributions, also called generalized functions. 

Let us finally underline that this text is by no means a rigorous presentation of 
mathematical results. However, it has largely taken advantage of the mathematical 
books ([1] to [8]) listed at the end of the appendix. For rigorous and complete 
presentations, the reader is highly recommended to refer to these books. 

A.1. Notations Used in this Book 

The following notations are used in most chapters. 

k = w/c: acoustic wave number; a;: angular frequency; c: sound speed. 
A = 27r/k: acoustic wavelength. 
V" gradient or divergence operator in 1, 2 or 3 dimensions. 
A: Laplace operator in 1, 2 or 3 dimensions. 
~" complex number such that b 2 - - - - 1  and ~(~) > 0. 
6: Dirac measure or Dirac distribution. 

Harmonic signals: Harmonic signals are assumed to behave as exp (-ca;t) with 
respect to time. 

Helmholtz equation" the Helmholtz equation is often written with a Dirac 
measure as source term: 

(A + k Z ) p ( M ) -  6s(M) 

or, if M - ( x ,  y, z) and S = (x0, y0, z0): 

( A  + kZ)p(x,  y, z) - 6(x - xo )6 (y  - yo)6(z  - zo) 

o r  

( A  + k2)p(x ,  y, z ) :  6xo(X)~Syo(y)6zo(Z) 

These notations, although very common in mechanics, are not quite correct and 
should be replaced by 

( A  + kZ)p(x,  y, z) : 6xo(X) | 6yo(y ) Q 6zo(Z) 

The notation | represents the tensor product of distributions. It is defined in 
Section A.4. 

Normal derivative: If ff is a unit vector normal to a surface (or a curve) F, at point 
P, the notations are 

Op OG(M, P) 
: Onp -- ff.Vp or =-- On(p)G(M, P) - ff(P).V pG(M, P) 

Off Off(P) 
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Sommerfeld conditions: These are defined in Chapter  3, section 3.1. 
Order relations: These can be simply formulated by: 

f (x)  = O(g(x)) when x tends to x0 if f (x) behaves as g(x) when x tends to x0 
f (x)  = o(g(x)) when x tends to x0 i f f ( x )  decreases faster than g(x) when x tends 

to x0 

or more rigorously: 

f (x)  = 0(g(x)), when x tends to x0, means that  there exists a constant A and a 
neighbourhood D of x0 such that  If(x) l< AIg(x) lfor every x 
in D. 

f (x)  = o(g(x)), when x tends to x0, means that  for any e > 0 there exists a 
neighbourhood D~ of x0 such that  If(x) l< elg(x) lfor every x 
in D~. 

See also [9]. 

A.2. Classical Definitions 

The functions considered in this book are defined on a domain f~ included in 
or equal to the n-dimensional infinite space En, with n = 1, 2 or 3. x is a point of  
this space and is written x = (x l, ..., x , )  in what  follows, f (x )  is a real or complex 
number. 

Definitions 

�9 A bounded domain is a domain which can be included in a sphere of finite radius R. 
�9 In this book, the boundary  P of f~ is said to be smooth if it is possible to define a 

normal  vector at any point of the boundary.  
�9 f h a s  a compact support if f =  0 outside a closed and bounded subset of ~n. 
�9 f is continuous at point x0 if the limit o f f ( x )  when x ~ x0 is equal to f(xo). 
�9 f is continuous on the set s~ if it is continuous at any point of  ~ .  
�9 f is piecewise continuous if it is continuous on N subsets ~ of ~/, with ~/~ not 

equal to a single point. 
�9 f i s  bounded on ~ if there exists a real positive number  a such that  If(x) I < a for 

any x in ~/. 
�9 f is k-times continuously differentiable if all its partial derivatives of order j ~< k 

exist and are continuous. The space of all such func t ions f i s  denoted Ck(f~). The 
same kind of definition holds for an infinitely differentiable function (space 
C~176 

�9 f is singular at xo i f f ( x o )  is not defined or infinite. 

Example. The Green's  function of the Helmholtz  equation 

G(S, M ) = -  
exp (~kr(S, M)) 

r(S, M) 
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is singular at M -  S. It becomes infinite when the observation point M approaches 
the source S. This leads to singular integral equations (see Section A.5). II 

�9 f is square integrable on ,~ if J'~ [f(~) 12 exists and is finite (see Section A.3.3). 
�9 Let f be an integrable function on the interval [a, b] of R, except in the 

neighbourhood of a point c of the interval. Then fOjaf( x ) dx is defined as a 
Cauchy principal value, vp, if 

) lim f (x) dx + f (x) dx 
e--~O c +e 

exists. 

Example 

i 
b d x  

vp - - =  log 
a X 

if a < 0 and b > 0 

A.3. Function Spaces 

The most useful spaces in mechanics are the Hilbert and Sobolev spaces, because 
their properties are well adapted to the study of the operators and functions 
involved in the equations. 

With such spaces, it is possible to define operations on functions, distances 
between functions (through inner products and norms) and also convergence 
properties which are quite essential when approximations are obtained. 

A.3.1. Space ~ and Space ~b' 

Definition. ~ (or ~ ( ~ ' ) )  is the space of all functions ~ which are infinitely 
differentiable on [~" and have a compact  support. This means that a function 
belongs to the space ~ if and only if 

�9 all the derivatives of ~ exist and are continuous; 
�9 there exists a bounded domain  K of ~" such that  ~ is equal to zero 

outside K. 

is a linear space (also called a vector space). It is not empty. For example, let us 
define ~ by 

~(x)  exp if r < 1 
-- 1 - r  2 

0 if not 

with x a point of ~n and r = (~--~n= 1 X/e)'/2 
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is equal to zero outside the ball of radius 1. It is obviously differentiable 
for r < 1 and r > 1. For r = 1, all the derivatives are equal to zero. Then all its 
derivatives are continuous everywhere on R". 

Theorem. Any continuous function f, with a bounded support K, can be 
uniformly approximated by a function ~ of ~. This means that, for any c > 0, 
there exists a function ~ such that 

sup If(x) - ~(x) I < e 
x E IR n 

Definition. ~ '  is the dual of ~. This means that ~ '  is the space of all continuous 
linear functions defined on ~. ~ '  is the space of distributions which are defined in 
Section A.4. 

A.3.2. Space b ~ 

Definition. 5e is the space of all functions f (x)  indefinitely differentiable and which 
decrease faster than x-k for any k, when x tends to infinity. It is easy to see that ~ c 5r 

Theorem. If f belongs to 5e, then its Fourier transform exists and also belongs to ~e. 
This is then a convenient space to define Fourier transforms. 

Two kinds of Fourier transforms are used in acoustics: time Fourier transforms 
and space Fourier transforms. In this book, they are defined by 

i 
+oo 

h(~o)- h(t) exp (+cwt) dt 
- - 0 0  

and a~({)- J f (x)  exp (-2~rr{x) dx 

Because of the first definition, the time dependence for harmonic signals is chosen 
as exp ( - ~ t ) .  

A.3.3. Hilbert spaces 

Let us consider again functions defined on f~. f~ represents the space Nn or a 
subspace of Nn. 

A Hilbert space is a particular type of linear space in which an inner product is 
defined. The exact definition of a Hilbert space is not given here. Too many 
notions, although simple, are required. 

One of the most commonly used spaces is L 2(f~). The inner product between two 
functions f and g of L2(~) is defined by 

(f, g)2-- J f(x)g*(x) dx 
ft  

where g*(x) is the complex conjugate of g(x). 
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Definition. L2(f~) is the space of functions f such that: 

II/[Iz - ( ( / ,  f ) 2 )  1/2 = IN(x) [2 d x  < +cx~ 
f~ 

Ilfllz is the norm defined in L2(f~). L 2 is the space of functions with finite energy. 
This is why it is very well adapted to problems in mechanics. 

Definition. Let V be a normed linear space of functions. A system of functions 
(bj(x), j = 0 ,  1, ...) is a basis for V if any function f of V has a unique 
representation: 

--]-OO 

f =  Z ajbj 
j=0  

where o~j are scalars. 
The bj are linearly independent. 

Remark. +~ Y~j=0 c~jbj(x)= 0 for any x in f~ implies that c~j = 0 for any j. This is 
one of the properties used in the geometrical theory of diffraction and the W.K.B. 
method (see Chapters 4 and 5). 

Example 1. bj(x) = xJ is a basis in L 2 ( ] - 1 ,  +1[). This basis is not orthogonal, 
because (x J, x k) is not zero for any j Ck. Orthogonal polynomials such as 
Legendre polynomials form an orthogonal basis. 

Example 2. The modes often form an orthogonal basis. For example, the modes, 
which are solutions of the homogeneous Helmholtz equation in a rectangular 
enclosure and satisfy homogeneous Dirichlet boundary conditions, form a basis. 
This implies that any solution of a Helmholtz equation and Dirichlet conditions in 
a rectangular enclosure can be written as a series of these modes. This series is 
called the modal representation of the solution. This is the property used in the 
separation of variables method. 

Definition. A sequence of functions fk of V converges to f in V when k tends to 
infinity if I I f - f k  II v tends to zero. This is called a 'strong' convergence. 

Example 3. The L2-convergence is obtained if fk and f belong to L 2 and if 
I I f - f k  [12 tends to zero. The modal series is LZ-convergent to the solution. 

Definition. A sequence of functions fn of V weakly converges to f of V when k 
tends to infinity if l imk- ,+~ (fk, b j ) =  (f, bj) for any j. 

Similarly, if A is an operator on functions of V, (Au, v) = (f, v) for any v in V is 
a weak formulation of the equation Au = f  
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Example 4. The variational formulation is a weak formulation. The example for 
the Dirichlet problem is given in the next section. A weak formulation often 
corresponds to the principle of conservation of energy. 

Remark. The strong convergence implies the weak convergence. 

A.3.4. Sobolev spaces 

With Sobolev spaces, it is possible to take into account in the definition of the norm 
the properties of a function and its derivatives. These spaces are then quite useful in 
the theory of partial differential equations. 

Definition. If s is a positive integer, the H~(f~) space (also denoted WS'2(~"~) in 
some mathematics books) is defined by 

H~(f~) = { f o f  L2(~) such that D~fbelongs to 

L2(f~) for any integer c~ = 0, 1, ..., s} 

Example 1. H~ is obviously equal to L2(~). Hl(f~) contains all the functions 
of L 2(f~) such that their first-order partial derivatives are also in L 2(f~). I f fbe longs  
to Hl(f~), f and its first-order derivatives are of finite energy. This space is a 
convenient space to study solutions of the Helmholtz equation as shown in the last 
example of this section. I 

The previous definition has been extended quite naturally to negative and also 
noninteger s by introducing the Fourier transform f(~) of f (x) .  

Definition. If s is a real number, HS([~ n) is the space of functions f such that 
(1 + l ~  12)s/2J~(~) is in L2(Rn). The inner product is defined by 

R n 

The spaces HS(~ n) are Hilbert spaces. 
With this generalization, it is possible to find a function space which the Dirac 

distribution belongs to, namely H-1/2([~n).  

Example 2. Dirac distribution and Helmholtz equation. 
distribution is extensively used for two reasons: 

In acoustics, the Dirac 

�9 It can be used to model an omnidirectional point source. 
�9 If the solution is known when the right-hand side member of the Helmholtz 

equation is a Dirac distribution, then the solution is known for any source term, 
because of the convolution property of the Helmholtz equation (see Section 
A.5). 
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It is then essential to be able to determine the conditions for which the system of 
equations 

(A + kZ)G(S, M)= 6s(M) in [~n or f~ 

with appropriate boundary conditions and/or  Sommerfeld conditions has a 
solution and to which space this solution belongs. Knowing the properties of the 
operator defined by the system and that the Dirac distribution is in the H-1/2([~ n) 
space, it is possible to deduce the properties of the solution (existence, uniqueness, 
behaviour, ...). It 

It is also possible to define the limit (or the trace) of a function f (M) defined on 
f~ when M tends to a point P of the boundary F of ft. 

Definition. The term 'trace' is used here for the limit o f f ( M )  when the point M of 
9t tends to a point P of the boundary r .  If f is a continuous function, the trace is 
equal to the value of f on r .  But the notion of trace extends to less smooth functions 
and to distributions. With the help of Sobolev spaces, it is possible to define traces 
which are not functions defined at any point of I'. 

Example 3. Layer potentials. Let G(S, M) be the Green's function for the 
Helmholtz equation. 
Then the simple layer operator K defined by 

- [ #(P')G(M, P') &r(P') K#(M) 
J I" 

relates # of H-l/2(1 -') to K# of nl(f~). 
Its value on E is given by 

L#(P) - Tr(K#(M))=  lim (K#(M)) 
M--* P 

and relates # of H-l/2(1 -') to L# of HI/2(1-'). 
Similarly, the double layer operator K ~ defined by 

Ir OG(M, P') 
K'#(M) - #(e') Off(P') da(P') 

relates # of H-1/2(F) to K'# of H~ 
Its value on I" is given by 

L '#  (P) - Tr(K'# (m)) = lim (K'# (m)) 
M----~ P 

and relates # of H-1/2(I ') to L'# of H-1/2(F). 
From the properties of the operators K, K', L and L', (compact, adjoint, ...), it is 

then possible to determine the conditions of existence and uniqueness of solutions 
of integral equations. II 
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Example 4. Dirichlet problem. Let f~ be a bounded domain of ~n and V the 
Sobolev space H~(f~). H01(Vt) is the space of all functions of HI(Ft) which are equal 
to 0 on the boundary F of f~. The Dirichlet problem consists in finding the solution 
u in V of the system 

cZAu + wZu = - f i n  9t and u = 0 on I" 

It can be replaced by the weak formulation 

a(u, v) = Y(v) for any v in V 

where a and ~ are defined by 

a(u,v)-(j'c2X7u. Vv*-w2uv *) and ~ ( v ) - I a f v *  

In a(u, v), the first term corresponds to a potential energy and the second term to a 
kinetic energy. 

The equation is solved by a numerical procedure. First, the solution u in V is 
approximated by a function u h in a subset Vh of V, such that 

a(uh, Wh)= ~,('Uh) for any ~U h in V h 

Because of the properties of the operators and spaces, it can be shown that there 
exists a solution U h in Vh. Its convergence to the exact solution u in V depends on 
the properties of functions V h. 

Furthermore, if the (v hi, i = 1, ..., N)  is an orthogonal basis of Vh, U h can be written 

N 

Uh ~ Z Uhi"Uhi 
i = 1  

and the previous equation leads to a simple linear system of order N: 

B U h  -- Fh 

with matrix B and vectors Uh and Fh defined by 

- j  �9 Bij -- a(vhi, Vhj); Uhi UVh~ 
~2 

and Fhi -- ~ ( v  h i) 

Theorem. If s > (n/2) + k, then Hs(R n) C ck(Rn). 
This relates the properties of functions of Sobolev spaces to their differentiation 

properties. 

A.4. Distributions or Generalized Functions 

The theory of distributions has been developed by L. Schwartz [7]. Distributions 
are also called generalized functions (see for example, [8] for mathematical 
theorems and [10] for applications in acoustics). 
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A.4.1. Distributions 

Definition. T is a distribution if T is a continuous linear function defined on ~.  
This means that T associates to a function 99 of ~ a complex number T(99). T(99) 

is also written (T, 99) and the following three properties hold: 

(T, 991 -+-992)= (T, 991) + (T, 992) 
(T, A99) = A (T, 99 ) if A is a complex number  

If 99j converges to 99 when j tends to +c~, then (T, 99j) converges to (T, 99 ). m 

How can this general definition be related to applications in acoustics? Here are 
some illustrative examples. 

Example 1. Let f be a locally integrable function, that is a function integrable on 
any bounded domain. Tf defined by 

- dx  

is a distribution. 
H e r e f i s  a function and Tf is the associated distribution. For  simplicity (although 

it is not rigorous), f is often written instead of Tf and f is called a distribution. 
The notation is then (T f, 99) or (f, 99). m 

Example 2. The Dirac measure or Dirac distribution. This is defined by 

(T~, 99) or (6, 99) _= 99(0) 

It is easy to check that it satisfies the properties of a distribution. It corresponds to 
the definition of a monopole source at point 0 in mechanics. 

If a is a point of [~n, (~a, 99) -  99(a) is also a distribution, called the Dirac 
measure at point a. m 

Example 3. Derivatives. If T is defined by (T, 99) -D99(a) where D is any partial 
differential operator,  then T is a distribution. 

(T, 99) - - 9 9 ' ( a )  corresponds to a dipole source at point a. m 

Example 4. Distribution of monopoles on a surface F, with density p. 

(T,  a (x) 
Jr 

This is defined by 

m 

Example 5. Distribution of  normal dipoles on a surface F, with a density p. 
defined by 

f O~(x) 
(T, 9 9 ) - -  | p(x) dot(x) 

Jr Off 

This is 

where ff is a unit vector normal  to F. m 
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A.4.2. Derivation of a distribution 

Definition. 
defined by: 

and more generally 

The partial derivative of a distribution T with respect to variable x i is 

<DPT, ~> -- (-1)lPI<T, DP:> 

where 

0 Pl 0 0 

D p -  . . .  

Pn 

with Ip I = p l  + p 2  + "  "+Pn 

Particular case: In the case of a distribution T f  associated to a continuously 
differentiable function f, one has: 

(Tz, ~) - f ( x )~ (x )  dx and - -  f (x) . dx l dx . . .  n 

n N n O X  i 

By integrating by parts, it can be shown that in the last right-hand side term the 
integral with respect to x i can be written 

I +~176 O~(x)  I +~176 Of(x )  - f ( x )  dxi  -- f (x)qo(x)]  xi= +c~ + ~ ( x )  dxi  
X i - -CK)  

--oo O X  i --cx) O X  i 

The first term on the right-hand side is equal to zero since ~ is zero outside a 
bounded domain (~ is in ~). Then the right-hand side is equal to (Tof/Ox,, ~). 

For distributions associated to a function, the rules of derivation correspond to 
the classical rules. II 

Example  1. One-dimensional Heaviside funct ion Y 

1 i f x > O  
Y ( x ) =  0 if not 

T g (or Y) is the distribution defined by 

~0 
-oo 

<r, ~>-  ~(x) dx 

and then 

<r', ~> = -  ~'(x) dx 
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This last integral is obviously equal to 

+oo -~(xl ]0  - ~ ( 0 ) -  (6, ~) 

Then the derivative of Y is the Dirac distribution: y t _  6. m 

Example 2. Functions discontinuous at x = 0 in ~. Let us consider a function f 
infinitely differentiable for x > 0 and for x < 0. It is assumed that all the derivatives 
have a limit on the (x < 0) side, called the lower limit, and have a limit on the 
(x > 0) side, called the upper limit, when x tends to zero. 

Let us note am = f ( m ) ( o  +) --f(m)(0-), the difference between the upper and lower 
limits of the mth-derivative of f at x = 0. Let us calculate the derivative of the 
distribution TU defined by 

(Tu, ~ ) - l  f ( x ) ~ ( x  ) dx 

Then 

f (x)q) ' (x) dx - - J ~ 
--(20 

f (x)~'  (x) dx - f (x)g) ' (x) dx 

By integrating by parts each of the last two integrals, it is shown that 

(r}, ~) = ( f (o+)  - f ( o _ ) ) ~ ( o )  - f'(x)~(x) a x -  ~,o~(o) + (f ' ,  ~) 

This means that i f f '  is used instead of T) the  derivative o f f  in the distribution 
sense is f ' - ~ r o ~  + {f'} where { f ' }  is the classical derivative o f f  in the domains 
(x > O) and (x < 0). 

Theorem. More generally, 

f (m)  _ {f(m)} _+_ o.06(m-1) + o. 16(m-2) _+_... + O.m_ 16 for t> 1 

These results can be generalized to the case of funct ionsf inf ini te ly differentiable 
on ~n except on a smooth hypersurface F. For  the Laplace operator,  it leads 
to 

}/ A f =  {A f}  + - - ~  - - - ~  ~v + ( f + - f - ) 6 ~ v  

= {A f}  + a~6r + a06~ 

where ff is the unit vector normal to F. 5~ is defined by 

Iv ~  
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The (+) (resp. ( - ) )  sign corresponds to the side of the normal ff (resp. to the 
opposite side to the normal if). ~0 and cr~ are respectively the jump o f f  and the 
jump of Of/Off across the surface F. 

Application to the Green's formula. 
i f f  is equal to zero outside 9t, then 

If the surface F is the boundary of a volume 9t, 

(A f, 99) -- (f, A~) _ Ju f A ~  d a  

= + + 

Of O~ 
dr' 

o r  

~ 0~ 
In ( f A ~ - ~ ~  d Q +  Ir - ~ i -  d F - 0  

In these integrals, df~ and dr' respectively represent the element of integration on f~ 
and on F. ffi is the unit vector, normal to F and interior to f~. 

The theory of distributions is then an easy and rigorous way to obtain Green's 
formula. 

A.4.3. Tensor product of distributions 

In this book, the following notations are used: 

6 x~, y~, z~ (X, y, z) or 6(x - x ~, y - y ~, Z - Z s) or 6 s(M) 

All these notations are improper and should be replaced by 

6x,(X)|174 

This is called a tensor product. 

' be two distributions. (To make things Definition. Let S x of 5~'~ and Ty of 5~  
clearer, variables x and y are introduced as subscripts.) Then, the tensor product of 
these two distributions is the distribution Wx y of ~ '  such that 

(W, ~ ) -  ( Sx, (Ty, ~o(x, Y)// 

This means in particular that if S x and Ty are defined by 

- [ f ( x ) u ( x ) d x  and (Ty,  v) - -  I g(y)v(y)dy  (Sx, u) 
J J 
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then 

Example. The 2-dimensional delta distribution is defined by 

(~a(X) (~ 6b(y), gO(X, y)) - -  (~a(X), gO(X, b)) -- gO(a, b) 

Similarly, the 3-dimensional delta distribution is defined by 

(~a(X) ~ 6b(y) | 6c(Z), gO(X, y, z)) = gO(a, b, c) 

A.5. Green's Kernels and Integral Equations 

In this book, the terms 'Green's function' or 'Green's kernel' of a Helmholtz 
equation are used equivalently to refer to the solutions of the following systems 

(A + k2)G(S, M)= 6s(M) in R n and Sommerfeld conditions 

o r  

(A + k2)G(S, M)= 6s(M) in f~ 

with boundary conditions on F and Sommerfeld conditions if f~ is not bounded. 
The terms 'elementary kernel' and 'elementary solution' refer to any solution of a 

Helmholtz equation with 6s(M) as second member. 
The Helmholtz equation with constant  coefficients is a convolution 

equation. This means in part icular  that  i f f  is the solution of one of the two 
systems written above with a source term Q(M) instead of the Dirac 
distribution, then f is given by 

f ( M ) -  (G �9 Q) (M)-  IR n Q(S)G(S, M) da(S) 

Then if G is known, the solution f is known for any source term Q. 

Definition. Let p be defined on the domain f~, with boundary F. Let K(M, M') be 
any kernel. 

Terms of the form 

p(M) -- r + lr # (P')K(M, P') da(P') 

where M is a point of f~ and P '  a point of F are called integral representations ofp. 
e is generally a constant; it can be equal to zero. P0 is a known function. 
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Terms  of  the form 

e # ( P )  + Jr # ( P ' ) K ( P ,  P')  d(r(P') = g(P)  

where P and P '  are points of  F are called integral equat ions  for # defined on F. 
Because Green 's  functions G(S, M )  for the Helmhol tz  equat ion  are singular (i.e. 

tend to infinity when M tends to S), the integral equat ions  are singular. It has been 
necessary to develop a theory of  singular integral opera tors  to study the propert ies  
of  the solutions of  integral equations.  A very large number  of  articles and books  
have been published on this subject (see [6] for example). 

In this book,  we do not  go th rough  this theory, which is far beyond  our  scope. 
The term 'singular '  refers to the integrabili ty of  the kernels. Three  types of  
singularities are encountered:  

�9 Weakly  singular integral. This is the case of  a single layer potential ,  which is 
perfectly defined since the kernel is integrable in the R iemann  sense. 

�9 Cauchy principal value. This is the case of  a double layer potent ia l  or of  the 
derivative of  a single layer potential .  

�9 Hyper-singular integral. This is the case of  the derivative of  a double  layer 
potential .  The integral must  be defined as a finite par t  in the sense of  H a d a m a r d .  
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