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GLOSSARY

Cluster A computing system comprising an ensemble of

separate computers (e.g., servers, workstations) inte-

grated by means of an interconnection network co-

operating in the coordinated execution of a shared

workload.

Commodity cluster A cluster consisting of computer

nodes and network components that are readily avail-

able COTS (commercial off-the-shelf) systems and that

contain no special-purpose components unique to the

system or a given vendor product.

Beowulf-class system A commodity cluster imple-

mented using mass-market PCs and COTS network

technology for low-cost parallel computing.

Constellation A cluster for which there are fewer SMP

nodes than there are processors per node.

Message passing A model and methodology of paral-

lel processing that organizes a computation in separate

concurrent and cooperating tasks coordinated by means

of the exchange of data packets.

CLUSTER COMPUTING is a class of parallel computer

structure that relies on cooperative ensembles of inde-

pendent computers integrated by means of interconnec-

tion networks to provide a coordinated system capable of

processing a single workload. Cluster computing systems

achieve high performance through the simultaneous ap-

plication of multiple computers within the ensemble to a

given task, processing the task in a fraction of the time

it would ordinarily take a single computer to perform the

same work. Cluster computing represents the most rapidly

growing field within the domain of parallel computing

due to its property of exceptional performance/price. Un-

like other parallel computer system architectures, the core

computing elements, referred to as nodes, are not custom

designed for high performance and parallel processing but

are derived from systems developed for the industrial,

commercial, or commodity market sectors and applica-

tions. Benefiting from the superior cost effectiveness of

the mass production and distribution of their COTS (com-

mercial off-the-shelf ) computing nodes, cluster systems

exhibit order-of-magnitude cost advantage with respect to
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their custom-designed parallel computer counterparts de-

livering the same sustained performance for a wide range

of (but not all) computing tasks.

I. INTRODUCTION

Cluster computing provides a number of advantages with

respect to conventional custom-made parallel comput-

ers for achieving performance greater than that typical

of uniprocessors. As a consequence, the emergence of

clusters has greatly extended the availability of high-

performance processing to a much broader community

and advanced its impact through new opportunities in sci-

ence, technology, industry, medical, commercial, finance,

defense, and education among other sectors of computa-

tional application. Included among the most significant ad-

vantages exhibited by cluster computing are the following:

• Performance scalability. Clustering of computer

nodes provides the means of assembling larger systems

than is practical for custom parallel systems, as these them-

selves can become nodes of clusters. Many of the entries

on the Top 500 list of the world’s most powerful com-

puters are clusters and the most powerful general-purpose

computer under construction in the United States (DOE

ASCI) is a cluster to be completed in 2003.

• Performance to cost. Clustering of mass-produced

computer systems yields the cost advantage of a market

much wider than that limited to the high-performance

computing community. An order of magnitude price-

performance advantage with respect to custom-designed

parallel computers is achieved for many applications.

• Flexibility of configuration. The organization of clus-

ter systems is determined by the topology of their inter-

connection networks, which can be determined at time

of installation and easily modified. Depending on the re-

quirements of the user applications, various system con-

figurations can be implemented to optimize for data flow

bandwidth and latency.

• Ease of upgrade. Old components may be replaced or

new elements added to an original cluster to incrementally

improve system operation while retaining much of the

initial investment in hardware and software.

• Architecture convergence. Cluster computing offers

a single general strategy to the implementation and appli-

cation of parallel high-performance systems independent

of specific hardware vendors and their product decisions.

Users of clusters can build software application systems

with confidence that such systems will be available to sup-

port them in the long term.

• Technology tracking. Clusters provide the most

rapid path to integrating the latest technology for high-

performance computing, because advances in device tech-

nology are usually first incorporated in mass market com-

puters suitable for clustering.

• High availability. Clusters provide multiple redun-

dant identical resources that, if managed correctly, can

provide continued system operation through graceful

degradation even as individual components fail.

Cluster computing systems are comprised of a hierarchy

of hardware and software component subsystems. Cluster

hardware is the ensemble of compute nodes responsible

for performing the workload processing and the commu-

nications network interconnecting the nodes. The support

software includes programming tools and system resource

management tools. Clusters can be employed in a number

of ways. The master–slave methodology employs a num-

ber of slaved compute nodes to perform separate tasks

or transactions as directed by one or more master nodes.

Many workloads in the commercial sector are of this form.

But each task is essentially independent, and while the

cluster does achieve enhanced throughput over a single

processor system, there is no coordination among slave

nodes, except perhaps in their access of shared secondary

storage subsystems. The more interesting aspect of clus-

ter computing is in support of coordinated and interacting

tasks, a form of parallel computing, where a single job

is partitioned into a number of concurrent tasks that must

cooperate among themselves. It is this form of cluster com-

puting and the necessary hardware and software systems

that support it that are discussed in the remainder of this

article.

II. A TAXONOMY OF CLUSTER
COMPUTING

Cluster computing is an important class of the broader

domain of parallel computer architecture that employs

a combination of technology capability and subsystem

replication to achieve high performance. Parallel com-

puter architectures partition the total work to be performed

into many smaller coordinated and cooperating tasks and

distribute these tasks among the available replicated pro-

cessing resources. The order in which the tasks are per-

formed and the degree of concurrency among them are

determined in part by their interrelationships, precedence

constraints, type and granularity of parallelism exploited,

and number of computing resources applied to the com-

bined tasks to be conducted in concert. A major division

of parallel computer architecture classes, which includes

cluster computing, includes the following primary (but not

exhaustive) types listed in order of their level of internal

communication coupling measured in terms of bandwidth
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(communication throughput) and latency (delay in trans-

fer of data). This taxonomy is illustrated in Figure 1. Such

a delineation is, by necessity, somewhat idealized because

many actual parallel computers may incorporate multiple

forms of parallel structure in their specific architecture.

Also, the terminology below reflects current general us-

age but the specific terms below have varied in their def-

inition over time (e.g., “MPP” originally was applied to

fine-grain SIMD computers, but now is used to describe

large MIMD computers).

1. Vector processing. The basis of the classical su-

percomputer (e.g., Cray 1), this fine-grain architec-

ture pipelines memory accesses and numeric operations

through one or more multistage arithmetic units super-

vised by a single controller.

2. Systolic. Usually employed for special-purpose com-

puting (e.g., digital signal and image processing), systolic

systems employ a structure of logic units and physical

communication channels that reflect the computational or-

ganization of the application algorithm control and data

flow paths.

3. SIMD. This Single instruction stream, multiple data

stream or SIMD family employs many fine- to medium-

grain arithmetic/logic units (more than tens of thousands),

each associated with a given memory block (e.g., Maspar-

2, TMC CM-5). Under the management of a single system-

wide controller, all units perform the same operation on

their independent data each cycle.

4. MPP. This multiple instruction stream, multiple data

stream or MIMD class of parallel computer integrates

many (from a few to several thousand) CPUs (central pro-

cessing units) with independent instruction streams and

flow control coordinating through a high-bandwidth, low-

latency internal communication network. Memory blocks

associated with each CPU may be independent of the oth-

Vector

Systolic SIMD MPP

Parallel Computing

Cluster

Distributed

Constellations
Farms Commodity Proprietary Super

Beowulf NOW

FIGURE 1 Taxonomy of cluster computing.

ers (e.g., Intel Paragon, TMC CM-5), shared among all

CPUs without cache coherency (e.g., CRI T3E), shared in

SMPs (symmetric multiprocessors) with uniform access

times and cache coherence (e.g., SGI Oracle), or shared

in DSMs (distributed shared memory) with nonuniform

memory access times (e.g., HP Exemplar, SGI Origin).

5. Cluster computing. Integrates stand-alone computers

devised for mainstream processing tasks through local-

area (LAN) or system-area (SAN) interconnection net-

works and employed as a singly administered computing

resource (e.g., Beowulf, NOW, Compaq SC, IBM SP-2).

6. Distributed Internet computing. Employs wide-area

networks (WANs) including the Internet to coordinate

multiple separate computing systems (possibly thousands

of kilometers apart) under independent administrative

control in the execution of a single parallel task or work-

load. Previously known as metacomputing and including

the family of GRID management methods, this emergent

strategy harnesses existing installed computing resources

to achieve very high performance and, when exploiting

otherwise unused cycles, superior price/performance.

Cluster computing may be distinguished among a num-

ber of subclasses that are differentiated in terms of the

source of their computing nodes, interconnection net-

works, and dominant level of parallelism. A partial clas-

sification of the domain of cluster computing includes

commodity clusters (including Beowulf-class systems),

proprietary clusters, open clusters or workstation farms,

super clusters, and constellations. This terminology is

emergent, subjective, open to debate, and in rapid tran-

sition. Nonetheless, it is representative of current usage

and practice in the cluster community.

A definition of commodity clusters developed by con-

sensus is borrowed from the recent literature and reflects

their important attribute; that they comprise components
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that are entirely off-the-shelf, i.e., already developed and

available for mainstream computing:

A commodity cluster is a local computing system comprising

a set of independent computers and a network interconnecting

them. A cluster is local in that all of its component subsystems

are supervised within a single administrative domain, usually

residing in a single room and managed as a single computer sys-

tem. The constituent computer nodes are commercial-off-the-

shelf, are capable of full independent operation as is, and are of

a type ordinarily employed individually for stand-alone main-

stream workloads and applications. The nodes may incorporate

a single microprocessor or multiple microprocessors in a sym-

metric multiprocessor (SMP) configuration. The interconnection

network employs COTS LAN or SAN technology that may be

a hierarchy of or multiple separate network structures. A cluster

network is dedicated to the integration of the cluster compute

nodes and is separate from the cluster’s external (worldly) envi-

ronment. A cluster may be employed in many modes including

but not limited to high capability or sustained performance on

a single problem, high capacity or throughput on a job or pro-

cess workload, high availability through redundancy of nodes,

or high bandwidth through multiplicity of disks and disk access

or I/O channels.

Beowulf-class systems are commodity clusters employ-

ing personal computers (PCs) or small SMPs of PCs as

their nodes and using COTS LANs or SANs to provide

node interconnection. A Beowulf-class cluster is hosted

by an open source Unix-like operating system such as

Linux. A Windows-Beowulf system runs the mass-market

widely distributed Microsoft Windows operating systems

instead of Unix.

Proprietary clusters incorporate one or more com-

ponents that are custom-designed to give superior sys-

tem characteristics for product differentiation through

employing COTS components for the rest of the cluster

system. Most frequently proprietary clusters have incor-

porated custom-designed networks for tighter system cou-

pling (e.g., IBM SP-2). These networks may not be pro-

cured separately (unbundled) by customers or by OEMs

for inclusion in clusters comprising other than the specific

manufacturer’s products.

Workstation farms or open clusters are collections

of previously installed personal computing stations and

group shared servers, loosely coupled by means of one

or more LANs for access to common resources, that, al-

though primarily employed for separate and independent

operation, are occasionally used in concert to process sin-

gle coordinated distributed tasks. Workstation farms pro-

vide superior performance/price over even other cluster

types in that they exploit previously paid-for but other-

wise unused computing cycles. Because their intercon-

nection network is shared for other purposes and not op-

timized for parallel computation, these open clusters are

best employed for weakly interacting distributed work-

loads. Software tools such as Condor facilitate their use

while incurring minimum intrusion to normal service.

Super clusters are clusters of clusters. Principally found

within academic, laboratory, or industrial organizations

that employ multiple clusters for different departments or

groups, super clusters are established by means of WANs

integrating the disparate clusters into a single more loosely

coupled computing confederation.

Constellations reflect a different balance of parallelism

than conventional commodity clusters. Instead of the pri-

mary source of parallelism being derived from the number

of nodes in the cluster, it is a product of the number of pro-

cessors in each SMP node. To be precise, a constellation

is a cluster in which there are more processors per SMP

node than there are nodes in the cluster. While the nodes of

a constellation must be COTS, its global interconnection

network can be of a custom design.

Of these, commodity clusters have emerged as the most

prevalent and rapidly growing segment of cluster comput-

ing systems and are the primary focus of this article.

III. A BRIEF HISTORY OF
CLUSTER COMPUTING

Cluster computing originated within a few years of the in-

auguration of the modern electronic stored-program digi-

tal computer. SAGE was a cluster system built for NORAD

under an Air Force contract by IBM in the 1950s based on

the MIT Whirlwind computer architecture. Using vacuum

tube and core memory technologies, SAGE consisted of

a number of separate stand-alone systems cooperating to

manage early warning detection of hostile airborne intru-

sion of the North American continent. Early commercial

applications of clusters employed paired loosely coupled

computers with one performing user jobs while the other

managed various input/output devices.

Breakthroughs in enabling technologies occurred in the

late 1970s, both in hardware and software, that were to

have a significant long-term effect on future cluster com-

puting. The first generations of microprocessors were de-

signed with the initial development of VLSI technology

and by the end of the decade the first workstations and

personal computers were being marketed. The advent of

Ethernet provided the first widely used LAN technology,

creating an industry standard for a modest cost multidrop

interconnection medium and data transport layer. Also at

this time, the multitasking Unix operating system was cre-

ated at AT&T Bell Labs and extended with virtual memory

and network interfaces at UC Berkeley. Unix was adopted

in its various commercial and public domain forms by the
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scientific and technical computing community as the prin-

cipal environment for a wide range of computing system

classes from scientific workstations to supercomputers.

During the decade of the 1980s, increased interest in

the potential of cluster computing was marked by impor-

tant experiments in research and industry. A collection of

160 interconnected Apollo workstations was employed as

a cluster to perform certain computational tasks by the

NSA. Digital Equipment Corporation developed a system

comprising interconnected VAX 11/750s, coining the term

cluster in the process. In the area of software, task man-

agement tools for employing workstation farms were de-

veloped, most notably the Condor software package from

the University of Wisconsin. The computer science re-

search community explored different strategies for paral-

lel processing during this period. From this early work

came the communicating sequential processes model

more commonly referred to as the message-passing model,

which has come to dominate much of cluster computing

today.

An important milestone in the practical application of

the message passing model was the development of PVM

(parallel virtual machine), a library of linkable functions

that could allow routines running on separate but net-

worked computers to exchange data and coordinate their

operation. PVM, developed by Oak Ridge National Lab-

oratory, Emory University, and University of Tennessee,

was the first major open distributed software system to

be employed across different platforms. By the beginning

of the 1990s, a number of sites were experimenting with

clusters of workstations. At the NASA Lewis Research

Center, a small cluster of IBM workstations was used to

simulate the steady-state behavior of jet aircraft engines

in 1992. The NOW (Network of Workstations) project at

UC Berkeley began operation of the first of several clusters

there in 1993 that led to the first cluster to be entered on the

Top 500 list of the world’s most powerful computers. Also

in 1993, one of the first commercial SANs, Myrinet, was

introduced for commodity clusters, delivering improve-

ments in bandwidth and latency an order of magnitude

better than the Fast Ethernet LAN most widely used for

the purpose at that time.

The first Beowulf-class PC cluster was developed at

NASA’s Goddard Space Flight Center in 1994 using early

releases of the Linux operating system and PVM running

on 16 Intel 100-MHz 80486-based PCs connected by dual

10-Mbps Ethernet LANs. The Beowulf project developed

the necessary Ethernet driver software for Linux and ad-

ditional low-level cluster management tools and demon-

strated the performance and cost effectiveness of Beowulf

systems for real-world scientific applications. That year,

based on experience with many other message-passing

software systems, the parallel computing community set

out to provide a uniform set of message-passing semantics

and syntax and adopted the first MPI standard. MPI has

become the dominant parallel computing programming

standard and is supported by virtually all MPP and clus-

ter system vendors. Workstation clusters running the Sun

Microsystems Solaris operating system and NCSA’s PC

cluster running the Microsoft NT operating system were

being used for real-world applications.

In 1996, the Los Alamos National Laboratory and the

California Institute of Technology with the NASA Jet

Propulsion Laboratory independently demonstrated sus-

tained performance of more than 1-Gflops for Beowulf

systems costing under $50,000 and was awarded the

Gordon Bell Prize for price/performance for this accom-

plishment. By 1997 Beowulf-class systems of more than

100 nodes had demonstrated sustained performance of

greater than 10 Gflops with a Los Alamos system making

the Top 500 list. By the end of the decade, 28 clusters

were on the Top 500 list with a best performance of more

than 500 Gflops. In 2000, both DOE and NSF announced

awards to Compaq to implement their largest computing

facilities, both clusters of 30 and 6 Tflops, respectively.

IV. CLUSTER HARDWARE COMPONENTS

Cluster computing in general and commodity clusters in

particular are made possible by the existence of cost-

effective hardware components developed for mainstream

computing markets. The capability of a cluster is de-

termined to first order by the performance and stor-

age capacity of its processing nodes and the bandwidth

and latency of its interconnection network. Both cluster

node and cluster network technologies evolved during the

1990s and now exhibit gains of more than two orders of

magnitude in performance, memory capacity, disk stor-

age, and network bandwidth and a reduction of better

than a factor of 10 in network latency. During the same

period, the performance-to-cost ratio of node technology

has improved by approximately 1000. In this section, the

basic elements of the cluster node hardware and the alter-

natives available for interconnection networks are briefly

described.

A. Cluster Node Hardware

The processing node of a cluster incorporates all of

the facilities and functionality necessary to perform a

complete computation. Nodes are most often structured

either as uniprocessor systems or as SMPs although

some clusters, especially constellations, have incorpo-

rated nodes that were distributed shared memory (DSM)

systems. Nodes are distinguished by the architecture of
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the microprocessors employed, the number and organiza-

tion of the microprocessors, the capacities of the primary

and secondary storage, and the internal interconnect logic

structure. The nodes of commodity clusters marketed pri-

marily for mainstream computing environments must also

incorporate standard interfaces to external devices that en-

sure interoperability with myriad components developed

by third-party vendors. The use of the high-bandwidth in-

terface allows clusters to be configured with little or no

change to the node subsystem, minimizing any additional

costs incurred on a per-node basis. The key elements of

a node are briefly discussed below. It must be understood

that this technology is evolving rapidly and that the spe-

cific devices that are provided as examples are likely to be

upgraded in operational characteristics or to be replaced

altogether in the near future.

1. Central processing unit. The CPU is a single VLSI

integrated circuit microprocessor, possibly merged on an

MCM (multichip module) with one or more cache chips.

The CPU executes sequences of binary instructions op-

erating on binary data, usually of 32- or 64-bit length.

While many instructions are performed on internal data

stored in registers, acquiring new data from the memory

system is an important aspect of microprocessor opera-

tion, requiring one or more high-speed cache memories to

minimize the average load/store access times. Both 32-bit

and 64-bit architectures are used in clusters with the most

popular based on the 32-bit Intel X86 family and the high-

est performance clusters based on the 64-bit Compaq Al-

pha family or IBM RS6000. The first Beowulf-class com-

modity clusters incorporated Intel 80486 microprocessors

operating at 100 MHz. Today, descendents of this chip in-

cluding the Intel Pentium III and the AMD K7 Athelon

have clock rates in excess of 1 GHz. The CPU connects

to an internal memory bus for high-speed data transfers

between memory and CPU and to an external I/O bus that

provides interfaces to secondary storage and networking

control modules.

2. Main memory. Stores the working data and program

instructions to be processed by the CPU. It is a part of a

larger memory hierarchy that includes high-speed cache

memories closer to the CPU and high-density persistent

mass storage from which it acquires its initial data and

stores its final results. For the last two decades, main mem-

ory has been dominated by DRAM technology, closely

packed arrays of switched capacitive cells embedded on

silicon wafers. DRAM chips containing 256 Mbits of data

are available with gigabit chips to become common place

in the near future. Typical cluster nodes support main

memory capacities between 64 Mbytes and 1 Gbytes al-

though large SMP or DSM nodes provide more. DRAM

has undergone significant advances in recent years pro-

viding more rapid throughput as well as higher density,

reducing if not closing the bottleneck between CPU and

its main memory.

3. Secondary storage. Comprises a set of devices that

provides persistent storage of a large amount of data. Sec-

ondary storage serves several purposes as a function of

the usage of the data it contains. It provides all of the

functions, both user applications and operating system

tools, that govern the operation and computation of the

CPU. It provides the data sets on which the user tasks

are to operate and is the primary repository for the final

results of user computations. It maintains configuration

data concerning the setup and operational parameters of

the computing node as well as information concerning

the rest of the cluster devices and their relational roles.

Because most memory systems support the virtual mem-

ory abstraction, providing a logical memory many times

larger than the actual physical main memory installed, sec-

ondary storage temporarily holds those segments of the

logical address space and associated data that do not fit

in the existing physical main memory. Unlike main mem-

ory, data stored on secondary storage devices are retained,

even when system power is disrupted. This nonvolatile

property allows data to be archived indefinitely. The pri-

mary component type providing secondary storage is the

venerable hard disk with its early genesis in the late 1950s

based on magnetic storage (like a cassette tape) of one or

more disks rotating on a single spindle at high speed and

accessed by a magnetic detection head moved radically

in and out across the disk surface, reminiscent of the arm

of an old record turntable. Modern disk drives provide

many tens of gigabytes at moderate cost and access times

on the order of a few milliseconds. Other technologies

are employed to provide more specialized forms of sec-

ondary storage, particularly for data portability and safe

permanent archival storage. CD-ROMs developed from

the original digital musical recording media provide ap-

proximately 600 Mbytes of storage at less than $1 a disk

and read–write capability is now becoming commonplace,

although this is of less importance to cluster systems.

The long-lived and relatively diminutive floppy disk hold-

ing a mere 1.4 Mbytes is still employed, even on clus-

ters, primarily for initial installation, configuration, and

boot up.

4. External interfaces. Serve three important roles re-

lated to the operation and management of clusters. They

provide direct user interactive access and control, they per-

mit application data input and results to be conveyed with

devices outside the system, and they connect to the cluster

interconnection network and thereby to other nodes in the

cluster. While there are many different types of interfaces

( just look at the number of sockets on the back of a typical

PC), PCI is universal from PCs to mainframes, connecting
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the CPU to a plethora of interface control devices. The

PCI bus has four different configurations employing 32-

or 64-bit connections running at 33- or 66-MHz clock

speed and a peak data throughput of 4 Gbps. The major-

ity of network interface controllers (NIC) are compatible

with one or more of these PCI forms. In the future, it is

likely that a new external interface standard, Infiniband,

will eventually replace PCI to deliver higher through-

put and lower latency between the CPU and external

devices.

B. Cluster Network Hardware

A model, but not necessarily the only possible model, of

parallel processing with cluster systems involves each of

the cluster nodes performing one or more tasks on local

data and then exchanging the computed results with other

nodes within the cluster. Networks make this possible.

They provide physical channels between nodes by which

data are transported and logical protocols that govern the

flow and interpretation of the transferred data. Networks

are employed in a broad range of integrated systems from

the Internet spanning the globe requiring possibly as much

as a hundred milliseconds for a message packet to reach

its destination to a data bus internal to a computer inte-

grating its various components supporting data transfers in

100 nanosec or less, a ratio of a million in network latency.

Networks for commodity clusters fall in between with the

initial use of Ethernet exhibiting on average approximately

100 nanosec latency falling in the middle (logarithmically

speaking).

Network technology determines the potential value of

cluster computing. Its principal properties are bandwidth,

latency, scale, and cost. Bandwidth imposes an upper

bound on the amount of data that can be transferred in

unit time (e.g., Mbps, Gbps). Latency is the amount of

time it takes for a message packet to transit the diameter

of a system measured in microseconds. Cost is usually

considered as the percentage of the total price of the hard-

ware system. Scale is the largest number of nodes that a

network can connect effectively. Together, they establish

a cluster’s capability, applicability, and user accessibility.

Different applications exhibit varying global data access

patterns that may be suitable for some networks rather than

others. Higher bandwidth networks ordinarily will have

greater generality of application than those networks of

lower bandwidth. Similarly, for applications using short

messages or involving frequent global synchronization,

lower latency networks will be more general purpose than

high-latency networks. But superior behavioral properties

often come at additional cost that may preclude their use

in many environments, where cost is a significant factor

in the choice to employ clusters in the first place. Thus the

selection of a specific network is dependent on how the

cluster is to be used and by whom.

A cluster network includes NICs that connect the clus-

ter node to the network, transport layer links to carry the

data, and switches that route the data through the network.

NICs move data from message buffers filled by the node

processor to signal packets sent out to the transport layer

performing a number of translation functions on the data

in the process. The data links may comprise one or more

parallel channels and may be implemented with metal

coaxial cable or optical fiber (advanced development of

free-space optical networks is under way). Switches ac-

cept messages at their multiple input ports, determine their

required routing, switch as many as possible simultane-

ously sending them out the appropriate output ports, and

arbitrating where contention for shared resources (ports,

channels) occurs. The earliest Beowulf-class systems used

low-cost hubs, rather than the more expensive switches,

but these permitted only one transfer to occur at a time

on the entire network. Switches deliver much closer to the

peak bi-section bandwidth of the network as they isolate

separate disjoint paths from each other.

Together these network components can be structured

to form a number of different topologies. Most simple

among these and used frequently for small clusters is the

star configuration using a single switch of degree n (the

number of separate ports) connecting n nodes. Larger sys-

tems can be formed with a hierarchy of switches to form

a tree structure. The scale of tree-based clusters is lim-

ited by the bi-section bandwidth of the root node of the

tree topology. More complex network structures permit

the implementation of larger systems. Among them is the

CLOS network (also referred to as the fat-tree) that over-

comes the deficiency of the tree topology by providing

multiple channels in parallel, balanced to keep the cross-

section bandwidth equal at each level in the tree. Mesh

and toroidal topologies provide scalable bandwidth and

locality of interconnect with fixed degree nodes but may

experience relatively high latency across the system diam-

eter. Variations on these and other network topologies are

possible and depend on requirements of a given system.

A few of the most widely used network technologies used

in commodity clusters are described next.

1. Ethernet is the most widely used network for clus-

ters, even today, although devised as a LAN and origi-

nated in the late 1970s. Its success is due in part to its

repeated reinvention, which takes advantage of technol-

ogy advances while meeting expanding requirements. The

10-Mbps Ethernet that was first used in Beowulf clusters in

the early 1990s superceded early Ethernet at 3 Mbps. Fast

Ethernet provided 100 Mbps and with low-cost switches

is the mainstay of small low-cost Beowulf-class systems.
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Gigabit Ethernet, as the name implies, provides a peak

bandwidth of approximately 1 Gbps. But its per-node cost

remains high and it suffers from the relatively long laten-

cies of its predecessors.

2. Myrinet was one of the first networks to be developed

expressly for the SAN and cluster market. With a cost of

approximately $1600 per node, Myrinet was initially re-

served for the more expensive workstation clusters. But

with its superior latency properties of 20 µsec or less,

it permitted some classes of more tightly coupled appli-

cations to run efficiently that would perform poorly on

Ethernet-based clusters. More recently, reduced pricing

has expanded its suitability to lower cost systems and has

proven very popular.

3. VIA is a recent advance in cluster network technol-

ogy involving improvements in both hardware and soft-

ware to further reduce data communication latency. Typi-

cally, message packets are copied from the user application

space into the operating system space or vice versa. VIA

(virtual interface architecture) employs a zero-copy pro-

tocol, avoiding the O/S intermediate stage and moving the

packets directly between the network transport layer and

the application. Giganet’s cLAN and Compaq’s Server net

II both implement the VIA standard, delivering best case

latencies well below 10 µsec.

4. SCI was perhaps the first SAN to achieve IEEE stan-

dardization and has very good bandwidth and latency char-

acteristics. Existing implementations provide between

3.2- and 8-Gbps peak bandwidth with best latencies below

4 µsec. The SCI standard includes protocol for support of

distributed shared memory operation. However, most clus-

ters employing SCI use PCI-compatible network control

cards (e.g., Dolphin) that cannot support cross-node cache

coherence. Nonetheless, even in distributed memory clus-

ters, it provides an effective network infrastructure.

5. Infiniband is the next-generation interconnection

technology to extend the capabilities of SANs. Although

not yet available, an industrial consortium of major com-

puter technology (hardware and software) manufacturers

has developed and released an extensive specification that

will lead first to reference implementations, and even-

tually to widely distributed products. Bandwidths up to

12 Gbps (employing optical channels) and latencies ap-

proaching 1 µsec will become possible with Infiniband,

which replaces previous I/O buses (e.g., PCI) and migrates

the network interconnect closer to the memory bus of the

compute node.

V. CLUSTER SOFTWARE COMPONENTS

The earliest use of commodity clusters involved little more

software than the original node operating system and basic

support for a network interface protocol such as sockets

in Unix. Application programmers running a single prob-

lem on a small, dedicated cluster would hand craft the

parallel program and painstakingly install the code and

necessary data individually on every node of the cluster

system. Good results were obtained for real-world prob-

lems on Beowulf-class systems and other such clusters,

motivating continued advances in cluster hardware and

methodology. Today, with commodity clusters contending

for dominance of the high-performance computer arena,

such primitive frontier techniques can no longer be justi-

fied and, indeed, would present a serious obstacle to wider

usage of commodity clusters. During the intervening pe-

riod, significant advances in software support tools have

been developed for cluster computing. These are in the two

critical areas of programming environments and resource

management tools. Together, they provide the founda-

tion for the development of sophisticated and robust clus-

ter system environments for industrial, commercial, and

scientific application.

The environments and tools described below engage the

system as a global ensemble, treating its processing nodes

as a set of compute and storage resources to be managed,

allocated, and programmed. But each node is itself a com-

plete and self-sustaining logical as well as physical entity,

hosting its own environment: the node operating system.

While some experimental clusters incorporate custom op-

erating systems derived expressly for use within the clus-

ter context, the vast majority of commodity clusters em-

ploy nodes hosting conventional operating systems. Many

operating systems have been used in support of clusters.

The IBM AIX operating system used on their SP-2 and

Compaq True64 used on their Alpha-based SC series are

two examples of vendor software migrated to use with

clusters. However, the dominant operating systems em-

ployed with commodity clusters are Linux and Microsoft

Windows. Linux emerged as the software of choice as

a result of the Beowulf Project, which implemented the

first clusters using Linux and running real-world science

and technical applications. Linux gained prominence be-

cause of its Unix-like structure, which was consistent with

the technical computing community’s environments from

scientific workstations to supercomputers and because of

its free open source code policy. Microsoft Windows, the

world’s single most widely used operating system, has

been favored in business and commerce environments for

clusters using ISV applications software developed for

Windows such as distributed transaction processing. Win-

dows has also been used effectively for technical comput-

ing clusters at NSCA and Cornell Theory Center. Both

IBM and Compaq as an alternative cluster node oper-

ating system to their proprietary software have adopted

Linux.
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A. Programming Environments

Parallel programming of clusters involves a sequence of

steps that transforms a set of application requirements into

a set of cooperating concurrent processes and data sets. Al-

though actual programming styles may vary significantly

among practitioners, a representative methodology may

be the following process:

1. Capture the application in a set of ordered routines.

2. Partition the global data into separate approximately

equal regions.

3. Define tasks to be performed on each data partition.

4. Determine precedence constraints between tasks of

different regions.

5. In the programming language of choice, write the

sequence of statements that encodes the tasks to be

performed.

6. In the global communication medium of choice, set

up synchronization conditions that will govern

guarded program execution.

7. Devise procedures for exchanging necessary

intermediate results among concurrent tasks.

8. Create a minimalist test data set and debug compile

and runtime program errors.

9. Monitor program behavior and optimize code for

best performance.

10. Partition real-world data set.

11. On selected cluster, allocate nodes to data partitions.

12. Install data and tasks on designated nodes.

13. Initiate execution and acquire result values.

These steps are rarely performed in such rigid lock-step

manner but all of the actions described must be accom-

plished prior to successful completion of executing a real

parallel problem on a cluster. The effectiveness achieved

in programming a cluster is difficult to measure (although

some metrics have been devised to this end). Nonetheless,

the ease of parallel programming is strongly influenced

by the execution model assumed and the tools available to

assist in the process.

Many models have been conceived in the last two

decades (or more) to provide a conceptual framework for

parallel program execution and programming. These have

been strongly influenced by the assumptions of the char-

acteristics of the underlying parallel computer. Pipelined

supercomputers used vector models, SIMD machines used

fine-grain data parallel programming, SMP systems used

coarse-grain multiple threads with shared memory syn-

chronization (e.g., open MP), and large MPPs used single-

program, multiple data stream (SPMD) style (e.g., HPF)

with either put/get shared memory primitives or mes-

sage passing for interprocessor cooperation. Because of

the relatively long global latencies and constrained net-

work bandwidth characteristic of clusters, the program-

ming paradigms of widest usage have been the master–

slave model for embarrassingly parallel job streams of in-

dependent tasks (e.g., transaction processing, web search

engines) and the message-passing model for cooperat-

ing interrelated processes. Where clusters consist of SMP

nodes, hybrid models are sometimes used employing mes-

sage passing between nodes and multiple threads within

the nodes.

Efficient programming practices demand effective pro-

gramming environments that incorporate a set of sophisti-

cated tools to support the steps listed above. A partial list

of the desired tools based on a message-passing approach

might include these:

� A core language and compiler (e.g., C, Fortran)
� A language sensitive editor (e.g., Emacs)
� A linkable message-passing library [e.g., MPICH

(http://www-unix.mcs.anl.gov/mpi/mpich), LAM

(http://www.mpi.nd.edu/lam)]
� Numeric libraries [e.g., Scalapack (http://www.netlib.

org/scalapack)]
� Debuggers [e.g., gdb, Totalview (http://www.etnus.

com)]
� Performance profilers [e.g., jumpshot (http://www-

unix.mcs.anl.gov/mpi/mpich), XPVM (http://epm.ornl.

gov/pvm)]
� Loaders and process distribution [e.g., Scyld (http://

www. scyld.com), Rocks (http://slic01.sdsc.edu),

vasystemimager (systemimager.org), OSCAR (http://

openclustergroup.org), etc.]
� Schedulers [e.g., LSF (http://www.platform.com), PBS

(http://www.openpbs.org), Condor (http://www.cs.wisc.

edu/condor), etc.]

Such environments and tools are in a state of flux with

a combination of free open-source and commercial of-

ferings in continuous development yielding constant im-

provements in functionality, performance, and reliability.

But new tools that provide more complete support, es-

pecially for parallel debugging, are still required. One

important trend is toward the development of PSEs or

problem-solving environments that target specific appli-

cation domains and provide the programmer with a high-

level framework within which to cast the problem. Other

programming styles for clusters such as HPF, BSP, Split-

C, and UPC are also being pursued and applied by some

communities, although it is unclear which if any of these

will become dominant.

One challenge that complicates programming clusters

is the use of nodes comprising more than one proces-

sor in an SMP configuration. Such nodes view their local

http://www-unix.mcs.anl.gov/mpi/mpich
http://www.mpi.nd.edu/lam
http://www.netlib.org/scalapack
http://www.netlib.org/scalapack
http://www.etnus.com
http://www.etnus.com
http://www-unix.mcs.anl.gov/mpi/mpich
http://www-unix.mcs.anl.gov/mpi/mpich
http://epm.ornl.gov/pvm
http://epm.ornl.gov/pvm
http://www. scyld.com
http://www. scyld.com
http://slic01.sdsc.edu
http://openclustergroup.org
http://openclustergroup.org
http://www.platform.com
http://www.openpbs.org
http://www.cs.wisc.edu/condor
http://www.cs.wisc.edu/condor


42 Cluster Computing

memory as common, sharing the name space within the

node through hardware support of cache coherence. In

principle, this allows computing within each node to

employ a threaded shared memory model rather than

the message-passing model. One would expect that such

mixed-mode programming could yield superior perfor-

mance. Surprisingly, this is not the mainstream practice.

The majority of users of clusters of SMP nodes program

intranode operation with message-passing operations such

as those provided by MPI as they do internode process-

ing. One widely used SMP programming methodology is

Open MP, which provides the added constructs necessary

for parallel programming on a shared memory multipro-

cessor. Some programmers, striving to take advantage of

both clusters and their SMP nodes, employ a hybrid pro-

gramming methodology consisting of both MPI and Open

MP. This has not become common practice but is expected

to grow in usage, in spite of its difficulties.

B. Resource Management Software

The management of cluster computers includes many re-

sponsibilities from initial assembly and software installa-

tion to possible dynamic load balancing of user applica-

tion modules. Originally, users of moderate-scale low-cost

Beowulf-class performed most of these chores manually,

ignoring some as unnecessary for dedicated use. But mod-

ern clusters supporting multiple users and a range of appli-

cation and workload types on systems scaled to hundreds

of gigaflops require sophisticated environments and tools

to manage the plethora of system resources. Programming

tools, while still in transition, have achieved a level of

community-wide standardization. Such is not the case for

resource management tools. These are still in a state of

experimentation although there is general consensus on

the basic requirements. The principal capabilities needed

for commercial grade resource management include the

following:

• Assembly, installation, and configuration. Setting up

a cluster, whether assembled on site by staff or vendor

provided, can benefit from a set of low-level tools that

organize the task of installing the large suite of software

and configuring the large number of system parameters.

Maintaining consistency across all of the nodes can be

facilitated by routines that search and validate all copies

and their version numbers.

• Scheduling and allocation. Loading a parallel ap-

plication program on to a cluster shared by other users

and jobs requires software tools that determine which re-

sources will be employed to perform what jobs and when.

Far more complicated than on a conventional uniproces-

sor, cluster scheduling involves space sharing where a sys-

tem is physically partitioned into multiple subsystems to

run as many jobs.

• System administration. The management of user ac-

counts, job queues, security, backups, mass storage, log

journaling, operator interface, user shells, and other house-

keeping activities are essential elements of a commercial-

grade computing system but impose added burden due to

the multiplicity of computing resources and the diverse

ways in which they may be used. PBS is an example of

one software system that brings much of this capability to

cluster computing.

• Monitoring and diagnosis. The complex state of a

cluster, its operational status, tasks being performed, and

its performance are all constantly changing. Operator

tools are required to continuously monitor the behavior

of the many components comprising a cluster system and

quickly diagnosing hardware or software failures when

they occur. A number of such tool sets have been devel-

oped by many cluster installations although no single suite

has been adopted by the community as a whole.

• Parallel mass storage. Almost all computations re-

quire access to secondary storage including both local

and remote disk drives for support of file systems. Com-

mercial applications frequently use their own in-house

distributed software for file management optimized

around the specific needs of the application. Examples of

general-purpose parallel file systems used for clusters in-

clude PPFS (http://www-pablo.cs.uiac.edu/Project/PPFS

/PPFSII/PPFSIIOverview.htm), PVFS (http://parlweb.

parl.Clemson.edu/pvfs), and GPFS (http://gfs.lcse.umn.

edu).

• Reliability. Checkpoint and restart support software

allows large programs with long run times to survive tran-

sient or hard failures of system components. Individual

organizations and some vendors have developed some sup-

port for this capability although a general solution is not

widely available. More difficult is the detection of errors.

Software fault tolerance is a field in which strides are being

made but which is still largely experimental.

While substantial advances have been made during the

early 2000s, continued research and development are re-

quired to produce a common cluster environment that sat-

isfies the requirements of a broad user community and

exhibits sufficient reliability to garner confidence in the

robustness and therefore utility of commodity clusters for

commercial and industrial grade processing. A number of

efforts are under way to synthesize a number of tools into

common frameworks including the Oscar, Grendel, and

RWCP projects. More than one ISV offers collections of

cluster middleware including PGI and Scyld. In the long

term, one or more advanced programming models and

their complementing runtime execution models will have

http://www-pablo.cs.uiac.edu/Project/PPFS/PPFSII/PPFSIIOverview.htm
http://www-pablo.cs.uiac.edu/Project/PPFS/PPFSII/PPFSIIOverview.htm
http://parlweb.parl.Clemson.edu/pvfs
http://parlweb.parl.Clemson.edu/pvfs
http://gfs.lcse.umn.edu
http://gfs.lcse.umn.edu
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to be developed before commodity clusters become sig-

nificantly easier to program and perhaps more efficient as

well for a broader range of application algorithms. The

development of PSE for a range of widely used applica-

tion classes may provide partial solution to the challenge

of programming, at least for those special cases. PSE soft-

ware presents a template to the user who then fills in the

parameters with data relevant to the specific problem to

be performed. This eliminates the need for detailed pro-

gram development and reduces the time to solution as well

as providing improved efficiency of operation. But for

general-purpose cluster computing, significant improve-

ments in ease of use may depend on next-generation par-

allel programming formalisms.

VI. SUMMARY AND CONCLUSIONS

Commodity cluster computing is growing rapidly both for

high-end technical and scientific application domains and

for business and commerce. The low cost, high flexibil-

ity, and rapid technology tracking are making this class of

computing the platform of choice for many user domains

requiring scalability and excellent price/performance. The

extraordinary rate of growth in capability for commodity

clusters in general and Beowulf-class systems in particu-

lar is anticipated to continue for at least the next 5 years.

By 2005 to 2006, price/performance may reach $0.10 per

megaflops with systems as large as 50 teraflops opera-

tional at a few sites. There is a strong likelihood that

Linux and Microsoft Windows will be the mainstream

operating systems, with one or the other offered by virtu-

ally every system vendor. Both are also likely to incorpo-

rate advancements that directly enhance cluster scalabil-

ity and efficiency by eliminating bottlenecks and reduc-

ing overhead. Network bandwidths of 10 Gbps will have

become commonplace with network latency approaching

1 µsec through the implementation of Infiniband. MPI-

2 will be the ubiquitous programming model for parallel

applications and .NET or an equivalent tool set will be

employed for loosely coupled workloads, primarily in the

commercial sector. Packaging will become cheaper and

more compact to reduce footpad and overall system cost.

Finally, systems administration tools will have reached

the sophistication of mainstream servers. In 10 years, the

first petaflops-scale commodity clusters will have been

installed.
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GLOSSARY

Back end The final phase of compilation, where the

program is translated from the compiler’s interme-

diate representation into operations for the target

machine.

Compiler A program that translates an executable pro-

gram from one form to another.

Constant propagation An optimization that discovers, at

compile time, expressions that must have known con-

stant values, evaluates them, and replaces their run-time

evaluation with the appropriate value.

Data-flow analysis A collection of techniques for rea-

soning, at compile time, about the flow of values at

run-time.

Front end The initial stage of compilation, where the

program is translated from the original programming

language into the compiler’s intermediate repre-

sentation.

High-level transformations Transformations performed

on an intermediate representation that is close to the

source language in its level of abstraction.

Instruction selection The process of mapping the com-

piler’s intermediate representation of the program into

the target language produced by the compiler.

Lexical analysis That part of the compiler’s front end

that has the task of converting the input program from

a stream of individual characters into a stream of words,

or tokens, that are recognizable components of the

source language. Lexical analysis recognizes words

and assigns them to syntactic categories, much like

parts of speech. The pass that implements lexical anal-

ysis is called a scanner.

List scheduling An algorithm for reordering the opera-

tions in a program to improve their execution speed.

A list scheduler constructs a new version of the pro-

gram by filling in its schedule, one cycle at a time. The

scheduler must respect the flow of values in the orig-

inal program and the operation latencies of the target

machine.
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Memory hierarchy management A collection of trans-

formations that rewrite the program to change the or-

der in which it accesses memory locations. On ma-

chines with cache memories, reordering the references

can increase the extent to which values already in

the cache are reused, and thus decrease the aggregate

amount of tie spent waiting on values to be fetched from

memory.

Optimizer The middle part of a compiler, it rewrites the

program in an attempt to improve its runtime behavior.

Optimizers usually consist of several distinct passes

of analysis and transformation. The usual goal of an

optimizer is to decrease the program’s execution time;

some optimizers try to create smaller programs as well.

Parallelization The task of determining which parts of

the program are actually independent, and can there-

fore execute concurrently. Compilers that use these

techniques usually treat them as high-level transforma-

tions, performing both analysis and transformations on

a near-source representation of the program.

Programming languages Artificial (or formal) lan-

guages designed to let people specify algorithms and

describe data structures, usually in a notation that is

independent of the underlying target machine.

Regular expressions A mathematical notation for

describing strings of characters. Efficient techniques

can convert a collection of regular expressions into a

scanner.

Semantic elaboration That part of a compiler’s front end

that checks semantic rules and produces an interme-

diate representation for the program. Often, semantic

elaboration is coupled directly to the parser, where indi-

vidual actions can be triggered as specific grammatical

constructs are recognized.

Source-to-source translator A compiler that produces,

as its target language, a programming language (rather

than the native language of some target computer).

Syntax analysis That part of the compiler’s front end that

has the task of determining whether or not the input is

actually a program in the source language. The parser

consumes a stream of categorized words produced by

the scanner and validates it against an internal model

of the source language’s grammatical structure (or syn-

tax). The pass that implements syntax analysis is called

a parser.

Vectorization A specialized form of parallelization that

tries to expose computations suitable for SIMD, or vec-

tor, execution.

COMPUTER PROGRAMS are usually written in lan-

guages designed for specifying algorithms and data struc-

tures. We call such languages programming languages.

On the other hand, the computer hardware executes op-

erations, or instructions, that are much less abstract than

the operations in the programming language, with set of

available instructions varying from computer to computer.

Before a program can execute, it must be translated from

the programming language in which it is written into the

machine language instructions for the computer on which

it will run. The program that performs this translation is

called a compiler.

Compiler
Source

Language

Target

Language

Formally, a compiler is simply a program that takes as its

input an executable program and produces as its output an

equivalent program. For the purpose of discussing trans-

lation, we refer to the language of the input as the source

language and the language of the output as the target lan-

guage. The input program is typically written in some

well-known programming language, such as Fortran, C,

C++, Ada, Java, Scheme, or ML. The output program is

rewritten into the set of native operations of a particu-

lar computer. (Some compilers use high-level languages

as their target language. Such compilers are often called

source-to-source translators.)

I. STRUCTURE OF A COMPILER

While compilers can be built as monolithic programs,

more often, they are implemented as a series of distinct

phases, generally organized into three major sections: a

front end, an optional optimizer (or middle end), and a

back end.

Front
End

Source

Language

Target

Language

Back
End

Optimizer
IR IR

The front end analyzes the source program to determine

whether or not it is well formed—that is, if it is a valid

program in the source language. To accomplish this, it

must first analyze each word in the program, classifying

it into a syntactic category—a task called lexical analysis.

It must then determine if the string of classified words

fits into the grammatical structure of the language, a task

called syntax analysis. In addition, it must check a variety

of extrasyntactic rules to ensure that the source program

has meaning, a process called context-sensitive analysis.

Finally, it must construct an internal representation (IR)

of the program for use by the later phases.

The optimizer takes the program, expressed in the com-

piler’s IR, and produces an “improved” version of the pro-

gram, usually expressed in the same IR. A program can

be improved in different ways: it might be made to run

faster; it might be made more compact in memory or sec-

ondary storage; or it might be transformed to consume less
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power. To produce the improved program, the optimizer

must reason about how the program will behave when it

executes. It can use this knowledge to simplify, special-

ize, and rearrange the elements of the internal form of

the program. At each step in the process, it must preserve

the meaning of the program, as expressed in its externally

visible behavior.

The back end maps the program, expressed in the com-

piler’s IR, into the target language. If the target is an in-

struction set for a particular computer, then the back end

must account for that machine’s finite resources and id-

iosyncratic behavior. This adds significant complexity to

the task of code generation. The back end must select a set

of operations to implement each construct in the program.

It must decide where in the computer’s memory each value

will reside—a task complicated by the hierarchical mem-

ory systems of modern computers, and by the fact that

the fastest locations, called registers, are extremely lim-

ited in number.1 It must choose an execution order for the

operations—one that preserves the proper flow of values

between operations and avoids requiring the processor to

wait for results. This may necessitate insertion of null op-

erations to ensure that no operation begins to execute be-

fore its operands are ready. Many of the most challenging

problems in compiler construction occur in the back end.

II. RECOGNIZING VALID PROGRAMS

Before the compiler can translate a source language pro-

gram into a target machine program, it must determine

whether or not the program is well formed—that is,

whether the program is both grammatically correct and

meaningful, according to the rules of the source language.

This task—determining whether or not the program is

valid—is the largest of the front end’s tasks. If the front

end accepts the program, it constructs a version of the pro-

gram expressed in the compiler’s internal representation.

If the front end rejects the program, it should report the

reasons back to the user. Providing useful diagnostic mes-

sages for erroneous programs is an essential part of the

front end’s work.

To address these issues, the typical front end is parti-

tioned into three separate activities: lexical analysis, syn-

tactic analysis, and context-sensitive analysis.

A. Lexical Analysis

A major difference between a programming language and

a natural language lies in the mechanism that maps words

into parts of speech. In most programming languages, each

word has a unique part of speech, which the compiler can

determine by examining its spelling. In a natural language,

1(Possible cross reference to cache memory, registers, . . .)

a single word can be mapped to several different parts of

speech, depending on the context surrounding it. For ex-

ample, the English words “fly” and “gloss” can be used as

either noun or verb. The simpler rules used by program-

ming languages permit the compiler to recognize and clas-

sify words without considering the grammatical context

in which they appear.

To specify the spelling of words and their mapping into

parts of speech, compiler writers use a formal notation

called regular expressions. Regular expressions describe

strings of symbols drawn from a finite alphabet, as well

as ways to combine such strings into longer strings. First,

any finite string of characters drawn from the alphabet

is a regular expression. From these we can build longer

strings by applying any of three rules. If r and s are regular

expressions, then

1. (r | s) is a regular expression, denoting a string that is

either r or s

2. rs is a regular expression, denoting an occurrence of r

followed immediately by an occurrence of s

3. r∗ is a regular expression, denoting zero or more

consecutive occurrences of r

Using regular expressions, we can compactly specify the

spelling of fairly complex words. For example, since any

specific word is a regular expression, we can specify the re-

served words of a programming language, e.g., define, do,

if, and car, simply by listing them. We can define a more

complex construct, the counting numbers over the alpha-

bet of digits, as (1|2|3|4|5|6|7|8|9) (0|1|2|3|4|5|6|7|8|9)∗.

(We read this as “a digit from 1 through 9 followed by zero

or more digits from 0 through 9.”) Notice that this regular

expression forbids leading zeros.

We call the pass of the compiler that recognizes and

classifies words the scanner or lexical analyzer. The scan-

ner consumes a stream of characters and produces a stream

of words; each annotated with its part of speech. In a mod-

ern compiler system, the scanner is automatically gener-

ated from a set of rules, specified by regular expressions.

The scanners generated by this process incur small, con-

stant cost per character, largely independent of the number

of rules. For this reason, recognizers derived from regular

expressions have found application in tools ranging from

text editors to search engines to web-filtering software.

B. Syntactic Analysis

The job of the syntax analyzer is to read the stream of

words produced by the scanner and decide whether or not

that stream of words forms a sentence in the source lan-

guage. To do this, the compiler needs a formal description

of the source language, usually called a grammar. Infor-

mally, a grammar is just a collection of rules for deriving
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sentences in some language. For example, the following

grammar describes a class of simple English sentences:

1. Sentence → Subject Predicate period

2. Subject → noun

3. Subject → adjective noun

4. Predicate → verb noun

5. Predicate → verb adjective

6. Predicate → verb adjective noun

In these rules, underlined, lowercase symbols are termi-

nal symbols for the grammar—that is, they are actual parts

of speech for words that can appear in a valid sentence.

The capitalized symbols are syntactic variables called non-

terminal symbols. Nonterminals are distinguished by the

fact that they appear on the left-hand side of one or more

rules. Each nonterminal is defined by a set of rules. The

nonterminals thus provide structure to the grammar. Each

rule describes some aspect of an English sentence and

an interpretation of the nonterminal that appears on its

left-hand side. We read the first rule as “a Sentence is a

Subject, followed by a Predicate, followed by a period.”

The next two rules establish two ways to construct a Sub-

ject. The final three rules give three options for building a

Predicate.

Consider the sentence “Compilers are programs.” It fits

the simple grammar. To see this, first convert each word

to its part of speech: “noun verb noun period.” To derive

a sentence with this structure, we can start with Sentence

and use the rules to rewrite it into the desired sentence:

Grammatical Form Rule

Sentence —

→ Subject Predicate period 1

→ noun Predicate period 2

→ noun verb noun period 4

This derivation proves that any sentence with the structure

“noun verb noun period” fits within the grammar’s model

of English. This includes “Compilers are programs” as

well as “Tomatoes are horses.”

We can depict this derivation graphically, as a derivation

tree, sometimes called a parse tree.

Sentence

Subject periodPredicate

noun verb noun

The front end of a compiler does not need to derive sen-

tences. Instead, it must solve the inverse problem—given a

stream of words, construct its derivation tree. This process

is called parsing. The parser uses a model of the source lan-

guage’s grammar to automatically construct a parse tree

for the input program, if such a tree exists. If this process

fails, the input program, as classified by the scanner, is not

a sentence in the language described by the grammar.

Tools that construct an efficient parser from a grammar

are widely available. These tools, called parser genera-

tors, automate most of the process of building the parser,

and have simple interfaces to automatically derived

scanners.

C. Context-Sensitive Analysis

The parser, alone, cannot ensure that the source program

makes sense. Consider our English sentences: “Compil-

ers are programs” and “Tomatoes are horses.” Both fit the

model embodied in our grammar for simple sentences;

in fact, both have the same derivation. (Remember, the

derivation operates on parts of speech, not the actual

words.) However, the first sentence is a cogent comment on

the nature of compilers while the second sentence is non-

sense. The difference between them is not grammatical—

it lies in properties of the words that the grammar cannot

express. The verb “are” implies a relationship of equality

or similarity. Compilers are, in fact, a specific kind of pro-

gram. Tomatoes and horses are dissimilar enough that it

is hard to accept them as equal.

Similar correctness issues arise in computer programs.

Names and values have extra grammatical properties that

must be respected. A correct program must use values in

ways that are consistent with their definitions. Names can

have distinct meanings in different regions of the program.

The definition of a programming language must specify

many properties that go beyond grammar; the compiler

must enforce those rules.

Dealing with these issues is the third role of the

front end. To succeed, it must perform context-sensitive

analysis—sometimes called semantic elaboration. This

analysis serves two purposes: it checks correctness

beyond the level of syntax, as already discussed, and it

discovers properties of the program that play an important

role in constructing a proper intermediate representation

of the code. This includes discovering the lifetime of each

value and where those values can be stored in memory.

Specification-based techniques have not succeeded as

well in context-sensitive analysis as they have in scan-

ning and parsing. While formal methods for these prob-

lems have been developed, their adoption has been slowed

by a number of practical problems. Thus, many modern

compilers use simple ad hoc methods to perform context-

sensitive analysis. In fact, most parser generator systems

include substantial support for performing such ad hoc

tasks.
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III. INTERNAL REPRESENTATIONS

Once the compiler is broken into distinct phases, it needs

an internal representation to transmit the program between

them. This internal form becomes the definitive represen-

tation of the program—the compiler does not retain the

original source program. Compilers use a variety of inter-

nal forms. The selection of a particular internal form is one

of the critical design decisions that a compiler writer must

make. Internal forms capture different properties of the

program; thus, different forms are appropriate for different

tasks. The two most common internal representations—

the abstract syntax tree and three-address code—mimic

the form of the program at different points in translation.

� The abstract syntax tree (AST) resembles the parse

tree for the input program. It includes the important

syntactic structure of the program while omitting any

nonterminals that are not needed to understand that

structure. Because of its ties to the source-language

syntax, an AST retains concise representations for

most of the abstractions in the source language. This

makes it the IR of choice for analyses and

transformations that are tied to source program

structure, such as the high-level transformations

discussed in Section VC.
� Three-address code resembles the assembly code of a

typical microprocessor. It consists of a sequence of

operations with an implicit order. Each operation has

an operator, one or two input arguments, and a

destination argument. A typical three-address code

represents some of the relevant features of the target

machine, including a realistic memory model,

branches and labels for changing the flow of control,

and a specified evaluation order for all the expressions.

Because programs expressed in three-address code

must provide an explicit implementation for all of the

source language’s abstractions, this kind of IR is well

suited to analyses and transformations that attack the

overhead of implementing those abstractions.

To see the difference between an AST and a three-address

code, consider representing an assignment statement

a[i] ←← b ∗∗ c in each.Assume that a is a vector of 100

elements (numbered 0–99) and that b and c are scalars.

subscript

Abstract syntax tree

a i

∗

b c

Three-address code

LOAD VAR @b ⇒  r1

LOAD VAR @c ⇒  r2

MULT r1, r2 ⇒  r3

LOAD VAR @i ⇒  r4

MULTIMMED r4, 4 ⇒  r5

ADDIMMED r5, @a ⇒  r6

STORE r3 ⇒  r6

The AST for the assignment, shown on the left, captures

the essence of the source-language statement. It is easy

to see how a simple in-order treewalk could reprint the

original assignment statement. However, it shows none of

the details about how the assignment can be implemented.

The three-address code for the assignment, shown on the

right, loses any obvious connection to the source-language

statement. It imposes an evaluation order on the statement:

first b, then c, then b * c, then i, then a[i] , and, finally, the

assignment. It uses the notation@b to refer to b’s address

in memory—a concept missing completely from the AST.

Many compilers use more than one IR. These compilers

shift between representations so that they can use the most

appropriate form in each stage of translation.

IV. OPTIMIZATION

A source language program can be mapped into assembly

language in many different ways. For example, the expres-

sion 2 * x can be implemented using multiplication, using

addition (as x + x), or if x is an unsigned integer, using a

logical shift operation. Different ways of implementing an

operation can have different costs. Over an entire program,

these cost differences can mount up.

Compiler optimization is the process by which the com-

piler rewrites the internal representation of a program

into a form that yields a more efficient target-language

program. The word “optimization” is a misnomer, since

the compiler cannot guarantee optimality for the result-

ing code. In practice, optimizers apply a fixed sequence

of analyses and transformations that the compiler writer

believes will produce better code.

Optimizers attempt to improve the program by analyz-

ing it and using the resulting knowledge to rewrite it. His-

torically, optimizers have primarily focused on making

the program run faster. In some contexts, however, other

properties of the program, such as the size of the compiled

code, are equally important.

A. Static Analysis of Programs

To improve a program, the optimizer must rewrite the code

(or its IR form) in a way that produces better a target lan-

guage program. Before it can rewrite the code, however,

the compiler must prove that the proposed transformation
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is safe—that is, the transformation does not change the

results that the program computes—and likely to be

profitable—that is, the resulting code will be an improve-

ment over the existing code. To accomplish this, the

compiler analyzes the program in an attempt to determine

how it will behave when it runs. Because the compiler

performs the analysis before the program runs, the analy-

sis is considered a static analysis. In contrast, an analysis

built into the running program would be a dynamic

analysis.

Static analysis takes many forms, each one tailored

to address a particular problem in the safety or prof-

itability of optimization. One such problem is constant

propagation—discovering variables whose run-time

values can be determined at compile time. If the compiler

can discover that x always has the value 2 at a particular

point in the program, it can specialize the code that uses x

to reflect that knowledge. In particular, if x has the value

2 in an expression x * y, it can replace the expression with

2 * y or with y + y, either of which may be faster than a

generic multiply. (The former avoids referring to x, with a

possible memory reference, while the latter also replaces

the multiply operation with an addition, which may be

cheaper.)

Analyses such as constant propagation are formulated

as problems in data-flow analysis. Many data-flow prob-

lems have been developed for use in optimization. These

include the following:

� Finding redundancies: An expression is redundant if,

along any path that reaches it, that value has already

been computed. If the compiler can prove that an

expression is redundant, it can replace the expression

with its previously computed value.
� Live variable analysis: A variable is live at some point

in the code if there exists a path from that point to a

use of its value. With the results of live variable

analysis, the compiler can stop preserving a variable

at the point where it stops being live.
� Very-busy expressions: An expression is very busy at

some point if it will be used, along every path leaving

that point before one of its inputs is redefined. Moving

the expression to the point where it is very busy can

eliminate unneeded copies of the expression,

producing a smaller target program.

These problems are formulated as systems of equations.

The structure of the equations is dictated by the control-

flow relationships in the program. The solutions to the

equations are found by using general solvers, analogous

to Gaussian Elimination, or by using specialized algo-

rithms that capitalize on properties of the program being

analyzed.

B. Classic Scalar Transformations

To apply the results of analysis, the compiler must rewrite

the code in a way that improves it. Hundreds of optimiz-

ing transformations have been proposed in the literature.

These techniques address a wide range of problems that

arise in the translation of programming languages. Exam-

ples include reducing the overhead introduced by source-

language abstractions, managing hardware features such

as memory, and general strategies that use properties such

as commutativity and associativity to speed expression

evaluation.

Among the transformations that you will find in a mod-

ern optimizer are as follows:

� Useless code elimination: The compiler may discover

that some part of the source code is useless—either it

cannot execute or its results are never used. In this

case, the compiler can eliminate the useless

operations. This may make the resulting code faster

(because it no longer executes the operations). The

resulting code should also be smaller. The presence of

other transformations, such as constant propagation,

inline substitution, and redundancy elimination, can

create useless code.
� Inline substitution: In many cases, the compiler can

replace an invocation of a procedure or function with a

copy of the called procedure, after renaming variables

to avoid conflicts and to enforce the parameter binding

and mapping of the original call. This eliminates the

overhead of the call itself. It may create opportunities

to specialize the inlined code to the context that calls

it. Because inline substitution can significantly

increase the size of the program by duplicating code,

it is most attractive when the called procedure is

small, as often happens in object-oriented languages.
� Constant folding: If the compiler can determine, at

compile time, the value of an expression in the

program, it can eliminate the operations that evaluate

the expression and replace any references to that

expression directly with its value. This speeds up the

program by avoiding computation. If the expression is

used in a control flow decision, folding may lead to

the elimination of larger code fragments.

To design an optimizer, the compiler writer must select a

set of transformations to apply. For most transformations,

several implementation techniques exist. Those distinct

methods may require different kinds of analysis, may op-

erate on different IRs, and may address different cases.

Thus, the choice of specific algorithms for the transfor-

mations has an impact on how well the optimizer works.
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Finally, individual transformations can create opportuni-

ties for further improvement; they can also foreclose such

opportunities. Thus, selecting an order in which to apply

the transformations has a strong impact on the optimizer’s

behavior.

C. High-Level Transformations

Some compilers apply aggressive transformations to re-

shape the code to perform well on a specific computer

architecture. These transformations depend heavily on

properties of the underlying architecture to achieve their

improvement. Some of the problems that compilers attack

in this way are as follows:

� Vectorization: A vector computer applies the same

operation to different elements of the same array in

parallel. To support vector hardware, compilers apply

a series of transformations to expose loops that can be

expressed as vector computations. Vectorization

typically requires the compiler to determine that the

execution of a particular statement in any iteration

does not depend on the output of that statement in

previous iterations.
� Parallelization: A parallel computer uses multiple

processors to execute blocks of code concurrently. To

make effective use of parallel computers, compilers

transform the program to expose data parallelism—in

which different processors can execute the same

function on different portions of the data.

Parallelization typically requires the compiler to

determine that entire iterations of a loop are

independent of one another. With independent

iterations, the distinct processors can each execute an

iteration without the need for costly interprocessor

synchronization
� Memory hierarchy management: Every modern

computer has a cache hierarchy, designed to reduce

the average amount of time required to retrieve a value

from memory. To improve the performance of

programs, many compilers transform loop nests to

improve data locality—i.e., they reorder memory

references in a way that increases the likelihood that

data elements will found in the cache when they are

needed. To accomplish this, the compiler must

transform the loops so that they repeatedly iterate over

blocks of data that are small enough to fit in the cache.

All of these transformations require sophisticated analysis

of array indices to understand the reference patterns in the

program. This kind of analysis is typically performed on

an AST-like representation, where the original structure of

the array references is explicit and obvious. Most compil-

ers that perform these optimizations carry out the analysis

and transformation early in the compilation process. Be-

cause these transformations are tied, by implementation

concerns, to a source-like representation of the code, they

are often called high-level transformations.

V. CODE GENERATION

Once the front end and optimizer have produced the final

IR program, the back end must translate it into the target

language. The back end must find an efficient expression

for each of the program’s constructs in the target language.

If the target language is assembly code for some proces-

sor, the generated program must meet all of the constraints

imposed by that processor. For example, the computation

must fit in the processor’s register set. In addition, the com-

putation must obey both the ordering constraints imposed

by the flow of data in the program and those imposed by

the low-level functioning of the processor. Finally, the en-

tire computation must be expressed in operations found in

the assembly language. The compiler’s back end produces

efficient, working, executable code. To accomplish this, it

performs three critical functions: instruction selection, in-

struction scheduling, and register allocation.

A. Instruction Selection

The process of mapping IR operations into target machine

operations is called instruction selection. Conceptually,

selection is an exercise in pattern matching—relating one

or more IR constructs into one or more machine opera-

tions.

If the details of the IR differ greatly from those of the

target machine, instruction selection can be complex. For

example, consider mapping a program represented by an

AST onto a Pentium. To bridge the gap in abstraction be-

tween the source-like AST and the low-level computer,

the instruction selector must fill in details such as how to

implement a switch or case statement, which registers are

saved on a procedure call, and how to address the i th ele-

ment of an array. In situations where the abstraction levels

of the machine and the IR differ greatly, or in situations

where the processor has many different addressing modes,

instruction selection plays a large role in determining the

quality of the final code.

If, on the other hand, the details of the IR and the target

machine are similar, the problem is much simpler. With

a low-level, linear IR and a typical RISC microproces-

sor, much of the code might be handled with a one-to-one

mapping of IR operations into machine operations. The

low-level IR already introduces registers (albeit an un-

limited number), expands abstractions like array indexing

into their component operations, and includes the tempo-

rary names required to stitch binary operations into more
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complex expressions. In such situations, instruction se-

lection is less important than high-quality optimization,

instruction scheduling, and register allocation.

Instruction selectors are produced using three distinct

approaches: tree pattern matching, peephole optimization,

and ad hoc, hand-coded solutions.

� Tree pattern matching systems automatically generate

a tree-matcher from a grammatical description of the

tree. The productions in the grammar describe

portions of the tree. Each production has an associated

snippet of code and a cost for that snippet. The

tree-matcher finds a derivation from the grammar that

produces the tree and has the lowest cost. A

postmatching pass uses the derivation to emit code,

pasting together the snippets from the various

productions.
� Peephole-optimization systems analyze and translate

the IR, one small segment at a time. These matchers

use a sliding window that they move over the code. At

each step, the engine expands the operations into a

detailed, low-level representation, simplifies the

low-level code within the window, and compares the

simplified, low-level IR against a library of patterns

that represent actual machine operations. These

matchers can work with either tree-like or linear IRs.
� Ad hoc methods are often used when the IR is similar

in form and level of abstraction to the target machine

code. Of course, this approach offers neither the local

optimality of tree pattern matching nor the systematic

simplification of peephole optimization. It also lacks

the support provided by the tools that automate

generation of both tree-matchers and peephole

matchers. Still, compiler writers use this approach for

simple situations.

B. Instruction Scheduling

On most computer systems, the speed of execution de-

pends on the order in which operations are presented for

execution. In general, an operation cannot execute until all

of its operands are ready—they have been computed and

stored in a location that the operation can access. If the

code tries to execute an operation before its operands are

available, some processors stall the later operation until

the operand is ready. This delay slows program execution.

Other processors let the operation execute. This strategy

inevitably produces invalid or incorrect results.

Similarly, the compiled code might not make good use

of all the functional units available on the target machine.

Assume a machine that can execute one operation of type

A and one operation of type B in parallel at each cycle, and

that the compiled code contains the sequence AAABB-

BAAABBB; then the processor can use just half of its

potential. If the compiler can reorder the code into the

sequence ABABABABABAB, then the computer might

execute it in half the time—because at each step, it can

execute an operation of type A and another of type B.

The goal of instruction scheduling is to reorder the op-

erations in the target machine program to produce a faster

running program. This task depends heavily on low-level

details of the target machine. These details include the

number of operations it can execute concurrently and their

types, the amount of time it takes to execute each operation

(which may be nonuniform), the structure of the register

set, and the speed with which it can move data between

registers and memory.

The instruction-scheduling problem is, in general, NP-

complete; thus, it is likely that no efficient method can

solve it optimally. To address this problem, compilers use

greedy, heuristic scheduling methods. The most common

of these methods is called list scheduling. It relies on a list

of operations that are ready to execute in a given cycle.

It repeatedly picks an operation from the list and places

it into the developing schedule. It then updates the list of

ready operations, and records when operations that de-

pend on the just-scheduled operation will be ready. This

method works on straight-line code (i.e., sequences of

code that contain no branches). Many variations have been

proposed; they differ primarily in the heuristics used to se-

lect operations from the ready list.

To improve the quality of scheduling, compilers use sev-

eral variations on replication to create longer sequences of

straight-line code. Profile-based techniques, such as trace

scheduling, use information about the relative execution

frequency of paths through the program to prioritize re-

gions for scheduling. Loop-oriented techniques, such as

software pipelining, focus on loop bodies under the im-

plicit assumption that loop bodies execute more often than

the code that surrounds them. Still other techniques use

graphs that describe the structure of the program to select

and prioritize regions for scheduling.

C. Register Allocation

Before the code can execute on the target computer, it

must be rewritten so that it fits within the register set of

the target machine. Most modern computers are designed

around the idea that an operation will draw its operands

from registers and will store its result in a register. Thus,

if the computer can execute two operations on each cycle,

and those operations each consume two values and pro-

duce another value, then the compiler must arrange to have

four operands available in registers and another two reg-

isters available for results, in each cycle. To complicate

matters further, processors typically have a small set of
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registers—32 or 64—and the ratio of registers per func-

tional unit has been shrinking over the last decade.

Compilers address these issues by including a register

allocator in the back end. Deferring the issue of register

management until late in compilation permits the earlier

phases largely ignore both the problem and its impact on

code quality. Earlier phases in the compiler typically as-

sume an unlimited set of registers. This lets them expose

more opportunities for optimization, more opportunities

to execute operations concurrently, and more opportuni-

ties for reordering. Once the compiler has explored those

opportunities and decided which ones to take, the register

allocator tries to fit the resulting program into the finite

storage resources of the actual processor.

At each point in the code, the allocator must select the

set of value that will reside in the processor’s registers. It

must rewrite the code to enforce those decisions—moving

some values held in the unlimited, or virtual, register set

into memory. When it moves some value into memory to

make room in the register set—called spilling the value—

it must insert code to store the value, along with code

to retrieve the value before its next use. The most visi-

ble result of register allocation is the insertion of code to

handle spilling. Thus, allocation usually produces a larger

and slower program. However, the postallocation program

can execute on the target machine, where the preallocation

program may have used nonexistent resources.

The register allocation problem is NP-complete. Thus,

compilers solve it using approximate, heuristic tech-

niques. The most popular of these techniques operates via

an analogy to graph coloring. The compiler constructs

a graph that represents conflicts between values—two

values conflict when they cannot occupy the same

space—and tries to find a k-coloring for that conflict

graph. If the compiler can find a k-coloring, for k equal

to the number of registers on the processor, then it can

translate the coloring into an assignment of those values

into the k registers. If the compiler cannot find such a

coloring, it spills one or more values. This modifies the

code, simplifies the conflict graph, and creates a new

coloring problem. Iterating on this process—building

the graph, trying to color it, and spilling—produces a

version of the program that can be colored and allocated.

In practice, this process usually halts in two or three

tries.

D. Final Assembly

The compiler may need to perform one final task. Before

the code can execute, it must be expressed in the native

language of the target machine. The result of instruction

selection, instruction scheduling, and register allocation is

a program that represents the target machine code. How-

ever, it may not have the requisite form of a target machine

program. If this is the case, the compiler must either con-

vert the program into the format from which it can be

linked, loaded, and executed, or it must convert it into a

form where some existing tool can do the job.

A common way of accomplishing this is to have the

compiler generate assembly code for the target machine,

and to rely on the system’s assembler to convert the tex-

tual representation into an executable binary form. This

removes much of the knowledge about the actual machine

code from the compiler and lets many compilers for the

machine share a single assembler.

VI. SUMMARY

A long-term goal of the compiler-building community has

been to reduce the amount of effort required to produce

a quality compiler. Automatic generation of scanners, of

parsers, and of instruction selectors has succeeded; the

systems derived from specifications are as good (or bet-

ter) than handcrafted versions. In other areas, however, au-

tomation has not been effective. Adoption of specification-

based tools for context-sensitive analysis has been slow.

Few systems have tried to automatically generate optimiz-

ers, instruction schedulers, or register allocators—perhaps

because of the intricate relationship between these tools,

the IR, and the target machine’s architecture.

A modern compiler brings together ideas from many

parts of computer science and bends them toward the

translation of a source language program into an effi-

cient target language program. Inside a compiler, you

will find practical applications of formal language the-

ory and logic, greedy heuristic methods for solving NP-

complete problems, and careful use of algorithms and data

structures ranging from hash tables through union-find

trees, alongside time-tested, ad hoc techniques. Compilers

solve problems that include pattern recognition, unifica-

tion, resource allocation, name–space managemnt, stor-

age layout, set manipulation, and solving sets of simul-

taneous equations. Techniques developed for compiling

programming languages have found application in areas

that include text editors, operating systems, digital cir-

cuit design and layout, theorem provers, and web-filtering

software.
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GLOSSARY

Accumulator Usually a part of the arithmetic-logic unit

(ALU) of a computer that is used for intermediate

storage.

Address Name identifying a location where data or in-

structions may be stored.

Assembler Language translator program that converts as-

sembly language instructions into conventional ma-

chine language.

Assembly language A computer language that is more

easily understood than the language that is translated

into in order for the computer to understand it.

Bus A set of lines shared by one or more components of

a computer system. In many computers, a common bus

interconnects the memory, processor, input, and output

units. Because the bus is shared, only one unit may send

information at a given time.

Cache Memory that is accessed more rapidly than main

memory but less rapidly than a register. Today often

found in processor chip with several levels of cache

present in the computer.

Combinational circuit A digital circuit whose output

value(s), at a given point in time, is dependent only

on the input values at that time.

Compiler Language translator program that converts ap-

plication program language instruction, such as Pascal

or FORTRAN, into a lower level language.

Complex instruction set computer (CISC) A class of

computers whose instruction set (conventional ma-

chine language instructions) was large, instructions

were of multiple lengths, instructions had variable for-

mats, instructions took variable lengths of time to exe-

cute, etc.

Computer architecture The study of the computer as

viewed by the programmer.

Control That part of the processor that controls itself and

the datapath of the processor.

Datapath The components of the datapath may include

registers, arithmetic and logic unit (ALU), shifter, bus,

Encyclopedia of Physical Science and Technology, Third Edition, Volume 3
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and multiplexors. It also contains the buses necessary

in order to transfer information from one of the com-

ponents to another.

Debugger Tool used by a programmer to locate and cor-

rect an error in a computer program.

Exception An action in the computer that will ultimately

result in the suspension of the execution of a program.

The exception is caused by an activity outside of the

program and is handled in such a way that the program

can be resumed after the exception is handled.

Exception cycle That part of the instruction cycle that

checks for exceptions and handles them if they

are pending. The exception is handled by saving

the suspended program’s state and resumes execu-

tion of instructions in the exception handler routine

(program).

Input Movement of data from an input device, such as a

keyboard, to the processor or another unit of the com-

puter system.

Interrupt Special control signal(s) that diverts the flow of

instruction execution to the instruction in the location

associated with the particular interrupt.

Memory A unit where information (data and instruc-

tions) may be stored.

Memory consistency The same data stored in different

modules is correctly stored.

Memory cycle Operations required to store or retrieve

information from memory.

Microprogram Program that interprets conventional

machine language instructions that are interpreted di-

rectly by the hardware.

Operating system Set of programs that monitor and op-

erate computer hardware, and simplify such tasks as in-

put/output (I/O), editing, and program translation. Also

serves as an interface with the user.

Output Movement of data from a unit of the computer

system to an output device such as a printer.

Program counter Register in which the location of the

current instruction is stored.

Reduced instructions set computer (RISC) This class

of computer had features that were the opposite of those

of the CISC computers.

Registers Memory locations that are internal to processor

and that can be accessed quickly. Some registers are

available for programmer while the processor only uses

others internally.

Sequential circuit A digital circuit whose output

value(s), at a given point in time, is dependent on the

input values as well as the state of the circuit at that

time. Memory units are sequential circuits.

Virtual memory Approach used to extend main memory

by using a combination of main memory and secondary

memory to store a program.

COMPUTER TECHNOLOGY has come a long way

from the days when a 1940s computer, without stored

program capability, required the space of a family room

and living room in a large home, and when turned on,

would dim the lights of all the homes in the community.

Computer advances have made it possible for comput-

ers to be as much a part of our lives as our brains. Like

our brains we often use computers without knowing that

we are doing so. Today, a computer controls the digital

alarm clock, controls the microwave, assists the checkout

person in a store that stocks computer coded items, par-

tially controls vehicles with sometimes in excess of fifty

computer controllers, is used for computer-assisted in-

struction, and in general, substantially automates the mod-

ern work environment. A computer purchased today for

a thousand dollars has more performance, functionality,

and storage space than a computer purchased for several

million dollars in the 1960s. These computer advances re-

sult from technological as well as design breakthroughs.

Over the past 30–35 years, performance advances have

averaged around 25% each year. Technological advances

have been more consistent than those of computer archi-

tecture. In a sense, computer architecture had been in a

state of hibernation until the mid-1980s because micro-

processors of the 1970s were merely miniature clones of

mainframes.

I. INTRODUCTION

Trends such as the use of vendor independent operating

systems (UNIX), making company proprietary environ-

ments public, and a large reduction in assembly language

programming have opened a window of opportunity for

new architectures to be successful. Starting in the mid-

1980s, these opportunities, along with quantitative analy-

ses of how computers are used, a new type of architecture

has reared its head. Because of this and as a result of im-

provements in compilers, enhancements of integrated cir-

cuit technology, and new architectural ideas, performance

has more than doubled each year between mid-1980s and

the present.

Most textbooks related to this subject have titles that

encompass both the architecture and the organization of a

computer system. There is a difference between computer

architecture and computer organization with computer ar-

chitecture referring to the programmer model (those as-

pects that have a direct impact on the logical execution

of a program) and computer organization referencing the

operational units and their interconnections that result

in the architectural specification. Architectural issues re-

late to such things as the instruction set, data structures,

memory addressing modes, interrupt capabilities, and I/O
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interfaces. Organizational features include those hardware

capabilities unavailable to the programmer that pertain to

the implementation of the architecture and the intercon-

nection of the computer components.

The study of computer architecture amounts to analyz-

ing two basic principles, performance and cost for a set

of computer architecture alternatives that meet functional-

ity requirements. This appears to be straightforward when

considered at a general level, but when these topics are

looked at in detail the water can become muddy. If a sys-

tematic approach is used the concepts can be straightfor-

ward. Fortunately, central processing units, memory hier-

archy, I/O systems, etc., are layered, and these layers may

be considered as levels of abstractions. Each level of ab-

straction has its own abstractions and objects. By studying

aspects of computer science in this fashion, it is possible

to censor out details that are irrelevant to the level of ab-

straction being considered and to concentrate on the task

at hand.

An analogy to the following effect has been made: if

cost and performance improvements in automobiles had

kept up with computers, a car would cost ten cents and

would allow travel between Los Angeles and New York

in five minutes. If this pace is to continue, it is believed

that computer design must be studied in a layered fash-

ion using a systematic approach afforded by quantitative

techniques. Also, it may be appropriate to adopt new mod-

els for studying computers that are different from that of

the traditional Von Neumann model (Fig. 1) developed

by John Von Neumann in 1940. This Von Neumann con-

FIGURE 1 High-level Von Neumann computer organization.

FIGURE 2 Block diagram of the instruction cycle for a computer.

cept is still the basis of many computers today with many

improvements such as miniaturization and other contribu-

tions to performance improvement. Therefore, this article

has been written to present this approach and create the en-

thusiasm in the readers so that they will be biting at the bit

to chip in with their own new ideas. This section strives to

introduce necessary background material and many of the

concepts that will be addressed in more depth throughout

the rest of the article.

It would be wonderful be able to come up with a good

definition of a computer. It is impossible to give an all-

encompassing definition, because a person working with

computers continually refines his definition of it based

on the increased understanding of its capabilities and en-

hancements that have occurred. A start at the definition

might be Fig. 1, which gives a high-level view of the

components of a Von Neumann computer with the five

traditional components: datapath, control, memory, in-

put, and output, with the former two sometimes combined

and called the processor. Processors come in two flavors:

imbedded processors that are internal to products such

as radios, microwaves, automobiles, and standard proces-

sors that are part of a computer system. Every part of every

computer can be classified under one of the five compo-

nents. Computer architecture addresses how the program-

mer views these five components at the level of abstraction

where they are programming and the computer organiza-

tion addresses the implementation of the architecture in

the inter- and intrarelationship of the components.

The fundamental responsibility of a computer is to ex-

ecute a program, which consists of a set of instructions

stored in the computer’s memory. A computer operates by

repeatedly performing an instruction cycle as depicted in a

simple form in Fig. 2. The computer understands a simple

set of instructions called an instruction set and cannot act
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on special cases that are not covered by the set of instruc-

tions. The computer would repeat this cycle over and over

again for each instruction. This type of work is boring and

best suited for a machine.

As mentioned previously, a computer has levels of ab-

stractions. A person writing the instructions for the com-

puter is a computer programmer. This view of the com-

puter is at a high level without much detail about the way

the computer operates. The person who would design a

new path from the memory to the processor, or how the

memory should handle the instruction cycle, would be

viewing the computer at a much lower level of detail at

the hardware level. An automobile would be a good anal-

ogy regarding levels of abstraction. The driver of the au-

tomobile views it at a much higher level of abstraction

than the person designing any automobile system such

as engine, steering, and brakes. A computer has the po-

tential for performance improvements with performance

inversely proportional to the time it takes to do a job.

Performance is dependent on the architecture and orga-

nization of a computer, and should be traded off with

cost.

The task of the computer architect is to participate in

the phases of the life cycle, described later, of architec-

ture that satisfies computer-user functional requirements

and yet are economically implementable using available

technology. All of this is quite relative, as something that

is too costly in one case may be perfectly reasonable in

another case.

This article will deal with these and other aspects of the

computer definition in more detail.

FIGURE 3 Computer generations.

II. HISTORICAL PERSPECTIVE

Each writer on the topic of computer history has a different

perspective to present. Their presentations vary in terms

of dates of events and who was responsible for certain

breakthroughs. Absolute dates are not as important in the

study of computer architecture as a relative perspective of

what has happened and how quickly it has occurred. One

good way to gain a perspective on the milestones or de-

velopments in the computer industry is through the classi-

fication of computers by generation, with generations dis-

tinguished by the technology used in the implementation.

Figure 3 presents the classical generation classification

of computers by the technologies used. There is no solid

agreement between historians on defining generations, es-

pecially the dates. The entry of operations per second is

not meant to be absolute and is meant to give only a pic-

ture of the relative performance improvements. Although

the generations concept gives an overview of the historical

development of computers, it is worthwhile to look at the

details further. There are two interesting ways to do this:

development paths of contributors could be reviewed, or

the evolution of the abstraction-layered computer could be

traced. The abstraction-layered computer will be reviewed

here because it is important to the evolution of computer

architecture.

It is widely accepted that the first operational general

purpose computer was built in the 1940s. Because of re-

cent research and legal activities, there is some contro-

versy over whether the credit for this should be given

to John Atanasoff and his graduate student Berry for the
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Atanasoff/Berry Computer built in the early 1940s at Iowa

State University, or J. Presper Eckert and John Mauchly

for their ENIAC (Electronic Numerical Integrator and

Calculator) built in the mid-1940s at the Moore School

of the University of Pennsylvania, because Mauchly had

briefly visited Atanasoff before he built the ENIAC. Its

basic principles were enunciated in a memorandum writ-

ten by von Neumann in 1945 and, largely because of this

widely circulated report, von Neumann’s name alone has

come to be associated with concept of the stored-program

computer.

One of the remarkable features of the von Neumann

report was its focus on the logical principles and organi-

zation of the computer rather than on the electrical and

electronic technology required for its implementation.

Thus the idea of architecture appears early in the mod-

ern history of the computer. The word “architecture” it-

self, however, appears to have been first used in the early

1960s by the designers of the IBM System/360 series of

computers. They used this word to denote the logical struc-

ture and functional characteristics of the computer as seen

by the programmer. Over the years since, the theory and

practice of computer architecture has extended to include

not only external characteristics but also the computer’s

internal organization and behavior. Thus, a computer is

now commonly viewed as possessing both an “outer” and

an “inner” architecture.

The original digital computers had two abstractions,

digital logic and something comparable to the conven-

tional machine level (programming in binary) of today,

two levels of detail. Because the digital logic level was

unstructured in design and unreliable, M. V. Wilkes, in the

early 1950s, proposed an intermediate abstraction, micro-

programming that would perform some of the hardware

tasks. A few of these computers were constructed in the

1950s. When IBM introduced the 360 family (all 360 fam-

ily computer had the same architecture, but the organiza-

tion was different for each family member) of computers

shortly after the publication Datamation made the clever

prediction that the concept of microprogramming would

never catch on, microprogramming caught on like wild fire

and by early the 1970s most computers had the abstrac-

tion 2 present. Recently things have gone full circle with

true RISC computers not having the microprogramming

abstraction present.

As mentioned previously, early computers had only two

levels of abstraction. Each computer site had to develop

their own program environment and it was a difficult as the

computer manufacturer did not provide any software sup-

port. In the 1950s assemblers and compilers, supplied by

computer vendors, were developed without operating sys-

tems. The 1950s programmer had to operate the computer

and load the compiler or assembler along with the program

into the computer. At this point there were three levels of

abstraction: the digital logic, conventional machine lan-

guage, and application (in the case where compilers were

present).

Starting around 1960, operating systems were supplied

by the computer manufacturer to automate some of the op-

erator’s tasks. The operating system was stored in the com-

puter at all times and automatically loaded the required

compiler or assembler from magnetic tape as needed. The

programmer still had to supply the program and neces-

sary control information (request the specific compiler)

on punched cards. During this era, the programmer would

place the program (deck of punched cards) in a tray, and

later an operator would carry this tray with many other pro-

grams into the sacred computer room (room maintained in

fixed temperature and humidity range with reduced dust

level), run the programs, and return the results and pro-

grams to the individual programmers. Often the time be-

tween placing the cards in the tray and receiving the results

may have been several hours (even days at the end of the

university term). In the meantime, if the due date were

close, the programmer would sweat blood hoping that the

program would run properly. This type of operating sys-

tem was called a batch system.

In future years, operating systems became more sophis-

ticated. Time-sharing operating systems were developed

that allowed multiple programmers to communicate di-

rectly with the computer from terminals at local or remote

sites. Other capabilities added to the operating system in-

cluded such things as new instructions called “operating

system calls.” In the case of the UNIX operating system,

it interprets the “cat” instruction but it is capable of much

more than that. As compilers became much more sophis-

ticated and assembly language programming became less

common, there was an evolution from the CISC to RISC

computer, and as a result a reduction in need for the mi-

croprogramming abstraction.

III. LEVELS OF ABSTRACTION

A computer architect may try to be a Don Quixote of com-

puter science and try to view all aspects of a computer sys-

tem at one time, or can proceed in a manageable fashion

and view it as a set of abstractions or layers. Contemporary

computers may be viewed as having at least two abstrac-

tions, with the bottom abstraction considered by computer

architects being the digital logic abstraction, abstraction

0. Below abstraction 0 it would be possible to consider

the device abstraction or even below that, the physics ab-

straction with the theory of devices. The abstraction above

digital logic on some computers is microprogramming,

abstraction 1. Often digital logic and microprogramming
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FIGURE 4

abstractions are grouped together and called the control.

On almost all computers there is a conventional machine

language abstraction. Figure 4 displays the levels that are

present on many modern computers. A true RISC com-

puter would not have the microprogramming abstraction

present. A programmer dealing with a particular abstrac-

tion has a distinct set of objects and operations present,

and need not be concerned with the abstractions below or

above. Because abstractions are interdependent, a com-

puter designer must ultimately be concerned with all levels

present but need only deal with one or two at any time.

The digital logic abstraction is present on all computers

and it defines the language understood by the computer.

This language (L1) is the microprogramming abstraction

in the case of Fig. 4, where all the abstractions are present.

These instructions are usually very simple, such as move

data from one storage location to another, shift a number

or compare two numbers, but they are laborious, boring

(some people would disagree; computer science is an art

and as with any area of art not all critics agree), and very

subject to programming errors. These microinstructions

are directly interpreted by the hardware (digital logic ab-

straction). At each abstraction, except A0, there is a lan-

guage that defines a machine and vice versa. The language

is often called the instruction set.

The next level of abstraction is the conventional ma-

chine language and it is more people friendly, more effi-

cient for programming, and less subject to programming

errors. For a machine with all the abstractions of Fig. 4

present, the conventional machine language is not under-

stood by the digital logic abstraction and interpreted by

the microprogram.

IV. DATA STRUCTURES
IN A COMPUTER SYSTEM

In the computer, a computer byte is composed of 8 binary

bits, and the computer word is composed of a number of

bytes with the word length dependent on the computer.

A user should read the manufacturer’s documentation to

determine the word size for a particular computer system.

Therefore, a character, integer, or decimal number must be

represented as a bit combination. There are some generally

accepted practices for doing this:

� Character: Almost all computers today use the ASCII

standard for representing character in a byte. For

example “A” is represented by 6510, “a” is represented

by 9710, and “1” is represented by 4910. Most

architecture textbooks will provide a table providing

the ASCII representation of all character. In the past

there were vendor-specific representations such as

EBCDIC by IBM.
� Integer: The computer and user must be able to store

signed (temperature readings) and unsigned (memory

addresses) integers, and be able to manipulate them and

determine if an error has occurred in the manipulation

process. Most computers use a twos complement

representation for signed numbers and the magnitude

of the number to represent unsigned numbers.
� Decimal number: Decimal numbers are represented

using a floating point representation with the most

important one being the IEEE Standard 754, which

provides both a 32-bit single and a 64-bit double

precision representation with 8-bit and 11-bit

exponents and 23-bit and 52-bit fractions, respectively.

The IEEE standard has become widely accepted, and is

used in most contemporary processors and arithmetic

coprocessors.

The computer is a finite state machine, meaning that it is

possible to represent a range of integers and a subset of the

fractions. As a result, a user may attempt to perform opera-

tions that will result in numeric values outside of those that

can be represented. This must be recognized and dealt with

by the computer with adequate information provided to the

user. Signed integer errors are called overflow errors, float-

ing point operations can result in overflow or underflow

errors, and unsigned integer errors are called carry errors.
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The computers store numbers in twos complement or float-

ing point representation because it requires less memory

space. The operations are performed using these represen-

tations because the performance will always be better.

The computer architect must determine the algorithm to

be used in performing an arithmetic operation and mech-

anism to be used to convert from one representation to

another. Besides the movement of data from one location

to another, the arithmetic operations are the most com-

monly performed operations; as a result, these arithmetic

algorithms will significantly influence the performance of

the computer. The ALU and Shifter perform most of the

arithmetic operations on the datapath.

V. ARCHITECTURE LIFE CYCLE

A computer architecture has a life cycle that is analogous

in nature to that of software. The phases might be consi-

dered:

1. Planning: The planning should include a needs

assessment, cost assessment, feasibility analysis, and

schedule.

2. Specification: The specification will provide a

definition of the architectural requirements.

Development of a test (validation) plan should be

included.

3. Architecture design: The design phase will include

such things as instruction set design and functional

organization.

4. Architecture implementation: This portion of the life

cycle is crucial to a correct instruction set. One key

issue to be resolved in implementation is whether a

feature should be implemented in software or

hardware.

5. Testing: Testing will usually involve testing of units

and the entire architecture.

6. Maintenance: Maintenance will include correcting

errors and providing enhancements.

Each phase is important and should be given its due portion

of the effort as a part of a process that may be cyclic rather

than sequential through the phases. The life cycle may

deal with one of the five major architecture components

or even one of their subcomponents. As recommended by

Amdahl’s Law, most complete computer system develop-

ers have strived to provide a balance in the performance of

the components, but memory components have lagged be-

hind processor in performance. The computer architects

strive for balance in the throughput and processing de-

mands of the components. There are two design compo-

nents that are ever changing:

A. The performance is changing in the various

technology areas of the components, and rate of

technology change differs significantly from one

component type to another.

B. The new applications and new input/output devices

constantly change the nature of the demand on the

system in regard to instruction set requirements and

data needs.

VI. INTERRELATION OF
ARCHITECTURE COMPONENTS

The basic function of a computer is the execution of pro-

grams. The execution of a typical program requires the

following:

� The movement of the program into memory from a

disk or other secondary storage device
� Instructions and data are fetched by the processor from

memory as needed
� Data is stored by the processor in memory as required
� Instructions are processed as directed by the program
� Communication occurs between the processor and the

I/O devices as needed

All of this activity occurs as a result of instructions and is

carried out by the control unit, and the five categories of

activities occur (not as five sequential actions) at various

points during the process of executing the program. The

instructions that cause the program execution to happen

may be any combination of operating system instructions

and instructions in the program being processed.

A computer system consists of processor(s), memories,

and I/O modules that are interrelated in an organized fash-

ion. The interrelationship is successful if the communica-

tion between the processor(s), memories, and I/O modules

is coordinated. That is, they must speak the same language

and operate at a speed that is mutually acceptable. For

example, two people communicating with each other can

only do so if they speak at different times and in a language

both understand. This section will discuss the processor,

memory and I/O device and their interrelationship, and

future sections will build on the topics initiated here.

A. Processor, Memory, I/O System,

and the Interrelationship

A computer system is composed of components that may

be classified as processor, memory, and I/O that interact

or communicate with each other. There must be a path,

logically depicted in Fig. 5, between these components

in order for this communication to take place. Figure 5a
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FIGURE 5 Interconnection between major computer comp-

onents.

illustrates a simple single bus structure that may be used

for the interaction between components, and Fig. 5b clas-

sifies the bus signals into the three possible categories of

data, address, and control. The location of components

relative to each other is important only in the sense that

signals travel more rapidly between components that are

closer to each other. Components that communicate with

each other frequently should be organized so as to mini-

mize the distance between them.

The physical connection between the components is

often termed the interconnect structure. Timing consider-

ations must be taken into account and often the intercon-

nection will be more complex than just a set of wires and

will include digital circuits used to coordinate the timing

of data, address, and control signals between the compo-

nents. The reason for this is because different components

may operate at different speeds. The data lines are used

to transfer information, instructions, and data, and are the

sole reason for the existence of the communication ad-

dress and control lines. It must be possible to move infor-

mation in either direction between processor and memory

or between I/O devices and processor or memory. The in-

terrelationship between the components is defined as the

interconnect structure as well as the signals that are trans-

mitted between the components over the interconnection.

Figure 5 appears to allow the exchange of all types of

signals in either direction. However, in practice, memory

is only capable of sending data and the I/O devices do

not send address signals; otherwise all other possible ex-

changes may occur. The following represents a summary

of the activities of each of the components:

� Processor: The processor is the coordinator of the

computer system. It processes abstraction 2 programs

by fetching their instructions from memory, decoding

them, and executing them. The control portion of the

processor is like a director of a play and coordinates

the activities of all other portions of the processor, and

the other computer system components working from a

script called the instructions of a program. The control

unit may be strictly hardware, or a combination of

hardware and software (microprogram). The processor

controls all other activities if it is only processor in the

computer system. If multiple processors exist, then one

must be the master or arbitration occurs between the

processors for control of the other components.
� Memory: The memory, often called the store or

storage, is the location where information is stored.

Registers, cache, RAM, ROM, disks, and tapes are

different types of memory. The early computers had

only one register and it was called an accumulator.

However, in the context used so far in this chapter the

memory component will be either ROM or RAM. The

memory component will contain N words, with each

word containing a fixed number of bits and located at

one of the addresses 0, 1, 2, . . . , N − 1. Memory

locations could be compared to tract houses, because

all of them look the same and can only be
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distinguished by their addresses. To address N

locations, it is necessary to have ln2 N address lines

between the processor and memory.
� I/O modules: The I/O modules are composed of the I/O

interface unit and the peripheral(s). From the user’s

view, the I/O modules receive all the instructions and

data from the computer user. From the processor point

of view, the I/O module is analogous to the memory

component in that it will be accessed at a specific

address and information can be read/written to it. The

I/O modules are an intermediary between the processor

and I/O devices to off load some of the processor

overhead. However, it is different from memory in that

it may send control signals to the processor that will

cause a processor exception to occur. Many computer

manufacturers use the term exception to include

interrupts, and the two terms will be synonymously

used throughout this article. Examples of I/O devices

are keyboards, printers, disk drives, CD-ROM drives,

DVD drives, tape drives, and ZIP drives.

The scenario of the program cycle of a computer pro-

gram illustrates the communication that must occur be-

tween the computer components. The sole purpose of a

computer is to execute programs. In the following the size

of the unit of transfer depends on the number of data lines

in the communication lines. A possible set of computer-

related steps for the program cycle include:

1. Create the program using an editor. This involves the

following steps.

a. Cause the editor to start executing.

1. Issue editor execute command. The user types

the command at the keyboard (from a window

environment, the keyboard may be replaced

with a mouse action) and it is transferred from

the keyboard through the I/O interface unit and

the communication lines to processor. This

command will ultimately be recognized by the

operating system and the operating system will

cause the editor to start executing.

2. Editor execute command is displayed on the

monitor. When the command of (1), above, is

received by the processor, it is conveyed by the

processor through the communication lines and

the I/O interface unit to the monitor where it is

displayed.

3. Editor program is loaded into memory. The

operating system interprets the editor execute

command and causes the processor to command

the disk to load the editor program into memory.

The processor carries this out by sending the

command over the communication lines and

through the I/O interface unit to the disk. The

disk then sends the editor program to memory,

one unit at a time, over the communication lines

and through the I/O interface unit.

4. Processor executes the editor initialization

instructions in the editor program. This includes

the tasks of moving the instructions one at a

time from memory to the processor using the

communication lines for execution by the

processor. The instructions are executed by the

processor, resulting in such things as messages

transferred from the processor to the CRT via

the communication lines and I/O interface unit

for display on the CRT.

b. Interact with the editor and develop the program.

Among other things the editor interaction includes:

1. Issue commands to the editor. The user issues

these commands to the editor through the

keyboard to the processor. The editor

instructions interpret the command and if it is

valid carries it out, but if it is invalid the editor

instructions will cause the processor to send an

appropriate message over the communication

lines and through the I/O interface unit to the

CRT.

2. Retrieve existing program file. This is a

user-issued command to the editor, as given in

(1), but is frequently used and of special

interest. The editor will prompt the user for the

name of the file to be retrieved by sending a

message to the CRT.

3. Enter program instructions. The request to

insert program instructions is a user-issued

command to the editor, as given in (1), but is

frequently used and of special interest.

4. Save the program. The request to save a

program is a user-issued command to the editor,

as given in (1), but is frequently used and

likewise of special interest.

2. Compile the program.

3. Execute program.

Details of an instruction cycle will be addressed in the next

section.

B. Central Processing Unit

The processor has the responsibility of causing instruc-

tions to be processed. The processor processes an instruc-

tion in an instruction cycle consisting of a number of small

actions. Understanding the instruction cycle is important

to the understanding of the processor.
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Example VIB: Considering the abstraction 2 instruction,

such as the assembled version of the instruction MOVE.W

FOO.L, D3 (this instruction moves a word from the mem-

ory location “L” into a register named D3.), A potential

instruction cycle is as follows:

1. Fetch the instruction from memory into the

instruction register.

2. Increment the program counter by two.

3. Decode the fetched instruction.

4. Fetch the address of FOO from memory into the

processor.

5. Increment the program counter by four to point to the

next instruction.

6. Fetch the content of the location FOO into the

processor.

7. Place the content of FOO in D3.

8. Update the content of the CCR appropriately.

It should be noted that a program could be written to per-

form each of the eight steps of the instruction cycle. In

actuality, the microprogram is a program that carries out

the instruction cycle of a conventional machine language

instruction. For each of the eight steps above, there are sets

of microinstructions in the microprogram that perform the

specified task.

The processor repeats the instruction cycle, with vari-

ations for different instructions, for each instruction exe-

cuted. The general instruction cycle for a single instruc-

tion is illustrated in Fig. 6. Steps 1, 2, and 4 correspond

to instruction fetch subcycle, step 3 corresponds to the in-

struction decode subcycle, and steps 5–8 correspond the

execute subcycle. In the MOVE.W FOO.L, D3 instruc-

tion, after decoding the first word of the instruction it is

necessary to return to the fetch portion of the instruction

cycle to fetch the two words corresponding to the address

of FOO, but a further decode is not necessary. The in-

FIGURE 6 Basic instruction processing cycle.

FIGURE 7 Basic instruction processing cycle with exception han-

dling capability.

struction, MOVE.L (6, A3, D2.W), D2, is an example of

an instruction in which a return to the fetch portion of the

instruction cycle must occur followed by a further decode

of the instruction. The information regarding the address-

ing mode, (6, A3, D2.W), is stored in an extension word

that must be fetched and decoded after the opcode word is

fetched and decoded. All instruction cycles require an in-

teraction between the processor and memory and possibly

between the processor and other computer components.

For the MOVE.W FOO.L, D3 instruction, the processor

must interact with memory, memory read cycle, in steps

1, 4, and 6.

An exception subcycle occurs if an exception is pend-

ing, and this addition to the instruction cycle is included

in Fig. 7. The exception is caused by an event separate

from the program that is being processed and is serviced

in such a way that the program processing may continue

after the exception has been serviced. In the case of the

instruction cycle illustrated above, none of the steps are

a part of the exception subcycle, and it was assumed that

no exception was pending. Exception processing will not

be covered extensively here, but an exception might be

considered analogous to the exception of the following

example. A maskable exception is one that can be ignored

for some time, but an unmaskable exception is one that

must be handle immediately. An I/O device that needs

service by the processor causes one type of exception. For

example, when a user types information at the keyboard,

the keyboard may raise an exception in the processor to

alert the processor that it has received information from

the user and request permission to send it. The exception

is transmitted from the keyboard over the control lines to

the processor. The keyboard exception is an example of
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FIGURE 8 Steps in MOVE FOO.L, D3 instruction cycle in which

conventional machine states are changed.

a maskable exception. A memory failure error is an ex-

ample of an unmaskable exception and will be raised by

the memory unit by transmitting a signal over the control

lines to the processor. The signal that raises the exception

is sent by the device to the processor over the communica-

tion control lines. Significant effort must go into planning

the process for dealing with exceptions in order to do so

in a way that will not cause performance deterioration of

the processor.

Figure 8 gives the conventional machine language state

changes that occur as the instruction MOVE.W FOO.L,

D3 is processed. It should be noted that the conventional

machine language instruction corresponding to MOVE.W

FOO.L, D3 is 0x36390000032c and it is assumed that it

is stored at memory location 0x1e2. At execution time

the assembly language form, MOVE.W FOO.L, D3, does

not exits. Only the steps given above that cause one or

more conventional machine states to change are shown.

The microprogram machine states will change as a result

of each of the machine cycle steps above, and those steps

will be carried out as a result of executing several mi-

croinstructions. All machine states are given in hexadeci-

mal, and except for the 32-bit register D3, all of the other

pictured machine states are 16-bit locations. It should be

noted that only the low order word of D3 is modified (Big

Endian memory configuration is assumed.) as a result of

this instruction and the SR N bit is set and the Z and C

bits are cleared in step 8. Likewise, it is arbitrarily as-

sumed that FOO is at address 0x32c. The assembly lan-

guage or conventional machine language programmer is

only aware of machine state changes occurring at steps

0, 2, 5, 7, and 8, but microprogram abstraction machine

states will change at all of the steps. For example, the

first word of the conventional machine language instruc-

tion, 0x36390000032c, will be moved from memory to

the processor at step 2.

The processor is a part of the hardware of a computer

system. It is composed of sequential and combinational

circuits. The processor may be logically subdivided into

components such as the control, ALU, registers, shifter,

and internal processor buses. Most every computer system

that was ever developed would have all of these compo-

nents present. Modern processor chips also contain addi-

tional components such as cache memory. The intercon-

nection of processor components via the internal buses

may also be viewed as a network. The control component

is the part of the processor that is the director of a proces-

sor activity. As discussed above, there is an interrelation-

ship between the major computer components such as the

processor, memory, and I/O devices. Also, within the pro-

cessor there is an interrelationship between its registers,

ALU, etc. Each interrelationship much be synchronized.

1. ALU

The ALU is a combinational circuit, and is that part of

the processor that performs arithmetic, logic, and other

necessary related operations. Sometimes there is a sepa-

rate component, shifter, which is used to perform the shift

operations on data items. The abstraction 2 programmer

usually considers the shifter activities to be a part of the

ALU. The Abacus, Blaise Pascal machine, and other an-

cestors of the computer were really just ALUs, and for

the most part the other components of modern computer

systems are merely there to hold data for or transfer it to

the ALU. Thus, the ALU could be considered the center

of the computer system. However, it does not determine

its own activities. Abstraction 1 or 2 instructions deter-

mine its activity via the control. The ALU will be actively

involved in steps 2, 3, and 5 of the instruction cycle of

Example VIB and may be involved in other steps.

2. Control

Control coordinates all activities. As mentioned pre-

viously, unless multiple processors exist within the



536 Computer Architecture

computer system, the uniprocessor control directs all ac-

tivities of the other elements of the processor and in gen-

eral all components throughout the computer system as

well as its own activity. For each instruction, control per-

forms a series of actions. From a very high level it is

possible to consider the set of actions to be the three of

Figure 2. Those three steps may be further refined to the

eight steps for the MOVE.W FOO.l, D3. These eight steps

may be further filtered so that a set of microinstructions

corresponds to each of the eight steps. Of course, these mi-

croinstructions could be broken down even further. Thus

the computer activities may be studied at any level of de-

tail. The control component will contain combinational

and sequential circuits. The microprogram will be placed

in the control store, which is a set of sequential circuits.

However, the RISC computers do not contain a micropro-

gram and thus control store is not present, and the control

unit is strictly hardware.

3. Registers

This sequential circuit is the fastest and most expensive

part of the memory hierarchy. The registers are the part

of the memory hierarchy that are directly a part of the

processor datapath. Because these are the fastest memory

it is desirable to have all of the active data present in them.

FIGURE 9 Logical view of a simple processor.

At a given time only a few are available to the programmer,

because of the principle that if more were present, it would

take longer to access the one desired, because the search

process would take a longer period of time.

4. Exception (Interrupt) Processing

Processors vary significantly in the sophistication of their

exception (interrupt) handling facilities. The exception ca-

pabilities of the Motorola 68000 family is well above the

average and can be used to place all exception processing

out of reach of garden variety user activities. All proces-

sors must have some degree of exception processing sup-

port, because at a minimum it must be possible to perform

processor resets, which amounts to an exception.

5. Processor Organization Overview

A simplified logical view of a possible processor organiza-

tion is given in Fig. 9. The registers, ALU, and shifter along

with the three buses are often called the internal datapath

of the processor. The datapath design should be designed

to optimize the execution speed of the most frequently

used abstraction 2 instructions. The datapath activity is

controlled by the CONTROL component via the dashed

control lines. The dashed lines represent one or more sin-

gle control lines. The control component also controls its
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FIGURE 10 Hierarchal presentation of some types of memory.

own internal activity. This processor would contain more

additional control lines than those shown, for example,

ones that control the registers. As sure as there is water

in the oceans, there is something missing, and that is the

connection of the internal datapath and CONTROL sig-

nal to the main memory and I/O modules. This was done

deliberately to reduce the complexity at this point. A com-

plete dissertation of the processor can usually be found in

most computer architecture textbooks. The control lines

will carry out the following general tasks:

� Control lines 1: Used to select the register to be placed

on Bus A and or Bus B, and/or receive data from Bus

B.
� Control lines 2: Used to determine the ALU operation

to be performed.
� Control lines 3: Used to determine the Shifter

operation to be performed.

Control must be able to communicate commands to all of

the computer components, as illustrated for the Registers,

ALU, and Shifter, and the commands must be carried out

in a proper sequence:

� First, the proper registers must be placed on Bus A and

Bus B.
� Second, the ALU must generate the proper result.
� Third, the Shifter must produce the proper output.
� Finally, the content of Bus C must be stored back in the

proper register.

For high performance, the computer architecture must

be planned using the principles discussed previously and

Amdahl’s law.

C. Memory System Hierarchy

The memory in the memory hierarchy of a computer sys-

tem is used to store information, instructions, and data

that will be used by the computer system. Memory is of-

ten classified as registers, cache memory, main memory,

hard disk, floppy disk, and tapes. These are pictured in a

hierarchal form in Fig. 10 with locations within each type

of memory randomly accessible except for tapes. Tapes

are sequentially accessible, and in the long run each disk

data unit is accessible in equal time, but at a given time the

access time for a particular unit is dependent on the loca-

tion of the disk components. The term “access” designates

the memory activities that are associated with either a read

or a write. Randomly accessible means that a memory lo-

cation may be read or written in the same amount of time

irregardless of the order of accesses of memory locations,

and sequentially accessible means that the time required

to access a memory location is dependent on location of

the immediate prior memory access.

Example VIC: If a company stored all of their folders

in a file cabinet alphabetically, then an employee would

be able to find any folder in the file with roughly equal

speed (randomly accessible). However, if the folders were

stored flat in nonalphabetized order in a box, then the

employee would have to sequentially search for the desired

folder in the box. These filing systems are analogous to the

randomly accessible and sequentially accessible memory

storage units.

There are other forms of information storage such as

CD-ROM and cassettes. The control store is a memory

unit but is not considered in the memory hierarchy be-

cause it is only used to store microprogram instructions.

Memory hierarchy locations are used to store abstraction



538 Computer Architecture

2 instructions and data. In the future it may be possible

that control store will become a part of the memory hier-

archy if programs are translated down to that level and the

control store becomes a RAM-type memory for storage

of the translated program along with the corresponding

data.

In the memory hierarchy, the memory level in the higher

location of the pyramid of Fig. 10 is usually physically

closer to the processor, faster, more frequently accessed,

smaller in size, and each bit is more expensive. Some of

the characteristics of memory types are access time, band-

width, size limit, management responsibility, and location

within the computer system (within processor or on the

external bus).

1. Principles of Memory Design

Size, cost, and speed are the major design parameters in

the memory hierarchy. The principle behind memory hi-

erarchy design is to keep the cost per unit of memory as

close as possible to that of the least expensive memory

and keep the average access time as close as possible to

that of the fastest memory. To accomplish this, the de-

sign must use a minimal amount of the memory type at

the top of the pyramid of Fig. 10 and attempt to keep

information that will be accessed in the near future in

memory at the top of the pyramid. Removable disks and

tapes are of unlimited size, and that means that the user

may continue to buy more of the media until his needs are

met.

It would be most desirable to have every item to be

used in a register. However, this is impossible, because

current computers must move information into memory

using level 2 instructions. In order to follow these design

principles, it is necessary to study the relationship of mem-

ory references by a program and utilize those relationships

that are found when possible. Studies have shown that the

memory references in a small period of time tend to be

clustered for both data and instructions within a few lo-

calized regions of memory, as illustrated in Fig. 11. This

is known as the locality principle and predicts that there

is high probability that those items referenced recently

or those nearby the recently referenced memory locations

will be referenced in the near future. A copy of those items

that, according to the locality principle, are most likely to

be used in the near future should be kept in the memory

that is accessed most quickly.

Example VIC 1: Average cost and average access time.

A memory design issue is the ordering of bytes in mem-

ory that may follow either the little Endian or Big Endian

definitions. Within a particular manufacturer’s computers

it will be either one or the other for all of their computers

FIGURE 11 Probability of referencing memory at a snapshot of

time.

within a computer family. Little Endian and big Endian are

terms introduced by Cohen (1981) in an amusing article

and the term “Endian” is borrowed from Jonathan Swift’s

Gulliver’s Travels that poked fun at politicians who waged

war over the issue of whether eggs should be cracked on

the big end or little end.

D. I/O System

The I/O system is a crucial part of any computer system,

but it will not be discussed in greater detail in this article.

E. Interconnection

The interconnection of computer components is critical

to computer performance. The interconnection of com-

ponents within a computer has been discussed, and is a

key concern in the implementation of an architecture. The

interconnection between computers is covered under the

data and computer communications category in books and

articles dealing with that topic.

VII. ENHANCING ARCHITECTURE
IN THE TRADE-OFF OF
PERFORMANCE AND COST

Every person who buys a computer desires one that will

have maximum performance with minimum cost and meet

his minimum requirements. The language of the com-

puter is determined by the instructions that it understands.

Languages of computers are quite similar in nature be-

cause computers are all built using approximately the same

underlying principles. The performance of a computer

system is influenced by three critical components:

instruction count, clock cycle time, and clock cycles per
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instruction (CPI). The number of instructions required is

determined by the instruction set of the computer and the

efficiency of the compiler in generating the program that

will be executed. The processor implementation deter-

mines the clock cycle time and the number of clock cycles

per instruction. The performance of a computer can be

enhanced to almost any desired level, but the performance

level must be traded off with the cost. If the cost is too

great, it will not be affordable and as a result will not sell.

In this section, we will look at some current techniques

that are used to enhance the performance of a computer.

A. Instruction Set Design

The instruction set influences the processor implemen-

tation and must be determined based on the processor

efficiency. Some of the key instructions of a computer

include the

1. memory reference instructions

2. arithmetic-logical instructions

3. branch instructions

Other factors in the design of an instruction set include

number of instructions to be included, whether or not

the instructions should have a fixed length and/or fixed

format, the addressing modes available, the robustness

or complexity of the instructions, and whether or not the

instructions, and support data structures such as “stacks”

and data types.

The guidelines—make the common case fast (make the

memory access instructions fast because they occur about

50% of the time in a general purpose program) and sim-

plicity promotes regularity (make the instructions fixed

length and fixed format)—play a significant role in the

definition of modern instruction sets and in particular the

RISC computers. In the instruction set design, it is not

always possible to have fixed length and format instruc-

tions and as a result the principle, a good design will re-

quire compromises, must be followed. The instruction set

has a significant influence on the implementation, and the

choice of implementation strategies will affect the clock

rate and the CPI for the computer. The final principle,

smaller is faster, comes into play when the number of

instructions is minimized or the number of memory lo-

cations is small (in the case of registers). The number of

methods and complexity of instruction access of mem-

ory (addressing modes) will play a significant role in the

performance level that the computer can achieve with best

performance achieved if the design principles “simplicity”

and “small” are observed.

The implementation of the instruction set through the

design of the datapath and control within the processor

will play a major role in the performance of the computer

with the technology available being an important factor.

Technology will significantly influence such things as the

density of transistors on a chip. The density of transistors

will influence the distance between two points, and the

higher density chips will provide the capacity for adding

features on the processor chip as opposed to externally,

thus reducing the time required to transfer information

between components.

A significant influence on the instruction set design has

been the past desire by computer manufacturers to pro-

vide backward compatibility (the capability of executing

existing programs without modification). If this require-

ment were met by retaining the old instruction set in the

new instruction set of the processor, it would result in

greater overhead and a reduction in the potential perfor-

mance of the processor. If this requirement were met by

using a software interpreter, then the old programs would

not achieve top performance because of the overhead of

the interpreter.

B. Instruction Set Implementation

Enhancements

It was mentioned above that technology advancements

have played a significant role in the advancement of the

performance of a processor. Implementation techniques

play a major role as well with the following being some

of those advancements.

1. Pipelining: This is an architecture implementation

technique that allows multiple instructions to overlap

in execution. The processor is organized as a number

of stages that allow multiple instructions to be in

various stages of their instruction cycle. The pipeline

for instructions is analogous to an assembly line for

automobiles. To implement the pipeline, additional

processor resources are required. In order to achieve

maximum efficiency, the instruction cycle must be

divided so that approximately the same amount of

work is done in each of the stages. There are a

number of potential hazards that exist:

a. Data hazard: This occurs if an instruction in an

earlier stage of the pipeline attempts to use the

content of a location that has not been written by

an instruction that precedes it in the pipeline.

b. Branch hazard: This occurs if instructions

following the branch are brought into the pipeline

when the branch will actually occur or vice versa.

A method used to eliminate this problem is to

provide the resources to bring both sets of possible

future instructions into the pipeline. Another

solution is to rearrange the order of instructions to
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cause instructions preceding the branch in the

program to follow the branch in the pipeline. This

assumes these instructions do not influence the

branch decision.

c. Exception hazard: This hazard could occur if an

exception occurs and instructions in the pipeline

are not handled properly.

All hazards can be remedied but the method used may re-

quire significant processor resources. The data and branch

hazards can be remedied by using the compiler to reorder

the instructions.

2. Superpipelining: This is a processor design that

divides the pipeline up into a large number of small

stages. As a result, many instructions will be at

various stages in the pipeline at any one point in time.

There is no standard distinguishing pipelined

processors from superpipelined processor, but seven

has been a commonly accepted division point. The

ideal maximum speedup of the processor is

proportional to the number of pipeline stages.

However, the required resources for fixing the hazard

problem increases more rapidly as the number of

stages increases.

3. Superscalar: This implementation of the processor

provides more than one pipeline. As a result, multiple

instructions may be at the same stage in their

instruction cycle. A superpipeline and a superscalar

implementation may exist within the same processor.

4. Very long instruction word (VLIW ): This processor

implementation provides for the processor to use

instructions that contain multiple operations. This

means that the multiple instructions are contained in a

single instruction word. It is usually the responsibility

of the compiler to place compatible instructions in the

same word.

All of these techniques introduce parallelism into the ex-

ecution of instructions within the processor.

C. Input and Output Enhancements

As computers have evolved there has been increasing com-

plexity placed in the function of the I/O devices. The

following are some of the evolutionary steps that have

occurred.

1. Initially the processor handled the peripheral devices

directly.

2. The I/O device became a controller of the peripheral

device, but the processor performed the programmed

I/O (the processor stopped processing other instruc-

tions until the I/O activity had completed and the device

had signaled its completion of the required action).

3. The I/O device is the same as (2) but the processor

uses interrupts to allow itself to process instructions

of another program until it is interrupted by the

I/O device when the interrupt activity is completed.

4. The I/O device becomes a controller that has direct

memory access capability. As a result, it can place data

in memory directly.

5. In the most sophisticated case to date, the I/O device

becomes a complete processor with its own instruction

set designed for I/O. As a result, the processor may

specify a set of I/O activities and be interrupted only

after all of the requests are fulfilled.

D. Memory Enhancements

Memory speed enhancements have not kept up with pro-

cessor speed improvements. As a result, other techniques

have been used in order to enhance the performance of the

memory system. The characteristics of a memory system

that are adjusted to improve performance are included in

the following table:

Location of memory in computer system

Processor

Main memory

Secondary memory

Physical characteristics

Semiconductor

Magnetic

Optical

Nonvolatile vs volatile

Nonerasable vs erasable

Speed of access

Access time

Memory cycle time

Transfer rate

Capacity

Word size

Number of words

Method of access

Random

Sequential

Direct

Associative

Organization

Location of bits in random access memory

Registers

Cache

Virtual memory

Transfer unit

Word

Block

Page
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All of these characteristics of the design of a memory sys-

tem will influence its performance. The location of the

memory in relationship to the processor and the closer it

is to the processor the faster it will be. Another key charac-

teristic is the unit of transfer that is dependent on the size

of the bus from the memory unit with increased size of the

transfer unit increasing performance. Increased number

of accessible units will often decrease the performance of

memory, and this is remedied by increasing the word size.

The first three physical characteristics have more influence

on performance than do the last two. The RAID standard

has been adopted by industry, and it provides a mechanism

for substituting large capacity disks with multiple smaller-

capacity disk drives and causes the data to be distributed

in such a way as to allow the simultaneous access to data

from the multiple drives. Adoption of the RAID standard

provides disk access performance enhancements and pro-

vides a mechanism for allowing incremental increases in

overall storage capacity of the disk system. The design

of the memory system is critical to the performance of a

computer system.

E. Enhancement Using Parallel Processors

Computer professionals have strived to achieve the ulti-

mate of computer design by interconnecting many existing

simple computers together. This is the basis for a computer

using multiprocessors. Multiprocessors are computers that

have two or more processors that have a common access to

memory. Customers desire scalable multiprocessors that

allow them to order the current required number of pro-

cessors and then add additional processors as needed. It

is also desirable to have the performance increase propor-

tionately to the number of the processors in the system, and

to have the computer system continue to function properly

when one or more of the processors fail. The typical range

of processors in a multiprocessor computer is between 2

and 256.

The design of the multiprocessor computer is a key

factor in the performance of the resulting computer system

and the following are some of the key issues that must be

addressed:

� The mechanism for sharing memory between

processors must be defined
� The coordination of processors must be determined
� The number of processors must be established
� The interconnection between the processors must be

defined

The most common mechanism for sharing memory is

through a single address space. This provides each pro-

cessor with the opportunity to access any memory loca-

tion through their instruction set. Shared memory multi-

processor may be symmetric multiprocessor (SMP) pro-

cessors, in which the access to a word of memory takes

the same time no matter which processor accesses it or

which word is accessed, and the nonuniform memory ac-

cess multiprocessors, which does not have the equal access

characteristic. The alternative to the shared memory mul-

tiprocessor is one whose processors have private memory,

and coordination is then achieved through the passing of

messages. A key element for memory is coherency, which

requires data validity among the different processors. Mul-

tiple processors are interconnected either by a bus or

network.

The multiprocessor area of computer architecture is

highly active. It is difficult to maintain awareness of

current examples but the World Wide Web is an excel-

lent source of information with links to several types of

multiprocessor examples at http://www.mkp.com/books

catalog/cod2/ch9links.htm.

VIII. CONCLUSIONS

Computer architecture has been and will continue to be

one of the most researched areas of computing. It is about

the structure and function of computers. Although there

is explosive change in computing, many of the basic fun-

damentals remain the same. It is the current state of tech-

nology along with the cost/performance requirements of

the customers that changes how the principles are ap-

plied. The need of high performance computers has never

been greater than it is now, but the difficulty of design-

ing the ideal system has never been more difficult be-

cause of the rapid increase in speed of processors, mem-

ory, and interconnection of components. The difficulty is

in designing a balanced system according to Amdahl’s

Law.

Professionals from every area related to computing

should understand architecture principles and appropriate

aspects of hardware and software. It is important for those

professionals to understand the interrelationship between

the assembly language, organization of a computer, and

the design of a computer system. It is important to be able

to sort out those concepts that are the basis for modern

computers and to be able to understand the relationship

between hardware and software.

SEE ALSO THE FOLLOWING ARTICLES

COMPILERS • COMPUTER NETWORKS • MICROCOMPUTER

BUSES AND LINKS • OPERATING SYSTEMS • PROCESS

CONTROL SYSTEMS • SOFTWARE ENGINEERING • SOFT-

WARE MAINTENANCE AND EVOLUTION

http://www.mkp.com/books_catalog/cod2/ch9links.htm
http://www.mkp.com/books_catalog/cod2/ch9links.htm
html
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GLOSSARY

Computer network System consisting of an intercon-

nected collection of computers that are able to exchange

information.

Network protocol Encapsulated module of services with

defined interfaces, providing communication functions

to other protocols or applications.

Network architecture Structured collection of protocols

and layers with specification of the services provided

in each layer.

Quality of Service (QoS) Description of the quality of

services provided by a computer network. QoS is char-

acterized by parameters such as bandwidth, delay, and

jitter.

Network security service Service that enforces the se-

curity policy to provide a certain level of network

security.

World Wide Web (WWW) Large-scale, on-line repos-

itory of information in the form of linked documents,

web pages, and web sites.

Internet The global collection of networks (internet) that

uses TCP/IP protocols.

I. DEFINITIONS

For the past 10 years, computer networks have become a

major part of modern communications, data processing,

business, culture, and everyday life. The properties that

make them so popular are access to remote data, resource

sharing, and human communication. Network users can

access and use remote data and machine resources as if

they were local. Computer resources such as printers and

database servers can be shared by many remote users,

making the computing process more efficient. Resource
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sharing and remote data access through networking are

also used to increase the reliability, accessibility, and up-

time of many applications. For example, if a bank has a

database server and a backup server, in case of failure of

the main server the backup server can then provide service

to the users, preventing loss of data accessibility.

Apart from sharing data and resources, computer net-

works offer a human communication medium. This is very

important for large companies, which have offices around

the country, or international organizations, which have of-

fices all over the world. The efficient and convenient means

of communication like e-mail, video conferencing, and the

Internet as a global information environment are used to

link people together. The Internet as a worldwide network

brings new business opportunities, where products and

services find their way to the clients much faster and with

less effort. E-commerce is a growing and very successful

business.

Networks are as important for personal use as for cor-

porate use. Information access is one of the major mo-

tivations. Users can access information from millions

of servers available through the Internet containing ar-

ticles, publications, on-line books, manuals, magazines

(e-zines), and newspapers. Video and audio, virtual re-

ality, entertainment, and network games are other pop-

ular applications used over the Internet. On-line shop-

ping is not just popular, but it is becoming a major

competitor for conventional shopping. Personal commu-

nications is another important feature of computer net-

works. E-mail, on-line pagers, and Internet telephony are

all network based. Newsgroups and chat rooms are in-

teractive ways, in real time, to communicate with other

people. A new approach in the educational system is

distance learning. Based on on-line courses and pro-

grams, it offers course material combined with multime-

dia to the students. This distance learning is especially

helpful for people holding full-time jobs or people with

disabilities.

Computer network is a system consisting of an in-

terconnected collection of computers that are able to

exchange information. Computers connected in a net-

work are usually called nodes. Hosts are nodes used by

users and are usually running applications. Apart from

hosts, network nodes such as routers, bridges, or gate-

ways that execute network support functions (e.g., mes-

sages routing) might also be present. Physical links that

interconnect nodes can be copper wire, fiber optics, mi-

crowave, radio, infrared, or satellite connections. There are

two connectivity technologies independent of the phys-

ical link type: multiple-access and point-to-point links.

A multiple-access link allows more than two nodes that

share that link to be attached to it. In contrast, a point-

to-point link connects two nodes only. A network that

uses multi-access links and allows messages sent by a

node to be received by all other nodes is called a broad-

cast network. Broadcasting is the operation of sending

a message/packet to all destinations. A point-to-point

network or switched network consists of many point-to-

point links in an organized way forwarding data from

one link to another. Usually, smaller networks tend to be

broadcast networks, while larger ones are point-to-point

networks.

Networks can be circuit switched or packet switched.

Circuit-switched networks establish a connection from the

sender to the receiver first. After the connection is up, the

sender will send data in a large chunk over the connec-

tion. After the sending process is finished, the connection

is torn down. In packet-switched networks, a message is

split into packets. Each packet consists of a body (the ac-

tual data) and a header that includes information such as

the destination address. A connection is not established,

but each packet is routed through the network individu-

ally. Packet-switched networks can provide connection-

oriented or connectionless services. Connection-oriented

services establish a connection from the sender to the re-

ceiver by specifying the exact route for all the packets

through the network. All packets use this route and will be

received by the receiver in order. In contrast, connection-

less services do not establish a fixed route for the packets.

Packets belonging to the same connection might travel

over different routes through the network and might be

received out of order.

Size is an important characteristic of networks. A key

factor is not the number of nodes a network connects, but

the time needed for the data to propagate from one end of

the network to the other. When the network is restricted

in size, the upper bound of transmission time is known. In

larger networks, this time is generally unknown.

Smallest networks covering usually a single room are

termed system area networks (SAN). They are used to

interconnect PCs or workstation clusters forming server

systems and to connect data vaults to the system. Smaller

networks, typically spanning less than 1 km, are called

local area networks (LAN). LANs are generally used to

connect nodes within a few buildings and are privately

owned. They are used to connect workstations for resource

sharing (printer, database server) and for information ex-

change among each other and often employ multi-access

links to connect all of the computers. LANs can run at

speeds from 10 megabits per second (Mbps) up to few

hundreds Mbps and have low delay and usually low bit er-

ror rates. The next in size are metropolitan area networks

(MAN), which usually extend up to tens of kilometers and

serve nearby corporate offices or interconnect a city. The

last type, wide area networks (WAN), has no size limit

and can be worldwide. WAN spans a large geographical
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area, often a country or continent. Because of the great

number of hosts and the distance among them, WANs are

in general not broadcast-type networks, but they can pro-

vide broadcast operations. WANs use the point-to-point

principle and employ a set of nodes dedicated to inter-

network communication. These nodes are usually called

routers, and the set of routers is called subnet. When a

host wants to communicate with another host, it sends the

message, often divided into several packets, to the closest

router. That router stores the packets and forwards them to

a router that is closer to the destination host. This repeats

until the packets reach a router that is connected to the des-

tination node. This router will then deliver the packets to

the destination or to the LAN the destination is connected

to.

Another common classification of networks is based on

the topology of how the nodes and the links are intercon-

nected. The topology of the network is represented by a

graph in which nodes are vertices and links are edges. The

network graph can be symmetric or irregular. Symmetric

ones are used mainly in LANs, such as the star topology, in

which all the nodes are connected to one center node, the

bus topology, in which all nodes are attached to a single

cable/bus, the ring network, in which nodes are connected

to form a ring, or the fully connected topology, in which

every node is connected to every other node. WANs are

likely to have irregular topology, since they have too many

links to enforce a symmetric topology.

II. NETWORK PROTOCOLS

A. Overview

One of the main objectives when designing a computer

network is to keep it as simple as possible. To achieve

this, different abstractions for services and objects can be

used. The idea of encapsulating components of the sys-

tem into an abstraction and providing interfaces that can

be used by other system components hides the complexity.

In networks, this strategy leads to the concept of layering

of the network software. The general rule is to start from

the underlying hardware and build a sequence of software

layers on top, each one providing a higher level of service.

Layering provides two features: less complexity and mod-

ularity. Instead of constructing a network with one solid

mass of services, it is much easier to separate them into

manageable components. Modularity gives the assurance

that as long as the interface and the functions are con-

sistent and compatible with the original specification, the

layer can be modified at any time and new functions can

be added. Each layer provides certain services to the layer

above, implemented in terms of services offered by the

layer below it. A layer on one machine communicates with

exactly the same layer on another machine. Correspond-

ing layers are usually called peers. Peers, together with

rules and conventions that they have for communication,

are called protocol. Each protocol defines the interface

to its peers and the service interface to the other layers.

Peer interface describes the specifications and format of

the messages exchanged between the peers. Service in-

terface specifies the functions provided by the layer. The

set of layers and protocols is called network architecture.

In fact, only the hardware level peers communicate with

each other directly, all other layers pass messages to the

next lower layer. If two applications on different comput-

ers want to communicate, the initiator sends a message

containing data and some special formatting information

usually called header. The next lower layer receives the

message, adds its own header, and passes it to next lower

level and so on until the message is transmitted over the

link (see Fig. 1). On the receiver machine, this message

will progress up the different layers until it reaches the

application involved in this communication. Each layer

will strip the corresponding layer header from the mes-

sage, will apply its services, and will pass the message

to its next higher layer. Viewing the group of protocols

in a machine or a network as a stack can be helpful for

visualization, but the protocols need not be in a linear

configuration. More than one protocol can exist on the

same level, providing similar yet different services. The

protocol graph is used to describe the protocols and their

dependencies in a network system. A chain of protocols

relying on each other’s services used by a specific appli-

cation or a system is called protocol stack and is a single

path in the protocol graph. The use of the term protocol is

somehow ambiguous, referring sometimes to the abstract

interface and sometimes to the actual implementation of

the interface. To distinguish this, we will refer to the latter

as protocol specification.

Network architectures and protocols are described in

reference models. In the following subsections, a few very

important reference models will be discussed: the OSI

reference model, the TCP/IP reference model, and the

B-ISDN ATM reference model.

B. ISO OSI Reference Model

One of the first standards for computer communications

was proposed and developed by the International Stan-

dards Organization (ISO) in the early 1980s. This net-

work architecture model, the open systems interconnec-

tion (OSI) reference model shown in Fig. 1, describes a

network through seven layers. On any of these layers, one

or more protocols can implement the functions specified

for the layer. Some protocol specifications based on this
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FIGURE 1 An OSI model and example of data transmission from node A to node B.

model, the “X dot” series X.25, X.400, etc., were specified

by the International Telecommunications Union (ITU).

Even though most of today’s protocols do not follow this

reference model, it captures very well the concepts of ser-

vice, protocol, and interface. OSI design is general and

quite complex, but it is able to present the functionality of

a network in a way it can be used as a guide for designing

new networks.

There are seven layers in the OSI model, starting with

the physical layer handling the raw data transmission over

a physical medium. The most common transmission me-

dia are twisted pair (copper wires), coaxial cable, and fiber

optics. The data link layer, usually implemented in the

network adaptors, is above the physical layer and is con-

cerned with the organization of data into frames and the

reliable transportation of these frames over a direct link.

The specific problems of multi-access links such as chan-

nel allocation and collision detection are handled by the

data link sub-layer called medium access control (MAC).

Reliable frame delivery, frame ordering, and frame re-

transmission are provided in the layer by sliding window

protocols. This is a set of protocols for full-duplex data

frame transmission, in which the sender and the receiver

both keep windows of frame acknowledgements and send

frames only if a certain number of already sent frames were

acknowledged by the receiver. The data link layer also in-

cludes some error detection and correction functions such

as parity bit code and cyclic redundancy code (CRC).

The next higher layer is called network layer, and it

addresses the problem of finding a route through the net-

work from the source to the destination. This layer also

addresses the problems of interconnecting different net-

works. Protocols in this layer are used to glue together

heterogeneous networks into one scalable internetwork or

internet. Mind the difference between Internet and inter-

net, where the former is the global, widely used inter-

network and the latter is the general term for a logical

network consisting of a collection of physical networks.

The transport layer takes care of the efficient and reli-

able delivery of data from the source to the destination

node. Protocols in this layer are sometimes called end-to-

end protocols. Modified versions of the sliding window

protocols ensure reliable delivery, synchronization, and

flow control. The fifth layer, the session layer, is the one

that manages traffic direction and synchronization. The

last two layers, the presentation and application layers,

are mainly application-oriented service layers. The pre-

sentation layer is responsible for data representation and

data coding, while the application layer offers a variety of

services for particular applications, such as e-mail or file

transfer. Security services such as encryption/decryption,

authentication, and integrity are usually implemented in

the last two layers.

C. TCP/IP Reference Model

While the OSI model was carefully designed, standard-

ized, and then implemented, the Transmission Control

Protocol (TCP)/Internet Protocol (IP) architecture was

implemented first in the early 1980’s and modeled after-

wards. Well accepted in the university circles first, and

later in the industry, TCP/IP, also called the Internet ar-

chitecture, is nowadays one of the major architectures.

However, the TCP/IP reference model is not general and

consistent, but rather implementation bound, and it does

not have a clear concept of services and protocols. The IP

protocol serves as a joining point for many different net-

works, providing them with a method for communication.
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FIGURE 2 Protocols and layers in the TCP/IP model. Applications can either use TCP or UDP, depending on their

implementation.

TCP/IP consists of four layers, as shown in Fig. 2, which

can be matched to some of the OSI model layers. The host-

to-network layer is similar to the physical and data link

layers. The internet layer with the IP protocol corresponds

to the network layer. The main concept for TCP/IP, imple-

mented on this layer, is a connectionless packet-switched

network.

Above the internet layer is the transport layer with two

main protocols, TCP and User Datagram Protocol (UDP).

TCP is a reliable and connection-oriented, end-to-end pro-

tocol. TCP has error detection/correction, data retrans-

mission, and flow control mechanisms and takes care of

out-of-order messages. UDP in contrast is an unreliable,

connectionless protocol providing support for audio and

video applications. The last layer, the application layer,

hosts a variety of high-level protocols such as File Transfer

Protocol (FTP) or Simple Mail Transfer Protocol (SMTP).

D. B-ISDN ATM Reference Model

The Asynchronous Transfer Mode (ATM) technology is

the core of the Broadband Integrated Services network

(B-ISDN). ATM is a connection-oriented and packet-

switched technology, which emerged in the 1980s. Data

in ATM is transmitted in small packets, called cells, which

have a fixed size of 48 bytes payload and 5 bytes header.

To set up a connection, a path through the network, a

virtual circuit, is established first. This connection setup

process is called signaling. After network resources are

reserved and allocated to that virtual circuit, the source

can start sending data cells. All cells transported over a

specific virtual circuit take the same path/route through

the network so that cells belonging to a specific connec-

tion are always received in order. Several virtual circuits

can be combined into a single virtual path. A virtual path

identifier and a virtual circuit identifier are present in each

cell header to map a cell to a specific route through the

network. If congestion occurs inside the network, cells

are temporarily buffered in the ATM switches. If a switch

buffer overflows, cells are discarded inside the switch and

are lost. Cell switching is one of the biggest advantages of

ATM. During the signaling process, not only appropriate

routes are found but also resources are allocated in the

switches. In ATM, it is therefore possible to make quality

of services (QoS) reservations for a specific virtual circuit.

QoS parameters, such as sustained cell rate, peak cell rate,

maximum burst tolerance, cell delay, and cell delay jitter,

characterize the services provided.

ATM link speed of 155 Mbps to a few gigabits per sec-

ond and the capability to guarantee QoS are very important

for real-time applications like audio, video, and multime-

dia. ATM networks are increasingly used as backbones

for WANs. One example is the very high speed backbone

network (vBNS), which is currently used as one of the

backbones for the next-generation Internet (Internet-2).

vBNS runs TCP/IP over ATM. ATM can also be used to

implement high-speed LANs.

As depicted in Fig. 3, the B-ISDN ATM reference model

has different layers and a different structure as compared

to the OSI model. While the OSI model is two dimen-

sional, the ATM model is three dimensional. ATM’s phys-

ical layer corresponds to both the physical and data link

layer of the OSI model. The physical layer deals with the

physical transmission of the bit stream and therefore de-

pends on the physical medium used. Copper cable or fiber

optics can be used for ATM. Above the physical layer is

the ATM layer that deals with flow control, virtual cir-

cuit management, and cell header generation. The ATM

layer is functionally equivalent to the OSI data link and

network layers. On top of the ATM layer sits the ATM

adaptation layer (AAL) that supports the different ATM

services. AAL lays somewhere between the transport and

session layers in the OSI model and provides assembly

and reassembly of packets that are larger than a cell. Four

different services are currently defined for ATM, result-

ing in four different AAL classes. AAL1 supports circuit
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FIGURE 3 The B-ISDN ATM reference model.

emulation over ATM networks and is well suited for trans-

porting constant bit rate (CBR) traffic. AAL2 is designed

to support variable bit rate (VBR) traffic, where a tim-

ing relationship between the source and the destination

is required. AAL3/4 is used to transfer data that is sensi-

tive to loss but not to delay. Finally, AAL5 supports data

traffic with no real-time constraints and is currently the

most-used adaptation layer in industry.

Above the AAL layer are upper layers that are divided

into a user and a control plane. The user plane is con-

cerned with flow control, data transport, and error cor-

rection, while the control plane deals with connection

management such as call admission and QoS. The layer

and plane management functions in the third dimension

are responsible for interlayer coordination and resource

management.

To achieve high-speed data rates of up to a few gigagits

per second, ATM networks use fiber optics. The physi-

cal layer standard most often used with ATM is the syn-

chronous optical network (SONET), which was released

in the late 1980s. SONET provides a common signaling

standard with respect to wavelength, timing, framing, etc.

It also offers a way to multiplex multiple digital chan-

nels together and provides support for network operation,

administration, and maintenance.

III. NETWORK CLASSES

A. System Area Network (SAN)

SANs are used to interconnect PC clusters or workstation

clusters forming server systems and to connect data vaults

and other I/O subsystems to the overall system. SANs

are also used to connect the individual processor nodes

in a parallel computer (these networks are also termed

interconnection networks). It is very common to connect

SANs to LANs and WANs, and they are usually at the

leading edge in terms of performance.

B. Local Area Network (LAN)

LANs have become the most popular form of computer

networks; they are inexpensive and widely available. The

primary topologies used in LANs are star, ring, and bus.

One bus-based standard is Ethernet, where computers

share a single transmission medium. Ethernet segments

are limited to 500 m. The speed of Ethernet starts from

10 Mbps and goes up to 1 Gbps, in the latest version called

Gigabit Ethernet. If a node has something to send over the

bus, it listens to the bus first. If there is no data currently

on the bus, the node starts sending its data. Because there

is no coordination among the nodes, two or more nodes

might start sending data at the same time, resulting in a

collision. To deal with collisions, carrier sense multiple

access with collision detection (CSMA/CD) is used in Eth-

ernet as the MAC protocol. For collision detection, every

node monitors the bus while sending data. If the data on

the bus is different to the data a node is currently send-

ing, a collision is detected. After detecting a collision, the

nodes involved stop sending, wait a random time of up to d

seconds, and then try again. In case of a new collision, the

parameter d is doubled, and the nodes try sending again.

This mechanism is called binary exponential backoff.

An example for a ring network is the IBM Token Ring.

In this network, computers are connected in a loop and

have a medium access mechanism called token passing.

Token is a special message that circulates in the network.

Whenever a node receives the token, that node has the right

to transmit data. After sending the data, it will send the
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token to the next neighbor node to allow that node to send

data. This scheme guarantees freedom of collision and fair

access to the network for all nodes. The token ring protocol

can also be implemented in a bus network, resulting in a

token bus network. In this case, a virtual ring structure is

established in which each node has a fixed address and

a node sends the token to the node with the next higher

address.

Recently, ATM found its way into LANs. An ATM

switch can be used to centrally connect up to 32 computers

or other LANs, providing bit rates starting at 155 Mbps.

LANs provide a good combination of capacity, price,

and speed, but they have a distance limitation of 500 m.

This limitation is primarily due to the properties of the

copper wire used. To extend the span of a LAN, devices

such as repeaters and bridges can be used. These devices

are introduced in Section IV.

C. Metropolitan Area Network (MAN)

MANs employ technologies similar to the one used in

LANs. A standard called distributed queue dual bus

(DQDB) has been defined for MANs that does not have the

LAN’s cable length limitations and performance problems

when connecting thousands of nodes. DQDB uses two par-

allel, unidirectional optical buses that connect all nodes.

To transmit data, a node has to know whether the destina-

tion node is to the left or to the right of it. If it is to the left,

it uses bus A, while if it is to the right, it uses bus B. At the

head of each bus, a steady stream of empty data frames

is produced. These frames in conjunction with counters

in each node are used for fair bus arbitration. DQDB net-

works span a distance of up to 160 km at a data rate of

45 Mbps.

D. Wide Area Network (WAN)

WAN technologies are able to provide good performance

for large-size networks accommodating a huge num-

ber of nodes/connections. Usually, WANs are packet

switched and use point-to-point links that interconnect

the routers/switches and connect the WAN to MANs and

LANs. A hierarchical addressing scheme is used that

makes routing decisions easier. In most cases, next-hop

forwarding is implemented in which routers decide to

which router a packet is to be forwarded. The informa-

tion about destinations and next-hop relations is kept in

a routing table within each router. There are two types of

routing mechanisms: static and dynamic routing. Static

routing protocols use network topology information only

to decide on a route, resulting in simple, low-overhead pro-

tocols. However, static protocols do not adapt to changing

traffic conditions and link failures in the network. Dy-

namic routing protocols, on the other hand, take the cur-

rent traffic conditions into account as well and are able to

deal with network/link failures by routing traffic around

the failed links. Most WANs use dynamic routing pro-

tocols for increased flexibility and efficiency. As men-

tioned before, ATM is increasingly used to implement

WANs.

IV. NETWORK COMPONENTS

Components most often used in networks are repeaters,

switches, routers, bridges, and gateways. The main dis-

tinction among these components is the layer it is operat-

ing on and if they change data that they relay. Networks

using copper wires have a distance limitation. This lim-

itation is primarily due to the properties of the copper

wire used. A signal on a copper wire becomes weaker and

weaker as it travels along the wire, which limits the dis-

tance it can travel. This is a fundamental problem with

the technologies used in LANs. A common technology

to overcome this signal loss is the use of repeaters. A re-

peater is an electronic device operating at the physical

layer that takes the signal received on one side of the ca-

ble and transmits it amplified on the other side. To limit

the propagation delay in Ethernet, a maximum of four

repeaters can be used, which extends the Ethernet dis-

tance to up to 2500 m. Another device used to extend

LANs is a bridge. A bridge operates on the data link

layer and connects two LAN segments like a repeater

does but it helps to isolate interference and other prob-

lems as it forwards only correct frames and ignores the

corrupted ones. Bridges do not change frame information.

In addition, most bridges perform frame filtering to trans-

mit only frames that have their destination located in the

LAN on the other side of the bridge. Adaptive bridges

learn node locations automatically by observing source

and destination addresses in the frame headers. Bridges

can be used to extend LANs between two buildings or even

over longer distances. Furthermore, satellite connections

or fiber links can be used between two filtering bridges

with buffering capabilities to further increase the LAN

span.

Routers work on the network level, selecting the most

convenient route based on traffic load, link speed, cost,

and link failures. They route packets between potentially

different networks. Switches also operate on the network

level, transferring packets from one link to another, imple-

menting packet-switched networks. Sometimes a device

might combine router, switch, and bridge functions. A

gateway is a device that acts as a translator between two

systems that do not use the same communication protocols

and/or architectures.
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V. WIRELESS NETWORKS

Wireless networks have penetrated LAN and WAN sys-

tems. Wireless LANs provide low mobility and high-speed

data transmission within a confined region such as a build-

ing/office. A base station connected to the wireline net-

work is placed in a central spot in a building, while mo-

bile users use a wireless transmitter/receiver with their

computer/laptop (e.g., a PCMCI card) to communicate

with the base station. The range of a wireless connection

is around 100 m, depending on the base station location

and building/office characteristics such as building ma-

terial and floorplan. Recent technological developments

have led to several wireless WAN systems aimed at per-

sonal communications services (PCS). Although the ma-

jor application is voice transmission, current-generation

wireless WAN systems are also capable of data commu-

nications in the range of 100 k bits per second (bps), and

future-generation wireless systems are expected to provide

a T3 data rate of 45 Mbps, which will enable multimedia

communications including data, text, audio, image, video,

animation, graphics, etc.

In general, wireless networks can be divided into two

classes: (1) cellular networks and (2) ad-hoc networks.

In cellular networks, a geographic area is divided into

overlapping cells (as in cellular phone networks). A fixed

base station (BS) is situated in each cell, and mobile hosts

(MHs) (e.g., users with a laptop) roam these cells. Each

base station is connected to a wireline network and is re-

sponsible for broadcasting data received by the wireline

network to the mobile hosts currently present in the cell

and for receiving data from the individual mobile hosts

and forwarding the data over the wireline network to their

destinations. Mobile hosts cannot directly exchange data

among each other but must use the base station. Thus, to

send data from MH1 to MH2, MH1 transmits the data to

its corresponding base station BS1. Assuming that MH1

and MH2 are currently in different cells, BS1 will forward

the data to base station BS2 of the cell MH2 resides in us-

ing the wireline network. BS2 then broadcasts the data to

MH2.

In ad-hoc networks, there is no cellular structure and

there are no fixed base stations. Instead, a mobile host

communicates directly with another mobile host that is

a single radio hop away. A mobile host can also func-

tion as an intermediate node relaying data between MHs

that are more than a single hop apart. Ad-hoc mobile net-

works allow spontaneous LANs to be created anywhere

and anytime, supporting nomadic collaborative comput-

ing. A route in an ad-hoc network comprises the source,

the destination, and intermediate nodes. Movements by

any of these nodes may affect the route. If any of the nodes

involved in a specific route moves out of the range of its

neighbor nodes, the route becomes invalid and the com-

munication terminates. MHs that are able to communicate

with each other (using intermediate nodes) form a group.

On the one hand, independent groups that are currently

not connected among each other might become connected

through MH movements forming larger groups. On the

other hand, a group may also break up into smaller, inde-

pendent groups, depending on the node movements. The

unpredictability of node movements and group member-

ships call for sophisticated and efficient routing protocols

for ad-hoc wireless networks.

Both cellular and ad-hoc networks rely on high-speed

wireless data transmission. The main problems in provid-

ing high-speed wireless connections are (1) the signifi-

cantly higher bit error rate as compared to wireline net-

works, (2) frequency reuse in cellular wireless networks,

and (3) handoff from one base station to the next in cellular

networks. Most network protocols such as TCP or ATM

were designed under the assumption of low bit error rates.

For example, if a packet is lost under TCP, network con-

gestion rather than poor channel conditions are assumed,

and the packet will be retransmitted. If TCP would be used

over a wireless channel, degraded channels would lead to

a massive retransmission, resulting in very poor network

performance. In cellular networks, a cell overlaps with

its neighboring cell to guarantee complete network cov-

erage over an area. Thus, if a certain frequency is used

in a cell for a connection, this frequency cannot be used

in any neighbor cell to avoid data collisions at the cell

boundaries. This frequency restriction limits the number

of different frequencies that can be used in a single cell,

which limits the number of concurrent users in a cell. If a

mobile host moves in a cellular network and crosses cell

boundaries by leaving cell A and entering cell B, a hand-

off of that communication from the base station of cell A

to the base station of cell B has to be performed. Thus,

the connection has to be rerouted in the wireline network

connecting those base stations. This rerouting has to be

done in a way that the connection experiences minimized

packet loss and minimized packet delay jitter during the

handoff. In addition, the probability of connection termi-

nation during handoff (e.g., due to insufficient available

bandwidth within the wireline network or within the new

cell) should be minimal.

VI. INTERNET AND APPLICATIONS

A. Fundamentals of the Internet

The Internet was first introduced in the late 1960s. At that

time, the Advanced Research Projects Agency (ARPA,

later DARPA) launched an experimental network called
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ARPANET. ARPANET was dedicated for university re-

search teams working on DoD projects, allowing them

to exchange data and results. This network was the first

one to use store-and-forward packet switching mecha-

nisms, which are still used in today’s Internet. Starting

with four nodes at 1969, ARPANET was spanning the

United States, connecting more than 50 nodes just a few

years later. The invention of TCP/IP (1974) and its inte-

gration into Berkeley UNIX helped ARPANET to grow to

hundreds of hosts in 1983. The fact that ARPANET was

not open to all academic centers led the National Science

Foundation (NSF) to design a high-speed successor to the

ARPANET, which was called NSFNET. In the mid 1980s,

NSFNET and ARPANET were interconnected and many

regional networks joined them. The name Internet was

then associated with this collection of networks. Grow-

ing exponentially since 1990, the Internet now connects

millions of hosts and tens of millions of users, and these

numbers double every year. For a host to be “on-line” the

only requirements are to run TCP/IP and to have a valid

IP address. The IP address can either be permanently as-

signed to a node or a temporary address can be used (many

users/machines are on-line only for a limited time while

connected to their Internet provider so that a permanent

address is not necessary). The topology of the Internet

is unsymmetric, unstructured, and constantly changing.

The Internet architecture is based on the TCP/IP refer-

ence model, as depicted in Fig. 4. Applications can bypass

individual layers and can even access the network directly.

B. Tools and Applications

1. Domain Name System (DNS)

In the Internet, each host is assigned a unique binary IP

address. In the header of each IP packet there are fields for

the IP addresses of the source and the destination nodes

that are used to find a route through the network from

the source to the destination. For scalability reasons, the

address space is divided into domains and sub-domains,

FIGURE 4 Internet architecture.

resulting in an address with domain numbers separated by

periods, such as 128.206.21.57. Each field in the address

specifies a domain/sub-domain the node is in. This address

format simplifies the routing algorithm running on each

IP router. However, these addresses are usually hard to re-

member by users. Therefore, each node is also assigned an

alphanumeric name, such as mackerel.cecs.missouri.edu

that can be easier interpreted by a user. The alphanu-

meric names are usually used by applications to address

nodes. Thus, an address translation is needed to translate

the alphanumeric name into its corresponding IP address.

The Domain Name System (DNS) is implementing this

translation.

DNS is a hierarchical, domain-based naming scheme

and a distributed database system that implements this

naming scheme. For example, consider the node name

mackerel.cecs.missouri.edu. The left-most segment rep-

resents the computer name (mackerel), the next two seg-

ments represent sub-domains: Computer Engineering and

Computer Science Department (cecs) at the University of

Missouri (missouri), while the right-most segment spec-

ifies the top-level domain (in our case edu, an educa-

tional institution). In general, the top-level domain in-

cludes names for each country (e.g., us for U.S.A. or de

for Germany) or generic names such as edu for educa-

tional institutions, com for commercial, gov for the U.S.

federal government, int for certain international organi-

zations, mil for the U.S. armed forces, org for non-profit

organizations, and net for network providers. To obtain a

domain name, an organization or a user needs to register

with the Internet authority. Once a domain name is given,

the organization can subdivide the domain and create its

own hierarchy. There are no standards for this interdo-

main structure, and the names of the computers belonging

to this organization may not follow the same pattern. This

gives the organizations freedom to change, coordinate, or

create names in their own domain. The entire DNS sys-

tem operates as a large distributed database. A root server

occupies the top level of the naming hierarchy. The root

server does not know all possible domain names, but it

knows how to contact other servers to resolve an address.

If a node needs an address translation, it sends a DNS re-

quest message to a local name server (the IP address of

this server has to be known in advance by the node). If

the server is able to resolve the name, it sends the trans-

lation back to the requesting node. Otherwise, this server

contacts another name server higher up in the hierarchy to

resolve the name.

2. E-mail

One of the first and very popular Internet applications

was electronic mail or e-mail. It was implemented for the
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ARPANET to provide the users with the ability to send

each other messages over the network. This application

has three components: message format standard, transfer

protocol, and user interface (mail reader). The standard for

message format, RFC 822, divides an e-mail message into

a header and a body part. While the header contains sim-

ple information such as the names and e-mail addresses of

the sender and the recipient, time of sending, and message

subject, the body of the message can be more complicated.

Initially, RFC 882 defined the body to contain ASCII text

only. In 1993, the Multi Purpose Internet Mail Extensions

(MIME) was introduced, which made it possible to also

transmit binary files such as executables, images, audio,

or video files. In MIME, the binary data is first encoded

into plain ASCII text and then sent over the network. The

protocol for transferring e-mail messages over the Internet

is called Simple Mail Transfer Protocol (SMTP). SMTP

requires a mailer daemon to run on the hosts. To send a

message, the mailer daemon on the sending machine con-

nects to the destination machine’s daemon using SMTP

over TCP and transmits the message, as well as receives

messages if there are any. Received messages are then

moved to the user’s inbox. SMTP as the name suggests

is a simple, ASCII-based protocol that uses commands of

the type HELLO, MAIL, etc. This only works if both the

sender and the receiver nodes are directly connected to

the Internet. In the case that a node has no direct access to

the Internet, it can still send and receive e-mail by using an

e-mail server that is connected to the network. E-mail is

received by the server and stored in a remote mailbox on

the server. The destination node then connects to the server

and fetches the e-mail from that server. Two simple pro-

tocols can be used for e-mail fetching: POP3 and IMAP.

The Post Office Protocol (POP3) allows a user to connect

to the mail server to download received messages. Once a

message is downloaded, it is deleted from the server. The

Interactive Mail Access Protocol (IMAP) transforms the

e-mail server into an e-mail repository. A user can access

the server and can read the messages without downloading

them to the local machine. This protocol allows users to

access their e-mail from different machines.

The last component necessary for e-mail, the mail

reader or client program, organizes e-mail messages into

folders and does the MIME encoding/decoding. Some

popular mail readers are Qualcomm’s Eudora, Netscape

Browser, Microsoft Outlook, etc.

3. File Transfer Protocol (FTP) and Telnet

File Transfer Protocol is one of the oldest Internet appli-

cations and is still widely used. First implemented for the

ARPANET, the FTP was designed to transfer/copy files

from one host to the other over the Internet. FTP first es-

tablishes a TCP connection between the two hosts and

requests an authorization from the user. After the user

supplies a valid user name and password, an FTP control

session starts. Simple commands such as append, open,

send, and rename are used to transfer files. The user can

either supply these commands directly or a file transfer ap-

plication program can be used. Data transfer can be done in

two modes, binary and ASCII mode, allowing the transfer

of text files as well as binary files such as executables, im-

ages, or video/audio files. One or more FTP connections

can exist concurrently between any pair of computers.

The telnet application is used to log-on to a remote

computer. It enables a user to access and work on a remote

node as if the user were directly connected to that node.

4. World Wide Web (WWW)

Applications like e-mail, FTP, and Telnet are popular and

brought many people to use the Internet, but the real Inter-

net boom started with the introduction of the World Wide

Web (WWW). It started in 1989 with a proposal from

the physicist Tim-Berners Lee from the European Cen-

ter for Nuclear Research, CERN. CERN had several large

international teams and many research projects with com-

plex experiments. Since team members were distributed

across several countries, it was very difficult for them to

constantly exchange reports, drawings, plans, and other

documents. The Web was intended to satisfy their needs

by creating a web of linked documents easy to view and

modify. Soon after 1993, when the first graphical inter-

face, Mosaic, was released, it became very popular—so

popular that it brought $1.5 billion in stock for its suc-

cessor Netscape. A year later, MIT and CERN created a

WWW Consortium, an organization to further develop the

Web, standardizing protocols and providing control over

the Web. The main reason for the Web’s popularity is the

easy-to-use graphical interface and the enormous amount

of information available to anyone. Not only is informa-

tion available, but many companies offer services over the

Internet such as on-line shopping, banking, education, and

entertainment. The new possibilities for business are a very

important factor; it is estimated that by 2003 the business-

to-business commerce over the Internet will reach $1.3

trillion. The Web is a set of servers, clients, and linked

documents, and it uses the Hypertext Transfer Protocol

(HTTP). Linked documents can contain text, image, data,

audio, video, and, of course, links to other documents or

parts of documents. A single document is usually called a

page, and a set of linked pages is called a site. Web servers

have a process listening on TCP port 80 for clients. Clients

(Web browsers) request linked documents from a server

and view them on the client’s computer. The most com-

mon operations are GET and POST, to fetch a Web site and
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to append a web page, respectively. HTTP, like SMTP, is

a text-oriented protocol with human understandable com-

mands. An HTTP message has a header and a body. The

message body is the data requested by the client or is

empty in request messages. A message header contains

information similar to the one in e-mail headers, such as

the web page address. Instead of using the IP address of

the web page, a uniform resource locator (URL) is used.

The URL is a compact representation of the location and

access method for a resource such as a web page. The

URL provides a pointer to any object (files, file directo-

ries, documents, images, video clips, etc.) that is accessi-

ble on any machine connected to the Internet. Each URL

consists of two parts: access method and location. For

example, in the URL http://www.cecs.missouri.edu, http

indicates that the HTTP protocol is to be used to access the

web page located on the machine www.cecs.missouri.edu.

Other access methods are ftp, mailto, news, telnet,

etc.

The first version of HTTP1.0 establishes one connection

per client and allows only one request per connection. This

means that if a client wants to retrieve more than one web

page it needs to set up multiple connections to the server.

This is improved in the latest HTTP version, which allows

persistent connections. Caching web pages is done either

on the client side or on proxy servers to reduce Internet

traffic and web page access time. HTTP supports caching

by providing an expiration field in the web page header.

A client can use the cached copy of the page until the date

specified in this field expires, in which case the client has

to reacquire the page from the same node.

5. Multimedia Applications

The success of the World Wide Web and the HTTP proto-

col led to the introduction of many new applications, such

as multimedia. Multimedia applications combine text, im-

age, video, and audio. While the transmission of text and

images over the Internet is non-critical, video and audio

transmissions are more problematic because of the rel-

atively high transmission bandwidth requirements, espe-

cially for video.

Two general types of audio/video applications are

streaming and conferencing. Streaming applications typi-

cally have servers delivering audio and/or video streams to

the client. Examples are video broadcast, radio broadcast,

and video on demand. It is common for these applica-

tions to broadcast the streams so that multiple clients are

able to receive them. The second type, conferencing ap-

plications (e.g., video conferencing), is more interactive.

Although different in nature, these applications need high

bandwidth, low delay, and low delay jitter (variance of the

delay).

Another important characteristic of multimedia appli-

cations is the need for multicast. During a video broad-

cast, a video stream has to be delivered to multiple

destinations. The same is true for video conferencing

applications. During a multicast, a sender could send the

multicast stream multiple times to each individual desti-

nation. This, however, would result in a high traffic load

in the network. Thus, the network itself should be able

to distribute/copy packets of a single video stream. In IP

networks such as the Internet, IP Multicast was there-

fore introduced and relies on special multicast routers.

A multicast router is responsible for copying incoming

packets belonging to a multicast stream to specific router

outputs to generate the multicast distribution tree. An

announce/listen mechanism was adopted in which mul-

ticast senders periodically send session announce mes-

sages. Nodes that want to join a certain multicast group

will listen to these messages and will send a message an-

nouncing their join request. After joining the session, each

node periodically sends announce messages. The multi-

cast routers will listen to the announce messages and will

generate the multicast tree according to the current session

membership. If a node leaves the session or a temporary

network failure occurs, the nearest router implementing

the session will stop receiving the node’s announce mes-

sages and will stop sending any multicast packets to that

node. Thus, changes in session membership are handled

locally in the network, resulting in scalability of the IP

multicast.

Another important mechanism for multimedia commu-

nication is the handling of temporary network congestion

during a multimedia transmission. The real-time trans-

port protocol (RTP) in conjunction with the real-time con-

trol protocol (RTCP) is most often used today to deliver

streaming video over the Internet that can be used to re-

act on network congestion. RTP is not a protocol layer,

but rather a tree-based hierarchy of interdependent proto-

cols supporting different video and audio coding schemes.

Among the services provided by RTP are delivery moni-

toring, time stamping and sequence numbering of packets

for packet loss detection and time reconstruction and syn-

chronization of multimedia data streams, payload and cod-

ing scheme identification. RTP/RTCP runs over UDP/IP

and uses IP multicast. RTCP is responsible for generat-

ing periodic sender and receiver reports that can be used

by the multimedia application to detect temporary net-

work congestion. A source could, for example, adjust the

video coder rate to the current network state (e.g., de-

crease the rate during network congestion), resulting in

a varying quality of the received video that depends on

the current network conditions. The real-time streaming

protocol (RTSP), a client-server multimedia presentation

protocol used with RTP/RTCP, provides a “VCR-style”

http://www.cecs.missouri.edu
www.cecs.missouri.edu
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remote control functionality to audio/video streams. RTSP

provides functions such as pause, fast forward, rewind, ab-

solute positioning in a stream, etc.

VII. SECURITY

Computer networks have a very important feature—

sharing. Sharing resources and data as well as extensive

access to the Internet imply the need of some security

mechanisms. While very intuitive, computer security is

a quite ambiguous term. It is well known that a system

(computer network) is as secure as its weakest element.

However, defining security in general is quite hard. The

intrinsic problem is that in order to define what a secure

system is, the system’s assets have to be evaluated. Since

a computer network is a dynamic structure, the security

should be a dynamic rather than a static process. The de-

scription of the levels and types of security services a net-

work needs is called security policy. Some basic services

to be provided in a network are authentication, authoriza-

tion, integrity, and confidentiality. In the real world, we

have established mechanisms to implement and enforce

similar services as well. For example, passport and/or sig-

nature are enough to authenticate a person. In computer

networks, analogous mechanisms are deployed. Usually,

user name and password are sufficient to verify and accept

a valid user of the network, relying on the authentication

protocol. Preventing security holes and attacks is neces-

sary, but sometimes detection and recovery from a system

failure is equally or more important.

A. Security Services

Security services are intended to protect a system from

security attacks, to prevent attacks, or both by utilizing

different security mechanisms. User authentication is the

process of verifying the identity of a user. In the case

of a user-to-user communication, both users have to be

checked. Traditionally, in the client–server domain, the au-

thentication is focused on the client side, since the system

should be protected from users and not vice versa. How-

ever, for some applications such as e-commerce, server

authentication is equally important to ensure that it is the

correct server a customer is communicating with. Data au-

thentication describes the verification of a particular data

or message origin.

Authorization refers to the restriction of access to data

and/or nodes. A user can be accepted into the network/

node through authentication, but he/she might not have

access to all of the files. Restriction lists or access lists

and membership control are generally provided by the

operating system. Another important service is integrity.

It protects transmitted data from changes, duplication, or

destruction. Modifications due to an error or intruder can

usually be detected and fixed by the network protocol. If

the data is sensitive, then integrity is combined with confi-

dentiality service. Confidentiality is a service that protects

all user data transmitted over a network. Even if data is

intercepted by a third party, that third party will be unable

to read the data. The non-repudiation service prevents a

sender or receiver from denying a transmitted message

(e.g., for on-line purchase proof).

Security attack is defined as any action, intended or not,

that compromises the security of the information and/or

system. Attacks can generally be passive or active. Pas-

sive attacks can be the copying of information or a traffic

analysis. Active attacks involve some modification of the

original data or fabrication of new data, such as replay or

interruption of data. Security mechanisms are designed to

prevent, protect, and recover from security attacks. Since

no technique is able to provide full protection, the de-

signers and/or system administrators of a network are re-

sponsible for choosing and implementing different secu-

rity mechanisms.

B. Security Building Blocks

To incorporate and enforce the security policy, appro-

priate mechanisms are needed. Some very fundamental

mechanisms are encryption/decryption, security manage-

ment tools, firewalls, and detection and recovery tools.

The choice of a specific mechanism depends on the level

of security needed.

1. Cryptography

Cryptography is one of the oldest and most powerful

security-providing technologies. The word cryptography,

science of information security, comes from the Greek

word kryptos, meaning hidden. It is mainly associated

with encryption, the process of scrambling data with a

secret parameter called an encryption key into ciphertext.

The opposite process, decryption, takes the ciphertext and

converts it back to plain text with the help of a decryption

key. The mechanism of breaking ciphers without having

the decryption key is called cryptanalysis. This is usually

done by an intruder who has access to the data transmis-

sion channel.

There are few different types of encryption methods:

substitution, transposition, and one-time pad cipher. One

of the oldest ciphers is substitution cipher, known as

Caesar cipher, which substitutes every symbol with an-

other from its group. For example A with D, B with G,

and so on. This is very easy to analyze and break with

common letter statistics. Transposition cipher preserves
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the symbol meanings but reorders them in a new way de-

pending on the key word. One-time pad is a theoretically

unbreakable cipher. It combines (e.g., using exclusive or)

two strings, the plaintext and a secret key. The result is

a cipher, which holds no information about the plaintext,

and every plaintext is an equally probable candidate for a

specific ciphertext. One general rule is that the more se-

cure the method is, the more redundancy information is

required. However, the more data that is available for a

cryptanalyst, the higher the chances are to break the code.

Modern cryptography used in computer systems applies

the basic techniques described here with a tendency toward

very complex algorithms and short secret keys. There are

two main classes of encryption algorithms: symmetric and

asymmetric.

Symmetric algorithms use one key to encrypt and de-

crypt the data. Therefore, the key should be distributed

between the communicating parties in a safe way. An ex-

ample is the data encryption standard (DES) algorithm.

This cipher developed by IBM and standardized by the

National Security Agency (NSA) was initially used with

56-bit keys. Unfortunately, this key size results in around

7.2 × 1016 different key combinations only, and it is possi-

ble to break a DES cipher using exhaustive search within

a few hours using powerful PCs. To increase the security

level of DES, a 128-bit key is used now. Using this key

size, it requires around 100 million years to break a DES

cipher with exhaustive search.

The problem of symmetric algorithms is the secure dis-

tribution of the secret keys among nodes. This distribution

problem is solved by asymmetric algorithms. The idea is

to use two different keys, one encryption (public) key,

which is available to everyone, and one decryption (pri-

vate) key, which is known only by the user owning the

key. This scheme is also called public key cryptography.

One efficient method developed in 1978 by a group at

MIT is the RSA algorithm named after the authors Rivest,

Shamir, and Adleman. The RSA algorithm uses the prod-

uct of very large prime numbers to generate the public

and private keys. In order to decrypt a cipher, an intruder

knows the public key but has to calculate the private key

by factorizing the public key. However, factorization of

very large numbers is not trivial (for example, for a 200-

digit public key, a billion years of computational time is

required to calculate the private key). This makes the RSA

algorithm very secure.

2. Authentication Protocols and Digital Signatures

Authentication protocols can be based on shared secret

key, public key, key distribution center, or the Kerberos

protocol. The protocol based on shared secret key requires

users A and B to share a secret key in order to use the

protocol. The protocol consists of five message exchanges.

A first sends a communication initiation message to B. B

does not know whether this message is from A or from

an intruder, so B sends a very large random number to A.

To prove its identity, A then will encrypt the number with

the shared secret key and return it to B. B will decrypt

the message to obtain the original number back. Because

only A and B know the secret key, B now knows that the

message is coming from A. Next, A sends a challenge

(large random number) to B, B encrypts the number with

the secret key and sends it back to A, and A decrypts the

number to find out whether the message actually came

from B. After this, the real communication can start. A

problem with the secret key authentication is the secure

distribution of the secret key.

The public key authentication protocol uses two keys

per node, a public key for encryption and a private key

for decryption. Everybody has access to the public key

of a node, while the private key is secret. During authen-

tication, random numbers are generated and exchanged,

similar to the shared secret key protocol. The only differ-

ence is that the public key of the receiving node is used

by the sending node to encrypt the random number, while

the secret key of the receiving node is used to decrypt the

received number. A disadvantage of this protocol is the

non-trivial distribution of the public keys.

Another authentication method uses trusted key distri-

bution centers (KDC). Each user has only one key that is

shared with the distribution center. Whenever A wants to

communicate with B, it generates a session key, encrypts

the key with its own secret key, and sends it to the distri-

bution center. The center knows A’s secret key and is able

to decrypt the session key. It then encrypts the session key

with B’s secret key and sends it to B, which is able to de-

crypt the session key again. The session key is then used

for secure communication between A and B. To avoid re-

play attacks where intruders copy messages and resend

them at a later time, time stamps or unique numbers are

included in the messages to detect the message resending.

The Kerberos authentication protocol consists of a set

of two additional servers, the authentication server (AS)

and the ticket-granting server (TGS). The AS is similar to

a key distribution center in that it shares a secret key with

each user. To start a communication between users A and

B, A contacts the AS. The server will send back a session

key KS and a TGS ticket to A, both encrypted with A’s

secret key. The TGS ticket can later be used as proof that

the sender is really A whenever A requests another ticket

from the TGS server. A sends the request to communi-

cate with B to the TGS. This request contains KS and the

TGS ticket that A received from the AS. This ticket was

encrypted by the AS using a secret TGS key. By decrypt-

ing the ticket, the TGS is therefore able to validate that
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it is communicating with user A. The TGS then cre-

ates a session key KAB for the A/B communication and

sends two versions back to A: one version encrypted

with KS and one version encrypted with B’s secret key.

A decrypts the first version by using its session key

to obtain KAB. It then sends the second version to B,

which is also able to decrypt KAB. Now A and B both

have the same secret session key KAB to start a secure

communication.

Authentication protocols authenticate users only. In

many applications, such as financial transactions or e-

commerce, messages themselves have to be authenticated

as well. Digital signatures were therefore introduced. Dig-

ital signatures are used to verify the identity of the sender,

to protect against repudiation of the message by the sender

later on, and to detect if a receiver has concocted a mes-

sage himself. In general, any public key authentication

algorithm can be used to produce digital signatures. For

example, if user A wants to send a message with a signa-

ture to user B, A first generates the signature (by applying

a cryptographic function such as a hash function to the

message) and encrypts it with his private key and then

with B’s public key as shown in Fig. 5. After receiving

the message and the signature, user B will decrypt the sig-

nature first with his private key and then with A’s public

key. After decrypting the actual message, B can generate a

message signature and can compare it with the decrypted

signature to verify the message and its sender. The Dig-

ital Signature Standard (DSS) introduced in 1991 uses a

similar mechanism.

3. Firewalls

A firewall is a device barrier between a secure intranet

and the outside world (e.g., the Internet). Firewalls are

typically implemented as “screening routers.” A screen-

ing router is a router or gateway that examines the incom-

ing/outgoing traffic and selectively routes packets based

on various criteria. A firewall may range from imperme-

able (allowing little or no traffic in or out) to porous (al-

lowing most or all traffic in or out). For example, a typ-

ical screening router may block inbound traffic traveling

on any TCP/IP port except port 80 (generally used for

WWW services). An “absolute” protection against flood-

ing the intranet of packets from an external host, called

denial-of-service attack, can be achieved by forbidding

any inbound traffic but allowing outbound traffic. Given

that some other security measures exist in the network and

that users will want to use the network to share and ex-

change data, this measure is extreme in most cases. Some

firewalls have the ability to provide dynamic port selec-

tion. This is helpful in cases when the ports are speci-

fied during the transmission. A second common type of

firewall is a proxy-based firewall. Proxy, in general, is a

process/computer situated between a client and a server.

When a client sends a request to a server, or vice versa,

the request is actually sent to the proxy, and the proxy

passes the request to the server. These proxies can help

to enforce security policies by examining the packets and

dynamically deciding which packets to forward and which

packets to drop. Proxies have to understand the application

layer protocol used (e.g., HTTP, Telnet, FTP). Firewalls

add a layer of protection to the whole network connected

to it. Depending upon the setup of the firewall, it can be

used for prevention (stop the traffic in particular direc-

tion and port), protection, and recovery. Protection can

be implemented by analyzing the traffic streams. If the

traffic behavior deviates from the normal/anticipated be-

havior, the traffic source can be localized, and access for

this host can be prevented. Recording of traffic informa-

tion and data transmitted is possible at a firewall and can

be later used for recovery. Although firewalls are useful

for protection from external users, they cannot protect the

system from malicious internal users. Another vulnera-

bility of firewalls is the use of mobile codes or tunneling

techniques. While the inspected packets look innocent to

the firewall, they might carry programs threatening the se-

curity of the system. Thus, firewalls should always be used

together with security support services available inside the

intranet.

VIII. QUALITY OF SERVICE IN
COMPUTER NETWORKS

Many applications such as multimedia need some network

guarantees to deliver a certain level of quality independent

of the current or future network state. For example, to de-

liver a high-quality video, the network should provide a

video connection with a guaranteed bandwidth of, e.g.,

4 Mbps. Thus, a network should provide a certain level

of quality of service (QoS). QoS is characterized by QoS

parameters such as bandwidth, delay, and delay jitter. The

user/application negotiates a QoS contract with the net-

work by specifying QoS parameters that the network will

guarantee during the lifetime of a connection.

In ATM networks, QoS guarantees are explicitly in-

cluded through resource reservation, while IP networks

are best-effort networks without any QoS guarantees. To

enable QoS in IP networks such as the Internet, QoS mech-

anisms were introduced in IP. The two most important ones

are Integrated Services (IntServ) and Differentiated Ser-

vices (DiffServ). IntServ provides two different classes of

services over the Internet: (1) the guaranteed service and

(2) the controlled-load service. The guaranteed service

class guarantees bandwidth and delay requirements for

a connection. This service can be used for real-time au-

dio/video connections with hard delay requirements. The
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FIGURE 5 Example of public key encryption and digital signature. A sends B an encrypted message signed with

A’s digital signature. B decrypts the message and the signature and checks if the signature corresponds to the right

message and right person.

controlled-load service class does not guarantee anything

but tries to minimize packet loss and delay of a connec-

tion. This service can be used for adaptive audio/video

applications.

IntServ relies on resource reservation and uses the re-

source reservation protocol (RSVP). RSVP is a signaling

protocol that supports IP Multicast and permits receiver-

driven resource reservation of an IP packet flow without

establishing an explicit connection. To accomplish this,

special RSVP routers are needed. The main problem with

RSVP is that its applicability and scalability over large

networks such as the Internet are limited. Because RSVP
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implements per-flow resource reservation, it requires very

large state tables to be maintained in the core network

routers, which limits its scalability.

The current approach for supporting IP QoS is differ-

entiated services. Instead of reserving resources for each

individual flow, DiffServ classifies these flows at the net-

work edge and applies a per-class service in the network.

Each service class is associated with a per-hop behav-

ior (PHB) in the network. Networks supporting DiffServ

therefore need two kinds of routers: boundary routers at

the edge of the network that classify and shape/police in-

coming traffic and interior routers that apply PHBs to the

different classes. Currently, three classes are supported:

(1) best effort (regular IP traffic), (2) expedited forward-

ing (EF), and (3) assured forwarding (AF). The EF service

supports low loss, low delay, and low delay jitter connec-

tions with a guaranteed peak bandwidth. EF emulates a

point-to-point virtual leased line. The AF service defines

four relative classes of service with each service support-

ing three levels of packet drop precedence. If a router en-

counters congestion, packets with higher drop precedence

will be dropped ahead of those with a lower precedence.

No specific bandwidth or delay constraints are defined for

the different AF classes. EF and AF services are imple-

mented through internal router queue management and

scheduling such as random early detection and weighted

fair queuing.

IX. TRENDS

The backbones of today’s networks are telephone lines,

coaxial cables, and optical fibers. This is going to change

with the growing number of cell phones (predicted to out-

number PCs by 2005) that will result in more people being

connected to the Internet via wireless than wired connec-

tions by 2008. The cell phone manufacturers are adopting

new protocols for wireless communications. The current

lack of interoperability (European cell phones do not work

in the United States and vice versa) and the low bandwidth

of current wireless connections are going to be changed

by the new cell phone standard 3G (third generation). By

2004, 3G promises to bring interoperability, increase the

bandwidth, and drop the average cost of making a cell

phone call. The bandwidth predictions are for 144-Kbps

access for automobile passengers and for up to 2-Mbps

connectivity for stationary users for as low as 2 cents per

minute. This will allow home users to receive high-quality

movies and business travelers on the road to receive their

multimedia e-mail. The future ubiquitous Internet (Ubi-

Net) may evolve into a network of networks, all running

IP over a combination or wired and wireless networks, and

might be a reality by as early as 2008.
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I. Introduction
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IV. Microcomputer-Based Systems Design

GLOSSARY

Central processing unit (CPU) Unit of a computer that

includes the circuits controlling the interpretation and

execution of instructions. The CPU of a computer sys-

tem contains main storage, arithmetic unit, control reg-

isters, and scratch-pad memory.

Input/output (I/O) ports A typical input/output port

consists of an 8-bit latch with tristate output buffers,

along with control and device-selection logic.

Memory One of the three basic components of a com-

puter. Memory stores information in binary form.

Various types of memory are disk, drum, semiconduc-

tor, magnetic core, charge-coupled devices, bubble do-

main, etc.

Microinstructions/microprograms The execution of an

instruction involves a sequence of information transfers

from one register in the processor to another. A machine

or computer instruction is made up of a number of these

transfers, which can be likened to a program, and hence,

the term for individual steps is microinstruction and the

sequence of steps a microprogram.

Microprocessor Semiconductor central processing unit,

consisting of the arithmetic logic unit and the control

logic unit. The elements of the microprocessor are fre-

quently contained on a single chip.

Microprocessing unit (MFIU) Main constituent of the

hardware of the microcomputer, consisting of the

microprocessor, the main memory (composed of

read/write and read-only memory), the input/output in-

terface devices, and the clock circuit.

MICROCOMPUTER DESIGN involves microcomputer

hardware design and microcomputer software design. The

former includes microcomputer memory design, micro-

computer input/output design, and timing of microcom-

puter components. The latter includes the development

and operation of microcomputer programs of machine,

assembly, and high-level programming languages.

I. INTRODUCTION

The development of the microcomputer during the 1970s

brought about a revolution in engineering design. The in-

dustrial revolution at the turn of the 19th century heralded

the development of machines that could replace physical
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drudgery by mechanical means. Apart from a few excep-

tions, however, these machines required manual supervi-

sion, because the problem of controlling this mechani-

cal power was not at all straightforward. Many types of

automatic control system have appeared during the 20th

century, based upon electric, mechanical, hydraulic, and

fluidic principles. In each case the design techniques have

been similar because each component of the system usu-

ally contributes a single well-defined function to the sys-

tem’s behavior. The microcomputer represents a funda-

mentally different approach to the design of a system. Its

physical form is quite simple and reliable, consisting of a

few general-purpose elements that can be programmed to

make the system function as required. It is the controlling

program that must be designed to give the system the re-

quired behavior, and that will contain “components” and

“subassemblies” just like any other kind of engineering.

The program, or software, is just as much a part of the engi-

neered system as the physical hardware, but it is much less

susceptible to failure, provided that it is designed prop-

erly. This new method uses a microprocessor containing

a microprogrammed read-only memory (ROM). The mi-

croprocessor replaces hard-wired logic by storing program

sequences in the ROM, rather than implementing these se-

quences with gates, flip-flops, counters, and so on. It can

be said that 8–16 bits of ROM is the logical equivalent of

a single gate. Assuming that on the average an integrated

circuit (IC) contains 10 gates, the number of ICs that are

replaced by a single ROM is as follows:

ROM memory

sized bits Gates replaced ICs replaced

2048 128–256 13–25

4096 256–512 25–50

8192 512–1024 50–100

16,384 1024–2048 100–200

32,768 2048–4096 200–400

This method has the following advantages over the con-

ventional hardware logic:

1. Manufacturing costs of products can be significantly

reduced.

2. Products can get to the market faster, providing a

company with the opportunity to increase product sales

and market share.

3. Product capability is enhanced, allowing manufac-

turers to provide customers with better products, which

can frequently command a higher price in the marketplace.

4. Development costs and time are reduced.

5. Product reliability is increased, which leads to a cor-

responding reduction in both service and warranty costs.

Before introducing this new method, let us com-

pare three information-handling systems: the conventional

computer system, the person–calculator system. and the

microprogrammed computer system, by which the gen-

eral structure and the operation of a microcomputer is

described.

II. FROM COMPUTER TO
MICROCOMPUTER

A typical digital computer consists of the following three

parts:

1. A central processor unit (CPU)

2. A memory

3. Input/output (I/O) ports

The CPU contains two major parts: an arithmetic/logic

unit (which is often simply referred to as the ALU) and

a control unit. A block diagram showing these basic ele-

ments and the organization of a digital computer is shown

in Fig. 1. The memory is composed of storage space for

a large number of “words,” with each storage space iden-

tified by a unique “address.” The word stored at a given

address might be either computational data or a machine

directive (such as add, or read from memory). Two tempo-

rary store registers, each capable of containing one word,

complete our memory. These registers are designated as

memory address register (MAR) and memory data register

(MDR). The MAR contains the binary representation of

the address where information is to be read from memory

or written (stored) into memory, and the MDR contains

the data being exchanged with memory.

Based on its usage. a memory may be referred to as a

program memory or a data memory. The program memory

CPU

ALU

� Data

� Control

Control

Input

Output

Memory

FIGURE 1 Basic elements of a digital computer.
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serves primarily as a place to store instructions, the coded

pieces of data that direct the activities of the CPU. A group

of logically related instructions stored in memory is re-

ferred to as a program. The CPU “reads” each instruction

from memory in a logically determinate sequence and uses

it to initiate processing actions. If the program structure is

coherent and logical, processing produces intelligible and

useful results. The data memory is used to store the data

to be manipulated. The CPU can access any data stored in

memory, but often the memory is not large enough to store

the entire data bank required for a particular application.

The program can be resolved by providing the computer

with one or more input ports. The CPU can address these

ports and input the data contained there. The addition of

input ports enables the computer to receive the informa-

tion from external equipment (such as a paper tape reader)

at high rates of speed and in large volumes.

Almost any computer requires one or more output ports

that permit the CPU to communicate the result of its pro-

cessing to the outside word. The output may go to a dis-

play, for use by a human operator; to a peripheral device

that produces “hard copy,” such as a line printer; or to a

peripheral storage device, such as a magnetic tape unit;

or the output may constitute process control signals that

direct the operations of another system, such as an auto-

mated assembly line. Like input ports, output ports are

addressable. The input and output ports together permit

the processor to interact with the outside world. Data ex-

changes take place with external or peripheral devices via

an I/O register.

The CPU unifies the system. It controls the functions

performed by the other components. The CPU must be

able to fetch instructions from memory, decode their bi-

nary contents, and execute them. It must also be able to

reference memory and I/O ports as necessary in the ex-

ecution of instructions. In addition, the CPU should be

able to recognize and respond to certain external control

signals, such as INTERRUPT and STOP requests. The

functional units within a CPU that enable it to perform

these functions are described below.

A. Registers

Registers are temporary storage units within the CPU.

Some registers, such as the program counter and instruc-

tion register, have dedicated uses. Other registers, such as

the accumulator, are used for more general purposes.

B. Accumulator

The accumulator usually stores one of the operands to

be manipulated by the ALU. A typical instruction might

direct the ALU to add (or to perform similar logical opera-

tions upon, e.g., OR) the contents of some other register to

the contents of the accumulator and store the result in the

accumulator. In general, the accumulator is both a source

(operand) and destination (result) register. Often a CPU

will include a number of additional general-purpose reg-

isters that can be used to store operands or intermediate

“scratch-pad” data.

C. Program Counter (Jumps, Subroutines,

and the Stack)

The instructions that make up a program are stored in

the system’s memory. The central processor examines the

contents of the memory to determine what action is appro-

priate. This means that the processor must know which lo-

cation contains the next instruction. Each of the locations

in memory is numbered, to distinguish it from all other

locations in memory. The number that identifies a mem-

ory location is called its address. The processor maintains

a counter that contains the address of the next program

instruction. This register is called the program counter.

The processor updates the program counter by adding

“1” to the counter each time it fetches an instruction,

so that the program counter is always current. The pro-

grammer therefore stores his instructions in numerically

adjacent addresses, so that the lower addresses contain the

first instructions to be executed and the higher addresses

contain later instructions. The only time the programmer

may violate this sequential rule is when the last instruction

in one block of memory is a jump instruction to another

block of memory. A jump instruction contains the address

of the instruction that is to follow it. The next instruction

may be stored in any memory location, as long as the pro-

grammed jump specifies the correct address. During the

execution of a jump instruction, the processor replaces the

contents of its program counter with the address embodied

in the jump. Thus the logical continuity of the program is

maintained.

A special kind of program jump occurs when the stored

program accesses or “branches” to a subroutine. In this

kind of jump, the processor is logically required to “re-

member” the contents of the program counter at the time

that the jump occurs. This enables the processor to resume

execution of the main program when it is finished with the

last instruction of the subroutine. A subroutine is a pro-

gram within a program. Usually it is a general-purpose

set of instructions that must be executed repeatedly in

the course of a main program. Routines that calculate

the square, the sine, or the logarithm of a program vari-

able are good examples of the functions often written as

subroutines. Other examples might be programs designed

for inputting or outputting data to a particular peripheral

device.
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The processor has a special way of handling sub-

routines, in order to ensure an orderly return to the

main program. When the processor receives a jump to

subroutine instruction, it increments the program counter

and stores the counter’s contents in a register memory

area known as the stack. The stack thus saves the address

of the instruction to be executed after the subroutine is

completed. Then the processor stores the address spec-

ified in the subroutine jump in its program counter. The

next instruction fetched will therefore be the first step of

the subroutine. The last instruction in any subroutine is a

branch back. Such an instruction need specify no address.

When the processor fetches a branch-back instruction,

it simply replaces the current contents of the program

counter with the address on the top of the stack. This

causes the processor to resume execution of the program

at the point immediately following the original branch.

Subroutines are often nested; that is, one subroutine

will sometimes call a second subroutine. The second may

call a third, and so on. This is perfectly acceptable, as

long as the processor has enough capacity to store the

necessary return addresses, and the logical provision for

doing so. In other words, the maximum depth of nesting is

determined by the depth of the stack itself. If the stack has

space for storing three return addresses, then three levels

of subroutines may be accommodated. Processors have

different ways of maintaining stacks. Most have facilities

for the storage of return addresses built into the processor

itself. The integral stack is usually more efficient, since

fewer steps are involved in the execution of a call or a

return.

D. Instruction Register and Decoder

Every computer has a word length that is characteristic

of that machine. A computer’s word length is usually de-

termined by the size of its internal storage elements and

interconnecting paths (referred to as buses), for example,

a computer whose registers and buses can store and trans-

fer 8 to 32 bits. The characteristic 8-bit field is referred

to as a byte. Each operation that the processor can per-

form is identified by a unique binary number known as

an instruction code or operation code (OP code). An 8-bit

word used as an instruction code can distinguish among

256 alternative actions, more than adequate for most

processors.

The processor fetches an instruction in two distinct op-

erations. In the first, it transmits the address in its program

counter to the memory. In the second, the memory returns

the addressed byte to the processor. The CPU stores this

instruction byte in a register known as the instruction reg-

ister and uses it to direct activities during the remainder

of the instruction execution. The mechanism by which

the processor translates an instruction code into specific

processing actions requires more elaboration than we can

afford here. The concept, however, will be intuitively clear

to any experienced logic designer. The 8 bits stored in the

instruction register can be decoded and used to selectively

activate one of a number of output lines, in this case up to

256 lines. Each line represents a set of activities associ-

ated with execution of a particular instruction code. The

enabled line can be combined coincidentally with selected

timing pulses, to develop electrical signals that can then

be used to initiate specific actions. This translation of code

into action is performed by the instruction decoder and by

the associated control circuitry.

An 8-bit field is more than sufficient, in most cases,

to specify a particular processing action. There are times,

however, when execution of the instruction code requires

more information than 8 bits can convey. One example of

this is when the instruction references a memory location.

The basic instruction code identifies the operation to be

performed, but it cannot also specify the object address. In

a case such as this, a two-word instruction must be used.

Successive instruction bytes are stored in sequentially ad-

jacent memory locations, and the processor performs two

fetches in succession to obtain the full instruction. The

first byte retrieved from memory is placed in the proces-

sor’s instruction register, and the second byte is placed in

temporary storage, as appropriate. When the entire instruc-

tion is fetched, the processor can proceed to the execution

phase.

E. Address Register(s)

A CPU may use a register or register pair to temporarily

store the address of a memory location that is to be ac-

cessed for data. If the address register is programmable

(i.e., if there are instructions that allow the programmer to

alter the contents of the register), the program can “build”

an address in the address register prior to executing a mem-

ory reference instruction (i.e., an instruction that reads data

from memory, writes data to memory, or operates on data

stored in memory).

F. Arithmetic/Logic Unit (ALU)

By way of analogy, the ALU may be thought of as a super

adding machine with its keys commanded automatically

by the control signals developed in the instruction decoder

and the control circuitry. This is essentially how the first

stored-program digital computer was conceived. The ALU

naturally bears little resemblance to a desktop adder. The

major difference is that the ALU calculates by creating
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an electrical analogy rather than by mechanical analogy.

Another important difference is that the ALU uses binary

techniques, rather than decimal methods, for representing

and manipulating numbers. In principle, however, it is con-

venient to think of the ALU as an electronically controlled

calculator. The ALU must contain an adder that is capable

of combining the contents of two registers in accordance

with the logic of binary arithmetic. This provision permits

the processor to perform arithmetic manipulations on the

data it obtains from memory and from its other inputs. Us-

ing only the basic adder, a capable programmer can write

routines that will subtract, multiply, and divide, giving

the machine complete arithmetic capabilities. In practice,

however, most ALUs provide other built-in functions, in-

cluding hardware subtraction, Boolean logic operations,

and shift capabilities.

The ALU contains flag bits, which register certain con-

ditions that arise in the course of arithmetic manipulations.

Flags typically include carry and zero. It is possible to pro-

gram jumps that are conditionally dependent on the status

of one or more flags. For example, the program may be

designed to jump to a special routine, if the carry bit is

set following an addition instruction. The presence of a

carry generally indicates an overflow in the accumulator

and sometimes calls for special processing actions.

G. Control Circuitry

The control circuitry is the primary functional unit within

a CPU. Using clock inputs, the control circuitry maintains

the proper sequence of events required for any process-

ing task. After an instruction is fetched and decoded, the

control circuitry issues the appropriate signals (to units

both internal and external to the CPU) for initiating the

proper processing action. Often the control circuitry will

be capable of responding to external signals, such as an in-

terrupt request. An interrupt request will cause the control

circuitry to temporarily interrupt main program execution,

jump to a special routine to service the interrupting device,

then automatically return to the main program. A diagram

of a simplified CPU plus a memory is depicted in Fig. 2.

A sound understanding of these basic operations is a nec-

essary prerequisite to examining the specific operations of

a particular computer.

H. Timing

The activities of the central processor are cyclical. The

processor fetches an instruction, performs the operations

required, fetches the next instruction, and so on. Such an

orderly sequence of events requires timing, and the CPU

therefore contains a free-running oscillator clock, which
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FIGURE 2 Simplified CPU plus memory.

furnishes the reference for all processor actions. The com-

bined fetch and execution of a single instruction is referred

to as a machine cycle. The portion of a cycle identified with

a clearly defined activity is called a phase. And the interval

between pulses of the timing oscillator is referred to as a

clock period. As a general rule, one or more clock periods

are necessary to the completion of a phase, and there are

several phases in a cycle.

I. Instruction Fetch

The first phase(s) of any machine cycle will be dedicated

to fetching the next instruction. The CPU issues a read

operation code and the contents of the program counter

are sent to program memory, which responds by returning

the next instruction word. The first word of the instruction

is placed in the instruction register. If the instruction con-

sists of more than one word, additional cycles are required

to fetch each word of the instruction. When the entire in-

struction is present in the CPU, the program counter is

incremented (in preparation for the next instruction fetch)

and the instruction is decoded. The operation specified in

the instruction will be executed in the remaining phases

of the machine cycle. The instruction may call for a mem-

ory read or write, an input or output, and/or an internal

CPU operation, such as a register-to-register transfer or

an add-registers operation.

J. Memory Read

The instruction fetched may then call for data to be read

from data memory into the CPU. The CPU issues a read

operation code and sends the proper memory address;

memory responds by returning the requested word. The
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data received are placed in the accumulator (not the in-

struction register).

K. Memory Write

A program memory write operation is similar to a read

except for the direction of data flow. The CPU issues a

write operation code, sends the proper memory address,

then sends the data word to be written into the addressed

memory location.

L. Input/Output

Input and output operations are similar to memory read

and write operations, with the exception that a periph-

eral I/O port is addressed instead of a memory location.

The CPU issues the appropriate input or output command,

sends the proper device address, and either receives the

data being input or sends the data to be output. Data can

be input/output in either parallel or serial form. All data

within a digital computer are represented in binary-coded

form. A binary data word consists of a group of bits: Each

bit is either a 1 or a 0. Parallel I/O consists of transferring

all bits in the word at the same time, one bit per line. Serial

I/O consists of transferring one bit at a time on a single

line. Naturally, serial I/O is much slower, but it requires

considerably less hardware than does parallel I/O.

M. Interrupts

Interrupt provisions are included on many central proces-

sors as a means of improving the processor’s efficiency.

Consider the case of a computer that is processing a large

volume of data, portions of which are to be output to a

printer. The CPU can output a byte of data within a sin-

gle machine cycle, but it may take the printer the equiv-

alent of many machine cycles to actually print the char-

acter specified by the data byte. The CPU will have to

remain idle waiting until the printer can accept the next

data byte. If an interrupt capability is implemented on

the computer, the CPU can output a data byte, then re-

turn to data processing. When the printer is ready to ac-

cept the next data byte, it can request an interrupt. When

the CPU acknowledges the interrupt, it suspends main-

program execution and automatically branches to a rou-

tine that will output the next data byte. After the byte is

output, the CPU continues with main program execution.

Note that this is, in principle, quite similar to a subroutine

call, except that the jump is initiated externally rather than

by the program. More complex interrupt structures are

possible, in which several interrupting devices share the

same processor. Interruptive processing is an important

feature that enables maximum utilization of a processor’s

capacity.

N. The Person–Calculator System

Having introduced the structure and operations of a digital

computer, we now turn to another information-processing

system, the person–calculator system. This system has all

the “functional parts” that a digital computer has. The

person’s fingers represent the input; his or her eyes, cou-

pled with the calculator’s output, represent the output; the

brain is the control element, while the calculator electron-

ics function as the ALU; and the brain also serves as the

memory.

Let us examine the sequence of events that occur when

our person-calculator solves the problem 2 + 3 =?:

1. Brain accesses first number to be added, a 2.

2. Brain orders hand to depress 2 key.

3. Brain identifies addition operation.

4. Brain orders hand to depress + key.

5. Brain accesses second number to be added, a 3.

6. Brain determines that all necessary information has

been provided and signals the ALU to complete

computation by ordering hand to depress = key.

7. ALU (calculator) makes computation.

8. ALU displays result on readout.

9. Eyes signal brain; brain recognizes this number as the

result of the specified calculation.

10. Brain stores result, 5, in a location, which it

appropriately identifies to itself to facilitate later

recall.

Now let us see how a digital computer solves this prob-

lem without having any human intervention. The task in-

volved in solving this problem may be described as fol-

lows: “Read in a number from the I/O. Store it in memory

location 10. Read in another number from the I/O. Store

it in memory location 11. Add the two numbers together.

Store the result in the memory location 12, print out the

output, and halt.”

A “program” has been written to execute this task and

is stored in consecutive memory locations beginning at

0. The program, written in an artificial symbolic “lan-

guage,” is shown in Table I. Suppose that our machine

is an 8-bit word machine. Each instruction is described

by one word. Half of it (4 bits) is used for describing the

operation code (OP code) and the other half (4 bits) for

describing the address (ADDR). Address would be longer

in actual design; so would the OP code. The preceding

sample problem, for example, involves five distinct oper-

ations: CLEAR, INPUT, STORE, ADD, and HALT. They
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TABLE I Program

Memory location Instruction (contents)

0 Input to accumulator.

1 Store accumulator at location 10.

2 Input to accumulator.

3 Store accumulator at location 11.

4 Add accumulator at location 10.

5 Store accumulator at location 12.

6 Display accumulator to I/O.

7 Halt.

are usually abbreviated by three-letter words and coded in

binary codes. For example:

Operation OP code Meaning

INP 0100 Input a number from 1/0 device I (0001)

into the accumulator.

STR 0110 Store the number in the accumulator

to a memory location.

ADD 0101 Add the number in a memory location

to the number in the accumulator.

DSP 0111 Display the number in the accumulator

on 1/0 device 1.

HLT 0001 Stop operation.

With these OP codes, one can rewrite the program in

Table I in a binary coded form as shown in Table II. The op-

eration is complete! No human intervention is required—

all operations are automatic.

All computers (processors, CPUs, etc.) operate in a sim-

ilar manner, regardless of their size or intended purpose.

It must be emphasized that many variations are possi-

ble within this basic architectural framework. More com-

mon variations include highly sophisticated I/O structures

TABLE II Program in Table I Described in Binary

Code

Instruction(contents)

Memory location OP code (OPR) ADDR (OPA)

0000 0100 0001

0001 0110 1010

0010 0100 0001

0011 0110 1011

0100 0101 1010

0101 0110 1100

0110 0111 0001

0111 0001 —

(some of which have direct and/or autonomous commu-

nication with memory), multiple accumulators for pro-

gramming flexibility, index registers that allow a memory

address to be modified by a computed value, multilevel

interrupt capability, and on and on.

One of the most exciting architectural concepts in the

early 1970s was that of microprogrammed control. A mi-

croprogrammed computer differs from the classical ma-

chine in the control unit implementation. The classical

machine has for its control unit an assemblage of logic

elements (gates, counters, flip-flops, etc.) interconnected

to realize certain combinatorial and sequential Boolean

equations. On the other hand, a microprogrammed ma-

chine utilizes the concept of a “computer within a com-

puter.” That is, the control unit has all the functional ele-

ments that comprise a classical computer, including ROM.

This microprogrammed control unit is called a micropro-

cessor. The purpose of this “inner computer,” which is

not apparent to the user, is to execute the user’s program

instructions by executing a series of its own microinstruc-

tions, thereby controlling data transfers and all functions

from computed results. Herein lies the key distinction: the

control signals, and hence the very “personality” of the

computer, are controlled by computed results. The impli-

cation is immediately obvious—by simply changing the

stored microprogram that generates the control signals,

we may alter the entire completion of the computer. By

altering a few words stored in the ROM, we can cause our

computer to behave in an entirely new fashion—to exe-

cute a completely different set of instructions, to emulate

other computers, to tailor itself to a specified application.

It is this capability for “custom tailoring” that allows such

a machine to be optimized for a given us. By so extract-

ing the utmost measure of efficiency, a microprogram-

controlled machine is more reliable, less costly, and eas-

ier to adapt to any given situation. Any computer that uses

a microprocessor as its main processor is considered a

microcomputer. A microcomputer is generally used for a

dedicated task as part of a system.

III. EIGHT-BIT, 16-BIT, 32-BIT, AND 64-BIT
MICROPROCESSORS AND
MICROCOMPUTERS

Since their inception, digital computers have continuously

become more efficient, expanding into new applications

with each major technological improvement. A time chart

of computer technology is shown in Fig. 3. The advent of

minicomputers enabled the inclusion of digital computers

as a permanent part of various process control systems.

Unfortunately, the size and cost of minicomputers in ded-

icated applications has limited their use.
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The microprocessor age began when integrated circuit

technology had advanced enough to put all of the neces-

sary functions of a CPU into a single IC device. Since

that time, the advancement of microprocessors has paral-

leled the advancement in microelectronic technology and

the ability to include more and more logic on a single IC

surface. Although the cost of a microprocessor increases

with its complexity, it is much lower than the cost of the

equivalent logic scattered over several less capable ICs. In

addition to reducing the number of ICs needed to perform

a given function, the total number of pins is reduced, and

thus the assembly costs are decreased.

As microelectronics fabrication techniques have im-

proved from the LSI level to the VLSI level, micropro-

cessors have advanced from having four data lines and

12 address lines, four of which were also the four data

lines, to 16 data lines and 20–24 independent address lines.

The former were good only for constructing calculators

and simple controllers; the latter can be used as CPUs

in sophisticated general-purpose computers that rival the

medium to large computers. The 16-bit single-chip micro-

processors accommodate up to 24 megabytes of memory

and include both multiprogramming and multiprocessing

features. The latest 32-bit single-chip microprocessors,

which can accommodate up to 4 gigabytes of memory, are

designed for applications in graphics, workstations, paral-

lel processing, multiuser systems, and real-time systems.

To accompany these advanced processors, the IC manu-

facturers are also improving the variety and complexity of

supporting interface, bus logic, and memory devices.

In the early 1970s, Intel succeeded in its manufacturing

of 4-bit single-chip microprocessors 4004 and 4040 and

their associated 4000 series chips. From 1974 to 1977, this

family has expanded from the 4-bit microprocessor to the

8-bit 8008, 8080, and 8085 and their derivatives and sup-

porting devices. During the same period, many other 8-bit

microprocessors with different architectures and design,

and using different semiconductor technology—for ex-

ample, Motorola’s MC6800, Zilog’s Z-80, Mostek’s 6502,

and National Semiconductor’s IMP8—were also available

to the user. Beginning in 1979, 16-bit microprocessor se-

ries, such as 8086/8088, MC68000, LSI- II, and T19900,

became available. These machines have more circuitry,

higher speed, and more instructions and supporting system

software than their predecessors, and thus provide more

flexible computation power, power that is particularly

useful when designing complex microcomputer systems.

The latest 32-bit microprocessors from AT&T (WE32100

family), Intel (80X86 family), Motorola (68KC fam-

ily), National (NS32332 family), Zilog (Z80000 family),

and Advanced Micro Devices (AM29325 family) provide

minicomputer performance in a desktop package.

The microcomputers (microcontrollers) are designed to

be used in many dedicated systems, such as data- acqui-

sition systems, process-control systems, data-processing

systems, and remote-terminal control systems. There
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is a mushrooming variety of microprocessor applica-

tions. A few of them are special (high-level) language

computers, microprocessor-based instruments, intelligent

CRT (cathode-ray tube) terminals, point-of-sale termi-

nals, computer peripheral controllers, on-board automo-

bile control, control of automation and continuous pro-

cesses, and home entertainment and games.

Generally, microprocessors are evolving into two direc-

tions, performance and integration. The performance di-

rection emphasizes increased and faster processing power

with the ability to store more data. Computers use these

microprocessors as CPUs. The last 64-bit Intel Pentium III

is an example of this type and the general public is

more aware of it because of the popularity of personal

computers. The integration direction emphasizes reduced

chip count. The latest 32-bit Intel 80C251 and Motorola

MC68CH11 microcontrollers are examples of this type.

It is estimated that there are 10 times as many mi-

crocontrollers as general-purpose microprocessors used

in consumer products. This is because microcontrollers

are used in many machines, instruments, and control

applications.

IV. MICROCOMPUTER-BASED
SYSTEMS DESIGN

A. Design Requirements

One problem with the specification of design requirements

is that everyday natural language is not always precise or

unambiguous enough for the purpose. The result of discus-

sions between the engineers and the customers for whom

microcomputer-based systems are developed should be a

document that sets out the agreed requirements for the sys-

tem. The following six requirements for such a document

are recommended.

1. It should specify only external system behavior.

There is no reason why the requirements should specify

internal behavior, and not doing so allows the designers

greater freedom in performing their job.

2. It should specify constraints on the implementation.

The constraints may be physical, such as size or weight, or

otherwise, such as cost or country of origin of components.

3. It should be easy to change. A careful document-

control system is needed to ensure that everyone in-

volved with a project knows the current version of the

requirements.

4. It should serve as a reference tool for those involved

in system maintenance. Understanding exactly what a sys-

tem has to do can be important In trying to find out what

is wrong when it malfunctions!

5. It should record forethought about the life cycle

of the system. This includes the way in which it is to

be designed, implemented, commissioned, manufactured,

tested, and maintained.

6. It should characterize acceptable responses to unde-

sired events. When things go wrong, it should behave in a

predictable (and, one hopes; responsible) way.

B. Design Philosophy

The approach normally taken to the problem of designing

microcomputer-based systems is the so-called top-down

approach. Here the designer breaks down the problem into

smaller and smaller sections, and once it has been analyzed

in enough detail a solution can be proposed to each part of

the problem. The design process proceeds from the overall

general view of the problem into greater and greater detail

until the design has been fully described. The specification

of the subsystem needed to handle each part of the prob-

lem must be carefully written and the interaction between

the subsystems carefully defined. Once all the sections

have been specified, the designer can decide which of the

sections are to be constructed in hardware and which are

to be based on software methods.

C. Hardware Design

Once a system has been specified by its designers, a de-

cision must be made concerning the methods of construc-

tion: In some cases the same function could be performed

using hardware or software. The microcomputer appears

in an enormous range of forms, from single integrated

circuits to boxed units with very considerable comput-

ing power. The designer of a system must also determine

whether the project should use an “off the shelf” computer

or, if some electronic construction is to be undertaken, the

necessary approach. A number of factors must be weighed

when deciding how a system is to be built. Designing a

computer is not a task to be undertaken lightly, and for

this reason it is almost always better to make use of “stan-

dard” equipment wherever possible. For many applica-

tions where only one or a few of a design are going to be

produced, the best solution will be to make use of a boxed

system from a microcomputer manufacturer. A standard

chassis and other subassemblies are available from a num-

ber of manufacturers for each of the widely used standard

sizes of printed circuit board, and this allows a system to

be built up with a suitable mixture of processor, memory,

and input/output for most applications.

In very-large-scale production, another possibility

presents itself: the design of special integrated circuits.

It is quite possible to incorporate special-purpose analog

and/or digital interface circuitry on the same chip as the
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microprocessor, ROM, and RAM. This provides a low-

cost solution for applications such as controlling the fre-

quency of a television set or sensing the temperature within

a microwave oven. In this way the unit cost can be mini-

mized, but the high design cost means that a very large pro-

duction run is needed to make this approach cost effective.

The hardware components must interact to form a com-

posite system, and the exact nature of all these interactions

must be set out in the specification. The precise relation-

ship between the inputs and outputs of each function must

be specified. Once this has been done, hardware must be

bought or built to produce modules that carry out these

functions. This can be done at the level of integrated cir-

cuit components, printed circuit boards, or boxed systems,

depending upon the application.

D. Software Design

Because the software is designed according to the same

top-down principles that are used with the hardware, it

is not surprising that the same need to specify functions

and document their interactions applies to the software.

The software that results from a top-down approach to de-

sign will consist of a main program that consists largely

of calls to subroutines, which will in turn reference other

subroutines, and so on, down to the lowest level of sub-

routines and the instructions or statements that make them

up. Thus the subroutines are the functions that comprise

the overall software, and it is these subroutines that must

first be specified in terms of what they do and how they

interact with the rest of the system.

Each subroutine must be called with the parameters be-

ing presented in a defined way, and the manner in which

any parameters are returned to the calling program must

also be defined. The subroutine will carry out a set of op-

erations on the input parameters to produce the output pa-

rameters. and these operations must be closely specified.

The specification for the subroutine should contain:

1. The name of the subroutine.

2. The number of parameters passed to the subroutine,

the number of parameters returned, and the manner in

which they are passed between the calling program and

the subroutine.

3. The specification of the subroutine, in terms of the

operations that it carries out on the input parameters and

how the output parameters are generated. If the subroutine

handles any input/output functions, then the way in which

these relate to the parameters must be specified.

4. The time taken to carry out its function, and any

restrictions on values of the input parameters. Although

average timings are useful, worst-case timings are needed

because these are used to ensure that there will always be

enough time for all the subroutines to run in the application

envisaged.

5. Any unusual action that the subroutine may take in

the case of an “exception” condition, such as an attempt

to divide by zero, or as the result of being presented with

“illegal” data.

6. The amount of memory used by the subroutine, for

code storage, data storage, and stack usage. Again, worst-

case figures must be specified for the stack usage if this is

variable.

7. The names of any other subroutines that are called

in turn by this subroutine, so that any interaction between

them can be checked.

If subroutines are specified in this way, enough informa-

tion should be available to allow the software designer to

check that there will be enough memory for the subrou-

tines to operate together and there will be enough time

for them all to perform their tasks. The interactions be-

tween the subroutines should only ever take place via the

parameters. If global variables are used that are shared

between two or more subroutines, then this fact should

also be recorded in the specification of the subroutines.

Where possible, the avoidance of global variables makes

for simpler interactions between subroutines and for easier

checking of overall operation.

E. Hardware/Software Trade-Offs

There are two main aspects to the design of a

microcomputer-based system: the hardware and the soft-

ware. It is only after one gets thoroughly into the use and

application of microcomputers that one discovers the real

underlying appeal: Hardware and software are essentially

interchangeable. When a system is being designed, deci-

sions often have to be made as to whether a function can

best be performed using hardware or software. This fact

can be used to bias the economics in favor of whatever

objective you have established.

Software is generally more expensive to implement than

hardware, but it is less expensive to duplicate. Because

of the inherently sequential nature of computer programs,

they are at least an order of magnitude more difficult to de-

sign, test, and debug than conventional electronics. How-

ever, once software has been correctly implemented, the

cost of replicating it is very low in comparison with the

equivalent amount of electronics.

As a general rule, if one is trying to minimize develop-

ment costs, then a generalized microcomputer with sim-

ple software is often the best choice. When production

volumes warrant, however, one must look carefully at
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the hardware/software trade-off to minimize unit repli-

cation costs. This usually means more software and less

hardware.

As an example, consider the problem of counting exter-

nal events that appear to the microcomputer as a series of

pulses from some kind of transducer. If these pulses occur

relatively infrequently, perhaps because of the movement

of a mechanical component in the system, they can be

counted in software by means of a suitable subroutine,

possibly using an interrupt. Each time the count is in-

cremented, a fixed amount of processor time is used, so

that the faster the rate of arrival of pulses, the greater the

proportion of the processor time that is taken up by the

relatively simple operation of counting pulses. Thus, an-

other method must be used to count pulses if the pulse fre-

quency is expected to be high, and this will mean the inclu-

sion of extra electronic hardware to perform the counting

operation. The designer is faced with a choice between

increasing the complexity of the hardware to count the

pulses and increasing the program complexity—and pos-

sibly increasing the problems in debugging the software.

Any function performed by software could in principle be

carried out using hardware, but it is not always possible

to replace hardware with software.
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GLOSSARY

Decoder Circuit capable of deciding from a set of signals

(for example, memory address lines) whether a device

should participate in an operation (for example, a mem-

ory transfer).

Hot plug Capability for a bus to accept I/O devices

to be inserted or removed during operations and be

recognized as such by the software. Common with re-

cent serial buses, it is expensive and seldom supplied

with boards.

Input/output device Any piece of equipment connected

to a processor and used for introducing information

(keyboard, disk) or extracting information (printer,

robot). Often referred to as an I/O device.

Link Data transmission channel, usually implemented as

a set of data, control lines, and ground lines.

Memory Electronic device capable of storing infor-

mation. A set of 10 address lines can access 210
=

1024 = 1 kilo words of data; each word is usually 8,

16, or 32 bits wide.

Plug and play Capability for the processor to recognize

the connected I/O devices and install the corresponding

software drivers at power-up.

Processor Electronic device that processes binary infor-

mation (add, compare, move, etc.) according to instruc-

tions located in a memory. The information is then

transferred from and to I/O devices.

Protocol Set of hardware or software rules used when

transferring information in order to guarantee a correct

handshake and reliable transfers.

MICROCOMPUTERS communicate over telephone

lines and local networks. They transfer information

with peripherals over more dedicated lines. Inside the

microcomputer box, a set of lines called a bus allows for

fast transfer between the microprocessor, the memory,

and the input/output modules.

Standard buses and links have been defined in recent

years for major groups of applications. Their complete

understanding is a specialist’s work. This paper empha-

sizes the principles of addressing and data transfer over

parallel and serial buses. The trend is for smart I/O de-

vices connected on a serial bus such as USB.

I. SINGLE MASTER SYSTEMS

A. Introduction

In any general-purpose computer, workstation, or dedi-

cated controller based on a microprocessor, data transfers

 695



696 Microcomputer Buses and Links

FIGURE 1 Typical computer system.

are continuously being performed between the processor,

the memory, and the input/output (I/O) devices. Frequent

transfers imply a high bandwidth, economically feasible

only for short distances. For distances greater than a few

meters, the cost of the electrical or optical lines forces the

serialization of information.

A typical computer system consists of the processor

(master) and several memory and I/O devices (slaves) in-

terconnected by a set of data and control lines named buses

(Fig. 1). These devices are generally clearly recognizable

when they are connected by a backplane bus (Fig. 12).

They are frequently mixed on a single board computer.

The bus allows bidirectional transfers between a possibly

variable set of devices. The links toward the peripherals

have a simpler structure since they are point to point. Con-

necting several devices on a bus, or transferring data over

long distances, implies solving many electrical problems

correctly and taking care of the propagation time inside

devices and over the transmission lines.

B. Simple Point-to-Point Transfers

All microprocessor systems have a strong hierarchical de-

pendence. The processor (master) reads and writes the

information with each device, which cannot communi-

cate directly. A simple write cycle (Fig. 2a) needs a set of

data lines Di for the information (for example, 8, 16, or

32 bits) and one line for the synchronization (write strobe

WRS). The minimum setup time ts and hold time th of

data with respect to the WRS, as well as the write time

tw, depend on the technology and on the static or dynamic

(edge-triggered) nature of the storage elements.

For a read cycle, in response to the request (read strobe

RDS), the new data is available with an access time ta
(Fig. 2b). Usually, the communication bus is in a neutral

inactive state as long as the selection has not been per-

formed and one can define an activation time ton and a

disable time toff.

Processors perform both read and write cycles. The data

lines Di can be multiplexed if the outputs are three-stated

when not selected. Two separate WRS and RDS lines,

never activated simultaneously, can control the transfer

(Fig. 2c). This solution is preferred by several manufac-

turers and used, for example, on the early IBM-PC bus.

Another solution is to have a single strobe line ST and

a direction line RD/WR (Fig. 2d). When the RD/WR is

active, a pulse on the ST line triggers a write transfer

from the master toward the slave; otherwise, it is a read

cycle.

All of these cycles are known as synchronous, since

the transfer cycle is performed in a given lapse of time

dependent on the strobe duration. If the slave is too slow,

data may be lost; one needs a feedback signal. A first

solution is to activate the signal only when the cycle has to

be slowed down (WAIT signal, Fig. 3a). A better solution,

used on all 32-bit microprocessors, is to wait for a positive

acknowledge, AK, in response to the strobe ST (Fig. 3b). If

the slave is not able to provide the information, a negative

acknowledge, NK (frequently named bus error), must be

generated, either by the slave or by a dedicated circuit.

Signals in Figs. 3 and 4 are active high. They are frequently

inverted (active low) for electrical reasons.

C. Selection

In order to select the devices on a bus, as well as the mem-

ory and I/O registers inside the devices, processors use

a set of address lines Ai, and a selection cycle that ac-

tivates the three-state outputs of only one device on the

bus. The selection cycle can be implemented as a dedi-

cated write cycle, with an address strobe, AS, and an ad-

dress acknowledge, AK, signal. The data strobe, DS, and

data acknowledge, DK, lines synchronize the read or write

data transfer that follows (Fig. 4a). The selection cycle is

frequently identified with the transfer cycle and uses the

same signals, as shown in Fig. 3. The transfer is delayed by

the time the decoder needs to activate the selected device

(Fig. 4b). Data acknowledge frequently anticipates data

valid, assuming how much time the processor will take to

really need the data.

Address and data can be multiplexed. This is slightly

slower and costs address latches, but saves a lot of lines,

especially with 32-bit processors. The address strobe is

frequently named address latch enable, ALE, and directly

controls the address latch (Fig. 5), which is either on the

master board (demultiplexed bus) or on each slave board

(multiplexed bus). The data transfer is continued as before

using, for example, separate RDS and WRS signals.
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FIGURE 2 Simple cyles.

Geographic addressing is very different. Its purpose is

to recognize which board is in a given slot of the bus in

order to establish the memory map of the system and then

correctly address the available resources. Plug and play

(PnP) has been implemented on the old modified ISA bus

by a tricky sequence supported by Windows 95. EISA

and PCI support geographic addressing and make PnP

software simpler.

These transfer protocols are known as asynchronous or

handshaken, that is, bus signals are activated as soon as the

function they express is valid. As a result, a mixture of fast

and slow devices, using both old and new technologies,

can share a bus; bus speed adapts automatically to the

requirements of the devices.

Synchronous buses have a central clock oscillator that

drives a bus signal line to distribute timing information

throughout the system. Pure synchronous systems provide

FIGURE 3 Asynchronous (handshaken) protocols.

one clock period for every operation. Semisynchronous

or clocked operations afford several clocks for an opera-

tion. Figure 6 shows a read operation using the clocked

protocol used on the old Macintosh II Nubus and more re-

cent PCI bus. The rising edge of the clock is the time

when bus signals make their changes. Signals are as-

sumed to be valid, that is, to have successfully propagated

throughout the system, just before the next rising clock

edge.

In a read cycle (Fig. 6a), a signal (Start) marks the

presence of the address and control information on the

multiplexed bus lines. When the slave recognizes its ad-

dress and finds the requested data, it puts the data and

status on the bus and marks their presence with an ac-

knowledge (Ack) signal. A write operation is similar

(Fig. 6b), except that data are supplied by the master at

the next clock after the address and remain on the bus
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FIGURE 4 Addressed transfers.

until the acknowledge and status signals are sent by the

slave.

The clock frequency and bus length must be chosen

so as to allow enough time for signals to flow from any

starting point to every other point well before the end of

the clock cycle, allowing for differences in clock arrival

time as well. Thus, shorter buses can be designed to run

faster. One can notice that the bandwidth of the clock is

twice that of one of the signals. In order to accelerate

data transfers, both edges of the clock signal can be used.

Most recent buses use this scheme, initially proposed by

Rambus for its memory concept, which accepts only burst

transfers on an 8-bit bus at 500 MHz.

D. Special Cycles

Frequently, consecutive memory locations must be trans-

ferred over the bus. Moving the address once and incre-

menting a counter on the memory are more efficient than

sending the address each time, especially if the bus is

multiplexed. Block transfers are supported by the most

FIGURE 5 Multiplexed processor.

complex buses and are available with limitations on the

most recent 32-bit microprocessors.

Reading from many devices simultaneously is called

broadcall. This costs additional bus lines and transfer time

and is not frequently implemented.

Combined cycles are possible. Read–modify–write cy-

cles are interesting in multiprocessor systems. Read-after-

write cycles are never implemented because one has con-

fidence in what has been written.

Finally, split cycles are a way of having only write cy-

cles in the system. In order to read some information,

one writes a read request and waits. The slave interrupts

the master to get its information read, and the process may

continue. This is useful when the slave, for example, a disk

interface, transfers blocks of data and is slow: It would be

inefficient to wait for an acknowledge.

E. Slave Operation

The only initiative left to a slave is to interrupt the mas-

ter and wait to be serviced. This is done by a dedi-

cated line called IntReq; the wired-OR function is re-

quired to drive this line (Fig. 7). In response to the

interrupt, the processor starts an identification proce-

dure that can be software driven (polling), as with sim-

ple microprocessor systems, or can use some additional

hardware.

Hardware identification of the source of interrupt can

be accomplished by

1. The broadcall cycle: Requesting devices activate the

data bus line(s) to which they have been attributed.

2. Proximity addressing: A daisy chain (Fig. 9) al-

lows the requesting device that is the closest to the com-

mander to put an identification word called a vector on

the lines. This vector can be the address of the interrupt-

ing device or the address (direct or preferably indirect)

of the routine that must be executed when servicing the

interrupt.

II. MULTIMASTER OPERATIONS

If several processors must access common resources, such

as memory or I/O over the bus, they start by arbitrating in

the case of a simultaneous request, since only one can use

the resource at a time. A dedicated circuit, the arbiter, must

be implemented and can be centralized or distributed.

A. Central and Distributed Arbiters

The simplest and most reliable way of designing an arbiter

is to build a sequential clocked system that scans all the
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FIGURE 6 Clocked data transfer protocol.

masters in turn and gives the bus to the first one found

having a request. This, however, is slow and therefore

asynchronous arbitrations are attractive.

If there are only two contenders, the scheme of Fig. 8

gives priority to the first one. If they are absolutely

simultaneous, the circuit may hesitate for some time

(metastable state) before giving the priority to one or the

other.

The arbitration process may be distributed along the

bus; this provides a greater flexibility of design and usually

a lower cost, but it is slower. The daisy chain (Fig. 9) is

frequently used; it is a selection scheme that selects the

first requesting device in geographical order depending on

the wiring.

The would-be masters set their requests on the bus, us-

ing a wired-OR scheme. The active master, when finished,

issues a grant pulse that is gated by each master on the

bus. It is clear from the schematic in Fig. 9 that the first

would-be master on the bus will get the pulse and will cut

the chain. Some synchronization is required for correct

operation. With most computer systems, there is often a

permanent master at the beginning of the chain, and the

FIGURE 7 Interrupt bus.

control of the bus is passed back to it by each master when

it is finished.

A more symmetrical scheme is the self-selection arbiter

used in all modern buses (Futurebus P896, EISA, PCI). It

makes use of a set of wired-OR priority lines and compares

the values on the lines with the value that settles on the bus

(Fig. 10). A careful design must take care of propagation

delays.

The comparator is simpler if the priority vectors are not

encoded, that is, if one line is assigned to each master, as

on the SCSI bus. A common request line is activated each

time an arbitration phase starts. As soon as that request

has been recognized, no new priority vector is allowed.

A delay or a clock period signals when the comparison

phase is over in each module; the winning master assigns

a “bus busy” line during the data transfer.

B. Bus Transactions

An access from a processor to a memory via the system

bus requires three different operations, performed in three

consecutive transfer cycles: the bus allocation (or arbitra-

tion), the selection of the register (addressing), and finally

one or more data transfers. These operations can be per-

formed in sequence or overlapped, with different trade-

offs between speed and bus size (Fig. 11). For a given

bus width, one can either allocate different paths to the

different operations in order to allow concurrency or keep

the maximum width with fully sequential operations; the

current trend is toward maximum concurrency, which in

multiprocessor systems is achieved by pipelining opera-

tions from different processors.
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FIGURE 8 Central arbiter for two masters.

C. Multiprocessor Hierarchy

One can consider three general classes of multiprocessor

systems:

1. A centralized multiprocessor, in which one processor

runs the kernel and treats the other as slaves. This proces-

sor has access to the local memory spaces of the slaves.

2. A federalist multiprocessor, in which all processors

own a copy of the kernel and communicate over a shared

memory, using a shared memory space, but also have a

private memory space.

3. An autonomous multiprocessor, in which the pro-

cessors do not share a common address space but commu-

nicate by messages, as in a network.

Modern multiprocessor buses support the federalist

type. They have the following:

FIGURE 9 Daisy chain arbiter.

1. A decentralized arbitration with a fairness strategy,

guaranteeing that every module will receive access to the

bus within a limited time.

2. A decentralized interrupt that allows every module

to send an interrupt to all other modules or to a group of

destinations.

3. A locking mechanism for semaphore operations.

4. An initialization line that allows a defined start-up

of the system (reset-not-complete).

5. A broadcast mechanism that allows implementation

of a replicated global memory and considerably speeds up

the access to share data.

PCI (peripheral component interconnect) is a good ex-

ample of such a bus. It is not as sophisticated as the Fu-

turebus P896, but its adequate set of features has spread

its usage on the PCs and workstations of the late 1990s.

Transfer speed is up to 120 MBytes/s on a 32-bit wide
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FIGURE 10 Self-selection arbitration scheme.

bus with a bus clock of 33 MHz. The 64-bit wide im-

plementation double that speed. Some of the PCI fea-

tures, like handshake, arbitration, and cache coherence,

have the drawback to slow down the transfer cycle. Hence

there is the need for a more direct link between the pro-

cessor and the screen memory. The AGP (accelerated

graphic port), the successor to VESA local bus, is a so-

lution that may also last for several years only. The need

for as high as possible bandwidth between the processor,

the main memory, and the graphic screen memory and

logic, may be better served in the future by a Rambus-like

scheme.

D. Electromechanical Interface

Just putting the information on the bus is not so simple.

Address and data drivers, which isolate and amplify the

signals, are required. Driving a highspeed, well-adapted

bus requires a lot of power because of the low impedance

(below 100 �) of the transmission lines. TTL circuits

have been replaced by special low-voltage swing drivers in

FIGURE 11 Concurrency on the infromation paths.

order to reduce power dissipation. Trapezoidal waveforms

reduce crosstalk between adjacent lines, which are imple-

mented as twisted differential pairs and shielded when

long serial lines are involved. Speeds of up to 1 Gigabit/s

are then possible.

The bus usually looks like a printed circuit board cov-

ered with connectors. Most of the lines are parallel and

run from one connector to the other. Adapting resistors

exist at the line extremities for a correct line termina-

tion. The processor, memory, and I/O board plug into

these connectors and are maintained by a chassis. Indi-

rect connectors are preferred for industrial applications,

but PCs still use direct connectors, which allows for a

reduced board height for the same complexity. Indirect

connectors have up to 5 rows of pins, suitable for wide

buses (many data/address lines) and a dense array of

ground lines in between. The card size depends on the

bus objective; 32-bit buses need a lot of interface cir-

cuitry, and large boards are more efficient. Personal com-

puter buses have narrow boards that are difficult to lay out

(Fig. 12).
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FIGURE 12 Typical board size for standard buses.

E. Software Aspects

A bused system can be configured in many different

ways. For the old solution, the user had to painfully move

jumpers on each card and set long lists of parameters in an

initialization procedure. Now, the system should initialize

itself; this implies some form of geographic addressing

in order to recognize which card is in which slot, plus a

parameter ROM and a programmable address decoder on

each board.

In a multiprocessor system, the reconfiguration in the

case of failure of a processor is a difficult problem. Com-

munications must occur between the masters at a different

level in order to distribute the load and check for the cor-

rect operation. This may be solved with a special control

and status register space (CSR) or with a message-passing

mechanism over the parallel bus or over a dedicated serial

bus. Futurebus+ is the only bus to support the complete

set of these sophisticated features.

III. STANDARD BUSES

A. Classification

It is not possible to explore in a few pages all the solutions

used in the many existing buses and links that more or less

follow the accepted standards. In Fig. 13, going from the

simple point-to-point transfer (Centronics) to the federa-

list multiprocessor, many features have to be added; full

addressing, multiprocessor features, plug and play (which

implies geographic addressing), message passing (that is,

no dependency or interrupt lines), and hot plugs are the

major complexity steps. In Fig. 13, the more complex and

more recently developed buses are at the bottom of the

figure. Performance and complexity are required and bet-

ter handled by the latest technology.

Such an evolution may not continue at the same speed:

Electrical limits are reached and future hardware func-

tions will not improve a lot. Using gate array, special

VLSI circuits, and new connectors to make the bus in-

terface more compact is the only way to lower the price

and improve the bus performance. Optical transmission

may add new possibilities, but it is not suitable for buses

and does not yet seem ready to leave the laboratory. The

evolution is not very fast, because of the need to set

up multivendor standards, develop special VLSI circuits,

and get some return on investment before the next gene-

ration.

Standardization means reducing options and develop-

ing wide acceptance. The dilemma of standardization is

that a general-purpose solution is normally technically

inferior to a specialized solution, so there is always a

reason why one should not follow the standard and in-

stead make one’s own bus. The standardization of several

designs is only justified if they differ from one another

sufficiently.

The instrumentation bus GPIP, or IEEE488 or IEC621,

was initially developed by Hewlett-Packard. A comman-

der assigns one talker and one or several listeners; the

broadcast protocol allows, for example, the sending of in-

formation from data acquisition equipment to both a com-

puter and a recorder. Hundreds of instruments exist for the

8-bit bus, transferring data as fast as 1 Mbyte/s.

The SCSI (small computer system interface) bus was

designed to link one or several disks to a microcomputer

system. Other devices, such as printers or scanners, can

be connected as well. Integrated circuits exist to make

the microprocessor interface very easy. A single 8-bit
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FIGURE 13 Bus classification.

information path is used for arbitration, addressing, and

data transfer.

B. Parallel Links and Buses

A parallel link connects the master processor to an I/O

or memory slave via a set of parallel lines. Centronics

has been used for years for the connection of printers

and scanners, together with the serial RS232 explained

in the next section. Both should disappear soon. PCMCIA

has been defined for portable PCs and uses a 64-pin con-

nector to connect a memory card or a modem, but also

accepts disks and fast video devices. New standards will

be defined for the coming smaller disks and flash memo-

ries, to be used mostly for picture cameras and wearable

computers.

A bus allows connection of several units in a flexible

way. At every instant, a master communicates with usually

one slave at a time. A supervisor is required in multimaster

systems to avoid conflicts, also possible at a higher level

than bus arbitration.

Microprocessor buses have, as previously explained, a

set of lines for address, data, and control. Many micropro-

cessor buses have been defined and standardized for 8-,

16-, 32-, and now 64-bit processors. New features have

been added to support multiprocessor, PnP, and hot plug.

Bus speed cannot progress as fast as processor speed, and

universal buses are no longer used for main memory, but

only for I/O and satellite processors.

The IBM-PC bus was not designed as a bus, but as a

means of connecting cards in the PC. The bus has been

extended to 16 bits on the PC-AT and has been frequently

used in industrial applications. It is a monoprocessor bus

with few dedicated interrupt lines and two DMA channels

available, now standardized under the name ISA (Industry

Standard Architecture). The 32-bit bus extension EISA

accepts ISA boards.

The VMEbus (IEC821, IEEE1014) is broadly used for

industrial applications in its 32-bit extension. The standard

includes an auxiliary parallel bus named VSB, the possi-

bility to use 32-bit processors, and interprocessor commu-

nication primitives, and it reserves two pins for a serial bus
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named VMSbus (IEC823, IEEE1096). Three compliance

levels are defined, with different widths for the address

and data fields. The extended level uses 32-bit data and

address, but requires a second connector.

C. Serial Links and Buses

Data can be transferred one bit at a time, and adequate

protocols permits to distinguish control, address, and data

information. It is easy to convert data from parallel to

serial with a shift register. The clock information may be

transmitted together with the data on two wires or optical

fibers, or on a single one if an adequate modulation is used.

Figure 14 surveys several transfer schemes:

(a) Data and clock, directly compatible with shift

registers

(b) Data and sync, as used on Firewire

(c) Data and clock, as used on 12C/SMBus

(d) Serial data, as used on USB (NRZ “non return do

zero” encoding)

(e) Serial data, as used on RS232 (start and stop bits)

Serial links and buses can also be classified according

to their hardware and software functionality. RS232 was a

FIGURE 14 Serial transfer schemes.

mess of variants until all machines became PC compatible.

RS232 is indeed an improper designation, but it does not

matter when there is no confusion. After too many years

of service, it will disappear soon.

EISA, defined as an extension of the ISA bus of the sec-

ond generation PCs, is replaced by PCI, which offers more

performance and functionality. Bus snooping is required

for maintaining coherence among the many caches on a

multiprocessor system. The next step in a multiprocessor

system is to suppress the interrupts and use an adequate

message passing system. Live insertion (hot plugs) re-

quires special connectors. These features are available on

the highest performance Futurebus+ and Fastbus, which

are used mostly in industry and nuclear research.

Its successor is USB (universal serial bus), which pro-

vides speeds in the range of 1 to 100 megabit/s. All early

2000 PCs and Macs are equipped with 1 Megabit/s (for

mice and keyboards) and 12 Megabit/s (for audio and slow

video). The faster USB version, at 100 Mb/s, competes

with the Firewire 1394 standard, proposed and used for

higher speed up to 400 Megabit/s. Firewire is a multimas-

ter bus on special six-wire cables: two pairs for data and

clock (Fig. 13b) and one pair for power. Firewire is well

suited for interconnecting disks, video cameras, and set-

top boxes, but the interface components are more complex

than those of the USB, and the market is smaller; the re-

sulting higher price may limit the solution to professional

equipment.

USB is not a bus, but a set of addressable PnP links with

a single master. It uses four-line cables, two lines for the

NRZ data on a differential pair (Fig. 13d), and two lines for

the power supply. Providing the power to the peripherals

is a great advance, but implies some power management

scheme. Current is limited to 100 mA when the device is

connected and the PnP sequence is executed. More power

can be attributed by the PC if the device needs it, and if no

other higher priority device is already using the available

power. Hence, if the PC provides 2 amps, about 10 USB

peripherals can be connected, some of them using up to

500 mA of currant, but not all the high-power devices will

be allowed to work together. Cables are short and active

hubs, including a processor, are used to connect additional

peripherals; they recognize whether a plug is connected

or not, and they include power management circuits and

forward the data to the selected peripheral, according to

an address defined at configuration.

The USB protocol transfers a set of packets (a frame) of

up to 1024 bytes of data every millisecond. Some packets,

said to be isochronous, have a fixed length and are guaran-

teed to be repeated for every frame. For instance, a voice

channel will use 64 bits. If there is a transmission error,

there is no repetition. Bulk transfers uses the remaining

bandwidth. If there is a transmission error, the erroneous
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packet will be repeated. This is required for data transfer,

e.g., from a disk.

A much simpler bus also exists inside PCs. The SM-

bus interconnects temperature sensors and switches with

the processor, over two lines (Fig. 13c) in order to save

money since speed is not a requirement. SM-Bus is indeed

almost identical to the I2C bus proposed by Philips to

interconnect the controllers of audio and video consumer

units. A good set of interface circuits is available (calendar

clocks, nonvolatile memories, analog/digital converters,

sensors). Transfer speed is up to 100 kilobit/s and 127 units

can be addressed. Multimaster configurations are possible,

and timing requirements are easy to match.

Other buses are used on industrial machine tools and

inside cars, compatible with longer lines, that is, they use

coaxial cables, twisted pairs, and, for the longer distances,

telephone lines. Can-Bus, Profi-Bus, and Lon are solutions

that will continue to compete. The 220- or 110-V lines

can be modulated at 1 kHz and used for home appliance

control, with extremely low transfer speed (10 bits/s).

D. Comparison

Several authors have succeeded in comparing buses by

listing the main features on a single page. Such charts are

a help when eliminating buses. Selecting one is difficult

and should depend on the following:

1. Technical criteria: Is the design adequate for the ap-

plication (bus size, speed, features)? Will it not be obsolete

soon?

2. Usage criteria: How difficult is it to configure?

Do adequate software primitives, operating systems, and

drivers exist for each board?

3. Commercial criteria: Are the companies and distrib-

utors reliable enough? What are the price and delivery

delays?

4. Production criteria (if own production): Are the com-

ponents available? Is it worth designing and producing?

Selecting a bus forces the selection of a processor, an

operating system, and a group of vendors. It is greatly

influenced by nontechnical aspects, such as a friend’s sys-

tem, company policy, and vendors’ proximity.

IV. FUTURE TRENDS

Parallel buses such as Futurebus+ have a small market

compared to the PC board market. Interconnection of PCs

with fast links is the modern trend to get more power

and more reliability (uninterruptible systems). Inside the

PC, the need for a bus for interconnecting the essential

peripherals has disappeared since the serial, parallel, and

disk ports are available on the processor itself. With USB

and Firewire, the only other need for an extension bus is for

memory access and ultrafast transactions with the graphic

board. New solutions will have to appear over the next 10

years. They will be based on very fast synchronous block

transfers, large caches being available on every device.

The width of the bus will determine the cost of the solution;

128-bit buses will be proposed, but the huge market will

be for bit and byte serial buses.

VLSI and optical transmission will certainly provide

novel approaches. Once a solution has been proposed by

a large manufacturer, more than 5 years will elapse before

an adequate commercial base has been built.
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GLOSSARY

Amdahl’s law The maximum concurrent speedup for a

concurrent algorithm is limited by its sequential com-

ponents. Thus, if the sequential component takes a frac-

tion fseq of the total run time on one node of a con-

current processor, the maximum possible speedup is

1/ fseq.

Architecture The design of the hardware components of

the computer system and the ways in which these com-

ponents interact to produce the complete machine. The

architecture of a concurrent computer includes both de-

tails of the nodes and the topology with which they are

interconnected.

Artificial intelligence A class of problems such as pattern

recognition, decision making, and learning in which

humans are clearly very proficient compared with cur-

rent computers. The definition is imprecise and time

dependent; some include computer algebra, computer

vision, and game playing in this class.

Asynchronous (MlMD) An architecture where each

node of the parallel computer operates independently

with different instruction streams (also “loosely syn-

chronous”).

Cluster computing A type of parallel computing in

which a collection of interconnected standalone com-

puters (typically PCs or workstations) work together as

a single, integrated, computing resource.

Concurrent computer A collection of individual von

Neumann, or sequential, nodes joined together to work

on the same problem. We use “concurrent” and “par-

allel” as synonymous terms in this article. Sometimes

concurrent is used to denote asynchronous and parallel

to denote synchronous or lock-step modes. However,

this distinction is not generally accepted.

Distributed memory The memory of a concurrent pro-

cessor, split into segments, each of which may be di-

rectly accessed by only one node.

Grid computing Computing which uses distributed

hardware and software infrastructure to provide reli-

able, pervasive, and inexpensive access to computa-

tional resources irrespective of their physical location

or access point. This infrastructure is collectively re-

ferred to as “The Grid.”
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Megaflop (Mflop) A megaflop is a rate of computing of

106 floating-point operations per second, and is com-

monly used in measuring the performance of a com-

puter. This performance measure depends intricately

on the application. A gigaflop (Gflop) is a unit of

1000 times a Mflop, and a teraflop (Tflop) is a unit

of 1 million times a Mflop.

Microprocessor A single chip with an area of approxi-

mately 4 cm2 containing the main functions of a com-

puter, including its CPU. In 2001 a microprocessor can

have up to 2 × 108 transistors.

Sequential computer Synonymous with a von Neumann

computer; a “conventional” computer in which only

one node works on a given problem at a time.

Shared memory A memory that is directly accessed by

more than one node of a concurrent processor. This is an

important architectural feature of many supercomputer

designs.

Supercomputer The most powerful available computers;

the typical cost of a single supercomputer is over $20M.

Symmetric multiprocessor A parallel computer with

multiple, similar, interconnected processors controlled

by a single operating system, and with each processor

having equal access to all I/O devices.

Synchronous (SIMD) An architecture where each node

of the parallel computer performs identical instructions

in lock step.

ADVANCES IN TECHNOLOGY have led to dramatic

decreases in size and cost of basic computer components.

These are the building blocks of very powerful parallel

machines designed so that very many (103–106) individ-

ual computers can work together to solve a given problem.

This approach has striking analogies with nature’s and so-

ciety’s approach to problem solving. Use of parallel super-

computers is revolutionizing many fields of science and,

indeed, our way of life.

I. SCIENTIFIC MOTIVATION

Computers have grown in performance, capability, and

usefulness since their origins as mechanical machines in

World War II. This growth is illustrated in Fig. 1. The early

Los Alamos calculations already used parallelism with

several human operators, each with a separate mechanical

machine, working in a pipeline on nuclear simulations. In

this article, we will describe a more sophisticated and en-

tirely electronic form of parallelism with many individual

computers linked together to simulate a single problem.

We will not distinguish between parallel and concurrent

computers, although some experts choose to do so. We

FIGURE 1 The performance of sequential and parallel comput-

ers between the years 1940 and 2000. The small crosses (×)

give the performance of multiprocessor versions of the single-

processor machines below them marked by a filled circle ( �). The

number next to a cross gives the number of processors. For mas-

sively parallel machines ( ❞) the number of processors is given

after the forward slash (/ ) following the name.

will use the term sequential to describe a single individual

computer. A parallel computer consists of many sequen-

tial processors or nodes. Until the mid-1980s, the evolu-

tion of computers was dominated by the development of

sequential computers of ever-increasing power. An early

machine in Fig. 1 capable of little more than one floating-

point (scientific) calculation each second (one “flop” in the

jargon) has become a household microprocessor which, in

2001, can be a factor of 5 × 108 times more powerful (the

1.5-GHz Intel Pentium IV processor).

Before continuing this story, let us note that parallel

computing has been driven by a happy confluence of two

forces. Not only is it technically possible to build more-

powerful computers, but also there are many computa-

tional fields that are hungry for huge increases in computer

performance to be able to complete realistic calculations.

Current and potential uses of supercomputers are illus-

trated in Table I. The supercomputer uses outlined in

Table I are both academically and usually commercially

interesting. Other major fields of interest to industry and

the military are shown in Table II.

II. TECHNICAL MOTIVATION

The driving force for the increase in computer perfor-

mance is the improvement in design and fabrication of
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TABLE I Current and Potential Academic and Commercial

Uses of Supercomputers

Major field Application

Aerodynamics Design of new aircraft

Astrophysics Stellar structure, evolution of galaxies,

stellar and black hole dynamics

Biology Mapping genome, protein folding,

rational drug design

Computer science Simulation of chips and circuits

Chemistry Prediction of reaction and scattering rates,

simulation of reactive flows

Engineering Structural analysis, combustion simulations

Geology and earth Seismic exploration, modeling earth’s

science convection

High energy physics QCD computations

Material science Simulation of new materials

Meterology Accurate weather prediction, severe storm

forecasting

Nuclear physics Weapon simulation

Plamsa physics Fusion reactor simulation

Business Portfolio management, derivative pricing,

transaction analysis

Motion picture Animation, special effects and graphics

production

computer chips. The fabrication improvement leads to de-

creasing feature size of the basic components on a chip.

Currently, this feature size is between 100–200 nm, and

we can expect a further decrease in this linear dimen-

sion to about 70 nm before one enters new regimes. At

smaller feature sizes, issues such as the limited number

of electrons (and corresponding large fluctuations) in-

volved in transitions could become important by leading

to nonreproducible behavior.

This is illustrated in Table III, which shows that the

state-of-the-art microprocessor chip in 1980, the Intel

8086 with 50,000 transistors, increased in complexity by

a factor of 10 in eight years to give the Intel 80386. Since

then chips have increased in complexity by a further fac-

tor of 100, as in the Intel Pentium IV. Further dramatic

increases in complexity are unlikely using conventional

chip technologies. The rapid increase in complexity seen

to date can be quantified in terms of the fraction by which

TABLE II Supercomputer Uses of Interest to Industry and

the Military

Robotics Develop a machine with human capabilities

Space Real-time control of sensors, processing of

satellite data

Signal processing Analysis of data and feature extraction

Defense Tactical and strategic control of nation’s defense,

aiming and avoiding missiles, cracking codes,

analysis of satellite surveillance data

TABLE III Change in number of Transistors in State-of-the-

Art Microprocessor Chips 1980–2005

1980 1988 1989 2001 2005

Transistors per 5 × 104 5 × 105 106 5 × 107 2 × 108

complex chip

Examples 8086 80,386 i860 P IV

Intel

Motorola 68,000 68,030 88,000 G4

technology improvements decrease the feature size, f .

This leads to two sources of performance increase. First,

the area of the system decreases by a factor of f 2. A factor

of 10 decrease in f results in a 100-fold increase in chip

density. Second, the decreased feature size also decreases

switching times inside the chip and hence increases the

clock speed approximately linearly. Thus, we are led to

a cube, f 3, law by which the technology improvement

translates into performance gains.

Over the past two decades, these very large scale in-

tegration (VLSI) improvements fueled the growth of the

personal computer and workstation industry. Mainframe

functionality has moved into microprocessor systems.

This revolution has continued with the integration of com-

puters into the home and the very fabric of society. This

trend has also driven parallel computing. The chip de-

signer has used the technical progress of the early 1990s

to build a full-function computer on a chip. Subsequent

progress has resulted not only in refinements to single-chip

sequential computers—a recent trend has been to use the

increased transistor budget for a chip to replicate a sophis-

ticated computer design within a single chip. Thus, IBM’s

proposed Blue Gene computer will feature chips contain-

ing an array of processor–memory pairs—each essentially

a separate computer. These chips will then be wired into a

3D mesh to create a massively parallel computing system.

This contrasts quite strikingly with the 64 Ncube-1 nodes

shown in Fig. 2. This is part of one of the earliest commer-

cial parallel computers from circa 1987. We see replica-

tion of an individual computer consisting of seven chips—

one integrated microprocessor (enhanced with communi-

cation channels to support parallelism) and six memory

chips. This large printed-circuit board (about 2 ft2) may

soon be shrunk onto a single parallel computer chip.

Parallel computers have revolutionized supercomputing

and dominate the area to the extent that all current super-

computers are parallel computers. The list of the world’s

500 most powerful computers (as of November 2000)

shows that the 5 fastest computers have over 5000 pro-

cessors each. We have to go to position 24 in the list

before finding a supercomputer with fewer than 100 pro-

cessors. Supercomputers are currently exemplified by ma-

chines such as IBM’s ASCI White system, which has 8192
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FIGURE 2 A single 64-node board of the Ncube-1 parallel supercomputer. Sixteen of these boards make up a

complete system.

processors, over 6 Tbytes of memory, and a peak perfor-

mance of over 12 Tflops.

The parallel computing economics of the last decade

has converted increases in chip density to increased perfor-

mance for machines of approximately fixed physical size

and cost. This has led to a factor of 1000 or more increase

in power in that period. Over the next decade, further in-

creases in performance will come from exploiting very

high levels of parallelism, with parallel systems contain-

ing 105–106 processors. The computer science challenge

is to develop methods and software appropriate for such

powerful machines; the computational science challenge

is to use these computers to advance human understanding.

III. NATURE’S PARALLEL COMPUTERS

We can learn quite a bit about the use and design of parallel

computers by studying parallelism in nature and society.

In fact, one can view society or culture as a set of rules

and conventions to allow people to work together, that is,

in parallel, effectively and harmoniously.

A simple illustration is the way we tackle a large project,

say, the construction of the space shuttle. It would be at-

tractive to solve this sequentially by hiring a single super-

man to complete the project. This is prohibited by cur-

rent physical phenomenology; instead one puts together a

team, maybe in this case involving 100,000 “ordinary”

people. These people work in parallel to complete the

shuttle. A parallel computer is quite similar: we might

use 105 digital computers working together to simulate

airflow over a new shuttle design. The key in NASA’s shut-

tle project is the management structure. This becomes, in

the analogy, the issue of computer hardware and software

architecture—a key research area in computer science.

We can illustrate these ideas by the building of a large

wall, perhaps that built by Hadrian to protect the Roman

empire in Britain. This is depicted in Fig. 3a, which shows

N = 8 masons used to build this wall. We assume each ma-

son works at the same rate, an idealization for people, but

valid for the computer analogy. We build the wall quickest

by dividing the wall into eight pieces by vertical sections

of length l. This is called domain decomposition and is the

key idea in parallel computing. At the heart of a computa-

tion is an algorithm or (mathematical) method applied to

a dataset. The dataset could be the earth’s atmosphere and

the algorithms the physics governing its evolution: alterna-

tively, the dataset could be the database records in a bank

and the algorithm the update and querying of this database.

These are illustrated in Fig. 4. Parallelism is achieved by
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FIGURE 3 The bricklaying problem as an analogy to parallel computing: (a) Decomposition, (b) topology, (c) com-

parison of the complete problem and the task performed by a given mason.

dividing a dataset into parts, one part for each computer

(person), and acting in parallel on each part. Now this is

not trivial, as seen in Fig. 3a: each mason can usually lay

bricks quite independently, but there is a complication at

the boundaries where the individual parts join. Here, co-

ordination is needed between the masons. We can analyze

this quantitatively in terms of the speedup S produced by

the N masons:

S(N ) =

Time to solve problem with 1 mason (computer)

Time to solve with N masons
.

(1)

We often use the efficiency ε defined by

S(N ) = εN . (2)

In this case, we can measure the overheads by an overlap

extent loverlap (approximately 1 m) over which horizontal

distance adjacent masons must coordinate their work at

the join between the different regions assigned to them.

We can estimate the efficiency as

1/ε − 1 ∼ const · loverlap/ l, (3a)

or, if L is the total length of the wall,

1/ε − 1 ∼ const · (loverlap/L)N . (3b)
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FIGURE 4 Five decompositions discussed in the text.

We wish to keep S(N ) ∼ N , so efficiency ε ∼ 1: in other

words, the right-hand sides of Eqs. (3a) and (3b) are small.

In Fig. 5, we plot the speedup S(N ) for some reasonable

choices, const · loverlap = 10 m and L = 105 m. We see that

the efficiency is near one, S(N ) ∼ N , if N is less than

about 1000, but as the number of masons increases past

this value, the speedup levels off at 104. This is well known

in society as “too many cooks spoil the broth” and is digni-

fied as “Amdahl’s law” in the computer science literature.

In Fig. 6, we show the measured speedups for a sophisti-

cated astrophysical particle-dynamics simulation. Similar

effects are observed with Np (number of particles) playing

the role that L did in Fig. 5. We see that large problems can

use massively parallel computers (large labor forces): that

is, superproblems are for supercomputers, small problems

are suitable for sequential computers (small labor forces).

The main criterion for the applicability of an application

to parallel processing is not the availability of parallelism

(which is almost always present), but whether the problem

is large enough.

It is helpful to use our analogy to society to contrast par-

allel and distributed computing. Society used large teams

to build large walls in Scotland, China, and Berlin; how-

ever, we also use many small teams or individuals to build

the many small walls needed. This uses similar paral-

lelism (individuals are laying bricks at the same time),

but much less coordination: each individual wall can be

constructed independently. Probably, many more bricks

are laid in this independent fashion than in superprojects.

Similarly, supercomputing and parallel processing is, and

probably will remain, a small fraction of the computer in-

dustry. The network of individual computers, each solving

small problems, sums to perhaps two orders of magnitude

more computing resource than that represented by super-

computers. However, parallel supercomputers are impor-

tant due to the possibility that solution of major problems,

such as those noted in Section I, will lead to qualitative

new advances in knowledge.

We now complete some details of the analogy devel-

oped earlier in this section. In Fig. 3b, we idealize the

organization of the masons. The one-dimensional wall is

built by masons who are themselves arranged in a line. In a

computer science language, we say that the parallel com-

puter should have a topology similar to that of the problem.

Masons, like many computer designs, can be arranged in

a flexible way to match the problem in hand. Appropriate

topologies are a major issue in computer science research.

Finally, in Fig. 3c, we show that a mason working as part

of a big project uses similar basic techniques and, indeed,

“solves a similar problem” to that involved as an individual

building a complete (small) wall. In scientific computing

terminology, we find that the basic numerical algorithm

is unchanged, while boundary values and geometry are



Parallel Computing 585

FIGURE 5 Speedup of the bricklaying problem as a function of N, the number of masons employed.

altered between sequential and parallel computing. This

implies that, for the parallel computer, one can use similar

software and algorithms as for the sequential case. Indeed,

one can develop software that will run on either parallel

or sequential computers; often over 90% of the code is

identical for these two cases.

FIGURE 6 Measured speedups of an astrophysical simulation with Np particles on an Ncube-1 with up to 256

processors.

One can look at society at many different scales: one

finds parallel computers from neurons in the brain, to bees

in a swarm, to people in society. In every case, the un-

derlying methodology is that of asynchronous computing

elements (neurons, bees, people) communicating by mes-

sages. This so-called message-passing MIMD computer
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structure is, as we shall see in Section V, only one of the

possibilities for digital machines.

IV. DOMAIN DECOMPOSITION

We have already illustrated, in detail with Fig. 3 and the

discussion of Section III, the use of domain decomposition

in a particular example. Although not the only possible re-

alization of parallel computing, all successful applications

utilizing more than a few nodes have employed domain de-

composition. This is often called data parallelism, which

better expresses the key idea: parallelism is obtained by

acting simultaneously on different parts of the data. Sev-

eral examples are shown in Fig. 4. Figure 4a shows a

regular set of mesh points. This might come from, say,

a finite-difference approach to the simulation of a seis-

mic disturbance in the Los Angeles basin. Different sets

or mesh points, that is, different regions of Los Angeles,

are assigned to separate nodes of the parallel processor.

Figure 4b shows a finite-element mesh from the simula-

tion of the structural dynamics of a plate. This is a similar

decomposition, but no longer does each processor simu-

late equal areas; rather, the nodes are concentrated where

the action is. Figure 4c shows galaxies scattered through-

out the universe; these are evolved in time with separate

parts of the universe assigned to different nodes. Galaxies

move from node to node as they cross region boundaries.

In Fig. 4d, the data are missiles launched by a hypothetical

enemy. They are tracked in parallel by assigning different

missiles to different processors. Finally, Fig. 4e shows a

very different example where the data are the complex

pruned tree generated by a computer chess program. This

time the data are generated by the computer itself, but

again we divide the data up and process separate branches

of the tree on different nodes.

Now we return to the example of Fig. 4a and analyze it

in more detail. We take, as shown in Fig. 7, a problem with

256 grid points arranged as a 16 × 16 mesh. We decom-

pose it onto 16 processors. We replace the wave equation

of a seismic simulation by the similar iterative solution to

Laplace’s equation where potential φ(i, j) is to be deter-

mined at grid points (i, j). Iteration is not the best way

to tackle this particular problem. However, more sophisti-

cated iterative techniques are probably the best approach to

large three-dimensional finite-difference or finite-element

calculations. Thus, although the simple example in Fig. 7

is not “real” or interesting itself, it does illustrate important

issues. The computational solution consists of a simple

algorithm

φ(i, j) =
1
4
[φ(i + 1, j) + φ(i − 1, j)

+ φ(i, j + 1) + φ(i, j − 1)] (4)

FIGURE 7 A finite-difference grid decomposed among the nodes

of a concurrent processor. Each processor is responsible for a

4 × 4 subgrid. Laplace’s equation is to be solved for φ using a

simple relaxation technique, Eq. (4). The five-point update stencil

is also shown.

applied to each point of the dataset. As stated earlier, we

get concurrency by applying Eq. (4) simultaneously in

different parts of the underlying data domain. Thus, we

leave the algorithm unchanged and executed sequentially

within each node, and divide up the underlying dataset to

get parallelism. One attractive feature of this method of

domain decomposition is that it can be extended to very

large machines. A 500 × 500 × 500 mesh with 1.25 × 108

points is not an atypical problem: nowadays, we divide

this domain into up to thousands of parts. Clearly, such a

problem can be divided into many more parts and can use

future machines with very many nodes.

Returning to the “toy” example in Fig. 7, we associate

a 4 × 4 subdomain with each processor. Let us examine

what any one node is doing: this is illustrated in Fig. 8.

We see that, in this case, an individual processor is solving

the “same” problem (i.e., Laplace’s equation with an

FIGURE 8 The role of processor 0 (in the bottom left corner).

The update stencil, Eq. (4), is applied to each point at which φ is

unknown. To update the grid points on the upper and right-hand

boundaries, processor 0 must communicate with the processors

above and to the right of it.
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iterative algorithm) as a sequential computer. We have

already seen two important differences in the bricklaying

analogy of Section III and Fig. 3c.

1. The concurrent algorithm involves different

geometry; the code should not address the full

domain, but rather a subset of it.

2. The boundary conditions are changed. Referring to

Fig. 8, one finds conventional boundary conditions:

“φ is known” on the left and bottom edges of the

square subdomain. However, on the top and right

edges, one finds the following unusual constraint:

“Please communicate with your neighboring nodes to

update points on the edge.”

Figure 7 and the novel boundary condition cited above

make it clear that communication between nodes of the

parallel computer is associated with the edge of the region

stored in each node. We can quantify the effect of this

on performance by introducing two parameters tcalc and

tcomm to describe the hardware (see Fig. 9). Here we are

specializing to the MIMD message-passing architecture

described in Sections III and V.

� tcalc: The typical time required to perform a generic

calculation. For scientific problems, this can be taken

as a floating-point calculation a = b ∗ c or a = b + c.
� tcomm: The typical time taken to communicate a single

word between two nodes connected in the hardware

topology.

The times tcalc and tcomm are not precisely defined and

depend on many parameters, such as length of message for

tcomm and effectiveness of use of memory, cache, or regis-

ters for tcalc. The overhead due to communication depends

on the ratio τ given by

τ = tcomm/tcalc = 10−30, (5)

where we have quoted typical values for current parallel

computers. For problems similar to those in Fig. 9, we have

FIGURE 9 Nodes of a message passing parallel computer.

measured the performance of parallel computers. We can

express the observed speedup S, defined in Eq. (1), as

S =
N

1 + fC

, (6)

where the problem runs S times faster than a single node

on a parallel computer with N nodes. fC is the fractional

concurrent overhead, which, in this problem class, is due

to communication. As the latter is an edge effect, one finds

that

fC =
1

ε
− 1 =

0.5

n1/2

(

tcomm

tcalc

)

=
0.5τ

n1/2
, (7)

where one stores n grid points in each node: n =  16 in the

example of Figs. 7 and 8; 4n1/2 is the ratio of edge to area in

two dimensions. We see that fC will be less than about 0.1

in this example for τ = 20: in other words, the efficiency

will be more than about 90% of optimal, as long as one

stores at least 10,000 grid points in each node. This is an

example of how one can quantify the importance of the

problem being large, an issue central to Section II. On a

machine with N nodes, the parallel computer performs

well on two-dimensional problems with at least 10,000

grid points on each node, that is, on a problem with a total

of at least 10,000N points.

We might have thought that one obtained small fC only

for local (nearest neighbor) problems such as that shown in

Fig. 7. This is not true, as shown in Fig. 10, which demon-

strates that fC decreases as one increases the “range” of

the algorithm. Indeed, long-range force problems are some

of the lowest overhead ones for parallel machines. What

counts is not the amount of communication (minimized

by a local algorithm), but the ratio of communication to

calculation.

In many problems, there are other degradations in the

performance of current computers and, besides commu-

nication, load imbalance is often a significant issue. One

needs to parcel out work to the nodes so that each has ap-

proximately the same amount of computation. This point

is clear in the analogies with society. Load balance was

trivially achieved in Fig. 7 by ensuring that each node pro-

cesses an equal number of grid points. One can show that

load balancing can be viewed as an optimization problem

and that one can apply a variety of techniques, such as sim-

ulated annealing and neural networks. These methods are

quite interesting as they involve a deep analogy between

general problems and a physical system.

Load balancing is illustrated in Fig. 4b and better in

Fig. 11, which illustrates the simulation of Mach 3 flow

over a step on a 32-node parallel processor. The shock

wave and structure near the step are modeled with an adap-

tive fine mesh shown in the top picture of the figure. We
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FIGURE 10 The effect of differing stencils on the communication overhead fC. For the stencils in panels (a)–(c),

fC is proportional to 1/n1/2, where n is the number of grid points per processor. As the stencil size increases (d), fC
decreases until, when the stencil covers the full domain of the problem (e), fC is proportional to 1/n. This corresponds

to a long-range force problem.

optimize the parallel computation by the irregular decom-

position shown by the thick lines in this picture. This en-

sures approximately equal numbers of mesh points (ele-

ments) in each node of the parallel computer. Also note

that the algorithm requires communication when physi-

cally adjacent mesh points are placed in different nodes.

The decomposition of Fig. 11 minimizes this communica-

tion by assigning contiguous and roughly square physical

regions to each node.

V. PARALLEL COMPUTERS

Traditionally, parallel computers are classified according

to Flynn’s taxonomy, which is based on whether:

� Each processor has a distinct instruction stream

controling its execution, or each processor has the

same instruction stream. If there is only one instruction

stream, then each processor executes the same code. If

each processor has its own instruction stream, then

each can execute a different code.
� Each process receives data from a distinct data stream,

or each processor receives the same data stream.

Each processor applies the instructions in its instruction

stream to the data in its data stream. This leads to four

possible types of parallel computer.

1. Single instruction stream, single data (SISD) stream.

This corresponds to a sequential computer.

2. Single instruction stream, multiple data stream

(SIMD). Each processor operates in lock step, with an

identical instruction stream but different data streams.

3. Multiple instruction stream, single data stream

(MISD). Each processor applies a different

instruction stream (i.e., a different algorithm) to the

same data stream.
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FIGURE 11 Simulation of a Mach 3 flow over a step showing fluid

velocity, density, and pressure. This was done for a 32-processor

parallel computer with dynamical load balancing shown by thick

solid lines in the top diagram.

4. Multiple instruction stream, multiple data stream

(MIMD). This is the most general case in which each

processor has its own instruction stream applied to its

own data stream.

Most high-performance parallel computers are now of

the MIMD variety. Up to the early 1990s SIMD ma-

chines, such as the CM-2 manufactured by Thinking

Machines Corporation, were used for scientific supercom-

puting but their use has now declined as they were found

to be suitable only for synchronous problems. Roughly,

synchronous means that the algorithm corresponds to

the same numerical operation on every data element;

this is typically true on geometrically regular scientific

simulations.

MIMD parallel computers are usually divided into

shared and distributed memory types. In the shared mem-

ory case, multiple processors are connected to memory

by a switch so that any processor can access any memory

location, and all processors have access to the same

global name space. Thus, when each processor refers to

the variable x they are all refering to the same location

in the shared memory. The shared memory approach to

parallelism is attractive because in porting an application

from a sequential to a shared memory parallel computer

usually only a few changes are required in the sequential

source code, and these can often be performed with the

help of a parallelizing compiler. The main drawback of the

shared memory approach is that it is difficult to connect

efficiently more than a few tens of processors to a single

shared memory. Thus, shared memory parallel computers

tend to have a have a relatively small number of powerful

processors.

In the distributed memory case, each processor has

its own local memory. This collection of independent

computers communicates via messages, and is the clear-

est digital analog of nature’s parallel computers discussed

in Section III. Each processor–memory pairs forms the

basis of a node of the parallel computer. Much com-

puter science research has been done into the appropri-

ate way to interconnect the nodes. Examples include the

following:

1. A binary hypercube, where 2p nodes are logically

placed at the corners of a p-dimensional cube and con-

nected along the edges. This was the topology used in

the Caltech Mark I, II, and III parallel computers in the

mid to late 1980s. The Ncube series of parallel computers,

first introduced in 1986, also used a hypercube topology.

A disadvantage of the hypercube topology is that it can-

not be expanded in small increments, and the number of

connecting wires increases rapidly with the hypercube di-

mension p. This topology is no longer widely used for

parallel supercomputers.

2. A 2D or 3D mesh, where nodes are connected to

their neighbors. For example, the Cray T3E-1200 con-

sists of 1200 processors connected as a 3D bidirectional

torus. Regular meshes form the basis of the interconnect

topology of many current parallel supercomputers, as they

can be expanded incrementally, and the number of con-

nections per node is independent of the total number of

nodes.

3. A switch to connect the nodes. The Butterfly se-

ries of shared memory parallel computers manufactured

by BBN made use of a type of switch shown in Fig. 12

which connected each processor to every memory unit.

Switch-type connections are currently used in symmetric

multiprocessors (SMPs). An SMP is a parallel computer

in which each processor has equal access to all I/O

devices (including memory). SMPs form the basis of

IBM’s ASCI White computer, which is currently the

fastest in the world. The ASCI White machine is made

up of 512 SMP nodes, each with 16 processors, for a sys-

tem total of 8192 processors.

The 1990s saw an increased use of commercial off-

the-shelf (COTS) components for constructing low-cost

parallel computers. This trend began with the use of net-

works of workstations (NOWs) for parallel computing.
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FIGURE 12 A shared-memory architecture illustrated for a

shuffle-exchange switching network.

Here the typical approach is to use workstations that are

connected via Ethernet on a company or departmental lo-

cal area network (LAN) to perform parallel computations.

NOWs provide a cheap source of computational power,

using workstations and PCs that would otherwise be idle.

This approach has branched out in two important direc-

tions. If a similar idea is applied on a wide-area network

(WAN), then we are led into the realm of distributed com-

puting. Because WANs have quite severe bandwidth and

latency limitations this distributed approach can be ap-

plied only to applications with relatively little exchange

of data between processors, i.e., they must be loosely

coupled. Grid computing will make distributed compu-

tational resources available from any suitable access point

regardless of their physical location. The “resources” in-

clude compute servers, information repositories, sensors,

instruments, and people. The second direction has been

the development of cluster computing in which a dedi-

cated network, such as Myrinet, is used to connect the

COTS components, which are usually rack-mounted. Be-

owulf clusters exemplify this approach, using only com-

mercially available hardware and software and running a

free operating system such as Linux or FreeBSD. These

cluster computers are now capable of providing supercom-

puter performance at a fraction of the cost of a traditional

commercial supercomputer.

VI. PARALLEL PROGRAMMING
PARADIGMS

The processors of a machine executing a parallel applica-

tion need to be able to share data. We saw this in our dis-

cussion in Section IV of the parallel solution of Laplace’s

equation—processors need to share data associated with

the boundaries of their subdomains. There are two mains

ways for processors to share data: through message pass-

ing or a global name space, and we now give an overview

of these approaches.

A. Message Passing

In this approach, processors cooperate to perform a task

by independently computing with their own local data,

and communicating data between processors by explicitly

exchanging messages. The message passing approach is

particularly well suited to computers with physically dis-

tributed memory since there is a good match between the

distributed memory model and the distributed hardware.

However, message passing can be used on shared mem-

ory and sequential computers, and, indeed, can be used

as a basis for the development of portable and efficient

programs on all these architectures.

There are two main ways of writing a parallel message-

passing program. The first is through a coordination lan-

guage such as Fortran M or Occam. These are specialized

languages for specifying concurrency, communication,

and synchronization. The second way of performing mes-

sage passing is with calls to a message passing library from

within a sequential program. This has proved to be a very

popular way of writing concurrent applications since it

is expressive, closely models the functionality of the par-

allel hardware, and permits explicit management of the

memory hierarchy. A number of different message pass-

ing libraries have been developed over the past decade, but

the most widely used are PVM and MPI. The MPI mes-

sage passing library is available on all parallel computers

currently marketed.

B. Global Name Space

An alternative approach to data sharing is based on the

shared memory model, in which all processes have access

to the same global address space. As might be expected,

this approach works well on shared memory architectures,

but may also be supported in software on distributed

memory computers. An example is the High Performance

Fortran language, which provides data parallel language

extensions to Fortran. OpenMP is a more recent develop-

ment that supports shared memory parallel programming

in Fortran and C/C++ through a set of compiler

directives, library routines, and environment variables.

VII. FUTURE PROSPECTS

Parallel computing has advanced rapidly with the continu-

ing stimulation of the rapid improvement of VLSI technol-

ogy. However, there is limited scope for further improve-

ments in microprocessor performance using conventional

technologies. We expect future dramatic improvements

in parallel performance in the short term to come from

the use of very high levels of parallelism, involving up

to 1 million processors. On a 5- to 15-year time scale,
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the use of superconducting processors with clock speeds

in excess of 100 GHz and pulsed light microprocessors

may lead to a new basis for supercomputer performance

in the petaflop/sec (1015 floating-point operations per

second) range. On a longer time scale, innovative ap-

proaches such as quantum computing and macromolec-

ular computing may completely revolutionize the entire

field of high-performance parallel computing, transform-

ing all fields of scientific research and having a profound

impact on society as a whole.
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I. History

II. Architecture, Organization, and Implementation

III. Applications

IV. Future Directions

GLOSSARY

Accumulator Usually a part of the arithmetic-logic unit

of a computer that is used for intermediate storage.

Address Name identifying a location where data or in-

structions may be stored.

Assembler Language translator program that converts as-

sembly language instructions into conventional ma-

chine language.

Cache Memory that is accessed more rapidly than main

memory but less rapidly than a register. Today often

found in processor chips with several levels of cache

present in the computer.

Compiler Language translator program that converts ap-

plication program language instruction, such as Pascal

or FORTRAN, into a lower level language.

Computer architecture The study of the computer as

viewed by the programmer.

Debugger Tool used by a programmer to locate and cor-

rect an error in a computer program.

Interrupt Special control signal(s) that diverts the flow of

instruction execution to the instruction in the location

associated with the particular interrupt.

Memory consistency The same data stored in different

modules is correctly stored.

Memory cycle Operations required to store or retrieve

information from memory.

Microprogram Program that interprets conventional ma-

chine language instructions that are interpreted directly

by the hardware.

Operating system Set of programs that monitor and op-

erate computer hardware and simplify such tasks as in-

put/output (I/O), editing, and program translation. Also

serves as an interface with the user.

Program counter Register in which the location of the

current instruction is stored.

Virtual memory Approach to extending memory by us-

ing main memory and secondary memory to store a

program.

THE ONCE commonplace term minicomputer is seldom

used in current discussions about computers. The name

“minicomputer” is believed by some to have come from

the miniskirt that was popular when the first minicomputer

was initially developed and introduced between 1959 and

1965, but the definition of minicomputer has continued

to evolve as the technology has advanced. Prior to 1976,

the minicomputer was defined as a small computer man-

ufactured by a specialty company and was often sold
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for incorporation in larger products by other equipment

manufacturers (OEMs). The classification of a computer

as a mainframe, mini, or personal (microcomputer) has

been based on both market and architectural differences,

although today the architectural differences are few. At

one time an 8-bit word-length computer was classified

as a microcomputer (personal computer), a 16-bit word-

length computer was classified as a minicomputer, and

a 32-bit word-length computer was classified as a main-

frame. Since then, the distinction between mainframes,

minicomputers, and microcomputers has become quite

nebulous and some might say nonexistent. A broad classi-

fication for the late 1980s era minicomputer was that it was

a 32-bit word-length computer with physical memory size

in the range of 4 Mbytes and 64 Mbytes with some cache

memory and with a range in price from less than $40,000

to as much as $500,000. During the 1990 era, minicom-

puters incorporated some sort of parallel structure in their

organization with a high-speed bus and a ever-decreasing

memory cycle. One minicomputer definition that stood the

test of time until about 1990 was that a minicomputer does

not require a raised floor. During the late 1980s timeframe,

the casual observer could have been overwhelmed by the

terms minicomputer, super minicomputer (advanced com-

puter that was classified as a minicomputer in the future),

and mini supercomputer (computer with supercomputer

capabilities, but near the minicomputer price range). Some

important characteristics that were used to differentiate

the types of early computers are instruction set repertoire,

complexity of I/O modules, speed, number of CPU regis-

ters, word length, virtual address space, and cost.

By the year 2000, a minicomputer was typically called

a server and was a class of computers in the range between

the personal and a mainframe, but with a capacity far ex-

ceeding the most advanced mainframe available when the

first minicomputer was introduced with a cost close to

the range of the earlier era minicomputers. These mini-

computers have tremendous capabilities for handling the

high-speed network interfaces that are currently available.

Because the history of computing was never clearly

recorded nor the definitions clearly established, many of

the statements about the history and definition of mini-

computers will have variations between articles on the

subject matter.

I. HISTORY

There are debates as to which computer was the first mini-

computer, but many credit Digital Equipment Corporation

(DEC), for many years the largest company in the mini-

computer field, with the introduction of the first commer-

cial minicomputer in 1959–1960, the PDP-1, a second-

generation computer with a word length of 18 bits, mem-

ory of 4K words, and 28 instructions. It cost $120,000, a

very attractive price because at the time most other com-

puters sold for more than $1 million. The third-generation,

12-bit, $16,000 PDP-8 was an immediate hit and started

DEC toward its fortune. Their success continued with the

16-bit PDP-11 and 32-bit VAX families. Some attributed

part of DEC’s success to the fact that DEC donated PDP-

11s to almost all universities that had a computer science

degree program. This was a reasonable conclusion be-

cause a significant amount of the programming of the

PDP-11 was done in assembly language (used very little

today), which was computer dependent, and graduates of

these universities often chose the computer whose assem-

bly language was familiar to them. Early minicomputers

were short on the amount of memory that programs could

use because they were 16-bit computers capable of ad-

dressing only 216 memory locations, and this led to the

32-bit addressable computer such as the DEC VAX. The

32-bit and larger minicomputers continued the trend of

the 16-bit minicomputer, supporting more simultaneous

users, more peripherals, and larger memories than previ-

ous ones. Many of the current minicomputers are less gen-

eral purpose and designed for application-specific use. The

evolution of minicomputers has seen exponential growth

in their features and capabilities.

Many of the original minicomputers were only super

components with a market to OEMs for inclusion in larger

products. Minor efforts were put forth in the develop-

ment of software, with enhancements limited to hard-

ware. Prior to 1975, only a mainframe using innovative

architectural techniques could achieve a high performance

level. By 1975, sophisticated application software and

operating systems had been developed to meet demands

of universities and other research institutions and data-

processing users who found minicomputers more cost ef-

fective and beneficial. By 1980 such performance could

be achieved using a comparatively simple minicomputer

architecture coupled with faster electronic components

that were available and assisted by microprocessor-

controlled input/output devices. These computers were

often called super minicomputers, but were later classi-

fied by most as minicomputers. The computing capaci-

ties of most of these super minicomputers were in ex-

cess of those of mainframes designed and sold before

1980.

Most recent minicomputer enhancements are at-

tributable to technology improvements, breakthroughs in

compiler design, and significant improvements to the pro-

cessor architecture. The minicomputer of 2000 evolved

with technological advances such as evolution from the

Complicated Instruction Set Computer (CISC) to the

Reduced Instruction Set Computer (RISC), pipelining,
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superpipelining, superscalar, very long instruction word

(VLIW), branch prediction, out-of-order instruction ex-

ecution, multilevel and nonblocking caches, new buses,

nonuniform-memory access, shared memory multiproces-

sors, and the ability to include multiple processors in a

single server. In some cases, these minicomputers, such

as models of the IBM AS/400, have been designed and

implemented to perform specific tasks such as Web serv-

ing or to interface between a mainframe and wide area

networks.

II. ARCHITECTURE, ORGANIZATION,
AND IMPLEMENTATION

Most minicomputers have the same basic structure as any

other general-purpose digital computer, consisting of dat-

apath, control (datapath and control are usually called the

processor), internal storage, input, and output units. Al-

though minicomputers share a basic structure with other

computers, they differ in the way these components are

implemented and interfaced, but today often use the same

processor as personal or mainframe computers. The ap-

proach that minicomputer architects have used to support

high-level languages evolved from the simple stack archi-

tecture of the 1960s, to the replacement of software by

hardware (high-level language hardware) or the powerful

architectures with a large number of addressing modes,

multiple data type, and highly orthogonal architecture of

the 1970s, and to sophisticated compilers of the 1980s that

renewed emphasis on machine performance with the sim-

pler load/store (RISC) style of machine. The competitive

nature of the current marketplace has caused manufactur-

ers to pay close attention to the cost/performance ratios

and use standard benchmark performance measures, such

as the SPEC suites that allow users to better compare the

computers of different manufacturers.

A. Design Advances

Because of technological advances, processor features

have advanced significantly. Two significant changes have

made it possible for new architectures to be commercially

successful. The near extinction of assembly language cod-

ing and the rise of the Unix/Linux, vendor-independent

operating system has reduced the risk of bringing out new

architectures and caused a renaissance in computer de-

sign, and it appears that this will continue for some time

to come. The popularity of the World Wide Web has cre-

ated new network interface requirements for all modern

computers, and minicomputer designers have risen to meet

the challenge.

B. Machine Levels

As with any other computer, hardware and software levels

are logically equivalent in a minicomputer. Most mini-

computers have the digital logic, microprogramming (not

present on a true RISC computer with conventional ma-

chine language instructions directly executed by the hard-

ware), conventional machine, operating system, assembly

language, and problem-oriented language (high-level lan-

guage such as JAVA or C++) levels.

C. Multiple Processors in Minicomputers

Most modern minicomputers have multiple processors

with a single address space that, as such, are termed mul-

tiprocessors. The processor count present in a purchased

computer is based on the user needs, usually with the ca-

pability to add additional processors as use requirements

increase. These processors are typically the same ones

that are used in personal and mainframe computers. It is

generally agreed that the multiprocessor composed of sev-

eral uniprocessors provides a better cost/performance ratio

than building a comparable uniprocessor using enhanced

technology.

The multiple processors are interconnected using a

complex network and are classified as symmetric mul-

tiprocessors (SMP) [often termed uniform memory ac-

cess (UMA)] or nonuniform memory access (NUMA).

The SMP multiprocessor, with support of the operating

system, is one in which each processor has equal access to

all memory modules and all I/O devices. The NUMA has

the advantage of being able to scale to a larger number of

processors. One of the greatest challenges in the design of

a multiprocessor is memory consistency of the data.

D. Variations among Minicomputers

Minicomputers can be compared by support and internal

features. It is most appropriate for a programmer to study

a computer’s internal features at the level at which it is

being programmed, but most early computers were com-

pared at the conventional machine level. The internal fea-

tures include richness of the instruction set, clock speed,

number of instructions executed per second, I/O structure,

number of registers, word size, memory management ap-

proach, addressing modes, and interrupt techniques. Al-

though these are important characteristics, the modern

minicomputer is usually programmed in a high-level lan-

guage and the purchase is decided on a cost/performance

ratio and according to the number of processors that can

be added in the future. Support characteristics of mini-

computers include maintenance, operating system, avail-

able application software, and customer relations. If the
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preceding variety is coupled with stability of the manufac-

turing company, then the number of variations for consid-

eration is limitless. There is actually a spectrum of com-

puter types, and the differences among computers within

each of the three major classes (mainframes, minicomput-

ers, and personal computers) are as great as the difference

between neighboring classes.

E. Internal Features of Processors

The internal features of processors are less important today

in the minicomputer procurement process and are often

transparent to the user because of the rich set of support

tools available. However, the features are often critical

and do play a significant role in the performance. They

include (1) richness of the instruction set; (2) I/O struc-

ture and interrupt techniques; (3) internal communication

structure; (4) number of registers and general-purpose reg-

isters available; (5) memory management approach; and

(6) addressing modes available.

F. Support of Minicomputers

Often the prime cost consideration in buying any computer

is its purchase price, which is really not its total cost. As

with any other computer, the support of a minicomputer

should be a key evaluation factor. Maintenance, available

operating system(s), application software, and customer

relations are highly variable among vendors. The mini-

mum requirements of the operating system are that it con-

tains the tools (such as assemblers, compilers, debugger,

and editor) necessary to perform the application require-

ments. Other considerations include available application

software (such as e-mail, scheduling, payroll, accounts

payable, and accounts receivable) and software tools (such

as code generators and statistics packages).

As memory and mass storage increase, there is a co-

inciding increase in the amount of support software that

can be made available to the user. Current minicomput-

ers have vast amounts of storage and are general-purpose

computers.

III. APPLICATIONS

Minicomputers, like other computers, are used because

they perform certain tasks better and more efficiently than

do humans. Today, minicomputers often are considered as

one of the tiers in a three-tier approach to computing. The

mainframe is considered in this framework to be a central

computer, the minicomputer is a regional computer, and

the personal local computer is typically used by an indi-

vidual. Minicomputer applications include the following.

Special-purpose computing. In laboratory experiments

and scientific applications, minicomputers are use to con-

trol experiments and process information generated by

the experiment. Minicomputers are powerful tools for au-

tomating manufacturing and for testing products. They

also can be used for controlling machines such as large

planes and ships.

Front-end processors for mainframes. Mainframes are

complex, and as a result, minicomputers can be used for

mainframe I/O interface.

Network processors and managers. As communication

networks increase in numbers and sophistication, mini-

computers are being used increasingly as a network pro-

cessor and manager. This is one of the most significant

uses of minicomputers today, with applications including

World Wide Web server, e-mail server, news server, and

scheduling server. Often the minicomputer is the server

in a client/server environment. For example, with e-mail,

the server has responsibility for receiving, sending, and

storing e-mail messages. Typically the client on a per-

sonal computer is a software application that provides a

user with a graphical user interface on a personal com-

puter to be used to interact with the server and manipulate

the user’s e-mail messages. The client/server environment

provides a reduction in the load on the server.

These are but a few of the applications of mini-

computers. With continued minicomputer enhancements

there will be an increased use of minicomputers for new

applications.

IV. FUTURE DIRECTIONS

Exceptional developments in computing have been made

in the areas of hardware, optimizing compilers, and

operatings system support. It is anticipated that the

cost/performance ratio for minicomputers will continue

to improve substantially with additional hardware break-

throughs. Future hardware developments will implement

conventional processor and memory architectures more

compactly in silicon or other materials. Multiprocessors

have established themselves, and significant growth will

occur in the way multiple processors are used in a com-

puter. The performance of the individual processors is

expected to rapidly increase with the clock speed of an-

nounced processors exceeding 1 GHz clock speed.

Minicomputers, and computers in general, are already

the most complicated devices ever developed. Revolution-

ary architectures will raise this complexity by many or-

ders of magnitude. Revolutionary architectures will break

from the traditional von Neumann model of computer



Minicomputers 63

architecture because of the requirements for layers of par-

allelism and emphasis on inference.

The number of minicomputer manufacturers has de-

creased, and it is anticipated that this consolidation trend

will continue into the future.
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I. The Use of Supercomputers

II. The Evolution of Supercomputers

III. New Developments

IV. Software for Supercomputers

GLOSSARY

Cache memory Small fast memory located near a CPU.

Used to mitigate the difference in speed between a CPU

and main memory.

ccNUMA system Cache coherent nonuniform memory

access system. A computer system in which not all

memory locations can be reached in the same time span.

Chaining Direct transmission of a functional unit’s result

to another functional unit before storing it a register.

In this way the pipelining in both functional units is

combined.

Clock cycle Basic unit of time in a computer systems. All

processes take place in a whole number of clock cycles.

A clock cycle is of the order of a few nanoseconds

(10−9 sec). Related is the clock frequency, the number

of clock cycles per second, usually expressed as MHz.

Computer architecture High-level description of the

components and their interconnections in a computer

as experienced by the user.

Directive Information given to a compiler to induce a

certain behavior. Directives take the form of special

comment lines in a program, for instance, to force par-

allelization of a program fragment.

Distributed-memory system Computer in which the

memory is divided over the processing nodes. Each

node can address only its own memory and is not aware

of the nonlocal memories.

Flop/sec Floating-point operations per second. The speed

of a supercomputer is often expressed as megaflop/sec

(Mflop/sec) or gigaflop/sec (Gflop/sec).

Functional unit Part of a CPU that performs a definite

function such as floating-point addition or calculation

of memory addresses.

Interconnection network Network that interconnects

memory modules and/or processing nodes in a parallel

computer.

Latency Time from the initiation of an operation to the

actual start of producing the result.

Parallel process Part of a program that may be executed

independently. A process possesses its own program

counter and address space.

Pipelining Organization of a functional unit in stages

such that it can accept a new set of operands every

clock cycle similar to an assembly line in a factory.

RISC processor Reduced instruction set computer pro-

cessor. A processor with an instruction set that is small

compared to that of the earlier complex instruction

set processors. Presently, apart from the Intel IA-32-

like processors, virtually only RISC processors are

built.

Shared-memory system Computer in which all of the
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memory is adressable by all processing nodes in the

system.

Thread Independent subprocess in a program. In contrast

to a process, a thread does not have its own address

space: it is subordinate to the process it stems from.

VLIW computer Very large instruction word computer.

A computer in which long instruction words cause

many functional units to execute their instructions in

parallel.

OVER the years many definitions for the notion of “super-

computer” have been given. Some of the most well-known

are “the fastest existing computer at any point in time” and

“a computer that has a performance level that is typically

hundreds of times higher than that of normal commodity

computers.” Both definitions have their drawbacks. In the

first definition the object in question is a moving target

because of the fast rate at which new computers are con-

cieved and built. Therefore, with this definition it is hard

to know whether a certain computer is still the supercom-

puter or a new, even faster one has just emerged.

The second definition is vague because it presupposes

that one can easily determine the performance level of a

computer, which is by no means true, and furthermore, the

performance factor that should discriminate between su-

percomputers and commodity computers is also not easily

established. Indeed, it is not even straightforward to de-

fine what is meant by the term “commodity computer.”

Should a supercomputer be measured against a PC, used

mainly for word processing, or against a workstation used

for technical computations?

Still, it is obvious that, whatever definition is used, one

expects supercomputers to be significantly faster on any

task than the computers to which one is normally exposed.

In that sense the second definition is more appropriate.

Therefore, we adhere mainly to this rather vague defini-

tion, with the addition that supercomputers have a special

architecture to enable them to be faster than the standard

computing equipment we use every day. The architecture,

that is, the high-level structure in terms of its processors,

its memory modules, and the interconnection network be-

tween these elements, largely determines its performance

and, as such, whether or not it is a supercomputer. Other

defining features of the architecture are the instruction set

of the computer and the accessibility of the components

in the architecture from the programmer’s point of view.

It is good to realize that even for commodity computers

the speed is continuously increasing because of the proces-

sor speed, which, according to Moore’s law, is doubling

every 18 months. Therefore, supercomputers need to be at

least at the same technology curve with respect to the pro-

cessor speed and, in addition, employ their architectural

advantage to stay ahead of commodity computers. This is

also evident from the clock cycle in both commodity com-

puters and supercomputers: in both types of systems the

clock cycle is in the range of 1–3 nsec, and it is not likely

that future supercomputers will contain processors with

significantly faster processors because of the enormous ad-

ditional costs incurred in the development and fabrication.

As it stands, nowadays the architectural advantage of

supercomputers is due almost entirely to parallelism, i.e.,

many processors in a supercomputer are commonly in-

volved in a single computational task. Ideally, the speedup

that is achieved increases linearly with the number of pro-

cessors that are contributing to such a computational task.

Because of the time spent in the coordination of the pro-

cessors, this linear increase in speed is seldomly observed.

Nevertheless, parallelism enables us to tackle computa-

tional problems that would be simply unthought of with-

out it.

As early as 1972 Flynn made a classification of com-

puter architectures that largely determines if and how

parallelism can be employed within these architectures.

Commodity computers are of the SISD type. SISD stands

here for single-instruction stream, single-data stream

computer. Parallel computers are either of the single-

instruction stream, multiple-data stream (SIMD) type, in

which a single instruction gives rise to executing this in-

struction on many data items in parallel, or of the multiple-

instruction stream, multiple-data stream (MIMD) type, in

which various instructions can be executed at the same

time, each operating on its own data items. Another very

important distinction can be made with respect to the or-

ganization of the memory: largely it can be either shared

or distributed. In the former case all data reside in a com-

mon memory that is accessible by all processors in the

computer. In the latter case one or several processors can

normally access only their local part of the memory. In the

case that such a processor or group of processors needs

data that do not reside in the local part of the memory, it has

explcitly to import these data from a nonlocal part of the

memory. This has a huge impact on the way programs are

written for the respective types of machines. According to

Flynn’s classification and the way memory is organized,

the terms SM-SIMD, DM-SIMD, SM-MIMD, and DM-

MIMD computers are often used, where SM stands for

shared memory and DM for distributed memory.

In the following we discuss both the use and the work-

ings of supercomputers.

I. THE USE OF SUPERCOMPUTERS

The first electronic computers were designed for military

use around 1950 and were used to calculate ballistic orbits.
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Soon afterward (1951) the first commercial computers

emerged, to be employed for all kinds of scientific and

technical computations. This is still the most important

realm for today’s supercomputers, although the applica-

tion field has diversified greatly over the years.

An area in which supercomputers have become indis-

pensible is weather forecasting and research in climatol-

ogy. The quality of weather forecasts has been increasing

steadily with that of the numerical models that describe the

motions of air, moisture, and driving forces such as sun-

shine and temperature differences. The price to be paid for

these more refined models is the increased amount of com-

putation to be done. In particular, for weather forecasting

the timeliness of the results is of obvious importance, so

for more intricate weather models, computers have to be

faster to meet the time requirements.

Weather models are only one of the manifestations of

computer models that deal with phemonema of the flow of

gases and fluids, free, in pipes or in ocean beds, or around

bodies such as aircraft or cars. This large family of mod-

els is the realm of computational fluid dynamics (CFD). In

the CFD field vast amounts of supercomputer power are

used to investigate climate change, the optimal shape of

an aircraft wing (the computer model constituting a “nu-

merical windtunnel”), or the behavior of heated plasma in

the Sun’s corona.

Also, safety issues for complicated building structures

and, again, aircraft and cars are amenable to computer

modeling. This area is called structural analysis. The struc-

tures under investigation are divided into thousands to mil-

lions of subregions, each of which is subjected to forces,

temperature changes, etc., that cause the deformation of

these regions and stresses in the materials used. Car crash

analysis is, in this respect, an obviously important topic

that requires supercomputer power to model the defor-

mation of a car’s body at impact with other bodies of

various sizes, at different speeds, and under different an-

gles. A subject where the CFD and structural analysis

fields are combined in a highly complicated way is the

Nuclear Stockpile Stewardship, in which it is attempted

to replace actual testing of nuclear weapons, sometimes by

explosion, by simulation of the testing circumstances with

numerical models that integrate the computational com-

ponents. Especially, the stockpile stewardship has been an

enormous incentive for the development of new and faster

supercomputers via the Accelerated Strategic Computer

Initiative (ASCI) in the United States.

At a more fundamental level, computer models are used

to investigate the structure of materials to help under-

stand superconductivity and other phenomena that require

knowledge about how electrons behave in semiconduct-

ing and conducting materials. Also, the reaction mecha-

nisms in organic and bioorganic molecules and, indeed,

their three-dimensional shape depend on the electronic

structure in these molecules and, ultimately, their activ-

ity in biological systems as building material for living

cells or as the key components for medicines. The com-

puter models describing and evaluating all these aspects

on an atomic molecular scale are in the field of numerical

quantum physics and quantum chemistry. Vast amounts of

supercomputing time are spent in this broad field, looking

for new medicines, unraveling the structure of viruses, or

trying to find higher-temperature superconductors.

In recent years parallel supercomputers have penetrated

in areas where computing formerly had no or only a

marginal role, for instance, in analysis and prediction of

stock exchange rates. Large amounts of computing power

are used here to evaluate the many time series and dif-

ferential equations that model these rates. Furthermore,

massive data processing in the form of advanced database

processing and data mining relies these days on parallel

supercomputers to deliver the timely results required in

controlling stock, building customer profiles, and building

new knowledge based on hidden patterns in data that were

almost-inaccessible before because of their shear size. A

subfield that depends critically on this massive data pro-

cessing is the Human Genome Project, which adds vast

amounts of DNA data to the part of the genome that has

already been mapped. The amount of data is so large that

databases of databases are necessary to handle it. In addi-

tion, not all these data are entirely reliable, and they have to

be screened and reinserted as the knowledge in this huge

project grows. Still, the raw data thus becoming avail-

able are just the starting point of all that can be known

and done with it. Often quantum chemical and molecu-

lar dynamics techniques are used to discover the function

and importance of the DNA sequences, and matching with

known, almost-identical but subtly different sequences has

to be done to assess the influence that, for instance, the ex-

act form has on their activity and function.

Although this is by no means an exhaustive recounting

of all the situations that call for the use of supercomputers,

it illustrates that supercomputers are wonderfully flexible

research instruments. Two general statements about their

use can be safely made. First, the number of application

fields will expand still more in the near-future, and, sec-

ond, there is an insatiable need for even higher computing

speeds. So we may assume that the notion of supercom-

puters will be with us for the forseeable future.

II. THE EVOLUTION OF SUPERCOMPUTERS

It is not straightforward to determine how and when the era

of supercomputing began. Perhaps it was when the real-

ization of computer architectures that were not necessarily
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the most cost-effective, but that had the highest possible

performance as their primary goal, was explicitly chosen.

This was certainly true for the Burroughs ILLIAC IV, a

machine that originally was to have 256 processors divided

into four 64-processor quadrants. Only one quadrant was

ever built and delivered to NASA Ames in 1972. Its 64 pro-

cessors were executing the same instruction in parallel on

data of which each of the processors had a part, and as such,

it was of the DM-SIMD machine type. With its 80-nsec

clock cycle it was able to reach a speed of 50 Mflop/sec,

an impressive performance for that time. A few years

later, in 1979, the first Cray-1 vector supercomputer was

delivered to Lawrence Livemore National Laboratories.

With its conveyor belt-like processing of operands and its

12.5-nsec clock, it was able to produce two results per

clock cycle in the right circumstances, at a peak speed of

160 Mflop/sec. This machine was designed by Seymour

Cray, formerly of Control Data Corporation, where he was

responsible for its predecessor, the STAR-100. With the

advent of the Cray machines, the supercomputer era had

really begun. A very good account of the early days of

supercomputing and the developments that made it pos-

sible is given by Hockney and Jesshope (1987). We now

turn to the main players in the supercomputing field in the

beginning of this period.

A. Vector Processors

In the supercomputing field the early days were domi-

nated by vector processors. Strictly speaking, the results

that are produced on a single-processor vector system are

not parallel but “almost parallel”: after a startup phase

each functional unit can deliver a result every cycle. This

is brought about by pipelining their operations (see Glos-

sary). Although vector processors are not the only ones

that employ pipelining, in a vector processor everything is

geared to using it with the highest possible efficiency, such

as vector registers and vector instructions, which operate

on the data items in these registers. Figure 1 is generic

block diagram of a vector processor.

The single-processor vector machine will have only one

of the vector processors depicted, and the system may

even have its scalar floating-point capability shared with

the vector processor. The early vector processors indeed

possessed only one VPU, while present-day models can

house up to 64 feeding on the same shared memory. It

may be noted that the VPU in Fig. 1 does not show a

cache. The majority of vector processors do not employ

a cache anymore. In many cases the vector unit cannot

take advantage of it and the execution speed may even be

unfavorably affected because of frequent cache overflow.

Although vector processors have existed that loaded

their operands directly from memory and stored the results

FIGURE 1 Block diagram of a vector processor.

again immediately in memory (CDC Cyber 205, ETA-10),

all present-day vector processors use vector registers. This

usually does not impair the speed of operations, while it

provides much more flexibility in gathering of operands

and manipulation with intermediate results.

Because of the generic nature of Fig. 1, no details of

the interconnection between the VPU and the memory are

shown. Still, these details are very important for the ef-

fective speed of a vector operation: when the bandwidth

between the memory and the VPU is too small, it is not

possible to take full advantage of the VPU because it has

to wait for operands and/or has to wait before it can store

results. When the ratio of arithmetic-to-load/store opera-

tions is not high enough to compensate for such situations,

severe performance losses may be incurred. The influence

of the number of load/store paths for the dyadic vector

operation c =  a +  b (a, b, and c vectors) is depicted in

Fig. 2.

Because of the high costs of implementing these data

paths between the memory and the VPU, compromises

are often sought, and the number of systems that have

the full required bandwidth (i.e., two load operations and

FIGURE 2 Schematic diagram of a vector addition: (a) when

two load pipes and one store pipe are available; (b) when two

load/store pipes are available.
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one store operation at the same time) is limited. In fact,

the vector systems marketed today no longer have this

large bandwidth. Vendors rather rely on additional caches

and other tricks to hide the lack of bandwidth.

The VPUs are shown as a single block in Fig. 1, yet there

is considerable diversity in the structure of VPUs. Every

VPU consists of a number of vector functional units, or

“pipes,” that fulfill one or several functions in the VPU.

Every VPU has pipes that are designated to perform mem-

ory access functions, thus assuring the timely delivery of

operands to the arithmetic pipes and storing of the re-

sults in memory again. Usually there are several arith-

metic functional units for integer/logical arithmetic, for

floating-point addition, for multiplication, and sometimes

for a combination of these, a so-called compound opera-

tion. Division is performed by an iterative procedure, table

lookup, or a combination of both, using the add and mul-

tiply pipe. In addition, there is almost always a mask pipe

to enable operation on a selected subset of elements in a

vector of operands. Finally, such sets of vector pipes can

be replicated within one VPU (2- to 16-fold replication

occurs). Ideally, this will increase the performance per

VPU by the same factor, provided that the bandwidth to

memory is adequate.

The proportion of vector processors in the present-day

supercomputer arena is declining rapidly. The reason is

the relatively small number of these systems, with their

specialized processor architecture, that can be sold. This

makes it impossible to amortize the high development and

fabrication costs over a large user community. Therefore,

nowadays these systems are often replaced by RISC-based

parallel machines with a lower effective performance per

processor but with more less costly processors.

B. Processor-Array Machines

In processor-array systems all the processors operate in

lock-step, i.e., all the processors execute the same instruc-

tion at the same time (but on different data items), and

no synchronization between processors is required. This

greatly simplifies the design of such systems. A control

processor issues the instructions that are to be executed by

the processors in the processor array. All currently avail-

able DM-SIMD machines use a front-end processor to

which they are connected by a data path to the control

processor. Operations that cannot be executed by the pro-

cessor array or by the control processor are offloaded to

the front-end system. For instance, I/O may be through the

front-end system, by the processor array machine itself,

or both. Figure 3 shows a generic model of a DM-SIMD

machine, from which actual models will deviate to some

degree. Figure 3 might suggest that all processors in such

systems are connected in a two-dimensional (2-D) grid,

FIGURE 3 A generic block diagram of a distributed-memory

SIMD machine.

and indeed, the interconnection topology of this type of

machine always includes a 2-D grid. As the opposing ends

of each grid line are also always connected, the topology

is rather that of a torus. For several machines this is not

the only interconnection scheme: they might also be con-

nected in 3-D, diagonal, or more complex structures.

It is possible to exclude processors in the array from ex-

ecuting an instruction under certain logical conditions, but

this means that for the time of this instruction these pro-

cessors are idle (a direct consequence of the SIMD-type

operation), which immediately lowers the performance.

Another situation that may adversely affect the speed oc-

curs when data required by processor i reside in the mem-

ory of processor j—in fact, as this occurs for all processors

at the same time, this effectively means that data will have

to be permuted across the processors. To access the data

in processor j , the data will have to be fetched by this

processor and then sent through the routing network to

processor i . This may be fairly time-consuming. For both

reasons mentioned, DM-SIMD machines are rather spe-

cialized in their use when one wants to employ their full

parallelism. Generally, they perform excellently on dig-

ital signal and image processing and on certain types of

Monte Carlo simulations where virtually no data exchange

between processors is required and exactly the same type

of operations is done on massive data sets of a size that

can be made to fit comfortably in these machines.

The control processor as depicted in Fig. 3 may be more

or less intelligent. It issues the instruction sequence that

will be executed by the processor array. In the worst case

(which means a less autonomous control processor), when

an instruction is not fit for execution in the processor ar-

ray (e.g., a simple print instruction), it might be offloaded

to the front-end processor, which may be much slower

than execution in the control processor. In the case of a

more autonomous control processor, this can be avoided,

thus saving processing interrupts in both the front-end and

the control processor. Most DM-SIMD systems have the
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capability to handle I/O independently from the front-

end processors. This is favorable not only because the

communication between the front-end and the back-end

systems is avoided. The (specialized) I/O devices for the

processor-array system are generally much more efficient

in providing the necessary data directly to the memory

of the processor array. Especially for very data-intensive

applications such as radar and image processing, such I/O

systems are very important.

Processor-array machines were first introduced in the

1980s and have not seen much development beyond the

first models, except in the overall technology speedup that

applies to all computer systems. They fit well in their par-

ticular application niche and they will not easily be re-

placed by radically new architectures.

C. MPP Systems

MPP systems, where MPP stands for massively parallel

processors, can be of both the shared-memory type and

the distributed-memory type. In both of these types, one

is confronted with the problem of how to deliver the data

from the memory to the processors. An interconnection

network is needed that connects the memory or memories,

in the case of a distributed memory machine, to the pro-

cessors. Through the years many types of networks have

been devised. Figure 4 shows some types of networks used

in present-day MPP systems.

When more CPUs are added, the collective bandwidth

to the memory ideally should increase linearly with the

number of processors. Unfortunately, full interconnection

is quite costly, growing with O(n2), while the number of

processors increases with O(n). As shown in Fig. 4, this is

exactly the case for a crossbar: it uses n2 connections, and

an �-network uses n log2 n connections, while with the

central bus there is only one connection. This is reflected

in the use of each connection path for the different types

FIGURE 4 Some examples of interconnection structures, used

here in a shared-memory MIMD system. The same networks may

be applied in DM-MIMD systems.

of interconnections: for a crossbar each data path is direct

and does not have to be shared with other elements. In the

case of the �-network there are log2 n switching stages

and as many data items may have to compete for any path.

For the central data bus all data have to share the same

bus, so n data items may have to compete at any time.

The bus connection is the least expensive solution, but

it has the obvious drawback that bus contention may oc-

cur, thus slowing down the traffic between the begin and

end points of the communication. Various intricate strate-

gies have been devised using caches associated with the

CPUs to minimize the bus traffic. This leads, however, to a

more complicated bus structure, which raises the costs. In

practice it has proved to be very hard to design buses that

are fast enough, especially with the speed of processors

increasing very quickly; this imposes an upper bound on

the number of processors thus connected, which appears

not to exceed 10–20.

A multistage crossbar is a network with logarithmic

complexity, and it has a structure which is situated some-

where between that of a bus and that of a crossbar with

respect to potential capacity and costs. The �-network

as depicted in Fig. 4 is an example. Commercially avail-

able machines such as the IBM RS/6000 SP and the SGI

Origin2000 use such a network structure. For a large num-

ber of processors the n log2 n connections quickly become

more attractive than the n2 used in crossbars. Of course, the

switches at the intermediate levels should be sufficiently

fast to cope with the bandwidth required.

Whichever network is used, the type of processors in

principle could be arbitrary for any topology. In practice,

however, bus-structured machines do not have vector pro-

cessors, as the speeds of these would grossly mismatch

any bus that could be constructed at a reasonable cost. All

available bus-oriented systems use RISC processors. The

local caches of the processors can sometimes alleviate the

bandwidth problem if the data access can be satisfied by

the caches, thus avoiding references to the memory.

DM-MIMD MPP machines are undoubtedly the fastest-

growing class in the family of supercomputers, although

this type of machine is more difficult to deal with than

shared-memory machines and processor-array machines.

For shared-memory systems the data distribution is com-

pletely transparent to the user. This is quite different for

DM-MIMD systems, where the user has to distribute the

data over the processors, and also the data exchange be-

tween processors has to be performed explicitly. The ini-

tial reluctance to use DM-MIMD machines has decreased

lately. This is partly due to the now-existing standards for

communication software such as MPI (message passing

interface) and PVM (parallel virtual machine) and is partly

because, at least theoretically, this class of systems is able

to outperform all other types of machines.
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DM-MIMD systems have several advantages: the band-

width problem that haunts shared-memory systems is

avoided because the bandwidth scales up automatically

with the number of processors. Furthermore, the speed of

the memory, which is another critical issue with shared-

memory systems (to get a peak performance that is com-

parable to that of DM-MIMD systems, the processors

of shared-memory machines should be very fast and the

speed of the memory should match it), is less impor-

tant for DM-MIMD machines because more processors

can be configured without the aforementioned bandwidth

problems.

Of course, DM-MIMD systems also have their disad-

vantages: the communication between processors is much

slower than in SM-MIMD systems, and so, the synchro-

nization overhead for communicating tasks is generally

orders of magnitude higher than in shared-memory ma-

chines. Moreover, the access to data that are not in the

local memory belonging to a particular processor have to

be obtained from nonlocal memory (or memories). This

is, again, slow in most systems slow compared to local

data access. When the structure of a problem dictates a

frequent exchange of data between processors and/or re-

quires many processor synchronisations, it may well be

that only a very small fraction of the theoretical peak speed

can be obtained. As already mentioned, the data and task

decompositions are factors that mostly have to be dealt

with explicitly, which may be far from trivial.

Nowadays, processors are mostly off-the-shelf RISC

processors. A problem for DM-MIMD MPP systems is

that the speed of these processors increases at a fast rate,

doubling in speed every 18 months. This is not so eas-

ily attained for the interconnection network. So a mis-

match of communication vs computation speed may oc-

cur, thus turning a computation-bound problem into a

communication-bound problem.

D. Clustered Systems

Recently a trend can be observed toward building systems

that have a rather small number (up to 16) of RISC pro-

cessors that are tightly integrated in a cluster, a symmetric

multiprocessing (SMP) node. The processors in such a

node are virtually always connected by a one-stage cross-

bar, while the clusters themselves are connected by a less

costly network. Such a system may look like that depicted

in Fig. 5. Note that in Fig. 5 all CPUs in a cluster are

connected to a common part of the memory.

Some vendors have included hardware assistence such

that all of the processors can access all of the address

space. Therefore, such systems can be considered SM-

MIMD machines. On the other hand, because the memory

is physically distributed, it cannot be guaranteed that a

FIGURE 5 Block diagram of a system with a “hybrid” network:

clusters of four CPUs are connected by a crossbar. The clus-

ters are connected by a less expensive network; e.g., a butterfly

network.

data access operation will always be satisfied within the

same time. Therefore such machines are called ccNUMA

systems, where ccNUMA stands for cache coherent non-

uniform memory access. The term “cache coherent” refers

to the fact that for all CPUs any variable that is to be

used must have a consistent value. Therefore, it must be

assured that the caches that provide these variables are

also consistent in this respect by additional hardware and

operating system functions.

For all practical purposes we can classify these sys-

tems as SM-MIMD machines also because special as-

sisting hardware/software (such as a directory memory)

has been incorporated to establish a single system image,

although the memory is physically distributed.

III. NEW DEVELOPMENTS

The need for an ever-higher computing speed is insatiable

and therefore new ways are continuously sought to in-

crease. As may be clear from the discussion in the former

section, the main problem that must be overcome is the

growing difference in speed between CPUs and memories.

A possible way of hiding the speed difference lies in multi-

threading. A thread can be seen as an independent subtask

in a program that requires its own data and produces its

own distinct results. Most programs contain many threads

that can be executed independently. In a multithreaded ma-

chine many threads are executed in parallel, and when the

data for a certain thread are not yet available another thread

can become active within one or a few clock cycles, thus

giving the abandoned thread the opportunity to get its data

in place. In this way the slowness or latency of memory

requests can be hidden as long as enough independent

threads are available. The Tera Corporation has actually

built such a system, the Tera MTA, which is presently

evaluated. Also, the miniaturization of the various parts
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on chips makes it possible to include a limited amount of

multithreading supporting hardware on the chip. So, this

latency hiding mechanism will very probably turn up in

many more processors in the coming years.

Another way to approach the latency problem is by not

shipping the data from memory at all: some intelligence

could be built into the memory itself, thus allowing for

processing-in-memory (PIM). Research into PIM is quite

active, and speed gains of factors of several hundreds and

more have been demonstrated. One may expect that this

kind of processing will appear in supercomputers within

the next 5 years.

A different development that already existed in past

supercomputer models is getting renewed attention: the

principle of the very long instruction word (VLIW) ma-

chine. In these systems a large number of functional units

is activated at the same time by many instructions packed

into a long instruction word. The late multiflow trace sys-

tem, which was of this type, used instruction words of

1024 bits that, in optimal circumstances, caused 28 func-

tional units to execute. Note that in this approach the mem-

ory latency is not addressed, but one tries to speed up the

computation by executing more instructions at the same

time. The renewed insterest stems from the fact that in

VLIW systems the instructions are scheduled statically,

i.e., the CPUs are not involved in deciding which instruc-

tion should be executing at what moment. This requires

extensive hardware support and the results of this dynamic

scheduling are not always satisfactory. Furthermore, when

the number of functional units increases beyond five or

six, the complexity of dynamic scheduling becomes so

high that for most programs no reasonably optimal sched-

ule can be found. Also, because the dynamic scheduling

is an intricate process, the clock cycle of the processor

may be lengthened to accommodate it. In static schedul-

ing the decision process has already taken place by means

of the compiler, which produces the instruction schedule.

Consequently, the clock cycle may be lowered and more

functional units can be put to work at the same time. The

downside of this is that very high demands on the quality

of the compilers for VLIW systems must be made to assure

that the instruction schedules employ the functional units

efficiently. The Intel IA-64 chip family can be seen as a

modest form of a VLIW chip, using instruction words of

64 bits, although the concept is renamed EPIC (Explicitly

Parallel Instruction Computer) by Intel.

IV. SOFTWARE FOR SUPERCOMPUTERS

To take advantage of the speed that supercomputers can

offer, one must be able to put to work as much of an avail-

able system as possible for the largest possible part of

the computational task at hand. For some system types

this is done largely automatically, while for others this

is very inefficient or very hard. Over the years much ef-

fort has been invested in vectorizing and autoparallelizing

compilers that can take off much of the burden that other-

wise would befall the user of the machine. Fortunately, in

the last few years many standardization efforts have also

been finished, the outcomes of which have been widely

accepted. This means that programs for one supercom-

puter can be ported to other ones with minimal effort once

a certain progamming model has been chosen. Below we

discuss some software developments that complement the

supercomputers that are presently marketed.

A. Software for Shared-Memory Systems

Parallelization for shared-memory systems is a relatively

easy task, at least compared to that for distributed-memory

systems. The reason lies in the fact that in shared-memory

systems the user does not have to keep track of where the

data items of a program are stored: they all reside in the

same shared memory. For such machines often an impor-

tant part of the work in a program can be parallelized,

vectorized, or both in an automatic fashion. Consider, for

instance, the simple multiplication of two rows of num-

bers several thousand elements long. This is an operation

that is abundant in the majority of technical/scientific pro-

grams. Expressed in the programming language Fortran

90, this operation would look like

do i = 1, 10000

a(i) = b(i)*c(i)

end do

and would cause rowsb andc, each 10,000 elements long,

to be multiplied and the row of 10,000 results to be named

a. Most parallel systems have a Fortran 90 compiler that

is able to divide the 10,000 multiplications in an even way

over all available processors, which would result, e.g., in

a 50-processor machine, in a reduction of the computing

time of almost a factor of 50 (there is some overhead in-

volved in dividing the work over the processors). Not all

compilers have this ability. However, by giving some di-

rectives to the compiler, one still may induce the compiler

to spread the work as desired. These directives are defined

by the OpenMP Consortium [4] and they are accepted

by all major parallel shared-memory system vendors. The

program fragment above would look like

!$omp parallel do

do i = 1, 10000

a(i) = b(i)*c(i)

end do

!$omp end parallel do
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informing the compiler that this fragment should be par-

allelized. The lines starting with !$omp are OpenMP di-

rective lines that guide the parallelization process. There

are many less simple situations where OpenMP directives

may be applied, sometimes helping the compiler, because

it does not have sufficient knowledge to judge whether

a certain part of a program can safely be parallelized or

not. Of course this requires an intimate knowledge of the

program by the user, to know where to use the appro-

priate directives. A nice feature of the directives is that

they have exactly the same form as the commentary in a

normal nonparallel program. This commentary is ignored

by compilers that do not have OpenMP features. There-

fore, programs with directives can be run on parallel and

nonparallel systems without altering the program itself.

Apart from what the programmer can do to parallelize

his or her programs, most vendors also offer libraries of

subprograms for operations that will often occur in vari-

ous application areas. These subprograms are made to run

very efficiently in parallel in the vendor’s computers and,

because every vendor has about the same collection of sub-

programs available, does not restrict the user of these pro-

grams to one computer. A foremost example is LAPACK,

which provides all kinds of linear algebra operations and

is available for all shared-memory parallel systems.

B. Software for Distributed-Memory Systems

As remarked in the former section, the paralellization of

applications in distributed-memory systems is less sim-

ple than in their shared-memory counterparts. The reason

is that in distributed-memory systems not all data items

will reside in the same memory, and the user must be

aware where they are and explicitly move or copy them to

other memories if this is required by the computation. As

for shared-memory systems, there has been a significant

standardization effort to ensure that programs written for

one computer also work in systems of other vendors. The

most important ones are the communication libraries MPI

(Message Passing Interface) and PVM (Parallel Virtual

Machine). Both define subprograms that enable copying

data from one memory to another, broadcasting data to the

memories in a predefined collection of processors, or gath-

ering data from all or a subset of processors to a specified

processor. As in the former section we imagine, again, that

rows b and c, of length 10,000, should be multiplied and

the result should be stored in row a. This time, however,

rows b and c are scattered over the memories of 50 pro-

cessors. For each of the processors the program fragment

is very similar to that of the shared-memory version, but

each processor contains only 200 of the 10,000 elements

of b and c, and therefore the program fragment would

read

do i = 1, 200

a(i) = b(i)*c(i)

end do

However, when we need to have the total result in one

processor, say processor 0, we have to collect all these

subresults explictly in this processor. We can achieve this

by using the MPI communication library, and the program

fragment should be modified in the following way:

do i = 1, 200

a(i) = b(i)*c(i)

end do

call mpi gather(a, 200, mpi real, &

a, 200, mpi real, &

0, mpi world comm, ierr)

The last line causes all processors in the processor set

mpi world comm to send their partial results to proces-

sor 0, where they will be placed in a row named a in the

correct order. One can imagine that in many programs

the sending and receiving of data from other processors

can quickly become complicated. Furthermore, in contrast

with the shared-memory program, we have to alter the pro-

gram with respect to the nonparallel version to obtain the

desired result.

Apart from MPI and PVM, there are programming mod-

els that attempt to hide the distributed nature of the ma-

chine at hand from the user. One of these is HPF (High

Performance Fortran). In this Fortran 90-like language

one can specify how the data are spread out over the

processors, and all communication that results from this

is taken care of by the HPF compiler and run time sys-

tem. HPF, however, can be applied only in relatively easy

and very regular cases. Such applications are character-

ized as data parallel. Therefore, the use of HPF is fairly

limited.

As with shared-memory systems, also for distributed-

memory systems application software libraries have been,

and are being, developed. ScaLAPACK is a distributed-

memory version of the LAPACK library mentioned above.

Other application libraries may in turn rely on ScaLA-

PACK, for instance, in solving partial differential equa-

tions as in the PETSc package. Much of this software can

be found on the World Wide Web, e.g., via http://www.

netlib.org.
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