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Foreword

The Indian Statistical Institute (ISI) was established on 17th December,
1931 by a great visionary Prof. Prasanta Chandra Mahalanobis to promote
research in the theory and applications of statistics as a new scientific disci-
pline in India. In 1959, Pandit Jawaharlal Nehru, the then Prime Minister
of India introduced the IST Act in the parliament and designated it as an
Institution of National Importance because of its remarkable achievements
in statistical work as well as its contribution to economic planning.

Today, the Indian Statistical Institute occupies a prestigious position
in the academic firmament. It has been a haven for bright and talented
academics working in a number of disciplines. Its research faculty has done
India proud in the arenas of Statistics, Mathematics, Economics, Com-
puter Science, among others. Over seventy five years, it has grown into a
massive banyan tree, like the institute emblem. The Institute now serves
the nation as a unified and monolithic organization from different places,
namely Kolkata, the Headquarters, Delhi, Bangalore, and Chennai, three
centers, a network of five SQC-OR Units located at Mumbali, Pune, Baroda,
Hyderabad and Coimbatore, and a branch (field station) at Giridih.

The platinum jubilee celebrations of ISI have been launched by Honor-
able Prime Minister Prof. Manmohan Singh on December 24, 2006, and
the Government of India has declared 29th June as the “Statistics Day” to
commemorate the birthday of Prof. Mahalanobis nationally.

Professor Mahalanobis, was a great believer in interdisciplinary research,
because he thought that this will promote the development of not only
Statistics, but also the other natural and social sciences. To promote in-
terdisciplinary research, major strides were made in the areas of computer
science, statistical quality control, economics, biological and social sciences,
physical and earth sciences.

The Institute’s motto of “unity in diversity” has been the guiding prin-
ciple of all its activities since its inception. It highlights the unifying role
of statistics in relation to various scientific activities.
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In tune with this hallowed tradition, a comprehensive academic pro-
gramme, involving Nobel Laureates, Fellows of the Royal Society, Abel
prize winner and other dignitaries, has been implemented throughout the
Platinum Jubilee year, highlighting the emerging areas of ongoing frontline
research in its various scientific divisions, centers, and outlying units. It
includes international and national-level seminars, symposia, conferences
and workshops, as well as series of special lectures. As an outcome of these
events, the Institute is bringing out a series of comprehensive volumes in
different subjects under the title Statistical Science and Interdisciplinary
Research, published by the World Scientific Press, Singapore.

The present volume titled “Perspectives in Mathematical Sciences I:
Probability and Statistics” is the seventh one in the series. The volume
consists of eleven chapters, written by eminent probabilists and statisti-
cians from different parts of the world. These chapters provide a current
perspective of different areas of research, emphasizing the major challeng-
ing issues. They deal mainly with statistical inference, both frequentist
and Bayesian, with applications of the methodology that will be of use to
practitioners. I believe the state-of-the art studies presented in this book
will be very useful to both researchers as well as practitioners.

Thanks to the contributors for their excellent research contributions,
and to the volume editors Profs. N. S. Narasimha Sastry, T. S. S. R. K. Rao,
M. Delampady and B. Rajeev for their sincere effort in bringing out the
volume nicely in time. Initial design of the cover by Mr. Indranil Dutta is ac-
knowledged. Sincere efforts by Prof. Dilip Saha and Dr. Barun Mukhopad-
hyay for editorial assistance are appreciated. Thanks are also due to World
Scientific for their initiative in publishing the series and being a part of the

(ke

December 2008 Sankar K. Pal
Kolkata Series Editor and
Director

Platinum Jubilee endeavor of the Institute.



Preface

Indian Statistical Institute, a premier research institute founded by Pro-
fessor Prasanta Chandra Mahalanobis in Calcutta in 1931, celebrated its
platinum jubilee during the year 2006-07. On this occasion, the institute
organized several conferences and symposia in various scientific disciplines
in which the institute has been active.

From the beginning, research and training in probability, statistics and
related mathematical areas including mathematical computing have been
some of the main activities of the institute. Over the years, the contribu-
tions from the scientists of the institute have had a major impact on these
areas.

As a part of these celebrations, the Division of Theoretical Statistics and
Mathematics of the institute decided to invite distinguished mathematical
scientists to contribute articles, giving “a perspective of their discipline,
emphasizing the current major issues”. A conference entitled “Perspectives
in Mathematical Sciences” was also organized at the Bangalore Centre of
the institute during February 4-8, 2008.

The articles submitted by the speakers at the conference, along with
the invited articles, are brought together here in two volumes (Part A and
Part B).

Part A consists of articles in Probability and Statistics. Articles in
Statistics are mainly on statistical inference, both frequentist and Bayesian,
for problems of current interest. These articles also contain applications
illustrating the methodologies discussed. The articles on probability are
based on different “probability models” arising in various contexts (ma-
chine learning, quantum probability, probability measures on Lie groups,
economic phenomena modelled on iterated random systems, “measure free
martingales”, and interacting particle systems) and represent active areas
of research in probability and related fields.

Part B consists of articles in Algebraic Geometry, Algebraic Num-
ber Theory, Functional Analysis and Operator Theory, Scattering Theory,

vii



viii Preface

von Neumann Algebras, Discrete Mathematics, Permutation Groups, Lie
Theory and Super Symmetry.

All the authors have taken care to make their exposition fairly self-
contained. It is our hope that these articles will be valuable to researchers
at various levels.

The editorial committee thanks all the authors for writing the articles
and sending them in time, the speakers at the conference for their talks and
various scientists who have kindly refereed these articles. Thanks are also
due to the National Board for Higher Mathematics, India, for providing
partial support to the conference. Finally, we thank Ms. Asha Lata for her
help in compiling these volumes.

October 16, 2008 N. S. Narasimha Sastry
T.5 S R. K. Rao

Mohan Delampady

B. Rajeev
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Chapter 1

Entropy and Martingale

K. B. Athreya! and M. G. Nadkarni®
! Department of Mathematics,
Towa State University, Ames, Towa, 50011, USA
and
1. M. I, Department of Mathematics,
Indian Institute of Science, Bangalore, 560012, India
kba@jiastate.edu

2 Department of Mathematics
University of Mumbai, Kalina, Mumbai, 400098, India
mgnadkarni@gmail.com

1.1. Introduction

This article discusses the concepts of relative entropy of a probability mea-
sure with respect to a dominating measure and that of measure free mar-
tingales. There is considerable literature on the concepts of relative entropy
and standard martingales, both separately and on connection between the
two. This paper draws from results established in [1] (unpublished notes)
and [6]. In [1] the concept of relative entropy and its maximization subject
to a finite as well as infinite number of linear constraints is discussed. In [6]
the notion of measure free martingale of a sequence { f,,}72; of real valued
functions with the restriction that each f,, takes only finitely many distinct
values is introduced. Here is an outline of the paper.

In section 1.2 the concepts of relative entropy and Gibbs-Boltzmann
measures, and a few results on the maximization of relative entropy and
the weak convergence of of the Gibbs-Boltzmann measures are presented.
We also settle in the negative a problem posed in [6]. In section 1.3 the no-
tion of measure free martingale is generalized from the case of finitely many
valued sequence {f,}22; to the general case where each f,, is allowed to
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be a Borel function taking possibly uncountably many values. It is shown
that every martingale is a measure free martingale, and conversely that
every measure free martingale admits a finitely additive measure on a cer-
tain algebra under which it is a martingale. Conditions under which such
a measure is countably additive are given. Last section is devoted to an ab
initio discussion of the existence of an equivalent martingale measure and
the uniqueness of such a measure if they are chosen to maximize certain
relative entropies.

1.2. Relative Entropy and Gibbs-Boltzmann Measures

1.2.1. Entropy Maxzimization Results

Let (2,8, 1) be a measure space. A B- measurable function f : Q —
[0, oo) is called a probability density function (p.d.f) with respect to p if
Jo f)p(dw) = 1. Then v(A) = [, f(w)u(dw),A € B, is a probability
measure domlnated by p. The relatlve entropy of vy with respect to p is
defined as

- /Q F(@) log f(@)u(dw) (1)

provided the integral on the right hand side is well defined, although it
may possibly be infinite. In particular, if u is a finite measure, this
holds since the function h(xz) = zlogz is bounded on (0,1) and hence
Jo(—=f(w)log f(w)) T u(dw) < oco. This does allow for the possibility that
H(f, ) could be —oo when () is finite. We will show below that if 1(2)
is finite and positive then H(f, ) < log u(Q2) for all p.d.f. f with respect
to p. In particular if u(Q) =1, H(f,u) <0
We recall here for the benefit of the reader that a B measurable non-
negative real valued function f always has a well defined integral with
respect to p. It is denoted by fﬂ )p(dw). The integral may be finite
or infinite. A real valued B Ineasurable function f can be written as f =
f+ — f—, where, for each w € Q,

f+(w) = max{0, f(w)}, f-(w) = —min{0, f(w)}.
If at least one of fy, f_ has a finite integral, then we say that f has a well
defined integral with respect to p and write

[ i) = [ fr@mtas) - [ 1-@p(a)



Entropy and Martingale 3

Now note the simple fact from calculus. The function ¢(z) = z—1—logx
on (0, 00) has a unique minimum at 2 = 1 and ¢(1) = 0. Thus for all z > 0,
logz < o — 1 with equality holding if and only if z = 1. So if f; and f5 are
two probability density functions on (9, B, i), then for all w,

fi(w)log fa(w) = fi(w)log fi(w) < fa(w) = fi(w), (2)

with equality holding if and only if fi(w) = fo(w). Assume now that
f1(w)log fi(w), f1(w)log fa(w) have definite integrals with respect to p and
that one of them is finite. On integrating the two sides of (2) we get

/jmm%hwm@w—/ﬁwm@mmmm>
Q Q

SLhMWM*LhMMM

=1-1=0.

The middle inequality becomes an equality if and only if equality holds
in (2) a.e. with respect to u. We have proved:

Proposition 2.1. Let (Q,B,u) be a measure space and let f1, fo be
two probability density functions on (2, B, ). Assume that the functions
filog f1, f1log fo have definite integrals with respect to pu and that one of
them is finite. Then

i) == [ i) o fi@ln(do) < = [ fi@)los fw)ulds), ©)
with equality holding if and only if f1(w) = fa(w), a.e. .

Note that if () is finite and positive and if we set fa(w) = (u(Q2))71,
for all w, then the right hand side of (3) becomes log 1(2) and we conclude
that relative entropy of H(f1, ) is well defined and at most log p(2).

Let fp be a probability density function on (2, B, u) such that A =
H(fo, i) is finite and let

Fr={f:fapdf wrt pand —Af(w)logfo(w)u(dw) =\ (4
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From Proposition 2.1 it follows that for any f € Fj,

H(f 1) = — /f )log f(w /f ) log fo(w)pu(de) =

- /Q fo(w)log fo(w)u(dw),

with equality holding if and only if f = fy, a.e. . We summarize this as:

Theorem 2.1. Let fo, A\, Fa, be as in (4) above. Then

sup{H (f, ) : f € Fa} = H(fo, 1)

and fo is the unique mazimiser.

Theorem 2.1. says that any probability density function fy with respect
to p with finite entropy relative to p appears as the unique solution to an
entropy maximizing problem in an appropriate class of probability density
functions. Of course, this assertion has some meaning only if F, does not
consist of fy alone. A useful reformulation of this result is as follows:

Theorem 2.2. Let h: Q) — R be a B measurable function. Let ¢ and \ be
real numbers such that

Y(c) = /Q M) (dw) < oo, /Q | h(w) | e p(dw) < oo, and

Jip P(0)e ) ()

A= e

Let fo = jz;) and let

Fr={f:fapd.f wrt p, and /Qf(w)h(w),u(dw) = A}
Then

sup{H(f,p) : f € Fa} = H(fo, 1),

and fo is the unique mazimiser.

Here are some sample examples of the above considerations.
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Example 1. Let Q = {1,2,--- ,N}, N < oo, u counting measure on {2,
h=1,A=1. Then F\ = {(p;))X,,pi > O,Zf.vzlp,- =1}. Then

. [
fO(j):N)j:172a aNa

the uniform distribution on {1,2,---, N}, maximizes the relative entropy
of the class F, with respect to u.

Example 2. Let Q = N, the natural numbers {1,2,---}, 4 = the counting
measure on £, A(j) = j,7 € N. Fix \; 1 <\ < oo and let

Fa={p)521:V . p; >0, Zpgfl ij]fk}
j=1
Then fo(j) = (1 —p)p~t,j = 1,2,---, where p = 1 — —, maximizes the
relative entropy of the class F, with respect to u.
Example 3. Let Q = R, 1 = Lebesgue measure on R, h(z) = 2%, 0 < A <
00. Set Fx={f:f >0, [; f(x)de =1, [ 2*f(x)dz = A\}. Then
1 m2
T) = 6757
fo(@) 27\

i.e., the Gaussian distribution with mean zero and variance A, maximizes

the relative entropy of the class F) with respect to the Lebesgue measure.

These examples are well known (see [5]) and the usual method is by the
use of Lagrange’s multipliers. The present method extends to the case of
arbitrary number of constraints (see [1], [8]).

Definition 2.1. Let (2,8, 1) be a measure space Let h Q — R be B

measurable and let ¢ be a real number. Let ¢(c f echlw ) be finite.
Let
fA €Ch(w)u(dw)
Vipen(A) =42—— AcB.
(1, JL)( ) ¥(c)

The probability measure v, . ») is called the Gibbs-Boltzmann measure cor-
responding to (u, ¢, h).

Example 4. (Spin system on N states.) Let Q = {—1,1}, N a positive
integer, and let V : @ — R, 0 < Or < oo be given. Let u denote the
counting measure on {2. The measure

ZweA e*ﬁTV(W)

Vippr, vy (A) = S e PV’ AcCQ, (5)
we
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is called the Gibbs distribution with potential function V' and temperature
constant G for the spin system of IV states. The denominator on the right
side of (5) is known as the partition function.

1.2.2. Weak Convergence of Gibbs-Boltzmann Distribution

Let © be a Polish space, i.e., a complete separable metric space and let B
denote its Borel o-algebra. Recall that a sequence (u,,)22, of probability
measures on (€2, B) converges weakly to a probability measure p on (9, B),
if

[ @t = [ femt)

for every continuous bounded function f : Q — R. Now let (1,)52; be a
sequence of probability measures on (2, B), (h,,)>2; a sequence of B measur-
able functions from 2 to R and (¢, )32 ; a sequence of real numbers. Assume
that for each n > 1, fQ ecnh"(“)u(dw) < oo. For each n > 1, let v, c,..h,)
be the Gibbs-Boltzmann measure corresponding (fi,, ¢y, by ) as in definition
2.1. An important problem is to find conditions on (fin, hn,cn)o2; so that
(V(tinsenshn) )=y converges weakly. We address this question in a somewhat
special context. We start with some preliminaries.

Let C' C R be a compact subset and p a probability measure on Borel
subsets of R with support contained in C. For ¢ € R, let

00 = [ eutdo)

Since C' is bounded and p is a probability measure, the function 1 is well
defined and infinitely differentiable on R. For any k£ > 1,

090 = [ eatu(da).

Note that the function f.(z) = % is a probability density function with

respect to g with mean ¢(c) = ﬁ/((f)).

Proposition 2.2.

(i) ¢ is infinitely differentiable and ¢'(c) > 0 for all ¢ € R, provided u
is not supported on a single point. If p is a Dirac measure, i.e., if
W is supported on a single point, then ¢'(c) =0 for all c.
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(ii) lime— oo ¢(c) = inf{z : p(—o00,z) > 0} = q,
(iil) lime—too @(c) = sup{x : p[z,00) >0} =,
(iv) for any o, a < a < b, there is a unique ¢ such that ¢(c) = a.

Proof: If u is a Dirac measure then the claims are trivially true, so we
assume that g is not a Dirac measure. Since v is infinitely differentiable
and ¢ (c) > 0 for all ¢, ¢ is also infinitely differentiable. Moreover,

_ Uz p(dr))i(c) — (¢'(c))?
(¥(c))?

can be seen as the variance of a non-constant random variable X, whose

¢'(c)

distribution is absolutely continuous with respect to p with probability den-
sity function f.(x) = 17}7:) (Note that X, is non-constant since y is not
concentrated at a single point and f. is positive on the support of x.) Thus
¢'(¢) = variance of X, > 0, for all ¢. This proves (i).

Although a direct verification of (ii) is possible we will give a slightly
different proof. We will show that as ¢ — —oo, the random variable X,
converges in distribution to the constant function a so that ¢(c) which is
the expected value of X, converges to a. Note that by definition of a, for all
€ >0, p([a,a + €)) > 0 while p((—o0,a)) = 0. Also pu((b,00)) = 0, whence

f(a-‘re,b] GCIH(dx) _ f(a-{-e,b] 60(1*0«)H(dx)

PRzt =700 Juo €Tl

Forc<0,and0<e<b*Ta,

e“pu((a+ e, b])
cFlla,a+ts))
oz pl(a+ e b)

=e 2mHO as ¢ — —00.

Also, since pu((—o00,a)) =0, P(X. < a)=0. So, X, — a in distribution
as ¢ — —o0, whence ¢(¢) — a as ¢ — —oo. This proves (ii). Proof of (iii)
is similar. Finally (iv) follows from the intermediate value theorem since ¢
is strictly increasing and continuous with range (a,b). This completes the
proof of Proposition 2.2.

Proposition 2.2 also appears at the beginning of the theory of large
deviations (see [10]) thus giving a glimpse of the natural connection between

P(X.>a+¢) <
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large deviation theory and entropy theory. (See Varadhan’s interview, p31,
11].)

The requirement that g have compact support can be relaxed in the
above proposition. The following is a result under a relaxed condition.

Let pu be a measure on R. Let I = {c¢: [, e“u(dr) < oco}. It can be
shown that I is a connected subset of R which can be empty, a singleton,
or an interval that is half open, open, closed, finite, semi-finite or all of R
(see 2]). Suppose I has a non-empty interior I°. Then in I° the function

= [z € u(dx) is infinitely differentiable with »F) (¢) = [pe“atpu
Further o(c) = ﬁ((cc)) satisfies
P (c) = (¥'(c))?
(bl C) = )
N T

which is positive, being equal to the variance of a random variable with
probability density function % with respect to pu. Thus, for any « satis-
fying inf.cj0 ¢(c) < a < sup,co ¢(c), there is a unique cg in I° such that
P(co) = .

Let p be a probability measure on R. Note that a real number A is
the mean f]R av(dx) of a probability measure v absolutely continuous with
respect to p if and only if p({z : @ < A}), u({x : > A}) are both positive.

As a corollary of Proposition 2.2 we have:

Corollary 2.1. Let the closed support of p be a compact set C'. Let o be
such that p{x : x < o}, p{x: x > a} are both positive. Let

—{f: f apdf, /C o f (2)u(d) = .

Then there exists a unique probability density function g with respect to
such that

H(g,u) :maX{H(f,‘LL)ZfEfa}.

If a =inf C or if « = sup C, then p necessarily assigns positive mass to «
and g = m X 1{ay. Let infC < a <supC. Then there is a unique c

such that with g = f. = % one has a = [, xf.(x)u(dr) and
JC

H(g,p) = H(fe,p) = max{H(f,p): f € Fa}.
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Keeping in mind the notation of the above corollary, and the fact that
a uniquely determines ¢, we write v,,, to denote the probability measure
fedp, i.e., the measure with probability density function f. with respect to
w. It is also the Gibbs-Boltzmann measure v, . with h(z) = . We are
now ready to state the result on the weak convergence of Gibbs-Boltzmann
measures.

Theorem 2.3. Let C' be a compact subset of R. Let (1un)5% 1 be a sequence
of probability measures such that (i) support of each ., is contained in C,
(i) pn — p weakly. Let

a = inf{z : p((—o0,x)) > 0},b = sup{x : p((z,00)) > 0}.

Let a < o < b. Then for all large n, v, ., is well defined and va u, — Va,u
weakly.

Proof: Since p, — p weakly, and a < a < b, for n large, p,(—o0, ) > 0,
tn(a,00) > 0. So, by Proposition 2.2 it follows that there is a unique ¢,

such that with f. = %,
- n

/C & fen (@)pin(d) = a1

Thus v,,,, is well defined for all large n. Next we claim that c¢,’s are

[eS)
n=1

which diverges to —oo or to +00. Suppose a subsequence of (¢, )22 ; diverges
to —oo. Note that for all ¢ > 0, and ¢,, < 0,

bounded. If ¢,’s are not bounded, then there is a subsequence of (¢;,)

f[aﬁm) e pun (dz) - e un([a+¢€,00)
fR ecnzﬂn(dx) - ecnépn([a,aJr %))
Since p, — p weakly, for each e > 0, liminf, o pun([a,a + €)) > 0.

Therefore, over the subsequence in question, v, ,, ([a + €,00)) — 0 by (6),

and since vq ,, ((—00,a)) = 0 we see that (va,,, )oe, converges weakly to
Dirac measure at a. Since C' is compact, this implies that [, 2vy ,, (dz) —

(6)

Vo, pin [a + ¢, OO) =

a as n — oo, contradicting the fact that [, xva,, (dr) = a > a, for all
n. Similarly, (¢,)52, is bounded above. So (¢,,)22; is a bounded sequence,
which in fact converges as we see below. Let a subsequence (¢, )72, con-
verge to a real number ¢. Then, since u,, — p weakly, and since all p,, have
support contained in ', a compact set, we see that

/ ek i, (d) — / e“ p(dz),
C C
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and
/ ze "y, (d) — / ze® p(dx),
c c

as k — oo, whence, a = ¢(cn,,) — @(c), so that ¢(c) = a. Again, by
Proposition 2.2., ¢ is uniquely determined by «, so that all subsequential
limits of (¢,)5%; are the same. So ¢, — ¢ as n — oo. Clearly then, since
C'is compact, f., — f. uniformly on C, so that v, ,,, — v, weakly, thus
proving Theorem 2.3.

This theorem allows us to answer a question raised in [6]. Let C be a
compact subset of R. For each € > 0 let Ce = {1 < Te2--- < Te g, } be
a enet in C, ie., for all x € C, there is a z.; such that | z — z.; |< €.
Fix « such that inf C < o < sup C. Then for small enough ¢ it must hold
that .1 < o <z . Let p be the uniform distribution on Ce. Let v,_
be the Gibbs-Boltzmann distribution on C. corresponding to p. and a.
The problem raised in [6] was whether v, ,. converges to a unique limit as
€ — 0. Theorem 2.3. above answers this in the negative. Take C' = [0, 1],
and let (z,)52,; be a sequence of points in C' which become dense in C
and such that if u,, denotes the uniform distribution on the first n points
of the sequence, then the sequence (i,)22; has no unique weak limit. By
Theorem 2.3, the associated Gibbs-Boltzmann distributions (ve ., )oe, will
also not have a unique weak limit.

(Here is a way of constructing such a sequence (x,,)22 ;. Let p1 and pg
be two different probability measures on [0, 1] both equivalent to Lebesgue
measure. Let (X)), (V,,)22; be two sequences of points in [0, 1] such that
the sequence of empirical distributions based on (X,,)22 ; converges weakly
to p1 and that based on (V)52 converges weakly to us. Let (Z;)$2, be
defined as follows:

Zi =X, 1<i<n, Z; =Y,n <i<mng, Z; = Xj,ny <i<ng, - .

One can choose n; < ne < nz < --- in such a way that the empirical
distribution of (Z;)$2, converges to p11 over the sequence (nog11)5>, and to
o over the sequence (nog)p2 . Since u1, po are equivalent to the Lebesgue
measure on [0, 1], the sequence (Z,,)22 is dense in [0,1]. )

Remarks. See [1] for some further applications of the above discussion.
The quantity H(f, u) or its negative has been known in statistical literature
as Kullback-Leibler information. In financial mathematics, the quantity
—H(f, ) is called the relative entropy with respect to u, so then one deals
withf minimizing the relative entropy.
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1.2.3. Relative Entropy and Conditioning

Let (2, B, 1) be a probability space, where (€2, B) is a standard Borel space
(see [7], [9]). For a given countable collection {B,}2%; in B let Q, C, be
the partition and the o-algebra generated by it. (By partition generated
by {B,}52, we mean the collection:

Q={q:q=n<, B},

where ¢, =0 or 1, and BY = B;, B} =Q — B;.)

For any subset A of 2, by saturation of A with respect to Q we mean
the the union of elements of @ which have non-empty intersection with A.

It is known that C = {C' € B: C' a union of elements in Q}. We regard
C also as a o-algebra on Q. Note that C-measurable functions are the
functions which are B measurable and which are constant on elements of
Q. A C-measurable function on §2 is therefore also a C-measurable function
on Q, and if f is such a function, we regard it both as a function on 2 and
on Q. We write f(¢q) to denote the constant value of such a function on
q,q € Q. In addition to C, we also need a larger o-algebra, denoted by A,
generated by analytic subsets Q (see [9]).

Since (€2, B) is a standard Borel space for any probability measure p on
(Q, B) there exists a regular conditional probability given C (equivalently
disintegration of p with respect to Q). This means that there is a function
wu(+,+) on B x Q, such that

1) u(+, q) is a probability measure B,

2) u(q,q) =1,

3) for each A € B, j1(A,-) is measurable with respect to A and
u() = [ wana@). o) = [ aaaon e o),

where ¢(w) is the element of Q containing w,

4) if ¢/(+,-) is another such function then p(-,w) = p/(+,w) for a.e. w
(with respect to p).



12 K. B. Athreya and M. G. Nadkarni

Note that sets in A are measurable with respect to every probability
measure on B. Further, we can say that there is a p-null set N which is
a union of elements of Q and such that (i) C |qo—n is a standard Borel
structure on Q — N, (ii) for each A € C |o—n, (A4, -) is measurable with
respect to this Borel structure.

The function p(-,+) is called conditional probability distribution of p with
respect to Q, or, the disintegration of p with respect to the partition Q. If
fisaB measumble function with finite integral with respect to p, then the
Junction h(w f FWuldy,q),w € q is called the conditional expectation
of [ with respect to Q (07" wzth respect to C) and denoted by E,(f | Q)
or E,(f | C). If Q is the partition induced by a measurable function g,
E.(f | Q) is called the conditional expectation of f given g and written

Eu(f19). (See [9], p. 209)

The measure p is completely determined by pu(-,-) together with the
restriction of p to C, denoted by u |¢c. We note also that if v/ is any
probability measure on C then v = fQ w(-,q)v'(dq) is a measure on B having
the same conditional distribution (or disintegration) with respect to Q as
that of u.

Let u and v be two probability measures on B, with v absolutely con-
tinuous with respect to p. Let u(-, q),v(+, q),q € Q be the disintegration of
1 and v with respect to the partition Q. Then, for a.e. w with respect to

4,
dv dv(-,q) dvic
—(w) = .
du( ) du(-,q) dple

(w),if w € q.

A calculation using this identity shows that

dy dv(-,q) dv e
1 = [ HEER peawle )+ HEC o). ()

Assume now that f is a real valued function having finite expectation
with respect to u, and let g be a real valued function on QQ for which there
is a probability measure v, absolutely continuous with respect to p, such
that for all ¢ € Q,

/f v(dw,q) = 9(q). (8)
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(Note that g is necessarily C measurable.).

Theorem 2.4. If vy is a probability measure which mazimizes H(g—;,u)
among all probability measure v, absolutely continuous with respect to p and
satisfying (8), then for a.e. q (with respect to p |c), vo(-,q) mazimizes the
relative entropy H(ﬁ, w(-,q)) as X ranges over all probability measures
on q absolutely continuous with respect to p(-,q) and satisfying

/ F(@)Mdw) = 9(q),q € Q.

Proof: Assume in order to arrive at a contradiction, that the theorem is
false. Then there is a set E C Q of positive p |¢ measure and a transition
probability A(+,-) on B x E such that for each ¢ € E,

(i) Mg q) =1,
(it

)

) A(+, q) is absolutely continuous with respect to u(-, q),
(i) H <d”°< 0 (., q)) < H(ZED (., q)), and

)

dp(-

(iv) [, f(@)A(dw, q) = g(q)-

The existence of such an E and the transition probability A(-,-) is easy
to see if the partition Q is finite or countable. In the general case the
proof relies on some non-trivial measure theory. Define a new transition
probability on B x Q as follows: For all A € B,

T(A7Q) = V()(Aaq) if q € @ - EaT(AaQ) = )‘(A7Q) if q €EF.
The measure 1" defined on B by

T(4) = /A (4, qvo |c (da),

is absolutely continuous with respect to u, T'(-, ) is its disintegration with
respect to Q, T |c= 1y |¢ and for each ¢ € Q

/f T(dw,q) = g(q)-

Finally, by formula (7), and in view of the values of T on E,

dT B dT'(-,q) dvg |¢
1 = [ HG i le () + HEHE o)
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is strictly bigger than H (‘%’, 1) which is equal to

dvg |C
dule’

(e )/QH(MML”("Q))VO le (dg) + H( 1 le)-

du " du(-,q)
dvg

This contradicts the maximality of H( an 1), and proves the theorem.
Note that the measures vy(,¢),q € Q, remain unchanged even if vy
maximizes H (%, 1) under the additional constraint that Jo fr(dw) = a

dp
1t |¢) among

for some fixed a. However, vy |¢ need not maximize H (-42

dulc
all probability measures m on C satisfying f@ g(q@)m(dq) = a.

1.3. Measure Free Martingales, Weak Martingales,
Martingales

1.3.1. Finite Range Case

In this section we will discuss the notion of measure free martingales, and
and its relation to the usual martingale. In [6] the simpler case of measure
free martingale, where functions assume only finitely many values, was
introduced and we recall it below.

Let © be a non-empty set. Let (f,,)22; be a sequence of real valued
functions such that each f,, has finite range, say (zn1,Zn2, -, Tnk, ), and
these values are assumed on subsets 1,22, -+, Qui,. These sets form
a partition of €2 which we denote by P,. We denote by Q,, the partition
generated by Py, Py, - -+ P, and the algebra generated by Q,, is denoted by
A,. Let Ay denote the algebra US| A,,.

Define A,, measurable functions m,,, M,, as follows: for Q € Q,, and

weQ,
mp (W) = TLnElB frt1(2),
M, = .
(@) = max foi ()
Definition 3.1. The sequence (fp,A,)52, is said to be a measure free
martingale or probability free martingale if

(@) < falw) < Mo(w), Vo €2, 0> 1,

Clearly, for each Q) € Q,, the function f,, is constant on ). We de-
note this constant by f,(Q). With this notation, it is easy to see that
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(fnsAn)22, is a measure free martingale or probability free martingale if
and only if for each n and for each @ € Q,, f»(Q) lies between the mini-
mum and the maximum values of f,,+1(Q’) as Q' runs over Q N Qy41. It
is easy to see that if there is a probability measure on A., with respect to
which (fn, A4,)52; is a martingale then (f,,A4,)22 is also a measure free
martingale. Indeed let P be such a measure. Then, for any Q in Q,, f,(Q),
is equal to

% S n@)P@).
{Q€0,+1,Q'CQ}

so that f,,(Q) lies between the minimum and the maximum values f,1(Q’),
Q' € QN Qpy1. In [6], the following converse is proved.

Theorem 3.1. Given a measure free martingale (fr, An)s>,, there exists

for each n >0, a measure P, on A, such that

Pn-l—l |An: Prw En+1(fn+1 | -An) = fna

where E, 11 denotes the conditional expectation with respect to the proba-
bility measure P, 1. There is a finitely additive probability measure P on
the algebra Ao such that, for each n, P |4,= P,. Moreover such a P is
unique if certain naturally occurring entropies are maximized.

1.3.2. The General Case

In the rest of this section we will dispense with the requirement that the
functions f, assume only finitely many values.

Let (€2, B) be a standard Borel space, and let (f,)52; be a sequence of
real valued Borel functions on 2. For each n, let P,, = {f, '({w}) : w € R}
denote the partition of €2 generated by f,,, and let Q,, denote the partition
generated fi, fa, -, fn, i.e., Q, is the superposition of Py, Py, - ,P,. Let
B,, be the o-algebra generated by f1, fo, -, fn. Since (2, B) is a standard
Borel space, for each n, B, is the collection of sets in B which can be written
as a union of elements in Q,,. For ¢ € Q,,, f, is constant on ¢ and we denote
this value by f,(q). The algebra U2 ,B,, will be denoted by By and we
will assume that it generates B. Note that we have changed the notation
slightly. In section 1.3.1 above we denoted an element in Q,, by @, while

from now we will use the lower case q.

Definition 3.2. Let (f,,)22; be a sequence B measurable real valued func-
tions on 2.
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[e )

(i) Say that sequence (f,)%2,
and for each ¢ € Qy,, fn(q) is in the convex hull of the values assumed
by fn41 on ¢ (note that f,,1 need not be constant on ¢ € Q,,.)

(ii) Let vs be a finitely additive probability measure on By, such that for
each n < oo, its restriction to B, is countably additive. The sequence
(fn)22 is called a weak martingale with respect to v if for each n,
Eyo(fogr | fn) = fn ae vpgr.

(iii) A weak martingale (f,)52; with respect to v is a martingale if veo
is countably additive, in which case the countably additive extension
of Vs to B is denoted by v, and we call (f,)5%; a martingale with
respect to v.

is a measure free martingale if for each n

Clearly every martingale is a weak martingale, and if (f,,)52; is a weak
martingale with respect to v, then for each n we can modify f, on a v,
null set so that the resulting new sequence of functions is a measure free
martingale. Indeed if v,(-,-) is the conditional probability distribution of
Vp+t1 given Q,, then

ful) = / Frt(@)vn(dw, @)s v a. e. g € Q. (9)

At those ¢’s where the equality in (9) holds f,(¢q) lies between the infimum
and the supremum of the values assumed by f,,+1 on g. On the other ¢’s
we modify f,4+1 by simply setting f,,11(w) = fn(q),w € ¢. The modified
sequence (fp)S2; is the required measure free martingale. In the converse
direction we show that every measure free martingale admits a finitely ad-
ditive measure on B, under which it is a weak martingale.

Proposition 3.1. Let (2, B) be a standard Borel space and let Q, C be the
partition and the o-algebra generated by a countable collection of sets in B.
Let A be the o-algebra generated by analytic subsets of Q which are unions
of elements of Q. Let f and g be respectively B and C measurable real valued
functions on § such that for each q¢ € Q, g(q) is in the convex hull of the
values assumed by f on q. Then there exists a transition probability v(-,-)
on B x Q such that for each A € B, the function v(A,-) is A measurable,
while v(-,q) is a probability measure on B supported on at most two points

of q satisfying

g(q) = /f(w)V(dw,q),Vq €Q.

q
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Proof: The sets

S1={we: flw) <gw)}, % ={weQ:gw) < f(w)}

are in B. For each ¢ € Q, since g(g) is in the convex hull of the values
assumed by f on ¢, both S; and S5 have non-empty intersection with g.
By von-Neumann selection theorem (see [9], p 199) there exist coanalytic
sets Cp C S1,C5 C Sy which intersect each ¢ € Q in exactly one point. For
each ¢ € Q, let

wi(q) = S1Nq,w2(q) = S2Ng.
Then

f(wi(q)) < 9(q) < flwa(q)),

so that the middle real number g(g) is a unique convex combination of

fwi(9)); flwa(a)- TE fwr(g)) = flwz(q)) = g(g) write pi(q) = 1, p2(q) =

0, otherwise write

 flwa(q) —g(q) g(q) — flwi(q))
P9 = 51000) — @) P T Fln@) - Fen @)

Then

p1(q) f(wi(q)) + p2(q) f(wa(q)) = g(q).

For each ¢ € Q, let v(-,q) be the probability measure on ¢ with masses
p1(q),p2(q) at wi(q),w2(q) respectively. The sets Cy,Cy are co-analytic
and functions f |¢,, f |c, are B |¢,, B |c, measurable respectively, whence
p1(+), p2(-) are A measurable. For any A € B, and ¢ € Q,

v(A,q) = p1(¢)1a(wi(q)) + p2(q)1a(w2(q)),

whence, for each A € B, v(A, ) is A measurable. The proposition is proved.

Theorem 3.2. A measure free martingale admits a finitely additive mea-
sure under which it is weak martingale.

Proof: Let (f,)52; be a measure free martingale. Let Qq, Q2, By, B2 be
the partition and the o-algebra generated by fi, fo respectively. Let 14
be a probability measure on B;. Since, for each ¢ € Qy, f1(g) is in the
convex hull of the values assumed by f2 on ¢, by the Proposition 3.1, there
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is a transition probability v (-,-) on B x Q; such that for each ¢ € Qy,
v1(q,q) =1, and

[ om0 = A,
For any A € By, define
() = [ Ao

Then 15 is a countably additive measure on Bs,

V2 |31:V17 EV2(f2|f1):f1~

Having defined v», it is now clear how to construct vs,vg, -+ , Uy, -+ such
that for each n,

Vn+1 |Bn: Unp
and
Eyp i (fns1 | fn) = [
The finitely additive measure v, defined on B, by
Voo(A) = vy (A), A € B,

satisfies, for each n,

Voo |B,= Vn

and (f,)22; is thus a a weak martingale with respect to vo,. This proves
the theorem.

It is natural to ask the question as to when is v, countably additive.
There is an answer to this. The refining system of partitions (Q,)5; as
well as the associated o-algebras (B,)52; is called a filtration. It is said
to be complete if for every decreasing sequence (g, )22, of non-empty ele-
ments, ¢, € Q,, their intersection NS¢, is non-empty. We have:

Theorem 3.3. If the filtration (Q,)22, associated with the measure free

martingale is complete, then v is countably additive.
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This is indeed a consequence of the Kolmogorov consistency theorem

formulated in terms of filtrations which is as follows. Let the filtration

[o}

(Q)22, arise from a sequence of Borel functions (f,)5% 4,

not necessarily
a measure free martingale. For 1 < ¢ < j, we define the natural projection

map IL;; : Q; — Q; by
IL(q)=r, ifqCrqeQ;reqQ,.
For each 7 let TI; : Q — Q; be defined by
I;(w) = ¢ € Qy,if w € q.

If g € Q, and i < n, then f; is constant on ¢, and we write f;(q) to
denote this constant value. For each n let 7, be the smallest topology on
@y, which makes the map ¢ — (f1(q), f2(q), -, fn(q)),q € Q,, continuous.
We note that maps Il;;,7 < j are continuous. The topology 7,, generates the
o-algebra B,. Any probability measure p on B, is compact approximable
with respect to this topology, i.e., given B € B, and ¢ > 0, there is a
set C' C B, C compact w.r.t. 7,, such that u(B — C') < e. For each n,
let P, be a countably additive probability measure on B,. Assume that
Pot1 |,= Pn. Define Po, on US2 B, by P(A) = P,(A),if A€ B,. Pis
obviously finitely additive.

We have the Kolmogorov consistency theorem in our setting, arrived
at after a discussion with B. V. Rao, and as pointed out by Rajeeva
Karandikar, it is proved also in [7].

Theorem 3.4. If the the filtration (Q,)%2 is complete, then P is count-
ably additive.

Proof: For simplicity, write P for P,,. If P is not countably additive, then
there exists a decreasing sequence (A,,)%; in UX B, with N A,, = 0,
such that for all n, P(A,) > a > 0 for some positive real a. Without loss
of generality we can assume that for each n, A, is in B,,. We can choose a
set C1 C Ay, C1 € By, C compact with respect to the topology 71, such
that

P(Al — Cl) = Pl(Al — Cl) <

=

Note that

AQﬁClGBQ,P(AQQ(Al701)§P(A1701)<

)

el
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whence
P(A2 ﬂCl) > za.

We next choose Cy C As N Cy, Cy € By, Cy compact in the topology 7o,
such that P(A; N Cy — C2) < §5. Then P(Ay — C2) < § + 4. Note that
A3NCy € By, P(AsNCo)>a— (242

ite)
Proceeding thus we get a decreasing sequence (C, )52, such that for all n,
C, € B,, C, C A,, C, compact in the topology on 7,,, and

P(An=C) < S+ g5+ + 7o

Clearly each C,, is non-empty. For each n choose an element ¢, in C,,. Since
C,, is compact the sequence (II,,, qj)?‘;n has a subsequence converging to a
point in C),,. By Cantor’s diagonal procedure it is possible to choose the
sequence (¢n )52 in such a way that for each 4, (Il;;¢;)52; is convergent in
the topology 7; to an element p; in Q;. By continuity of the map II;; we
have Il;;p; = p; if ¢ < j, i.e., if « < j then p; C p;. By completeness of the
filtration we conclude that N2, p; # 0. But

NiZyps C N2 Ci C N2y A = 0.

The contradiction proves the theorem.

Remark. (i) The requirement that the filtration be complete has been
crucial in the above discussion. Here is an example due to S. M. Srivas-
tava of a filtration on the real line which is not complete, but the quotient
topologies are locally compact second countable. Let 2 = R, and let, for
n>1,Q, ={{r},r <n,[n,00)}, ie., the nth partition Q,, consists of all
singletons less than n together with the interval [n, c0)). Clearly (Q,)22,
is a filtration. For each n, the quotient topology on @Q,, is isomorphic to
the usual topology on R. The set C),, = [n,00) is compact in the quotient
topology, Cp41 C Cp, but N2, C), is empty, so the filtration is not com-
plete.

(ii) S. Bochner ([3]) has formulated and proved the Kolmogorov consistency
theorem for projective families. One can derive the above version by proper
identification of our sets and maps as a projective system, once topologies
T, are described.

(iii) The totality of finitely additive measure on Bo, which render the mea-
sure free martingale f,,,n = 1,2,3,--- into a weak martingale is a convex
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set whose extreme points are precisely those v, for which v is a point
mass, and for which, for each n, the disintegration v, (-,-) of vy,41 with
respect to @Q,, has the property that for each ¢ € Q,, v(-,q) is supported
on at most two points.

(iv) We note that measure free martingales have some nice properties not
shared by the usual martingales. If f,,n = 1,2,3,--- is a measure free
martingale, then [f,],n = 1,2,3,---, where [z] means the integral part
of z, and min{f,, K},k = 1,2,3,---, where K is fixed real number are
also measure free martingale. In other words, measure free martingales are
closed under discretization and truncation.

1.4. Equivalent Martingale Measures

Let (92, B) be a standard Borel space and let p be a probability measure
on B. Let (fn)22; be a sequence of Borel measurable real valued functions
on {2, not necessarily a measure free martingale. In this section we discuss
conditions, necessary as well as sufficient, for there to exist a measure v,
having the same null sets as u, and which renders the sequence (f,)52 a
martingale. Clearly, if such v exists then we can modify (f,,)52; on a v-null
set, which is therefore also p-null, so that the new sequence of functions is
a measure free martingale. Thus a necessary condition for the existence of
a v, equivalent to u, under which (f,,)22; is a martingale is that (f,)>2,
admit a modification on a p-null set so that the resulting sequence is a
measure free martingale.

Again assume that such a v exists. For each n, let u.,, v, respectively be
the restriction of u,v to B,. Let p, (-, ), vn(:, ) denote the disintegration
of fin41, Vny1 with respect to the partition Q,,. Since p,+1 and v, 1 have
the same null sets, for u, almost every g € Qy, pn(,q) and v, (-, q) have
the same null sets, and since

[ raentds.a) = fula)
q
it follows that for u, a.e. ¢

pn({w € ¢ fur1(w) < fu(@}, @) > Opn({w € ¢ ¢ frg1(w) > fu(g)}, q) > 0.
(11)

Thus, if a v equivalent to x under which (f,,)52 is a martingale exists,
then for each n, for pu, a.e. ¢ € Q,, (11) holds.
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Fix n, fix a ¢ € Qy,, and write m = p,(+, ¢). Assume that
J 1 fra(e) i) < ,
q
and that

m({w € ¢: fap1(w) < fu(@)}) > 0,m({w € ¢ fas1(w) > fu(g)}) > 0.
Write

E= {w €q: f’n-‘rl(w) < f'rt(q)}aF = {W €q: fn-‘rl(w) > fn(q)}a

m(E) = a,m(F) = 5,

_ Jpfrni@m(dw) | fp frpr(@)m(dw)

c )

Y B

Note that ¢ < f,(¢) < d and with a = d_dfjc(q) b= f"éﬁ)gc, we have

a+b=1ac+bd = f.(q).
Define v//,(+,-) as follows:

avl,(+,q) a b
—n 2 = (=1 —1F).
am (a E+6 F)

Note here that ¢ ranges over Q,, so that m will vary with it. Further,
a,a,b,B,m = un(-,q) are measurable functions of ¢, so that v/ (-,-) is a
transition probability. If m({w € ¢ : foy1(w) = fu(q)}) = 0, then v/, (-, q)

and m are equivalent, and

/ Fri @)L (A, q) = ac + bd = fulq).
q

In any case, if we set s = {w € ¢ : fuy1(w) = fn(Q)}, then s € Qpy1, so
that we can speak of Dirac measure d;4y at s, and consider the measure

Vn(+, q) defined by:

V() = (L =m(s)), (- q) + dgspmos)

The measure v, (-, q) and m have the same null sets, v, (-, ¢) is measurable

in ¢, and

/nﬂwmm%m:n@

q
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We define inductively,

Vl:,Uflal’2:/QVl(';Q)Vl(dQ)a"' ,Vn+1('):/ﬂlfn(';Q)Vn(dQ)~

Then for each n, v, is a probability measure on B,,, equivalent to i,

Vn+41 |Bn: Un, E’n(fn-i—l | Bn) = f'ru

where FE, is the conditional expectation operator in (Q, By41, Vn+1)-

If the filtration (Q,)22 is complete, the naturally defined measure v
on B, has a countably additive extension, say v, to all of B. However, in
general, v need not be equivalent to p (see example 4.1. below). If there
are positive constants A and B such that for all n, A < % < B, then
clearly the v, defined on B, has an extension to B which has the same
null sets as p. We have proved:

Theorem 4.1.

(a) Let (fn)2, be a sequence of Borel measurable functions on (8, B, u)
and let Qy,, By, tin, tin(-,+) be as above. If there is a probability mea-
sure v equivalent to p with respect to which (f,)5% 4 is a martingale,
then (fn)22, can be modified on a p-null set so that the resulting se-
quence of functions is a measure free martingale. Further, for each
n, for almost every q € Q,,, the sets {w € q: fni1(w) < fn(g)} {w €
q: fn(q) > fn+1(w)} have positive p, (-, q)- measure.

(b) If for every n, and for almost every q € Q,, the sets {w € q :
fn-l—l(w) < f'n(Q)}’7 {w €q: fn(Q) < fn+1(w)}’ have positive un('7Q)'
measure, then for each n we have a v, equivalent to p, such that
Unt1 1B,= Vn, Ent1(fnt1 | Bn) = fn, where Eni1 stands for the
conditional expectation operator on (2, Bni1,Vny1) with respect to
B, .

(¢c) Finally, if there are positive constants A and B such that for all
n, A< % < B, then the naturally defined vo on Bo, has an

extension v to B which has the same null sets as p and (f,)22, is
a martingale with respect to v.
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The equivalent martingale measure v in the above theorem is obtained
by a rather naive modification of p. Indeed, (-, q) is only rescaled over
the sets {w € ¢ : fop1(w) < fu(@} {w € g : fu(q) > fuy1(w)}, so that
if (-, q) is not 'well distributed ’ on these sets, then this persists with
Vn(+,q). This circumstance can be changed if we assume that for each n and
for each g € Q,, fr+1 is bounded on ¢, in addition to the requirement that
sets {w € ¢ for1(w) < fru(@)} {w € ¢ fn(q) > fay1(w)} have positive
tin (-, q) measure. We know from entropy considerations of section 1.1 that
there exists a unique ¢,, = ¢, (q) such that

fq fn+1(W)ecn(q)fnﬂ(w)ﬂn(dwa q)
fq eCn(Q)fnJrl(W)un (dw7 q)

The function ¢ — ¢,(q) is B, measurable. We set, for each n and for
each ¢ € Qy,
en (@) frnr1(w)
fq ecn(ll)fn+1(“-’)Mn(dw7 q) .

an(',Q) = d:u'n('aQ)v

Vi = M1, Vny1 = / Vn(';Q)Vn(dQ)-
Q

We change notation and write v, = B,. The natural finitely additive
measure By, on By renders (f,,)52; into a weak martingale. If we assume
that there are positive constants A, C' such that for all n, A < df v < O,
then B, extends to a countably additive measure B on B, B equivalent to
w, and, (f,)22, is a martingale with respect to B.

We may summarise this as

Theorem 4.2. If for each n, for u, a.e. ¢ € Qy,

(i) fnt1 is bounded on g,

(i) p{w € ¢t farr (W) < fa(@)}9) > 0, p({w € : fria(w) = ful@)}s @) >
0,

then there exists a unique finitely additive measure Bo, on Bs such that

for each n,

(a) the restriction B,, of Boo to B, is countably additive and equivalent to
Hn ;s

(b) Bj41 mazimizes the relative entropy H(du"i s Un+1) among all finitely
additive probability measures X\ on Bs which render (f,)S2, into a
weak martingale and such that A\ = p1, A, equivalent to p, for all n,
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(c) if there exist constants A, B such that for each n, A < #” < B, then
By extends to a countably additive measure measure B on B, B and
v are equivalent, and (f,)2, is a martingale under B.

Remarks. 1) The measure B, however, need not maximize the relative
entropy H (%, 1) among all measures A on B equivalent to p and under
which (f,)5, is a martingale.

2) One may call B a Boltzmann measure equivalent to y and the associated
sequence (f,,)22; a Boltzmann martingale.

We now give a more general condition for the existence of a martingale
measure equivalent to a given u than the one given in Theorem 4.1. (¢). Let
(fn)22; be a sequence of measurable functions on (2, B, i) for which there
exists a measure Voo on Bs such that (i) ()02, is a weak martingale with
respect to v, (ii) for each n, p, and v, are equivalent, (iii) p1 = v1.

dun

Now the Radon-Nikodym derivative e is computed as follows:

dn dn'zn dn
l/+1w_l/(q)()l/

= w)—(w),w € qn € Qp.
dptng1 dﬂn('a qn) dﬂn(

So, on iteration, we have:

dvp 11 n Avi(,q;) dvy .
w)=MM-,—"(w)x —,weqg €Q;i=1,2,---.,n.
Hnt1 (% ldﬂz‘('ﬂi)( ) dp ’ ’

Since we have chosen vy = py, %( w) =1 for all w, so that
dvni1 dvi(-, 4i) .
—(w) =" ———(w)weqg eQ;,i=1,2,-- ,n.
Mn+1 ( ) 1dﬂi(';qi)( )
Further,
dV’rH—l an
E, B,)(w) = —(w

where F,, denotes the conditional expectation operator with respect to p.



26 K. B. Athreya and M. G. Nadkarni

Indeed for any set A € B,

an+1 /an dV’n(UJaq)
———(w)u(dw) = w)>—F—%d
/Adunﬂ( () Adﬂn( )dun(w,q) :
dvn | dvg(w,q)
= —_—n ditn,
/Adﬂn dﬂn(‘*}aq) fntt

fn
dv,,
= w)p(dw
[ e mtae)
The sequence of functions (g, = %)fﬁzl is therefore a martingale of

non-negative functions on the probability space (92, B, 1), so converges pu
a.e. to a function g. If [, g(w)u(dw) = 1, or if the sequence (g,)n>;
is uniformly integrable, then, by martlngale convergence theorem (see [4],
p. 319), for each n, g, = E,(g | By), equivalently, for each n, gdu |5, = dv,
and so Vs is countably additive and extends to a measure v on B, with
Z—Z = g. Further (f,)52, is a martingale with respect to it. If, in addition,
g > 0 a.e. p, then v is equivalent to p and (f,,)22, is a martingale with
respect to it.
We have proved:

Theorem 4.3.
dvy, )oo

(a) The sequence (gn = g2>)7Zy1 of Radon-Nikodym derivatives is a
martingale of non-negative functions and converges p a.e. to a
function g.

b) If fQ g(w)u(dw) = 1 or if the g,’s are uniformly integrable with
respect to p, then (fn)S2, is a martingale with respect to v given
by dv = gdu. If in addz’tion g >0 a.e. p, v is equivalent to .

(c) If 02 1|17d"" ’q) |< oo as. pthen g >0 a.e. p.

Write
an+1 an('aq)
Ny Qn :/ H(—=
d:u“n a +1) | ) n (dﬂn('aq)

We know from formula (7) of section 1.2.3 that

dvp 11 dvp 11
n =H s M n o
T +1) (dun tint1) | Qn) + H(5—

s Hn (4 q))Vn(dq).

dVrL
dpy,’

s B
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Iterating we get
n+1

7un+1 ZH ,‘LLZ |@z 1)

anJrl
du'rH—l

H(

(Here, when ¢ = 1, Q;—; = Qo which we take to be the trivial partition
{0,0}.) ]

Since (gn, = d )o°, is a martingale with respect to u, the sequence

(gnlogtg,)22, is a submartingale provided, for each n, Eﬂ(gnlog+gn) is
finite ([4], p. 296). We assume that this is the case. Then

Eu(gn 1Og+ gn) < Eu(gn-l-l 10g+ gn-‘rl)a n= 1) 27 )

so that limy, o E,(gn log™ g,,) exists, which may be finite or infinite. We
assume that this limit is finite, say c. Since (g, log™t In )22, is a submartin-
gale of non-negative functions it has a limit which is indeed glog™ g, since
(gn)5%; has limit g, p a.e. Moreover by Fatou’s lemma, E,, (g logtg) < e
Assume that the sequence (g,,)22, is uniformly integrable so that this se-
quence together with g forms a martingale. From martingale theory ([4],
p. 296) the sequence (g, log™ g,,)5%, together with the function glog™ g is a
submartingale of non-negative functions, so, again from martingale theory
([4], p- 325) we conclude that

lim E,,(gnlogg,) = Eu(glog™ g).

Since gy, log™ g, remains bounded independent of n (which is the case at w
where g, (w) < 1), we also have

i [ g(0)log™ ga (@i () = [ glog” (@n(de).
Q Q

n—oo

Thus we have

dvy, dv
lim H(Z ) = HEE ).
We have proved:
Theorem 4.4.
(a) Assume that the martingale (g, = gZ" )2 is uniformly integrable

and that fﬂ gn log™ Intin(dw) < ¢, for some real number c. Then
lim, 00 H(%,un) exists and we have:

dv
lim H m ,un ZH ,uz | Qi-1) = (du,u)

n—oo
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(b) In addition to the hypothesis and notations of Theorem 4.2, assume

that the martingale (an o2, is uniformly integrable and that the
. dBy

dpn ?
Then lim,, H(Zf" , ln) exists and we have:

sequence of relative entropies (H( U)o, remains bounded.

>0 dB
nlgr;oH . ,un Z — tn) | Quo1) = H(@vu)

Among all v absolutely continuous with respect to p under which
()2 is a martingale and v1 = pq, B is the unique one which

mazimizes, for each n, the relative entropy entropy H (ZZ" s ) -

Example 4.1. Consider R? together with the measure y = o x o where
o is the normal distribution with mean zero and variance one. Let Q; be
the partition {z} x R,z € R. Let f;,i = 1,2 be the co-ordinate maps. The
partition of R? given by f; is Q;. The distribution v on R? equivalent to
w, satisfying E,(f2 | f1) = Eu(f2 | Q1) = f1, and maximizing the relative
entropy with respect to u is the bivariate distribution of (f1, f1+ f2), where
f1, fo are independent with normal distribution of mean zero and variance
one.

More generally, let R™ be given the measure p = ¢, the n-fold product
of o. Let f1, fa,- -+, fn be the co-ordinate random variables. Then

Qi = {{wi,wa, -+ ywi} x R™™4: (wrwe, - -+, w;) € RY}

is the partition of R™ given by the functions f1, fo, -, f;. Let v, be the
measure induced on R™ by the vector random variable (f1, f1+ fo, -+, f1+
fa+ -+ fn) where (f1, fa,- -+ .fn) has distribution g = ¢™. Then, among
all probability measures A on R™ equivalent to p and satisfying Ey(fit1 |
fi) = fi,1 <i < n—1, v, is the unique one which simultaneously maximizes
the relative entropies

d\; dX;
— w) log w) i (dw),
| o T ()

1 <i < n, where u;, \; are respectively the measures p and A restricted to
the the o-algebra B; generated fi, fa, -+, fi.

Finally, let (i) Q = RN, where N is the set of natural numbers, (ii) p =
countable product of o with itself, (iii) for each n, f,, = projection on the
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nth co-ordinate space. The partition Q,, of 2 generated by f1, fo, -+, fn
is the collection

{{(wi,wa, - ywn)} x RIVFLF2d () 0y - w,) € R™)

For each n, let v, denote the measure on B,, induced by the martingale
Ji.fitfar oo iy fi), where f1, fo,- -, fn are independent random vari-
able, each with distribution o. Let v be the measure on the algebra

> By whose restriction to each B,, is v,. Then among all probability
measures Ao, on By, which satisfies (a) for each n, p, and ), are equiv-
alent, (b) for each n, Ex (fnt1 | fn) = fn, (¢) A1 = 0, the measure vy
is the unique one which maximizes simultaneously the relative entropies
H(%, fn), n=1,2,---. The extension v of v to the Borel g-algebra of
RN is, however, singular to .
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Chapter 2

Marginal Quantiles: Asymptotics for Functions of
Order Statistics

G. Jogesh Babu

Department of Statistics,
326 Joab L. Thomas Building,
The Pennsylvania State University,
University Park, PA 16802-2111, USA*

Methods for quantile estimation based on massive streaming data are
reviewed. Marginal quantiles help in the exploration of massive multi-
variate data. Asymptotic properties of the joint distribution of marginal
sample quantiles of multivariate data are also reviewed. The results in-
clude weak convergence to Gaussian random elements. Asymptotics for
the mean of functions of order statistics are also presented. Application
of the latter result to regression analysis under partial or complete loss
of association among the multivariate data is described.

2.1. Introduction

Data depth provides an ordering of all points from the center outward.
Contours of depth are often used to reveal the shape and structure of mul-
tivariate data set. The depth of a point x in a one-dimensional data set
{x1,22, -+ ,2,} can be defined as the minimum of the number of data
points on one side of = (cf. [10]).

Several multidimensional depth measures D,,(z; 1, ,xy) for z € RF
were considered by many that satisfy certain mathematical conditions. If
the data is from a spherical or elliptic distribution, the depth contours are
generally required to converge to spherical or elliptic shapes. In this paper
we concentrate on marginal quantiles. They help in describing percentile
contours, which lead to a description of the densities and the multivariate
distributions.

This approach is useful in quickly exploring massive datasets that are

*Research supported in part by NSF grant AST-0707833.
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becoming more and more common in diverse fields such as Internet traffic,
large sky surveys etc. For example, several ongoing sky surveys such as
the Two Micron All Sky Survey and the Sloan Digital Sky Survey are
providing maps of the sky at infrared and optical wavelengths, respectively
generating data sets measured in the tens of Terabytes. These surveys are
creating catalogs of objects (stars, galaxies, quasars, etc.) numbering in
billions, with up to a hundred measured numbers for each object. Yet, this
is just a fore-taste of the much larger datasets to come from surveys such
as Large Synoptic Survey Telescope. This great opportunity comes with
a commensurate technological challenge: how to optimally store, manage,
combine, analyze and explore these vast amounts of complex information,
and to do it quickly and efficiently? It is difficult even to compute a median
of massive one dimensional data. As the multidimensional case is much
more complex, marginal quantiles can be used to study the structure.

In this review article we start with description of estimation methods for
quantiles and density for massive streaming data. Then describe asymptotic
properties of joint distribution of marginal sample quantiles of multivariate
data. We conclude with recent work on asymptotics for the mean of func-
tions of order statistics and their applications to regression analysis under
partial or complete loss of association among the multivariate data.

2.1.1. Streaming Data

As described above, massive streaming datasets are becoming more and
more common. The data is in the form of a continuous stream with no
fixed size. Finding trends in these massive size data is very important.
One cannot wait till all the data is in and stored for retrieval for statistical
analysis. Even to compute median from a stored billion data points is not
feasible. In this case one can think of the data as a streaming data and
use low storage methods to continually update the estimate of median and
other quantiles ([2] and [7]). Simultaneous estimation of multiple quantiles
would aid in density estimation.

Consider the problem of estimation of p-th quantile based on a very
large dataset with n points of which a fixed number, say m, points can be
placed into memory for sorting and ranking. Initially, each of these points
is given a weight and a score based on p. Now a new point from the dataset
is put in the array and all the points in the existing array above it will have
their ranks increased by 1. The weights and scores are updated for these
m + 1 points. The point with the largest score will then be dropped from
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the array, and the process is repeated. Once all the data points are run
through the procedure, the data point with rank closest to np will be taken
as an estimate of the p-th quantile. See [7] for the details.

Methods for estimation of several quantiles simultaneously are needed
for the density estimation when the data is streaming. The method devel-
oped by [8] uses estimated ranks, assigned weights, and a scoring function
that determines the most attractive candidate data points for estimates of
the quantiles. The method uses a small fixed storage and its computation
time is O(n). Simulation studies show that the estimates are as accurate
as the sample quantiles.

While the estimated quantiles are useful and informative on their own,
it is often more useful to have information about the density as well. The
probability density function can give a more intuitive picture of such char-
acteristics as the skewness of the distribution or the number of modes. Any
of the many standard curve fitting methods can now be employed to obtain
an estimate of the cumulative distribution function.

The procedure is also useful in the approximation of the unknown un-
derlying cumulative distribution function by fitting a cubic spline through
the estimates obtained by this extension. The derivative of this spline fit
provides an estimate of the probability density function.

The concept of convex hull peeling is useful in developing procedures
for median in 2 or more dimensions. The convex hull of a dataset is the
minimal convex set of points that contains the entire dataset. The convex
hull based multivariate median is obtained by successively peeling outer
layers until the dataset cannot be peeled any further. The centroid of the
resulting set is taken as the multivariate median. Similarly, a multivariate
interquartile range is obtained by successively peeling convex hull surfaces
until approximately 50% of the data is contained within a hull. This hull
is then taken as the multivariate interquartile range. See [5] for a nice
overview. This procedure requires assumptions on the shape of the density.
To avoid this one could use joint distribution of marginal quantiles to find
the multidimensional structure.

2.2. Marginal Quantiles

Babu & Rao (cf. [3]) derived asymptotic results on marginal quantiles and
quantile processes. They also developed tests of significance for population
medians based on the joint distribution of marginal sample quantiles. Joint
asymptotic distribution of the sample medians was developed by [9]; see
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also [6], where they assume the existence of the multivariate density. On
the other hand Babu & Rao work with a much weaker assumption, the
existence of densities of univariate marginals alone.

2.2.1. Joint Distribution of Marginal Quantiles

Let F denote a k-dimensional distribution function and let F; denote the
j-th marginal distribution function. The quantile functions of the marginals
are defined by:

Fj_l(u) =inf{z: Fj(z) > u}, for 0 <u < 1.

Thus Fj_l(u) is u-th quantile of the jth marginal.

Let X1,...,X,, be independent random vectors with common distribu-
tion F, where X; = (X;1,...,Xx). Hence Fj is the distribution of X;;. To
get the joint distribution of sample quantiles, let 0 < ¢1,...,qx < 1. Let
d; denote the density of Fj at Fj_l(qj) and let 9j denote the g;-th sam-
ple quantile based on the j-th coordinates Xj,...,X,; of the sample. [3]
obtained the following theorem.

Theorem 2.1. Let Fj be twice continuously differentiable in a neighborhood
of ijl(qj) and 6; > 0. Then the asymptotic distribution of

Vil — F7(q), -, 0, — F7 N ar))

18 k-variate Gaussian distribution with mean vector zero and variance-
covariance matrix X given by

a(l—q)é;? o - O1k
5 ) )

)

Okl ore o qe(l—qu)dy?
where for i # j, o5 = (Fy(F; (@), Fy (45)) — ¢ig5)/ (8:65).-

The proof uses Bahadur’s representation of the sample quantiles (see

[4]).
In practice o;; can be directly estimated using bootstrap method,

G = E*(n(0; — 6:)(67 — 0)),
where 07 denotes the bootstrapped marginal sample quantile and E* de-
notes the expectation under the bootstrap distribution function. An ad-
vantage of the bootstrap procedure is that it avoids density estimation
altogether.



Marginal Quantiles 35

2.2.2. Weak Convergence of Quantile Process

We now describe the weak limits of the entire marginal quantile processes.
For (q1,...,qx) € (0,1)%, define the sample quantile process,

Zalais- @) = Vi (8101 = F @), - 000 — Fi M aw))
The following theorem is from Section 4 of [3].

Theorem 2.2. Suppose for j =1,...,k, the marginal d.f. F} is twice dif-
ferentiable on (a;,b;), where

—o0 < a; =sup{x: F;(x) =0}
oo > b; =inf{z: F;(x) = 1}.

Further suppose that the first two derivatives I} and F}' of F; satisfy the
conditions

Fj#0 on (aj,b;),

max  sup Fj(z)(1 - F, (@)L@)L < o9,
1<5<k q;<a<b; (Fj ()

and F7 is non-decreasing (non-increasing) on an interval to the right of
a; (to the left of bj). Then Z,(qu,...,qx) converges weekly to a Gaussian
random element (W1, ..., W) on C[0,1]".

Thus, each marginal of Z,, converges weakly to a Brownian bridge. The
covariance of the limiting Gaussian random element is given by

E(Wl(t)WJ(S)) = P(FL'(Xu) S t,Fj(le) S S) — ts.

2.3. Regression under Lost Association

[11] developed a method of estimation of linear regression coeflicients when
the association among the paired data is partially or completely lost. He
considered the simple linear regression problem

E:O‘+6Ui+€i;

where U; are independent identically distributed (i.i.d.) with mean p and
standard deviation o7, the residual errors ¢; are i.i.d with mean zero and
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standard deviation o.. Further, {U;} and {¢;} are assumed to be indepen-
dent sequences. If II,, denotes the set of all permutations of {1,...,n},
then it is natural to find estimators &, 3 of «, 8 that minimize

_ : NP 2
h(aaﬁ) - 7{2}}1 Zl (YTK‘(Z) (6% ﬁUz) .

[11] has shown that the permutation that minimizes h is free from «, 3.

The main difficulty is the computational complexity. As there are n!
permutations, conceivably it requires that many computations. [11] has
shown that B depends only on two permutations. In particular, he has
shown that

I I
= U@ Y and =~ U Yin-it)
i=1

i=1

appear in the definition of B Hence the results on their limits are needed
to obtain the asymptotics for B This would aid in the estimation of the
bias of B Further testing of hypothesis or obtaining confidence intervals
for B require limiting distribution of

1 n
— > U@iyY)-
\/ﬁ =1

See the Example 2.2 in the last section.

In the next section we present some work in progress on the strong law
of large numbers and central limit theorems for means of general functions
of order statistics. These results would aid in establishing

B =5 By = sign(B)\/ B2 + o2oy "

2.4. Mean of Functions of Order Statistics

This section is based on the current research by [1]. We present some recent
results on strong law of large numbers and the central limit theorem for the
means of functions of order statistics. Let X; and X;; be as in Section
2.2.1. Let Xffz denote the i-th order statistic of {X1;,...,Xn;}. Suppose
¢ is a measurable function on R* and the function 7 defined by

y(u) = qb(Ffl(u),...,Fl;l(u)), 0<u<l,

is integrable on (0, 1).
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Theorem 2.3. Suppose F; are continuous, ¢p(Fy '(u),...,Fy " (ur)) is
continuous in the neighborhood of the diagonal w1 = u,...,ux = u,0 <
u <1, and for some A and 0 < ¢y < 1/2,

k
(P (u), . By M) S A [ 14> Iy(wy)] |

j=1

whenever (uy,...,u;) € (0,c0)" U (1 —co, 1)¥. Then
1

_Z(b nz"" :z'))&> V(y)dy

0

For example, in the two dimensional case,
G(Fy(u), Fy *(v)) = min(u,v)~*(1 — max(u, v)) "

with 0 < o < % satisfies the conditions of Theorem 2.3.

To establish asymptotic normality, we require
Jim V()] + (1= w)) =0,
square integrability of partial derivatives 1);,

() = 20T <“1>éé-j-7Fk (),

and some smoothness conditions on 1; and ¢(Fy '(u1),..., F, '(ug)), in
addition to the conditions of Theorem 2.3.

Theorem 2.4. Assume for any pair (1 < j #r < k), the joint distribution
e of (Xij, Xir) is continuous. Under regqularity assumptions that include
the conditions mentioned above, we have

1
LS e, x W) - / A()dy) 2 N(0,0%),
0

where

o2 =2 /0 /0 i ), B, (y)) — ayl; (x)4; (y)dady

1<];£r<k

+ 22 / / 2(1 — ) () (v)dardy.

Details are in [1].
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2.5. Examples

The above results are illustrated with two of examples.

Example 2.1. Let X; be as in Section 2.2.1. Let the marginals X;; be

uniformly distributed and let ¢(uq, ..., ug) = ui* - - ug*, for some a; > 1.
Then

1 zn: XWyar . (x8))on L

n “ a1+---+ak+1’

1 1) (k) 1 } dist. 9
— xMyar o x®yan _ N(0,0%),
Jr 2o | (0,07

0'2 =2 Z aja,,.E(leXl,,.)M

1<j<r<k

and M =ay +---+ ag.

(2M — 3)(M? - 2) z’“:
2M + 1 =

Note that the limit in this example does not depend on the joint distribution
of Xi;. In particular if a1 = as = 1, we obtain that both % Z X(l)X(z)

n

and 37" (X( )) converge to the same limit F(X7) = 1 a.e.

n:i 3

Example 2.2. (Regression with lost associations.) Let {(X;,Y;),1 <i <
n} be ii.d. bivariate normal random vectors with correlation p, means
11, 2, and standard deviations oq,02. Let the marginal distributions of
X, and Y7 be denoted by F and G. Clearly,

1
G™H(F(x)) = p2 + 0—j(33 — 1)

Then

1 = a.e

=3 KuiYous “5 | P0G (u) du = B(X2G7 (F(X1)))

n

i=1
= K12 + 0102,
and
1 - dist.
% Z(anynz — H1p2 — 0102) A‘t—> N(O, 0'2),
i=1

where

o? = piog + p3ot + (1 + p*)oios +2p i ps 0109
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Regression under broken samples are considered in Section 2.3, where it is

indicated that the regression coeflicients depend only on

% Z Xn:iYn:i and %Z Xn:iYn:(nfiJrl)-

i=1 i=1
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This article provides an exposition of recent developments on the analysis
of landmark based shapes in which a k-ad, i.e., a set of k£ points or
landmarks on an object or a scene, are observed in 2D or 3D, for purposes
of identification, discrimination, or diagnostics. Depending on the way
the data are collected or recorded, the appropriate shape of an object is
the maximal invariant specified by the space of orbits under a group G
of transformations. All these spaces are manifolds, often with natural
Riemannian structures. The statistical analysis based on Riemannian
structures is said to be intrinsic. In other cases, proper distances are
sought via an equivariant embedding of the manifold M in a vector space
FE, and the corresponding statistical analysis is called extrinsic.

3.1. Introduction

Statistical analysis of a probability measure ) on a differentiable manifold
M has diverse applications in directional and axial statistics, morphomet-
rics, medical diagnostics and machine vision. In this article, we are mostly
concerned with the analysis of landmark based data, in which each obser-
vation consists of £ > m points in m-dimension, representing k locations on
an object, called a k-ad. The choice of landmarks is generally made with
expert help in the particular field of application. The objects of study can
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be anything for which two k-ads are equivalent modulo a group of transfor-
mations appropriate for the particular problem depending on the method
of recording of the observations. For example, one may look at k-ads mod-
ulo size and Euclidean rigid body motions of translation and rotation. The
analysis of shapes under this invariance was pioneered by [27, 28] and [13].
Bookstein’s approach is primarily registration-based requiring two or three
landmarks to be brought into a standard position by translation, rotation
and scaling of the k-ad. For these shapes, we would prefer Kendall’s more
invariant view of a shape identified with the orbit under rotation (in m-
dimension) of the k-ad centered at the origin and scaled to have unit size.
The resulting shape space is denoted ¥7*. A fairly comprehensive account
of parametric inference on these manifolds, with many references to the
literature, may be found in [21]. The nonparametric methodology pursued
here, along with the geometric and other mathematical issues that accom-
pany it, stems from the earlier work of [9-11].

Recently there has been much emphasis on the statistical analysis of
other notions of shapes of k-ads, namely, affine shapes invariant under affine
transformations, and projective shapes invariant under projective transfor-
mations. Reconstruction of a scene from two (or more) aerial photographs
taken from a plane is one of the research problems in affine shape analysis.
Potential applications of projective shape analysis include face recognition
and robotics — for robots to visually recognize a scene ([36], [1]).

Examples of analysis with real data suggest that appropriate nonpara-
metric methods are more powerful than their parametric counterparts in
the literature, for distributions that occur in applications ([7]).

There is a large literature on registration via landmarks in functional
data analysis (see, e.g., [12], [43], [37]), in which proper alignments of curves
are necessary for purposes of statistical analysis. However this subject is
not closely related to the topics considered in the present article.

The article is organized as follows. Section 3.2 provides a brief expos-
itory description of the geometries of the manifolds that arise in shape
analysis. Section 3.3 introduces the basic notion of the Fréchet mean as
the unique minimizer of the Fréchet function F(p), which is used here to
nonparametrically discriminate different distributions. Section 3.4 outlines
the asymptotic theory for extrinsic mean, namely, the unique minimizer of
the Fréchet function F(p) = [, p?(p, #)Q(dx) where p is the distance inher-
ited by the manifold M from an equivariant embedding J. In Section 3.5,
we describe the corresponding asymptotic theory for intrinsic means on
Riemannian manifolds, where p is the geodesic distance. In Section 3.6,
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we apply the theory of extrinsic and intrinsic analysis to some manifolds
including the shape spaces of interest. Finally, Section 3.7 illustrates the
theory with three applications to real data.

3.2. Geometry of Shape Manifolds

Many differentiable manifolds M naturally occur as submanifolds, or sur-
faces or hypersurfaces, of a Euclidean space. One example of this is the
sphere S¢ = {p € R4*1: ||p| = 1}. The shape spaces of interest here are
not of this type. They are generally quotients of a Riemannian manifold N
under the action of a transformation group. A number of them are quotient
spaces of N = S¢ under the action of a compact group G, i.e., the elements
of the space are orbits in S¢ traced out by the application of G. Among im-
portant examples of this kind are axial spaces and Kendall’s shape spaces.
In some cases the action of the group is free, i.e., gp = p only holds for the
identity element g = e. Then the elements of the orbit O, = {gp: g € G}
are in one-one correspondence with elements of GG, and one can identify the
orbit with the group. The orbit inherits the differential structure of the
Lie group G. The tangent space T,/N at a point p may then be decom-
posed into a wertical subspace of dimension that of the group G along the
orbit space to which p belongs, and a horizontal one which is orthogonal
to it. The projection 7, m(p) = O,, is a Riemannian submersion of N onto
the quotient space N/G. In other words, (dr(v),dm(w))rp) = (v, w), for
horizontal vectors v, w € T, N, where dr : T,N — Tr,)N/G denotes the
differential, or Jacobian, of the projection 7. With this metric tensor, N/G
has the natural structure of a Riemannian manifold. The intrinsic analy-
sis proposed for these spaces is based on this Riemannian structure (See
Section 3.5).

Often it is simpler both mathematically and computationally to carry
out an extrinsic analysis, by embedding M in some Euclidean space E* ~
RE, with the distance induced from that of E¥. This is also pursued when
an appropriate Riemannian structure on M is not in sight. Among the
possible embeddings, one seeks out equivariant embeddings which preserve
many of the geometric features of M.

Definition 3.1. For a Lie group H acting on a manifold M, an embedding
J: M — RF is H-equivariant if there exists a group homomorphism
¢ : H— GL(k,R) such that

J(hp) = ¢(h)J(p) Vp € M, Vh € H. (2.1)
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Here GL(k,R) is the general linear group of all k x k non-singular matrices.

3.2.1. The Real Projective Space RP?

This is the axial space comprising axes or lines through the origin in R4+
Thus elements of RP? may be represented as equivalence classes

(2] = [z' :2? 2™ M) = Dz A # 0}, z € REFL\ {0}, (2.2)

One may also identify RP? with S¢/G, with G comprising the identity map
and the antipodal map p — —p. Its structure as a d-dimensional manifold
(with quotient topology) and its Riemannian structure both derive from this
identification. Among applications are observations on galaxies, on axes of
crystals, or on the line of a geological fissure ([42], [35], [22], [3], [29]).

3.2.2. Kendall’s (Direct Similarity) Shape Spaces ¥

Kendall’s shape spaces are quotient spaces S¢ /G, under the action of the
special orthogonal group G = SO(m) of m x m orthogonal matrices with
determinant +1. For the important case m = 2, consider the space of
all planar k-ads (z1,22,...,2x) (25 = (z,y;)), k > 2, excluding those
with % identical points. The set of all centered and normed k-ads, say
u = (uy,us,...,u) comprise a unit sphere in a (2k — 2)-dimensional vec-
tor space and is, therefore, a (2k — 3)-dimensional sphere 52k=3 called the
preshape sphere. The group G = SO(2) acts on the sphere by rotating
each landmark by the same angle. The orbit under G of a point u in the
preshape sphere can thus be seen to be a circle S*, so that Kendall’s planer
shape space X5 can be viewed as the quotient space S?*73/G ~ §2k=3 /51,
a (2k — 4)-dimensional compact manifold. An algebraically simpler repre-
sentation of ¥ is given by the complex projective space CP*~2, described
in Section 3.6.4. For many applications in archaeology, astronomy, morpho-
metrics, medical diagnosis, etc., see [14, 15], [29], [21], [10, 11], [7] and [39].

3.2.3. Reflection (Similarity) Shape Spaces RXF,

Consider now the reflection shape of a k-ad as defined in Section 3.2.2, but
with SO(m) replaced by the larger orthogonal group O(m) of all m x m
orthogonal matrices (with determinants either +1 or —1). The reflection
shape space RYK is the space of orbits of the elements u of the preshape
sphere whose columns span R™.
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3.2.4. Affine Shape Spaces AEfn

The affine shape of a k-ad in R™ may be defined as the orbit of this k-ad
under the group of all affine transformations x — F(x) = Ax 4+ b, where
A is an arbitrary m x m non-singular matrix and b is an arbitrary point
in R™. Note that two k-ads = (z1,...,2) and y = (y1,--.,Yx), (24, Y;
€ R™ for all j) have the same affine shape if and only if the centered k-ads
u=(uy,us,...,ux) = (r1 —Z,...,xp — ) and v = (v1,v2,...,0%) = (y1 —
U, .,y — y) are related by a transformation Au = (Auq,..., Aug) = v.
The centered k-ads lie in a linear subspace of R™ of dimension m(k —
1). Assume k > m + 1. The affine shape space is then defined as the
quotient space H(m,k)/GL(m, R), where H(m, k) consists of all centered
k-ads whose landmarks span R™, and GL(m, R) is the general linear group
on R™ (of all m x m nonsingular matrices) which has the relative topology
(and distance) of R™ and is a manifold of dimension m?2. It follows that
AYF is a manifold of dimension m(k — 1) —m?2. For u,v € H(m, k), since
Au = v iff w'A" =/, and as A varies u'A’ generates the linear subspace
L of H(m,k) spanned by the m rows of w. The affine shape of wu, (or
of x), is identified with this subspace. Thus AX* may be identified with
the set of all m dimensional subspaces of R¥~!, namely, the Grassmannian
G (k — 1)-a result of [40] (Also see [16], pp. 63-64, 362-363). Affine shape
spaces arise in certain problems of bioinformatics, cartography, machine
vision and pattern recognition ([4, 5], [38], [40]).

3.2.5. Projective Shape Spaces PEfn

For purposes of machine vision, if images are taken from a great distance,
such as a scene on the ground photographed from an airplane, affine shape
analysis is appropriate. Otherwise, projective shape is a more appropriate
choice. If one thinks of images or photographs obtained through a central
projection (a pinhole camera is an example of this), a ray is received as a
point on the image plane (e.g., the film of the camera). Since axes in 3D
comprise the projective space RP?, k-ads in this view are valued in RP?2.
Note that for a 3D k-ad to represent a k-ad in RP2, the corresponding
axes must all be distinct. To have invariance with regard to camera angles,
one may first look at the original noncollinear (centered) 3D k-ad u and
achieve affine invariance by its affine shape (i.e., by the equivalence class Au,
A € GL(3,R)), and finally take the corresponding equivalence class of axes
in RP? to define the projective shape of the k-ad as the equivalence class,
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or orbit, with respect to projective transformations on RP2. A projective
shape (of a k-ad) is singular if the k axes lie on a vector plane (RP). For
k > 4, the space of all non-singular shapes is the 2D projective shape space,
denoted POE’Q“.

In general, a projective (general linear) transformation o on RP™ is
defined in terms of an (m+1)x (m+1) nonsingular matrix A € GL(m+1,R)
by

a([z]) = a(fzh ... 2™ ) = [A(zh, .. 2™, (2.3)

where # = (z!,...,2™m") € R™T1\ {0}. The group of all projective
transformations on RP™ is denoted by PGL(m). Now consider a k-ad
(Y1,--,yx) in RP™ say y; = [z;] (j =1,...,k), k > m+ 2. The projec-
tive shape of this k-ad is its orbit under PGL(m), i.e., {(ay1,...,ay;): o €
PGL(m)}. To exclude singular shapes, define a k-ad (yi,...,yx) =
([z1], ..., [zk]) to be in general position if the linear span of {y1,...,yr} is
RP™ i.e., if the linear span of the set of k representative points {x1, ..., x}
in R™+1! is R™*!, The space of shapes of all k-ads in general position is the
projective shape space PyX¥ . Define a projective frame in RP™ to be an or-
dered system of m + 2 points in general position. Let I =141 < ... < 442
be an ordered subset of {1,...,k}. A manifold structure on P;3¥  the
open dense subset of PyXK | of k-ads for which (y;1,. .. s Yinmso) 1S @ projec-
tive frame in RP™, was derived in [36] as follows. The standard frame is
defined to be ([e1],. .., [em+1], [e1+ €2+ ...+ emy1]), where e; € R™T! has
1 in the j-th coordinate and zeros elsewhere. Given two projective frames
(p1, -+ Pmt2) and (q1,. .., Gm+2), there exists a unique o« € PGL(m) such
that a(p;) =¢; (j =1,...,k). By ordering the points in a k-ad such that
the first m + 2 points are in general position, one may bring this ordered
set, say, (p1,...,Pm+2), to the standard form by a unique o« € PGL(m).
Then the ordered set of remaining k£ — m — 2 points is transformed to a
point in (RP™)k=m=2_ This provides a diffeomorphism between P;%F and
the product of k —m — 2 copies of the real projective space RP™.

We will return to these manifolds again in Section 3.6. Now we turn to
nonparametric inference on general manifolds.

3.3. Fréchet Means on Metric Spaces

Let (M, p) be a metric space, p being the distance, and let f > 0 be a given
continuous increasing function on [0, c0). For a given probability measure
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Q on (the Borel sigma field of) M, define the Fréchet function of Q as

F(p) = /M f(o(p,2)Qdr), pe M. (3.1)

Definition 3.2. Suppose F'(p) < oo for some p € M. Then the set of all p
for which F'(p) is the minimum value of F' on M is called the Fréchet Mean
set of @), denoted by Cgq. If this set is a singleton, say {up}, then pp is
called the Fréchet Mean of Q. If X1, X, ..., X,, are independent and iden-
tically distributed (iid) M-valued random variables defined on some proba-
bility space (2, F, P) with common distribution @, and @,, = % 2?21 dx;
is the corresponding empirical distribution, then the Fréchet mean set of
Qn, is called the sample Fréchet mean set, denoted by Cg, . If this set is a
singleton, say {ur, }, then pp, is called the sample Fréchet mean.

Proposition 3.1 proves the consistency of the sample Fréchet mean as
an estimator of the Fréchet mean of Q).

Proposition 3.1. Let M be a compact metric space. Consider the Fréchet
function F of a probability measure given by (3.1). Given any ¢ > 0, there
exists an integer-valued random wvariable N = N(w,€) and a P-null set
A(w, €) such that

Cq, CCH={pe M:p(p,Cq) <e}, Vn >N (3.2)

outside of A(w,e€). In particular, if Cq = {ur}, then every measurable
selection, pp, from Cgq, 1is a strongly consistent estimator of pp.

Proof. For simplicity of notation, we write C' = Cq, C, = Cq, , it = pir
and p, = pr,. Choose € > 0 arbitrarily. If C° = M, then (3.2) holds with
N =1. If D= M\ C° is nonempty, write

l=min{F(p):pe M} =F(q) VqeC,
I+ 6(e) = min{F(p) : p € D}, d(¢) > 0. (3.3)

It is enough to show that

max{|F,(p) — F(p)l :pe M} — 0 as., as n — 0. (3.4)
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For if (3.4) holds, then there exists N > 1 such that, outside a P-null set
Aw,€),

min{F,(p) :pe C} <1+ ?v

)
min{F,(p) :pGD}ZlJr%, V¥n > N. (3.5)
Clearly (3.5) implies (3.2).
To prove (3.4), choose and fix ¢ > 0, however small. Note that Vp, p’,

ze M,

lp(p,z) — p(p, )| < p(p, ).

Hence
[F(p) = F(p')| < max{|f(p(p,x)) — f(p(p,x))| : 2 € M}
< max{[f(u) = f(«)] : [u—u| < p(p,p)},
|Fn(p) = Fa(p')] < max{|f(u) — f(«)] : [u—u'| < p(p,p")}. (3.6)

Since f is uniformly continuous on [0, R] where R is the diameter of M, so
are F' and F,, on M, and there exists d(¢’) > 0 such that

6I

6/

[F(p) = F < 7 [Falp) = Fu(P) < (3.7)
if p(p,p’) < 6(€¢’). Let {q1,...,qx} be a §(¢')—net of M, ie.,V p € M there
exists ¢(p) € {q1,...,q} such that p(p,q(p)) < é(¢’). By the strong law
of large numbers, there exists an integer-valued random variable N(w,¢€’)
such that outside of a P-null set A(w, €’), one has

~

|Fo(qi) — Fg)| < = Vi=1,2,...,k; if n > N(w,€). (3.8)

From (3.7) and (3.8) we get

|F(p) — Fu(p)| < |F(p) — F(q(p))| + |F(q(p)) — Falq(p))]
+ | Fn(q(p)) — Fu(p)]

!’

3
§T€<€I’ Vp € M,

if n > N(w, €) outside of A(w,€’). This proves (3.4). O
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Remark 3.1. Under an additional assumption guaranteeing the existence
of a minimizer of F', Proposition 3.1 can be extended to all metric spaces
whose closed and bounded subsets are all compact. We will consider such an
extension elsewhere, thereby generalizing Theorem 2.3 in [10]. For statisti-
cal analysis on shape spaces which are compact manifolds, Proposition 3.1
suffices.

Remark 3.2. One can show that the reverse of (3.2) that is “Cqo C Cg ¥
n > N(w,€)” does not hold in general. See for example Remark 2.6 in [10].

Remark 3.3. In view of Proposition 3.1, if the Fréchet mean pur of @
exists as a unique minimizer of F, then every measurable selection of a
sequence pr, € Cqg, (n > 1) converges to up with probability one. In the
rest of the paper it therefore suffices to define the sample Fréchet mean as
a measurable selection from Cgq, (n > 1).

Next we consider the asymptotic distribution of pz,. For Theorem 3.1,
we assume M to be a differentiable manifold of dimension d. Let p be a
distance metrizing the topology of M. The proof of the theorem is similar
to that of Theorem 2.1 in [11]. Denote by D, the partial derivative w.r.t.
the 7! coordinate (r = 1,...,d).

Theorem 3.1. Suppose the following assumptions hold:
A1 Q has support in a single coordinate patch, (U,¢). [p : U — R?
smooth.] LetY; = ¢(X,), j=1,...,n.
A2 Fréchet mean up of Q is unique.
A3Vz, y — h(x,y) = (p°)%(2,y) = p*(¢~ 'z, ¢~ Ly) is twice continuously
differentiable in a neighborhood of ¢(jp) = p.
A4 E{D,h(Y, 11)}? < oo Vr.
A5 E{ sup |D;D,;h(Y,v) —D;D,.h(Y,u)|} = 0ase—0Vrs.
u—v|<e
A6 A|: (( lE{DSDrh(Y, 1)} ) is nonsingular.
A7Y = Covlgrad h(Y1, )] is nonsingular.
Let pup,y, be a measurable selection from the sample Frechet mean set. Then
under the assumptions A1-A7,

Vi = 1) = N(0,A7'S(A) 1), (3.9)
3.4. Extrinsic Means on Manifolds

From now on, we assume that M is a Riemannian manifold of dimension d.
Let G be a Lie group acting on M and let J : M — EV be a H-equivariant
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embedding of M into some euclidean space EV of dimension N. For all our
applications, H is compact. Then J induces the metric

pla,y) = [|J(x) = J ()|l (4.1)

on M, where |.|| denotes Euclidean norm ([ul?> = YN, u? Vu =

(u1,ua,..,un)). This is called the extrinsic distance on M.

For the Fréchet function F in (3.1), let f(r) = r? on [0, 00). This choice
of the Fréchet function makes the Frechet mean computable in a number of
important examples using Proposition 3.2. Assume J(M) = M is a closed
subset of EV.Then for every v € EV there exists a compact set of points
in M whose distance from wu is the smallest among all points in M. We
denote this set by

Pau={reM:|z—ul <|y—ul|lVy € M}. (4.2)

If this set is a singleton, u is said to be a nonfocal point of EN (w.r.t. M),
otherwise it is said to be a focal point of EN.

Definition 3.3. Let (M, p), J be as above. Let @ be a probability measure
on M such that the Fréchet function

H@:/fmwm@> (4.3)

is finite. The Fréchet mean (set) of @ is called the extrinsic mean (set) of
Q. If X;,i=1,...,n are iid observations from @ and @Q,, = %2?21 0x,,
then the Fréchet mean(set) of @, is called the extrinsic sample mean(set).

Let Q and Q. be the images of Q and Q,, respectively in EN: Q =
QOJ?la Qn :QnOJ71~
Proposition 3.2. (a) If i = f]EN uQ(du) is the mean of Q, then the ex-

trinsic mean set of Q is given by J~Y (P ji). (b) If fi is a nonfocal point of
EN then the extrinsic mean of Q exists (as a unique minimizer of ).

Proof. See Proposition 3.1, [10]. O

Corollary 3.1. If i = [.n uQ(du) is a nonfocal point of EN then the ex-
trinsic sample mean p, (any measurable selection from the extrinsic sample
mean set) is a strongly consistent estimator of the extrinsic mean p of Q.

Proof. Follows from Proposition 3.1 for compact M. For the more gen-
eral case, see [10]. O
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3.4.1. Asymptotic Distribution of the FExtrinsic Sample
Mean

Although one can apply Theorem 3.1 here, we prefer a different, and more
widely applicable approach, which does not require that the support of )
be contained in a coordinate patch. Let Y = 1 Z" Y; be the (sample)
mean of Y; = P(Xj). In a neighborhood of a nonfocal point such as fi, P(.)
is smooth. Hence it can be shown that

VAP(Y) = P(i)] = ValdaP)(Y — i) + op(1) (4.4)

where d; P is the differential (map) of the projection P(.), which takes
vectors in the tangent space of EV at /i to tangent vectors of M at P(n).
Let f1, f2,..., fa be an orthonormal basis of T'p(;).J(M) and ey, ez, ..., en
be an orthonormal basis (frame) for TEN ~ EV. One has

V(Y — i) =Y (VY — i), e5)e;,

N
dpP(Vn(Y — i) = ZWE(Y — i), ¢5)dnP(e;)
' :
= Z< e;) > (dpP(e)),

d N
=2 Z (i Ples), F) (VY = i) ey (45)

Hence /n[P(Y) — P(ji)] has an asymptotic Gaussian distribution on the
tangent space of J(M) at P(fi), with mean vector zero and a dispersion
matrix (w.r.t. the basis vector {f, : 1 <r <d})

S=AVA
where

A= A() = (((daP(ej), fr))i1<j<nNi<r<d

SISINLAETS

and V is the N x N covariance matrix of Q = Q o J~! (w.r.t. the basis
{e; : 1 < j < N}). In matrix notation,

VnT -5 N(0,%) asn — oo, (4.6)

where



52 R. Bhattacharya and A. Bhattacharya

and

T

T(i) = -3 Ty(0).

This implies, writing X7 for the chi square distribution with d degrees of
freedom,

nT'ST £ X2, asn — 00. (4.7)

A confidence region for P(ji) with asymptotic confidence level 1 — « is
then given by

{P() : nT'S7'T < X2(1 — )} (4.8)

where 3 = $(ji) is the sample covariance matrix of {T;()}j—,- The cor-
responding bootstrapped confidence region is given by

{P(i) : nT'S7'T < cfy_ o} (4.9)

where czl_a) is the upper (1 — «)-quantile of the bootstrapped values U*,
U* = nT*'$*=1T* and T*, ¥* being the sample mean and covariance
respectively of the bootstrap sample {7’ (Y) oy

3.5. Intrinsic Means on Manifolds

Let (M, g) be a complete connected Riemannian manifold with metric ten-
sor g. Then the natural choice for the distance metric p in Section 3.3 is the
geodesic distance d, on M. Unless otherwise stated, we consider the func-
tion f(r) = r? in (3.1) throughout this section and later sections. However
one may take more general f. For example one may consider f(r) = r%, for
suitable a > 1.

Let @ be a probability distribution on M with finite Fréchet function

Fo) = [ dom)@(dm). (51)
M
Let X1,..., X, be an iid sample from Q.

Definition 3.4. The Fréchet mean set of @ under p = d4 is called the
intrinsic mean set of (. The Fréchet mean set of the empirical distribution
Q. is called the sample intrinsic mean set.

Before proceeding further, let us define a few technical terms related to
Riemannian manifolds which we will use extensively in this section. For
details on Riemannian Manifolds, see [19], [24] or [34].
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1 Geodesic: These are curves v on the manifold with zero acceleration.
They are locally length minimizing curves. For example, consider great
circles on the sphere or straight lines in R9.

2 Ezponential map: For p € M, v € T, M, we define exp, v = ~(1), where
~ is a geodesic with v(0) = p and 4(0) = v.

3 Cut locus: For a point p € M, define the cut locus C(p) of p as the set
of points of the form ~(ty), where v is a unit speed geodesic starting at
p and tg is the supremum of all ¢ > 0 such that v is distance minimizing
from p to ~(t). For example, C(p) = {—p} on the sphere.

4 Sectional Curvature: Recall the notion of Gaussian curvature of two
dimensional surfaces. On a Riemannian manifold M, choose a pair of
linearly independent vectors u,v € T, M. A two dimensional submanifold
of M is swept out by the set of all geodesics starting at p and with initial
velocities lying in the two-dimensional section 7 spanned by u,v. The
Gaussian curvature of this submanifold is called the sectional curvature
at p of the section 7.

5 Injectivity Radius: Define the injectivity radius of M as

inj(M) = inf{dy(p,C(p)) : p € M}.
For example the sphere of radius 1 has injectivity radius equal to .

Also let r, = min{inj(M), %}, where C is the least upper bound of sec-

tional curvatures of M if this upper bound is positive, and C' = 0 otherwise.
The exponential map at p is injective on {v € T,,(M) : |v| < r.}. By B(p,r)
we will denote an open ball with center p € M and radius r, and B (p,7)
will denote its closure.

In case @ has a unique intrinsic mean py, it follows from Proposition 3.1
and Remark 3.1 that the sample intrinsic mean j,,; (a measurable selection
from the sample intrinsic mean set) is a consistent estimator of ;. Broad
conditions for the existence of a unique intrinsic mean are not known. From
results due to [26] and [33], it follows that if the support of @ is in a geodesic
ball of radius %, i.e. supp(Q) € B(p, ), then @ has a unique intrinsic
mean. This result has been substantially extended by [31] which shows that
if supp(Q) € B(p, % ), then there is a unique local minimum of the Fréchet
function F' in that ball. Then we redefine the (local) intrinsic mean of @
as that unique minimizer in the ball. In that case one can show that the
(local) sample intrinsic mean is a consistent estimator of the intrinsic mean
of Q). This is stated in Proposition 3.3.
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Proposition 3.3. Let Q have support in B(p, ) for some p € M. Then
(a) Q has a unique (local) intrinsic mean puy in B(p, %) and (b) the sample
intrinsic mean ju,r i B(p, 5 ) is a strongly consistent estimator of fig.

Proof. (a) Follows from [31].

(b) Since supp(Q) is compact, supp(Q) € B(p,r) for some r < 5. From
Lemma 1, [33], it follows that pur € B(p,r) and pr is the unique intrinsic
mean of @ restricted to B(p,r). Now take the compact metric space in
Proposition 3.1 to be B(p,r) and the result follows. O

For the asymptotic distribution of the sample intrinsic mean, we may use
Theorem 3.1. For that we need to verify assumptions A1-A7. Theorem 3.2
gives sufficient conditions for that. In the statement of the theorem, the
usual partial order A > B between d X d symmetric matrices A, B, means
that A — B is nonnegative definite.

Theorem 3.2. Assume supp(Q) C B(p, 5). Let ¢ =exp, ! : B(p, %) —
T, M(~ R?). Then the map y — h(x,y) = d;(qb_la:,qﬁ_ly) is twice con-
tinuously differentiable in a neighborhood of 0 and in terms of normal co-
ordinates with respect to a chosen orthonormal basis for 1), M,

D, h(z,0) = =2z", 1<r <d, (5.2)
DD, 0) > 2 (<2 ) v+ f1ao) C53)
1<r,s<d
Here T = (Ila e 7xd)/) |’JS’| = \/(xl)Q + ('I'Q)Q + ... (zd)2 and
1ifC =0,
cos(/B)
o) = Ve, 1C0 (5.4)

V-Cy etV 0w 4 T < o,
ysinh(\/fcy) f

There is equality in (5.3) when M has constant sectional curvature C, and
in this case A has the expression:

1 - f(1 X))

mgmﬁ< P )Xﬂﬁ+jﬂXm&g,1gnsgd. (5.5)
1

A is positive definite if supp(Q) € B(pur, 5).
Proof. See Theorem 2.2, [8]. O
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From Theorem 3.2 it follows that ¥ = 4Cov(Y1) where Y; = ¢(X,),
j =1,...,n are the normal coordinates of the sample X, ..., X, from Q.
It is nonsingular if Q o ¢~ ! has support in no smaller dimensional subspace
of R%. That holds if for example @ has a density with respect to the volume
measure on M.

3.6. Applications

In this section we apply the results of the earlier sections to some important
manifolds. We start with the unit sphere S¢ in R4+,

3.6.1. S4

Consider the space of all directions in R%*! which can be identified with
the unit sphere

S = {z € R+ . ||| = 1}.

Statistics on S2, often called directional statistics, have been among the ear-
liest and most widely used statistics on manifolds. (See, e.g., [42], [23], [35]).
Among important applications, we cite paleomagnetism, where one may de-
tect and/or study the shifting of magnetic poles on earth over geological
times. Another application is the estimation of the direction of a signal.

3.6.1.1. Extrinsic Mean on S¢

The inclusion map i : S¢ — R+ i(z) = x provides a natural embedding
for S into R, The extrinsic mean set of a probability distribution Q
on S% is then the set Pgaji on S? closest to fi = [pay zQ(dx), where Q is
Q regarded as a probability measure on R%*!. Note that fi is non-focal iff
it # 0 and then @ has a unique extrinsic mean p = W%H

3.6.1.2. Intrinsic Mean on S¢

At each p € 5S¢, endow the tangent space Tde = {v e R¥*! :y.p =0} with
the metric tensor g, : T}, x T, — R as the restriction of the scalar product
at p of the tangent space of RA+1 . gp(vl,vg) = v1.v2. The geodesics are
the big circles,

v

Ypw(t) = (costlv|)p + (sint|v|) (6.1)

ci
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The exponential map, exp, : T,S% — S is
) v
expp(v) = cos(|v|)p + Sm(lvl)m, (6.2)

and the geodesic distance is

dg(p, q) = arccos(p.q) € [0, 7]. (6.3)

This space has constant sectional curvature 1 and injectivity radius .
Hence if @ has support in an open ball of radius 7, then it has a unique
intrinsic mean in that ball.

3.6.2. RP?

Consider the real projective space RP? of all lines through the origin in
RI*!. The elements of RPY may be represented as [u] = {—u,u} (u € S?).

3.6.2.1. Extrinsic Mean on RP?

RP? can be embedded into the space of k x k real symmetric matrices
S(k,R), k = d+1 via the Veronese- Whitney embedding J : RP? — S(k,R)
which is given by

J([u]) = v’ = ((wiu)1<igzr (u= (ur, .., ur)" € 59, (6.4)
As a linear subspace of RkZ, S(k,R) has the Euclidean distance

JA=B|>= Y (aij —bi;)* = Trace(A — B)(A — B)'. (6.5)

1<i,j<k
This endows RP? with the extrinsic distance p given by
P ([u], [v]) = fluw’ —vv'||? = 2(1 = (uv)?). (6.6)

Let Q be a probability distribution on RP? and let fi be the mean of
Q = Qo J ! considered as a probability measure on S(k,R). Then i €
St (k,R)-the space of k x k real symmetric nonnegative definite matrices,
and the projection of fi into J(RP?) is given by the set of all uu’ where u is
a unit eigenvector of i corresponding to the largest eigenvalue. Hence the
projection is unique, i.e. [ is nonfocal iff its largest eigenvalue is simple, i.e.,
if the eigenspace corresponding to the largest eigenvalue is one dimensional.
In that case the extrinsic mean of @ is [u], u being a unit eigenvector in
the eigenspace of the largest eigenvalue.
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3.6.2.2. Intrinsic Mean on RP?

RP? is a complete Riemannian manifold with geodesic distance

dy([p), [g)) = arccos(|p.q]) € [0, 2 (6.7)

2]'
It has constant sectional curvature 4 and injectivity radius 5. Hence if the
support of @) is contained in an open geodesic ball of radius
unique intrinsic mean in that ball.

s

I, it has a

k
3.6.3. Xk

Consider a set of k points in R, not all points being the same. Such a set
is called a k-ad or a configuration of k landmarks. We will denote a k-ad by
the m X k matrix, x = [z ... xx] where ;, ¢ = 1,..., k are the k landmarks
from the object of interest. Assume k > m. The direct similarity shape of
the k-ad is what remains after we remove the effects of translation, rotation
and scaling. To remove translation, we subtract the mean = = %Zle T
from each landmark to get the centered k-ad w = [#1 — Z... 2 — T]. We
remove the effect of scaling by dividing w by its euclidean norm to get

7] = [uguy ... ug]. (6.8)

This u is called the preshape of the k-ad 2 and it lies in the unit sphere S¥,
in the hyperplane

k
HY = {ueR": > u; =0} (6.9)
j=1
Thus the preshape space S¥, may be identified with the sphere S¥m~=m~1,
Then the shape of the k-ad x is the orbit of z under left multiplication by
m X m rotation matrices. In other words X¥ = S¥m=m=1/80(m). The

cases of importance are m = 2, 3. Next we turn to the case m = 2.

3.6.4. =k

As pointed out in Sections 3.2.2 and 3.6.3, X5 = S2¥73/S0(2). For a
simpler representation, we denote a k-ad in the plane by a set of £ complex

numbers. The preshape of this complex k-vector x is z = Iff”, r =

To—a

(r1,...,2) €ECF 2 = % Zle x;. z lies in the complex sphere

k k
Sy ={zeCk: Z|zj|2:1, sz:()} (6.10)
j=1 j=1
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which may be identified with the real sphere of dimension 2k — 3. Then the
shape of x can be represented as the orbit

o(z) =0(z) ={e?2: —m <0 <7} (6.11)
and
Yk ={o(z): 2 € S§}. (6.12)

Thus ¥4 has the structure of the complex projective space CP*=2 of all
complex lines through the origin in C*¥~!, an important and well studied
manifold in differential geometry (See [24], pp. 63-65, 97-100, [8]).

3.6.4.1. Extrinsic Mean on X%

Y5 can be embedded into S(k,C), the space of k x k complex Hermitian
matrices, via the Veronese- Whitney embedding

J: 2k = S(k,C), J(o(2)) = 22" (6.13)

J is equivariant under the action of SU(k), the group of k X k complex
matrices I' such that I*T" = I, det(T") = 1. To see this, let T' € SU(k).
Then T" defines a diffeormorphism,

%5 — 2k T(o(2) = o(T(2)). (6.14)
The map ¢r on S(k,C) defined by
¢r(A) =TAT” (6.15)
preserves distances and has the property
(¢r)~' = ér-1, ér,r, = ¢r, © ¢r,. (6.16)

That is, (6.15) defines a group homomorphism from SU (k) into a group of
isometries of S(k,C). Finally note that J(I'(6(2))) = ¢r(J(o(z))). Infor-
mally, the symmetries SU (k) of ¥5 are preserved by the embedding .J.

S(k,C) is a (real) vector space of dimension k2. It has the Euclidean
distance,

|A = B|*> = "lai; — bi|* = Trace(A — B)*. (6.17)
2]

Thus the extrinsic distance p on X% induced from the Veronese-Whitney
embedding is given by

pP(o(x),0(y)) = lluw” —vo*||* = 2(1 - Ju"v[?), (6.18)



Statistics on Manifolds 59

where z and y are two k-ads, u and v are their preshapes respectively.

Let Q be a probability distribution on X% and let fi be the mean of
Q=QoJ 1, regarded as a probability measure on CF*. Then i€ Sy(k,C):
the space of k x k complex positive semidefinite matrices. Its projection
into J(X%) is given by P(it) = {uu*} where u is a unit eigenvector of /i
corresponding to its largest eigenvalue. The projection is unique, i.e. [ is
nonfocal, and @ has a unique extrinsic mean ug, iff the eigenspace for the
largest eigenvalue of [i is (complex) one dimensional, and then pug = o(u),
u(# 0) € eigenspace of the largest eigenvalue of . Let Xi,...X, be
an iid sample from @. If i is nonfocal, the sample extrinsic mean pu,g
is a consistent estimator of up and J(p,g) has an asymptotic Gaussian
distribution on the tangent space Tpz)J(E5) (see Section 3.4),

V(I (png) = J(np)) = VadiP(X — i) + op(1) == N(0,%).  (6.19)
Here X; = J(X;), j=1,...,n. In (6.19), dﬁP(} — f1) has coordinates
T(f) = (V2Re(U; XUs), V2Im(U; XUy))EZ3 (6.20)
with respect to the basis
{O% = Xa) T TUVEU™, (M — M) " tUwEU Y2 (6.21)

for Tp(z)J(35) (see Section 3.3, [7]). Here U = [Uy ... Ui] € SO(k) is such
that U*aU = D = Diag(A1, ..., Ak), A1 < ... < A\e—1 < A, being the
eigenvalues of fi. {vy :1 <a <b<k}and {wp:1<a<b<k}isthe
canonical orthonormal basis frame for S(k, C), defined as

1
—(eq€) +epel), a<b
vy V2
eaef“ a = b
wy = L(eaei —epel), a<b (6.22)

where {e, : 1 < a <k} is the standard canonical basis for R*.
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Given two independent samples Xi,...X, iid Q; and Yi,...Y,, iid
Q2 on Y%, we may like to test if Q; = Q2 by comparing their extrinsic
mean shapes. Let p;p denote the extrinsic mean of @; and let p; be the
mean of Q; 0 J 1 i = 1,2. Then u;z = J 'P(u;), and we wish to test
Hy : P(uy) = P(uz). Let X; = J(X;), j = 1,...,n and Y; = {(Y]),
j=1,...,m. Let T}, S; denote the asymptotic coordinates for X;, Y} re-
spectively in Tp(z)J(35) as defined in (6.20). Here i = 2XEmY g the

m—+n
pooled sample mean. We use the two sample test statistic

— — 7 —

Ty = (T = S) (521 + E22)*1@ - S). (6.23)

Here f]l, 35 denote the sample covariances of T}, S; respectively. Under

Hy, Ty £, X3, (see Section 3.4, [7]). Hence given level a, we reject
Ho if T > X3, ,(1 — ).

3.6.4.2. Intrinsic Mean on Y

Identified with CP*~2, % is a complete connected Riemannian manifold. It
has all sectional curvatures bounded between 1 and 4 and injectivity radius
of Z (see [24], pp. 97-100, 134). Hence if supp(Q) € B(p, Z), p € X5, it has
a unique intrinsic mean gy in the ball.

Let X4,...X,, beiid @ and let u,; denote the sample intrinsic mean.
Under the hypothesis of Theorem 3.2,

V(6 (pinr) — 6(ur) == N(0,A7'SATY), (6.24)

However Theorem 3.2 does not provide an analytic computation of A, since
Y5 does not have constant sectional curvature. Proposition 3.4 below gives
the precise expression for A. It also relaxes the support condition required
for A to be positive definite.

Proposition 3.4. With respect to normal coordinates, ¢ : B(p,§) —
CF=2(~ R?*~4), A as defined in Theorem 3.1 has the following expression:

A1 Age
A=A 2] 629
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where for 1 <r,s <k —2,

{1 — d1 COt(dl)}

(All)rs = QE[ d1 COt(dl)(Srs — d2
1

(RGXLT)(RGXLS)

tan(dy)

+ d

(Ile,r)(Ile,s) ] s

{1 — d1 COt(dl)}

(A22)'rs - 2E[ d1 COt(dl)(S,,«s — d%

(Ile,,ﬂ)(Ile,s)

tan(dy)
1

(A12)rs = —2E] %

+

(ReX1,,)(ReX1 ) 1

(RGXLT)(IHIXLS)

tan(dy)
dy

(ImXLT)(ReX'LS) }

where d1 = dg(Xl,[L]) and X]’ = (ijl, . ,ijk;fQ) = d)(Xj), ] = 1, ey n.
A is positive definite if supp(Q) € B(ur,0.377).

Proof. See Theorem 3.1, [8]. O

Note that with respect to a chosen orthonormal basis {v1,...,vx_2} for
Ty, Y5, ¢ has the expression

’ —_
vz, r=dg(m,pur) = arccos(|zé§|), e = Z,Of

|20Z]

LY

mj = e’ 6.26
7 sinr ( )
Here z, zo are the preshapes of m, u; respectively (see Section 3, [8]).
Given two independent samples X7, ... X, iid @y and Y7,...Y,, iid Q2,
one may test if @; and Q)2 have the same intrinsic mean p;. The test

statistic used is

Tnm = (’I’L + m) (é(ﬂn[) - é(ﬂm[))li_l(é(ﬂ'rd) - (ﬁ(uml))- (627)

Here p,; and p,,; are the sample intrinsic means for the X and Y
samples respectively and i is the pooled sample intrinsic mean. Then
¢ = exp;1 gives normal coordinates on the tangent space at [, and

2 = (m + n) (%A;lili\fl + #A5122A51)7 where (Al, 21) and (AQ, 22)
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are the parameters in the asymptotic distribution of /n(¢(pnr)—¢(pr)) and
V(¢ — d(jur)) respectively, as defined in Theorem 3.1, and (A, %)
and (Ag, f]g) are consistent sample estimates. Assuming Hy to be true,
Ty —= X3, _, (see Section 4.1, [7]). Hence we reject H, at asymptotic
level 1 — a if Ty, > X3, (1 — ).

3.6.5. RXF

For m > 2, the direct similarity shape space ©¥ fails to be a manifold.
That is because the action of SO(m) is not in general free (see, e.g., [30]
and [39]). To avoid that one may consider the shape of only those k-ads
whose preshapes have rank at least m — 1. This subset is a manifold but
not complete (in its geodesic distance). Alternatively one may also remove
the effect of reflection and redefine shape of a k-ad x as

o(z) = o(z) = {Az: A € O(m)} (6.28)

where z is the preshape. Then RYF, is the space of all such shapes where
rank of z is m. In other words

RYF ={0(2): z € S*

m?

rank(z) = m}. (6.29)
This is a manifold. It has been shown that the map
J:RYE — S(k,R), J(o(2) =22 (6.30)

is an embedding of the reflection shape space into S(k,R) (see [2], [1],
and [20]) and is H-equivariant where H = O(k) acts on the right: Ao(z) =
o(zA"), A€ O(k).

Let @ be a probability distribution on RY¥ and let ji be the mean of
Q o J~! regarded as a probability measure on S(k,R). Then i is positive
semi-definite with rank atleast m. Let i = UDU’ be the singular value
decomposition of fi, where D = Diag(\,...,\;) consists of ordered eigen
values A\ > ... > N\ > ... > A\, > 00f i, and U = [Uy ... U] is a matrix
in SO(k) whose columns are the corresponding orthonormal eigen vectors.
It has been shown in [6] that the extrinsic mean reflection shape set of @
has the following expression:

{,u € RYE - J(u) = zm:()\j -2+ %)UjU;} (6.31)

where A = L Z;nzl Aj. The set in (6.31) is a singleton, and hence ) has a
unique mean reflection shape p iff A, > Ayu41. Then p = o(u) where

u:hMMfX+%ﬂhuwﬂmeX+%ﬂ%y (6.32)
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3.6.6. AXK,

Let z be a centered k-ad in H(m, k), and let o(z) denote its affine shape,
as defined in Section 3.2.4. Consider the map

J:ASE — S(k,R), J(o(2)) =P = FF (6.33)

where F' = [f1f2... fm] is an orthonormal basis for the row space of z. This
is an embedding of AXF into S(k,R) with the image

J(AXE Y ={A € S(k,R): A? = A, Trace(A) = m, Al =0}. (6.34)
It is equivariant under the action of O(k) (see [18]).

Proposition 3.5. Let Q be a probability distribution on AXE, and let i be
the mean of Qo J~1 in S(k,R). The projection of fi into J(AXE)) is given
by

P(@ = {>_U;U) (6.35)

where U = [Uy ... U] € SO(k) is such that U' iU = D = Diag(A1, ..., \k),
Al > o> A > .0 > A [bois nonfocal and Q has a unique extrinsic
mean pp iff Am > Amiy1. Then ug = o(F') where F = [Uy ... Uy).

Proof. See [41]. O

3.6.7. Pyxk

Consider the diffeomorphism between P;%F and (RP™)*™72 as defined

m

in Section 3.2.5. Using that one can embedd Pr¥F, into S(m+ 1,R)k=m=2
via the Veronese Whitney embedding of Section 3.6.2 and perform extrinsic

analysis in a dense open subset of Py .
3.7. Examples

3.7.1. Ezxzample 1: Gorilla Skulls

To test the difference in the shapes of skulls of male and female gorillas,
eight landmarks were chosen on the midline plane of the skulls of 29 male
and 30 female gorillas. The data can be found in [21], pp. 317-318. Thus
we have two iid samples in X5, & = 8. The sample extrinsic mean shapes
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Female sample preshapes

(a)

Male sample preshapes

(b)

Fig. 3.1. (a) and (b) show 8 landmarks from skulls of 30 female and 29 male gorillas,
respectively, along with the mean shapes. * correspond to the mean shapes’ landmarks.

for the female and male samples are denoted by i1 and fiop where

fi1g = o[—0.3586 + 0.34254,0.3421 — 0.29434,0.0851 — 0.35194,
— 0.0085 — 0.23884, —0.1675 + 0.0021i, —0.2766 + 0.3050i,
0.0587 + 0.2353i, 0.3253],

fiap = o[—0.3692 + 0.33864, 0.3548 — 0.2641i, 0.1246 — 0.33204,
0.0245 — 0.2562i, —0.1792 — 0.01797, —0.3016 + 0.30724,
0.0438 + 0.2245i, 0.3022).
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3 means
04 T

— ¥ Female
—— Male
4 | 7% Pooled mean

pab 4

02r

01r

01

02F

0.3

Fig. 3.2. The sample extrinsic means for the 2 groups along with the pooled sample
mean, corresponding to Figure 3.1.

The corresponding intrinsic mean shapes are denoted by [y and fior.
They are very close to the extrinsic means (dg ({1, i17) = 5.5395 x 1077,
dg(fi2, fior) = 1.9609 x 107°). Figure 3.1 shows the preshapes of the sam-
ple k-ads along with that of the extrinsic mean. The sample preshapes have
been rotated appropriately so as to minimize the Euclidean distance from
the mean preshape. Figure 3.2 shows the preshapes of the extrinsic means
for the two samples along with that of the pooled sample extrinsic mean.
In [7], nonparametric two sample tests are performed to compare the mean
shapes. The statistics (6.23) and (6.27) yield the following values:

Extrinsic: Ty, = 392.6, p-value = P(XZ% > 392.6) < 1016,
Intrinsic: T}, = 391.63, p-value = P(XZ > 391.63) < 10~16.

A parametric F-test ([21], pp. 154) yields F' = 26.47, p-value = P(Fi2.46 >
26.47) = 0.0001. A parametric (Normal) model for Bookstein coordinates
leads to the Hotelling’s T2 test ( [21], pp. 170-172) yields the p-value 0.0001.
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3.7.2. Example 2: Schizophrenic Children

In this example from [15], 13 landmarks are recorded on a midsagittal
two-dimensional slice from a Magnetic Resonance brain scan of each of 14
schizophrenic children and 14 normal children. In [7], nonparametric two
sample tests are performed to compare the extrinsic and intrinsic mean
shapes of the two samples. The values of the two-sample test statistics
(6.23), (6.27), along with the p-values are as follows.

Extrinsic: T, = 95.5476, p-value = P(XZ, > 95.5476) = 3.8 x 10711,
Intrinsic: T}, = 95.4587, p-value = P(X3, > 95.4587) = 3.97 x 1011,

The value of the likelihood ratio test statistic, using the so-called offset nor-
mal shape distribution ([21], pp. 145-146) is —2log A = 43.124, p-value =
P(X3, > 43.124) = 0.005. The corresponding values of Goodall’s F-statistic
and Bookstein’s Monte Carlo test ([21], pp. 145-146) are Fao 572 = 1.89,
p-value = P(F227572 > 1.89) = 0.01. The p-value for Bookstein’s test =
0.04.

3.7.3. Example 3: Glaucoma Detection

To detect any shape change due to Glaucoma, 3D images of the Optic
Nerve Head (ONH) of both eyes of 12 rhesus monkeys were collected. One
of the eyes was treated while the other was left untreated. 5 landmarks
were recorded on each eye and their reflection shape was considered in
RY% k = 5. For details on landmark registration, see [17]. The landmark
coordinates can be found in [11]. Figure 3.3 shows the preshapes of the
sample k-ads along with that of the mean shapes. The sample points have
been rotated and (or) reflected so as to minimize their Euclidean distance
from the mean preshapes. Figure 3.4 shows the preshapes of the mean
shapes for the two eyes along with that of the pooled sample mean shape.
In [1], 4 landmarks are selected and the sample mean shapes of the two
eyes are compared. Five local coordinates are used in the neighborhood of
the mean to compute Bonferroni type Bootstrap Confidence Intervals for
the difference between the local reflection similarity shape coordinates of
the paired glaucomatous versus control eye (see Section 6.1, [1] for details).
It is found that the means are different at 1% level of significance.
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landrnarks for treated eyes along with the extringic mean

03

lancrnarks for untreated eyes along with the extrinsic mean

03

oz

Fig. 3.3. (a) and (b) show 5 landmarks from treated and untreated eyes of 12 monkeys,
respectively, along with the mean shapes. * correspond to the mean shapes’ landmarks.
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*  Untreated mean

* Treated
*  Pooled
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Fig. 3.4. The sample means for the 2 eyes along with the pooled sample mean, corre-
sponding to Figure 3.3.
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Chapter 4

Reinforcement Learning - A Bridge Between Numerical
Methods and Monte Carlo

Vivek S. Borkar

School of Technology and Computer Science,
Tata Institute of Fundamental Research,
Homi Bhabha Road, Mumbai 400005, India
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This article advocates the viewpoint that reinforcement learning algo-
rithms, primarily meant for approximate dynamic programming, can
also be cast as a technique for estimating stationary averages and sta-
tionary distributions of Markov chains. In this role, they lie somewhere
between standard deterministic numerical schemes and Markov chain
Monte Carlo, and capture a trade-off between the advantages of either —
lower per iterate computation than the former and lower variance than
the latter. Issues arising from the ‘curse of dimensionality’ and conver-
gence rate are also discussed.

4.1. Introduction

The genealogy of reinforcement learning goes back to mathematical psy-
chology ([16], [17], [20], [21], [37]). The current excitement in the field,
however, is spurred by its more recent application to dynamic programming,
originating in the twin disciplines of machine learning and control engineer-
ing ([8], [34], [36]). A somewhat simplistic but nevertheless fairly accurate
view of these schemes is that they replace a classical recursive scheme for
dynamic programming by a stochastic approximation based incremental
scheme, which exploits the averaging properties of stochastic approxima-
tion in order to do away with the conditional expectation operator intrinsic
to the former. In particular, these schemes can be used for simulation based
or online, possibly approximate, solution of dynamic programmes.

*Research supported in part by a J. C. Bose Fellowship from Dept. of Science and
Technology, Govt. of India, and a grant from General Motors India Science Lab.
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In this article, we advocate a somewhat different, albeit related, appli-
cation for this paradigm, viz., to solve two classical problems for Markov
chains: the problem of estimating the stationary expectation of a prescribed
function of an ergodic Markov chain, and that of estimating stationary dis-
tribution of such a chain. The former problem is the linear, or ‘policy
evaluation’ variant of the learning algorithm for average cost dynamic pro-
gramming equation ([1], [26], [38], [39]). The latter in turn has been of
great importance in queuing networks (see, e.g., [35]) and more recently,
in the celebrated ‘PageRank’ scheme for ranking of web sites ([27]). The
scheme proposed here is a variant of a general scheme proposed recently
in [5], [11] for estimating the Perron-Frobenius eigenvector of a nonnegative
matrix. See [19] for an earlier effort in this direction.

Analogous ideas have also been proposed in [9] in a related context.

The article is organized as follows: As stochastic approximation theory
forms the essential backdrop for this development, the next section is de-
voted to recapitulating the essentials thereof that are relevant here. Section
4.3 recalls the relevant results of [1], [26], [39] in the context of the prob-
lem of estimating the stationary expectation of a prescribed function of an
ergodic Markov chain. A ‘function approximation’ variant of this, which
addresses the curse of dimensionality by adding another layer of approx-
imation, is described in Section 4.4. Section 4.5 first recalls the relevant
developments of [5], [11] and then highlights their application to estimating
stationary distributions of ergodic Markov chains. Section 4.6 discusses the
issues that affect the speed of such algorithms and suggests some techniques
for accelerating their convergence. These draw upon ideas from [2] and
[13]. Section 4.7 concludes with brief pointers to some potential research
directions.

4.2. Stochastic Approximation

The archetypical stochastic approximation algorithm is the d-dimensional
recursion

Tnt1 = Tp + a(n)[h(xn, Yo) + Mut1 + &4], (4.1)

where, for F,, = (X, Yo, My m < m),n > 0, the following hold:
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o (M,,F,),n > 0, is a martingale difference sequence, i.e., {M,} is an

{Fn.}-adapted integrable process satisfying
E[M,4+1|F,] =0 Vn.
Furthermore, it satisfies
E[|Mps1]*1Fa] < K1+ [Jzal?) Vo

for some K > 0.
e {Y,,} is a process taking values in a finite state space S, satisfying

P(Y;L+1 - y|]:n) =4z, (y|Y;L)

for a continuously parametrized family of transition probability functions
x — gz(-|-) on S. For each fixed z, it is a Markov chain with transition
matrix ¢, (+|]-), assumed to be irreducible. In particular, it then has a
unique stationary distribution v,.

{en} is a random sequence satisfying &,, — 0 a.s.

{a(n)} are positive step sizes satisfying
Za(n) = 00; z:a(n)2 < 0. (4.2)

e h:R%x S — R?%is Lipschitz in the first argument.

Variations and generalizations of these conditions are possible, but the
above will suffice for our purposes. The ‘o.d.e.” approach to the analy-
sis of stochastic approximation, which goes back to [18], [28], views (4.1) as
a noisy discretization of the ordinary differential equation (o.d.e. for short)

#(t) = h(z(t)). (4.3)
def

Here h(z) "= Y, g h(z,i)vy(i) will be Lipschitz under our hypotheses.
This ensures the well-posedness of (4.3). Recall that a set A is invariant
for (4.3) if any trajectory z(t),t € R, of (4.3) which is in A at time ¢t =0
remains in A for all ¢ € R. It is said to be internally chain transitive
if in addition, for any xz,y € A, and ¢,T > 0, there exist n > 2 and
T = x1,T2,...,&, =y in A such that the trajectory of (4.3) initiated at
x; intersects the open e-ball centered at x;;; at some time ¢; > T for all
1 <4 < n. Suppose

sup ||z, || < oo a.s. (4.4)

n
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Then a result due to Benaim ([6]) states that almost surely, x,, converges
to a compact connected internally chain transitive invariant set of (4.3).
In case the only such sets are the equilibria of (4.3) (i.e., points where h
vanishes), then x,, converges to the set of equilibria of (4.3) a.s. If these
are finitely many, then a.s. z, converges to some possibly sample path
dependent equilibrium. In particular, when there is only one such, say z*,
xy, — 2* a.s. This is the situation of greatest interest in most algorithmic
applications.

The ‘stability’ condition (4.4) usually needs to be separately established.
There are several criteria for the purpose. One such, adapted from [12], is
the following: Suppose the limit

def lim _}_z(a:c)

hoo() (4.5)

aloo a

exists for all z, and the o.d.e.
(t) = hoo (2(1)) (4.6)

has the origin as the globally asymptotically stable equilibrium. Then (4.4)
holds. (Note that he, will perforce be Lipschitz with the same Lipschitz
constant as h and therefore the well-posedness of (4.6) is not an issue.) This
is a slight variant of Theorem 2.1 of [12] and can be proved analogously.

Let T'(7) denote the d x d matrix with all entries zero except the (i, )-th
entry, which is one. A special case of the foregoing is the iteration

Tn+l = Tn + a(n)F(Xn)[h(mn; Yn) + Mn+1 + 571]7

where {X,,} is an irreducible Markov chain on the index set {1,2,...,d}.
This is a special case of ‘asynchronous stochastic approximation’ studied
in [10]. It corresponds to the situation when only one component of the
vector x,, viz., the X, th, is updated at time n for all n, in accordance with
the above dynamics. The preceding theory then says that the o.d.e. limit
will change to

&(t) = Ah(x(t)).
Here A is a diagonal matrix whose ith diagonal element equals the sta-
tionary probability of ¢ for the chain {X,}. It thus captures the effect
of different components being updated with different relative frequencies.
While this change does not matter for some dynamics (in the sense that it
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does not alter their asymptotic behaviour), it is undesirable for some oth-

ers. One way of getting around this ([10]) is to replace the step size a(n)

by a(v(X,,n)), where v(i,n) = S I{X,, =i} is the local clock at i

m=0
the number of times ith component got updated till time n. Under some
additional hypotheses on {a(n)}, this ensures that A above gets replaced
by % times the identity matrix, whereby the above o.d.e. has the same
qualitative behaviour as (4.3), but with a change of time-scale. See [10] for

details.

4.3. Estimating Stationary Averages

The problem of interest here is the following: Given an irreducible Markov
chain {X,,} on a finite state space S (= {1,2,...,s}, say) with transition
probability matrix P = [[p(j|7)]]; jes, and the unique stationary distribu-

tion 7, we want to estimate the stationary average 3 = > ics f(i)n(i) for
a prescribed f: S — R. The standard Monte Carlo approach would be to
use the sample average

1 N
~ ;ﬂxm (4.7)

for large N as the estimate. This is justified by the strong law of large
numbers for Markov chains, which states that (4.7) converges a.s. to § as
N T oo. Even in cases where 7 is known, there may be strong motivation
for going for a Markov chain with stationary distribution 7 instead of i.i.d.
random variables with law 7: in typical applications, the latter are hard to
simulate, but the Markov chain, which usually has a simple local transition
rule, is not. This is the case, e.g., in many statistical physics applications.

The problem in most applications is that this convergence is very slow.
This typically happens because S is very large and the chain makes only
local moves, moving from any ¢ € S to one of its ‘neighbors’. Thus the
very aspect that makes it easy to simulate works against fast convergence.
For example, one may have S = {1,2,..., M}% for some M,d >> 1 and
the chain may move from any point therein only to points which differ in
at most one of the d components by at most 1. In addition the state space
may be ‘nearly decoupled’ into ‘almost invariant’ subsets such that the
transitions between them are rare, and thus the chain spends a long time
in whichever of these sets it finds itself in. As a result, the chain is very slow
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in scanning the entire state space, leading to slow convergence of the above
estimate. Also, the variance of this estimate can be quite high. There are
many classical techniques for improving the performance of Monte Carlo,
such as importance sampling, use of control variates, antithetic variates,
stratified sampling, etc. See [3] for an extensive and up to date account of
these.

An alternative linear algebraic view of the problem would be to look at
the associated Poisson equation:

V(i)=f(i)— B+ Zp(ﬂz‘)V(j), i€d. (4.8)

This is an equation in the pair (V(-),). Under our hypotheses, (' is
uniquely characterized as 8/ = 3 and V/(+) is unique up to an additive scalar.
As clear from (4.8), this is the best one can expect, since the equation is
unaltered if one adds a scalar to all components of V. We shall denote by

H the set of V such that (V, ) satisfies (4.8). Thus H = {V : V = V* +ce,

¢ € R} where (V*, 8) is any fixed solution to (4.8), and e “f the vector of

all I’s. The relative value iteration algorithm for solving (4.8) is given by
the iteration

Vo1 (i) = (i) — Vi) + Zp(jmvn (), i €S, (4.9)

where ig € S is a fixed state.

Remarks: This is a special case of the more general relative value iter-
ation algorithm for solving the (nonlinear) dynamic programming equa-
tion associated with the average cost control of a controlled Markov chain
([7], section 4.3). The convergence results for the latter specialized to the
present case lead to the conclusions V,, — V and V,,(ip) — 3, where (V, )
is the unique solution to (4.8) corresponding to V' (ig) = (. The choice
of the ‘offset’ V,,(igp) above is not unique, one can replace it by g(V;,) for
any ¢ satisfying g(e) = 1,g(x + ce) = g(z) + ¢ for all ¢ € R — see [1],
p. 684. This choice will dictate which solution of (4.8) gets picked in the
limit. Nevertheless, in all cases, g(V;,) — (3, which is the quantity of inter-
est. In what follows, the analysis will have to be suitably modified in a few
places for choices of g other than the specific one considered here.
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To obtain a reinforcement learning variant of (4.9), one follows a stan-
dard schematic. Suppose that at time n, X,, = i¢. The first step is to
replace the conditional expectation on the right hand side of (4.9) by an
actual evaluation at the observed next state, i.e., by

f(Z) - Vn(i()) + Vn (Xn+1).

The second step is to make an incremental correction towards this quantity,
i.e., to replace V;,(i) by a convex combination of itself and the above, with
a small weight a(n) for the latter. The remaining components V,,(j),j # ¢,
remain unaltered. Thus the update is

Vn-&-l(i)
= (1 —a(n)I{Xy = i})Va(i) + a(n)I{ Xy = i}[f(i) — Vi (io) + Va(Xnt1)]
= V(i) + a(n)I{ Xy, = i}[f (i) = Va(io) + Va(Xnt1) — Va(i)]. (4.10)

This can be rewritten as
Vi 1(8) = V(@) + a(n) [{ Xy, = i} [Ti(Vi) — Valio) + Muy1(2) — Va(4)],
where T'(-) = [T1(+), ..., Ts(-)]T is given by
def

Ti(z) & f(k)+Zp(jlk)xj

for x = [11,...,25]T € R*, and for n > 0,

Mo () £0) + V(K1) = Ty(Va), n>0,1<j < s,

. . . d
is a martingale difference sequence w.r.t. F, = o(Xm,m < n). Let D

denote the diagonal matrix whose ith diagonal element is 7(i) for i € S.
Then the counterpart of (4.3) for this case is

#(t) = D (T (x(t)) — wiy(t)e — x(t))
= T((t)) — i (t) — z(t) (4.11)

where T'(z) LS (I = D)x + DT (z), = € R®. We shall analyze (4.11) by
relating it to a secondary o.d.e.

x(t) = T(z(t) — Bn - Z(1). (4.12)
It is easily verified that the map 7' defined by T'(z) = T'(x) — (7 is non-
expansive w.r.t. the max-norm : ||| = max; |7+, and has H as its set

of fixed points. Thus by the results of [14], Z(¢) converges to some point
in H, depending on z(0), as ¢t T co. One can then mimic the arguments of
Lemmas 3.1-Theorem 3.4 of [1] step for step to claim successively that:
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o If 2:(0) = Z(0), then x(t) — &(¢) is of the form r(¢)n for some r(¢) that
converges to a constant as t T oo. (The only changes required in the
arguments of [1] are that, (i) in the proof of Lemma 3.3 therein, use the
weighted span seminorm | z||,. s e max; (2—1) — min; (%) instead of

the span semi-norm ||z, I max; z; — min; x;, and, (47) r(-) satisfies a

different convergent o.d.e., viz.,

7(t) = —n(io)r(t) + (6 = Ziy (1)),

than the one used in [1]*.)

e x(t) therefore converges to an equilibrium point of (4.11), which is seen
to be unique and equal to the unique element V* of H characterized
by V*(ip) = . In fact, V* is the unique globally asymptotically stable
equilibrium for (4.11).

Stochastic approximation theory then guarantees that V,, — V* a.s. if we
establish (4.4), i.e., that sup,, ||[Va|| < oo a.s. For this purpose, note that
the corresponding o.d.e. (4.6) is simply (4.11) with f(-) = 0, for which
an analysis similar to that for (4.11) shows that the origin is the glob-
ally asymptotically stable equilibrium. The stability test of [12] mentioned
above then ensures the desired result.

The scheme (4.10) combines the deterministic numerical method (4.9)
with a Monte Carlo simulation and stochastic approximation to exploit the
averaging effect of the latter. Note, however, that unlike pure Monte Carlo,
it does conditional averaging instead of averaging. The determination of
the desired stationary average from this is then a consequence of an alge-
braic relationship between the two specified by (4.8). The net gain is that
the part stochastic, part algebraic scheme has lower variance than pure
Monte Carlo because of the simpler conditional expectations involved, and
therefore more graceful convergence. But it has higher per iterate compu-
tation. On the other hand, it has higher variance than the deterministic
relative value iteration — the latter has zero variance! But then it has lower
per iterate computation because it does only local updates and does away
with the conditional expectation operation. (It is worth noting that in
some applications, this is not even an option because the conditional prob-
abilities are not explicitly available, only a simulation/experimental device

@Here r(-)n is seen to satisfy the o.d.e. 7#(t)n = (D(P —1I) —n(io)I)r(t)n + (8 — &4, (t))n-
Left-multiply both sides by e’
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that conforms to them is.) In this sense, the reinforcement learning algo-
rithm (4.10) captures a trade-off between pure numerical methods and pure
Monte Carlo.

In the form stated above, however, the scheme also inherits one major
drawback each from numerical methods and Monte Carlo when s is very
large. From the former, it inherits the notorious ‘curse of dimensionality’.
From the latter it inherits slow convergence due to slow approach to sta-
tionarity already mentioned earlier, a consequence of the local movement
of the underlying Markov chain and possible occurrence of ‘quasi-invariant’
subsets of the state space. This motivates two important modifications of
the basic scheme. The first is aimed at countering the curse of dimension-
ality and uses the notion of (linear) function approximation. That is, we
approximate V* by a linear combination of a moderate number of basis
functions (or features in the parlance of artificial intelligence, these can
also be thought of as approzimate sufficient statistics — see [8]). These are
kept fixed and their weights are learnt through a learning scheme akin to
the above, but lower dimensional than the original. We outline this in the
next section. The second problem, that of slow mixing, can be alleviated
by using the devices of conditional importance sampling from [2] or split
sampling from [13], either separately or together. This will be described in
section 4.6.

Before doing so, however, we describe an important related develop-
ment. Recall the notion of control variates ([3]). These are zero mean ran-
dom variables {&,} incorporated into the Monte Carlo scheme such that if
we evaluate

% D () + ) (113)

instead of (4.7), it has lower variance but the same asymptotic limit as
(4.7). Consider the choice

&n = Zp(ﬂXnW*(j) —V*(X,), n>0,

where (V*, 5) satisfy (4.8). Then f(X,) + &, = § Vn and the variance is
in fact zero! The catch, of course, is that we do not know V*. If, however,
we have a good approximation thereof, these would serve as good control
variates. This idea is pursued in [24], where the ‘V*’ for a limiting deter-
ministic problem, the so called fluid limit, is used for arriving at a good
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choice of control variates (see also [31], Chapter 11). The scheme described
above could also be thought of as one that adaptively generates control
variates.

4.4. Function Approximation

We now describe an approximation to the aforementioned scheme that tries
to beat down the curse of dimensionality at the expense of an additional
layer of approximation and the ensuing approximation error. Function ap-
proximation based reinforcement learning schemes for precisely this prob-
lem have been proposed and analyzed in [38] and [39]. The one sketched
below, though similar in spirit, is new and appears here for the first time.

The essential core of the scheme is the approximation V(i) =
ij\il ri¢;(i), i € S, where M is significantly smaller than s = |S|,
¢; + S — R are basis functions prescribed a priori and {r;} are weights
that need to be estimated. For a function g : S — R, we shall use g to
denote both the function itself and the vector [g(1),...,g(s)]", depending
on the context. For the specific problem under consideration, we impose

the special requirement that ¢1 = f,¢o = e. Let ® def [[ijlhi<i<si<j<m,

where ¢;; def ¢ (i) and ¢(7) def [0i1,-- . 0in)T. Thus f = duy,e = Puy,

where u; is the unit vector in the ¢th direction. Consider the ‘approximate
Poisson equation’

dr = POr — e + f.

This is obtained” by replacing V' by ®r in (4.8). Left-multiplying this
equation on both sides first by ®7 and then by (®7®)~1, we get

r=(@7®) o7 (Pdr — fe + f).
Note that (y def Pr, B) then satisfies the ‘projected Poisson equation’
y =11Py — fe + f, (4.14)

where 11 %/ ®(®T®)1®7 is the projection onto the range of ®. (In par-
ticular, II leaves e, f invariant, a fact used here.) This is our initial approx-
imation of the original problem, which will be modified further in what

bThis is a purely formal substitution, as clearly this equation will not have a solution
unless V' = ®r + a scalar multiple of e.
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follows. By analogy with the preceding section, this suggests the algorithm

Tn4+1 = Tn + a(n)[Brjld)(Xn) (¢T(XTL+1)TTL - (d)T(iO)rn)e + f(Xn)) - 7"”],
(4.15)
where

of 1 ¢
B, 2 37 0(Xn)o" (Xn).

Also, ig is a fixed state in Ug{j : ¢x(j) > 0}. Note that {B, '} can be
computed iteratively by: B, 1 = (n+ 1)B, !, where
Bl _pl_ Bﬁl¢(Xn+1)¢T(Xn+l)B;1
n+1 = “n S — .
" L+ 67 (Xns1)Bi ' 6(Xot)
This follows from the Sherman-Morrison-Woodbury formula ([22], p. 50).

If B, is not invertible in early iterations, one may add to it ¢ times the
identity matrix for a small § > 0, or use pseudo-inverse in place of inverse.
The error this causes will be asymptotically negligible because of the time
averaging. By ergodicity of {X,,}, B, — ®TD® as.

The limiting o.d.e. can be written by inspection as

7y = (®T D®) 1 ®T D(POry — ¢ (ig)rie + f) — 1y

Let T ®(®TD®)"1dTD. Then e is invariant under II, i.e., it is
an eigenvector of Il corresponding to the eigenvalue 1. To see this, note
that /DII(v D)~ ! is the projection operator onto Range(v/ D®), whence
VDe = \/5(;52 is invariant under it. This is equivalent to the statement
that e is invariant under II. A similar argument shows that f is invariant

under II. Let y(t) = ®ry. Then the above o.d.e. leads to

y(t) = IIPy(t) — i, (t)e + f — y(t).
The following easily proven facts are from [38]:

1 1T is the projection to Range(®) w.r.t. the weighted norm || - ||p defined

def . 1
by [lzlp = (32;m(i)a?)>.
2 P is nonexpansive w.r.t. || - || p: [|[Pz||p < ||z||p-

Note that P is nonexpansive w.r.t. the norm ||z||p, hence so is IIP. Also,
e is its unique eigenvector corresponding to eigenvalue 1 and the remain-
ing eigenvalues are in the interior of the unit circle. Thus IIP — eu% =
(P — eu%) has eigenvalues strictly inside the unit disc of the complex
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plane. (Recall that u; for each j denotes the unit vector in jth coordinate
direction.) Finally, TI(P — euiTo) — I then has eigenvalues with strictly
negative real parts. These considerations lead to:

e the map y — II(P — eu] )y + f is a || - || p-contraction and has a unique
fixed point y*, and,
e the above o.d.e. is a stable linear system and converges to y*.

Thus ry — r* = (®T®)~1dTy*. Just as in the preceding section, an

identical analysis of the o.d.e. with f replaced by the zero vector leads to
a.s. boundedness of the iterates, leading to r, — r* a.s. The quantity
#T (ig)r* then serves as our estimate of 3. Note that we have solved the
approximate Poisson equation

y:HPy—BeJrf

and not (4.14). This change is caused by the specific sampling scheme we
used.

4.5. Estimating Stationary Distribution

Here we consider the problem of estimating the stationary distribution of an
irreducible finite state Markov chain. It is the right Perron-Frobenius eigen-
vector of its transposed transition matrix, corresponding to the Perron-
Frobenius eigenvalue 1. More generally, one can consider the problem of
estimating the Perron-Frobenius eigenvector (say, ¢) of an irreducible non-
negative matrix ¢ = [[gi;]], corresponding to the Perron-Frobenius eigen-
value A\*. Thus we have Q¢ = A\*¢. One standard numerical method for
this is the ‘power method’:

Qqn
i1 = > 1
n+ ||Qqn||7 )

beginning with some initial guess qo with strictly positive components. The
normalization on the right hand side is somewhat flexible, e.g., one may use

Qqn
qn(io)’

Gnt+1 = n>1, ig €S fixed,

with ¢o(ig) > 0. The following scheme, a special case of the learning algo-
rithm studied in [11], may be considered a stochastic approximation version
of this. It can also be viewed as a multiplicative analog of (4.9). We shall
consider the unique choice of § for which ¢(ig) = A*. Write Q = LP where
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L is a diagonal matrix with ¢th diagonal element #(z) = > @; and P is
an irreducible stochastic matrix. Then

E(Xn)q” (Xn-i-l)

@1 (9) = (i) + alv(G )X =} [ ==

- qn(j)i|a .7 € 87
with g in the positive orthant and {a(n)} satisfying the additional condi-
tions stipulated in [10]. Under suitable conditions on the step sizes (see the
discussion at the end of section 4.2 above), the limiting o.d.e. is

_ :QQt

. LPqg,
= . q .
gt (io) ! qt (o)

qt

—q. (4.16)

This can be analyzed by first analyzing a ‘secondary o.d.e.’

G = ?\Zt — Gt (4.17)

Under our hypotheses, @/\* — I has a unique normalized eigenvector ¢*
corresponding to the eigenvalue zero, viz., the normalized Perron-Frobenius
eigenvector of ). Then aq* is an equilibrium point for this linear system
for all a € R. All other eigenvalues are in the left half of the complex plane.
Thus ¢, — a*q* for an a* € R that depends on the initial condition. In
turn, one can show that for the same initial condition, ¢; = ¥(t)g,(;), where

def [0 N def T(”( qt/(T‘l(t’))) ,
T(t) = /0 qt/(io)dt’ P(t) = e:cp(/o 1- e dt'.

This is verified by first checking that v(-)g,(.y does satisfy (4.16) and then
invoking the uniqueness of the solution to the latter. Now argue as in
Lemma 4.1 of [11] to conclude that for gy € the positive orthant, ¢: — ¢, a
scalar multiple of ¢* corresponding to §(ig) = \*.

Letting

_ LP
h(g) = =2
Qio

—4q,

one has hoo(¢) = —q, where the Lh.s. is defined as in (4.5). By the stability
test of [12], we then have sup,, ||gn| < oo a.s. In view of the foregoing, this
leads to ¢, — ¢ a.s.

Once again, in view of the curse of dimensionality, we need to add an-
other layer of approximation via the function approximation ¢ ~ ®r, where
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®,r are analogous to the preceding section. The function approximation
variant of the above is

E(Xn)d)(Xn)d)T (Xn-i-l)
((,ZST (i())Tn) Ve

where B,, is as before and € > 0 is a small prescribed scalar introduced in

—1I|r,, (4.18)

Tn41 = Tn + a(n) |:B'r:1

order to avoid division by zero. We need the following additional restriction
on the basis functions:

(t) ¢1,...,¢m are orthogonal vectors in the positive cone of R®, and the
submatrix of P corresponding to Up{i : ¢x (i) > 0} is irreducible.

This scheme is a variant of the scheme proposed and analyzed in [5]. (It
has one less explicit averaging operation. As a rule of thumb, any additional
averaging makes the convergence more graceful at the expense of its speed.)
Let A Y 7 DQ®, B Y T D®. The limiting o.d.c. is the same as that

of [5], viz.,

B7lA

") = <<¢T(z’o>r<t>> Ve

- 1> r(t). (4.19)

For € = 0, this reduces to

B'A
i) = [ 1) (D). 4.20
0= (5 )0 (420
Let W Y VDo and M ¢ VDQVD ' Then B = WTW. Let IT =
W(WITW)=IWT. Setting Y (t) e Wr(t), (4.20) may be rewritten as

. 1M — [IM
Y(t)= (m - I> Y(t) = < U(Z())m - I) Y(t).  (4.21)

Under (1), IIM can be shown to be a nonnegative matrix ([5]). Let y*
denote the Perron-Frobenius eigenvalue of IIM. Consider the associated
secondary o.d.e.

M
,y*

Y(t) = < I> Y(t). (4.22)
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Let z* be the Perron-Frobenius eigenvector of ILM uniquely specified by
the condition z*(ig) = y/n(ig)y*. The convergence of (4.22), and therefore
that of (4.21), to z* is established by arguments analogous to those for
(4.16), (4.17) (see [5] for details). Now let € > 0. One can use Theorem
1, p. 339, of [25] to conclude that given any § > 0, there exists an €* > 0
small enough such that for e € (0,€"), the corresponding Y (¢) converges
to the d-neighborhood of z*. But once in a small neighborhood of z*,
Yi, (t) = \/n(io)y* > 0. Hence, if € << ~v*, (4.19) reduces to (4.20) in this
neighborhood and therefore Y(¢) — z*. In turn, one then has r, — r* =
(WITW)=*WT2* as. by familiar arguments. Once again, we have solved
an approximation to the original eigenvalue problem, viz., the eigenvalue
problem for IIM. ®r*, resp. 7* are then our approximations to §, A*.

Recalling our original motivation of estimating stationary distribution of
a Markov chain, note that () in fact will be the transpose of its transition
matrix and A* is a priori known to be one. Thus we may replace the
denominator ¢, (7o) in the first term on the right hand side of the algorithm
by 1. This is a linear iteration for which the limiting o.d.e. is in fact the
secondary o.d.e. (4.17) with \* = 1. This is not, however, possible for
(4.21), as v* may not be 1.

We conclude this section by outlining a related problem. Consider the
case when () is an irreducible nonnegative and positive definite symmetric
matrix. The problem once again is to find the Perron-Frobenius eigenvec-
tor of A. This can be handled exactly as above, except that the Perron-
Frobenius eigenvalue need not be one. An important special case is when
Q = AT A where A is the adjacency matrix of an irreducible graph. This
corresponds to Kleinberg’s HITS scheme for web page ranking, an alter-
native to the PageRank mentioned above ([27]). The Perron-Frobenius
eigenvector then corresponds to the unique stationary distribution for a
vertex-reinforced random walk on S with reinforcement matrix @ ([33]).

4.6. Acceleration Techniques

For reasons mentioned earlier, the convergence of these algorithms can be
slow even after dimensionality reduction, purely due to the structure of the
underlying Markov chain. We shall discuss two ideas that can be used to
advantage for speeding things up. The first is that of conditional impor-
tance sampling. This was introduced in [2] in the context of rare event
simulation and has also been subsequently used in [39]. Recall that impor-
tance sampling for evaluating a stationary average ), f(4)n(i) amounts
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to replacing (4.7) by

1o, 5

where:

° {f(m} is another Markov chain on S with the same initial law, with its
transition matrix [[p(+]-)]]; jes satisfying the condition:

p(jli) > 0 <= p(jli) > 0V 4,5, (4.24)

and,

o A, déf et P(Xmt1]|Xm)

m=0 F(X 1| is the likelihood ratio at time n.

This is the simplest version, other more sophisticated variations are possible
([3]). Clearly (4.23) is asymptotically unbiased, i.e., its mean approaches
the desired mean ), s f(i)n(i) as N T oo. The idea is to choose {X,}
to accelerate the convergence. This, however, can lead to inflating the
variance, which needs to be carefully managed. See [3] for an account of
this broad area.

To motivate conditional importance sampling, note that our algorithms
are of the form

m'rL-l—l(i) = mn(i)
+a(m)I{Xn = i}[Fx,,, (2n) + gi(zn) + Mni1 + Guia (4],
1<i<d, (4.25)

where d > 1,F = [Fy,...,Fy),g = [91,--.,94] : RY — R are pre-
scribed maps, {M,} is a martingale difference sequence as before, and
Cn = [Cu(1),...,¢n(d)],n > 1, an asymptotically negligible ‘error’ sequence,
ie., ¢, — 0 a.s. The o.d.e. limit is

#(t) = D (PF(x(t)) + g(2(2))) -
The idea here is to replace {X,,} by {X,} as above and (4.25) by

p(Xn 1|Xn)
ﬁ(Xniﬂf(n)) [

+Mm4+gﬂaw 1<i<d. (4.26)

a1 (1) = 20 () + () H{ K1 = i} Fg. (@) + gi(zn)
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This will have the o.d.e. limit
#(t) = D (PF(x(t) + g(=(t))),

where D is the diagonal matrix with ith diagonal element = 7(i) T the
stationary probability of state i for {X,,}. The advantages are:

1 D can then be tailored to be a more suitable matrix (e.g., a scalar multiple
of identity) by an appropriate choice of j(-|-). D # D can, however, be
a problem when the convergence of the algorithm (at least theoretically)
critically depends on having D in place, see, e.g., section 4.4 above.

2 As already noted, a major reason for slow mixing is the occurrence of
nearly invariant sets. For the reversible case, a neat theoretical basis
for this behaviour is available in terms of the spectrum of transition
matrices - see, e.g., [15]. To work around this, {X,,} can be chosen to be
rapidly mixing, i.e., the laws of X, converge to the stationary law 7 much
faster than the corresponding rate for convergence of laws of the original
chain {X,,} to n. This can be achieved by increasing the probability of
links which connect the nearly invariant sets to each other, so that the
chain moves across their boundary more often. In addition, one may also
introduce new edges which enhance mixing. This means that we relax
(4.24) to

p(jli) > 0= p(jli) > 0 Vi, .

See, e.g., [23], which discusses such a scenario in the context of MCMC. In
particular, the new edges can be chosen to alleviate the problems caused
by local movement of the chain, by introducing the so called ‘long jumps’.
There will, however, be tradeoffs involved. For example, too many such
transitions, which do not contribute anything to the learning process
explicitly (because the r.h.s. of (4.26) is then zero), will in fact slow it
down. Furthermore, there is often significantly higher computational cost
associated with simulating these ‘long jumps’.

3 An important difference between this and the traditional importance
sampling is that this involves only a one step likelihood ratio for sin-
gle transitions, not a full likelihood ratio accumulated over time from a
regeneration time or otherwise. This tremendously reduces the problem
of high variance, at the cost of higher per iterate computation.

This scheme, however, does require that the transition probabilities are
known in an explicit analytic form, or are easy to compute or estimate. This
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need not always be the case. Another scheme which does away with this
need is the split sampling proposed in [13], which does so at the expense of
essentially doubling the simulation budget. Here we generate at each time n
two S-valued random variables, Y,, and Z,,, such that {Y,,} is an irreducible
Markov chain on S with transition matrix (say) [[g(:|-)]] and stationary
distribution ~, and Z,, is conditionally independent of {Z,,, Y,,;m < n},
given Y,,, with conditional law P(Z,, = j|Y,, =) = p(j|i) V ¢,j. Then the
scheme is

Tpt1(1) = zn(i)+a(n) I{Y, = i}[Fz, (2)+9i(2)+Mnpt1+Cu1(d)], 1 < i < d.
(4.27)
The limiting o.d.e. is

#(t) = D (PF(x(t)) + g(2(1)))

where D is a diagonal matrix whose ith diagonal element is (7). In addition
to the advantage of not requiring the explicit knowledge of p(:|-) (though we
do require a simulator that can simulate the transitions governed by p(-|-)),
this also decouples the issues of mixing and that of obtaining the correct
transition probabilities on the right hand side of the limiting o.d.e. We can
choose {Y,,}, e.g., to be a rapidly mixing Markov chain with uniform sta-
tionary distribution (see, e.g., [32]), or even i.i.d. uniform random variables
when they are easy to generate (unfortunately this is not always an easy
task when the dimension is very high, as computer scientists well know).
This scheme does away with the need for conditional importance sampling
for speed-up, though one could also consider a combined scheme that com-
bines both, i.e., a scheme which sets P(Z, = j|Y, =) = p(j|li) V i,j in
addition to the above and replaces (4.27) by

i) = anli) + al) (B2 ) 1Y = ), o)
+gi(Tn) + Mny1 + Gua (1), 1<i<d  (4.28)

4.7. Future Directions

This line of research is quite young and naturally has ample research op-
portunities. There are the usual issues that go with stochastic algorithms,
such as convergence rates, sample complexity, etc. In addition, one im-
portant theme not addressed in this article is that of obtaining good error
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bounds for function approximations. While some of the references cited
above do have something to say about this, it is still a rather open area.
Its difficulty is further compounded by the fact that the approximation
error will depend on the choice of basis functions and there are no clear
guidelines for this choice, though some beginnings have been made. These
include clustering techniques based on graph clustering ([29], [30]) and ran-
dom projections ([4]). Finally, the theoretical convergence proof of some
schemes crucially depends on the states being sampled according to the
stationary distribution of the Markov chain, which is inconvenient for the
acceleration techniques mentioned above. There is a need for making the
schemes robust vis-a-vis the sampling strategy.
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5.1. Introduction

Let G be alocally compact second countable group. We denote by P(G) the
space of all probability measures on G equipped with the weakx-topology
with respect to bounded continuous functions, viz. a sequence {u;} in
P(G) converges to p in P(G), and we write p; — p, if [ ¢du; — pdp for all
bounded continuous functions ¢. On P(G) we have the convolution product
* of measures making it a topological semigroup; namely (A, p) — A * p is
a continuous map of P(G) x P(G) into P(G).

For g € G let §, denote the point mass concentrated at g, namely the
probability measure such that 64(E) = 1 for a Borel subset E of G if and
only if g € E. It can be seen that {J, | g € G} is a closed subset of P(G) and
the map g — d, gives an embedding of G as a closed subset of P(G), which
is also a homomorphism of the semigroup G into the semigroup P(G).

Notation 5.1. In the sequel we suppress the notation * (as is common in
the area) and write the product A x p of A, u € P(G) as A, and similarly
for n > 2 the n-fold product of u € P(G) by pu™. Also, for any g € G
and p € P(G) we shall write gu for 6, * p and similarly g * 64 by pg.
In view of the observations above this change in notation is unambiguous.
For A € P(G) we denote by supp A the support of A, namely the smallest
closed subset with measure 1. For any closed subgroup H of G we shall
also denote by P(H) the subsemigroup of P(G) consisting of all A € P(G)
such that supp A is contained in H.

93
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With regard to the definitions and the discussion in the sequel it would
be convenient to bear in mind the following connection between probability
measures and “random walks” on G. To each p1 € P(G) there corresponds a
random walk on G with p as its transition probability, namely the Markov
process such that for any ¢ € G and any measurable subset E of G the
probability of starting at a € G and landing in «F (in one step) equals

u(E).

Definition 5.1. Let u € P(G).
i) A probability measure A € P(G) is called a nth root of p if A" = p.
ii) A probability measure o € P(G) is called a factor of u if there exists
p € P(G) such that po = op = p.

It may be noted that a factor in the above sense is a “two sided factor” in
the semigroup structure of P(G). We will not have an occasion to consider
one-sided factors in the usual sense, and the term factor will consistently
mean a two-sided factor.

Remark 5.1. i) Every root of p is a factor of u. On the other hand
in general factors form a much larger class of measures, even for point
measures.

ii) Given g € G, p € P(G) is a factor of §, only if y = ), for some h € G
which commutes with g; if furthermore p is a root of §, then the element
h is a root of g in G.

Remark 5.2. If )\ is a nth root of u, n > 2, then the random walk cor-
responding to pu is the n-step iterate of the random walk corresponding to
the nth root . Similarly factorisation of u corresponds to factorisation of
the corresponding random walks.

The main aim of this article is to discuss results about the sets of roots
and factors of probability measures. Much of the study of these was inspired
by the so called embedding problem, which we will now recall.

Definition 5.2. A probability measure p is said to be infinitely divisible if
it has nth roots for all natural numbers n.

In the (algebraic) study of semigroups an element is said to be
“divisible” if it has roots of all orders, and the term “infinitely” as above is
redundant, but in probability theory it has been a tradition, since the early
years of classical probability to use the phrase “infinitely divisible”.
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Definition 5.3. A family {y}+~0 of probability measures on G is called a
one-parameter convolution semigroup if psys = pspe for all s, ¢ > 0, and it
is said to be a continuous one-parameter convolution semigroup if the map
t — g, t > 0, is continuous.

A probability measure p is said to be embeddable if there exists a con-
tinuous one-parameter convolution semigroup {,ut} such that p = puq.

Every embeddable measure is infinitely divisible, since given p = pq in
a one-parameter convolution semigroup {j}+>o0, for any n > 2, g /n IS &
nth root of p.

There is a rich analytic theory for embeddable measures obtaining in
particular a Lévy-Khintchine representation theorem for these measures.
Such a theory was developed by G.A. Hunt in the case of connected Lie
groups, and has been extended to locally compact groups by Heyer, Hazod
and Siebert (see [9]).

In the light of Hunt’s theory, K.R. Parthasarathy ([13]) raised the ques-
tion whether one can embed a given infinitely divisible probability measure
in a one-parameter convolution semigroup, in particular to obtain a Lévy-
Khintchine representation for it; this would of course involve some extra
condition on G, since infinite divisibility does not always imply embeddabil-
ity; e.g. if G is the group of rational numbers with the discrete topology
then §7 is infinitely divisible, but it cannot be embeddable. Indeed, for the
classical groups R%, d > 1, every infinitely divisible probability measure
is embeddable. A locally compact group G is said to have the embedding
property if every infinitely divisible probability measure on G is embeddable.
It was shown in [13] that compact groups have the embedding property; an
analogous result was also proved for measures on symmetric spaces of non-
compact type, but we shall not be concerned with it here. Parthasarathy’s
work inspired a folklore conjecture that every connected Lie group has the
embedding property. This conjecture is not yet fully settled, though it is
now known to be true for a large class of Lie groups. We will discuss the
details in this respect in the last section.

We will conclude this section by recalling a result which illustrates how
the study of the set of roots plays a role in the embedding problem.

Definition 5.4. A probability measure p is said to be strongly root compact
if the set {\* | A" = p for some n € N, 1 < k < n}, has compact closure in
P(@).
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Theorem 5.1. Let G be a Lie group. If p € P(Q) is infinitely divisible
and strongly root compact then it is embeddable.

Such a result is known, in place of Lie groups, also for a larger class of
locally compact groups; see [12], Corollary 3.7.

In view of Theorem 5.1 to prove that a Lie group G has the embedding
property it suffices to show the following: given p € P(G) infinitely divisible
there exists a closed subgroup H of G and a root v of p such that supp v is
contained in H and, viewed as a probability measure on H, it is infinitely
divisible and strongly root compact. Proving existence of such H and v has
been one of the strategies for proving the embedding theorem.

5.2. Some Basic Properties of Factors and Roots

Let G be a locally compact second countable group and u € P(G). We
begin by introducing some notation associated with . We denote by G(u)
the smallest closed subgroup containing supp pu, or equivalently the smallest
closed subgroup whose complement has measure 0. Let N(u) denote the
normaliser of G(u) in G, namely

N(u)={g€G|grg ™t €G(u) for all x € G(u)}.

Then N(u) is a closed subgroup of G.
The following is an interesting simple lemma.

Lemma 5.1. Let p € P(G) and X\ be a factor of u. Then supp X is con-
tained in N (p).

Proof. Let v € P(G) be such that y = Av = vA. Then we have
supppu = (suppA)(suppr) = (suppv)(suppA). Let g € suppA and
consider any x € (suppv)(suppl), say & = yz with y € suppv and
z € suppA. Then gxg~' = gyzg~!. Picking any w € suppv we can
therefore write gzg~"! as (gy)(zw)(gw)~t. As gy, zw and gw are contained
in (supp A\)(supp v) C supp u this shows that grg=! € G(u). As this holds
for all x € (supp v)(supp A) and the latter set is dense in supp p it follows
that grg~! is contained in G(u) for all z € supppu, and in turn for all

x € G(u). Hence supp A is contained in N (). O

Note that G(p) is a closed normal subgroup of N(u) and we may form
the quotient group N (1)/G(p). Let p: N(p) — N(u)/G(u) be the quotient
homomorphism. Consider the image p(u) of pin N(u)/G(p). It is the point
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mass at the identity element in N(u)/G(p). Let A be any factor of . Then
p(A) is a factor of p(u), and since the latter is a point mass so is p(A). Hence
there exists g € N(u) such that supp A is contained in ¢G(u) = G(n)g. If
furthermore A is a root of p, say A" = pu, then p(A)™ = p(u) and in this
case g as above is such that p(g)” is the identity, so g” € G(p). These
observations may be summed up as follows:

Lemma 5.2. If A is a factor of p then there exist g € N(u) and a o €
P(G(p)) such that X\ = og. If furthermore A\ = u for some n € N then
g" € G(u).

Let A be a root of u, say \» = p with n € N. Let ¢ € N(u) and
o € P(G(u)), as obtained above, such that ¢" € G(u) and A = og. Then
we have

= \"= (Ug)” — U(gag_l)(g20'g_2) . (g("_l)ag_(n_l))g”,

Let ©, : G(u) — G(p) be the automorphism defined by ©,(z) = gzg~! for
all x € G(u); note that a — O4(a), o € P(G(1)), defines a homomorphism
of the P(G(u)). From the identity we see that

Lemma 5.3. A\ is a nth root of p if and only if it is of the form og with
o € P(G(n)) and g € N(p) such that 0©y(0)--- O3 (0)g" = p.

The point about this characterisation is that the relation in the conclu-
sion is entirely within G(u) on which the measure p lives. The measure
o may be viewed as an “affine nth root” of x in G(u), depending on the
automorphism O, and the translating element ¢” from G(u). It is more
convenient when the translating element g™ is the identity element. The
notion of affine nth root in this sense is studied in [7] (the results there
have some consequences to the embedding problem, which however are be-
yond the scope of the present article). In general it may not be possible to
choose the element ¢ (in its G(u) coset in N(u)) to be such that g™ is the
identity element. However there are many natural situations in which this
is possible.

We denote by F'(u) the set of all factors of 4 in P(G). The next result
is about sequences in F'(u), and in particular shows that F'(u) is a closed
set. It may be noted here that for a given n € N the set of all nth roots can
be readily seen to be a closed set. On the other hand the set of all roots of
1 is in general not closed, as can be seen, for example, from the fact that
the roots of unity form a dense subset of the circle group.
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Proposition 5.1. Let {\;} be a sequence in F(u), and let {v;} in P(G)
be such that N\iv; = v;\; = p for all i. Then there exists a sequence
{z;} in N(u) such that the following holds: the sequences {x;\;}, {\ix;},
{z; v} and {viz; '} have compact closures in P(G); in turn the sequences
{z;px; '} and {x;  pa;} are contained in a compact subset of P(G).

The first part of the assertion may be seen from the proof of Propo-
sition 1.2 in [2]; (the statement of the Proposition there is not in this
form, but the proof includes this assertion along the way); see also [1],
Proposition 4.2 for another presentation of the proof. The assertion about
{z;px; '} and {z; 'pz;} follows immediately from the first statement, and
the relation between the measures: indeed, xiuac;l = (xi)\i)(l/iajjl), and

x;l,uac,- = (x;lui)(yimfl), yields the desired conclusion.

Corollary 5.1. F(u) is a closed subset of P(G).

Proof. Let {)\;} be a sequence in F(u) converging to A € P(G), and
{v;} be such that A\;v; = v;\; = p for all i. Let {z;} be a sequence in
N(p) as in Proposition 5.1. Since {\;} and {\;z;} have compact closures,
it follows that {x;} has compact closure in N(p). In turn, together with the
fact that {v;x; '} has compact closure this implies that {v;} has compact
closure. Passing to a subsequence we may assume that it converges, to say
v € P(G). Then Av = vA = pu, and hence \ € F(u), which shows that
F(p) is closed. O

5.3. Factor Sets

Let G be a locally compact group and p € P(G). In this section we will
discuss the factor set of u, under certain conditions on G. As before we
denote the set of factors of u by F(u). Let

Z(p) ={g9 € G| gxr=xg for all € supp u},
the centraliser of supp p (or equivalently of G(r)) in G. Also let

T(n) ={9 € G| gn=pg}

Then Z(u) and T'(u) are closed subgroups and Z(u) is contained in T'(p).
We note that if A is a factor of p then for any x € T'(u), zX is also a factor
of u; if v is such that g = A\v = v then (2\)(va™!) = zpz™! = p=vi =
(vz=1)(zN).

Thus T'(u) (and also Z(u)) act on the space F(u) (viewed with the
subspace topology from P(G)). The key question is how large are the
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quotient spaces F'(u)/T(u), F(p)/Z (1), and specifically whether there exist
compact sets of representatives for the actions.

In the light of Proposition 5.1 the question is related to understanding
sequences {z;} in G such that {z;uz; '} and {x; 'puz;} are contained in
compact sets. Consider the action of G on P(G), with the action of g € G,
which we shall denote by ®,, given by A — glg~'. Then {®,,(u)} and
{q)l_;l(,u)} are contained in compact sets, and we want to know whether
this implies that {z;Z(u)} is relatively compact in G/Z(u), or {z; T (1)} is
relatively compact in G/T(u). A general scheme for studying asymptotic
behaviour of measures under the action of a sequence of automorphisms of
the group is discussed in [1], where a variety of applications are indicated,
including to the study of the factor sets of measures. Questions involving
orbit behaviour typically have better accessibility in the framework alge-
braic groups, and in the present instance also the known results are based
on techniques from the area. We shall now briefly recall the set up, in a
relatively simpler form, and then the results.

Let G be a subgroup of GL(d,R), d > 2. Then G is said to be algebraic
if there exists a polynomial P(z;;) in d? variables z;;, i,j = 1,...,d, such
that G = {(gsj) | P(gi;) = 0}; (normally, over a general field, one takes
a set of polynomials, but over the field of real numbers one polynomial
suffices). Also, it is said to be almost algebraic if it is an open subgroup of
an algebraic subgroup. Almost algebraic subgroups form a rich class of Lie
groups. To that end we may mention that given a connected Lie subgroup
G of SL(d,R) the smallest almost algebraic subgroup G containing G is
such that G is a normal subgroup of G, G /G is isomorphic to R¥ for some
k, and [é, é] = |G, G]; in particular if G; and G2 are two connected Lie
subgroups of GL(d,R) whose commutator subgroups are different then the
corresponding almost algebraic subgroups are distinct. In the sequel we
will suppress the inclusion of the groups G in GL(d, R) as above, and think
of them independently as “almost algebraic groups”, the GL(d, R) being in
the background.

A connected Lie group is said to be W-algebraic if i) AdG is an almost
algebraic subgroup of GL(®), where & is the Lie algebra of G and ii)
for any compact subgroup C contained in the centre of G and =z € G,
{g€ C|g=ayxty! for some y € G} is finite. The class of W-algebraic
groups includes all almost algebraic connected Lie groups, all connected
semisimple Lie groups and also, more generally, all connected Lie groups
whose nilradical is simply connected.

The following result was proved in [6].
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Theorem 5.2. Let G be a W-algebraic group and pn € P(G). Then
F(u)/Z(u) is compact. In particular, F(u)/T(u) and T(u)/Z(p) are com-
pact.

For the case of almost algebraic groups (which in particular are W-
algebraic) a proof of the theorem may be found in [4]. The question was also
studied earlier in [3] and the same conclusion was upheld under a condition
termed as “weakly algebraic”, but the method there is more involved.

There are examples to show that if either of the conditions in Theo-
rem 5.2 do not hold then the conclusion F(u)/Z(p) is compact need not
hold; see [3]. Let us only recall here the example pertaining to the second
condition (in a slightly modified form than in [3]).

Example 5.1. Let H be the Heisenberg group consisting of 3 x 3 upper
triangular unipotent matrices. Let Z be the (one-dimensional) centre of H
and D be a nonzero cyclic subgroup of Z. Let G = H/D. Then T = Z/D
is a compact subgroup forming the center of G, and G/T is topologically
isomorphic to R2. On G we can have a probability measure p which is
invariant under the action of T' by translations, and such that G(u) = G.
Then for any g € G the T-invariant probability measure supported on g7’
is a factor of . On the other hand, since G(p) = G, Z(p) = T. It follows
that F'(u)/Z(pn) cannot be compact.

In all the known examples where F(u)/Z(p) is not compact for a prob-
ability measure p on connected Lie group G, the construction involves in
fact that T'(1)/Z(p) is non-compact. It is not known whether there exist
a connected Lie group G and a p € P(G) such that F(u)/T(u) is non-
compact.

Remark 5.3. Conditions under which {x; ,uaci_l} can be relatively compact
for a probability measure p and a sequence {z;} in the group are not well
understood. When this holds for a p for a sequence {z;} not contained
in a compact subset, u is said to be collapsible. Some partial results were
obtained on this question in [8], and were applied in the study of decay of
concentration functions of convolution powers of probability measures.

5.4. Compactness

Let G be a locally compact second countable group, and let p € P(G).
The set R(u) = {\* | A" = p for somen € N,1 < k < n} is called the
root set of . Recall that p is said to be strongly root compact if the root
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set is relatively compact and, by Theorem 5.1, when this holds infinitely
divisibility of p implies embeddability. Clearly R(u) is contained in the
factor set F'(u), so u is strongly root compact when F'(u) is compact. In
the light of the results of the previous section we have the following.

Corollary 5.2. Let G be a W-algebraic group and let p be such that Z ()
is compact. Then p is strongly root compact. In particular, if G is an
almost algebraic group with compact center then any p € P(G) such that
G(n) = G (namely such that supp p is not contained in any proper closed
subgroup), is strongly root compact.

The following proposition enables extending the class of measures for
which strong root compactness holds (see [11], Proposition 8).

Proposition 5.2. Let G and H be locally compact second countable groups
and suppose there is a continuous surjective homomorphism ¢ : H — G
such that the kernel of ¥ is a compactly generated subgroup contained in
the center of H. Let v € P(H) and X be a subset of R(v) such that 1¥(X)
is relatively compact in P(G). Then X is a relatively compact subset of
P(G).

Corollary 5.3. Let G be a connected Lie group and suppose that there
exists a closed subgroup Z contained in the center such that G/Z is topolog-
ically isomorphic to a W-algebraic group. Letn : G — G/Z be the quotient
homomorphism. If pn € P(G) is such that n(u) is strongly root compact
then p is strongly root compact.

We note in this respect that every closed subgroup contained in the
center of a connected Lie subgroup is compactly generated (see [10]), so
Proposition 5.2 applies.

By an inductive argument using the above corollary one can prove the
following.

Corollary 5.4. i) If G is a connected nilpotent Lie group then every p €
P(G) is strongly root compact.

it) If G is an almost algebraic group and p € P(QG) is such that supp p
is mot contained in any proper almost algebraic subgroup of G then u is
strongly root compact.

It may be mentioned that there is also a group theoretic condition called
Boge strong root compactness which implies strong root compactness of
every measure on the group. Various groups including compact groups,
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connected nilpotent Lie groups and also connected solvable groups G for
which all eigenvalues of Adg, g € G, are real (in this case G is said to have
real roots) are known to satisfy the Boge strong root compactness condition.
The reader is referred to [9], Chapter III for details; see also [12].

5.5. Roots

Let G be a locally compact group and let u € P(G). We now discuss the
set of roots of p. For n € N we denote by R, (1) the set of nth roots of p,
namely A € P(G) such that \" = p.

Let Z(p) and T'(p) be the subgroups as before. We note that if A\ €
R, () and g € T(u) then ghg~' € R, (p), since (ghg™!)" = gA\"g™! =
gug~t = p; (note that a translate of a root by an element of T'(u) or Z(u)
need not be a root). Thus we have an action of T'(1) on each R, (p), with
the action of g € T(u) given by X — g\g~! for all A\ € R, (u). The object
in this case will be to understand the quotient space of R, (x) under this
action.

Let us first discuss a special case. Let G = SL(d,C) and u = 7, where I
is the identity matrix. Then for n € N, R,,(u) consists of {d, | v € G, 2™ =
I}. Every z in this is diagonalisable, viz. has the form gdg~!, for some
g € G and d = diag(o1,...,04), with each o; a nth root of unity; there
are only finitely many of these diagonal matrices. Since p = 7, we have
Z(u) = G, so the diagonal matrices as above form a set of representatives
for the quotient space of R, (1) under the action of T'(u1) defined above. In
particular the quotient space is finite. Analogous assertion holds for any
point mass over an algebraic group.

The following theorem provides a generalisation of this picture in the
special case, to more general probability measures, over a class of Lie groups
G. In the general case the quotient is shown to be a compact set (in place
of being finite in the special case). The condition that we need on G is
described in the following Proposition (see [5], Proposition 2.5).

Proposition 5.3. Let G be a connected Lie group. Then the following
conditions are equivalent.

i) there exists a representation p : G — GL(d,R) for some d € N such
that the kernel of p is discrete.

it) if R is the radical of G then [R,R] is a closed simply connected
nilpotent Lie subgroup.

A connected Lie group satisfying either of the equivalent conditions is
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said to be of class C. Groups of class C include all linear groups, all simply
connected Lie groups (by Ado’s theorem), and all semisimple Lie groups
(through the adjoint representation), and thus form a large class.

Remark 5.4. We note however that not all connected Lie groups are of
class C. An example of this may be given as follows. Let H and D be
an in Example 5.1 and let N = H/D. Then N is not of class C; in fact
it can be shown that for any finite-dimensional representation of N, the
one-dimensional center 7' = Z/D of N is contained in the kernel of the
representation. An example of a non-nilpotent Lie group which is not of
class C may be constructed from this as follows. Note that N/T is iso-
morphic to R2. The group of rotations of R? extends, over the quotient
homomorphism of N onto N/T, to a group of automorphisms of N, say
C. Let G = C - N, the semidirect product. Then G is not of class C.
Similarly SL(2,R), viewed as a group of automorphisms of R? extends to
a group of automorphisms of N and the corresponding semidirect product
is a non-solvable Lie group that is not of class C.

For any A € P(G) we denote by Z°()\) the connected component of the
identity in Z(\).

Theorem 5.3. Let G be a connected Lie group of class C and let u € P(G).
Let n € N and {\;} be a sequence in R,(u). Then there exists a sequence
{2} in Z°(u) such that {z;\iz; '} is relatively compact. Moreover, the
sequence {z;} has also the property that if m € N and {v;} is a sequence in
Runn(pt) such that v" = X\; and Z°(v;) = Z°(\;) for all i, then {zv;z; '}
is relatively compact.

Let n € N and let ~ denote the equivalence relation on R, (1) defined by
A~ N, for \, N € R, (p) if there exists a g € Z%(u) such that X' = gA\g~!.
Then the first assertion in the theorem shows in particular that the quotient
space R, (u)/~ is compact. The point in second statement is that the same
z;’s work for n th as well as mn th roots, and this can be seen to be useful
in taking “inverse limits”. Such limits appear in the proof of the embedding
theorem in [5].

We will now sketch a part of the proof of the theorem, recalling some key
ingredients, which could be of independent interest. For simplicity we shall
assume that G' an almost algebraic group. Let n € N and a sequence {)\;} in
R, (1) be given. By Theorem 5.2 there exists a sequence {x;} in Z(u) such
that {\;x;} is relatively compact. Thus we have a sequence of translates
by elements of Z(u) forming a relatively compact set. Our aim would be to
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find a sequence of conjugates contained in a compact set. To achieve this
we proceed as follows. As {\;z;} is relatively compact, so is {(Aiz;)"}. Re-
call that each A; can be written as o;y;, with o; € P(G(u)) and y; € N ().
Then for any i, (\x;)" = (oyyizi)” = (owyixs)(oiyixs) - - - (oiy:x;), and
a straightforward computation using that z € Z(u) shows that (o;y;2;)"
equals (o;y;)"(c;(z;)a?(z;) - - a(x;)), where a; is the automorphism of
Z(p) defined by a;(z) = yizy; * for all z € Z(u). Therefore (\jz;)" =
AP (e (@i)ag (zq) - af (23)) = pleu(zi)ad (@) - af(2;)).  As {Nxi} has
compact closure in P(G) it follows that {(a;(z;)a?(x;) - a?(x;))} is rela-
tively compact in Z(u).

We now recall an interesting property of nilpotent Lie groups, called
“affine root rigidity”.

Theorem 5.4. Let N be a connected nilpotent Lie group. Let n € N
and {a;} be a sequence of automorphisms of N such that aff = I, the
identity automorphism of N, for all i € N. Let {x;} be a sequence in
N such that {(a;(z;)a(z;) - a(z;))} is relatively compact. Then there
evists a sequence {&} in N such that {& *x;} is relatively compact and
a;(&)a2(&) - a(&) = e, the identity element of N.

While a priori the subgroup Z(u) need not be nilpotent it turns out that
using some structure theory of almost algebraic groups one can reduce to
the case when the sequence {z;} as above is contained in the nilradical of
Z%(u), so this theorem can be applied to the above context. Following the
computation backwards one can now see that {\;&;} is relatively compact
and moreover (\;§;)" = p, namely the translates \;&; are roots of p.

This brings us to another interesting fact, again involving nilpotent Lie
groups:

Theorem 5.5. Let G be a locally compact second countable group and let
w € P(G). Let N be a subgroup of Z(u) which is isomorphic to a simply
connected nilpotent Lie group, and normalized by N(u). Let n € N, X €
P(G), and z € N be such that (\§)™ = X" = p. Then there exists ( € N
such that \é = (p L.

This shows that the translates we had are also conjugates by another
sequence from the same subgroup. This proves the first assertion in The-
orem 5.3. The second part involves keeping track of how the conjugations
operate when we go to higher roots, using again certain properties of nilpo-
tent Lie groups.
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5.6. One-Parameter Semigroups

In this section we discuss one-parameter semigroups and embeddings. One
may think of “one-parameter semigroups” parametrised either by positive
reals, or just by positive rationals (parametrisation by other subsemigroups
of positive reals may also be considered, but we shall not go into that here).
Via the study of the factor sets of measures the following was proved in [3].

Theorem 5.6. Let G be a connected Lie group. Then any homomorphism
© of the semigroup QT (positive rationals, under addition) into P(G) ex-
tends to a homomorphism of RT (positive reals) to P(G).

This reduces the embedding problem for infinitely divisible measures to
finding a rational embedding. (Actually our proof of the embedding result
in [5] does not make serious use of this, but it would help to see the problem
in perspective). It may also be noted that the task of finding a rational
embedding of u € P(G) is equivalent to finding a sequence A\ in P(G) such
that )\ﬁl = p and )\’,j = \,_1 for all k; this produces a homomorphism from
Q* to P(G) given by 2 - A5V While by infinite divisibility . admits
k! th roots for all k, we need to have them matching as above; an arbitrarily
picked k!th root may a priori not have any nontrivial roots at all.

Let us now come to the embedding problem, i.e. embedding a given
infinitely divisible probability measure p, on a Lie group, in a continuous
one-parameter semigroup. Recall that by Theorem 5.1 if p is strongly root
compact then p is embeddable, and in particular the conclusion holds for
the strongly root compact measures as noted in §4. In particular it was
known by the 1970’s that all nilpotent Lie groups and solvable Lie groups
with real roots have the embedding property. The reader is referred to [9]
for details. In [4] it was shown that all connected Lie groups of class C (see
§5) have the embedding property. A simpler and more transparent proof
of the result was given in [5] using Theorem 5.3.

Theorem 5.7. Let G be a Lie group of class C. Let p € P(G) be infinitely
divisible and let r : N — P(G) be a map such that r(m)™ = p for allm € N.
Then there exist sequences {m;} in N and {z;} in Z°(n), and n € N such
that n divides m; for alli and the sequence {z;r(m;)™/"2; '} (consisting of
n th roots of 1) converges to a n th root v of p which is infinitely divisible and
strongly root compact on the subgroup Z(Z°(v)), the centraliser of Z°(v) in
G. Hence 1 is embeddable.
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An overall idea of the proof is as follows. A subset M of N is said to
be infinitely divisible if for every k € N there exists m € M such that k
divides m. Let M = {m;} be an infinitely divisible set and n € N. By
infinite divisibility of p we can find a sequence p; in P(G) such that for

My

all 7, p; is a mynth root of pr. Then p;** is a nth root of p for all i. By
Theorem 5.3 there exists a sequence {z;} in Z°(u) such that {z;p[" 2z, '}
is relatively compact. Note that any limit point of the sequence is a nth
root of p which is infinitely divisible in G. We need the limit to be such
that it is simultaneously infinitely divisible and strongly root compact in a
suitable subgroup of H. For this we need to pick the set M as above and n
suitably, which involves in particular analysing how Z°(\) changes over the
roots A, of higher and higher order. For full details the reader is referred
to the proof in original ([5]).

We conclude with some miscellaneous comments concerning the status
of the embedding problem.
i) For a general connected Lie group G, not necessarily of class C, we get a
“weak embedding theorem”:

Theorem 5.8. Let G be a connected Lie group and i € P(G) be infinitely
divisible. Let T the maximal compact subgroup of [R, R], where R is the
solvable radical of G. Let p : G — G/T the quotient homomorphism, and
let M =p=Y(Z°%p(n))). Then there exists a sequence {¢;} in M such that
QMCZ-_I converges to an embeddable measure.

This can be deduced from Theorem 5.7, using the fact that G/T as
above is of class C (see [5]).
ii) The embedding problem has been studied also for various other classes
of groups: discrete subgroups of GL(d,R) (Dani and McCrudden), Finitely
generated subgroups of GL(n,A), where A is the field of algebraic num-
bers (Dani and Riddhi Shah), p-adic groups (Riddhi Shah, McCrudden -
Walker); see [12] for some details and references.

References

[1] Dani, S. G. (2006). Asymptotic behaviour of measures under automorphisms.
Probability Measures on Groups: Recent Directions and Trends, pp. 149—
178, Tata Inst. Fund. Res., Mumbai, and Narosa Publishing House, Delhi;
international distribution by the American Mathematical Society.

[2] Dani, S. G. and McCrudden, M. (1988). Factors, roots and embeddability
of measures on Lie groups. Math. Zeits. 199 369-385.



Measures on Lie Groups 107

Dani, S. G. and McCrudden, M. (1988). On the factor sets of measures
and local tightness of convolution semigroups over Lie groups. J. Theor.
Probability 1 357-370.

Dani, S. G. and McCrudden, M. (1992). Embeddability of infinitely divisible
distributions on linear Lie groups. Invent. Math. 110 237-261.

Dani, S. G. and McCrudden, M. (2007). Convolution roots and embeddings
of probability measures on Lie groups. Adv. Math. 209 198-211.

Dani, S. G. and Raja, C. R. E. (1998). Asymptotics of measures under group
automorphisms and an application to factor sets. Lie Groups and Ergodic
Theory (Mumbai, 1996), 59-73, Tata Inst. Fund. Res. Stud. Math., 14, Tata
Inst. Fund. Res., Bombay, and Narosa Publishing House, Delhi.

Dani, S. G. and Schmidt, K. (2002). Affinely infinitely divisible distributions
and the embedding problem. Math. Res. Lett. 9 607-620.

Dani, S. G. and Shah, R. (1997). Collapsible probability measures and con-
centration functions on Lie groups. Math. Proc. Cambridge Philos. Soc. 122
105-113.

Heyer, H. (1977). Probability Measures on Locally Compact Groups. Springer
Verlag.

Hochschild, G. (1965). The Structure of Lie Groups. Holden-Day.
McCrudden, M. (1981). Factors and roots of large measures on connected
Lie groups. Math. Z. 177 315-322.

McCrudden, M. (2006). The embedding problem for probabilities on locally
compact groups. Probability Measures on Groups: Recent Directions and
Trends, pp. 331-363, Tata Inst. Fund. Res., Mumbai, and Narosa Publish-
ing House, Delhi; international distribution by the American Mathematical
Society.

Parthasarathy, K. R. (1967). On the imbedding of an infinitely divisible
distribution in a one-parameter convolution semigroup. Theor. Probab. Appl.
12 373-380.

Parthasarathy, K. R. (1967). Probability Measures on Metric Spaces.
Academic Press.






Chapter 6
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Higher criticism has been proposed as a tool for highly multiple hypoth-
esis testing or signal detection, initially in cases where the distribution
of a test statistic (or the noise in a signal) is known and the component
tests are statistically independent. In this paper we explore the ex-
tent to which the assumptions of known distribution and independence
can be relaxed, and we consider too the application of higher criticism
to classification. It is shown that effective distribution approximations
can be achieved by using a threshold approach; that is, by disregarding
data components unless their significance level exceeds a sufficiently high
value. This method exploits the good relative accuracy of approxima-
tions to light-tailed distributions. In particular, it can be effective when
the true distribution is founded on something like a Studentised mean,
or on an average of related type, which is commonly the case in practice.
The issue of dependence among vector components is also shown not to
be a serious difficulty in many circumstances.

6.1. Introduction

Donoho and Jin (cf. [8]) developed higher-criticism methods for hypothesis
testing and signal detection. Their methods are founded on the assumption
that the test statistics are independent and, under the null hypothesis,
have a known normal distribution. However, in some applications of higher

*The first author is affiliated to both the universities, whereas the second author is
affiliated to the second.
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criticism, for example to more elaborate hypothesis testing problems and
to classification, these assumptions may not be tenable. For example, we
may have to estimate the distributions from data, by pooling information
from components that have “neighbouring” indices, and the assumption of
independence may be violated.

Taken together, these difficulties place obstacles in the way of using
higher-criticism methods for a variety of applications, even though those
techniques have potential performance advantages. We describe the effects
that distribution approximation and data dependence can have on results,
and suggest ways of alleviating problems caused by distribution approx-
imation. We show too that thresholding, where only deviations above a
particular value are considered, can produce distinct performance gains.
Thresholding permits the experimenter to exploit the greater relative accu-
racy of distribution approximations in the tails of a distribution, compared
with accuracy towards the distribution’s centre, and thereby to reduce the
tendency of approximation errors to accumulate. Our theoretical argu-
ments take sample size to be fixed and the number of dimensions, p, to be
arbitrarily large.

Thresholding makes it possible to use rather crude distribution approx-
imations. In particular, it permits the approximations to be based on rela-
tively small sample sizes, either through pooling data from a small number
of nearby indices, or by using normal approximations based on averages of
relatively small datasets. Without thresholding, the distribution approxi-
mations used to construct higher-criticism signal detectors and classifiers
would have to be virtually root-p consistent.

We shall provide theoretical underpinning for these ideas, and explore
them numerically; and we shall demonstrate that higher criticism can ac-
commodate significant amounts of local dependence, without being seri-
ously impaired. We shall further show that, under quite general condi-
tions, the higher-criticism statistic can be decomposed into two parts, of
which one is stochastic and of smaller order than p® for any positive e,
and the other is purely deterministic and admits a simple, explicit formula.
This simplicity enables the effectiveness of higher criticism to be explored
quite generally, for distributions where the distribution tails are heavy, and
also for distributions that have relatively light tails, perhaps through be-
ing convolutions of heavy-tailed distributions. These comments apply to
applications to both signal detection and classification.
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In the contexts of independence and signal detection, [8] used an
approach alternative to that discussed above. They employed delicate,
empirical-process methods to develop a careful approximation, on the
Vioglogp scale, to the null distribution of the higher-criticism statistic.
It is unclear from their work whether the delicacy of the log-log approxima-
tion is essential, or whether significant latitude is available for computing
critical points. We shall show that quite crude bounds can in fact be used,
in both the dependent and independent cases. Indeed, any critical point on
a scale that is of smaller order than p¢, for each € > 0, is appropriate.

Higher-criticism methods for signal detection have their roots in un-
published work of Tukey; see [8] for discussion. Optimal, but more tightly
specialised, methods for signal detection were developed by [17-19] and [20],
broadly in the context of techniques for multiple comparison (see e.g. the
methods of Bonferroni, [30] and [26]), for simultaneous hypothesis testing
(e.g. [9] and [23]) and for moderating false-discovery rates (e.g. [2], [28]
and [1]). Model-based approaches to the analysis of high-dimensional mi-
croarray data include those of [29], [16], [12] and [11]. Related work on
higher criticism includes that of [25] and [4]. Higher-criticism classification
has been discussed by [15], although this work assumed that test statistic
distributions are known exactly. Applications of higher criticism to sig-
nal detection in astronomy include those of [22], [5, 6], [7] and [21]. [14]
discussed properties of higher criticism under long-range dependence.

Our main theoretical results are as follows. Theorem 6.1, in sec-
tion 6.3.1, gives conditions under which the higher-criticism statistic, based
on a general approximation to the unknown test distributions, can be ex-
pressed in terms of its “ideal” form where the distributions are known, plus
a negligible remainder. This result requires no assumptions about indepen-
dence. Theorem 6.2, in section 6.3.2, gives conditions on the strength of
dependence under which the higher-criticism statistic can be expressed as
a purely deterministic quantity plus a negligible remainder. Theorem 6.3,
in section 6.3.3, describes properties of the deterministic “main term” in
the previous result. Discussion in sections 6.3.3 and 6.4 draws these three
results together, and shows that they lead to a variety of properties of sig-
nal detectors and classifiers based on higher criticism. These properties are
explored numerically in section 6.5.
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6.2. Methodology

6.2.1. Higher-criticism signal detection

Assume we observe independent random variables Z1, ..., Z,, where each
Z; is normally distributed with mean j; and unit variance. We wish to
test, or at least to assess the validity of, the null hypothesis Hy that each
i equals v;, a known quantity, versus the alternative hypothesis that one
or more of the p; are different from v;. If each v; equals zero then this
context models signal detection problems where the null hypothesis states
that the signal is comprised entirely of white noise, and the alternative
hypothesis indicates that a nondegenerate signal is present.

A higher-criticism approach to signal detection and hypothesis testing,
a two-sided version of a suggestion by [8], can be based on the statistic

c= in u)"Y? , 2 u) — Y(u .
he = il v DA% -l <0 - 2w}, 6D

where ¥(u) = 2 ®(u) — 1 is the distribution function of |Z; — v;| under Hy,
® is the standard normal distribution function, ¥ (u) = p ¥(u) {1 — U(u)}
equals the variance of } . {I(|Z; — vj| < u) — ¥(u)} under Ho, and C' is a
positive constant.

The statistic at (6.1) provides a way of assessing the statistical signifi-
cance of p tests of significance. In particular, Hy is rejected if hc takes too
large a negative value. This test enjoys optimality properties, in that it is
able to detect the presence of nonzero values of 11; up to levels of sparsity
and amplitude that are so high and so low, respectively, that no test can
distinguish between the null and alternative hypotheses ([8]).

6.2.2. Generalising and adapting to an unknown null
distribution

When employed in the context of hypothesis testing (where the v;s are not
necessarily equal to zero), higher-criticism could be used in more general
settings, where the centered Z;s are not identically distributed. Further,
instead of assuming that the v;s are prespecified, they could be taken equal
to the jth component of the empirical mean of a set of ny identically
distributed random p-vectors Wh,..., Wy, , where W; = (Wir,..., W)
has the distribution of (Z1,...,Z,) under the null hypothesis Hy. Here,
Hj asserts the equality of the mean components of the vector Z, and of
the vectors W1, ..., W,,, , whose distribution is known except for the mean
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which is estimated by its empirical counterpart. There, we could redefine hc
by replacing, in (6.1), v; by W; = n‘jvl Zj W;; and ¥ by the distribution
Uy, say, of |Z; — W ;| under the null hypothesis. This gives, in place of
he at (6.1),

hew = inf G ()2 S I0Z,~ Wy <) — By}, (62
j=1

where
Z u) {1 = Wwj(u)} (6.3)

and, given C,t > 0, Uy = Uw (C,t) is the set of u for which v > t and
Yw (u) > C. Here t denotes a threshold, and the fact that, in the definition
of Uy, we confine attention to u > t, means that we restrict ourselves to
values of u for which distribution approximations are relatively accurate;
see section 6.4.2 for details.

Further, in practical applications it is often unrealistic to argue that
U (respectively, Wy;), is known exactly, and we should replace ¥ in (6.1)
and in v (respectively, Uy in (6.2) and in ¢w) by an estimator T of U
(respectlvely, \IIW] of Wy ;). This leads to an empirical approximation,
he = hC(C t), to he:

hcfmf 1/) 1/22{1 |Z; — 1/j|§u)f\fl(u)},

ueld
where ¢ (u) = pU(u) {1 — W(u)} and U = U(C, ) is the set of u for which
u >t and ¢(u) > C, and to an empirical approximation hew = th(C t),
to hCW.

hew = inf ()2 Y {112, - Wyl <) = Twy(w)},  (6.4)

wEUWw

where
u) = Z Uy (u) {1 — Wy (u)} (6.5)

and ij = ij (C,t) is the set of u for which v > ¢ and @W (u) > C. Here t
denotes a threshold, and the fact that, in the definition of Uy, we confine
attention to w > t, means that we restrict ourselves to values of u for which
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distribution approximations are relatively accurate; see section 6.4.2 for
details.

Estimators of Wy ; are, broadly speaking, of two types: either they
depend strongly on the data, or they depend on the data only through the
way these have been collected, for instance through sample size. In the
first case, \TIW]- might, for example, be computed directly from the data,
for example by pooling vector components for nearby values of the index j.
(In genomic examples, “nearby” does not necessarily mean close in terms
of position on the chromosome; it is often more effectively defined in other
ways, for example in the sense of gene pathways.)

Examples of the second type come from an important class of problems
where the variables W;; are obtained by averaging other data. For example,

they can represent Studentised means, W;; = N‘%JQ UWU /Swij, or Student

t statistics for two-sample tests, W;; = N‘%JQ (Uwija — I_TJWZ-]-VQ)/(S‘%VZ-]-71 +
,S"%VZ-]-72)1/27 where, for i = 1,...,nw and j = 1,...,p, Uwyj and S‘Q/Vij,k,
k = 1,2 denote respectively the empirical mean and empirical variance of
Nw; independent and identically distributed data; or statistics computed
in a related way. See e.g. [24], [27], [13] and [10]. In such cases, if Z; and
Wij, ..., Wy, were identically distributed, Z; -W j would be approximately
normally distributed with variance ry = 1 + n;Vl, and \/I}Wj would be the
distribution function of the normal N(0, ) distribution, not depending
on the index j, and depending on the data only through the number ny
of observations. See section 6.3.3 for theoretical properties for this type of
data.

Formula (6.5), giving an empirical approximation to the variance of the
series on the right-hand side of (6.4), might seem to suggest that, despite
the increased generality we are capturing by using empirical approxima-
tions to the distribution functions ¥y ;, we are continuing to assume that
the vector components Wjy, ..., W;, are independent. However, indepen-
dence is not essential. By choosing the threshold, ¢, introduced earlier in
this section, to be sufficiently large, the independence assumption can be
removed while retaining the validity of the variance approximation at (6.5).
See section 6.4.2.

6.2.3. Classifiers based on higher criticism

The generality of the higher-criticism approximation in section 6.2.2 leads
directly to higher-criticism methods for classification. To define the classi-
fication problem, assume we have data, in the form of independent random
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samples of p-dimensional vectors X = {X7,..., X, } from population Iy,
and Y = {Y1,...,Y,, } from population ITy, and a new, independent ob-
servation, Z, from either IIx or ITy. (In our theoretical work the sample
sizes nx and ny will be kept fixed as p increases.) We wish to assign Z to
one of the populations. In the conventional case where p is small relative
to sample size, many different techniques have been developed for solving
this problem. However, in the setting in which we are interested, where p
is large and the sample size is small, these methods can be ineffective, and
better classification algorithms can be obtained by using methods particu-
larly adapted to the detection of sparse signals.

Let X;;, Yi; and Z; denote the jth components of X;, Y; and Z, re-
spectively. Assume that px; = E(X;;) and py; = E(Y;;) do not depend
on 7, that the distributions of the components are absolutely continuous,
and that the distributions of the vectors (X;1 — pux1,...,Xip — txp),
(Yio1 — vt - -+, Yipp — pyp) and (21 — E(Z4), ..., Z, — E(Z,)) are identical
to one another, for 1 <i; <nx and 1 < iy < ny.

In particular, for each 7y, i3 and j the distributions of X; ; and Y;,; dif-
fer only in location. This assumption serves to motivate methodology, and
is a convenient platform for theoretical arguments. Of course, many other
settings can be addressed, but they are arguably best treated using their
intrinsic features. Instances of particular interest include those where each
component distribution is similar to a Studentised mean. A particular rep-
resentation of this type, involving only location changes, will be discussed
extensively in section 6.3.3. Other variants, where non-zero location also
entails changes in shape, can be treated using similar arguments, provided
the shape-changes can be parametrised.

With W denoting X or Y we shall write Viy; for a random variable
having the distribution of Z; — V_V_j, given that Z is drawn from ITy . If
nx = ny then the distribution of Vy-; depends only on j, not on choice
of W. Let )_(_j = nx ! >; Xi; and define Yj analogously. Let Wy ;
be the distribution function of |Viy;|, and put Aw;(u) = I(|Z; — W] <
u) — Uywj(u). )

If Z is from Iy then, for each j, |Z; — W ;| has distribution function
Uy, and so, for each fixed u, A ;(u) has expected value zero. On the
other hand, since the distributions of X;; and Y;; may differ in location,
then, if Z is not from I, P(|Z; — W, | < u) may take a lesser value
than it does when Z is from Ilyy, with the result that the expected value of
Awj(u) can be strictly negative. Provided an estimator of Uy ; is available
for W =X and W =Y, this property can be used to motivate a classifier.
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In particular, deﬁmng hc X and th as at (6.4), we should classify Z as
coming from ITx if hc x > hcy7 and as coming from IIy otherwise.

6.3. Theoretical Properties

6.3.1. Effectiveness of approximation to hcy by }/u\:W

We start by studying the effectiveness of the approximation by EEW to
hey, where hey and hey are defined as at (6.2) and (6.4), respectively
(arguments similar to those given here can be used to demonstrate the
effectiveness of the approximation by he to hc). To embed the case of
hypothesis testing in that of classification, we express the problem of hy-
pothesis testing as one where the vector Z comes from a population Ilz,
equal to either IIx or Ilyy, and where the data vectors Wy, ..., W, come
from Ily, with Iy = Iz under Hy, Iy = Iy otherwise, and (I, IIr)
denoting one of (Ilx,ITy) or (IIy, IIx). We assume throughout section 6.3
that each \fle is, with probability 1, a continuous distribution function
satisfying \/I}Wj (x) > 0asx | 0and \/I}Wj () = 1 as x T co. We also make
the following additional assumptions.

Condition A

(A1) The threshold, ¢ = ¢(p), varies with p in such a manner that: For each
C > 0and for W = X and Y, Sup,cyspy (o) Yw (w) 2 30, [Wyy(u) —
W (u)] = op(1).

(A2) For a constant ug > 0, for each of the two choices of W, and for all
sufficiently large p, 1w is nonincreasing and strictly positive on [ug, 00);
and the probability that @W is nonincreasing on [ug, 00) converges to 1 as
p — 00.

The reasonableness of (A1) is taken up in section 6.4.2, below. The first
part of (A2) says merely that 1y inherits the monotonicity properties of
its component parts, Uy ; (1 — Yy;). Indeed, if Wy  is the distribution
function of a distribution that has unbounded support, then Wy ; (1— Py ;)
is nonincreasing and strictly positive on [ug, c0) for some ug > 0, and (A2)
asks that the same be true of Yw =, Ww; (1 — W;). This is of course
trivial if the distributions Wy ; are 1dent1cal The second part of (A2)
states that the same is true of the estimator, 1/)W, of ¥y, which condition
is satisfied if, for example, the observations represent Studentised means.

The next theorem shows that, under sufficient conditions, EEW is an
effective approximation to hcyy. Note that we make no assumptions about
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independence of vector components, or about the population from which Z
comes. In particular, the theorem is valid for data drawn under both the
null and alternative hypotheses.

Theorem 6.1. Let 0 < Cy < Uy < U3 < o0 and 0 < C < C3, and assume
that 1w (t) > Cs for all sufficiently large p. If (A1) and (A2) hold then,
with W =X orY,

hew (Cyt) = {1+ 0,(1)}  inf by (u) /2
uGfow(C,t)

X Z {1(1Z; = W,| <u) = Uw;(u)} +0,(1), (6.6)

hew (C1, 1) + 0p(1) < {1+ 0,(1)} hew (Ca, t) + 0p(1)
< {14 0p(1)} hew (Cs,t) 4 0p(1) . (6.7)

We shall see in the next section that, in many cases of interest, when Z
is not drawn from Ily, the higher-criticism statistic hcyy tends, with high
probability, to be negative and does not converge to zero as p — oco. Our
results in the next section also imply that, when Z comes from Il , the
last, added remainders 0, (1) on the far right-hand sides of (6.6) and (6.7)
are of smaller order than the earlier quantities on the right. Together, these
properties justify approximating hcyy by HEW.

6.3.2. Remowving the assumption of independence

We now study the properties of higher-criticism statistics in cases where
the components are not independent. To illustrate the type of dependence
that we have in mind, let us consider the case where Z is drawn from Ily,
and the variables V; = Z; — W,j form a mixing sequence with exponen-
tially rapidly decreasing mixing coefficients. The case where the mixing
coefficients decrease only polynomially fast, as functions of p, can also be
treated; see Remark 6.3.

To give a specific example, note that the cases of moving-average pro-
cesses or autoregressions, of arbitrary (including infinite) order, fall nat-
urally into the setting of exponentially fast mixing. Indeed, assume for
simplicity that the variables V; form a stochastic process, not necessarily
stationary, that is representable as

o0
Vi = E ik &k s
k=1
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where the j;’s are constants satisfying |a;x| < const. p* for all j and k,
0 < p < 1, and the disturbances {; are independent with zero means and
uniformly bounded variances. Given ¢ > 1, let £ denote the integer part of
c logp, and put

¢
!
Vi= E @k Ej—k -
k=1

Then, by Markov’s inequality,

[e )

2
PV =Vl > <uB( 30 ang) =0 ),
k=/¢+1

uniformly in v > 0, ¢ > 1 and integers j. By taking u = p~¢ for C > 0
arbitrarily large, and then choosing ¢ > 2 C'|log p| !, we deduce that the
approximants V/ have the following two properties: (a) P(|V; — V]| <
p~9) =1-0(pY), uniformly in 1 < j < p; and (b) for each 7 in the
range 2 < r < p, and each sequence 1 < j; < ... < j, < p satisfying
Jk+1 —Jk > clogp+1for 1 <k <r—1, the variables V} , for 1 <k <,
are stochastically independent.

The regularity condition (B1), below, captures this behaviour in greater
generality. There, we let Viy;, for 1 < j < p, have the joint distribution of
the respective values of Z; — V_V_j when Z is drawn from ITyy. At (B2), we
also impose (a) a uniform Hoélder smoothness condition on the respective
distribution functions xw; of Viy;, (b) a symmetry condition on yw;, and
(c) a restriction which prevents the upper tail of Wy, for each j and W,
from being pathologically heavy.

Condition B

(B1) For each C e > 0, and each of the two choices of W, there exists
a sequence of random variables V‘jvj, for 1 < j < p, with the properties:
(@) P([Vw; — Vil < p~ %) =1—-0(p~%), uniformly in 1 < j < p; and
(b) for all sufficiently large p, for each r in the range 2 < r < p, and each
sequence 1 < j; < ... < j, < p satisfying jr41 —jp = pfor 1 <k <r—1,
the variables VI;ijv for 1 < k < r, are stochastically independent.

(B2) (a) For each of the two choices of W there exist constants Cy, Cy > 0,
the former small and the latter large, such that |xw;(u1) — xw;(u2)| <
Co |uy — uz|®*, uniformly in ui,us > 0,1 <j<p<ocand W =X orY;
(b) the function Gwj(u,v) = P(|Vir; + v| < w) is nonincreasing in |v| for
each fixed u, each choice of W and each j; and (c) maxi<j<p {1-Uw;(u)} =
O(u=°), for W = X, Y and for some € > 0.
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Part (b) of (B2) holds if each distribution of Viy; is symmetric and
unimodal.

As explained in the previous section, in both the hypothesis testing and
classification problems we can consider that W = X or Y, indicating the
population from which we draw the sample against which we check the new
data value Z. Let uz = ux if Z is from Ily, and uz = py otherwise, and
define vwz; = pzj — pwj,

EWZ(C, t) = sup 7,/1W(u)*1/2
uGfow(C,t)

< > {P(Vivjl < u) — P([Viv; + vwzi| <u)}. (6.8)

j=1

In view of (B2)(b), the quantity within braces in the definition of heyy »
is nonnegative, and so hewz > 0. Theorem 6.2 below describes the extent
to which the statistic hcyy, a random variable, can be approximated by the
deterministic quantity heyy .

Theorem 6.2. Let C' > 0 be fized, and take the threshold, t = t(p), to
satisfy t > 0 and Yw (t) > C, thus ensuring that Uy (C,t) is nonempty.
Let hew and hewz denote hey (C,t) and hey z(C,t), respectively. If (B1)
and (B2) hold then for each € > 0,

hew = —{1+ 0p(1)} hewz + O, (p9) (6.9)

An attractive feature of (6.9) is that it separates the “stochastic” and
“deterministic” effects of the higher-criticism statistic hcyy. The stochastic
effects go into the term O,(p®). The deterministic effects are represented
by heyz. When the data value Z is from the same population ITyy as the
dataset with which it is compared, each vy z; = 0 and so, by (6.8), hey z =
0. Property (6.9) therefore implies that, when Z is from Ilyy, hey = O, (p€)
for each € > 0. In other cases, where Z is drawn from a population different
from that from which come the data with which Z is compared, heyyz is
generally nonzero. In such instances the properties of hcyy can be computed
by relatively straightforward, deterministic calculations based on heyyz. In
particular, when W # Z, if heyy is of order larger than p¢ for some
€ > 0 (see (6.13) below), then it follows directly that the probability of
rejecting the null hypothesis, in the hypothesis testing problem, or of correct
classification, in the classification problem, converges to 1. See, for example,
section 6.3.3.
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Remark 6.1. Sharpening the term O, (p°) in (6.9). If, as in the problem
treated by [8], the distribution functions Wy, are all identical and the
variables X, ;, and Yj,j,, for 1 <i; <nx, 1 <iy <ny and 1 < j1, j2 < p,
are completely independent, then a refinement of the argument leading to
(6.9) shows that the O,(p°) term there can be reduced to O, (y/logp). Here
it is not necessary to assume that the common distributions are normal.
Indeed, in that context [8] noted that the O,(p) term in (6.9) can be

replaced by Op(y/loglogp).

Remark 6.2. Relaxing the monotonicity condition (B2)(b). Assumption
(B2)(b) asks that Gw ;(u,v) = P(|Viy; +v| < u) be nonincreasing in |v| for
each u. However, if the distributions of X;; and Yj; are identical for all but
at most ¢ values of j then it is sufficient to ask that, for these particular j,
it be possible to write, for each ¢ > 0,

Gw;(u,v) = Hw;(u,v) + o{p ¢ " tw(u)'/?},

uniformly in 1 < j <p,u >t and W = X and Y, where each Hy; has the
monotonicity property asked of Gyw; in (B2)(b).

Remark 6.3. Mixing at polynomial rate. The exponential-like mixing rate
implied by (B1) is a consequence of the fact that (a) and (b) in (B1) hold
for each C,e > 0. If, instead, those properties apply only for a particular
positive pair C,e, then (6.9) continues to hold with p¢ there replaced by
p", where n > 0 depends on C,e from (B1), and decreases to zero as C
increases and € decreases.

6.3.3. Delineating good performance

Theorem 6.2 gives a simple representation of the higher-criticism statistic.
It implies that, if Z is drawn from Il where (W, Q) = (X,Y) or (Y, X),
and if hey 7z exceeds a constant multiple of p¢ for some e > 0, then the
probability that we make the correct decision in either a hypothesis testing
or classification problem, Z converges to 1 as p — oo. We shall use this
result to determine a region where hypothesis testing, or classification, are
possible. For simplicity, in this section we shall assume that each pux; = 0,
and py; = 0 for all but ¢ values of j, for which py; = v > 0 and v = v(p)
diverges with p and does not depend on j. The explicit form of heyyz,
at (6.8), makes it possible to handle many other settings, but a zero-or-
v representation of each mean difference permits an insightful comparison
with results discussed by [8].
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In principle, two cases are of interest, where the tails of the distribution
of Viy; decrease polynomially or exponentially fast, respectively. However,
in the polynomial case it can be proved using (6.8) that the hypothesis test-
ing and classification problems are relatively simple. Therefore, we study
only the exponential setting. In this context, and reflecting the discussion
in section 6.2.2, we take the distribution of Viy-; to be that of the difference
between two Studentised means, standardised by dividing by /2, and the
distributions of X;; and Y;; to represent translations of that distribution.
See (C1) and (C2) below. Alternatively we could work with the case where
X;j is a Studentised mean for a distribution with zero mean, and Y;; is
computed similarly but for the case where the expected value is shifted
by 4+v. Theoretical arguments in the latter setting are almost identical to
those given here, being based on results of [32].

Condition C

(C1) For each pair (W, j), where W = X or Y and 1 < j < p, let Uw i,
for 1 < k < Nywj, denote random variables that are independent and
identically distributed as Uw;, where E(Uw;) = 0, E(Uy,;) is bounded
uniformly in (W, j), E(UZ, j) is bounded away from zero uniformly in (W, j),
and Nw; > 2. Let Vyy; have the distribution 2-1/2 times the difference

between two independent copies of N‘%Q.

: Uwj/Sw;, where Uy; and Sy,
denote respectively the empirical mean and variance of the data Uy j1,. ..,
Uw Ny, Take px; = 0 for each j, uy; = 0 for all but ¢ = ¢(p) values of

J,8ay ji,...,7q, and |y ;| = v for these particular values of j.

(C2) The quantity v in (C1) is given by v = /2w log p, and the threshold,
t, satisfies B < t < 4/2s logp for some B,s > 0, where 0 < w < 1 and
0 < s < min(4w, 1).

The setting described by (C1) is one where a working statistician would,
in practice, generally take each distribution approximation \T/Wj (u) to be
simply P(|¢] < u), where £ has the standard normal distribution. The
signal detection boundary in this setting is obtained using a polynomial
model for the number of added shifts:

for some % <B<1, q~ const.pt™? (6.10)

(see [8]). The boundary is then determined by:

. é < ‘
w > (6.11)
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The inequality (6.11) is also sufficient in hypothesis testing and classifi-
cation problems where the data are exactly normally distributed. Likewise
it is valid if we use a normal approximation and if that approximation is
good enough. The question we shall address is, “how good is good enough?”
The following theorem answers this question in cases where Ny ; diverges
at at least a logarithmic rate, as a function of p. The proof is given in
Appendix A.2.

Theorem 6.3. Assume (C1), (C2), (6.10), that w satisfies (6.11), and
that, for W =X orY and 1 <j <p, Nw;, giwen in (Cl), satisfies

NV_Vi (logp)* — 0. (6.12)

Suppose too that Z is from Ilg, where (W, Q) = (X,Y) or (Y, X). Then,
for constants B,n > 0,

RWZ Z Bpn. (613)

Condition (6.12) confirms that the samples on which the coordinate
data are based need be only logarithmically large, as a function of p, in
order for the higher-criticism classifier to be able to detect the difference
between the W and @ populations.

6.4. Further Results

6.4.1. Alternative constructions of hcy and 1TcW

There are several other ways of constructing higher-criticism statistics when
the distribution functions Wy; depend on j and have to be estimated. For
example, omitting for simplicity the threshold ¢, we could re-define hcy as:

P

o 1/2 . —1/2 T T-1

hew =p ! u:pu(llnfu)zc {u (1_U)} / jz:; [I{lzj_W.ﬂ : WWJ(U)}_H] .
(6.14)

If Z were drawn from IIy then the random variable K = >, I{|Z; —

W, < \I/;Vl](u)} would have exactly a binomial Bi(p, u) distribution. The

normalisation in formula (6.14) for EEW reflects this property. However,
replacing K by K = > HlZ; - W, < \f/a}](u)}, as in (6.14), destroys
the independence of the summands, and makes normalisation problematic.
This is particularly true when, as would commonly be the case in practice,
the estimators \TIW]- are computed from data W;;, for values of j; that are
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local to j. In such cases the estimators \TIW]- would not be root-p consistent
for the respective distributions Wyy ;.

If the distribution of | Z; — W ;| were known up to its standard deviation,
owj, and if we had an estimator, oy, of ow; for each W and j, then we
could construct a third version of EEW:

P

hew = inf  ow(w) 2> {1(1Z; = Wl/6w; < u) — Bw;(u)},
u:ow (u)>C =

where ®yy; denotes the distribution function of |Z; — W;|/ow,; under the

assumption that Z is drawn from Iy, and ¢ (u) = Zj Dy (1 — Dyyy).

Again, however, the correlation induced through estimation, this time the

estimation of oy ;, makes the normalisation difficult to justify.

In some problems there is good reason to believe that if the marginal
means of the populations IIx and Iy differ, then the differences are of a
particular sign. For example, it might be known that px; > py; for all j.
In this case we would alter the construction of the higher-criticism statistics
hew and hey, at (6.2) and (6.4), to:

p
os ; —1/2 = .
heiy = It vip(w) / Zl {1(Z; =W, <u) =¥ (w)}, (6.15)
p

0S

P
hey = inf o (u) ™2 Y {I(Z; - W, <u) = i (w)}, (6.16)
uEUR; j=1

respectively, where
P N P N
wlu) = Z Uiy (u) {1_‘11?/%(@} s Yp(u) = Z Ty (u) {1_‘1’%’]‘@)} )
j=1 j=1

\Ti?,aj (u) is an empirical approximation to the probability Wi . (u) = P(Z; —
W, < u) when Z is drawn from Iy, Uy = Uy (C, 1) is the set of u for
which u > t, Y95 (u) > C, U is defined analogously, and the superscript
“0s” denotes “one-sided.” When using ﬂa’; we would classify Z as coming
from I if EE;S > ﬂEc:, and as coming from IIy otherwise.

Remark 6.4. Adapting Theorems 6.1 and 6.2. Theorems 6.1 and 6.2
have direct analogues, formulated in the obvious manner, for the one-sided
classifiers heyy and heyy introduced above. In particular, the one-sided
version of heyyz, at (6.8), is obtained by removing the absolute value signs
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there. The regularity conditions too differ in only minor respects. For
example, when formulating the appropriate version of (A1) we replace Wy,
Ww;j, Yw and w by Wiy, Uiy, ¢y and iy, respectively. Part (b) of
(B2) can be dropped on this occasion, since its analogue in the one-sided
case follows directly from the monotonicity of a distribution function.

6.4.2. Advantages of incorporating the threshold

By taking the threshold, ¢, large we can construct the higher-criticism statis-
tics hey and heyy, at (6.2) and (6.4), so that they emphasise relatively large
values of | Z; -W. j|. This is potentially advantageous, especially when work-
ing with BEW, since we expect the value of u at which the infimum at (6.4)
is achieved also to be large.

The most important reasons for thresholding are more subtle than this
argument would suggest, however. They are founded on properties of rela-
tive errors in distribution approximations, and on the fact that the divisor
in (6.2) is 1/)%2, not simply Y. To see why this is significant, consider the
case where the distribution functions Wy ; are all identical, to ¥ say. Then
Yw = p¥ (1 — ¥), which we estimate by @W = p\fl (1-— \f/), say. In order
for the effect of replacing each Wy ;(u) (appearing in (6.2)) by \TIW]- (u) (in
(6.4)) to be asymptotically negligible, we require the quantity

e Vi) — w
Y ()™ 3 [T () — o ()] = Jmlk{ﬂ - \y(@f)})llm

to be small. Equivalently, if « is in the upper tail of the distribution ¥, we
need the ratio

P2 B () — W(w)
ETONRE

(6.17)

to be small.

If the approximation of ¥ by v (or more particularly, of 1 — ¥ by 1— @)
is accurate in a relative sense, as it is (for example) if ¥ is the distribution
of a Studentised mean, then, for large u,

plu) = W(lmi;li()?i)' (6.18)
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is small for u in the upper tail as well as for v in the middle of the distribu-
tion. When w is in the upper tail, so that 1 — ¥ (u) is small, then, comparing
(6.17) and (6.18), we see that we do not require p(u) to be as small as it
would have to be in the middle of the distribution. By insisting that u > ¢,
where the threshold ¢ is relatively large, we force u to be in the upper tail,
thus obtaining the advantage mentioned in the previous sentence.

Below, we show in more detail why, if thresholding is not undertaken,
that is, if we do not choose t large when applying the higher-criticism
classifier, substantial errors can occur when using the classifier. They arise
through an accumulation of errors in the approximation \TIW]- ~ Uyyj.

Commonly, the approximation of Wy, by \TIW]- can be expressed as

Uy i(u) = Oy (u) + 6 aw; (u) + o0(6,) (6.19)

where 6, decreases to zero as p increases and represents the accuracy of the
approximation; ayy; is a function, which may not depend on j; and the
remainder, 0(d,), denotes higher-order terms. Even if ay; depends on j,
its contribution cannot be expected to “average out” of EEW, by some sort
of law-of-large-numbers effect, as we sum over j.

In some problems the size of §, is determined by the number of data
used to construct (I\/Wj. For example, in the analysis of gene-expression
data, \/I}Wj might be calculated by borrowing information from neighbouring
values of j. In order for this method to be adaptive, only a small proportion
of genes would be defined as neighbours for any particular j, and so a
theoretical description of §,, would take that quantity to be no smaller than
p~ ", for a small constant 7 > 0. In particular, assuming that \T/Wj was
root-p consistent for Wy ;, i.e. taking 7 as large as %, would be out of the
question.

In other problems the coordinate data X;; and Y;; can plausibly be taken
as approximately normally distributed, since they are based on Student’s
t statistics. See sections 6.2.2 and 6.3.3 for discussion. In such cases the
size of J, is determined by the number of data in samples from which the ¢
statistic is computed. This would also be much less than p, and so again a
mathematical account of the size of §, would have it no smaller than p=",
for n > 0 much less than %

Against this background; and taking, for simplicity, ¥ = Wy, a = aw
and 0, = p~"; we find that Yw ~Yw =p ¥ (1-W¥)and ), (\lejf\Ile) =
pl="a+o(pt~). These results, and (6.19), lead to the conclusion that, for
fixed u, the argument of the infimum in the definition of RW, at (6.4), is
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given by

~

Au) = dw (u 1/QZ{I|Z W, <u) — Uyry(u)}

= {1+ o(1)} w (u)~'/? Z {1(1Z; = W,| < u) — Uyj(u)}
,p(1/2)fn7(u) + 0(p(1/2)7n)7 (6.20)

where v = o {¥ (1 — ¥)}~1/2,

Assume, again for simplicity, that Z is drawn from Il . Then, for fixed
u, the series on the right-hand side of (6.20) has zero mean, and equals
O,(p'/?). In consequence,

A(u) = 0p(1) — pYD 7y (u) + 0, (p1/2 1) . (6.21)

Referring to the definition of hey at (6.4), we conclude from (6.21) that
for fixed u,

hew < 0,(1) — p/2 71y (w) + 0, (p/P 1) . (6.22)

If w is chosen so that y(u) > 0 then, since n < %, the subtracted term on
the right-hand side of (6.22) diverges to —oo at a polynomial rate, and this
behaviour is readily mistaken for detection of a value of Z that does not
come from ITy,. (There, the rate of divergence to zero can be particularly
small; see section 6.3.3 and [8].) This difficulty has arisen through the
accumulation of errors in the distribution approximation.

6.5. Numerical Properties in the Case of Classification

We applied the higher-criticism classifier to simulated data. In each case,
we generated ny = 10 vectors of dimension p = 10%, from Iy = IIx
or Ily; and one observation Z from IlIy. We generated the data such
that, for ¢ = 1,. nW and 7 = 1,...,p; and with W denoting X or Y;

Wi; = (O, - U, /\/ (SZ1 + Sto)/Nu + pw where, for k = 1 and 2,

UZV  Was the empirical mean and SU7 » Was the empirical variance of: (1) in
the case of independence, Ny = 20 independent and identically distributed
random variables, having the distribution function of a N(0, 1) variable, a
student Tjo or a x2 random variable; and (2) in the case of dependence,
Ny = 20 random variables of the type Vlvyk, where, for i = 1,...,ny and
ji=1,...,p,V ka Zeo Eij ek,w1th9*08and5”k~N(0,(1+
6?)~1) denoting independent variables.
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We set pux; = 5(j —1)/(p — 1) and, in compliance with (C2), (6.10),
(6.11), took px = py for all but ¢ = (p'=#) randomly selected compo-
nents, for which py;, = pux ;j ++/2wlog p, where (-) denotes the integer-part
function; and we considered different values of 8 € (1,1) and w € (0, 3).
Reflecting the results in sections 6.3.1 and 6.3.3, we estimated the unknown
distribution function of the observed data as the standard normal distri-
bution function. In all cases considered, we generated 500 samples in the
manner described above, and we repeated the classification procedure 500
times. Below we discuss the percentages of those samples which led to
correct classification.

Application of the method necessitated selection of the two parameters
t and C defining Uy . In view of condition (A2), we reformulated Uy as
Uw = [t1,t2], and we replaced choice of t and C' by choice of ¢t; and to. If we
have sufficient experience with the distributions of the data, t; and t5 can be
selected ‘theoretically’ to maximise the percentage of correct classifications.

In the tables below we compare the results obtained using three meth-
ods: the higher-criticism procedure for the optimal choice of (¢1,2), refer-
ring to it as HCp; higher criticism without thresholding, i.e. for (t1,t2) =
(—00,00), to which we refer as simply HC; and the thresholded nearest-
neighbour method, NNp (see e.g. [15] ),) i.e. the nearest-neighbour method
applied to thresholded data W; I{W; > t}, where W denotes X, Y or Z
and the threshold, t, is selected in a theoretically optimal way using the
approach described above for choosing (1, t2).

It is known ([15]) that, for normal variables, when the distribution of
the observations is known, classification using HCyp is possible if w and
[ are above the boundary determined by (6.11), but classification using
NN is possible only above the more restricted boundary determined by
w = 20—1. Below, we show that these results hold in our context too, where
the distribution of the data is known only approximately (more precisely,
estimated by the distribution of a standard normal variable). We shall con-
sider values of (3, w) that lie above, on or below the boundary w = 28 — 1,
including values which lie between this boundary and that for higher criti-
cism. Tables 1 and 2 summarise results for the independent case (1), when
the observations were averages of, respectively, Student T}y variables and
X2 variables. In all cases, including those where classification was possible
for both methods, we see that the thresholded higher-criticism method per-
forms significantly better than the thresholded nearest-neighbour approach.
The results also show very clearly the improvement obtainable using the
thresholded version of higher criticism.
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Table 1: Percentage of correct classifications if case (1) with Ty variables,

using the optimal values of ¢, ¢; and t».

w=0.2 w=0.3 w=0.4 w = 0.5
I3 NN+ HCr HC |NNr HCpy HC NNy HCr HC [NNy HCr HC
0.5 | 99.8 100 95.8
0.6 | 77.4 86.4 83.0|86.2 97.4 89.6[94.0 100 94.0
0.65| 63.8 728 70.6|744 854 734|772 978 826
0.7 63.2 70.6 62.2|67.6 86.0 64.6]69.8 96.8 75.8
0.75 59.0 72.8 582|652 86.2 66.6

Table 2: Percentage of correct classifications if case (1) with yZ variables,
using the optimal values of ¢, t; and ts.

w=0.2 w = 0.3 w =04 w = 0.5
B NNr HCr HC |[NNr HCy HC |[NNr HCr HC |NNr HCr HC
0.5 | 99.8 100 97.6
0.6 | 75.8 854 78.6(86.2 984 89.0 [93.6 100 91.8
0.65] 66.2 70.2 68.0(69.8 86.2 724 [80.6 98.2 79.2
0.7 64.4 748 64.2 684 884 64.4 |75.0 97.0 69.8
0.75 60.0 73.8 56.0 |64.2 854 59.4

Table 3: Percentage of correct classifications if case (1) with normal vari-
ables (line 1), case (2) with L = 1 (line 2) or L = 3 (line 3), using the
optimal values of ¢, t; and t5.

w = 0.2 w=0.3 w=04 w = 0.5
6 | NNy HCr HC |NNy HCy HC |NNpy HCr HC |[NNp HCr HC
51 99.8 100 94.0
98.0 100 93.8
95.6 100 93.6
6 | 772 834 79.2 [85.2 98.0 88.6 [93.0 100 95.2
73.0 83.2 80.0 |81.8 97.2 85.6 [90.0 100 92.4
67.4 82.0 772 |75.6 97.6 84.0 |85.6 100 92.0
.65] 63.6 70.2 65.6 |71.0 83.8 74.2 |794 97.3 824
61.8 72.0 684 |68.2 84.0 724 |76.0 97.8 82.8
58.2 67.8 64.4 |62.6 &83.0 72.0 [73.2 96.4 79.2
7 64.2 70.2 65.0 |69.0 83.0 66.4 |72.8 952 75.6
59.6 69.6 57.4 |63.6 84.2 67.2 |71.2 95.0 76.6
59.4 70.8 63.6 |63.0 82.8 63.8 |[66.4 94.4 70.2
.75 59.4 69.2 60.8 |62.0 854 63.2
59.0 71.4 59.2 |59.8 85.0 62.6
54.0 71.4 574 [60.4 80.8 62.6
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In Table 3 we compare the results of the independent case (1), where the
data were Studentised means of independent N(0, 1) variables and so had
Student’s ¢ distribution; and the dependent case (2), where the observations
were Studentised means of correlated normal variables with either L = 1
or L = 3. Here we see that as the strength of correlation increases, the
nearest-neighbour method seems to deteriorate more rapidly than higher
criticism, which, as indicated in section 6.3.2, remains relatively unaffected
by lack of independence.

If previous experience with data of the type being analysed is not suf-
ficient to permit effective choice of threshold using that background, then
a data-driven selection needs to be developed. We implemented a cross-
validation procedure, described in Appendix A.1.

6.6. Technical Arguments
6.6.1. Proof of Theorem 6.1

Since w(u) > C for each u € Uw(C,t) then (Al) implies that
Y (u) ™t > |\TIW](U) — Uwj(u)| = 0p(1) uniformly in u € U (C,t), and
hence that ty (uv)/dw (u) = 1 + op(1), uniformly in u € Uw (C,t). Call
this result Ry. That property and (A2) imply that with probability con-
verging to 1 as p — oo, Uw (Cs,t) C Z:{\W(CQ,t) C Uw (Ch,t); call this
result Ro. (Since ¥y (t) > Cs then t € Uy (Cs,t), and so the latter set is
nonempty.) Results Ri, Ro and (A1) together give (6.6). Property Ro and
(6.6) imply (6.7).

6.6.2. Proof of Theorem 6.2

Let Vjj,; be as in (B1). Since, in the case where Z is drawn from Iy, Viv;,
for 1 < j < p, have the joint distribution of Z; — W ;, for 1 < j < p, then
for Z from either IIx or Ily we may write Z; — Wj = V; + vwz;, where
vwzj = Jtzj — lw;. Substituting this representation for Z; — W,j into the

definition of hew at (6.2), and defining Aw; = Viv; — Vij;, we see that

P
hew = inf o (u) /2 ; {I(IViy; + Aw;j +vwz;] < u) — Twj(u)}.
(6.23)
Given D > 0 and v = 0 or 1, define

p
heyyz(v) = inf Y ()™ 2> {T(Viy; + vwzil < u+vpP) = Tw;(u)},
uEUw =
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heyy, = le%f Y (u) /2 Z {I(Viy; +vwz;| <u) — P(Viy,| <u)}.
j=1

Let &w denote the event that |Ay ;| < p~P for each 1 < j < p. In view
of (B1)(a),

forall C3>0, P(Ew)=1-0(p ). (6.24)
Now, with probability 1,

heyy»(—1) < heyy»(0) < heyy (1) and
hely ,(—1) < hew < hejy (1) if Ew holds, (6.25)

where we used (6.23) to obtain the second set of inequalities. Furthermore,
0 < hepy (1) — hc?,VQ(—l)

< sup /v Z u—p P < |y, +vwzil <u+pP)

< sup /v Z (u—2p~2 < |Viy; +vwzs| <u+2pP) (6.26)

uEUW

where the first inequality holds with probability 1 and the second holds
almost surely on Eyy.

Let 1 < j; < p, and take C4 > 0. Using (B1) and (B2) it can be shown
that the probability that there are no integers jo # j; with 1 < jo < p and

Vivj, + vz | — [Vivj, +vzs,l| < Cap™ 7, (6.27)

is bounded below by 1 —C5 p'~P€1 uniformly in j;, where C5 > 0 and C is
the constant in (B2)(a). Adding over 1 < j; < p, and choosing D > 2C; !,
we deduce that:

The probability that there is no pair (j1,j2) of distinct indices such that

D

Vv, +vgj, | and |Vivj, + vg,,| are closer than Cy p~*, converges to zero

as p — oo. (6.28)

If, in the case Cy = 4, the inequality (6.27) fails for all distinct integer
pairs (ji1,j2) with 1 < j1,j2 < p, then the series on the far right-hand
side of (6.26) can have no more than one nonzero term. That term, if it
exists, must equal 1. In this case the far right-hand side of (6.26) cannot
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exceed sup,, ¢, Yw (u)*l/ 2, which in turn is bounded above by a constant,

Cs = C~'/2. Hence, (6.26) and (6.28) imply that
P{0 < heyy4(1) = heyy4(-1) < Cg} — 1. (6.29)
Combining (6.24), (6.25) and (6.29) we deduce that
P{|hew —heyy5(0)| < Cs} — 1. (6.30)
Observe too that, uniformly in wu,
|P(1Viy;| < u) = Owj(u)| < |[Qwj(u+pP) = Qw;(u—pP)| + PEw)
< Cr (4p7P)" + P(Ew) = O(p~P),

where we have used (B2) and (6.24). Hence,

lhely, — hely £ (0)] < sup Yy (u) 12 Z ‘P (IViy;| < u) — Uy (u)|

uEUw J=1

=0(p~P).

Combining this result and (6.30) we deduce that if Cs > 0 is chosen suffi-
ciently large,

P(Jhew —heyy 4| < Cs) — 1. (6.31)

Next we introduce further notation, defining Uy z;(u) = P(|Vi; +
v zj| < u),

5 () = P(Vis| < w), U () = P(\Viy; +vwz;| <),
a p
bwz = Uwz (1= Vwz), OF = Wy (1- s,
Jj=1 =
p
¢WZ:Z(\I’WJ‘*\IIWZ]'), wwz = Vw + dwz,
i=1

P
2N LIV + vwzs] < u) — TR ()},

jfl

hc%/v)zf seup wwz(u)
uwEUw

hcwzfsup b (u 1/22{13 Vi < u) = P(Viy; + vwzg] < u)}

Uw j=1

= sup wW —-1/2 Z {\Pdabh %[z;szhj( )}

uEUw
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The remainder of the proof develops approximations to th,V)Z and hc(4)
Using (B1)(a) and (B2)(a) it can be shown that, uniformly in w,

¢dash

|vwz — o' ~P) —o, (6.32)

provided D > Cfl. Also, if D > Cfl then a similar argument can be used
to show that, with hcy 7 defined as at (6.8),

|hely), — hewz| — 0. (6.33)
By (B2)(b), 0 < Uz, < Uy, < 1, from which it follows that

Uy (1= Ww;) + VYw; — Ywyz;
=Uwz; (1 = Ywzj) + (Ywi — Ywz;) (2 - Yw; — Ywzy)
> Uwzi (1 —Pwzy)

for each j. Adding over j we deduce that wyz > Ywz. Combining this
result with (6.32), and noting that wywz(u) > Yw(u) > C for u € Uy =
Uw (C,t), we deduce that, for a constant Cg > 0,

for all uw € Uy, VP (u) < Cowwz(u). (6.34)

Write (-) for the integer-part function. Given € € (0,1), use (B1)(b) to
break the sum inside the absolute value in the definition of hc%,‘?/ -, taken
over 1 < j < p, into (p°) series, each consisting only of independent terms.
Let Swzi(u), for 1 < k < (p°), denote the kth of these series. Now,
E{Swzi(u)} =0 and, for u € U,

var{Swzx(u)} < P8P (u) < Cowwz(u), (6.35)

where the variance is computed using the expression for Sy zx(u) as a sum
of independent random variables, and the second inequality comes from
(6.34).

Employing (6.35), and noting again the independence property, stan-
dard arguments can be used to show that for each choice of Cy¢,Cy1 > 0,

max P{ sup  wywz(w) "2 |Sw i (u)] > pclo} =0(p~“"). (6.36)
1<k<(p®) uE€Uw

In particular, using Rosenthal’s inequality, Markov’s inequality and the
fact that wwz(u) > Yw(u) > C for u € Uy, we may show that for all
Bl; B2 > 05

Plls 1/2 31 O .
it 4, PS> a2} = 067%)
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Therefore, if Vi = Vi (p) denotes any subset of Uy, that contains only
O(pP?) elements, for some B3 > 0, then for all By, By > 0,

max P{ m\&}x wwz(u)” 1/2 [Swzk (u)] >pBl} = O(pBS*Bz) = O(piB‘l)’

1<k< (pe)

(6.37)
where By = By — Bs. Since Bz and By both can be taken arbitrarily
large, then, using the monotonicity of the function g(u) = I(v < u), and
also properties (B1) and (B2), it can be seen that max,ecy,, in (6.37) can
be replaced by sup,¢,, , giving (6.36). In this context, condition (B2)(c)
ensures that, with an error that is less than p~55, for any given Bs > 0,
the distribution Wy, can be truncated at a point p?s, for sufficiently large
Bg; and, within the interval [0, p?¢], the points in Vy can be chosen less
than p~B7 apart, where By > 0 is arbitrarily large.

Result (6.36) implies that

P{ max - sup wiwz(u) "V Sz ()] >pcl°} = 0(p ),
1<k<(p°) uelw

from which it follows that P(hcg’,) > p€+C1“) = O(pffcll). Since €, C1g
and C'; are arbitrary positive numbers then we may replace € here by zero,
obtaining: for each Cig,C11 > 0,

P(hel®), > po) = 0(p~n) . (6.38)

It can be deduced directly from the definitions of hcjy , hc%f,)z and
hc%)z that:

[nciy 7 + helyy| < heii, sup wwz(w) =held), sup ([1+ dwz(u) .
ucth ww welly Y (u)

Combining this result with (6.31), (6.33) and (6.38); and noting that

w2 (u)
he = sup ——5,
Wa = b bw (W)

and, since Yy (u) > C for u € Uy,

sup {14_%(“))}1/2 < (14074 sup {1+ Pwz(u) }1/2;

uEUw wW (U uEUw wW (u)1/2

we deduce that for each € > 0,
hew +Bewz = Op{p* (1+Tewz)*}. (6.39)

Theorem 6.2 follows directly from (6.39).
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Appendix

A.1. Description of the Cross-Validation Procedure

If previous experience with data of the type being analysed is not sufficient
to permit effective choice of threshold using that background, then a data-
driven selection needs to be developed. This, however, is a challenging task,
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as the sample sizes are typically very small. As a first practical method, we

implemented a cross-validation (CV) procedure where the basic idea was as
follows. Create nx + ny cross-validation samples (Xcv .k, Yovk, Zovk) =
WED T W), k=+nxIW=Y),j=1,....nw, (W,T) = (X,Y) or
(Y, X), where W(9) denotes the sample W with the jth observation W;
left out; apply the classification procedure to each CV sample, and then
choose (t1,12) to give a large number of correct classifications, but not too
large so as to avoid ‘overfitting’ the data. We experimented with different
ways of avoiding the overfitting problem, and found that the following gave
quite good results.

(a)

Here we describe how to choose the grid on which we search for (¢1,t2).
One of the problems in our context is that p is so large that remov-
ing one of the data values, as is done in cross-validation, has sub-
stantial impact on the range of the observed data. Therefore, and
since we expect to to be related to the extreme observed values, it
would not be appropriate to choose a grid for (t1,t2) and keep it fixed
over each iteration of the algorithm. Instead, at each step k, where
k=1,....,nx + ny, of the algorithm we define the grid in terms of
a set of K € [2,2p — 1] order statistics U,y < U,y < ..o < Ugy
of the vector U = (| Zcvk — Xcvikls | Zovie — Yovik|). (To make no-
tations less heavy, we omit the index k from U.) We keep fixed the
vector I = (i1,...,ix) of K indices. At each step we define our grid
for (t1,t2) as Uiy x Uy, where Upy denotes (U, ..., Unyy). The
indices 1 < i1 < ip < ... < ixg < 2p are chosen such that the last,
say, K — S order statistics Vi;s, ) < Viig o) < ... < V{iy) of the vector
V = (|Zk — Xkl|,|Zx — Yi|) consist of the extreme values of V', and
the first S order statistics V(;,) < V(3,) < ... < V) are uniformly
distributed over the interval [V(1), Viis,, —1)]-

For k = 1,...,nx + ny, apply the HC procedure to the kth cross-
validation sample, for each (t1,%2) in the grid Uy x Upy.

For each 1 < j,k < K, let C};, denote the number of correct classifi-
cations out of the nx + ny cross-validation trials at (b), obtained by
taking (t1,t2) = (U, Ugiy,)). Of course, since t; must be less than 2o,
we set C 5 = 0 for all j > k.

Taking V' as in (a), construct the vector ¢ of all values V{;,) for
which sup; Cjr > M = sup;  Cjrx — (nx + ny)/10. The factor
(nx + ny)/10 was chosen heuristically and it is introduced to avoid
overfitting the data. Take ¢ as the component of ¢3, say V(;,), for
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which #{j s.t. Cj¢ > M’} is the largest — in case of non uniqueness,
take V(;,) as the largest such component. Then take ¢; as the average
of all V{;,)’s such that Cj, > M.

In most cases this method gave good results, with performance lying
approximately midway between that using the theoretically optimal (¢, t2)
or no thresholding, i.e. (¢1,t3) = (—00,00), respectively.

A.2. Proof of Theorem 6.3

For simplicity, we denote Ny ; by N. Recall that xw; denotes the distri-
bution of Viy;, i.e. the distribution of Z; — Wj when Z is drawn from Iy .
It can be proved from results of [31] that, under (C1), uniformly in values
of u > 0 that satisfy u = o(N~1/%), and uniformly in W and in 1 < j < p,

xwij(u) = @(u) + O[N*l/2 |u|? {1 — q)(u)}] ,

where ® denotes the standard normal distribution function. An analogous
result for v < 0 also holds. Hence for u > 0 satisfying u = o(N~'/), we
have uniformly in W and in 1 < j <p,

P(|Vivj| < u)=2®(u) — 1+ O[N"243 {1 - d(u)}]. (6.40)
Similarly it can be shown that, uniformly in j = ji,...,jq, the latter as
in (C1),

P(lVwjtv|<u)=@u+v)+P(u—v)—1
+O[NTY2(u+v)P{1-®(u—v|)}]. (6.41)

Let awq(u) denote the series in the definition of hew g, at (6.8). Com-
bining (6.40) and (6.41) we deduce that, if @ # W,

awou) = q{2®(u) — ®(u+v) — ®(u—v)}

+O[N"Y2qu+v)* {1 - ®(u—r])}], (6.42)
dw () = 2p {2®(u) — 1} {1 = d(w)} + O[N? pu® {1 - B(u)}]
={1+0(1)}2p{2®(u) — 1} {1 — B(u)}, (6.43)

uniformly in u € Uw (C,t). To obtain the second identity in (6.43) we used
the properties t > B > 0 and N~/2 (logp)®/? — 0, from (C2) and (6.12)
respectively.
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Take u = /2vlogp where 0 < v = v(p) < 1, and recall that v =
V2w logp, where w and s are as in (C2). It can be shown, borrowing
ideas from [8], that

20(u) — B(u+v) — u—v) =gip)p VTV (6.44)
{20(u) — 1} {1 — ®(u)} ~ C, (logp) ™2 p~7, (6.45)
where, here and below, g; denotes a function that is bounded above by C»
and below by C3 (logp)~'/2, and C}, Cy, C3 denote positive constants. To
derive (6.44), write 2 ®(u) — ®(u +v) — P(u —v) as
{1-2u+v)}+{l—-Pu—v)}—2{1l—P(u)},
and use conventional approximations to 1 — ®(z), for moderate to large

positive z, and, when u — v < 0, to ®(—z), for z in the same range.
In view of (6.44) and (6.45),

[221(91){(%(_ ()I)EUE}L 51) - q)((u ;]f/)z = g2(p) (logp)/*p" | (6.46)
where by = 2 (U 1) - (v - \/E . Similarly,
N~V (u+ v)* {1 = @(ju—v])}
p {1 - @}

Using (6.42), (6.43), (6.46) and (6.47) we deduce that, provided
N~* (logp)* — 0,

= O{N_l/2 (logp) \7/4 bl} (6.47)

;VI;V(QEI/)Q qgQ(p) (1ng)1/4 pbl = gg(p) (10gp)1/4 pb2 , (648)

where by = £ (v+1) — 8 — (Vv — yw)2.
Since s, in the definition of ¢t = v/2s log p, satisfies 0 < s < min(4w, 1),
we can take

4w if 0 <w< ;
1 — c(logp)~tloglogp ifI<w<l,

where ¢ > %, and have

= +/2v log p = min (21/, \/210gp — 2cloglogp) ceU(C,t).
For this choice of v, by = 27 where 1 > 0, and it follows from (6.48) that

— awo(u)
hewo > ————= > C .
W= Yz =P

Result (6.13) follows.
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Motivated by the problems in genomics, astronomy and some other
emerging fields, multiple hypothesis testing has come to the forefront
of statistical research in the recent years. In the context of multiple
testing, new error measures such as the false discovery rate (FDR) oc-
cupy important roles comparable to the role of type I error in classical
hypothesis testing. Assuming that a random mechanism decides the
truth of a hypothesis, substantial gain in power is possible by estimating
error measures from the data. Nonparametric Bayesian approaches are
proven to be particularly suitable for estimation of error measure in mul-
tiple testing situation. A Bayesian approach based on a nonparametric
mixture model for p-values can utilize special features of the distribution
of p-values that significantly improves the quality of estimation. In this
paper we describe the nonparametric Bayesian modeling exercise of the
distribution of the p-values. We begin with a brief review of Bayesian
nonparametric concepts of Dirichlet process and Dirichlet mixtures and
classical multiple hypothesis testing. We then review recently proposed
nonparametric Bayesian methods for estimating errors based on a Dirich-
let mixture of prior for the p-value density. When the test statistics are
independent, a mixture of beta kernels can adequately model the p-value
density, whereas in the dependent case one can consider a Dirichlet mix-
ture of multivariate skew-normal kernel prior for probit transforms of
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the p-values. We conclude the paper by illustrating the scope of these
methods in some real-life applications.

7.1. Bayesian Nonparametric Inference

To make inference given an observed set of data, one needs to model how the
data are generated. The limited knowledge about the mechanism often does
not permit explicit description of the distribution given by a relatively few
parameters. Instead, only very general assumptions leaving a large portion
of the mechanism unspecified can be reasonably made. This nonparamet-
ric approach thus avoids possible gross misspecification of the model, and
understandably is becoming the preferred approach to inference, especially
when many samples can be observed. Nonparametric models are actually
not parameter free, but they contain infinite dimensional parameters, which
can be best interpreted as functions. In common applications, the cumula-
tive distribution function (c.d.f.), density function, nonparametric regres-
sion function, spectral density of a time series, unknown link function in a
generalized linear model, transition density of a Markov chain and so on can
be the unknown function of interest. Classical approach to nonparametric
inference has flourished throughout the last century. Estimation of c.d.f.
is commonly done by the empirical c.d.f., which has attractive asymptotic
properties. Estimation of density, regression function and similar objects in
general needs smoothing through the use of a kernel or through a basis ex-
pansion. Testing problems are generally approached through ranks, which
typically form the maximal invariant class under the action of increasing
transformations.

Bayesian approach to inference offers a conceptually straightforward
and operationally convenient method, since one needs only to compute
the posterior distribution given the observations, on which the inference is
based. In particular, standard errors and confidence sets are automatically
obtained along with a point estimate. In addition, the Bayesian approach
enjoys philosophical justification and often Bayesian estimation methods
have attractive frequentist properties, especially in large samples. However,
Bayesian approach to nonparametric inference is challenged by the issue
of construction of prior distribution on function spaces. Philosophically,
specifying a genuine prior distribution on an infinite dimensional space
amounts to adding infinite amount of prior information about all fine details
of the function of interest. This is somewhat contradictory to the motivation
of nonparametric modeling where one likes to avoid specifying too much
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about the unknown functions. This issue can be resolved by considering the
so called “automatic” or “default” prior distributions, where some tractable
automatic mechanism constructs most part of the prior by spreading the
mass all over the parameter space, while only a handful of key parameters
may be chosen subjectively. Together with additional conditions, large
support of the prior helps the posterior distribution concentrate around the
true value of the unknown function of interest. This property, known as
posterior consistency, validates a Bayesian procedure from the frequentist
view, in that it ensures that, with sufficiently large amount of data, the
truth can be discovered accurately and the data eventually overrides any
prior information. Therefore, a frequentist will be more likely to agree to
the inference based on a default nonparametric prior. Lack of consistency
is thus clearly undesirable since this means that the posterior distribution
is not directed toward the truth. For a consistent posterior, the speed of
convergence to the true value, called the rate of convergence, gives a more
refined picture of the accuracy of a Bayesian procedure in estimating the
unknown function of interest.

For estimating an arbitrary probability measure (equivalently, a c.d.f.)
on the real line, with independent and identically distributed (i.i.d.) obser-
vations from it, Ferguson ([19]) introduced the idea of a Dirichlet process —
a random probability distribution P such that for any finite measurable par-
tition { By, ..., Bi} of R, the joint distribution of (P(B1), ..., P(By)) is a fi-
nite dimensional Dirichlet distribution with parameters («(By), . .., a(By)),
where « is a finite measure called the base measure of the Dirichlet pro-
cess D,. Since clearly P(A) ~ Beta(a(A),a(A°)), we have E(P(A)) =
a(A)/(a(A) + a(A%)) = G(A), where G(A) = a(A)/M, a probability mea-
sure called the center measure and M = «(R), called the precision pa-
rameter. This implies that if X|P ~ P and P ~ D,, then marginally
X ~ @G. Observe that var(P(A)) = G(A)G(A°)/(M + 1), so that the prior
is more tightly concentrated around its mean when M is larger. If P is
given the measure D,, we shall write P ~ DP(M,G). The following give
the summary of the most important facts about the Dirichlet process:

(i) If [ |4|dG < oo, then E([¢dP) = [dG.
(i) I Xq,..., X,|P “pand P ~ D,, then P|Xy,..., X, ~ Doty bx,-
(iii) E(P|Xq,...,X,) = ML_HLG + 375 Fn, a convex combination of the
prior mean and the empirical distribution P,,.
v irichlet sample paths are a.s. discrete distributions.
iv) Dirichl 1 h di distributi

(v) The topological support of D, is { P* : supp(P*) C supp(G)}.
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(vi) The marginal joint distribution of (Xi,...,X,) from P, where P ~
D.., can be described through the conditional laws

§s,, with probability ——<—, j=1,...,k_,,
XZ-|(X1,Z7£Z‘)N{¢J; with probability 52—, j .

G,  with probability # )

where k_; is the number of distinct observations in X;, [ # ¢ and
¢1,...,0r_, are those distinct values with multiplicities ni,...,ng_,.
Thus the number of distinct observations K, in Xi,...,X,, is gen-
erally much smaller than n with E(K,) = M > " (M +i—1)"" ~
Mlog(n/M), introducing sparsity.

(vii) Sethuraman’s ([51]) stick-breaking representation: P = >"° V;dy,,
where 0; % G, V; = [H;;ll(l -Y)Y;, Y, w Beta(1, M). This allows
us to approximately generate a Dirichlet process and is indispensable in
various complicated applications involving the Dirichlet process, where
posterior quantities can be simulated approximately with the help of
a truncation and Markov chain Monte-Carlo (MCMC) techniques.

In view of (iii), clearly G should be elicited as the prior guess about P,
while M should be regarded as the strength of this belief. Actual specifi-
cation of these are quite difficult in practice, so we usually let G contain
additional hyperparameters £, and some flat prior is put on &, leading to a
mixture of Dirichlet process ([1]).

A widely different scenario occurs when one mixes parametric families
nonparametrically. Assume that given a latent variable 6;, the observa-
tions X; follows a parametric density ¢(-;6;), ¢ = 1,...,n, respectively,
and the random effects 0; < P, P ~ D, ([20], [33]). In this case, the
density of the observation can be written as fp(z) = [ ¢ (z;60)dP(0). The
induced prior distribution on fp through P ~ DP(M, G) is called a Dirich-
let process mixture (DPM). Since fp(x) is a linear functional of P, the
expressions of posterior mean and variance of the density fp(z) can be an-
alytically expressed. However, these expressions contain enormously large
number of terms. On the other hand, computable expressions can be ob-
tained by MCMC methods by simulating the latent variables (61,...,6,)
from their posterior distribution by a scheme very similar to (vi); see [18].
More precisely, given 6;, j # 4, only X; affects the posterior distribu-
tion of #;. The observation X; weighs the selection probability of an old
6; by ¥(X;;0;), and the fresh draw by M [(X;;0)dG(0), and a fresh
draw, whenever obtained, is taken from the “baseline posterior” defined by
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dG;(0) < (X;;0)dG(0). The procedure is known as the generalized Polya
urn scheme.

The kernel used in forming DPM can be chosen in different ways de-
pending on the sample space under consideration. A location-scale kernel is
appropriate for densities on the line with unrestricted shape. In Section 7.3,
we shall use a special type of beta kernels for decreasing densities on the
unit interval modeling the density of p-values in multiple hypothesis testing
problem.

To address the issue of consistency, let II be a prior on the densities and
let fo stand for the true density. Then the posterior probability of a set B
of densities given observations X1, ..., X,, can be expressed as

fB i=1 fO(X)dH(f)
T £33 ()
When B is the complement of a neighborhood U of fj, consistency requires
showing that the expression above goes to 0 as n — oo a.s. [Py]. This
will be addressed by showing that the numerator in (7.1) converges to
zero exponentially fast, while the denominator multiplied by €™ goes to
infinity for all # > 0. The latter happens if II(f : [ folog(fo/f) < €) >
0 for all € > 0. The assertion about the numerator in (7.1) holds if a
uniformly exponentially consistent test exists for testing the null hypothesis
f = fo against the alternative f € U€. In particular, the condition holds
automatically if U is a weak neighborhood, which is the only neighborhood
we need to consider in our applications to multiple testing.

(f € BIX1,...,Xn) = (7.1)

7.2. Multiple Hypothesis Testing

Multiple testing procedures are primarily concerned with controlling the
number of incorrect significant results obtained while simultaneously test-
ing a large number of hypothesis. In order to control such errors an ap-
propriate error rate must be defined. Traditionally, the family-wise error
rate (FWER) has been the error rate of choice until recently when the
need was felt to define error rates that more accurately reflect the scientific
goals of modern statistical applications in genomics, proteomics, functional
magnetic resonance imaging (fMRI) and other biomedical problems. In
order to define the FWER and other error rates we must first describe
the different components of a typical multiple testing problem. Suppose
Hig,...,Ho are m null hypotheses whose validity is being tested simul-
taneously. Suppose mg of those hypotheses are true and after making
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Table 7.1. Number of hypotheses accepted
and rejected and their true status.

Decision
Hypothesis | Accept Reject Total
True U %4 mo
False T S m — mo
Total Q R m

decisions on each hypothesis, R of the m hypotheses are rejected. Also,
denote the m ordered p-values obtained from testing the m hypotheses as
X1y < X(2) <+ < X(4). Table 7.1 describes the components associated
with this scenario.

The FWER is defined as the probability of making at least one false
discovery, i.e. FWER = P(V > 1). The most common FWER controlling
procedure is the Bonferroni procedure where each hypotheses is tested at
level ao/m to meet an overall error rate of a; see [35]. When m is large, this
measure is very conservative and may not yield any “statistical discovery”,
a term coined by [54] to describe a rejected hypothesis. Subsequently,
several generalization of the Bonferroni procedure were suggested where
the procedures depend on individual p-values, such as [52], [30], [31], [29]
and [42]. In the context of global testing where one is interested in the
significance of a set of hypotheses as a whole, [52] introduced a particular
sequence of critical values, o; = ia/n, to compare with each p-value. More
recently, researchers proposed generalization of the FWER (such as the
kE-FWER) that is more suitable for modern applications; see [32].

While the FWER gives a very conservative error rate, at the other
extreme of the spectrum of error rates is the per comparison error rate
(PCER) where significance of any hypothesis is decided without any regard
to the significance of the rest of the hypothesis. This is equivalent to testing
each hypothesis at a fixed level « and looking at the average error over the
m tests conducted, i.e. PCER = E(V/m). While the PCER is advocated
by some ([53]) it is too liberal and may result in several false discoveries. A
compromise was proposed by [7] where they described a sequential proce-
dure to control the false discovery rate (FDR), defined as FDR = E(V/R).
The ratio V/R is defined to be zero if there are no rejections. The FDR as
an error rate has many desirable properties. First of all, as described in [7]
and by many others, one can devise algorithms to control FDR in multiple
testing situation under fairly general joint behavior of the test statistics
for the hypotheses. Secondly, if all hypotheses are true, controlling FDR
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is equivalent to controlling the FWER. In general, FDR falls between the
other two error rates, the FWER and PCER (cf. [24]).

The Benjamini-Hochberg (B-H) FDR control procedure is a sequential
step-up procedure where the p-values (starting with the largest p-value)
are sequentially compared with a sequence of critical values to find a criti-
cal p-value such that all hypotheses with p-values smaller than the critical
value are rejected. Suppose k = max{i : X < a;} where a; = ia/m.
The the B-H procedure rejects all hypotheses with p-values less than or
equal to X (b If no such k exists, then none of the hypotheses is rejected.
Even though the algorithm sequentially steps down through the sequence
of p-values, it is called a step-up procedure because this is equivalent to
stepping up with respect to the associated sequence of test statistics to
find a minimal significant test value. The procedure is also called a lin-
ear step-up procedure due to the linearity of the critical function «; with
respect to i. [9], [46], [59] among others have shown the FDR associated
with this particular step-up procedure is exactly equal to moa/m in the
case when the test statistics are independent and is less than moa/m if
the test statistics have positive dependence: for every test function ¢, the
conditional expectation E[¢(X1, ..., X,;,)|X;] is increasing with X; for each
i. [46] has suggested an analogous step-down procedure where one fails
to reject all hypotheses with p-values above a critical value «;, that is, if
[= min{s : Xy > a; }, none of the hypotheses associated with p-value X(Z)
and above is rejected. [46] used the same set of critical values «; = iar/m as
in [7] which also controls the FDR at the desired level (see [47]). However,
for the step-down procedure even in the independent case the actual FDR
may be less than moa/m.

Since in the independent case the FDR. of the linear step-up procedure
is exactly equal to moa/m, if the proportion of true null hypotheses, 7 =
mo/m, is known then « can be adjusted to get FDR equal to any target
level. Specifically, if «; = ia/(mm) then the FDR of the linear step-up
procedure is exactly equal to « in the independent case. Unfortunately, in
any realistic situation mg is not known. Thus, in situations where 7 is not
very close to one, FDR can be significantly smaller than the desired level,
and the procedure may be very conservative with poor power properties.

Another set of sequential FDR controlling procedures were introduced
more recently, where 7 is adaptively estimated from the data and the critical
values are modified as «; = ia/(m7). Heuristically, this procedure would
yield an FDR close to maE(7#71), and if # is an efficient estimator of =
then the FDR for the adaptive procedure will be close to the target level
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a. However, merely plugging-in an estimator of 7 in the expression for «;
may yield poor results due to the variability of the estimator of 7=1. [57]
suggested using 7 = [m— R(\)+1]/[m(1—\)], where R(\) = > I{X; < A}
is the number of p-values smaller than A and 0 < A < 1 is a constant; here
and below 1l will stand for the indicator function. Similar estimators had
been originally suggested by [56]. Then for any A, choose the sequence of
critical points as
) ta(l—N)
o = mm{)\, m}

The adaptive procedure generally yields tighter FDR control and hence can
enhance the power properties of the procedures significantly ([8], [12]). Of
course, the performance of the procedure will be a function of the choice of
A. [58] suggested various procedures for choosing A. [11] suggested choosing
A = a/(1+ «) and they looked at the power properties of the adaptive pro-
cedure. [50] investigated theoretical properties of these two stage procedures
and [22] suggested analogous adaptive step-down procedures.

The procedures described above for controlling FDR can be thought of
as fixed-error rate approach where the individual hypotheses are tested at
different significance level to maintain a constant overall error rate. [57, 58]
introduced the fixed-rejection-region approach where «; = « for all 7 (i.e.
the rejection region is fixed). The FDR given the rejection region is esti-
mated from the data and then « is chosen to set the estimated FDR at
a predetermined level. [57] also argued that since one becomes concerned
about false discoveries only in the situation where there are some discover-
ies, one should look at the expected proportion of false discoveries condi-
tional on the fact that there has been some discoveries. Thus the positive
false discovery rate (pFDR) is defined as pFDR = E(V/R|R > 0). [57]
showed that if we assume a mixture model for the hypotheses, i.e., if we
can assume that the true null hypothesis are arising as a Bernoulli sequence
with probability m, then the expression for pFDR reduces to

TQ
Fla)
where F'(-) is the marginal c.d.f. of the p-values. Although it cannot be

pFDR () = (7.2)

controlled in the situation when there are no discoveries, given its simple
expression, pFDR is ideally suited for the estimation approach. Once an
estimator for pFDR has been obtained, the error control procedure reduces
to rejecting all p-values less than or equal to 4 where

4 = max{y : pFDR(7) < a}. (7.3)
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Storey (cf. [57]) showed that the B-H linear step-up procedure can be viewed
as Storey’s procedure where 7 is estimated by 1. Therefore, it is clear that
using the procedure (7.3) will improve the power substantially unless 7 is
actually very close to 1.

Storey (cf. [58]) also showed that the pFDR can be given a Bayesian
interpretation as the posterior probability of a null hypothesis being true
given that it has been rejected. This interpretation connects the frequen-
tist and the Bayesian paradigms in the multiple testing situation. Given
that p-values are fundamental quantities that can be interpreted in both
paradigms, this connection in the context of a procedure based on p-values
is illuminating. Several multiple testing procedures have resulted by sub-
stituting different estimators of pFDR in (7.3). Most of these procedures
rely on the expression (7.2) and substitute the empirical c.d.f. for F(a) in
the denominator. These procedures mainly differ in the way they estimate
7. However, since ma is less than or equal to F'(«), there is always a risk of
violating the inequality if one estimates F'(«) and 7 independently. [60] sug-
gested a nonparametric Bayesian approach that simultaneously estimates
7 and F(«) within a mixture model framework that naturally constrain
the estimators to maintain the relationship. This results in a more efficient
estimator of pFDR.

The case when the test statistics (equivalently, p-values) are dependent
is of course of great practical interest. A procedure that controls the FDR
under positive regression dependence was suggested in [9] where the B-H
Wﬁlrl The procedure is very con-
servative because the critical values are significantly smaller than the B-H

critical values are replaced by a; =

critical values. [50] suggested an alternative set of critical values and in-
vestigated the performance under some special dependence structures. [21]
and [17] suggested modeling the probit transform of the p-values as joint
normal distribution to capture dependence among the p-values. A simi-
lar procedure to model the joint behavior of the p-values was suggested
by [44] who used a mixture of skew-normal densities to incorporate depen-
dence among the p-values. This mixing distribution is then estimated using
nonparametric Bayesian techniques described in Section 7.1.

Other error measure such as the local FDR ([17]) were introduced to
suit modern large dimensional datasets. While the FDR depends on the
tail probability of the marginal p-value distribution, F'(«), the local FDR
depends on the marginal p-value density. Other forms of generalization
can be found in ([48], [49]) and the references therein. Almost all error
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measures are functionals of the marginal p-value distribution, while few
have been analyzed under the possibility of dependence among the p-values.
A model based approach that estimates the components of the marginal
distribution of the p-values has the advantage that once accurate estimates
of the components of the marginal distribution are obtained, then it is
possible to estimate several of these error measures and make a comparative
study. Bayesian methodologies in multiple testing were discussed in [13],
[60], [27] and [44]. [26] used a weighted p-value scheme that incorporates
prior information about the hypothesis in the FDR controlling procedure.
Empirical Bayes estimation of FDR was discussed in [15].

A particularly attractive feature of the Bayesian approach in the mul-
tiple testing situation is its ability to attach a posterior probability to an
individual null hypothesis being actually false. In particular, it is easy to
predict the false discovery proportion (FDP), V/R. Let I;(«) = I{X; < a}
denote that the ith hypothesis is rejected at a threshold level oo and let
H; be the indicator that the ith alternative hypothesis is true. The FDP
process evaluated at a threshold « (cf. [25]) is defined by

- >ig Li(a)(1 — H;)
FDP () = S~ o) F T (0 L)

Assuming that (H;, I;(«)), i = 1,...,m, are exchangeable, [44] showed that
FDR(a) = wb(a)P(at least one rejection), where b(«) is the expected value

of a function of the indicator functions. This implies that pFDR(a) =
wb(«r), which reduces to the old expression under independence. A similar
expression was derived in [9] and also in [47]. In particular, [47] showed
that the quantity b(«)/a is the expectation of a jackknife estimator of
E[(1+ R)™Y).

Thus the simple formula for pFDR as ma/F(«) does not hold if the
p-values are dependent, but the FDP with better conditional properties,
seems to be more relevant to a Bayesian. Estimating the pFDR will gen-
erally involve computing high dimensional integrals, and hence will be dif-
ficult to obtain in reasonable time, but predicting the FDP is considerably
simpler. Since the Bayesian methods are able to generate from the joint
conditional distribution of (Hi,...,H,,) given data, we can predict the
FDP by calculating its conditional expectation given data.

The theoretical model for the null distribution of the p-values is
U[0, 1]. The theoretical null model may not be appropriate for the ob-
served p-values in many real-life applications due to composite null hy-
pothesis, complicated test statistic or dependence among the datasets used
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to test the multiple hypothesis. For a single hypothesis, the uniform null
model may be approximately valid even for very complex hypothesis test-
ing situations with composite null and complicated test statistics; see [4].
However, as argued by [16] and [6], if the multiple hypotheses tests are de-
pendent then the mg null p-values collectively can behave very differently
from a collection of independent uniform random variables. For example,
the histogram of the probit transformed null p-values may be significantly
skinnier than the standard normal, the theoretical null distribution of the
probit p-values. [16] showed that a small difference between the theoretical
null and an empirical null can have a significant impact on the conclusions
of an error control procedure. Fortunately, large scale multiple testing sit-
uations provide one with the opportunity to empirically estimate the null
distribution using a mixture model framework. Thus, validity of the the-
oretical null assumption can be tested from the data and if the observed
values show significant departure from the assumed model, then the error
control procedure may be built based on the empirical null distribution.

7.3. Bayesian Mixture Models for p-Values

As discussed in the previous section, p-values play an extremely impor-
tant role in controlling the error in a multiple hypothesis testing problem.
Therefore, it is a prudent strategy to base our Bayesian approach consid-
ering p-values as fundamental objects rather than as a product of some
classical testing procedure. Consider the estimation approach of Storey
([57, 58]) discussed in the previous section. Here the false indicator H;
of the ith null hypothesis, is assumed to arise through a random mech-
anism, being distributed as independent Bernoulli variables with success
probability 1 — 7. Under this scenario, even though the original problem of
multiple testing belongs to the frequentist paradigm, the probabilities that
one would like to estimate are naturally interpretable in a Bayesian frame-
work. In particular, the pFDR function can be written in the form of a
posterior probability. There are other advantages of the Bayesian approach
too. Storey’s estimation method of 7 is based on the implicit assumption
that the the density of p-values h under the alternative is concentrated near
zero, and hence almost every p-value over the chosen threshold A\ must arise
from null hypotheses. Strictly speaking, this is incorrect because p-values
bigger than A can occur under alternatives as well. This bias can be ad-
dressed through elaborate modeling of the p-value density. Further, it is
unnatural to assume that the value of the alternative distribution remains
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fixed when the hypotheses themselves are appearing randomly. It is more
natural to assume that, given that the alternative is true, the value of the
parameter under study is chosen randomly according to some distribution.
This additional level of hierarchy is easily absorbed in the mixture model
for the density of p-values proposed below.

7.3.1. Independent case: Beta mixture model for p-values

In this subsection, we assume that the test statistics, and hence the p-
values, arising from different hypotheses are independent. Then the p-
values X1, ..., X,, may be viewed as i.i.d. samples from the two component
mixture model: f(x) = wg(x) + (1 — m)h(x), where g stands for the density
of p-values under the null hypothesis and h that under the alternative.
The distribution of X; under the corresponding null hypothesis Hy; may
be assumed to be uniformly distributed on [0,1], at least approximately.
This happens under a number of scenarios:

(i) the test statistic is a continuous random variable and the null hypoth-
esis is simple;

(i) in situations like t-test or F-test, where the null hypothesis has been

reduced to a simple one by considerations of similarity or invariance;

(iii) if a conditional predictive p-value or a partial predictive p-value ([4],
[41]) is used.

Thus, unless explicitly stated, hereafter we assume that ¢ is the uniform
density. It is possible that this assumption fails to hold, which will be
evident from the departure of the empirical null distribution from the the-
oretical null. However, even when this assumption fails to hold, generally
the actual g is stochastically larger than the uniform. Therefore it can be
argued that the error control procedures that assume the uniform density
remain valid in the conservative sense. Alternatively, this difference can be
incorporated in the mixture model by allowing the components of the mix-
ture distribution that are stochastically larger than the uniform distribution
to constitute the actual null distribution.

The density of p-values under alternatives is not only concentrated near
zero, but usually has more features. In most multiple testing problems,
individual tests are usually simple one-sided or two-sided z-test, x2-test, or
more generally, tests for parameters in a monotone likelihood ratio (MLR)
family. When the test is one-sided and the test statistic has the MLR, prop-
erty, it is easy to see that the density of p-values is decreasing (Proposition 1
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of [27]). For two-sided alternatives, the null distribution of the test statistic
is often symmetric, and in that case, a two-sided analog of the MLR, prop-
erty implies that the p-value density is decreasing (Proposition 2 of [27]).
The p-value density for a one-sided hypothesis generally decays to zero as
x tends to 1. For a two-sided hypothesis, the minimum value of the p-value
density will be a (small) positive number. For instance, for the two-sided

7"92/2, where n is the sample

normal location model, the minimum value is e
size on which the test is based on. In either case, the p-value density looks
like a reflected “J”, a shape exhibited by a beta density with parameters
a < 1and b > 1. In fact, if we are testing for the scale parameter of the
exponential distribution, it is easy to see that the p-value density is exactly
beta with @ < 1 and b = 1. In general, several distributions on [0, 1] can be
well approximated by mixtures of beta distributions (see [14], [40]). Thus it
is reasonable to approximate the p-value density under the alternative by an
arbitrary mixture of beta densities with parameters a < 1 and b > 1, that
is, h(z) = [ be(z|a,b)dG(a,b), where be(z;a,b) = 271 (1—z)"1/B(a,b) is
the beta density with parameters a and b, and B(a,b) = I'(a)I'(b)/T'(a+b) is
the beta function. The mixing distribution can be regarded as a completely
arbitrary distribution subject to the only restriction that G is concentrated
in (0,1) x [1, 00). [60] took this approach and considered a Dirichlet process
prior on the mixing distribution G. Note that, if the alternative values
arise randomly from a population distribution and individual p-value den-
sities conditional on the alternative are well approximated by mixtures of
beta densities, then the beta mixture model continues to approximate the
overall p-value density. Thus, the mixture model approach covers much
wider models and has a distinct advantage over other methods proposed in
the literature. The resulting posterior can be computed by an appropriate
MCMC method, as described below. The resulting Bayesian estimator, be-
cause of shrinkage properties, offers a reduction in the mean squared error
and is generally more stable than its empirical counterpart considered by
Storey ([57, 58]). [60] ran extensive simulation to demonstrate the advan-
tages of the Bayesian estimator.

The DPM model is equivalent to the following hierarchical model, where
associated with each X; there is a latent variable 6; = (a;, b;),
Xi|0; ~ 7+ (1 —7)be(x;|0;), 61,...,0n|G “a oand G~ DP(M, Gy).
The random measure G can be integrated out from the prior distribution
to work with only finitely many latent variables 61, ...,0,,.
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In application to beta mixtures, it is not possible to choose Gy to be
conjugate with the beta likelihood. Therefore it is not possible to obtain
closed-form expressions for the weights and the baseline posterior distribu-
tion in the generalized Polya urn scheme for sampling from the posterior
distribution of (61,...,6,). To overcome this difficulty, the no-gaps algo-
rithm ([34]) may be used, which can bypass the problems of evaluating the
weights and sampling from the baseline posterior. For other alternative
MCMC schemes, consult [36].

[60] gave detailed description of how the no-gaps algorithm can be im-
plemented to generate samples from the posterior of (01, ...,0,,,7). Once
MCMC sample values of (01,...,0,,,m) are obtained, the posterior mean
is approximately given by the mean of the sample m-values. Since the
pFDR functional is not linear in (G, ), evaluation of the posterior mean
of pFDR(«) requires generating posterior samples of the infinite dimen-
sional parameter h using Sethuraman’s representation of G. This is not
only cumbersome, but also requires truncating the infinite series to finitely
many terms and controlling the error resulting from the truncation. We
avoid this path by observing that, when m is large (which is typical in mul-
tiple testing applications), the “posterior distribution” of G given 61, . .., 0y,
is essentially concentrated at the “posterior mean” of G given 61, ...,0,,,
which is given by E(G|01,...,0,,) = (M+m) " *MGo+(M+m)~' 31" | .,
where dg(x) = 1{f < z} now stands for the c.d.f. of the distribution
degenerate at 6. Thus the approximate posterior mean of pFDR(«) can
be obtained by the averaging the values of wa/[(M + m) " *MGq(a) +
(M +m)~t 3" 8, (a)] realized in the MCMC samples. In the simula-
tions of [60], it turned out that the sensitivity of the posterior to prior
parameters is minimal.

In spite of the success of the no gaps algorithm in computing the Bayes
estimators of m and pFDR(«), the computing time is exorbitantly high in
large scale applications. In many applications, real-time computing giving
instantaneous results is essential. Newton’s algorithm ([38], [39], [37]) is
a computationally fast way of solving general deconvolution problems in
mixture models, but it can also be used to compute density estimates.

For a general kernel mixture, Newton’s algorithm may be described as
follows: Assume that Y7,...,Y,, ~ h(y) = [ k(y; 0)¥(0)dv (), where the
mixture density ¢ (6) with respect to the dominating measure v(6) is to be
estimated. Start with an initial estimate 1y(#), such as the prior mean, of
(). Fix weights 1 > wy > wy > -+ w,, > 0such as w; = i~!. Recursively
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compute

k(Y; WL 1()
SR )i ()dv(t)’

t=2,...,m,

1/11(9) = (1 wz)wz 1 + wj

and declare 1, (6) as the final estimate ¢)(6). The estimate is not a Bayes
estimate (it depends on the ordering of the observations), but it closely
mimics the Bayes estimate with respect to a DPM prior with kernel k(z; 6)
and center measure with density ¢o(0). If Y2, w; = co and > .o w? < 0o
then the mixing density is consistently estimated ([37], [28]).

In the multiple testing context, v is the sum of point mass at 0 of
size 1 and the Lebesgue measure on (0,1). Then 7 is identified as (0)
and F(«) as 1/) ) + f(o o] )d0 Then a reasonable estimate is obtained

by $(0)a/[1h(0)a + f(o o] {(#)dh)]. The computation is extremely fast and
the performance of the estlmator is often comparable to that of the Bayes
estimator.

Since 7w takes the most important role in the expression for the pFDR
function, it is important to estimate w consistently. However, a conceptual
problem arises because 7 is not uniquely identifiable from the mixture rep-
resentation F(z) = mx + (1 — w)H (x), where H () is another c.d.f. on [0,1].
Note that the class of such distributions is weakly closed. The components
m and H can be identified by imposing the additional condition that H can-
not be represented as a mixture with another uniform component, which,
for the case when H has a continuous density h, translates into h(1) = 0.
Letting m(F) be the largest possible value of 7 in the representation, it
follows that 7(F) upper bounds the actual proportion of null hypothesis
and hence the actual pFDR is bounded by pFDR(F;«) := m(F)a/F ().
This serves the purpose from a conservative point of view. The functional
m(F) and the pEDR are upper semicontinuous with respect to the weak
topology in the sense that if F,, —,, F, then limsup,, . 7(F,) < 7(F)
and limsup,, ., pFDR(F,,; @) < pFDR(F; ).

Full identifiability of the components m and H in the mixture represen-
tation is possible under further restriction on F' if H(x) has a continuous
density h with k(1) = 0 or the tail of H at 1 is bounded by C(1 — z)!*¢
for some C, e > 0. The second option is particularly attractive since it also
yields continuity of the map taking F' to 7 under the weak topology. Thus
posterior consistency of estimating F' under the weak topology in this case
will imply consistency of estimating 7w and the pFDR function, uniformly
on compact subsets of (0,1]. The class of distributions satisfying the lat-
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ter condition will be called B and D will stand for the class of continuous
decreasing densities on (0, 1].

Consider a prior II for H supported in B N D and independently a
prior p for m with full support on [0,1]. Let the true value of m and h be
respectively my and hg where 0 < mg < 1 and Hy € BN D. In order to
show posterior consistency under the weak topology, we apply Schwartz’s
result [55]. Clearly we need the true p-value density to be in the support
of the beta mixture prior. A density h happens to be a pointwise mixture
of be(a,b) with e < 1 and b > 1if H(e V) or 1 — H(1 — e ¥) is completely
monotone, that is, has all derivatives which are negative for odd orders and
positive for even orders. Since pointwise approximation is stronger than
Li-approximation by Scheffe’s theorem, densities pointwise approximated
by beta densities are in the Li-support of the prior in the sense that II(h :
[[h — holl1 < €) > 0 for all € > 0. Because both the true and the random
mixture densities contain a uniform component, both densities are bounded
below. Then a relatively simple analysis shows that the Kullback—Leibler
divergence is essentially bounded by the Li-distance up to a logarithmic
term, and hence fo = mo + (1 — m)ho is in the Kullback—Leibler support
of the prior on f = 7 + (1 — m)h induced by II and p. Thus by the
consistency result discussed in Section 7.1 applies so that the posterior for
F' is consistent under the weak topology. Hence under the tail restriction
on H described above, posterior consistency for m and pFDR follows. Even
if the tail restriction does not hold, a one-sided form of consistency, which
may be called “upper semi-consistency”, holds: For any € > 0, Pr(r <
mo + €/X1,...,Xm) — 1 as. and that the posterior mean 7, satisfies
limsup,,, 0 Tm < o &.S.

Unfortunately, the latter has limited significance since typically one
would not like to underestimate the true my (and the pFDR) while overes-
timation is less serious. When the beta mixture prior is used on A with the
center measure of the Dirichlet process G supported in (0,1) x (1 + €, 00)
and hg is in the Lq-support of the Dirichlet mixture prior, then full poste-
rior consistency for estimating m and pFDR holds. Since the Kullback—
Leibler property is preserved under mixtures by Fubini’s theorem, the
result continues to hold even if the precision parameter of the Dirichlet
process is obtained from a prior and the center measure GGy contains
hyperparameters.



Bayesian Multiple Testing 155

7.3.2. Dependent case: Skew-normal mixture model for
probit p-values

Due to the lack of a suitable multivariate model for the joint distribution
of the p-values, most applications assume that the data associated with
the family of tests are independent. However, empirical evidence obtained
in many important applications such as fMRI, proteomics (two-dimensional
gel electrophoresis, mass-spectroscopy) and microarray analysis, shows that
the data associated with the different tests for multiple hypotheses are more
likely to be dependent. In an fMRI example, tests regarding the activa-
tion of different voxels are spatially correlated. In diffusion tensor imaging
problems, the diffusion directions are correlated and generate dependent
observations over a spatial grid. Hence, a grid-by-grid comparison of such
images across patient groups will generate several p-values that are highly
dependent.

The p-values, X;, take values in the unit interval on which it is hard to
formulate a flexible multivariate model. It is advantageous to transform X;
to a real-valued random variable Y;, through a strictly increasing smooth
mapping ¥ : [0,1] — R. A natural choice for ¥ is the probit link func-
tion, @', the quantile function of the standard normal distribution. Let
Y; = ®71(X;) be referred to as the probit p-values. We shall build flexible
nonparametric mixture models for the joint density of (Y1,...,Y:).

The most obvious choice of a kernel is an m-variate normal density.
Efron (cf. [17]) advocated in favor of this kernel. This can automatically
include the null component, which is the standard normal density after
the probit transformation of the uniform. However, the normal mixture
has a shortcoming. As in the previous subsection, marginal density of a
p-value is often decreasing. Thus the model on the probit p-values should
conform to this restriction whenever it is desired so. The transformed
version of a normal mixture is not decreasing for any choice of the mixing
distribution unless all components have variance exactly equal to one. This
prompts for a generalization of the normal kernel which still includes the
standard normal as a special case but can reproduce the decreasing shape of
the p-value density by choosing the mixing distribution appropriately. [44]
suggested using the multivariate skew-normal kernel as a generalization of
the normal kernel. The mixture of skew-normal distribution does provide
decreasing p-value densities for a large subset of parameter configurations.

To understand the point, it is useful to look at the unidimensional case.
Let

q(y; pw, A) = 2¢(y; 1, w?) P(Aw ™)
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denote the skew-normal density (cf. [2]) with location parameter u, scale
parameter w and shape parameter \, where ¢(y; u, w?) denotes the N (u, w?)
density and ®(-) denotes the standard normal c.d.f. The skew-normal family
has got a lot of recent attention due to its ability to naturally generalize
the normal family to incorporate skewness and form a much more flexible
class. The skewness of the distribution is controlled by A and when A = 0, it
reduces to the normal distribution. If Y has density ¢(y; p,w, A), then [44]
showed that the density of X = ®(Y") is decreasing in 0 < z < 1 if and only
if

W >1, A> /(w2 —1)/w? and p < XH*(B1(w?, N)),
where 31(w?, ) = (w? —1)/(V%w?), 0 < B < 1, H*(B1) = 12f[H(a:) -
S1x] and H(-) is the hazard function of the standard normal distribution.
Now, since the class of decreasing densities forms a convex set, it follows
that the decreasing nature of the density of the original p-value X will
be preserved even when a mixture of skew-normal density ¢(y; u,w, ) is
considered, provided that the mixing measure K is supported on

{0, A) s <m(Br(w, V), w=>1, A= V(w2 = 1)/w?}.

Location-shape mixtures of skew-normal family holding the scale fixed
at w = 1 can be restricted to produce decreasing p-value densities if
the location parameter is negative and shape parameter is positive. For
scale-shape mixtures with the location parameter set to zero, the induced
p-value densities are decreasing if the mixing measure has support on
{(w,\) : w > 1,\ > v/1—w=2}. Location-scale mixtures with the shape
parameter set to zero is the same as location-scale mixtures of normal fam-
ily. It is clear from the characterization that the normal density is unable
to keep the shape restriction. This is the primary reason why we do not
work with normal mixtures.

By varying the location parameter ;¢ and the scale parameter w in the
mixture, we can generate all possible densities. The skew-normal kernel au-
tomatically incorporates skewness even before taking mixtures, and hence
it is expected to lead to a parsimonious mixture representation in presence
of skewness, commonly found in the target density. Therefore we can treat
the mixing measure K to be a distribution on p and w only and treat A
as a hyperparameter. The nonparametric nature of K can be maintained
by putting a prior with large weak support, such as the Dirichlet process.
A recent result of [61] shows that nonparametric Bayesian density estima-
tion based on a skew-normal kernel is consistent under the weak topology,
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adding a strong justification for the use of this kernel. Interestingly, if the
theoretical standard normal null distribution is way off from the empirical
one, then one can incorporate this feature in the model by allowing K to
assign weights to skew-normal components stochastically larger than the
standard normal.

In the multidimensional case, [44] suggested replacing the univariate
skew-normal kernel by a multivariate analog. [3] introduced the multivariate
skew-normal density

SN (y; 1, Q@) = 20 (y; 1, Q) (@™ Q7 (y — p)),

where ¢,, is the m-variate normal density. Somewhat more flexibility in
separating skewness and correlation is possible with the version of [45].
[44] considered a scale-shape mixture under restriction to illustrate the
capability of the skew-normal mixture model. Most commonly arising pro-
bit p-value densities can be well approximated by such mixtures. Analogous
analysis is possible with mixtures of location, scale and shape. Consider
an m x m correlation matrix R with possibly a very sparse structure. Let
w = (wi,..,wn)T, @ = (a1,...,;0,)T and X = (A1,...,\n)T. Let H;
denote the indicators that the ith null hypothesis H;g is false and let H =
(Hy,...,H,)T. Then a multivariate mixture model for Y = (Y1,...,Y;,)7
is (Y|w, A\, H,R) ~ SN,,,(0; Q, &) where Q = A,RA,, A, = diag(w) is
the diagonal matrix of scale parameters and o = R\ is the vector of
shape parameters. Let H; be i.i.d. Bernoulli(1 — 7), and independently

01,0, if H; =0,

(wis M) |[H -~
Ko, if H;=1.

The skew-mixture model is particularly suitable for Bayesian estimation.
[44] described an algorithm for obtaining posterior samples. Using a result
from [3], one can represent Y; = w;8;|U| + w;(1 — 62)V;, where §; = \;/(1+
A2), U is standard normal and V = (Vi,...,V,)T is distributed as n-
variate normal with zero mean and dispersion matrix R independently of
U. This representation naturally lends itself to an iterative MCMC scheme.
The posterior sample for the parameters in R can be used to validate the
assumption of independence. Also, using the posterior samples it is possible
to predict the FDP.

It is not obvious how to formulate an analog of Newton’s esti-
mate for dependent observations, but we outline the sketch of a strat-
egy below. If the joint density under the model can be factorized as
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Yi|9 ~ kl(yl,9)7 }/2|(Y159) ~ kQ(}/Q,Yi79)7 sy Y;n'(Xla"'aYm—179) ~
Em (Yo Y1, ..., Y—1,60), then the most natural extension would be to use

ki(Yis Y1,..., Y 10);1(0)
Sl (Y Ye, oo Yo, )i (t)du(t)

Such factorizations are often available if the observations arise sequentially.
On the other hand, if m is small and (Y;|Y;,j # i) are simple, we may
use the kernel k;(y;|0,y;,j # i). More generally, if the observations can be
associated with a decomposable graphical model, we can proceed by fixing
a perfect order of cliques and then reducing to the above two special cases
through the decomposition.

Yi(0) = (1 — w;)hi-1(0) + w; (7.4)

7.4. Areas of Application

Multiple testing procedures have gained increasing popularity in statisti-
cal research in view of their wide applicability in biomedical applications.
Microarray experiments epitomize the applicability of multiple testing pro-
cedures because in microarray we are faced with a severe multiplicity prob-
lem where the error rapidly accumulates as one tests for significance over
thousands of gene locations. We illustrate this point using a dataset ob-
tained from the National Center for Biotechnology Information (NCBI)
database. The data comes from an analysis of isografted kidneys from
brain dead donors. Brain death in donors triggers inflammatory events in
recipients after kidney transplantation. Inbred male Lewis rats were used
in the experiment as both donors and recipients, with the experimental
group receiving kidneys from brain dead donors and the control group re-
ceiving kidneys from living donors. Gene expression profiles of isografts
from brain dead donors and grafts from living donors were compared us-
ing a high-density oligonucleotide microarray that contained approximately
25,000 genes. [6] analyzed this dataset using a finite skew-mixture model
where the mixing measure is supported on only a finite set of parameter
values. Due to the high multiplicity of the experiment, even for a single
step procedure with a very small «, the FDR can be quite large. [6] es-
timated that the pFDR for testing for the difference between brain dead
donors and living donors at each of the 25,000 gene locations at a fixed
level = 0.0075 is about 0.2. The mixture model framework also naturally
provides estimates of effect size among the false null. While [6] looked at
one sided t-test at each location to generate the p-values, they constructed
the histogram of the 25,000 p-values generated from two-sided tests. The
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left panel of Figure 7.1 gives a default MATLAB kernel-smoother estimate
of the observed p-value histogram. The density shows a general decreas-
ing shape except for local variation and at the edges. The spikes at the
edges are artifacts of the smoothing mechanism. The bumpy nature of the
smoothed histogram motivates a mixture approach to modeling. The his-
togram in the probit scale is shown as the jagged line in the right panel in
Figure 7.1. The smoothed curve is an estimate of the probit p-value density
based on a skew-normal mixture model. Empirical investigation reveals the
possibility of correlation among the gene locations. Thus, the multivariate
skew-normal mixture would yield more realistic results by incorporating
flexible dependence structure.

Fig. 7.1. Density of p-values obtained from the ratdata: original scale (left) and probit
scale (right).

Another important application area of the FDR control procedure is
fMRI. In fMRI data, one is interested in testing for brain activation in
thousands of brain voxels simultaneously. In a typical experiment designed
to determine the effect of covariate (say a drug or a disease status) on brain
activation during a specific task (say eye movement), the available subjects
will be divided into the treatment group (individual taking the drug or hav-
ing a particular disease) and the control group (individuals taking a placebo
or not having a disease) and their brain activation (blood oxygen level de-
pendent signal) will be recorded at each voxel in a three dimensional grid in
the brain. Then for each of the thousands of voxels, the responses for the in-
dividuals in both groups are recorded and then two sample tests are carried
out voxel-by-voxel to determine the voxels with significant signal difference
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Fig. 7.2. fMRI slice activation image before and after FDR control.

across groups. However due to severe multiplicity, too many voxels may be
declared as significant discoveries. Many of these voxels can be adjudged
unimportant based on physiological knowledge, but still many others may
remain as potential discoveries. The left panel of Figure 7.2 shows the vox-
els discovered as significant in a particular slice of the brain in a typical
fMRI study (the details of the study are not given due to confidentiality
issues, the figure is just used for illustration). The stand alone voxels with
differential activation are potentially false discoveries where the contiguous
clusters of voxels with significant activation pattern are potentially more
meaningful findings. However, one needs to use statistical procedures to
determine this as there will be tens of thousands of voxels and determining
the validity of the findings manually is an infeasible task and a source of
potential subjective bias. FDR control has been advocated by [23] to con-
trol for false discoveries in fMRI experiments. An application of the B-H
procedure removes most of the voxels as false discoveries while keeping only
a few with strong signal difference among the two groups. Thus the B-H
procedure for this application turns out to be very conservative, and con-
flicts with scientific goal of finding anatomically rich activation patterns.
An FDR control procedure that takes the dependence among voxels into
account will be be more appropriate for this application. Work is underway
to evaluate the merits of the dependent skew-mixture procedure in a typical
fMRI dataset.

[6] also gave an illustration of the pitfalls of constraining the p-value
model to have a theoretical null component. In their example, the null com-
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ponents were made up of two components, one which is slightly stochas-
tically smaller than the theoretical null and the other which is slightly
bigger. With a single theoretical null distribution fitted to the data, both
components were poorly estimated while the unconstrained fit with no pre-
specified theoretical null distribution gave an adequate approximation of
both components.

Of course the applicability of multiple testing procedures is not re-
stricted to biomedical problems. While the biomedical problems have been
the primary motivation for developing false discovery control procedures,
FDR control procedures are equally important in other fields, such as as-
tronomy, where one may be interested in testing significance of findings of
several celestial bodies simultaneously. There are important applications
in reliability, meteorology and other disciplines as well.
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This survey covers state-of-the-art Bayesian techniques for the estima-
tion of mixtures. It complements the earlier work [31] by studying new
types of distributions, the multinomial, latent class and ¢ distributions.
It also exhibits closed form solutions for Bayesian inference in some dis-
crete setups. Lastly, it sheds a new light on the computation of Bayes
factors via the approximation of [8].

8.1. Introduction

Mixture models are fascinating objects in that, while based on elementary
distributions, they offer a much wider range of modeling possibilities than
their components. They also face both highly complex computational chal-
lenges and delicate inferential derivations. Many statistical advances have
stemmed from their study, the most spectacular example being the EM
algorithm. In this short review, we choose to focus solely on the Bayesian
approach to those models (cf. [42]). [20] provides a book-long and in-depth
coverage of the Bayesian processing of mixtures, to which we refer the
reader whose interest is woken by this short review, while [29] give a broader
perspective.

*Kate Lee is a PhD candidate at the Queensland University of Technology, Jean-Michel
Marin is professor in Université Montpellier 2, Kerrie Mengersen is professor at the
Queensland University of Technology, and Christian P. Robert is professor in Université
Paris Dauphine and head of the Statistics Laboratory of CREST.
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Without opening a new debate about the relevance of the Bayesian
approach in general, we note that the Bayesian paradigm (cf. [41]) allows for
probability statements to be made directly about the unknown parameters
of a mixture model, and for prior or expert opinion to be included in the
analysis. In addition, the latent structure that facilitates the description of
a mixture model can be naturally aggregated with the unknown parameters
(even though latent variables are not parameters) and a global posterior
distribution can be used to draw inference about both aspects at once.

This survey thus aims to introduce the reader to the construction, prior
modelling, estimation and evaluation of mixture distributions within a
Bayesian paradigm. Focus is on both Bayesian inference and computa-
tional techniques, with light shed on the implementation of the most com-
mon samplers. We also show that exact inference (with no Monte Carlo
approximation) is achievable in some particular settings and this leads to
an interesting benchmark for testing computational methods.

In Section 8.2, we introduce mixture models, including the missing data
structure that originally appeared as an essential component of a Bayesian
analysis, along with the precise derivation of the exact posterior distribution
in the case of a mixture of Multinomial distributions. Section 8.3 points out
the fundamental difficulty in conducting Bayesian inference with such ob-
jects, along with a discussion about prior modelling. Section 8.4 describes
the appropriate MCMC algorithms that can be used for the approxima-
tion to the posterior distribution on mixture parameters, followed by an
extension of this analysis in Section 8.5 to the case in which the number of
components is unknown and may be derived from approximations to Bayes
factors, including the technique of [8] and the robustification of [2].

8.2. Finite Mixtures

8.2.1. Definition

A mixture of distributions is defined as a convex combination
J J
S opifi@), Y.pi=1, p;>0, J>1,
Jj=1 j=1

of standard distributions f;. The p;’s are called weights and are most often
unknown. In most cases, the interest is in having the f;’s parameterised,
each with an unknown parameter 6;, leading to the generic parametric
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mixture model
J
> pif(xl6;). (8.1)
=1

The dominating measure for (8.1) is arbitrary and therefore the nature
of the mixture observations widely varies. For instance, if the dominating
measure is the counting measure on the simplex of R™

Sy = {(zl,...,xm);zxi g} 7
=1

the f;’s may be the product of £ independent Multinomial distributions, de-
noted “M,(€; 1, -y Gim) = @y My (1; i1, -y @jm)”, With m modalities,
and the resulting mixture

J
> oMl gi1, - djm) (8:2)
j=1

is then a possible model for repeated observations taking place in Sy, ¢.
Practical occurrences of such models are repeated observations of contin-
gency tables. In situations when contingency tables tend to vary more than
expected, a mixture of Multinomial distributions should be more appropri-
ate than a single Multinomial distribution and it may also contribute to
separation of the observed tables in homogeneous classes. In the following,

we note ¢g;. = (lea cee q]'m)~

Example 8.1. For J =2, m =4, p1 =p2 = .5, ¢1. = (.2,.5,.2,.1),
g2. = (.3,.3,.1,.3) and £ = 20, we simulate n = 50 independent realisations
from model (8.2). That corresponds to simulating some 2 X 2 contingency
tables whose total sum is equal to 20. Figure 8.1 gives the histograms for
the four entries of the contingency tables. |

Another case where mixtures of Multinomial distributions occur is the
latent class model where d discrete variables are observed on each of n
individuals ([30]). The observations (1 < i < n) are &; = (1, ..., Tid),
with x;, taking values within the m, modalities of the v-th variable. The
distribution of x; is then

J d
ij 1_[-/\/l'm1 (17‘]?; e aq;;]h) )
j=1 =1
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Fig. 8.1. For J =2, p1 =p2 = .5, q1. = (.2,.5,.2,.1), ¢2. = (.3,.3,.1,.3), £ = 20 and
n = 50 independent simulations: histograms of the m = 4 entries.

so, strictly speaking, this is a mixture of products of Multinomials. The
applications of this peculiar modelling are numerous: in medical studies,
it can be used to associate several symptoms or pathologies; in genetics, it
may indicate that the genes corresponding to the variables are not sufficient
to explain the outcome under study and that an additional (unobserved)
gene may be influential. Lastly, in marketing, variables may correspond to
categories of products, modalities to brands, and components of the mixture
to different consumer behaviours: identifying to which group a customer
belongs may help in suggesting sales, as on Web-sale sites.

Similarly, if the dominating measure is the counting measure on the set
of integers N, the f;’s may be Poisson distributions P(A;) (A; > 0). We
aim then to make inference about the parameters (p;j, A;) from a sequence
(2)i=1,....n of integers.

The dominating measure may as well be the Lebesgue measure on R, in
which case the f(z]0)’s may all be normal distributions or Student’s ¢ dis-
tributions (or even a mix of both), with 6 representing the unknown mean
and variance, or the unknown mean and variance and degrees of freedom,
respectively. Such a model is appropriate for datasets presenting multi-
modal or asymmetric features, like the aerosol dataset from [38] presented
below.
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Example 8.2. The estimation of particle size distribution is important in
understanding the aerosol dynamics that govern aerosol formation, which is
of interest in environmental and health modelling. One of the most impor-
tant physical properties of aerosol particles is their size; the concentration
of aerosol particles in terms of their size is referred to as the particle size
distribution.

The data studied by [38] and represented in Figure 8.2 is from Hyytidla,
a measurement station in Southern Finland. It corresponds to a full day of
measurement, taken at ten minute intervals. <

01 1
0 !

0 1 2 3 4 5 ] 7
Diametar (nm}

Fig. 8.2. Histogram of the aerosol diameter dataset, along with a normal (red) and a t
(blue) modelling.

While the definition (8.1) of a mixture model is elementary, its sim-
plicity does not extend to the derivation of either the maximum likelihood
estimator (when it exists) or of Bayes estimators. In fact, if we take n iid
observations x = (x1,...,2,) from (8.1), with parameters

p=({@i...,ps) and O =(01,...,0;),

the full computation of the posterior distribution and in particular the
explicit representation of the corresponding posterior expectation involves
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the expansion of the likelihood

n J
L(0,plx) = [[ D pif (x:l6;) (8.3)

i=1j=1

into a sum of J” terms, with some exceptions (see, for example Section
8.3). This is thus computationally too expensive to be used for more than
a few observations. This fundamental computational difficulty in dealing
with the models (8.1) explains why those models have often been at the
forefront for applying new technologies (such as MCMC algorithms, see
Section 8.4).

8.2.2. Miuissing data

Mixtures of distributions are typical examples of latent variable (or missing
data) models in that a sample x4, ..., z, from (8.1) can be seen as a collec-
tion of subsamples originating from each of the f (x;|6,)’s, when both the
size and the origin of each subsample may be unknown. Thus, each of the
x;’s in the sample is a priori distributed from any of the f;’s with probabili-
ties pj. Depending on the setting, the inferential goal behind this modeling
may be to reconstitute the original homogeneous subsamples, sometimes
called clusters, or to provide estimates of the parameters of the different
components, or even to estimate the number of components.

The missing data representation of a mixture distribution can be ex-
ploited as a technical device to facilitate (numerical) estimation. By a
demarginalisation argument, it is always possible to associate to a random
variable z; from a mixture (8.1) a second (finite) random variable z; such
that

mi|zi:ZNf(x|ez)7 P(Zi:j):pj' (84)

This auxiliary variable z; identifies to which component the observation x;
belongs. Depending on the focus of inference, the z;’s may [or may not]
be part of the quantities to be estimated. In any case, keeping in mind
the availability of such variables helps into drawing inference about the
“true” parameters. This is the technique behind the EM algorithm of [11]
as well as the “data augmentation” algorithm of [51] that started MCMC
algorithms.
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8.2.3. The necessary but costly expansion of the likelihood

As noted above, the likelihood function (8.3) involves J" terms when the
n inner sums are expanded, that is, when all the possible values of the
missing variables z; are taken into account. While the likelihood at a given
value (6, p) can be computed in O(nJ) operations, the computational diffi-
culty in using the expanded version of (8.3) precludes analytic solutions via
maximum likelihood or Bayesian inference. Considering n iid observations
from model (8.1), if 7 (0, p) denotes the prior distribution on (0, p), the
posterior distribution is naturally given by

7 (0, p|x) x HZpJ (x;16;) | m(0,p).

i=1j=1

It can therefore be computed in O(n.J) operations up to the normalising
[marginal] constant, but, similar to the likelihood, it does not provide an
intuitive distribution unless expanded.

Relying on the auxiliary variables z = (21,. .., 2,) defined in (8.4), we
take Z to be the set of all J" allocation vectors z. For a given vector
(n1,...,ny) of the simplex {ny + ...+ ny; = n}, we define a subset of Z,

n n
Z; = Z:E qu;:lznl;---;g I,—s=ns,,
i=1 i=1

that consists of all allocations z with the given allocation sizes (nq,...,ny),
relabelled by j € N when using for instance the lexicographical ordering on
(n1,...,ny). The number of nonnegative integer solutions to the decom-
position of n into J parts such that ny +...4+n; = n is equal to (see [17])

(n+J—1>
r= .
n

Thus, we have the partition Z = U;_; Z;. Although the total number of
elements of Z is the typically unmanageable J", the number of partition
sets is much more manageable since it is of order n/~1/(J — 1)!. It is thus
possible to envisage an exhaustive exploration of the Z;’s. ([6] did take
advantage of this decomposition to propose a more efficient importance
sampling approximation to the posterior distribution.)

The posterior distribution can then be written as

m(0,plx) = Z Z 7 (0,plx,z) , (8.5)

1=1zeZ;
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where w (z) represents the posterior probability of the given allocation z.
(See Section 8.2.4 for a derivation of w(z).) Note that with this represen-
tation, a Bayes estimator of (8, p) can be written as

Z Z w(z)E™[0,p|x,z] . (8.6)

i=1z€eZ;

This decomposition makes a lot of sense from an inferential point of view:
the Bayes posterior distribution simply considers each possible allocation
z of the dataset, allocates a posterior probability w (z) to this allocation,
and then constructs a posterior distribution 7 (0, p|x, z) for the parameters
conditional on this allocation. Unfortunately, the computational burden is
of order O(J™). This is even more frustrating when considering that the
overwhelming majority of the posterior probabilities w (z) will be close to
zero for any sample.

8.2.4. FE=xact posterior computation

In a somewhat paradoxical twist, we now proceed to show that, in some
very special cases, there exist exact derivations for the posterior distribu-
tion! This surprising phenomenon only takes place for discrete distributions
under a particular choice of the component densities f(xz|f;). In essence,
the f(x]6;)’s must belong to the natural exponential families, i.e.

f(@]0i) = h(z) exp {0; - R(x) — ¥ (0:)} ,

to allow for sufficient statistics to be used. In this case, there exists a
conjugate prior ([41]) associated with each 6 in f(xz|f) as well as for the
weights of the mixture. Let us consider the complete likelihood

n

LC(Oa p|ma Z) = szi exp {921 ’ R(sz) - \I/(ozi)}

i=1

J
=177 ep6;- > Ri:) —n,; (b))
j=1

zi=j
J
= [1»/ exp{6;-S; —n;u(6,)} ,
j=1

where S; = > _ . R(z;). It is easily seen that we remain in an expo-
nential family since there exist sufficient statistics with fixed dimension,
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(n1,...,my,51,...,5). Using a Dirichlet prior

Tlog + ... +Oé‘])pa171 el
I(ay)---T(ay) 7t 7

7(p1,...,pJ) =

on the vector of the weights (pi,...,ps) defined on the simplex of R/ and
(independent) conjugate priors on the 6;’s,

7(0;) o< exp{6; - 7; — 6;¥(0;)}
the posterior associated with the complete likelihood L°(0, p|x, z) is then

of the same family as the prior:

7(0,plx, z) x 7(0,p) x L°(8,p|x, 2)
J
o [1#57 " exp{6; -7 — 0;9(6)))
j=1
X p:;bj exXp {Hj . Sj — n]\I/(HJ)}
J
=TI»5 ™ " exp{0;- (75 + S;) = (6; +nj) ¥ (0;)} 5
j=1

the parameters of the prior get transformed from «; to a; +nj, from 7; to
7; + S; and from d; to §; + n;.

If we now consider the observed likelihood (instead of the complete
likelihood), it is the sum of the complete likelihoods over all possible con-
figurations of the partition space of allocations, that is, a sum over J"
terms,

J
S TP exp{6;-S; —n;®(6)} .

z g=1

The associated posterior is then, up to a constant,

J
ST ™ exp {05 (7 + ;) — (ny + 6;,)9(6;)}

z j=1

=Y w(z)7(6,plz, 2),

where w(z) is the normalising constant that is missing in

J
[IP  exp{0; - (75 + S;) — (n; + 6,)W(0;)} -

j=1
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The weight w(z) is therefore

‘.]le n; Qi J
w(z) x H]_ (n + )

DS (s +ag})

it K(7,0) is the normalising constant of exp {6; - 7 — 0¥ (0;)}, i.e.

K(7j + Sj,nj +6;),
1

K(T, 5) = /exp {Hj T — 5\11(9j)}d9j .

Unfortunately, except for very few cases, like Poisson and Multinomial
mixtures, this sum does not simplify into a smaller number of terms because
there exist no summary statistics. From a Bayesian point of view, the
complexity of the model is therefore truly of magnitude O(J").

We process here the cases of both the Poisson and Multinomial mixtures,
noting that the former case was previously exhibited by [16].

Example 8.3. Consider the case of a two component Poisson mizture,
iid
L1y, Tn ~ p,P(Al) + (1 7p)lp(>‘2)7

with a uniform prior on p and exponential priors Exp(m) and Exp(T2) on A
and A, respectively. For such a model, S; =
constant is then equal to

g L and the normalising
=

K(r,6) = /OO exp {\;7 — dlog(\;)} d),

:A AT exp{—0A;} dX; = 6T T(7).

The corresponding posterior is (up to the overall normalisation of the
weights)

[[T(; + )0+ 85) /(75 + ny) S5t

>

2
2 L2+ )
2

[T 718!/ (75 +np)Sit?
DD Ry oy (6, plz, 2)

z

2
TLJ'S]'
o Z H 7(73 ST m(0,plx, z).

(0, p|z, z)
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7w (A, p|x, 2) corresponds to a B(1 +nj,1 4+ n —n;) (Beta distribution) on
pj and to a G(S; + 1,7, +n;) (Gamma distribution) on \;, (j =1,2).

An important feature of this example is that the above sum does not in-
volve all of the 2™ terms, simply because the individual terms factorise in
(n1,n2,S1,S2) that act like local sufficient statistics. Since na = n — ny
and So = > x; — S1, the posterior only requires as many distinct terms
as there are distinct values of the pair (ny1,S1) in the completed sam-
ple. For instance, if the sample is (0,0,0,1,2,2,4), the distinct values
of the pair (n1,51) are (0,0),(1,0),(1,1),(1,2),(1,4),(2,0),(2,1),(2,2),
(2,3),(2,4),(2,5),(2,6),...,(6,5),(6,7),(6,8),(7,9). Hence there are 41
distinct terms in the posterior, rather than 28 = 256. <

Let n = (n1,...,ny) and S = (S1,...,5). The problem of computing
the number (or cardinal) p,(n,S) of terms in the sum with an identical
statistic (n, S) has been tackled by [16], who proposes a recurrent formula
to compute p,(n,S) in an efficient book-keeping technique, as expressed
below for a k component mixture:

If e; denotes the vector of length J made of zeros everywhere except at
component j where it is equal to one, if

n=(ny,...,n5), and n—e;=(ny,....,n;—1,...,n5),
then

pui(ej,R(z1)e;) =1, Vie{l,...,J}, and
J
(0, S) = Zun—l(n —e;,S— R(w,)e;).

j=1

Example 8.4. Once the p,(n,S)’s are all recursively computed, the pos-
terior can be written as

2
Z ‘Ll,n(l'l, S)HHJ'SJI/(TJ +nj)sj+1 7r(0,p|:1:,n, S)a
(n,S) J=1

up to a constant, and the sum only depends on the possible values of the
“sufficient” statistic (n,S).

This closed form expression allows for a straightforward representation
of the marginals. For instance, up to a constant, the marginal in A\ is given
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by

2
Z H n1 851/ (1 +ny)% Tt (ng + 1) FIAS exp{—(n1 + DA\ }/na!

z j=1

2
=Y (0, 8) [ n! 851/ (7 +my)%it
j=1

(n,S)
x (ny + 71)51+1)\f1 exp{—(n1 +7m)A1}/n1!.

The marginal in Ao s

> pn(m,8) [ n! 85!/ (5 +ny)%it

(n,S) j=1
(ng + 72)52“)\252 exp{—(n2 + m2)A2}/na!,

again up to a constant.

Another interesting outcome of this closed form representation is that
marginal densities can also be computed in closed form. The marginal dis-
tribution of x is directly related to the unnormalised weights in that

H?:l nj! Sj!/(’rj + ’Ilj)SjJrl
m(x) = ZW(Z) = Z fin(n, S) (n+1)!

z (n,S)

up to the product of factorials 1/x1!- - x,! (but this product is irrelevant in
the computation of the Bayes factor). <

Now, even with this considerable reduction in the complexity of the
posterior distribution, the number of terms in the posterior still explodes
fast both with n and with the number of components J, as shown through
a few simulated examples in Table 8.1. The computational pressure also
increases with the range of the data, that is, for a given value of (J,n),
the number of values of the sufficient statistics is much larger when the
observations are larger, as shown for instance in the first three rows of
Table 8.1: a simulated Poisson P(\) sample of size 10 is mostly made of
0’s when A = .1 but mostly takes different values when A\ = 10. The
impact on the number of sufficient statistics can be easily assessed when
J = 4. (Note that the simulated dataset corresponding to (n,A) = (10,.1)
in Table 8.1 happens to correspond to a simulated sample made only of 0’s,
which explains the n + 1 = 11 values of the sufficient statistic (nq,51) =
(n1,0) when J = 2.)
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Table 8.1. Number of pairs (n,S) for simulated
datasets from a Poisson P()) and different numbers
of components. (Missing terms are due to excessive
computational or storage requirements.)

(n, N J=2 J=3 J=4
(10, 1) 11 66 286
(10, 1) 52 885 8160
(10,10) 166 7077 120,908
(20,.1) 57 231 1771
(20,1) 260 20,607 566,512
(20, 10) 565 100,713 —
(30,.1) 87 4060 81,000
(30,1) 520 82,758 —
(30,10) 1413 637,020 —
Example 8.5. If we have n observations n; = (n1,...,Nim) from the

Multinomial mizture
1 ~ pMon(dis qit, -5 qim) + (1 = p)Min(di; g1, - - - 5 G2m)
where njp + -+ Ny = d; and 11+ -+ qim = @21 + - + qam = 1, the
conjugate priors on the q;,’s are Dirichlet distributions, (j = 1,2)
(@j1s- - qjm) ~ D1, ..., 0m) ,

and we use once again the uniform prior on p. (A default choice for the
Qjy’s is ajy = 1/2.) Note that the d;’s may differ from observation to
observation, since they are irrelevant for the posterior distribution: given a
partition z of the sample, the complete posterior is indeed

m

ST 1§ | C S 191

Jj=1zi=j j=lv=1

(where n; is the number of observations allocated to component j) up to a
normalising constant that does not depend on z. <

More generally, considering a Multinomial mixture with m components,

'szj dza‘]]la”-a%'m)a

the complete posterior is also directly available, as

J
Hp'“ e < 10

j=1z;=j j=lv=1
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once more up to a normalising constant.
Since the corresponding normalising constant of the Dirichlet distribu-
tion is
JJHERNCT
Plaji 4+ ajm)

)

the overall weight of a given partition z is

H:}nzl F(alv + Slv) % H:}nzl F(agv + S27j)
Dlan + - +aim +51)  T(a2r +- -+ agm + Sa.)

where Sj; is the sum of the n;;’s for the observations 7 allocated to compo-

nent j and
sz' = Z N ji and Sj. = ZS]Z

Zi=]

nl!ng!

(8.7)

Given that the posterior distribution only depends on those “sufficient”
statistics S;; and n;, the same factorisation as in the Poisson case applies,
namely we simply need to count the number of occurrences of a particular
local sufficient statistic (n1,S11,...,Ssm) and then sum over all values of
this sufficient statistic. The book-keeping algorithm of [16] applies. Note
however that the number of different terms in the closed form expression is
growing extremely fast with the number of observations, with the number
of components and with the number k of modalities.

Example 8.6. In the case of the latent class model, consider the simplest
case of two variables with two modalities each, so observations are products
of Bernoulli’s,

x ~ pB(q11)B(q12) + (1 — p)B(g21)B(g22) -

We note that the corresponding statistical model is not identifiable beyond
the usual label switching issue detailed in Section 8.3.1. Indeed, there
are only two dichotomous variables, four possible realizations for the x’s,
and five unknown parameters. We however take advantage of this artifi-
ctal model to highlight the implementation of the above exact algorithm,
which can then easily uncover the unidentifiability features of the posterior
distribution.

The complete posterior distribution is the sum over all partitions of the
terms

2 2
p=p) I IT ¢ =)™~ < [T I 4.

j=1 v=1 j=1v=1
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where sj, = Zz —j Tiv, the sufficient statistic is thus (n1, s11, S12, $21, S22),

of order O(n®). Using the benchmark data of [50], made of 216 sample
points involving four binary variables related with a sociological question-
naire, we restricted ourselves to both first variables and 50 observations
picked at random. A recursive algorithm that eliminated replicates gives the
results that (a) there are 5,928 different values for the sufficient statistic
and (b) the most common occurrence is the middle partition (26,6,11,5,10),
with 7.16 x 1012 replicas (out of 1.12 x 105 total partitions). The posterior
weight of a given partition is

T(ny+ 1T(n —ny + 1) 13[13[ (sjv +1/2)T(n; — 55, +1/2)
I'(n+2) - (n]Jrl)

j=1 v=1

=[] T[] T(sjo +1/2)T(n; — 50 + 1/2)/711! (n—mn1)! (n+1)!,

multiplied by the number of occurrences. In this case, it is therefore possible
to find exactly the most likely partitions, namely the one with n1 = 11 and
ng = 39, s11 = 11, s12 = 8, s91 = 0, S99 = 17, and the symmetric one,
which both only occur once and which have a joint posterior probability
of 0.018. It is also possible to eliminate all the partitions with very low
probabilities in this example. <

8.3. Mixture Inference

Once again, the apparent simplicity of the mixture density should not be
taken at face value for inferential purposes; since, for a sample of arbitrary
size n from a mixture distribution (8.1), there always is a non-zero prob-
ability (1 — p;)™ that the jth subsample is empty, the likelihood includes
terms that do not bring any information about the parameters of the i-th
component.

8.3.1. Nonzidentifiability, hence label switching

A mixture model (8.1) is senso stricto never identifiable since it is invariant
under permutations of the indices of the components. Indeed, unless we
introduce some restriction on the range of the 6;’s, we cannot distinguish
component number 1 (i.e., 61) from component number 2 (i.e., #2) in the
likelihood, because they are exchangeable. This apparently benign feature
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has consequences on both Bayesian inference and computational implemen-
tation. First, exchangeability implies that in a J component mixture, the
number of modes is of order O(J!). The highly multimodal posterior sur-
face is therefore difficult to explore via standard Markov chain Monte Carlo
techniques. Second, if an exchangeable prior is used on @ = (0y,...,0;),
all the marginals of the 0;’s are identical. Other and more severe sources
of unidentifiability could occur as in Example 8.6.

Example 8.7. (Example 8.6 continued) If we continue our assess-
ment of the latent class model, with two variables with two modalities each,
based on subset of data extracted from [50], under a Beta, B(a,b), prior
distribution on p the posterior distribution is the weighted sum of Beta
B(ny + a,n —ny + b) distributions, with weights

fin (1, S) H [T )0+ 1/2)T(n5 — 50 + 1/2)/711! (n—n)! (n+1)!,

where py,(n,s) denotes the number of occurrences of the sufficient statistic.
Figure 8.3 provides the posterior distribution for a subsample of the dataset
of [50] and a = b = 1. Since p is not identifiable, the impact of the prior
distribution is stronger than in an identifying setting: using a Beta B(a,b)
prior on p thus produces a posterior [distribution] that reflects as much the
influence of (a,b) as the information contained in the data. While a B(1,1)
prior, as in Figure 8.3, leads to a perfectly symmetric posterior with three
modes, using an asymmetric prior with a < b strongly modifies the range
of the posterior, as illustrated by Figure 8.4. |

Identifiability problems resulting from the exchangeability issue are
called “label switching” in that the output of a properly converging MCMC
algorithm should produce no information about the component labels (a
feature which, incidentally, provides a fast assessment of the performance
of MCMC solutions, as proposed in [7]). A naive answer to the problem
proposed in the early literature is to impose an identifiability constraint on
the parameters, for instance by ordering the means (or the variances or the
weights) in a normal mixture. From a Bayesian point of view, this amounts
to truncating the original prior distribution, going from 7 (6, p) to

™ (07 p) ]IMSWSM .

While this device may seem innocuous (because indeed the sampling
distribution is the same with or without this constraint on the parameter
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Fig. 8.3. Exact posterior distribution of p for a sample of 50 observations from the
dataset of [50] and a = b = 1.

space), it is not without consequences on the resulting inference. This can
be seen directly on the posterior surface: if the parameter space is reduced
to its constrained part, there is no agreement between the above notation
and the topology of this surface. Therefore, rather than selecting a single
posterior mode and its neighbourhood, the constrained parameter space
will most likely include parts of several modal regions. Thus, the resulting
posterior mean may well end up in a very low probability region and be
unrepresentative of the estimated distribution.

Note that, once an MCMC sample has been simulated from an uncon-
strained posterior distribution, any ordering constraint can be imposed on
this sample, that is, after the simulations have been completed, for es-
timation purposes as stressed by [48]. Therefore, the simulation (if not
the estimation) hindrance created by the constraint can be completely by-
passed.

Once an MCMC sample has been simulated from an unconstrained pos-
terior distribution, a natural solution is to identify one of the J! modal re-
gions of the posterior distribution and to operate the relabelling in terms of
proximity to this region, as in [31]. Similar approaches based on clustering
algorithms for the parameter sample are proposed in [48] and [7], and they
achieve some measure of success on the examples for which they have been
tested.
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Fig. 8.4. Exact posterior distributions of p for a sample of 50 observations from
the dataset of [50] under Beta B(a,b) priors when a = .01,.05,.1,.05,1 and b =
100, 50, 20, 10, 5, 1.

An alternative approach is to eliminate the label switching problem by
removing the labels altogether. This is done for instance in [7] by defining
a loss function for the pairwise allocation of observations to clusters. From
another perspective, [33] propose to work directly on the clusters associated
with a mixture by defining the problem as an exchangeable process on the
clusters: all that matters is then how data points are grouped together and
this is indeed label-free.

8.3.2. Restrictions on priors

From a Bayesian point of view, the fact that few or no observation in
the sample is (may be) generated from a given component has a direct and
important drawback: this prohibits the use of independent improper priors,

J
©(0) =[]0,
j=1
since, if

/F(Gj)dej =00

then for any sample size n and any sample x,

/7‘((0, p|x)dOdp = oo
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The ban on using improper priors can be considered by some as being
of little importance, since proper priors with large variances could be used
instead. However, since mixtures are ill-posed problems, this difficulty with
improper priors is more of an issue, given that the influence of a particular
proper prior, no matter how large its variance, cannot be truly assessed.

There exists, nonetheless, a possibility of using improper priors in this
setting, as demonstrated for instance by [34], by adding some degree of de-
pendence between the component parameters. In fact, a Bayesian perspec-
tive makes it quite easy to argue against independence in mixture models,
since the components are only properly defined in terms of one another. For
the very reason that exchangeable priors lead to identical marginal poste-
riors on all components, the relevant priors must contain some degree of
information that components are different and those priors must be explicit
about this difference.

The proposal of [34], also described in [31], is to introduce first a common
reference, namely a scale, location, or location-scale parameter (u,7), and
then to define the original parameters in terms of departure from those
references. Under some conditions on the reparameterisation, expressed
in [43], this representation allows for the use of an improper prior on the
reference parameter (i, 7). See [35, 39, 53] for different approaches to the
use of default or non-informative priors in the setting of mixtures.

8.4. Inference for Mixtures with a Known Number of
Components

In this section, we describe different Monte Carlo algorithms that are cus-
tomarily used for the approximation of posterior distributions in mixture
settings when the number of components J is known. We start in Section
8.4.1 with a proposed solution to the label-switching problem and then
discuss in the following sections Gibbs sampling and Metropolis-Hastings
algorithms, acknowledging that a diversity of other algorithms exist (tem-
pering, population Monte Carlo...), see [42].

8.4.1. Reordering

Section 8.3.1 discussed the drawbacks of imposing identifiability ordering
constraints on the parameter space for estimation performances and there
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are similar drawbacks on the computational side, since those constraints
decrease the explorative abilities of a sampler and, in the most extreme
cases, may even prevent the sampler from converging ([7]). We thus consider
samplers that evolve in an unconstrained parameter space, with the specific
feature that the posterior surface has a number of modes that is a multiple
of J!. Assuming that this surface is properly visited by the sampler (and
this is not a trivial assumption), the derivation of point estimates of the
parameters of (8.1) follows from an ez-post reordering proposed by [31]
which we describe below.

Given a simulated sample of size M, a starting value for a point estimate
is the naive approximation to the Maximum a Posteriori (MAP) estimator,
that is the value in the sequence (0, p)(l) that maximises the posterior,

1" =arg max 7((6,p)"[x).

EERER)

Once an approximated MAP is computed, it is then possible to reorder all
terms in the sequence (6, p)(l) by selecting the reordering that is the closest
to the approximate MAP estimator for a specific distance in the parameter
space. This solution bypasses the identifiability problem without requiring
a preliminary and most likely unnatural ordering with respect to one of
the parameters (mean, weight, variance) of the model. Then, after the
reordering step, an estimation of 0; is given by

M

S0/

=1

8.4.2. Data augmentation and Gibbs sampling
approximations

The Gibbs sampler is the most commonly used approach in Bayesian mix-
ture estimation ([12, 13, 15, 27, 52]) because it takes advantage of the
missing data structure of the z;’s uncovered in Section 8.2.2.

The Gibbs sampler for mixture models (8.1) (cf. [13]) is based on the
successive simulation of z, p and @ conditional on one another and on the
data, using the full conditional distributions derived from the conjugate
structure of the complete model. (Note that p only depends on the missing
data z.)
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Gibbs sampling for mixture models

0. Initialization: choose p(® and 6 arbitrarily
1. Step t. Fort=1,.

1.1 Generatez()(zfl ,n) from (j=1,...,J)
IP’( (t) _]|p(t 1) H(t 1) )o<p§-t71)f (xileyﬂ))

1.2 Generate p®*) from 7(p|z™®)
1.3 Generate 8 from 7(6|z(",x).

As always with mixtures, the convergence of this MCMC algorithm is
not as easy to assess as it seems at first sight. In fact, while the chain is
uniformly geometrically ergodic from a theoretical point of view, the severe
augmentation in the dimension of the chain brought by the completion
stage may induce strong convergence problems. The very nature of Gibbs
sampling may lead to “trapping states”, that is, concentrated local modes
that require an enormous number of iterations to escape from. For example,
components with a small number of allocated observations and very small
variance become so tightly concentrated that there is very little probability
of moving observations in or out of those components, as shown in [31]. As
discussed in Section 8.2.3, [7] show that most MCMC samplers for mixtures,
including the Gibbs sampler, fail to reproduce the permutation invariance of
the posterior distribution, that is, that they do not visit the J! replications
of a given mode.

Example 8.8. Consider a mixture of normal distributions with common
variance o and unknown means and weights

ZpJ (pj, 0

This model is a particular case of model (8.1) and is not identifiable. Using
conjugate exchangeable priors

pND(laal)a MjNN(O,l()O'Q), 0—72’\’63:[)(1/2)7
it is straightforward to implement the above Gibbs sampler:
e the weight vector p s simulated as the Dirichlet variable

D(1+4+ny,...,1+ny);
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e the inverse variance as the Gamma variable

0. 1n] 5
G<{ (n+2)/2,(1/2) 1+Z< —01 +sj> ;
e and, conditionally on o, the means p; are simulated as the Gaussian
variable

/\/'(njfcj/(nj + 0.1), 0'2/(7’Lj + 01)) ;

whereny =3, ., Tj =, _;x; and 83 =3 _(xi —7;)%/n;.
Note that this choice of implementation allows for the block simulation of
the means-variance group, rather than the more standard simulation of the
means conditional on the variance and of the variance conditional on the
means ([13]). <
Consider the benchmark dataset of the galaxy radial speeds described
for instance in [44]. The output of the Gibbs sampler is summarised on
Figure 8.5 in the case of J = 3 components. As is obvious from the com-
parison of the three first histograms (and of the three following ones), label
switching does not occur with this sampler: the three components remain
1solated during the simulation process. |

Note that [22] (among others) dispute the relevance of asking for proper
mixing over the k! modes, arguing that on the contrary the fact that the
Gibbs sampler sticks to a single mode allows for an easier inference. We
obviously disagree with this perspective: first, from an algorithmic point of
view, given the unconstrained posterior distribution as the target, a sampler
that fails to explore all modes clearly fails to converge. Second, the idea
that being restricted to a single mode provides a proper representation
of the posterior is naively based on an intuition derived from mixtures
with few components. As the number of components increases, modes on
the posterior surface get inextricably mixed and a standard MCMC chain
cannot be garanteed to remain within a single modal region. Furthermore,
it is impossible to check in practice whether or not this is the case.

In his defence of “simple” MCMC strategies supplemented with post-
processing steps, [22] states that

Celeux et al.’s ([7]) argument is persuasive only to the extent that
there are mixing problems beyond those arising from permutation in-
variance of the posterior distribution. [7] does not make this argument,
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13, o) of a normal mixture with k = 3 components based on 10% iterations of the Gibbs
sampler and the galaxy dataset, evolution of the o and of the log-likelihood.

indeed stating “The main defect of the Gibbs sampler from our perspec-
tive is the ultimate attraction of the local modes” (p. 959). That arti-
cle produces no evidence of additional mizing problems in its examples,

and we are not aware of such examples in the related literature. Indeed,

the simplicity of the posterior distributions conditional on state assign-

ments in most mizture models leads one to expect no irreqularities of

this kind.

There are however clear irregularities in the convergence behaviour of Gibbs
and Metropolis-Hastings algorithms as exhibited in [31] and [32] (Figure
6.4) for an identifiable two-component normal mixture with both means

unknown. In examples such as those, there exist secondary modes that

may have much lower posterior values than the modes of interest but that
are nonetheless too attractive for the Gibbs sampler to visit other modes.
In such cases, the posterior inference derived from the MCMC output is

plainly incoherent. (See also [24] for another illustration of a multimodal

posterior distribution in an identifiable mixture setting.)
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However, as shown by the example below, for identifiable mixture mod-
els, there is no label switching to expect and the Gibbs sampler may work
quite well. While there is no foolproof approach to check MCMC conver-
gence ([42]), we recommend using the visited likelihoods to detect lack of
mixing in the algorithms. This does not detect the label switching diffi-
culties (but individual histograms do) but rather the possible trapping of
a secondary mode or simply the slow exploration of the posterior surface.
This is particularly helpful when implementing multiple runs in parallel.

Example 8.9. (Example 8.2 continued) Consider the case of a mizture
of Student’s t distributions with known and different numbers of degrees
of freedom

J
ijtl’j (,Uj; UJQ) :
=1

This mizture model is not a particular case of model (8.1) and is identifiable.
Moreover, since the noncentral t distribution t, (i, %) can be interpreted as
a continuous mirture of mormal distributions with a common mean and
with variances distributed as scaled inverse x? random variable, a Gibbs
sampler can be easily implemented in this setting by taking advantage of
the corresponding latent variables: x; ~ t,(u,02) is the marginal of

2
zilVi ~N(u, “;/”) . Vi~

Once these latent variables are included in the simulation, the condi-
tional posterior distributions of all parameters are available when wusing
conjugate priors like

pND(l”1)7 MJNN(MOaQU(Q))a U?Nzg(aaaﬁo’)-

The full conditionals for the Gibbs sampler are a Dirichlet D(14+nq,...,1+
ny) distribution on the weight vector, inverse Gamma

n; (i — 1)2V;
G{ a0+ LB +Z‘ o

Zi=]
distribution on the variances 02, normal

foos + 20830, xiVi/v; 2057]
o +2033. _Vifvy ol +203 3, Vi/vs

Zi=]

Zi=]
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distribution on the means pij, and Gamma

g (1 + V_] 2VjJJ2 )
2 2 ’ l/jO'JQ» —+ (QjZ — ,u'j)2
distributions on the V;.

In order to illustrate the performance of the algorithm, we simulated
2,000 observations from the two-component t mixture with p1 =0, po =5,
0?2 =03 =1,11 =5, v = 11 and p; = 0.3. The output of the Gibbs
sampler is summarized in Figure 8.6. The mizing behaviour of the Gibbs
chains seems to be excellent, as they explore neighbourhoods of the true

values. <
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Fig. 8.6. Histograms of the parameters, pi,01,p1, 2,02, and evolution of the
(observed) log-likelihood along 30,000 iterations of the Gibbs sampler and a sample
of 2,000 observations.

The example below shows that, for specific models and a small number
of components, the Gibbs sampler may recover the symmetry of the target
distribution.

Example 8.10. (Example 8.6 continued) For the latent class model,
if we use all four variables with two modalities each in [50], the Gibbs
sampler involves two steps: the completion of the data with the component
labels, and the simulation of the probabilities p and qi; from Beta B(sy; +
B,n; — s + .5) conditional distributions. For the 216 observations, the
Gibbs sampler seems to converge satisfactorily since the output in Figure
8.7 exhibits the perfect symmetry predicted by the theory. We can note that,
wmn this special case, the modes are well separated, and hence values can be
crudely estimated for qi; by a simple graphical identification of the modes.

<
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Fig. 8.7. Latent class model: histograms of p and of the g;;’s for 104 iterations of the
Gibbs sampler and the four variables of [50]. The first histogram corresponds to p, the
next on the right to gi1, followed by g21 (identical), then g21, g22, and so on.

8.4.3. Metropolis—Hastings approxrimations

The Gibbs sampler may fail to escape the attraction of a local mode, even
in a well-behaved case as in Example 1 where the likelihood and the pos-
terior distributions are bounded and where the parameters are identifiable.
Part of the difficulty is due to the completion scheme that increases the
dimension of the simulation space and that reduces considerably the mo-
bility of the parameter chain. A standard alternative that does not require
completion and an increase in the dimension is the Metropolis—Hastings
algorithm. In fact, the likelihood of mixture models is available in closed
form, being computable in O(Jn) time, and the posterior distribution is
thus available up to a multiplicative constant.

General Metropolis—Hastings algorithm for mixture models

0. Initialization. Choose p(® and 6
1. Step t. Fort=1,...

1.1 Generate (6, p) from g (0,p|0(t71),p(t_1>),
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1.2 Compute

F(x(6,p)7(6,p)q(6" Y, pt~1|8,p)
F(x|0"Y pt=D)x(0"H pt=1)q(6,p|6" "V, ptt-1)’

1.3 Generate u ~ %o 1
If » > u then (O(t), p®) = (5’ )
else (01, p®) = (81~1) pi=1).

The major difference with the Gibbs sampler is that we need to choose
the proposal distribution ¢, which can be a prior: anything, and this is a
mixed blessing! The most generic proposal is the random walk Metropolis—
Hastings algorithm where each unconstrained parameter is the mean of the
proposal distribution for the new value, that is,

é; = 95-15_1) + Uj

where u; ~ N(0,¢?). However, for constrained parameters like the weights
and the variances in a normal mixture model, this proposal is not efficient.

This is indeed the case for the parameter p, due to the constraint that
Z'j]:l p;j = 1. To solve this difficulty, [5] propose to overparameterise the
model (8.1) as

J

pjwj/Zwl, wj >0,

=1

thus removing the simulation constraint on the p;’s. Obviously, the w;’s
are not identifiable, but this is not a difficulty from a simulation point
of view and the p;’s remain identifiable (up to a permutation of indices).
Perhaps paradoxically, using overparameterised representations often helps
with the mixing of the corresponding MCMC algorithms since they are less
constrained by the dataset or the likelihood. The proposed move on the
w;’s is log(w;) = 1og(w§t71)) + u; where u; ~ N(0,¢?).

Example 8.11. (Example 8.2 continued) We now consider the more
realistic case when the degrees of freedom of the t distributions are unknown.
The Gibbs sampler cannot be implemented as such given that the distribu-
tion of the v;’s is far from standard. A common alternative ([42]) is to
introduce a Metropolis step within the Gibbs sampler to overcome this diffi-
culty. If we use the same Gamma prior distribution with hyperparameters
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(aw, By) for all the v;s, the density of the full conditional distribution of v;
18 proportional to

1/2)v/2 5\ » i — 1)V
<7( /2) v; 1/2) I/;X"_l exp(—0Byv5) H V; i/2 exp{i(ﬂlj )7V, }

. 2.2
L(v/2) e 205v;

Therefore, we resort to a random walk proposal on the log(v;)’s with scale
¢ =5. (The hyperparameters are o, =5 and 3, = 2.)

In order to illustrate the performances of the algorithm, two cases are
considered: (i) all parameters except variances (o3 = o3 = 1) are unknown
and (ii) all parameters are unknown. For a simulated dataset, the results
are giwen on Figure 8.8 and Figure 8.9, respectively. In both cases, the
posterior distributions of the v;’s exhibit very large variances, which indi-
cates that the data is very weakly informative about the degrees of freedom.
The Gibbs sampler does not mix well-enough to recover the symmetry in
the marginal approximations. The comparison between the estimated den-
sities for both cases with the setting is given in Figure 8.10. The estimated
mizture densities are indistinguishable and the fit to the simulated dataset
is quite adequate. Clearly, the corresponding Gibbs samplers have recovered
correctly one and only one of the 2 symmetric modes.
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Fig. 8.8. Histograms of the parameters ui,v1,p1, p2, v2 when the variance parameters
are known, and evolution of the log-likelihood for a simulated ¢ mixture with 2,000
points, based on 3 x 10* MCMC iterations.

We now consider the aerosol particle dataset described in Example 8.2.
We use the same prior distributions on the v;’s as before, that is G(5,2).
Figure 8.11 summarises the output of the MCMC' algorithm. Since there
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Fig. 8.9. Histograms of the parameters ui,01,v1,p1,u2,02,v2, and evolution of the
log-likelihood for a simulated ¢ mixture with 2,000 points, based on 3 x 10* MCMC
iterations.
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Fig. 8.10. Histogram of the simulated dataset, compared with estimated ¢ mixtures
with known o2 (red), known v (green), and when all parameters are unknown (blue).

15 no label switching and only two components, we choose to estimate the
parameters by the empirical averages, as illustrated in Table 8.2. As shown
by Figure 8.2, both t miztures and normal miztures fit the aerosol data
reasonably well. <
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Fig. 8.11. Histograms of parameters (u1,01,v1,p1, p1,02,v2) and log-likelihood of a
mixture of ¢ distributions based on 30, 000 iterations and the aerosol data.

Table 8.2. Estimates of the parameters for the aerosol dataset compared for ¢
and normal mixtures.

1 2 o1 02 V1 V2 p1
Student  2.5624  3.9918 0.5795 0.3595 18.5736  19.3001  0.3336
Normal  2.5729 3.9680 0.6004 0.3704 - - 0.3391

8.5. Inference for Mixture Models with an Unknown
Number of Components

Estimation of J, the number of components in (8.1), is a special type of
model choice problem, for which there are a number of possible solutions:

(i) direct computation of the Bayes factors ([8, 25]);
(ii) evaluation of an entropy distance ([34, 45]);
(iii) generation from a joint distribution across models via reversible jump
MCMC ([40]) or via birth-and-death processes ([49]);
(iv) indirect inference though Dirichlet process mixture models.

We refer to [31] for a short description of the reversible jump MCMC so-
lution, a longer survey being available in [42] and a specific description
for mixtures—including an R package—being provided in [32]. The alterna-
tive birth-and-death processes proposed in [49] has not generated as much
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follow-up, except for [5] who showed that the essential mechanism in this
approach was the same as with reversible jump MCMC algorithms.

Dirichlet processes ([1, 18]) are often advanced as alternative to the
estimation of the number of components for mixtures because they natu-
rally embed a clustering mechanism. A Dirichlet process is a nonparametric
object that formally involves a countably infinite number of components.
Nonetheless, inference on Dirichlet processes for a finite sample size pro-
duces a random number of clusters. This can be used as an estimate of the
number of components. From a computational point of view, see [37] for
a MCMC solution and [3] for a variational alternative. We note that the
proposal of [33] mentioned earlier also involves a Dirichlet cluster process
modeling that leads to a posterior on the number of components.

We focus here on the first two approaches, because, first, the descrip-
tion of reversible jump MCMC algorithms require much care and therefore
more space than we can allow to this paper and, second, this description
exemplifies recent advances in the derivation of Bayes factors. These solu-
tions pertain more strongly to the testing perspective, the entropy distance
approach being based on the Kullback-Leibler divergence between a J com-
ponent mixture and its projection on the set of J — 1 mixtures, in the same
spirit as in [14]. Given that the calibration of the Kullback divergence is
open to various interpretations ([14, 23, 34]), we will only cover here some
proposals regarding approximations of the Bayes factor oriented towards
the direct exploitation of outputs from single model MCMC runs.

In fact, the major difference between approximations of Bayes factors
based on those outputs and approximations based on the output from the
reversible jump chains is that the latter requires a sufficiently efficient choice
of proposals to move around models, which can be difficult despite signif-
icant recent advances ([4]). If we can instead concentrate the simulation
effort on single models, the complexity of the algorithm decreases (a lot) and
there exist ways to evaluate the performance of the corresponding MCMC
samples. In addition, it is often the case that few models are in competition
when estimating J and it is therefore possible to visit the whole range of
potential models in an exhaustive manner.

We have

fo(@|As) = Hijf(xilej)

i=1j=1
where Ay = (0,p) = (01,...,05,p1,...,ps). Most solutions [20] revolve
around an importance sampling approximation to the marginal likelihood
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integral

my(x) = /fJ(wP\J)WJ()\J)d)\J

where J denotes the model index (that is the number of components in
the present case). For instance, [28] use bridge sampling with simulated
annealing scenarios to overcome the label switching problem. [47] rely on
defensive sampling and the use of conjugate priors to reduce the integration
to the space of latent variables (as in [6]) with an iterative construction of
the importance function. [19] also centers her approximation of the marginal
likelihood on a bridge sampling strategy, with particular attention paid to
identifiability constraints. A different possibility is to use the representation
n [21]: representation: starting from an arbitrary density g, the equality

_ _ 97(AJ)
- / A B WA WL
=my(x 91 (As) mr(As]x) dAs

fr(xlXy)mr(Ar)

implies that a potential estimate of m(x) is

/ 9,)
=1 f] 33|>‘§]t))7r'7()“(;))

when the Af]t)’s are produced by a Monte Carlo or an MCMC sampler

targeted at 77 (As|x). While this solution can be easily implemented in low
dimensional settings ([10]), calibrating the auxiliary density gy, is always an
issue. The auxiliary density could be selected as a non-parametric estimate
of m(As|x) based on the sample itself but this is very costly. Another
difficulty is that the estimate may have an infinite variance and thus be too
variable to be trustworthy, as experimented by [19].

Yet another approximation to the integral m j(x) is to consider it as the
expectation of f;(x|As), when Ay is distributed from the prior. While a
brute force approach simulating A ; from the prior distribution is requiring
a huge number of simulations ([36]), a Riemann based alternative is pro-
posed by [46] under the denomination of nested sampling; however, [10] have
shown in the case of mixtures that this technique could lead to uncertainties
about the quality of the approximation.

We consider here a further solution, first proposed by [8], that is straight-
forward to implement in the setting of mixtures (see [9] for extensions).
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Although it came under criticism by [36] (see also [19]), we show below
how the drawback pointed by the latter can easily be removed. Chib’s ([8])
method is directly based on the expression of the marginal distribution
(loosely called marginal likelihood in this section) in Bayes’ theorem:

fr(®|Xp)mr(Xy)
7TJ()\J|£B)

and on the property that the rhs of this equation is constant in A;. There-
fore, if an arbitrary value of A s, A’ say, is selected and if a good approxima-
tion to ws(As|x) can be constructed, 77 (As|x), Chib’s ([8]) approximation
to the marginal likelihood is
A _ Jo(@[AT) mi(AY)
my(x) = L .
T (Aslz)

In the case of mixtures, a natural approximation to m;(A|x) is the Rao-
Blackwell estimate

my(x) =

(8.8)

Ty (A%|x) = ZT(} X, 20,

where the z(!)’s are the latent variables simulated by the MCMC sampler.
To be efficient, this method requires

(a) a good choice of A% but, since in the case of mixtures, the likelihood
is computable, A can be chosen as the MCMC approximation to the
MAP estimator and,

(b) a good approximation to 7y (A s|x).

This later requirement is the core of Neal’s ([36]) criticism: while, at
a formal level, #;(A%|x) is a converging (parametric) approximation to
m7(Aslx) by virtue of the ergodic theorem, this obviously requires the
chain (z(t)) to converge to its stationarity distribution. Unfortunately, as
discussed previously, in the case of mixtures, the Gibbs sampler rarely
converges because of the label switching phenomenon described in Section
8.3.1, so the approximation 7;(A%|x) is untrustworthy. [36] demonstrated
via a numerical experiment that (8.8) is significantly different from the true
value m () when label switching does not occur. There is, however, a fix
to this problem, also explored by [2], which is to recover the label switching
symmetry a posteriori, replacing 7 ; (A§|m) in (8.8) above with

1
T (Ajle) = T Z ZWJ (A7) |z, Z(t))

ceG; t=1
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where & ; denotes the set of all permutations of {1,...,.J} and o(AY) de-
notes the transform of A’; where components are switched according to the
permutation o. Note that the permutation can equally be applied to A%
or to the z("’s but that the former is usually more efficient from a com-
putational point of view given that the sufficient statistics only have to be
computed once. The justification for this modification either stems from a
Rao-Blackwellisation argument, namely that the permutations are ancillary
for the problem and should be integrated out, or follows from the general
framework of [26] where symmetries in the dominating measure should be
exploited towards the improvement of the variance of Monte Carlo estima-
tors.

Example 8.12. (Example 8.8 continued) In the case of the normal
mixture case and the galary dataset, using Gibbs sampling, label switch-
ing does not occur. If we compute logmy(x) using only the original es-
timate of [8], (8.8), the [logarithm of the] estimated marginal likelihood
is py(x) = —105.1396 for J = 3 (based on 10® simulations), while intro-
ducing the permutations leads to py(x) = —103.3479. As already noted
by [36], the difference between the original Chib’s ([8]) approzimation and
the true marginal likelihood is close to log(J!) (only) when the Gibbs sam-
pler remains concentrated around a single mode of the posterior distribu-
tion. In the current case, we have that —116.3747 + log(2!) = —115.6816
exactly! (We also checked this numerical value against a brute-force esti-
mate obtained by simulating from the prior and averaging the likelihood,
up to fourth digit agreement.) A similar result holds for J = 3, with
—105.1396 +1og(3!) = —103.3479. Both [36] and [19] also pointed out that
the log(J!) difference was unlikely to hold for larger values of J as the modes
became less separated on the posterior surface and thus the Gibbs sampler
was more likely to explore incompletely several modes. For J = 4, we get
for instance that the original Chib’s ([8]) approximation is —104.1936, while
the average over permutations gives —102.6642. Similarly, for J =5, the
difference between —103.91 and —101.93 is less than log(5!). The log(J!)
difference cannot therefore be used as a direct correction for Chib’s ([8]) ap-
proximation because of this difficulty in controlling the amount of overlap.
However, it is unnecessary since using the permutation average resolves
the difficulty. Table 8.3 shows that the preferred value of J for the galaxy
dataset and the current choice of prior distribution is J = 5. <

When the number of components J grows too large for all permutations
in & to be considered in the average, a (random) subsample of permuta-
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Table 8.3. Estimations of the marginal likelihoods by the symmetrised Chib’s ap-
proximation (based on 10% Gibbs iterations and, for J > 5, 100 permutations selected
at random in Sj).

J 2 3 4 5 6 7 8
ps(x) | —115.68 —103.35 —102.66 —101.93 —102.88 —105.48 —108.44

tions can be simulated to keep the computing time to a reasonable level
when keeping the identity as one of the permutations, as in Table 8.3 for
J = 6,7. (See [2] for another solution.) Note also that the discrepancy
between the original Chib’s ([8]) approximation and the average over per-
mutations is a good indicator of the mixing properties of the Markov chain,
if a further convergence indicator is requested.

Example 8.13. (Example 8.6 continued) For instance, in the setting
of Example 8.6 with a = b = 1, both the approximation of [8] and the
symmetrized one are identical. When comparing a single class model with
a two class model, the corresponding (log-)marginals are

= —552.0402

M T() T(n 12T — s+ 1/2)
pr(z) ’Er(l/zv T(n+1)

and pa(x) ~ —523.2978, giving a clear preference to the two class model.
<
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The paper is a review of results on the asymptotic behavior of Markov
processes generated by i.i.d. iterates of monotone maps. Of particular
importance is the notion of splitting introduced by [12]. Some exten-
sions to more general frameworks are outlined, and, finally, a number of
applications are indicated.

9.1. Introduction

This paper is an impressionistic overview of some results on Markov pro-
cesses that arise in the study of a particular class of random dynamical
systems. A random dynamical system is described by a triplet (S,T, Q)
where S is the state space (for example, a metric space), I" an appropriate
family of maps on S into itself (interpreted as the set of all possible laws of
motion) and Q) is a probability measure on (some o-field of) T.

The evolution of the system can be described as follows: initially, the
system is in some state x; an element a; of I' is chosen randomly according
to the probability measure ) and the system moves to a state X7 = aq (z)
in period one. Again, independently of a7, an element as of I' is chosen
according to the probability measure () and the state of the system in period
two is obtained as Xo = aa(a(z)). In general, starting from some x in S,
one has

Xny1(2) = g1 (Xn(2)), (1.1)

where the maps («,) are independent with the common distribution Q.
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The initial point 2 can also be chosen (independently of (,)) as a random
variable Xy. The sequence X,, of states obtained in this manner is a Markov
process and has been of particular interest in developing stochastic dynamic
models in many disciplines. With specific assumptions on the structure of
S and I' it has been possible to derive strong results on the asymptotic
behavior of X,,.

Random dynamical systems have been particularly useful for model-
ing long run evolution of economic systems subject to exogenous random
shocks. The framework (1.1) can be interpreted as a descriptive model;
but, one may also start with a discounted (stochastic) dynamic program-
ming problem, and directly arrive at a stationary optimal policy function,
which together with the exogenously given law of transition describes the
optimal evolution of the states in the form (1.1). Of particular significance
“inverse optimal problem under uncertainty” due to [20]
and [22] which assert that a very broad class of random systems (1.1) can
be so interpreted.

The literature exploring (1.1) is already vast and growing. Given the
space limitations, this review is primarily restricted to the case when S is
an interval (non-degenerate) in R, or a closed (nonempty) subset of R¢, and
I" is a family of monotone maps from S into S. Some extensions to more
general framework and applications are also outlined. Here I touch upon a
few of the issues and provide some references to definitive treatments.

(i) The existence, uniqueness and global stability of a steady state (an
invariant distribution) of random dynamical systems: Significant progress
has been achieved when the laws of motion satisfy either some “splitting”

are results on the

or “contraction” conditions (see, e.g., [12], [11] [6, 7] and the review in [9],
Chapter 3). An awkward problem involving the existence question is worth-
noting. Consider S = [0,1] or S = R and assume that v(0) = 0 for all
v € . This is a natural property of a law of motion in many population
or economic models (viewed as a production function, (0) = 0 means that
zero input leads to zero output). The point mass at 0 (the measure dy)
is obviously an invariant distribution. The challenge, then, is to find an
invariant distribution with support in (0, 1).

(ii) The nature of the invariant distribution. Suppose, for concreteness,
that S is an interval, and F' is the distribution function on R of the unique
invariant measure. Invoking a standard decomposition property (see [18],
p. 130, 196), let (i) Fy be the step part (a step function); (ii) Fy. be the
absolutely continuous part (with respect to the Lebesgue measure) and
(iii) Fs be the singular part of F.
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As a first step one would like to know whether (i) F' is continuous
(Fq = 0) or whether (ii) F is absolutely continuous or whether (iii) F' is
singular. At the next step, one would like to ask questions of comparative
statics: how does F' (or the components (i)—(iii)) change if a parameter in
the model is allowed to change? Finally, one would like to compute (or
approximate) F' but that typically requires more structure on the model.

All the questions are elusive. Take the standard approach of describing a
Markov process with state space S = R, and a transition function p(x, A). If
for each x € S, p(x,.) is absolutely continuous with respect to the Lebesgue
measure, then if 7 is invariant under p(x, A), 7 is also absolutely continuous
with respect to the Lebesgue measure [see [9], Proposition 5.2 of Chapter
5]. This result is to be contrasted with those in Section 9.2.

A study of (i.i.d) random iteration of quadratic maps (S = [0,1], T' =
{f: flx) = 0z(1 —x), 0 <6 <4}, Q with a two point support) was
initiated by [5]. The subsequent literature offers interesting examples on
applications of splitting and open questions. For a review of results when
I is the quadratic family (the typical v(z) = 0z(1 — ) does not satisfy
the monotonicity property that is central here but does have ‘piecewise
monotonicity’ which has often been used to invoke the splitting conditions:
see [1]; further extensions are in [3]).

The processes considered in this article particularly when T is finite are
not in general Harris irreducible (see, e.g., [23] for a definition of Harris
irreducibility). Therefore, the standard techniques used for the study of
irreducible Markov processes in the literature are not applicable to many
of the cases reviewed. This point was explored in detail in [13] who con-
cluded that “it is surprising and unfortunate that the large classical theory
based on compactness and/or irreducibility conditions generally give little
information about (1.1) as a population model.” The reader interested in
this issue is referred to [13], Section 5.

(iii) Applications of the theoretical results to a few topics:

(a) turnpike theorems in the literature on descriptive and optimal growth
under uncertainty: when each admissible law of motion is monotone in-
creasing, and satisfies the appropriate Inada-type ‘end point’ condition,
Theorem 9.1 can be applied directly.

(b) estimation of the invariant distribution: as noted above, an important
implication of the “splitting theorems” is an estimate of the speed of
convergence. This estimate is used in Section 9.5 to prove a result on
\/n-consistency of the sample mean as an estimator of the expected
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long run equilibrium value (i.e., the value of the state variable with
respect to the invariant distribution).

9.2. Random Dynamical Systems

We consider random dynamical systems. Let S be a metric space and &
be the Borel o-field of S. Endow I' with a o-field ¥ such that the map
(v,2) — (y(z)) on (T'x S, ¥ ® S into (5,S) is measurable. Let @ be a
probability measure on (I',3). On some probability space (2, F, P) let
(an)2, be a sequence of independent random functions from I' with a
common distribution (). For a given random variable X (with values in
S), independent of the sequence ()2, define

X1 = (X()) = OélX() (21)

Xnt1 = ni1(Xn) = anqi0m - a1 Xp (2.2)

We write X,,(x) for the case Xy = z; to simplify notation we write X,, =
ap -+ a1 X for the more general (random) Xy. Then X, is a Markov
process with the stationary transition probability p(z, dy) given as follows:
forxe S, CesS,

p(z,C) =Q({y el :y(zx) € C}) (2.3)

The stationary transition probability p(x, dy) is said to be weakly contin-
uous or to have the Feller property if for any sequence x,, converging to z,
the sequence of probability measures p(z, ) converges weakly to p(z,-).
One can show that if T' consists of a family of continuous maps, p(z, dy)
has the Feller property.

9.3. Evolution

To study the evolution of the process (2.2), it is convenient to define the
map T* [on the space M (S) of all finite signed measures on (S, S)] by

T*u(C) = /S pla, C)p(dz) = / W IOQMdY),  pe M(S).  (3.1)

Let P(S) be the set of all probability measures on (S, §). An element 7
of P(S) is invariant for p(z, dy) (or for the Markov process X,,) if it is a
fixed point of T, i.e.,

7 is invariant iff T*m=m (3.2)
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Now write p(™)(z, dy) for the n-step transition probability with p(!) =
p(z, dy). Then p(™(x, dy) is the distribution of a, ---ajz. Define T*"
as the n-th iterate of T*:

Ty =T (T* ) (n > 2), T = T*, T*° = Identity (3.3)

Then for any C € S,

(€)= [ 1. Copla), (3.4)

so that T*"u is the distribution of X,, when Xy has distribution u. To
express T*" in terms of the common distribution @ of the i.i.d. maps (a,),
let T'™ denote the usual Cartesian product I' x T' x -+ x I' (n terms), and
let Q™ be the product probability Q x @ x -+ x @ on (I'™, §®™) where
8%®" is the product o-field on T™. Thus Q" is the (joint) distribution
of @ = (a1,a9,...,a,). For v = (v1,%2,...,7) €™ let 4 denote the
composition

3 = YnTYn—1"""71 (3.5)

We suppress the dependence of 4 on n for notational simplicity. Then,

since T*"p is the distribution of X,, = «, - -+ a1 Xp, one has (T*"u)(A) =
~—1 ~

Prob(Xpea A), where & = anay_1---ay. Therefore, by the indepen-

dence of a and Xy,

@) = [ wG Q) (AeS uePS). (39)

Finally, we come to the definition of stability. A Markov process X,
is stable in distribution if there is a unique invariant probability measure
7 such that X, (z) converges weakly (or, in distribution) to = irrespec-
tive of the initial state z, i.e., if p(™ (x, dy) converges weakly to the same
probability measure 7 for all x.

In what follows, if ¢ is a bounded S-measurable real valued function on
S, we write

Tg(z) = /Sg(y) p(z, dy) (3.7)
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9.4. Splitting

If S is a (nonempty) compact metric space and I' consists of a family of
continuous functions from S into S, then a fixed point argument ensures
that there is an invariant probability measure 7*. However, when I" consists
of monotone maps on a suitable subset S of R’ (into S), stronger results
on uniqueness and stability can be derived by using a ‘splitting’ condition,
first studied by [12].

9.4.1. Splitting and Monotone Maps

Let S be a nondegenerate interval (finite or infinite, closed, semiclosed, or
open) and T" a set of monotone maps from S into S; i.e., each element of T’
is either a nondecreasing function on S or a nonincreasing function.

We assume the following splitting condition:
(H) There exist zo € S,x >0 and a positive N such that

(1) Planan—1- a1z < zVx € 5)
(2) Planan—1- a1z > zVx € S)

X
X-

Note that conditions (1) and (2) in (H) may be expressed, respectively,
as

QN({’yeI‘N A Nz eS:x<2)=8})>%, (4.1)
and
QV{yer™ 5 zeS:z>2]=5})>x (4.2)

Recall that ¥ = yyyn—1---71-
Denote by dg (41, v) the Kolmogorov distance on P(S). That is, if F),, F,
denote the distribution functions (d.f.) of u and v, respectively, then

dic (11, v) := sup (=00, 2] N §) = (=00, 2] N )|

= sup £y (&) — Fu(a)] v € PU(S), (43)

re
Remark 4.1. First, it should be noted that convergence in the distance
dg on P(S) implies weak convergence in P(S). Secondly, (P(S), di) is a
complete metric space.(See [9], Theorem 5.1 and C11.2(d) of Chapter 2). B
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Theorem 9.1. Assume that the splitting condition (H) holds. Then

(a) the distribution T*"u of X, := au, - - a1 Xo converges to a probability
measure ™ on S in the Kolmogorov distance dx irrespective of Xy.
Indeed,

dic (", m) < (1= )N € P(S) (4.4)

where [y] denotes the integer part of y.
(b) 7 in (a) is the unique invariant probability of the Markov process X,,.

Proof. [Main Steps] Careful calculations using the splitting condition
and monotonicity lead to (see [9], Chapter 3, Theorem 5.1):

dr (T p, T*v) < dg(p,v) (4.5)
and
A (TN, TN0) < (1= Qdic(ov) (v €P(S). (46)

That is, T7*V is a uniformly strict contraction and T* is a contraction.
As a consequence, YV, > N, one has

dx (T*nﬂ, T*nl/) = dy (T*N(T*(an)H)’ T*N(T*(an)V))
< (1 _ X)dK(T*(n_N)Ma T*(TL—N)V) <.
< (1 _ X)[H/N]dK(T*(n—[n/N]N)M, T*(n—[n/N]N)V)
< (-0 ) ()

Now, by appealing to the contraction mapping theorem, T*N has a unique
fixed point 7 in P(S), and T*N(T*r) = T*(T*N7) = T*r. Hence T*7 is
also a fixed point of T*YN. By uniqueness T*r = m. Hence, 7 is a fixed
point of T*. Any fixed point of T* is a fixed point of T*VN. Hence = is
the unique fixed point of T*. Now take v = 7 in (4.7) to get the desired
relation (4.4). O

The following remarks clarify the role of the splitting condition.

Remark 4.2. Let S = [a,b] and a,(n > 1) a sequence of i.i.d. continuous
nondecreasing maps on S into S. Suppose that m is the unique invariant
distribution of the Markov process. If 7 is not degenerate, then the splitting
condition holds [[12], Theorem 5.17; for relaxing continuity, see [9], Lemma
CS.2 of Chapter 3]. [ |
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Remark 4.3. Suppose that «, are strictly monotone a.s. Then if the
initial distribution p is nonatomic (i.e., p({z}) = 0Vz or, equivalently the
d.f. of p is continuous), ovy~! is nonatomic Vv € I' (outside a set of zero
Q-probability). It follows that if X has a continuous d.f., then so has X3
and in turn Xs has a continuous d.f., and so on. Since, by Theorem 9.1,
this sequence of continuous d.f.s (of X,,(n > 1)) converges uniformly to the
d.f. of m, the latter is continuous. Thus 7 is nonatomic if o, are strictly
monotone a.s. |

Example 4.1. Let S = [0, 1] and T be a family of monotone nondecreasing
functions from S into S. As before, for any z € S, let

Xn(z) =ap- - -ayz.
One can verify the following two results:
[R.1] P[X,(0) < z] is nonincreasing in n and converges for each x € S.

[R.2] P[X,(1) < z]is nondecreasing in n and converges for each x € S.

Write

Fo(ﬂj)

lim P(X,(0) < z).

Fi(z) = nli_r)nooP(Xn(l) < ).

Note that Fy(x) < Fy(z) for all . Consider the case when I' = {f}, where

$+E if0<z<
- 1 . e 1
flx)=3 3+5 ifg<a<
1 02

o Wi

3

Verify that f is a monotone increasing map from S into S, but f is not
continuous. One can calculate that

Fo(a) 0 if0<z<i, Fu(a) 0 ifo<z<3
xTr) = xTr) =
’ 1 oifl<az<1 1 if2<az<l,

Neither Fy nor Fj is a stationary distribution function. [ |

Example 4.2. Let S = [0,1] and ' = {f1, fo}. In each period f; is
chosen with probability % f1 is the function f defined in Example 4.1, and
folz) =4 +2 forzeS.
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Then
0 if0<z<i,
1 ifi<z<l

Fy(z) = Fi(z) = {

and Fy(x) is the unique stationary distribution. Note that f1(3) = fa(3) =
%, i.e., f1 and fo have a common fixed point. Examples 4.1 and 4.2 are
taken from [30]. [

We now turn to the case where the state space is a subset of R‘(¢ > 1)
satisfying the following assumption:
(A1) S is a closed subset of R’.

Let I" be a set of monotone maps v on S into S, under the partial order:
x<yifz; <yjfor 1 <j<tlx=(x1,...,20), ¥y = (Y1,92,.-.,y¢) € R’ (or
S). That is, either v is monotone increasing: v( x) < v(y) if x <y, or «
is monotone decreasing: y(y) < v(x) f x <y;x, yeS.

On the space P(S), define, for each a > 0, the metric

/mm—/ﬁw

where G, is the class of all Borel measurable monotone (increasing or de-
creasing) functions g on S into [0,a]. The following result is due to [10],
who derived a number of interesting results on the metric space (P(S), d,).

da(ﬂa V) = Sup ) (MVEP(S))v (48)

g€eGa

One can show that convergence in the metric d, implies weak convergence
if (A.1) holds (see [9], pp. 287-288).

Lemma 9.1. Under the hypothesis (A.1), (P(S),d,) is a complete metric
space.

Consider the following splitting condition (H'). To state it, let 5 be as
n (3.5), but withn = N : 5§ = yyyv_1---71 for v = (71,72, -, n) e V.
(H') There exist Fje Z®N(i =1,2) for some N > 1, such that

(i) 6; = QN(F) >0 (i =1,2), and

(ii) for some xge S, one has

;?(X) S X0 VX€S, VVEFD

;?(X) Z X0 VX€S, VVEFQa

Also, assume that the set H, = {vel'N : 7 is monotone increasing}e Z®N.
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Theorem 9.2. Let {a, : n > 1} be a sequence of i.i.d. measurable mono-
tone maps with a common distribution Q. Assume (A.1) and (H') hold.
Then there exists a unique invariant probability measure for the Markov
process (2.1) and

sup di(p™(x,.),7) < (1 — 6)[%](71 > 1), (4.9)
xeS

where 6 = min{dq,d2}, and [%} is the integer part of 4.

Proof. The proof uses Lemma 9.1 and is spelled out in [9]. As in the
case of Theorem 9.1, we prove:
Step 1. T*N is a uniformly strict contraction on (P(S),d;)

In other words,

dy (T*Nﬂa T*NV) < (1 - 5)d1 (,LL, V)a Vi, VE@(S). (410)
Now, Step 2. Apply the Contraction Mapping Theorem. O

For earlier related results see [4].

9.4.2. An FExtension and Some Applications

An extension of Theorems 9.1-9.2 [proved in [6]] is useful for applications.
Recall that S is the Borel o-field of the state space S. Let A C S, define

d(.v) = sup |u(4) ~ V()| (n.veP(S)) (4.11)

(1) Consider the following hypothesis (H;y) :

(P(S),d) is a complete metric space; (4.12)

(2) there exists a positive integer N such that for all veI'V, one has
d(u 574 vi™) < d(p,v) (p,veP(S)) (4.13)

(3) there exists 6 > 0 such that VAeA, and with N as in (2), one has
P@a*'(A)=Sor¢)>6>0 (4.14)

Theorem 9.3. Assume the hypothesis (Hy). Then there exists a unique

invariant probability w for the Markov process X, := an - a1 Xg, where
Xo is independent of {c, :=n > 1}. Also, one has
AT pym) < (1= )N (ueP(S) (4.15)

where T*™ 11 is the distribution of X,, when Xo has distribution pi, and [n/N]
is the integer part of n/N.
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Remark 4.4. For applications of Theorem 9.3 to derive a Doeblin-type
convergence theorem, and to the study of non-linear autoregressive pro-
cesses see [9]. [ |

9.4.3. Extinction and Growth

Some light has been thrown on the possibilities of growth and extinction.
To review these results (see [13] for proofs and other related results), let
us assume that S = [0,00), and I consists of a family of maps f: S — S
satisfying

C.1 f(z) is continuously differentiable and strictly increasing on [0, 00)

C.2 Lz~ f(2)] <0 for z > 0 (concavity)

C.3 There is some K > 0 such that f(K) < K for all f € T’ (note that K
is independent of f)

Then we have the following:

Theorem 9.4. Suppose 0 < Xg < K with probability one. Then:

(a) X,, converges in distribution to a stationary distribution;

(b) The stationary distribution is independent of Xo and its df has F(0) =
0 or 1 [F(0%) = 1 means that X, > 0, which is extinction of the
population].

It is often useful to study the non-linear stochastic difference equation
written informally as:

Xn+1 = f(Xn; 9n+1)

where (6,,) is a sequence of independent, identically distributed random
variables taking values in a (nonempty) finite set A C Ry;. Here [ :
Ry x A — R, satisfies, for each § € A the conditions (C.1)-(C.2). Write
R(z,0) = =1 f(x,0) for z > 0.

For each 6 € A, let

R(0,0) = lim R(x,0)

z—0t

and

R(00,0) = lim R(z,0) = f'(z,0)

Tr—00
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Define the growth rates
vo = F[(log R(0,0)]
and
Voo = El(log R(00,0)]
By C.2 vy and v are well-defined.

Theorem 9.5. Under assumptions C.1-C.2 and 0 < Xy < oo with proba-
bility one,

(a) if vg <0, X,, — 0 with probability one;

(b) if veo > 0, X,, — 00 with probability one;

(c) if vg >0, Vo < 0, X, converges weakly (independently of the distribu-
tion of Xo) to a distribution with support in (0,00).

9.5. Invariant Distributions: Computation and Estimation

The problem of deriving analytical properties of invariant distributions has
turned out to be difficult and elusive. In this section we provide an example
of a class of Markov processes in which the unique invariant distribution
can be completely identified.

Let Z1,Z5 ..., be a sequence of non-negative i.i.d. random variables.
Consider the Markov Chain {X,, : n = 0,1,2...} on the state space S =
R+ defined by

Xn+1 = Zn-i—l + [1/Xn] n >0

where X is a strictly positive random variable independent of the sequence
{Z;}. We first summarize the dynamic behavior of the sequence {X,,}.

Theorem 9.6. Assume that {Z;} are non-degenerate. Then the Markov
chain {X,,, n=0,1} on S = R4y has a unique invariant probability 7, and
di(T*" 1, ) converges to zero exponentially fast, irrespective of the initial
distribution p and the invariant probability w is non-atomic.

Proof. The main step in the proof is to represent X,, as
Xn = an.0n_1--a1(Xo)

where a, () = Z,, + 1/x, n > 1. The maps «,, are monotone decreasing
on S. The splitting condition can also be verified (see [15], Theorem 4.1).
Hence Theorem 9.1 can be applied directly. O



Markov Processes Generated by Monotone Maps 215

Suppose that the common distribution of Z; is a Gamma distribution.
Recall that the Gamma distribution with parameters A > 0 and a > 0 is
the distribution on R4 given by the density function

ar

T

A7lem9 i zeR,

Yaa(z) =
0 otherwise

where T'(+) is the gamma function:

o0
r(p) = / 2P te % dy
0
Theorem 9.7. Suppose that the common distribution of the i.1.d. sequence
{Z;} is a Gamma distribution with parameters A\ and a. Then the invariant
probability m on (0,00) is absolutely continuous with density function

Ira(@) = (2K (2a)) e e ) zeR,

1 o A-1

where K () denotes the Bessel function, i.e., Kx(z) = 35 [, = X

e~ 22t ) dg.

Another interesting example corresponds to Bernoulli Z; : P(Z; = 0) =
p, P(Z; = 1) =1—-p(0 < p < 1). In this case the unique invariant
distribution 7 is singular with respect to Lebesgue measure, and has full
support on .S = (0, 00). An explicit computation of the distribution function
of 7, involving the classical continued fraction expansion of the argument,
may be found in [15], Theorem 5.2.

9.5.1. An Estimation Problem

Consider a Markov chain X, with a unique stationary distribution 7. Some
of the celebrated results on ergodicity and the strong law of large numbers
hold for m-almost every initial condition. However, even with [0, 1] as the
state space, the invariant distribution m may be hard to compute explic-
itly when the laws of motion are allowed to be non-linear, and its support
may be difficult to characterize or may be a set of zero Lebesgue measure.
Moreover, in many economic models, the initial condition may be histori-
cally given, and there may be little justification in assuming that it belongs
to the support of .

Consider, then, a random dynamical system with state space [c,d]
(without loss of generality for what follows choose ¢ > 0). Assume I’
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consists of a family of monotone maps from S with S, and the splitting
condition (H) hold. The process starts with a given . There is, by The-
orem 9.1, a unique invariant distribution 7 of the random dynamical sys-
tem, and (4.4) holds. Suppose we want to estimate the equilibrium mean
Z Xj is
=0

n—1
fs ym(dy) by sample means % >~ X;. We say that the estimator %
j=0 Jj=

\/n-consistent if

n—1

% > X, = /yw(dy) +O0p(n~'/?) (5.1)
j=0

where Op(n~'/2) is a random sequence &,, such that |e,, - n'/2| is bounded in

probability. Thus, if the estimator is \/n-consistent, the fluctuations of the
empirical (or sample-) mean around the equilibrium mean is O, (n~'/2). We
can establish (5.1) by using (4.4). One can show that (see [7], pp. 217-219)
if

f(z2) =2z~ [yr(dy)

then
sup Z [T"f(z)| < (d—¢) Z (1—0)"N 0 as m — 0o
x n=m-+1 n=m-+1

&)
Hence, g = — > TV f [where T° is the identity operator ] is well-defined,

n=0
(oo}
and g, and Tg are bounded functions. Also, (T' —1I)g = =Y. T"f +
n=1
S TN f = f. Hence,
n=0

n—1 n—1

Z f(X5) = Z(T - 1g(X;)

n—1

- Z((Tg)(Xj) - 9(X;))

= Z[(Ty)(Xj—l) —9(X;)] +9(Xn) — 9(Xo)

By the Markov property and the definition of T'g it follows that

E(Tg)(Xj-1) — g(X;) [Fj—1) =0
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where F, is the o-field generated by {X, : 0 < j <r}. Hence, (T'g)(X;_1)—
9(X;)(j > 1) is a martingale difference sequence, and are uncorrelated, so
that

k n
E[Z(Tg(Xj—l) —g(X))? = Z E((Tg)(X;-1) — g(X;))? (5.2)

Given the boundedness of g and T'g, the right side is bounded by n.« for
some constant «. It follows that

EQf(X;)* <o foralln
where 7’ is a constant that does not depend on Xy. Thus,
1 2 /
.mggngb/www>Sn/n
which implies,

LY %= [yl + 0,077

j=0

For other examples of y/n-consistent estimation, see [2] [and [8],
Chapter 5].

9.6. Growth Under Uncertainty

9.6.1. A Stochastic Stability Theorem in a Descriptive
Model

Models of descriptive as well as optimal growth under uncertainty have led
to random dynamical systems that are stable in distribution. We look at a
“canonical” example and show how Theorem 9.1 can be applied. We begin
with a descriptive growth model and follow it up with an optimization
problem.

As a matter of notation, for any function h on S into S, we write h("")
for the nth iterate of h. Think of ‘x’ as per capital output of an economy.

Let S=Ry;and I' = {Fy, Fs,..., F;, ..., Fx} where the distinct laws
of motion F; satisfy:

F.1. F; is strictly increasing, continuous, and there is some r; > 0
such that Fi(x) > x on (0,r;) and Fi(z) < x for x > r;.
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Note that F;(r;) =r; for all i =1,..., N. Next, assume:

F.2. r; #rjfori#j.

In other words, the unique positive fixed points r; of distinct laws of
motion are all distinct. We choose the indices : = 1,2,..., N so that

r<<rg<---<ry

Let Prob (o, = Fj) =p; > 0(i <i < N).

Consider the Markov process {X,,(z)} with the state space (0,00). If
y > r1, then F;(y) > F;(r1) > r for ¢ = 2,...N, and Fi(r1) = 71, so
that X,(z) > 7 for all n > 0 if ¢ > ry. Similarly, if y < 7y, then
Fi(y) < Fi(rn) < ry for i = 1,...,N — 1 and Fy(ry) = rn, so that
Xn(z) < ry forall n > 0 if & < ry. Hence, if the initial state z is in
[r1,7N], then the process {X,,(z) : n > 0} remains in [ry,ry] forever. We
shall presently see that for a long run analysis we can consider [ri,rx] as
the effective state space.

We shall first indicate that on the state space [r1, rn] the splitting con-
dition (H) is satisfied. If z > ry, Fi(z) < =, Fl(Q)(:c) < Fi(z) etc. The
limit of this decreasing sequence Fl(n) (z) must be a fixed point of Fy, and
therefore must be r1. Similarly, if < ry, then F{(z) increases to rn. In
particular,

lim Fl(") (ry) =ri, lim F](V") (ri) =rn.

n—oo n—o0

Thus, there must be a positive integer ng such that
FM (ry) < FJ© ().
This means that if z € [F"*) (rn), F{" (r1)], then

Prob(X,,(x) < zo Vaxe[ri,rn])
> Prob(ay, = F1 for1 <n <ng)=pi° >0
Prob(X,,(x) > zo Vae[ry,ry])
> Prob(oy, = Fy forl <n <mng) =py >0
Hence, considering [r1, 7] as the state space, and using Theorem 9.1, there
is a unique invariant probability 7 with the stability property holding for

all initial ze[ry, ry].
Now, define m(x) = _71}1inNFi (x), and fix the initial state ze(0,771).

One can verify that (i) m is continuous; (ii) m is strictly increasing;
(iii) m(r1) = r and m(x) > z for ze(0,71), and m(z) < x for x > ry.
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Clearly m(™ (z) increases with n, and m(™ (2) < r;. The limit of the
sequence m(™ (x) must be a fixed point, and is, therefore r;. Since Fj(r;) >
rifori=2,... N, there exists some £ > 0 such that F;(y) > (2 <i < N)
for all ye[ry —e,r1]. Clearly there is some n. such that m™s(z) > r; —e. If
71 =inf{n > 1: X,,(x) > r1} then it follows that for all k > 1

Prob(r; > n. + k) < p}.

Since p¥ goes to zero as k — oo, it follows that 7y is finite almost surely.
Also, X, (z) < rn, since for y < 71, (i) Fi(y) < F;(ry) for all i and (ii)
Fi(ry) <ry fori=1,2,...,N —1and Fx(ry) = ry. (In a single period
it is not possible to go from a state less than 71 to one larger than rx). By
the strong Markov property, and our earlier result, X, (z) converges in
distribution to 7 as m — oo for all 2e(0,r1). Similarly, one can check that
as n — 00, X, (x) converges in distribution to 7 for all > ry. [ |

Note that in growth models, the condition F.1 is often derived from
appropriate “end point” or Uzawa-Inada conditions. It should perhaps be
stressed that convexity assumptions have not appeared in the discussion of
this section so far. Of course, in models of optimization, F; is the optimal
transition of the system from one state into another, and non-convexity
may lead to a failure of the splitting condition (see [19] for details).

9.6.2. One Sector Log-Cobb-Douglas Optimal Growth

Let us recall the formulation of the one-sector growth model with a Cobb-
Douglas production function G(z) = 2%,0 < « < 1, with a representative
decision maker’s utility given by u(c) = In ¢. Following [21], suppose that an
exogenous perturbation may reduce production by some parameter 0 < k <
1 with probability p > 0 (the same for all ¢ = 0,1,...). This independent
and identically distributed random shock enters multiplicatively into the
production process so that output is given by G, () = rz® where rr € {k, 1}.
The dynamic optimization problem can be explicitly written as follows:

oo
max Eq g Btn ¢
t=0

where 0 < 3 < 1 is the discount factor, and the maximization is over all
consumption plans ¢ = (cg, ¢1,...) such that for t =0,1,2,...

¢t =1y — T, 20, x>0
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and xq, ro are given.
It is well known that the optimal transition of x; is just described is
g(x,r) = afra® ie., the plan x; generated recursively by

Ti41 = g(ﬂftﬂ“t) = Oéﬁrtﬂf?

is optimal.
Consider now the random dynamical system obtained by the following
logarithmic transformation of xy:
11—« Ina+1In g
=— 1 14+ ——FF—.
YOS TR T T Tk
The new variable y;, associated with x; evolves according to a linear policy,
so that

ln?‘t
= 1-— 1-—
Yer1 = oy + ( a)< n k) ;

which can be rewritten as

Yit1l = QY with probability p
Y41 = ayr + (1 — @) with probability 1 —p

Define the maps 7o, y1 from [0, 1] to [0, 1] by

Vo(y) =y
{vl(y) =ay+(1-a) (6.1)

It is useful to note here that the map 7y corresponds to the case where
the shock, r, takes the value k; and the map 7 corresponds to the case
where the shock, r, takes the value 1. Denote (p,1 — p) by (po,p1). Then
S =10,1], T = {v0, 71}, together with Q = {po,p1} is a random dynamical
system. The maps ~;, for ¢ € {0, 1}, are clearly affine.

9.6.2.1. The Support of the Invariant Distribution

Let m be the unique invariant distribution, F, its distribution function.
The graphs of the functions show that for 0 < « < 1/2, the image sets
of the two functions vy and ~; are disjoint, a situation which can be de-
scribed as the “non-overlapping” case. In this case, the “gap” between the
two image sets (in the unit interval) will “spread” through the unit inter-
val by successive applications of the maps (6.1). Thus, one would expect
the support of the invariant distribution to be “thin” (with zero Lebesgue
measure).
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On the other hand, for 1/2 < o < 1, the image sets of the functions
Yo and 7; have a non-empty intersection. We can refer to this as the
“overlapping” case. Here, the successive iterations of the overlap can be
expected to “fill up” the unit interval, so the invariant distribution should
have full support.

The above heuristics are actually seen to be valid.

It is important to remark that this result does not depend on the mag-
nitude of the discount factor # nor on the amplitude of the shock k, but
only on the technological parameter . The discount factor 3 only shifts
the support of the invariant distribution of the original model over the real
line, while the exogenous shock k affects its amplitude. The stream of re-
search has been striving around the fundamental question on deciding for
what values of «, the invariant F}; is absolutely continuous, and for what
values of «, F is singular. For an exhaustive mathematical survey on the
whole history of Bernoulli convolutions, see [24]. It is known, in the sym-
metric case p = %, that the distribution function is “pure”; that is, it is
either absolutely continuous or it is singular (Jessen and Wintner [1935]).
Further, Kershner and Wintner [1935] have shown that if 0 < a < 1/2,
the support of the distribution function is a Lebesgue-null Cantor set and,
therefore, the distribution function is singular. For a = %, one gets the
uniform distribution, which is not singular.

For the symmetric case p = %, denote by S, the set of @ € (1/2, 1)
such that F is singular. It was conjectured that the distribution function
should be absolutely continuous with respect to Lebesgue measure when
1/2 < a < 1. Wintner [1935] showed that if « is of the form (1/2)*/* where
k € {1,2,3,...}, then the distribution function is absolutely continuous.
However, in the other direction, Erdds [1939] showed that when « is the
positive solution of the Equation a? +a — 1 = 0, so that o = (v/5 — 1)/2,
then v € S .

Erdos also showed that S, N (€, 1) has zero Lebesgue measure for some
& < 1, so that absolute continuity of the invariant distribution obtains for
(almost every) « sufficiently close to 1. A conjecture that emerged from
these findings is that the set S, itself should have Lebesgue measure zero.
In their brief discussion of this problem, [12] state that deciding whether
the invariant distribution is singular or absolutely continuous for o > 1/2
is a “famous open question”.

Solomyak [1995] made a real breakthrough when he showed that S| has
zero Lebesgue measure. More precisely, he established that for almost every
a € (1/2, 1), the distribution has density in L?(R) and for almost every
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a € (2*1/ 2.1) the density is bounded and continuous. A simpler proof of
the same result was subsequently presented by [25].

More recent contributions to this literature deal with the asymmetric
case p # 1/2. (see, for example, [26]). For example, F, is singular for
values of parameters (o, p) such that 0 < a < pP(1 — p)1=P) while F, is
absolutely continuous for almost every pP(1 — p)(lfp) < a < 1 whenever
1/3 < p < 2/3. For more details see [21].
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10.1. Introduction

In this lecture we shall present a brief account of some of the interesting
developments in recent years on quantum information theory. The text
is divided into three sections. The first section is devoted to fundamental
concepts like events, observables, states, measurements and transformations
of states in finite level quantum systems. the second section gives a quick
account of the theory of error correcting quantum codes. The last section
deals with the theory of testing quantum hypotheses and the quantum
version of Shannon’s coding theorem for classical-quantum channels. I have
liberally used the books by Nielson and Chuang ([12]), Hayashi ([6]) and
also [21], [23]. The emphasis is on the description of results and giving a
broad perspective. For proofs and detailed bibliography we refer to [12], [6].

10.2. Elements of Finite Dimensional Quantum Probability

The first step in entering the territory of quantum information theory is an
acquaintance with quantum probability where the fundamental notions of
events, random variables, probability distributions and measurements are
formulated in the language of operators in a Hilbert space. In the present
exposition all the Hilbert spaces will be complex and finite dimensional and
their scalar products will be expressed in the Dirac notation (-|-). For any
Hilbert space H, denote B(H) the x-algebra of all operators on H where,
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for any operator A, its adjoint will be denoted by Af. We write
(u|Alv) = (u|Av) = (ATu|v) YV u,v € H, A € B(H).

B(H) itself will also be viewed as a Hilbert space, in its own right, with
the scalar product

(A|B)=TrA'TB V A,B¢cB(H).

In the real linear subspace of all hermitian operators we write A > B if
A — B is nonnegative definite, i.e., A— B > 0. It is clear that > is a partial
ordering. By a projection we shall always mean an orthogonal projection
operator. Denote by O(H) and P(H) respectively the space of all hermitian
and projection operators. Any element A in O(H) is called an observable
and any element E in P(H) an event. The elements 0 and [ in P(H) are
called the null and certain events. Clearly, 0 < E < [ for any E in P(H).
If E is an event, I — F denoted E' is the event called not E. For two
events E, F let E A F and E V F denote respectively the maximum and
minimum of the pair E, F' in the ordering < . If F < F we say that the
event E implies F. If E F are arbitrary events we interpret £V F as E
or Fand ENF as E and F. It is important to note that for three events
E, Ey, E> the event E A (Ey V E2) may differ from (E A E1) V (E A Ez). (In
the quantum world the operation ‘and’ need not distribute with ‘or’ but in
the logic of propositions that we prove about a quantum system the logical
operation ‘and’ does distribute with the logical operation ‘or’!)

For any observable X € O(H) and any real-valued function f on R,
the observable described by the hermitian operator f(X) is understood as
the function f of the observable X. If F C R and 1g denotes the indicator
function of E then 15(X) is a projection which is to be interpreted as the
event that the value of the observable X lies in E. Thus, for a singleton
set {A\} C R, 115 (X) # 0 if and only if A is an eigenvalue of X and the
corresponding eigenprojection 1;31(X) is the event that X assumes the
value X\. This shows that the values of the observable X constitute the
spectrum of X, denoted by spec X and

X= > ApyX)

Aespec X

is the spectral decomposition of X. We have
P(H) C O(H) C B(H)
and any E € P(H) is a {0, 1}-valued observable.
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Any nonnegative operator p > 0 of unit trace on H is called a state of
the quantum system described by H. The set of all such states is denoted
by S(H). Then S(H) is a compact convex set in B(H) with its extreme
points one dimensional projections. One dimensional projections are called
pure states and thanks to spectral theorem any state can be expressed as

p= ij ) us (10.1)

where {u;} is an orthonormal set of vectors in H, p; > 0V j and Zj pj = 1.
In other words every stat e can be expressed as a convex combination of
pure states which are mutually orthogonal one dimensional projections. For
any X € O(H), p € S(H) the real scalar Tr pX is called the expectation
of the observable X in the state p. If X = E € P(H) its expectation
Tr pE is the probability of the event E in the state p. Thus ‘tracing out’ in
quantum probability is the analogue of ‘integration’ in classical probability.
Note that

S(H) C O(H) C B(H).

In a quantum system described by the pair (H, p) where p is a state in
‘H, the observable p or its equivalent —log p is a fundamental observable
in quantum information theory and its expectation S(p) = —Trp log p is
called the von Neumann entropy or, simply, entropy of p. Even though
—log p can take infinite values S(p) is finite.

It is often useful to consider the linear functional X — TrpX on B(H)
for any p in S(H) and call it the expectation map in the state p. In other
words we can view expectation as a nonnegative linear functional on the
C* algebra B(H) satisfying

TrpXTX >0V X € B(H),
Trpl =1.

If u,v € H we say that |v) € H and call it a ket vector whereas (u| € H*,
the dual of H and call it a bra vector. The bra vector (u| evaluated at the
ket vector |v) is the bracket (u|v), the scalar product between u and v in
‘H. Thus for u, v in H we can define the operator |u)(v| by

|w)(v] [w) = (v]w) [u) ¥ weH.
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If u # 0, v # 0 then |u)(v| is a rank one operator with range C |u). In
particular,

[u)(ua| uz)(ual - - [ugj1)(uzj+2|
= ((ualus)(ualus) - - (uajluz;1)) Jur)(uajral, (Ju) ()" = [v)(ul,
Tr |u)(v] = (v|u).

Equation (10.1) anticipates this notation developed by Dirac.

A finite level quantum system A with a state p4 in the Hilbert space
HA is described by the triple (H#,P(H*), p*) where the probability of any
event £ € P(HA) is given by Tr pA E. If a finite classical probability space is
described by the sample space Q4 = {1,2,..., N}, the Boolean algebra FA
of all subsets of Q4 and a probability distribution P4 then the probability
space (4, F4, P4) can also be described by the triple (H*, P(H*), p*)
where H4 = C" and the state operator p? is given by the diagonal matrix

PA1) 0 0 -~ 0
A 0 PA2) 0 --- 0

0 0 0 - PAn)

in the canonical orthonormal basis {e;}, e; being the vector with 1 in the
jth position and 0 in all the other positions.

If A;,i=1,2,..., k are k quantum systems and the Hilbert space H4¢ is
the one associated with A; then the Hilbert space for the joint or composite

system Aj A, ... Ay is the tensor product:
HAA2 A A g A gL g HAR,
Suppose
HAB = 1A @ HP

is the Hilbert space of the composite system AB consisting of two sub-
systems A, B where {e;}, {f;} are some orthonormal bases in H*, HE
respectively. Let X be an operator on HAZ. For u,v € HA, u/,v' € HE
define the sesquilinear forms

Bx (u,v) = Z(u@fj|X|v®fj>, u,v € HA,

J

B (u',v") = Z(ei @u|X|e; @0y, u,v € HE.

?
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Then there exist operators T € B(H*), T" € B(HP) such that
(u|T|v) = Bx (u,v), (W' |T" "y = By (u',v).

Then T and T are respectively the relative trace of X over HE and HA
and one writes

T =TrysX, T =TryaX.

The relative traces T,T" are independent of the choice of the orthonor-
mal bases {e;}, {f;}. The linear maps X — TrysX, X — TryaX from
B(HAB) onto B(HA), B(HP) respectively are completely positive in the
sense that the map

(Xi] = [True (Xi5)], 4.4 €{1,2,....d}, X;; € B(H"P)

from B (’HAB ® (Cd) into B (HA ® (Cd) is positive for every d = 1,2,....
Furthermore for all Y in B (’HA) and X in B (HAB)

Trye (Y @ I) X = YTrps X,
Trye X (Y @ I) = (Trpe X) Y,
Tr (TryeX) = Tr(TryaX) = Tr X.

In other words, if tracing is viewed as integration the first two relations
exhibit the properties of conditional expectation and the last one is analo-
gous to Fubini’s theorem. If pA% is a state of the composite system then
Try s pA8 = p? and TryapAP = pP are states on H* and H? respectively.
We call p and p? the marginal states of pAZ.

In the context of composite systems there arises the following natural
question. Suppose p; is a state in the Hilbert space H;, i = 1, 2. Denote by
C(p1, p2) the compact convex set of all states in H; ® Ha whose H;-marginal
is p; for each 4. It is desirable to have a good description of the extreme
points of C(p1, p2). As p varies over the set of all such extreme points what
is the range of its von Neumann entropy? An answer to this question will
throw much light on the entanglement between quantum systems (Hi, p1)
and (Hz, p2). When H; = C? and p; = %I for i = 1,2, it is known that
the extreme points are all pure and hence have zero entropy. They are the
famous EPR states named after Einstein, Podolskii and Rosen. (See [5],
[20], [22].) In general, there can exist extremal states which are not pure.

We now introduce the notion of measurement for finite level quantum
systems. They play an important role in formulating the problems of quan-
tum information theory and testing multiple hypotheses. Let H be the
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Hilbert space of a finite level system. By a measurement with values in an
abstract set {my, ma,...,my} we mean a partition of I into k& nonnegative
operators My, Mo, ..., My so that My + Ms+---+ My, = I and in any state
p the values m; occur with respective probabilities Tr pM;, 7 =1,2,... k.
We express such a measurement by

my mo - Mg
M = (10.2)
M1 M2"'Mk

When each M; is a projection it is called a von Neumann measurement.

Without loss of generality, for the purposes of information theory we
may identify the value set {mi, ma,...,mg} with {1,2,... k}. Denote by
M}, (H) the compact convex set of all measurements in H with value set
{1,2,...,k}. We shall now describe the extreme points of My(H) in a
concrete form. The following is a sharpening of Naimark’s theorem ([16])
for finite dimensional Hilbert spaces.

Theorem 10.1. Let M € My (H) be a measurement given by
1 2.k
M —
M, My My

M= |uij){ug| 1<i<k,

j=1

where

ri > 0 is the rank of M;, {u;j, 1 < j <r;} is an orthogonal set of vectors
and ||lui;||?, 1 < j <r; are the nonzero eigenvalues of M; with multiplicity
included. Then there exists a Hilbert space KC, a set {Py, Ps,..., Py} of
projections in H & K and vectors v;; € K, 1 < j <y, 1 < i < k satisfying
the following:

k
(i) dmHOK =" 7
i=1
(i) The set {u;; ®vi;|1 <j <r;,1 <i<k} is an orthonormal basis for
HeK;

(iil) P = 3200 |uiy @ vig)(uij © vy
T4
> i) (vig
j=1
T4
> [wig) (il
j=1

M;

1<i<k

Y i —

T
> vig) (g
j=1
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and rank P; = rank M; V1,

(iv) The triplet consisting of K, the family {vi;|1 < j <, 1 <i <k} of
vectors in IC and the spectral resolution Py, Ps, ..., Py is unique upto
a Hilbert space isomorphism;

(v) M is an extreme point of Myp(H) if and only if the set
{Juij)(uijr |11 < j <ri,1 <3 <wr;, 1<i<k} of rank one operators
is linearly independent in B(H). In particular, von Neumann measure-
ments are extremal.

Remark:

(1) If one of the M;,’s is zero, the test for extremality reduces to the case
of Mkfl.

(2) If M is an extremal element of M}, where rank M; =r; >0V 1<i<k
then r¥ 4+ 73 + -+ rf < (dim H)2.

(3) If H=C? w = exp 27i/3 then

1 2 3
M=|,[1 1 1w [ 1 WP
311 1 Slw 1 3w 1

is an extremal measurement in M3(H) but not a von Neumann mea-

surement.
(4) It would be interesting to make a finer classification of extremal mea-
surements modulo permutations of the set {1,2,..., k} and conjugation

by unitary operators in H.

Evolutions of quantum states in time due to inherent dynamics which
may or may not be reversible and measurements made on the quantum
system bring about changes in the state. Reversible changes are of the form :
p — UpU~! where U is a unitary or antiunitary operator. According to the
theory proposed by Kraus ([11]), (see also [24] and [14]), the most relevant
transformations of states in a finite dimensional Hilbert space assume the
form

> LipL;r

=& eS(H
! TTPZiL;‘rLi ’ )

where {L1, Lo, ...} is a finite set of operators in H. Expressed in this form
T is nonlinear in p owing to the scalar factor in the denominator. If the
L;’s satisfy the condition Zl LILZ- = I then T is linear and therefore T' de-
fines an affine map on the convex set S(H). Indeed, T is a trace preserving
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and completely positive linear map on B(H) when extended in the obvi-
ous manner. Such completely positive maps constitute a compact convex
set F(H) C B(H). Elements of F(H) are the natural quantum probabilis-
tic analogues of stochastic matrices or transition probability operators of
Markov chains in classical probability theory. Note that F(H) is also a
semigroup. One would like to have a detailed theory of F(H) both from
the points of view of convexity structure as well as semigroup structure.

Theorem 10.2. Let T' € F(H) be of the form
k
T(p) = LipLl,p € S(H)
i=1

where Zle LILZ- = I. then T is an extreme point of F(H) if and only if
the family {LILJ-, 1 <i<k,1<j<k} of operators is linearly independent
in B(H).

Remark: For any T' € F(H) it is possible to find a linearly independent
set {L;} of operators in B(H) satisfying the relation )", LILZ- =TI and

T(p)=> LipLl ¥V peS(H).

If {M;} is another finite set of linearly independent operators satisfying
these conditions then there exists a unitary matrix ((u;;)) satisfying

J

Given two elements T1, T € F(H) it will be interest to know when they
are equivalent modulo unitary conjugations.

As far as the semigroup F(H) is concerned, we make the following obser-
vation. If U is a unitary operator then the map p — UpU* is an invertible el-
ement of F(H). If P is a projection then the map p — PpP+(1—P)p(1—P)
is an irreversible element of F(H). Both of these maps preserve not only
the trace but also the identity. Such maps are called bistochastic and they
constitute a subsemigroup F,(H). Do these elementary bistochastic maps
described above generate B(H)?
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Theorem 10.3. Let T € F(H). Then there exists an ancillary Hilbert
space b, a unitary operator U in H ® b and a pure state |Q)(Q] in b with
the property

T(p) = T U(p® [QUQNUT ¥ pe SH).

Remark: Theorem 10.3 has the interpretation that the irreversible dynam-
ics described by the trace-preserving completely positive map can always
be viewed as a ‘coarse-graining’ of a finer reversible unitary evolution in an
enlarged quantum system. When the single T is replaced by a continuous
one parameter semigroup {73,¢t > 0} it is possible to construct a unitary
evolution {U;} in a larger Hilbert space which is described by quantum
stochastic differential equations. Such semigroups are analogues of classi-
cal semigroups and their study leads to a rich theory of quantum Markov
processes. (See [14], [18].)

10.3. Quantum Error-Correcting Codes

The mathematical theory of quantum error-correcting codes is based on the
following assumptions: (1) Messages can be encoded as states of a finite
level quantum system and transmitted through a quantum communication
channel; (2) For a given input state of the channel the output state can
differ from the input state owing to the presence of ‘noise’ in the channel.
Repeated transmission of the same input state can result in different output
states; (3) There exists a collection of ‘good’ states which, when transmit-
ted through the noisy channel, lead to output states from which the input
can be recovered with no error or a small margin of error. The main goal
is to identify a reasonably large collection of such good states for a given
model of the channel and construct the decoding or recovery procedure.
This can be described in the following pictorial form:

encoder channel

output state 7 (p)

input message decoder output m

input state (p)

noise

Fig. 10.1. Encoding, transmission and decoding.
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Denote by H the finite dimensional Hilbert space from which the input
and output states of the channel appear in the communication system. We
assume that there is a linear subspace & C B(H), called the error space
such that for any input state p of the channel the output state T'(p) has
the form

Y LipLh
J

T(p)= 21—
(°) TrpZL;Lj
J

L,c& Vj (10.3)

where the summations are over finite sets of indices. If the same state p
is transmitted repeatedly the corresponding ‘corrupting’ or ‘noise-creating’
operators {L;} can differ in different transmissions but they always con-
stitute some finite subsets of £. The L;’s may depend on the input state
D

For any subspace S C H denote by E(S) the projection onto S and
by S+ the orthogonal complement of S in H. A state p is said to have its
support contained in the subspace S if plu) = 0 V u in S*. This means
that we can choose an orthonormal basis {e;, ea,...,en} for H such that
the subset {e;, ea,..., e} is an orthonormal basis of S and the matrix of p

p|0
in this basis has the form [%\6} where p is a nonnegative matrix of order

k and unit trace. To recover the input state p from the output state T'(p)
of the channel we look for a recovery operation R of the form

R(T(p)) = Z MT(p)M]

where {M;} is a finite set of operators depending only on the error space
& C B(H) describing the noise. Whatever be the output we apply the same
recovery operation R. The goal is to construct a reasonably large subspace
C C 'H and a recovery operation R satisfying the requirement

R(T(p)) = p

for every state p with support in C and every transformation 7' of the
form (10.3). In such a case we say that the pair (C, R) is an £ -correcting
quantum code. For such a code denote by E = E(C), the projection onto
C. Tt is a theorem of Knill and Laflamme ([12], [21]) that

EL'ME=XL'M)E ¥V L,Mc& (10.4)
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where A\(LTM) is a scalar depending on LTM. Conversely, if E is any
projection in H satisfying (10.4) for all L, M in a subspace & of B(H)
then there exists a recovery operation R such that the range C of F and
R constitute an £-correcting quantum code. It is important to note that
equation (10.4) is sesquilinear in L, M and hence it suffices to verify (10.4)
for L, M varying over a basis of £. In view of this property we say that the
projection E satisfying (10.4) or its range may be called an E-correcting
quantum code.

In order to construct quantum error-correcting codes it is often useful to
identify H with L?(A) where A is a finite abelian group of order equal to the
dimension of H and consider the so-called Weyl operators as an orthogonal
basis for the Hilbert space B(H). To this end we view A as an additive
abelian group with null element 0 and addition operation +. Denote by
la) the ket vector equal to the singleton indicator function 1,y for every
a € A. Then {|a) , a € A} is an orthonormal basis for H = L?(A). Choose
and fix a symmetric nondegenerate bicharacter (-,-) on A x A satisfying

(i) {z,y) = (y,2) and |(z,y)| = LV 2,y € 4;

(i) (2,91 +y2) = (@, 91)(T, 92) V 2,91, 42 € 4
(iii) (z,y) =1V ye Aif and only if z = 0.

Such a choice is always possible. It is then clear there exist unitary
operators U,, Vg, a € A satisfying

Udslz) =lz+a)y, Vil|z)={(a,z)|z) V z€A.
They satisfy the following relations:
UUp =Usip, ViV =Vags, WU, = (b,a)U,V,, a,be A

These are analogous to the famous Weyl commutation relations of quan-
tum theory for the unitary groups U, = e %, V, = e "%, q € R where
p and ¢ are the momentum and position operators. Here the real line is
replaced by a finite abelian group alphabet A with U, as a location and V,
as a phase operator. We write

Wi(a,b) =U,Vp, (a,b)e Ax A
and call them Weyl operators. They satisfy the relations

W(a,b)W(a',b") = (b,a")W(a+a',b+b'),
W (a,b)W (z,y)W (a,b)~" = (b, 2)(a, y) W (2, y).
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We write

{((a.b), () = (b.@)(a,y) ¥ (a,b),(z,y) in Ax A

and call ((-,-)) the symplectic bicharacter on A x A. Two Weyl op-
erators W(a,b) and W(z,y) commute with each other if and only if
({(a,b), (z,y))) = 1. If S C A x A is a subgroup and (((a,b), (a’,b"))) =1
for all (a,b),(a’,b") in S then it is a theorem that there exists a function
w: S — T, T denoting the multiplicative group of complex scalars of mod-
ulus unity, such that the correspondence

(a,0) — w(a,b)W(a,b)

is a unitary representation of S. If x is a character on such a subgroup S
define the projection

Ex( 7# > X a,)W(a,b), x€8,  (10.5)

(a,b)es

S denoting the character group of S. Subgroups S C A x A of the type
introduced above are called selforthogonal or Gottesman groups (See [3].
[1].) Denote

T={@y) @y (ab) =1 ¥ (a,b)eS}cAxA  (10.6)

S+ is a subgroup of A x A and S+ D S. It may be called the symplectic
annihilator of S. Note that

0 if (a,5) # (0,0)
dim H  otherwise.

'HW@@:{

This shows that {(dim H) "2 W (z,y), (z,y) € Ax A} is an orthonormal
basis for the Hilbert space B(H) introduced earlier. In particular, the Weyl
operators consitute an irreducible family and every operator X on H admits
a ‘Fourier expansion’

_ 1
" dim H

> {TtW(a, )X} W(a,b), X e€B(H). (10.7)
(a,b)EAXA

Elementary algebra using Schur orthogonality relations for characters
shows that

0 if (x,y) €S+t

Ex(S)W (z,y)Ey(S) = {)\(m,y)gx(s) if (z,y) €8.
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where A(z,y) is a scalar. In other words the linear space
D(S) = lin span {W(z,y), (z,y) € SU (A x A\S*)} (10.8)
satisfies the property
E, (S)LE,(S) = AL)Ey(S) ¥V LeD(S).

Clearly, D(S) is closed under the adjoint operation. Suppose now that
€ C B(H) is a subspace satisfying the property

e ={LTM|L,M € £} c D(S).

Then (10.4) holds when E = E,(S) and by Knill-Laflamme theorem
the range of E,(S) is an E-correcting quantum code for any Gottesman
subgroup S and character y of S. Furthermore,

Ey(S)Ey(S) =0 if yx,xX' €S and x# .
S E(S) =1

x€§

If C, (S) denotes the range of E, (5) it follows that H decomposes into a
direct sum of £-correcting or D(S)-detecting quantum codes of dimension
dim H\#S.

We now discuss the special case when H is replaced by its n- fold tensor
product H®" = L?(A)®" = L?(A™). Denoting any point x € A" by x =
(x1,22,...,%,) where x; € A is the j-th coordinate we get a symmetric
nondegenerate bicharacter on A™ x A™ by putting

(x,y) = H<mj7yj>
j=1
and the corresponding Weyl operators
Wi(x,y) = ® Wi(z;,y;)

Jj=1

where W (x;,y;) is the Weyl operator in L?(A) associated with (z;,y;) for
each j. Let £; denote the linear span of all operators in H®" of the form
X1 ®Xo®---® X,, where X; is different from I for at most d values of 1.
Then &; has the orthogonal unitary operator basis

{W(a,b)[# {i|(as,b;) # (0,0)} < d}.
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One says that the element (a,b) in A x A has weight

w(a,b) = # {i|(ai, b;) # (0,0)} .

Let S € A™ x A™ be a Gottesman subgroup of A™ x A™ such that
every element (a,b) in S+\S has weight > d. Then it follows from the
preceding discussions and the definition in (10.8) that &, (S), i.e., the range
of E\(S) is an &-correcting quantum code where ¢ = |41]. It is also
called an £4-detecting quantum code. Thus the problem of constructing £4-
detecting quantum codes reduces to the algebraic problem of constructing
symplectic self-orthogonal or Gottesman subgroups S of A™ x A™ satisfying
the property that every element (a,b) in S+\S has weight > d.

Choosing A = Zy the additive group of the field GF(2) the problem
of constructing symplectic selforthogonal subgroups of A™ x A™ has been
reduced to the construction of classical error correcting codes over GF'(4)
by [3]. See also [1], [21].

We conclude this section with an example of a quantum code based
on a Gottesman subgroup which also yields states exhibiting maximal en-
tanglement for multipartite quantum systems. To this end, we introduce
in L?(A®) a single error correcting, (i.e., & -correcting) quantum code as
follows. Introduce the cyclic permutation o in A® by

O'(z(),xl,$2,$3,l'4) = (x17x27x3;z4;z()7)
and put

7(x) = 0%(x) + 07 23(x), x= (wg,21,T2,23,14) € A°.

Wy = (x,02(x))W(x,7(x)), x€ A°.
Consider the subgroup C' C A% given by
C = {X|LE()+’JC1 + X9 + 23 + 24 :0}

Then C' is a Gottesman subgroup and x — Wx is a unitary representa-
tion of C' and the operator

E(C) = (#4)* Y T

xeC

is a projection on the subspace

cz{w‘wxwzw v xec}.
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This subspace is an &;-correcting quantum code of dimension #A. It
has the maximum entanglement property in the sense that for any v € C
the pure state |1)(1| satisfies the relation

T an) [6) (] = ——
I'r2043 =
(A%) (#A)?
for any three copies of A occurring in A%. Here we view L2?(A%) as L?(A) ®
.- ® L?(A) with 5 copies and the factorization

L*(A%) = L*(A®) ® L*(A?).

For more details see [19], [22]. It is an interesting problem to construct
such examples for products of n copies of A with n > 5 and construct
subspaces of the form C with maximal dimension. It is desirable to have a
formula for this maximal dimension.

10.4. Testing Quantum Hypotheses

Suppose a quantum system with Hilbert space H is known to be in one of
the states {p1, p2, ..., pr} and we have to decide the true state by making a
1 2 ...k
My My ... My
set {1,2,...,k} and applying the decision rule that the state of the system

measurement M = ( ) as described in (10.2) with the value

is p; if the outcome of the measurement is j. In such a case, if the true
state is p; then the probability of deciding p; is equal to Tr p; M;. Suppose
there is a prior distribution © = (71, ma,...,7;) on the set of states, i.e.,
the system is in the state p; with probability 7; for each 7 and there is cost
matrix ((c;5)) according to which ¢;; is the cost of deciding p; when the true
state p;. In such a case the expected cost of the decision rule associated
with the measurement is

C(M) = Z (’/TZ' Tr Ps M]) Cij-
,J
The natural thing to do is to choose a measurement M which minimizes
the cost C'(M). Define

- 111{ M
a.Ild t}le lleIIIlltlaIl OpeIatOIS

Aj == Zﬂ-icijpi- (109)
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Then
k
y=inf Tr ZAij. (10.10)
J=1
Since the space of all measurements M with value set {1,2,...,k} con-

stitute the compact convex set My (H), v is attained at a measurement M°
which is also an extreme point of My (H). An appropriate application of
Lagrange multipliers shows that the following theorem holds.

o 1 2 ... k
Theorem 10.4. (¢f. [26], [9], [16]) Let M° = (Mf Mg M,S) be a
measurement satisfying
k
~v="Tr Z Aj M7
j=1

where Aj and v are given by (10.9) and (10.10) and let T’ = Z?Zl AjM?.
Then the following holds:

(i) T is hermitian and T < A; ¥ j=1,2,...,k;
(i) (4; —T)M? =0 V 4
(i) T 4s independent of the measurement M® at which v is attained.

Remark: In the context of Theorem 10.4 it is natural to seek a good
algorithm for evaluating I' when the hermitian operators {4;,1 < j < k}
are known. One may interpret I' as a ‘minimum’ of the noncommuting
observables A;, 7 =1,2,... k.

In the discussion preceding Theorem 10.4 note that > m; Tr p; M; is

K3
the probability of correct decision. It is natural to consider the problem
of maximising this probability in the spirit of the method of maximum
likelihood. Let

k
0= I’Ill\%x Tr Zl’/szZMZ
1=
As before ¢ is attained at some measurement M°. Then one has the
following theorem.

1 2 ...k

Theorem 10.5. Let M° = (Mf Mg ... M

) be a measurement
satisfying

6="Tr Z?TipiMio
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and let A =Y mp; M?. Then the following holds:

(i) A is hermitian and A > mp; YV i;
(11) (A —Fipi)Mio =0 V ’L,
(iii) A is independent of M° at which § is attained.

Now consider the situation when n copies of the system are available so
that p; can be replaced by p?n for each i in H®". Write

k
5p = T 02" M,
ml\%x T Z Tip;

=1

where M € Mk(H®") and A, for the corresponding operator in Theo-
rem 10.5. Then the probability of making a wrong decision is equal to 1—4,,.
By the elementary arguments in [17] it follows that 1 — d,, decreases to zero
as n increases to oo and the rate of decrease is exponential. It is an open
—log(1-6,) and Tim —log(1—4,)

n n—00 ’

problem to determine the quantities lim
n—oo

When k = 2 so that there are only two states the following theorem holds:

Theorem 10.6. (Quantum Chernoff Bound, see [2], [13]) Let p1,p2 be
two states and let 71,72 be a prior probability distribution on {1,2} with
0 <m < 1. Suppose

Op = ml\%x Tr (mp?an + ﬂgp?nMg)
where
1 2
M =
(Ml M2)

varies over all measurements in H®" with value set {1,2}. Then

s 1—s

1
lim — —log(l—4¢,)= sup —log Trpip;
n—oo M 0<s<1

Remark: An explicit computation shows that in Theorem 10.6
y

In the two states case we introduce the quantity

1 n n
o =5 (1 + ’ﬁp? — Tapy

where | - |; stands for trace norm.

B(p1,p2,6) =inf {Trp X [0 < X <[, Tr;mX>1—¢}
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for any 0 < e < 1 and states p1, p2. It has the following statistical interpre-
tation. For any 0 < X < I consider the measurement

1 2
M<X I—X)

with value set {1, 2}. For the decision rule based on M, Tr p; X is the prob-
ability of correct decision in the state p;. we vary M so that this probability
is kept above 1 — . Now we look at the probability of a wrong decision in
the state p2 and note that the minimum possible value for this probabil-
ity is B(p1, p2,€). In the Neyman-Pearson theory of testing hypothesis the
quantity 1 — 5(p1, p2,¢€) is called the maximum possible power at a level of
significance above 1 — ¢. Now we state a fundamental theorem concerning

16} (p?n,pg@n,a) due to [8].

Theorem 10.7. (Quantum Stein’s Lemma, see [6])

log 3 (pi@nmé@nﬁ)
lim —

n— o0 n

= Trp1(log p1—log p2).

Remark: The right hand side of the relation in Theorem 10.7 is known as
the relative entropy of ps with respect to py or Kulback-Leibler divergence
of p2 from p; and denoted as S(p1||p2).

We shall conclude with a brief description of a quantum version of Shan-
non’s coding theorem for classical-quantum communication channels. A
classical-quantum or, simply, a cg-channel C consists of a finite set, called
the input alphabet A and a set {p,, © € A} of states in a Hilbert space H.
A quantum code of size m and error probability < & consists of a subset
C C A of cardinality m and a C-valued measurement M(C) = {M,,,x € C'}
with the property Trp, M, > 1—¢eV x € C. If we have such a code then m
classical messages can be encoded as states {p;,z € C'} and the measure-
ment M(C) yields a decoding rule : if z € C is the value yielded by the
measurement M(C) decide that the message corresponding to the state p,
was transmitted. Then the probability of a wrong decoding does not exceed
€. In view of this useful property the following quantity

N(C,e) = max{m|a quantum code of size m and error probability < ¢ exists}

is an important parameter concerning the cg-channel C.
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If C is a cg-channel with input alphabet A and states {p,,x € A} in H
we can define the n-fold product C®" of C by choosing the alphabet A™ and
the states

{2y @ Pag @ ® pa,, |x = (T1,22,...,2,) € A", x; € AV i}.
Define
N(n,e) :N(c®”,s).

Then we have the following quantum version of Shannon’s coding
theorem.

Theorem 10.8. (Shannon’s Coding Theorem, see [6], [23], [25])

Jim BN, {s <Z p(x) m) -3 b sw} (10.11)

p(-) rEA reA

where the supremum on the right hand side is taken over all probability
distributions {p(x),x € A} and S(p) stands for the von Neumann entropy
of the state p.

Remark: The quantity on the right hand side of (10.11) is usually denoted
by C = C(C) called the Shannon-Holevo capacity of the cg-channel C.
It is interesting to note that the expression within the supermum on the
right hand side of (10.11) can be expressed as the mean relative entropy

> wea (@) S (p2||p) where 7 denotes the state Y p(x) ps.

References

[1] Arvind, V., Parthasarathy, K. R. (2003). A family of quantum stabilizer
codes based on the Weyl commutation relations over a finite field. In A
Tribute to C. S. Seshadri: Perspectives in Geometry and Representation
Theory. (Eds. Lakshmibhai et al.) Hindustan Book Agency, New Delhi, 133~
153.

[2] Audenaert, K. M. R., Calsamiglia, J., Munoz-Tapia, R., Bagan, E., Masanes,
L., Acin, A. and Verstraete, F. (2006). The quantum Chernoff bound.
arXiv:quant-ph/0610027.

[3] Calderbank, A. R., Rains, M., Shor, P. W. and Sloane, N. J. A. (1998).
Quantum error correction via codes over GF(4), IEEE Trans. Inform.
Theory. 44 1369-1387.

[4] Choi, M. D. (1975). Completely positive linear maps on complex matrices.
Lin. Alg. Appl. 10 285-290.



244

K. R. Parthasarathy

Einstein, A., Podolski, R. and Rosen, N. (1935). Can quantum mechanical
descriptions of physical reality be considered complete? Phys. Rev. 47 777—
780.

Hayashi, M. (2006). Quantum Information, an Introduction. Springer,
Berlin.

Helstrom, C. W. (1976). Quantum Detection and Estimation Theory. Math-
ematics in Science and Engineering, 123 Academic Press, New York.

Hiai, F. and Petz, D. (1991). The proper formula for relative entropy and
its asymptotics in quantum probability. Commun. Math. Phys. 143 99-114.
Holevo, A. S. (1974). Remarks on optimal quantum measurements, Problemi
Peradachi Inform. (in Russian) 10 51-55.

Holevo, A. S. (1974). Probabilistic and Statistical Aspects of Quantum
Theory. North-Holland, Amsterdam.

Kraus, K. (1983). States, Effects and Operations. Lecture Notes in Physics,
190 Springer, Berlin.

Nielsen, M. A. and Chuang, I. L. (2000). Quantum Computation and Quan-
tum Information. Cambridge University Press, Cambridge.

Nussbaum, M. and Szkola, A. (2006). The Chernoff lower bound for sym-
metric quantum hypothesis testing. arXiv:quant-ph/0607216.
Parthasarathy, K. R. (1992). An Introduction to Quantum Stochastic
Calculus. Birkhauser Verlag, Basel.

Parthasarathy, K. R. (1998). Extreme points of the convex set of stochastic
maps on a C*algebra. Inf. Dim. Anal. Quant. Probab. Rel. Topics 1 599-609.
Parthasarathy, K. R. (1999). Extremal decision rules in quantum hypothesis
testing. Inf. Dim. Anal. Quant. Probab. Rel. Topics 2 557-568.
Parthasarathy, K. R. (2001). On the consistency of the maximum likelihood
method in testing multiple quantum hypotheses. In Stochastics in Finite and
Infinite Dimensions. (Eds. T. Hida et al.) Birkhauser Verlag, Basel, 361-377.
Parthasarathy, K. R. (2003). Quantum probability and strong quantum
Markov processes. In Quantum Probability Communications. (Eds. R. L.
Hudson and J. M. Lindsay) XII World Scientific, Singapore, 59-138.
Parthasarathy, K. R. (2004). On the maximal dimension of a completely
entangled subspace for finite level quantum systems. Proc. Ind. Acad. Sci.
(Math.Sci.) 114 365-374.

Parthasarathy, K. R. (2005). Extremal quantum states in coupled systems.
Ann. de L’Institut Henri Poincare, Prob. Stat. 41 257-268.

Parthasarathy, K. R. (2006). Quantum Computation, Quantum Error
Correcting Codes and Information Theory. TIFR Lecture Notes, Narosa
Publishing House, New Delhi.

Parthasarathy, K. R. (2006). Extremality and entanglements of states in
coupled systems. In Quantum Computing. (Ed. Debabrata Goswami), AIP
Conference Proceedings 864 54—66.

Parthasarathy, K. R. (2007). Coding Theorems of Classical and Quantum
Information Theory. Hindustan Book Agency, New Delhi.

Srinivas, M. D. (2001). Measurements and Quantum Probabilities. Universi-
ties Press, Hyderabad.



Quantum Information Theory 245

[25] Winter, A. (1999). Coding theorem and strong converse for quantum
channels. IEEE Trans. Inform. Theory. 45 2481-2485.
[26] Yuen, H. P., Kennedy, R. S. and Lax, M. (1975). Optimum testing of multiple

hypotheses in quantum detection theory. IEEE Trans. Inform. Theory. IT
21 125-134.






Chapter 11

Scaling Limits

S. R. S. Varadhan
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11.1. Introduction

The simplest example of a scaling limit, is to take a sequence {X;} of
independent random variables, with each X; taking values {+1,—1} with
probability {p, 1 — p} respectively. Let

Sp=X1+Xo+ -+ X

If m = 2p — 1, by the law of large numbers

lS [nt] — Mt.

n
Here the rescaling is # = 2 and t = % and the limit is non-random. If
m =0, i.e. p= %, the convergence of the random walk, with a different
scaling, is to Brownian motion. According to the invariance principle of
Donsker ([1]), the distribution of

1

NG

converges to that of Brownian motion. Here the rescaling is different, x =
% rescales space and t = % rescales time. In the new time scale the exact
position of the particle in the microscopic location is not tracked. Only
the motion of its macroscopic location x(t) which changes in a reasonable
manner in the macroscopic time scale with a non trivial random motion is
tracked. This random motion is the Brownian motion.

247
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Many problems in the physical sciences involve modeling a large system
at a small scale while observations and predictions are made at a much
larger scale. Of particular interest are dynamical models involving two
distinct scales, like the random walk model mentioned earlier, a microscopic
one and a macroscopic one. The system and its evolution are specified at
the microscopic level. For instance the system could be particles in space
that interact with each other and move according to specific laws, that can
be either deterministic or random. The system can have many conserved
quantities. For instance in the classical case of Hamiltonian dynamics, mass,
momentum and energy are conserved in the interaction. In the simplest case
of interacting particle systems, in the absence of creation or annihilation
the number of particles is always conserved.

Usually there are invariant probability measures for the complex system,
which may not be unique due to the presence of conserved quantities. They
represent the statistics of the system in a steady state. If the evolution is
random and is prescribed by a Markov process, then these are the invariant
measures. If we fix the size of the system there will be a family of invariant
measures corresponding to the different values of the conserved quantities.
When the size of the system becomes infinite, there will be limiting mea-
sures, on infinite systems and a family of invariant probability measures
indexed by the average values of the conserved quantities. In the theory of
equilibrium statistical mechanics, these topics are explored in detail ([2]).

11.2. Non-Interacting Case

Let us illustrate this by the most elementary of non interacting random
walks. We have a large number n of independent random walks, with
p = 3. The walks {S,Jc : 1 < j < n} start from locations {27} at time k = 0.
Their locations at time k are Sj. We assume that initially there exists a
function po(z) > 0 on R with ffooo po(x)dx = p < oo, such that

im =S = [ @ i) o @2.1)

n—oo N 4

for every bounded continuous function f on R. If we look at it from a
distance we do not see the individual particles, but only a cloud, and the
density varies over the location x in the macroscopic scale. The statistical
nature of the actual locations can be quite general. We could place them
deterministically in some systematic way to achieve the requisite density
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profile, or place them randomly with the number of particles at site z having
a Poisson distribution with expectation

z+ﬁ
pa@)=n [ po(os
2n
and independently so for different sites. The relation (2.1) is now a conse-
quence of the ergodic theorem. If (0, z) is the number of particles initially
at site z, then (2.1) can be rewritten as

lim - Z f(=)n(0, z) / f(z) po(x (2:2)

If the initial distributions of number of particles at different sites are Poisson
with the same constant parameter A, and they are independent then this
distribution is preserved and the same holds at any future time. For any
constant A the product measure Py of independent Poissons at different sites
with the same parameter X is invariant. But this corresponds to po(z) = .
If the system evolves from an arbitrary initial state and and if we look at

it at time n?¢, since the rescaling is with n in space and n? in time, we are
working with the Brownian or central limit scaling and

1 _(z=29)?
e 2n2 ¢

J o~
P[Z["Qt] == ny/ 2wt
and the combination of a local limit theorem and the Poisson limit theorem
implies that the distribution of 7(n?t, ), in the limit, as £ — 1, is Poisson
with parameter

(y—x)2

2 po(y)dy .

L 1 e
p(t,z)fnlirrgoz e 22 (0, 2) \/F
In other words we see locally an invariant distribution, but with a parameter
that changes with macroscopic location (¢, z) in space and time. If we look
at the picture through a microscope, at the grain level we see the Poisson
distribution, with a parameter determined by the location. It is not hard
to prove a law of large numbers,

nlLII;O%Zf( n(n’t, z) / f(z)p(t,x) dx (2.3)

These are statements of convergence in probability. Notice that the only
conserved quantity here is the number of particles. Therefore one expects
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the quantity of interest to be the density p(t,x). Once we know p(t,z) we
are aware that locally, microscopically, it looks like Poisson process on the
integer lattice with constant intensity p(¢,x). While in this case we were
able to solve explicitly, we should note that p(¢,z) is the solution of the
PDE

o _ 15
ot 20z27

It is more convenient if we make time continuous and have the particles

p(0,2) = po(z). (2.4)

execute jumps according to Poisson random times with mean 1. Jump rate
is % for each direction, left or right, for each particle. Speeding up time now

just changes the rates to %2 If we think of the whole system as undergoing
an infinite dimensional Markov process, then the generator £,, acting on a
function f(n) of the configuration {n(z)} of particle numbers at different
sites is give by

(LaF)(m) =Y _[F(n) = F(plo (n,n).

,r)l
The new configurations i’ involved are the results of a single jump form
z — z 4 1 which occur at rate o(n,7') = $1(z). In particular with

)=~ 3 1 )n(e)

we get

2
n z+1 z z—1
+

Eab)) = 3o S nI Y = 10+ 1) - 5
1 11 Z
< 5 L)
3 [ F@ptta)da

which, with just a little bit of work, leads to the heat equation (2.4).

12

11.3. Simple Exclusion Processes

Let us now introduce some interaction. The simple exclusion rule imposes
the limit of one particle per site. If a particle decides to jump and the site
it chooses to jump to is occupied, the jump can not be completed, and the
particle waits instead for the next Poisson time. Let us look at the simple
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case of totally asymmetric walk where the only possible jump is to the next
site to the right. The generator is given by

Zn n(z+1))F (™).

For any configuration n = {n(z)}, the new configuration n* =" =
{n?"#" (2)} is defined by

niz) ifz=2"
et ()= 40" ifa=2
n(z) otherwise .

Note that because of exclusion, the number of particles n(z) at z is either
0 or 1. Now we speed up time by n and rescale space by x = Z. With

= Y i)

(Lo F)(n 277 n(z+1)f' (Z). (3.1)

The invariant distributions in this case are Bernoulli product measures, with
density p. That plays a role because we need to average n(z)(1 —n(z + 1)).
While averages of 7(z) over long blocks will only change slowly due to
the conservation of the number of particles, quantities like n(z)(1 — n(z +
1)) fluctuate rapidly and their averages are computed under the relevant
invariant distribution. The average of n(z)(1—n(z+1)) is p(1—p). Equation
(3.1) now leads to

> / f@)plt,)de = / £ (@)t 2)(1 = plt, 2))de

which is the weak form of Burgers equation

% ol )1~ plt )] = 0. (32)
Weak solutions of this equation are not unique, but the limit can be char-
acterized as the unique solution that satisfies certain ”entropy conditions”.
We have used the independence provided by the Bernoulli distribution.
What is really needed is that averages of the type Tl-s—l 2o a<keM(2)(1 =
n(z+1)) over long blocks can be determined with high probability as being
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nearly equal to 7j(1 —77) with 77 = ﬁ 2121<k (%) See [3] for a discussion
of the model and additional references.

We will now consider a general class of simple exclusion processes on
Z? where the jump rate from z to 2’ is p(z’ — z). The site still needs to be
free if a jump is to be executed. The generator is given by

(LF)(m) =Y n(z)(1 = n(")p(z" = 2) [F(n™*) = F(n)].

If the mean > zp(z) # 0, then the situation is not all that different from
the one dimensional case discussed earlier. We shall now assume that
>, 2zp(z) = 0. There are two cases. If p(z) = p(—=z), then we can sym-
metrize and rewrite

(LF)(n) = % > ()1 =n(z") + n(z)(1 = n(2)p(z' = 2)[F(n>*) = F(n)]

z,2!

LS - ) - Pl

because n(z)(1 — n(z")) + n(z")(1 —n(z') = 1 if n(z) # n(z’). Otherwise
F(n**) = F(n).

In this case, time is speeded up by a factor of n? and one can calculate
for

F(n) =n~" Y f(S)n(z),

(EaF)) = 1 S (! = 2 ) - £(2)]
1 N z
~ Q—MZZai,jfi,j(ﬁ)

Z iy

= > ani).

Here A is the second order differential operator %Zi_j a;jD;Dj, and A =
{a;,;} is the covariance matrix

aiy = (e (= e)p(2).

z
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It is not very hard to deduce that if initially one has the convergence of the
empirical distributions

1
Vn =g Zézn(z)

in the weak topology, to a deterministic limit
v(dz) = po(x)dx

then the empirical distribution
1
n(t) = — 52 t;
n(t) = 1 D0l 2)

in the speeded up time scale, (i.e ¢ is really n?t ) will converge in probability
to p(t,x)dx, where p(t,z) solves the heat equation

0 1
.3

If we drop the assumption of symmetry and only assume that > zp(z) =0,
then we have a serious problem. The summation
z

(LaF)( dZn Nl =) = FE)]

does not simplify. The smoothness of f can be used to get rid of one power

of n by replacing f(£) — f(£) by =((2' — 2), (V)(Z) + (VF)(2)]). If we
denote by

W(z) = 5n(2) > (=) =2)p(z'=2)+(1-n(2)) Y (") (z—2")p(z—2")]
then we have
(LaF)() ~ — Z _)> .

We can write W (z) as 7,W (0) where 7, is translation by z in Z¢. W (0) has
mean 0 with respect to every Bernoulli measure. In some models the mean
0 function W (0) takes a special form such as ) c.[7.G(n) — G(n)] for some
local function G. This allows for another summation by parts which gets
rid of one more power of n. We end up with an equation of the form

%/f(x)ﬁ(t,z /ZamDD @G (olt, x)) da
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where G(p) is the expectation of G(n) with respect to the invariant
(Bernoulli) measure with density p. In our case, i.e, symmetric simple
exclusion, G(n) take the very simple form G(n) = 7(0) and G(p) = p.
Leads to an equation of the form

dp
o= ZamDD G(p(t, z) Za”D Dip.

i,j
This type of a situation where one can do summation by parts twice are
referred to as gradient models. Another example of a gradient model is the
zero range process. Here there can be many particles at site. The sites are
again some Z%. Each particle if it jumps is likely to jump from z to 2z’ with
probability p(z" — z). However unlike the Poisson case we saw earlier the
jump rate A(t, z) for any particle at site z depends on the number 7(¢, z) of
particles currently at site z. Here

ZA p(z' — 2)[F(n**) — F(n)]

’
Z,2

where 1** is obtained by moving a particle from z to z’ in the configuration

7. With the usual diffusive scaling, if

= > ICme)
then

(LaF) () =0 Y An(=)p(z' = 2)[F(n>*) = F(n)]

= A~ ) - £
= Q;d ((2)p(z" = 2)(2" = 2)i(" — 2);(DiD; f)( )

12
>
—
=
~—
83
~—
~—
>
)
~—
S~—

There is a one parameter family of invariant distributions which are product
measures with the number k of particles at any site having a distribution
vy given by
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where Z(6) is the normalization constant and 6 = 0(p) is adjusted so that
> kvo(k) = p. The expectation A(k) at density p, i.e.

> Ak)Vo(p) = Ap)
k
can be computed and

<mmwz/xmmmﬁ@m

leading to the nonlinear PDE,

& — ANt )

with

1
Af=3 > ai;DiD;f .

4,J
See [3] for a detailed exposition of zero-range processes.

With this kind of limit theorems we can answer questions of certain
type; if the initial mass distribution is given by po(z) how much of the
mass will be in a certain set B at a later time ¢. But we can not answer
questions of the form how much of the mass that was in certain set A at
time 0 ended up in a set B at a future time ¢. This requires us to keep
track of the identity of the particles. While the particles that were not in
A at time 0 do not count, they do affect the motion of particles starting
from A.

A natural question to ask is if we start in equilibrium with density p
and have one particle at 0, and watch that particle what will its motion
be? We can expect a diffusive behavior, especially in the symmetric simple
exclusion model, and the so called tagged particle will exhibit a Brownian
motion under the standard central limit theorem scaling and the dispersion
matrix will in general be a function S(p) of p. If p is very small, there are
very few particles to affect the motion of the tagged particle and one would
expect S(p) ~ A = {a;;}. However if p ~ 1, most sites are filled with
particles and free sites to jump to are hard to find. The tagged particle
will hardly move and one would expect S(p) ~ 0. The motion of two
distinct tagged particles can be shown to be asymptotically independent.
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In equilibrium at density p, the answer to question we asked earlier can be

p/ dx/ Po(t, z,y)dy
A B

where p, is the transition probability density for the motion of the tagged

answered by

particle at density p. This suggests that if we take A to be all of R?, then
the density evolves according to the heat equation with dispersion S(p)
and not A. But this is no contradiction, since we are in equilibrium and
constants are solutions of every heat equation! The scaling limit of the
tagged particle can be found in [5].

It is natural to ask what the motion of a tagged particle would be in
non-equilibrium. The particle only interacts with other particles in the
immediate neighborhood and since the full system is supposed to be locally
in equilibrium, the tagged particle at time ¢ and position x, will behave
almost like particle in equilibrium with density p(t,z), i.e., a Brownian
motion with dispersion S(p(t,x)). In other words the tagged particle will
behave like a diffusion with Kolmogorov backward generator

1
L= Z Sij(p(t, x))DiD; .
]

May be so, but perhaps there is an additional first order term and the
generator is

ZS” (t,2))DiDj + Y bj(t,z)D;

J

Since we do not know b, it is more convenient to write the generator in
divergence form

L= %VS(p(t,:c))V +b(t,x) V.

If this were to describe the motion of a tagged particle then the density r
of the tagged particle would evolve according to the forward Kolmogorov
equation, i..e

% - %VS(p(t, 2)Vr — V- (br).
But the motion of the particles is the same tagged or otherwise. Hence p
itself must satisfy the equation

dp 1 _ 1
5 = EVS(p(t,z))Vp -V (bp) = 2VAVp.
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Crossing our fingers, and undoing a V,

[S(p(t, ) — Al(Vp)(t x)

b(t,z) =
(t.) i e
It is hard to prove this relationship directly. Instead we look at a system
where we have particles of k different colors say j = 1,2,...,k. The evo-

lution is color blind and is the symmetric simple exclusion, but we keep
track of the colors. We try to derive equations for the evolution of the &
densities p = {pi(t,x)}. We let n;(z) = 1 if the site z has particle with
color j. n(z) = >_;n;(2). We denote by ( the entire configuration {n;(z)}.

With
SERED B MIOIIES

we can compute

/

LoF = 53 S (A= = D))~ L))

which is a non-gradient system. We can do one summation by parts and
we will be left to handle expressions like

5 Zgwrfj)(g)wj,r(no

where W .(¢) is an expression with mean 0 under every invariant measure.
The invariant measures are product Bernoulli with P[n;(z) = 1] = p;. We
wish to replace the term Wj r by

ZCJ’T n;(€}) = n;(0)]
Jhr’

and show that the difference is negligible. This is an important and difficult
step in the analysis of non-gradient models. The negligibility is proved, in
equilibrium after averaging in space and time. In other words quantities of
the form

/ ZJ (120()) = Wy (12C(5))]ds

are shown to be negligible in equilibrium. The quantities {Cg}fr,} which
exist can be explicitly calculated as functions of p = {p,}.

5 PipPj’ 1-p
By (9) = (bt — 2 ) S(p) + pypy - ) 4,
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and
C = By.

One has to justify substituting for p their local empirical values in non-
equilibrium. Finally for the densities {p;(¢, )} we get a system of coupled
partial differential equations

8tz/f] z) pj(t;z) d

or

EI/DL ()OI (ot 2)) (D py (1. 7) dit

J,J o1’

0
m__ §:vcm W

The sum p = Zj p; will satisfy the equation

dp 1
90 _ Zya
or 3 AV

and given p(t, x), each p;(t,x) is seen to be a solution of
dp;(t,x S(p(t,z)) — A)Vp(t,z
Pt 2) (Slolt2) = HTpt2)]
ot 2p(t, x)

which is the forward equation for the tagged particle motion. These results
were first obtained by Quastel ([7]). It requires more work to conclude that
the empirical process

— VS (ot ) Vs(ta) - ¥ - |

1
dw) = E Z (5wj(.)
J

viewed as a random measure on the space w = D][0, T|; R%] of trajectories,
converges in probability, in the topology of weak convergence of measures
on Q to the measure @Qg, which is a Markov process on R?, with backward
generator

(S(p(t,x)) — A)Vp(t, x)
2p(t, x)

and initial distribution po(z). p(t, x) itself is the solution of the heat equa-

tion (3.3). The proof involves going through the multicolor system, where

the colors code past history and the number of colors increase as the coding

gets refined. This was carried out by Rezakhanlou in [9].

-V

%VS@@J»V+
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11.4. Large Deviations

We will now move on to discuss the issues of large deviations. Large devia-
tions arise by changing the rules of the evolution. The amount of change is
measured in terms of relative entropy, suitably normalized. The effect is to
produce a different limit. The large deviation rate function is the minimum
of the relative entropy over all the changes that produce the desired limit.
Our goal is to determine the rate function I(Q) that the empirical process
is close to Q. We will carry it out in three steps. The process ) has a
marginal ¢(t,2). The first step is to determine the rate function for the
initial configuration ¢(0, ). This is some quantity I(q(0,-)). If the initial
condition is chosen randomly with a site z getting a particle with probabil-
ity p(Z), then the typical profile will be p(x) but we can have any profile

q(z) with a large deviation rate function equal to

q(x) 1—qg(x)
1) = [ fata)loz 550+ (1 = g(a) og ;=23
Although we state the results for the full Z¢ which scales to R, the results
are often proved for a large periodic lattice that scales to the torus. But
we will ignore this fine point.

The next step is to examine how the density of the untagged system
evolves. The unperturbed limit as we saw was the solution of the heat
equation (3.3). The underlying system is governed by Poisson jump pro-
cesses z — 2’ with rate p(z’ — z)n(z)(1 — n(z’)). We can perturb this to
p(z —2") 4+ qn(t, 2z, 2") introducing a spatial and temporal variation. Denot-
ing by ¢ the strength of the perturbation the entropy cost is the entropy
of one Poisson process with respect to another which is seen to be of order
¢>. The number of sites is of the order of n? and time is of order n?. If we
want the relative entropy to be of the order of magnitude n¢, then ¢ will
%. The asymmetry has to be "weak”. We introduce
the perturbed operator

have to be of order

~ 1 zZ 2.2
(EaF) = Y Ip(=' )+ ~alt, =, '~ 2)n(z) (1= (DI )~ Fo)]
Here ¢(t, z, z) determines the perturbation. b(t,z) = >, 2" q(t, x,2’) is the
local bias. It is not hard to prove that we do have again a scaling limit but
the equation is different.
Op(t, x)

) %VAVp(t,x) SV b, 2)p(t, 2) (1 — p(t, ). (4.1)
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The interaction shows up in the nonlinearity and the term (1 — p(t, x)) is

d

the effect of exclusion. The entropy cost normalized by n~% is seen to be

asymptotically

A / [ SUEE Z)]P(tvx)(l — p(t, z))dxdt .

*(2)
z p(2)
equal (b, A='b). The minimal cost of producing a b(t,z) is therefore

We need to minimize ) 2% over ¢ fixing b = ) zq(z). This is seen to

A / (t,x), A= 'b(t, ) p(t, x) (1 — p(t,x))dtdz .

If we are only interested in producing a density profile p then we need to
minimize J(b) over B(p(+)) i.e all b such that (4.1) holds. This can be done
and the answer is as worked out in [4], is

I(p)= inf J(b
() = inf 7@

— sup [ A ' / Pt 2)[Dup(t, ) — %VAVp(t,a:)]dxdt

— % /(VF(t,:c), ATYVE(@, 2))p(t, z)(1 — p(t,z))dt dz|.

Now, at the third step, we turn to the question of large deviation of the
empirical process R, (dw). It will have a large deviation principle on the
space of measures on ), with a rate function H(Q). The process @ will
have a marginal ¢(¢,z). If H(Q) is to be finite then I(g) has to be finite.
For any b € B(q(-)) with J(b) < oo, there is a Markov process @Qp, which
is the motion of the tagged particle in the perturbed system. This process
has the backward generator

Vq(t, z)

%V -S(q(t,x))V + %(S(q(t,a:)) —4) q(t, x)

V+1—q(t,z)b-V.
The process Q must have finite relative entropy H(Q; Q) with respect
to any @ and therefore the stochastic integrals fOT<f(t, x(t)),dx(t)) make
sense with respect to @ and we pick ¢ € B(q(+)) such that

| [ (.20, wtt)] =% | [ (e, 2(0)). da()

0 0
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The rate function is given by

H(Q) = I(po) + J(c) + H(Q; Qc) -
Details Can be found in [8].

We finally conclude with some results concerning the large deviation prob-
abilities for the totally asymmetric simple exclusion process. We saw that
the scaling was given as weak solutions of (3.2) that satisfied an entropy
condition. The entropy condition can be stated as

Ohlp) . 99(p)

£t o) = ot Ox

<0 (4.2)

in the sense of distribution. Here h is a convex function and ¢'(p) = h'(p)(1—
2p). Clearly for smooth solutions of (3.2), (4.2) will hold with equality. Of
special interest for large deviations is the convex function h(p) = plogp +
(1 = p)log(l — p). It turns out that the large deviation rate function is
finite only for weak solutions of (3.2) and is given by the total mass of the
positive part of the distribution £ given in (4.2). These results can be found
in [6], [10], and [11].
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