
Mihai V. Putz, PhD

Volume 1     

Quantum 
NANOCHEMISTRY

Quantum Theory and Observability 

Putz

Quantum 
Quantum Theory and Observability 

Volume 1: Quantum Theory and Observability 
Volume 2: Quantum Atoms and Periodicity
Volume 3: Quantum Molecules and Reactivity
Volume 4: Quantum Solids and Orderability
Volume 5: Quantum Structure-Activity Relationships (Qu-SAR)

This new 5-volume set presents in a balanced yet progressive manner the fundamental and 
advanced concepts, principles, and models of quanta, atoms, molecules, solids and crystal 
and chemical-biological interaction in cells. It also addresses the first and novel 
combinations and applications in modeling complex natural or designed phenomena. These 
new volumes by Dr. Putz embrace the best knowledge at the dawn of the 21st century of 
chemical bonding approaches while further advancing the chemical bonding approaches 
through the author's own progressive vision, which highlights the concept of bosonic-
bondon in artificial chemistry.

The multi-volume book uniquely features:  
• a multi-level unitary approach (atoms, molecules, solids, chemical-biological interaction 

in an interrelated conceptual and applicative presentation)
• fresh quantum views and models of atomic stability and molecular reactivity
• a new theory of chemical bonding by bosonic-bondons
• the first path integral applications in quantum chemistry
• the first bondonic analysis for the graphenic topological defects

ABOUT THE AUTHOR

Mihai V. Putz, PhD, is currently Associate Professor of theoretical and 
computational physical chemistry at West University of Timisoara, 
Romania. He has been recognized for his valuable contributions in 
computational, quantum, and physical chemistry. He is Editor-in-Chief of 
the International Journal of Chemical Modeling and the International 
Journal of Environmental Sciences. He is member of many professional 
societies and has received several national and international awards from 
organizations such as the Romanian National Authority of Scientific 

Research, Romanian Ministry of Research, the German Academic Exchange Service DAAD 
and the Center of International Cooperation of Free University Berlin, among others. 

NANOCHEMISTRY

9 781771 881333

00009
ISBN: 978-1-77188-133-3 

Quantum Nanochemistry: 5-Volume Set:
ISBN: 978-1-77188-138-8

Quantum
 NANOCHEM

ISTRY
Quantum

 Theory and Observability 

Volume 1

www.appleacademicpress.com

Mihai V. Putz, PhD

Volume 1     

Quantum 
NANOCHEMISTRY

Quantum Theory and Observability 

Putz

Quantum 
Quantum Theory and Observability 

Volume 1: Quantum Theory and Observability 
Volume 2: Quantum Atoms and Periodicity
Volume 3: Quantum Molecules and Reactivity
Volume 4: Quantum Solids and Orderability
Volume 5: Quantum Structure-Activity Relationships (Qu-SAR)

This new 5-volume set presents in a balanced yet progressive manner the fundamental and 
advanced concepts, principles, and models of quanta, atoms, molecules, solids and crystal 
and chemical-biological interaction in cells. It also addresses the first and novel 
combinations and applications in modeling complex natural or designed phenomena. These 
new volumes by Dr. Putz embrace the best knowledge at the dawn of the 21st century of 
chemical bonding approaches while further advancing the chemical bonding approaches 
through the author's own progressive vision, which highlights the concept of bosonic-
bondon in artificial chemistry.

The multi-volume book uniquely features:  
• a multi-level unitary approach (atoms, molecules, solids, chemical-biological interaction 

in an interrelated conceptual and applicative presentation)
• fresh quantum views and models of atomic stability and molecular reactivity
• a new theory of chemical bonding by bosonic-bondons
• the first path integral applications in quantum chemistry
• the first bondonic analysis for the graphenic topological defects

ABOUT THE AUTHOR

Mihai V. Putz, PhD, is currently Associate Professor of theoretical and 
computational physical chemistry at West University of Timisoara, 
Romania. He has been recognized for his valuable contributions in 
computational, quantum, and physical chemistry. He is Editor-in-Chief of 
the International Journal of Chemical Modeling and the International 
Journal of Environmental Sciences. He is member of many professional 
societies and has received several national and international awards from 
organizations such as the Romanian National Authority of Scientific 

Research, Romanian Ministry of Research, the German Academic Exchange Service DAAD 
and the Center of International Cooperation of Free University Berlin, among others. 

NANOCHEMISTRY

9 781771 881333

00009
ISBN: 978-1-77188-133-3 

Quantum Nanochemistry: 5-Volume Set:
ISBN: 978-1-77188-138-8

Quantum
 NANOCHEM

ISTRY
Quantum

 Theory and Observability 

Volume 1
Mihai V. Putz, PhD

Volume 1     

Quantum 
NANOCHEMISTRY

Quantum Theory and Observability 

Putz

Quantum 
Quantum Theory and Observability 

Volume 1: Quantum Theory and Observability 
Volume 2: Quantum Atoms and Periodicity
Volume 3: Quantum Molecules and Reactivity
Volume 4: Quantum Solids and Orderability
Volume 5: Quantum Structure-Activity Relationships (Qu-SAR)

This new 5-volume set presents in a balanced yet progressive manner the fundamental and 
advanced concepts, principles, and models of quanta, atoms, molecules, solids and crystal 
and chemical-biological interaction in cells. It also addresses the first and novel 
combinations and applications in modeling complex natural or designed phenomena. These 
new volumes by Dr. Putz embrace the best knowledge at the dawn of the 21st century of 
chemical bonding approaches while further advancing the chemical bonding approaches 
through the author's own progressive vision, which highlights the concept of bosonic-
bondon in artificial chemistry.

The multi-volume book uniquely features:  
• a multi-level unitary approach (atoms, molecules, solids, chemical-biological interaction 

in an interrelated conceptual and applicative presentation)
• fresh quantum views and models of atomic stability and molecular reactivity
• a new theory of chemical bonding by bosonic-bondons
• the first path integral applications in quantum chemistry
• the first bondonic analysis for the graphenic topological defects

ABOUT THE AUTHOR

Mihai V. Putz, PhD, is currently Associate Professor of theoretical and 
computational physical chemistry at West University of Timisoara, 
Romania. He has been recognized for his valuable contributions in 
computational, quantum, and physical chemistry. He is Editor-in-Chief of 
the International Journal of Chemical Modeling and the International 
Journal of Environmental Sciences. He is member of many professional 
societies and has received several national and international awards from 
organizations such as the Romanian National Authority of Scientific 

Research, Romanian Ministry of Research, the German Academic Exchange Service DAAD 
and the Center of International Cooperation of Free University Berlin, among others. 

NANOCHEMISTRY

9 781771 881333

00009
ISBN: 978-1-77188-133-3 

Quantum Nanochemistry: 5-Volume Set:
ISBN: 978-1-77188-138-8

Quantum
 NANOCHEM

ISTRY
Quantum

 Theory and Observability 
Volume 1 Mihai V. Putz, PhD

Volume 1     

Quantum 
NANOCHEMISTRY

Quantum Theory and Observability 

Putz

Quantum 
Quantum Theory and Observability 

Volume 1: Quantum Theory and Observability 
Volume 2: Quantum Atoms and Periodicity
Volume 3: Quantum Molecules and Reactivity
Volume 4: Quantum Solids and Orderability
Volume 5: Quantum Structure-Activity Relationships (Qu-SAR)

This new 5-volume set presents in a balanced yet progressive manner the fundamental and 
advanced concepts, principles, and models of quanta, atoms, molecules, solids and crystal 
and chemical-biological interaction in cells. It also addresses the first and novel 
combinations and applications in modeling complex natural or designed phenomena. These 
new volumes by Dr. Putz embrace the best knowledge at the dawn of the 21st century of 
chemical bonding approaches while further advancing the chemical bonding approaches 
through the author's own progressive vision, which highlights the concept of bosonic-
bondon in artificial chemistry.

The multi-volume book uniquely features:  
• a multi-level unitary approach (atoms, molecules, solids, chemical-biological interaction 

in an interrelated conceptual and applicative presentation)
• fresh quantum views and models of atomic stability and molecular reactivity
• a new theory of chemical bonding by bosonic-bondons
• the first path integral applications in quantum chemistry
• the first bondonic analysis for the graphenic topological defects

ABOUT THE AUTHOR

Mihai V. Putz, PhD, is currently Associate Professor of theoretical and 
computational physical chemistry at West University of Timisoara, 
Romania. He has been recognized for his valuable contributions in 
computational, quantum, and physical chemistry. He is Editor-in-Chief of 
the International Journal of Chemical Modeling and the International 
Journal of Environmental Sciences. He is member of many professional 
societies and has received several national and international awards from 
organizations such as the Romanian National Authority of Scientific 

Research, Romanian Ministry of Research, the German Academic Exchange Service DAAD 
and the Center of International Cooperation of Free University Berlin, among others. 

NANOCHEMISTRY

9 781771 881333

00009
ISBN: 978-1-77188-133-3 

Quantum Nanochemistry: 5-Volume Set:
ISBN: 978-1-77188-138-8

Quantum
 NANOCHEM

ISTRY
Quantum

 Theory and Observability 
Volume 1 Mihai V. Putz, PhD

Volume 1     

Quantum 
NANOCHEMISTRY

Quantum Theory and Observability 

Putz

Quantum 
Quantum Theory and Observability 

Volume 1: Quantum Theory and Observability 
Volume 2: Quantum Atoms and Periodicity
Volume 3: Quantum Molecules and Reactivity
Volume 4: Quantum Solids and Orderability
Volume 5: Quantum Structure-Activity Relationships (Qu-SAR)

This new 5-volume set presents in a balanced yet progressive manner the fundamental and 
advanced concepts, principles, and models of quanta, atoms, molecules, solids and crystal 
and chemical-biological interaction in cells. It also addresses the first and novel 
combinations and applications in modeling complex natural or designed phenomena. These 
new volumes by Dr. Putz embrace the best knowledge at the dawn of the 21st century of 
chemical bonding approaches while further advancing the chemical bonding approaches 
through the author's own progressive vision, which highlights the concept of bosonic-
bondon in artificial chemistry.

The multi-volume book uniquely features:  
• a multi-level unitary approach (atoms, molecules, solids, chemical-biological interaction 

in an interrelated conceptual and applicative presentation)
• fresh quantum views and models of atomic stability and molecular reactivity
• a new theory of chemical bonding by bosonic-bondons
• the first path integral applications in quantum chemistry
• the first bondonic analysis for the graphenic topological defects

ABOUT THE AUTHOR

Mihai V. Putz, PhD, is currently Associate Professor of theoretical and 
computational physical chemistry at West University of Timisoara, 
Romania. He has been recognized for his valuable contributions in 
computational, quantum, and physical chemistry. He is Editor-in-Chief of 
the International Journal of Chemical Modeling and the International 
Journal of Environmental Sciences. He is member of many professional 
societies and has received several national and international awards from 
organizations such as the Romanian National Authority of Scientific 

Research, Romanian Ministry of Research, the German Academic Exchange Service DAAD 
and the Center of International Cooperation of Free University Berlin, among others. 

NANOCHEMISTRY

9 781771 881333

00009
ISBN: 978-1-77188-133-3 

Quantum Nanochemistry: 5-Volume Set:
ISBN: 978-1-77188-138-8

Quantum
 NANOCHEM

ISTRY
Quantum

 Theory and Observability 
Volume 1

Mihai V. Putz, PhD

Volume 1     

Quantum 
NANOCHEMISTRY

Quantum Theory and Observability 

Putz

Quantum 
Quantum Theory and Observability 

Volume 1: Quantum Theory and Observability 
Volume 2: Quantum Atoms and Periodicity
Volume 3: Quantum Molecules and Reactivity
Volume 4: Quantum Solids and Orderability
Volume 5: Quantum Structure-Activity Relationships (Qu-SAR)

This new 5-volume set presents in a balanced yet progressive manner the fundamental and 
advanced concepts, principles, and models of quanta, atoms, molecules, solids and crystal 
and chemical-biological interaction in cells. It also addresses the first and novel 
combinations and applications in modeling complex natural or designed phenomena. These 
new volumes by Dr. Putz embrace the best knowledge at the dawn of the 21st century of 
chemical bonding approaches while further advancing the chemical bonding approaches 
through the author's own progressive vision, which highlights the concept of bosonic-
bondon in artificial chemistry.

The multi-volume book uniquely features:  
• a multi-level unitary approach (atoms, molecules, solids, chemical-biological interaction 

in an interrelated conceptual and applicative presentation)
• fresh quantum views and models of atomic stability and molecular reactivity
• a new theory of chemical bonding by bosonic-bondons
• the first path integral applications in quantum chemistry
• the first bondonic analysis for the graphenic topological defects

ABOUT THE AUTHOR

Mihai V. Putz, PhD, is currently Associate Professor of theoretical and 
computational physical chemistry at West University of Timisoara, 
Romania. He has been recognized for his valuable contributions in 
computational, quantum, and physical chemistry. He is Editor-in-Chief of 
the International Journal of Chemical Modeling and the International 
Journal of Environmental Sciences. He is member of many professional 
societies and has received several national and international awards from 
organizations such as the Romanian National Authority of Scientific 

Research, Romanian Ministry of Research, the German Academic Exchange Service DAAD 
and the Center of International Cooperation of Free University Berlin, among others. 

NANOCHEMISTRY

9 781771 881333

00009
ISBN: 978-1-77188-133-3 

Quantum Nanochemistry: 5-Volume Set:
ISBN: 978-1-77188-138-8

Quantum
 NANOCHEM

ISTRY
Quantum

 Theory and Observability 

Volume 1



QUANTUM 
NANOCHEMISTRY

(A Five-Volume Work)

Volume I: 
Quantum Theory and Observability



This page intentionally left blankThis page intentionally left blank



QUANTUM 
NANOCHEMISTRY

(A Five-Volume Work)

Volume I:  
Quantum Theory and Observability

Mihai V. Putz
Assoc. Prof. Dr. Dr.-Habil. Acad. Math. Chem.

West University of Timişoara,
Laboratory of Structural and Computational Physical-Chemistry  
for Nanosciences and QSAR, Department of Biology-Chemistry,

Faculty of Chemistry, Biology, Geography,
Str. Pestalozzi, No. 16, RO-300115, Timişoara, ROMANIA

Tel: +40-256-592638; Fax: +40-256-592620

&

Principal Investigator of First Rank, PI1/CS1
Institute of Research-Development for Electrochemistry  

and Condensed Matter (INCEMC) Timisoara,
Str. Aurel Paunescu Podeanu No. 144,

RO-300569 Timişoara, ROMANIA
Tel: +40-256-222-119; Fax: +40-256-201-382

E-mail: mv_putz@yahoo.com
URL: www.mvputz.iqstorm.ro



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

Apple Academic Press, Inc
3333 Mistwell Crescent
Oakville, ON L6L 0A2
Canada

© 2016 by Apple Academic Press, Inc.
Exclusive worldwide distribution by CRC Press an imprint of Taylor & Francis Group, an Informa 
business

No claim to original U.S. Government works
Version Date: 20160308

International Standard Book Number-13: 978-1-4987-2953-6 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reason-
able efforts have been made to publish reliable data and information, but the author and publisher 
cannot assume responsibility for the validity of all materials or the consequences of their use. The 
authors and publishers have attempted to trace the copyright holders of all material reproduced in 
this publication and apologize to copyright holders if permission to publish in this form has not 
been obtained. If any copyright material has not been acknowledged please write and let us know so 
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or 
hereafter invented, including photocopying, microfilming, and recording, or in any information 
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. 
(CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organiza-
tion that provides licenses and registration for a variety of users. For organizations that have been 
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and 
are used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

For information about Apple Academic Press product
http://www.appleacademicpress.com



[With the quantum theory of matter…] the underlying physical laws 
necessary for the Mathematical theory of a large part of Physics and the 

Whole of Chemistry are thus completely known!
(Dirac, 1929)
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Dear Scholars (Student, Researcher, Colleague),

I am honored to introduce Quantum Nanochemistry, a handbook com-
prised of the following five volumes:

Volume I: Quantum Theory and Observability
Volume II: Quantum Atoms and Periodicity
Volume III: Quantum Molecules and Reactivity
Volume IV: Quantum Solids and Orderability
Volume V: Quantum Structure–Activity Relationships (Qu-SAR)

This treatise, a compilation of my lecture notes for graduates, post-
graduates and doctoral students in physical and chemical sciences as 
well as my own post-doctoral research, will serve the scientific com-
munity seeking information in basic quantum chemistry environments: 
from the fundamental quantum theories to atoms, molecules, solids 
and cells (chemical–biological/ligand–substrate/ligand–receptor inter-
actions); and will also creatively explain the quantum level concepts 
such as observability, periodicity, reactivity, orderability, and activity 
explicitly.

The book adopts a three-way approach to explain the main principles 
governing the electronic world: 

• firstly, the introductory principles of quantumchemistry are stated; 
• then, they are analyzed as primary concepts employed to under-

stand the microscopic nature of objects;
• finally, they are explained through basic analytical equations con-

trolling the observed or measured electronic object. 

It explains the first principles of quantum chemistry, which includes quan-
tum mechanics, quantum atom and periodicity, quantum molecule and 
reactivity, through two levels: 
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• fundamental (or universal) character of matter in isolated and 
interacting states; and 

• the primary concepts elaborated for a beginner as well as an 
advanced researcher in quantum chemistry. 

Each volume tells the “story of quantum chemical structures” from differ-
ent viewpoints offering new insight to some current quantum paradoxes. 

• The first volume covers the concepts of nuclear, atomic, molecular 
and solids on the basis of quantum principles—from Planck, Bohr, 
Einstein, Schrödinger, Hartree–Fock, up to Feynman Path Integral 
approaches;

• The second volume details an atom’s quantum structure, its diverse 
analytical predictions through reviews and an in-depth analysis of 
atomic periodicities, atomic radii, ionization potential, electron 
affinity, electronegativity and chemical hardness. Additionally, 
it also discusses the assessment of electrophilicity and chemical 
action as the prime global reactivity indices while judging chemi-
cal reactivity through associated principles;

• The third volume highlights chemical reactivity through molecular 
structure, chemical bonding (introducing bondons as the quantum 
bosonic particles of the chemical field), localization from Hückel 
to Density Functional expositions, especially how chemical prin-
ciples of electronegativity and chemical hardness decide the global 
chemical reactivity and interaction;

• The fourth volume addresses the electronic order problems in the 
solid state viewed as a huge molecule in special quantum states; and 

• The fifth volume reveals the quantum implication to bio-organic 
and bio-inorganic systems, enzyme kinetics and to pharmaco-
phore binding sites of chemical–biological interaction of mol-
ecules through cell membranes in targeting specific bindings 
modeled by celebrated QSARs (Quantitative Structure–Activity 
Relationships) renamed here as Qu–SAR (Quantum Structure–
Activity Relationships). 

Thus, the five-volume set attempts, for the first time ever, to unify the intro-
ductory principles, the primary concepts and the basic analytical equations 
against a background of quantum chemical bonds and interactions (short, 
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medium and long), structures of matter and their properties: periodicity of 
atoms, reactivity of molecules, orderability of solids, and activity of cells 
(through an advanced multi-layered quantum structure–activity unifying 
concepts and algorithms), and observability measured throughout all the 
introduced and computed quantities (Figure 0.0). 

It provides a fresh perspective to the “quantum story” of electronic 
matter, collecting and collating both research and theoretical exposition 
the “gold” knowledge of the quantum chemistry principles. 

The book serves as an excellent reference to undergraduate, graduate 
(Masters and PhDs) and post-doctoral students of physical and chemical 
sciences; for it not only provides basics and essentials of applied quantum 
theory, but also leads to unexplored areas of quantum science for future 
research and development. Yet another novelty of the book set is the intel-
ligent unification of the quantum principles of atoms, molecules, solids 
and cells through the qualitative–quantitative principles underlying the 
observed quantum phenomena. This is achieved through unitary analytical 

FIGURE 0.0 The featured concepts of the “First Principles of Quantum Chemistry” five-
volume handbook as placed in the paradigmatic chemical orthogonal space of atoms and 
molecules.
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exposition of the quantum principles ranging from quanta’s nature (either 
as ondulatory and corpuscular manifestations) to wave function, path inte-
gral and electron density tools.

The modern quantum theories are reviewed mindful of their implications 
to quantum chemistry. Atomic, molecular, solid-state structures along cell/
biological activity are analytically characterized. Major quantum aspects 
of the atomic, molecular, solid and cellular structure, properties/activity 
features, conceptual and quantitative correlations are unitarily reviewed at 
basic and advanced physical-chemistry levels of comprehension. 

Unlike other available textbooks that are written as monographs dis-
playing the chapters as themes of interests, this book narrates the “story 
of quantum chemistry” as an extended review paper, where theoretical 
and instructional concepts are appropriately combined with the relevant 
schemes of quantization of electronic structures, through path integrals, 
Bohmian, or chemical reactivity indices. The writing style is direct, con-
cise and appealing; wherever appropriate physical, chemical and even 
philosophical insights are provided to explain quantum chemistry at large. 

The author uses his rich university teaching experience of 15 years 
in physical chemistry at West University of Timisoara, Romania, along 
with his research expertise in treating chemical bond and bonding through 
conceptual and analytical quantum mechanical methods to explain the 
concepts. He has been a regular contributor to many physical-chemical 
international journals (Phys Rev, J Phys Chem, Theor Acc Chem, Int 
J Quantum Chem, J Comp Chem, J Theor Comp Chem, Int J Mol Sci, 
Molecules, Struct Bond, Struct Chem, J Math Chem, MATCH, etc.).

In a nutshell, the book amalgamates an analysis of the earlier works 
of great professors such as Sommerfeld, Slater, Landau and Feynman 
in a methodological, informative and epistemological way with practical 
and computational applications. The volumes are layered such that each 
can be used either individually or in combination with the other volumes. 
For instance, each volume reviews quantum chemistry from its level: as 
quantum formalisms in Volume I, as atomic structure and properties in 
Volume II, as detailed molecular bonding in Volume III, as crystal/solid 
state (electronic) in Volume IV, and as pharmacophore activity targeting 
specific bindings in Volume V.
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To the best of my knowledge, such a collection does not exist currently 
in curricula and may not appear soon as many authors prefer to publish 
well-specialized monographs in their particular field of expertise. This 
multiple volumes’ work, thus, assists academic and research community 
as a complete basic reference of conceptual and illustrative value. 

I wish to acknowledge, with sincerity, the quantum flaws that myself 
and many researchers and professors make due to stressed delivery of 
papers using computational programs and software to report and interpret 
results based on inter-correlation. I feel, therefore, the need of a new com-
prehensive quantum chemistry reference approach and the present five-
volume set fills the gap:

• Undergraduate students may use this work as an introductory 
and training textbook in the quantum structure of matter, for basic 
course(s) in physics and chemistry at college and university;

• Graduate (Master and Doctoral) students may use this work as 
the recipe book for analytical research on quantum assessments of 
electronic properties of matter in the view of chemical reactivity 
characterization and prediction;

• University professors and tutors may use this work as a reference 
textbook to plan their lectures and seminars in quantum chemistry 
at undergraduate or graduate level;

• Research (Academic and Institutes) media may use this work as 
a reference monograph for their results as it contains many tables 
and original results, published for the first time, on the atomic-
molecular quantum energies, atomic radii and reactivity indices 
(e.g., electronegativity, chemical hardness, ionization and electron 
affinity results). It also has a collection of original, special and gen-
erally recommended literature, integrated results about quantum 
structure and properties.

• Industry media may use this work as a working tool book while 
assessing envisaged theoretical chemical structures or reactions 
(atoms-in-molecule, atoms-in-nanosystems), including molecular 
modeling for pharmaceutical purposes, following the presented 
examples, or simulating the physical–chemical properties before 
live production;
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• General media may use this work as an information book to get 
acquainted with the main and actual quantum paradigms of mat-
ter’s electronic structures and in understanding and predicting the 
chemical combinations (involving electrons, atoms and molecules) 
of Nature, because of its educative presentation.

I hope the academia shares the same enthusiasm for my work as the author 
while writing it and the professionalism and exquisite cooperation of the 
Apple Academic Press in publishing it.

Yours Sincerely,

Mihai V. Putz, 
Assoc. Prof. Dr. Dr.-Habil. Acad. Math. Chem.
West University of Timişoara
& R&D National Institute for Electrochemistry and Condensed Matter 
Timişoara 
(Romania)
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“The world is not as real as we think.
My personal opinion is that the world is even
weirder than what quantum physics tells us.”

– Anton Zeilinger, The New York Times, December 27, 2005

During my student days (pre-university, university, PhD), we learned 
quantum mechanics from the books authored by L. D. Landau and  
E. M. Lifshitz, A. S. Davydov, D. Bohm, Feynman’s course of Lectures on 
Physics, and from P. A. M. Dirac’s “Principles”. We were excited with the 
theories of hidden variables, EPR paradox, decoherence, entanglement, 
and concerned for a life of ‘immortal’ Schrödinger’s cat – they were in the 
air at that time! Did I understand it? Yes! – because, due to a conventional 
wisdom, I used it more than 24 hours a day and every day. I however 
doubt – doubt together with Feynman who once remarked that “Nobody 
understands it!” – that I’ve actually understood it. I touched and used it 
throughout the molecular world, which is nowadays inhabited by 21 mil-
lion molecules, and which I studied as a quantum chemist – in fact, by 
education, I am a theoretical physicist.

Once, after winning the 1908 Nobel Prize in chemistry, Ernest 
Rutherford, considering himself as a physicist, said,  “All science is either 
physics or stamp collection.” (Actually, Feynman was not at all a stamp 
collector!). True, the name physics, fusiz in Greek, means “nature.” This 
is actually a paradox with (of) quantum mechanics ‘that everybody uses 
quantum mechanics and nobody knows how it can be like that’, as Yakir 
Aharonov and Daniel Rohrlich pointed out in their recent book “Quantum 
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Paradoxes. Quantum Theory for the Perplexed” (Weinheim: Wiley-
VCH, 2005. ISBN 3-527-40391-4/pbk): “Our relationship with quantum 
mechanics recalls a Woody Allen joke: This guy goes to a psychiatrist 
and says, “Doc, my brother’s crazy – he thinks he’s a chicken! And, uh, 
the doctor says, “Well, why don’t you turn him in?” And the guy says, 
“I would, but I need the eggs!” This dialog (not the last one in the book 
…) precisely mirrors our thoughts: “Quantum mechanics is crazy – but 
we need the eggs!” I would even add here ‘weird’, following the above 
Zeilinger’s motto.

In my opinion, this paradox is rooted to the manner of how we were taught 
quantum mechanics1: this manner principally reflects the chronological way 
it entered the mankind consciousness at the end of the nineteenth century to 
the beginning of twentieth century: the black-body radiation, the models of 
atom by Rutherford and Bohr, the slit experiments on a wave–particle dual-
ity, and so on. Also taken this road, Mihai V. Putz – everyone agrees with me 
that writing a book on quantum mechanics is a very hard job – nevertheless 
tries to offer the presentation of quantum mechanics within the context of 
nano-dimensional world and “a fresh perspective of the ‘quantum story’ of 
electronic matter, collecting in both research and didactical exposition the 
‘gold’ knowledge of the quantum chemistry principles.”

True, we all are living in the remarkable time of the nano-revolution in 
science and technology that brings together researchers from many areas: 
physics, chemistry, material science, electronics, biophysics, biology, and 
medicine to create and use structures, devices and systems of the extreme 
tininess, that, of the size of about 0.1–100 nm (nanometer is a billionth of 
a meter), that is far smaller compared to the world of our everyday objects 

1In fact, different people differently perceive newness, knowledge. Quite often, a better perception of 
what is “behind the given” is attained through a practical, concrete, direct “touch,” rather than for-
mally. Quantum mechanics is not an exception, rather a rule, mathematics too. I recall the magnificent 
book “Finite-Dimensional Linear Analysis in Problems” (in Russian) that was published in 1969 and 
was written by I. M. Glazman and Yu. I. Lyubich (I. M. Glazman, Yu. I. Lyubich, Finite-Dimensional 
Linear Analysis in Problems; Nauka: Moscow, 1969; The English translation: I. M. Glazman, Yu. 
I. Lyubich, Finite-Dimensional Linear Analysis: A Systematic Presentation in Problem Form, MIT 
Press: Cambridge, MA, 1974). This book was definitely a new word in teaching of mathematics, pre-
cisely, the functional analysis – it actually preached the form of teaching of the analysis via resolving 
logically interconnected sequence of 2405 propositions and problems. As Glazman and Lyubich wrote 
in Preface, their form of teaching rooted to the principles of Violinschule of Louis Spohr, the German 
composer, violinist, conductor, and teacher of music, who was also known as the inventor of a baton. 
The analog of such teaching approach to quantum mechanics by S. Flügge (Flügge, S. Practical Quan-
tum Mechanics; Springer: Berlin, 1987) is widely recognized.



which are described by Newton’s laws of motion and, on the contrary, 
bigger than an atom or simple molecules like water for instance – the 
particles which obey the laws of quantum mechanics. This is the world 
of nano-sized molecular assemblies, nanostructured materials – the nano-
world – that has recently become one of the largest areas of chemistry, 
physics, material science, biology, and medicine with myriad applications 
in catalysis, biophysics, and the health sciences. 

It is true that, on the other hand, many biological molecules, such as 
the DNA, RNA, proteins, viruses, and biomembranes, are also of a nano-
metric size – for example, the radius of the DNA double helix is ca. 1 nm, 
many viruses have dimension of ~10 nm, – and have recently been well 
recognized for its capability to naturally integrate with nanoparticles in 
nano-constructions. In the other words, we thus entered the area where, 
bearing in mind the meaning of ‘physics’, we all face the paradigm of 
whether the nature of nature is conceivable or unconceivable? 

This is the paradigm, which I do believe is the paradigm for the pres-
ent generation, the generation, which the present book targets on. It is 
hard, however, to think that it will be unique on the shelf of the growing 
series of textbooks on quantum theory and nanotechnology: among them 
stands the recently appeared “Quantum Mechanics with Applications to 
Nanotechnology and Information Science” by Yehuda B. Band and Yshai 
Avishai (Academic Press, 2013. ISBN 978-0-444-53786-7, see also the Book 
Review by Lee Bassett, Physics Today 50, July 2014). Nevertheless, on the 
whole, it definitely makes a useful addition to this shelf, and, together with 
the above book, I indeed recommend the book by Mihai V. Putz to ‘quan-
tum engineers’, to a broad circle of students and PhD students in chemistry, 
quantum chemistry, atomic and molecular physics who are expected to per-
ceive the concept of nano-dimension practically, interactively with quanta, 
and thus to directly apply it in their own research in nanoworld. 

Eugene S. Kryachko
Bogolyubov Institute for Theoretical Physics
National Academy of Sciences of Ukraine
Kiev, Ukraine 
November 2015
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PREFACE TO VOLUME I: 
QUANTUM THEORY AND 
OBSERVABILITY

THE SCIENTIFIC PREMISES 

Life, at any level, involves creation and transformation. 
Creation, much discussed and claimed over time by popular beliefs, 

mystical, theological, philosophical and artistic approaches, still remains a 
mystery to Science. This is because one cannot make yet a definitive series 
of cause–effect relationships that reveal both the multitude and multiplic-
ity of the various manifestations of existence into the Unity of Life. 

Steps, although important, were made but again Physics – or the natural  
philosophy – has come to formulate a set of principles, connecting one/
singularity to the multiple/property concepts, the material point to the sta-
tistical ensemble, the electron to the photon, the wave to the corpuscle, 
the atom particle in the molecule and condensed state, etc. As noted by 
Romanian Lucian Blaga “the revealed mysteries open deeper arcanum”; 
however, the mystery of primary creation such as causal legitimacy or 
the “the primal engine” as Aristotle called it, still remains inaccessible 
despite the necessity for its natural existence. Moreover, Physics itself, 
as the base of Natural Sciences, established principles of inaccessibility 
with universal characters such as Heisenberg’s uncertainty principle, the 
inaccessibility of absolute zero temperature, the legacy of adiabatic trans-
formations, and the irreversible growth of entropy of open systems.  All of 
these, among others, contributed to restricting our knowledge beyond any 
experimental observations or abstract thinking.1

And yet, there remains transformation by which Physics and Chemistry 
were formulated and validated through experimentation, modeling and 

1Putz, M. V. (2006). The Structure of Quantum Nanosystems (in Romanian), West University of 
Timişoara Publishing House, Timişoara.
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reasoned implications, a series of principles and theories that allow com-
prehensive understanding of “mutation” for the manifestation forms of 
matter, from micro- to macro-universe. Consequently, the matter shaped 
by natural phenomena  involves many developmental sequences and trans-
formation to the otherwise unitary form of life, in a broad sense. Hence, in 
absence of an immutable definition of creation, life is characterized by a 
series of changes resulting from natural phenomena (mechanical, thermo-
dynamic, electromagnetic, optical, chemical, biological or in conjunction 
synergy) which is transposed to the level of principle through transforma-
tions and interactions of the basic constituents of matter, the electrons and 
photons as the basic fermions and bosons, respectively. At this point, one 
should note that the electrons and particles with electric charge, in general, 
are responsible for the relative stability of matter, while the photons and 
matter waves describe and mediate interactions, promoting and catalyzing 
modification of a substance.2

Of all forms of matter, a quantum state represents the complex state of 
manifestation placed between micro- and macro-cosmos. Therefore, the 
systematization of the legitimacy governing the structure of matter, from 
atom to solid crystalline form, based on electronic quantum (orbital/wave/
fields) hierarchy stay as the fundamental aim of this volume. How can one 
model, represent and systematically evaluate a natural transformation? 
Through symbols and relations between them or more generally by equa-
tions; at this point explaining through equations becomes vital. This can 
be further explained through two steps. The first one relates to the opera-
tion of “putting in brackets” to the phenomenon or the system studied—a 
system supported ideologically through the philosophical phenomenol-
ogy and scientifically through the Cartesian operation of analysis. Thus, 
sequencing in knowledge “freezes” the phenomenon or system being 
investigated, thus either restricting its interaction with the neighborhood 
or completely isolating it from the environment. This situation may be 
defined/described as the quantum (proper/eigen) state for which one may 
formulate the equation associated and then seek solutions. Moving further, 
relaxation toward observation is equivalent to perturbations encountered 
during initial analysis, rewriting the phenomenon’s equation and seeking 

2Putz, M. V. (2006). The Structure of Quantum Nanosystems (in Romanian), West University of 
Timişoara Publishing House, Timişoara.
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approximate solutions. Thus, the separation, partition, factorization, over-
lapping, superposition, coupling constitute the fundamental steps and pro-
cesses for a qualitative–quantitative analysis of a quantum phenomenon or 
natural quantum state.3

Consequently, following the “Greek dream” of gaining knowledge 
about the basic principle of life or at least the Life’s transformation, 
employment of numbers, symbols and equations become the main tools in 
the quest and continuous development of scientific knowledge.

VOLUME LAYOUT

The present volume is the first in the five-volume set Quantum 
Nanochemistry:

Volume I: Quantum Theory and Observability
Volume II: Quantum Atoms and Periodicity
Volume III: Quantum Molecules and Reactivity
Volume IV: Quantum Solids and Orderability
Volume V: Quantum Structure–Activity Relationships (Qu-SAR)

The volume is a challenge in itself owing to its presentation as an ana-
lytical discourse, the only method apt for quantum description of natu-
ral phenomena, keeping in mind the subtle treatment of deeper concepts 
while restraining from lengthy presentation. 

All chapters and topics of the book have been previously explained and 
discussed in various national and international academic presentations, 
lectures, seminars, scientific sessions and student reunions. However, 
the contents are far from being just a compilation of themes from vari-
ous bibliographical sources; it includes visions of teaching and research, 
rigorously tested and applied. The materials are thus organized so as to 
cover various quantum paradigms for basic phenomenological stages of 
organization of matters: from quantification of matter waves including 
the equivalence of the electromagnetic with photonic radiation, to atomic, 
molecular, and solid state resumed quantum descriptions.

3Putz, M. V. (2006), The Structure of Quantum Nanosystems (in Romanian), West University of 
Timişoara Publishing House, Timişoara.



The book’s simple and illustrative presentation of concepts and 
analyses include both basic physical–chemical quantum principles and 
observability at each level of matter’s organization as well as advanced 
(more abstract, thus most necessary) formalisms of density matrix, path 
integrals, Hartree–Fock (as self-consistent quantum methods), original 
Heisenberg uncertainty by a sub-quantum extension (with more quantum 
fluctuation insight for the free evolution modeling), eventually leading 
to a novel undulatory/corpuscular characterization of the Si-based nano/
mesosystems.

The contents are, therefore, suitable for students, researchers and 
teachers either interested as a layman or needing deeper information on 
quantum description from the angle of physics and chemistry curricula, or 
a combination of both. To that end, the information in the book is laid out 
in an equilibrated manner stimulating the creativity of readers beyond just 
knowing–understanding to predicting the quantum information coined on 
the nano-scale systems. 

Volume I comprises the following chapters:
Chapter 1 (Phenomenological Quantification of Matter): Nature, 

according to Greek belief, is unification between the sea waves and earth 
dust, whereas the Matter has two sides or manifestations – undulatory and 
corpuscular. Remarkably, such philosophical view is strongly sustained 
by the quantum theory of matter as well, as explained through waves and 
substance quantifications and experimentally through the intrinsic mystery 
of reciprocal connection at the microscopic level. This chapter reviews the 
most fundamental Planck (– Einstein) and de Broglie (– Einstein) quan-
tifications of matter while laying the foundation for the second and first 
quantification of fields and particles, respectively. Thus, the two opposite 
views of Newton and Huygens, towards the end of seventeenth century, on 
the corpuscular and undulatory natures of  matter seem to be unified at the 
micro- and macro-scales of the Universe. 

Chapter 2 (Formalization of Quantum Mechanics): Different 
approaches to quantum phenomena provide new insights and perspec-
tives on the studied systems either in isolated or interaction states. The 
chapter reviews the main formalisms and illustrates ground-nous of quan-
tum mechanics, i.e., the undulatory quantum mechanics, the quantum 
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propagator (Green function) concept, the semi-classical approach based 
on Euler–Lagrange and Hamiltonian, and details the bra-ket Dirac picture 
thus opening new perspectives of exploring the quantum theory taking an 
abstract yet logical and formalized reasoning.

Chapter 3 (Postulates of Quantum Mechanics: Basic Applications): 
The phenomenological quantum mechanics is practically “re-told” in a 
more formalized way through the so-called extended quantum postulates. 
Additionally, meticulous complex analyses of the Nature’s phenomena 
from nuclear to atomic, to molecular, to solid state and scattering observa-
tional quantum effects are also provided. 

Chapter 4 (Quantum Mechanics for Quantum Chemistry): Based 
on the first principles of quantum mechanics as explained in the previous 
chapters and sections, this chapter highlights quantum theory’s evolu-
tion within the matter systems and with constraints (boundaries). Firstly, 
the Feynman path integral formalism is discussed and then applied to 
atomic, quantum barrier and quantum harmonic vibration followed by 
density-matrix approach. A detailed perspective of the Hartree–Fock and 
Density Functional pictures of many electronic systems as well as elec-
tronic occupancies via the Koopmans theorem finally leads to a further 
generalization of the Heisenberg observability and its first application to 
mesosystems.

Thus, this volume covers: 

• essential concepts of quantum mechanics: quantification of waves, 
substance, consequences of matter quantification through quantum 
statistics, the standard model of fermions–bosons constituents of 
matter and the Universe’ understanding of expansion and anisotropy; 

• the Heisenberg principle essential for understanding the observ-
ability of quantum phenomena both in formalized and extended (by 
quantum path integrals) algorithms with focus on its application to 
the silica sol–gel mesosystems; 

• a detailed discussion on how quantum mechanics roots on classical 
mechanics, including the semi-classical (WKB) approaches;

• the quantum mechanical postulates by wave-function continuity 
with atomic, molecular and solid state illustrated through eigen-
energies and function, semi-classical quantification and variational 
energy approaches;

Preface to Volume I: Quantum Theory and Observability xxxi



• the causal quantum description including Schrodinger to Heisenberg 
interaction, introducing and applying the Green function to the scat-
tering phenomena;

• the general perturbation algorithm with applications on Zeeman 
effect, nuclear isotropic corrections, paradigmatic harmonic oscilla-
tion, and quasi-free electrons in solids;

• the Feynman path formalism with general and basic information of 
hydrogen (atomic), oscillatory (molecular) and infinite well (solid 
state) eigen energies, adopting an integral rather than the differential 
approach of quantum evolution;

• explanation of the quantum chemical formalism through quantum 
mechanical algorithms and formalizations taking into account the 
density matrix, self-consistent Roothaan–Hartree–Fock method, 
semi-empirical computation schemes, as well as the modern density 
functional theorems and functionals;

• chemical reactivity indices and chemical hardness explained in the 
context of the Koopmans theorem and their application on a paradig-
matic series of organic molecules, thereby justifying their reliability 
in assessing freezing orbitals to valence electrons in a molecule;

• extensive appendices containing useful mathematical series expan-
sions, properties and their use to characterizes special functions 
(Poisson, Euler, etc.), Lagrange interpolation, special relativity con-
cepts, and fundamental constants and equivalents’ transformations.

Kind thanks are addressed to individuals, universities, institutions, and 
publishers that inspired and supported the topics included in the present 
volume; a few of them include:

• Supporting individuals: Prof. Hagen Kleinert (Free University of 
Berlin); Priv. Doz. Dr. Axel Pelster (Free University of Berlin); Prof. 
Nino Russo (University of Calabria); Dr. Ottorino Ori (Actinium 
Chemical Research, Parma); Prof. Eduardo A. Castro (University 
La Plata, Buenos Aires); Prof. Adrian Chiriac (West University of 
Timişoara); Dr. Ana-Maria Putz, n. Lacrămă (Chemistry Institute of 
Romanian Academy, Timişoara);

• Supporting universities: West University of Timişoara (Faculty of 
Chemistry, Biology, Geography/Biology-Chemistry Department/
Laboratory of Computational and Structural Physical Chemistry 
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for Nanosciences and QSAR); Free University of Berlin (Physics 
Department/Institute for Theoretical Physics/Research Center for 
Einstein’s Physics, Centre for International Cooperation); University 
of Calabria (Faculty of Mathematics and Natural Sciences/Chemistry 
Department); 

• Supporting institutions and grants: DAAD (German Service 
for Academic Exchanges) by Grants: 322 A/17690/2004, 322 
A/05356/2011; CNCSIS (Romanian National Council for Scientific 
Research in Higher Education) by Grant: AT54/2006-2007; CNCS-
UEFISCDI (Romanian National Council for Scientific Research) by 
Grant: TE16/2010-2013;

• Supporting publishers: Multidisciplinary Digital Publishing Institute – 
MDPI (Basel); Hindawi Publishers (Cairo Free Zone and New York).

I express special thanks to my family, especially to my lovely daugh-
ters Katy and Ela, for providing me with a work-and-play atmosphere 
and always filling me with the necessary energy and drive. Hopefully, the 
same energy is transmitted to the readers and students too in their quest for 
scientific knowledge and their approach toward quantum phenomena and 
their observability description.

Last but not the least, the author especially thanks the Apple Academic 
Press (AAP) team and, in particular, Ashish (Ash) Kumar, the AAP 
President and Publisher, and Sandra (Sandy) Jones Sickels, Vice President, 
Editorial and Marketing, for professional production of this five-volume 
set, Quantum Nanochemistry.

Quantum chemical theory is an ever-expanding field; thus constructive 
observations, corrections and suggestions are welcome and peer contribu-
tion is appreciated.

Keep close and think high!

Yours Sincerely,

Mihai V. Putz, 
Assoc. Prof. Dr. Dr.-Habil. Acad. Math. Chem.
West University of Timişoara
& R&D National Institute for Electrochemistry and Condensed Matter 
Timişoara 
(Romania)

Preface to Volume I: Quantum Theory and Observability xxxiii



CHAPTER 1

PHENOMENOLOGICAL 
QUANTIFICATION OF MATTER

CONTENTS

Abstract ..................................................................................................... 2
1.1 Introduction ...................................................................................... 2
1.2 Quantification of Waves ................................................................... 3
 1.2.1 Black-body Radiation .......................................................... 3
 1.2.2 Planck’s Approach ............................................................... 7
 1.2.3 Einstein’s Approach ............................................................11
1.3 Quantification of Substance ........................................................... 13
 1.3.1 The de Broglie Formula ..................................................... 13
 1.3.2 The Wave Packet ................................................................ 15
 1.3.3 Born Normalization ........................................................... 17
 1.3.4 Formal Heisenberg Indeterminacy ..................................... 20
 1.3.5 Bohr Hydrogenic Quantification ....................................... 21
 1.3.6 Bohr’s Correspondence Principle ...................................... 24
1.4 Consequences of Matter Quantification ......................................... 27
 1.4.1 Moseley Law and Spectral Atomic Periodicity ................. 27
 1.4.2 Systems with Identical Particles ........................................ 30
 1.4.3 Maxwell-Boltzmann Statistics: The Partition Function ..... 32
 1.4.4 Fermi-Dirac Statistics ........................................................ 36
 1.4.5 Bose-Einstein Statistics ...................................................... 40
 1.4.6  Fundamental Forces and Elementary Particles: 

The Theory of Everything (TOE) ...................................... 43



2 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

 1.4.7 Stefan-Boltzmann Law of Radiation ................................. 49
 1.4.8  The Wien Law: The Universe’s Temperature 

and Anisotropy ................................................................... 54
1.5 Conclusion ..................................................................................... 60
Keywords ................................................................................................ 62
References ............................................................................................... 62
 Author’s Main References ............................................................. 62
 Specific References ........................................................................ 62
 Further Readings ............................................................................ 63

ABSTRACT

Following the “Greek dream” of Nature unification, between the sea 
waves and earth dust, the Matter is regarded as having two main orders 
or manifestations, i.e., the undulatory and corpuscular sides. Remarkably, 
such philosophical view is strongly sustained by the quantum theory of 
matter, by its prescription through waves and substance quantifications, 
with experimental counterpart, however, maintaining the intrinsic mystery 
of reciprocal connection at the microscopic level. This chapter reviews the 
most fundamental Planck (– Einstein) and de Broglie (– Einstein) quanti-
fications of matter while founding the basis for the second and first quan-
tification of fields and particles, respectively. This way the two opposite 
visions of Newton and Huygens as advancing on the end of XVII century 
the corpuscular and undulatory natures of matter seems now be unified 
either at micro- and macro-scales of Universe.

1.1 INTRODUCTION

The knowledge in general and of Nature’s principles in special is grounded 
on modern understanding of phenomena as based on equations, encrypting 
by symbols the mutual relationships the various quantities and properties 
they represent and master. Accordingly, also when is about in elucidating 
the quantum principles of matter, one should basically be able to:

• assimilate the fundamental theoretical principles and use of math-
ematics involved;
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• use the mathematical tools to understand atomic and molecular 
structure and properties, as well as chemical structure, properties, 
reactivity, etc.;

• interpret the experimental results (spectra) to identify the structures 
and of their properties;

• ability to further model the observed phenomena by assessing specific 
concepts to various quantities, and inter-correlate them towards seek-
ing the eventual solution by means of the appropriate approximations.

• To this aim, one may usually follow the custom physical-chemistry 
freshman lectures, at least addressing the following items:

• From quantum mechanics, to quantum physics, to quantum chemis-
try, to quantum biochemistry. Quantum theory founding fathers and 
disciples, for example, Einstein, Planck, Bohr, Lewis, de Broglie, 
Schrödinger, Heisenberg, Fermi, Bose, Feynman, Kohn, Kleinert, 
etc., struggling to respond to the secular controversy about the 
answer to the question: “Can the quantum mechanics to afford a 
complete description for the physics reality?”

• Quantum mechanical principles. Fundamental constants of the uni-
verse: the speed of light, the Boltzmann constant, the Planck con-
stant. The wave-particle duality. The link between the Microscopic 
World of Energetic of Atoms/Molecules and the Macroscopic World: 
de Broglie relationship, the Heisenberg relationships, and statisti-
cal distributions. The Bohr interpretation of the hydrogen atom. The 
postulates of quantum in the wave function.

These issues are in the following addressed in a didactical yet modern 
physical-chemistry manner by following the presentation sass quantifica-
tion of waves-to-quantification of substance-to-consequences of matter’s 
quantification.

1.2 QUANTIFICATION OF WAVES

1.2.1 BLACK-BODY RADIATION

In the end of XIX century one on the most intriguing experiments refers 
to ability of matter being converted from the thermal to electromagnetic 
(or spectral) energy through intermediated by “fully” absorbed-emitted 
object, hereafter called black-body, see Figure 1.1.



4 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

In essence, was thought the question of explaining the spectrum of 
emitted radiation by a “black” body (heated) on a large frequency range, 
in order to avoid the so-called “ultraviolet catastrophe” (UV), specific 
of the restrictive approach by classical thermodynamics, see Figure 1.1 
and below. Analytically, the problem consists in describing the spectrum 
obtained through the so-called spectral (energy) density:

 ρ υ
υ

( )
( )

=
N E
V

 (1.1)

calculated as the product between the number of the mode of vibrations 
and the average energy, reported at the volume of the related blackbody 
cavity.

As a calculation model, there will be considered a blackbody, like a 
cube of enclosure L side (later we will see that the result is independent 
of the geometric shape of the blackbody). Under these conditions, the 
number of vibration modes, will be calculated evaluating the variation 
of the number of vibrations by a certain frequency, when the frequency 
changes, thus

 N dN
d

( )υ
υ

υ=  (1.2)

FIGURE 1.1 The dichotomy between classical curve (Rayleigh-Jeans) and the observed one 
(quantum, Planck) for a typical blackbody radiation (HyperPhysics, 2010; Putz et al., 2010).



Phenomenological Quantification of Matter 5

To calculate the number of vibrations, at a given frequency, is considered 
the abstract construction from Figure 1.2, which represents the blackbody 
enclosure accommodation, in a eighth from a sphere of frequency, of a 
given mode of vibration.

Therefore, the number of vibrations for a given frequency, will be writ-
ten as the ratio between the volume (of frequency) of overlapping geomet-
ric bodies, as in Figure 1.2

 N
c
L

L
cυ

π υ
π υ

=

















=

1
8

4
3

1
2 2

8
3

3

3

3 3

3  (1.3)

where there was considered the radiation from the cavity propagating at 
the speed of light (as electromagnetic radiation freely propagated inside 
the cavity of blackbody), with the factor ½ from the denominator, con-
sidered in order to avoid the halving of a propagation of electromagnetic 
radiation, with reverse polarization (the plane of vibration rotated at 180°) 
for a complete path (2L) between any of the parallel walls of the cavity.

With this expression the number of the mode of vibrations are calcu-
lated (based on differential definition above) with the expression

 N L
c

( )υ π υ
=

8 3 2

3  (1.4)

FIGURE 1.2 Insertion of blackbody (considered a cube of side L) in the abstract sphere of 
radius equal to the frequency v of a mode of vibration (HyperPhysics, 2010; Putz et al., 2010).
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It is noted that the number of the mode of vibration in relation to their host cav-
ity volume, does not depend anymore on the geometric structure of the cavity

 N
V

N
L c

( ) ( )υ υ πυ
= =3

2

3
8  (1.5)

certifying the universal value of this expression (with application possibilities 
to various micro- and macroscopic structures, including planets and stars).

For the average energy on the mode of vibrations, is appealed to the 
integral formula into possibilities, in order to cover the whole possible 
spectrum energy.

 E
E E dE

E dE
=

℘

℘

∞

∞
∫
∫

( )

( )
0

0

 (1.6)

with the expression of probability, given in relation to the thermal energy 
(k TB , kB: Boltzmann’s constant)

 ℘ = −








( ) expE

k T
E
k TB B

1  (1.7)

in order to satisfied the relationship of standardization (in certitude) of 
the probability (absolute) on the spectrum of all possible energetic events.

 ℘ =
∞

∫ ( )E dE
0

1  (1.8)

With these considerations, the average energy on the mode of vibration, is 
successively written

 

E E E dE
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E

E
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∂
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= −
∂

∂
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= − −




∞
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k T
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k T

b

b

0



















+ =
∞

0

k T k TB B  (1.9)
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again finding the value of termic energy, in agreement with the energy 
equi-partition theorem from the classical thermodynamic (statistical).

Alternatively, it can be directly calculated the average thermal energy, 
such as

E
E E dE

E dE

d
d

E dE
k TBβ

β

β β
β

=

∞

∞

∞
=

−( )
−( )

= − −( )∫
∫

∫1
0

0

0/

exp

exp
log exp





= =
1
β

k TB

  (1.10)

Combining the two expressions of the number of mode of vibration with 
the average energy of vibration and reported to the volume of the enclo-
sure of blackbody, results the expression of the density of spectral energy, 
as Rayleigh-Jeans formula (RJ)

 ρ υ π υ ρ υT
B

R J
k T
c

( ) ( )= ≡ −
8 2

3  (1.11)

emphasizing through the parabolic dependence of radiation frequency, the 
crisis of classical physics, applied to radiative phenomena, due to the pre-
dicting of UV catastrophe, in contradiction to both phenomena observed in 
the laboratory and also in the nature as ensemble (according to this predic-
tion, the life on Earth would perish due to the solar radiation!).

1.2.2 PLANCK’S APPROACH

To solve the paradox of blackbody was Planck’s hypothesis (inspired) to con-
sidered also the radiation’s energy as dependent on frequency, with a univer-
sal constant of proportionality (h-Planck’s constant), as well as the universal 
Boltzmann constant appears into the thermal energy, In addition quantified 
in “bundles of energy,” which acknowledge as energy quanta; in few words, 
Planck considered the quantification of electromagnetic radiation as:

 E E nhPlanck = =( )υ υ  (1.12)

This time, the energy is quantified, or discretized, while its average on 
mode of vibration will be calculate by series instead of integrals, but keep-
ing the form above, so the average energy becomes
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E E

E

nh
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nh
k T

n

n

B B
n
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υ

υ υ

=
℘

℘

=
−











=

∞

=

∞

=

∞

∑
∑
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exp

0

0

0∑∑
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=

∞ 1
0 k T

nh
k TB B

n
exp υ

 (1.13)

With the replacement

 x h
k TB

=
υ  (1.14)

the average energy of mode of vibration generically rewrites as the ratio of 
two mathematical series

 E h
nx nx

x nx
n

n
υ

υ=
−( )
−( )

=

∞

=

∞
∑
∑

exp

exp
0

0

 (1.15)

The series in numerator is calculated with the result

 nx nx xe e e xe
en

x x x
x

x
exp ...−( ) = + + ( ) +





=
−( )=

∞ − − −
−

−∑ 0

2

21 2 3
1

 (1.16)

based on consideration of the function series

 f y y y( ) ...= + + +1 2 3 2  (1.17)

having the argument also as a function

 y x= −exp( )  (1.18)

and for which computation was made by appealing to the integral-
differential trick

 g y f y dy f y d
dy
g y

y
y

( ) ( ) ( ) ( )= ⇒ = =
−( )∫0 2
1

1
 (1.19)
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since recognizing that the integral results in a series under a shape much 
easily to identify in relation to the geometric series

 g y y y y y
y

( ) ...= + + +( ) =
−

1
1

2  (1.20)

Instead, the series of the denominator in the average energy expression 
above is directly evaluated in relation to the geometric series

 x nx x e e x
en

x x
xexp ...−( ) = + + ( ) +





=
−=

∞ − −
−∑ 0

2
1

1
 (1.21)

Combining the two series, one obtains the Planck expression for average 
energy, for each mode of vibration of the radiation emitted by a blackbody

 E h
h
k TB

υ

υ
υ

=








 −exp 1

 (1.22)

Again, alternatively, this energy average can be directly calculated the 
dependence of thermal frequency regarding the average energy, thereby

E
nh nh

nh
d
d
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n
Bυ β
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=
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=
( ) −

=
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d
d h

h
h

0

1
1 1

log
exp exp

  (1.23)

Finally, multiplying this average energy with the numbers of modes of 
vibration from the cavity, and reporting the results to the volume of the 
cavity, the Planck expression for spectral density is obtained

 ρ υ π υ
υPlanck

B

h
c h

k T

( )
exp

=








 −

8

1
3

3

 (1.24)

in perfect agreement with the entire spectral profile, observed in Figure 1.1.
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The extreme limits are checked for confirmation, namely:

• At low frequencies, there can be used the approximation

 υ υ υ υ, exph
k T

h
k T

h
k TB B B

<< ⇒








 ≅ +1 1  (1.25)

which results in finding the Rayleigh-Jeans spectral density

 ρ υ ρ υυ
Planck R J( ) ( )<<

− →1  (1.26)

• At high frequencies, there can be used the approximation

 υ υ υ υ, exp exph
k T

h
k T

h
k TB B B

>> ⇒








 − ≅









1 1  (1.27)

noticing that the “UV catastrophe” from the classic treatment at infinite 
frequency was this way avoided:

 ρ υ υ
Planck ( ) >> →1 0  (1.28)

Moreover, we conclude the presentation with the question: “what would 
the world look like without Planck’s constant?” For this, we will perform 
the limit for h → 0, in the right spectral density (Planck), obtaining the 
expression

 lim ( ) lim
exp

h Planck h

B

c

d
dh

h

d
dh

h
k T

→ →
=

( )








 −

0

0
0 2

3 0

8

1
ρ υ πυ υ

υ









= −ρ υR J ( )  (1.29)

again identical with Rayleigh-Jeans law at low frequencies; this result 
allows the ascertaining that the world (the Earth, the Universe) without 
Planck’s constant would be catastrophic, i.e., inevitably submissively to 
ultraviolet catastrophe. From hence the necessity to consider the Planck 
constant, for the correct approaching (at any frequency) of the phenomena 
of Nature.
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1.2.3 EINSTEIN’S APPROACH

The spontaneous and forced emissions are for the first time solved by 
Einstein (1917) throughout the introduced coefficients Ann’ and Bnn’(or n’n), 
respectively, relating the probability in unit time once electron going from 
a state (n) of energy En into another one (n’) with energy En’ between 
which the unit photonic energy exists (is postulated):

 h E En nυ = − '  (1.30)

As such Einstein accepts at once both the wave quantification as well 
as the Bohr postulate of transitions between stationary states; while his 
approach will results in the Planck spectral density ρυ the Bohr postulate 
of quantum transitions follows as being with this occasion demonstrated.

Therefore, while assuming Nn and Nn’ atoms in each of the n and n’ states 
in discussion, with n>n’, within the Maxwell-Boltzmann microstates,

N En n= −( )β βexp

 N En n' 'exp= −( )β β  (1.31)

the spontaneous radiant, emitted and absorbed energies are written accord-
ingly as:

W N A hemitted spt n nn− =. ' ( )υ

W N B hemitted forced n nn− = ' ( )υ ρυ

 W N B habsorbed forced n n n− = ' ' ( )υ ρυ  (1.32)

The energy balance in the closed system of absorbed-emitted-spontaneous 
radiative phenomena,

 W W Wemitted spt emitted forced absorbed forced− − −+ =.  (1.33)

leads in first instance with

 N A N B N Bn nn n nn n n n' ' ' '+ =ρ ρυ υ  (1.34)

from where one yields:
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 ρυ =
−

=
−

=
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N B N B

A
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A
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B
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n n n n nn

nn

nn
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nn

nn
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' ' '

'

'

' '
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'

1 ''

'
'expn

nn
n nB
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 (1.35)

that actually gives:

 ρ
β υ

υ =
[ ]−

A
B

B
B

h

nn

nn

n n

nn

'

'

'

'

exp 1
 (1.36)

Now we have to agree this expression with the Rayleigh-Jens one in the 
classical limit that is performed in two steps. One is to check out the high-
temperature limit through first order expanding the denominator exponen-
tial in h-Planck constant (i.e., the semi-classical expansion):

 ∞ = =
+( ) −











→

→

→

lim
lim

lim

'

'

'

'

β υ

β

β

ρ
β υ

0

0

0
1 1

A
B

B
B

h

nn

nn

n n

nn

 (1.37)

from where follows that the forced emission and absorption probabilities 
are intrinsically equal:

 B Bnn n n' '=  (1.38)

since the nominator is non-infinity expression.
In these conditions the spectral density is reloaded in the first order semi-

classical h-expansion and equated with the classical Rayleigh-Jens expression,

 8 12

3
πυ

β β υc
A
B h
nn

nn

= '

'

 (1.39)

that further provides:

 A
B

h
c

nn

nn

'

'

=
8 3

3
π υ  (1.40)

Finally, the spectral density is obtained as in previously Planck approach.
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1.3 QUANTIFICATION OF SUBSTANCE

1.3.1 THE DE BROGLIE FORMULA

Having available two equivalent forms of energy for electromagnetic radia-
tion (respectively, in the relativistic formulation of Einstein and the quantum 
on of Planck) Louis de Broglie advanced the idea of their unification, cor-
roborated with the generalization for any body in motion (with rest mass m0)

 m c0
2 = ω  (1.41)

written by pulsation ω ν π= / 2 , which involves the introduction of reduced 
Planck’s constant

  =
h

2π
 (1.42)

In fact, the energetic unit is assumed for the own system of a body in motion 
and it is checked its validity regarding coordinated system-observer (iner-
tial) to which it is moving with a constant velocity v. Moreover, worth tak-
ing into consideration how the evolution of a body in motion is equivalent 
to the coverage (path) of space with an associated wave

 ψ ω( , )x t Aei k x tx= −( )  (1.43)

equally representative for the body in the own reference system and also 
in the observation from an inertial equivalent system (relativistic), see 
Figure 1.3.

This equivalence would mean (from the wavy perspective of propa-
gation) assuming the present identity (the amplitude does not contain 
undulatory information related to the movement itself, but rather of the 
conditions and environment - dispersion, attenuation, etc.).

 k x t k x tx x− = −ω ω' '  (1.44)

depending on the pulsation and wave vector

 k =
2π
λ

 (1.45)
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as constants of motion (undulatory). Rewriting the equal equation of phases 
by relativistic transformations (Lorentz-Einstein) of coordinates, taking into 
consideration the body (associated) in motion fixed on the reference system 
O’(x’=0), generates the spatial-temporal relationship (see Appendix A.5–A.7)

 k x t t m c t v
c
x

v c
x − = − = −

−

−
ω ω '

/
0

2 2

2 21

 (1.46)

While, recognizing the mass movement (relativistic)

 m m
v c

=
−

0
2 21 /

 (1.47)

the last equation generates successive identifications for the wave vector 
and the pulsation of the associated wavy movement

 
k m v

v c
mv p

m c
v c

mc E

x
x=

−
= =

=
−

= =











1
1

1
1

0
2 2

0
2

2 2

2

  

  

/

/
ω

 (1.48)

equivalently with the quantification of the substance (de Broglie) and 
waves (Planck)

FIGURE 1.3 The relativistic construction for the deduction of Broglie relationship 
(HyperPhysics, 2010; Putz et al., 2010).
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p k ... substance quantification

...
=
=






E waves quantificationω
 (1.49)

This provides the fundamental and conceptual complete quantification 
(and mutual) of the matter (field/wave + substance), at the phenomeno-
logical level.

1.3.2 THE WAVE PACKET

Once assumed (certified) the undulatory shape of the quantum particle, 
with simple yet general form

 ψ ω α( , )x t Ae Aei k x t ix= =−( )  (1.50)

one may pass to a more in depth characterization of quantum infor-
mation carried by it. Thus, by combining the quantification of matter 
(substance/de Broglie and field /wave/Planck) in the expression of the 
phase velocity

 v dx
dt k k

E
p

mc
mv

c
v

cphase

ct

x x x

= = = = = = >
=α ω ω.

(!?)



2 2

 (1.51)

there is obtained the paradox (apparently the impossibility) to register a 
propagation of the wave associated to the quantum particle, with a velocity 
that exceeds the speed of light!

Resolving this anomaly comes from the removal of the limitation of 
the undulatory representation by a single wave – considering the represen-
tation by a wave packet seen as a integral convolution

 ψ ω( , ) ( )x t
k

A k e dki kx t

k

k

= −( )

−
∫

1
2∆ ∆

∆

 (1.52)

averaged/normalized on the allowed range of variation of wave vectors 
included in the wave packet

 ∆k k k= − 0 , k0 02= π λ/  (1.53)

where, for simplify the expression, it was noted as k kx := .
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In terms of pulsation (the other wavy size but also the quantification size), 
this is considered as varying slightly (in the first order) comparing to its equi-
librium value inside the packet, while the amplitude in mutual space (of wave 
vector) is considered almost the same for all waves from the packet.

 
ω ω ω ζ ζ≅ + 
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≅
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0
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0

d
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A k A k
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( ) ( )
 (1.54)

Under these conditions the de Broglie wave packet is sequentially given as

ψ ζ
ω ω ζ
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e d
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ω( , )  (1.55)

with the representation from Figure 1.4.

FIGURE 1.4 The de Broglie wave packet structure (HyperPhysics, 2010; Putz et al., 2010).
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Since considering the limit

 lim sin
q

q
q→

=
0

1  (1.56)

we have that the maximum of the above wave-function, max ( , )ψ x t , is 
approached under the fulfilling condition

 x d
dk

t= 







ω

0

 (1.57)

leading with the so called group velocity of the wave packet:

 v dx
dt

d
dk

dE
dp

d
dp

m c c p pc
E

v cgroup = = = = + = = <
ω

0
2 4 2 2

2

 (1.58)

achieving the full significance of a physical velocity; however, it is in an 
interesting relationship with the phase velocity, i.e.

 v v cphase group =
2  (1.59)

Also note that around the point where the group velocity is attached we 
have the normalization condition preserved at any time:

 ψ ( , ) ( )x t A k
0

2
0

2 1= =  (1.60)

giving us the indication that the squared wave-function and its squared 
amplitude are formally equivalent, although as functions of conjugated or 
reciprocal variables as space and wave-vector, and should be also normal-
ized. The general case will be treated in what follows.

1.3.3 BORN NORMALIZATION

We are going now to further explore the influence of the non-constant 
amplitude dependency A(k) and to see its consequences in the de Broglie 
wave packet evolution. However, worth using the momentum representa-
tion from de Broglie quantification in order to better emphasize on the 
quantum (through Planck constant dependency) influence. That is we con-
sider the general wave function:
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 ψ ( , ) ( )x t A p e dp
i px Et

=
−( )

−∞

+∞

∫   (1.61)

and look for an appropriate form to specialize the momentum amplitude 
A(p). For doing that we note that from previous section we are leaving 
with the equivalence

 A x t x t x t x t x t d
dx

x( , ) ( , ) ( , ) ( , ) ( , )*2 2= = ≡ =
℘

℘ψ ψ ψ ρ  (1.62)

introducing the so called the probability density ρ℘( , )x t  from where, when 
the space is extending ad infinitum, one obtains the normalization condition

 A x t dx x t dx x t dx
X

X

X
X( , ) ( , ) ( , )2 2 1= = =℘  →∫ ∫∫ ℘

−

+
→∞ψ ρ  (1.63)

based of probability ℘∞ certainty condition; such normalization property is 
associated with Born probabilistic interpretation of the square of the wave-
function and may be called as Born-normalization principle.

Therefore, we have now the indication that we have to choose the 
amplitude A(p) as such to satisfy the similar relation for momentum:

 A p dp( )2 1
−∞

+∞

∫ =  (1.64)

as well as the entirely wave-function normalization condition

 ψ ( , )x t dx2 1
−∞

+∞

∫ =  (1.65)

at any time of the wave-packet motion.
This can be realized, for instance, since one uses Gaussian momentum 

function (or spectral function if it viewed in terms of associated wave-
vector k, throughout the de Broglie relationship) as the driving amplitude 
for the wave-packet:

 A p
p p

p p

( ) exp/=
( )

−
−( )











1
2 41 4

0
2

2π σ σ
 (1.66)
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with the width s p (being a spectral characteristic of the non-zero region 
for the signal) and initial momentum p0; such function obeys the above 
momentum amplitude normalization constraint by means of the Poisson 
integral (see Appendix A.2)

 exp −( ) =
−∞

+∞

∫ aq
a

2 π  (1.67)

The remaining proof concerns the check of the Born normalization con-
dition at the level of the whole wave-function packet. Using the same 
Poisson integral rule, one computes the wave-function analytical expres-
sion in successive steps:

 (1.68)

leaving with the squared wave-function expression:

 ψ π σ
σ

( , ) exp/ /x t xp
p2 3 2 1 2
2

2
22 2= −













 (1.69)

and finally with the result

 ψ π( , )x t dx2 2
−∞

+∞

∫ =   (1.70)
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From where it follows that in order the correct Born normalization to take 
place the initial wave-function packet has to be corrected with the quantum 
factor  having the normalized general plane-wave expression:

 ψ
π

( , ) ( )x t A p e dp
i px Et

=
−( )

−∞

+∞

∫
1

2 

  (1.71)

Worth noting that this wave-function preserves the Born-normalization all 
time as far as the A p( ) is as well normalized, as previously exposed; for 
instance, in the case the A p A p( ) ( )≅ 0  but not restricting the integration 
around the (equilibrium) variables (p0 or k0), so that to assure the correct 
normalization as in previous section employed, the square of the wave-
packet function cannot be considered as meaning a probability density 
since it will be approximated as

 ψ ( , ) ( )x t A p ep p

i p x Et

→

−( )
≅

0

0

0
  (1.72)

while the infinite-limit integral of its square would diverge:

 ψ ( , ) ( )x t dx A p dx
p p→

−∞

+∞

−∞

+∞

∫ ∫= → ∞
0

2
0

2  (1.73)

Therefore caution must be taken when considering which kind of wave-
function (normalized or note) to be used to compute probability density 
on which interval as well; they have to be compatible to assure the correct 
Born normalization condition at any time.

1.3.4 FORMAL HEISENBERG INDETERMINACY

A directly application and of an extreme importance of the de Broglie 
wave packet is to consider its normalization by noting that the wave func-
tion in the real space and the amplitude in the reciprocal space (or of the 
impetus by the de Broglie quantification) are conjugate size in the sense of 
the Fourier mutual transforms.

 ψ
π

( , ) ( )
( )

x dpA p e
i px

0 1
2

=
∞∫



  (1.74)
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  (1.75)

Then, by considering their recombination,

 ψ
π

ψ( , ) ( , )
( )

x dpdx x0 1
2

0=
∞∫



 (1.76)

in order to keep the formal identity of the wave function from the real 
space one recognizes the coupling relationship of the variations of trans-
formation in the real space (of the coordinate) and (of the momentum)

 ∆ ∆p x h≈ =2π  (1.77)

Remarkably, the coupling is of the order of Planck constant - which once 
again justifies the previous statement, that this constant is universal, is 
immutable necessary in characterization of the movement, both in the 
observable space (of the coordinate) or of diffraction (of the momentum).

Note that the last relationship is called the “Heisenberg type”, because 
it only justifies and does not demonstrates - it actually expressing that 
the impulse and the coordinate are inseparable at the level of Planck 
constant and can not be distinctly seen at spatiotemporal level, while 
being driven by it.

Although currently (as a matter of fact even since its publication by 
Heisenberg in 1927) are heated discussions and attempts to “dismantle” 
the dogma imposed by limiting/Heisenberg uncertainty in the Planck 
constant, the utility of this relationship (even borderline) is incontest-
able, which will be illustrated also by application to the Hydrogen 
atom (Bohr model), immediately below, and latter in a more elaborate 
framework.

1.3.5 BOHR HYDROGENIC QUANTIFICATION

Considering the hydrogen atom as the model (simple) of the circular 
motion of the electron around the nucleus, the coordinate variation (on cir-
cular direction) and momentum (on radial direction) recorded by the elec-
tron are expressed such as
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which, through combining in it the Heisenberg-type relationship (from 
previous lesson) the quantification condition is generated 

 rp n n= = , , ,...1 2  (1.79)

where it was considered (ab initio) a meshing over the set of natural num-
bers, as in the quantification of Planck, excluding the zero value (atomic 
collapse). Under these conditions, for the electron motion in a central field 
(Coulomb potential) the total energy is formulated as
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 (1.80)

This achieve to itself the state of dynamic equilibrium (optimal energy 
charge balance) satisfying the variational condition

 ∂
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E
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0  (1.81)

which generates the quantification of the momentum variables, coordinate 
and optimum total energy in a consistent manner
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Worth introducing a fundamental chemical-physical energy constant, 
namely the atomic unit [a.u.] or the hartree (Hartree) unit as:
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with R∞  the Rydberg constant (see Appendix A.8 for numerical value):
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m c
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and were
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e
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2

04
1 1

137

 (1.85)

is introduced as the fine-structure (universal) constant (see Appendix A.8 
for numerical value). Detailed energy conversion rules are given in 
Appendix A.8.1.

The energetic terms, i.e., kinetic and potential energy provided by the 
Bohr hydrogenic quantification, looks like:
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while fulfilling the virial relationships at the atomic level.
For the shake of completeness, the virial theorem can be rather ele-

mentary be proved by assuming the total energy composed by kinetic and 
potential terms depending on the second and first power of the space dis-
placement about the equilibrium position, respectively, i.e.,

 E E Etot kin pot= + ,  E x E xkin pot∝ ∝2 ;  (1.87)

Then, if the space is parametrically inflated (rescaled) as

 x x→ λ , λ ∈ℜ  (1.88)

one has now from the energy

 E E Etot kin pot
λ λ λ= +2  (1.89)

whereas the equilibrium condition now demands:
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 ∂
∂

=
=

Etot
λ

λ
λ 1

0  (1.90)

leading with the general relationship:

 E E Ekin pot tot= − = −0 5.  (1.91)

that is the virial theorem affirms on.
Note that also for the central potential, as for any other, the potential 

energy variation is correctly considered as being proportional with the 
space displacement from the equilibrium position, as above, since it may 
always be written as related with the associated work through the conse-
crated relationship:

 ∆ ∆ ∆E V xpot x= ⋅ = −∂ ⋅F x x( )  (1.92)

Thus, the above demonstration of the virial theorem holds in general (for 
conservative systems).

1.3.6 BOHR’S CORRESPONDENCE PRINCIPLE

Turning back to Bohr atomic description it provides the frequency of emit-
ted waves (photons) when the transition between two states in an atom 
takes place:
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Now, the main question is when this transition frequency is becoming even-
tually equal with the frequencies associated with the orbital circular motion 
on states “1” and “2”, individually. For responding in that, one may notice 
that the Bohr quantification supports the classical counterpart picture of 
electronic circular movement at optimum distance around the nucleus, with 
the angular velocity ϕ and the revolution frequency f, linked by the equation:
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from where we have:
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Now, the relation between the quantum transition frequency un n1 2
 and the 

“classical” ones associate to the quantum states n1 and n2, fn1 and fn2
, can 

be clarified in two limiting cases.

• When is about first neighbor high levels, i.e., ∆n n n= − =2 1 1 and 
n n1 2 1, >> , we have in asymptotical sense that n n1 2≅  leading with 

classical-quantum equivalency

 υn n n n
R cZ
n

f R cZ
n

f
1 2 1 2

2 22

1
3

2

2
3≅

∞ ∞= = = =  (1.96)

• When is about non-first neighbor but still high levels, i.e., 
∆n n n= − >2 1 1 and n n1 2 1, >> , so that n n n1 2≅ >> ∆  we get the classi-
cal-quantum connection as:

 υn n n n
R cZ
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n R cZ
n

n f n
1 2 1 2

2 22

1
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2

2
3≅

∞ ∞
≅= = =∆ ∆ ∆  (1.97)

Therefore, the rule is that as much the quantum levels are higher as the 
quantum and classical frequencies approaches each other, establishing the 
so called Bohr correspondence principle between the quantum and classi-
cal “worlds”.

An even more striking and practical form of Bohr correspondence 
principle may be unfold since we introduce the counter of the quantum 
transition states as:

 ∆ ∆I h n=  (1.98)

that combined with Bohr quantum transition principle

 ∆ ∆E h n= υ  (1.99)
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provides the quantum frequency under the form

 υ∆
∆
∆

∆n
E
I
n=  (1.100)

to be compared with the classical frequency of the state with En, recog-
nized to can be written as

 f
h
dE
dn

dE
dI nn

n n n= = =
1 υ∆

∆
 (1.101)

Leading with the idea that both frequencies approach each other when the 
slopes of the secant of spectrum lines equals the slopes of the tangents on 
the initial and final points on the graph

 E E In n n= ( ),ϕ  (1.102)

being here In,ϕ recognized as the phase integral

 I p d nhn,ϕ ϕ ϕ= =∫  (1.103)

since providing the angular momentum quantification

 p n m ropt nϕ ϕ= =� �0
2

,  (1.104)

in accord with above kinetic energy quantification – where the classical 
frequency was rooted. Note that the accompanying radial integral

 I p dr nhn r r, = =∫  (1.105)

gives nothing less than the starting de Broglie-Heisenberg-Bohr quanti-
fication. Also note that while Bohr model considers angular and radial 
integrals being quantified by the same quantum number n, further dis-
crimination between them opens the way to treat 2D-eliptic Sommerfeld 
orbital description. However, while the last approach is still not the gen-
eral one we prefer to directly treat the 3D-case, however in detail in the 
next volume of the set.

The Table 1.1 further illustrates the Bohr quantum-classical correspon-
dence principle.
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1.4 CONSEQUENCES OF MATTER QUANTIFICATION

1.4.1 MOSELEY LAW AND SPECTRAL ATOMIC PERIODICITY

Atomic Bohr’s spectra are based from the transition energies given before; 
however, we may identify the so called spectral term

 Τn
R Z
n

= ∞
2

2  (1.106)

allowing to rewrite the spectral transition in terms of the wave-number 
(the so called Rayleight-Ritz principle):
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λn n
n n

n n
n n
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= = = −
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Τ Τ  (1.107)

Still, for a many-electronic atom, the hydrogenic Bohr treatment can be still 
preserved with the price of introducing the so-called shielding constant s

 Τn
R Z

n
* =

−( )∞ σ 2

2  (1.108)

that eventually depends on the shell’s quantum number n (and of its further 
sub-shell’s refinement). The last relationship may be further transformed 
to get the linear Z-dependency:

 Τn

R n
Z

*

∞

= −( )1 σ  (1.109)

TABLE 1.1 Check of the Correspondence Principle for Asymptotic Bohr’s Hydrogen 
Atom Levels (White, 1934; Putz et al., 2010)

Quantum states Orbit frequency (s–1) Transition Frequency (s–1)

Initial Final Initial Final

2 1 0.82 ·1015 2.47 ·1015 6.58 ·1015

6 5 3.04 ·1013 4.02 ·1013 5.26 ·1013

10 9 6.58 ·1012 7.71 ·1012 9.02 ·1012

25 24 4.21 ·1011 4.48 ·1011 4.76 ·1011

101 100 6.383 ·109 6.479 ·109 6.576 ·109

501 500 5.229 ·107 5.245 ·107 5.261 ·107
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telling that the spectral terms for a given shell are proportional with the 
inverse of the quantum number of that shell. This has fundamental phe-
nomenological interpretation for periods and groups of periodic Table: 
practically, for the different periods down groups it displays the increas-
ing n so the diminishing angle of the fitted lines among the K, L, M, etc. 
transitions; whereas within periods, as the Z increases the squared of the 
spectral term to the Rydberg constant contribution increases.

Yet, for practical use the frequency is to be employed, rather than indi-
vidual spectral terms; in this case one firstly has in generally that:
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while if assuming the same initial and final shielding constant, σ σ σ1 2≅ = , 
the simplified squared root transition frequency is obtained as the general-
ized Moseley law:

 υ σn n Z cR
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2= −( ) −









∞  (1.111)

As a specialization, for instance, for K lines (n1=1, n2=2) the shielding 
constants can be further assumed as σ ≅ 1 so that the Moseley working 
formula is obtained:

 υ αK
Z

cR Z=
−( )

≅ −( ) ×∞

1
2

3 1 2 48 1015. ( )Hz  (1.112)

where the energy-frequency conversion follows from the rules of 
Appendix A.8.2.

Note that the Moseley rule is less exact comparing with the spectral 
terms’ interpretation of periodic spectra of elements through assuming the 
same shielding constants between the paired levels considered. Still, for 
Kα lines it behaves in fair agreement with experiment see Table 1.2 though 
comparing with theoretical yield:

 h eV Z ZKυ α ≅ −( ) = −( )13 6 3
4

1 10 2 12 2. [ ] . [ ]eV  (1.113)
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Finally, note that the difference between the spectral term and frequency 
pictures of the Moseley law is the same as that between the orbital motion 
frequencies and the transition frequencies between two (Bohr) levels.

TABLE 1.2 Experimental Kα2 (or KL2: transition from the level L2 with n=2, l=1 
and j=1/2 to the level K with n=1 and l=0) X-Ray Energies, in eV, with Experimental 
Uncertainty in Parenthesis, as Compared with Computed Ones from the Moseley Law, 
for the Third and Fourth Periodic Groups of Elements (NIST 2009; Putz et al., 2010)

Z Element Ka2 (eV)

Experimental (unc.) Computed

11 Na 1040.98 (12) 1020
12 Mg 1253.437 (13) 1234.2
13 Al 1486.295 (10) 1468.8
14 Si 1739.394 (34) 1723.8
15 P 2012.70 (48)* 1999.2
16 S 2306.700 (38) 2295
17 Cl 2620.846 (39) 2611.2
18 Ar 2955.566 (16) 2947.8
19 K 3311.1956 (60) 3304.8
20 Ca 3688.128 (49) 3682.2
21 Sc 4085.9526 (85) 4080.
22 Ti 4504.9201 (94) 4498.2
23 V 4944.671 (59) 4936.8
24 Cr 5405.5384 (71) 5395.8
25 Mn 5887.6859 (84) 5875.2
26 Fe 6391.0264 (99) 6375.
27 Co 6915.5380 (39) 6895.2
28 Ni 7461.0343 (45) 7435.8
29 Cu 8027.8416 (26) 7996.8
30 Zn 8615.823 (73) 8578.2
31 Ga 9224.835 (27) 9180.
32 Ge 9855.42 (10) 9802.2
33 As 10507.50 (15) 10444.8
34 Se 11181.53 (31) 11107.8
35 Br 11877.75 (34) 11791.2
36 Kr 12595.424 (56) 12495.

* Interpolated from nearby elements.
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Moreover, the Moseley law may be regarded also as provided the atomic 
number Z in terms of structural quantum information including spectral terms, 
energies, shielding constants; in other words, atomic Z may be seen as a mea-
sure of such inner quantum structure merely as the given constant for an atom.

1.4.2 SYSTEMS WITH IDENTICAL PARTICLES

The natural modeling of macro- and microscopy systems is made through 
the reduction of the components at structural units: the elementary particles 
(or more precisely – fundamental), essentially the same (electrons, photons, 
protons, neutrons, nuclei, atoms, etc.). These are also known as ideal, if 
from the macroscopic point of view the systems that belong are isolated, 
while from the microscopic point of view they do not interact between them.

The quality of isolated system ensures the conservation of particles 
numbers from the system.

 N N cti
i

= =∑  (1.114)

The quality of isolated system is accomplished if the particles do not inter-
act: it is considered that each particle is associated (quantified) with a given 
energy ε εi j≠  and around each thus energy there is a microscopic range 
of relocation, of volume a h f= , with h Planck’s constant and f degree of 
freedom allowed to each particle, is identical to the dimension of the so 
called small space of the phases

 d dp dq dp dq dp dq h
h h

f f

h

fγ = ≅
≈ ≈ ≈

1 1 2 2������ ��� ��
...  (1.115)

results from the cumulated application of the Heisenberg uncertainty, which 
actually drives the possible action, which is associated to each thus particles

 S E t p q≅ ≅∆ ∆ ∆ ∆  (1.116)

Under these conditions, the system of particles is called ideal, being iso-
lated and with particles considered as independent; while the particles or 
the individual states of energy are considered in very ample numbers, then 
can be considered as forming a set of statistics, with a certain arrangement 
of the particles on the available energy levels, called microstate. Note that 
there may be several iso-states, which correspond at the same macroscopic 
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energy of the system. Then, it define the so-called thermodynamic prob-
ability W (reverse toward the mathematical one) as the number of distinct 
microstates corresponding to a macrostate given by the energy

 E N cti i
i

= =∑ ε  (1.117)

constant in the context of the isolated systems.
The calculation of the number of microstates is made following a rigor-

ous algorithm:

1. it is considered the dependence of thermodynamic probability (the 
number of microstates) on the number of existing particles Ni with a 
certain energy ε i and on the number gi which express the degeneration 
of the “i” energetic level, i.e., the number of sub-energetic levels (all 
with the same energy ε i existing in the volume h fassociated with this 
energy); in a few words “as in the large - so in the small”, or analytical

 W W N gE E i i= ( ),  (1.118)

2. the implementation of the constraints regarding the conservation of 
numbers of particles and of the total energy for the isolated system 
of ideal particles (statistical) through Lagrange multipliers, α β& , 
respectively, toward the macroscopic balance registered by the 
entropy, in relation to the thermodynamic possibility, thus

 S k WB= ln  (1.119)

with
 kB = = 1.3806503 × 10–23 (m2 kg s–2 K–1) (1.120)

the Boltzmann constant (universal). Then, generically, the thermodynamic 
macrostate function will be expressed as

 Ψ = ( ) + −
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3. the equilibrium macrostate is achieved by highly condition required 
of the function macrostate
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 ∂
∂

=
Ψ
Ni

0  (1.122)

wherefrom results the expression of the distribution of particles on the 
energetic states from each configuration of microstates compatible with 
the macrostate

 N N gi i i i= ( )ε ,  (1.123)

Note that, in addition to those discussed, the statistical effect of large num-
bers, of particles Ni or of available energetic (sub) levels gi – it manifested, 
beyond the thermodynamic considerations, also analytically by the sys-
tematic application of Stirling’s approximation (see Appendix A.2)

 ln( !) lnn n n n≅ −  (1.124)

And also of its form equivalent for permutations
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−  (1.125)

Further, we will present the three types of fundamental distributions in 
Nature, with related applications:

• The (classical) distribution of Maxwell-Boltzmann, applied to the 
physics of the atmosphere through the barometric pressure formula;

• The (quantum) distributions Fermi-Dirac and Bose-Einstein, with 
application to the classification of fundamental particles and forces.

1.4.3 MAXWELL-BOLTZMANN STATISTICS: THE PARTITION 
FUNCTION

For the classical particles, or associable to the classical description, one 
recognizes the number of microstates possible configurations for a given 
macrostate as given by the product (as mathematical probabilities, indicat-
ing the simultaneity of the events) between the particle permutation, N ! 
(since the “name/label” of the particles can be inter-changed at any time, 
based on their identity) with the number of the available energetic levels 
of the number of possible configurations for each of the levels (with its 
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sub-levels) gi
Ni; this is illustrated in Table 1.3 for the i=1, Ni=2, gi=2, which 

is standardized at the number of possible permutations between particles 
in the sub-energetic levels (for not counting the identical configurations 
with multiple particles on the same sub-level, the particles being identical).

Thus, the probability of thermodynamic work for this general case is 
expressed as

 W N g
N

B i
N

ii

i

= ∏! !
 (1.126)

being known as the Maxwell-Boltzmann probability. Using the second 
identity Stirling (see Appendix A.2), it can be also write as
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Further, applying the above algorithm, the thermodynamic function is 
expressed and converted with the first type of Stirling identity
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TABLE 1.3 The Illustrations of the Distribution of Two Classical Particles in Microstates 
Covering a Single Energy Level (i=1) with Two Sub-Levels (g=2) (Putz, 2010)

i=1 g=2

ε X1 X2
or

ε X1 X2
or

ε X1 X2
or

ε X2 X1
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whose extreme condition

 0 =
∂

= − − −
ΨB

i
i i iN
g Nln ln α βε  (1.129)

generates the Boltzmann distribution

 N gi
B

i i= − −( )exp α βε  (1.130)

Worthy of note Eq. (1.30) may be re-writing with the so-called sum statis-
tic or partition function

 Z gi i
i

= −( )∑ exp βε  (1.131)

which intervenes in the evaluation of the total number of particles of the 
system

N N g e g Zei
B

i
i i

i
i i

i
= = − −( ) = −( ) =∑ ∑ ∑− −exp expα βε βεα α (1.132)

wherefrom there is immediately obtained the shape (and implicitly the 
value) of the α-parameter

 e N
Z

− =α  (1.133)

which allows the final result

 N N
Zi

B
i= −( )exp βε  (1.134)

wherefrom there is emphasized the partition function normalizing role of 
the Boltzmann distribution.

Next, to determine the parameter β in Eq. (1.134), one appeals to the 
physical situation which is characteristic for constancy of the total energy 
which modulates in the thermodynamic function of the macrostate (for-
mulated as a Lagrange expansion); in this respect we consider that the 
system exchanges the thermal energy with the environment after which is 
again isolated, so that the total number of particles of the system do not 
ever change. Thus we have
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 dE dN N di i
i

i i
i

= +∑ ∑ε ε  (1.135)

where the first term represents the heat changed by the global system

 dQ dNi i
i

= ∑ε  (1.136)

when, as a result of the transfer of heat, the transfer (jump) of parti-
cles Ni between the energetic levels ε i from one level to another there 
is recorded, but without affecting the total number of particles from 
the system. Therefore, the condition that the total number of particles 
remains constant

 0 = =








 = − − −( )− − − −∑ ∑dN d g e g e d d di

i
i

i
i i

i iα βε α βε α β ε ε β  (1.137)

Equation (1.137) leads, by successively equivalent writings, to the useful 
expression of the r.h.s. term (which perhaps records a displacement of the 
spectrum, i.e., of all the energetic levels of the system), including the total 
energy above

− − − =d d di iα β ε ε β 0

⇔ − − − =∑ ∑ ∑N d N d N di
i

i
i

i i
i

i

E

α β ε ε β
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0

 ⇔ = − −∑β ε β αN d Ed Ndi
i

i  (1.138)

In these circumstances, we can write for the entropy variation of the sys-
tem the successive formulas by using the second kind of Stirling identity 
[the Eq. (1.127)] with the conservation of particles as in Eq. (1.132) along 
the terms of variation in Eq. (1.138)

1
T
dQ dS

d k W k d N e e

k d N

B

B
B

B
N N

i

B

i i i

=

= ( ) =


















=

+( )∏ln ln ! α βε

lln N N N Ni i
i

i
i

− + +( ) +








∑ ∑α βε



36 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

= + + + +∑ ∑ ∑
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wherefrom immediately results the envisaged parameter

 β =
1
k TB

 (1.140a)

to produce the final form of Boltzmann distribution

 N N
Z k Ti

B i

B

= −








exp ε  (1.141)

Beyond the basic applications of the Boltzmann distribution, particularly 
in statistical thermodynamics or even in quantum applications such as 
modeling populations of atoms in laser media, they are fundamental also 
in Environmental Physics by the famous modeling of the pressure with the 
atmosphere known as the barometric formula.

1.4.4 FERMI-DIRAC STATISTICS

For the statistics of semi-integer spin particles the rank of occupancy with 
particles is maximum one particle, through the Pauli principle, for each 
sub-level of the potential (of degeneracy gi) for an energetic level ε i – in 
this case, or in other words, it can take two values: zero (vacant sub-level) 
and one (occupied sub-level), this being the quantum effect of fermions 
in thermal equilibrium state. Under these conditions, the number of pos-
sible configurations (arrangements) of Ni particles on gi sub-state for the 
energetic level ε i is calculated by normalizing (removing from) the total 
number of possible permutations of sub-state gi to the number of permuta-
tions of particles (single occupied cells) and of possible holes (unfilled/
unoccupied cells), in order to not over-count their identity (e.g., the boxes/
cells available in Table 1.4).

Under these conditions, the thermodynamic probability is said of a 
Fermi-Dirac (FD) type, or in a few words, of fermionic type (particle with 
half-integer spin) and is genuinely written as



Phenomenological Quantification of Matter 37

 W g
N g N

FD i

i i ii
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 (1.142)

It is nevertheless equivalently written through the application of Stirling 
transformation of permutation statistics (see Appendix A.2)
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Furthermore, the thermodynamic function of the macrostate is formed, 
using the last form of Fermi-Dirac probability to look like
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for which the extreme (stable) condition of equilibrium

 0 =
∂

= − −( ) − −
ΨFB

i
i i i iN
N g Nln ln α βε  (1.145)

generates the Fermi-Dirac distribution

 N g
i
FD i

i

=
+( ) +exp α βε 1

 (1.146)

TABLE 1.4 The Illustration of a Mode (from the possible ones) for the Quantum 
Distribution for Fermionic Type Particles with Half-Integer Spin on an Energetic Level 
with Sub-Levels gi (Putz, 2010)

Level i gi

εi X1 X2 X3 X4
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with Lagrange parameters α βand  to be (re)determined in terms of the 
current thermodynamic probability.

In order to determine the parameter β the procedure of the Boltzmann 
distribution will be repeated, while adapted to the Fermi-Dirac probabil-
ity for the equivalently writing of the entropy’s variation to the opening 
and then re-isolation of the system at an (infinitesimal) energy variation, 
including the energy exchange, but not the particles’ exchange. This way, 
considering the Fermi-Dirac distribution [the Eq. (1.146)] in order to 
express the N gi i/  size in the FD probability [the Eq. (1.143)] we succes-
sively have

  (1.147)
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wherefrom results that, as before in the Boltzmann’s case, the identifica-
tion of the thermal parameter

 β =
1
k TB

 (1.140b)

The α parameter determination is easily made, through the recognition 
of other identity of the entropy variation, this time when the total number 
of particles in the system fluctuates, specific of Lagrange’s constraint, so 
that it modulates the thermodynamic macrostate function. This way, one 
appeals to the classical thermodynamic expansion
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wherefrom the equation that connects the entropy variation to the total 
number of particles with chemical potential  µ of the system results from 
the state of thermodynamic equilibrium at temperature T

 ∂
∂

= −
S
N T

µ  (1.149)

The relationship (1.149) customized with the actual expression of FD 
entropy, see inside of Eq. (1.147), provides equivalent identities

 ∂
∂

+ + +( )

















= −∑ − −

N
k N E g e

TB i
i

iα β µα βεln 1  (1.150a)

 α µk
TB = −  (1.150b)

wherefrom the searched expression results

 α µ
= −
k TB

 (1.151a)
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Note that from the thermodynamic equivalence (1.148) for the total entropy 
variation, one can write also the companion equation for the entropy varia-
tion with the energy

 ∂
∂

=
S
E T

1  (1.152)

which provides a direct way also find to the β energy parameter from the 
FD entropy expression

 S k N E g eFD
B i

i

i= + + +( )







∑ − −α β α βεln 1  (1.153)

through the immediate derivative

 1
T

S
E

k
FD

B=
∂
∂

= ⇒β  β =
1
k TB

 (1.140c)

With these two thermodynamic parameters, Eqs. (1.151a) and (1.140c), 
the Fermi-Dirac distribution is finally written under the explicit form

 N g

k T

i
FD i

i

B

=
−







 +exp ε µ 1

 (1.154)

This distribution is successfully applied, for instance, to explain the elec-
tronic conduction in metals, and also to modeling the equilibrium and the 
physical parameters of white dwarfs, before entering the supernovae state!

1.4.5 BOSE-EINSTEIN STATISTICS

In agreement with Pauli principle, for the particles with integer spin, there 
is no restriction to the number of particles that can be placed in an avail-
able sub-level of an energy level. However, the fundamental difference 
toward the Boltzmann distribution, somehow similar in occupancy, is that 
the quantum one (the Bose-Einstein spin based ne) it can be obtained by 
arranging particles-understate also through the permutation of the “walls” 
between sub-states in the same way in which are permuted the particles; 
id est, the particles and the “walls” that are separating them, can be 
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identical treated, having the same effect, which is purely quantum effect 
of the bosons in thermal equilibrium states: the permutation of two walls 
is equivalent to “the passage through the walls” (the wall’s tunneling, aka 
of the potential barriers ) of the particles in the system – generating the 
Bose-Einstein (BE) distribution, see Table 1.5.

Under these conditions, the thermodynamic Bose-Einstein probability 
that is by cumulating the entire permutation particles + walls N gi i+ −( )1 ! 
excluding the permutation of two particles Ni ! and two walls gi −( )1 !, 
based on their identity; so it can be written in an elementary manner

 W
N g
N g

BE i i

i ii
=

+ −( )
−( )∏

1
1

!
! !

 (1.155)

or, by applying the statistical considerations of the large numbers (of 
particles and walls), N gi i>> >>1 1, , it firstly provides the operational 
expression

 W
N g
N g

BE i i

i ii
≅

+( )∏
!

! !
 (1.156)

which can be further transformed, as in Fermi-Dirac case, with the aid of 
Stirling relationship for permutations (see Appendix A.2)
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The standard construction requires that the thermodynamic function of the 
macrostate it will be written by combining the statistical information con-
tained within the thermodynamic probability (1.157) with the Langrange 
constraints of particle and energy conservation

TABLE 1.5 The Illustration of a Possible Mode (Arrangement) for the Quantum 
Distribution of Bosonic-Type Particles (with Integer Spin) on an Energetic Level with gi 
Sub-Levels (Putz, 2010)

Level i gi

εi X1 →... ...←
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(1.158)

to form the equilibrium condition

 0 =
∂

= +( ) − − −
ΨBE

i
i i i iN
N g Nln ln α βε  (1.159)

wherefrom the famous Bose-Einstein statistics is obtained 

 N g
i
BE i

i

=
+( ) −exp α βε 1

 (1.160)

Mathematically, the BE distribution differs from the FD one just by a 
sign in the denominator, yet with deep consequences in the physical inter-
pretation, as it will be seen below. We know that the determination of 
Lagrange parameters is based on the evaluation of entropy variation at 
the energy variation, in the absence of the variation of the total numbers 
of particles – for β determination, respectively when the total number of 
particles slightly varies – for α determination.

Thus, for the first instance of entropy variation one will use the form 
with the Stirling approximation for the probability (1.157) combined with 
the BE statistics (1.160) to yield
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From Eq. (1.161) the Lagrange particle parameter immediately results by 
applying the already customary thermodynamic equation

 − =
∂
∂

= ⇒
µ α
T

S
N

k
BE

B  α µ
= −
k TB

 (1.151b)

Instead, the Lagrange’s energy parameter is find out through the compan-
ion equation (1.152)

 1
T

S
E

k
BE

B=
∂
∂

= ⇒β  β =
1
k TB

 (1.140d)

Finally, the explicit Bose-Einstein distribution is expressed as

 N g

k T

i
BE i

i

B

=
−







 −exp ε µ 1

 (1.162)

and will represent the basis for modeling the photon radiation, and implic-
itly of blackbody radiation too, with implications in Environmental 
Physics, for example for the stellar classification and the establishment of 
the thermal age of the Earth.

1.4.6 FUNDAMENTAL FORCES AND ELEMENTARY PARTICLES: 
THE THEORY OF EVERYTHING (TOE)

1. The first level of unification of distributions consists in reducing the FD 
and BE quantum distribution to the Boltzmann one’s, for system achiev-
ing large mass for particles and in any case much larger than the one of the 
electron/fermions and of the photon/bosons in moving at high tempera-
tures (classical mode). Analytically, the first condition is rendered into

 ε i Bnk T n≅ , >>1  (1.163)

which corroborated with the second one (T>>) gives the limit

lim lim
exp
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T i
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 ±

ε µ 1



44 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

 ≅ −
−







 = − −( ) =g

k T
g Ni

i

B
i i i

Bexp expε µ α βε  (1.164)

2. The second level of unification of quantum distributions, is more 
subtle and relates to: (i) the quality of fermions (half-integer 
spin) to characterize the substance elementary particles of matter; 
(ii) the bosons (integer spin) as particles associated to the funda-
mental fields (to the forces implicitly) of matter that intermediate 
the interactions between the elementary particles. For clarity, we 
present in Table 1.6, face-to-face, the elementary particles for sub-
stance and the characteristic particle-carriers to the fundamental 
forces of Nature.

The unification of fundamental forces, respectively of the first three 
types of the interactions from the Nature generates the so-called GUT 
(Grand Unification Theory), which when extended to the fourth interac-
tion - the gravitational one (see Figure 1.5) constitutes the TOE (Theory of 
Everything) table, with the schematic representation in Figure 1.6.

Phenomenological, the final unification takes place at the so-called 
Planck era or scale, as in Figure 1.6, which can be analytically explicated 
in a direct manner through considering the unification of macro-micro 
cosmos, equating the gravitational and quantum levels, yet using basic 
formulas of gravitation, of special relativity theory, and of the Planck’s 
quantification

 E h h
t

= =υ  (1.165)

From the Newtonian equality of the inertial force to the gravitational one 
(the principle of the equivalence between inertia and gravity is by this way 
“activated”)

 ma G mM
r

= 2  (1.166)

one obtains the relation for the universal constant of gravitation

 G ar
M

=
2

 (1.167)
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TABLE 1.6 The Short Description of the Elementary Particles Which Quantify the 
Substance (elementary fermions) and the Interaction Fields/Forces (elementary bosons) 
(Putz, 2010)

Elementary Fermions Fundamental Forces

A. The lighter fermions: leptons
•  three fundamental families/generations 

of leptons

Q
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e

e

= −
=































− − −1
0

: , ,
υ

µ
υ

τ
υµ τ

•  each generation being a combination of 
charged lepton tied to the correspondent 
neutral lepton (neutrinos)

•  e−, the electron, the oldest known 
lepton, was discovered by JJ Thomson, 
in 1897, while the electronic neutrino 
ue was anticipated by Ettore Majorana 
(student of E. Fermi, disappeared in 
1938, still in unknown circumstances) 
and theorized by Pauli in 1930 was 
experimentally discovered in 1956, by 
Reines and Peierls

•  µ −, the muon, was discovered by 
Anderson in 1937 (the discoverer of the 
positron too) and further, in 1962, was 
highlighted the neutrino muons υµ

•  τ −, the triton (from tritos, literal Greek, 
meaning “third” in English), or tauonic 
lepton, is a lepton with a high mass (of 
baryonic order – see below) considered 
as heavy lepton, discovered in 1977 by 
the Peierls with tau neutrino (tauon) 
experimentally identified in 1990.

B. The heavy fermions: the quarks
•  three fundamental families/generations

Q
Q

u
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c
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top truth
botton beauty

A. The strong force 
•  Occurs between baryonic quarks;

•  It is intermediated by particle 
g-GLUON (from glue = which binds);

•  The spin s(G) = 1

•  With zero mass m (G) = 0

•  Interaction by gluons is the central 
subject of quantum chromodynamics 
(Q.C.D); the feature cromo cames from 
the fact gluons are further quantified 
by the so called “color” property: red 
(r), green (g), blue (b), turquoise (anti 
red r ), lilac (anti-green g), yellow (anti-
blue b ), with associated combinations;

•  Specific potential form

V k
r
k r

r
rt = − + =

∞ →
∞ → ∞





1 2
1 0...

...

B. The Electro-Magnetic Interaction 
•  Occurs between electrically charged 

bodies, being intermediated by the 
PHOTON-γ

•  The spin s(γ) = 1

•  With zero mass m0(γ)=0

•  Is the subject of quantum 
electrodynamics (QED)

•  Specific potential form

V QQ
rEM = −

1
4 0

1 2

πε

C. The Weak Interaction 
•  Models the transformations of nucleons, 

being intermediated by WEAKONS 
(from the meaning of weak), both 
charged W ± or neutral Z 0
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Elementary Fermions Fundamental Forces

•  the quark concept was introduced by M. 
Gell-Mann in 1964–1965, at Caltech 
(although there was a preprint with 
similar ideas, at CERN, from Georg 
Zweig, he called them ace), assuming 
the expression from the opera Finnegans 
Wake, by James Joyce, “Three quarks 
for Muster Mark!”, at page 383.

•  In 1964 there were about 200 particles 
called elementary particles, without 
being systematically explained, until the 
naive theory (with 3 quarks q = u, d, s) 
of Gell-Mann; for example, the proton 
was a combination of 3q: p=uud, while 
the neutron has the structure n=3q=udd;

•  The strangeness of name come to 
underline the strangeness of these 
particles with fractional charge, in fact 
sub-electronic!

•  The combination of three quarks qqq 
composes the bound state called baryons 
(nucleons, hiperons, etc.).

•  The combination of two quarks (one 
quark and one antiquark) qq generates 
the bounded states of mesons  
mesons or charmonium particle 
J cc/ψ = )

•  From the leptons and quarks it can be 
formed the substance’s Matter, however 
complex

•  Might as also the quarks themselves 
have internal structure!

•  The specific potential is unspecified

•  Charged weakens intervene in β 
reactions of transformations occurring 
in proton-neutron interchanging inside 
the nucleus, so

β

υ

− −

−

→ +
↓

+

: n p W

e e

β

υ

+ +

+

→ +
↓

+

: p n W

e e

•  with the spin s W Z( ,± 0 )=1

•  With the masses m0 (W ± )~84 GeV (or 
proton mass mp), m0( )Z 0 ~94 GeV

•  Have been discovered at CERN in 1983 
(in January W ±, in June Z 0) by the group 
of Carlo Rubia and Simon Van der Meer 
(rewarded with a Nobel Prize in 1984)

D. The gravitational interaction 
•  Occurs between bodies with mass, being 

mediated by the GRAVITON-Γ

•  The spin s (Γ) = 2

•  With zero rest mass m0(Γ)=0

•  It moves at the speed of light!

•  The graviton is carried by gravitational 
waves (still undetected)

•  Specific potential form

V G M M
rEM = − 1 2

TABLE 1.6 Continued

which it can eventually written as equivalent, using “the Planck’s man-
ner” involving only universal constants (since assumed as unified or at 
least interchangeable at the level of the grand unification of forces, par-
ticles and energies, immediately after the Big Bang singularity).
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 G L c
M
P

P

=
2

 (1.168)

Note that, for consistency, everything that is not universal constant in 
Eq. (1.168) becomes of Planck (P) size, specific for the birth of the 
Universe! On the other hand, the quantum de Broglie relationship

 p hλ =  (1.169)

is rewritten at the level of Planck’s Universe, to obtain a second working 
relation

 M c L hP P( ) =  (1.170)

FIGURE 1.5 Representation in relativistic space-time cones paradigm (the so-called 
“ Feynman diagrams“) of fundamental interactions, quantized by specific particles which 
intermediate the typical elementary particles, see the text, superimposed to the scale of 
fundamental forces in relation with their reciprocal strength and the domain of distance 
where is applicable (Stierstadt, 1989; Putz, 2014).
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which combined with Eq. (1.168), allows the solution for the Planck mass 

 M ch
G

kgP = ≅ ⋅ −5 10 8[ ]  (1.171)

 which allows the finding of early (Planck) Universe’s length

 L Gh
c

mP = ≅ ⋅ −
3

354 10 [ ]  (1.172)

FIGURE 1.6 Unification paradigm of fundamental forces of Nature, in relation with 
time, temperature and energy of dominant particles in the age’s specific to the evolution of 
Universe (Evans, 2010; Putz, 2010).
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They generate a plethora of further determinations, as for instance the 
Planck’s time

 t L
c

Gh
c

sP
P= = ≅ −

5
4310 [ ]  (1.173)

closely related to the Planck’s energy calculation 

 E h
t

hc
G

J GeVP
P

= = ≅ ⋅ ≅ ⋅
5

9 195 10 3 10[ ] [ ]  (1.174)

and further to the Planck’s temperature 

 T E
k

hc
Gk

KP
P

B b

= = ≅ ⋅
5

2
323 10 [ ]  (1.175)

being accompanied by a colossal Planck density of the early Universe

 ρP P

P

M
L

c
hG

kg m= = ≅3

5

2
96 310 [ / ]  (1.176)

This is an elementary picture for the unification of quantum, gravitational 
and relativist concepts actually characterizing the Big Bang moment until 
the Planck’s horizon, through the spatial-temporal parameters as mass, ther-
mal and energetic, expressed only in terms universal constants (Planck’s 
constant, Boltzmann’s constant, speed of light in vacuum, universal gravi-
tation constant) as all these would be merged into one single entity!

1.4.7 STEFAN-BOLTZMANN LAW OF RADIATION

The Bose-Einstein distribution (1.162) may be considered to recover the 
Planck law of black body radiation, i.e., the photon radiation modeling, by 
considering the following peculiarities:

• One considers the fact that the photons, at equilibrium, do not oper-
ate under the condition of constancy for the total number of particles 
N ct ≠ , wherefrom there results that one can not applied the appro-
priate Lagrange multiplier, setting therefore the associated chemical 
potential to zero
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 α µ= ⇒ =0 0  (1.177)

• The degeneration of multiplicities does not apply regarding the spin, 
but at the fact that there are two types of electromagnetic polariza-
tion ( )g = 2 , given that the transition from the discrete statistics to 
the continuous one is done through the small space of the phases, 
quantum normalized in the sense of Heisenberg localization/ delo-
calization through the analytical transformation

 N dN

k T

g
a
di

B

→ =








 −









1

1exp ε
γ  (1.178)

Note that in Eq. (1.178), for the photon particles (with three degrees of 
freedom) we have

 a h= ( ) =2 3 3π  (1.179)

Equally, the infinitesimal volume of the phases

 d dxdp dydp dzdp d dx y zγ = ( )( )( ) = r p = ( )dV p dp4 2π  (1.180)

is rewritten by adapting to the photon the quantum energy-momentum par-
ticle relation

 ε = ⋅c p  (1.181)

to become

 d V
c
d
cpγ π ε ε

= 4
2

2  (1.182)

With Eqs. (1.179) and (1.182) the photon statistics (1.178) becomes

 dN
ac
V d

k TB

=








 −

8

1
3

2π ε ε
εexp

 (1.183)

Based on such statistics, the total energy of photon radiation is obtained 
by passing from the discreet definition to the continuous one by the sum-
to-integral (statistical) conversion
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 U N dNi i
i

= →∑ ∫ε ε  (1.184)

allowing the successive calculations
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where the value of Riemann-zeta function of the third order it had been 
used (see Appendix A.4)

 x dx
x

3

0

4

1 15exp( ) −
=

∞

∫
π  (1.186)

Next, when one considers the volume density of energy 

 u U
V

k
h c

TB= =
8
15

5 4

3 3
4π  (1.187)

one can define the so-called radiance or energy flux density or radiant flux 
(energy emitted by a blackbody per unit area per unit time, or the radiant 
power per unit area)

 L dL P
A

U
A t

x
t
U
A x

c u= = =
⋅

=
⋅

=∫ 4
 (1.188)

simply reshaped under the so-called Stefan-Boltzmann law

 L T= σ 4  (1.189)

when collecting the Stefan’s constant from Eq. (1.187) 

 σ π
= = × ⋅ ⋅ ⋅− − − −2

15
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5 4

3 3
8 1 2 4k

h c
J s m KB . [ ]  (1.190)
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Note that the factor ¼, from the definition of radiation in Eq. (1.188), 
comes from the geometrically condition for integration after the values of 
possible radiation angles, toward a given source, as shown in Figure 1.7, 
with the associate short proof:
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wherefrom results the customary expression
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Further, if we rewrite in Eq. (1.185) the density of total radiant energy by 
employing the Planck quantification of radiation, ε υ= h , the newly inte-
gral is formed

u U
V h c

h d h
h
k TB

= =
( ) ( )









 −

∞

∫
1 8

1
3 3

3

0

π υ υ
υexp

FIGURE 1.7 The geometrical configuration, which express the photonic radiance 
(HyperPhysics, 2010; Putz, 2010).
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wherefrom the energy spectral density (in frequency) is identified
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which corresponds to the Planck formula (distribution) of the blackbody 
radiation as earlier given in Eq. (1.24a)! Note that actually, Planck had 
used for spectral density distribution the formula under the form of the 
spectral intensity obtained as the energy emitted by a blackbody at temper-
ature T per unit area per unit time per unit solid angle, in the υ υ υ, +( )d  
interval that is:
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However, another important quantity related to the energy density refers 
to the photon radiation pressure, phenomenological deduced from the gen-
eral relations

 P Force
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dp
dt c A

d
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c u u
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and which is specialized by taking into consideration the statistical 
geometric conditions, i.e., considering the equipartition on the 3D coor-
dinates, casting as

 P u Tγ σ= =
1
3

1
3

4*  (1.196)

It is worth noting that in astrophysics, is often used the changed form of 
the Stefan-Boltzmann law, in practice written at the energy density level

 u T= σ * 4  (1.197)

with the new Stefan (Stefan-star) constant

 σ σ π* . [ ]= = = × ⋅ ⋅− − −4 8
15

7 565767 10
5 4

3 3
16 3 4

c
k
h c

J m KB  (1.198)

These are the theoretical premises that will allow in characterizing vari-
ous bodies of the universe (e.g., the Sun, the Earth, the Stars and even the 
Cosmos as a statistical ensemble) based on the electromagnetic radiation 
that they emit or store.

1.4.8 THE WIEN LAW: THE UNIVERSE’S TEMPERATURE AND 
ANISOTROPY

In the relations of the previous section, see Eq. (1.193), it appears that the 
energy spectral density per unit frequency can be written as

 ρ υ
υ

,T
V
dU
d

( ) =
1  (1.199)

which be generalized also to the case of energy spectral density per unit pulse

 ρ ω
ω

,T
V
dU
d

( ) =
1  (1.200)

and respectively, for the case of energy spectral density per unit wavelength

 ρ λ
λ

,T
V
dU
d

( ) =
1  (1.201)
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However, the connection between these three quantities is immediately 
(taking into consideration that the frequency and pulsation increase when 
the relative wavelength decreases ( & )d d dυ ω λ> ⇒ <0 0  thus yielding

 dU T d T d T d= ( ) = ( ) = − ( )ρ υ υ ρ ω ω ρ λ λ, , ,  (1.202a)

Such analytical variable interchanging is of great importance because it 
allows the transcription from one spectral quantity to another, depending 
on the conceptual/computational needs and issues involved. For example, 
the spectral energy density per unit wavelength, is successively obtained 
from Eq. (1.24a/b)
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with representations in Figure 1.8. From the Figure 1.8, there is apparent 
that the maximum of the spectral energy density lays on a curve, on a geo-
metrical locus of λ λ= ( )T  type, with universal value – defined by what 
had been established as the Wien’s law. Analytically, one searched for the 
solution of the maximum condition
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d
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= 0  (1.203)

with the specific form for photonic radiation
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where it had been introduced the constant factor

 ξ ≅ = ⋅ ⋅−hc
k

m K
B

1 43878 10 2. [ ]  (1.205)

From Eq. (1.204) there follows that the equation to be solved takes the shape

 λ ξ
ξ

λ

λT

T

f T=
− −


















=
5 1 exp

( )  (1.206)

which can be numerically solved by self-iterations until it reaches the 
equality between the argument and function, starting by the order of size of 
the λT  product similar with those of the ξ size. Thus, we successively have

FIGURE 1.8 The representation of energy spectral density per unit wavelength, for the 
“black” body, with high temperatures (such as for the Sun roughly about 6000 K); note that 
the curves at lower temperature have the same allure (at T = 300 K for Earth surface type, or 
at T = 2.7 K for the whole Cosmos) - with the modification of the wavelength domain; the 
region of the visible spectrum lies between 380 and 750 nm (HyperPhysics, 2010; Putz, 2010).
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 f T m K( ) . [ ]λ = = ⋅ ⋅− −10 3 77245 102 3  (1.207a)

 f T m K( . ) . [ ]λ = ⋅ = ⋅ ⋅− −3 77245 10 2 94248 103 3  (1.207b)

 f T m K( . ) . [ ]λ = ⋅ = ⋅ ⋅− −2 94248 10 2 89937 103 3  (1.207c)

 f T m K( . ) . [ ]λ = ⋅ = ⋅ ⋅− −2 89937 10 2 89783 103 3  (1.207d)

 f T m K( . ) . [ ]λ = ⋅ = ⋅ ⋅− −2 89783 10 2 89778 103 3  (1.207e)

and finally

 f T m K( . ) . [ ]λ = ⋅ = ⋅ ⋅− −2 89778 10 2 89778 103 3  (1.207f)

which generates the analytical form of Wien’s law 

 λT m K= ⋅ ⋅−2 89778 10 3. [ ]  (1.208)

Remarkably, for the temperature values around T K≅ 3  there are obtained 
wavelength in order size of micro-waves (millimeters) λ ≅ =−[ ] [ ]10 3 m mm , 
which corresponds to the remnant background radiation of the Universe, 
systematically detected by the research satellite COBE (The Cosmic 
Background Explorer), launched in 1989, Figure 1.9.

Since the interpolation with an error less than 1%, was achieved for 
an exact temperature T K≅ 2 74. [ ]  it is therefore assumed as the current 
temperature of the Universe, in excellent agreement with the physical-
mathematical modeling of blackbody radiation, according to Planck pho-
ton statistics (Figure 1.9). The fundamental consequence of the data 
about the microwave background radiation around 3K on knowledge 
of the Universe is extremely important. For example, from the discov-
ery of background radiation (in 1965 by Arno A. Penzias and Robert W. 
Wilson of Bell Laboratories, winners of the Nobel Prize for this discov-
ery in 1978) the launching of the COBE satellite was followed, in 1989, 
which confirmed the distribution of blackbody radiation in the Universe, 
extended backwards in time from its current form, as in Figure 1.11 until 
its decoupling from the substance (400,000 years after the Big Bang).
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More recently, were found temperature fluctuations, in the structure 
itself of the background radiation; this was possible with the aid of the 
WMAP (Wilkinson Microwave Anisotropy Probe), launched in one of the 
Lagrangian points of the Earth-Moon-Sun system (L2 more accurately, to 
ensure a minimum energy consumption), see Figure 1.10, from where 
the temperature fluctuations around the background one of 2.74 K was 
observed with an error about ΔT/T = 6x10–6 which, in the reversed ratio 
framework represent a higher value (or sensible close) to the temporal 
horizon of radiation-substance decoupling (t=105 years ↔ T=105 K). From 
these results that the (quantum) fluctuations have a temporal scale higher 
than the time wherefrom the background radiation comes, Figure 1.11, 
from where the quantum indeterminacy at the universe scales, after Big-
Bang. The discovery made by the WMAP satellite is particularly excit-
ing since it seems that exactly these quantum fluctuations generate the 
so-called Background Radiation anisotropy of the Universe (after Big 
Bang), visible in the polarization of the cosmic radiation, indicated at the 
top of Figure 1.11, which may be the quantum cause of the major global 
effects such as:

FIGURE 1.9 The representation of intensity of spectral energy density per unit 
wavelength in the micro-waves domain, for the residual temperature of the Universe, about 
2.74K, as had been recorded by the COBE satellite in 1989; data assumed and processed 
from Mather et al. (1990) and further adapted from HyperPhysics (2010) and Putz (2010).
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• the separation of matter from the anti-matter (under the so-called 
violation of C-charge symmetry related to the invariance of physical 
laws at the reverse of electric charges);

• the preferential formation of the substance in certain areas of the 
Universe, with the presence of the dark energy, probably also respon-
sible of the accelerated expansion of the Universe too (the so-called 
violation of P-parity symmetry related to the invariance of physical 
laws for the inversion of spatial coordinates);

• the establishment of an arrow of time leading to a sense of evolution 
for the Universe (the so-called violation of T-time symmetry related 
to the invariance of physical laws for the inversion of the temporal 
coordinates).

Yet these last important issues are only quoted here being left for a 
well deserved detailed presentation and discussion for other occasion and 
textbook.

FIGURE 1.10 The illustration of Lagrange points (L1, L2, L3 – instable, L4 and L5 – 
stable) for the Earth-Moon binary system, representing the points of binary minimum 
potential corresponding to the minimum attraction of both bodies in a reciprocal motion 
(HyperPhysics, 2010; Putz, 2010).
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1.5 CONCLUSION

The main lessons to be kept for the further theoretical and applicative 
investigations of the phenomenological matter’s quantification that are 
approached in the present chapter pertain to the following:

• identifying the necessity for wave quantification as arisen from the 
problem/paradox of the black-body radiation;

FIGURE 1.11 The map of microwave background radiation, observed by the WMAP 
satellite (top) and its causal carryover to the evolution of the Universe; adapted from 
NASA (2010) and Putz (2010).
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• employing the Einstein assumptions of “quantum light” by absorp-
tion and stimulated and spontaneous emission in recovering Planck’ 
distribution of photons;

• writing the de Broglie formula for matter-to-wave quantification for 
a given system with rest mass;

• dealing with wave packet form and properties in jointly recovering 
the Planck and de Broglie quantification formula for waves and sub-
stance, respectively;

• characterizing any objective entity by wave function with normal-
ization property over its existence space;

• understanding the stable systems quantification through the comple-
mentarity between corpuscular and undulatory nature of the struc-
tural constituents;

• describing the quantum world by classical correspondence for higher 
quantum numbers (e.g., valence shells of atoms);

• learning the quantum causes of electronic configuration in atoms, 
including the shielding (Moseley) effects;

• treating systems of identical particles as statistical samples;
• solving the statistical paradox even for small particles or single par-

ticles: due to the quantum (wave) nature the quantum statistics pre-
scribes a practically infinite number of states to be occupied by low 
number or even single particle with its existence probability spread 
over the entire spectrum of states;

• formulating the microscopic statistics for fermions (Fermi-Dirac) 
and bosons (Bose-Einstein);

• interpreting the matter structure by fundamental particles and forces, 
associated with fermions and bosons and of their statistics, respectively;

• connecting the fundamental fermions with the particles constitutive 
of matter and the bosons with the particles (usually with zero of very 
low rest mass) carrying the interactions/forces between the first ones;

• developing the thermal radiative phenomenology by quantum nature 
of the light/electromagnetic field, with universal value, i.e., with 
astrophysical relevance as well as for substance heating;

• finding applications for quantum-thermal correlation via the Wien 
law connecting temperature with the wavelength of the emitter elec-
tromagnetic radiation, with projection from micro- to macro- scale;

• modeling the Universe’s “evolution arrow” and the noted experi-
mental anisotropy by symmetry breakings in fundamental particles’ 
charge, time and space.
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ABSTRACT

Although equivalent to certain points, various approaches of quantum 
phenomena may add new insights and perspective on studied systems 
either in isolate or interaction states. Here, the main formalisms are 
reviewed and illustrated, especially those making the ground-nous of 
the quantum mechanics itself, i.e., the undulatory quantum mechanics, 
while introducing the quantum propagator (Green function) concept, 
the semi-classical approach based on Euler-Lagrange and Hamiltonian, 
while the bra-ket Dirac picture opens the new perspectives of further 
developing quantum theory by abstract yet logical and formalized 
reasoning.

2.1 INTRODUCTION

One attempts to formalize the quantum observed phenomena of Chapter 1 
of the present volume. In this respect, while following the didactic line for 
a modern physical-chemical course, one should expect to get acquaintance 
with the main formal concepts of quantum theory in general, namely the 
basic curricula:
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• Schrödinger equation. Energy eigenstates. Free propagator. Variat-ional 
principle. Hamilton’s equation. Potential and ground state. Temporal  
Schrödinger equation. Klein-Gordon equation. Electronic spin.

• The principles of action in classical and quantum mechanics’ per-
spective – short history. Basic concepts of force, motion, mass and 
units of physical quantities used in laws of motion. Quick survey 
of laws of motion. The Lagrangian function and its main role in the 
principle of least action. The motion by Euler-Lagrange equation. 
Newton equation and the second principle of classical mechanics. 
Correspondence with quantum mechanics.

• Equation of quantum state. The Dirac bra-ket formalism of quantum 
mechanics. Representation of the wave-momentum and coordinates. 
The adjunct operators. Hermiticity. Normal and adjunct operators. 
Scalar multiplication. Hilbert space. Dirac function. Orthogonality 
and orthonormality. Commutators. The completely set of commut-
ing operators.

This way the quantum concepts are therefore introduced in three steps’ 
phenomenology: formulating the quantum mechanics main equation-
looking for classical roots of quantum mechanics-exploring the general 
formalization of quantum equation, states, and solutions. The correspond-
ing issues are in the following unfolded, in grand detail in the main text, 
with the formal results summarized at the end of the chapter.

2.2 WAVE FUNCTION PICTURE

2.2.1 GREEN AND DIRAC FUNCTIONS

Consider 3D representation of coordinate space

 r i j k= + +x y z  (2.1)

in terms of orthogonal vectors (unity vectors)

 i j k= = =1 i j i k j k⋅ = ⋅ = ⋅ = 0  (2.2)

with the help of which one may use the generalized forms of Eqs. (1.74)–
(1.76), employing the Fourier transformation of coordinate to momentum 
wave function dependency
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There will be interesting to re-express the wave function (2.3) as a coordi-
nate dependency only; to this aim one reconsiders eq. (2.3) for initial time
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From where having the inverse Fourier specialization of momentum wave 
function in terms of initial coordinate wave function (distribution)
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With the form (2.5) back in time dependent wave function (2.3) one gets 
its re-shape
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in terms of the so called Green-function,
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a major concept in quantum theory, which practically links the initial wave 
function (quantum state) with any further evolved quantum state,

 ψ ψ( , ) ( , ) ( , )
( )

r r r r rt d G t=
∞
∫ ' - ' ' 0  (2.8)

containing in this regard a sort of determinism inside the quantum free 
evolution (due to integral representation which practically covers all coor-
dinate space and possible evolution histories – a matter on which we will 
deeply return with the occasion presenting the path integral approach of 
quantum mechanics in the third part of the present volume).
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Nevertheless, observe the bi-local nature of the Green function which 
allows its interpretation as a distribution function, being just equivalent 
with eth celebrated Dirac delta-function

 G d e
i

( , ) ( )
,

,
( )

( )

r r p r r
r r
r r

- ' - '
'
'

-
0 1

2

0
3=

( )
= =

≠
+∞ =




⋅

∞
∫π

δ




p r r'


 (2.9)

Fulfilling the basic conditions of normalization

 δ ( )r r r- '
−∞

+∞

∫ =d 1  (2.10)

And filtration

 f d f( ) ( ) ( )r r r r rδ - ' '
−∞

+∞

∫ =  (2.11)

One note however that for initial times the working coordinate function 
can be identified with the initial coordinate wave function (t f= →0 : ψ ). 
These physical-mathematical tools will be further employed in formal-
izing one of the subtlest theories of matter, the quantum theory of Nature.

2.2.2 MOMENTUM AND ENERGY OPERATORS

From above de Broglie wave-function packet one can identify at t = 0  the 
functions

 u e
i

p

p r
( ) /r =

( )
⋅1

2 3 2π
 , u e

i

p

p r
( ) /r =

( )
− ⋅1

2 3 2π
  (2.12)

with the coordinate-momentum scalar products unfolded as

 p r⋅ = + +p x p y p zx y z  (2.13)

However, note the very intriguing fact that, while the wave function in 
momentum representation takes the form associable with a (generalized) 
functional scalar product

 ψ ψ ψ0 0 0( ) ( ) ( ) : ( ), ( )
( )

p r r r r= = ( )
∞
∫ u d up pr  (2.13)
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this is not the case of the wave-function in the coordinate representation 
since the integral performed on convoluted function belonging to different 
spaces (and representations):

 ψ ψ0 0( ) ( ) ( )
( )

r rp=
∞
∫ u dp p  (2.14)

Such striking situation is solved (explained) by the fact the function up ( )r  
is not assimilated with ordinary wave-function because not obeys the nor-
malization condition through providing a divergent square integral:

 u d u u d dp p pr r r r r r( ) ( (
2

3

1
2

= =
( )

→ ∞
−∞

+∞

−∞

+∞

−∞

+∞

∫ ∫ ∫) )
π

 (2.15)

although being indefinite derivable respecting the space coordinates:

 d
dx

u i u
n

n x

n

p p( ) ( )r p r= −









 (2.16)

and with finite norm in both zero- and n-th order of such derivation:

 up ( ) /r =
( )

1
2 3 2π

, d
dx

u pn

n
x

n

p ( ) /r = 





 ( )



1
2 3 2π

 (2.17)

Such functions are called distributions, so being more general than the 
ordinary wave functions since the chain spaces inclusion:

 L L D( ) ( ) ( )

( ) ( ) ( )

ℜ

∫

⊂ ℜ

∫

⊂ ℜ

∫
∞ ∞ ∞

<∞ <∞ →∞

r

r

r

r

r

rfd f d f d
��� ��� �� ���

2

2 2
���  (2.18)

among the simple integrable (trial wave functions), square integrable (true 
wave functions) and square non-integrable (temperate distributions) func-
tions to be used as describing quantum particles and events.

The fact the function up r( )  is in fact a temperate distribution can be 
seen also from its inner scalar product

 u u u u dp' p p' pr r r p p', ( ) ( )
( )

( ) = = −( )
∞
∫ δ  (2.19)
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leading with another distribution function, the Dirac (delta) function, pre-
viously introduced.

Nevertheless, one fundamental consequence of dealing with up ( )r  as 
a generalized function is that it can be considering as patterning a special 
(generalized in the sense of resumed) wave function abstracted from the 
de Broglie wave-packet, namely

 ϑ
π

t

i Et i Et
u e e( ) ( ) /r r= =

( )
− ⋅ −( )

p

p r
 



1
2 3 2  (2.20)

leading with the basic identities

 ∂
∂

= −
t

i Et tϑ ϑ( ) ( )r r


 (2.21)

 ∂
∂

=
x

i pt x tϑ ϑ( ) ( )r r


 (2.22)

producing the quantum operatorial definitions for energy and momentum:

 E i
t

� �• =
∂
∂

•  (2.23)

 p i
xx

� �• = −
∂
∂

•  (2.24)

while the 3D-momentum operatorial definition will look like

 p� �• = − ∇ •i  (2.25)

in terms of nabla-differential operator over the space coordinates:

 ∇ = ∂ ∂i
i  ∂ = ∂ ∂i

ix: / , i for x for y for z=1 2 3( ), ( ), ( )  (2.26)

These operators, along the multiplicative space-coordinate rules (equally 
for coordinates and vectors):

 x x V x t V x t V x t� � �• = • • = • = •, ( , ) ( , ) ( , )  (2.27)

are of prime importance in developing the forthcoming quantum equations 
and modeling the driven (or measurable or observable) events.
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2.2.3 KLEIN-GORDON AND SCHRÖDINGER EQUATIONS

Combining relativistic energy and momentum through velocity elimina-
tion (fro their derivations see Appendices A.5–A.7):

 E mc m c

v c
= =

− ( )
2 0

2

21 /
 (2.28)

 p mv m v

v c
= =

− ( )
0

21 /
 (2.29)

one gets the general momentum energy relationship:

 E m c p c2
0
2 4 2 2= +  (2.30)

from where the two possible energy solutions are obtained as

 E m c p c= ± +0
2 4 2 2  (2.31)

with the Dirac celebrated energy solutions for the trapped particles ( p = 0  )

 E m c= ± 0
2  (2.32)

while fixing the intriguing Dirac seas of positive and negative energy lim-
its within which the any given substantial particle ( m0 0 ≠  ) evolves, see 
Figure 2.1; eventually, it collapses into the referential zero level for the 
photonic case ( m0 0→  ).

However, the quantum correspondence principle applied upon the 
square of the above energy with energetic and momentum considered as 
operators and applied on the working wave-function ψ t ( )r ,

 E c m ct t t
� � �2 2 2

0
2 41ψ ψ ψ( ) ( ) ( )r r r= +p  (2.33)

leading with the so called Klein-Gordon equation:

 1
2

2

2
2 0

2

c t
m c

t t
∂
∂

= ∇ − 



















ψ ψ( ) ( )r r


 (2.34)
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or written in the (1+3)D form

 ν +



















=
m c

t
0

2

0


ψ ( )r  (2.35)

where the D’Alambertian was defined in the (x0=ct, x1=x, x2=y, x3=z) ≈ 
(+, –, –, –) space-time relativistic metric

 ν = ∂ ∂ = ∂ − ∂ ∂µ
µ

0
2

i
i , ∂ = ∂ ∂µ

µ
/

//i
ix , µ = =0 1 2 3 1 3, , , ; ,i  (2.36)

Turning now to the non-relativistic motion, one expands the positive 
(or electronic) energy-momentum relativistic above solution in term of 
(v/c) yielding in the first order expansion,

 1 1 21 2

0
+( ) ≅ +

→
a a

a

/ /  (2.37)

the actual relationship:

 E m c p
m

≅ +0
2

2

02
 (2.38)

FIGURE 2.1 The separation (2m0c
2) gap between the positive (E>+ m0c

2) and negative 
(E<–m0c

2) continuum (“Dirac seas”) for the energy of a relativistic particle (Putz et al., 2010).
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However, when the electronic motion is driven by a potential too, say V(x), 
the last expression can be modified as such the energy spectrum be shifted 
with origin in the positive (+m0c

2) rest energy so that the working energy 
expression become

 E V p
m

≅ +( )r
2

02
 (2.39)

Now, considering once more the operatorial version of this equation with 
energy and momentum operatorial rules applied on the wave-function, 
while noting the space operator as well as space dependent function(s) do 
not modify the space dependence, see above, the final result unfold as the 
famous Schrödinger temporal equation

 i
t m

Vt t

∂
∂

= − ∇ +








ψ ψ( ) ( ) ( )r r

2

0

2

2
r  (2.40)

in terms of Laplacian only this time:

 ∇ = ∂ ∂2
i

i, ∂ = ∂ ∂i
ix/ , i =1 3,  (2.41)

2.2.4 ELECTRONIC AND PHOTONIC SPINS

The major consequence of having both Klein-Gordon and Schrödinger 
equation springs out through looking on the symmetry and dissymme-
try with which these equations transforms space in time, respectively. 
However, in order to achieve the symmetry of space-time transforma-
tion in both equations one can rewrite the time-power as being quantified 
by the s number (hereafter called as spin). This way, one can unfold the 
photonic and electronic wave equation in unitary manner since special-
izing the Klein-Gordon and Schrödinger equation with common features 
through imposing the shift m c0

2 0→  on the first (regaining the ordinary 
wave-equation for electromagnetic fields, quantified by photons) and free 
motion V ( )r → 0 for the second; the resulted photonic and electronic wave 
equations are:

 ∂
∂

= ∇
2

2
2 2

s

s t tt
c

( )

( ) ( ) ( )
γ

γ ψ ψr r  (2.42)
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 ∂
∂

= ∇
2

2
0

2

2

s e

s e t tt
i
m

( )

( ) ( ) ( )ψ ψr r  (2.43)

from where there follows the photonic and electronic spin quantization as:

 s( )γ =1, s e( ) = 1
2

 (2.44)

in order to be in accordance with the operatorial deduced equations, 
respectively. With this we can affirm that:

• the spin concept is an intrinsic space-time transformation effect;
• the spin quantification depends on the relativistic or non-relativistic 

level of wave function expression whom the particle evolution is 
attributed;

• the spin quantification contains, at either relativistic or non-relativis-
tic levels, the quantum influence of motion.

2.2.5 EIGEN-FUNCTIONS AND EIGEN-VALUES

If once consider appropriate factorized time-coordinate resumed wave 
function from above patterned distribution based solution, and then the 
working wave function will look like

 ψ ψt

i Et
e( ) ( )r r=

−

0
  (2.45)

while through considering it into the temporal Schrödinger equation it 
leaves in the first instance with

 − ∇ +








 =



2

0

2
0 02m

V E( ) ( ) ( )r r rψ ψ  (2.46)

thus providing the so called stationary Schrödinger equation that in opera-
torial form simply casts as an eigen-value problem:

 H Eψ ψ=  (2.47)

being ψ  the eigen-function and E the eigen-value to be determined once 
the Hamiltonian
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 H
m

V� �
= − ∇ +

2

0

2

2
( )r  (2.48)

is specialized in terms of applied potential V ( )r .
In terms of Hamiltonian the corresponding temporal Schrödinger equa-

tion would be displayed as generalization of that stationary:

 H i t
� �ψ ψ= ∂  (2.49)

where we have introduced the short-notation of time-derivation

 ∂ =
∂
∂t t

:  (2.50)

2.2.6 HERMITIC OPERATORS

Giving a general operator A  it is said to be hermitic or self-adjoin and is 
written as

 A A 

+
=  (2.51)

if fulfills the general identity:

 ψ ψ ψ ψ ψ ψ*
* *

A d“ A d“ A d“  ( ) = ( ) = ( )∫ ∫ ∫  (2.52)

with dΓ formally denoting the elementary (space-time) volume of 
integration.

As a useful illustration let’s check the coordinate, momentum and 
Hamiltonian hermiticity. The position operator is hermitic

 x x 

+
=  (2.53)

because fulfills the successive identities:

 ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ* * * * *
x dx x dx x dx x dx x dx = = = ( ) = ( )∫∫∫∫ ∫  (2.54)

since x=x* due to its real nature; the momentum operator is as well hermitic

 p px x
 

+
=  (2.55)
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throughout the identities:

 

ψ ψ ψ ψ ψ ψ ψ ψ* * * *p dx i
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dxx
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∂
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= − ( ) + −
∂
∂

∫ ∫
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ψ ψ ψ ψ

ψ ψ ψ

* *

*

0
xx

dx p dxxψ ψ ψ





 = ( )∫ ∫

* *�
 (2.56)

since either direct or conjugate wave-function cancels at infinity; for the 
squared of momentum operator the hermitic property is even more direct 
proofed because it is a real operator

 p p p i
x
i
x xx x x

� � � � � �
2 2

2

2• = ( )• =
∂
∂

∂
∂







• = −

∂
∂

 (2.57)

that automatically fulfills this condition; and the same for all other coordi-
nates; all in all there is clear that the Hamiltonian operator

 H p
m

V x y z� � � � �= +
2

2
( , , )  (2.58)

as a sum of hermitic operators is an operator as well:

 H H 

+
=  (2.59)

The hermitic property of Hamiltonian may also directly be checked (or 
cross-checked) through the following construction; since assuming a pre-
pared normalized state one successively has:

∂ =∫t dψ ψ* Γ 0  

 ⇔ ∂( ) + ∂( ) =∫ ∫t td dψ ψ ψ ψ* *Γ Γ 0  (2.60)

However, when considering in the last equality the direct and conjugate 
variants of temporal Schrödinger equation,

 H i t
� �ψ ψ= ∂  H i t

� �ψ( ) = − ∂
*

*ψ  (2.61)
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one gets the hermiticity condition for Hamiltonian fulfilled:

 H d H d
*

*
 ψ ψ ψ ψ( ) = ( )∫ ∫Γ Γ  (2.62)

In general, the hermitic property is usually associated with operators that 
correspond with observables, i.e., providing a unique measured value 
when applied (operates) on a given (prepared) state characterized by an 
eigen-function ψ . This can be easily check out by defining the observed 
value of an operator as its average measure

 A A d*
 = ∫ψ ψ Γ (2.63)

for a (Born) normalized (prepared) eigen-state:

 1 = ∫ψ ψ* dΓ  (2.64)

and then by applying it to calculate its the zero observed dispersion (square of 
standard deviation). Actually, for observed (average) dispersion one has the value:

 

∆ ψ ψA A A d È A A A A Èd

A A È

* *

*

      

 

( ) = −( ) = −( ) −( )
= −( )





∫ ∫
2 2

Γ Γ

AA A Èd A A È d   −( ) = −( )∫ ∫Γ Γ
2

 (2.65)

that when goes to zero leaves with the eigen-value problem from the 
hermitic operator:

 A aÈψ Ψ= , a Aψ
ψ

=   (2.66)

assuring therefore its fully observable character.
Next, worth treating the superposition problem: how eigen-functions of 

the same operator, having the same eigen-value, i.e., being called degen-
erate functions for degenerate eigen-states, behave if they are considered 
composed in a linear manner? For better illustration of the answer let’s 
take the two eigen-function case

 A aϕ ϕ1 2 1 2, ,=  (2.67)

producing the superposition wave-function:
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 ψ ϕ ϕ= + ∈ℑc c c1 1 2 2 1 2, ,  (2.68)

Then, one can check directly that the eigen-problem is conserved at the 
superimposed level by the successive determinations:

 A A c c c A c A a c c a   ψ ϕ ϕ ϕ ϕ ϕ ϕ= +( ) = + = +( ) =1 1 2 2 1 1 2 2 1 1 2 2 ψ (2.69)

supporting the appropriate generalization:

 ∃ = = ⇒ ∀ = ∈ℑ =
=

∑A a , n ,g c , c A an n g n n
n

g

n g g
 ϕ ϕ ψ ϕ1

1
ψ ψ  (2.70)

In the same general context, one can say that the eigen-value a is g-fold 
degenerate if there exist exactly g – linear independent eigen-functions, 
i.e., having the closure property

 c c c cn n
n

g

gϕ
=

∑ = ⇔ = = = =
1

1 20 0...  (2.71)

carrying the same eigen-value problem. Then their superposition gives 
another eigen-function of the same operator, with the same eigen-value; this 
is the consecration of the so-called superposition principle in quantum theory.

There eventually remains to unfold the meaning of hermiticity condi-
tion for the superposition eigen-function in terms of its g-eigen-compo-
nents. To this aim, one rewrites the hermiticity expression

 ψ ψ ψ ψg
*

g g

*

gA d A d ( ) = ( )∫ ∫Γ Γ  (2.72)

under its generalized superposition form:

 c A c d A c cm
*

m
*

m

g

n n
n

g

m m
m

g *

n n
n

g

ϕ ϕ ϕ ϕ
= = = =

∑ ∑∫ ∑







 =











1 1 1 1

 Γ ∑∑∫ dΓ (2.73)

and equivalently as:

 c c A d A dm n
m n

g

m n m

*

n
*

,

*

=
∑ ∫ ∫( ) − ( )





=
1

0ϕ ϕ ϕ ϕ Γ Γ  (2.74)
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from where there follows the generalized hermiticity condition for an 
operator in terms of its degenerate eigen-functions:

 ϕ ϕ ϕ ϕm n m nA d A d*
*

∫ ∫( ) = ( ) Γ Γ (2.75)

With these, one may consider the further case in which there are two wave 
functions, both as eigen-values of the same hermitic operator, yet produc-
ing two different eigen-values:

 A an n n
ψ ψ= , A am m m

ψ ψ= , a an m↑  (2.76)

In these conditions, how we should regard the eigen-functions ψ ψn m, ? The 
answer is that they have to be orthogonal; the proof starts from consider-
ing one the above eigen-value problem, say that of ψ n, multiplied on left 
by the conjugated of the remaining eigen-function, here ψ m, integrating 
the resulted equation over the space-time volume:

 ψ ψ ψ ψm n n m nA d a d* *
( ) =∫ ∫Γ Γ  (2.77)

taking its conjugate (not forget that an is a real value):

 ψ ψ ψ ψm n n m nA d a d( ) =∫ ∫
*

*Γ Γ   (2.78)

performing the index inversion m n↔ :

 ψ ψ ψ ψn m m m nA d a d( ) =∫ ∫
*

*Γ Γ  (2.79)

using the hermiticity property of the involved operator

 ψ ψ ψ ψm n m m nA d a d* *
 Γ Γ∫ ∫=  (2.80)

and being finally subtracted from the initial one to give:

 0 = −( )∫a a dn m m nψ ψ* Γ  (2.81)

leaving with the general ortho-normal condition for the eigen-functions 
belonging to the same hermitic operator:
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 ψ ψ δm n mnd* Γ∫ =  (2.82)

in terms of the delta-Kronecker tensor

 δmn
m n
m n

=
=
≠





1
0
,
,

 (2.83)

Further use of hermiticity and eigen-value properties are in next employed 
in obtaining specific quantum theorems.

2.2.7 HEISENBERG UNCERTAINTY THEOREM

THEOREM: Two non-commutative hermitic operators cannot provide 
simultaneous observable measurements with the same precision on a 
given (prepared) eigen-state.

To proceed with the proof, note that two operators are said to be non-
commutative if their commutator

 A,B AB BA     



 = −  (2.84)

is non-zero, and commutative otherwise.
Now, considering two hermitic non-commutative operators one would 

be interested in behavior their standard deviation forms, namely the behav-
ior of the new operators

 α  = −A A , β  = −B B  (2.85)

towards measurements. Then the simultaneous measurement of both oper-
ators on an eigen-state for both operators f, i.e., prepared as 1 = ∫ϕ ϕ* dΓ, 
would mean that the above standard deviation operators be applied simul-
taneously on that state in accordance with the superposition principle; say 
that the resulting state has the general (imaginary) form:

 ψ φ λM i= +( ) ∈ℜα λβ  ,  (2.86)

However, this resulted state has to be characterized at least by the positive 
probability of existence, that is:
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(2.87)

yielding with the operatorial identity:

 α β γ� � �2 2 1
2

≥  (2.88)

where we have introduced the new operator as the commutator:

 γ α β� � � � � � � � �= − 



 = − − −





= − 



i , i A A ,B B i A,B  (2.89)

Now, noting that, in fact, we are dealing with the dispersion statistical def-
inition, see for instance the averages’ equivalencies for the first operator:

 α ∆       

2 2 2
= −( ) −( ) = − =A A A A A A A  (2.90)

and for the other operator as well:

 β 

2
= ∆B  (2.91)

one yields the general operatorial proof for the Uncertainty Theorem 
through the basic inequality:

 ∆ ∆A B i A,B   ≥ 





1
2 φ

 (2.92)
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There is clear now that if the commutator of the two (observed) operators 
is eventually zero,

 A,B 



 = 0  (2.93)

the uncertainty relation becomes

 ∆ ∆A B  ≥ 0  (2.94)

so that allowing the limiting situation in which

 ∆ ∆A B = ⇔ =0 0  (2.95)

that gives the same precision in measuring both operators/observables on 
the prepared eigen-state.

As a natural consequence when the commutator of two operators/
observables is non-zero, then the high precision in measuring one of it 
implies the infinite error in observing the eigen-values of the other. This is 
the case for the space and momentum operators on a certain direction that, 
while obeying the formal eigen-value problems

 x x p ix x
� � �φ φ φ φ= = − ∂,  (2.96)

are linked by the non-zero effect of the commutator:

 x p x p p x i x i x ix x x x x
� � � � � � � � �,



 = −( ) = − ∂ + ∂ ( ) =φ φ φ φ φ  (2.97)

this way consecrating the relationship

 x p ix
� � ��,



 = 1  (2.98)

to provide uncertainty Heisenberg space-momentum relationship:

 ∆ ∆x px� � ��≥
1
2

1  (2.99)

calling that the average of the unity operator is unity due to normalized 
prepared f state.

However, a special discussion holds when the energy and time vari-
ables are to be linked, eventually through a spontaneous emission from 
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a certain eigen-energy level where the electrons are inherently (spectro-
scopic) associated with a certain lifetime as well. Still, since the energy 
has an operator while the time has not, they cannot be combined in the 
above prescribed uncertainty way. In this case another construction should 
be considered as follows.

Let a system being characterized by a Hamiltonian with an energy 
spectrum consisting by two eigen-energies En ≠ Em and two eigen-
functionsφ φn m≠ , while the generalization to a generalized spectrum is 
straightforward. According with the above exposed eigen-values and 
eigen-function properties it follows the eigen-functions as orthogonal, 
while their superposition will generate another eigen-function of the 
Hamiltonian:

 ψ φ φ( , ) ( ) ( )r r rt c e c en n

i
E t

m m

i
E tn m

= +
− −
   (2.100)

with the normalized (preparation) condition leading with condition

 1 1 2 2= ⇒ = +∫ψ ψ( , ) ( , )*r r rt t d c cn m  (2.101)

since the ortho-normalized functions f fn m, .
However, measuring the energy in the above superposition state will 

give out either En or Em energies, being therefore the energy uncertainty in 
the system given as

 δE E Enm n m= −  (2.102)

i.e., associated with their reciprocally distance.
On the other side, while measuring other hermitic observable property 

of the system in the superposition state, one has its expectation value suc-
cessively written as:

 

O t O t d

c O c O c c O e cn nn m mm n m nm
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� �
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∫
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i
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E E
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 (2.103)



Formalization of Quantum Mechanics 85

where was considered the notation and its hermiticity property

 O d Onm n m mn= =∫φ φ* *( )( )r r rO  (2.104)

to resume the oscillatory terms above. The time-dependency of the mea-
sured property may induce the time indeterminacy only if it is driven by 
lower transition frequency (i.e., by appreciable nm transition time) respect-
ing that expected between the considered eigen-states at the instantaneous 
emission-absorption process:

 υ
δ

δ
nm

nm

n m nm

t
E E E

= ≤
−

=
1

 

 (2.105)

There is obvious now that the spectroscopic (or time-energy) Heisenberg 
uncertainty relation

 δ δE tnm nm ≥   (2.106)

stands as a special realization or as a generalization of Planck-Bohr transi-
tion frequency postulate, namely:

 δ υEnm nm≥   (2.107)

2.2.8 EHRENFEST THEOREM

THEOREM: Quantum hermitic operators of coordinate and momentum 
fulfill the Newtonian laws of motion

 x p mx= / 0 … kinetic equation of motion (2.108)

 p F V xx x x= = −∂ ( )  … dynamic equation of motion (2.109)

in terms of their expectation values.
The proof is based on evaluation of the time-evolution for the expecta-

tion value for a given hermitic operator
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Γ ∂∂t A�  (2.110)

from where there follows the time-dependent operator expectation 
equation:

 i d
dt
A A,H i At� � � � � �= 



 + ∂  (2.111)

We are going now to apply this equation to space and momentum operators. 
However, since the commutator to evaluate involves Hamiltonian that 
contains the squared of momentum operator one needs to employ the 
distribution of multiplication commutator rule (easy to be checked out):

 A,BC A,B C B A,C        



 = 



 + 





 (2.112)

Therefore, for the space operator we have:
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���
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���

� �1
2 0 0

,  (2.113)

and assuming the Schrödinger picture of non-temporal operators (see also 
Section 2.2.3)

 ∂ =t x 0 (2.114)

the space operatorial time-dependent equation takes the form
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 d
dt
x

m
px� �=

1

0

 (2.115)

that consecrates the expectation value counterpart of the classical momen-
tum definition.

In the same manner for the momentum operator we have:
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 (2.116)

The evaluation of the last commutator we unfold as successively acting on 
a trial wave-function to get:

 

p f x i f x i f x i f xx x x x
� �
� �� ��

� � �
�

, ( ) , ( ) ( ) ( )



 = − ∂[ ] = − ∂ [ ] + ∂

=

ϕ ϕ ϕ ϕ

−− ∂[ ]
↑

i f xx�� ��� ���( ) ϕ  (2.117)

With this the momentum-Hamiltonian commutator becomes:

 p H i V xx x
� � �, ( )



 = − ∂  (2.118)

that together with the expectation of the time change in momentum,

 ∂ = − ∂ ∂( ) =t x t xp i� � 0  (2.119)

the associate time evolution of the momentum expectation yields

 ∂ = − ∂t x xp V x ( )  (2.120)

proofing the second part or the Ehrenfest theorem.
Overall, the Ehrenfest theorem shows that quantum description is com-

patible with classical mechanics, under the expectation values of its main 
operators, i.e., the space, momentum and energy (Hamiltonian). Moreover, 
it says us that what we can know from quantum mechanical description of 
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Nature is not the detailed evolution but its average; nevertheless, it seems 
that quantum mechanically we can not know everything in causes but 
the remaining knowledge is not absolutely necessary to be revealed for 
explaining the observed world! With this answer we opened the direction 
in which the first Kantian universal interrogative may be approached with 
the quantum theory.

However, worth remarking that the time-dependent operator expecta-
tion equation simply becomes:

 d
dt
A At = ∂  (2.121)

i.e. the expectation value of the given observable is computed over stationary 
eigen-functions, if the concerned observable commutes with Hamiltonian:

 A,H 



 = 0  (2.122)

The fundamental consequence of this assertion is that the stationary eigen-
functions of a quantum system may be found from the eigen-problems of 
the operators that commute with the Hamiltonian of the system. Moreover, 
if two operators give eigen-values on the same eigen-function of a quan-
tum system,

 A aψ ψ= ; B bψ ψ= ; a b e, ∈ℜ  (2.123)

they necessary commute:

 A,B AB - BA ba ab     



 = ( ) = −( ) =ψ ψ ψ 0  (2.124)

Combining the last two ideas, one may conclude that all operators that 
commute among them and commute with Hamiltonian build up the 
so-called complete set of commutative operators:

 CoSCOpe: A,B,...,H A,B ,..., A,H , B,H        { } 



 = 



 = 



 =0 0 0  (2.125)

with the help of which all stationary eigen-values and eigen-functions of a 
system may be determined throughout the associate eigen-problems:
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A a

B b

H E

ψ ψ

ψ ψ

ψ ψ

=

=

=

 

(2.126)

This is a fundamental property of operators and will be of the first impor-
tance in furnishing the complete solution of the Hydrogen atomic prob-
lem, in the next volume of this five-volume set.

2.2.9 CURRENT DENSITY PROBABILITY CONSERVATION 
THEOREM

THEOREM: Schrödinger equation is compatible with charge conserva-
tion at the probability density level.

Firstly, let’s unfold the meaning of “conservation at the probability density 
level” in an analytical manner; that is considering a certain volume region of 
the space, say ΓΣ, that is characterized by the localization density probability

 ℘ = ∫t t d( ) ( )ΓΣ
ΓΣ

ψ r r2  (2.127)

for an electronic containing system with a normalized wave-function:

 1 2=
∞
∫ ψ t d( )

( )

r r (2.128)

remembering that the normalization condition is not depending on time 
when all space involved.

Therefore, the time-variation of the probability ℘( )ΓΣ  produces the 
appearance of the correspondent probability density current according 
with the basic charge variation-current generation principle

 d
dt

t dt℘ = −∫( ) ( , )ΓΣ Σ
Σ

j r σσ


 (2.129)

where the minus sign means that the diminishing the charge localization in 
the region ΓΣ, i.e., the increase of charge probability density outside of this 
region, is associated with increasing of the appeared current probability 
density in the complementing region (∞ \ ΓΣ). Next, the above equation 
may be rewritten in its equivalent form:
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 d
dt

d t dtψ ( ) ( , )r r j r2

Γ
Σ

ΣΣ

∫ ∫= − σσ


 (2.130)

end even more as

 d
dt

d div t dtψ ( ) ( , )r r j r r2

Γ ΓΣ Σ

∫ ∫= −  (2.131)

through the Gauss surface-to-volume integral transformation in the r.h.s. 
of the last two equations. Thus the pattern charge-current probability den-
sity conservation equation casts as:

 d
dt

div ttρ ( ) ( , )r j r+ = 0 (2.132)

since recognizing that:

 ρ ψ ψ ψt t t t( ) ( ) ( ) ( )*r r r r= =2  (2.133)

in any region of the space.
With this, the remaining proof of the theorem regards the possibil-

ity to regain the above charge-current probability density conservation 
from the Schrödinger equation. This may be achieved quite straightfor-
ward throughout considering both the direct and conjugated temporal 
Schrödinger equations multiplied by wave-function and conjugated wave-
function, in reciprocal manner:

 − ∇ + = ∂




2

0

2

2m
V i tψ ψ ψ ψ ψ ψ* * *  (2.134a)

 − ∇ + = − ∂




2

0

2

2m
V i tψ ψ ψψ ψ ψ* * *  (2.134b)

Then, their subtraction firstly leads with expression:

 − ∇ − ∇( ) = ∂ + ∂( )



2

0

2 2

2m
i t tψ ψ ψ ψ ψ ψ ψ ψ* * * *  (2.135)

that can be rearranges as:

 i
m t


2 0

∇ ∇ − ∇( ) = ∂ ( )ψ ψ ψ ψ ψ ψ* * *  (2.136)
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Now, recognizing the electronic density probability,

 ρ ψ ψe e= −( ) *   (2.137)

and introducing the current density probability as:

 j je e e i
m

= − = − ∇ − ∇( )( ) ( ) * *

2 0

ψ ψ ψ ψ  (2.138)

the wave-function charge conservation law is obtained under the form:

 ∂ + =t e divρ j 0 (2.139)

standing as another quantum counter-part for the corresponding elec-
tromagnetic law of charge-current conservation; moreover this equation 
will be the main checking stage when developing the quantification of 
the chemical bond through charge circulation in bonding, either within 
the de Broglie-Schrödinger-Bohm or Dirac treatment of quantification 
of the chemical bonding field throughout the associate quantum parti-
cles bondons, see the Volume III of the present five-volume work (Putz, 
2016).

Finally, there is remarkable that the current density probability current 
has as one of its major consequences the property of wave functions to be 
square integrable, i.e., with finite constant value for the integral

 ψ ψ ψt t td d ct t( ) ( ) ( ) ,*r r r rr
−∞

+∞

−∞

+∞

∫ ∫= = ∀2  (2.140)

under the (natural) assumptions that wave-function asymptotically van-
ishes at the infinite frontier of the domain of integration

 lim ( )
r→±∞

=ψ t r 0 (2.141)

and the applied potential is of real nature:

 V e( )r ∈ℜ  (2.142)

This can be immediately see when integrating over the infinite domain the 
above theorem
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from where appears that:

 ψ t d ct( )r r2

−∞

+∞

∫ = < ∞ (2.144)

This special feature of wave-function assures the background on which 
the postulates of quantum mechanics (especially the integrability of the 
wave-function, its continuity, asymptotic continuity and representation by 
means of the scalar product in Hilbert spaces of vectors and operators) 
may be appropriately formulated and applied.

2.3 CLASSICAL TO QUANTUM MECHANICS’ 
CORRESPONDENCE

2.3.1 CLASSICAL EULER-LAGRANGE, HAMILTON, AND 
HAMILTON-JACOBI EQUATIONS

While modeling the time-space evolution of the systems the so called gen-
eralized coordinate of motion may be introduction through considering the 
set of triplets containing time, space coordinate q and its time derivative us 
the velocity or as the generalized momentum p:

t q t p t, ( ), ( )  or t q t q t, ( ), ( )

as the sufficient and necessary variables for construction of the driving 
equations. When entering the energy functionals they may be usually com-
bined in two different, however equivalent, forms, namely under the (clas-
sical) Hamiltonian

 H H t q t p t T p t V t q t= = +( , ( ), ( )) ( ( )) ( , ( ))  (2.145)
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or Lagrangian

 L L t q t q t T q t V t q t= = −( , ( ), ( )) ( ( )) ( , ( ))   (2.146)

of the concerned systems, accounting for the total and “effective free” ener-
gies, respecting the adding or subtracting of the external potential, respectively.

The relationships between the Hamiltonian and Lagrangian of a system 
may be better visualized as the Laguerre transformation involving the con-
jugate variables concerned:

 H t q p pq L t q q( , , ) ( , , )= −   (2.147)

with

 p L
q

=
∂
∂ 

 (2.148)

introduced as the conjugated momentum, while the equation of motion is 
fixed throughout the variational principle, see Figure 2.2,

 δ S = 0  (2.149)

for the so-called action functional

 S L t q q dt
t

t

a

b

= ∫ ( , , )  (2.150)

FIGURE 2.2 The graphical illustration of the variational action principle.
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One may note that this equation is primarily written in terms of 
Lagrangian since it is intimately related with the “effective free” energy 
to be engaged in motion, i.e., obtained as the rest of the kinetic energy 
upon the external energy influence (and constraint) is subtracted. As 
well, worth noted that the present approach is a phenomenological one 
and can be at any moment extended to a complete set of conjugate vari-
ables (q, p) in what they build up as the so-called phase space. However, 
going on with a single pair of coordinate-momentum variables one firstly 
gets for the action variational expression
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  (2.151)

Worth noting that the variation in time is not explicitly taken in functional 
derivative of action functional since wile intervening in its integral defini-
tion respecting the Lagrangian is to be integrated out before explicit deri-
vation; however, using the derivative equivalence

 δ δ δq dq
dt

d
dt

q= 





 = ( )  (2.152)

the variation of action functional further writes employing also the paths' 
integration rule
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(2.153)

from where the variational principle leads with the famous Euler-Lagrange 
equation:
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 ∂
∂

=
∂
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L
q

d
dt

L
q

 (2.154)

There is immediate that the Euler-Lagrange equation regain the celebrated 
Newton dynamical equation

 


F orce ma cceleration( ) ( )=  (2.155)

when employed upon a conservative potential Lagrangian

 L mq V qclassic = −


2
( )  (2.156)

by means of associate derivatives:

 ∂
∂

= −∇ ≡
L
q

V F


 (2.157)

 d
dt

L
q

d
dt
mq mq ma∂

∂








 = ( ) = ≡
�

� �� �  (2.158)

Alternatively, through repeating the same variational algorithm of action 
functional in terms of Hamiltonian one firstly has

  
(2.159)
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releasing upon the application of the variational principle of this action 
variation with the so called Hamilton canonical equations for the conju-
gate variables:

 p H
q

= −
∂
∂

 (2.160)

 q H
p

=
∂
∂

 (2.161)

in a clear phenomenological equivalents with the above Euler-Lagrange 
equation; however, the main difference consist in that they represent a 
coupled first order equations of motion instead of single second order dif-
ferential equation as Euler-Lagrange equation is unfolded.

Still, a third equation of motion may be found from the action varia-
tion when the time is eventually explicitly considered through writing its 
definition as:

 S dS pq H q p t dt
a

b

a

b

= = −[ ]∫ ∫  ( , , )  (2.162)

equivalently with

 dS pdq H q p t dt= − ( , , )  (2.163)

By comparing this expression with its total differential expansion

 dS S
q
dq S

t
dt=

∂
∂

+
∂
∂

 (2.164)

there result the new expressions:

 p S
q

=
∂
∂

 (2.165)

 H q p t S
t

( , , ) = −
∂
∂

 (2.166)

releasing through their combination with the so called Hamilton-Jacobi 
equation:

 H q S
q
t S

t
, ,∂
∂









 +

∂
∂

= 0  (2.167)
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linking the Hamiltonian with the action derivatives either in explicit 
(in time) and implicit (in space) forms.

All these equations will be in next transposed on quantum level for the 
wave function.

2.3.2 WAVE-FUNCTION QUANTUM FIELD

The passage from classical analytical mechanics to quantum mechanics 
may be realized through assuming the basic coordinate-to-field corre-
spondence principle

 q x ii→ =φ( ), , ,1 2 3  (2.168)

along replacing the Lagrangian and Hamiltonian functionals with their 
space-densities

 L L L= ∇( ) = ( )φ φ φ φ φ µ, , , ,
 , L d x= ∫L 3  (2.169)

 H H H= ∇( ) = ( )φ φ φ φ φ µ, , , ,
 , H d x= ∫H 3  (2.170)

where there the Einstein’s derivative notation was used:

 φ φ
φ

µµ µ
µ

, , , , ,= ∂ =
∂
∂

=
x

0 1 2 3  (2.171)

in terms of 4D derivative operator

 ∂ ≡
∂

∂
≡ ∂ =

∂
∂

∂ =
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∂
∂ =

∂
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∂ =
∂
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µ

µx t x x x0 1
1

2
2

3
3

, , ,  (2.172)

In these conditions, the working related concepts are introduced as:

• canonic conjugated moment field:

 π
δ
δφ

( , )r t =
L


  (2.173)

• Hamiltonian-Lagrange field transformation:

 H L= −πφ  (2.174)
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• 4D Euler-Lagrange field equation is resumed as:

 δ
δφ

δ
δφµ

µ

L L
 

= ∂










,

 (2.175)

with the unfolded version extended as

 δ
δφ

δ
δφ

δ
δ φ

L L L
=









 + ∇

∇










d
dt 

 (2.176)

• Hamiltonian canonic field equations:

 π
δ

δφ
δ
δφ

= − =
H L  (2.177)

 φ
δ
δπ

=
H  (2.178)

Going now to check whether the Schrödinger equation may be 
recovered from these Lagrangian or Hamiltonian field formalisms, 
one may employ the so-called Schrödinger Lagrangian

 LSch i
m

V= − ∇( ) ∇( ) −� � �
φ φ φ φ φ φ* * *

2

02
 (2.179)

constructed in pairs of direct-complex conjugated products of fields 
since the Lagrangian should be a real quantity (the complex factor “i” 
assure on the other side the complex nature of the Schrödinger equation). 
Application of the Euler-Lagrange field equation is done respecting the 
conjugated field to obtain:

 δ
δφ

φ φ
LSch i V* = −� �  (2.180)

 d
dt

Schδ
δφ
L


*









 = 0  (2.181)

 ∇
∇









 = − ∇ ∇( ) = − ∇

δ
δ φ

φ φ
LSch

m m*

 

2

0

2

0

2

2 2
 (2.182)

aggregating on the Schrödinger equation for the direct field:
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 − = − ∇ +
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m
V� � �

φ φ
2

0

2

2
 (2.183)

However, if one wants to apply the Euler-Lagrange field equation on the 
direct wave function field the above Lagrangian should be firstly equiva-
lently transformed through the derivative replacement:

 ∇ ⋅∇ = ∇ ∇( )  − ∇φ φ φ φ φ φ* * *2  (2.184)

to became

 ′ = − ∇ ∇( )  + ∇ −LSch i
m m

V� � � �
φ φ φ φ φ φ φ φ* * * *

2

0

2

0

2

2 2
 (2.185)

Now, performing the Euler-Lagrange derivatives

 δ
δφ

φ φ
′

= ∇ −
LSch

m
V

2

0

2

2
* *  (2.186)

 d
dt

d
dt
i iSchδ

δφ
φ φ

′







 = ( ) =

L � � �* *  (2.187)

 ∇
′
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 =

δ
δ φ
LSch 0 (2.188)

the Schrödinger equation of the conjugated field is this time revealed:

 − = − ∇ +








i

m
V� � �

φ φ* *
2

0

2

2
 (2.189)

that nevertheless confirm the correctness of the Lagrange formalism and 
of the classical-to-quantum above enounced correspondence.

Then, we may check whether the Hamiltonian formalism agrees with 
Schrödinger picture as well; for that we may build up the field Hamiltonian 
from the field Lagrangian

H L
L

L LSch Sch
Sch

Sch Schi

m
V

= − = − = −

= ∇( ) ∇( ) +

πφ
δ

δφ
φ φ φ

φ φ

�
�
� � �

�

*

*
2

02
φφ φ π φ π φ* = − ∇( ) ∇( ) −i

m
i VSch Sch

�
�2 0

  (2.190)
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when employing the conjugated momentum field

 π
δ

δφ
φSch

Sch i= =
L
� � *  (2.191)

to replace with it the conjugated field and its gradient

 φ π* = −
i

Sch


, ∇ = − ∇φ π* i
Sch



 (2.192)

As before, since we consider the Hamiltonian’s product of gradients 
re-expressed as

 ∇ ⋅∇ = ∇ ∇( )  − ∇π φ π φ φ π2  (2.193)

or as

 ∇ ⋅∇ = ∇ ∇( )  − ∇π φ φ π π φ2  (2.194)

the alternative Hamiltonians will cast accordingly
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2  (2.195)

Now, the Hamiltonian canonic field equations provide the direct 
Schrödinger equation when the field evolution equation is considered,

 � �
�

φ
δ
δπ

φ φ= = ∇ −
HSch

Sch

i
m

i V
2 0

2  (2.196)

whereas, when the momentum field equation is derived,

 � �
�

π
δ

δφ
π πSch

Sch
Sch Schi

m
i V= − = − ∇ +

H
2 0

2  (2.197)

the Schrödinger equation for the conjugated field springs out trough 
replacing the abode derived Schrödinger momentum field and of its tem-
poral derivative.
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Finally, there may be straightforwardly proven that the Hamilton-
Jacobi classical equation may be recovered within classical limit

 m → ∞ →;  0  (2.198)

when quantum fields of type:

 φ φ= 





0 exp ( , )i S t



r  (2.199)

is assumed as the natural solution for the Schrödinger equation, where, for 
the de Broglie wave function there appears that the action functional may 
be identified as

 S t Et( , )r = ⋅ −p r  (2.200)

thus combining the space-time coordinates with energy-momentum infor-
mation. This way, once all involved derivatives are performed,

 φ φ=
i S
�
�  (2.201)

 ∇ = ∇ ∇








 = ∇ − ∇ ⋅∇2

0
2

2

1
φ φ φ φ

i e S i S S S
i S

  

  (2.202)

their replacement in general Schrödinger equation

 i
m

V� � �
φ φ φ= ∇ +

2
2

2
 (2.203)

leaves with the quantum Hamilton-Jacobi equation

 − =
∇ ⋅∇

− ∇ +� �S S S
m

i
m

S V
2 2

2  (2.204)

Now, there is clear that this equation may collapses to the classical 
Hamilton-Jacobi one

 − =
∇ ⋅∇

+S S S
m

V
2

 (2.205)
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recognizing the Hamiltonian

 H S S
m

V p
m

V=
∇ ⋅∇

+ = +
2 2

2

 (2.206)

since recalling the momentum-action relationship

 p S= ∇  (2.207)

when the above asserted classical limit is fulfilled in the resumed limit

 

m
→ 0  (2.208)

Concluding, we may affirm that any physical system which in no experi-
ment is able to produce values for ħ /m larger than the experimental errors 
is essentially manifested as a classical system.

2.3.3 SEMI-CLASSICAL EXPANSION AND THE WKB 
APPROXIMATION

One may observe that the Hamilton-Jacobi equation was recovered by 
assuming the resumed wave function in terms of action:

 S t S E tE( , ) ( , )r r= −  (2.209)

while leaving open the question: “where the wave-packet is ?”. The 
response is that it may be formed from summing up waves of action with 
different energies resulting eventually in the integral

 ψ ( , ) exp ( , )r rt dE i S E tE= −( )



∫ �

�  (2.210)

from where its localization (towards measuring of observing it) is realized 
from the variational constraint:

 0 0=
∂

∂
⇒

∂
∂

−( ) =
E

t
E
S E tEψ ( , ) ( , )r r  (2.211)
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leaving with the stationary condition

 t
E
S E=

∂
∂

( , )r  (2.212)

This result, above of its inverse Legendre transformation form, stands as 
an implicit equation for the particle’s position; further identification as

 S E xp x m E V xx( , ) ( ( ))r = = ± −2  (2.213)

helps in recognizing the above stationary condition as the classical equation 
of motion giving the actual picture of the quantum action evolution: the wave 
packet it exists as an infinite superposition of action waves, however, due 
to the small Planck constant, pose a phase that oscillate very fast producing 
a strong cancellation of the containing waves except that releasing with the 
stationary condition equivalent with the classical equation of motion; even 
shortly, the quantum motion of the wave packet, once measured, is observed 
as the classical trajectories; or even more: the quantum evolution of a system 
remains hidden except its classical manifestation (or observation).

Nevertheless, the bridge between the classical and quantum regimes 
may be smoothly accounted from the so-called action semiclassical expan-
sion in powers of ħ or the eikonal of action:

 S E S i S i S i S( , ) ...r = − + −( ) + −( )0 1
2

2
2

3    (2.214)

The replacement of this expansion back into the quantum Hamilton-Jacobi 
equation provides the successive equations for the various orders of ħ:

 −
∂
∂

= ∇( ) +
S
t m

S V0
0

21
2

 (2.215a)

 −
∂
∂

= ∇ + ∇( ) ∇( ) 
S
t m

S S S1 2
0 0 1

1
2

2  (2.215b)

 −
∂
∂

= ∇ + ∇( ) + ∇( ) ∇( )





S
t m

S S S S2 2
1 1

2
0 2

1
2

2  (2.215c)

 −
∂
∂

= ∇ + ∇( ) ∇( ) + ∇( ) ∇( ) 
S
t m

S S S S S3 2
2 1 2 0 3

1
2

2 2  (2.215d)
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…

 −
∂

∂
= ∇ + ∇( ) ∇( )









+
+ −

=

+

∑S
t m

S S Sn
n m n m

m

n
1 2

1
0

11
2

 (2.215e)

…

However, one may immediately observe that the entire action eikonal may 
be explicitly written once the successive iterative equations are solved; 
moreover there is noted that the zero-th order in action corresponds entirely 
to the classical Hamilton-Jacobi equation; the restriction to the first order 
in ħ makes nonetheless the Wentzel, Kramers and Brillouin (WKB) frame-
work for semiclassical wave-function approximation:

 ψ ( , )r t e e
i S i S i Et

=
−( ) −







0 1  (2.216)

with S0 and S1 to be determined, while assuming that only S0 has the time 
dependence and that is of the form

 S t S tE0 0( , ) ( )r r= −  (2.217)

with the higher terms carrying only the spatial dependence:

 S t S ii i( , ) ( ) ,r r= > 0 (2.218)

Let’s consider the uni-dimensional problems, restricted on axis 0x, for bet-
ter emphasis of the method’s principle. In this context, the S0 above equa-
tion simply becomes:

 E
m

S V xx= ∂( ) +
1

2 0
2 ( )  (2.219)

with the integration solution

 S x m E V x dx p x dx
x x

0 2( ) ( ') ' ( ') '= ± −( ) =∫ ∫  (2.220)

Going to the next eikonal level, the equation for S1 under its stationary 
condition leaves with

 ∂ = − ∂( ) ∂( )x x xS S S2
0 0 12  (2.221)
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from where the solution

 

S x S x
S x

dx p x
p x

dxx

x

x xx

1

2
0

0

1
2

1
2

1

( ) ( ')
( ')

' ( ')
( ')

''

'

'= −
∂
∂

= −
∂

= −

∫ ∫

22
1
2

dp x
p x

p x ct
x ( ')
( ')

log ( ) .∫ = − +  (2.222)

All in all the 1D-WKB wave-function turns out to be:

 

ψ ( , )
( )

( )

( ') '

/

x t ct
p x

e e

ct
m E V x

e

i p x dx i Et

i m

x

= ∫

=
−( ) 

−

±

 



2
1 4

2 EE V x dx i Et
x

e
−( ) −∫ ( ') '

  (2.223)

with two warnings: one is regarding the fact that is expression is yet not-
normalized; and the second is that it is related with the particle (wave-
packet) moving in the classically allowed (accessible) region (regime) 
with E V x> ( ) that prescribe the evolution is described by an oscillating 
wave function. Instead, in the classical inaccessible regime E V x< ( ) it 
decreased or increased exponentially, i.e., it should look like

 ψ ( , )
( )

/

( ') '
x t ct

m V x E
e e

m V x E dx i Et
x

=
−( ) 

∫± −( ) −

2
1 4

1 2
   (2.224)

However, this approximation clearly breaks down at the classical turning 
points E V x= ( ), i.e., at the points were the classical particle (or the mani-
festation of the wave packet) stops, since p x( ) = 0 there, and turns due to 
the potential equalizes its (eigen-value) energy. This is the WKB approxi-
mation holds for the cases where S1 is much smaller than S0 equivalently 
with the requirement that quantum Hamilton-Jacobi equation to collapse 
on its classical variant through the action condition:

 ∇( ) >> ∇S S2 2
  (2.225)

that in the light of above S0 form of solution may be rewritten in terms of 
momentum as:

 p x p xx( ) ( )2 >> ∂  (2.226)
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or when recalling the present momentum-energy relationship it is even 
more transformed as

 ∂
−

<<xV x
E V x p x

( )
[ ( )] ( )

1  (2.227)

from where there is one more clear appearance of the classical turning 
points E V x= ( )  that limits the WKB viability approximation.

Lastly, but not with less importance, the above WKB momentum con-
dition may be related with the de Broglie wavelength

 λ π
B p x

=
2 

( )
 (2.228)

in the form

 λ
π
B x p x
p x2

1∂
<<

( )
( )

 (2.229)

telling that the WKB framework is limited to momentum functions 
encountering little relative change over the de Broglie wavelength. This 
condition is also useful in closely defining (or postulating) the wave func-
tion structure when an ansatz form is to be tested in solving specific quan-
tum systems (see the corresponding section of QM postulates).

Yet, the learned lesson of WKB approximation, other – more powerful 
– forms of semiclassical eikonal expansion for the action will be consid-
ered in the forthcoming volume of this five-volume set with the occasion 
it will be also applied on the valence states (i.e., treated as semiclassical 
states) of atomic systems within the path integral formalism that will be 
soon in next exposed.

2.3.4 FROM FIELD INTERNAL SYMMETRY TO CURRENT 
CONSERVATION

One important property of the Schrödinger Lagrangian is that it is invari-
ant for the phase transformations of the fields

 φ φ α' exp( )= i ; φ φ α' exp( )* *= −i , α ∈ℜ  (2.230)
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as it may immediately be observed since the specific pairs of direct-
conjugated products of wave functions. There is said that the Schrödinger 
Lagrangian is symmetric for the phase transitions of the containing wave 
fields; moreover this symmetry is also called internal.

Yet, assuming the infinitesimal field transformations

 φ φ αφ' = + i ; φ φ αφ'* * *= − i  (2.231)

we deal in fact the field variations

  δφ αφ= i ; δφ αφ* *= −i  (2.232)

and with associate 4D field derivatives

 δφ αφµ µ, ,= i ; δφ αφµ µ,
*

,
*= −i ; µ = 0 1 2 3, , ,  (2.233)

In these conditions, the field Lagrangian variation will be successively 
written

  (2.234)

Now, under the condition of invariant Lagrangian for the fields’ phase 
transformation, implicitly also for their infinitesimal variation,

 δL = 0  (2.235)
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there results the 4D-current conservation law

 ∂ =µ µj 0  (2.236)

with the 4D-current defined as

 jµ
µ µφ

φ
φ

φ=
∂
∂

−
∂
∂

L L

, ,
*

*  (2.237)

The application of this conservation law to the Schrödinger Lagrangian will 
firstly provide the expanded 4D-current on the time and space derivatives

 

jSch Sch Sch

temporal part

Sch=
∂

∂
−

∂
∂

+
∂
∂∇

−
L L L
� �

� ���� ����φ
φ

φ
φ

φ
φ*

* ∂∂
∂∇

= −

LSch

spatial part

temporal
contributi

i

φ
φ

φ φ

*
*

*

� ���� ����

� 0

oon spatial contribution

m m��� ��
� �

� ����� �����
− ∇ + ∇

2

0

2

02 2
φ φ φ φ* *  (2.238)

that then produces the associated density-current conservation law

 ∂ + ∇ =0 0 0j j  (2.239)

with temporal and spatial wave field contributions, respectively

 ∂ =
∂
∂

( )0 0j t
φ φ*  (2.240)

 ∇ = ∇ ∇ − ∇( )j i
m


2 0

φ φ φ φ* *  (2.241)

this way regaining the previously deduced density-current probability 
density conservation within the phenomenological wave-function picture.

2.3.5 FROM POISSON PARENTHESES TO QUANTUM 
COMMUTATORS AND HEISENBERG PICTURE

In classical mechanics, if there is about a function that depends on the 
conjugate canonical variables and explicitly on time, F = F(q, p, t), its 
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total variation in time (both by explicit and implicit dependence) may be 
expressed using the Hamilton canonical equations successively as:

 
dF
dt

F
t

F
q
q F

p
p F

t
F
q
H
p

F
p
H
q

=
∂
∂

+
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

∂
∂

−
∂
∂

∂
∂









   (2.242)

allowing the rewriting of equation of motion for function F:

 F F
t

F H=
∂
∂

+{ },  (2.243)

in terms of the introduced classical Poisson parenthesis

 F H F
q
H
p

F
p
H
q

,{ } =
∂
∂

∂
∂

−
∂
∂

∂
∂

 (2.244)

At this moment there appears as striking the analogy between this classi-
cal equation of motion and the previously deduced equation of an operator 
average (observed value)

 d
dt
F F

i
F ,Ht

� �
�
� �= ∂ + 





1  (2.245)

that, apart of the involved average operation, allows for the direct classical-
to-quantum correspondence principle turning Poisson parentheses to com-
mutators and functions to operators while considering the multiplicative 
factor iħ:

 i F,H F ,H� � �{ } ↔ 





 (2.246)

However, worth mentioning that the above transfer from classical to quan-
tum picture has to follow also the rule according which the result of the 
Poison equation to be written in such manner so that when quantized to 
provide a Hermitic operator. An example is here given for particular func-
tions q2 and p2 of conjugated variables q and p; their commutator looks like:

q , p q q, p q, p q

q q, p
i

� � � � � � � �

� � �
�
�

2 2 2 2





= 





+ 





= 



 pp p q, p q, p p p q, p

i i i

� � � �
�

� �
�

� � � �
�

� � �

+ 



















+ 



 + 



















= +( )q i q p pq� � � � � �2

  (2.247)
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while the classical Poisson bracket yields:

 q p q
q
p
p

q
p
p
q

qp qp pq2 2
2 2 2

0

2

0

4 2, ( ){ } =
∂
∂

∂
∂

−
∂
∂

∂
∂

= = +


 (2.248)

There is clear now if restricting only to the result

 q p qp2 2 4,{ } =  (2.249)

since this result may not be transformed in an hermitic operator,

 q p pq q p� � � � � �( ) = ≠
+

 (2.250)

it cannot be considered for proper quantification; instead if employing the 
other equivalent classical result

 q p qp pq2 2 2, ( ){ } = +  (2.251)

it is true it may be quantified because the associate operatorial expression 
is indeed hermitic:

 q p pq q p pq p q q p pq q p q p� � � � � � � � � � � � � � � � � �+( ) = ( ) + ( ) = + = + = +
+ + + + + + +

ppq� �  

  (2.252)

since was previously proved that momentum and coordinate are hermitic 
operators.

Finally, a very interesting quantum feature is obtained from consid-
ering the classical canonical Hamilton equations rewritten with Poisson 
parentheses

 ∂
∂

= = =
∂
∂

∂
∂

−
∂
∂

∂
∂

= { }H
p

q dq
dt

q
q
H
p

q
p
H
q

q H�
�

0

,  (2.253)

 −
∂
∂

= = =
∂
∂

∂
∂

−
∂
∂

∂
∂

= { }H
q

p dp
dt

p
q
H
p

p
p
H
q

p H�
�

0

,  (2.254)
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with the quantum counterpart:

 
dq
dt i

q H H
p

�

�
� � �

�= 



 =

∂
∂

1 ,  (2.255)

 
d p
dt i

p H H
q

�

�
� � �

�= 



 = −

∂
∂

1 ,  (2.256)

Displaying the dynamical (with energy thus with force involvement) com-
mutator expressions with the first equals in each equation, while providing 
with the second equal the pattern for the general commutation rules for 
functions of conjugated variables of coordinate and momentum:

 q t F q t p t t i F
p

� � � � �
�
�( ), ( ( ), ( ), )



 =

∂
∂

 (2.257)

 p t F q t p t t i F
q

� � � � �
�
�( ), ( ( ), ( ), )



 = −

∂
∂

 (2.258)

leaving with the  so-called the kinematical commutator relationships:

 q t q t ( ), ( )



 = 0; p t p t ( ), ( )



 = 0 q t p t i� � �( ), ( )



 =  (2.259)

However, another subtle consequence of these relations is that from 
dynamical quantum equation may be abstracted (beyond the coordinate 
and momentum operators) the general equation of motion for an arbitrary 
operator:

 d A
dt i

A H A
t

�

�
� � �

= 



 +

∂
∂

1 ,  (2.260)

where the last term was added for generality. This equation is the instan-
taneous version of the above identical one in terms of observed quantum 
averages; it is called as Heisenberg type equation and this is motivated by 
the Heisenberg quantum picture, equivalent with Schrödinger one, that we 
are going to describe in next.
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Actually, when considering the general Schrödinger equation

 i d t
dt

H tSch
Sch Sch� �ψ

ψ
( ) ( )=  (2.261)

it can be formally solved for the Schrödinger wave function to be

 ψ Sch Scht CT t i H t( ) ( )exp= −





0 �

�  (2.262)

from where one may introduce the Heisenberg wave-function

 ψ ψHei Sch Scht i H t= +





( )exp

�
�  (2.263)

as a non-time dependent wave-function. More generally, the reciprocal 
connection between the Schrödinger and Heisenberg pictures may be 
established as

 ψ ψSch Heit U( ) =   (2.264)

 ψ ψHei SchU t=
+
 ( )  (2.265)

throughout the introducing of the operator

 U i H tSch�
�
�= −






exp ; U i H tSch�

�
�+

= 





exp ; U U 

+ +( ) =  (2.266)

that is recognized as unitary operator since fulfilling the condition

 UU 
+

= 1  (2.267)
With this, the relation between an operator written in Schrödinger and 
Heisenberg pictures is achieved under the constraint that the observed 
average be the same in either picture:

 O OHei Sch
Hei Sch

 

ψ ψ
=  (2.268)

that can be unfolded as

O O d UO U dHei Hei Hei Hei Sch Hei Sch
Hei

    

ψ
ψ ψ ψ ψ= =∫ ∫

+* *Γ Γ
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 = =∫ψ ψ
ψ

Sch Sch Sch SchO d O
Sch

*
 Γ  (2.269)

so releasing with the operatorial quantum interchange picture

 O U t O t U tSch Hei
   =

+
( ) ( ) ( )  (2.270)

 O t U t O U tHei Sch
   ( ) ( ) ( )=

+
 (2.271)

Having the wave-function and operatorial expressions in Heisenberg pic-
ture one may try to establish their equation of motion; for the wave func-
tion we have:

 

i d
dt

i dU
dt

U d
dt

i dU
dt
U i

Hei Sch
Sch

Hei

� �
� �

�
� �

ψ ψ
ψ

ψ

= +












= −

+
+

+

��
� �

�
�

�
� � �

U H

i dU
dt

i U H U

Sch Sch

Sch Hei

+

+
+

( )












= −












ψ

ψ  (2.272)

Since the Heisenberg wave-function was assumed as non-depending on 
time the last equality should go to zero, that is equivalently with fulfilling 
the operatorial equation

 − =
+

+
i dU
dt

U H Sch�
� � �  (2.273)

leading by conjugation with the operatorial Heisenberg equation:

 i dU t
dt

H U tSch�
� � �( ) ( )=  (2.274)

with identical structure as that of Schrödinger picture, having only the 
unitary operator instead of the wave-function.

As a general vision, within Schrödinger picture the operators are not 
depending of time but the wave-function, while in the Heisenberg picture 
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the wave-function is fixed and the operators are variable in time; physi-
cally, the two pictures are equivalent as much as the inertial and non-
inertial reference systems are considered for Schrödinger and Heisenberg 
quantum description, respectively.

Finally, the correctness of all this equivalent construction and com-
mutators may be proved by considering the dynamical equation of a given 
operator in the Heisenberg picture; it becomes successively:

d
dt
O t d

dt
U t O U t

U t
t
O U t

Hei Sch

Sch

� � � �

� � �

( ) ( ) ( )

( ) ( )

= 





=
∂

∂
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+

+

UU t O
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U t U t O U t

t
i U t H O

Sch
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� � � � � �
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� � �

+ +

+

∂
∂

+
∂

∂

=
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( ) hh
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U t U t O
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� � � �

�
� � � �

( ) ( ) ( )

( ) ( )

+
∂

∂

−

+

+

  (2.275)

or equivalently

 i d
dt
O t U t O H U tHei Sch Sch

O HHei Hei

� � � � � �
� ��

� �

( ) ( ) , ( )

,

= 





+







���� �����
� �

� �
� ��� ���

�

+
∂

∂

+

∂
∂

i U t O
t
U tSch

O
t
Hei

( ) ( ) (2.276)

producing the Heisenberg equation for a general operator:

 i d
dt
O t O H i O

t
Hei Hei Hei

Hei� � � � �
�

( ) ,= 



 +

∂
∂

 (2.277)

in close agreement with the earlier result based on inspection of Poisson 
parenthesis, Hamilton canonic equations and their quantization. Further 
insight in the Schrödinger and Heisenberg quantum pictures will be pro-
viding in the forthcoming sections.
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2.4 BRA-KET (DIRAC) FORMALISM

2.4.1 VECTORS IN HILBERT SPACE

Any quantum dynamical state of a physical system may be represented by 
a vector (bra or ket) with a unitary norm (see below) within the so-called 
space of the quantum states or the Hilbert space:

The Hilbert space is a vectorial space with scalar product, which is com-
plete. A metrical space is called complete (or Banach space) if any con-
vergent sequence of space elements has its limits within the space. On the 
other side, the scalar product is defined as the functional constructed on an 
abelian (commutative) vectorial space 

  (2.278)

with properties

I. The norm; the positive definite self scalar product:

 ψ ψ ψ ψ
2

0= ≥ ; ψ ψ ψ= ⇔ =0 0  (2.279)

II. Ket-Distributivity:

 ψ α α ψ α ψ αa a a a1 1 2 2 1 1 2 2+ = +  (2.280)

III. Hermiticity:

 ψ α α ψ=  (2.281)
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These properties allow the following consequences:

Ibis. The null vector property:

  (2.282)

IIbis. Superposition  property:

  (2.283)

IIIbis. Bra-Distributivity:

a a a a a a

a a a a
1 1 2 2 1 1 2 2 1 1 2 2

1 1 2 2 1 1 2

α α ψ ψ α α ψ α ψ α

ψ α ψ α α ψ

+ = + = +

= + = +* * * * αα ψ2

  (2.284)

I2bis. Schwartz inequality:

  (2.285)

Proof: using the above rules one can consider the successive equivalences:

α β α β+ + ≥ ∀ ∈a a a0, R

⇔ +( ) +( ) ≥α β α βa a 0

⇔ + + + ≥α α α β β α β β
α β

a a[ ]


2 0

⇔ + ( ) + ≥a a2 2 0β β α β α αRe

⇔ ≤ ( ) − ≤∆ 0 02: Re α β α α β β

  (2.286)

therefore true also for the specialization:

 β βθ' = ei ; β β θ' = −e i  (2.287)
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providing the furt her inequality:

 Re eiθ α β α α β β( ) ≤  (2.288)

Employing the left side expression only, one gets:

 

Re Re (cos sin )

Re cos sin Re Im

e i

i i

iθ α β θ θ α β

θ θ α β α β

( ) = +( )
= +( ) +( ) 

=
−

+ +( )












=

Re
cos Re sin Im

cos Im sin Re

cos Re

θ α β θ α β

θ α β θ α β

θ

i

αα β θ α β θ− ∀sin Im ,  (2.289)

While choosing θ so that

 tan
Im
Re

θ
α β
α β

= −  (2.290)

we firstly have:

 cos
tan

Re Re
θ

θ

α β

α β

α β
α β

=
+

= =
1

1 2

2

2  (2.291)

 sin tan
tan

Im
θ θ

θ

α β
α β

=
+

= −
1 2

 (2.292)

and then

 Re
Re Im

eiθ α β
α β α β

α β
α β( ) =

+
=

2 2

 (2.293)

that replaced in the last inequality proofs the Schwartz theorem.

I3bis. The triangle inequality theorem:

 α β α β+ ≤ +  (2.294)
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may be immediately proofed with the help of Schwartz’s one equivalent 
forms by the chain of relations:

α β α β+ ≤ +( )2 2

⇔ +( ) +( ) ≤ + +α β α β α α β β α α β β2

 Re α β α α β β( ) ≤  (2.295)

that recovers one of the above Schwartz proof’s inequality.

I4bis. Cosines definition between states’ vectors

  (2.296)

appears as a natural consequence of the Schwartz theorem. However, the 
validity of this definition may be seen also by considering the metric dis-
tance between two vectors in Hilbert space releasing with the generalized 
cosines theorem:

 

d α β α β α β α β α β

α α β β α β β α

α α β β α β

,

Re

( ) = − = − = − −

= + − +( )
= + − 2  (2.297)

where one can recognize the classical scalar product definition generalized 
through the present Hilbert states’ vectors:

α β α β α β α α β β
α β

α α β β
= ( ) =cos ,

(2.298)

In next, the vector states are to be combined with operators to provide 
further transformations on Hilbert space of quantum reality.

2.4.2 LINEAR OPERATORS IN HILBERT SPACE

The basic definition of the linear operators acting on Hilbert space reads as:
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  (2.299)

They have the linearity role in quantum (eigen) equations,

 A a a a A a A  

1 1 2 2 1 1 2 2α α α α+( ) = +  (2.300)

and in observability through transforming the observables’ averages or the 
transition probabilities by the conjugate property:

 α β β αA A =
+

 (2.301)

Such feature implies important consequences in bra-ket formalism. For 
instance, if one has the operatorial-ket equation

 A α ψ=  (2.302)

the corresponding bra-equation is found through equivalences

β α β ψA = ⇔ =
+

α β ψ βA

 ⇒ =
+

ψ α A  (2.303)

In the same manner further operatorial properties may be unfolded, as 
follows.

I. double conjugation

 A A 

+ +( ) =  (2.304)

 α β β α α β α βA A A A   

+ + +( ) = = =  (2.305)

II. observables’ product conjugation

 AB B A   ( ) =
+ + +

 (2.306)

 α β β α φ ψ ψ φ α β
φ ψ ψ φ

AB AB B A� � �
�

�
�

�
���

�
���( ) = = = =

+ + +
 (2.307)
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that can be by induction generalized to the rule:

 A A A An n   1 1... ...( ) =
+ + +

 (2.308)

III. distributivity conjugation

 aA bB a A b B   +( ) = +
+ + +* *  (2.309)

α β β α β α β α

β α β α α β

aA bB aA bB a A b B

a A b B a A

     

  

+( ) = +( ) = +

= + =

+

+* * * ++

= +

+

+ +

b B

a A b B

*

* *

α β

α β



 

  (2.310)

Next, the hermiticity property of operators is formalized in direct way 
through fulfilling the auto-adjunct condition:

  A A 

+
=  (2.311)

while anti-hermitic operators behave like:

  A A 

+
= −  (2.312)

The direct consequences regard the hermiticity and anti-hermiticity of the 
next combinations:

IV. A A +
+

 – hermitic:

 A A A A A A     +( ) = + ( ) = +
+ + + + + +  (2.313)

V. A A −
+
 – anti-hermitic:

 A A A A A A     + −( ) = + − ( ) = − −( )+ + + + + +
( ) ( )1 1  (2.314)
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VI. ± −( )+
i A A   – hermitic:

 ± + −( )





= + − ( )







 = ± −( )+ + + + + +

i A A i A A i A A� � ∓ � � � �( ) ( )1 1  (2.315)

VII. Any linear operator F may be decomposed on one hermitic and one 
anti-hermitic or on only hermitic operators as the context demands:

 

F F F F F

F F F F

hermitic ant

� � � � �

� �
� �� ��

� �

= + + −( )
= +( ) + −( )

+ +

+ +

1
2
1
2

1
2

ii hermitic hermitic

F F i i F F

−

+ +
= +( ) + − −( )




� �� ��
� �

� �� ��
� �1

2
1
2 

hermitic
� ��� ���  

(2.316)

With these there can be constructed the so called linear operators’ algebra 
(LOA):{+operators,•with scalars,•with operators} on the Hilbert space of state vectors 
respecting the following operations:

LOA-I. the sum of operators:

 A B A B   +( ) = +α α α  (2.317)

LOA-II. the product of operators with scalars:

 aA a A ( ) = ( )α α  (2.318)

LOA-III. the product among operators:

 AB A B   ( ) = ( )α α  (2.319)

However, note that this algebra is non-commutative, the measure of this 
non-commutativity being the introduced commutator

 A B AB BA     ,



 = −  (2.320)

and the anti-commutator

 A B AB BA     ,{ } = +  (2.321)
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of two operators, respectively.
If the operators A B &  are hermitic then the bellow assertions holds:

 A B ,{ } -hermitic; A B ,





-anti-hermitic; i A B ,





-hermitic (2.322)

as may be immediately proofed. Moreover, with the same assumption there 
is true that the product AB   is hermitic if the operators A B &  commute:

 AB B A BA AB B A� �
���

� � � � � �� � �
���

��
�

( ) = = = + 





↑

* * *
,
0

 (2.323)

while A A AA   

+ +
&  are hermitic combination for any operators (non-nec-

essary hermitic) A . As well, there is interesting to note that if an operator 
C  is hermitic, then any combination G ACA   =

+
, for any arbitrary operator 

A , is as well hermitic:

 G ACA AC A ACA G          

+ + + + + +
= ( ) = = =  (2.324)

Back to commutators and anti-commutators, there is useful quoting their 
main properties

 A B B A   , ,



 = − 





 (2.325)

 A B C C A B B C A        , , , , , ,









 + 









 + 









 = 0  (the Jacobi identity)  

  (2.326)

 A B C A B A C      , , ,+



 = 



 + 





 (2.327)

 A aB aA B a A B     , , ,



 = 



 = 




 (2.328)

 A B B A B B B A B        , , ,1 2 1 2 1 2



 = 



 + 





 (2.329)

A B B B A B B B B A B Bn n           , ... , ... , ..1 2 1 2 1 2 3



 = 



 + 



 .. ... ,B B B A Bn n n    + 



−1 1

  (2.330)
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A B B B A B B B B A B B Bn n n
            , ... , ... , ...1 2 1 2 1 2 3



 = { } − { }

++ −( ) { }−
−1 1

1 1
n

n nB B A B   ... ,
(2.331)

as one may show directly or by induction based on the above definitions 
and properties.

Finally, we are introducing the so-called functions of operators, based on 
the analyticity of the complex functions that are expanded in the Taylor series:

 f f z f f
n

z
n

n

n
: ( ) ( ) ( )

!

( )

C C→ = +
=

∞

∑0 0
1

 (2.332)

which allows in the base of the formal correspondence:

 z An n
→   (2.333)

the operatorial function expansion:

 f A f f
n

A
n n

n
( ) ( ) ( )

!

( )
 = +

=

∞

∑0 0
1

 (2.334)

Some examples for operatorial function expansion are:

 1
1

1
2

� �
� � �

−
= + + + + +

A
A A A

n
... ... (2.335)

 exp
! !

...
!

...A A
n

A A A
n

n

n

n







 

( ) = = + + + + +
=

∞

∑
0

2

1
2

 (2.336)

The last expansion helps in proving the important identity:

e Be B
n
A A A BA A

n parentheses

� �� � � � � �
� �

− = + 

















1
!

, ,... ,
���� ����

� � � � � �
n

B A B A A B
=

∞

∑ = + 



 + 









 +

1

1
2

, , , ...

  (2.337)

Restricting to the second order only, one can arrange successively that 
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e Be A A A B A A AA A� �� � � � � � � � � �
− = + + + +













− + −1
2 3

1
2 3

2 3 2 3

! !
...

! !
++













= + −( ) + + −











...

! !
B AB BA A B B A ABA� � � � � � � � � � � �

2 2

2 2 
+

= + 



 + + −( ) +

= +

...

, ...

,

B A B AAB BAA ABA

B A A

� � � � � � � � � � � �

� � �

1
2

2





 + 



 + 



( ) +

= + 



 +

1
2
1
2

A A B B A A

B A B A A

� � � � � �

� � � � �

, , ...

, ,BB A B A

B A B A A B

� � � �

� � � � � �





 − 



( ) +

= + 



 + 









 +

, ...

, , ,1
2

....  (2.338)

while for the higher terms the induction method can be applied.
Such expansion is extremely useful in showing that for operators, in 

general we have

 exp exp expA B A B   ( ) ( ) ≠ +( )  (2.339)

In fact, the left hand side product can be evaluated through considering the 
more general expression, say:

 f A Bλ λ λ λ( ) = ( ) ( ) ∈exp exp ,  R (2.340)

that through derivation provides expression:

 
df
d

A A B A B B
λ

λ
λ λ λ λ

( )
= ( ) ( ) + ( ) ( )� � � � �

� �� ��
�exp exp exp exp

?

 (2.341)

to be then integrated. However, one recognizes that through reconsidering 
the above formula within the actual parameter involvement, namely

 

f e Be B A B A A B

n

A A

n

λ λ
λ

λ

λ λ( ) = = + 



 + 











+

−� �� � � � � � �,
!

, ,

...

2

2

!!
, ,... , ...A A A B

n parenthesis

� � � �
� ���� ����



















+  (2.342)
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is obtained that

 
exp

,
!

, ,

...
!

,
λ

λ
λ

λ
A B

B A B A A B

n
A A

n
 

     

 

( ) =
+ 



 + 











+

2

2

,,... , ...
exp

A B
A

 





















+



















( )λ
 (2.343)

helping in rewriting the above derivative as:

 

df
d

A B A B A A B

n
A

n

λ
λ

λ
λ

λ
( )

=
+( ) + 



 + 











+

      



,
!

, ,

...
!

,

2

2

AA A B
e eA B

  

 

,... , ...

















+



















λ λ

 (2.344)

Integration of this expression, respecting the parameter λ, while keeping 
in mind that f ( )0 1= , provides the searched result:

 

f A B

A B A B A A

λ λ λ

λ
λ λ

( ) = ( ) ( )

=
+( ) + 



 +

exp exp

exp !
,

!
, ,

 

     

2 3

2 3
BB

n
A A A B

n



   













+
+



















+



+

...
( )!

, ,... , ...λ 1

1















  (2.345)

producing the particularization for λ =1:

 
exp exp exp

, , ,

.
A B

A B A B A A B
� �

� � � � � � �

( ) ( ) =

+( ) + 



 + 











+

1
2

1
6

...
( )!

, ,... ,1
1n

A A A B

n parenthesis

+


















� � � �
� ���� �����

+

























...  (2.346)

or, for the particular case in which A  commutes with A B ,



 the further 

simplification is obtained as (the so called Baker-Hausdorff formula):

 exp exp exp ,A B A B A B     ( ) ( ) = +( ) + 













1
2

 (2.347)
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that still do not allow the direct summation of operators under exponential 
function unless they commutes as well.

Both vectors and operators on Hilbert space of quantum states admit 
also various representations with which occasion additional properties 
should be revealed, as will be in next section exposed.

2.4.3 SPECTRAL REPRESENTATIONS OF VECTORS AND 
OPERATORS

Let be a vectorial (linear) finite space with scalar (dot) product operation 
included, , with the (ortho-normal) basis or vectors:

  (2.348)

with the column matrix representation:

 e1

1
0

0

=




















, e2

0
1

0

=




















,…, en =



















0
0

1


 (2.349)

such that any other vector α  of the space will be represented on this 
basis by the linear decomposition:

 α α α α

α
α

α

α= + + + =



















=
=

∑1 1 2 2

1

2

1
e e e en n

n

k k
k

n

...


 (2.350)

while its conjugation looks like

 

α α α α α

α α α α α α

= = + + +

= + + + = ( )
=

1 1 2 2

1 1 2 2 1 2

e e e

e e e
n n

n n n

...

...* * * * * *


ααk k
k

n

e*

=
∑

1
 (2.351)
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Within this representation the scalar product may be written as:

 α β α α α

β
β

β

α β= ( )


















≡ [ ] [ ] =+

=
∑1 2

1

2

1

* * * *�
�n

n

k k
k

n

± ²  (2.352)

with the specializations:

 α α α δ α αe e e ei k k i
k

n

k ki
k

n

i i= = = =
= =

∑ ∑* * *

1 1
 (2.353)

 e ei i iα α α= =  (2.354)

leading with the general vectorial rewriting:

 α α=
=

∑ e ek k

Fourier
coefficients

k

n

���1
 (2.355)

as well as the scalar product equivalences:

 α β α β α β α β= = =
= = =

∑ ∑ ∑k k
k

n

k k
k

n

k k
k

n

e e e e*

1 1 1
 (2.356)

from where there follows the existence of the so called unity operator:

 1
1

 =
=

∑ e ek k
k

n
 (2.357)

that assures the so called spectral decomposition of the states’ product on 
the ortho-normal basis of the Hilbert space.

Moreover, the last operator constitutes the link between the vector and 
operatorial representation, i.e., representing an operator (the unity one) 
written in terms of bra- and ket-vectors or the Hilbert space.

Before proceeding further worth noting that from the inner struc-
ture of the Hilbert space it can be completed in the sense of norm 
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convergence when its basis is extended ad infinitum into a sequence 
of vectors:

 e e e en n n→ −  →→∞ 0  (2.358)

allowing the general state (vectorial) expansion:

  (2.359)

and its associate norm or self-scalar product casting:

α α α α α α α α α α= = = = =∞

=

∞

=

∞

=

∞

∑ ∑ ∑1
1 1

2

1

2
 k k k k k

k k k

 
 
  (2.360)

in terms of the infinite (discrete) unity (or projector) operator:

 1
1



∞

=

∞

= ∑ k k
k

 (2.361)

Now, going to better understand the properties of the projector opera-
tors, let’s take firstly the 3D-case where the unitary projector has the 
representation:

 1
1 0 0
0 1 0
0 0 1

3� � � �=
















= + +Λ Λ ΛX Y Z (2.362)

where the sub-spaces’ projectors are defined as:

 Λ X =
















1 0 0
0 0 0
0 0 0

; ΛY =
















0 0 0
0 1 0
0 0 0

; Λ Z =
















0 0 0
0 0 0
0 0 1

 (2.363)

with the obvious features:

 Λ X α
α
α
α

α
α=

































=
















=
1 0 0
0 0 0
0 0 0

0
0

1

2

3

1

1

11
0
0

1

















= α eX , … (2.364)
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 Λ Λ Λ Λ Λ Λ     X Y X Z Y Z= = = 0 (2.365)

thus being confirmed as true projectors in the sense that they clearly dis-
criminate between the orthogonal directions (and of associate space’s basis 
vectors) while preserving the orthogonalization property at the operatorial 
level (abstracted from orthogonal condition of the space’s basis vectors).

As such, in general, the k-subspace of the Hilbert space can be selected 
by the projection operator

 Λ k k k=  (2.366)

fulfilling the following rules:

 Λ Λ Λ  k k k
2

= =
+  (2.367)

as one can immediately checking out. Therefore, a complete (with finite 
norm) Hilbert space admits the operatorial decomposition:

 1� �= =∑ ∑Λk
k k

k k  (2.368)

with orthogonalization condition:

 Λ Λ
Λ

 



i j
i i j
i j

=
=
≠







,
,0

 (2.369)

Let’s remark that through the projection operators the orthogonalization 
and spectral decomposition that are specific to vectors was transferred 
or reformulate in terms of operators; nevertheless, this gives the bra-ket 
formalism the consistency in respect with states and operators that are 
quantum mechanically linked by eigen-equation in general, and here by 
insertion of the unity operator providing the spectral orthogonal decom-
position in term of projection operators selecting the orthogonal vectors 
(or states). Moreover, the power of the formalism resides in this possibility 
that the unity (operator) may be at any time considered as a multiplication 
operation and it unfolds or resumes the entire Hilbert space information 
of the quantum evolution and existence of the states; in other words, the 
quantum nature is hidden or compressed in unity projector operators 
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written with the help of ket bra  vectors; with these the formalism is 
complete since the operators may be written with a special combination of 
the vectors as well.

Let’s see some formal consequences of this formalism of projection 
operators.

Firstly, let’s note that the complement of a projection operator 1� �−( )Λ  
is orthogonal on it Λ( )
 1 0

2� � � � ��
�

−( ) = − =Λ Λ Λ Λ
Λ

 (2.370)

stands itself as a valid projection operator through fulfilling the basic 
requirement:

 1 1 2 1
2 2� � � � �� � �

�
−( ) = − + = −Λ Λ Λ Λ

Λ

 (2.371)

while completing the space when added with the direct one:

 1 1� � � �−( ) + =Λ Λ  (2.372)

Let’s see in next the relation of an arbitrary operator with the projector 
operators; it may be at once re-expressed as:

 A A A i i A j ji j
i j

matrix
elements

i j

� ��� � � � �
���= = =∑ ∑1 1 Λ Λ

, ,

 (2.373)

Now the discussion regards the types of terms the projector operators pro-
vide for operatorial decomposition on a general Hilbert space (i.e., with 
an arbitrary vectorial basis); for clearly specifying the cases one has to 
introduce the notion of invariant subspace : it exists whenever an 
associate projector operator Λ k exists with the property that transforms 
into itself under the action of an arbitrary operator:

  (2.374)

while producing the diagonalization of the terms of the form:

 Λ Λ Λ Λ Λ Λ
     

   

i k i k
k kA A A A i k

i k
= = = =

≠







2

0
,
,

 (2.375)
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An operator that admits one or many non-trivial (different than zero and 
than the whole space itself) invariant subspaces it is called reducible oper-
ator and is recognized from the upper branch of the last equation by fulfill-
ing the condition

 Λ Λ  k kA,



 = 0  (2.376)

If the action of the operator on the complement  of the invariant 
subspace  is as well invariant then the operator is called completely 
reducible operator, whose analytical condition simply looks like:

 A k ,Λ



 = 0  (2.377)

since it implies both the above reducible condition as well as the invariant 
condition for the complement operator

 A k� � �, 1 0−( )



 =Λ  (2.378)

The link between two cases is made by the operators that are self-adjunct 
A A =

+
 and reducible – then they are automatically complete reducible:

 Λ Λ Λ Λ Λ Λ Λ Λ� � � � � � � � � � � � �
�

k k k k k

conjugation

k k k

A

A A A A A,



 = ⇔ = ⇔ =0

ΛΛ Λ Λ� � � � �
� �������� ��������

k k kA A− =



=, 0

 (2.379)

All in all, restricting to one invariant subspace (k =1), a complete reduc-
ible operator will have the diagonalized projection on the Hilbert space as:

  (2.380)

throughout the (formal) decomposition

 

A A

A A A

� � � � � � � �

� � � � � � � � � � �

= + −( ) + −( )
= + −( ) −( ) + −

Λ Λ Λ Λ

Λ Λ Λ Λ Λ Λ

1 1

1 1 1 ��
� �� ��

� � � �
� �� ��

( ) + −( )
0 0

1 Λ ΛA

 (2.381)
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where the last two terms vanishes on the basis of the simple invariant 
subspace conditions.

Following the same line of properties, there is interesting to remark 
that one general vector (state) may be identically reshaped in terms of its 
projector as:

 a a a a ak k k k k k= = Λ  (2.382)

being this another fundamental passage from the vectors to operators by 
means of the projectors. The fundamental consequence regards the rewrit-
ing of the eigen-value problem

 A a a ak k k
 =  (2.383)

with the help of projector representation

  (2.384)

leading with the operatorial equivalence

 A ak k k  Λ Λ=  (2.385)

involving only the eigen-values of a given operator acting on associate 
projector. This result allows the alternative of an arbitrary operator expan-
sion on all its eigen-values and associate projectors, on discrete Hilbert 
space, as:

A A A A ak k
kk

k k

akk
k k k

k k

� ��� � � � � � �� � �
�

= = = =∑∑ ∑∑1 1 Λ Λ Λ Λ Λ Λ
Λ

'
'

'

''
'

'

'
δδkkk k

k k
k
a

', '
���

�∑ ∑= Λ

(2.386)

This result is of outmost importance since establishes the direct way of 
generalizing the operators’ representation in terms of their eigen-values 
coupled with their projection directions in Hilbert space; for instance, 
through induction, the previous result may be extended to the operatorial 
powers:
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A AA a a a a a a a an n
n

m m
m

n n n
n

m m m
m

    

2
= = 
















 = 







∑ ∑ ∑ ∑Λ Λ 









  (2.387)

 = = =∑ ∑ ∑a a a a a a a a a an m n n m m
n m

n n n
n

n n
n

nmδ
��� ��

�
,

2 2 Λ  (2.388)

…

 A a a a a
p

n
p

n n
n

n
p

n
n

 = =∑ ∑ Λ  (2.389)

or, even more under the general form for the functions of operators:

 f A f a a a f an n n
n

n n
n

 ( ) = ( ) = ( )∑ ∑ Λ  (2.390)

The next level of generalization is to consider both the discrete and con-
tinuum spectra of the eigen-values of an operator that is to work with the 
unity operators on the entirely Hilbert space whose basis is constructed 
from the reunion of the discrete and continuum eigen-vectors for the given 
operator:

  (2.391)

with the discrete and continuum contribution represented by the sum and 
integrals respectively:

 1�
� �

H = +
( ) ( )

∑ ∫a a a a dan n
S A S AD C

 (2.392)

with the direct consequence in representing the operator itself as:

 A a a a a a adan n n
S A S AD C







H = +
( ) ( )

∑ ∫  (2.393)

and of the vectors as:
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 φ φ φ
H

= +
( )

∑ a a a a dan
S A

n

Fourier
coefficients

Wave
function

SD C
� ��� �

AA�( )
∫  (2.394)

while the (square of the) norm obeys the form:

 φ φ φ φ φ
H

= = +
( ) ( )

∑ ∫
2 2 2

a a dan
S A S AD C





 (2.395)

that when considered as normalized condition recovers the probability 
conservation (or the Parseval relationship):

 1 = + ℘
( ) ( )

∑ ∫pa
S A S AD C

a da




( )  (2.396)

Very interesting, in order the above relations to hold one notes that the dis-
crete and continuous projection operators are to be orthogonal, therefore 
also in a complementary relationship:

 Λ


D n n
S A

a a
D

=
( )

∑  (2.397)

 
1� � �

�

− = =
( )
∫Λ ΛD C

S A

a a da
C  (2.398)

with the basic ortho-normal relationships at the level of eigen-vectors 
themselves from both discrete and continuum A- spectrum sectors:

 a an m nm= δ  (2.399)

 a a a a
a a
a a

' '
, '
, '

= −( ) =
∞ =

≠




δ
0

 (2.400)

 a an = 0, a S An D∈ ( ) , a S AC∈ ( )  (2.401)

In the light of these properties one could immediately observe that the 
object:
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a a a a a a a a
a a

( ) = = ( )
−( )

2
0

δ

δ


 (2.402)

is not a projector but a projector’s density.
With the same recipe, when two operators are involved and their dis-

crete and continuous spectra of eigen-values

 
a S An D∈ ( ) ,

 
a S AC∈ ( ) ,

 
b S Bk D∈ ( ) ,

 
b S BC∈ ( )  (2.403)

fulfill the eigen-equations

 A a b a a bn k n n k
 , ,= , B a b b a bn k k n k

 , ,=  (2.404a)

 A a b a a bn n n
 , ,= , A a b a a bk k

 , ,=  (2.404b)

 B a b b a bk k k
 , ,= , B a b b a bn n

 , ,=  (2.404c)

 A a b a a b , ,= , B a b b a b , ,=  (2.404d)

are used as basis for representations in Hilbert space of the of vectorial 
states, therefore satisfying the ortho-normal constraints

 a b a bn k m l nm kl, , = δ δ  (2.405a)

 a b a b a an k l kl, ', '= −( )δ δ  (2.405b)

 a b a b b bn m nm, , ' '= −( )δ δ  (2.405c)

 a b a b a a b b, ', ' ' '= −( ) −( )δ δ  (2.405d)

one has therefore to use the extended (mixed) unity projector:

1�
�
�

��
H = +

( )
( )

( )( )
∑ ∫∑a b a b a b a b dbn k n k
S A

S B

n n
S BS AD

D

CD

, , , ,
,
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 + +
( )( ) ( )

( )

∫∑ ∫a b a b da a b a b dadbk k
S AS B S A

S B
CD C

C

, , , ,
,







 (2.406)

with the direct generalization for the number of operators considered as 
composed the so called complete set of commutative operators (CoSCOpe), 
see the final discussion of the above section on Ehrenfest theorems, fur-
nishing the minimal set of operators whose discrete and continuum spectra 
provide the unity projection decomposition that may help to represent any 
eigen-state (vector) of the concerned quantum system.

2.4.4 COORDINATE AND MOMENTUM REPRESENTATIONS

For 1D motion, the eigen-value problem of the coordinate operator x

 x a a a =  (2.407)

may be rearranged as

 x a x a−( ) = 0  (2.408)

whose solution is the Dirac function (distribution):

 x a x a
x a
x a

= − =
∞ =

≠




δ ( )
,
,0

 (2.409)

Therefore, since the eigen-value “a” may take any all values in the range 
−∞ +∞( ),  in a continuous way, one concludes the coordinate spectrum is 

continuous, thus carrying the basic continuous closure and scalar product 
relationships

 1x x x dx=
−∞

+∞

∫  (2.410)

 x x x x' '= −( )δ  (2.411)

leaving with the so called coordinate representation with the continuous 
base x{ } of position vectors. The direct consequence is that the space 
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operator itself has the coordinate representation as a diagonal continuous 
matrix:
 x x x x x x

x x

' '�
� = −( )δ  (2.412)

while an arbitrary state (vector) ψ  in coordinate representation will pro-
vide the traditional wave-function:

 ψ ψ( )x x≡  (2.413)

with its conjugate

 ψ ψ ψ*( )x x x≡ =  (2.414)

recovering the normalization rule in a (not only) formal manner as:

 1 1= = = =
−∞

+∞

−∞

+∞

∫ ∫ψ ψ ψ ψ ψ ψ ψ ψx x x dx x x dx*( ) ( )  (2.415)

Moreover, when considering the Fourier expansion of an arbitrary state 
vector in other discrete ortho-normalized base n{ },

 ϕ ϕ ϕ= = =∑ ∑1� �n
n C

n
n

n n C n
n

 (2.416)

it may be equivalently written as:

 ϕ ϕ ϕ ϕ* *

,
( ) ( )x x dx C C m n Cm n

m n
n

n
mn

∫ ∑ ∑= = =
δ


2  (2.417)

resulting in the celebrated Parseval relationship, linking the probability of 
localization of a given wave-function in terms of its Fourier coefficients.

Other interesting consequence is the coordinate representation of a 
function of coordinate operator f x( )  acting on a state vector u :

 

x f x u x f x u x f x x x u dx

f x x x x u

x

x x u

� � � �

�

( ) = ( ) = ( )
=

↵

−

∫

∫

1 '

( ') (

' ' '

( ) ' '
δ xx u x

dx f x x x u x dx

f x u x

') ( )

' ( ) ' ' '� � ���� ����
= −( ) ( )

= ( ) ( )

∫δ

  (2.418)
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where the filtration property of the Dirac distribution was employed.
At this moment worth presenting a very interesting feature of the pro-

jector operators: let it be the eigen-problem

 A an n n
 ϕ ϕ=  (2.419)

Once the eigen-values and eigen-vectors are determined, the original oper-
ator may be written in terms of them with the help of operator projector 
(above proofed) property as:

 A a an n
n

n n n
n

 = =∑ ∑Λ ϕ ϕ  (2.420)

Now, interpreting the last expression as a Lagrange interpolation polyno-
mial the individual projectors can be approximated as (see Appendix A.4):

Λ
   

n
n k n n n k

n

A a A a A a A a

a
=

−( ) −( ) −( ) −( )
−

− − + +... ... ... ...

...
1 1

aa a a a a a an k n n n n n n k
n n

− − + +( ) −( ) −( ) −( )
=

... ... ...1 1

ϕ ϕ

  (2.421)

A relevant exemplification of this operatorial approximation may be 
unfolded for the momentum rooting operator

 A
i
d
dx

 =
1  (2.422)

whose eigen-equation

 A n
i
d
dx
x n xn n n n

 ϕ ϕ ϕ ϕ= ⇔ =
1

 (2.423)

has the formal solution

 x x inxn nϕ ϕ= = ( )( ) exp1
2π

 (2.424)

whose eigen-values take the discrete values n = ± ±0 1 2, , ,...
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There is immediate that it fulfills the normalization condition through 
the Dirac distribution function normalization integral:

 

ϕ ϕ ϕ ϕ ϕ ϕn m n x m n

x

m

n

x x dx

i n m x dx

n

= =

= − −( ) 

−∞

+∞

∫1 1
2

1
2

2

�
���π

π

φ

exp
δδ

δ
n m

n m
−( )

−∞

+∞

= −( )∫ � ���� ����
 (2.425)

However, one retains the idea of discrete eigen-values to construct 
the associate Lagrange projector operator Λ n through the successive 
transformations:

  (2.426)

leading with the final result

 Λ




n n n

A n

A n
= ≅

−( )





−( )
ϕ ϕ

sin π

π
 (2.427)

where, beside the exponential and sinus functions approximations used, 
also the celebrated Riemann series limit was involved (see Appendix A.3):

 1
62

1

2

kk=

∞

∑ =
π  (2.428)
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Yet, although of symbolical value, the above result reflects the quantum 
(wave) nature of the operatorial formalism, especially in this case where the 
working operator was that roots the momentum, i.e., the free quantum motion. 
For that, the associate projector operator remembers of the de Broglie wave-
packet, however one wave-packet for each orthogonal direction of motion, 
being this result a more formal and generalized result. Nevertheless, with all 
approximations included the obtained projector expression fulfills the basic 
constraints for a well behaving projection operator, namely:

 

Λ




n m m m mn m

A n

A n

m n
m n

ϕ ϕ ϕ ϕ≅
−( )





−( )
=

−( ) 
−( )

=

=

sin sinπ

π

π

π
δ

ϕϕn n m
n m

,
,

=

≠





0

 
(2.429)

in totally accordance with the formal development:

 Λ� ��� ��n m n n m
n

nm

n m
n m

ϕ ϕ ϕ ϕ
ϕ

= =
=

≠





δ

,
,0

 (2.430)

since the special behavior of the sin-function normalized on its argument:

 
sin lim sin ,

,

m n
m n

n m

n m

−( ) 
−( )

=
= =

≠






→

π
π

ξ
ξξ

1

0

0  (2.431)

when taking into account the eigen-values of the actual problem as being 
integer numbers. Last note here regards the fact the actual problem can be 
immediately generalized to the momentum problem with A p ix x

� � �= = − ∂  
with the only changes relating the changing of the normalization constant, 

2 2π π→   (see also bellow) and with that according which the actual 
eigen-values are replaced by the momentum eigen-values n pn x→ / ; the only 
“philosophical” problems remains the fact that the free momentum spectra 
is continuous while the above deductions were made under the assumption 
of discrete spectra; yet, the actual formalism may be identically transposed 
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fro the momentum spectra assuming its spectra as being composed by “cuts” 
on the real axis of the momentum eigen-values, or, otherwise, being consid-
ered those eigen-momentum that corresponds to the observed coordinates: 
the spectra is infinite but in a continuous-cutting fashion; this is possible 
since the closure (normalization) condition is still preserved in terms of 
delta-Dirac distribution.

Going now to explicitly consider the momentum operator as a func-
tion of the coordinate, p ix x

� �= − ∂ , one has immediately the formal 
relationships:

 x p u i u xx x
� �= − ∂ ( ) (2.432)

 x f p u f i u xx x
� �( ) = − ∂( ) ( ) (2.433)

written on the same grounds as previously done for the coordinate opera-
tors and functions.

As well, similar expression involving the space-momentum commuta-
tor is drawn as:

 x x p u x i u i x u i u xx
� � �� � �,



 = = = ( )1  (2.434)

At this moment there is clear that the set of operators 1� � �, ,x px{ }  may not 
constitute a complete set of commutative operators (CoSCOpe) since 
while the commutations with unity operator is fulfilled

 x px� � � �, ,1 1 0



 = 



 =  (2.435)

this is not the true with the coordinate and momentum operators. Yet, start-
ing from their fundamental commutation

 x p ix
� � ��,



 = 1  (2.436)

one may successively derive the following identities:

 x p xx p x x p x p x xx x x x
� � � � � � � � � � � �2

2, , , ,





= 



 = 



 + 



 = ( )ii�  (2.437)
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 x p x p p p x p x p p px x x x x x x
� � � � � � � � � � �, , , ,

2
2





= 



 = 



 + 



 = �� �x i( )  (2.438)

and by the induction the general ones:

 x p k x i
k

x

k� � � �,





= ( )−1

 (2.439)

 x p k p ix

k

x

k� � � �,





= ( )−1

 (2.440)

The generalization to functions of these operators may be as well proofed for 
analytical functions, i.e., for convergent functions though the series expansion. 
For instance, for coordinate operator analytical functions one may write that:

  f x xk
k

k

 ( ) =
=

∞

∑α
0

 (2.441)

yielding for the associate commutator:

 f x p x p i k x i f xk

k

k
x k

k

k
x

� � � � � � � �
�( )



 = 





= = ∂

=

∞ −

=

∞

∑ ∑, ,α α
0

1

0
(( )  (2.442)

and analogous for the momentum operator functions:

 x g p i g px p x
x

� � � �
�, ( )



 = ∂ ( )  (2.443)

Now there is clear that in order that the coordinate operator to commute 
with some other operatorial object we should have that

 x g p g p g p constx p x x
x

� � � �
�, ( )





= ⇒ ∂ ( ) = ⇒ ( ) =0 0  (2.444)

a condition that restricts the operators’ class to unity or to those that depend 
only by coordinate; the same rationale holds for momentum operator as 
well; therefore, the operators x{ }  and px{ }  may constitute themselves a 
CoSCOpe, meaning that their representations may be used independently; 
even more, this implies that the momentum’s representation is based on 
similar relationships as was the coordinate representation case, namely:

 p p p p =  (2.445)
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 1 p p p dp=
−∞

+∞

∫  (2.446)

 p p p p' '= −( )δ  (2.447)

as the momentum eigen-problem, closure formula and the dot product 
rule, respectively.

However, there still remains the problem of reciprocal representation, 
i.e., to determine the quantum objects x p p x, , understanding from 
now on that the momentum p is associated with the motion on the direc-
tion x, for simplifying the writings as far as no confusion may arise. To this 
aim worth introducing an interesting unitary operator

 U a i a p�
�
�( ) exp= −






  (2.448)

called as the translation operator since it at once fulfills the transformations:

 U a U a U a a  ( ) ( ') ( ')= +  (2.449a)

 U� �( )0 1=  (2.449b)

 U a U a U a  

+ −
= = −( ) ( ') ( )

1  (2.449c)

corresponding to the translational summation, identity for the absence of 
movement, and to inversion, respectively. Nevertheless, when applied on 
a given space eigen-problem

 x x x x =  (2.450)

produces the successive transformations:

 

xU a x x U a x U a x x

i i a

i U a
x x

a

� � � �
� �� ��

� �
�

�
�

� �

( ) , ( ) ( )

( )

= 



 +

= −



∂



 + = +( )U a x xU a x x a U a x� � �( ) ( ) ( )

 
(2.451)
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from where one recognizes the possibility of introducing the translation 
eigen-vector

 U a x x a( ) ≡ +  (2.452)

associated with the eigen-problem:

 x x a x a x a + = +( ) +  (2.453)

Yet, the translation vector equivalently becomes by operatorial and vecto-
rial series expansion in left and right hand sides, respectively:

exp ( )
!

...−





 ≡ + ⇔ − +

−
+





≡ +
∂

i a p x x a i a p i a p x

x

�
� �

�
�

�
�1

2 2
2 2

xx
x
a i p x a p x

x
x

a

∂
+ ⇔ − + − +













≡
∂
∂

+ ( )

...
!

...

...

�
� �

�

2

22

(2.454)

which for the limit a → 0 provides the mixed eigen-equations:

 p x i xx x
� �= ∂  (2.455)

 x p i xx x
� �= − ∂  (2.456)

Very interesting, with the last relation one may get back the momentum 
operatorial definition when a vector state f :

 x p i xx x
� �φ φ= − ∂  (2.457)

through being transcribed in the light of above coordinate representation 
consideration of functions as:

 p x i xx x
� �φ φ( ) ( )= − ∂  (2.458)
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On the other side, when identifying φ = x ' the matrix elements of the 
momentum in the coordinate representation are obtained in relation with 
Dirac distribution

 x p x i x x i x xx x x
� � �' ' '= − ∂ = − ∂ −( )δ  (2.459)

displaying the form of a non-diagonal continuum matrix.
Going further, the above coordinate-momentum eigen-problem may 

be employed by applying the momentum ket-vectorial action at left to get 
the equation:

 x p p i x p p x p i x px x

p p

x x x x x x

x x

�
��� � �= − ∂ ⇔ = − ∂  (2.460)

with the immediate solution

 x p Ct i p xx x= 





exp



 (2.461)

whose constant is determined by applying the (continuous) normalization 
condition in momentum representation:

 

δ p p p p p p

p x x p dx Ct i x p p dx

x−( ) = =

= = − −







−∞

+∞

−∞
∫

' ' '

' exp ( ')

1

2

�

�

++∞

−( )

∫
2π δ�

� ����� �����
p p '

 (2.462)

resulting in the value:

 Ct =
1

2π
 (2.463)

and in the final 1D-distribution for the quantum free motion:

 x p i p x u xx x p= 





 ≡

1
2π 

exp ( )  (2.464)



146 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

With this one may formulate also the action of the coordinate operator in 
the momentum basis (representation) throughout the identities:

p x x x x p x x x p x

x x p x i p x

x x x

x x

p xx

→ = ⇒ =

= = −







� �

� �� ���� ����

1
2π

exp == i d
dp

p x
x

x�

  (2.465)

so that the following operatorial action rules are derived:

 p x i d
dp

px
x

x
� �=  … for bra-momentum vectors (2.466)

 x p i d
dp

px
x

x
� �= −  … for ket-momentum vectors (2.467)

The reciprocal coordinate-momentum bra-ket representation transforma-
tion provides the formalism for Fourier transformation between the wave-
function ψ ( )x  and momentum function amplitude ψ ( )p :

 

ψ ψ ψ ψ

π
ψ

ψ

( )

( )exp

( ) ( )

x x x x p p dp

p i

p x

u x

x

p

x

x

p

= = =

=

−∞

+∞

∫1

1
2

�
������

� �
pp x dpx x









−∞

+∞

∫  (2.468)

 

ψ ψ ψ ψ

π
ψ

ψ

( )

( )exp

( ) ( )

p p p p x x dx

x i p

x x x x x

u x x
p

= = =

= −

−∞

+∞

∫1

1
2

�
����

� � xx x dx








−∞

+∞

∫
 (2.469)

Finally, worth showing that the 1D analysis may be easily generalized to 
N-dimensionally space with associate coordinate and momentum repre-
sentations. The starring point is the generating of the N-unity operator as 
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the direct product of the N-1D-unity operators from the direct product of 
the N-1D Hilbert spaces:

 1 1 1 11 2 1 2   

H H H⊗ ⊗ ⊗ = ⊗ ⊗ ⊗... ...N N  (2.470)

with the help of which the individual and products of operators are con-
structed as:

 x x N   

1 1 21 1= ⊗ ⊗ ⊗...  (2.471a)

…

 x xN N
   = ⊗ ⊗ ⊗1 11 2 ...  (2.471b)

 x x x x N    

1 2 1 2 1= ⊗ ⊗ ⊗...  (2.471c)

 x x x x N    

2 1 2 1 1= ⊗ ⊗ ⊗...  (2.471d)
…

 x x x x x xN N
     

1 2 1 2... ...= ⊗ ⊗ ⊗  (2.471e)

from where the generalized N-dimensional vectors are constructed

 x x x x x x xN N N1 2 1 2, ,..., ...= ⊗ ⊗ ⊗ ≡
  (2.472)

whose particular eigen-value problems are selected on individual dire- 
ctions:

 x x x x x x x x k Nk N k N


1 2 1 2 1, ,..., , ,..., , ,= =  (2.473)

providing the ortho-normalization condition

x x x x x x x x x x x xN N N N1 2 1 2 1 1 2 2, ,..., ' , ' ,..., ' ' ' ... '= −( ) −( ) −( )δ δ δ

≡≡ −( )δ N x x '

  (2.474)
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and the closure relation

1 1 2

1

1 2 1 2
� �

� �
H H H HN N

N

x x x x xN
S x S x

≡ ⊗ ⊗ ⊗

( )⊗ ⊗ ( )
= ∫...

...

, ,..., , ,...,, ...x dx dx dxN N1 2

  (2.475)

The same expressions may be re-written for the momentum representa-
tion, while for the mixed products one has the uni-directional distribution:

 x p i p x u xk k k k p kk
= 






 ≡

1
2π 

exp ( )  (2.476)

that enters N-times the N-dimensional distribution:

u x x p x x p p

x p
p N N N N N

N N

N1 1 1 1 1 1... ... ... ... ... ...( ) = = ⊗ ⊗( ) ⊗ ⊗( )
≡
� �

==

=
( )

+ + + +

x p x p x p

i p x p x p x

k k N N

N k k N N

1 1

2 1 1
1

2

... ...

exp ( ... .../π� �
))

exp/









=
( )









1
2 2π� �

� �
N N N

i p x

  (2.477)

entering at its time on the generalized N-dimensional wave-function:

 � � � � � � ��
�

x x x p p dpN N p N N N NN

N

ψ ψ ψ= = ∫1
H

 (2.478)

These considerations will be most helpful when introducing the N-body 
systems, specific to chemical samples, and most useful for the second 
quantification techniques.

2.4.5 ENERGY REPRESENTATION

When about the energy representation, one should restrict to the stationary 
states (eigen-energies),
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 H E E E =  (2.479)

while the general quantum evolution fulfills the temporal Schrödinger 
equation:

 i t H t tt� �∂ = ( )  (2.480)

Within this context, the dynamical state t  fulfills the conservation of its 
norm (scalar product in fact):

 

∂ = ∂( ) + ∂( )

= − +








 =

+

t t t

H

t t t t t t

i
t H t t H t1 0

�
�� �
�  (2.481)

employing the hermiticity property of the Hamiltonian; the conservation 
norm actually looks like:

 t t t t= =0 0 1  (2.482)

The second application of the temporal vectorial state regards the temporal 
variation of the average of an operator A , which in Schrödinger equation is 
constant in time ∂ =t A 0, leading with:

 

i t A t i t A t t A t

t H A t t AH t t A H

t t t� � � � �

� � �� � �

∂ = ∂( ) + ∂( )





= − + = 



, tt  (2.483)

providing the basic relation that fundaments the Ehrenfest theorems.
The third consequence appears through the temporal-stationary factor-

ization of the dynamical states:

 t E f t= ( )  (2.484)

that together with above (stationary) energy eigen-equation reduces the 
temporal Schrödinger equation to the ordinary differential equation

 i f t Ef tt∂ =( ) ( )  (2.485)
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from where the particular solution:

 f t i Et( ) exp= −









 (2.486)

preserves the previous norm conservation for the dynamical t  state, while 
through evolution it may be seen as the general superposition of the dis-
crete and continuum energy states representations multiplied by the evolu-
tion factor above:

 t C E e C E E e dEn n

i E t t

S H

i E t t

S H

n

D C

= +
− −( ) − −( )

∑ ∫�

�

�

�

0 0

( ) ( )

( )  (2.487)

 The immediate specializations of this instantaneous state can be achieved 
through setting t t= 0 for initial (prepared or measured) state

 t C E C E E dEn n
S H S HD C

0 = +∑ ∫
( ) ( )

( )




 (2.488)

from where, with the help of ortho-normal relationships between the states 
belonging to the discrete, continuum and mixed spectra, respectively,

 E En m nm= δ  (2.489a)

 E E E E' '= −( )δ  (2.489b)

 E Em = 0  (2.489c)

the individual constants are determined as:

 E t C Ck k n n k0 0= + =δ ,  (2.490a)

 E t C E E E dE C E
S HC

' ( ) ' '
( )

0 0= + −( ) = ( )∫ δ


 (2.490b)

with the signification of being the Fourier coefficients for the initial state.
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With these the general dynamical state is re-written as:

 t E E t e E E t e dEn n

i E t t

S H

i E t t

S H

n

D C

= +
− −( ) − −( )

∑ ∫0 0
0 0�

�

�

�( ) ( )

 (2.491)

from where there is recognized the closure projector relationship for the 
energy representation:

 1�
� �

E n n
S H S H

E E E E dE
D C

= +∑ ∫
( ) ( )

 (2.492)

The energy representation is one of the most important in treating the 
stationary state analysis and will be used in characterizing the density of 
states in the section dedicated to density matrix formalism.

2.4.6 HEISENBERG MATRIX QUANTUM MECHANICS: THE 
HARMONIC OSCILLATOR

Recognizing the fact that representation of observable quantum operators, 
in various bases, is made by (hermitic) matrices, Heisenberg had general-
ized the commutation rules to operators and thus to matrix level, while 
this way constructing the so-called quantum matrix mechanics. It is basi-
cally founded by the commutation rules among the coordinate Q

n[ ]{ } and 
momentum P

n[ ]{ }  matrices,

 Q Q Q Q
m n n m[ ] [ ] −[ ] [ ] = 0  (2.493)

 P P P P
m n n m[ ] [ ] −[ ] [ ] = 0  (2.494)

 P Q Q P i
m n n m mn[ ] [ ] − [ ] [ ] = − [ ]δ 1  (2.495)

with 1[ ]  the unity matrix, while the Hamiltonian one, H Q , P
m m[ ] [ ]{ } [ ]{ }( )

H Q , P
m m[ ] [ ]{ } [ ]{ }( ) , constructed from the classical-to-matrix rewriting, will be ren-

dered diagonal, with the diagonal elements being the measurable eigen-
values concerned.

Yet, the internal consistency of the matrix approach is based on the 
important Lemma according which the relationships that hold between 



152 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

two operators, say A B , , also hold between the matrices and their elements 
formed in one given basis (or representation):

 A A
ij i j[ ] = φ φ , B B

ij i j[ ] = φ φ  (2.496)

The true of this fact may be efficiently exemplified in the case of summa-
tion and multiplication operations:

 A B A B
ij ij ij

+[ ] = [ ] + [ ]  (2.497)

 AB A B
ij ik kj

k
[ ] = [ ] [ ]∑  (2.498)

While the first operation is obvious from the distributivity of the operato-
rial action on the vectorial space (see earlier sections), the second one may 
be easily proofed noting that, for instance

 B B B Bj j k k j

B
k

kj k
k

kj

� � � �
� �� ��

φ φ φ φ φ φφ= = = [ ]
[ ]

∑ ∑1  (2.499)

With this there is immediate to form the succession of operations:

 

AB AB A B

B A A

ij i j i kj k
k

kj i k

A
k

i

ik

[ ] = = [ ]

= [ ] = [ ]

∑

∑
[ ]

φ φ φ φ

φ φ

� � �

�
� �� �� kk kj

k
B[ ]∑  (2.500)

that proofs the multiplication specialization of the operatorial-to-matrix 
Lemma.

With these the formalism is open of being applied of whatever quantum 
systems providing the chosen coordinate and momentum matrices provide 
through their combination in the Hamiltonian a diagonal matrix that can 
be “read” at once for the stationary eigen-values. Moreover, those opera-
tors have to fulfill the basic commutation rules above; from this reason the 
choice of coordinate an momentum operators may eventually not being 
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unique, although there is presumed only one combination that provides also 
the diagonalization of the Hamiltonian matrix. For instance, the operators

 Q ix� �= ( )exp , P ix d
d x

� � �
�= − −( )exp  (2.501)

may be formally seen as associate with matrices that satisfy the above 
commutation rule:

 PQ QP i� � � � ��− = − 1 (2.502)

as one may check immediately:

PQ QP f x ix
if x ix

ix f x
x

� � � � � � �
� �

�
�

−



 ( ) = − −( ) ( ) ( ) +

( )∂
exp

exp

exp ��
� � � ��( )

















+ ∂ ( ) = − ( )x
f x i f x

  (2.503)

Yet, the same is the case also for the operators

 Q x� �= , P i d
d x

� � �= −  (2.504)

that happened to build the Schrödinger equation. Therefore, the associate 
matrices constructed according with the rules

 Q q[ ] = , P i d
dq

[ ] = −   (2.505)

provide the Hamiltonian matrix:

 H
m
P V Q[ ] = − [ ] + [ ]( )

2
2

2
 (2.506)

with the diagonal elements (according with the above matrix elements’ 
definition):

 H
m
P V Q H E

ii
ii

i i

E

i

i

[ ] = − [ ] + [ ]( )







 = =

� �
�

2
2

2
φ φ  (2.507)
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recovering the basic Schrödinger eigen-values. This way, the Schrödinger’s 
wave-function (or eigen-state) representation is recovering the Heisenberg 
matrix (operatorial) formulation, both describing the same (quantum) real-
ity! Nevertheless, the cumbersome with Heisenberg approach is the guess-
ing stage in advancing the coordinate matrix Q[ ] such that in combination 
with the associate momentum one P[ ] to diagonalize the Hamiltonian of 
the problem. As with Schrödinger equation that cannot be exactly solved 
in general, also for matrix approach cannot be formulated a general recipe. 
However, in next, the case of the harmonic oscillator is unfolded to show 
how the formalism eventually works.

The starting point in treating the harmonic oscillator by Heisenberg 
quantum matrix approach resides in employing its classical Hamiltonian

 H p
m

m qω ω= +
2

0
2 2

2
1
2

 (2.508)

though the Hamilton equations of motion, that gives:

 p H
q

m q= −
∂
∂

= −ω ω0
2  (2.509)

 q H
p

p
m

=
∂
∂

=ω  (2.510)

The matrix analysis starts from the coordinate equation, however once 
more derived so that to become integrable:

 



q p
m

q= = −ω0
2  (2.511)

that has to be satisfied by each element of the matrix Q[ ], independently:

 q qnm nm+ =ω0
2 0  (2.512)

Once the solution of this equation is considered under the (natural) form:

 q t q i tnm nm nm( ) ( )exp= ( )0 ω  (2.513)
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its replacement in the original equation leads with the constraint:

 ω ω0
2 2 0−( ) =nm nmq  (2.514)

This new equation has, obviously, two ways for being fulfilled: one 
regarding the ω’s and one respecting q’s; the resumation of the frequen-
cies related analytical solutions looks like:

 q
emission n m n

absorption nnm
nm

nm

≠ ⇒
= + → = −

= −
0

10

0

ω ω

ω ω

... ...

... ... →→ = +





 m n 1
 (2.515)

while otherwise:

 q m nnm = ⇒ ≠ ±0 1  (2.516)

With these, the coordinate matrix displays as

 [ ]Q

q
q q

q
=



















0 0
0

0 0

01

10 12

21

�
�
�

� � � �

 (2.517)

and from it the rest of involved matrices as:

 

[ ]P m Q im Q im
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q q
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 (2.518)
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 [ ] [ ][ ]Q Q Q

q q q q
q q q q

q q q q q
2

01 10 01 12

10 01 12 21
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0
0 0

0
= =

+
+

�
�

33 32q �
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[ ] [ ][ ]P P P m

q q q q
q q q q

q q q
2 2
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the momentum, square of coordinate, square of momentum and finally the 
total energy matrices are, respectively.

There is obvious now that the energy matrix has indeed the diago-
nal character, due to proper chose of the coordinate matrix where the 
absorption-emission cases were considered in the form known as the 
selection rules for transition probabilities between various vectorial sates, 
here for the harmonic oscillator systems; here it is the first (implicit) 
level of quantum theory in the Heisenberg matrix approach. Also note 
that the q’s entering the total energy matrix are of general shape and the 
matrix remains the same at whatever time, i.e., expresses the stationary 
or eigen-values for energies of various n  levels on the diagonal nn posi-
tions; this can be immediately seen once the substitution of above coor-
dinate temporal solution q t q i tnm nm nm( ) ( )exp= ( )0 ω  is employed to give 
q t q t q qnm mn nm mn( ) ( ) ( ) ( )= 0 0 ; thus the formalism is consistently with the 
major quantum percepts achieved so far.
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However, the second (explicit) level of quantum theory in the 
Heisenberg matrix approach regards the evaluation of the diagonal com-
ponents of the total energy matrix through employment of the commuta-
tion rule; in the matrix forms specialized to actual harmonic oscillator case 
it looks equivalently like:

 

P Q Q P i

m
i

q q
q q q q

q q

[ ][ ] − [ ][ ] = − [ ]

⇔
−

�

�
�

1

2
0 0

0 0
0 0

0

01 10

12 21 10 01

23 3

ω

22 21 12

1 0 0
0 1 0
0 0 1

−



















=



















q q

i

�
� � � �

�
�
�
�

� � � �

  (2.522)

The one-to-one equalization for all matrices’ components leads with the 
coordinates’ relationships

 q q
m01 10

02
=



ω
 (2.523a)

 q q q q
m12 21 10 01

02
− =



ω
 (2.523b)

 q q q q
m23 32 21 12

02
− =



ω
 (2.523c)

…

which solved iteratively produces the general relationship:

 q q
n
mn n n n, ,+ + =
+( )

1 1
0

1
2



ω
 (2.524a)
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having its counterparts (for n n→ −1)

 q q n
mn n n n− − =1 1

02, ,


ω
 (2.524b)

These general solutions of the quantum commutation of coordinate-
momentum matrices are now plugged into the correspondent nn-diagonal-
n  eigen-energy level to obtain:

 

H E m q q q q

n

nn n n n n n n n n nω ω ω

ω
ω

[ ] = = +( )
= +( ) =

− − + +( ) , , , ,0 0
2

1 1 1 1

0

2
2 1

00
0 1 2

1
2

 n
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+







= , , ,...

 (2.525)

This is the final solution of the quantum eigen-energy problem of har-
monic oscillator. There are some comments to be made about it; firstly, 
it is characterized by the so called zero-point energy E0 0 2= ω  /  which 
is non-zero even on the state with zero quantum number; this has some 
additional “ontological” consequence regarding the creation and anni-
hilation particles from the “quantum vacuum” – however this problem 
will be reload with the occasion of many-body quantum systems descrip-
tion and quantum information theory, in the forthcoming chapters. 
Additionally, the quantification of the harmonic oscillator levels include 
only the classical frequency (pulsation) and the Planck reduced constant, 
beside the quantification number; yet, the Heisenberg matrix formal-
ism do not provide the eigen-functions as well, being from this point of 
view with less quantum information comparing the Schrödinger theory. 
Even more, beside the general difficult task to determine the appropriate 
coordinate matrix for a general quantum system (Hamiltonian) so that 
along the momentum one to produce diagonal Hamiltonian matrix (for 
direct identification of the eigen-energies as the diagonal elements of it) it 
may presents also the difficulty encountering when inverse of coordinate 
matrix are involved (as it is the central motion problems, and the prob-
lem of Hydrogen atom itself) through the special warns appearing when 
inverses of matrices are to be involved. For all these reasons, Heisenberg 
matrix quantum approach remains interesting only for systems formally 
equivalent with harmonic oscillatory ones, leaving space to Schrödinger 
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theory as the general tool for treating a wide variety of systems based on 
special restrains imposed on the eigen-functions and energies, as will be 
in next sections exposed.

2.5 CONCLUSION

The main lessons to be kept for the further theoretical and applicative inves-
tigations of the quantum mechanical formalization that are approached in 
the present chapter pertain to the following:

• identifying the distribution nature of the wave function and, con-
sequently the need for Green function as the quantum propagator/
amplitude;

• employing the momentum and energy operators towards providing 
the Klein-Gordon and Schrödinger equations for bosons and fermi-
ons quantum evolution, respectively;

• understanding the quantum spin as the driving power of the time 
transformation in quantum equation such that to provide its homoge-
neous evolution with space coordinate transformation through such 
equation;

• writing the spin for bosons and fermions from Klein-Gordon and 
Schrödinger equations, respectively;

• dealing with quantum states, adjoint (Hermitic) operators and com-
mutativity properties and operations;

• characterizing quantum systems by means of specific measurement 
uncertainty through the statistical concept of dispersion rewritten in 
quantum terms and average quantities (for coordinate and momen-
tum operators);

• describing the quantum systems in relation with classical correspon-
dences as certified by Ehrenfest theorem and equivalence between 
current and probability densities, so assuring the reliability of quan-
tum description of nanoworld;

• learning the classical to quantum correspondence by employing the 
analytical theorems of classical mechanics as the Euler-Lagrange 
and Hamilton Jacobi equations towards the actual Schrodinger 
description of quantum particles by associated field;

• treating the quantum evolution by the concept of action and of its 
expansion, when generating the so called semi-classical (WKB: 
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Wentzel, Kramers and Brillouin) description of the quantum wave-
packet and of the associated de Broglie wavelength;

• Solving conservation issue for density current probability as based 
on the internal symmetry of the quantum fields, thus opening the 
way for future breaking symmetry considerations in characterizing 
of chemical fields by quantum particles, bondons in special, see 
Volume III of this five volume work (Putz, 2016);

• formulating the formalized evolving quantum picture including the 
Heisenberg equation for operators through employing the Poisson 
parenthesis from classical mechanics;

• interpreting the quantum states by bra- and -ket Dirac vectors in a 
generalized Hilbert space of linear vectors, and of their algebraic 
relationships, among them and with the quantum operators;

• connecting the formalized quantum mechanics in Dirac notation 
with matrix representations of vectors (quantum states) and opera-
tors (quantum observables);

• developing the concept of quantum complete space of vectors and 
operators (complete set of commutative operators) with the illustra-
tion of the energy representation on the eigen-states/spectrum of a 
given evolving quantum system;

• finding applications of the matrix quantum mechanics by employ-
ing the matrix representations for coordinate and momentum, whose 
the preeminent (Heisenberg) illustration is exposed for the quantum 
oscillator with the allied (experimentally measured) eigen-values, 
yet without involving the non-substantial wave-function concept and 
realization.
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ABSTRACT

The phenomenological quantum mechanics is practically “re-storied” in 
a more formalized way, under the so-called extended quantum postulates, 
while opening and unfolding more complex analysis of the Nature’s phe-
nomena, from nuclear, to atomic, to molecular, and to solid state and scat-
tering observational quantum effects.
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3.1 INTRODUCTION

Quantum theory developed into a universal theory of matter with special 
multidisciplinary treatment among the fundamental domain Mathematical 
and Natural Sciences, with objectives on fundamental research and appli-
cation employing the inner of the matter structure in terms of fundamental 
particles (fermions and bosons), fields and forces, in isolate and interacting 
states. The spread of quantum theory influence is vast indeed and covers in a 
non-limitative way the disciplines of physical-chemistry, chemical informat-
ics, mathematical-chemistry, physical organic chemistry, nano-inorganic 
chemistry, biology-chemistry, biochemistry, bio-informatics, pharmaceuti-
cal chemistry, medical chemistry, ecotoxicology, geochemistry, QSAR, etc., 
as many of them will be approached in the flowing of the present five-vol-
ume book. However, with the advent of nano-sciences, one can formulate a 
sort of general definition for the applied quantum phenomena as:

• the manifestation of nano-structured matter properties of natural sys-
tems in isolate state and in reciprocal and with environment interaction 
(including QS[A-activity/P-property/T-toxicity]R), explained and con-
trolled by the quantum postulates, modeled with physical-mathemati-
cal concepts and applied by computational or informational tools’ aid.

In this regard worth accounting for some of the current and probably future 
hot topics in frontier applied quantum theory, being in their own strategic 
studies able to revel new and fascinating manifested properties of mater 
from nano-to-macro scale, so offering new bridges from fundamental sci-
ence to applied science (technology), namely:

• The “bosonic” approach of the matter and the chemical bonding in spe-
cial (see the Volumes III and IV of the present five-fold book): as it is 
known that in this quantum state the matter can became condensed in 
limited spaces but with accumulating energy, on the nano-atomic level; 
happily, at the research group it has been developed the necessary know-
howl for developing this research direction, by recent studies about the 
modeling of chemical bond as a quantum condensate (based on the 
bosonation electron model in chemical bond, with formation of quan-
tum particle of the chemical bond – named bondons: on the theoretical 
level, this model was and is currently applied to extended nano-systems 
of graphene, silicene, germanene types, with description and prediction 
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of the phase transfer for topological types defects (Stone-Wales); at the 
experimental level the research is seeking in observing the predicted 
phenomena by forming the equivalents bondons through unique exper-
imental setup (now in project phase) with the aid of quantum optics 
and photonics integrated at the micro-electronic level, but with possible 
extensions at the micro-nano-bio-systems (MNBS), considered as being 
the key for future technologies (KET: Key Enabling Technologies) 
which include the quantum molecular based computer, molecular elec-
tronics (moletronics), etc., this way, considerably saving the non-renew-
able or hard-renewable natural resources (e.g., minerals, Cu, Al, Au, Ag, 
etc.) of Terra in general, but also of Romania in special, including the 
respective exploitation costs; this way, the afferent research themes are: 
(i) Bondons’ Theory as quantum particle of the molecular wave func-
tion; (ii) Bondonic characterization of the phase transitions in extended 
nano-systems (e.g., of graphenic and fullerenic types) with topological 
defects (e.g., by Stone-Wales rotations); (iii) Spectral identification of 
corpuscular (bondonic) character of the chemical bond.

• Quantum modeling of chemical reactivity (see later in Volume I/
Chapter 4 as well as in Volumes II and III of the present five-fold 
volume book): where the unified understanding, based on quantum-
mechanics is targeted, eventually with the involvement of the bosonic-
bondonic phenomenology, in explaining the reactivity mechanisms 
at the molecular level, respectively for atoms-in-molecules’ aggre-
gation and nano-composites; this way, the consecrate principle of 
electronegativity and chemical hardness, which stay at the base of 
explaining the chemical potentials’ equalization of subsystems (e.g., 
the quantum atomic pool) in molecules (through, for instance, the 
frontiers delimited by the vanishing of the electronic density gradi-
ents in molecules, as happens in orbital hierarchy in atoms), but also 
respectively to the chemical reactions with the hard-and-soft-acids-
and-bases paradigm, it is reformed and generalized from the com-
bined perspective of electrophilicity (relating the activation energy) 
and of the chemical power (relating the maximum number of elec-
trons interchanged in a chemical interaction, intra- or inter-molec-
ular) concepts; this kind of studies create a physical-mathematical 
universal model in order to treat, e.g., the “chemical atom”, i.e., the 
atom engaged in the chemical bond and prepared for reactivity – or 
further interaction; such approach permits the quantum control of a 
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new projected molecules with specific properties of reactivity and 
specific response (on specific atoms or other molecules with certain 
“recognized as active/alert” molecular zones); this way, the “mem-
ory” effects are combined in this direction with modeling the quan-
tum information, the quantum cryptography, with bohmian effects 
at large-distance interaction (about the electrons delocalization in 
polyenes and polymers, as example); this way it can be achieved a 
sort of “teleportation of the chemical information and of the chemi-
cal bond in general”, phenomenon which is comprehensible from 
the perspective of up-named bondon-quantum particle of the chemi-
cal bond; the impact in economy and in quantum information trans-
port, and so for the storage energy, in different nano-and mesoscopic 
processes is immediate, yet with applicability at systems which are 
still in study (fullerenes, endo-fullerenes, ionic liquids, composite 
systems of inorganic-organic type), etc.; in this context, the affer-
ent research themes are: (i) Electronegativity: the modern concept in 
Density Functional Theory; equalization and integration of atoms in 
molecules principles; topological coloring with electronegativity of 
extended nanosystems (polycyclic aromatic hydrocarbons-PAH, gra-
phene, silicene etc.); (ii) Chemical hardness: companion of electro-
negativity; quantum observability problem; quantification of maxi-
mum hardness principle and in relation with the hard and soft acids 
and basis principles; (iii) Modeling and standardization of chemical 
reactions with min-max principles (and with the aromaticity ones) 
of electronegativity and chemical hardness; (iv) Unification of 
chemical reactivity principles: chemical action and chemical bond.

• Topological and algebraic description of the chemical–biologi-
cal interaction and toxicity (see the Volume V of the present five-
fold book): corresponding with the “chemical life elixir dream” by 
designing of the new drugs with specific action, from active sub-
stances or pharmacophors and generic substances synthesized as a 
result of certain topological and computational predictions, this direc-
tion is developing models and algorithms for better understanding 
and controlling the mechanism of binding action of ligand (chemical 
substance, toxicant, respectively the “target” structure, meaning the 
structure which is chosen to be structurally optimized by the alloste-
ric interaction mode) with receptor (of biological nature, organisms’ 
sites, at the cellular level, which can be a biomolecule of enzyme 
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type, a metabolic activator or acting as metabolic inhibitor); toxicity 
is this way characterized by the kind of bonding mechanism identi-
fied, direction in which, in the past few years, innovative algorithms 
for correlating of the ligand-receptor or substrate-enzyme interactions 
were successfully proposed, through reformulating the problem of 
quantity structure activity (biological) QSAR; by algebraic-orthogo-
nal approach with Spectral-SAR variant, and ultimately with consid-
ering of semi-molecules, with simple conjugate bonds broken in such 
manner that can be able to form molecular chains with primary and/
or secondary branches, more adapted to the one similar with “key-
lock” bond mechanism in according with the Fisherian principle of 
the drug’s action; this way, the essential step it was made in bring-
ing from virtual a new molecule considered so far only with topo-
computational value, being “decomposed” (by SMILES –Simplified 
Molecular-Input Line-Entry System type) on the level of “real” con-
ceptual-interaction mechanism and bonding by lipo-cellular transduc-
tion under this fragmentary form; the unique but also new character 
of this approach opens promising premises for the future Quantum-
SAR (Qu-SAR) and 3D-QSAR studies with high mechanistically 
(not necessary in the deterministic stricto-senso by merely as chemi-
cal binding mechanisms) prediction capacity, for a controlled design 
of the target molecule, with focused toxicological potential (e.g., low 
in toxicity value, for example, for alimentary additives or in cosmetic 
products, but with high toxic value in anti-HIV composition and for 
any other processes for cellular apoptosis in different degenerative 
diseases, as in arteriosclerosis, Alzheimer type, etc.), contributing to 
the so-called functional medicine by the proposed pharmacotoxicol-
ogy and pharmacodynamics’ conceptual-computational approach but 
also with synthesis perspectives of pharmaceutics’ laboratory; for this 
direction, the afferent research themes list as: (i) The Spectral-SAR 
method: algebraically approach of the statistic correlation structure-
activity and structure-toxicity; (ii) Correspondent Qu-SAR Principles 
of the Organization for Co-operation and Economical Developing 
(OECD); modeling of ligand-receptor bond with Qu-SAR prin-
ciples; applications to molecules of ecotoxicological interest (ali-
phatic structures, PAH, ionic liquids, etc.); (iii) SMILES modeling 
(Simplified Molecular-Input Line-Entry System) of the ligand-recep-
tor bond; the virtual-real problem for the SMILES molecule in cel-
lular transduction of toxicants; (iv) Topologic indices and molecular 
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graphs: topological indices with quantum potential (Wiener type and 
equivalents); formulation of new indices and their correlation with 
the chemical reactivity and with bio-ecotoxicological activity.

This way the quantum postulates stay at the foreground of all basic 
and advanced application, in physical sciences in general and in chemi-
cal bonding formation and evolution (transmission) in special in various 
forms of substance (atoms, molecules, solids, cells) and of its transforma-
tion. Accordingly, the in depth and illustrative presentation of quantum 
postulates (principles) is of first interest in creating a solid foundation for 
further developments either in fundamental or applicative natural sciences, 
as above described. They will be in the following exposed.

3.2 THE WAVE-FUNCTION CONTINUITY

Each particle, either in free movement or in bound state under a potential 
that do not depend explicitly on time may be associated with a wave-func-
tion ψ  which contains, in principle all, information of the system; more-
over: it is a continuously function of coordinate (including for classical 
turning points)

 lim ( ) lim ( ) ,
x a x a

x x a
> <

= ∀ ∈ℜψ ψ  (3.1)

it is at least one fold derivable respecting coordinate(s) and with it as a 
continuous function of coordinate(s) as well:

 lim ( ) lim ( ),
x a x x a xx x a

> <
∂ = ∂ ∀ ∈ℜψ ψ  (3.2)

In following, the crucial quantum effect of tunneling may be explained 
only through employing the wave-function’s shape and continuity con-
straints; then, an eminent application at nuclear level unfolds an important 
certification of the quantum mechanics’ reliability.

3.2.1 QUANTUM TUNNELING AND THE GAMOW FACTOR

Having learned the basic types of wave-function either associated with 
a quantum particle evolving either within a classically allowed (E>V) or 
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classically forbidden (E<V) potential regions, one may formally models 
in principle any kind of microscopic system, free or bounded, respectively.

However, to be more analytical, the quantum scenario of the Figure 3.1 
is considered with a free particle in region I encountering the barrier poten-
tial with a finite height and length in region II, while since eventually passed 
through it (by the so-called tunneling effect) is regained on the region III 
again as free particle, yet with a decreased amplitude of the associate wave 
due to the dissipation effect in region II. Therefore, the wave functions on 
the regions may be written according with the semiclassical WKB result as:

 Region I: ψ ψ ψI i r i rx c ikx c ikx x x( ) exp exp ( ) ( )= ( ) + −( ) = +  (3.3)

 Region II: ψ II x A Kx B Kx( ) exp exp= ( ) + −( ) (3.4)

 Region III: ψ ψIII t tx c ikx x( ) exp ( )= ( ) =  (3.5)

with the notations:

 k
pI III= ,



, p mEI III, = 2 , K pII=


, p m V EII = −( )2 0  (3.6)

Due to the fact that on region I we have both incident and reflected wave 
(as in classical picture), in region II the classically forbidden behavior 
may include stationary waves back and forth inside the barrier, wile the 
region III being without wave source at infinity hosts only the transmitted 
(advanced) wave coming from tunneling region II.

FIGURE 3.1 Typical regions with associated wave nature, as oscillating in regions I 
and III and as tunneling the potential barrier in II, for a quantum particle one-dimensional 
evolution produced at −∞.
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The wave-function coefficients may be determined from imposing the 
continuity conditions upon the genuine and first derivative functions on 
the regions’ frontiers, equivalently with limiting or frontier conditions 
for solving the second order differential Schrödinger equation for each 
domain, respectively as

 for x
x x

x x
I x II x

x I x x II x

=
=

∂ = ∂







= =

= =

0 0 0

0 0

ψ ψ

ψ ψ

( ) ( )

( ) ( )
 (3.7)

 for x a
x x

x x
II x a III x a

x II x a x III x a

=
=

∂ = ∂







= =

= =

ψ ψ

ψ ψ

( ) ( )

( ) ( )
 (3.8)

Explicitly we have:

 for x
c c A B

c c i k
K

A B

i r

i r

=
+ = +

−( ) = −






0  (3.9)

 for x a
A Ka B Ka c ika

A Ka B Ka ic k
t

t

=
( ) + −( ) = ( )

( ) − −( ) =

exp exp exp

exp exp
KK

ikaexp( )






 (3.10)

Firstly, one may note that we have four equations for five coefficients to be 
found, thus we may at least deal with a parametric dependency in the gen-
eral case. However, one may call the probability currents for the incident, 
reflected and transmitted waves (that can eventually be measured) through 
their standard definitions:

 j i
m

x x x xi r t i r t x i r t i r t x i r t/ / / / / /
*

/ /
*

/ /( ) ( ) ( ) ( )= ∂ − ∂ 


2
ψ ψ ψ ψ  (3.11)

Therefore, we may measure the probability currents:

 j c
mi i= 2 1 , j c

mr r= 2 1 , j c
mt t= 2 1  (3.12)

fulfilling the conservation of particle (assuming no absorption process is 
happen within barrier)

 j j ji r t= +  (3.13)
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rewritten as

 1 = +R T  (3.14)

once the reflection and transmission factors are introduced:

 R j
j

c
c

r

i

r

i

= =
2

, T j
j

c
c

t

i

t

i

= =
2

 (3.15)

From these, we are primarily interested in evaluating the transmission coef-
ficient that defines the “power” or the quantum tunneling effect through the 
barrier. In this respect we are no longer bind to solve the continuity above equa-
tion for all involved coefficients but only for the ratio between that governing 
the transmitted to that carrying the incident waves. This may be indeed easily 
done through reconsidering the continuity equations with the new notation:

 α =
k
K

 (3.16)

while performing the sum end difference among equations of each set above 
to get two equivalent expressions for the coefficients A and B, respectively, as:

 A c i c i e e c ii r
Ka ika

t= +( ) + −( )  = +( )−1
2

1 1 1
2

1α α α  (3.17)

 B c i c i e e c ii r
Ka ika

t= −( ) + +( )  = −( )1
2

1 1 1
2

1α α α  (3.18)

This system contains only the incident, reflection and transmission coeffi-
cients; it may be further be simplified by multiplication of its first equation 
with 2 1( ) /+ i ciα  and of the second with − −2 1( ) /i ciα , following by summing 
up the results to get the transmission to incident coefficients successively as:

c
c

i
e e i e i

i e
e

t

i
ika Ka Ka

ika

Ka

=
+( ) − −( )





=
−( ) −

−

−

−

4
1 1

4
1

2 2

2

α

α α

α
α ee i e e

i e
Ka i Ka

e

Ka Ka Ka

ika

( ) + +( )
=

−( ) +

=

−

−

−

2

2
1 22

α

α
α αsinh( ) cosh( )

iika

Ka
i

Kacosh( ) sinh( )+
−( )1
2

2α

α
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i
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=
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−

−
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1 1
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=
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α

α
α αsinh( ) cosh( )
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i

Kacosh( ) sinh( )+
−( )1
2

2α
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 (3.19)

where there were involved the trigonometric hyperbolic functions:

 sinhα
α α

=
− −e e
2

; coshα
α α

=
+ −e e
2

 (3.20)

Moreover, using their closure relationship

 cosh sinh2 2 1α α− =  (3.21)

the transmission factor analytically unfolds like:

 T c
c

Ka

t

i

= =

+
+( )

2

2 2

2
2

1

1
1

4
α

α
sinh ( )

 

(3.22)

that in terms of energy and barrier potential cast as

 T
a m V E

E
V

E
V

=

+
−( )








−










1

1
2

4 1

2
0

0 0

sinh


 (3.23)

One may immediately note that when the barrier is infinitely high we actu-
ally have no particle passing through the barrier:

 lim
V

T
0

1
1

0
→∞

=
+ ∞

=  (3.24)

However, at the classical turning point, when E=V0, the transmission prob-
ability may be computed by using the sin-hyperbolic limit:

 lim sinh lim ...
x x

x
x x

x x x
→ →

= + + +








 =

0 0

3 51
3 5

1  (3.25)

to yield:
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 lim
E V

T m a V
→

=
+0

1

1
2 2

2
0
2



 (3.26)

meaning that it decreases as the volume of the barrier (aV0) increases.
Finally, going to the general case of a variable barrier potential, the 

transmission factor, since carrying the probability meaning may be cal-
culate for tunneling effects by its factorization to individual values cor-
responding with a discrimination of the in-out interval in rectangular 
consecutive barrier potentials, however with small (towards infinitesi-
mally small) widths, see Figure 3.2. For instance, for the i-th such barrier 
of a tunneling phenomenon through a variable potential the transmission 
factor may be approximated by employing the formula

 sinh( ) exp( ) exp( ( )) exp( )K x K x K x K x
i i i i i i x

i i

i

∆ ∆ ∆
∆

∆
= − −[ ] ≅

<<

1
2 21

 (3.27)

to its working formulation:

FIGURE 3.2 The factorization of a variable potential by rectangular barrier potentials of 
with finite widths.
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T
x m V E

E
V

E
V

E
V

E
Vi

i
i

i i

i i

=

+
−( )








−










≅ −





1

1
2 2

16 1

16 1
exp ∆






 − −( )






exp 2 2∆x m V Ei

i


(3.28)
Now, since we have

 16 1 0 4E
V

E
Vi i

−








∈( ),  (3.29)

because the function x(1–x) belongs to (0, 1/4) realm, a suitable prob-
ability significant transmission factor would be with the (Gamow) factor:

 T x m V Ei
i

i∝ − −( )





exp 2 2∆



 (3.30)

leading with the overall tunneling probability:

 T Ti
i

= ∏  (3.31)

or explicitly as

 T x m V Ei
i

i∝ − −( )







∑exp 2 2



∆  (3.32)

or even more in the integral continuously framework:

 T dx m V x E
x

x

in

out

∝ − −( )








∫exp ( )2 2



 (3.33)

where, the xin and xout are determined as the classical turning points where 
E=V(x), see Figure 3.1.

Note that the present Gamow factor gives only the order of the trans-
mission probability and is as good as the barrier is higher and shrink, i.e.,

 p x m V x E x∆ ∆= −( ) >>2 1( )  (3.34)
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thus allowing for the (semi)classical observation of the effect. Consecrated 
applications of this formula were the study of the natural radioactivity 
(alpha particle emission by heavy nuclei) and the cold electronic emission 
(from metals under an intense electric field).

3.2.2 NUCLEAR SYSTEMS’ LIFETIME BY ALFA DISINTEGRATION

Among the fundamental nuclear disintegration processes, the α particle 
(or 2

4He) emission by the heavy nuclei was discovered by K. Fajans, F. 
Soddy, and A. Russel in 1913 with the general scheme of reaction:

 Z
A

Z
AX Y He→ +−

−
2
4

2
4  (3.35)

with the famous Radium or Uranium transmutations:

 88
226

86
222

2
4Ra Rn He→ + ,  92

238
1 90

234
1 2

4U UX He→ +  (3.36)

was brilliantly explained by the quantum tunneling effect, by G. Gamow 
(1928) and independently R. W. Gurney and E.U. Condon (1928), in a 
manner to be here revealed.

The physical phenomenon is illustrated in Figure 3.3, where the α par-
ticle with energy in orders of MeV once leaving the nucleus (A, Z) has still 
to pass through the Coulomb barrier

 V r Z e
r

( ) '
=

2 0
2

, e e
0
2

2

04
=

πε
, Z Z' = − 2  (3.37)

formed by its positive charge +2e and the remaining nucleus with the 
charge +Z’e (with Z’=Z-2) as far as its energy is bellow this potential.

However, quantum tunneling is the main process as far as the alpha 
particle is localized between the nuclear radius’ frontier Rn (as the first 
classical turning point):

 R r An ≅ 0
1 3/ , r m fermis fm0

151 2 10 1 2= × =−. . ( ) , 1 10 15fermi m= −  (3.38)

and the Coulomb escape classical turning point RC:

 E V r Z e
R

R Z e
Er R

c
ccα

α

= ⇒ ==( ) ' '2 20
2

0
2

 (3.39)
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With these the tunneling factor and respectively the transition probability 
is given by

T dr m V r E
R

R

n

c

α α α= − −( )








∫exp ( )2 2



= − −








∫exp 1 8 1



m E dr R
rR

R
c

n

c

α α

(3.40)

helping in estimating the disintegration life-time τ1 2/  of the concerned 
nucleus by their reciprocal relationship:

 τ τ
α

1 2 0
1

/ =
T

 (3.41)

by means of the assumed uniform time of escaping of the alpha particle 
from the nuclear well, while understanding that the E energy is of domi-
nant kinetic nature only outside of nucleus (and the Figure 3.3 should be 
considered symmetric in coordinate “r” so that fixing the 2R0 spanned 
distance of alpha particle before reaching the nucleus frontier):

 τ
α

α α
0

0 0

2 2
2

2
= =

+
≅

R
v

R m
E V

R m
V

n
n n( )

 (3.42)

FIGURE 3.3 The phenomenology of α particle disintegration from a given heavy nucleus 
(region I, with very shrink radius Rn and very large potential depth V0 compared with the 
rest of dimensions in the draw) through passing the barrier of region II towards its record 
(observation) in region III.
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Therefore, the nuclear disintegration half-time (based on alpha particle 
tunneling) is written as:

 τ α

α
1 2 0

1 3

0

2 1
/

/= r A m
V T

 (3.43)

with the Gamow tunneling factor for alpha particle to be in next deter-
mined from above integral. Basically, with the variable exchange

 R
r
c =

1
2cos θ

, dr R dc= −2 sin cosθ θ θ  (3.44)

 θ
θ

θ
=

= =

= ( ) =







c c

n n c n

r R

R R r R

0 ,

arccos / ,
 (3.45)

the involved integral successively becomes:

I dr R
r

R d R d
R

R
c

c c

n

c

n

n

α
θ

θ

θ θ θ
θ

θ θ= − = − − =

=

∫ ∫ ∫1 2 1 1 22
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 = −( )
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R
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n

c
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 − −













1

(3.46)

At this moment one should employ the fact that, usually, the escaping 
kinetic energy (at Rc) is lower than the corresponding potential (at Rn) as 
it may be immediately be illustrated for the paradigmatic Radium (Z=88, 
Z’=86, A=226, Eα=4.78 MeV) case

 R Ra r fermisn ( ) ( ) ./
88

226
0

1 3226 7 3= ≅  (3.47)

 R Z e
m c

m c
E

fm MeV
MeVc =


















 = ( ) ≅2 172 2 8 0 5

4 78
500

2

0
2

0
2

' . .
.α

ffm Rn≅ 7  (3.48)

As such, there may be considered the first order series expansions in
R Rn c/ ≅ 0:



Postulates of Quantum Mechanics: Basic Applications 179

 arccos R
R

R
R

n

c

n

c









 ≅ −

π
2

 (3.49)

 R
R

R
R

R
R

R
R

R
R

n

c

n

c

n

c

n

c

n

c

1 1 1
2

− ≅ −








 ≅  (3.50)

the above integral approximates as:

 I R R
Rc
n

c
α

π
≅ −











2

2  (3.51)

and the related Gamow α-tunneling factor:

 T
Z e m r A

Z e m
E

α

α

α

α

π
=



















exp '

exp '
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0
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0
1 3

0
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 (3.52)

providing the half-life nuclear time as

 τ
πα α

α
α1 2 0

1 3

0

0
2

0
2

0
1 32 8 8

/
/ /exp ' '= −









r A m

V
Z e m

E
Z e m r A

 

 (3.53)

Whishing to have a working formula, the last expression may be rewritten as:
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(3.54)

The present formula may be even more be specialized while choosing a sort 
of “universal” nuclear parameters; one may firstly consider the typical nuclear 
depth of barrier as V MeV0

1010 ≈ . With this choice there is immediate to verify 
that the obtained formula works quite well for the extreme nuclear systems:

 τ α1 2 88
226 12 44 78 5 95 10 10/ , . .Ra E MeV s years=( ) ≅ ⋅ ≈  (3.55)

 τ α1 2 84
212 78 78 5 04 10/ , . .Po E MeV s=( ) ≅ ⋅ −  (3.56)

in reasonable agreement with the experiment. Even more, if one likes to 
obtain a single expression for all nuclear alpha disintegration, i.e., with the 
alpha particle energy as the single variable, the above employed depth of 
the nuclear well may be combined with the paradigmatic Radium charac-
teristics (Z=88, A=226) to the working expression:

 ln ( ) .
( )/τ

α
1 2 126 340 439s

E MeV
≅ − +  (3.57)

whose representation against the various radioactive series respecting the alpha 
disintegrations shows quite a fine “fitting” agreement with the observed half-
lifetime values, see Figure 3.4, thus making from the present approach a valu-
able one and confirming the exceptional reliability of the quantum mechanics, 
here through the continuity principle of underlining the tunneling effect.

However, despite the alpha tunneling was recognizing as a present effect 
even in every-day life, for example, in smoke detectors by the alpha emitter 
Americium-241 or as being related with the so-called “soft errors” in com-
puter technology produced by the alpha emission by the radioactive elements 
contained in the packaging of semiconductor materials, the more general les-
son in quantum formalism may be drawn from the continuity of the wave 
function and by its specialization through the tunneling effects: it is that the 
Gamow factor carriers the dominant effect in tunneling and that its exponent 
contains the main quantification information that can be detected since recall-
ing by the semiclassical (WKB) wave-function formalism.
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Nevertheless, the special feature of semiclassical (Gamow or WKB) quan-
tification as the link between the phenomenological Bohr quantization and the 
exact Schrödinger solution for given systems is to be in next sections explored.

3.3 EIGEN-ENERGIES AND EIGEN-FUNCTIONS

An observable system is represented by stationary wave-function ψ ( )x  sat-
isfying the analytical constraints:

• it is a solution of the stationary Schrödinger equation:

 H Eψ ψ=  (3.58)

• it is normalized:

 ψ ψ* dΓ =∫ 1  (3.59)

• it asymptotically vanishes when x → ∞ :

 lim ( ) lim ( )*

x x
x x

→±∞ →±∞
= =ψ ψ 0  (3.60)

FIGURE 3.4 The “fitting” of the quantum tunneling effect based computed “universal” 
half-life times for nuclei emitting alpha particles with their observed values for 
representative radioactive series; adapted from (Rohlf, 1994; HyperPhysics, 2010).
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This principle goes together with the fact that all functions that are solu-
tion to a given Schrödinger equation may be linearly combined (superim-
posed) in producing other proper (eigen) wave-functions of the system:

 ∃ = ⇒ ∃ = ∈ℑ =∑ϕ ϕ ϕ ψ ϕ ψ ψi i i i i
i

iH E c c H E: ,   (3.61)

Here follows illustration of this principle while solving three representa-
tive physical systems of matter: atomic hydrogen (and hydrogenic atoms), 
molecules in vibrational states and the solid state of free electrons (for 
clarifications on this linguistically paradox see Section 3.3.3).

3.3.1 ATOMIC HYDROGENIC STATES BY SOLVING LAGUERRE 
TYPE EQUATIONS

Aiming to provide the general eigen-values (energies) and eigen-functions 
(wave-functions) for the hydrogenic problem, one should consider that 
beside the presence of nucleus attractive potential, of a classical Coulombic 
nature, due to the spherical symmetry of the atoms the quantum centrifu-
gal effects related has to be accounted as well. However, remembering the 
Heisenberg law rewritten in radial terms in Bohr atom [rp n n= = , , ,...1 2 ] 
one may use it to introduce the centrifugal quantum contribution through 
the kinetic energy in proper way, namely

p
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r p
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(3.62)

where the kinetic moment was quantified not as direct generalization of 
n l2 2→  but as n l l2 1→ +( )  for the reasons that will be bellow revealed, 
together with the allowed values for the quantum index l, and justified 
from first principles in the Volume II of this five-volume set, dedicated 
to quantum atom detailed study. For the moment, one retain the effective 
potential for hydrogenic atoms with the general form

 V r Ze
r

l l
m reff ( ) ( )

= − +
+0

2 2

0
2

1
2
 , e e

0
2

2

04
=

πε
 (3.63)
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In a way, one may interpret this potential as the sum of the classical 
Coulomb potential and the “orbital” (or quantum) kinetic moment energy 
or repulsive nature in the light of above considerations, see Figure 3.5. In 
fact, the kinetic energy of the total electronic motion in Hydrogen (and 
hydrogenic atoms) consists of two terms: one responsible for translation 
and other for spherical rotation (the so-called orbital motion).

Yet, Figure 3.5 displays a very interesting feature, namely there 
appears that the states with l ≠ 0 are to some extent spatially mixed with 
those characterized by l = 0 generating that it can be called as “the spa-
tially penetrating potentials” paradox; It will be solved in a way that will 
be revealed after the full analytical (radial) electronic motion in the central 
field will be solved out.

Therefore, the working Hydrogenic Schrödinger radial equation has 
the form

 − ∇ − +
+







 =

 

2

0

2 0
2 2

0
22
1

2m
Ze
r

l l
m r

r E rnl nl nl
( ) ( ) ( )ψ ψ  (3.64)

FIGURE 3.5 The existing potentials in hydrogenic atoms: attractive (Coulombic) and 
the repulsive (centrifugal) ones establishing the energetic regions governed by classical 
Coulombic (l = 0) or by quantum effective potential as the sum of both Coulombic and 
centrifugal (when l ≠ 0).
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while one still needs to express the Laplacian into spherical (radial 
restrained) form. This may be easily achieved once there are employed 
the definitions

 ∇ =
∂
∂
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∂
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∂
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2x x x
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to systematically application of the chain-rule derivations:
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from where by summing up in the 3D radial expression there is found that

 ∇ = + 
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leading with the radial-spherical rewriting of the Laplacian operator:
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Now, under the appropriate substitution

 ψ nl
nlr U r
r

( ) ( )
=  (3.68)

the radial normalization condition takes its usual (wave-function square 
integrated) form,
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while the radial Schrödinger equation
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takes now the simpler form
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The last equation allows us in recognizing the asymptotic equation for suf-
ficiently large radius distance (r → ∞):
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with the bound state notation (discrete spectrum with negative eigen-energies)
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thus providing the general solution:
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Note that when the energy is positive the solution will be oscillating, as 
being associated with free particle, thus indicating the continuous part of 
the spectrum when the hydrogenic atom is ionized.

Yet, the asymptotic discussion allows for introducing the non-dimen-
sional quantity:

 x r= Α  (3.75)

and to perform the substitutions
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Α
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on to the original Schrödinger radial equation to rewrite
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or even more as:
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This equation may be solved at once recognizing it is related with a form 
of the Laguerre’s differential equation:

 xy x y ny'' ( ) ' ,+ − + =1 0  n∈N*  (3.79)

whose solution is the so-called Laguerre polynomial of n-degree:

 y L x a xn
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=
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κ λ

λ 0
 (3.80)

However, when substituted back in original Laguerre’s equation one gets:

 a x a n x
n n

λ
κ λ

λ
λ

κ λ

λ

κ λ κ λ+( ) = + −( )+ −

=

+

=
∑ ∑2 1

0 0
 (3.81)

an expression that has to be fulfilled for every value of x, i.e., the coef-
ficients of equally footing power to vanish; in these conditions, the lower 
power achieved in the left-hand-side for λ = 0 should vanish as well, since 
it will have no correspondent in the right-hand-side part of equation, that 
is the so-called indicial equation is obtained

 a0
2 0 0κ κ= ⇒ =  (3.82)

Moreover, the recurrence relation may be obtained setting the remaining 
above left hand side term (now starting to count from λ =1) with the sub-
stitution λ λ→ +1 in sum (and therefore subtracting one unit from the 
counter index) to obtain equality:
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leaving with the relationship:

 a n aλ λ
λ
λ
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+( )1 21
 (3.84)

and even more to the expanded (in nth order) solution of the Laguerre 
equation:

 
y x a

nx n n x

n n n x
n ( )

( )
( !)

...

( )...( )
( !)

=

− +
−

− +

−( ) − − +
0

2
2

2

1 1
2

1 1 1λ λ
λ

λλ +
−( )





















...
!

1 n
n

n
x  (3.85)

It eventually becomes the Laguerre’s polynomial of degree n for appro-
priately choosing of a0 1=  for yn, and a n0 = ! for Ln such that to have the 
connection
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Now, if one like considering the differentiation of the original Laguerre’s 
equation it is explicitly obtained

 x y x y n y( ) ( ) ( )'' ( ) ' ( )1 1 11 1 1 0( ) + + − ( ) + − =  (3.87)

while after k-successive differentiations it yields

 x y k x y n k yk k k( ) ( ) ( )'' ( ) ' ( )( ) + + − ( ) + − =1 0 , k ≥ 0  (3.88)

thus having as the solution the associate Laguerre polynomial of degree n–k:
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Even more, this last equation is equivalent with the following one
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under the transformation

 Y e x L xx k
n
k= − −/ ( )/ ( )2 1 2  (3.91)

That consecrates the so-called associated Laguerre function.
There is now clear that our radial equation is of Laguerre form with the 

associate Laguerre function solution through the one-to-one correspon-
dences, solved at once to:
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providing the number of possible angular degeneracies:
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It is this last relationship that through replacing A2 it leads to the energy 
states of Hydrogenic atoms:
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from where follows also the rule of allowed orbital quantum number values

 l n∈ −{ , ,..., }0 1 1  (3.95)

since the positive integer conditions of n and k are properly counted. 
Nevertheless, the result expresses the recovering of the Bohr type result 
for the eigen-energies, while the eigen-functions are to be written as:

 ψ nl nl
x l

n l
lx C e x L x( ) ( )/= −
+
+2 2 1  (3.96)

though the present prescriptions, by tacitly replacement of n notation with 
simple n for physical consistency, whereas the appeared constant to be 
determined by the radial normalization condition:
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when taking note by the equivalencies
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by employing the introduced notations and the already found results.
To this aim the integral representation of Laguerre polynomial is most 

useful; it is based on complex integral representation of the solution of the 
Laguerre original differential equation:
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there is immediately to check that through considering its first and second 
differentiation with respect to x, respectively,
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they fulfill the Laguerre differential equation:
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since the integrand function is single valued, i.e., taking the same value on 
initial and final point of the closed contour integral. With this one has auto-
matically also the Laguerre polynomial complex integral representation:
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Further on, employing the complex Laurent’s theorem
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one may identically write that
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This consequence of complex integral representation of Laguerre poly-
nomial has another crucial implication when one deals with associated 
Laguerre function L xn

k ( ); it is obtained from k-differentiation (respecting x) 
of the Laguerre polynomial, having therefore the associate series resum-
ing (not forget from previous discussion that n k≥ , otherwise the function 
L xn
k ( ) vanishes through k-derivations):
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Such representation, the so-called generating (Laguerre) function repre-
sentation since express one bi-variable function in a series of a function 
respecting one variable having the other as parameter, is most useful when 
integrals involving pairs of Laguerre function are to be evaluated. In gen-
eral, integrals of the type
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m
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can be evaluated with the help of above associate Laguerre series resum-
ing. In fact when two such series are firstly multiplied,
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and then further convoluted with e xx p k− + −1 by integration with respecting 
x, while considering the exponents of the right hand side of last expression 
the decomposition
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and in the view of Inm type integral, one gets the successive expressions:
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Yet, the last expression may be even more transformed by using the inverse 
(or generalized) binomial theorem (see Appendix A.1.1)
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under the form:
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In these conditions, for n m=  one has the identity
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from where follows that the typical integral Inn is evaluated as:
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such that
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as prescribed by the last series equality.
Going to exemplify the method we treat the first three cases:

• When p =1 we have:
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and therefore the integration rule:
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that in terms of Hydrogenic principal and angular quantification numbers 
(n, l) it rewrites though applying the indicial substitutions:
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leaving with the result:
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• When p = 2 we have:
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From which counts only the sum of those products that produce equal 
shooting in the powers of z z1 2and , namely
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from where the right values of λ are selected; therefore it leads with the 
integration rule:
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which in the “language” of Hydrogenic integrations translates as:
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• When p = 3  we have the product:
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that restricted to the significant terms, as above, it contains only the 
summation:
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producing the general integration rule
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and with Hydrogenic specialization:
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Now we are in position to calculate the normalization constant of the 
Hydrogenic wave-function, as well some of the radial mean values in 
direct manner. For instance, for the normalization constants we have:
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that at once gives out:
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and respectively, the Hydrogenic radial eigen-functions:
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Yet, for individuating certain radial wave-functions for certain quantum 
numbers’ combinations, one needs to better express the associate Laguerre 
functions. For that the next discussion regards the ways it may be unfolded. 
Firstly one may use the Laguerre generating function representation above 
to differentiate it n-times respecting z and then taking the z → 0 limit that 
gives the Laguerre polynomial under the derivative form:
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as one may easily check out (eventually by induction). Then the Hydrogenic 
associate Laguerre functions are:
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TABLE 3.1 Associate Laguerre Functions for the Main Hydrogenic Radial Wave-
Functions

n l L xn l
l
+
2 +1( )

1 0 L x1
1 1( ) =

2 0 L x x2
1 2 2( ) ( )= −

2 1 L x3
3 6( ) =

3 0 L x x x3
1 23 6 6( ) = − +( )

3 1 L x x4
3 24 4( ) = −( )

3 2 L x5
5 120( ) =

4 0 L x x x4
1 24 24 6( ) = − −( )





4 1 L x x x5
3 60 20 10( ) = + −( ) 

4 2 L x x6
5 720 6( ) = −( )

4 3 L x7
7 5040( ) =

5 0 L x x x x x5
1 5 120 240 120 20( ) ( )= + − + + −( ) { }

5 1 L x x x x6
3 120 120 90 18( ) = − + −( ) { }

5 2 L x x x7
5 2520 42 14( ) = + −( ) 

5 3 L x x8
7 40320 8( ) = −( )

5 4 L x9
9 362880( ) =

providing the working expression:
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whose few results are summarized in the Table 3.1.
From Table 3.1 worth employing the ground state Hydrogenic wave-

function, for n l= =1 0, , that takes the simple analytical form:
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In the same manner other wave-functions are determined, in a full normal-
ized analytical mode.

Moreover, with the help of the Laguerre functions of Table 3.1, the full 
normalized expression of the associate radial wave functions may be ana-
lytically formulated; yet, the physical significance will be carried by the 
squared quantity r rnlψ ( ) 2, in radial normalization framework, as mean-
ing the probability density the electronic existence will be encompassed 
by the concerned nl state (i.e., the so-called orbital). These quantities are 
represented in the Figures 3.6 and 3.7, giving the answer to the above 
formulated “spatially penetrating potentials” in the beginning of this sec-
tion. The solution of this paradox relays in the actual observed spatially 
penetrating orbitals – a feature that really appears for any state with n >1, 
i.e., displaying at least two degeneracies respecting the quantum (angular) 
number l. In other words, the mixture of potential states with l = 0 and 
l ≠ 0 remarked at the beginning of the present analysis is here reflected 
in the penetrating features of the orbitals with non-zero angular number l 
respecting those characterized by l = 0.

This will have further consequence in adjusting of corresponding sub-
orbital energies in various atomic structures, depending on the degree of 
these orbital penetrations, providing the successive energetic series of 

FIGURE 3.6 The paradigmatic representation of the electronic probability density of 
existence (wave-functions) for Hydrogenic atoms in the ground state, i.e., for the first level 
(or shell with n=1) with the respective sub-shell (with l=0), in accordance with the first 
quantum postulate of Section 3.2, i.e., displaying both continuity and vanishing behavior 
on the nucleus as well as to the asymptotic (long-range, at infinitum) existence distribution 
(naturally derived by the respective Laguerre polynomial of Table 3.1).
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shells n and sub-shells nl in the celebrated atomic aufbau principle (the 
atomic constitution). Moreover, one may still observe that the orbital with 
l nmax = −1 behaves as the Hydrogen first (ground state) orbital, supporting 
the idea of chemical existence in the valence shell of the atoms of the fea-
tures similar to those specific for the Hydrogen atom, while the difference 
appears only by the shielding effect of the inner shells between the outer-
most level and the nucleus. These ideas will be reloaded in the next vol-
ume of this five-volume book, dedicated to quantum atom and periodicity.

Finally, one would like to use the developed rules of radial wave-func-
tion integration to compute other integrals of interests. For instance, one 
may wish to compute the quantum average (the observed) of the applied 
potential:

 V r Ze
r

Ze r
nl

nl
nl

( )
ψ

ψ
ψ

= − = − −0
2

0
2 1  (3.134)

FIGURE 3.7 The representations of the electronic probability density of existence (wave-
functions) for Hydrogenic atoms, for the superior (excited) levels (or shells, quantified 
by the number n) with the respective sub-shells (or orbitals, quantified by the mixed 
numbers nl), employing the derived radial wave functions in terms of respective Laguerre 
polynomials of Table 3.1.
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therefore needing to compute the average
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that helps in concluding finding that:
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in fully agreement with earlier introduced virial theorem.
Equally, one may be interested in evaluating the average of the distance 

of the Hydrogenic electron in a certain state, with direct specialization to 
the ground state as well. For that it is compulsory to evaluate the integral:
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There is interesting to see that for the Hydrogen atom in its ground state, 
Z n l= = =1 1 0, , , one has that the average of the distance of the electronic 
existence in this state looks like:

 r a
H n l, ,= =

=
1 0 0

3
2

 (3.138)
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thus being related with the first Bohr radius a0  but not identical with it; 
from this point there is obvious that since the observed “orbit radius” (the 
average above) differs from the quantified “orbit radius” the notion of 
radius itself is less meaningful, or in other terms stands as a fuzzy (without 
precisely delimited frontier) quantity. The problem that arises from this is 
that the frontier of atoms thyself seems to not be properly quantified unless 
other quantities are introduced in relation with their valence or the outmost 
eigen-state. This will be achieved with the help of the most celebrated 
chemical notion of electronegativity that will be introduced latter in this 
volume, and applied on the atomic systems characterization in the Volume 
II of the present work (Putz, 2016).

Yet, we presented so fat the complete radial picture of eigen-values 
(quantified energies) and of the associated eigen-function (wave-func-
tions) for the radial motion of electrons in central (spherical) poten-
tial, with results resembling the phenomenological ones derived by the 
Bohr theory, however opening the door to the electronic spatially char-
acterization through the analytical systematically generation of their 
wave-functions.

3.3.2 MOLECULAR VIBRATIONAL STATES BY SOLVING 
HERMITE TYPE EQUATIONS

The vibrational states in molecules are modeled by electronic motion 
under the harmonic oscillator (1D) potential

 V x k x m x( ) = =
1
2

1
2

2 2 2
ω ω  (3.139)

with the force constant

 k mω ω= 2  (3.140)

and the effective mass

 m m m
m m
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1 2

1 2
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of a typical diatomic molecular oscillator, whose atomic masses m m1 2,  are 
the expressed as atom gram quantities. For such physical-chemical system 
the associate Schrödinger equation looks like
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that immediately rearranges as:

 d
dx

x x x
2

2
2 2 0ψ α β ψω ω( ) ( )+ −( ) =  (3.143)

with

 α ω=
2

2

mE


,  β
ω

=
m


 (3.144)

Further on, if one consider the substitution

 x =
ζ
β

 (3.145)

the last equation becomes:
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that is recognized as the equation type for Hermite’s orthogonal functions:

 ψ ζ ψ'' ,+ − +( ) =1 2 02 n  n∈N  (3.147)

Now, through the immediate correspondence of the two equations follows 
the identity:

 α
β

− =1 2n  (3.148)



202 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

which after the replacements of the shortcuts it leaves with the energy 
quantification

 E nω ω= +







1
2

, n∈N  (3.149)

for the harmonic oscillator.
However, for finding the associate eigen-functions, i.e., the wave-

functions of the harmonic oscillator, one needs to solve the Hermite’s 
orthogonal equation above; yet there is very interesting that it may be fur-
ther simplified by the substitution(s)

 ψ ζ= −( )vexp /2 2  (3.150a)

 ψ ζ ζ ζ'' ' '' exp /= −( ) − +  −( )2 21 2 2v v v  (3.150b)

to the simple Hermite’s differential equation:

 v v nv'' '− + =2 2 0ζ  (3.151)

In the same way as proceeded with the Laguerre’s polynomial, the Hermite 
equation may be solved by the specific complex integral representation:
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that through its first and second derivatives with respecting z , respectively,
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shows that it fulfills the identity:
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because of its integrant single value function shape that cancels it along the 
close contours, i.e., having the same values on the initial and final points.

Therefore, in the light of the Laurent theorem of residues there can be 
inferred that the complex integral solution of the Hermite equation may 
produce the Hermite generating function (with the same recipe as was 
previously done for generating Laguerre function):
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where
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stands as the complex representation for the Hermite polynomial. However, 
it may acquire also a workable expression by means of the n-th derivative 
of the above generating function expansion on both sides and then taking 
the z → 0 limit; in these conditions one successively yields the Hermite 
polynomial or n-th degree:
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whose the first ten realization are obtained systematically as:

 H0 1ζ( ) =  (3.158a)

 H1 2ζ ζ( ) =  (3.158b)

 H2
24 2ζ ζ( ) = −  (3.158c)

 H3
38 12ζ ζ ζ( ) = −  (3.158d)
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 H4
4 216 48 12ζ ζ ζ( ) = − +  (3.158e)

 H5
5 332 160 120ζ ζ ζ ζ( ) = − +  (3.158f)

 H6
6 4 264 480 720 120ζ ζ ζ ζ( ) = − + −  (3.158g)

 H7
7 5 3128 1344 3360 1680ζ ζ ζ ζ ζ( ) = − + −  (3.158h)

 H8
8 6 4 2256 3584 13440 13440 1680ζ ζ ζ ζ ζ( ) = − + − +  (3.158i)

 H9
9 7 5 3512 9216 48384 80640 30240ζ ζ ζ ζ ζ ζ( ) = − + − +  (3.158j)

H10
10 8 6 4 21024 23040 161280 403200 30240 30240ζ ζ ζ ζ ζ ζ( ) = − + − + −

(3.158k)

Back to the quantum harmonic oscillator, the Hermite polynomials helps 
in writing its eigen-functions as:
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with the amendment that the constants are still to be determined from the 
wave-function normalization condition in the n-th state:
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Thus, we have to evaluate the integrals of type:

 J n m H H dn m0
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This can be done in the same way as proceed with the Laguerre’s poly-
nomials, i.e., by considering the product of two Hermite’s generating 
functions:
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followed by the multiplication of both sides with exp −( )ζ 2  and integrat-
ing to successively obtain:

(3.163)

from where the general rule of integration may be abstracted:

 H H d mn m
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with the actual specialization:
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This result allows the determination of the normalization constant above 
for the wave-function of the quantum harmonic oscillator,
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leading it with the complete form:
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Aiming to present an application of the given harmonic oscillator model 
for diatomic molecules, let’s take the case of Iodine-Hydrogen system 
(HI) having the force constant

 k N mHI = < ⋅ >−314 14 1.  (3.168)

With the effective mass of the system computed through combining atomic 
gram masses with the Avogadro’s number NA:
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the system’s oscillating rate has the value:

 ω = = ⋅ < >−k
m

sHI

HI

43 4954 1013 1.  (3.171)

it provides the eigen-energies (of vibrations on bonding)

 E n J nHI = +





 ⋅( ) < > ∈−1

2
4 587 10 20. , N  (3.172)
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and the working eigen-functions’ probability

 ψ
β
π

β βn n nx
n

H x x( )
!

exp2 2 21
2

= ( ) −( ) , n∈N  (3.173)

with the specialized parameter

 β
ω

HI
HI HIm m= = ⋅ < >−



6 84853 1021 2.  (3.174)

In these conditions, noting that the equilibrium bonding distance for HI 
system is about:

 R mHI ≅ ⋅ < >−1 89 10 10.  (3.175)

the graphical representations of the quantized probabilities for few states 
of this oscillating system are depicted in the Figure 3.8.

The analysis of the Figure 3.8 clearly illustrates that since in classical 
interpretation of the motion in the harmonic potential the system has its 
maximum probability to be found at the position x when its velocity is 
minimum, i.e., at the maximum distance (at the amplitude) allowed by 
the oscillation, while in quantum motion this is certainly not the case of 
the system in its vibrational ground state ( n =1) but only in the higher 
excited states (see the probability behavior for n =10  and far above that) 
when the quantum probability of vibration becomes multiplied enough 
(by the quantum vibrational number) so that it shapes asymptotically to 
the classical potential of vibrational motion. Such behavior is nothing but 
the vibrational manifestation of the earlier discussed (Bohr) correspon-
dence principle affirming that the quantum motion approaches the classi-
cal one in the very high levels of quantification.

Finally, seeing the vibrational ground state is so fragrant in contradic-
tion with the classical oscillating behavior (i.e., having maximum of quan-
tum probability where classically it is recorded zero probability) one may 
like to investigate the probability with which the vibrational system lying 
on its ground state
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is compressed within the classical domain; that is to impose the energeti-
cally condition:

 1
2

1
2

2
0
2

ω ω= m x  (3.177)

FIGURE 3.8 The quantum harmonic oscillator eigen-function probabilities’ (density) 
representation (thick continuous curves) for ground state (n = 0), and few excited vibronic 
states (n = 2, 5, and 10) for the working case of HI molecule (respecting the coordinated 
centered on its mass center); the classical potential is as well illustrated (by the dashed 
curve in each instant) for facilitating the correspondence principle discussion.
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from where the (semi)classical turning points are founded as:
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leaving with the probability calculation:
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while recognizing the special error function result (see Appendix A.4):

 P x0 0 1 0 8427( ) ( ) .= =erf  (3.180)

This result confirms the quantum behavior of the quantum motion that is 
not entirely encompassed by the (semi) classical turning points’ domain, 
even its major part lays there, with “the rest” being dispersed by tunnel-
ing process (see the Postulate I discussion), being however a new mani-
festation of the indeterminacy (Heisenberg) relationship that impedes the 
position and momentum to be with the same precision simultaneously 
determined. Further aspects of the quantum vibrational motions are to be 
discussed in the next sections and chapter of this volume, whereas the 
application to various molecular systems will be systematically presented 
in the Volume 3 of this five-volume set.

3.3.3 SOLID STATE FREE ELECTRONIC STATES

Modeling of the solid state from an ordered chains and planes of atoms may 
be possible, in the first approximation, by considered each of the involved 
atoms as being represented by the core and valence states. As such the 
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inner electrons, those close to the nucleus and those completing the atomic 
shells – form the core state or the bulk solid state ψ bulk, while electrons 
on the incomplete atomic levels compose the valence solid state ψ valence; 
however, being considered independent states, their scalar product hast to 
cancel over the entire solid state domain:

 ψ ψbulk valence = 0  (3.181)

This condition, considered in terms of associate potentials leaves with the 
idea that the associate potentials are complementary, i.e., when the bulk (elec-
trostatic or Coulombic) potential is maximum the valence or orthogonalized 
potential reaches its minimum, and vice-versa. The result is the net uniform 
potential that models the so-called free electrons in solids, see Figure 3.9. 
Therefore, the free electronic model in solids has only formally the potential

 V x( ) = 0  (3.182)

replaced in (1D) Schrödinger,

 − =


2

0

2

22m
d
dx

x E xk k kψ ψ( ) ( )  (3.183)

while it is the result of atomic bulk-valence potential cancellation in rows 
and planes of a solid state of crystal type.

FIGURE 3.9 The resulting free electronic potential in solid state modeling (right) 
from superposition of the bulk (electrostatic or Coulombic) and the valence (orthogonal) 
potentials (in left) (Putz, 2006).
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However, the actual solid state Schrödinger equation immediately rewrites 
as a simple differential equation with frontier conditions:
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whose one general solution reads as:
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When the first frontier constraint is employed one gets the value of the 
first constant above

 0 0= ==ψ k x k
Ix C( )  (3.186)

that leaves the valid wave-function form to be:

 ψ k k
IIx C kx( ) sin( )=  (3.187)

which, under the remaining limiting constraint:

 0 = ==ψ k x a k
IIx C ka( ) sin( )  (3.188)

provides the k-values

 k n
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=
π  (3.189)

and the implicit energy quantification
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with the physical-mathematical acceptable quantum numbers:

 nk =1 2 3, , ,...  (3.190b)
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The fact that the state with n = 0 was excluded means, beyond it appears 
from the impossibility to have zero energy for a real system, the absence 
of the ground state in the free electronic solid state model. At this moment 
this results seems acceptable from the phenomenological argument that 
electrons having only kinetic energy their existence only on excited states 
appears plausible, although a more quantitative argument will be given 
through the variational quantum procedure applied on this model, as will 
be see in one of the next sections.

In next, the normalization of the k-wave-function adjusts the normal-
ization constant as:
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resulting in

 C
ak

II =
2  (3.192)

and of the quantified stationary eigen-functions
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or with its direct temporal (energy dependent) generalization:
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The Figure 3.10 shows how the first few eigen-levels (energy and 
stationary wave-function) are displaced in the spectrum of free electronic 
movement within infinite wall cavity modeling the solid – crystal state. 
One may easily note the fragrant behavior according which the levels are 
more and more separated as increasing of the quantum number (or excited 

FIGURE 3.10 Illustration of the first four eigen-energy levels together with the 
associate stationary wave-function for the free electronic spectra in an infinite high well 
approximating the (1D) periodic solid state.
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state), being this in a quite opposite way respecting the atomic spectra in 
which the levels were approaching more and more to the continuum level.

Such peculiar feature of the solid state gives it the special role it has in 
the quantum theory and physical-chemical applications. Yet, one may also 
with this simplified model checking out some interesting consequences.

An important one regards the application of the Heisenberg uncertainty 
principle:

 ∆ ∆x px� � �≥
1
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 (3.195)

rewritten with the help of coordinate and momentum expectations:
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with the above general k-eigen functions each of the involved expected 
value becomes:
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Now the uncertainty relation simplifies to:

 n2 2 9π ≥  (3.201)

that is valid for all positive integer quantum numbers, implicitly for all 
free electronic solid states. In other words, the uncertainty principle may 
be regarded as another reason the electrons in solid state are impeded to 
exist in fundamental (ground) state with n = 0.

From this conclusion one may inferred that since free electrons in solid 
may exist only on the exited stated they are also “free” to exist on any 
combination of them. Indeed, because the orthogonality condition among 
any two different eigen-functions, with n n1 2 ≠ ,
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no matter if n n s2 1 2= +  or n n s2 1 2 1= + +  (with s∈N), one may chose any 
linear combination, for instance one with the two-eigen-functions linear 
superposition,
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stands as a valid solution of the Schrödinger equation for the system (since 
each individual – orthogonal eigen-wave fulfills it), respecting in addition 
the normalization condition as well:

 ψ ψ12 12
0

1* ( , ) ( , )x t x t dx
a

∫ =  (3.204)

as there is immediately to check. Yet, this “collective” behavior of the 
free electrons in solids is at the foreground for quantum explanation of the 
superconducting and of other specific quantum properties, for example, 
the bondonic movement on graphenes, that will be unfold in more detail 
in Volume IV of this five-volume set.

3.4 SEMICLASSICAL QUANTIFICATION OF ENERGY

The eigen-energies of a system may be evaluated from the semiclassical 
action quantification, i.e., from equation

 S x x E m E V x dx n
x
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( , , ) ( )1 2 2 1
2

1

2

= −( ) = +





∫ π  (3.205)

with x x1 2,  being the classical-quantum turning points throughout fulfilling 
the condition:

 E V x= ( )  (3.206)

This postulate tells in fact that the phase of the de Broglie packet is quanti-
fied in appropriate manner so that to provide the eigen-energies carried by 
it; even more, such quantification represent the natural axiological gen-
eralization of the historical Bohr and Bohr-Sommerfeld quantifications. 
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To derive this quantification condition one may recourse to the classical 
interference between a direct and the reflected wave on a certain point in 
space so that the stationary waves are produced (those that are appropri-
ately to be quantified), see Figure 3.11.

There is evident from the representation of Figure 3.11 that the classical 
reflection is equivalent with a tunneling of the wall by the λ / 2 distance or 
inducing a delay of −π in phase followed by turning the propagation direc-
tion. Therefore, the direct and reflected are respectively (in classically sense):
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with their phase difference
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controlling the amplitude of the resulted interference wave
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FIGURE 3.11 Schematic representation of the corpuscular-undulatory semi-classical 
quantification based on the interferential between the direct and reflected wave on an 
arbitrary point P inside of a cavity (potential) with a given width (see the text for details).



218 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

This result tells us that many things:

• the interference amplitude is stationary, i.e., do not depend on time
• the interference amplitude is modulated by the phase
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π

λ
2 1

2
( )l x  (3.210)

that can be further re-arranged as

 Θ = +





 ∈ ∨π n n1

2
, *N N  (3.211)

noting that when the ( )l x−  distance is filled with stationary waves (with 
zero, one, two, etc.) nodes it has to fulfill the natural wave-length relation-
ship, see Figure 3.12

 l x n− =
λ
2

 (3.212)

FIGURE 3.12 Illustration of the stationary waves’ formation, in different modes, from 
the direct and reflected waves of Figure 3.11.
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Finally, employing (postulating the equivalence of) the actual founded 
phase for classical stationary wave-condition with the quantum stationary 
action related phase of the de Broglie wave-packet
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in terms of the action functional
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the quantum-classical passage resulted as the present semi-classical quan-
tification condition.

Application of the present semiclassical quantification method for 
recovering the consecrated energetic eigen-values for the simple systems 
of hydrogenic atoms, molecular vibrations and free electrons in solid state 
is to be in the next unfolded.

3.4.1 HYDROGENIC ATOMIC SYSTEMS

The fundamental problem of hydrogenic atom relies on considering the 
atomic effective (Coulombic + centrifugal contributions) potential
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with orbital quantization compressed in orbital momentum constant cl, 
onto the semiclassical action functional (integral)
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providing the following notation were introduced:

 A m E m EZ Z= = −2 20 0 ;  B m Ze= 0 0
2 ;  C cl= 2 2

  (3.217)

Now, the main problem remains the evaluation of the formal action inte-
gral above; it is no trivial job, while an elegant and meaningful method 
appeals the complex integration technique through identifying the “poles” 
or “zeros” of the integrated function f rZ ( ) respecting the integrand r.

Actually, for the concerned function two poles are identified in the 
complex plane of Figure 3.13, producing the associated integrals to be 
solved according with the Cauchy residues theorem with application to the 
single or to multiple poles as well:

• one in the origin (r → 0) as we have the integral:
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FIGURE 3.13 The complex integration contours resulting in the poles I and II and in 
the closed integral between rmin and rmax turning points of atomic hydrogenic action in the 
semiclassical quantification.
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• one at infinity (r → ∞) as we may transform the original integral 
through the variable change

 r
r
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1  (3.219)

to the next one with multiple (double) pole at zero:
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With these, one can infer from the Figure 3.13 the following integral rela-
tionship holds (keeping in mind that the anti-clocking sense is the positive 
one, and the fact this was already counted in complex computation of inte-
grals on the contours I and II before):
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leaving with the general valuable result
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Now we can immediately perform the semiclassical quantification for hydro-
genic atoms through calling back the performed notations for A, B and C:
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so that it can be rearranged in the usual Bohr-Schrödinger form:
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by the formal quantum number re-labeling

 n n cZ l= + +
1
2

 (3.225)

thus proofing the formal agreement of the semiclassical approach with 
the full quantum treatment. AT the same time it is here the opportunity to 
stress out that the phenomenological Bohr determination of atomic spec-
tra appears as being really quantum and not semi-classical (as sometimes 
miss-believed) since providing the exact quantum number dependence; the 
“true” semiclassical undertake was here unveiled. Yet, the present semi-
classical approach gives also the sing on the fact that the atomic quantum 
numbers of the ground state eigen-values cannot take the zero value in any 
circumstances, thus being of a certain value also in this respect.

3.4.2 MOLECULAR VIBRATIONAL SYSTEMS

In the vibrational molecular case the potential takes the usual 1D form 
(3.139), imposing the with the classical (to quantum) turning points
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while the eigen-energy enters the relationship
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In these conditions, the semiclassical quantization postulate specializes 
successively as:
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that by means of the variable change
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it further becomes
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Finally, by considering the turning point – eigen-energy equation from 
above the semiclassical quantization rewrites as
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  (3.231)

yielding the well-known energy quantification of the vibrational (molecu-
lar) states in an exact manner, even through the application of the formal 
semiclassical quantification (3.149).

3.4.3 GENERALIZED |x|α POTENTIAL SYSTEMS

The semiclassical quantification through the action integral (functional) 
gives the possibility of treating the free electrons in solid state in a more 
general context, i.e., through considering the 1D-potential
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However, before specializing to all these cases the general approach will 
be firstly undertaken, noting that the classical-quantum turning points are 
obtained from the equality

 E V xk k k= ( )  (3.233)
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with the expressions:
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With this we have for quantization the chain equivalences:
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suggesting therefore the variable substitution:
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 x k E yk= −1 1 1/ / / ,α α α  dx k E y dyk= − − −α α α α1 1 1 1 1/ / /  (3.237)

with the help of which it transforms into
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involving an integral that is of Euler – β (or B) type (see Appendix A.2):
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for the individuation
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Such integrals may be analytically solved by making recourse to the 
Dirichlet relationship (see Appendix A.2):
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 (3.241)

in terms of Gamma-Euler functions
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that nevertheless can be evaluated in the recursive manner by the rule:
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all in all there follows that the actual integral rearranges as
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this way providing the above semiclassical quantification equation under 
the form:
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from where the eigen-energy is yielded:
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We are going now to apply this result to various potential cases.

1. For the limit α → 0 the energy fills all the interval spectra above 
the potential:
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 E kk , ,α → ∈ +∞[ )0  (3.248)

2. For the case α =1 the linear (“in V letter” potential) impose the cor-
responding eigen-energies of the form
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taking act of the Gamma-Euler particular values (see also the 
Appendix A.2):

 Γ Γ Γ1 3 2 3 2 3 2 3 2 1 2 1 2 2+( ) = = =/ ( / ) ( / ) ( / )( / ) ( / ) /π  (3.250a)

 Γ( )1 1=  (3.250b)

3. For the harmonic potential, with α = 2, through replacing the 
involved new Gamma-Euler function

 Γ Γ Γ Γ1 2 3 2 2 1 1 1 1/ / ( ) ( ) ( )+( ) = = + = =  (3.251)

among the appropriate k-identification, namely

 k m
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the correct vibrational eigen-energy is getting out:
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4. For the free electrons in an infinite well model of solid state, i.e., 
for treating the infinite high potential from the limit α → ∞, one 
needs to note that since the recursive rule of the Gamma-Euler 
function written for inverse arguments there can be inferred that
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This, along the other appearing limit:
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together the specific k-identification relating the width (say “a”) of the well,

 k
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 (3.257)

there is immediate to obtain the formal quantified eigen-energies of free 
electrons in solids
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with the quantum numbers reshaped from the notation:
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in order the traditional solid state formula to be formally regained.
However, worth remarking in the final that the semiclassical quantifica-

tion, although always providing correct eigen-energies form, is only some-
times exact, as is the case of vibrational quantification, while requiring the 
quantum number re-notation for matching with the results given by the 
rigorous solution of the Schrödinger equation. Such limit is the reflection 
of the Bohr and Bohr-Sommerfeld semiclassical quantification treatment.
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3.5 VARIATIONAL WAVE-FUNCTION AND ENERGIES

The stationary Schrödinger equation may be integrated to its eigen-values 
by means of the variational principle respecting the minimizing of the total 
(eigen) energy of the system:

 δ
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ψ ψ
E E

H d

d
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∫
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*

*

 Γ

Γ
 (3.260)

with ψ  being a trial stationary wave-function suitable for the concerned 
system, in accordance with the previous enounced quantum postulates.

With this principle, actually all, natural systems may be quantum 
mechanically treated with the aid of trial-and-optimized wave-function to 
determine the correspondent eigen-energies. In next some of the most rep-
resentative systems are to be accordingly treated from nuclear, to atomic, 
to molecular, and to solid-state level or matter’s organization.

3.5.1 HYDROGEN’S QUANTUM GROUND LEVEL

Let be the stationary radial trial wave-function with two-parameters:

 ψ α αZ C r C r( , , ) exp= −( )  (3.261)

to be determined throughout imposing it the normalization and eigen-
energy variational constraints.

Based on the general “Slater” type formula (see Appendix A.2)
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the wave-function radial normalization gives:

 1 2
2 40

2 2 2

0

2 2
3

2

3= = =
( )

=
∞

−
∞

∫ ∫ψ ψ
α α

α
Z Z

rr dr C e r dr C C* !  (3.263)



Postulates of Quantum Mechanics: Basic Applications 229

from where the normalization constants is yield and the trial wave-function 
takes the intermediate form:

 ψ α α αZ r r( , ) exp/= −( )2 3 2  (3.264)

to be further considered for employing variational principle on the 
eigen-energy:

 E r H r r drZ Z Z( ) ( , ) ( , )*α ψ α ψ α=
∞

∫ 

2

0
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with the hydrogenic Hamiltonian
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to be fully considered in radial-spherical coordinates; however, for the 
Laplacian term the involved integral can be easier evaluated through 
applying the Gauss surface-to-volume integral transformation (law) 
while counting the null contribution of the wave-function on the infinite 
expanded integrated surface; thus one can write:

0 2= ∇( ) = ∇ ∇( ) = ∇ + ∇ ∇
→∞
∫ ∫ ∫ ∫ψ ψ ψ ψ ψ ψ ψ ψ* * * *d dV dV dVVΣ

Σ

(3. 267)

from where follows the relationship:

 ψ ψ ψ*∇ = − ∇∫ ∫2 2dV dV  (3.268)

that has the immediate correspondent in radial operators:

 ψ ψ ψ*∇ = − ∂
∞ ∞

∫ ∫r rr dr r dr2 2
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2 2

0

 (3.269)
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With this the above average energy integral becomes:

 

E
m

e r dr Ze e rdr

m

Z
r r( )

!

α
α

α

α
α

α α= −

=

−
∞

−
∞

∫ ∫2 4

2 2
2

5 2

0

2 2

0

3
0
2 2

0
5 2

0
3 3





−−

= −

4 1
2

2

3
0
2

2 2

2 2

0
0
2

α
α

α
α

Ze

m
Ze  (3.270)

while through the variational principle

 0
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0
0
2= ∂ = −α α

αE
m

ZeZ ( )   (3.271)

one finally gets also the α-parameter with the form recuperating the 
inverse of first Bohr radius:

 α = =
Ze m Z

a
0
2

0
2

0

 (3.272)

with the help of which either the first radial wave-function expression

 ψ Z r Z a Zr a( ) / exp //= ( ) −( )2 0
3 2

0  (3.273)

as well as the first Bohr-(eigen) energy (for the first quantum number in 
hydrogen atoms)
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hZ n, = = − = −
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2
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2 4
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2 4
0

0
2 22 2 4 8
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 (3.274)

are obtained, in fully agreement with previous phenomenological Bohr 
approach (1.82).
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3.5.2 VIBRATIONAL GROUND LEVEL

The ω-vibrational state of a molecular 1D-system is described by the 
Hamiltonian:

 H
m x

m x� �
ω ω= −

∂
∂

+
2 2

2
2 2

2
1
2

 (3.275)

while the stationary appropriate wave-function may be described by the 
two-parameters function:

 ψ ω ( , , ) expc c x c c x1 2 1 2
2= −( ) , c c1 2 0, ( )> ∈R  (3.276)

so that carrying the geometry of the parabolic potential that determines it, 
with the two constants to be determined by the two quantum constrains of 
the direct normalization of the trial wave-function followed by application 
of the variational principle for the eigen-energy.

Starting with fulfilling the normalization condition for the trial wave-
function, we have:
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where we have considered the 0th order Poisson integral (see Appendix A.2).
Going now to compute the trial vibrational energy, we calculate 

successively:
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where the 0th and 2nd order Poisson integrals were used (Appendix A.2) 
along the replacement of the above expression for c1. Now, the variational 
principle on this energy leads with the c2 result as well:

0
2

1
82 2

2

2
2

2

= ∂ = −c E c
m c

m
ω

ω( )  ,

 ⇒ =c m
2 2

ω


,  ⇒ = 





 = 






c c m

1
2

1 4 1 42
π

ω
π

/ /



 (3.279)

so that the fundamental (ground state) energy

 E0
1
2

( )ω ω=   (3.280)

together with the associate eigen-function

 ψ ω
ω
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ω
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2
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x m m x= 
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 (3.281)

are furnished in fully agreement with the previous general quantum eigen-
energies and -functions determinations for harmonic oscillator; thus prov-
ing also by this example the reliability of variational principle to provide 
both fundamental or ground state energy and its wave-function, in a con-
sistent quantum mechanically manner.

3.5.3 GROUND STATE PARADOX OF FREE ELECTRONS IN SOLIDS

For the solid states the infinitely high potential barrier stands as a valid 
approximation for the electronic stationary behavior; however, this is 
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equivalently to state that electrons are “free” outside the barrier, and 
evolving as stationary waves, with trial paradigmatic two-parameter trigo-
nometric 1D form:

 ψ k A x A kx( , ) sin= ( )  (3.282)

with the associate free electronic Hamiltonian:

 H
m

k x
� �

= − ∂
2

0

2

2
 (3.283)

Note that if one would like to consider the Hamiltonian with some potential 
that mimics the infinite barrier in asymptotic limit, i.e., as is the case of 
x a/ ,α α → ∞, with a – the width of the free barrier, will soon conclude that 
the corresponding term in energy is not divergent in a very narrow domain, 
namely for a ∈[ / , / ]λ λ2 12  that is in obvious contradiction with forming of 
stationary waves in the well; therefore the only acceptable Hamiltonian in 
the case of infinite well is that restricted to the kinetic term only.

Unfolding the ordinary variational procedure, one starts with imposing 
the normalization condition on the trial wave-function:
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assisting the two constants’ relationship in the form:
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On the other side, the energy computation with the A constant expression, 
i.e., in the normalization condition of the wave-function, yields the para-
doxical result:
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since being in accordance with de Broglie quantization provides through 
variation

 0
2

0

= ∂ =k kE k
m
  (3.287)

the solution

 k = 0  (3.288)

that produces the infinite amplitude in the above expression:
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and consequently the “strange” couple of eigen-solutions:
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leaving with the idea that electrons in the fundamental (ground) solid state 
are “hidden”: they have no observable energy (or optimized –ground state 
energy) although they may have an un-determinate existence by means of 
the “associate” wave-function.

However, beside the fact that we made the first encounter with the 
“quantum hidden state” realization, the present paradox is solved by 
invoking other quantum postulate, namely that of wave-function continu-
ity at the extremities of the infinite well:

 ψ ψk kx a x a( ) ( )= = >  (3.291)
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that may be regarded also as a sort of wave-function variational principle

 δψ k x a= = 0  (3.292)

at the domain existence limit; explicitly looks as

 A kasin ( ) = 0  (3.293)

from where follows the entire spectra of k -quantification

 k
a
n=

π , n =1 2, ,...  (3.294)

with excluded zero (or ground state, or hidden state) solution above.
In these conditions the amplitude of the eigen-function will be propor-

tional with the square root of the inverse of the well’s width

 A
a

=
2  (3.295)

while the couple of finite and non-zero, eigen-solution of the electronic 
movement in the solid states (modeled as an infinite well) take the conse-
crated (already proved) forms:
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Yet, the case of solid states reveals the important idea that electronic 
behavior is at least forbidden in their truly ground state, or it happens in a 
hidden manner – this may be the quantum state that when approached to 
allow the super-conductivity phenomena; equivalently, one can say that 
since electrons in solid state are normally situated in “excited” states this 
may be the natural basic explanation for their propensity for conduction 
and metallic properties. All these ideas will be reloaded in a more depth 
and analytical regard in appropriate further sections and volume of this 
five-volume book.
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Nevertheless, for the moment we remain with idea that, in a way or 
other, the variational principle (for energy or wave-function) are the nec-
essary and sufficient requisites in order to solve the quantum eigen-prob-
lems for the ground or near ground sates.

3.6 CAUSAL QUANTUM EVOLUTION

Quantum states  may be transformed one into other by the causal effect 
of a quantum evolution unitary operator,

 U t U t ∆ ∆( ) ( ) =
+

1  (3.297)

with the property:
 U U� � �0 0 1( ) = ( ) =

+  (3.298)

employing the (unperturbed) evolution equation

 t t U t t+ = ( )∆ ∆  (3.299)

This postulate allows the consistent formulation of the Schrödinger, 
Interaction, and the Heisenberg pictures, the treatment of time dependent 
perturbations, as well as the description of the quantum events by means 
of the so-called propagators (Green functions) linking them in a causal 
manner.

All these quantum aspects of evolution will be cast in the sequels.

3.6.1 SCHRÖDINGER’S PICTURE

We derive the Schrödinger equation in behalf of the evolution operator; 
for an infinitesimal small evolution time-interval ( )∆t → 0  the evolution 
operator takes the form:

 U t i t� � �∆ ∆( ) = −1 ω  (3.300)

that is already recognized as being of a time-perturbation form respecting 
the unitary (self-symmetric or eigen-) state. Yet the perturbation term is 
driven by the ω operator that has to be hermitic
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 ω ω 

+
=  (3.301)

in order to assure the unitarity constraint of the evolution operator

 1 1 1 1� � � � � � � � � �= ( ) ( ) = −( ) +( ) ≅ + −( )+ + +
U t U t i t i t t∆ ∆ ∆ ∆ ∆ω ω ω ω  (3.302)

where the term of superior (second) order in time interval has been 
neglected.

The hermiticity of the ω operator may relating it with the hermiticity 
of the Hamiltonian of the system by a conversion constant, here identified 
as the Planck constant,

 H� ��0 = ω  (3.303)

to yield for the evolution equation to

 t t i H t t t i H t t+ = −





 = −∆ ∆ ∆1 0 0

�
�
�

�
�  (3.304)

or by a direct rearrangement to the form:

 i
t t t

t
H t� �+ −

=
∆
∆

0  (3.305)

which within the limit ∆t → 0 regains the Schrödinger (temporal) equation

 i t H tt� �∂ = 0  (3.306)

The consequences of this approach are multiple and fascinating:
• the (Bohr) stationary state:

 H t t t tn n n n n n
� �� �0 = = ≡ω ω ε  (3.307)

carrying the structural information about their wave-corpuscular 
equivalence;

• the unperturbed state propagation as harmonic plane waves

 t t e tn
i t

n
n+( ) = −∆ ∆ω  (3.308)
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for the general evolution operator is considered

 U t i t i H tn n
� �

�
�

0 0∆ ∆ ∆( ) = −( ) = −





exp expω  (3.309)

for whatever time interval of evolution, or with ending times explicitly as:

 U t t e
i H t t� �
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0 0

0 0,( ) =
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 (3.310)

• the evolution operator equation may be derived since replacing the 
specific state evolution expression

 t U t t t= ( )

0 0 0,  (3.311)

into the Schrödinger equation:

 i U t t t H U t t tt� � � �∂ ( )



 = ( ), ,0 0 0 0 0 0  (3.312)

to get it out as:

 i U t t H U t tt� � � �∂ ( ) = ( )0 0 0 0 0, ,  (3.313)

This last equation opens the discussion about the evolution operator 
expression (or solution) if instead of a constant (stationary) Hamiltonian 
H 0 one has to treat a time-dependent Hamiltonian, H t( ). At this point two 
possibilities may be approached.

On is to consider the whole time-dependent Hamiltonian action through 
equation:

 ∂ ( ) = − ( )tU t t i H t U t t�
�
� �, ( ) ,0 0  (3.314)

leading with the operatorial formal solution:
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t

t
� �

�
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( ) = − ( )∫ τ τ τ  (3.315)

in accord with the initial condition for the evolution operator condition:

 U t t� �
0 0 1,( ) =  (3.316)
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Unfortunately this solution is not a solution, but another equation for 
evolution operator, this time of integral type. Yet, it allows the series 
expansion into the form:

 U t t U t t
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with
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For exemplification, the two terms of the series looks like:
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  (3.319b)
…
from where appears the idea (the problem) of seeing the quantum evolu-
tion as a series of intermediate shorter evolutions, i.e., between a series of 
intermediate quantum events, that are linked in a given chronology (cau-
sality). Therefore, worth introducing the so-called chronological product 
among two time-dependent operators as:

 T A t B t t t A t B t t t B t A t      

1 2 1 2 1 2 2 1 2 1( ) ( )



 = −( ) ( ) ( ) + −( ) ( )Θ Θ (( )  (3.320)

in terms of the Heaviside-step function:
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With the help of chronological product also the problem of non-
commutativity of observables (Hamiltonians) at different times is cov-
ered. Returning to the evolution operator of the second order, the double 
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integral has to be counted out in the following manner: since the integra-
tion is made upon two directions the result has to be divided by (2!) in 
order to not over-count the integral contributions; thus the second order 
contribution result looks like:
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while the general series unfolds as:
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or under symbolic resumation:

 U t t T i H d
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t
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�, exp ( )0

0
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∫ τ τ  (3.324)

The problem with this way of treating the evolution operator solution for 
the time-dependent Hamiltonian, although elegant, is little practicable 
since the theory work only if the series is entirely considered; if only few 
terms are considered then, practically an infinity of terms from the global 
Hamiltonian are omitted and the description blows up!

The second way of treating the temporal Hamiltonians is doing pertur-
bations over the un-perturbed (stationary) Hamiltonian, producing a quan-
tum evolution as depicted in Figure 3.14.

Actually, the problem is to describe the perturbed wave-function ψ t( )  
from the information contained within the unperturbed state t , having 
both time-evolution. To begin, the evolution of the stationary states (under 
the Hamiltonian H 0) is considered as represented on the ortho-normalized 

FIGURE 3.14 Illustration of schematic relationships between states and Hamiltonians in 
unperturbed and perturbed quantum evolutions.
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set of (continuous) states, say a H a E a a, 0 = ( ){ }, so that we may write 
for an arbitrary time that its state is expanded as:
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from where there follows at once (comparing the start and end of the 
equality chain) the Fourier coefficients are

 a t e a t
i E a t t

=
− ( ) −( )


0

0  (3.326)

In the same manner for the perturbed wave-function evolution the corre-
spondent representation will be:

 ψ ψ µt a a t d a
a

( ) = ( )
{ }
∫ ( )  (3.327)

with the formal Fourier coefficients:

 a t e c a t
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0 ,  (3.328)

while searching for the coefficients c a t,( ). For that, let’s employ the 
Schrödinger equation

 i t H H t tt� � �∂ ( ) = + ( )



 ( )ψ ψ0 1  (3.329)

to the equivalent forms:

i a t a H H t tt� � �∂ ( ) = + ( )
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leaving with:
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that means the integral-differential equation:
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with the initial condition

 c a t a t, 0 0( ) =  (3.332)

obvious from above construction and Figure 3.14.
As before was the previous case for the evolution operator equation, 

the solution writes as:
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With this solution, one may now express the Fourier coefficients of the 
perturbed state:
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that gives
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or, through restricting the unitary operator 1 a '{ } and taking out the “bra” 
state a  one remains with the searched expression for the perturbed 
wave-function:
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where the time interval was “adjusted” from τ τ−( ) → −( )t t0  both for 
being consistent with the integration limits (the causality or chronology 
assumed) and for paralleling the c a t,( ) above solution.

Last case here is to consider also a stationary perturbation, i.e.,

 H f t

1 ≠ ( )  (3.337)

In these conditions, one return to the c a t,( ) problem to particularize its 
solutions recursively; yet one restricts itself to the first order and made the 
calculations with the hope of “guessing” some global recipe:
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with the help of which one gets immediately, as before:

  (3.339)

where in the last expression the so-called “Feynman integral prescrip-
tion” was applied for rising or decreasing the energy spectrum with an 
infinitesimally small imaginary quantity ±iη so that the divergences due 
to poles E a E a( ) ( ')=  be avoided. From here on the convention will be 
that the “plus” sign ( )+  be attributed to the so-called retarded solution 
( )t0 → −∞ , while that with “minus” sign ( )−  is to be the advanced evolu-
tion ( );t0 → +∞  for both work-frames we have:
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so we get the first order result for Fourier coefficients

a t a t a H
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1 1
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from where the respective first order perturbed state’ wave function reads:

ψ
η

µ( ) ( )
'
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' ' ( ')±

{ }
{ }
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− ±∫t t

E a H i
H a a t d aa
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1

0
11 1�
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�  (3.342)

with the immediate step in its generalization in terms of the so-called Born 
series:
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This important result may be rewritten in two important equivalent forms; 
one is through the notation:

 ψ ( ) ( )± ±
( ) =t tΩ  (3.344)

with the Born operator
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whose schematic representation is given in the Figure 3.15; while the other 
regards the resumation under the self-consistent equation celebrated as the 
Lippmann-Schwinger equation:
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In either case the limiting condition looks like:

 lim ( )

t
t t

→ ∞

± ( ) =


ψ  (3.348)

in accordance with the introduced retarded-advanced conventions and 
with the Figure 3.15.

3.6.2 UNITARY (“U”) PICTURE. HEISENBERG PICTURE

A transformed quantum picture is said that one obtained by means of a 
unitary time-dependent operator, i.e., with ordinary property

U t U t ( ) ( )
+

=1

 ⇔ ∂



 = − ∂



∂

+ +

t
t tU t U t U t U t   ( ) ( ) ( ) ( )  (3.349)

along the Hamiltonian related derivative properties

 ∂ = −tU t i HU t�
�
��( ) ( ) , ∂ =

+ +

tU t i HU t�
�
��( ) ( )  (3.350)

performed upon the Schrödinger picture, producing for operators and 
states the new objects:

 A t U t AU tU
  ( ) ( ) ( )=

+  (3.351)

 φ φU t U t( ) ( )=   (3.352)

FIGURE 3.15 Representation of the retarded (+) and advanced (–) states obtained from 
a non-perturbed state by a stationary series of perturbations.
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Note that in Schrödinger picture operators are not time-dependent (if not 
otherwise specified, as was the earlier case with Hamiltonian interaction 
and perturbation discussion), while in U-picture they necessarily become 
so. Actually the usefulness of the “U” transformation is exactly that to 
obtaining the time-dependent operators from stationary ones, along the 
time-dependent quantum states; this may be translated in the ancient 
Greek Parmenides’ “pantha rei” philosophy – “all is flowing” (that is true 
in the “U picture” where both operators and states are time-dependent). 
Nevertheless, here we will explore a general and then a specialized trans-
formation of the Schrödinger picture.

Say we are referring to the state t  fulfilling the direct and conjugate 
Schrödinger equations:

 i t H tt� �∂ =  (3.353a)

 − ∂ =i t t Ht� �  (3.353b)

Then, its projector (called also as the statistical operator)

 ∆t t t W t= ≡ ( )  (3.354)

obeys the equivalences

 

i W t i t t t t

H t t t t H HW t W t H

t t t� � �

� � �� � �

∂ = ∂( ) + ∂( ) 

= − = −

( )

( ) ( )  (3.355)

to the operatorial equation:

 i W t H W tt� � � �∂ = 



( ) , ( )  (3.356)

from where the stationary states are recovered through the commutation 
condition

 H W t W tt
  , ( ) ( )



 = ⇒ ∂ =0 0  (3.357)
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as there are the states at thermodynamic equilibrium, for example, those 
written as

 W Z H Z H H   = −( ) ≅ − ( ) + ( ) +





− −1 1
2

1 1
2

exp
!

...β β β  (3.358)

this way justifying the statistical operator name, where Z stands for parti-
tion function and β =1/ k TB  the inverse of thermal energy, in the base of 
operatorial expansion and of self-commutativity of Hamiltonian at what-
ever power

 H H H H n
n n n

   ,





= − = ∀ ∈
+ +1 1

0 N  (3.359)

Now, within U-picture, the (time dependent) statistical operator, the (time-
dependent) Hamiltonian and a general state become:

 W t U t WU tU
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+
 (3.360)

 H t U t HU tU
  ( ) ( ) ( )=

+
 (3.361)

 t U t tU = ( )  (3.362)

Through employing the derivative properties of the unitary operator in 
U-picture and the Schrödinger picture of the statistical operator equation, 
it rewrites successively in the “U”-picture:
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  (3.363)

When comparing this U-equation for statistical operator with the corre-
sponding one within Schrödinger picture, one can immediately identify 
that the “rôle” of the Schrödinger Hamiltonian is played formally by:

 H� � � � �= + ∂( ) +
H i U t U tU t ( ) ( )  (3.364)

from where there is immediately get also the interesting relationship:

 i U t U t Ht U� � � � �∂( ) = −
+

( ) ( ) H  (3.365)

that, through right multiplication with the unitary operator, and using its 
basic definition, it provides a sort of Schrödinger equation for the unitary 
operator:

 i U t H U tt U� � � � �∂( ) = −( )( ) ( )H ; (3.366)

the last equation has the philosophical meaning that the unitary opera-
tor itself “travels” upon a Schrödinger type equation to transform the 
Schrödinger picture into other one, showing this way with necessity more 
fluidic (causal) features; moreover the “passage” between the two pictures 
is assured by their Hamiltonian difference.
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Let’s investigate the U-transformation for a general Schrödinger opera-
tor that is not Hamiltonian, say A; within Schrödinger picture it fulfills the 
conservation equation:

 i At� �∂( ) = 0  (3.367)

since in this picture operators are generally considered as non-time-depen-
dent. Yet, with the U-picture it becomes, repeating in an analogue manner 
as before for the statistical operator:
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  (3.368)

Putting side-by-side the two U-transformations, for statistical operator and 
for the general operator looks synthetically like:

 i W t Wt U U� � � �∂ = 



( ) ,H  (3.369)

 i A t H At U U U� � � � �∂ = −



( ) ,H  (3.370)

from where for the specialization

 H = HU  (3.371)
they behave as

 i W t H Wt U U U� � � �∂ = 



( ) ,  (3.372)

 i A tt U� �∂ =( ) 0  (3.373)



Postulates of Quantum Mechanics: Basic Applications 251

that recovers exactly the Schrödinger picture since the unitary operator is 
now reduced to the constant:

 i U t U t ctt� � � �∂( ) = ⇒ = =( ) ( )0 1 (3.374)

being this the only solution fulfilling all of the unitary operator constraints 
(norm, initial conditions, etc.).

With this appears the question of the U-transformation of the unitary 
operator in Schrödinger picture (3.310); for doing this one has to employ 
the evolution equations in Schrödinger- and U-pictures, respectively as:

 t U t t t= ( ) , 0 0  (3.375a)

 t U t tU = ( )  (3.375b)

to combine them in the transformation:

 U t t t t U t t U t U t t tU U
   , ,0 0 0 0( ) = = ( ) = ( ) ( )  (3.376)

or in the even more general one
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  (3.377)

Releasing with the (expected) U-transformation for Schrödinger unitary 
operator:

 U t t U t U t t U tU
   , ,0 0 0( ) = ( ) ( ) ( )+  (3.378)

Next, let’s see its equation of motion throughout performing the appropri-
ate derivative following the above exposed line of derivations:
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Therefore, we form the U-transformed equation for the Schrödinger uni-
tary operator:
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t U U
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 (3.380)

from where the whole previous section problem the time-dependent 
Hamiltonian arises; it may be eventually resumed with the general solution:

 U t t T i dU

t

t
� �

�
�, exp ( )0

0

( ) = −








∫H τ τ  (3.381)

or through Born series when expanded H in time-perturbation terms.
Finally, the particular Heisenberg picture may be gained fro the 

U-picture for the special choice of the unitary operator:

 U t U t t e U t tHei

i H t t� � ��
�

( ) = ( ) = = ( )
−( ) +

0 0
0, ,  (3.382)

that is expected to produce the same effect on Schrödinger picture as the 
classical inverse (vectorial) composed (relative) motion, i.e., through 
passing from the inertial (Laboratory) to the non-inertial (Mass-Center) 
system. The first effect of such transformation regards the state vectors 
that now behave like:

t U t t U t U t t t U t t U t tI Hei Hei= ( ) = ( ) ( ) = ( ) ( )
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so that producing no movement or evolution of them; in Parmenides’ 
Greek philosophical paradigm “the river was stopped, being transformed 
into a lake”. This may be further checked through computing the actual 
Hamiltonian:
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Replacing this result in above U-equations for statistical operator and the 
working operator, we find out that within Heisenberg picture we have sta-
tionary projectors or statistical operators:

 i W t W W t t t ctt Hei U Hei� � � � � �∂ = 



 = ⇒ = =( ) , ( ) .0 0 0 0  (3.385)

while the general operators are the only objects in the Hilbert space that 
are still evolving, however upon the resulting equation:

 i A t H A H At Hei Hei Hei Hei Hei� � � � � � �∂ = −



 = − 



( ) , ,0  (3.386)

In ontological terms, within Heisenberg picture the observables (that cor-
responds with the quantum operators) are those that are in moving, or 
in Parmenides’ picture: “we are measuring or observing (or fishing) the 
quantum phenomena through moving on the lake of stationary quantum 
states (eigen-states)”.
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3.6.3 QUANTUM TRANSITIONS: INTERACTION PICTURE

Having discussed the quantum evolution in terms of unitary and statisti-
cal operators we can make the further step towards describing quantum 
transitions. The starting point stays, as already custom with, on the unitary 
evolution action on given initial state:

 t U t t t= ( ) , 0 0  (3.387)

that support the writing of the statistical operator at some evolution time 
and state:
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0

,,t0( )  (3.388)

With the help of this temporal statistic operator one may write the average 
of an observable A, in a given representation 1 n n

n n{ } = ∑ , on selected 
state t  of a measurement as:
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= ( )Tr  (3.389)

introducing the so-called trace functional with the definition:

 Tr •( ) = •
{ } ∑ 

n n
n n  (3.390)

with the following elementary properties:
• Tr •( )  is invariant respecting the spectral basis of representation:
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and the proof can be extended also to the continuum spectrum (with asso-
ciate closure relation), as well between any representations.

• Tr •( )  absorbs the multiplication with a constant:

 α α αTr Tr CA A ( ) = ( ) ∈,  (3.392)

• Tr •( )  is distributive along the operatorial summation:

 Tr Tr TrA B A B   +( ) = ( ) + ( )  (3.393)

• Tr •( )  is invariant under commutativity of operators:

 Tr Tr TrAB BA A B     ( ) = ( ) ⇔ 



( ) =, 0 (3.394a)

as can be immediately shown:
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• Tr •( )  is normalized for the statistical operator at any time, due to the 
Parceval closure relation

 Tr W t t W t t t t t t t t
t t t

 ( ) ( )( ) = = = =∑ ∑ ∑ 2
1  (3.395)

Other properties will be unfolded later with the occasion of density matrix 
quantum formalism. For the moment we use this operatorial property to 
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make the remark that while fixing the initial and final quantum states 
through the statistical operator and projector, respectively as:

 W t ti
 = 0 0  … evolution … Λ f f f=  (3.396)

we have that

 Tr W i f
 Λ( ) = 0  (3.397)

since the initial and final states are considered orthogonal (because are 
independent), t f0 0= , while when considered the time-dependent 
statistical operator W t( )  the so-called quantum transition probability is 
defined as:
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Λ

Λ
00
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with the help of which the rate of transition may be introduced as well by

  (3.399)

Worth remarking that, the statistical operator takes the crucial role in 
carrying the entirely quantum evolution, from initial state to the end. In 
this respect, there seems it may hidden an even more crucial information 
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that links the stationary (equilibrium) states with those being engaged in 
(temporal) evolution.

Therefore, the statistical operator may be firstly written in a way char-
acterizing the stationary (equilibrium playing the role of some initial 
state), as earlier introduced

 W Z HQS
 ( ) expβ β= −( )−1  (3.400)

from where, in order the unitary (normalization) condition for its trace to 
be respected,

 1 = ( )Tr W( )β  (3.401)

one gets the operational definition for the quantum statistical partition 
function:

 Z e n e nQS
H H

n
= ( ) =− −∑Tr β β   (3.402)

in terms of the trace function, computed on the spectrum of the Hamiltonian 
involved.

Secondly, for time-dependent statistical operator, a similar relation may 
be heuristically write down as being in relation with the unitary operator

 W t Z U t t Z i H t tQM QM
� �

�
�( ) ( , ) exp ( )= = − −








− −1
0

1
0  (3.403)

that leaves, in the virtue of the same arguments as above, with the defini-
tion of the actual quantum mechanically partition function:

 Z e n e nQM

i H t t i H t t

n
=









 =

− − − −

∑Tr �
�

�
�( ) ( )0 0  (3.404)

Now, since the two statistical operators represent the same reality, since 
(in principle) any instantaneous state may be prepared as to become the 
initial state for further evolution (in this so-called adiabatic quantum 
evolution) their partition function should be equalized; that produces the 
so-called Wick rotation:

 t t i i
k TB

− = − = −0 



β  (3.405)
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that beyond of its mathematical (real-to-imaginary) continuation feature 
expresses the natural intrinsic reciprocal relationship between the time and 
temperature in quantum evolution. Yet this can be put in phenomenologi-
cal relation with the evolution of the Universe as a whole, see Figure 3.16.

For instance if one imagine the birth of the Universe from the time 
approaching the zero moment, but from it’s a priori side t t≤ →0 0 one 
gets that such moment correspond with an entirely excited picture of the 
Universe, with an infinite temperature, from where the natural (spontane-
ous and stimulated) emissions justify the earlier light sea coming from the 
“birth” of Universe. Instead, for very large times t t0 < → ∞ Universe cools 
down to its 0K ground state, from where, no emission is possible nor any 
absorption (if it is an isolated entity, as “Universe”), in accordance with 
the entropic principle as well. In between these extremes, both the quan-
tum evolutions as well as the emission-absorption processes - the “Life” at 
various non-extreme temperatures takes place. There is therefore remark-
ably how the quantum postulates imply consistent ideas about the ontol-
ogy of the Universe itself, being thus more than a set of (mathematical) 
rules but carrying also a lot of physics inside!

Returning to the transition probability it may be further evaluated as:
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FIGURE 3.16 The quantum evolution of the Universe from the quantum transition 
perspective, from birth to death, being characterized either by time and temperature 
changes based on the Wick rotation rule.
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representing the transition probability from the initial t0  to the final state 
f  as the square of the amplitude f U t t t , 0 0( )  of this transition.

The practical implementation of this formula is made through the 
so-called interaction picture – constructed as the Heisenberg picture 
of the non-perturbed problem, i.e., having for the U-transformation the 
Heisenberg particularization:

 U t U t U t t eHei

i H t t� � � �
�

( ) → ( ) = ( ) =
−( )

0 0

0 0,  (3.407)

With this, the evolution operator in the interaction picture is specialized 
from its general formulation

 U t t T i dInt Int

t

t
� �

�
�, exp ( )0

0

( ) = −








∫H τ τ  (3.408)

to its first order cut as:

 U t t i dInt Int

t

t
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�
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1

0 1
0

( ) = − ∫H τ τ  (3.409)

with the interaction Hamiltonian expressed as well in the first order of the 
time-dependent perturbation:
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  (3.410)

In these conditions the transition amplitude becomes in interaction picture:
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 (3.411)

The last step regards the effective computation of this expression for a 
periodic perturbation

 H F i F i
EMISSION ABSORPTION

� �
� �� ��

�
� ��� �1( ) exp expτ ωτ ωτ= ( ) + −( )

+

���  (3.412)

chosen so that to fulfill also the hermiticity condition for a quantum 
Hamiltonian, while accounting either for emission and absorption pro-
cesses in a quantum transition; this stands also for an indirect justification 
for that the two processes are intimately related. Yet, we can consider for 
convenience just one part of the above Hamiltonian to study emission and 
absorption separately.

As such, let’s consider the emission process only; thus we successively 
get for transition probability:
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  (3.413)

while for the rate of transition we have:

lim ( , ) lim ( , )/
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/
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00 0 
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where the delta-Dirac sinus-representation,
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  (3.415)

as well as the normalization-multiplication rule:

 δ δax
a

x( ) = ( )1  (3.416)

were considered.
In the similar manner, for absorption process one yield:

 lim ( , )/
( )

t Int Abs ft t f F t E E
→∞

+
= = − −( )R 1

0 0

2

00 2π δ ω
�

� �  (3.417)

From the condition both rate expression be non-zero there follows the 
Bohr transition rules (his second postulate); therefore they resulted as 
belonging to the present quantum evolution – interaction picture in the 
fist order of the periodic perturbation. Such output widely justifies why in 
practice the first order perturbation in most cases enough for realistically 
treating the quantum evolution; note that higher orders of perturbation will 
have higher orders of the Planck constant at denominator with the conse-
quence of drastically diminishing the nominal result – corresponding with 
a significant veiling of the observed/measured phenomenon.

3.6.4 GREEN FUNCTION AND ITS CAUSAL PROPERTIES

Back to the very quantum mechanically problem: the wave-function; how 
it is intimately related with the quantum evolution between two sets of 
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events, prepared or observed as “initial-final”, characterized by the coordi-
nates x t1 1,( ) and x t2 2,( )? The answer came from the generalization of the 
Huygens’ optical principle, according which the wave-front’s amplitude 
on the event point x t2 2,( ) is determined (thus causally) by the sum of all 
amplitudes generated by the wave oscillations on the earlier event x t1 1,( ). 
In terms of the wave-function this is transposed as follows (written in 1D 
for the shake of simplicity):

 ψ ψx t i G x t x t x t dx t t2 2 2 2 1 1 1 1 1 2 1, , ; , , ,( ) = ( ) ( ) >∫  (3.418)

Worth commenting upon this important relationship: firstly it introduces 
the so-called Green function with the role of bridging quantum events at 
the level of wave-functions; it was also earlier introduced with the same 
occasion of introducing wave-function formalism, however featuring here 
in a more formal and general fashion; it is as well related with the causality 
of events so that the above relation may be even more formally rewritten as:

 Θ t t x t i G x t x t x t dx2 1 2 2 2 2 1 1 1 1 1−( ) ( ) = ( ) ( )+∫ψ ψ, , ; , ,  (3.419)

thus explicitly specifying the causal ordering by the Heaviside-step func-
tion, while in this case the retarded Green function G x t x t+ ( )2 2 1 1, ; ,  was 
considered; In the case the advanced Green function G x t x t− ( )2 2 1 1, ; ,  is 
concerned the causal equation becomes:

 Θ t t x t i G x t x t x t dx1 2 2 2 2 2 1 1 1 1 1−( ) ( ) = − ( ) ( )−∫ψ ψ, , ; , ,  (3.420)

Both Green functions have the property of factorization or composing 
across the time slicing, for example, for the time ordering t t t2 1 0> > :
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  (3.421)
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and similarly for the time ordering t t t2 1 0< <

 G x t x t i G x t x t G x t x t dx− − −( ) = − ( ) ( )∫2 2 0 0 2 2 1 1 1 1 0 0 1, ; , , ; , , ; ,  (3.422)

from where one may inferred also the formal identity (their reciprocal con-
jugated conversion)

 G x t x t G x t x tb b a a a a b b
+ −( ) = ( ) , ; , , ; ,

*
 (3.423)

while their mixed product generates the delta-Dirac representation, e.g., 
for time ordering t t t2 1 0> < :
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  (3.424)

and similarly for the time ordering t t t2 1 0< >

 δ x x G x t x t G x t x t dx0 2 2 2 1 1 1 1 0 0 1−( ) = ( ) ( )− +∫ , ; , , ; ,  (3.425)

However, from now on we will consider only retarded Green function if 
not otherwise indicated; yet, when do so, we practically consider it equiva-
lent with the so-called propagator of quantum effects:

 G x t x t x t x t+ ( ) ≡ ( )2 2 1 1 2 2 1 1, ; , , ,  (3.426)

Another meaningful observation is that the Green function convolution 
(integration) with (source) wave-function is done upon the coordinate 
only in the basic definition, while the entirely time evolution is contained 
within the Green function. In relation with this aspect one may establish 
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also the Green function connection with the time evolution operator, 
through remembering that

 t U t t t2 2 1 1= ( ) ,  (3.427)

which may equivalently rewritten as in coordinate representation to 
recover the wave-function relationship:
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from where, by analogy with the above Green function definition there 
follows the connection:

 iG x t x t x U t t x2 2 1 1 2 2 1 1, ; , ,( ) = ( )  (3.429)

Therefore one may interpret the appearance of the Green function as related 
with the matrix elements of the evolution operator in the coordinate repre-
sentation in linking wave-function causality. Moreover, the above relation 
with evolution operator allows the formulation of the spectral representa-
tion for the Green function
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when the closure relation is inserted in the evolution operator matrix ele-
ments in terms of energy eigen-function ϕE x( ) from the spectrum of the 
systems Hamiltonian.
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In next, giving its intimacy with wave-function one may whish to 
establishing the Green function equation, i.e., the analogues of that spe-
cific to Schrödinger wave-function equation in coordinate representation:

 i x t H t x tt� �∂ ( ) = ( )ψ ψ, ( ) ,  (3.431)

this mat be achieved through applying the operatorial action [ ( )]i H tt� �∂ −  
over the, let’s say, the retarded Green function to obtain successively:
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  (3.432)

so that in order the end sides of this equality chain to hold for any wave-
function arguments there results that:

 i H t G x t x t x x t tt� � �∂ −



 ( ) = −( ) −( )+

2 2 2 2 1 1 2 1 2 1( ) , ; , δ δ  (3.433)

which obviously fulfills the above expressing and thus constitutes as the 
Green function equation, corresponding to the wave-function Schrödinger 
equation; note that in this derivation the delta-Dirac function representa-
tion as the derivative of the Heaviside step function was employed base 
don the complex integral representation of the last:
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There is clear now that the Green function formalism do not automati-
cally solve the initial Schrödinger problem, but replaces it with a more 
general one when also the causality of events counts. The passage from the 
retarded to advanced Green function equation can be easily made though 
the previously stipulated recipe.

Another important consequence of the Green function equation resides 
in the fact it introduces both the time- and coordinate- integration through 
the associate closure relation:
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the actual discussion opens the possibility of unifying the time and coordi-
nate integration measure into a single space-time one:

 ds dxdt= ,  s x t= ( ),  (3.436a)

 δ δ δs s x x t t2 1 2 1 2 1−( ) = −( ) −( )  (3.436b)

so that the Green function normalization relation simplifies as
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associate with the equation

 i H t G s s s st� � �∂ −



 ( ) = −( )+

2 2 2 1 2 1( ) ; δ  (3.438)

These forms may be further employed for the case the Hamiltonian of the 
system is considered as being composed from the free- and (time depen-
dent) perturbed part:

 H s H V s  ( ) ( )= +0  (3.439)
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in which case they are individuated for the free Green function G s s0 2 1
+ ( ); :
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 ( )+ ;  (3.440b)

while for the perturbed Hamiltonian we use them formally to consecu-
tively get:
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leaving with the identity among the free and full Green functions:

 G s s G s s G s s V s G s s ds+ + + +( ) = ( ) + ( ) ( )∫2 1 0 2 1 0 2 1; ; ; ( ) ;  (3.442)

with the notation:

 V s V s�
�
�( ) ( )=

1  (3.443)

as corresponding to the Lippmann-Schwinger equation for the Green 
functions or propagators. It emphasizes on the role the free Green func-
tion plays in determining the Green function of the perturbed systems. 
Moreover, seeing the potential appearance as a scattering process that 
affects (perturb) the free motion, the Lippmann-Schwinger equation may 
be unfolded through its iterative application generating the so-called 
Dyson series quoting the single, double, and multiple scatterings:

G s s G s s+ +( ) = ( )2 1 0 2 1; ;
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  (3.444)

There is immediate that having this Dyson series of Green function the 
wave function solution of the perturbed systems may be written according 
with the Huygens’ quantum principle as:
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telling that it may be regarded as the superposition of two waves: one 
unperturbed, free or plane wave ϕ s2( ), and one scattered, however writ-
ten in terms of the same unknown general wave-function. It represents the 
actual form (with Green function) for the earlier perturbed quantum state 
expansion by the Born series, from where follows the identifications:

 V H ≡ 1  (3.446)
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while the last will be proved bellow within a direct analytical context. 
Nevertheless, the analogy allows resuming the perturbed wave-function in 
terms of plane waves:

 ψ φ( ) ;+ +( ) = ( ) ( )∫s i G s s s ds2 2 1 1 1  (3.448)

with the help of which one may construct also the so-called scattering 
matrix (S-matrix) through representing it on some final (free or plane) 
state f f x t( , )2 2  by means of bra-ket convolution:
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that may be simplified recognizing that some of involved integrals may be 
rearranged so that to systematically apply the Huygens rule, for instance:

 G s s s ds i si t t i0 2 1 1 1 2
2 1

+

>
( ) ( ) = − ( )∫ ; φ φ  (3.450a)
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( ) ( ) = − ( )∫ ; φ φ  (3.450b)

this way producing the result:
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in terms of perturbation potentials and free Green functions at various scat-
tering events, in various scattering modes, i.e., no scattering-the first term, 
single scattering – the second term, double scattering –the third terms, etc., 
averaged over the initial and final (ad infinitum, in past and future times) 
plane waves:

φ
π

ω
π

s i kx t i px Ets x t( ) = −( )  = −( )



=( , )

exp exp1
2

1
2 



 (3.452)

However for that the present theory be complete a special discussion on 
the free Green function and of its analytical forms is compulsory; it will be 
undertaken in what follows.

3.6.5 FREE PARTICLE’S PROPAGATOR

There are many ways for evaluation and equivalent forms of free Green 
function. Here, we will start with evaluating its Fourier transformation

G x t x t dpdE G p E i p x x0 2 2 1 1 2 0 2 1
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+ +( ) =
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  (3.453)

through the successive identities, starting with the associate Schrödinger 
like equation:
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×
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while from the delta Dirac definition we have

 



 

δ δ
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x x t t dpdE i p x x i E t2 1 2 1 2 2 1
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  (3.455)

From the need the two expressions be equivalent we find the momentum-
energy retarded free Green function as:

 G p E
E p

m
i

0 2

2

+ ( ) =
− +

, 

η
 (3.456)

where the analytic continuation follows the Feynman prescription in order 
to avoid energy singularity through the integration. This expression is in 
accordance with that one found from previous U-picture intervening in the 
Born series for treating the temporal perturbation in Lippmann-Schwinger 
equation.

With this the space-time free Green function becomes:

  (3.457)
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in terms of the (free) plane wave φp x t,( ), and where the integral represen-
tation of the step function was employed along its multiplication property

 Θ Θα α•( ) = •( ) >, 0  (3.458)

Remarkably, this expression is in accordance with the spectral expansion 
of the general Green function, however here adapted to the free motion 
case. This is another confirmation for that the momentum-energy free 
Green function takes indeed the above G p E0

+ ( ),  expression. However, 
going further with the free Green function evaluation in terms of plane 
wave, one yields the following transformations:

  (3.459)
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while the advanced free Green function will read
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−( )Θ t t1 2  (3.460)

Finally, worth noting that the 3D generalization is straightforward and the 
result may be at once written down from the 1D analysis by the propagator:
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r r
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 (3.461)

The free propagator plays an important role in path integral formulation 
of quantum mechanics and will be reloaded with that occasion soon bel-
low. Yet, it remains the problem of assigning the free Green function the 
stationary expression, i.e., when is not viewed as a propagator, a matter 
that will be as well unfolded later when describing the scattering process 
as a measurement tool for quantum phenomena, see the last postulate of 
quantum mechanics in this chapter.

3.7 STATIONARY PERTURBATIONS

The physical reality shows that systems, even at microscopic level, are not 
isolated, but subjects of various perturbations. While temporal perturba-
tions were treated within causal motion by the preceding postulate, the 
stationary ones are the subject of the present discourse:

The stationary perturbations are those that do not affect the system 
structure but only its eigen-spectrum (eigen-energies and eigen-functions).

Analytically, this postulate may be formulated through the coupling 
Hamiltonian:

 H H H  ( )λ λ= +0 1 , λ ∈[ ]0 1,  (3.462)

whose associate eigen-problem

 H( ) ( ) ( ) ( )λ λ λ λΕ Ε Ε=  (3.463)
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has the eigen-solutions

 Ε( )λ λ λ= + +0 1 22

ISOLATED
STATE

FIRST
CORRECTED
STATE

SECOND
CORRE

 

CCTED
STATE



+ ...  (3.464)

 Ε Ε Ε Ε( ) ( ) ( ) ( )λ λ λ= + +0 1 2 2

UNPERTURBED
ENERGY

FIRST
ORDER
ENERGY

S
 

EECOND
ORDER
ENERGY



+ ...  (3.465)

as eigen-state and eigen-energy λ-(coupling)expansions.
However, the problem is to express the corrected terms of perturbation 

is terms of eigen-energies and wave functions of the non-perturbed (iso-
lated) system, assumed with the complete determined solution. Yet, note 
that the perturbed eigen-function are not per se normalized, the normaliza-
tion procedure being reload for each order the preservative approximation 
is considered.

The general algorithm of finding eigen-energies and states as well as 
some basic atomic, molecular and free solid states applications follows.

3.7.1 GENERAL PERTURBATION ALGORITHM

Let’s consider the non-degenerate non-perturbed discrete (stationary) 
solved problem

 H k k k


0 ε ε ε=  (3.466)

whose eigen-states made the ortho-normalized basis:

 ε ε δj k jk=  (3.467)

 1
1



ε ε εk k k
k
k

{ }
=
∈

∞

= ∑
N

 (3.468)

In these conditions, the perturbed eigen-states are generically written as a 
superposition of all non-perturbed eigen-energies:

 Ε( ) ( )λ λ ε= ∑ck k
k

 (3.469)
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while the perturbation itself is comprised in the coefficients’ expansion 
upon the above recipe:

 c c c ck k k k( ) ...( ) ( ) ( )λ λ λ= + + +0 1 2 2  (3.470)

With this specialization, the perturbed eigen-problem equivalently 
becomes:

 (3.471)

from where, by equal power of coefficients one successively gets the 
cut-offs:

Order (0):

 c j j
( ) ( )0 0 0Ε −  =ε  (3.472)

Order (1):

 Ε Ε( ) ( ) ( ) ( ) ( )0 1 1 0
1

0−  + = ∑ε ε εj j j j k k
k

c c H c  (3.473)

Order (2):

 Ε Ε Ε( ) ( ) ( ) ( ) ( ) ( ) ( )0 2 1 1 2 0
1

1−  + + = ∑ε ε εj j j j j k k
k

c c c H c  (3.474)

…
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Order (p):

Ε Ε Ε( ) ( ) ( ) ( ) ( ) ( ) ( )...0 1 1 0
1−  + + + =− ∑ε ε εj j

p
j
p p

j j k k
p

k
c c c H c  (3.475)

Let’s now analyze each order in perturbation, based on the above separate, 
however somehow iterative, equations.

Order (0): The solution of this (unperturbed) problem is immediate:

 Ε( )0 = εn  (3.476)

recovering the whole isolated energy spectrum, while for the wave-func-
tion reads as:

 Ε( ) ( )
!

0 0= =∑ck k
k

nε ε  (3.477)

from where there follows the necessary identity:

 ck kn
( )0 = δ  (3.478)

so that the 0th order equation is verified as:

 c j j jn n j
( ) ( )0 0 0 0Ε −  = ⇔ −  =ε δ ε ε  (3.479)

Order (1): Here, apart of employing the results of the order (0) perturba-
tion analysis, two cases are distinguished, namely one in which the asso-
ciate equation is specialized for some j n=  in the non-perturbed discrete 
spectrum that gives:

 ε ε δ ε ε δn n n nn n k kn
k

c H−[ ] + = ∑
0

1 1

1

1��� �� �
�( ) ( )Ε  (3.480)

releasing the first order energy perturbation

 Ε( )1
1= ε εn nH  (3.481)

as the average of the perturbation Hamiltonian over the non-perturbed 
eigen-states, while emphasizing on impossibility of cn

( )1  evaluation since 
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canceling its energy multiplication, but assumed with indeterminate 
expression:
 cn jn

( ) ( )1 1= δ Ζ  (3.482)

Instead, for the case in which j n ≠  the corrected energy vanishes while 
allowing the determination of the first order perturbation coefficient:

 ε ε δ ε ε δn j j n j n j k kn
k

c H−  + =≠ ≠ ∑( ) ( )1 1

0

1Ε �
�  (3.483)
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 (3.484)

Combining both cases the first order perturbation coefficient of the per-
turbed wave-function looks like:

 c
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 (3.485)

Order (2): The same procedure as for the previous order applies, however 
with a supplemented degree of complication since considering the results 
and cases raised from lower orders. As such, for the j n=  case the original 
equation of second order perturbation unfolds as:
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until the expression of the second order energy perturbation:

 Ε( )2
1

2

=
−≠

∑
ε ε

ε ε
k n

n kk n

H
 (3.487)

while leaving, as before, the j n=  second order coefficient of wave-func-
tion expansion as undetermined:

 cn jn
( ) ( )2 2= δ Ζ  (3.488)
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Analogously, the j n ≠  case leaves with the second order coefficient deter-
mination while canceling the associate energy:

  (3.489)

Combining both cases we can write for the second order coefficient of 
perturbed wave-function the general expression:
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  (3.490)

Now, worth making the observation according which the corrections Ζ( )1  
and Ζ( )2  are not entering the perturbed energies corrections, thus may be 
principally set as being equal with zero (0) since they do not affect the 
perturbed spectra. Moreover, there can be easily proved that such choice is 
equivalent with condition that perturbed states are orthogonal on the non-
perturbed eigen-states: if one defined the “p” order states as:

 p ck
p

k
k

= ∑ ( ) ε  (3.491)
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and the “p” undetermined correction coefficient as:

Ζ( ) ( ) ( ) ( ) ( )p
k n
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k
p
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k
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n k
k

n k
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k
k

p

nc c c c p= = = = == ∑ ∑ ∑δ ε ε ε ε ε
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 (3.492)

there is immediate that the condition:

 0 0 1= = ∀ ∈{ } ∈{ }Ζ( ) , &p
n n

spectra spectra
p H p Hε ε    (3.493)

leaves with the physical condition that the Hilbert (sub)spaces of the iso-
lated and perturbation Hamiltonians are orthogonal, , thus 
allowing their direct product to be reproduce the whole-problem spectra 
(levels and states) of the perturbed system:

  (3.494)

With this remarkable result, the full perturbed ( )λ =1  energy and wave 
function may be written as the series:
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while, usually, in practice, there are retained only the expansion until the 
second order in energy and the first order in wave-function, respectively. 
Even so, the calculations imply the evaluation of all matrix elements 
ε εk nH1 , being a non-trivial job unless some of them are identically 

null (as is the case of harmonic oscillator, see the Section 2.4.6).
Other special appearances of the stationary perturbations are to be 

exposed in what following for some paradigmatic physical situations.
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3.7.2 THE ZEEMAN EFFECT

The problem of degenerate levels requires the reformulation of the per-
turbation upon the isolated systems by considering them characterized by 
the vector states Ε( ) ,0 a , in terms of the multiplication factor a equaling 
the degree of degeneration g( )( )Ε 0  of a given level from the non-perturbed 
spectrum:

 H a a

0
0 0 0Ε Ε Ε( ) ( ) ( ), ,=  (3.497)

Moreover, since this degeneration it can be considered itself as constitut-
ing a base defining a sub-Hilbert space the entire non-perturbed eigen-
state my be unfolded on it as

 0 1 0 00
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a

g

a a  (3.498)

of which Fourier coefficients Ε( ) ,0 0a  are to be determined out through 
the perturbative treatment.

As such, one has to reconsider the perturbation of the isolated eigen-
problem, according with the general perturbation recipe, to be equiva-
lently cast as:
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in terms of the perturbed states:

 p ck
p

n
k

= ∑ ( ) ε  (3.500)

written from the un-perturbed eigen-states, see the previous section.
The identification of equal orders of perturbation coupling releases 

with the respective eigen-problems:
Order 0:

 H 0
00 0= Ε( )  (3.501)

is automatically satisfied by the unperturbed system (and spectra).
Order 1:

 H H 

0
0

1
11 0 0−( ) + −( ) =Ε Ε( ) ( )  (3.502)

Order 2:

 H H 

0
0

1
1 22 1 0 0−( ) + −( ) − =Ε Ε Ε( ) ( ) ( )  (3.503)

…
Order p:

H p H p p p
 

0
0

1
1 21 2 0 0−( ) + −( ) − − − − − =Ε Ε Ε Ε( ) ( ) ( ) ( )...  (3.504)

While the restriction to the first order will define the so-called the first 
Zeeman approximation, for all perturbed states may be imposed the con-
dition that their eigen-vectors be orthogonal on those (and on any) of the 
unperturbed system:

 p aΕ( ) ,0 0=  (3.505)

as prescribed by the general perturbation algorithm (see the previous sec-
tion). Yet, even without this condition the Zeeman approximation leads 
though left composition with degenerate states Ε( ) ,0 a  with the equivalent 
forms:

Ε Ε Ε Ε( ) ( ) ( ) ( ), ,0
0

0 0
1

11 0 0a H a H −( ) + −( ) =
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  (3.506)

that is nothing else than a g( )( )Ε 0  dimensional system for the searched 
Fourier coefficients in the base of the unperturbed degenerate vectors 
Ε( ) ,0 a . The system admits non-zero solution only if exists an unperturbed 
vector, which for certain value of Ε( )1  the determinant of the homogeneous 
system vanishes:

 det , , '( ) ( )
'

( )Ε Ε Ε0
1

0 1 0a H a aa
 −



 =δ  (3.507)

This is an algebraic equation of order g( )( )Ε 0  that may have as many dis-
tinct solutions or with some of them still equal (still degenerate), say:

 Ε Ε Ε1
1

2
1 1

1 2

( ) ( ) ( ), ,...,
↓ ↓ ↓
g g

s

gs

 (3.508)

while still preserving the summation condition according which their par-
tial degeneracies has to sum up into the total degeneration number:

 g g g gs1 2
0+ + =... ( )( )Ε  (3.509)

There will be said that the perturbation takes off the degeneration of the 
level Ε( )0  if s >1, that is the unperturbed level is split out into its multiplic-
ity or on some part of it. This phenomenon is called the Zeeman effect and, 
most remarkably, appears even in the first order of perturbation, as above 
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described. If we have s g= ( )( )Ε 0  there it is said that the degeneration is 
completely removed, through splitting the unperturbed level in g( )( )Ε 0  
levels with one multiplicity. Of course, when 1 0< <s g( )( )Ε  the degenera-
tion is only partially removed (or solved) by applied perturbation.

However, once the system is solved and the perturbed energies deter-
mined in terms of the matrix elements Ε Ε( ) ( ), , '0

1
0a H a  the recorded 

energy of a given level is then given by shifting the unperturbed spectrum 
with the computed correction:

 Ε Ε Εi i= +( ) ( )0 1  (3.510)

Note that the one-to-one correspondence between the first order correction 
energies and the matrix elements of the perturbation Hamiltonian in the 
basis of the degenerate unperturbed system,

 Ε Ε Εa a H a a( ) ( ) ( ), , '1 0
1

0↔ =  (3.511)

may take place only if the perturbation Hamiltonian commutes with the 
set of operators whose eigen-values generates the degeneration of Ε( )0 , say

 H A ii
 

1 0, ,



 = ∀  (3.512)

meaning that they share the same eigen-states basis for the eigen-problem

 H a aa


1
0 1 0Ε Ε Ε( ) ( ) ( ), ,=  (3.513)

Indeed in such situation one has:
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 (3.514)

and the above determinant equation rearranges in the diagonal manner as

 det '
( ) ( )

'Ε Εa aa
1 1 0−( )  =δ  (3.515)

leaving with the simple polynomial:
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( )
∏  (3.516)
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and therefore with the complete removal of the degeneracy through the 
g( )( )Ε 0  different solutions for the first order energy correction:

 Ε Ε1
1 1

1

( ) ( )= a , ..., Ε Εi ai
( ) ( )1 1= , …, Ε Ε

Ε Εg a
g

( ) ( )

( ) ( )
0 0

1 1

( ) =
( )

 (3.517)

This procedure can be repeated when the second order of energy correc-
tion is considered, however with the caution that the degeneracy of the 
first order corrections may appear as well, while in most cases the first 
order algorithm is enough for modeling the Zeeman’s effect.

3.7.3 NUCLEAR ISOTROPIC CORRECTIONS ON HYDROGENIC 
ATOMS

Another interesting effect is that produced on the ground state (in the first 
instance) energy of the hydrogenic atoms by the fact the nucleus is no 
more considered as a point-like, but having its charge distributed either 
(say uniformly) on its volume or on its surface. In what follows we will 
explore for both the uniformly volume and surface nuclear distributed 
charge how much such physical model perturbations will affect the hydro-
genic ground state energy

 ε0
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a
= − , e e

0
2
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 (3.518)

within the radial normalized ground state wave function
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  (3.519)

Note that considering the involved parameters as belonging to the realm:

• Nuclear radius R m≅ −10 15[ ] ;
• First Bohr radius a m m0

10 110 5 10 5 10≅ ⋅ = ⋅− −. [ ] [ ]
• Hydrogenic average atomic number Z ≅10

we have in practice that for values around the nuclear frontier we may 
consider that
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thus limiting the above wave-function to the working one

 ψ10
0

3 2
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r Z
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  (3.521)

Above this the main problem is to establish the form of the (radial) pertur-
bation Hamiltonian H r

1( )  with the help of which the first order correction 
energy writes generally as:
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with the actual working specialization:
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Now, since the perturbation Hamiltonian stands in fact as an interaction 
potential (energy) H r1( ) created by a charge field it has to be firstly related 
with the potential function ϕ( )r  by the definition relations
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0 1
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2
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Next, the potential function is at its turn to be determined though the 
electric field – gradient of potential relationship (derived from the force-
potential one):
 



E grad= − ϕ  (3.525)

which in radial coordinates rewrites:

 E d
dr

d E drr r= − ⇔ = −
ϕ

ϕ  (3.526)
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from where it unfolds as

 ϕ( )r E dr ctr= − +∫  (3.527)

The remaining radial electric field is to be derived in terms of charge 
source and the geometrical conditions through the Gauss fundamental law 
of electrostatics in integral version as well:

 
� �
� EdS Q
∫ =

ε0

 (3.528)

that in spherical symmetry (as assumed fro nucleus either in volume or 
surface charge distribution), i.e., 



E E ctr= = , simply becomes

 E n dS Q
r r

r

� �
����∫ =

4
0

2π
ε

 (3.529)

recovering the classical Coulomb field law:

 E Q
rr =

1
4 0

2πε
 (3.530)

Now, depending on the type of charge distribution one has to follow the 
reverse step until recognizing the perturbation Hamiltonian and to use it 
in calculating the isotropic nuclear charge correction(s) on the (ground 
states) unperturbed energies of hydrogenic systems.

1. Let’s start with the case of uniformly (isotropic) nuclear charge dis-
tribution in volume. Yet, we have to consider the situations r R<  and 
r R≥ . The last situation is immediately recognized from the Coulomb 
law on the basis that all charge sources “behind” the action horizon may 
be treated as “point like sources”:

 E Q
rr R

V
≥ =

1
4 0

2πε
 (3.531)

The electric field inside the nuclear volume has to take into account that 
while delimiting an inner volume with radius r R<  it contains at its turn the 
charge proportional with the volume encompassed, whose proportionality 
constant is represented by the uniformly volume distributed charge density:

 ρ
πQ
Q
R

=
3

4 3  (3.532)
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with this we have the effective inner charge

 Q r Q r
Rr R Q< = =ρ π

4
3

3
3

3  (3.533)

that provides the inner electric field as well:

 E Q
r

Q
R
rr R

V r R
<

<= =
1

4
1

40
2

0
3πε πε

 (3.534)

Once having the electric field the stage of potential function may be under-
taken. Firstly, for the outside nuclear filed we obtain:

ϕr R
V

r R
V

r Rr E dr ct≥ ≥ ≥= − +∫( )

 = − + = +∫ ≥ ≥

Q
r
dr ct Q

r
ctr R r R4

1
40

2
0πε πε

 (3.535)

with the associate constant found through the asymptotic (natural) 
condition

 ϕr R r Rr ct≥ ≥→ ∞ = ⇔ =( ) 0 0  (3.536)

thus leaving with the working potential function:

 ϕ
πεr R

V r Q
r≥ =( )

4 0

 (3.537)

Analogously, for the inner potential function we firstly get:

ϕr R
V

r R
V

r Rr E dr ct< < <= − +∫( )

 = − + = − +∫ < <

1
4

1
4 20

3
0

3

2

πε πε
Q
R

rdr ct Q
R
r ctr R r R  (3.538)

while the actual constant of integration is searched through the boundary 
equivalent potential condition on the nuclear surface:

 ϕ ϕ
πεr R

V
r R
V

r Rr R r R ct Q
R< ≥ <= = = ⇒ =( ) ( ) 3

2
1

4 0

 (3.539)
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the resulting inner potential function looks therefore like:

 ϕ
πεr R

V r Q
R

r
R< = −









( )

4
1 3

2 20

2

2  (3.540)

Both inner and outside potential function solutions may be reunited with 
the help of Heaviside step function

 ϕ
πε πε

V r Q
r

r R Q
R

r
R

R r( ) = −( ) + −








 −( )

4 4
1 3

2 20 0

2

2Θ Θ  (3.541)

that may be further rearranged employing the step function property:

 Θ Θ•( ) + − •( ) =1 (3.542)
to be cast as

 ϕ
πε πε

V r Q
r

Q
R

r
R r

R r( ) = + − −








 −( )

4 4
3

2 2
1

0 0

2

3 Θ  (3.543)

Now, identifying the nuclear charge

 Q Ze=  (3.544)

and writing the total Hamiltonian as above defined in terms of potential 
function,

 

H r e r

Ze
r

Ze
r

Ze
R

r

V V

H r

( ) ( ) ( )

( )

= −

= − + − −

ϕ

πε πε πε

2

0

2

0

2

0

2

4 4 4
3
2

0

��� �� 22 2R
R r



















 −( )Θ  (3.545)

from where identifying the perturbation contribution

 H r Ze
r

Ze
R

r
R

R rV
1

0
2

0
2 2

2

3
2 2

( ) = − −


















 −( )Θ  (3.546)

In these conditions there is now immediate to evaluate the hydrogenic 
ground state energy correction due to nuclear spatially extent interaction:

Ε1
1

0

3
2

1
0

4( ) ( )V VZ
a

r H r dr=








 ∫

∞
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∞
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Z
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Z
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�Ε11
1

4
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0
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2

0

2
2

0
2
5

4
5

( )V ZZ e
a

R R
a

Z= = −








 ε  (3.547)

a result showing that the correction is indeed no significant since

 4
5

4
5

10
25 10

10 3 10 0
0

2
2

30

22
2 8R

a
Z









 ≅

⋅
≅ ⋅ ≅

−

−
−  (3.548)

as the actual atomic-nucleus environment implies.
2. Let’s see whether the situation changes in the situation the nuclear 

charge is uniformly localized on its (assumed spherical) surface only. In 
this situation the potential function may be directly abstracted from the 
previous calculations to have the branches:

 ϕ
πε

πε

S r

Q
R

r R

Q
r
r R

( )
,

,
=

≤

>










4
1

4
1

0

0

 (3.549)

that can be reunited in a single expression due to the step function:

 

ϕ
πε πε

πε πε

S

R r

r Q
r

r R Q
R

R r

Q
r

Q

( ) = −( ) + −( )

= +

− −( )
4 4

1

4 4

0 1 0

0 0

Θ Θ
Θ

��� ��

11 1
R r

R r−





 −( )Θ  (3.550)

providing as above the associated nuclear surface containing Hamiltonian 
(with Q Ze= ):

H r e rS S( ) ( ) ( )= − ϕ
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 = − − −





 −( )Ze

r
Ze

R r
R r

H r

0
2

0
2

0

1 1

( )


Θ  (3.551)

Once the surface perturbation Hamiltonian being identified as:

 H r Ze
r R

R rS
1 0

2 1 1( ) = −





 −( )Θ  (3.552)

the first order correction energy to the hydrogenic ground state yields, like 
before, through shrinking the infinite interval of radial integration to that 
recommended by the Heaviside step function Θ R r−( ), i.e., 0 ≤ ≤r R, to 
the equivalent expressions:
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0

3
2

1
0

0

3

0
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2

4

4

( ) ( )S SZ
a

r H r dr

Z
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 ∫
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Z e
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R R
a

Z
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S Z

0

1
1

4
0
2

0
3

2

0

2
2

0
2
3

4
3

;

( )
Ε ε  (3.553)

a result very similar with that obtained in the volume charge distribu-
tion approach, with the same insignificant effective contribution to the 
hydrogenic ground state energy, since caring the same 10 8−  order as before 
although with a smooth higher multiplication factor:

 




Ε
Ε

1
1

1
1

4
3

5
4

5
3

1 67 1
( )

( ) .
S

V = = ≅ >  (3.554)

Similar correction cases, either in higher orders or on excited hydrogenic 
states, may be considered following the same line of analysis however 
with the same principally conclusion that they do not in fact contribute to 
the real shift (or perturbation) of the hydrogenic atoms within the point 
like nucleus framework; this leads with the idea that indeed, for atomic 
and supra-atomic systems the point like hypothesis of the nucleus finely 
works and will be in next assumed as such (for instance when treating the 
chemical bonding by means of the Dirac theory, see next chapters).
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3.7.4 HARMONIC OSCILLATOR PERTURBATIONS

The perturbation algorithm for energy corrections may be applied for any 
completely solved isolated system, of which, apart of hydrogenic ones, 
the harmonic oscillator represents an important application for modeling 
molecular open states. There will be considered two cases of perturba-
tions: one having the symmetric coordinate perturbation, while the second 
is linear in coordinate with a constant that may represent some external 
electric intensity.

1. Starting with the harmonic oscillator with the unperturbed Hamil- 
tonian

 H p
m

k
x� � �

0

2
2

2 2
0= + ω ,  k mω ω

0 0
2=  (3.555)

with the associate spectrum

 ε ωn n n= +





 ∈ 0

1
2

, N  (3.556)

one searches for its correction produced by the existence of the perturba-
tion Hamiltonian:

 H b x b� �
1

2

2
= ∈, R  (3.557)

The direct way of determining the spectrum corrections relays on compos-
ing the total Hamiltonian as

 H H H p
m

k b
x� � � � �= + = +

+
0 1

2
2

2 2
0ω  (3.558)

and to identify from it the new oscillating frequency (due to inclusion of 
perturbation) throughout

 

k b m

k b
m

k
m

b
k

b
k

ω

ω ω

ω
ω ω

ω

ω ω

0

0 0

0

0 0

2

01 1

+ =

⇒ =
+

= + = +


 (3.559)
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which can be expanded in series up to the desired order, say two, in 
terms of “b” perturbation, using the series expansion according with the 
McLaurin formula

 1 1
2 8

2

+ • ≅ +
•

−
•  (3.560)

to obtain the perturbed frequency:

 ω ω
ω ω

≅ + −








0

2

21
2 8

0 0

b
k

b
k

 (3.561)

and then by means of direct substitution back on the original spectra the 
perturbed energy is provided

 Εn n n n
b
k

b
k

≅ + −ε ε ε
ω ω2 8

0 0

2

2  (3.562)

from where the first and second energy corrections are individually identi-
fied as:

 Εn n
b
k

( )1

2
0

=
ω

ε  (3.563)

 Εn n
b
k

( )2
2

28
0

= −
ω

ε  (3.564)

Yet, there is noted that in fact no use of the perturbation algorithm was 
made in deriving these corrections; therefore some cross-check is require. 
This can be done either using the properties of Hermite polynomials in 
employing the wave-functions of harmonic oscillator, or, more elegantly, 
through further employing the quantum information contained into the 
Heisenberg matrix approach. For the future purposes the second way 
is here unfolded. We have to actually compute the matrices elements 
n H n

1  and n H n' 1 , n n, '∈N for computing the first and second order 
energy corrections, respectively. That means, we have in fact to compute 
the quantities n x n

2
 and n x n' 

2
, leading with idea that the coordi-

nate matrix [ ]x  has to be somehow further exploited from the Heisenberg 



294 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

matrix theory of harmonic oscillator. In this respect one may observe two 
important things with the coordinate [ ]Q  matrix derived in Section 2.4.6:

• The matrix is symmetrical due to the symmetry of the harmonic 
potential, thus allows identification

 q qn n n n− −=1 1, ,  (3.565)

with the help of which they can be computed from their combined rela-
tionship as:

 q q n
mn n n n− −= = =1 1

02, , ,α
α

ω
  (3.566)

to provide the rewritten of the harmonic oscillator coordinate matrix as:

 [ ]x =



















α
2

0 1 0
1 0 2
0 2 0

�
�
�

� � � �

 (3.567)

• This matrix may be seen as being composed by two different 
matrices,

 [ ] [ ] [ ]x a a= +( )+α
2

 (3.568)

one for the upper diagonal and other for the down diagonal rows of n 
quantum numbers; accordingly they may be eventually called annihilation 
[ ]a  and creation [ ]a+  matrices (with associate operators, of course) for the 
reason bellow revealed, however displaying like:

 [ ] ,a =



















0 1 0
0 0 2
0 0 0

�
�
�

� � � �

 [ ]a+ =



















0 0 0
1 0 0
0 2 0

�
�
�

� � � �

 (3.569)

In terms of operators, the coordinate operator relationship with annihila-
tion and creation operators reads

 x a a  = +( )+α
2

 (3.570)
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while for the matrix elements there is found through inspection of above 
matrices the operatorial rules:

 n a n n n n nn n' '',
 = = −−δ 1 1  (3.571)

 n a n n n n nn n' '',


+

+= + = + +1 1 11δ  (3.572)

assuming the quantum numbers’ combinations n n' ,= =( )0 1  and 
n n' ,= =( )1 0  so that at extreme the annihilation operator to act over the 

state with n =1 (i.e., to have something the “annihilate”) while the creation 
operator applies on the state with n = 0 (i.e., to have to create something 
from “ nothing”). Moreover, these combinations generates the first matrix 
element (equal to “1”) above and bellow the diagonal in matrices of anni-
hilation and creation operators (when the matrices structures are defined 
as beginning with 0th line and 0th column, respectively); as such, these 
matrices are said to be written in the particle’s “number” representation, 
since rooting on the quantum numbers. More details and extensions of 
these ideas are to be presented with occasion of many-body quantum sys-
tems discussion, latter on. For the moment one retains the annihilation and 
creation operatorial actions:

 a n n n = −1  (3.573)

 a n n n

+
= + +1 1  (3.574)

abstracted from above matrices’ elements.
For the shake of completeness, note that in the same manner the analy-

sis of the Heisenberg momentum matrix provides the particle’s represen-
tation as:

 [ ] [ ] [ ] ,p i i a a m=

−

−



















= −( ) =+β β
β ω

2

0 1 0
1 0 2
0 2 0 2 0

�
�
�

� � � �

�  (3.575)
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with the correspondent operatorial connection with creation and annihila-
tion operators:

 p a a� � �= −( )+α
2

 (3.576)

Now, having rewritten the coordinate matrix elements with the help of 
creation and annihilation matrix elements as well will highly help our 
perturbation calculation since preserving the absolute generality (i.e., not 
restraining the checking only to the ground state for instance) and involv-
ing the so-called “shifted diagonalization” or delta-Kronecker rules that 
elegantly select the mixed contributing states to the energy.

Let’s proceed with the first order correction to successively get:

  (3.577)
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thus regaining exactly the same expression as from direct series expan-
sion, nevertheless proofing both the perturbation as well as annihilation-
creation operatorial formalisms.

Going to checkout the second order correction we have to evaluate:

 Εn
n nn n

n H n
( )

''

'
2

1
2

=
−≠

∑


ε ε
 (3.578)

that it reduces to the matrix element n H n' 1 calculation, which devel-
ops as above to yield:
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δ

 (3.579)

thus selecting only the non-vanishing states n n' = + 2  and n n' = − 2  for 
which we separately have:

 n H n b n n+ = +( ) +( )2
16

1 21
2 2 4



α  (3.580)

 n H n b n n− = −( )2
16

11
2 2 4



α  (3.581)

Therefore we still need to evaluate the differences:

ε ε ω ω ω
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  (3.582)
so that the second order energy correction becomes:
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with an identical overlap with the result of the series expansion, thus 
confirming once more the reliability of the perturbation and annihilation-
creation algorithms.

2. When the perturbation over the harmonic motion is considered linear in 
coordinate, i.e., when

 H bx b� �
1 = ∈, R  (3.584)

the problem seems to be even more simpler under the total Hamiltonian 
influence
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 (3.585)

however appearing the problem whether the new coordinate operator 
x

#
 maintains the same commutation relationship with momentum, 
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a crucial matter in preserving the unperturbed harmonic spectrum. 
One has:

 p x p x b
k

p x p b
k

i

� � � � � �
�

�

�

, , , ,
#





= +












= 



 +









−
ω ω0 0 




= −

0
��� ��

�i  (3.586)

thus assuring the maintenance of the harmonic spectrum even with the 
shifter coordinate unperturbed Hamiltonian,

 H n nn

0
#

= ε  (3.587)

while the perturbed spectra is obtained employing the energy eigen-value 
problem for the whole Hamiltonian:

 H n H b
k

n b
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n nn n
 = −









 = −
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# !

ω ω

ε Ε  (3.588)

from where immediately follows:

 Εn n
b
k

= −ε
ω

2

2
0

 (3.589)

as the corrected energy of the harmonic oscillator with linear coordinate 
perturbation.

The only remaining point is the assessment of the order in which this 
correction appears, and this will be done through searching this result with 
the help of annihilation-creation approach. As such, for the first order cor-
rection we obtain:
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300 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

For the second order we need the non-diagonal matrix elements of the 
above terms

 n x n b n n n n n n
n n n n

' [ ' ' ]
', ',

�
��� �� ��� ��= + + + −

+ −

α

δ δ
2

1 1 1
1 1

 (3.591)

that select the proper states with n n' = +1 and n n' = −1 , and, as in the 
previous analysis we found out:

 n H n b n+ = +( )1
2

11
2 2 2



α  (3.592)
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α  (3.593)
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 (3.594)

so that we write
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�  (3.595)

thus identifying the present correction as being that of the second order.
We let for the reader to practice the similar perturbation problems 

in momentum, with the perturbation Hamiltonian taking the forms

H bp b p b px p b� � � � � �
1

2 4 2
= { } ∈, , , R , chosen so that to be hermitic, by using 

the annihilation-creation representation for the momentum operator and 
the associate rules.

3.7.5 QUASI-FREE ELECTRONIC MODEL OF SOLIDS

As we saw previously, see Sections 3.3.3, 3.4.3, and 3.5.3, in the solid state 
environment there seems to exists two equivalent types of wave-function 
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solutions, due to the large extension of the medium that allows the back 
and forth propagation of the electrons in a given eigen-state.

In free electrons approximation we actually consider the effective can-
cellation of the bulk and valence potentials for whose their states assumed 
as independent, i.e., orthogonal. Let’s reformulate here the free solution so 
that to allow more realistic potential of the system. Firstly, let’s separate 
the forth ( )+  and back ( )−  propagations by the normalized wave functions:

 Ψk x
L

ikx±( ) = ±( ) exp( )1  (3.596)

thus fulfilling the crystal domain ( )L  integration constraint:

 Ψ Ψk k

L

x x dx±( ) ±( )



 =∫ ( ) ( )

*

0

1  (3.597)

Yet, the boundary conditions, at the extremes of the crystal domain pro-
vide the geometric quantification of the wave-vector, as:

 

Ψ Ψk kx x L ikL

k n
L
n

±( ) ±( )= = = ⇔ =

⇒ = ∈

( ) ( ) exp( )

, *

0 1
2π N  (3.598)

However, due to the unit cell periodicity assumed (since observed) for a 
solid crystal, the whole domain (in 1D direction here) may be considered 
portioned to become:

 L a= ∈Ν Ν, *N  (3.599)

with a &Ν being the unit cell (1D) length and their number along the 
crystal, respectively. With this assumption the whole analysis may be 
restrained on the unit-cell level, so that the quantified wave vector reads:

 k n
a
nn = ∈

2π , *N  (3.600)

Nevertheless, this restriction has a fundamental consequence in estab-
lishing the so-called first Brillouin zone as the first (the so-called 
“ground”) quantified interval for the wave vector (of wave function 
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or packet), in a symmetric way so that comprising back and forth 
propagations:

 k
a an

Brillouin
= = − +





1
π π,  (3.601)

Finally, at the edges of this interval the above wave-functions are super-
imposed either as sum and differences to provide the normalized free elec-
tronic solution of motion in the unit cell of a periodic solid crystal:

 Ψ Ψ Ψe k a k ax x x
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/
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π  (3.602)

 Ψ Ψ Ψ0
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i
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x
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π π
π  (3.603)

One may immediately check that both these solutions satisfy the normal-
ization constraint:

 Ψ Ψ0
0 2

0

0 2

0

1( ) ( )



 = 



 =∫ ∫( ) ( )x dx x dx

L

e

L

 (3.604)

since employing the natural number nature of the quantity L a/ , see above. 
Moreover, these expressions represent a generalization of the previously 
considered single wave-function corresponding to the first eigen-value 
(see Section 3.3.3)

 εn nm
k= ==1

2

0
1

2

2
  (3.605)

in at least two ways:

• Firstly, the previously “sin” solution now is normalized to the whole 
crystal domain although with the behavior reduced to the single unit-
cell; the consistency is checked out through normalization condition 
along the entire crystal;

• Secondly, the previously “sin” solution is now accompanied by the 
“cosine” solution, equally valid, and corresponding to the same 
energy quantization; thus, the two eigen-functions represent a degen-
erate case of free electronic motion in solid!
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Such behavior of the free wave-function of electrons in solid greatly 
helps in establishing the form of the crystal bulk potential as well, consid-
ering it not entirely cancelled by that specific to the valence state. In other 
words, while representing the 1D atomic row in a crystal as in Figure 3.17, 
there is evident that the electronic crystal (perturbation) potential may be 
modeled in the same way as done for the wave-function, i.e., through con-
sidering it as a superposition (however here only as a sum) of the forth and 
back (Fourier) contributions:

V x V i nx a V i nx a V nx an n
n

n
n

( ) exp( / ) exp( / ) cos( / )= + −[ ] =−∑ ∑2 2 2 2π π π

  (3.606)

Note that this is a potential than acts in principle over entire spectra of 
electrons in crystal; thus, the perturbation of the “degenerate ground” level 
of the crystal looks like:

 H V x a

1 12 2= cos( / )π  (3.607)

This perturbation acts at once on both degenerate wave-functions of the 
ground level in a unit cell, producing the correction energies:

Ε Ψ Ψ1 0
1

0
0

1 0
0

0
[ ]
( ) ( ) ( )lim ( ) ( )=

→ ∫L a

L

x H x dx

FIGURE 3.17 The resulted 1D- crystal potential from combined atomic bulk Coulombic 
contributions (Putz, 2006).
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Eventually, their difference:

 Ε Ε1
1

1 0
1

12[ ]
( )

[ ]
( )

e V− =  (3.610)

corresponds to the gap produced by the perturbation potential of the bulk 
electrons in crystal, see Figure 3.18.

This results says that from above two free wave functions that once 
considered previously as “sin” plays the role of the lower “ground” state, 
while that with “cos” is the “excited” one in the crystal configuration; 
moreover, under the potential perturbation they separate in what is usu-
ally known in solid state theory as being the “valence” and “conduction” 
bands. We success therefore to construct this more realistic picture of the 
solid state crystals with the useful tool as stationary perturbation’ algo-
rithm is.

3.8 QUANTUM MEASUREMENTS

What means “to measure”? One possible answer is to create a deliberate 
interaction between the measured object and the measurement apparatus. 
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Then appears another question: “what is a measurement apparatus”? The 
answer is: that one that ideally obeys the physical laws. Yet, the question is 
“what is measurement process” – to which one can specify that the interac-
tion has to be enough significant so that a changing in measured state to be 
recorded; from this follows that the measured states are dynamical states. 
In conclusion: “what and how much can be measured”?

For better answering let’s analyze the experiment in which the resis-
tance of an electric circuit is measured through measuring the current 
intensity I and the nominal tension U. Classically, one is interested in 
intrinsic value of the resistance and not the state of the resistor; in this case 

FIGURE 3.18 Illustration of the removed degeneracy of the free electronic wave-functions 
in the first Brillouin zone of a solid crystal by the perturbation potential generating the 
potential gap separating the valence and the (excited) conducting states, along the projection 
on the wave-vector plane (lower draw). See the text for details (Putz, 2006).
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the experiment may be repeated at whatever moment of time by switching 
off the current, while on reloading the new experiment appears as being 
independent respecting the previous one; moreover, at each new experi-
ment different quantities may be evaluated, while their set may be attrib-
uted to the same system even obtained at different moments of time.

Instead, in quantum mechanics the state is important in measurement, 
while all is fluctuating due to the undulatory nature of the states’ compo-
nents (electrons, atoms); as a consequence the influence of the measuring 
apparatus becomes partially out of control; as such the quantum mechan-
ics may predict the maximal precision of an ideal experiment (beyond of 
any subjective or accidental errors). Thus, quantum measurements do not 
measure one system but two systems (object and the apparatus) in interac-
tion, i.e., merely measures the interaction itself or the dynamical state of 
the concerned system to be measured.

Finally, what can we measure in quantum mechanics? The states them-
selves looses their causal evolution when interacting with an apparatus 
while achieving a sort of deterministic evolution; therefore, the measure-
ment is even not on the states but on operators that have an intrinsic role 
on the system structure; from this point we recover the phenomenologi-
cal idea that those operators that commutes with Hamiltonian of the sys-
tem are observables and can be averaged on certain states to be measured 
(observed). Yet, other quantities may be measured on perturbed states of 
the systems under investigation.

These brings us to postulate that quantum measuring is realized through 
stationary observables averaged on eigen-states or through recording 
perturbations of free or isolated causal (dynamic) states for a system.

This postulate is in what follows unfolded, exemplified and applied on 
fundamental quantum mechanically (previously exposed) concepts.

3.8.1 CLASSICAL VS. QUANTUM ELECTRIC RESISTANCE

As stated in introduction, measuring the electric resistance is different 
within classical or quantum framework; here we illustrate this statement 
by treating both cases for this experimental issue.

1. The classical framework assumes electrons as particles forming the 
current density 



j  under the external applied electric field 


E  between 
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points “1” and “2” delimiting the frontier of the measured resistor for its 
resistance R, see Figure 3.19.

Their reciprocal relationship may be found out through the following:

 

� � � �

�

�j i
S
n

S
q
t
n e n LS

S t
n en L

t
nj j

e
j e

v

j= = =
−

= −

= −

12 12

12 12 12

1 ∆
∆ ∆ ∆

( )

een v n en a n

en eE
m

e n
m
E

e j e
e

j

e
e

� �

� �

= −
+

= − −








 =

0
2

2 20

2

0

τ

τ
τ  (3.611)

thus leaving with the equivalent expressions:

 




j ER= σ  (3.612)

 




E jR= ρ  (3.613)

involving the conductivity s R and resistivity ρR, constants respectively:

 σ
τ

R
ee n
m

=
2

02
 (3.614)

 ρ
σR

R

=
1  (3.615)

FIGURE 3.19 Sketch of the apparatus measuring the classical electrical resistance, 
where the electron is viewed as a moving particle through resistor.
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in terms of electronic density ne, the average time τ between two consecu-
tive scatterings, beside fundamental constants as electronic charge and 
mass, e m, 0.

Yet, the resistance is to be determined by employing one of these elec-
tric field-current density equations to be multiplied by the elemental trans-
lation in resistor, dl,

 











Edl jdl i
S
n dlR R j= =ρ ρ  (3.616)

and then to integrate for the constant current this expression between the 
two ends,
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ρ  (3.617)

to get the local Ohm law

 u i R12 12=  (3.618)

linking the registered electric current and the measured tension at the end 
of the resistor by means of the resistance:

 R
S
n dlR
j= ∫

ρ 



1

2

 (3.619)

Note that for constant section and homogeneous matrix of resistor its 
resistance simply becomes:

 R L
SR

= ρ  (3.620)

Worth noting that this classical description (sometimes known as Drude’s 
theory) predicts that for ballistic trajectories of electrons in resistor, i.e., 
for movement without scattering with the resistor’s matrix, the average 
time between two successive scatterings becomes infinity, thus predicting 
infinity conductivity, zero resistivity, and thus no resistance recorded:

 τ σ ρ→ ∞ ⇒ → ∞ ⇒ → ⇒ →R R R0 0  (3.621)
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In next will be proved that this description is inconsistent with the quan-
tum nature of the electron, and that a resistance “quanta” is to be observed 
or measure in any conditions, even when no scattering processes are 
involved.

2. When considering undulatory nature of the electron, the working defi-
nition of its current has no surface involvement, while its density within 
the resistor writes as:

 n
L
f Ee

q = ( )2π  (3.622)

in terms of the its (first) quantized wave-vector, assumed for the resistor’s 
crystal as, see Section 2.4.6.5,

 k
L

=
2π  (3.623)

distributed on energy states according with the function f E( ). Moreover, 
the electronic velocity is as well written within undulatory framework as, 
see Section 1.3.2,

 v E
k

q =
1


∆
∆

 (3.624)

in terms of energy consumed  ∆E, in accordance with the temporal 
Heisenberg principle,

 ∆ ∆E t ≅   (3.625)

However, being about the waves, one has to account for various modes of 
vibrations so that the summation over all possible wave-vectors has to be 
solved out, and this is done through performing the integral transformation:

 • → • = •
=

∞ ∞ ∞

∑ ∫ ∫
k

spin L dk L dk
0 0 0

2
2

( )
π π

 (3.626)

with these the quantum electronic current intensity successively reads:

i en vq
e
q q= −
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Now, considering the distribution function approximated by the Heaviside 
step function,

 f E E( ) ≅ −( )Θ ε  (3.628)

and considering the two eigen-energies from where ( )ε1  and to where 
( )ε2  the electron is accommodate with the measurement apparatus, see 
Figure 3.20, one has for the resulted recorded quantum current:

 

i i i e f E dE

e E dE e

q q q
12 1 2

2

2 2
1

2

1

2

= ( ) − ( ) = − ( )

≅ − −( ) = −

∫

∫

ε ε

ε ε

ε

ε

ε

ε

�

� �
Θ 22 1

2
1 2

12

2

12

2

2
12

−( ) =
−

=

ε
ε εe
e

i e u

u

q q

q

� ���

�

;

 (3.629)

FIGURE 3.20 Sketch for the apparatus measuring the quantum electrical resistance, 
where the electron is viewed as a traveling wave through resistor.
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The simple comparison of this expression with the local Ohm law, one 
gets the quantum resistance with the form:

 R
e

kq = ≅


2
12 92 . [ ]Ω  (3.630)

known as the contact resistance, while playing the role of a quanta for 
electrical resistance. Overall, there is clear that while no scattering process 
was involved or considered, the measured resistance is non-zero, in con-
trast with earlier classical prediction.

There is therefore this proof of how much the quantum nature may 
influence our ordinary perception or classical measurements, in a way that 
may affect either our fundamental knowledge as well as practical (nano) 
applications. Further systematic of what can we observed out from the 
quantum world into average measurements is in next exposed.

3.8.2 QUANTUM CONSERVATION LAWS

Being given a stationary operator O  it fulfills the Heisenberg equation (see 
Sections 2.3.5 and 2.4.6):

 dO
dt i

O H
�

�
� �= 





1 ,  (3.631)

while if it further commutes with the Hamiltonian as well,

 O H ,



 = 0  (3.632)

there follows that its averaged quantity on a given (or prepared through an 
apparatus) state is conserved:

` 

d
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O d
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O d
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The first eminent example of this result is the Hamiltonian itself for a 
system: as far it does not depend explicitly on time, i.e., through the poten-
tial energy, it fulfills the conditions:

 ∂
∂

= 



 =

H
t

H H


 0 0, ,  (3.634)

immediately results that for any eigen state the eigen-energy is a constant 
(observable) quantity:

 H H E E const
E

� �
� �ψ

ψ

ψ ψ ψ ψ= = = =
1

!
.  (3.635)

consecrating the energy conservation law in the quantum mechanical 
frame.

Going to analyze the momentum operatorial behavior, it influences the 
translation of systems through the unitary translational operator, in the 
same way as introduced the time evolution operator:

 D x i x p�
�

�∆ ∆( ) = −





exp  (3.636)

in terms of the coordinate shift and the conjugate momentum on the move-
ment direction, with the seminal property on states, see the Section 2.4.4:

 D x x x x ∆ ∆( ) = +  (3.637)

Since the translational operator depends on momentum as well, it satisfies 
the specific functional commutation with coordinate (see Section 2.4.4), 
namely

 x D i D
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 = ∂  (3.638)

there results the equivalent expressions
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until the unitary transformation of the coordinate into the translated one 
is reached.

Now being this unitary transformation established as that governing 
the translations, if one considers infinitesimal movement  ∆x of the mea-
surement apparatus on x direction, the working operator looks like:

 D x i x p�
�

�∆ ∆( ) ≅ −1  (3.640)

in the first order of the coordinate displacements approximation, while 
in the same framework, the condition that this movement leaves the 
Hamiltonian of the system invariant produces the chain relations
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from where the condition

 p H ,



 = 0  (3.642)

that, along the fact that momentum do not explicitly depends of time, certi-
fies, in fact, the momentum conservation law along the translation (quan-
tum processes):

 p const

ψ
= .  (3.643)
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Let’s now consider that the apparatus performs a rotation of some angle 
(say∆α) around the 0z axis in the ( , )x y  plane so that a given state suffers 
the rotation operator action according with the (already custom) rule:

 R ∆ ∆α ψ ψ α( ) ( ) = ( )0  (3.644)

as was previously case of the translation operator. Yet one has to more 
analytically specify the form of rotation operator in order to search for the 
observable conserved upon rotation of measurement apparatus.

In this regard, basing on the Figure 3.21 one has for an axial rotation 
the coordinate transformations

 x x y2 1 1= +cos sinθ θ  (3.645a)

 y x y2 1 1= − +sin cosθ θ  (3.645b)

from where through employing the infinitesimal rotation angle,

 θ α≅ →∆ 0  (3.646)

they rewrite as
 x x y2 1 1= + ∆α  (3.647a)

 y y x2 1 1= − ∆α  (3.647b)

FIGURE 3.21 Basic illustration for the planar coordinates change upon perpendicular 
axis rotation.
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Since the limiting trigonometric expressions:

 sin ;cos∆ ∆ ∆α α α≅ ≅ 1  (3.648)

These results, tells us that the effect of the 0z axial rotation is equivalent 
with two combined linear translations, one with y∆α and the other with 
−x∆α on 0x and 0y directions, respectively:

ψ α ψ α α α ψ∆ ∆ ∆ ∆0 0 0 0z z z Zx y y x R x y( ) = + −( ) = ( ) ( ), ,  (3.649)

The passage for determining the form of associate rotation operator is 
made by recognizing the respective translation operators, in the first order 
approximation for the rotation angle ∆α, while specifying the conjugates 
of the momenta’s with the directions suffering the movement

 D i y px z x
�

�
� �≅ −1 0∆α  (3.650a)

 D i x py z y
�

�
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≅ +1 0∆α  (3.650b)

With their help the rotation operator may be now expressed as:
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However, a conveyable expression can be obtained if we consider the con-
cerned rotation as “active”, i.e., moving the (quantum) vectorial basis of 
the system instead of considering the movement of the apparatus as was 
until now assumed; still, the two movements are equivalent until a minus 
sign to the rotation angle,

 ∆ ∆α α0 0z
Active System

z
Pasive Apparatus/ /= −  (3.652)



316 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

since they are in opposite directions (as they are inverse composed, in the 
same manner the inertial and non-inertial systems are considered). In these 
conditions the rotation operator appears as written in terms of the kinetic 
momentum on 0z direction

 R i x p y pz
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y x

L

z
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z

�
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while recognizing it from its the classical (vectorial product) definition:
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From now on, one can easily repeat the procedure unfolded for translation 
operator, to successively have for preserving the Hamiltonian of the sys-
tem upon infinitesimal (active) rotation
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leaving with commutator condition:

 L Hz� �, 0 0( )



 =  (3.656)

In similar manner there be found that the rotations along the other direc-
tions are quantified by associate quantum kinetic moments that commute 
with Hamiltonian of the system:

 L Hx� �, 0 0( )



 = , L Hy

� �, 0 0( )



 =  (3.657)
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Moreover, having these relationships, there can be immediately shown that 
they hold also for the squares of kinetic moments, on individual directions
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=  (3.658b)

as well on their summed total kinetic momentum:

 L H L L L Hx y z
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=  (3.659)

Now, since all these moments are not explicitly time-dependent there 
follows that both the total kinetic moment as well as its projections are 
constants of the quantum movements and observable in average over the 
eigen-states:

 L const

2

ψ
= .;  L constx y z



, , .
ψ

=  (3.660)

However, worth finally draw attention on a very interesting property of the 
rotational operator, while generalizing it as:

 R i Lz�
�
�θ θ( ) = −





exp  (3.661)

for the active rotation along the 0z axis, for instance. The operator Lz  is 
called the generator of the Lie group of rotations in this case, since the 
rotation operator fulfills the basic group properties. Beside, it enters as the 
coupling constant in the equation:

 
dR
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i L Rz
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θ
θ

( )
= − ( )  (3.662)

with the boundary condition R� �0 1( ) = . This equation has the important 
consequence that allows the finding of the 0z kinetic momentum eigen-
equation, since observing that the effect of the rotation operator on an 
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arbitrary eigen-state Υ  expanded on the basis of the eigen-states m  of 
the operator Lz  we have:

 R m e
i m

m

� �θ
θ

( ) =
−

∑Υ  (3.663)

with m the eigen-values of the Hermitic operator Lz . Thus, through com-
bining the last two identities we get two equivalent expressions for the 
same operatorial action, namely:
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from where we immediately identify the Lz  eigen equation:

 L m m mz
 =  (3.666)

This equation is most valuable when solving the angular motion of elec-
tron in atomic systems, driven by the quantified realm of the eigen-values 
m, as expected.

3.8.3 QUANTUM ELASTIC SCATTERING ON FIXED TARGET

One of the common quantum experiments consists in investigating the 
states of a system through elastic scattering on it by an income wave, say 
with momentum p, while observing the divergent scattered wave from 
the target 0  on a certain direction, say fixed by the versor n∈∆Ω, see 
Figure 3.22.

Additionally, there is assumed that during the scattering process nei-
ther modification of the inner structure of the system investigated nor other 
binding phenomena are produced. The measured quantity is the so-called 
effective crossing section ∆σ , usually defined by the number of particle 
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detected in the angular angle ∆Ω in a given time  ∆t from the number of 
the particles that crosses the unit aria placed in the target zone perpendicu-
lar on the incident fascicle direction (being independent on the density of 
incoming particles, which can be projected even one after another towards 
target):

 ∆
∆

σ
δ
δ

=
N
N
S

 (3.667)

Alternatively, it may be expressed with the help of quantum probability 
of detection the emergent particles coming on detector through scattering 
from the incident ones on target, ℘→i f , respecting the incident flux of 
particle on target Φin:

 ∆
Φ

σ =
℘→i f

in

 (3.668)

that can be further viewed as the integral of the effective differential cross 
section d dσ / Ω:

 ∆
Ω

Ω
∆Ω

σ
σ

= 







( )
∫

d
d

d
p n,

 (3.669)

Worth noting that this picture is valid as far the time of interaction is sig-
nificantly less than the time of preparation (of incident flux) or of the time 

FIGURE 3.22 Sketch of the elastic scattering and observation of the emergent wave on 
certain direction in space.
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of measurement (of emergent flux). However, as the strategy of work we 
are searching for the asymptotic form of the scattered wave, Ψem, since it 
is observed at large distances from the target; from it the density of current 
probability will be computed, jem, and then integrated to yield the transi-
tion probability:

 ℘ =→
∞

+∞

∫∫i f em
S

dtdj S
-∆

 (3.670)

Going to unfold the above “measurement program” the first stage is in 
characterizing the free particle traveling toward its target. It is supposed to 
have an average (known but not as 100% determined) momentum p  and 
characterized by a wave function in momentum representation in the very 
moment of scattering:

 P P p0 = −( )ϕ  (3.671)

with the properties: (i) it becomes Dirac delta function when the momen-
tum is precisely determined; (ii) has in any case a clear sharp maximum; 
(iii) it is an even function ϕ ϕ( ) ( )− =P P  so that the momentum to be well 
defined through the average on the unperturbed state:
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  (3.672)
With this we can turn to the perturbation process that is described for momen-
tum states of the Lippmann-Schwinger expansion, see Sections 3.6.3:

 Ψ ΨP PP
P
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( ) − +

1
0E H i

V
 η

 (3.673)
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which in coordinate representation becomes:
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Before going further we have to evaluate the space averaged Green func-
tion g ( ) ( )+ −x y  involved; for that we firstly rewrite it as:
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 (3.675)

By recognizing the generating distribution functions for the (de Broglie) 
free wave-packets, see Section 2.2.2,
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together with (de Broglie) energy-momentum relationships:
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the last expression of the space averaged Green function successively 
expresses as (note that in 3D we also have P' k'=   while for integrand we 
put d dP' k'= 3 ):

  (3.678)
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This result requires only the one step of complex integration, while 
the denominator Feynman recipe tells us that this integration has to 
be done around the pole k k'1 = + , since the equation k' k i2 2= + η ' sug-
gests a slightly movement with +iη ', η ' ≅ +0 , toward higher half complex 
plane, while avoiding the pole through rotation in the local trigonometric 
direction:

The application of the residue (Cauchy) theorem leaves with:
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  (3.679)

 g m
i P

( ) ( )
exp

+ − = −









x y
x y

x y
1

4
2

2π 



-

-
 (3.680)

This expression may be still transformed for acquiring the asymptotic 
information, through modeling the distance x y-  following the prescrip-
tion: x n x y= = → ∞ ∀r , r , ; accordingly one gets:
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While noting this distance appears at the denominator of the space aver-
aged (retarded) Green function, we can employ once more the asymptotic 
contribution:
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 (3.682)

With this the space averaged retarded Green function takes the simplified 
(further workable) form:
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  (3.683)

Worth noting that this represent in fact the asymptotic solution of the free 
motion (Schrödinger type) equation:
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representing the stationary version of the more general (time dependent 
ones) presented in Section 3.6.4. However, its validity can be proofed 
quite easily by employing the Schrödinger equation
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consecutively rearranged as:
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 ⇔ ∂ +( ) = −( )+ +∫


2
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until the formal “extraction” of the retarded wave-function:
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from where the above Green function equation of the time-independent 
free particle. Nevertheless, this last wave-function represents only the 
scattered resulting wave-function when the free Green function is con-
voluted with the potential interaction in the Lippmann-Schwinger pertur-
bation way; it has to be further supplemented with the free (incoming) 
traveling wave-packet in order to realistically model the scattering pro-
cess, as previously exposed. With these, the asymptotic scattered wave-
function looks like:

  (3.688)

where we have introduced the scattering amplitude with the equivalent forms
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 ( )2 ( )2 ( )m P Vπ += − Ψn Px

 (3.689)

until the last one that does not depend by a certain representation, being 
thus an invariant of the scattering.

The scattering process is not entirely described until the full temporal 
perturbation is considered, see Section 3.6.1:
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The perturbed evolution state can now be spatially represented as:
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In next we will evaluate these integrals separately. For the first integral we 
will consider the variable change P' P p= −  to get for the exponent:
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while employing the fact of knowing the incident momentum, i.e., 
P' P p2 2= −( ) → 0, we have:
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For the second integral above, within the same variable changing and 
approximation as done for the first integral, we can write in the first 
instance that:
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while the exponent becomes:
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so that the whole integral takes the form:

 (3.696)

All in all, recalling of the relationship x n= r  we have the complete scat-
tered wave-function (in coordinate representation) unfolded as:
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leaving with the idea that the scattering process has as the effect both the 
propagation of the incident unperturbed wave-function on which there 
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is superimposed the scattered wave-function with a spherical nature, see 
Figure 3.23.

We can further proceed with computation of the probability of 
the current density carried by the emergent wave-function Ψem, see 
Section 2.2.9,

 j xem em em em emt i
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2

Ψ Ψ Ψ Ψ  (3.698)

as being that registered by the measurement apparatus. For evaluating this 
expression let’s rewrite the emergent wave-function as:
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from where there is clear that performing the space derivatives of emer-
gent function is transferred to radial derivative of the function h r( ):
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FIGURE 3.23 Illustration of the superposition of the plane and spherical waves in 
observation of the quantum elastic scattering.
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Thus, we have, respectively:
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While for the probability of current density components we have:
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and analogous for the other component:
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so that for the registered current in the asymptotic zone of the measure-
ment apparatus we get:
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Note the already interesting aspect of this result that do not explicitly 
depend on Planck constant, being therefore of classical (direct observable) 
nature. Now we are approaching the information recorded by the detector 
apparatus. The probability that one particle to be registered ever (as times 
goes from −∞ to +∞) is therefore computed as follows:
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We finally arrived in the position to calculate the probability that the detec-
tor to record the scattering process in unity of time in unity of its area  ∆S, 
as enounced in the beginning of this section:
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From where results the searched crossing section,
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as well as the effective differential cross section:
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as being directly determined by the scattering function that this way 
appears to be the key of the whole scattering observation. These results 
will be employed in the next section as well.

3.8.4 MORE ABOUT SCATTERING: BORN APPROXIMATION 
AND RESONANCE PROFILE

I. We saw in previous section that the effective differential cross section 
is independent on the incident flux of particle, meaning that one fascicle 
with low or higher density of particles produces the same observation on 
the apparatus detecting scattering phenomena. Yet, it depends on the scat-
tering amplitude

 f m P V( ) ( ), ( )+ +( ) = −( )n P n x P2 2π  Ψ  (3.710)

in term of the rewriting the Dyson series of Section 3.6.4 here as the Born 
series:
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of which limitation to the first order of the series consecrates the so-called 
Born approximation:
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Within Born approximation, the scattering amplitude becomes:

  (3.713)

Now, the Born approximation is valid when the first term in parenthesis 
is much higher than the other that is equivalently of having the condition:
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or even more generally:
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that is nothing than the D’Alembert criterion for the Born series conver-
gence, meaning that the perturbation caused by scattering is nevertheless 
observable (or detectable).

Returning to our working scattering amplitude, the Born condition pro-
duces the constraint:
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which can be specialized on origin (x = 0) of interaction since for the 
most potentials of physical interest the maximum is located in their origin 
(i.e., the closer the particles the higher their interaction) to equivalently 
transforms:
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This condition may be further simplified for a central potential V r( ), so 
that the y vector, with modulus y = r, is expressed in spherical coordi-
nates so that y3 P, that gives in the first instance

 P y⋅
= =

� ��
P r Kr
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cos cosθ θ  (3.718)

and then for the entire Born condition
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The final stage here regards the introduction of the so-called action radius 
r of the concerned potential through rewriting the last Born condition as:
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emphasizing the energy localization in the action radius of the potential

 ∆E
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=


2
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22

 (3.721)

that correlates with the sensibility of the observer.

2. Continuing on the same line of employing the observability of quantum 
elastic scattering, we may reinterpret the energy localization by reconsid-
ering the scattering process in a more phenomenological way. The starting 
point is again the wave-function x Ψ ( ) ( )+ t  rewritten in the simplified 
form:

Ψ Ψ( ) ( )( , ) ( , ) ,+ − ⋅( ) +≅ +
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  (3.722)
since the observation:

 χ χn vr t r vt−( ) = −( )0 0, ,  (3.723)

Yet, this form may be slightly modified when for the incident plane wave 
one consider the averaged one over the angular integration, integrating 
over the angular angles ( , )ϕ θ  and then dividing the result to their solid 
angle 4π , while choosing the polar angle that one between the directions 
of incidence and scattering detection, ∠( ) =p n, θ:
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The basic difference of this form respecting the previous incident one is that 
now the income wave displays a spherical form, in a similar way with the 
scattered one, besides containing both the forward and backward forms of 
propagation, being in this respect a generalized form to handle. However, 
now the so that the total (new) scattered wave-function looks like:
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Over this form one may impose the condition that being about an elastic 
scattering process, the total forward and total backward wave amplitudes 
has to be equal that is to fulfill the constraint:

 1 2 1+ =+i pf


( )  (3.726)

If this relationship is regarded as an equation for scattering amplitude, the 
general solution of it reads as:

 � �f
ip
e i( )+ = −( )

2
12 δ  (3.727)

where the introduced quantity δ  plays the role of the phasing difference 
(between the incident and emergent waves in scattering process), being 
dependent in general by the momentum but is a function of energy in 
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a more general framework, δ δ= ( )E . Worth observing that each of its 
value with the form:

 δ π( ) ,E n n0 0 0
1
2

= +





 ∈Z  (3.728)

the scattering amplitude become

 � �f
ip0
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while the associate (observed) cross section takes its maximum value
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Such cases correspond with the called resonances, when the detection 
apparatus registers (though cross sections) moments (or de Broglie wave-
numbers) close with those characterizing the income wave-function on 
the target. Thus, these cases practically detect the target states that are 
resonant with the incoming wave packet, the scattering process being the 
tool of detecting them. Naturally, the next step is to explore the scattering 
amplitude and the associate cross section behavior near such resonances. 
This can be achieved through rewriting the phase δ , in first instance, using 
the trigonometric identities:
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that rewrites the actual scattering amplitude as:
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which can be further approximated by the first order expansion:
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to become
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With this, the observed crossing section around resonances looks like:
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which illustrates the profile of the recorded elastic scatterings near reso-
nances (of the target), under the form known as the Breit-Wigner formula. 
Note that since the factor Γ was introduced like energy (for the target 
states, or more precisely as the width of the energy interval around the 
resonance E0 – thus playing the role of localization energy interval) it can 
be further replaced by the average life time τ of those states through the 
Heisenberg spectroscopic relationship,

 

Γ
=τ  (3.736)

with which occasion the Breit-Wigner formula rewrites as:
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in terms of the frequencies around the resonant one, corresponding with 
the scattered waves, according with the energy-frequency Planck cel-
ebrated formula.

Worth noting that the scattering Breit-Wigner profile, while being close 
to Gaussian one (specific for the normalized de Broglie wave-functions, 
see Section 1.3.3), see Figure 3.24, adds new type of curves that models 
the natural (quantum) phenomena since it is characteristic to light-atoms 
interaction as well as to a variety of nuclear scattering observation (e.g., 
proton scattering by nuclei, or of pion scattering by protons, etc.). In all 
cases this profiles indicates that in principle for any quantum system exists 
a “meta-stable” level that can be detectable/measured/observed through 
elastic scattering, being this a vary valuable insight of how quantum phe-
nomena can be unveiled by their classical (scattering, lifetime, energy) 
manifestation.

3. Lastly, such quantum “resonance” curve may be recuperated from 
classical-to-quantum correspondence principle derived from forced 
oscillations as following. The starting point is the Newton second law of 
motion

 m y Ft applied∂ = ∑2  (3.738)

of an harmonic oscillator in the case its free motion under the elastic force

 F m ye = − ω0
2  (3.739)

FIGURE 3.24 Comparison between the resonance (upper) and Gaussian (lower) curves: 
wile the last is fast decreasing to zero outside of the resonance (central) region, the first one 
presents the long (asymptotical) tail specific for (asymptotic) scatterings.
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is amortized by the (inner) resistance force

 F b yr t= − ∂ ,  b ct= .  (3.740)

while being as well under the external (perturbed) periodic (harmonic as 
well) force:

 F F i tp p= −( )0 exp ω  (3.741)

Thus the working classical equation looks like:

 ∂ + ∂ + = −( )t t py y y F
m

i t2
0
2 0γ ω ωexp  (3.742)

were the amortization coefficient γ = b m/  was introduced.
The general solution of this non-homogeneous equation is the sum 

of its homogeneous equation to which there is added the particular solu-
tion of the non-homogeneous equation that is usually taken as the free 
term form:

 y A i tp p= −( )exp ω  (3.743)

Nevertheless, this solution has to fulfill the entirely above equation, lead-
ing with the new equation:
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For resonance effect to take place one has to have ω ωp ≅ 0 (beside the fact 
that in these circumstances the amortization coefficient is almost vanish-
ing, γ → 0) that produces the approximations:

 ω ω ω ω ω ω ω ω ω γω γω0
2 2

0 0 0 0 02− = +( ) −( ) ≅ −( ) ≅p p p p p,  (3.745)

and the resonance amplitude:
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in close correspondence with above scattering amplitude f ( )+  when 
applied the Planck quantification, ω = E / , i.e., the classical-to-quantum 
correspondence as:

 A F
mE E E ires
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−( ) +
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2

02
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 (3.747)

Note that the maximum amplitude at resonance is given by:
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so that the resonance amplitude rewrites as
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while remarking the one-to-one correspondences (through reminding γ  as 
being of ω in nature). From this point all is recovered equivalently since 
recognizing that the intensity of radiation emitted by an oscillator is given 
by the squared of the modulus of its elongation, Arez

2, this way recovering 
the previously introduced quantum resonance (Breit-Wigner) curve.

Yet, being at the stage pointing on the classical counterpart of the quan-
tum resonance curve, worth specifying that also in the electric circuits 
with resistance ( )R , inductance (L), and capacitance (C), the oscillating 
regime maintained by the applied tension V t( ) is governed by the dynami-
cal (conservation) equation for the charge Q t( ):

 L Q R Q Q
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V tt
V

t
i t

V
VL

R
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∂ + ∂ + =2

 



( )

( )  (3.750)

Moreover, the resonance effect and its profile may be observed in Nature 
in various instances:

• The Earth atmospheric oscillation under the forced gravitation 
induced by the Moon, with a periodicity between 10.5–12.5 hours;

• Crystal ionic oscillations (e.g., in NaCl crystals) under the absorp-
tion of infrared radiation;
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• Resonances of paramagnetic organic compounds that looses mag-
netic energy under external applied magnetic field;

• The absorption of gamma rays by nuclei (Mössbauer effect) proof-
ing their inner oscillatory structure while predicting their dimension 
as well;

• Scatterings of elementary particles that while allowing different evo-
lution reactions produce various resonances assimilated with new 
particles (or group of particles) as they are existing with the reso-
nance energy or frequency;

and many others.

3.8.5 FROM YUKAWA POTENTIAL TO RUTHERFORD 
SCATTERING

Let’s se whether one can employ the connection structure-field interaction 
in terms of an unifying or generalized potential of Nature; however, let’s 
specify that, while interactions are intermediated by bosons (particles with 
integer number of spin, for example, the photons of light), the structure 
is quantified by fermions (particles with semi-integer number spin, for 
example, the electrons of atoms, nucleons of nuclei). Yet, their interaction 
is present and observed – therefore raising the question of their common 
potential roots. In this regard we will present in the following how the one 
boson quantum equation (Klein-Gordon) can be developed into a potential 
(Yukawa potential) that at its turn is to be attributed to influence fermions 
(protons for instance) until recovering the Coulombic central field and the 
“classical” Rutherford scattering formula. Over all, this section unfolds the 
observation of the boson-fermionic interaction from the Yukawa potential 
perspective.

1. The starting point it represents the Klein-Gordon equation of 
Section 2.2.3, Eq. (2.34); in the situation the wave-function solution 
is represented by the potential (its source) in a spherical (as a source) 
symmetry,

 ψ t V r( ) ( )r =  (3.751)
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the time-dependence term may be skipped, leaving with the working 
equation

 ∇ = 







2
2

V r mc V r( ) ( )


 (3.752)

Thorough transforming the Cartesian Laplacian into the radial one through 
the recipe of the Section 3.3.1,
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the last equation rewrites:
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whose solution is found through exploring the two extreme cases spe-
cific to the spherical potentials: firstly there is considered the asymptotic 
(r → ∞) version
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which though its associate secular equation, say

 λ 2 2 0− =a  (3.756)

it provides the physically solution
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Then, considering the other extreme limit, namely the behavior in the ori-
gin, one observes that for r → 0 the term with 2 / r dominates the entire 
equation, thus suggesting the specific dependence:
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Overall, combining the two potential forms in a continuous analytical 
formulation one establishes the so-called Yukawa potential

 V r A
r

ar( ) exp= −( )  (3.759)

which fulfills both above conditions, either in origin and at infinitum, 
while by summing up the expressions:
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satisfies also the entire original equation.
With these the general working Yukawa potential looks like:

 V r A
r

r
rYuk ( ) exp= −











0

 (3.761)

where now we recognize from the previous notation

 r
a mc0
1

= =
  (3.762)

as playing the role of the action radius of the potential source in scatter-
ings processes, equivalent with the Compton length of the scattered par-
ticle (center). Remarkably, at this point the contact with scattering process 
may be done in order to determine the particle mass “m” from observing 
the cross section it produces against various incoming scattered waves. In 
this context the photon (as a boson) acts on an infinite radius r0

γ → ∞ since 
its zero rest mass mγ = 0, while the working potential becomes Coulombic, 
V r A rCoulomb ( ) /= , meaning either that this is the potential that scatters the 
photons (because the internal structure of photons is also mediated by 
such (electrostatic) potential – a picture in agreement with the electron-
positron (matter-anti-matter) of light and also with the Dirac relativistic 
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sea characteristic to Klein-Gordon framework, see Section 2.2.3) or this 
is the scattering potential between two electric charges (the sign and type 
of A depends on their type), one being the center of scattering and other 
scattered by it.

One also should note that this potential, known as Yukawa potential 
since it was firstly proposed by Hideki Yukawa (in 1935) while studying 
the mesonic interaction with nuclei, may also represent the electrostatic 
shielding potential of nuclei in electronic structure of atoms (generalized 
Coulomb), molecules (generalized Morse) or solid state (Born-Meyer) 
systems and will be closely studied with occasion unfolding specific 
discussions in the forthcoming dedicated volumes of this series. For the 
moment, we will continue the analysis of scattering studied on this type of 
potential, for preserving the actual general level of exposition.

2. Let’s study, for testing the observability features of Yukawa potential, 
the possibility of applying for it the above deduced Born’s approximation 
for scattering. That is we have to evaluate the inequality:
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through evaluating the integral
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This is to be done by firstly taking its firs derivative respecting the 
parameter “a”:
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The last relation may be further transformed in what regard the “unusual” 
logarithm of a complex number; for that one remember the basic complex 
relationships
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to get, through employing arctan( ) arctan−• = − •( ), the searched integral
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or in terms of action radius, r a0 1= / , the result:
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Yet, under natural assumption that for zero action radius the scattering 
amplitude and above integral identically vanishes,

 I r C0 0 0 0→( ) → ⇒ =  (3.769)

the integration constant is determined and the Born approximation condi-
tion now reads:
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which may be resumed as
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with the scattering control function:

 F ρ
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ρ ρ
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that can be at its turn considered for the two energetic extremes:
• For small energies one has ρ <<1 and the series expansion of F 

function may be applied to yield in the second order restriction:

 F<< ( ) ≅ + +ρ ρ ϑ ρ1 5
24

2 3 ( )  (3.773)

while in the first order the Born condition simply gives
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from where follows the mass limitation:
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02
 (3.775)

Now, considering from Yukawa potential the Coulomb limit for scattering 
(by charged particles) on atomic centers, one deals with the potential:

 V r A
rCoulomb ( ) = 0  (3.776)

and therefore identifying the constant

 A e C m F0

2

0

29 2

4
23 072 10= ≅ ⋅ −

πε
. /  (3.777)

where one should note that a farad is the charge in coulombs a capaci-
tor will accept for the potential across it to change 1 volt. Since 
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a coulomb is 1 ampere second it has the equivalent representation until 
the SI units:

F A s V J V C V C J
C N m s C m kg s A m kg

= ⋅ = = =

= ⋅ = ⋅ ⋅ = ⋅ ⋅

/ / / /
/ ( ) / ( ) / ( )

2 2

2 2 2 2 4 2 2

By replacing the action radius with its electronic working expression 
r mc0 =  / ( ) the above condition translates as:

 A c
0 2
<<

  (3.778)

a constraint fairly respected by the numerical inequality:

 2 3072 10 1 58 1028 26. .⋅ << ⋅− −  (3.779)

certifying therefore the validity of the Born approximation even for charges 
scattering with low energies by atomic electrons, as well as the consis-
tency of the Yukawa potential when specialized to its Coulomb limit.

• For high energies one has ρ >>1 and can neglect “1” respecting ρ 
and replacing arctan by  π / 2 for great arguments, to yield for the 
control function

 F>> ( ) =
+

ρ
ρ

ρ πln /2 2 4
 (3.780)

that replaced in the actual Born condition provides an equation for appro-
priate wave-function K  for the incoming (scattered) light used for struc-
ture investigation/observation:
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while when considering electronic scattering, i.e., replacing the constants 
A re0 0&  for Coulombic potential and electronic action radius, respectively, 
one gets the inequality:

 f K>> ( ) >> 0  (3.782a)
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whose validity is confirmed by representation given in Figure 3.25 for 
wave-lengths in the high energy regime, i.e.,

 K m= < −2 10 10π
λ

λ,  (3.783)

being of at least of the X-ray type.
The conclusion is that also in the higher energies level the Born approx-

imation finely combines with the Yukawa potential to correctly model the 
photonic scatterings on Coulombic manifested interaction. Worth there-
fore to further compute, from the scattering amplitude, the differential and 
total cross section induced by the Yukawa (and then Coulombic) poten-
tials – a matter in the next approached.

3. Having now the analytical and numerical confirmation that Born 
approximation is a reliable one for modeling scattering processes it will be 

FIGURE 3.25 The graphical check of the reliability of the Born approximation for the 
Coulomb potential abstracted from Yukawa model for electronic scattering by higher 
photonic energies (lower wave-lengths).
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adopted din what follows to actualize and compute the scattering ampli-
tude successively as:
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releasing the working resumed form
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This scattering amplitude is to be in next employed to the Yukawa poten-
tial in the experimental conditions of elastic scattering that specifies the 
scattering angle θ  and momentum vectorial relationships as

thus quoting that
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 Π = 2
2

psin
θ  (3.787)

With this, one firstly yields:

 (3.788)

Then the scattering amplitude for Yukawa potential is obtained:
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Now, the differential cross section for Yukawa potential reads:

 d
d

f m A

p
r

Yuk
Yuk

Bσ

θΩ






 = ( ) =

+




( )−

+

p n

n P
,

( ) ,

sin

2 2 2

2 2
2

0
2

4

4
2

� �







2  (3.790)



352 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

At this point the custom Coulombic limit, however slightly generalized to 
the interaction between two charged particles or centers,

 A Z Z e0 1 2 0
2= , r0 → ∞  (3.791)

brings the radius action in the infinity limit (as specific to photon-electron 
scattering, in accordance with boson-fermion “production” from the Dirac 
sea, sea the discussion from the beginning of this section), so that the 
result recovers the celebrated Rutherford scattering formula:
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One formidable feature of this result is that although at the end of a long 
and somehow complex quantum theory exposition, thus being quantum in 
origins, it does not explicitly contain the quantum Planck constant. There 
seems that is this behavior that makes observable the quantum phenomena 
of Coulombic scatterings, which, nevertheless are manifestly with an infi-
nite effective cross section

 (3.793)

relaying on the infinite action radius that is characteristic to photons 
(bosons), which intermediates the electronic (fermions) interactions.

Finally, worth mentioning that the present scattering framework and 
Rutherford formulation may be generalized (in what is to be called Mott 
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scattering formula) through fully involving the Dirac sea of electron-posi-
tron production, within Dirac theory, thus by means of quantum relativity 
approach. This will be nevertheless presented with other occasion.

3.9 CONCLUSION

The main lessons to be kept for the further theoretical and practical inves-
tigations of the quantum mechanics postulates and basic applications that 
are presented in the present chapter pertain to the following:

• identifying the fundamental quantum mechanical paradox: the con-
tinuity of the wave-function associated with the quantification of 
eigen-energy/spectrum;

• employing wave-function continuity towards modeling quantum 
tunneling in general and (alpha) nuclei disintegration as a funda-
mental application;

• writing the eigen-spectra and eigen-functions of atomic Hydrogenic 
system, molecular vibration as well as for solid-state free electronic 
states;

• dealing with semi-classical treatment of quantum basic systems: 
H-atoms, ω-molecular oscillations, and polynomial potential for 
electrons in solid states;

• characterizing the quantum systems at equilibrium by variational 
principle of eigen-energy as averaged Hamiltonian over the opti-
mized (parameter) eigen-functions;

• understanding the substance stability by variational principle as 
applied to the main fundamental forms of evolution in closed aggre-
gation, i.e., the rotational symmetry in atoms, vibrational motion in 
molecular, translation in solid state;

• describing the electrons motion in solid state as being specific to excited 
state rather than to the ground state (the so-called solid state paradox) 
from where also the phenomenological understanding of conductibility;

• learning the equivalence between the Schrodinger and Heisenberg 
quantum pictures as relating with the wave-functions and operator 
evolutions, respectively (in metaphorical analogy with a fisherman 
moving on a lake or the lake moving around the fixed fisherman);

• treating the quantum evolution by Green function as a quantum 
amplitude of its first cause;
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• solving the free quantum evolution for its Green function as refer-
ential for any further observation and measurement by perturbation 
action(s);

• formulating the general algorithm for perturbing quantum states in 
various orders while noting their intra-related behavior in combining 
eigen -functions and -energies;

• interpreting the substance reality by perturbations: atoms with 
nuclear isotopic corrections, harmonic oscillator in higher orders of 
oscillation spectra, electrons in quasi-free in solid states;

• connecting Dirac bra-ket formalism with the Dirac creation-annihi-
lation formalism in spectra quantification, with specific application 
to harmonic oscillator, as the paradigmatic system for quantum fluc-
tuation themselves;

• developing a unitary view on measuring the quantum phenomena as 
based on conservation laws described by associate quantum dynami-
cal operators for translation, and rotation;

• finding applications for observing quantum phenomena: from par-
ticle transport (e.g., electronic current by dissipative media thus pro-
ducing the effect of electrical resistance) to the particle scattering 
and interaction resonance as the quantum counterpart of scattering 
phenomena in classical mechanics, here generalized to quantum 
approach by means of the Born approximation and Dyson expansion 
series of scattering amplitudes.
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ABSTRACT

Basing on the first principles of Quantum mechanics as exposed in the 
previous chapters and sections, special chapters of quantum theory are 
here unfolded in order to further extend and caching the quantum infor-
mation from free to observed evolution within the matter systems with 
constraints (boundaries). As such, the Feynman path integral formalism is 
firstly exposed and then applied to atomic, quantum barrier and quantum 
harmonically vibration, followed by density matrix approach, opening the 
Hartree-Fock and Density Functional pictures of many-electronic systems, 
with a worthy perspective of electronic occupancies via Koopmans theo-
rem, while ending with a further generalization of the Heisenberg observ-
ability and of its first application to mesosystems.

4.1 INTRODUCTION

Not necessarily in an historical order but rather as a phenomenological 
classification, one should learn that the actual quantum chemistry origi-
nates in five levels of quantum approximations imposed on the many-elec-
tronic-many-nuclei systems, either in isolate or interacting state. They are 
summarized below along mentioning the current limitations, controversies 
and prospects.

1. The Born-Oppenheimer approximation (Born & Oppenheimer, 
1927), while intended in producing a simplification of the elec-
tronic calculus for frozen nuclei approximation, breaks down 
actually when, for instance, computing the magnetic dipole 
moment and its derivative with respect to the nuclear velocities 
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or momenta, for assessing the molecular properties of surfaces 
(Buckingham et al., 1987).

2. The single Slater determinant representation of the ground elec-
tronic state (Slater, 1929), which nicely solved the exchange 
behavior of electrons by incorporating the Pauli repulsion in 
antisymmetric determinants (Pauli, 1940), was conceptually 
extended to the configuration interaction by the seminal works 
of Lowdin (Löwdin, 1955), while noting afterwards further gen-
eralization by the fruitful notion of the so-called complete active 
space (CAS) (Roos et al., 1980) that, when combined with other 
quantum chemical methods such as the self consistent field (SCF) 
and density functional theory (DFT) – see below, become very 
productive in accounting for all electronic states which contribute 
to the reactive space, be it which electronic states of species (reac-
tants, intermediates and products) are involved in chemical reac-
tions, thermally or photo-induced ones (Roos et al., 1982; Roos & 
Malmqvist, 2004).

3. Simple Hückel (Hückel, 1931) and molecular orbitals’ theories 
(Parr et al., 1950; Roothaan, 1951, 1958; Purvis & Bartlett, 1982; 
Roothaan & Detrich, 1983; Pople et al., 1987; Curtiss et al., 1998; 
Ohlinger et al., 2009), nevertheless viewed as the next natural step 
over the paradigmatic Heitler-London theory of homopolar chemi-
cal bonding (Heitler & London, 1927), have been unlocking the 
door for self-consistent field Hartree-Fock-Slater theories (Pople & 
Nesbet, 1954; Roothaan, 1960; Corongiu, 2007; Glaesemann 
& Schmidt, 2010) and of associate semi-empirical formulations 
(Pariser & Parr, 1953; Pople, 1953) in treating a plethora of chemical 
system and phenomena on the base of their internal symmetry, while 
remarkably agreeing (and sometimes predicting) the observed spec-
tra and reactivity, among which the pericyclic reactions (Beaudry 
et al., 2005; Hickenboth et al., 2007) and the Woodward-Hoffman 
rules (Woodward & Hoffmann, 1965; Hoffmann & Woodward, 
1968) are eminent examples; yet, this direction let with the so-
called quantum correlation problem (i.e., modeling the electronic 
movement in the dynamical field of the other electrons present in 
the system) that remains little tractable within the Slater (or even 
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with configurational interaction) framework; the solution in getting 
accurate correlations arrives with the advent of Density Functional 
Theory (DFT) and with the price of modifying the overall wave-
function of the system and of its spectra.

4. Thomas-Fermi theory (Balàzs, 1967; Fermi, 1927; Lieb & Simon, 
1977; Teller, 1962; Thomas, 1927) along Walter Kohn’s develop-
ments (Hohenberg & Kohn, 1964; Kohn & Sham, 1965) while 
merging in the celebrated Density Functional Theory (Kohn et al., 
1996) have the merit in being conceptually exact, i.e., performing 
the ab initio analysis of the electronic spectra relying only upon the 
universal constants of electronic charge, mass, Planck constant, and 
of their combinations in bare and effective potential, while provid-
ing an approximate set of orbitals (called as Kohn-Sham orbitals); 
they eventually correctly resemble the observed electronic den-
sity of the system along the measured energies (with correlation 
effects included), yet being with less significance even than the 
classical wave-function concept; actually, the current DFT uses as 
input the so-called basis function just like a mathematical tool, that 
can be adapted or optimized depending on the accuracy needed 
in relation with optimized effective potential (Bokhan & Bartlett, 
2006), adding dispersion effects, etc. After all, the computation-
ally implementation of DFT becomes so parameterized procedure 
that makes from it a sort of semi-empirical based DFT (Derosa, 
2009), that can be nevertheless extended to include time-depen-
dency excited states effects (Besley et al., 2009; Burke et al., 2005; 
Runge & Gross, 1984; March et al., 1999; Ploetner et al., 2010), as 
well as modeling the actual hot topic of Bose-Einstein condensates 
(Putz, 2011b). Moreover, it is worth saying that the great merit and 
paradox of DFT, is that the theory provides the recipe to compute 
two-body interactions (as exchange and correlations) by approxi-
mations to single body (density) behavior; from the physical point 
of view the picture is flawed, yet it turned out that the approxima-
tions works very well – markings therefore a landmark in quan-
tum chemistry achievement; in passing this was perhaps also the 
reason the theory was Nobel awarded in Chemistry (in 1998) 
and not in Physics since there is no new physics inside but useful 
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reformulations (thus a new theory) for Chemistry. Recent works 
on DFT also try to further lighten on the DFT limits, i.e., formu-
lating various approximations for exchange-correlation functionals 
(Putz, 2008) in more or less agreement with the fundamental theo-
rems and limits at asymptotic and nuclei ranges (Capelle, 2006), 
until attempting to formulate expectation values of various physi-
cal observables based only on density similar to those based on the 
expectation value of quantum mechanical wave function (Bartlett 
& Musial, 2007), leads with the believe that true ab initio DFT 
is far for being fully engaged (Bartlett et al., 2004; Bartlett et al., 
2005), while only semi-empirical DFT seems to prevail in a way 
or other when is about computational implementation. On the other 
side, still, the conceptual DFT (Geerlings et al., 2003), is of the first 
importance in formulating the chemical reactivity and its indices 
that help in understanding and modeling the chemical systems to a 
large extent (De Proft & Geerlings, 2001; Chermette, 1999).

5. The solvent effects seem to need almost always be taken into 
account when using quantum chemical treatment for describing 
chemical systems’ reactivity. The environment interaction, and 
sometimes strongly interacting solvent molecules (e.g., water mol-
ecules in the case of biomolecules: amino acids, peptides, nucleic 
acids and their complexes) need to be considered in any modeling 
study of open chemical systems in order to fully understand and 
interpret the experimental results such as the vibrational, NMR and 
electronic spectra, and the chiral analogues (Tiwari et al., 2008). 
Overall, the interaction of the system with environment stands 
also in the foreground of the quantum theory when always predict-
ing an additional quantum fluctuation upon the concerned system 
due to its coupling with the media/observer/solvent (Corni et al., 
2003; Fung et al., 2006); it can be nevertheless implemented by 
counting for additional reactions and stability of the investigated 
chemical systems, while having also at side the quantum statistical 
tools for treating the macro-canonical samples in a correct physi-
cal way; worth saying that at this point DFT is well equipped from 
its basic definition of density - associated with the total number 
of electrons in the system - that can be then easily extended to 
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include also those effects coming from the environment (Nandini 
& Sathyanarayana, 2003).

6. The density matrix theory, the ancestor of density functional 
theory, provides the immediate framework for Path Integral (PI) 
development, allowing the canonical density be extended for the 
many-electronic systems through the density functional closure 
relationship. Yet, the use of path integral formalism for electronic 
density prescription presents several advantages: assures the 
inner quantum mechanical description of the system by param-
eterized paths; averages the quantum fluctuations; behaves as 
the propagator for time-space evolution of quantum informa-
tion; resembles Schrödinger equation; allows quantum statistical 
description of the system through partition function computing. 
In this framework, four levels of path integral formalism can 
be approached: (1i) the Feynman quantum mechanical (pres-
ent Chapter); (2i) the semiclassical, (3i) the Feynman-Kleinert 
effective classical, and the (4i) Fokker-Planck non-equilibrium 
ones (for the last three levels see Volume II of the present five-
volume book). They lead with the practical specializations for 
quantum free and harmonic motions, for statistical high and 
low temperature limits, the smearing justification for the Bohr’s 
quantum stability postulate with the paradigmatic Hydrogen 
atomic excursion, along the quantum chemical calculation of 
semiclassical electronegativity and hardness, of chemical action 
and Mulliken electronegativity, as well as by the Markovian gen-
eralizations of Becke-Edgecombe electronic focalization func-
tions – all advocate for the reliability of assuming PI formalism 
of quantum mechanics as a versatile one, suited for analytically 
and/or computationally modeling of a variety of fundamental 
physical and chemical reactivity concepts characterizing the 
(density driving) many-electronic systems.

Accordingly, the present chapter combines these issues in a first sys-
tematical inside look on quantum chemistry by quantum mechanics, so 
planting the “seeds” for the next applications on atoms, molecules, nano-
structures and bio-chemical interactions (see the next Volumes II–V of the 
present five-volume book).
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4.2 FEYNMAN’S PATH INTEGRAL QUANTUM FORMALISM

4.2.1 CONSTRUCTION OF PATH INTEGRAL

One starts considering the slicing for the time interval t tb a,[ ]
 t t t t t t tb n n a= > > > > > =+1 2 1 0...  (4.1)

with the spatial ending points recalled as x x x xb a' ,= =  for the quantum 
propagator (Green function) of Chapters 2 and 3, see for instance Eq. (3.310) 
as the actual space-time evolution amplitude

 x t x t x i t t H xb b a a b b a a; exp( ) = − −( )





�
�  (4.2)

may be firstly rewritten in terms of associate evolution operator
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when n-times the complete eigen-coordinate set

 1 1 = =
−∞
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∫ x x dx j nj j j , ,  (4.5)

was introduced for each pair of events, with the elementary propagator 
between them:
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where the elementary time interval was set as

 ε = − =
−
+

>−t t t t
nj j
b a

1 1
0  (4.7)

Now, the elementary quantum evolution amplitude (4.7) is to be evalu-
ated, firstly by reconsidering the eigen-coordinate unitary operator, in the 
working form

 1x x x dx=
−∞

+∞

∫  (4.8)

to separate the operatorial Hamiltonian contributions to the kinetic and 
potential ones,

 H T V  = +  (4.9)
as:
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where we have used the first order limitation of the Baker-Hausdorff for-
mula, see Eq. (2.347)
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that is we assumed the second order of elementary time intervals be 
vanishing

 ε 2 0≅  (4.12)

Next, each obtained working energetic contribution are evaluated separated 
as: for kinetic contribution the inserting of the momentum complete eigen-set

 1 p j j jj p p dp=
−∞

+∞

∫  (4.13)

yields:
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While for potential elementary amplitude we get:
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With relations (4.14) and (4.15) back in Eq. (4.11) the elementary propa-
gator takes the form:
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  (4.16)

Replacing the elementary quantum amplitude (4.16) back in the global 
one given by Eq. (4.4), it assumes the form:

  (4.17)
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which for in infinitesimal temporal partition,

 n → ∞ →;ε 0  (4.18)

the quantum propagator behaves like the Feynman path integral (Dirac, 
1933; Feynman, 1948; Wiener, 1923; Infeld & Hull, 1951; Schulmann, 
1968; Abarbanel & Itzykson, 1969; Campbell et al., 1975; Laidlaw & 
DeWitt-Morette, 1971):
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where we have considered the limiting notations for the path integral 
measure:
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and for the involved action:
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Note that the results (4.19)–(4.21) account for quantum information for 
the quantum evolution of a system throughout accounting all histories 
(possibilities for linking two events in time-space) for a quantum evolu-
tion (Peak & Inomata, 1969; Gerry & Singh, 1979; Kleinert, 1989):

 x t x t i S x p tb b a a
ALL

HISTORIES

; exp [ , , ]( ) = 







∑


 (4.22)

thus being suitable to be implemented in the N-particle functional scheme 
once it is analytically computed (see the Section 4.3).
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However, for achieving such goal, a more practical form of the Feynman 
integral may be obtained once the Hamiltonian is implemented as

 H p
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V x t= +
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( , )  (4.23)

leading with the action (4.21) unfolding
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allowing the momentum integrals in Eq. (4.20) to be solved out as

 
dp i

m
p

x x
m m

i
j

j
j j

2 2 2
1

2

π
ε

ε π ε  −∞

+∞
−∫ − −

−




















=exp  (4.25)

through formally applying the Poisson formula (see Appendix A.1.2):
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The remaining quantum evolution amplitude reads as the spatial path inte-
gral only:
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with the actual modified measure of integration:
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and the working action:
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Note that when the partition function is considered, another space coordi-
nate is to be taken over the path integral (4.27), namely:
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while the new integration measure
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Ones of the main advantages dealing with path integrals relays on 
following:

• Attractive conceptual representation of dynamical quantum pro-
cesses without operatorial excursion;

• Allows for quantum fluctuation description in analogy with thermal 
analogies,
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through changing the temporal intervals with the thermodynamic tempera-
ture (T) by means of Wick transformation
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i.e. transforming quantum mechanical (QM) into quantum statistical (QS) 
propagators:
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from where immediately writing also the associate QS-partition function:
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both QS object having the effect of transforming the canonical Lagrangian 
of action into the so-called Euclidian one

 L x x m x V x+ ( ) = + ( ), , ( ) ( ), τ τ τ τ
2

2  (4.36)

analogous with the fact the Euclidian metric has all its diagonal terms as 
with positive sign.

Yet, the connection of the path integrals of propagators with the 
Schrödinger quantum formalism is to be revealed, and in next addressed.

4.2.2 PROPAGATOR’S EQUATION

There are two ways for showing the propagator path integral links with 
Schrödinger equation.

Firstly, there is by employing one of the above path integral, say that of 
Eq. (4.27) with Eq. (4.29),
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to perform the derivative:
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Similarly for the second derivative we have:
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while for time derivative we obtain following the same formal steps as 
before for coordinate derivatives:
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by recalling the Hamilton-Jacobi equation of motion in the form

 δ
δ
S
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H t
b

b= − ( )  (4.41)

Now, there is immediate that for a Hamiltonian of the form (4.23) one 
gets through multiplying both its side with the propagator (4.37) and then 
considering for the square momentum and Hamiltonian terms the relations 
(4.39) and (4.41), respectively, one leaves with the Schrödinger type equa-
tion for the path integral:
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 (4.42)

Remarkably, besides establishing the link with the Schrödinger picture, 
Eq. (4.42) tells something more important, namely that the wave func-
tion itself, i.e., Ψ x tb b,( ) that usually fulfills equations like Eq. (4.42) 
may be replaced (and generalized as well) by the quantum propagator 
x t x tb b a a, ; ,( ) with the crucial consequence in that the propagator is provid-

ing the N-electronic density in the direct and elegant manner as

;
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= =

 (4.43)

with partition function given as in (4.30), assuring for the correct 
N-representability (as is fundamental in density functional theory (DFT)) 
constraint:

 ρN b ax t t dx N; −( ) =∫  (4.44)

thus nicely replacing the complicated many-body wave function calculations.
Nevertheless, the path integral formalism is able to provide also the exact 

Schrödinger equation for the wave function, as will be shown in the sequel.

4.2.3 RECOVERING WAVE FUNCTION’S EQUATION

The starting point is the manifested equivalence between the path integral 
propagator and the Green function, with the role in transforming one wave-
function registered on one space-time event into other one, either in the future 
or past quantum evolution. Here, we consider only retarded phenomena,

 x t x t iG x t x t2 2 1 1 2 2 1 1, ; , , ; ,( ) = ( )+  (4.45)

in accordance with the very beginning path integral construction, see the grid 
(4.1) and the relation (4.2), and consider the so-called quantum Huygens 
principle of wave-packet propagation (Greiner & Reinhardt, 1994):

 ψ ψx t x t x t x t dx t t2 2 2 2 1 1 1 1 1 2 1, , ; , , ,( ) = ( ) ( ) >∫  (4.46)

Yet, we will employ Eq. (4.46) for an elementary propagator, for a quan-
tum evolution as presented in Figure 4.1, thus becoming like:
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where A plays the role of the normalization constant in Eq. (4.47) to assure 
the convergence of the wave function result. Equation (4.47) may be still 
transformed through employing the geometrical relation:

 x x= +0 ξ  (4.48)
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to compute the space and velocity averages:
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respectively, while changing the variable
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to the actual form:
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where Lagrangian was considered with its canonical form, as in Eq. (4.29), and 
the new constant factor was considered assimilating the minus sign of (4.52).

FIGURE 4.1 Depiction of the space-time elementary retarded path connecting two 
events characterized by their dynamic wave-functions.
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Next, since noticing the square dependence of ξ in Eq. (4.52) there will be 
assumed the series expansion in coordinate (ξ) and time (ε) elementary steps 
restrained to the second and first order, respectively, being the time interval 
cut-off in accordance with the general (4.12) prescription. Thus we have:
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and the form Eq. (4.52) successively rearranges:
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where we have neglected the mixed orders producing a total order beyond 
maximum two, for example, εξ 2 0≅ , and were we arranged the expo-
nentials under integrals such that be of Gaussian type (i.e., employing 



376 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

the identity − =i i1/ ). Now, the integrals appearing on Eq. (4.56) are of 
Poisson type of various orders, and solves for notation
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With these the expression (4.56) simplifies to:
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which in the limit ε → 0, common for path integrals, leaves with identity:
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from where the convergence constant of path integral (4.52) is found
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with identical form as previously, see Eq. (4.25), thus confirming the con-
sistency of the present approach. Nevertheless, with the constant (4.63) 
back in Eq. (4.61) we get the equivalent forms:
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being this last one identically recovering the Schrödinger wave function 
equation.

There was therefore thoroughly proofed that the Feynman path integral 
is may be reduced to the quantum wave-packet motion while carrying also 
the information that connects coupled events across the paths’ evolution, 
being in this a general approach of quantum mechanics and statistics.

Next section(s) will deal with presenting practical application/calcula-
tion of the path integrals for fundamental quantum systems, from free and 
harmonic oscillator motion to Bohr and quantum barrier too.

4.3 PATH INTEGRALS FOR BASIC MATTER’S STRUCTURES

4.3.1 GENERAL PATH INTEGRAL’S PROPERTIES

There are three fundamental properties most useful for path integral calcu-
lations (Dittrich & Reuter, 1994).

1. Firstly, one may combine the two above Schrödinger type informa-
tion about path integrals: the fact that propagator itself x t x tb b a a, ; ,( ) 
obeys the Schrödinger equation, see Eq. (4.42), thus behaving as 
a sort of wave-function and the fact that Schrödinger equation of 
the wave-function is recovered by the quantum Huygens principle 
of wave-packet propagation, see Eq. (4.46). Thus it makes sense 
to rewrite Eq. (4.46) with the propagator instead of wave-function 
obtaining the so-called group property for propagators:

 x t x t x t x t x t x t dx t t t3 3 1 1 3 3 2 2 2 2 1 1 2 3 2 1, ; , , ; , , ; , ,( ) = ( )( ) > >∫  (4.65)

which, nevertheless, may be recursively applied until covering the 
entire time slicing of the interval t ta b,[ ] as given in (4.1):
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while remarking the absence of time intermediate integration.
2. Secondly, from the Huygens principle Eq. (4.46) there is abstracted 

also the limiting delta Dirac-function for a propagator connecting 
two space events simultaneously:

 x t x t x x, ; ,1 1 1 1( ) = −( )δ  (4.67)

as immediately is checked out:

 ψ ψ δ ψx t x t x t x t dx x x x t dx, , ; , , ,1 1 1 1 1 1 1 1 1 1 1( ) = ( ) ( ) = −( ) ( )∫ ∫  (4.68)

This property is often used as the analytical check once a path inte-
gral propagator is calculated for a given system.

3. Thirdly, and perhaps most practically, one would like to be able 
to solve the path integrals, say with canonical Lagrangian form 
(4.32), in more direct way than to consider all multiple integrals 
involved in the measure (4.28).

Hopefully, this is possible working out the quantum fluctuations along 
the classical path connecting two space-time events. In other words, this 
is to disturb the classical path x tcl ( ) by the quantum fluctuations δ x t( ) to 
obtain the quantum evolution path:

 x t x t x tcl( ) ( ) ( )= + δ  (4.69)

and its first time derivation:

   x t x t x tcl( ) ( ) ( )= + δ  (4.70)

Very important, note that the quantum fluctuation vanishes at the end-
points of the evolution path since “meeting” with the classical (observed) 
path, see Figure 4.2:

 δ δx t x ta b( ) ( )= =0  (4.71)

being these known as the Dirichlet boundary conditions.
With these the purpose is to separate the classical by the quantum fluc-

tuation contributions also in the path integral propagator. Fortunately this 
is possible for enough large class of potentials, more precisely for qua-
dratic Lagrangian’s of general type:
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 L x x t t x t xx t x t x t x t, , ( ) ( ) ( ) ( ) ( ) ( )   ( ) = + + + + +α β γ λ χ σ2 2  (4.72)

Expanding the path integral action (4.29) around the classical path requires 
the expansion of its associate Lagrangian (4.72); we get accordingly:
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FIGURE 4.2 Illustration of the quantum fluctuations δ x t( )  around the classical path
x tcl ( )  producing the space-time evolution of the Figure 4.1.
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With action (4.74) one observes it practically separates into the classical 
and quantum fluctuation contributions; this has two major consequences:

• The classical action goes outside of the path integration simply 
becoming the multiplication factor exp ( / )i Scl[ ];

• The remaining contribution since depending only on quantum fluc-
tuation δ x t( ) allow in the changing of integration measure:

 ( )
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( )( )
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. (4.69)
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In these circumstances the path integral propagator factorizes as:
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  (4.76)

Few conceptual comments are now compulsory based on the path integral 
form (4.76):
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• There is clear that since the quantum fluctuation term does not depend 
on ending space coordinates but only on their time coordinates, 
so that in the end will depend only on the time difference t tb a−( ) 
since by means of energy conservation all the quantum fluctuation 
is a time-translation invariant, see for instance the Hamilton-Jacobi 
Eq. (4.41); therefore it may be further resumed as the fluctuation 
factor:

 F t t x t i t x t y x
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 (4.77)

• Looking at the terms appearing in the whole Lagrangian (4.72) and 
to those present on the factor (4.77) it seems that once the factor 
(4.77) is known for a given Lagrangian, say L , then the same is 
characterizing also the modified one with the terms that are not pres-
ent in the forms (4.77):

 � �L L t x t x t= + + +λ χ σ( ) ( ) ( )  (4.78)

• The resulting working path integral of the propagator now simply 
reading as:

 x t x t F t t i S x x tb b a a b a cl cl cl, ; , exp [ , , ]( ) = −( ) 





�

�  (4.79)

gives intuitive inside of what path integral formalism of quantum mechan-
ics really does: corrects the classical paths by the quantum fluctuations 
viewed as amplitude of the (semi) classical wave.

Next, the big challenge is to compute the above fluctuation fac-
tor (4.79); here there are two possibilities of approach. One is con-
sidering the fluctuations as a Fourier series expansion so that directly 
(although through enough involving procedure) solving the multiple 
integrals appearing in Eq. (4.77). Yet, this route was that originally 
proposed by Feynman in his quantum mechanically devoted mono-
graph (Feynman & Hibbs, 1965), while recently refined in an extended 
textbook (Kleinert, 2004).
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The second way is trickier, although with its limitation, but avoids 
performing the direct integration prescribed by Eq. (4.77), while instruc-
tive since computing the quantum fluctuation again in terms of classical 
path action (Dittrich & Reuter, 1994), however through employing the 
present first two propagator properties, the group property (4.65) and the 
delta-Dirac limit (4.67), to the quantum wave (4.79).

As such, combining the stipulated propagator properties, one starts 
equivalently writing

 

δ x x x t x t

x t x x x t dx x t x x
b a b a

b a b a

−( ) = ( )
= ( )( ) = ( )∫

, ; ,

, ; , , ; , , ; , ,0 0 0 tt x dx; , *0( )∫  (4.80)

where the last identity follows by employing the identity between the 
retarded (+) and advanced (–) Green functions (Greiner & Reinhardt, 
1994)

 G x t x t G x t x tb b a a a a b b
+ −( ) = ( ) , ; , , ; ,

*
 (4.81)

combined with the propagator-Green function relationship (4.45), here 
supplemented with the advanced propagator version:

 x t x t iG x t x ta a b b a a b b, ; , , ; ,( ) = − ( )−  (4.82)

Now, the propagators from Eq. (4.80) may be written immediately from 
the general form (4.79):

 x t x F t i S x t xb cl b, ; , exp , ; ,0 0( ) = ( ) ( )







 (4.83)

 x t x F t i S x t xa cl a, ; , exp , ; ,* *0 0( ) = ( ) − ( )







 (4.84)

which help in rewrite (4.80) as:
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Next, assuming the notation:
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if its derivative ds x dx( ) /  is independent of x it goes out the integral if the 
changing in variable may apply on Eq. (4.85) leaving with the identity:
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from where the quantum fluctuation factor follows at once with the ana-
lytical general form:
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With expression (4.88) the propagator (4.79) is fully expressed in terms of 
classical action as:
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or in the more appealing form:

 x t x t
S x t x t
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cl b b, ; ,
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 (4.90)

usually referred to as the Van Vleck-Pauli-Morette formula, emphasizing 
on the importance of solving the classical problem for a given canonical 
Lagrangian (Laidlaw & DeWitt-Morette, 1971; Peak & Inomata, 1969).

However, the path integral solution (4.90) has to be used with two 
amendments:

• the procedure is valid only when the quantity (4.86), here rewrit-
ten in the spirit of Eq. (4.90) as ∂ ( ) ∂S x t x t xcl b b a a a, ; , / , performed 
respecting one end-point coordinate remains linear in the other space 
(end-point) coordinate xb, so that the identity (4.87) holds; this is true 
for the quadratic Lagrangian’s of type (4.72) but not when higher 
orders are involved, when the previously stipulated Fourier analysis 
has to be undertaken (one such case will be in foregoing sections 
presented).

• In the case the formula (4.90) is applicable, i.e., when previous con-
dition applies, the obtained result has to be still verified to recover 
the delta-Dirac function in the limit:

 lim , ; ,
t t b b a a b a
b a

x t x t x x
→

( ) = −( )δ  (4.91)

in accordance with the implemented recipe, see Eq. (4.80); usually this 
step is providing additional phase correction to the solution (4.90).

The present algorithm is in next exemplified on two paradigmatic 
quantum problems: the free motion and the motion under harmonic oscil-
lator influence. In each case the set of the classical action will almost solve 
the entire path integral problem.

4.3.2 PATH INTEGRAL FOR THE FREE PARTICLE

Given a free particle with the Lagrangian

 L x x t m x( ) , ,0
2

2
 ( ) =  (4.92)
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it leaves by means of Euler-Lagrange equation

 d
dt

L
x

L
x

∂
∂







 =

∂
∂

 (4.93)

to the classical (Newtonian) motion:

 x tcl ( ) = 0  (4.94)

with the obvious solution

 x t x x x
t t

t tcl a
b a

b a
a( ) = +

−
−

−( )  (4.95)

fulfilling the boundary conditions:

 x t x x t xcl a a cl b b( ) ; ( )= =  (4.96)

being these endpoints the states where the system is observable, i.e., when 
quantum fluctuations vanishes, see Eq. (4.71) and Figure 4.2.

Replacing solution (4.95) back in Lagrangian (4.92) the classical action 
is immediately found:
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Next, the quantity (4.86) is firstly evaluated in the spirit of Eq. (4.90) as
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and recognized as linear in the other end-point space coordinate xb. Thus, 
the formula (4.90) may be applied, with the actual yield:
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Finally, the result of Eq. (4.99) has to be arranged so that to satisfy the 
limit (4.91) as well. For that we use the delta-Dirac representation:
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Comparison between Eqs. (4.99) and (4.100) leads with identification:
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thus correcting the factor of Eq. (4.99) so that to have the correct limiting 
path integral solution:

 x t x t m
i t t

i m x x
t tb b a a

b a

b a

b a

, ; , exp
( )( ) =

−( )
−( )
−












0

2

2 2π   
 (4.102)

Remarkably, this solution is indeed identical with the Green function of 
the free particle, until the complex factor of Eq. (4.45), this way confirm-
ing the reliability of the path integral approach. Moreover, beside of its 
foreground character in quantum mechanics, the present path integral of 
the free particle can be further used in the paradigmatic vibrational motion 
by using the basic rules in using path integrals propagator for density 
computations:

• The reliable application of the density computation upon the parti-
tion function algorithm, see Eqs. (4.43) and (4.44), prescribes the 
transformation of the obtained quantum result in the quantum sta-
tistical counterpart by means of Wick transformation (4.33) supple-
mented by the trigonometric to hyperbolic functions conversions;

• In computation of the path integral propagator the workable Van 
Vleck-Pauli-Morette formula looks like

 x t x t
i

S x t x t
x x
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with the complex factor “i” included, as confirmed by both the free and 
harmonic oscillator quantum motions, for being used for classical actions 
linear upon derivation respecting one of the end-point space coordinates 
in the other one; yet the formula (4.103) should be always checked for 
fulfilling the limiting (4.91) delta-Dirac function for simultaneous events 
for any applied potential.

Beside of these working rules, regaining the energy quantification of 
free electrons in solid state (motion within the infinite high box) as well 
as the obligatory Bohr quantification for the continuous deformation of 
the path on the circle (Kleinert, 2004; Dittrich & Reuter, 1994), will com-
plete the 3-fold fundamental types of quantum evolution (i.e., covering the 
rotation, vibration and translations for motion in atomic quantified circles, 
in molecule and along the solid state bands, respectively) as loaded and 
reloaded from various perspectives through this volume, see the preceding 
chapters.

4.3.3 PATH INTEGRAL FOR MOTION AS THE HARMONIC 
OSCILLATOR

The characteristic Lagrangian of the harmonic oscillator,

 L x x t m x m x( ) , ,ω ω ( ) = −
2 2

2 2 2  (4.104)

provides, when considered in the Euler-Lagrange equation (4.93), the 
classical equation of motion:

 x t x tcl cl( ) ( )+ =ω2 0  (4.105)

with the well known solution

 x t C tcl ( ) sin= +( )ω ϕ  (4.106)

specialized on the end-point events of motion as:

 x x t C ta cl a a= = +( )( ) sin ω ϕ  (4.107)
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 x x t C tb cl b b= = +( )( ) sin ω ϕ  (4.108)

In the same way as done for free motion, see solution (4.95), worth rewrit-
ten the actual classical solution (4.106) in terms of relations (4.107) and 
(4.108), for instance as
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or similarly as:

 x t x t t x t tcl b b b b( ) sin cos= −( )  + −( ) 
1
ω

ω ω  (4.110)

On the other side the classical action of the Lagrangian (4.104) looks like:
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;
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Now, in order having classical action in terms of only space-time coor-
dinate of the ending points, one has to replace the end-point velocities in 
Eq. (4.111) with the aid of relations (4.109) and (4.110) in which the cur-
rent time is taken as the t tb=  and t ta= , respectively; thus we firstly get:

 x
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then we form the needed products:
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to finally replace them in expression (4.111) to provide the computed clas-
sical action:
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 (4.116)

Note that the correctness of Eq. (4.116) may be also checked by imposing 
the limit ω → 0 in which case the previous free motion has to be recov-
ered; indeed by employing the consecrated limit

 lim sin
y

y
y→

=
0

1  (4.117)

one immediately get:

lim , ; ,( )ω ω→
( )

0
S x t x tcl b b a a



390 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

 

=
−( )

−( )
−( ) →

=

→

m
t t

t t
t t

x

b a

b a

b a

a

2 0

1

0
lim
sin

lim
ω ω

ω
ω

� ���� ����

22 2

2
2

+( ) −( ) 
−












−( )

x t t

x x
b b a

a b

x xb a

cos ω

� ������ �������

=
−( )
−

= ( )

m x x
t t

S x t x t

b a

b a

cl b b a a

2

2

0( ) , ; ,  (4.118)

Such kind of check is most useful and has to hold also for the quantum 
propagator as a whole. Going to determine it one has to reconsider the 
classical action (4.116) so that the quantity (4.86) is directly evaluated in 
the spirit of Eq. (4.90) as:
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thus again encountering it as being linear in the other end-point coordinate 
xb, being this the fortunate situation in which the previous section algo-
rithm for path integral computation may be applied though the expression 
(4.90), here manifested with the harmonic oscillator result:
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 (4.120)

Yet, as above was the case for the classical action itself, also the pre-expo-
nential quantum fluctuation factor of Eq. (4.120) has to overlap with that 
appearing in the path integral of free motion of Eq. (4.102) under the limit 
ω → 0:

 lim
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Thus we have to have the propagator (4.120) with the exponential 
pre-factor gaining an appropriate placed complex factor “i:
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  (4.122)

This is the searched propagator of the (electronic) motion under the 
harmonic oscillating potential, computed by means of path integral; it 
provides the canonical density to be implemented in the DFT algorithm 
(4.43) and (4.44):
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  (4.123)

Yet, for practical implementations, the passage from quantum mechanics 
(QM) to quantum statistics (QS) is to be considered based on the Wick 
transformation (4.33) here rewritten as:

 t t i ib a b a−( ) → − ≡ − −( )β τ τ  (4.124)

providing the Euler based trigonometric to hyperbolic function conver-
sions (by analytic continuations):
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×

×
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 (4.126)

allowing for density (4.123) the counterpart formulation:
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The uni-particle (electronic) density (4.127) is then used for computing 
the harmonic oscillator partition function:
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 (4.128)

Now using the “double angle” formula:

 cosh cosh sinh cosh sinh2 2 1 2 12 2 2 2y y y y y= + = − = +  (4.129)

partition function (4.128) further becomes:
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Remarkably, the result (4.130) recovers also the energy quantification of 
the quantum motion under the harmonic oscillator influence, through the 
successive transformations:
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Comparing the expression (4.131) with the canonical formulation of the 
partition function

 Z En
n

≡ −[ ]
=

∞

∑exp β
0

 (4.132)

there follows immediately the harmonic oscillator energy quantification:

 E nn ( )ω ω= +







1
2

 (4.133)

in perfect agreement with the consecrated expression, see Eqs. (2.525), 
(3.149), (3.231), and (3.280).
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4.3.4 PATH INTEGRAL REPRESENTATION FOR THE BOHR’S 
ATOM

Consider a particle in a circular closed path motion (i.e., an orbit continu-
ously deformed into a circle), with the specific parameters:

• the fixed (not necessarily observed) end-points ϕ = 0  & ϕ = 2π ;
• the circular length parameter sa b...  along the circle length L.

This circular motion, being along a simple connected line (the circle) 
can be projected on the free-particle (line) motion (on real space ℜ ) 
over which specific constraints are imposed to regain the circular path 
and motion towards the present path integral model of the Bohr’s atom. 
Therefore, one re-considers the free-motion propagator of Eq. (4.102)

 x t x t m
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n
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b
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ℜ0

2

2 2π  











 (4.134)

by assuming that while going from xa to xb
n( ) the particle covered the entire 

circular orbit as much as n-times the so that adding nL to the initial circular 
parameter on ring, that writes:
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t t t
b
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( ) − = − + ≡ +
− ≡







∆
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 (4.135)

Such that the evolution amplitude (the propagator) (4.134) acquires the 
atomic circular orbit information under the working form

 s t s t m
i t

i m s nL
tb b a a L, ; , exp( ) =
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2 2

2

π  ∆
∆

∆
 (4.136)

At this point one would seek to unfold this information in a sum of orbit 
paths in order to correctly describe the particle motion within atomic cir-
cular orbits; to this aim, one would benefit from turning back the expo-
nential form of Eq. (4.136) into a path integral; this can be achieved in 
two steps:
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• Firstly, the Poisson formula (4.26) is employed to provide the 
extended useful integral formulation

 e dy e e dy
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which is adapted for the present purpose (c = 0) to the identity
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b
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of which l.h.s. may be recognized in Eq. (4.136) rearranged as
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This way the circular propagator may be considered as the path 
integral

 G s t m i t p ip m s nL dpL∆ ∆
∆
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 (4.140)

Which can be further rewritten by changing the integrand in order 
to achieve the non-dimensional quantities under exponential, by the 
transformation

 p p
m

→
2


 (4.141)

leading with the working propagator
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 (4.142)

• The second step is considering in Eq. (4.142) of the complete orbits 
as factorization contribution
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And to consider on this last expression all possible paths (n-th order) 
by which the final circular position on orbit is reached; equivalently, 
this means summing up over all such possibilities (like in counting 
states within the partition functions) to yield
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Now we are in position to recognize the Poisson summation (the 
comb) formula (see Appendix A.1.2) linking the exponential fluctua-
tions with the delta Dirac point-contributions
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Specifically, in the case of Eq. (4.144), one has in the first instance 
the transformation
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where the Dirac factorization property was considered

 δ δa X Y
a

X Y−( )  = −( )1  (4.147)

One has therefore the actual propagator of the Bohr’s atom
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Which allows further solution my means of the filtration property 
of delta-Dirac function, see Eq. (2.11), to get the almost final result, 
namely:
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The final results will be displayed in terms of the natural parameter 
for the circular motion, i.e., by the angle ϕ : for a radius R of the 
given orbit, one readily can complete the list of Eq. (4.135) with the 
actual one including the inertia momentum (I):
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Now we arrive to the quantification conclusions:
• The delta Dirac function in Eq. (4.146) gives the momentum 

quantification

 p
L
n=

2π  (4.151)

Which is quite equivalent with the phenomenological deduc-
tion in Eq. (1.79) when considering also length-radius connection 
from (4.150); moreover, with the present approach also the kinetic 
momentum is found quantified since:
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2

2
2

π
π

π
ϕ

ϕ  (4.152)

thus completing the Bohr’s quantification with the so-called “first 
integral” of motion, characteristic to the orbital motion itself, 
apart of the de Broglie closure quantification on (whatever) orbit 
(4.151).
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Nevertheless, the total energy on orbit is directly quantified by the 
kinetic energy information absorbing all potential information (by circular 
motion and closing paths), i.e., directly writing as:

 E p
m mR

n
I
nn = = =

2 2

2
2

2
2

2 2 2
   (4.153)

certainly in accordance with the phenomenological expression obtained 
from optimum quantities in Eq. (1.82), apart of the minus sign (indicating 
the binding energy nature).

Eventually, the atomic Bohr’s propagator (4.149) finally looks like
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Or under the non-dimensional form:
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such that the evolution amplitude of the propagator is shaped as a trigo-
nometric normalized output itself. Worth noting that accommodating the 
Bohr’s atom and quantification within path integral formalism gives it 
strength and elegancy, while offering enough consistency and richness in 
quantum information in order to have preeminence in treating complex 
quantum structure and interactions.

4.3.5 PATH INTEGRAL FOR MOTION IN THE QUANTUM WELL

The particle in a quantum well of potential
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x x L
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may be described as a combination between:

• the free particle propagation due to the translational movement 
inside the walls

• the Bohr’s atom movement due to the closing paths by bouncing off 
the walls

However, there are also two characteristics, due to the collisions and 
the turning points along the path on the walls, namely:

• starting the initial point x ta a,( ) the final point may be reached either 
from the direct path x tb b,( ) as well as from the opposite direction 
of path −( )x tb b, ; therefore, the propagator of the particle inside the 
quantum well should be regarded as a superposition of two free par-
ticle contributions
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 (4.157)

• consequently the space-time information in Eq. (4.135) is now mod-
ified such that, due to the wall turning points, the traveled space is 
doubled by the forward and backward movements such that the for 
the r-th trip between walls we will have
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Combining these information, as previously for the Bohr’s atom, 
with the sum over infinite histories with the same scenario and out-
put, while performing for each of the exponentials of Eq. (4.157) the 
same analytical transformation by means of Eq. (4.138) as previ-
ously done for atomic circular motion, we adapt the result (4.142) to 
the present quantum well situation to firstly get
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from where one may separate the final point contribution and apply the 
sum contribution over paths on the specific changing phase (by 2Lp/) 
term
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while now, one recognizes, as before, the Poisson –comb function on 
which the similar transformation as in Eq. (4.146) holds
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This way, the propagator of the particle within the quantum well further 
writes from Eq. (4.160) under delta-Dirac form
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Yielding upon performing the integration by the filtration property of 
delta-Dirac function, see Eq. (2.11), to leave with the Green function result
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Where we have recorded the energy and wave vector quantifications, 
respectively
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 (4.164)

as driven by the delta-Dirac appearance in Eq. (4.161)

 p n
Ln =

π
  (4.165)

Worth remarking that the energy quantification (4.164) for the particle 
trapped in the quantum wall exactly matches the earlier results (3.190a), 
(3.258), and (3.296), thus affirming once more the correctness of the 
path integral approach, while being richer in history of quantum paths’ 
contribution.

Finally, one notes that with the quantifications in Eq. (4.164) we have 
also the level-properties:
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With which the propagator (4.163) may be further evaluated by playing 
with the sum over states, i.e., by excluding the zero-state (see also the 
ground state solid-state paradox exposed in Section 3.5.3), while consider-
ing the remaining terms grouped under two anti-symmetrical sums:
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to finally yield
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This way completing the earlier wave-function information, see for 
instance Eq. (3.296) or Eq. (3.596), with the actual evolution amplitude 
(4.168) of the quantum propagator (Green function) for electrons in the 
valence band of solids.

The following approach will show how the already proved quite reli-
able approach of path integrals is naturally needed within the Dirac formal-
ism of quantum mechanics applied on many-particle systems, specific to 
chemical structures formed by many-electrons in valence state, by means 
of the celebrated density matrix formalism – from where there is just a 
step to the “observable” density functional theory of many-body systems.

4.4 DENSITY MATRIX APPROACH LINKING PATH INTEGRAL 
FORMALISM

4.4.1 ON MONO-, MANY-, AND REDUCED-ELECTRONIC 
DENSITY MATRICES

Given a spectral representation n
n{ }
∈N

 for a set of quantum mono-elec-
tronic states,
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n
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one may employ its closure relation
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to generally express the average of an observable (i.e., the operator A ) on 
a selected state as:
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while for the observable average over the entire sample the individual 
weight wk should counted to provide the statistical result:

 A
w A

w

k
kk

k
k
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∑

∑
 (4.172)

When rewrite the global average in similar formal way as the selected 
k-average, actually in terms of it:
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we introduced in fact the density matrix elements:
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which provides the density operator:
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with the sum of diagonal matrix elements (the “trace” function)
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while the searched operatorial average now becomes:
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Note that in above deductions the double (independent) averages technique 
was adopted, exploiting therefore the associate sums inter-conversions to 
produce the simplified results (Park et al., 1980; Blanchard, 1982; Snygg, 
1982). Yet, this technique is equivalent with quantum mechanically factor-
ization of the entire Hilbert space into sub-spaces, or at the limit into the 
subspace of interest (that selected to be measured, for instance) and the 
rest of the space being thus this approach equivalent with a system-bath 
sample; this note is useful for latter better understanding of the stochastic 
phenomena that underlay to open quantum systems, being this the physi-
cal foundation for chemical reactivity.

Next, in the case the concerned quantum states are eigen-states, they 
fulfill the normalization constraint:

 δkk k k kn k n
n
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*

'= = ⇒ =∑ ∑ϕ ϕ 2 1  (4.178)

on which base the above density operator now reads with the eigen-equation
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 (4.179)

leading with the eigen-values (as the diagonal elements) just the weights

 ϕ ϕk k kwρ =  (4.180)

as the observed values of the averaged density operator. Thus they have to 
naturally fulfill the closure probability relationship over the entire sample,

 wk
k

∑ =1  (4.181)

from where the “normalization of density operator” through its above 
Trace property of Eq. (4.176):

 Trρ =1  (4.182)

Moreover, in these eigen-conditions, the operatorial average further reads 
from Eq. (4.177):

 A A  = ( )Tr ρ  (4.183)
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Now, there appears with better clarity the major role the density opera-
tor plays in quantum measurements, since convolutes with given operator 
to produce its (averaged) measured value on the prepared eigen-states. 
Nevertheless, when the so-called pure states are employed or prepared, the 
precedent distinction between the subsystem and system vanishes, and the 
density operator takes the pure quantum mechanical form of an elemen-
tary projector:

 ρ = ≡ϕ ϕ Λ  (4.184)

This is a very useful expression for considering it associated with the 
mono-density operators when the many-fermionic systems are treated, 
although similar procedure applies for mixed (sample) states as well. There 
is immediate to see that for N formally independent partitions the Hilbert 
space corresponding to the N-mono-particle densities on pure states, we 
individually have, see Eqs. (4.176), (4.181), (4.182) and (4.184),
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producing the total operator – projector constructed by their sum
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is correctly normalized to the total number of particle:
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Yet, the anti-symmetric restriction the N-fermionic state may be accounted 
from the mono-electronic states through considering Slater permutated 
(Pα) products (Putz & Chiriac, 2008; Thouless, 1972):
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for constructing the N-electronic density operator:

 ρ
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N N= Φ Φ  (4.189)

with which help the N N×  density matrix writes as (in coordinate 
representation):
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However, in practice, due to the fact the multi-particle operators have 
properties associate with number of systemic properties less than the total 
number of particle, say of order p N< , worth working with the p-order 
reduced density matrix introduced as:

 ρ ( ) *' ... ' ; ... ... ' ... 'p
p p N N N Nx x x x

N
p

x x x x1 1 1 1( ) =








 ( ) ( )∫Φ Φ ddx j

j p

N

= +
∏

1

 (4.191)

with the following useful properties (Blum, 1981):

• Normalization:

 ρ ( ) ' ... ' ; ...p
p p j

j
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x x x x dx
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p1 1

1
( ) =









∫ ∏
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 (4.192)

• Recursion:
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p p p

p
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p
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1
1 1 1
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×

×
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• First order Löwdin reduction:
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where the first order density matrix casts, abstracted from general 
definition:

 ρ ( ) *' ; ... ' ... '1
1 1 1 1

2

x x N x x x x dxN N N N j
j

N

( ) = ( ) ( )∫ ∏
=

Φ Φ  (4.195)

By these there is already noted the major importance the first order density 
plays in computing the higher order reduced density matrices that on their 
turn enters the operatorial averages, for instance:

 A A x x(p)

p
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p
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  = ( )
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∑Tr
1

1...
( )

ρ  (4.196)

A special reference worth be made in regard of the free-relativist treatment 
of many-electronic atoms, ions, bi- or poly- atomic molecules, governed 
by the working Hamiltonian:
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those terms are represented the inter-nuclear repulsion (only for mol-
ecules), free electronic motion, electron-nuclei Coulombic attraction, 
and inter-electronic Coulombian repulsion, respectively. For it, the 
average value is computed through considering electronic density of 
the first or second order only there where the electronic influence is 
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present while the degree of matrix density is fixed by the type of elec-
tronic interaction:
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There is obvious that even the second order reduced matrix has appeared,
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it may be further reduced to the first one through the above determinant 
rule:
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emphasizing therefore on the importance of the first order reduced matrix 
knowledge.

The astonishing physical meaning behind this formalism relays in the 
fact that any multi-particle interaction (two-particle interaction included) 
may be reduced to the single particle behavior; in other terms, vice-versa, 
the appropriate perturbation (including strong-coupling) of the single par-
ticle evolution caries the equivalent information as that characterizing the 
whole many-body system.
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In fact in this resides the power of the density matrix formalism: reduc-
ing a many-body problem to the single particle density matrix, abstracted 
from the single Slater determinant of Eq. (4.190) called also as Fock-Dirac 
matrix

 ρFD i i
i

N

x x x x( ) *' ; '1
1 1 1 1

1
( ) = ( ) ( )

=
∑ϕ ϕ  (4.201)

and the associate operator

 ρ FD i i
i

N( )1

1
=

=
∑ ϕ ϕ  (4.202)

that is considerably simplifying the quantum problem to be solved. 
Let’s illustrate this by firstly quoting that Fock-Dirac density operator of 
Eq. (4.202) has two fundamental properties, namely:

• The idem potency:
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• The normal additivity, see Eqs. (4.187):
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while having the corresponding coordinate integral representations:
• Kernel multiplicity:

 ρ ρ ρFD FD FDx x x x dx x x( ) ( ) ( )' ; '' '' ; '' ' ;1
1 1

1
1 1 1

1
1 1( ) ( ) = ( )∫  (4.205)

• Many-body normalization:

 ρFD x x dx N( ) ;1
1 1 1( ) =∫  (4.206)

Remarkably, the last two identities may serve as the constraints when 
minimizing the above Hamiltonian average, here appropriately rewritten 
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employing Eqs. (4.198) and (4.200) and where all external applied poten-
tial was resumed under V x( )1  under the actual so-called Hartree-Fock trial 
density matrix energy functional
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with the (Lagrange) variational principle:

 

δ

ρ

α
ρ ρ

E

x x
x x x x dx

HF FD

FD FD

( )

( ) ( )

' ;
' ; '' '' ;

1

1 1

1
1 1

1
1 1

 

− ( )
( ) ( )∫ '''

' ;
'

' ' ;

( )

( )

1

1
1 1

1 1

1 1
1

1

− ( )













− −( )

∫∫
ρ

β δ ρ

FD

FD

x x
dx dx

x x x x11 1 1

0

( ) −

































=

∫∫ dx dx N'

 (4.208)

By the functional derivative respecting the Fock-Dirac electron density 
one gets:
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which eventually transcribes at the operatorial level:

 F FD FD
� � � � � � �− − + − =ρ α α ρ α β δ

( ) ( )1 1
1 0  (4.210)

with 1δ staying for the operator of the delta-Dirac matrix δ x x'1 1−( ), while 
F  being the Fock operator corresponding to the coordinate matrix repre-
sentation (Parr & Yang, 1989):
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Equation (4.210) is most informative since, basing on the idem potency 
property of Eq. (4.203), through multiplying it on the right with Fock-
Dirac density operator,
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and then with the same on left side,
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and subtracting the results, it yields:

 F FFD FD
   ρ ρ

( ) ( )1 1
0− =  (4.214)

that is equivalently of saying that Fock energy operator commutes with the 
Fock-Dirac density operator,

 F FD
 ,

( )
ρ

1
0





=  (4.215)

meaning that they both admit the same set of eigen-functions. This is 
nevertheless the gate for obtaining the density (matrix) functional energy 
expressions by means of finding the density (matrix) eigen-solutions only.

Yet, condition (4.215) is indeed a workable (reduced) condition raised 
from optimization of the averaged Hamiltonian of a many-electronic 
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system, since the more general one referring to the whole Hamiltonian, 
known as the Liouville or Neumann equation, is obtained employing the 
temporal Schrödinger equation:

 i
t

Hi i� �∂
∂

=ϕ ϕ  (4.216)

to the evolution equation of Fock-Dirac density operator evolution:
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Lastly, note that all above properties may be rewritten since considering 
the mixed p-order reduced matrix with the form

 ρ ρ( ) ( )' ... ' ; ... ' ... ' ; ...p
p p k k

p
p p

k
x x x x w x x x x1 1 1 1( ) = ( )∑  (4.218)

as a natural extension of that characterizing the pure states. However, the 
sample statistical effects may be better considered by further expressing 
the electronic density operator and its matrix, equation and properties for 
systems in thermodynamic equilibrium (with environment), a mater in 
next section addressed.

4.4.2 CANONICAL DENSITY, BLOCH EQUATION, AND THE 
NEED OF PATH INTEGRAL

For a quantum system obeying the N-mono-electronic eigen-equations

 H Ek k k
 ϕ ϕ=  (4.219)

the probability of finding one particle in the state ϕk  at thermodynami-
cal equilibrium with others, while the state + rest of states is considered a 
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closed supra-system with no mass or charge transfer allowed, is given by 
the canonical distribution (Isihara, 1980):

 w
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( )

−( )1
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βexp  (4.220)

providing the mixed Fock-Dirac density with the form:
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 (4.221)

This is a very interesting and important result motivating the quantum sta-
tistical approach of determining the density of states since it corresponds 
to the N-sample particle throughout simple N-multiplication. Note that 
Eq. (4.221) is very suited for handling since its normalization factor, the 
partition function Z β( ), obeys the consecrated expression

 Z H x e x dxHβ β β( ) = −( )





= −∫Tr exp 



 (4.222)

which is reflecting in density normalization

 N x dxρ[ ] = ( )∫ ρ 1 1  (4.223)
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being of paramount importance in density functional theory, the same as 
Eq. (4.206), because it opens the doors of observable quantities through 
electronic density rather than by means of wave function.

The recognized importance of partition function, in computing the 
internal energy as the average of the Hamiltonian of the system
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    Tr Trρ β
β
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or to evaluate the free energy of the system:

 F N ZN = − ( )1
β

βln  (4.225)

is thus transferred to the knowledge of the closed evolution amplitude 
x e xH−β  , that at its turn is based on the genuine (not-normalized) den-

sity operator:

 ρ β β 

⊗ ( ) = −( )exp H  (4.226)

sometimes called also like canonic density operator.
The great importance of density operator of Eq. (4.226) is immediately 

visualized in three ways

• It identifies the evolution operator

 U t t i H t tb a b a
�

�
�, exp( ) = − −( )





 (4.227)

on the ground of Wick equivalence relationship of Eqs. (4.33) or 
(4.124), which allows the transformation of the Schrödinger into 
Heisenberg or Interaction pictures for better describing the quantum 
interactions;

• It produces the so-called Bloch equation (Bloch, 1932) by taking its 
β − derivative,
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 −
∂ ( )

∂
= ( )⊗

⊗

ρ β
β

ρ β


 H  (4.228)

that identifies with the Schrödinger equation for genuine density 
operator

 i
t

H� � � �∂
∂

( ) = ( )⊗ ⊗ρ β ρ β  (4.229)

through the same Wick transformation given by Eqs. (4.33) or 
(4.124), thus providing the quantum-mechanically to quantum-
statistical equivalence.

• Fulfills the (short times, higher temperature) so-called Markovian 
limiting condition:

 lim
β

ρ β
→ ⊗ ( ) =
0

1� �  (4.230)

a very useful constraint for developing either the perturbation or the 
variational formalism respecting electronic density and/or partition 
function, see bellow.

In the frame of coordinate representation the Bloch problem, i.e., dif-
ferential equation and its initial (Cauchy) condition, looks like:
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 (4.231)

Solution of this system is a great task in general case, unless the perturba-
tion method is undertaken for writing the Hamiltonian a sum of a free and 
small interaction components,

 H H H  = +0 1  (4.232)

for which the free Hamiltonian solution is completely known, say

 ρ β β 

0 0( ) = −( )exp H  (4.233)
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In these conditions, one may firstly write:
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where the inter-Hamiltonian components were considered to freely com-
mute as per whish; then, the Eq. (4.234) is integrated on the realm 0,β[ ] 
to get:
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rearranged under the perturbative fashion:

 ρ β ρ β ρ β β β ρ β β
β
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0

' ' ' 'H d  (4.236)

in the form reminding by the Lippmann-Schwinger equation for the per-
turbed dynamical wave-function (Messiah, 1961), with ρ β β

0 −( )'  play-
ing the role of the retarded Green function G t tb a0 −( ) (Feynman, 1972). 
Yet, expression (4.236) may be more generalized for the p-order approx-
imation throughout choosing various p-paths of spanning the statistical 
realm 0,β[ ] by intermediate sub-intervals:

 β β β β β β= > > > > > =+n n1 2 1 0 0...  (4.237)

leading wit the expansion:
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or in coordinate representation:
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for a parallel space discrimination of the spatial interval x x',[ ] through the 
subdivisions:

 x x x x x x xn n' ...= > > > > > =+1 2 1 0  (4.240)

Such slicing procedure in solving the Bloch equation (4.231) for canonic 
density solution (4.239) seems an elegant way of avoiding the self-consis-
tent equation (4.236). Therefore, it may further employed through recon-
sidering the problem (4.231) in a slightly modified variant, namely within 
the temporal approach
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where the variable u = β was considered for the time dimension.
Now, in the first instance the new problem has the formal total solution

 ρ⊗ ( ) = − ( )





x x u H x u'; ; exp '1


 (4.242)

that being of exponential type allows for direct slicing through factoriza-
tion. That is, when considering the space division given by coordinate cuts 
of Eq. (4.240), and assuming the times flows equally on each sub-interval 
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in quota of ε , u n= +( )1 ε, the density solution (4.242) may be written as a 
product of intermediary solutions:
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where we introduced the chained covariant density product:
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and the extended integration metric:
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The general canonic solution (4.243) is called as the path integral solu-
tion for the Bloch equation (4.241), being therefore as a necessity when 
looking to general solutions for a given Hamiltonian. It gives general solu-
tion for electronic density (4.226) since accounting for all path connecting 
two end-points either in space and time (or temperatures) through in prin-
ciple an infinite intermediary points; this way the resulted path integral 
comprises all quantum information contained by the particle’ evolution 
between two states in thermodynamical equilibrium with environment (the 
other mono-particle states). However, once the canonical density evalu-
ated through computed its path integral the associate mixed density matrix 
may be immediately written employing the operatorial form (4.221) to 
actual spatial representation

 ρ ρN x x u N
Z u

x x u'; ; '; ;( ) =
( ) ( )⊗  (4.246)
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with the path integral based partition function written in accordance with 
Eq. (4.222):

 Z u x x u dx( ) = ( )⊗∫ ρ ; ;  (4.247)

while preserving the general DFT normalization condition:

 ρN x x u dx N; ;( ) =∫  (4.248)

This way the general algorithm linking path integral to density matrix to 
electronic density employed by DFT for computing various density func-
tionals (energies, reactivity indices) for characterizing chemical structure 
and reactivity was established, while emphasizing the basic role the path 
integral evaluation has in analytical evaluations towards a conceptual 
understanding of many-electronic quantum systems in their dynamics and 
interaction.

Being thus established the role and usefulness of path integral in density 
functional theory the next section will give more insight in appropriately 
defining (constructing) quantum chemical modern theories as are Hartree-
Fock and density functional formalisms, being nowadays employed in 
various computational and conceptual schemes and applications for large 
classes of physico-chemical systems.

4.5 ROOTS OF SELF-CONSISTENT METHODS IN QUANTUM 
CHEMISTRY

Very often, the famous words of Dirac, i.e., “The underlying physical 
laws necessary for the mathematical theory of a large part of physics and 
the whole of chemistry are thus completely known”, are quoted by theo-
rists in physics when they like to underline that chemistry is in principle 
solved by the basics of quantum mechanics so that some more interesting 
problems should be solved. Despite this, from 1929 nowadays, quantum 
physics of atoms and molecules largely turns into quantum chemistry, an 
interdisciplinary discipline that still struggles with the elucidation of the 
actual behavior of electrons in nano- and bio- systems. While the total 
success is still not in sight, the achievements in the arsenal of concepts, 
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principles, and implementation was considerable and already enters goes 
into the arsenal of humankind hall-of-fame giving thus hope for a shining 
dawn in the poly-electronic interaction arena (Preuss, 1969; Kryachko & 
Ludeña, 1987; Atkins & Friedman, 1997; Christofferson, 1989; Szabo & 
Ostlund, 1996). However, when questing for the underlying principles of 
the chemical bond, the first compulsory level of expertise may be called 
as the intensive level of analysis in which the main ingredients of a many-
electronic-many-nuclear problem has to be clarified. These are subjected 
in the below following sections (Putz & Chiriac, 2008).

4.5.1 MOLECULAR ORBITAL APPROACH

The basic starting point is the consecrated time-independent Schrödinger 
equation

 H E
∧

=Ψ Ψ  (4.249)

with non-relativistic Hamiltonian
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accounting for the electron kinetic, nuclear kinetic, electron-electron 
repulsion, electron-nuclear attraction and nuclear-nuclear repulsion ener-
getic terms, respectively.

Of course, as it is, Eq. (4.249) cannot be solved exactly, in its most 
general way. The approximations have to be implemented in such a way 
as to include the specific reality of the dynamic electronic-nuclear sys-
tem. In this respect, considering an approximation is not viewed as a 
limitation here, but rather as a sort of rescaling of the concerned issue. 
Epistemologically, it is equivalent with Descartes’ scholastic methodology 
of reducing a problem to smaller problems through the method of analysis. 
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Such a procedure has been long verified in mathematical-physics with 
impressive practical applications, for example, the integral-differential 
recipes, and with be thus safely implemented also here without loss in 
generality of the basic problem.

In quantum chemistry the specific method was consecrated as Born-
Oppenheimer approximation that separate the electronic-nuclear system 
and problem in two smaller parametrically linked subsystems associated 
with an electronic motion, defined by equations
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and the corresponding nuclear motion
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It is worth noting that this phenomenological separation of electronic and 
nuclear problems may be possible due to the impressive difference in their 
mass that practically fixes the nuclei as the reference system in which the 
electronic system evolves. This is, nevertheless, only the first and most 
straight (however appropriate) approximation considered upon a many-
body (electrons and nuclei) problem.

As a consequence, two stages of the overall solution can be given. One 
is obtained when solving the electronic problem only, therefore producing 
the so-called single-point calculation, i.e., the clamped nuclei remaining 
in a single inter-position.

The next stage is when replacing the electronic coordinates by their 
average values, since they move much faster than the nuclei, solving 
the nuclear Schrödinger equation (4.252) thus furnishing the vibration, 
rotation and translation solutions of a molecule. This way, the so-called 
potential-energy surface solution has been provided since E R Ve A nn({ }) +

∧

 
constitutes the potential for the nuclear motion as a whole.

While, molecular mechanics methods fairly provides nuclear solution 
of motion the electronic problem remains as the main, first cut, challenge 
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to be addressed also because its elucidation leaves the sign also on the 
electronic pairing problem, the cornerstone concept in chemical bonding 
nature.

Thus, focusing only on the electronic Schrödinger equation (4.251), it 
can further be seen as a composite Hamiltonian, namely

 H H He e
I

e
II

∧ ∧ ∧

= +  (4.253)

in terms of the electron solely and external electron energies

 H T Ve
I

e en

∧ ∧ ∧

= +  (4.254)

for the kinetic and nuclear potential, respectively, on the one hand, and

 H Ve
II

ee

∧ ∧

=  (4.255)

separating the electron-electron contribution, that already feel that has to 
have a specific behavior, both at classical and quantum levels of manifes-
tations, at other hand.

Now, moving on to the specific electronic wave functions, let us con-
sider the spin-orbitals

 χ φ σσ
i i( ) ( ) ( )1 1 1=  (4.256)

with their intrinsic ortho-normalized conditions fulfilled,

 χ χ χ χ τ δ δσ ρ σ ρ
σρi j i j ijd= =∫ * ( ) ( )1 1 1  (4.257)

as being one-electron functions or molecular orbitals MO, each as a prod-
uct of a spatial orbital fi ( )1  and a spin function σ α β( )1 = , .

In these conditions, for a system with N electrons, the trial wave func-
tion (equivalent with the so-called Slater determinant) takes the so-called 
trial Hartree-Fock (HF) form:

 Ψ Ψe
HF

e
HN= ℘

∧

!  (4.258)
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with the Hartree wave function as simple product of spin-orbitals (the 
so-called orbital approximation)

 Ψe
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=

=
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 (4.259)

and the antisymmetrization operator

 ℘= −
∧

∑1 1
N

PP
P!

( )  (4.260)

having Hermitian and commutation properties:

 ℘ =℘
∧ ∧2

 (4.261)
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respectively.
This way, we formally succeed to further separate the many-electronic 

problem in as many one-electronic problems as electrons are considered 
in the molecular system.

From now on, basically, one can solve the many-electronic equation 
by manipulating the one-electronic properties of the system. How this can 
best be performed, at what cost and under what conditions, will be in next 
addressed.

4.5.2 ROOTHAAN APPROACH

Following the Dirac’s quote, once the Schrodinger equation (4.249) was 
established “The underlying physical laws necessary for the mathematical 
theory of a large part of physics and the whole of chemistry are thus com-
pletely known” (Dirac, 1929). Unfortunately, the molecular spectra based 
on the eigen-problem Equation (4.249) is neither directly nor completely 
solved without specific atoms-in-molecule and/or symmetry constraints 
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and approximation. As such at the mono-electronic level of approxima-
tion the Schrodinger Equation (4.249) rewrites under the so-called inde-
pendent-electron problem: with the aid of effective electron Hamiltonian 
partitioning:

 H Ei
eff

i i iψ ψ=  (4.263)

 H Hi
eff

i
= ∑  (4.264)

and the correspondent molecular monoelectronic wave-functions (orbitals) 
fulfilling the conservation rule of probability: 

 2 ( ) 1i dψ =∫ r r  (4.265)

However, when written as a linear combination over the atomic orbitals 
the resulted MO-LCAO wave-function:

 ψ φν ν
ν

i iC= ∑  (4.266)

replaced in Eq. (4.263) followed by integration over the electronic space 
allows for matrix version of Eq. (4.263) of what are called as Roothaan 
equations:

 H C S C Eeff( )( ) = ( )( )( )  (4.267)

Worth mentioning that while Eq. (4.267) unfolds under the eigen-function 
equations

 C F d C di i iν
ν

µ ν ν
ν

µ νφ φ τ ε φ φ τ∑ ∫ ∑ ∫
∧

=* *( ) ( ) ( ) ( ) ( )1 1 1 1 11 1  (4.268)

It corresponds with the effective Hamiltonian called as Fock operator driv-
ing the self-consistent equation (4.267), under the current form

 F C S C E( )( ) = ( )( )( )  (4.269)
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with the corresponding matrix elements

 F F dµν µ υφ φ τ=
∧

∫ * ( ) ( ) ( )1 1 1 1  (4.270)

At the same time, Eq. (4.267) has the diagonal energy-matrix elements as 
the eigen-solution

 E E E
E i j
i jij ij i ij

i( ) = = =
=
≠





δ
...
...0

 (4.271)

to be found in terms of the expansion coefficients matrix (C), the matrix of 
the Hamiltonian elements:

 H H deff
µν µ νφ φ τ= ∫  (4.272)

and the matrix of the (atomic) overlapping integrals:

 S dµν µ νφ φ τ= ∫  (4.273)

where all indices in Eqs. (4.328)–(4.273) refers to matrix elements since 
the additional reference to the “i” electron was skipped for avoiding the 
risk of confusion.

The new one-electronic type equation (4.267) or (4.269) made the his-
tory of the computational chemistry in the second half of XX since they 
can be computed either from first principles (in which case one says that 
an ab initio approach was undertaken) or by resorting to experimental data 
(in which case the semiempirical approach was chosen).

It is worth noting that the particularization of Roothaan equations to 
spin up (alpha state) or spin down (beta state) through considering differ-
ent spatial parts of the spin-orbitals generates the so-called unrestricted 
Hartree-Fock (UHF) frame of analysis. However, it describes the homo-
litic dissociation products or reactions in which the change in spin pair-
ing is allowed. Otherwise, the so-called restricted Hartree-Fock (RHF) 
method can be employed whenever one would prefer to use orbital energy 
diagrams with two electrons rather than one electron per orbital.
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Computationally, the procedure for solving the HF or Roothaan equa-
tions is self-consistent in the sense that the involved Fock operator depends 
implicitly upon the solutions. This feature is derived from the assumed 
one-electron picture in which a single electron would feel the potential 
influence coming from the fixed (or clamped) collection of nuclei and the 
average effects of all other N–1 electrons.

Therefore, the basic algorithm solves the one-electron problem (4.269) 
iteratively: guess the position for each electron, i.e., guess (C), then guess 
the average potential that an electron feels from the rest of electrons in 
the system, i.e., guess (F), solve the matrix equation, i.e., diagonalize to 
a new (C), form a new (F), repeat the procedure until the one-electronic 
wave function becomes consistent with the field produced by it and other 
electrons.

Regarding the ab initio methods, they are very effective since an arbi-
trary basis set of LCAO-MO produces accurate results without imposing 
additional approximations. Unfortunately, this method was criticized for 
this arbitrary degree of freedom, arguing that it produces a recipe in which 
“anything computes everything”.

While this endeavor was made in the efforts to discredit the MO 
approach and the orbital concept in general, we believe that atomic orbit-
als and their linear combination provide the set of “elementary properties” 
of mater on which base the whole chemistry can be rationalized based on 
a single (i.e., the eigen-value problem) principle, either in Schrödinger, 
Hartree-Fock/ Roothaan or Kohn-Sham/Density Functional Theory (see 
below) approaches.

Yet, the solution of the matrix equation (4.267) may be unfolded 
through the Löwdin orthogonalization procedure (Löwdin, 1950; 
Löwdin, 1993), involving the diagonalization of the overlap matrix by 
means of a given unitary matrix (U), (U)+(U) =(4.249), by the resumed 
procedure:

 s U S U( ) = ( ) ( )( )+  (4.274)

 s s
ii ii

− −( ) = ( ) 
1 2 1 2/ /

 (4.275)
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 S U s U− − +( ) = ( )( )( )1 2 1 2/ /  (4.276)

 S C S H S S C Eeff1 2 1 2 1 2 1 2/ / / /( )( )( ) ( )( )( )( ) ( )( )( ) = ( )
+

− −  (4.277)

However, the solution given by Eq. (4.277) is based on the form of effec-
tive independent-electron Hamiltonians that can be quite empirically 
constructed – as in Extended Hückel Theory (Hoffmann, 1963); such 
“arbitrariness” can be nevertheless avoided by the so-called self-consis-
tent field (SCF) in which the one-electron effective Hamiltonian is consid-
ered such that to depend by the solution of Eq. (4.266) itself, i.e., by the 
matrix of coefficients (C); this way we identify the resulted “Hamiltonian” 
as the Fock operator, while the associated eigen-problem rewrites the 
Hartree-Fock equation (4.267) under the mono-electronic wave-function 
representation:

 F Ei i iψ ψ=  (4.278)

The corresponding matrix representation actually gives further insight to 
the Eq. (4.269) now looking like:

 F C C S C E( )( )( )( ) = ( )( )( )  (4.279)

Equation (4.279) may be iteratively solved through diagonalization pro-
cedure starting from an input (C) matrix or – more physically appealing – 
from a starting electronic distribution quantified by the density matrix:

 P C Ci i
i

occ

µν µ ν= ∑  (4.280)

with major influence on the Fock matrix elements:

 F H Pµν µν λσ
λσ

µν λσ µλ νσ= + ( ) − ( )





∑ 1
2

 (4.281)

Note that now the one-electron Hamiltonian effective matrix components 
HµV differ from those of Eq. (4.272) in what they truly represent, this time 
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the kinetic energy plus the interaction of a single electron with the core 
electrons around all the present nuclei. The other integrals appearing in 
Eq. (4.281) are generally called the two-electrons-multi-centers integrals 
and are written as:

 µν λσ φ φ φ φµ ν λ σ( ) = ∫ A B C D

r
d d( ) ( ) ( ) ( )r r r r r r1 1

12
2 2 1 2

1  (4.282)

From definition (4.282), there is immediate to recognize the special inte-
gral J = (µµ|vv) as the Coulomb integral describing repulsion between two 
electrons with probabilities φµ

2  and φν
2 .

Moreover, the Hartree-Fock equation (4.279) with implementa-
tions given by Eqs. (4.280)–(4.281) are known as Roothaan equations 
(Roothaan, 1951) and constitute the basics for closed-shell (or restricted 
Hartree-Fock, RHF) molecular orbitals calculations. Their extension to 
the spin effects provides the equations for the open-shell (or unrestricted 
Hartree-Fock, UHF) known also as the Pople-Nesbet Unrestricted equa-
tions (Pople & Nesbet, 1954).

4.5.3 INTRODUCING SEMI-EMPIRICAL APPROXIMATIONS

The second level of approximation in molecular orbital computations 
regards the various ways the Fock matrix elements of Eq. (4.281) are 
considered, namely the approximations of the integrals (4.282) and of the 
effective one-electron Hamiltonian matrix elements Hµν.

The main route for such an endeavor is undertaken through neglecting 
at different degrees certain differential overlapping terms (integrals) – as 
an offset ansatz – although with limited physical justification – while the 
adjustment with experiment is done (post-factum) by fitting parameters – 
from where the semi-empirical name of such approximation. Practically, 
by emphasizing the (nuclear) centers in the electronic overlapping integral 
(4.273):

 S dA B
µν µ νφ φ= ∫ ( ) ( )r r r1 1 1  (4.283)

the differential overlap approximation may be considered by two situations.
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• By neglecting the differential overlap (NDO) through the mono-
atomic orbitalic constraint:

 φ φ φ φ δµ ν µ µ µν=  (4.284)

leaving with the simplified integrals:

 S dA A
µν µν µ µ µνδ φ φ δ= =∫ ( ) ( )r r r1 1 1  (4.285)
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σσ µν λσµ µ λ λ δ δ γA A B B
AB( ) ≡  (4.286)

thus reducing the number of bielectronic integrals, while the tri- and 
tetra-centric integrals are all neglected;

• By neglecting the diatomic differential overlap (NDDO) of the 
bi-atomic orbitals:

 φ φ φ φ δµ ν µ ν
A B A A

AB=  (4.287)

that implies the actual simplifications:

 S dAB
A A

ABµν µ ν µνδ φ φ δ δ= =∫ ( ) ( )r r r1 1 1  (4.288)

 µν λσ δ δ φ φ φ φµ ν λ σ( ) = ∫AB CD
A A C C

r
d d( ) ( ) ( ) ( )r r r r r r1 1

12
2 2 1 2

1  (4.289)

when overlaps (or contractions) of atomic orbitals on different atoms 
are neglected.

For both groups of approximations specific methods are outlined below.

4.5.3.1 NDO Methods

The basic NDO approximation was developed by People and is known 
as the Complete Neglect of Differential Overlap CNDO semi-empirical 
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method (Pople & Beveridge, 1970; Pople et al., 1965; Pople & Segal, 
1965, 1966). It employs the approximations (4.284)–(4.286) such that the 
molecular rotational invariance is respected through the requirement the 
integral (4.286) depends only on the atoms A or B where the involved 
orbitals reside – and not by the orbitals themselves. That is the integral 
γAB in Eq. (4.285) is seen as the average electrostatic repulsion between an 
electron in any orbital of A and an electron in any orbital of B:

 V ZAB B
AB= γ  (4.290)

In these conditions, the working Fock matrix elements of Eq. (4.281) 
become within RHF scheme:

 F H P P PCNDO CNDO
AA

AA
BB

AB

B A
µµ µµ µµ γ γ= + −






 +

≠
∑1

2
 (4.291)

 F H PCNDO CNDO AB
µν µν µν γ= −

1
2

 (4.292)

From Eqs. (4.291) and (4.292) there follows that the core Hamiltonian 
has as well the diagonal and off-diagonal components; the diagonal one 
represents the energy of an electron in an atomic orbital of an atom (say A) 
written in terms of ionization potential and electron affinity of that atom 
(Oleari et al., 1966):

 U I A ZCNDO
A

AA
µµ µ µ γ= − +( ) − −








1
2

1
2

 (4.293)

added to the attraction energy respecting the other (B) atoms to produce 
the one-center-one-electron integrals:

 H U VCNDO CNDO
AB

B A
µµ µµ= −

≠
∑  (4.294)

overall expressing the energy an electron in the atomic orbital φμ would 
have if all other valence electrons were removed to infinity. The non-
diagonal terms (the resonance integrals) are parameterized in respecting 
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the overlap integral and accounts (through βAB parameter averaged over 
the atoms involved) on the diatomic bonding involved in overlapping:

 H SCNDO
AB
CNDO

µν µνβ=  (4.295)

The switch to the UHF may be eventually done through implementing the 
spin equivalence:

 P P P PT ≡ = =↑+↓ ↑ ↓1
2

1
2

 (4.296)

although the spin effects are not at all considered since no exchange inte-
gral involved. This is in fact the weak point of the CNDO scheme and it is 
to be slightly improved by the next Semi-empirical methods.

The exchange effect due to the electronic spin accounted within the 
Intermediate Neglect of Differential Overlap (INDO) method (Slater, 
1960) through considering in Eqs. (4.291) and (4.293) the exchange one-
center integrals γ µν µνAA K≡ = ( ) is evaluated as:

 sp sp G p p p p Fx x
INDO

x y x y

INDO
( ) = ( ) =

1
3

3
25

1 2, ,  (4.297)

in terms of the Slater-Condon parameters G1, F2, … usually used to 
describe atomic spectra.

The INDO method may be further modified in parameterization of the 
spin effects as developed by Dewar’s group and led with the Modified 
Intermediate Neglect of Differential Overlap (MINDO) method (Baird & 
Dewar, 1969; Dewar & Hasselbach, 1970; Dewar & Lo, 1972; Bingham 
et al., 1975a-d; Dewar et al., 1975; Murrell & Harget, 1971) whose basic 
equations look like:

 F
H P

P P
MINDO

MINDO
A B A

µν

µν µν

µν µν

µµ νν µ ν

µν µ
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↑
≠
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 (4.298)
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Apart from specific counting of spin effects, another particularity of 
MINDO respecting the CNDO/INDO is that all the non-zero two-center 
Coulomb integrals are set equal and parameterized by the appropriate 
one-center two electrons integrals AA and AB within the Ohno-Klopman 
expression (Ohno, 1964; Klopman, 1964):
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 (4.300)

The one-center-one-electron integral Hμμ is preserved from the CNDO/
INDO scheme of computation, while the resonance integral (4.295) is 
modified as follows:

 H I I SMINDO
AB
MINDO

µν µ ν µνβ= +( )  (4.301)

with the parameter βAB
MINDO being now dependent on the atoms-in-pair 

rather than the average of atomic pair involved. As in INDO, the exchange 
terms, i.e., the one-center-two-electron integrals, are computed employ-
ing the atomic spectra and the Gk, Fk, Slater-Condon parameters, see 
Eq. (4.297) (Pople et al., 1967). Finally, it is worth mentioning that the 
MINDO (also with its MINDO/3 version) improves upon the CNDO and 
INDO the molecular geometries, heats of formation, being particularly 
suited for dealing with molecules containing heteroatoms.

4.5.3.2 NDDO Methods

This second group of neglecting differential overlaps semi-empirical meth-
ods includes along the interaction quantified by the overlap of two orbitals 
centered on the same atom also the overlap of two orbitals belonging to 
different atoms. It is manly based on the Modified Neglect of Diatomic 
Overlap (MNDO) approximation of the Fock matrix, while introducing 
further types of integrals in the UHF framework (Dewar & Thiel, 1977; 
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Dewar & McKee, 1977; Dewar & Rzepa, 1978; Davis et al., 1981; 
Dewar & Storch, 1985; Thiel, 1988; Clark, 1985):
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 (4.303)

Note that similar expressions can be immediately written within RHF once 
simply replacing:

 P P↑ ↓ ↑+↓= −( ) 1
2

 (4.304)

in above Fock (46a&b) expressions.
Now, regarding the (Coulombic) two-center-two-electron integrals 

of type (4.289) appearing in Eqs. (4.302) & (4.303) there were identified 
22 unique forms for each pair of non-hydrogen atoms, i.e., the rotational 
invariant 21 integrals ss ss( ), ss p pσ σ( ), ss p pπ π( ), , p p p pσ σ σ σ( ),

p p p pπ π π π( ), , sp spσ σ( ), sp sp p p spπ π π σ π( ) ( ), , ,  p p p pπ σ π σ( ), and 
the 22nd one that is written as a combination of two of previously ones, 
namely p p p p p p p p p p p pπ π π π π π π π π π π π' ' . ' '( ) = ( ) − ( ) 0 5 , with the 
typical integral approximation relaying on the Eq. (4.300) structure, how-
ever slightly modified as:

 ss ss

r c c
A A

MNDO

AB A B
A B

( ) =

+ +( ) + +
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1
4

1 12
2

 (4.305)
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where additional parameters cA and cB represent the distances of the 
multipole charges from their respective nuclei. The MNDO one-center 
one-electron integral has the same form as in NDO methods, i.e., given by 
Eq. (4.294) with the average potential of Eq. (4.290) acting on concerned 
center; still, the resonance integral is modified as:

 H SMNDO
MNDO MNDO

µν
µ ν

µν

β β
=

+

2
 (4.306)

containing the atomic adjustable parameters βµ
MNDO and βν

MNDO for the 
orbitals φµ  and φν  of the atoms A and B, respectively. The exchange (one-
center-two-electron) integrals are mostly obtained from data on isolated 
atoms. Basically, MNDO improves MINDO through the additional inte-
grals considered the molecular properties such as the heats of formations, 
geometries, dipole moments, HOMO and LUMO energies, etc., while 
problems still remaining with four-member rings (too stable), hypervalent 
compounds (too unstable) in general, and predicting out-of-plane nitro 
group in nitrobenzene and too short bond length (~ 0.17 Å) in peroxide – 
for specific molecules.

The MNDO approximation is further improved by aid of the Austin 
Model 1 (AM1) method (Dewar et al., 1985; Dewar & Dieter, 1986; 
Stewart, 1990) that refines the inter-electronic repulsion integrals:
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 (4.307)

while correcting the one-center-two-electron atomic integrals of Eq. (4.300) 
by the specific (AM) monopole-monopole interaction parameters. In the 
same line, the nuclei-electronic charges interaction adds an energetic cor-
rection within the α AB parameterized form:
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The AM1 scheme, while furnishing better results than MNDO for some 
classes of molecules (e.g., for phosphorous compounds), still provides 
inaccurate modeling of phosphorous-oxygen bonds, too positive energy of 
nitro compounds, while the peroxide bond is still too short. In many case 
the reparameterization of AM1 under the Stewart’s PM3 model (Stewart, 
1989a,b) is helpful since it is based on a wider plethora of experimental 
data fitting with molecular properties. The best use of PM3 method lays in 
the organic chemistry applications.

To systematically implement the transition metal orbitals in semi-
empirical methods the INDO method is augmented by Zerner’s group 
either with non-spectroscopic and spectroscopic (i.e., fitting with UV spec-
tra) parameterization (Del Bene & Jaffé, 1968a-c), known as ZINDO/1 
and ZINDO/S methods, respectively (Ridley & Zerner, 1976; Bacon & 
Zerner, 1979; Stavrev et al., 1995; Stavrev & Zerner, 1995; Cory et al., 
1997; Anderson et al., 1986, 1991). The working equations are formally 
the same as those for INDO except for the energy of an atomic electron 
of Eq. (4.293) that now uses only the ionization potential instead of elec-
tronegativity of the concerned electron. Moreover, for ZINDO/S the core 
Hamiltonian elements Hμμ is corrected:

 ∆H Z QZINDO
B B

B
ss

AB ZINDO
µµ µµγ= −( )∑ ( )

( )  (4.309)

by the fr parameterized integrals:
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γ γ
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( )

2 , fr =1 2.  (4.310)

in terms of the one-center-two-electron Coulomb integrals γ γµµ
A

ss
B, . 

Equation (4.310) conserves nevertheless the molecular rotational invari-
ance through making the difference between the s- and d- Slater orbitals 
exponents. The same types of integrals correct also the nuclei-electronic 
interaction energy by quantity:
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Z QAB
A B
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A B ss
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Since based on fitting with spectroscopic transitions the ZINDO meth-
ods are recommended in conjunction with single point calculation and 
not with geometry optimization, this should be consider by other off-set 
algorithms.

Beyond either NDO or NDDO methods, the self-consistent computa-
tion of molecular orbitals can be made by the so-called ab initio approach, 
directly relaying on the HF equation or on its density functional extension, 
as will be in next unfolded.

4.5.4 AB INITIO METHODS: THE HARTREE-FOCK APPROACH

The alternative to semi-empirical methods is the full self-consistent calcu-
lation or the so-called ab initio approach; it is based on computing of all 
integrals appearing on Eq. (4.281), yet with the atomic Slater type orbit-
als (STO), exp(−αr), being replaced by the Gaussian type orbitals (GTO) 
(Boys, 1950):

 φ αA
GTO

A
l

A
m

A
n

Ax y z r= −( )exp 2  (4.312)

in molecular orbitals expansion – a procedure allowing for much simpli-
fication in multi-center integrals computation. Nevertheless, at their turn, 
each GTO may be generalized to a contracted expression constructed upon 
the primitive expressions of Eq. (4.312):

 φ φ αµ µ
CGTO

A p
p

p
GTO

p Ar d r( ) = ( )∑ ,  (4.313)

where dpμ and αA are called the exponents and the contraction coefficients 
of the primitives, respectively. Note that the primitive Gaussians involved 
may be chosen as approximate Slater functions (Szabo & Ostlund, 1996), 
Hartree-Fock atomic orbitals (Clementi & Roetti, 1974), or any other set 
of functions desired so that the computations become faster. In these con-
ditions, a minimal basis set may be constructed with one function for H 
and He, five functions for Li to Ne, nine functions for Na to Ar, 13 func-
tions for K and Ca, 18 functions for Sc to Kr, ..., etc., to describe the core 
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and valence occupancies of atoms (Hehre et al., 1969; Collins et al., 1976; 
Stewart, 1970). Although such basis does not generally provide accurate 
results (because of its small cardinal), it contains the essential information 
regarding the chemical bond and may be useful for qualitative studies, as 
is the present case for aromaticity scales where the comparative trend is 
studied.

Actually, when simple ab initio method is referred it means that the 
Hartree-Fock equation (4.278) with full Fock matrix elements (Hartree, 
1928a-b, 1957; Fock, 1930) of Eqs. (4.280) and (4.281) is solved for a 
Gaussian contracted basis (4.313). Actually, the method evaluates itera-
tively the kinetic energy and nuclear-electron attraction energy integrals – 
for the effective Hamiltonian, along the overlap and electron-electron 
repulsion energy integrals (for both the Coulomb and exchange terms), 
respectively written as:

 Tµν µ ν= − ∇







1
2

2  (4.314)

 V Z
r
A

A
µν µ ν=  (4.315)

 Sµν µ ν=  (4.316)

 µν λσ µν λσ( ) = ( )1

12r
 (4.317)

until the consistency in electronic population of Eq. (4.280) between two 
consecutive steps is achieved.

Note that such calculation assumes the total wave function as a single 
Slater determinant, while the resultant molecular orbital is described as 
a linear combination of the atomic orbital basis functions (MO-LCAO). 
Multiple Slater determinants in MO description projects the configuration-
ally and post-HF methods, and will not be discussed here.
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4.5.4.1 Hartree-Fock Orbital Energy

Skipping the reference to the electronic (e) subscripts throughout Eqs. 
(4.250)–(4.262), the Hartree-Fock trial functional can firstly be arranged 
as by the optimization procedure (Putz & Chiriac, 2008)

 

E E H H

H

trial
HF HF HF HF HF I HF

HF II HF

0 ≤ = =

+

∧ ∧

∧

[ ]Ψ Ψ Ψ Ψ Ψ

Ψ Ψ  (4.318)

The one-electron (core) energetic component of Eq. (4.318) may be suc-
cessively unfolded as:

  (4.319)
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where it was considered that the introduced one-electron effective opera-
tor hi

∧

( )1  selects from the Hartree wave function (4.259) the associate spin-
orbital, for each electron, accordingly.

Similarly, the two-electron energetic component of Eq. (4.318) may be 
successively transformed as:
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resulting in the effective electron-electron repulsion energy once the quan-
tum exchange terms Kij are subtracted from the classical Coulombic ones 
Jij. Here we recognize the combined classical (Coulombic) – quantum 
(exchange) effects that appear in the inter-electronic repulsion Hamiltonian 
term (4.255).

All together, with the results of Eqs. (4.319) and (4.320) back in 
Eq. (4.318), we get for the trial Hartree-Fock functional the expression:

 E h J Ktrial
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ii
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ij ij
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Ψ = + − 
= =
∑ ∑

1 1
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2

 (4.321)

In next, we are going to apply the variational principle respecting the vari-
ations of the spin-orbitals in terms of Lagrange multipliers ε ij that widely 
demands that:

 δ ε χ χσ σEtrial
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 (4.322a)

However, by employing the canonical transformation, i.e., the N2 param-
eters may be considered as the elements of a Hermitian matrix which 
through a unitary transformation become a diagonal matrix, the outset 
form of the variational principle (4.322) now reads:

 δ ε χ χσ σEtrial
HF HF

i
HF

i i
i

N

[ ] ( ) ( )Ψ − −( )







=
=
∑ 1 1 1 0

1
 (4.322b)

Note that performing a unitary transformation will not affect the average 
of the electronic Hamiltonian but only the HF wave function by a phase 
factor of unity modulus. Under these circumstances, the famous Hartree-
Fock equation results from the successive equivalent forms:
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Still, a more compact form of HF equation (4.322c) may be achieved since 
specific potential notations are introduced. For instance, the electrostatic 
repulsion potential (i.e., the Coulombic interaction) can be shortened as:

 V
r

dj
ee

j
ij

j( ) ( ) ( )*1 2 1 2 2= ∫ χ χ τσ σ  (4.323)

while for the exchange potential (i.e., non-local interaction) we can define 
it as satisfying the relation:
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With these the above HF equation (4.322c) reduces to its most simple form:

 F i i
HF
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where the one-electronic Fock operator

 F Vi i
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was introduced in terms of the effective-one potential
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Now, since the spin-orbitals satisfies the normalization condition

 χ τσ
i d( )1 1

2

1 =∫  (4.328)

the orbital energies look like:
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while the total HF energy will take the form:
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where
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 (4.331)

Remarkably, one can clearly see that the predicted HF energy (4.330) dif-
fers from the simple sum over the HF orbital energies (4.331) by the effec-
tive electron-electron interaction energy Uee. We will return on this matter 
with more subtle consequences on Section 4.4.4.3.

4.5.4.2 About Correlation Energy

The post self-consistent era was mainly dedicated to the implementa-
tion of the so nominated correlation energy in the computation (Putz & 
Chiriac, 2008).

Firstly, it was noticed that a single Slater determinant (on which base 
the current HF analysis was exposed) can never account for a complete 
description of the many-electronic interaction. That is, the correlation 
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energy can be introduced as the difference between the exact eigen-value 
and the Hartree-Fock energy of the same Hamiltonian for the concerning 
state:

 E E Ecorr
HF= −  (4.332)

The next step was sustained by the assumption that the correlation 
energy can be seen as the perturbation of the self-consistent-field energy, 
which is associated with a wave function derived for a single electronic 
configuration. At this point the basic methods of approximation used 
in quantum chemistry, namely the perturbation and variational, can be 
considered.

In the case that perturbation method is employed, assuming the unper-
turbed wave function and energy as the HF solutions the exact eigen-func-
tions and eigen-values can be written as expanded series

 Ψ Ψ Ψ Ψe e
HF

e e= + + + 

( ) ( ) ...1 2 2  (4.333)

 E E E Ee
HF

e e= + + + 

( ) ( ) ...1 2 2  (4.334)

by introducing the ordering parameter . Through truncating the series in 
the second, third or fourth order generates the so-called Møller-Plesset 
MP2, MP3, and MP4 perturbative approximations, respectively.

On the other side, the linear variational method can be practiced 
within the configuration interaction (CI) approach of the many-electronic 
wave-function:

 Ψ Ψ Ψ Ψ Ψe
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e
HF

a
s

s
a
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abc
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abc
sdtc c c c= + + + +∑0 ...  (4.335)

where the Ψ0, Ψa
s, Ψab

sd, Ψabc
sdt  stands for the ground, single excited, double 

excited, and triple excited N-electron trial wave functions, respectively, 
for a given spin state. While the CI wave function is the subject of the 
eigen-problem:
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e
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the correlation correction to HF energy can be achieved through subtract-
ing the HF energy from last equation

 H E E E Ee
HF

e
CI HF

e
CI

corr e
CI
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−
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~

0  (4.337)

However, although, starting from this point, many sophisticated methods 
for wave function expansion, for example, the coupled cluster approach, 
multi-configuration self-consistent-field method or multi-reference CI 
methods, have been developed, the correlation problem faced many com-
putational limitation, some of them almost insurmountable, due to the 
immense number of integrals to be evaluated.

4.5.4.3 Koopman’s Orbital Theorem with Hartree-Fock Picture

Now one will make the essential difference between (Putz, 2013):

• the entire orbital spectrum available to a many –body systems, which 
include occupied orbitals + unoccupied orbitals (up to infinity), 
denoted by ψ i i N= →∞1,...,

 which generates the Hartree-Fock energy
• the occupied orbitals on the many-body system, which will deter-

mine the total energy of the system, denoted by ψ a i N=1,...,

All together, we can deal with the first lowest N spin-orbitals occu-
pied in the overall wave-function Ψ0 1

( ) ... ...N
a N= ψ ψ ψ , while the rest 

(from N up to infinity) virtual of unoccupied orbitals, formally denoted as 
ψ ψr s, ,... (see Figure 4.3)
The conceptual difference consist in the fact that when dealing with infi-
nite number of orbitals one does not avoid the double counting since there 
will be always available virtual orbitals to be occupied since the infinite 
cardinal of this set of orbitals; so we have with the actual subtle (mixed) 
notations:
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Here one remarks that the Coulombic inter-electronic

 J d rb b b( ) ( ) ( )*1 2 2 212
1= −∫ ψ ψ  (4.339)

and exchange terms

 K d r d rb b b b b( ) ( ) ( ) ( ) ( )* *1 2 2 1 2 2 212
1

12
1

12= = ℘− −∫ ∫ψ ψ ψ ψ  (4.340)

were remained with occupied orbitals’ notation since they are readily com-
puted among existing electrons.

FIGURE 4.3 The paradigmatic in silico spectra of the first three highest occupied and 
lowest unoccupied molecular orbitals HOMOs and LUMOs illustrating the respective, 
successive, ionization and affinities energies as provided by Koopmans’ theorem. Note KT 
implies ionization and affinity of one electron on successive levels and not of successive 
electrons on levels- see the marked occupied and virtual spin-orbitals (Putz, 2013).
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Interesting, when the orbital energy (4.338) is summed just over occu-
pied Hartree-Fock orbitals, as done in Eq. (4.331), now we equivalently 
obtain, yet under new notation revealing the restrain to the occupied 
orbitals

 εa
a

N

a

N

a b

N

a h a ab ab
= = = =

∑ ∑ ∑= +
1 1 1 1



,
 (4.341)

Instead, when searched for total energy of the system one should avoid 
double counting and deal with occupied only orbitals to successively get 
within the actual notations

  (4.342)
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In obvious difference respecting Eq. (4.341), as already anticipated from 
the Eqs. (4.330) & (4.331).

Eq. (4.341) does not exactly recovering the above total energy of the 
N-occupied spin-orbitals Eq. (4.342), when they where considered “free 
(not depending)” of computation (basis set); however, this may be consid-
ered as in silico manifestation of quantum “observability” (once a basis 
set representation applies) which destroys the quantum system in itself’s 
(or eigen) manifestation. Here the mathematical properties of eigen-func-
tion computed upon a given basis on Hilbert-Banach spaces determine 
the “shift” or the “unrealistic” energies of orbitals since spanning those 
occupied and unoccupied alike; from the present dichotomy basically fol-
lows all critics on the Hartree-Fock formalism and of allied molecular 
orbital theory, Koopmans’ “theorem” included (see below); instead, there 
seems that such departure of the computed from the exact energy orbit-
als is inherent to quantum formalism and not necessary a weakness of 
the Hartree-formalism itself, since it will appear to any quantum many-
particle problem involving eigen-problems.

Now, returning to the above occupied and unoccupied orbital energy, 
one may assume (Koopmans’ ansatz) that, on the frontier levels of a many-
electronic system, extracting or adding of an electron (or even few of them, 
but lesser than the total number of valence electrons) will not affect the 
remaining (or N N± ± ±1 1 1, ',... electronic orbitals) states, on successive 
levels and not successive electrons on levels (see Figure 4.3).

This approach allows simplifying of the common terms and emphasiz-
ing only on the involving frontier orbitals participating in chemical reactiv-
ity. Accordingly, for the first ionization potential one successively obtains 
the first highest occupied molecular orbital (HOMO), see Figure 4.3:
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Remarkable, in this analytics, one starts with in se quantum expression 
of total energies of the N and (N–1) systems and ends up with a result char-
acteristic to the computational (shifted) realm since recovering the orbital 
energy of the in silico state from which the electron was removed. Yet, one 
may ask how such in se–to–in silico quantum chemical passage is pos-
sible; the answer is naturally positive since the above derivation associates 
with the ionization process which is basically an observer intervention to 
the genuine quantum system, from where the final result will reflect the 
energetic deviation from in se–to–in silico as an irrefutable quantum mani-
festation of electronic system.

Similarly, for electronic affinity, one will act on the in se quantum sys-
tem to add an electron at the frontier level and, under the “frozen spin-
orbitals” physical-chemical assumption, one gets the energetic turn from 
the genuine HF expression to the in silico orbital energy on which the 
“action” was undertaken towards the first lowest occupied molecular 
orbital (LUMO), see Figure 4.3:

 

EA E E

r h r rb rb

N N

b

N

r

LUMO

1 1

1

1

= −

= − −

= −
= −

+

=
∑

ε
ε ( )  (4.344)

These results are usually considered as defining the popular Koopmans 
theorem, used for estimating the observable quantities as ionization 
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potential and electronic affinity in terms of “artefactual” computed orbital 
energies (first approximation) and in the spin-orbitalic frozen framework 
during the electronic extraction or addition (the second approximation).

However one may ask whether this approximation is valid and in which 
conditions. This can be achieved by reconsidering the above Koopmans 
first order IP and EA to the superior differences within Hartree-Fock 
framework; as such, for the second order of ionization potential one gets 
the second highest occupied molecular orbital (HOMO2), see Figure 4.3:
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Note that this derivation eventually employs the equivalency for the 
Coulombic and exchange terms for orbitals of the same nature (with miss-
ing the same number of spin-orbitals, see Figure 4.3). However, in the case 



450 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

this will be further refined to isolate the first two orders of highest occu-
pied molecular orbitals, the last expression will be corrected with HOMO1/
HOMO2 (Coulombic and exchange) interaction to successively become
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However, reloading this procedure for electronic affinity process too, 
one gets

 
EA E E

LUMO LUMO LUMO LUMO
N N

LUMO

2 1 2

2 1 2 1 2

= −

= − +
+ +

ε ( )  (4.347)

When combining Eq. (4.347) with its IP counterpart (4.346) there appears 
that the simple Koopmans’ orbitals energy difference is corrected by the 
HOMO1/HOMO2 vs. LUMO1/LUMO2

 

IP EA

HOMO HOMO HOMO HOMO

LUMO LUMO L
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− = −
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−

ε ε( ) ( )
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  (4.348)

This expression is usually reduced to the superior order LUMO-HOMO 
difference

 IP EA LUMO HOMO2 2 2 2− ≅ −ε ε( ) ( )  (4.349)
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due to the energetic spectra symmetry of Figure 4.3 relaying on the bond-
ing vs. anti-bonding displacements of orbitals, specific to molecular orbital 
theory. Therefore, with the premise that molecular orbital theory itself is 
correct, or at least a reliable quantum undulatory modeling of multi-elec-
tronic systems moving in a nuclei potential, the above IP-EA differences 
in terms of Koopmans’ in silico LUMO-HOMO energetic gaps holds also 
for superior orders.

4.5.4.4 Chemical Reactivity Indices in Orbital Energy 
Representation

Koopmans’ theorem entered on the quantum chemistry as a versatile tool 
for estimating the ionization potentials for closed-shells systems, and it 
was widely confirmed for organic molecular systems, due to the inner 
usually separation between sigma (core) and pi (valence) sub-electronic 
systems, allowing to treat the “frozen spin-orbitals” as orbitals not essen-
tially depending on the number of electrons in the valence shells, when 
some of them are extracted (via ionization) or added (via negative attach-
ments); this approximation ultimately works for Hartree-Fock systems 
when electronic correlation may be negligible or cancels with the orbital 
relaxations during ionization or affinity processes, respectively; natu-
rally, it works less when correlation is explicitly counted, as in Density 
Functional Theory, where instead the exchange energies are approximated 
or merely parameterized so that “loosing” somehow on the genuine spin-
orbital nature of the mono-determinantal approach of the Hartree-Fock, 
with a natural energetic hierarchy included.

Beside the many concepts in modeling the chemical reactivity and 
interaction electronegativity and chemical hardness are by far the most 
versatile measures, to be detailed in the next volumes of this set, since 
their direct connection with total, valence or orbital energies of atoms and 
molecules via the first and the second derivative of such energies with 
respecting the available or concerned electrons therein. Actually, such 
derivatives, may use the molecular frontier orbitals when based on differ-
ential expansion of the energy around its isolated value to account both for 
the electrophilic (electrons accepting) and nucleophilic (electrons donat-
ing) states.
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Starting from the general mathematical framework, given the values of 
a function f(n) on a set of nodes ..., , , , , , , ,...n n n n n n n− − − + + +{ }3 2 1 1 2 3  
the finite difference approximations of the first fn

' and second fn
' ' deriva-

tives in the node n, will spectrally depend on the all the nodal values. 
However, the compact finite differences, or Padé, schemes that mimic this 
global dependence write as (Lele, 1992):
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The involved sets of coefficients, a b c1 1 1 1 1, , , ,α β{ } and a b c2 2 2 2 2, , , ,α β{ } are 
derived by matching Taylor series coefficients of various orders. This way, 
their particularizations can be reached as the second (2C)-, fourth (4C)- 
and sixth (6C)-order central differences; standard Pade (SP) schemes; 
sixth (6T)- and eight (8T)-order tridiagonal schemes; eighth (8P)- and 
tenth (10P)- order pentadiagonal schemes up to spectral-like resolution 
(SLR) ones, see Table 4.1.

Assuming that the function f(n) is the total energy E(N) in the actual 
node that corresponds to the number of electrons, the compact finite differ-
ence, the derivatives of Eqs. (4.350) and (4.351) may be accurately evalu-
ated through considering the states with N-3, N-2, N-1, N+1, N+2, N+3 
electrons, whereas the derivatives in the neighbor states will be taken only 
as their most neighboring dependency. This way, the working formulas for 
electronegativity will be (Putz, 2010a):
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TABLE 4.1 Numerical Parameters for the Compact Finite Second (2C)-, Fourth (4C)- 
and Sixth (6C)-Order Central Differences; Standard Padé (SP) Schemes; Sixth (6T)- 
and Eight (8T)-Order Tridiagonal Schemes; Eighth (8P)- and Tenth (10P)-Order 
Pentadiagonal Schemes up to Spectral-Like Resolution (SLR) Schemes Unfolding the 
Numerical Derivatives (4.350) and (4.350) Then Used for the Electronegativity and 
Chemical Hardness of Eqs. (4.352) and (4.353) and the Subsequent of Their Respective 
Formulations: Eqs. (4.362) and (4.363); (4.368) and (4.369) 

Scheme Electronegativity Chemical Hardness

a1 b1 c1 α1 β1 a2 b2 c2 α2 β2

2C 1 0 0 0 0 1 0 0 0 0

4C 
4
3

−
1
3

0 0 0
4
3

−
1
3

0 0 0

6C
3
2

−
3
5

1
10

0 0
12
11

3
11

0
2

11
0

SP
5
3

1
3 0

1
2 0

6
5 0 0

1
10 0

6T
14
9

1
9

0
1
3

0
3
2

−
3
5

1
5

0 0

8T
19
12

1
6

0
3
8

0
147
152

51
95

−
23

760
9
38

0

8P
40
27

25
54

0
4
9

1
36

320
393

310
393

0
344

1179
23

2358

10P
17
12

101
150

1
100

1
2

1
20

1065
1798

1038
899

79
1798

334
899

43
1798

SLR 1.303 0.994 0.038 0.577 0.09 0.216 1.723 0.177 0.502 0.056

Adapted from Rubin & Khosla (1977), Putz (2010a, 2011), and Putz et al. (2004).
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and respectively for the chemical hardness as (Putz, 2011; Putz, 2010a; 
Putz et al., 2004):

  (4.353)

where the involved parameters discriminate between various schemes 
of computations and the spectral-like resolution (SLR), see Table 4.1 
(Rubin & Khosla, 1977; Putz, 2011; Putz, 2010a; Putz et al., 2004).
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Next, the Eqs. (4.352) and (4.353) may be rewritten in terms of the 
observational quantities, as the ionization energy and electronic affinity 
are with the aid of their basic definitions from the involved eigen-energies 
of i-th (i=1,2,3) order

 I E Ei N i N i= −− − +1  (4.354)

 A E Ei N i N i= −+ − +1  (4.355)

As such they allow the energetic equivalents for the differences

 E E I AN N+ −− = − +1 1 1 1( )  (4.356)

 E E I A I AN N+ −− = − + − +2 2 1 1 2 2( ) ( )  (4.357)

 E E I A I A I AN N+ −− = − + − + − +3 3 1 1 2 2 3 3( ) ( ) ( )  (4.358)

and for the respective sums (Putz, 2011; Putz, 2010a; Putz et al., 2004)

 E E I A EN N N+ −+ = − +1 1 1 1 2( )  (4.359)

 E E I A I A EN N N+ −+ = − + − +2 2 1 1 2 2 2( ) ( )  (4.360)

 E E I A I A I A EN N N+ −+ = − + − + − +3 3 1 1 2 2 3 3 2( ) ( ) ( )  (4.361)

being then implemented to provide the associate “spectral” molecular ana-
lytical forms of electronegativity
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and for chemical hardness (Putz, 2011; Putz, 2010a; Putz et al., 2004):
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It is worth remarking that when particularizing these formulas for 
the fashioned two-point central finite difference, i.e., when having 
a b c1 1 1 1 11 0= = = = =, α β  and a b c2 2 2 2 21 0= = = = =, α β  of Table 4.1, 
one recovers the consecrated Mulliken (spectral) electronegativity 
(Mulliken, 1934)

 χ2
1 1

2C
I A

=
+  (4.364)

and the chemical hardness basic form relating with the celebrated Pearson 
nucleophilic-electrophilic reactivity gap (Parr & Yang, 1989; Pearson, 
1997)

 η2
1 1

2C
I A

=
−  (4.365)

already used as measuring the aromaticity through the molecular stability 
against the reaction propensity (Ciesielski et al., 2009; Chattaraj et al., 
2007).
Finally, for computational purposes, Eqs. (4.362) and (4.363) may be 
once more reconsidered within the Koopmans’ frozen core approxima-
tion (Koopmans, 1934), in which various orders of ionization poten-
tials and electronic affinities are replaced by the corresponding frontier 
energies

 Ii HOMO i= −ε ( )  (4.366)
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 Ai LUMO i= −ε ( )  (4.367)

so that the actual working compact finite difference (CFD) orbital molecu-
lar electronegativity unfolds as (Putz, 2011; Putz, 2010a; Putz et al., 2004):

  (4.368)

along with the respective chemical hardness formulation
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 (4.369)

Note that the actual CFD electronegativity and chemical hardness expres-
sions do not distinguish for the atoms-in-molecule contributions, while 
providing post-bonding information and values, i.e., for characterizing 
the already stabilized/optimized molecular structure towards its further 
reactive engagements. The difference between the atoms-in-molecule pre-
bonding stage and the molecular post-bonding one constitutes the basis 
of the actual absolute aromaticity as will be elsewhere introduced (see 
Volume III/Chapter 4 of the present five-volume set).

An illustrative analysis for homologues organic aromatic hydrocarbons 
regarding how much the second, respectively the third order of the IP-EA 
or LUMO-HOMO gaps affect the chemical hardness hierarchies, and 
therefore their ordering aromaticity, will be in the next section exposed 
and discussed.
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4.5.4.5 Testing Koopmans Theorem by Chemical Harness 
Reactivity Index

It is true Koopmans theorem seems having some limitation for small mol-
ecules and for some inorganic complexes (Duke & O’Leary, 1995; Angeli, 
1998).

However, one is interested here for testing the Koopmans’ superior 
orders’ HOMO-LUMO behavior on the systems that work, such as the 
aromatic hydrocarbons. Accordingly, in Table 4.2 a short series of paradig-
matic organics are considered, with one and two rings and various basic 
ring substitutions or additions, respectively (Putz, 2010b). For them, the 
HOMO and LUMO are computed, within semi-empirical AM1 framework 
(Hypercube, 2002), till the third order of Koopmans frozen spin-orbitals’ 
approximation; they are then combined into the various finite difference 
forms (from 2C to SLR) of chemical hardness as above, see Table 4.1, 
grouped also in sequential order respecting chemical hardness gap con-
tributions (i.e., separately for {LUMO1-HOMO1}, {LUMO1-HOMO1, 
LUMO2-HOMO2}, {LUMO1-HOMO1, LUMO2-HOMO2, LUMO3-
HOMO3}): the results are systematically presented in Tables 4.3–4.5.

The results of Tables 4.3-4.5 reveals very interesting features, in the 
light of considering the aromaticity as being reliably measured by chemi-
cal hardness alone, sine both associate with chemical resistance to reactiv-
ity or the terminus of a chemical reaction according with the maximum 
chemical hardness principle (Chattaraj et al., 1991,1995).

Moreover, the benchmark ordering hierarchy was chosen as produced 
by Hückel theory (since being an approximate approach for quantum 
chemical modeling of chemical bonding is let to be exposed in the Volume 
III of this work (Putz, 2016a), dedicated to quantum molecule and chemical 
reactivity) and approximation since closely related with pi-electrons delo-
calized at the ring level as the main source of the experimentally recorded 
aromaticity of organic compounds under study (Putz et al., 2010).

Note that although computational method used here is of low level 
it nevertheless responds to present desiderate having an non (orbitalic) 
basis dependent computational output and discussion, whereas further 
(Hartree-Fock) ab initio, (Møller–Plesset) perturbation methods and basis 
set dependency considerations, as HF, MP2, and DFT, respectively, for 
instance, can be further considered for comparative analysis.
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TABLE 4.2 Molecular Structures of Paradigmatic Aromatic Hydrocarbons (Putz, 2010b), Ordered Downwards According with Their 
Hückel First Order HOMO-LUMO Gap (Putz et al., 2010), along Their First Three Highest Occupied (HOMOs) and Lowest Unoccupied 
(LUMOs) (in electron-volts, eV) Computationally Recorded Levels Within Semi-Empirical AM1 Method (Hypercube, 2002)

Formula
Name
CAS
Index (mw[g/mol])

Molecular 
Structure

HOMO (1) HOMO (2) HOMO (3) LUMO (1) LUMO (2) LUMO (3)

C6H6

Benzene

71-43-2

I (78.11)

–9.652904 –9.653568 –11.887457 0.554835 0.555246 2.978299

C4H4N2

Pyrimidine

289-95-2

II (80.088)

–10.578436 –10.614932 –11.602985 –0.234993 –0.081421 2.543489

C5H5N

Pyridine

110-86-1

III (79.10)

–9.932324 –10.642881 –10.716373 0.138705 0.278273 2.791518

C6H6O

Phenol

108-95-2

IV (94.11)

–9.114937 –9.851116 –11.940266 0.397517 0.507986 2.839472
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Formula
Name
CAS
Index (mw[g/mol])

Molecular 
Structure

HOMO (1) HOMO (2) HOMO (3) LUMO (1) LUMO (2) LUMO (3)

C6H7N

Aniline

62-53-3

V (93.13)

–8.213677 –9.550989 –11.501620 0.758436 0.888921 2.828224

C10H8

Naphthalene

91-20-3

VI (128.17)

–8.710653 –9.340973 –10.658237 –0.265649 0.180618 1.210350

C10H8O

2-Naphthol

135-19-3

VII (144.17)

–8.641139 –9.194596 –10.673578 –0.348490 0.141728 1.117961

TABLE 4.2 Continued
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TABLE 4.2 Continued

Formula
Name
CAS
Index (mw[g/mol])

Molecular 
Structure

HOMO (1) HOMO (2) HOMO (3) LUMO (1) LUMO (2) LUMO (3)

C10H8O

1-Naphthol

90-15-3

VIII (144.17)

–8.455599 –9.454717 –10.294406 –0.247171 0.100644 1.184179

C10H9N

2-Naphthalenamine

91-59-8

IX (143.19)

–8.230714 –8.984826 –10.346699 –0.177722 0.278785 1.298534

C10H9N

1-Naphthalenamine

134-32-7

X (143.19)

–8.109827 –9.343444 –9.940875 –0.176331 0.230424 1.235745
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TABLE 4.3 Chemical Hardness Values (in eV) as Computed for Molecules of Table 4.2 with First LUMO(1) –HOMO(1) Gap Order of 
Eq. (4.326) with Parameters of Table 4.1 (Putz, 2013)

Molecule η2C η4C η6C ηSP η6T η8T η8P η10P ηSLR

I 5.10387 6.379837 4.903511 5.512179 7.003643 4.434762 4.030827 3.542746 2.971354
II 5.171722 6.464652 4.968699 5.585459 7.096751 4.493719 4.084414 3.589844 3.010856
III 5.035515 6.294393 4.837839 5.438356 6.909845 4.375368 3.976843 3.495299 2.931559
IV 4.756227 5.945284 4.569516 5.136725 6.5266 4.132695 3.756273 3.301437 2.768964
V 4.486057 5.607571 4.309951 4.844941 6.155866 3.897943 3.542904 3.113904 2.611677
VI 4.222502 5.278128 4.056743 4.560302 5.794211 3.66894 3.334759 2.930963 2.458242
VII 4.146325 5.182906 3.983556 4.47803 5.689679 3.60275 3.274597 2.878086 2.413893
VIII 4.104214 5.130268 3.943098 4.432551 5.631894 3.56616 3.24134 2.848856 2.389378
IX 4.026496 5.03312 3.868431 4.348616 5.525247 3.49863 3.179962 2.794909 2.344132
X 3.966748 4.958435 3.811029 4.284088 5.44326 3.446715 3.132775 2.753437 2.309348
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TABLE 4.4 Chemical Hardness Values (in eV) as Computed for Molecules of Table 4.2 with First LUMO(1) –HOMO(1) and Second 
Order LUMO(2) –HOMO(2) Gaps of Eq. (4.326) with Parameters of Table 4.1 (Putz, 2013)

Molecule η2C η4C η6C ηSP η6T η8T η8P η10P ηSLR

I 5.10387 5.95447 4.239094 4.89965 6.351413 3.933493 3.865279 3.990091 4.778726
II 5.171722 6.025756 4.283151 4.953449 6.423777 3.976506 3.9136 4.051417 4.875712
III 5.035515 5.839345 4.127062 4.783086 6.212105 3.839122 3.799743 3.973858 4.865044
IV 4.756227 5.513655 3.895318 4.515179 5.864769 3.624046 3.588288 3.755367 4.602943
V 4.486057 5.172574 3.630494 4.218546 5.488872 3.385327 3.373608 3.571375 4.459963
VI 4.222502 4.881395 3.437052 3.989007 5.185887 3.201415 3.180355 3.348194 4.143948
VII 4.146325 4.793892 3.375923 3.917851 5.093191 3.144321 3.123197 3.287199 4.066799
VIII 4.104214 4.732127 3.32121 3.859229 5.021412 3.096976 3.086388 3.267567 4.081062
IX 4.026496 4.647136 3.265531 3.792799 4.933405 3.043772 3.029741 3.200836 3.984165
X 3.966748 4.559524 3.187936 3.709656 4.831596 2.976622 2.977523 3.172958 4.004309
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TABLE 4.5 Chemical Hardness Values (in eV) as Computed for Molecules of Table 4.2 with First LUMO(1) –HOMO(1), Second 
LUMO(2) –HOMO(2) and Third Order LUMO(3) –HOMO(3) Gaps of Eq. (4.326) with Parameters of Table 4.1 (Putz, 2013)

Molecule η2C η4C η6C ηSP η6T η8T η8P η10P ηSLR

I 5.10387 5.95447 4.239094 4.89965 6.516588 3.908499 3.806245 3.921086 4.834997
II 5.171722 6.025756 4.283151 4.953449 6.58096 3.952722 3.857423 3.985751 4.929261
III 5.035515 5.839345 4.127062 4.783086 6.362192 3.816411 3.746102 3.911156 4.916176
IV 4.756227 5.513655 3.895318 4.515179 6.028988 3.599197 3.529596 3.686762 4.658889
V 4.486057 5.172574 3.630494 4.218546 5.648093 3.361234 3.316702 3.504858 4.514206
VI 4.222502 4.881395 3.437052 3.989007 5.31776 3.18146 3.133223 3.293101 4.188874
VII 4.146325 4.793892 3.375923 3.917851 5.224208 3.124496 3.076372 3.232464 4.111434
VIII 4.104214 4.732127 3.32121 3.859229 5.148952 3.077677 3.040805 3.214284 4.124512
IX 4.026496 4.647136 3.265531 3.792799 5.062797 3.024193 2.983496 3.14678 4.028246
X 3.966748 4.559524 3.187936 3.709656 4.955781 2.957831 2.933139 3.121078 4.046616
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In these conditions, the main Koopmans’ analysis of chemical hardness 
or aromaticity behavior for the envisaged molecules leaves with relevant 
observations:

• In absolutely all cases, analytical or computational, the first two 
molecules, Benzene (I) and Pyrimidine (II) are inversed for their 
chemical hardness/aromaticity hierarchies respecting the bench-
marking Hückel one, meaning that even in the most simple case, say 
2C/{LUMO1-HOMO1}, double substitution of carbon with nitro-
gen increases the ring stability, most probably due to the additional 
pairing of electrons entering the pi-system as coming from the free 
valence of N atoms (equivalently with N pi-valence electrons) in 
molecular ring. This additional pair of electrons eventually affects 
by shielding also the core of the hydrocarbon rings, i.e., the sigma-
system of Pyrimidine (II), in a specific quantum way, not clearly 
accounted by the Hückel theory.

• The same behavior is recorded also for the couple of molecules I 
and III (Pyridine), however, only for the SLR of chemical hardness 
computed with second and the third orders of Koopmans frozen 
spin-orbitals; this suggest the necessary insight the spectral like 
resolution analysis may provide respecting the other forms of finite 
compact differences in chemical hardness computation – yet only 
when it is combined with higher Koopmans HOMO and LUMO 
orbitals.

• In the same line of discussion, only for the second and the third 
Koopmans order and only for the SLR chemical hardness develop-
ment, i.e., the last columns of Tables 4.4 and 4.5, one record simi-
lar reserve order of the molecules 2-Napthol (VII) and 1-Naphtol 
(VIII), with the more aromatic character for the last case when hav-
ing the OH group more closely to the middy of the naphthalene 
structure; it is explained as previously, due to the electronic pair 
of chemical bonding contribution more close to the “core” of the 
system with direct influence to increase the shielding electrons of 
the sigma systems, while leading with smoothly increased stabili-
zation contribution (enlarging also the sigma-pi chemical gap); yet 
this is manifested when all the spectral like resolution complexity 
is considered in chemical hardness expression and only in superior 
Koopmans orders (second and third), otherwise not being recorded. 
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However, this result advocates the meaningful of considering of the 
SLR coupled with superior Koopmans analysis in revealing subtle 
effects in sigma-pi aromatic systems.

• In the rest of cases the Hückel downward hierarchy of Table 4.2 is 
recovered in Tables 4.3–4.5 in a systematic way.

• When going from 2C to SLR chemical hardness analytical forms 
of any of Koopmans orders, on the horizontal axis through the 
Tables 4.3–4.5, one systematically record an increasing of the aver-
age chemical hardness/aromaticity values from 2C to 6T schemes 
of computations while going again down towards SLR scheme of 
Table 4.1.

All in all, one may compare the extreme 2C and SLR outputs of 
Tables 4.3–4.5 for a global view for the Koopmans’ behavior respecting 
various orders and chemical hardness schemes of (compact finite forms) 
computations: the result is graphically presented in Figure 4.4. The anal-
ysis of Figure 4.4 yields a fundamental result for the present study, i.e., 
the practical identity among:

FIGURE 4.4 Representation of the 2C and SLR chemical hardness hierarchies for the set 
of molecules of Table 4.2 upon the first, second and third order of the Koopmans’ theorem 
applications as presented din Tables 4.3–4.5, respectively (Putz, 2013).
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• All Koopmans superior orbitals based chemical hardness 
computations;

• The simplest 2C and the complex SLR analytical forms for com-
pact finite difference schemes of chemical hardness for the superior 
HOMO-LUMO gap extensions;

By contrary to someone expecting the first order of Koopmans theorem 
being more systematic, only in this order 2C result is practically doubled 
respecting SLR counterpart; such double behavior becomes convergent 
when superior Koopmans orders of valence orbitals are considered either 
in simpler or complex forms of 2C and SLR, respectively.

Despite the debating context in which Koopmans theorem is valid, or 
associates with a physical-chemical sense, the present work give some 
insight in this matter by clarifying upon some key features of Koopmans 
analysis, namely:

• The Hartree-Fock spin-orbitals involved in Koopmans’ theorem are 
of computational nature, emerged through solving an eigen-problem 
in a given basis set so that being characterized by a sort of “quan-
tum shift” related with quantum uncertainty when the free system is 
affected by observation – here by computation; so this behavior is 
at its turn computationally naturally and not viewed as a conceptual 
error in structurally assessing a many-electronic structure;

• The Koopmans’ theorem not restrictedly refers to the first ionization 
potential and may be extended to successive ionization potentials 
(and electronic affinities) as far the valence shell is not exhausted 
by the pi-collective electrons, such that the sigma-pi separation may 
be kept reliable and the “frozen spin-orbitals” may be considered 
as such through cancellation of the relaxation effects with the elec-
tronic correlations, both explicitly escaping to Hartree-Fock for-
malism; this was however here emphasized by the appearance of 
the quantum terms of type HOMO HOMO HOMO HOMO1 2 1 2  in 
Eq. (4.328) and LUMO LUMO LUMO LUMO1 2 1 2  in Eq. (4.329) 
which were considered as reciprocal annihilating in chemical hard-
ness’ IP-EA differences in Eq. (4.330) due to symmetrical bonding 
vs. anti-bonding spectra displacements in molecular orbital theory – 
as a simplified version of Hartree-Fock theory;
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• The Koopmans theorem goes at best with chemical harness or 
aromaticity evaluation by means of LUMO-HOMO gaps when they 
manifested surprisingly the same for superior orders of IPs-EAs, this 
way confirming the previous point.

Application on a paradigmatic set of mono and double benzoic rings 
molecules supported these conclusions, yet leaving enough space for 
further molecular set extensions and computational various frameworks 
comparison.

This may lead with the fruitful result according which the Koopmans 
theorem works better when superior HOMO-LUMO frozen spin-orbitals 
are considered, probably due to compensating correlating effects such 
extension implies, see the last section’ analytical discussion. In any case, 
the present molecular illustration of Koopmans’ approximations to chem-
ical harness computation clearly shows that, at least for organic aromatic 
molecules, it works better for superior orders of “freezing” spin-orbitals 
and is not limitative to the first valence orbitals, as would be the common 
belief. Moreover, it was also clear the Koopmans theorem finely accords 
also with more complex ponder of its superior order orbitals in chemi-
cal hardness expansions Eq. (4.326), when subtle effects in lone pair-
ing electrons (since remained orbital is frozen upon successive electronic 
attachment/removals on/from it) or chemical bonding pair of electrons 
influence the aromatic ring core towards increasing its shielding and the 
overall molecular reactivity resistance. All these conceptual and compu-
tational results should be further extended and tested on increased number 
of molecules, enlarging their variety too, as well as by considering more 
refined quantum computational frameworks as the Density Functional 
Theory and (Hartree-Fock) ab initio schemes are currently compared and 
discussed for various exchange-correlation and parameterization limits 
and refutations.

4.6 DENSITY FUNCTIONAL THEORY: OBSERVABLE QUANTUM 
CHEMISTRY

The main weakness of the Hartree-Fock method, namely the lack in cor-
relation energy, is ingeniously restored by the Density Functional method 
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through introducing of the so-called effective one-electron exchange-
correlation potential, yet with the price of not knowing its analytical form. 
However, the working equations have the simplicity of the HF ones, while 
replacing the exchange term in Eq. (4.281) by the exchange-correlation 
(“XC”) contribution; there resulted the (general) unrestricted matrix form 
of the Kohn-Sham equations (Kohn & Sham, 1965):

 F H P FT XC
µν µν λσ

λσ
µνµν λσ↑ ↑ ↑= + ( ) +∑  (4.370)

 F H P FT XC
µν µν λσ

λσ
µνµν λσ↓ ↓ ↓= + ( ) +∑  (4.371)

 P P P PT ≡ = +↑+↓ ↑ ↓  (4.372)

in a similar fashion with the Pople-Nesbet equations of Hartree-Fock 
theory. The restricted (closed-shell) variant is resembled by the density 
constraint:

 ρ ρ↑ ↓=  (4.373)

in which case the Roothaan analogous equations (for exchange-correlation 
potential) are obtained.

Either Eq. (4.370) or (4.371) fulfills the general matrix equation of type 
(4.279) for the energy solution:

 E P H P P EXC= + ( ) +∑ ∑µν µν
µν

µν λσ
µνλσ

µν λσ
1
2

 (4.374)

that can be actually regarded as the solution of the Kohn-Sham equations 
themselves. The appeared exchange-correlation energy EXC may be at its 
turn conveniently expressed through the energy density (per unit volume) 
by the integral formulation:

 E E f dXC XC=   = ( )↑ ↓ ↑ ↓∫ρ ρ ρ ρ τ, ,  (4.375)
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once the Fock elements of exchange-correlation are recognized to be of 
density gradient form (Johnson et al., 1994):

 F f dXC
µν µ ν

ρ
φ φ τ↑ ↓( )

↑ ↓( )=
∂

∂
∫  (4.376)

The quest for various approximations for the exchange-correlation energy 
density f(ρ) had spanned the last decades in quantum chemistry, and will 
be in the next reviewed (Putz, 2008). Here we will thus present the “red 
line” of its implementation as will be further used for the current aromatic-
ity applications.

4.6.1 HOHENBERG-KOHN THEOREMS

Unlike the Hartree-Fock method, a completely different approach was 
invented to overcome from a single shoot both the exchange and correla-
tion terms to the total electronic energy. That was possible, however with 
the price of revisiting the wave function concept, through contracting it 
into the electronic density:

 ρ χσ

σ α β

( ) ( )
,

r n ri
i

i= ∑ ∑
=

2
 (4.377)

written in general terms of the fractional occupancy numbers ni ∈[ , ]0 1  so 
that (Nagy, 1998)

 N r dr ni
i

[ ] ( )ρ ρ= =∫ ∑  (4.378)

Worth noting that by introducing of the fractional occupation numbers 
both the concepts of one-orbitals as well as exact N-one-orbitals become 
generalized to fractionally occupied orbitals and to an arbitrary number of 
orbitals, hereafter called as Kohn-Sham orbitals. This way the distinction 
respecting the Hartree-Fock approach is made in clear.

The first Hohenberg-Kohn (HK1) theorem gives space to the concept 
of electronic density of the system ρ(r) in terms of the extensive relation 
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with the N electrons from the system that it characterizes (Bamzai & Deb, 
1981):

 ρ( )r d Nr∫ =  (4.379)

The relation (4.379) as much simple it could appears stands as the decisive 
passage from the eigen-wave function level to the level of total electronic 
density (Parr & Young, 1989; Putz, 2003):

 ρ( ) ( , ,..., ) ( , ,..., ) ...*r r r r r r r r r= ∫N d dN N NΨ Ψ2 2 2  (4.380)

Firstly, Eq. (4.380) satisfies Eq. (4.379); this can be used also as simple 
immediate proof of the relation (4.379) itself. Then, the dependency from 
the 3N-dimensions of configuration space was reduced at 3 coordinates in 
the real space, physically measurable.

However, still remains the question: what represents the electronic 
density of Eq. (4.380)? Definitely, it neither represents the electronic 
density in the configuration space nor the density of a single electron, 
since the N-electronic dependency as multiplication factor of the mul-
tiple integral in Eq. (4.380). What remains is that ρ(r) is simple the elec-
tronic density (of the whole concerned system) in “r” space point. Such 
simplified interpretation, apparently classics, preserves its quantum roots 
through the averaging (integral) over the many-electronic eigenfunction 
Ψ( ,..., )r r1 N  in Eq. (4.380). Alternatively, the explicit non-dependency of 
density on the wave function is also possible within the quantum statis-
tical approach where the relation with partition function of the system 
(the global measure of the distribution of energetic states of a system) is 
mainly considered.

The major consequence of this theorem consists in defining of the 
total energy of a system as a function of the electronic density function 
in what is known as the density functional (Parr & Young, 1989; Putz, 
2003):

 E F CHK A[ ] [ ] [ ]ρ ρ ρ= +  (4.381)
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from where the name of the theory. The terms of energy decomposi-
tion in (4.381) are identified as: the Hohenberg-Kohn density functional 
(Hohenberg & Kohn, 1964)

 F T VHK ee[ ] [ ] [ ]ρ ρ ρ= +  (4.382)

viewed as the summed electronic kinetic T[ ]ρ  and electronic repulsion
Vee[ ]ρ , and the so-called chemical action term (Putz, 2007a):

 C V dA[ ] ( ) ( )ρ ρ= ∫ r r r  (4.383)

being the only explicit functional of total energy.
Although not entirely known the HK functional has a remarkably prop-

erty: it is universally, in a sense that both the kinetic and inter-electronic 
repulsion are independent of the concerned system. The consequence 
of such universal nature offers the possibility that once it is exactly or 
approximately knew the HK functional for a given external potential V(r) 
remain valuable for any other type of potential V’(r) applied on the con-
cerned many-electronic system. Let’s note the fact that V(r) should be not 
reduced only to the Coulombic type of potentials but is carrying the role of 
the generic potential applied, that could beg of either an electric, magnetic, 
nuclear, or even electronic nature as far it is external to the system fixed by 
the N electrons in the investigated system.

Once “in game” the external applied potential provides the second 
Hohenberg-Kohn (HK2) theorem. In short, HK2 theorem says that “the 
external applied potential is determined up to an additive constant by the 
electronic density of the N-electronic system ground state”. In mathemat-
ical terms, the theorem assures the validity of the variational principle 
applied to the density functional (4.381) relation, i.e., (Ernzerhof, 1994)

 E E E[ ] [ ] [ ]ρ ρ δ ρ≥ ⇔ = 0  (4.384)

for every electronic test density ρ around the real density ρ of the ground 
state.

The proof of variational principle in Eq. (4.384), or, in other words, the 
one-to-one correspondence between the applied potential and the ground 
state electronic density, employs the reduction ad absurdum procedure. 
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That is to assume that the ground state electronic density ρ(r) corresponds 
to two external potentials (V1, V2) fixing two associate Hamiltonians 
(H1, H2) to which two eigen-total energy (E1, E2) and two eigen-wave func-
tions (Ψ1, Ψ2) are allowed. Now, if eigen-function Ψ1 is considered as the 
true one for the ground state the variational principle (4.384) will cast as 
the inequality:

E H d H d H H H1 1 1 1 2 1 2 2 2 1 2 2[ ] * * *ρ τ τ= < = + −













∧ ∧ ∧ ∧ ∧

∫ ∫Ψ Ψ Ψ Ψ Ψ Ψ∫∫ dτ

  (4.385)

which is further reduced, on universality reasons of the HK functional in 
(4.381), to the form:

 E E V V d1 2 1 2[ ] [ ] ( ) ( ) ( )ρ ρ ρ< + −[ ]∫ r r r r  (4.386)

On another way, if the eigen-function Ψ2 is assumed as being the one true 
ground state wave-function, the analogue inequality springs out as:

 E E V V d2 1 2 1[ ] [ ] ( ) ( ) ( )ρ ρ ρ< + −[ ]∫ r r r r  (4.387)

Taken together relations (4.386) and (4.387) generate, by direct summa-
tion, the evidence of the contradiction:

 E E E E1 2 1 2[ ] [ ] [ ] [ ]ρ ρ ρ ρ+ < +  (4.388)

The removal of such contradiction could be done in a single way, namely, 
by abolishing, in a reverse phenomenologically order, the fact that two 
eigen-functions, two Hamiltonians and respectively, two external potential 
exist for characterizing the same ground state of a given electronic system. 
With this statement the HK2 theorem is formally proofed.

Yet, there appears the so-called V-representability problem signaling 
the impossibility of an a priori selection of the external potentials types 
that are in bi-univocal relation with ground state of an electronic system 
(Chen & Stott, 1991a,b; Kryachko & Ludena, 1991a,b). The problem 
was revealed as very difficult at mathematical level due to the equivocal 
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potential intrinsic behavior that is neither of universal nor of referential 
independent value. Fortunately, such principal limitation does not affect 
the general validity of the variational principle (4.384) regarding the selec-
tion of the energy of ground state level from a collection of states with 
different associated external potentials.

That because, the problem of V-representability can be circum-
vented by the so-called N-contingency features of ground state elec-
tronic density assuring that, aside of the N – integrability condition 
(4.379), the candidate ground state densities should fulfill the positivity 
condition (an electronic density could not be negative) (Kryachko & 
Ludena, 1991a,b):

 ρ( ) ,r r≥ ∀ ∈ℜ0  (4.389)

as well as the non-divergent integrability condition on the real domain 
(in relation with the fact that the kinetic energy of an electronic system 
could not be infinite – since the light velocity restriction):

 ∇ < ∞
ℜ
∫ ρ( ) /r r1 2 2

d  (4.390)

Both Eqs. (4.389) and (4.390) conditions are easy accomplished by every 
reasonable density, allowing the employment of the variational principle 
(4.384) in two steps, according to the so-called Levy-Lieb double mini-
mization algorithm (Levy & Perdew, 1985): one regarding the intrinsic 
minimization procedure of the energetic terms respecting all possible 
eigen-functions folding a trial electronic density followed by the external 
minimization over all possible trial electronic densities yielding the cor-
rect ground state (GS) energy density functional

 

E T V V d

T V

GS ee

ee

= + +( )





= +

→

→

∫min min ( )

min min ( )

*

*

ρ ρ

ρ ρ

τ
Ψ

Ψ

Ψ Ψ

Ψ Ψdd V d

F C EHK A

τ ρ

ρ ρ ρ
ρ ρ

∫ ∫( ) +





= +( ) = ( )

( ) ( )

min [ ] [ ] min [ ]

r r r

 (4.391)
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One of the most important consequences of the HK2 conveys the rewrit-
ing of the variational principle (4.384) in the light of above N-contingency 
conditions of the trial densities as the working Euler type equation:

 δ ρ µ ρ{ [ ] [ ]}E N− = 0  (4.392)

from where, there follows the Lagrange multiplication factor with the 
functional definition:

 µ
δ ρ

δρ ρ ρ

=










=

E

V

[ ]

( )

 (4.393)

this way introducing the chemical potential as the fundamental quantity 
of the theory. At this point, the whole chemistry can spring out since iden-
tifying the electronic systems electronegativity with the negative of the 
density functional chemical potential (Parr & Young, 1989):

 χ µ= −  (4.394)

making thus the DFT approach compatible with Hartree-Fock-Koopmans 
previous formulation of electronagivity for frontier orbital energies, see 
Eq. (4.352).

However, the Hohenberg-Kohn theorems give new conceptual quan-
tum tools for physico-chemical characterization of an electronic sample 
by means of electronic density and its functionals, the total energy and 
chemical potential (electronegativity). Such density functional premises 
are in next analyzed towards elucidating of the quantum nature of the 
chemical bond as driven by chemical reactivity (Putz, 2007b).

4.6.2 OPTIMIZED ENERGY-ELECTRONEGATIVITY 
CONNECTION

Back from Paris, in the winter of 1964, Kohn met at the San Diego 
University of California his new post-doc Lu J. Sham with who propose to 
extract from HK1 & 2 theorems the equation of total energy of the ground 
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state. In fact, they propose themselves to find the correspondent of the 
stationary eigen-equation of Schrödinger type, employing the relationship 
between the electronic density and the wave function.

Their basic idea consists in assuming a so-called orbital basic set for 
the N-electronic system by replacing the integration in the relation (4.380) 
with summation over the virtual uni-electronic orbitals ϕi i N, ,=1 , in 
accordance with Pauli principle, assuring therefore the HK1 frame with 
maximal spin/orbital occupancy (Janak, 1978):

 ρ( ) ( ) , ,r r= ≤ ≤ =∑ ∑n n n Ni i
i

N

i i
i

ϕ 2 0 1  (4.395)

Then, the trial total eigen-energy may be rewritten as density functional 
of Eq. (4.381) nature expanded in the original form (Moscardo & San-
Fabian, 1991; Neal, 1998):

E F C
T V C
T J T T

HK A

ee A

s s

[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] ( [ ] [ ]

ρ ρ ρ
ρ ρ ρ

ρ ρ ρ ρ

= +
= + +

= + + − )) ( [ ] [ ]) [ ]

( ) ( )*

+ −{ } +

= − ∇





+∫∑

V J C

n d

ee A

i i
i

N

i

ρ ρ ρ

ϕ ϕr r r1
2

1
2

2 ρρ ρ
ρ

ρ

( ) ( ) [ ]

( ) ( )

r r r r

r r r

1 2

12
1 2r

d d E

V d

xc∫∫

∫

+

+

  (4.396)

where, the contribution of the referential uniform kinetic energy 
contribution

 T n ds i i
i

N

i[ ] ( ) ( )*ρ = − ∇



∫∑ ϕ ϕr r r1

2
2  (4.397)

with the inferior index “s” referring to the “spherical” or homogeneous 
attribute together with the classical energy of Coulombic inter-electronic 
repulsion

 J
r

d d[ ] ( ) ( )
ρ

ρ ρ
= ∫∫

1
2

1 2

12
1 2

r r r r  (4.398)
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were used as the analytical vehicles to elegantly produce the exchange-
correlation energy Exc containing exchange ( [ ] [ ])V Jee ρ ρ−  and correlation 
( [ ] [ ])T Tsρ ρ−  heuristically introduced terms as the quantum effects of spin 
anti-symmetry over the classical interelectronic potential and of corrected 
homogeneous electronic movement, respectively.

Next, the trial density functional energy (4.396) will be optimized in 
the light of variational principle (4.392) as prescribed by the HK2 theo-
rem. The combined result of the HK theorems will eventually furnish the 
new quantum energy expression of multi-electronic systems beyond the 
exponential wall of the wave function.

An instructive method for deriving such equation assume the same 
types of orbitals for the density expansion (4.395),

 ρ( ) ( ) ( )*r r r= Nϕ ϕ  (4.399)

that, without diminishing the general validity of the results, since preserv-
ing the N-electronic character of the system, highly simplifies the analyti-
cal discourse.

Actually, with the trial density (4.399) replaced throughout the energy 
expression in Eq. (4.396) has to undergo the minimization procedure 
(4.392) with the practical equivalent integral variant:

 
δ ρ µ ρ

δ
δ

E N
d

[ ] [ ]
*

*−( )
=∫ ϕ

ϕ r 0  (4.400)

Note that, in fact, we chose the variation in the conjugated uni-orbital 
ϕ* ( )r  in (4.400) providing from (4.399) the useful differential link:

 δρ δ δ
δρ

( ) ( ) ( ) ( ) ( )
( )

* *r r r r r
r

= ⇒ =N Nϕ ϕ ϕ ϕ
1  (4.401)

Now, unfolding the Eq. (4.400) with the help of relations (4.396) and 
(4.399), together with fundamental density functional prescription (4.379), 
one firstly gets (Putz & Chiriac, 2008):

 δ
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ρ ρ

µ
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By performing the required partial functional derivations respecting the 
uni-orbital ϕ* ( )r  and by taking account of the equivalence (4.401) in deriv-
atives relating J[ ]ρ  and Exc[ ]ρ  terms, Eq. (4.402) takes the further form:

− ∇ + + + − =
N N J N E NV Nxc

2
02ϕ ϕ ϕ ϕ ϕ( ) ( ) [ ] ( ) ( ) ( ) ( )r r r r r rδ ρ

δρ
δ
δρ

µ

  (4.403)

After immediate suppressing of the N factor in all the terms and by consid-
ering the exchange-correlation potential with the formal definition:

 V E
rxc

xc

V

( ) [ ]
( ) ( )

r
r

=










δ ρ
δρ

 (4.404)

Equation (4.403) simplifies as (Flores & Keller, 1992; Keller, 1986):

 − ∇ + +
−

+






















=∫
1
2

2 2

2
2V d Vxc( ) ( ) ( ) ( ) ( )r r

r r
r r r rρ

µϕ ϕ  (4.405)

Moreover, once introducing the so-called effective potential:

 V V d Veff xc( ) ( ) ( ) ( )r r r
r r

r r= +
−

+∫
ρ 2

2
2  (4.406)

the resulted equation recovers the traditional Schrödinger shape:

 − ∇ +





=
1
2

2 Veff ϕ ϕ( ) ( )r rµ  (4.407)

The result (4.407) is fundamental and equally subtle. Firstly, it was proved 
that the joined Hohenberg-Kohn theorems are compatible with consecrated 
quantum mechanical postulates, however, still offering a generalized view 
of the quantum nature of electronic structures, albeit the electronic density 
was assumed as the foreground reality. In these conditions, the meaning 
of functions ϕ( )r  is now unambiguously producing the analytical pas-
sage from configuration (3N-D) to real (3D) space for the whole system 
under consideration. Nevertheless, the debate may still remain because 
once equation (4.407) is solved the basic functions ϕ( )r  generating the 
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electronic density (4.399) and not necessarily the eigen-functions of the 
original system due to the practical approximations of the exchange and 
correlation terms appearing in the effective potential (4.406). This is why 
the functions ϕ( )r  are used to be called as Kohn-Sham (KS) orbitals; they 
provide the orbital set solutions of the associate KS equations (Kohn & 
Sham, 1965):

 − ∇ +





= =
1
2

12 V i Neff i i iϕ ϕ( ) ( ) , ,r rµ  (4.408)

once one reconsiders electronic density (4.399) back with general case 
(4.395). Yet, Eq. (4.408), apart of delivering the KS wave-functions ϕi ( )r , 
associate with another famous physico-chemical figure, the orbital chemi-
cal potential µi, which in any moment can be seen as the negative of the 
orbital electronegativities on the base of the relation (4.394). Going now to 
a summative characterization of the above optimization procedure worth 
observing that the N-electronic in an arbitrary external V-potential prob-
lem is conceptual-computationally solved by means of the following self-
consistent algorithm:

1. It starts with a trial electronic density (4.395) satisfying the 
N-contingency conditions (4.389) and (4.390);

2. With trial density the effective potential (4.406) containing 
exchange and correlation is calculated;

3. With computed Veff  the Eq. (4.408) are solved for ϕi i N( ), ,r =1 ;
4. With the set of functions ϕi i N( )

,
r{ } =1

 the new density (4.395) is 
recalculated;

5. The procedure is repeated until the difference between two con-
secutive densities approaches zero;

6. Once the last condition is achieved one retains the last set 
ϕi i i i N( ),

,
r µ χ= −{ } =1

;
7. The electronegativity orbital observed contributions are summed 

up from Eq. (4.408) with the expression:

− = − ∇ +
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8. Replacing in Eq. (4.409) the uniform kinetic energy, Ts[ ]ρ  from 
the general relation (4.396) the density functional of the total 
energy for the N-electronic system will take the final figure (Putz, 
2008):

E d d E V di
i

N

xc xc[ ] ( ) ( ) [ ] ( ) ( )ρ χ
ρ ρ

ρ ρ= − − + −{ }∑ ∫∫ ∫
1
2

1 2

12
1 2

r r
r

r r r r r

  (4.410)

showing that the optimized many-electronic ground state energy is directly 
related with global or summed over observed or averaged or expected 
orbital electronegativities. One can observe from Eq. (4.410) that even in 
the most optimistic case when the last two terms are hopefully canceling 
each other there still remains a (classical) correction to be added on global 
electronegativity in total energy. Or, in other terms, electronegativity alone 
is not enough to better describe the total energy of a many-electronic sys-
tem, while its correction can be modeled in a global (almost classical) way. 
Such considerations stressed upon the accepted semiclassical behavior of 
the chemical systems, at the edge between the full quantum and classical 
treatments.

However, analytical expressing the total energy requires the use of 
suitable approximations, whereas for chemical interpretation of bonding 
the electronic localization information extracted from energy is compul-
sory. This subject is in next focused followed by a review of the popular 
energetic density functionals and approximations.

4.6.3 POPULAR ENERGETIC DENSITY FUNCTIONALS

Since the terms of total energy are involved in bonding and reactivity 
states of many-electronic systems, i.e., the kinetic energetic terms in ELF 
topological analysis or the exchange and correlation density functionals in 
chemical reactivity in relation with either localization and chemical poten-
tial or electronegativity, worth presenting various schemes of quantifica-
tion and approximation of these functionals for better understanding their 
role in chemical structure and dynamics.
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4.6.3.1 Density Functionals of Kinetic Energy

When the electronic density is seen as the diagonal element ρ ρ( ) ( , )r r r1 1 1=  
the kinetic energy may be generally expressed from the Hartree-Fock 
model, through employing the single determinant ρ( , ' )r r1 1 , as the quan-
tity (Lee & Parr, 1987):

 T d[ ] ( , ' )' '
ρ ρ= − ∇  =∫

1
2 1

1 1

2
1 1 1r r r

r r r  (4.411)

it may eventually be further written by means of the thermodynamical (or 
statistical) density functional:

 T k T d dBβ ρ ρ
β

= =∫ ∫
3
2

3
2

1( ) ( ) ( )
( )

r r r r
r

r  (4.412)

that supports various specializations depending on the statistical factor 
particularization β.

For instance, in LDA approximation, the temperature at a point is 
assumed as a function of the density in that point, β β ρ( ) ( ( ))r r= ; this 
may be easily reached out by employing the scaling transformation to be 
(Ou-Yang & Levy, 1990)

 ρ λ ρ λ ρ λ ρ λλ λ( ) ( ) [ ] [ ],r r= ⇒ = =3 2T T ct  (4.413)

providing that

 β ρ( ) ( )/r r= −3
2

2 3C  (4.414)

a result that helps in recovering the traditional (Thomas-Fermi) energetic 
kinetic density functional form

 T C d[ ] ( )/ρ ρ= ∫ 5 3 r r  (4.415)

while the indeterminacy remained is smeared out in different approxima-
tion frames in which also the exchange energy is evaluated. Note that the 
kinetic energy is generally foreseen as having an intimate relation with 
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the exchange energy since both are expressed in Hartree-Fock model as 
determinantal values of ρ( , ' )r r1 1 , see below.

Actually, the different LDA particular cases are derived by equating 
the total number of particle N with various realization of the integral

 N d d= ∫∫
1
2 1 1

2
1 1ρ( , ' ) 'r r r r  (4.416)

by rewriting it within the inter-particle coordinates frame:

 r r r r r= + = −0 5 1 1 1 1. ( '), 's  (4.417)

as:

 N d d= + −∫∫
1
2

2 2 2ρ( / , / )r r rs s s  (4.418)

followed by spherical averaged expression:

 N s d s ds= ∫∫2 2 2π ρ ( ) ( , )r r rΓ  (4.419)

with

 Γ( , )
( )

...r
r

s s
= − +1

β
 (4.420)

The option in choosing the Γ( , )r s  series (4.420) so that to converge in 
the sense of charge particle integral (4.419) fixes the possible cases to be 
considered (Lee & Parr, 1987):

1. the Gaussian resummation uses:

 Γ Γ( , ) ( , ) exp
( )

r r
r

s s s
G≅ = −











2

β
 (4.421)

2. the trigonometric (uniform gas) approximation looks like:

 Γ Γ( , ) ( , )
sin cos

,
( )

r r
r

s s
t t t
t

t sT≅ =
−( )

=9 5
2

6 β
 (4.422)
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In each of (4.421) and (4.422) cases the LDA-β function (4.414) is firstly 
replaced; then, the particle integral (4.419) is solved to give the constant 
C and then the respective kinetic energy density functional of Eq. (4.415) 
type is delivered; the results are (Lee & Parr, 1987):

1. in Gaussian resummation:

 T dG
LDA = ∫

3
25 3

5 3π
ρ/

/ ( )r r  (4.423)

2. whereas in trigonometric approximation

 T dTF
LDA = ( ) ∫

3
10

3 2 2 3 5 3π ρ
/ / ( )r r  (4.424)

one arrives to the Thomas-Fermi original density functional 
formulation.

Next on, one will consider the non-local functionals; this can be 
achieved through the gradient expansion in the case of slowly varying 
densities – that is assuming the expansion (Murphy, 1981):

 

T d

d

d

m m
m

m
m

= + 

= + 
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∞

∫
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τ ρ τ ρ

τ ρ

( ) ( )

( ) ( )

( )

2 2
0

2
==

∞

∑∫

∫=
0

drτ ρ( )  (4.425)

The first two terms of the series respectively covers: the Thomas Fermi 
typical functional for the homogeneous gas

 τ ρ π ρ0
2 2 3 5 33

10
6( )

/ /= ( )  (4.426)

and the Weizsäcker related first gradient correction:

 τ ρ τ ρ
ρ
ρ2

2
1
9

1
72

( ) ( )= =
∇

W  (4.427)
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They both correctly behave in asymptotic limits:

τ ρ

τ ρ τ ρ ρ

τ ρ τ ρ
ρ
ρ

( )
( ) ( ) ... ( )

( ) ( )
=

= ∇ <<

= =
∇

0 2

2

2

9 1
8

far from nucleus

W .... ( )∇ >>







 ρ close to nucleus

  (4.428)

However, an interesting resummation of the kinetic density functional 
gradient expansion series (4.425) may be formulated in terms of the Padé-
approximant model (DePristo & Kress, 1987):

 τ ρ τ ρ( ) ( ) ( ),= 0 4 3P x  (4.429)

with

 P x x a x a x b x
x b x b x4 3
2

2
3

3
3

4

2
2

3
3

1 0 95 9
1 0 05, ( ) .

.
=

+ + + +
− + +

 (4.430)

and where the x-variable is given by

 x = =
( )

∇τ ρ
τ ρ π

ρ
ρ

2

0
2 2 3

2

8 3

5
108

1

6

( )
( ) / /  (4.431)

while the parameters a2, a3, b2, and b3 are determined by fitting them to 
reproduce Hartree-Fock kinetic energies of He, Ne, Ar, and Kr atoms, 
respectively (Liberman et al., 1994). Note that Padé function (4.430) may 
be regarded as a sort of generalized electronic localization function (ELF) 
susceptible to be further used in bonding characterizations.

4.6.3.2 Density Functionals of Exchange Energy

Starting from the Hartree-Fock framework of exchange energy definition 
in terms of density matrix (Levy et al., 1996),
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 K d d[ ]
( , ' )

'
'ρ

ρ
= −

−∫∫
1
4

1 1
2

1 1
1 1

r r
r r

r r  (4.432)

within the same consideration as before, we get that the spherical averaged 
exchange density functional

 K s d sds= ∫∫π ρ 2 ( ) ( , )r r rΓ  (4.433)

takes the particular forms (Lee & Parr, 1987):

1. in Gaussian resummation:

 K dG
LDA = − ∫

1
21 3

4 3
/

/ ( )ρ r r  (4.434)

2. and in trigonometric approximation (recovering the Dirac formula):

 K dD
LDA = − 






 ∫

3
4

3 1 3
4 3

π
ρ

/
/ ( )r r  (4.435)

Alternatively, by paralleling the kinetic density functional previous 
developments the gradient expansion for the exchange energy may 
be regarded as the density dependent series (Cedillo et al., 1988):

 

K K
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∫
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r  (4.436)

while the first term reproduces the Dirac LDA term (Perdew & 
Yue, 1986; Manoli & Whitehead, 1988):

 k0

1 3
4 33

2
3

4
( )

/
/ρ

π
ρ= − 






  (4.437)
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and the second term contains the density gradient correction, with 
the Becke proposed approximation (Becke, 1986):

 k b

d
a2

2

4 3

2

8 31

( )
/

/

ρ

ρ
ρ

ρ
ρ

= −

∇

+
∇











 (4.438)

where the parameters b and d are determined by fitting the k0+k2 
exchange energy to reproduce Hartree-Fock counterpart energy of 
He, Ne, Ar, and Kr atoms, and where for the a exponent either 1.0 
or 4/5 value furnishes excellent results. However, worth noting that 
when analyzing the asymptotic exchange energy behavior, we get 
in small gradient limit (Becke, 1986):

 k k( ) ( ) / /ρ ρ
π π

ρ
ρ

ρ∇ << → −
( )

∇
0 2 1 3

2

4 3

7

432 6
 (4.439)

whereas the adequate large-gradient limit is obtained by consider-
ing an arbitrary damping function as multiplying the short-range 
behavior of the exchange-hole density, with the result:

 k c( ) / /ρ ρ ρρ∇ >> → ∇4 5 2 5  (4.440)

where the constant c depends of the damping function choice.
Next, the Padé-resummation model of the exchange energy prescribes 

the compact form (Cedillo et al., 1988):

 k k
P x

( ) ( )
( ),

ρ
ρ

=
10
9

0

4 3

 (4.441)

with the same Padé-function (4.430) as previously involved when dealing 
with the kinetic functional resummation. Note that when x=0, one directly 
obtains the Ghosh-Parr functional (Ghosh & Parr, 1986):

 k k( ) ( )ρ ρ=
10
9 0  (4.442)
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Moreover, the asymptotic behavior of Padé exchange functional (4.441) 
leaves with the convergent limits:
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12
2

2π
ρ
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  (4.443)

Once again, note that when particularizing small or large gradients and 
fixing asymptotic long or short range behavior, we are discovering the 
various cases of bonding modeled by the electronic localization recipe as 
provided by electronic localization function limits, see Volume II of the 
present five-volumes set (Putz, 2016b).

Another interesting approach of exchange energy in the gradient 
expansion framework was given by Bartolotti through the two-component 
density functional (Bartolotti, 1982):

 K C N d D N d[ ] ( ) ( ) ( )/
/ρ ρ

ρ
ρ

= +
∇

∫ ∫r r r r4 3 2
2

2 3  (4.444)

where the N-dependency is assumed to behave like:

 C N C C
N

D N D
N

( ) , ( )/ /= + =1
2

2 3
2

2 3  (4.445)

while the introduced parameters C1, C2, and D2 were fond with the exact 
values (Perdew et al., 1992; Wang et al., 1990; Alonso & Girifalco, 1978):

 C C D1
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2
1 3

2

1 3

2

1 33
4

3
4

1 3
729

= − = − − 



















=π π
π

π/ /
/ /
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Worth observing that the exchange Bartolotti functional (4.444) has some 
important phenomenological features: it scales like potential energy, 
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fulfills the non-locality behavior through the powers of the electron and 
powers of the gradient of the density, while the atomic cusp condition is 
preserved (Levy & Gorling, 1996).

However, density functional exchange-energy approximation with cor-
rect asymptotic (long range) behavior, i.e., satisfying the limits for the 
density

 lim exp
r

a r
→∞

= −( )ρσ σ  (4.447)

and for the Coulomb potential of the exchange charge, or Fermi hole den-
sity at the reference point r

 lim , ( ), ( )...
r XU r

or or spin states
→∞

= − = ↑ ↓σ σ α β
1  (4.448)

in the total exchange energy

 K U dX[ ]ρ ρσ
σ

σ

= ∫∑1
2

r  (4.449)

was given by Becke via employing the so-called semiempirical (SE) mod-
ified gradient-corrected functional (Becke, 1986):

K K x
x

d K d k xSE = −
+

= =
∇

∫∑ ∫0
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r r rr
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r
rρσ

4 3

  (4.450)

to the working single-parameter dependent one (Becke, 1988):

 K K x
x x

dB88
0

4 3
2

11 6
= −

+ −∫∑β ρ
βσ

σ

σ σσ

/ ( ) ( )
( )sinh ( )

r r
r r

r  (4.451)

where the value β = 0 0042. [ . .]a u  was found as the best fit among the noble 
gases (He to Rn atoms) exchange energies; the constant as  is related to the 
ionization potential of the system.

Still, having different exchange approximation energetic functionals as 
possible worth explaining from where such ambiguity eventually comes. 
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To clarify this, it helps in rewriting the starting exchange energy (4.432) 
under the formally exact form (Taut, 1996):

 K k g x d[ ] ( ) [ ( )] [ ( )]ρ ρ ρσ σ σ
σ

= ∫∑ r r r r  (4.452)

where the typical components are identified as:

 k A AX X[ ] ,/
/

ρ ρ
π

= − = 







1 3
1 33

2
3

4
 (4.453)

while the gradient containing correction g(x) is to be determined.
Firstly, one can notice that a sufficiency condition for the two exchange 

integrals (4.449) and (4.452) to be equal is that their integrands, or the 
exchange potentials, to be equal; this provides the leading gradient 
correction:

 g x U x
k x

X
0

1
2

( ) ( ( ))
[ ( ( ))]

=
r
rρ

 (4.454)

with r(x) following from x(r) by (not unique) inversion.
Unfortunately, the above “integrity” condition for exchange inte-

grals to be equal is not also necessary, since any additional gradient 
correction

 g x g x g x( ) ( ) ( )= +0 ∆  (4.455)

fulfills the same constraint if it is chosen so that

 ρ 4 3 0/ ( ) ( ( ))r r r∫ =∆g x d  (4.456)

or, with the general form:

 ∆g x f x
f x d

d
( ) ( )

( ) ( ( ))
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/

/
= − ∫

∫
ρ

ρ

4 3

4 3

r r r

r r
 (4.457)

being f(x) an arbitrary function.
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Nonetheless, if, for instance, the function f(x) is specialized so that

 f x g x( ) ( )= − 0  (4.458)

the gradient correcting function (4.455) becomes:

 g x
A

U d

dX

X
X( )

( ) ( )

( )/
= − ≡∫

∫
1

2 4 3

ρ

ρ
α

r r r

r r
 (4.459)

recovering the Slater’s famous Xα method for exchange energy evaluations 
(Slater, 1951; Slater & Johnson, 1972):

 K A dX X[ ] ( )/ρ α ρ= − ∫ 4 3 r r  (4.460)

Nevertheless, the different values of the multiplication factor αX in 
Eq. (4.460) can explain the various forms of exchange energy coef-
ficients and forms above. Moreover, following this conceptual line the 
above Becke’88 functional (4.451) can be further rearranged in a so-called 
Xα-Becke88 form (Lee & Zhou, 1991):

 K x
x x

dXB
XB

XB

88 4 3 1 3
2

12
1 6

= +
+









−α ρ

βσ
σ

σ σ

/ /( ) ( )
( )sinh ( )

r r
r r

r∫∫∑
σ

 (4.461)

where the parameters αXB and βXB are to be determined, as usually, through-
out atomic fitting; it may lead with a new workable valuable density func-
tional in exchange family.

4.6.3.3 Density Functionals of Correlation Energy

The first and immediate definition of energy correlation may be given by 
the difference between the exact and Hartree-Fock (HF) total energy of a 
poly-electronic system (Senatore & March, 1994):

 E E Ec HF[ ] [ ] [ ]ρ ρ ρ= −  (4.462)

Instead, in density functional theory the correlation energy can be seen 
as the gain of the kinetic and electron repulsion energy between the full 
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interacting (λ =1) and non-interacting (λ = 0) states of the electronic 
systems (Liu et al., 1999):

 E T V T Vc ee ee
λ λ λ λ λρ ψ λ ψ ψ λ ψ[ ] = +






 − +








∧ ∧
=

∧ ∧
=0 0  (4.463)

In this context, taking the variation of the correlation energy (4.463) 
respecting the coupling parameter λ (Ou-Yang & Levy, 1991; Nagy et al., 
1999),

 λ
ρ

λ
ρ ρ

δ ρ
δρ

λ
λ

λ∂
∂

= + ⋅∇∫
E E E dc

c
c[ ] [ ] ( ) [ ]
( )

r r
r

r  (4.464)

by employing it through the functional differentiation with respecting the 
electronic density,

 λ
ρ

λ
ρ ρ

δ ρ
δρ δρ

λ
λ λ

λ∂
∂

− = ⋅∇ + ⋅∇∫
V V V E dc

c c
c[ ] [ ] ( ) [ ]

( ) ( )
r r r

r r
r1 1 1

2

1
1  (4.465)

one obtains the equation to be solved for correlation potential V Ec c
λ λδ ρ δρ= [ ] /

V Ec c
λ λδ ρ δρ= [ ] / ; then the correlation energy is yielded by back integration:

 E V dc c
λ λρ ρ ρ[ ] ( ,[ ]) ( )= ∫ r r r  (4.466)

from where the full correlation energy is reached out by finally setting 
λ =1.

When restricting to atomic systems, i.e., assuming spherical symmetry, 
and neglecting the last term of the correlation potential equation above, 
believed to be small (Liu et al., 1999), the equation to be solved simply 
becomes:

 λ
ρ

λ
ρ

λ
λ λ∂

∂
− = ∇

V V r Vc
c c

[ ] [ ]  (4.467)

that can really be solved out with the solution:

 V A rc p
p pλ λ= +1  (4.468)

with the integration constants Ap and p.
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However, since the Eq. (4.467) is a homogeneous differential one, the 
linear combination of solutions gives a solution as well. This way, the 
general form of correlation potential looks like:

 V A rc p
p

p pλ λ= ∑ +1  (4.469)

This procedure can be then iterated by taking further derivative of 
Eq. (4.465) with respect to the density, solving the obtained equation until 
the second order correction over above first order solution (4.469),

 V A r A r rc p
p

p p
p

p

p p pλ λ λ ρ= +∑ ∑+ +
1

1

1 1 1
2

2

2 1 1 2 2  (4.470)

By mathematical induction, when going to higher orders the K-truncated 
solution is iteratively founded as:

 V A r rc pk
pk p p k

k

K

p

λ λ ρ= + −

=
∑∑ 1 1

1
 (4.471)

producing the λ-related correlation functional:

 E
k
A rc pk

pk p k

k

K

p

λ ρ λ ρ[ ] = +

=
∑∑ 1 1

1
 (4.472)

and the associate full correlation energy functional (λ=1) expression:

 E
k
A rc pk

p k

k

K

p
[ ]ρ ρ=

=
∑∑ 1

1
 (4.473)

As an observation, the correlation energy (4.473) supports also the imme-
diate not spherically (molecular) generalization:

 E
k
A x x xc lmnk

l m n k

k

K

lmn
[ ]ρ ρ=

=
∑∑ 1

1
 (4.474)

Nevertheless, for atomic systems, the simplest specialization of the rela-
tion (4.473) involves the simplest density moments ρ = N  and rρ  that 
gives:

 E A N A rc c c[ ]ρ ρ= +0 1  (4.475)
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Unfortunately, universal atomic values for the correlation constants Ac0 
and Ac1 in Eq. (4.475) are not possible; they have to be related with the 
atomic number Z that on its turn can be seen as functional of density as 
well. Therefore, with the settings

 A C Z A C Zc c c c0 0 1 1= =ln ,  (4.476)

the fitting of Eq. (4.475) with the HF related correlation energy (4.462) 
reveals the atomic-working correlation energy with the form (Liu et al., 
1999):

 E N Z Z rc = − +0 16569 0 000401. ln . ρ  (4.477)

The last formula is circumvented to the high-density total correlation den-
sity approaches rooting at their turn on the Thomas-Fermi atomic theory. 
Very interesting, the relation (4.477) may be seen as an atomic reflec-
tion of the (solid state) high-density regime (rs <1) given by Perdew et al. 
(Perdew, 1986; Wang & Perdew, 1989; Seidl et al., 1999; Perdew et al., 
1996):

( )[ ] ( ) 0.048 0.0116 0.0311ln 0.0020 lnPZ
c s s s sE d r r r rρ ρ∞ = − − + +∫ r r

  (4.478)

in terms of the dimensionless ratio

 r r
as =

0

0

 (4.479)

between the Wigner-Seitz radius r0
1 33 4= ( )/ /πρ  and the first Bohr radius 

a me0
2 2=  / .

Instead, within the low density regime ( rs ≥1) the first approximation 
for correlation energy goes back to the Wigner jellium model of electronic 
fluid in solids thus providing the LDA form (Perdew et al., 1998; Wilson & 
Levy, 1990):

 E dc
W LDA

c
− = ∫[ ] [ ( )] ( )ρ ε ρ ρr r r  (4.480)
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where

 ε ρc
sr

[ ( )] .
.

r = −
+

0 44
7 8

 (4.481)

is the correlation energy per particle of the homogeneous electron gas with 
density ρ (Zhao et al., 1994; Gritsenko et al., 2000; Zhao & Parr, 1992; 
Lam et al., 1998; Gaspar & Nagy, 1987; Levy, 1991).

However, extended parameterization of the local correlation energy 
may be unfolded since considering the fit with an LSDA (ρ↑ and ρ↓) ana-
lytical expression by Vosko, Wilk and Nusair (VWN) (Vosko et al., 1980),

 E dc
VWN

c[ , ] [ ( ), ( )] ( )ρ ρ ε ρ ρ ρ↑ ↓ ↑ ↓= ∫ r r r r  (4.482)

while further density functional gradient corrected Perdew (GCP) expan-
sion will look like:

E d d Bc
GCP

c[ , ] [ ( ), ( )] ( ) [ ( ), ( )] ( )ρ ρ ε ρ ρ ρ ρ ρ ρ↑ ↓ ↑ ↓ ↑ ↓= + ∇∫ r r r r r r r r 2 ++∫ ...
  (4.483)

where the Perdew recommendation for the gradient integrant has the form 
(Perdew, 1986):
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 (4.484)

with

 B Cc[ ] [ ]/ρ ρ ρ= −4 3  (4.485)

being the electron gas expression for the coefficient of the gradient expan-
sion. The normalization in Eq. (4.484) is to the spin degeneracy:
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while the exponent containing functional

 b C
C

[ ] ( ) [ ]
[ ]

/ρ π
ρ

ρ
=

→ ∞9 1 6  (4.487)

is written as the ratio of the asymptotic long-range density behavior to the 
current one, and is controlled by the cut-off f exponential parameter taking 
various values depending of the fitting procedures it subscribes (0.17 for 
closed shells atoms and 0.11 for Ne particular system (Savin et al., 1986, 
1987)).

More specifically, we list bellow some nonlocal correlation density 
functionals in the low density (gradient corrections over LDA) regime:

• the Rasolt and Geldar paramagnetic case (ρ ρ ρ↑ ↓= = / 2) is covered 
by correlation energy (Rasolt & Geldart, 1986):

 E c c c r c r
c r c r c rc

RG s s

s s s

[ ]ρ = +
+ +

+ + +1
2 3 4

2

5 6
2

7
31

 (4.488)

with c1=1.667×10–3, c1=2.568×10–3, c3=2.3266×10–2, c4=7.389×10–6, 
c5=8.723, c6=0.472, c7=7.389×10–2 (in atomic units).

• The gradient corrected correlation functional reads as (Savin et al., 
1984):

E d d Bc
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π
ρ ρ ρ ρ/

/ /. dr  (4.489)

• The Lee, Yang, and Parr (LYP) functional within Colle-Salvetti 
approximation unfolds like (Lee et al., 1988):

E a b dc
LYP

c c

i
i= −

∇ −

−
∫

∑∑ ∑
rγ ξ

ρ ρ ρσ σ
σ

σ σ
σ( ) ( )

( ) ( ) ( ) ( )
r r

r r r rϕ 2 1
4

1
4

∆

∇∇ +

















ρ ρ ρ( ) ( ) ( )r r r2 1

4
∆

 
− ∫a dc r r

r
rγ

η
ρ

( )
( )

( )
 (4.490)



496 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

where

γ
ρ ρ

ρ
η ρ ξ

ρ
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( )
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e/

/

r
r r

r
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4 12
1 3

5 3

dc xxp ( ) /− 
−ccρ r 1 3

  (4.491)

and the constants: ac=0.04918, bc=0.132, cc=0.2533, dc=0.349.
• The open-shell (OS) case provides the functional (Wilson & Levy, 

1990):

 
E d
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=
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1 3

4 3 4 3
ss

1 2− ζ  (4.492)

with the spin-dependency regulated by the factor ζ ρ ρ ρ ρ= −( ) +( )↑ ↓ ↑ ↓/ ,
ζ ρ ρ ρ ρ= −( ) +( )↑ ↓ ↑ ↓/ , approaching zero for closed-shell case, while the specific 

coefficients are determined through a scaled-minimization proce-
dure yielding the values: as=–0.74860, bs=–0.06001, cs=3.60073, 
ds=0.900000.

• Finally, Perdew and Zunger (PZ) recommend the working functional 
(Perdew & Zunger, 1981):

 
E d

r rc
PZ p

p s p s

0

1 21
[ ] ( )ρ ρ

α

β β
=

+ +∫ r r  (4.493)

with the numerical values for the fitting parameters founded as: 
αp=-0.1423, β1p=1.0529, β2p=0.3334.

4.6.3.4 Density Functionals of Exchange-Correlation Energy

Another approach in questing exchange and correlation density function-
als consists in finding them both at once in what was defined as exchange-
correlation density functional (4.404). In this regard, following the Lee 
and Parr approach (Lee & Parr, 1990), the simplest starting point is to 
rewrite the inter-electronic interaction potential

 
V

r
d dee = ∫∫

ρ2 1 2

12
1 2

( , )r r r r  (4.494)
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and the classical (Coulombic) repulsion

 
J

r
d d= ∫∫

1
2

1 2

12
1 2

ρ ρ( ) ( )r r r r  (4.495)

appeared in the formal exchange energy ( )V Jee −  in Eq. (4.396), by per-
forming the previously introduced coordinate transformation (4.417), fol-
lowed by integration of the averaged pair and coupled densities (denoted 
with over-bars) over the angular components of s:

 
V d sds see = ∫ ∫4 2π ρr r( , )  (4.496)

 
J d sds= + −∫ ∫2 2 2π ρ ρr r s r s( / ) ( / )  (4.497)

Now, the second order density matrix in Eq. (4.496) can be expressed as
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1
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with the help of the introduced function F s1( , )r  carrying the form
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so that the cusp condition for ρ 2 ( , )r s
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to be satisfied for a well behaved function of a Taylor series expansion 
type
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when α ( )r  stands for a suitable function of r as well, see bellow.
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On the other side, the average ρ ρ( / ) ( / )r s r s+ −2 2  in (4.497) and 
(4.498) supports a Taylor expansion (Berkowitz, 1986):
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with
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being the Parr modified kinetic energy of Weizsäcker type (Parr & Young, 
1989).

Inserting relations (4.496)–(4.503) in ( )V Jee −  difference it is even-
tually converted from the “genuine” exchange meaning into practical 
exchange-correlation energy characterized by the density functional 
form:
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 (4.504)

Making use of the two possible multiplication of the series in Eq. (4.504), 
i.e., either by retaining the α ( )r  containing function only or by including 
also the density gradient terms in the first curled brackets, thus retaining 
also the term containing τw ( )r  function, the so-called I-xc or II-xc type 
functionals are respectively obtained.

Now, laying aside other variants and choosing the simple (however 
meaningfully) density dependency

 
1/3( ) ( ), constantα κρ κ= =r r  (4.505)
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the provided exchange-correlation functionals are generally shaped as 
(Lee & Parr, 1990):
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 (4.506)

These functionals are formally exact for any κ  albeit the resumed 
functions Axc(r), Bxc(r), and Cxc(r) are determined for each particular 
specialization.

Going now to the specific models, let’s explore the type I of exchange-
correlation functionals (4.506). Firstly, they can further undergo simplifi-
cation since the reasonable (atomic) assumption according which

 κρ1 3 1/ ( ) ,r r<< ∀  (4.507)

Within this frame the best provided model is of Xα-Padé approximation 
type, containing N-dependency (Lee & Parr, 1990):
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with a0
Xα=0.7475, a1

Xα =17.1903, and a2
Xα =14.1936 (atomic units).

When the condition (4.507) for κ is abolished the Wigner-like model 
results, again, having the best approximant exchange-correlation model as 
the Padé form (Lee & Parr, 1990):

 E a a N
a N

dxc
I Wig Wig

Wig

Wig I Wig
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/
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+ +0
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ρ
κ ρ

r
r

rr∫  (4.509)

with a0
Wig=0.76799, a1

Wig =17.5943, a2
Wig =14.8893, and κI (Wig)=4.115·10–3 

(atomic units).
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Turning to the II-type of exchange-correlation functionals, the small 
density condition (4.507) delivers the gradient corrected Xα model, taking 
its best fitting form as the N-dependent Padé approximant (Lee & Parr, 
1990):

 E b b N
b N

d cxc
II X X
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X
X
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( ) / //

/
( ) ( ) (α α
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α
αρ ρ τ= −

+
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4 3
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1 31
1

r r r r))dr∫  (4.510)

with b0
Xα=0.7615, b1

Xα =1.6034, b2
Xα =2.1437, and c2

Xα =6.151×10–2 (atomic 
units), while when laying outside the Eq. (4.507) condition the gradient 
corrected Wigner-like best model is proved to be without involving the 
N-dependency (Lee & Parr, 1990):
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with b0
Wig =0.80569, c0

Wig =3.0124×10–3, and κII(Wig)=4.0743×10–3 (atomic 
units).

Still, a Padé approximant for the gradient-corrected Wigner-type 
exchange-correlation functional exists and it was firstly formulated 
by (Rasolt & Geldar, 1986) with the working form (Lee & Bartolotti, 
1991):
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 with Bxc
RG given with the Padé form:
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having the fitted coefficients c1
RG=2.568, c2

RG=9.0599, c3
RG=2.877×10–3, 

c4
RG=8.723, c5

RG=0.472, and c3
RG=7.389×10–2 (atomic units). Some stud-

ies also consider the nonlocal correction in Eq. (4.512) premultiplied by 
the 10/7 factor, which was found as appropriate procedure for atomic 
systems.
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Finally, worth noting the Tozer and Handy general form for exchange-
correlation functionals viewed as a sum of products of powers of density 
and gradients (Tozer & Handy, 1998):

 E F dxc
TH

xc= ( )↑ ↓ ↑ ↓ ↑↓∫ ρ ρ ζ ζ ζ, , , , r  (4.514)

with

 F R S X Y fxc abcd
a b c d

abcd
abcd abcd
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= =∑ ∑ω ω ( )r  (4.515)

Where Ra a a= +↑ ↓ρ ρ , S mb b= 2 , see Eq. (4.486) for m definition, along the 
notations
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ρ

2 2
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/  (4.516)

and

 ζ ρ↑ ↑= ∇ , ζ ρ↓ ↓= ∇ , ζ ρ ρ↑↓ ↑ ↓= ∇ ⋅∇ , ρ ρ ρ= +↑ ↓  (4.517)

The coefficients ωabcd of Eq. (4.515) are determined through minimiza-
tion procedure involving the associated exchange-correlation potentials 
V fxc
abcd

abcd↑ ↓ ↑ ↓=( ) ( )( ) ( ) / ( )r r rδ δρ  in Eq. (4.514) functional. The results 
would depend upon the training set of atoms and molecules but pres-
ents the advantage of incorporating the potential information in a non-
vanishing asymptotical manner, with a semi-empirical value. Moreover, 
its exact asymptotic exchange-correlation potential equals chemical hard-
ness (Putz, 2003, 2007a,b) for open-shell being less than that for closed 
shell systems, thus having the merit of including chemical hardness as 
an intrinsic aspect of energetic approach, a somewhat absent aspect from 
conventional functionals so far.

However, since electronegativity and chemical hardness closely 
relate with chemical bonding, their relation with the total energy and 
component functionals is in next at both conceptual and applied levels 
explored.



502 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

4.7 OBSERVABLE QUANTUM CHEMISTRY: EXTENDING 
HEISENBERG’S UNCERTAINTY

4.7.1 PERIODIC PATH INTEGRALS

4.7.1.1 Effective Partition Function

As previously shown, see Section 4.3.2, for instance, considering the path 
integral propagator that underlies the canonical density in the quantum 
statistical algorithm, see Eqs. (4.243)–(4.248), accounts for the quantum 
effects (fluctuations) induced on single particle paths by the presence of an 
external potential, while being analytically computed by averaging these 
over all possible configurations. Yet, one could observe that for periodic 
paths, i.e., when the final and initial space-points coincide (Feynman, 
1948; Feynman & Hibbs, 1965; Feynman & Kleinert, 1986)

 x xa b=  (4.518)

the particle travels in very short time not far away from the initial position 
and then is back on the initial point; such picture has the physical measur-
able consequence a particle is observed on the initial point, i.e., it is found 
on a stationary state/orbit, while the quantum fluctuations are oscillating 
around the equilibrium (initial=final) space-point. Even clearer, the situa-
tion corresponds to the classical picture in which a particle behaves, being 
accommodated in an equilibrium state/stationary orbit under external 
potential influence. This means that the external influence itself is observ-
able in (initial=final) concerned/measured state, thus being no longer a 
path parameterized function, but a constant:

 V x V xa( ),τ τ( ) → ( )  (4.519)

Therefore, the associated periodic propagator (4.34) becomes (Kleinert, 
2004)
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 (4.520)

where the recognized path integral of free motion was solved by plug-
ging into its quantum mechanical solution (4.102) the present conditions 
(4.518) and the Wick transformation (4.33) for accounting of the path peri-
odicity and quantum statistics, respectively.

At the same time there is clear that the periodic path condition (4.518) 
is not arbitrarily but a compulsory step since characteristic in passing from 
density matrix to partition function and then to the real (measurable or 
workable) canonical and N-particle density, according with the density 
matrix algorithm (4.243)–(4.248). Therefore, the resulting partition func-
tion built from the un-normalized canonical density (4.520) assumes the 
simple form

 Z x x dx m e dxcl a a a
V x

a
a= ( ) =∫ ∫ −





β
πβ

β; ( )0
2 2  (4.521)

while being susceptible of universal reliability if not limited by the degree 
the periodicity between the final and initial space-point is achieved through 
condition (4.518). However, looking to free motion path integral solution 
(4.102) we see that the classical observation is readily valid for the coor-
dinate departure not exceeding the critical value
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 x x x
mb a cl− = =∆ 

β  (4.522)

in which case the exponential limit

 exp ( ) ./− −








 → =− = −m x x eb a
x xa b cl

2
0 6072 1 2

β
ξ∆  (4.523)

is approximated with unity in expression (4.520), thus with an error of 
40% at the maximum displacement of Eq. (4.522) value; as the classical 
displacement (4.522) tends to zero as the expressions (4.520) and (4.521) 
become more accurate. Following the Feynman standard example, for a 
crystal with atoms of typical atomic mass (A) about 20, at room tempera-
ture, the classical limit of displacement (4.522) gives about 0.1 Å; this 
is the maximum displacement of those atoms around their equilibrium 
position in the lattice when the thermodynamic properties of the solid can 
be evaluated through considering the classical form of partition function 
(4.521). Just in passing worth noting that the partition function (4.521) 
is called “classical” despite carrying the exponential pre-factor with the 
quantum Planck constant since the configuration integral exp −( )∫ βV  was 
historically anticipated and worked out by Boltzmann, in the pre-quantum 
era with a non-specified multiplying constant, known today as the inverse 
of the so-called thermal length

 λ
πβ

th m
=

2 2
  (4.524)

With these considerations there appears as natural the generalization 
of the classical partition form Eq. (4.521) into the more comprehensive 
one known as the effective classical partition function (Kleinert, 1986; 
Giachetti et al., 1986; Janke & Cheng, 1988; Voth, 1991; Cuccoli et al., 
1992)

 Z dx
m

V xeff cl eff cl−
−∞

+∞

−= − ∫ 0
2 0

2π β
β

 /
exp ( )  (4.525)
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with the integration variable defined as the thermal average of the periodic 
quantum paths

 x x x d0
0

1
≡ = ( )∫





β
τ τ

β

 (4.526)

sometimes called as the Feynman centroid, while the notation is to be right 
bellow justified.

Moreover, the search for the best approximation of effective-classical 
partition function (4.524) will be conducted as such the quantum fluctua-
tions be not dependent on the classical displacement (4.522), abstracted 
from the free motion, but being driven by the quantum harmonic oscilla-
tions – through they constitute a generalization of the free motion itself, 
see for instance the equivalence of classical paths or propagators of free 
with harmonic motion in the zero-frequency limit, see (Putz, 2009).

However, the periodicity condition (4.518) for paths is to be maintained 
and properly implemented in approximating the effective-classical parti-
tion function (4.525) being, nevertheless, closely and powerfully related 
with the quantum beloved concept of stationary orbits defined/described 
by periodic quantum waves/paths. This way, the effective-classical path 
integral approach appears as the true quantum justification of the quantum 
atom and of the quantum stabilization of matter in general, providing reli-
able results without involving observables or operators relaying on special 
quantum postulates other than the variational principles – with universal 
(classical or quantum) value.

4.7.1.2 Periodic Quantum Paths

As always done when a new type of path integral is under consideration 
the reconsideration of the quantum paths, and in fact the quantum fluc-
tuations, is undertaken so that facilitating the best way for solving it. 
Yet, this time due to the periodicity condition of paths the propagator 
is hidden by the associated partition function. Therefore, the optimum 
approximation for the effective classical potential in Eq. (4.525) will 
provide the periodic evolution amplitude as well, i.e., the un-normalized 
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density, which by normalization with partition function will lead with 
the searched canonical density counterpart.

Going to characterize the periodic paths, they will be seen as the 
Fourier series (Feynman & Hibbs, 1965; Feynman, 1972; Schulman, 
1981; Wiegel, 1986; Kleinert, 2004)

 x x im
m

mτ ω τ( ) = ( )
=−∞

+∞

∑ exp  (4.527)

in terms of the so-called Matsubara frequencies ωm; they are explicitly 
found through specializing the condition (4.518) into the actual statistical 
one, see Figure 4.5 (Putz, 2009)

 x x x xa b= = =( ) ( )0 β  (4.528)

resulting in the equality

 1 = exp( )i mω β  (4.529)

with the solution

 ω
π
βm m m= ∈

2


, Z  (4.530)

FIGURE 4.5 The representation of the periodic paths (Putz, 2009).
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which certifies the quantization of the paths (4.527). Moreover, under the 
condition the quantum paths (4.527) are real

 x x* ( ) ( )τ τ=  (4.531)

the equivalent expanded form with the conjugated path
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yields for the coefficients of the periodical paths the relationship

 x x xm m m
* = =−  (4.533)

With this, the quantified form of periodic path frequencies, Eq. (4.530), 
allows separating the paths (4.527) into the constant and complex conju-
gated oscillating contributions
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 (4.534)

with the 0th terms viewed more than the “zero-oscillating” or free motion 
path but the thermal averaged path over entire quantum paths (4.527)
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thus resulting in the Feynman centroid formula (4.526).

4.7.2 HEISENBERG UNCERTAINTY RELOADED

The actual philosophy is to introduce appropriately the quantum fluctua-
tion information a = a(x0) respecting the average of the observed coordi-
nate (x0), by the Feynman integration rule founded in the ordinary quantum 
average

 f dx x a x f x a x
a x2
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2
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2
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∫ ψ ψ  (4.536)

for the normalized Gaussian wave-function
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 (4.537)

recovering the de Broglie wave-packet, the 1D version of Eq. (2.20), upon 
which a quantum property may be estimated (Feynman & Kleinert, 1986; 
de Broglie, 1987).

It is obvious that the Eqs. (4.536) and (4.537) fulfill the necessary 
(natural) condition according which the average of the coordinate over 
the quantum fluctuations recovers the observed quantity of Eq. (4.535), 
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the Feynman centroid, based on simple Poisson integration rules (see 
Appendix A.2)

  (4.538)

The next test is about the validity of the Heisenberg uncertainty relation-
ship (HUR) itself. To this end the standard deviation of coordinate (x) and 
momentum (p)

 ∆x x x= −2 2 , ∆p p p= −2 2  (4.539)

are computed with the aid of Feynman-de Broglie rule (4.537); firstly, one 
gets
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Then, through combining the expression
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with the prescription (4.538) we are left with the actual result

 x a x
a x

2 2
0
2

2
0( )

= +  (4.542)

that, when plugged in the basic Eq. (4.539) alongside the information of 
Eq. (4.538), yields the coordinate dispersion

 ∆x a=  (4.543)

featuring it in a direct relationship with the quantum fluctuation width.
In the same manner, the evaluations for the integrals of the first and 

second orders of kinetic moment unfold as
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while when plugging them in Eq. (4.539) produce the momentum disper-
sion expression

 ∆p
a

=


2
 (4.546)

Worth noting is that from the coordinate and momentum dispersions, 
Eqs. (4.543) and (4.546), it appears that the dependency of Planck con-
stant is restricted only to the latter, whereas the quantum fluctuations are 
in both present, in a direct and inverse manner, respectively.
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However, when multiplying the expressions (4.543) and (4.546) the 
Heisenberg uncertainty is naturally approached by exact specialization of 
Heisenberg Equation, see Eq. (2.99)

 ∆ ∆x p =


2
 (4.547)

this way resembling in an elegant manner the previous result of statistical 
complementary observables of position and momentum (Hall, 2001).

For the sake of experimental precision it is worth noting that the error 
in coordinate localization is given at least by one quantum fluctuation 
“leap” in Eq. (4.543), i.e., by the width in the de Broglie wave packet 
of Eq. (4.537) that may be naturally exceeded in certain (large) coordi-
nate observations – from where the general HUR emerges. Remarkably, 
the HUR validity was here proved using only the wave-packet properties, 
including the quantum fluctuation a = a (x0) that appears in the final coor-
dinate-momentum multiplied dispersions—being therefore incorporated in 
the HUR result—a feature not obviously revealed by earlier demonstrations.

Yet, another important idea was raised, namely that the coordinate and 
momentum dispersions, although in reciprocal relationship with quantum 
fluctuation, i.e., when during an experiment the quantum fluctuation may 
be set out in coordinate or momentum it acts larger in the other – and vice 
versa, may be treated somehow separated, from where the possibility of 
different realizations for coordinate dispersion through relations (4.538) 
and (4.543), with consequences for HUR reformulations. Such possibili-
ties and the inter-connection with the wave-particle quantum issue are 
next explored.

4.7.3 EXTENDING HEISENBERG UNCERTAINTY

4.7.3.1 Averaging Quantum Fluctuations

We like to identify the general quantum fluctuation conditions in which 
the HUR is valid and when it is eventually extended. We already note 
that, whereas the momentum dispersion computation is fixed by relations 
(4.544)–(4.546), the evaluation of the coordinate dispersion has more free-
dom in its internal working machinery, namely (Putz, 2010c):
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 (i) considering the condition (4.538) as an invariant of the measure-
ment theory since it assures the connection between the average 
over quantum fluctuation of the coordinate and the observed aver-
aged coordinate;

 (ii) specializing the quantum (average) relationship (4.541) for the 
condition given by Eq. (4.538);

 (iii) obtaining the average of the second order coordinate (4.542);
 (iv) combining the steps i) and ii) is computing the coordinate disper-

sion ∆x as given by Eq. (4.539).

The present algorithm may be naturally supplemented with the analy-
sis of the wave-particle duality. This is accomplished by means of consid-
ering further averages over the quantum fluctuations for the mathematical 
objects exp(–ikx) and exp(–k2x2) that are most suited to represent the waves 
and particles, due to their obvious shapes, respectively. Such computations 
of averages are best performed employing the Fourier k-transformation as 
resulted from the de Broglie packet, Eq. (4.537) with Eq. (4.537), equiva-
lently rewritten successively as (Putz, 2009; Putz, 2010c):

  (4.548)

With the rule (4.548) one may describe the average behavior of the wave 
and particle, respectively as
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  (4.549)

and

  (4.550)

×
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It is worth observing that the practical rule (4.548) is indeed consistent 
since recovering in Eq. (4.549) the kernel of the Gaussian de Broglie 
wave-packet—for the wave behavior of a quantum object—as expected. 
As a consequence, the result (4.550) may be therefore considered as a 
viable analytical expression for characterizing the complementary particle 
nature of the quantum manifestation of an object.

Next, the ratio of Eqs. (4.549) and (4.550) is taken
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  (4.551)

giving the working tool in estimating the particle-to-wave content for a 
quantum object by considering various coordinate average information; 
this will be achieved by

 (v) making the formal identity of the coordinate quantities in Equation 
(4.551) with the respective values as furnished by the steps i)-iii) 
of the above coordinate averages’ algorithm

x x
a x0 0 2
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  (4.552)

since they nevertheless emerge from quantum average operations 
(measurements).

Now we are ready for presenting the two possible scenarios for quan-
tum evolutions along the associate HUR realization and the wave-particle 
behavior.

4.7.3.2 Observed Quantum Evolution

For the case of observed quantum evolution, the averaged observed posi-
tion is considered in relation with the quantum fluctuation by the general 
relationship
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 x x x na
a x a x2
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implying that the average of the second order of Feynman centroid looks 
like

 x n a
a x0

2 2 2
2

0( )
=  (4.554)

When Eqs. (4.553) and (4.554) are considered into the identity (4.542), 
according with the step (iii) above, the actual average of the second order 
coordinate is obtained

 x a n
a x

2 2 2
2

0
1

( )
= +( )  (4.555)

Not surprisingly, when further combining relations (4.553) and (4.555) in 
computing the coordinate dispersion of Eq. (4.539), i.e., fulfilling the step 
iv) above, one regains the value of Eq. (4.543) that recovers at its turn the 
standard HUR no matter how much the quantum fluctuation is modulated 
by the factor n. However, the P(article)/W(ave) ratio of Eq. (4.551) takes 
the form (Putz, 2010c)
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 (4.556)

showing that the wave-particle duality is indeed a reality that can be mani-
fested in various particle-wave (complementary) proportions—yet never 
reaching the perfect equivalence (the ratio approaching unity). Moreover, 
because (P/W)Obs < 1, it appears that the general behavior of a quantum 
object is merely manifested as wave when observed, from which arises 
the efficacy of spectroscopic methods in assessing the quantum properties 
of matter.

4.7.3.3 Free Quantum Evolution

Moving to the treatment of the free quantum evolution, the average of the 
first order coordinate is assumed as vanishing
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 x x x
a x a x2

0
2

0
0 0 0

( ) ( )
= = =  (4.557)

since the quantum object, although existing, is not observed (see the spon-
taneous broken symmetry mechanism in the discussion Section 4.6.3.4 
below).

The relation with quantum fluctuation may be nevertheless gained by 
the average of the second order of the Feynman centroid–considered under 
the form

 x n a
a x0

2 2 2
2

0( )
=  (4.558)

Note that Eqs. (4.557) and (4.558) parallel the statistical behavior of 
error in measurements that being vanishing in the first case as mean 
deviation, is manifested in the second as squared deviation (dispersion), 
respectively.

Next, through recalling the referential Eq. (4.541)—the step (ii) in 
above algorithm—the average of the second order coordinate provides 
now the expression

 x a n
a x

2 2 2
2

0
1

( )
= −( )  (4.559)

The result (4.559) restrains the domain of the free evolution quantum fluc-
tuation factor n to the realm n∈[ ]0 1, . With Eqs. (4.557) and (4.559), the 
step (iii) in above algorithm, one finds the coordinate dispersion

 ∆x a n= −1 2  (4.560)

with the immediate consequence in adjusting the basic HUR as

 ∆ ∆x p n≥ −


2
1 2  (4.561)

On the other hand, within conditions fixed by Eqs. (4.557)–(4.559) the 
P(article)/W(ave) index of Eq. (4.551) becomes (Putz, 2010c)
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  (4.562)

Through characterizing the numerical results of Eq. (4.562), one firstly 
observes that they practically start from where the P/W function of 
Eq. (4.556) approaches its highest output. In other words, this tell us 
remarkable information according to which the observed and free quan-
tum evolutions are continuous realities, being smoothly accorded in the 
point of precise measurement (n = 0). Another very interesting observa-
tion is that the P/W ratio symmetrically spans in Eq. (4.562) the existence 
domain either for wave P/W∈[0.952, 1) or particle P/W∈(1, 1.048] mani-
festations around their exact equivalence P/W = 1. However, the precise 
wave-particle equivalence is two-fold, namely in the socalled omega (Ω) 
and alpha (α) points of Eq. (4.562) characterized by the extended HUR 
versions of Eq. (4.561); written, respectively, as

 ∆ ∆
Ω

x p( ) ≥ 0 418.   (4.563)

 ∆ ∆x p( ) ≥
α

0  (4.564)

It is clear that whereas the omega case of Eq. (4.563) is characterized 
by the restrained quantum domain of ordinary HUR of Eq. (2.99), in 
which a quantum object’s evolution may be grated, on the alpha point 
of Eq. (4.564) any quantum information is lost since no Planck constant 
exists there to drive the wave-particle quantum inter-conversion. It is this 
last case that may be eventually related with early cosmological stages 
when the quantum fields and particles are considered as absorbed in the 
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universal gravity; nevertheless, this is just a hint for future possible use of 
the present extended-HUR phenomenology that may help in understand-
ing the occurrence of the quantum information, entanglement, and the 
separation of the fields and particles towards the observed world.

4.7.3.4 Free vs. Observed Quantum Evolution

It is very instructive to present in a unitary manner the observed and free 
quantum evolution cases in the chart of Figure 4.6 by linking the HUR 
shapes of Eqs. (2.99) and (4.561) with the particle/wave ratios values 
of Eqs. (4.556) and (4.562), respectively. The P/W contribution spreads 
from the exclusively undulatory quantum manifestation (P/W = 0) in 
the observed domain of quantum evolution until the particle dominance 
(P/W > 1) in the free domain of quantum evolution.

FIGURE 4.6 The chart of Heisenberg Uncertainty Relationship (HUR) appearance for 
observed and free quantum evolutions covering the complete scale of the particle to wave 
ratios as computed from the Eqs. (4.556) and (4.562), respectively; the points Ω and 
α correspond to wave-particle precise equivalence and to the special extended-HURs of 
Eqs. (4.563) and (4.564), respectively (Putz, 2010c).
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Note that the possibility a quantum object is manifested only under 
particle behavior (i.e., for P/W→∞) is forbidden; this is an important con-
sequence of the present analytical discourse that is in agreement with the 
Copenhagen interpretation according which the quantum phenomena are 
merely manifested as undulatory (viz. Schrödinger equation) although 
some particle information may be contained but never in an exclusive 
manner (naturally, otherwise the Newtonian object would exist with no 
Planck constant and HUR relevance upon it).

However, the wave-particle duality matches perfectly and always with 
HUR in its standard (Schrödinger) formulation of Eq. (2.99); on the other 
side, the wave-particle exact equivalence (P/W = 1) may be acquired only 
in the free evolution regime that, in turn, it is driven by modified HUR 
as given by Eq. (4.563). In other words, it seems that any experiment or 
observation upon a quantum object or system would destroy the P/W bal-
ance specific for free quantum evolution towards the undulatory manifes-
tation through measurement.

Yet, having the analytical expressions for both observed and free quan-
tum evolutions may considerably refine our understanding of macro- and 
micro-universe. For instance, with various (P/W)Observed, one can evaluate 
the appropriate particle-to-wave presence in a quantum complex for which 
experimental data are available: once knowing from a given measurement 
the quantities x

Exp0
2  and x

Exp
2 , with x0 and x appropriately considered for 

each type of experiment (e.g., the statistical mean for classical records and 
the instantaneous values for quantum measurement of coordinate, respec-
tively), one can employ Eqs. (4.554) and (4.555) to find the magnitude of 
the quantum fluctuation (Putz, 2010)

 n
x

x x
Exp

Exp Exp

=
−

0
2

2
0
2

 (4.565)

that when replaced into Eq. (4.556) predicts the P/W ratio involved in that 
observation.

It is worth giving a working example for emphasizing the reliability of 
the present approach and to choose for this aim the fundamental Compton 
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quantum experiment. In this case, the incoming photonic beam carries the 
wavelength λ0 whilst the scattered one departs from that incident with the 
amount ∆λ = λ – λ0; such situation allows the immediate specialization of 
the quantum fluctuation magnitude (4.565) to its Compton form

 nCompton =
+( )

λ
λ λ λ

0
2

0 ∆
 (4.566)

Now we can interpret the various experimental situations encountered, 
employing the output of Eq. (4.566) to asses through Eq. (4.556) the wave-
particle ratio degree present in specific measurements. For example, when 
the scattering is made on free electrons, then the higher and higher record 
for ∆λ implies the decrease of nCompton of Eq. (4.566) and consequently the 
increase of (P/W)Compton of Eq. (4.556); this is in accordance with the fact 
that the scattered light on free electrons rises more and more its particle 
(photonic) behavior. On the other side, when the scattering is made on 
tight bonded electrons (e.g., electrons in atoms of a material), the Compton 
wavelength departure is negligible, ∆λ →  0, leaving from Eq. (4.566) with 
the asymptotic higher quantum fluctuation magnitude nCompton →  ∞ that 
corresponds at its turn with (P/W)Compton = 0 in Eq. (4.556). This matches 
with the fact that this case corresponds with complete wave manifestation 
of light that scatters bonded electrons, resembling the (classical) interpre-
tation according which the scattered bounded electron by a wave entering 
in resonance with it while oscillating with the same frequency. Therefore, 
the reliability of the present (P/W)Observed formalism was paradigmatically 
illustrated, easily applied to other quantum experiments, while giving the 
numerical P/W estimations once having particular data at hand. Equally 
valuable is the free evolution (P/W)Free ratio of Eq. (4.562) that may be 
employed for the wave-particle equivalency between the quantities (4.549) 
and (4.550) (Kleinert, 2004; Putz, 2009)

 exp exp
( ) ( )

−( ) ≅ −( )ikx k x
a x a x

2
0

2
0

2 2  (4.567)

with an important role in assessing the stability of matter, from atom to 
molecule. As an example, the justification of the Hydrogen stability was 



Quantum Mechanics for Quantum Chemistry 521

successfully proved through setting the ratio P/W = 1 in the omega point 
of function (4.562) or within its vicinity (Kleinert, 2004; Putz, 2009). 
Nevertheless, further applications of the (P/W)Free function (4.562) and of 
subsequent modified HUR may be explored also in modeling the various 
stages and parts of the Universe that cannot be directly observed, as well 
as when dealing with quantum hidden information in the sub-quantum or 
coherent states (Bohm & Vigier, 1954; Nielsen & Chuang, 2000).

On the other side, one would wish to further discuss the free quantum 
vs. observed quantum evolutions in terms of simple average of paths, viz. 
Eqs. (4.557) and (4.553), with practical examples, respectively. The best 
paradigm that can transform the first into the last one stands the spontaneous 
symmetry breaking (Goldstone, 1961) that has the role in turning the intrin-
sic zero ensemble averages of Eq. (4.557) to the finite observable quantum 
effects (and fluctuations) of Eq. (4.553). The best examples are the mag-
netization and the condensation phenomena: in the first case, due to the 
invariance under rotation of the Hamiltonian, the ensemble average of the 
total magnetic moment  is always zero, <  >= 0, since +  and 
–  occur with the same probability (Anderson, 1984). In the case of 
condensation (for instance Bose-Einstein), the order parameter ψ  that 
is obtained from averaging the bosonic fields on the canonical ensemble 
gives zero result in free (untouched) evolution, ψ = 0, due to the inner 
annihilation nature of the bosonic field ψ ( )x , beside the total Hamiltonian 
is global gauge invariant under the transformation ψ ψ θθ( ) ( ),x e xi→ ∀ ∈ℜ 
that corresponds with the conservation of the total number of particles in 
the system (Huang, 1987).

However, either case is resolved within experiments by simple obser-
vation (e.g., the ferromagnets and the superfluid 4He appear under natural 
conditions without special experimental conditions) through the so-called 
“Goldstone excitations” (spin waves and the phonons for ferromagnets and 
superfluids, respectively) that eventually turns (brakes) the microscopic 
(free evolution) Hamiltonian symmetry into the macroscopic (observed or 
directional evolution) symmetry. This mechanism of broken symmetry fits 
with the present free-to-observed quantum evolution picture since, when 
revealed, it involves a countless number of zero-energy (yet orthogonal) 
ground states, leading with the rising of the locally (Goldstone) excited 
state from one of the ground states that gradually changes over the space 



522 Quantum Nanochemistry-Volume I: Quantum Theory and Observability

from the zero energy and infinity wavelength to some finite non-zero 
energy and long wavelength; such behavior parallels the turning of the con-
dition of Eq. (4.557) into that of Eq. (4.553), where the exact Heisenberg 
principle is obeyed—however in different Particle/Wave ratios (depend-
ing on the phenomenon and experiment), see the above discussion and the 
Figure 4.6.

For advanced molecular physical chemistry, it is worth pointing out 
that the particle/wave ratio (P/W) of Eq. (4.551) may be used to re-shape 
the so-called electronic localization function (ELF) (Becke & Edgecombe, 
1990; Silvi & Savin, 1994), which carries much information on the elec-
tronic probability to be manifested as wave or particle in chemical bond-
ing, see Volume II of this five-volume set. As such, further identification of 
ELF with the quantity of P/W in the observed regime of Equation (4.556)

 ELF Particle
WaveP W

Observed
Evolution

/ .= 





 ≤ 0 95  (4.568)

tells us that, in accordance with the recent interpretation of ELF as error 
in electronic localization, the maximum prescribed error of localization of 
electrons in atoms and molecules is limited within the range [0,0.95] and 
can never be complete; i.e., the electron is localizable at least as 5% from 
its particle contents. In other words, the present approach prescribes that 
any chemical bond contains at least 5% of particle nature of its pairing 
electrons, i.e., the covalence is never complete while always coexisting 
with some ionicity!

This is a fundamental result of actual exact HUR treatment for chemi-
cal bonding. However, further application of the ELFP/W index (4.568) for 
explaining—for instance—the molecular aromaticity, see Volume III of 
this set, in terms of geometry of bonding and the amount of quantum fluc-
tuation present, are in progress and will be in the future communicated.

Finally, for spectroscopic analysis, one could ask upon the correspond-
ing time-energy uncertainty relationship (Busch, 2008) within the actual 
approach. Firstly, the correctness of such problem is conceptually guaran-
teed by the Heisenberg representation of a quantum evolution, where, for 
a cyclic vector of state (viz. the present periodical paths or orbits) and an 
unitary transformation U, the cyclic Hamiltonian HU is accompanied by 
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the time operator tU = –i∂µ with the ∂µ = d/dµ(ε) relating the integrable 
measure µ(ε) as depending of the energetic spectra (ε) on the associate 
generalized Hilbert space (Ivanov, 2006). On the other side, quantitatively, 
the time-energy HUR faces with the practical problem in evaluating the 
general yield of the Hamiltonian variance

 ∆H H H= −2 2  (4.569)

since containing the non-specified external potential dependency:

 H
M

V xx= − ∂ +


2

2
( )  (4.570)

Yet, the present periodic path approach may be eventually employed to 
assess the problem through reconsidering the width a(x0) of the de Broglie 
wave-function (4.537) as related with the averaged potential over the 
quantum fluctuations V x

a x
( )

( )2
0

; a self-consistent equation is this way 
expected, while the final time-energy HUR may further depend on the 
ground or excited (Wigner) states considered, i.e., within the inverse of 
the thermal energy limits β →  ∞ or β →  0, respectively. Nevertheless, 
this remains a challenging subject that will be also approached in the near 
future.

4.7.3.5 Spectral-IQ Method

The wave-particle issue was in the “heart” of quantum mechanics, even in 
its very principles, Heisenberg one in particular (Putz, 2010c). Currently 
assumed as a complementarity reality, it was just recently quantified with 
the aim of the path integrals’ quantum fluctuation factor (n) through con-
sidering the quantum averages for the Gaussian wave packet to the har-
monic one for the particle and wave representations, respectively. The 
results were finite and apart of consistently explaining the atomic (and 
thus the matter) stability through particle-wave equivalency at the quan-
tum level; they permit also a general formulation of the particle-to-wave 
ratio content for an observed event (4.556) as well as for the free quantum 
evolution (4.562).
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One notes, for instance, that when quantum fluctuations asymptotically 
increase, the wave contents become infinite and cancel the particle observ-
ability, according to the Eq. (4.556).

Instead, even when a system hypothetically experiences zero quantum 
fluctuations, the wave nature of the system will be still slightly dominant 
over its particle side at both observed and free evolutions; see the upper 
branches of Eqs. (4.556) and (4.562). These extremes show that the wave 
nature of matter will never be fully transferred to particle contents and 
the mesosystems will never be fully characterized by pure particle (or 
mechanical) features.

However, it is apparent from Eq. (4.562) that free evolution of a stable 
system is merely associated with particle dominance, however, without 
being manifestly observable; in fact, such peculiar particle behavior of 
the free evolutions of stable matter confirms its inner quantum nature by 
quantifiable features.

Figure 4.7 depicts the main tendencies of the particle-to-wave ratios 
of a stable system in terms of its quantum fluctuation, in free or observed 

FIGURE 4.7 Depicted tendencies of the observed, free and inverse quantum (IQ) 
evolutions of the particle-to-wave ratio with respect to the quantum fluctuations (n) upon 
Eqs. (4.556), (4.562), and (4.571), respectively; the additional curve of residual inverse 
quantum index RQ = 1 − IQ was added with the purpose of showing that free evolutions 
parallels RQ that is symmetrical with respect to the IQ factor (Putz & Putz, 2012).
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conditions, alongside the present inverse quantum (IQ) index introduced 
as their competition.

Indeed, the inverse quantum index (4.571) showcases the manifestly 
inverse behavior respecting free quantum evolution while accompany-
ing the observed evolution for the respective quantum fluctuations’ range; 
therefore, it may constitute a suitable index for accounting the particle 
information degree in a general quantum evolution, from a free-to-observed 
one. Moreover, if one considers also the residual inverse quantum infor-
mation RQ = 1 − IQ, one also gets a symmetrical tool with respect to IQ 
for treating the free evolution at the quantum level (Putz & Putz, 2012)
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Being the quantum fluctuation factor crucial for assessing the free and 
observed quantum behavior, it should be noted it may discriminate 
between these two quantum sides of motion, however, based solely on 
experimental measures of classical and quantum paths, since one consid-
ers their squared averages x

Exp0
2  and x

Exp
2 , respectively, as:
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2
0
2

 (4.573)

It is obvious that for a given experimental set-up and records that the 
resulting observed evolution associates with higher quantum fluctuation 
than the corresponding free evolution, this feature being consistent with 
the (extended) Heisenberg uncertainty principle (Putz, 2010c).
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However, when applied to spectroscopic data, they involve three 
classes of spectra information in terms of wave-numbers, namely:

• The maximum absorption line wave-number υ0 Amax( ) that relates to 
the classical path, and the same for squared average measure in the 
inverse manner as:

 x
A0

0

1
=

( )υ max

 (4.574)
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2
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 (4.575)

• The left and right wave-numbers  u uL R,  of the working absorption 
band, being arithmetically-to-geometrically averaged to get the 
average of quantum paths “inside” the band:

 x L R
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= +










λ λ
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 (4.576)

• The full width of a half maximum (FWHM) wave-number ∆ υFWHM
of the concerned absorption band that is reciprocally associated with 
the dispersion of the quantum paths of vibrations within the band:

 ∆
∆

x
FWHM

=
1
υ

 (4.577)

Now, taken together, the quantum averaged path (4.576) and its dis-
persion (4.577) provide the average of the squared quantum paths, 
according to the general definition:

 x x x2 2 2= ( ) +∆  (4.578)

Altogether, the classical and quantum paths’ information of 
Eqs. (4.574)–(4.578) inversely correlate to the specific spectro-
scopic wave-numbers for a given absorption band and correlate the 
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quantum fluctuations’ indices of Eqs. (4.572) and (4.573) with the 
actual spectral-inverse quantum ones, respectively (Putz & Putz, 
2012):
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and

 nFree

FWHM L R L R

=

+ + +








 +

1

1 1
4

1 1 2 1
0 2 2 2

0
2



     

υ
υ υ υ υ υ υ∆

 (4.580)

They will be eventually used to compute the observed, free, inverse and 
residual inverse quantum indices to in depth characterizing of a given 
material for its porosity-to-free binding ordering through recognizing the 
particle vs. wave quantum tendency of the investigated state by spectros-
copy in general and by absorption spectra in the present approach. Specific 
examples and analyses follow.

4.7.3.6 Spectral-IQ Results on Silica Sol-Gel-Based Mesosystems

Measurement of FT-IR absorption spectra (see the paradigmatic Figure 4.8) 
for samples under thermal treatment (Orcel et al., 1986; Neivandt 
et al., 1997; Paruchuri et al., 2005), e.g., same ionic liquid chain length, 
Cetyltrimethylammonium bromide (CTAB), respectively with DTAB or 
with their combination CTAB+DTAB, in different basic environment, are 
summarized in the Table 4.6, and are reported in Figures 4.9 and 4.10 for 
analysis at 60°C and 700°C, respectively.

The numerical Spectral-IQ results, as abstracted from Figures 4.9 and 
4.10, are presented in Tables 4.7 and 4.8, for the particle-to-wave (P/W) 
ratio values in observed and free evolutions, Equations (4.556) and (4.562), 
as based on the quantum fluctuation factors of Eqs. (4.579) and (4.580), 
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TABLE 4.6 Cases of the Ionic Liquid-Based Sol-Gel Synthesis Used in this Work (*)

Sample Template Base Cosolvent Solution

I CTAB NH3

{Metoxy-ethanol} {TEOS}

II CTAB NaOH
III DTAB NH3

IV DTAB NaOH
V CTAB+DTAB NH3

VI CTAB+DTAB NaOH
(*)All chemicals were commercially available: Tetraethyl orthosilicate (TEOS), Metoxy-ethanol 
NH4OH (25%), NaOH, CTAB (Cetyltrimethylammonium bromide), and DTAB (n-dodecyl trimethyl 
ammonium bromide) (Putz & Putz, 2012).

FIGURE 4.8 General pattern for wave-number domains of FTIR absorption spectra for 
silica sol-gel based materials, emphasizing the specific transversal optical (TO) main modes 
of rocking (TO1), symmetric (TO2) and antisymmetric (TO3) vibrations of oxygen atoms 
in Si-O-Si bonds along the presently concerned disorder induced longitudinal-transverse 
vibrational mode (LO4-TO4) at the frontier of the silica network, along the remaining 
surface overtones and combinations of the network, residues and water vibrations, 
respectively. The marked LO4-TO4 band region is susceptible to wave-particle quantum 
“phase transition”, thus regulating the physicochemical properties of meso-porosity and 
bonding at the network surface (Putz & Putz, 2012).
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FIGURE 4.9 Absorption spectra of samples of Table 2 recorded at 60°C, with the TO4 
band of Figure 1 enhanced by the respective labeling (Putz & Putz, 2012).

FIGURE 4.10 The same spectra records as in Figure 4.9, here for 700°C (Putz & Putz, 
2012).

along the inverse quantum ratio of Eq. (4.571), respectively. Accordingly, 
one clearly observes the almost particle-to-wave equivalence throughout 
all samples, although the residual inverse quantum information 1− IQ 
makes the significant difference (in some cases, to adouble extent) in the 
wave- or free-binding content of samples; see for instance I-60 and V-60 
with respect to II-60, IV-60 and VI-60 for samples at investigated at 60°C, 
and IV-700 vs. I-700, V-700 vs. III-700 and VI-700 vs. II-700 for samples 
investigated at 700°C, respectively.

However, in aiming to establish a hierarchy in binding potency, one 
should run on the residual IQ of the samples for identifying the decreased 
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TABLE 4.7 The Spectral-IQ Results, as Based on Eqs. (4.556), (4.562), and (4.571) with Quantum Fluctuation Factors (4.579) and 
(4.580) for the TO4 Bands of Figure 4.9 ( υL cm= −1299 787 1. [ ], υR cm= −999 910 1. [ ]) at 60°C (Putz & Putz, 2012)

Sample
υυ0 maxA( ) ∆∆ υυFWHM nObs P W Observed

Evolution
/( ) nFree P W Free

Evolution
/( ) IQ 1−− IQ

I-60 1057.76 79.4905 0.0751762 0.94921 0.0747549 0.952777 0.996257 0.00374301
II-60 1063.55 107.4623 0.1011 0.947056 0.100083 0.95348 0.993266 0.00673417
III-60 1061.62 91.0061 0.0857609 0.948407 0.085137 0.95304 0.995138 0.00486168
IV-60 1063.55 112.1339 0.105501 0.946633 0.104346 0.953619 0.992674 0.00732553
V-60 1062.59 80.1571 0.0754605 0.94919 0.0750345 0.952783 0.996229 0.00377119
VI-60 1074.16 117.5866 0.109532 0.946227 0.108241 0.95375 0.992112 0.00788823

TABLE 4.8 The Same Type of Spectral-IQ Results as in Table 4.7, Here for the TO4 Bands of Figure 4.10 ( υL cm= −1299 787 1. [ ], 
υR cm= −999 910 1. [ ]) at 700°C (Putz & Putz, 2012)

Sample
υυ0 maxA( ) ∆∆ υυFWHM nObs P W Observed

Evolution
/( ) nFree P W Free

Evolution
/( ) IQ 1−− IQ

I-700 1079.94 126.9705 0.117643 0.945365 0.116048 0.954029 0.990919 0.00908062
II-700 1083.8 156.5567 0.144573 0.942084 0.141643 0.955078 0.986395 0.0136049
III-700 1078.01 94.9767 0.0881346 0.948212 0.0874579 0.953104 0.994868 0.0051321
IV-700 1085.73 87.0955 0.0802383 0.948839 0.0797267 0.952899 0.99574 0.0042602
V-700 1083.8 70.1104 0.0647003 0.949903 0.0644312 0.952549 0.997223 0.00277721
VI-700 1092.48 101.4627 0.0929001 0.947807 0.0921086 0.953237 0.994304 0.00569644
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potency of free bindings information. Accordingly, for 60°C, one notices 
from Table 4.7 the main set VI > IV > II followed by III > V > I, indicat-
ing two important features: both set contain all CTAB, DTAB and their 
combinations.

The used basic environment is the discriminating factor, here NaOH 
leaving with more free binding (and less porosity) potential for further 
interaction than NH3, most probably due to the OH group ability (reactiv-
ity) to be further involved (and therefore blocked) in the Si surface through 
the related vibrations and overtones’ combinations; see Figure 4.8.

Nevertheless, these binding potency series are apparently changing 
with the rising of the samples’ temperature, as results in Table 4.8 provide 
for the 700°C case; however, agreement with 60°C is to be researched, 
while considering specific thermal analysis, as is exposed elsewhere.

On conceptual realm, when it relates to infrared spectroscopy (IR) 
investigations on sol-gel silica films (De et al., 1993; Al-Oweini & 
El-Rassy, 2009; Xue et al., 2007), a part of the consecrated transverse-
optical vibrational modes, namely the rocking mode TO1 (457–507 cm−1) 
modeling the perpendicular motions of the bridging oxygen to the Si-O-Si 
plane, the symmetric mode TO2 (810–820 cm−1) modeling the stretching 
of oxygen atoms along the bisecting line of the Si-O-Si and the antisym-
metric TO3 (1070–1250 cm−1) describing the motion in opposite distor-
tion of the two neighboring SI-O bonds, there appears to be the so-called 
disorder-induced TO4 modes (about 1200 cm−1), interpreted as an increase 
in bonding strain with a longitudinal-transverse splitting recorded with 
lower wave numbers of LO (about 1170 cm−1) with respect to TO.

However, in this last region within the band 1000–1300 cm−1 where 
the bonding on the surface should be better assigned to the ionic/covalent, 
porous/free binding or to the particle/wave quantum “phase transition” 
information, the importance of this assignment resides in the fact that the 
shown region characterizes the bulk-to-surface physico-chemical richest 
interaction, beyond which only the overtones and/or combination of vibra-
tions of the network as a whole and of the organic residues and water are 
dominant; see Figure 4.8. Therefore, deeper understanding of the TO4-LO4 
“phase transition” region at the frontier of the silica films by FTIR will 
give crucial information on the porosity of materials at the quantum-to-
meso level in view of the hierarchical ordering of materials with higher 
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potential for caring or hosting small molecules in/from organisms or the 
environment with direct consequences in pharmacology and ecotoxicol-
ogy (Almeida et al., 1990; Primeau et al., 1997). Unfortunately, so far, the 
computational methods available for extracting from experimental spec-
tra such information are missing and in favor of meso-to-macro analysis. 
Instead, this work makes the advancement of combining the observed data 
from FTIR spectra with the recent original method of modeling the wave/
particle dual information by use of the spectroscopic assignment of the 
inverse quantum fluctuation factors (Putz, 2010c). This way, the present 
method fills the quantum-to-meso gap by the so-called spectral-inverse 
quantum (Spectral-IQ) algorithm, lending itself to being generalized and 
adapted for a wide type of spectra and gas-solid or sol-gel physicochemi-
cal interactions.

Actually, the present comparative analysis based on this IQ factor, as 
well as on its residual one, 1−IQ, showcases that, among a CTAB, DTAB 
and of their combination samples in various basic co-solvents, the sim-
ple CTAB+ammonia co-solvent provides the best porosity system for 
potentially carrying particles and effector interaction in various eco- and 
bio-environments; on the other extreme, the silica film obtained by the 
cosurfactant combination of CTAB+DTAB in NaOH basicity displays the 
highest free binding feature, thus being less specific and more associated 
with environmental hazard to be avoided.

The resulted method is, however, general, based on fundamental par-
ticle-to-wave dual quantum behavior; note that the present approach is 
based on the departure (then associated with the extended Heisenberg 
uncertainty) between the particle and psi-function description by the ratio 
between averages of Gaussian to stationary waves, further corresponding 
to the ratio between the real and the imaginary descriptions of the quantum 
objects, respectively (Putz, 2010c). Yet, considering the transformation of 
such a ratio to its nominator-denominator difference, the resulting “physical 
space” may be associated with the recently introduced inertons—a particle 
surrounded with its cloud of spatial excitations (Krasnoholovets, 2010), 
able to explain the photonic structure and the light-matter interaction in a 
deeper mechanistic (i.e., deterministic) way; however, such a picture can 
be completely achieved when the scattered bonding (psi-function) states 
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are also consistently described by their associated quantum particle—the 
recently introduced bondon, see the Volumes III and IV of the present five 
volume work—so that the inter-particle/ bosonic inerton-bondon interac-
tion is finally modeling the obtained/observed spectra.

4.8 CONCLUSION

The main lessons to be kept for the further theoretical and practical inves-
tigations of the quantum chemistry by quantum mechanics that are pre-
sented in the present chapter pertain to the following:

• identifying the working path integral (Feynman) form for quantum 
fluctuation integral description for quantum history of an evolving 
system;

• employing the Feynman path integral towards recovering the 
Schrodinger equation so that revealing the generalized vision the 
path integral over all quantum histories has over the differential 
(segmented) observing of quantum evolution;

• writing the path integral for general quantum systems by Van Vleck-
Pauli-Morette formulation;

• dealing with path integrals of harmonic oscillator, Bohr’s atom and 
well potential for electronic paradigmatic motion in molecule, atom 
and solid, respectively, while recovering the eigen-energy quantifi-
cations by means of quantum principles applications (see Chapter 3);

• characterizing the many-electronic systems by density matrix for-
malism, at its turn related with path integral through the Bloch 
equation;

• understanding the quantum chemical behavior within the den-
sity matrix formalism derived from bra-ket Dirac formalization of 
quantum states, so appropriately introducing the exchange contri-
bution, Slater representation and Hartree-Fock energy equation for 
N-electronic bonded systems;

• describing quantum chemical systems by orbital molecular picture: 
the Born-Oppenheimer of frozen nuclei and the Roothaan model-
ing of self-consistency in allied eigen-value of atoms-in-molecules 
orbitalic (and electronic density/population) problems;
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• learning the role of semi-empirical approach of quantum systems: 
the various approximation levels of Fock matrix in exchange terms 
of eigen-energy, while recognizing the correlation behavior of the 
many-electronic systems complementing the mono-electronic orbit-
als occupancies;

• treating the quantum systems though the frozen electronic orbitals 
(Koopmans theorem) with the premiere role in assessing the chemi-
cal reactivity in general and to modeling it by introduced indices 
as electronegativity and chemical hardness directly related with the 
first and second total energy-to-total number of electrons deriva-
tions, respectively;

• solving the many-electronic observability problem by means of 
Density Functional Theory, so providing the existence Hohenberg-
Kohn theorem of density-potential bijectivity along the energy den-
sity functional optimized form in terms of fictional Kohn-Sham 
mono-orbitals, yet with chemical reactivity value through the chemi-
cal potential (Lagrange multiplier) parameter assimilated with minus 
of the global electronegativity of the system;

• formulating the working forms for the popular density functionals 
of many-electronic energy, separately for kinetic, exchange and cor-
relation contribution, as well as for the mixed exchanged-correla-
tion combinations – custom for computational quantum chemistry;

• interpreting the observability in quantum chemistry by means of 
periodic yet fluctuating path, so employing the path integrals in pro-
viding the quantum amplitudes (equivalent with density matrix) and 
then to the partition function when closing the coordinates’ ends in 
quantum orbits;

• connecting the Heisenberg uncertainty principle with averages on 
quantum paths’ fluctuation, while advancing new modeling region 
of quantum evolution, especially the unknown free one beside that 
observe through measurement;

• developing new information-quantum (IQ) method in assignment 
the particle-to-wave regime for a given many-particle system under 
certain applied potential or environment (entrapment on chemical 
matrices, graphenes, and nanosystems etc.);

• finding applications for IQ method for nano- and meso-systems: 
here for silica sol-gel based methods in assessing the various 
bases entrapment on custom ionic liquids’ templates by means of 
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wave-vs.-particle ratio of the free-vs.-observed quantum fluctuations 
as abstracted from FTIR spectra.
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This section is organized as a short course of advanced mathematics by 
elementary methods for physical-chemists. Therefore, the topics while 
being not comprehensive are unitarily presented although not necessary in 
an order paralleling their use in the textbook.
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A.1 USEFUL POWER SERIES

A.1.1 GENERALIZED BINOMIAL SERIES

A useful application dealing with power series expansion regards the cal-
culation of special limits, otherwise difficult to solve. As an example one 
can immediately evaluate:
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The (Newton) binomial series expansion generally looks like
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represents the number of ways a collection of k-objects may be realized 
from a set of n-objects without regarding order. It nevertheless satisfies the 
fundamental identities:
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as one may immediately check with the above definition formula. Yet, this 
formula may be regard also as holding in general, i.e., also for negative 
powers of n, in which case it is called as generalized or negative (Newton) 
binomial series and bears the successive forms abstracted from the origi-
nal one through replacing n n→ −  along employing the appropriate coef-
ficient replacements:
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Worth specializing this formula for the case when

a =1, b x= −

so that we get the working formula:

1
1

1
1 1

0 0−( )
= −( )

+ −







 −( ) =

+ −









=

∞

=

∞

∑ ∑
x

k n
k

x
k n
k

xn
k k

k

k

k

that immediately recovers the geometric series for n =1:
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A.1.2 THE POISSON (COMB FUNCTION) FORMULA FOR 
SERIES

The Poisson formula permits the transformation of the series f m
m

( )
=−∞

+∞

∑  

into another one for which the evaluation is (most of the times) easier. One 
will start from the consideration of the “comb” function:

S q q m
m

( ) ( )= −
=−∞

+∞

∑ δ

seen as series of the delta (Dirac) functions, with the representation in the 
Figure A.1.1.

From the above definition and/or from Figure A.1.1 there can be 
observed the periodicity property of the “comb” function:

FIGURE A.1.1 The representation of the “comb” function.
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S q n S q n Z( ) ( );+ = ∈

that allows to develop the original function in Fourier series:
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In this series the coefficient of the Fourier expansion has the expression:
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where, for getting the last identity the above expression for S q( ) as well as 
the properties of the delta Dirac function have been used. With the result 
back in the exponential series one finds also the identity:

δ π
m n

q m i qn
=−∞

+∞

=−∞

+∞

∑ ∑− = −( ) exp( )2

Moreover, when the terms of the last relation are multiplied with the inte-
gral dq f q

−∞

+∞

∫ ( ) and the properties of the delta Dirac function counts again, 

the final Poisson formula for series shapes as:
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The final expression seems, at the first sight, like a complicated version 
of the initial series (the left hand side), whereas in the concrete applica-
tions it proves to be a very useful transformation of the initial series into 
a convergent one.

A.2 EULER’S BETA AND GAMMA FUNCTIONS: APPLICATIONS 
ON POISSON INTEGRALS AND STIRLING’S APPROXIMATION

One starts from the integral identity (through parts) for the function 
Gamma-Euler function: 
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where the Euler’s Beta function had been introduced
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β  or B a b t t dta b( , ) ( )= −− −∫ 1 1

0

1

1

thus having also the equivalent expression in terms of Euler`s Gamma 
functions
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The last relationship seems to be particularly useful for the computation of 
the Gamma function with semi-integer arguments. This process involves 
several steps. Firstly, worth remarking the identity
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On the other side the Euler’s Beta integral representation has the succes-
sive transformations
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Recognizing in the last integral a complex integral, it can be solved by 
identification of poles through the complex equation

e
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From it, there follows that the poles are on the complex axis of the com-
plex plane (and not found in origin) which allows the choice of a contour 
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integration in the positive part of the complex plane (closed counterclock-
wise) so that directly apply the residue theorem for the last form of the 
above Beta Euler integral
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h z f z g z( ) ( ) / ( )= , with f z( ) a regular function, and g z( ) has simple 
poles at the points z zk= , then the sum of the residues of the function h z( )  
at poles zk, is written as
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Corroborating this result with the relation with the Gamma Euler functions 
the new identity is formed, namely

Γ Γ( ) ( ) sina a a1− = ( )π π

wherefrom one may evaluate the Gamma Euler functions with semi-inte-
ger argument
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but also the Poisson integrals directly as
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More generally, one can establish the general expression for Poisson 
integrals 
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This result generates an important particularization for n = 2 case, depend-
ing on the even or odd order of the m parameter
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allowing frequent specializations in Poisson classic formula for integrals, as:
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Nevertheless, the Stirling`s approximation formula can be also formu-
lated, for large numbers, using the Euler Gamma functions under the form
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to be solved by the saddle point method (saddle point approximation), or 
by the stationary phase: this implies the developing the function under the 
integral, around its maximum
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this way allowing the expansion of the genuine integral also over the nega-
tive infinite domain (assuring the completeness, since the presence of the 
quadratic contribution of the second order Taylor approximation). All in 
all one has successively
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Finally, through logarithmation and the neglection of the numerical terms 
for n>>1, the Stirling’s approximation formula is found as 
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≅ +





 −

≅

n n n

n

1
2��� ��
ln

⇒ ln ! lnn n n n≅ −

This relation is customary for determining the probability distribution 
from the Boltzmann, Fermi-Dirac and Bose-Einstein statistics.

A.3 ELEMENTARY CALCULATION OF RIEMANN-ZETA SERIES: 
APPLICATION ON STATISTICAL INTEGRALS

Having to solve the statistical integral, such as those, which intervene in 
the Stefan-Boltzmann law
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where the Euler’s Gamma special function was recognized
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Allowing to identify the power series form for the zeta-Riemann series 
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where, in order to express a complete analytical result, the Riemann series 
remain to be assessed in various orders. In the first instance, one notes 
that with the aid of the integral criterion (since the ratio criterion does not 
appear as conclusive) there can be assure the convergence of the Riemann 
series for n>1 order through the series’ coefficient
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Then, while passing to the actually assessments, the z ( )n  series will be 
employed for the case of n l l= ∈2 , *N . However, in what follows, the 
McLaurin series expansion will be employed
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for the logarithm function to have
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Then, with the complex variable specialization (analytical continuation)
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from where the selection of the imaginary part leaves with trigonometric 
series resumation
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Further processing of this relation will be performed by taking into consid-
eration the complex variable form

z z e z i zi= = +ϕ Re Im

with its logarithm formed as
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from where the imaginary part looks like
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z z
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Under these conditions, the last trigonometric series is successively 
evaluated
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Moreover, with the r.h.s. of the last expression may be rewritten, through 
the recourse of the trigonometric identity
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on which one applies the replacement
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one can recognize the constant of integration as representing the Riemann 
zeta series of second order
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Consequently, finding the Riemann zeta series of second degree is the 
equivalent with identify the constant of integration from de cosine series 
above; for this, the classical method of determining the constants is applied, 
considering particular conditions of the series involved. Especially if there 
are considered the particular expansions
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which back-transposed in the terms of the values of these functions as the 
above series with constants of integration, generates the simple equation 
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This result immediately associates with analytical finding of the (limit of 
the) series Riemann zeta of second order
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This value is useful for calculate the statistical integral
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For the evaluation of the integrals of higher order, one will continue with 
the integration of the series, under the complete cast now complete
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Thus, a new first integration generates the new series
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The last relation, with the current constant of integration is processed as in 
the previous case of the Riemann-zeta series second order, now introduc-
ing for the fourth order the new function
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one has the simple solution as the relationship
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to be rewritten under the equation for the associated constant of their series 
limits, with the elementary solution
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Eventually yielding the expression of the Riemann-zeta fourth order series
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specific for the Stefan-Boltzmann law.

A.4 LAGRANGE INTERPOLATION AND NUMERICAL 
INTEGRATION: APPLICATION ON ERROR FUNCTION

Being given an n-dimensional set of discrete points xi i n{ } =0,
 and of the 

observed (or measured) values on them y f xi i i n
= ( ){ }

=0,
, one is interested 

in establishing the analytical function f x( ) that fits with all given data. In 
these respect, the Lagrange interpolation method provides the solution of 
this problem by the associate interpolation polynomial

f x L x p x y p x y p x y p x yn k k
k
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n n( ) ( ) ( ) ( ) ( ) ... ( )→ = = + + +
=

∑
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where p xk ( ) stands as parametric coefficients of expansion. The whole 
Lagrange n-th degree polynomial has to satisfy the constraints on which 
aim was introduced, namely:
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providing the closed form of the Lagrange interpolation polynomial
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with the only restriction that the data points to be different:
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In next we will consider the case where the data points are chosen as a net 
with equidistant nodes, with h-the net step:

x x hi i+ = +1 , i n= 0,

from where follows the useful relationships:
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With the help of this form the numerical integrations for smooth functions 
may be undertaken by the approximation:
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noting that for

dx hdq=

we have
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With the above equidistant Lagrange formula, the integral approxima-
tion explicitly casts in the so-called Newton-Côtes numerical integration 
formula:
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and the rest (error of approximation):
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Now, the application of this formula may be undertaken in various ways.
One is the so-called trapezoidal approximation and sees the equal divi-

sion of the interval a b,  as:

a x x x x x bi i n= < < < < < < =−0 1 1... ... ,
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h x x b a
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in order to apply the linear interpolation, i.e., the above formula for each 
two consecutive pairs of points of whose prototype stand the first two:
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With this the overall trapezoidal formula sums for all such intervals (and 
integrals) to the final result:
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or rewritten in more familiar terms:
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Note that this formula provides quite good approximation if the function 
to be integrated is smoothly enough and the number of intervals is enough 
large as well. However, the error in the trapezoid approximation account 
for the fact that the interpolation is based on a single interval (so with n=1 
I the above definition) and therefore reads for a single interval as:
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telling us that the precision is as higher as the number of intervals n 
increases with the square power.

The second way of employing the Newton-Côtes numerical integration 
formula is to consider it with quadratic interpolations or with three points 
approximation; nevertheless, for that the interval [ , ]a b  is now more grainy 
divided, namely in 2n equal sub-intervals:
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With this approach the so-called Simpson formula is delivered; however, as 
before, firstly the “template” interval formula is considered, that now reads as
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with the direct generalization
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allowing the general workable formulation:
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The remaining issue regarding the appreciation of the error assumed by 
this model has to be here approached in different manner than the general 
recipe prescribes, since vanishing of the integral
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q q q dq( )( )− − =∫ 1 2 0
0

2

Yet, the error is established on individual three-points interval through 
evaluating the difference:

R ydx h y y yS
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i i i
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2 2 1 2 2
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3
4→ +
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equivalently rewritten as:
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x h

x h

j j j

j

j
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−

+

= − −( ) + ( ) + +( ) ∫( ) ,
3

4  j i= +2 1

Now, this expression is successively differentiated respecting the h-step 
until a closely form is obtained, namely:

Next, noting that

R hS
j h j h− → + =( ) ,0  ∂ =− → +

h S
j h j hR h( ) ,0  ∂ =− → +

h S
j h j hR h2 0( )
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one may undergo the reverse way in doing successive integration respect-
ing h; so we have

∂ = ∂ + ∂− → + − → + − → +
h S

j h j h
h S

j h j h
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With this, the error on the whole interval [ , ]a b  will be written summing the 
last estimation while returning to the initial indicial notations:
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that can be further resumed on the ground that for continuous 4-th time 
derivable function on [ , ]a b ,

∃ ∈[ ] =
=

−

∑ξ ξ ξa b
n

y yi
i

n

, ( ) ( )( ) ( )1 4
2

0

1
4

to became

R f h ny n b a
n

y
b a

S
a b[ , ] ( ) ( )( )∫ = − ( ) = −

−( )
( )

( ) = −
−( )5

4
5

5
4

5

90 90 2 28
ξ ξ

880 4
4

n
y( ) ξ( )

so that

R f
b a

n
fS

a b

a b

[ , ]

[ , ]

( )( ) sup ( )∫ ≤
−( )
( ) ∈

5

4
4

180 2 ξ
ξ

with the clear message that for the same intermediary points, the Simpson 
method lower the error considerably, in fact as much as with fourth power 
of the number of intervals 2n considered.
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At this point one standard application regards the computation out of 
the error function:

erf ( ) expx t dt
x

= −( )∫
2 2

0π

its value erf ( ) ?1 =  There is immediate that recognizing the function to 
integrate as

y t= −( )exp 2

and by considering the interval [ , ]0 1  divided in ten equidistant sub-intervals

a b= < < < < < =0 0 1 0 2 0 9 1. . ... .

there is more than enough for a valuable estimation of the integral

erf ( ) exp1 2 2

0

1

= −( )∫π
t dt

Actually, one may easily found that

sup ( ) . ,
[ , ]

( )

ξ

ξ

ξ
∈

=

=
0 1

2
1
0 735759y  sup ( )

[ , ]

( )

ξ

ξ

ξ
∈

=

=
0 1

4
0
12y

so that the respective errors in evaluating this integral with Trapezoid or 
Simpson formulas give:

RT
[ , ] ( ) . ,0 1 41 6 13132 10erf( ) ≤ × −  RS

[ , ] ( ) .0 1 61 6 66667 10erf( ) ≤ × −

For immediate application of the Trapezoid and Simpson numerical inte-
gral formulas, one firstly calculates the function values in the considered 
points (nodes) of the integration interval, with the results:

x f x0 00 1= ={ }: ( ) ; x f x1 10 1 0 99005= ={ }. : ( ) . ;
x f x2 20 2 0 960789= ={ }. : ( ) . ; x f x3 30 3 0 913931= ={ }. : ( ) . ;
x f x4 40 4 0 852144= ={ }. : ( ) . ; x f x5 50 5 0 778801= ={ }. : ( ) . ;
x f x6 60 6 0 697676= ={ }. : ( ) . ; x f x7 70 7 0 612626= ={ }. : ( ) . ;
x f x8 80 8 0 527292= ={ }. : ( ) . ; x f x9 90 9 0 444858= ={ }. : ( ) . ; 

x f x10 101 0 367879= ={ }: ( ) .
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providing the respective results for the integral:

exp .−( ) ≅∫ t dt
TRAPEZOID

2

0

1

0 746211; exp .−( ) ≅∫ t dt
SIMPSON

2

0

1

0 746825

and finally for the searched error function:

erf ( ) .1 0 842009≅
TRAPEZOID

; erf ( ) .1 0 842702≅
SIMPSON

In the same manner other values of the error function may be provided; 
some results are presented in the Table A.4.1.

TABLE A.4.1 Common Values for the Error Function, erf x( )  Approximated by the 
Simpson Numerical Integration Method

x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.5

erf ( )x 0.056 0.113 0.168 0.223 0.276 0.329 0.379 0.428 0.476 0.521

x 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1

erf ( )x 0.563 0.604 0.642 0.678 0.701 0.742 0.771 0.797 0.821 0.843

A.5 GALILEAN SPACE-TIME TRANSFORMATIONS: THE 
MICHELSON EXPERIMENT

The classical (Galilei, Newton) approach of the mechanics of material bod-
ies is based on several fundamental principles of time, space, mass, event, 
dynamics. They are best explained in the treatise Philosophiae Naturalis 
Principia Mathematica (Mathematical Principles of Natural Philosophy) 
by the following assertions (classical postulates, CP):

CP1: The time is absolute (it is an invariant): “the absolute, true and math-
ematical time, of itself, and from its own nature, equably flows, without 
regard to anything external, and by another name is called duration”. The 
consequence of this postulate: the instantaneous propagation of light sig-
nals, which leads to absolute simultaneity, i.e., the simultaneous events in 
a system remain simultaneous in any other system, according to the abso-
lute length which is conserved.
CP2: The space is absolute (it is an invariant) “The absolute space, in 
its own nature, without regard to anything external, always remains 
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similar and immovable”. The consequences of this postulate: preserving 
the shape of a body between inertial reference systems (which is moving 
towards each another with constant speed), including angles, surfaces, and 
volumes.
CP3: The mass of a body is absolute (it is an invariant): it is constant 
to a solid observer, the body in question, as to the others observers, all 
well, found in inertial reference system (IRS) from them. As the result, the 
laws of (Newtonian) dynamics are conserved between inertial reference 
systems.
CP4: The occurrence of an event is unique, in any inertial reference sys-
tem, in which it may be noticed. As a result: the transformation laws of 
space and time are linear (allow for unique solution).

Further, we will apply these principles/postulates for analytical deter-
mination of space-time transformations, based on the construction in 
Figure A.5.1.

From the last classical principle (CP4), for the M body in the Figure 
A.5.1 we have:

x f x t x t
y y
z z
t g x t x t

= ( ) = +

=
=

= ( ) = +













', ' ' '
'
'

', ' ' '

α β

γ δ

Further, the constants α β γ δ, , , , will be determinated, applying CP1-4 prin-
ciples, in order to define the classical (also-called Galilei) transformations. 

FIGURE A.5.1 Coordinates’ representation of an object (mobile) M in two inertial 
reference systems, Oxyz and O’x’y’z’, being the last in uniform rectilinear motion with 
constant velocity (v) from the first (Putz, 2010).
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We will consider only the motion along the direction Ox//Ox’, with imme-
diate generalization; thus, we will analyze just the first and the last relation 
from the system above; by differentiating them, there is firstly obtained:

dx dx dt
dt dx dt

= +
= +





α β
γ δ

' '
' '

then by making their ratio one has

'
' ' ''constant '' ' '

'

dx
dx dx dt vdtv dxdt dx dt v

dt

α βα β α β
γ δ γ δγ δ

++ += = = = =
+ ++

The last relationship actually gives the definition of the inertial reference sys-
tem: if the M body moves within a reference system O x' ', at its turn mov-
ing at a constant speed (linear and uniform), v, respecting another reference 
system (Ox), then that body is moving with a constant speed (rectilinear and 
uniform) v ' respecting the system O x' ', and can be considered as the origin 
(M O≡ ") of a new reference system, so-called inertial. As an important con-
sequence, it says that inertial systems are equivalent, in the classical sense.

Returning to the determination of the constants of actual movement, 
i.e., the parameters α β γ δ, , , , since the speed does not explicitly appear in 
the above relation of space-time transformations, we will consider it as a 
general default dependence

x v x v t
t v x v t

= +
= +





α β
γ δ

( ) ' ( ) '
( ) ' ( ) '

which we will specialized for M O M moves with v velocity≡ ⇒ −' , ful-
filling the transformations

x v t
t v t

dx v dt
dt v dt

v dx
dt

v
v

=
=





⇒
=
=





⇒ = =
β

δ
β
δ

β
δ

( ) '
( ) '

( ) '
( ) '

( )
( ))

( ) ( )⇒ =β δv v v

The reference systems Ox and O x' ', being equivalent, the above f trans-
formation relations should remain valid also for the reverse writing, when 
considering the velocity inversion
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v v v v v→ − ⇒ − = − −β δ( ) ( )

We have to remember these relationships and also continue to use the time 
as invariant of classical motion, as explained in above CP1 principle. 
Thus, the relationship

t t= '

can be equivalently considered in each inertial systems in question, obtain-
ing respectively

t v x v t t
v
v

= + = ⇒
=
=





γ δ
δ
γ

( ) ' ( ) ' '
( )
( )

1
0

t v x v t t
v
v

' ( ) ( )
( )
( )

= − + − = ⇒
− =
− =





γ δ
δ
γ

1
0

The latest results, corroborated with the previous ones, allow the rewriting 
of the space-time transformation relations as follow

Observer in O
x v x vt
t t

:
( ) ' '

'
= +
=





α

Observer in O
x v x vt
t t

' :
' ( )
'

= − −
=





α

By mutual replacing of spatial transformations between the (equivalent) 
inertial referential systems, one successively obtains

x v x vt v v x vt vt
v v x v vt vt

x v

= + = − −[ ] +

= − − +

=

α α α

α α α
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1

1 0
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which allows the complete writing of Galilean transformations
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in O

x x vt
y y
z z
t t
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= +
=
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x x vt
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t t
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Remarkably, if passing from the coordinates to velocities, and then to 
accelerations, we obtain

     x x v x x mx mx F F= + ⇒ = ⇒ = ⇔ =' ' ' '

where, by applying the postulate of the invariance mass CP3, on the mul-
tiplication of the body mass in question, we get the conservation of the 
Newton’s 2nd principle, revealed by equalizing the measured forces in 
the two inertial reference systems. From here, there results that the entire 
Newtonian dynamics is conserved under the Galilean transformations 
between inertial reference systems (and for the observers attached to them).

The crisis of this approach of the Universe, came one with the analyti-
cal explanation of the electromagnetic field equations (Maxwell theory) 
that does not seem to remain invariant between inertial reference systems 
(IRS), such as is the Newtonian dynamics of material bodies. Without 
going into the electrodynamics’ details, we can still notice that the Galilean 
transformations have an inconsistency during the identical transformation 
of temporal derivatives, per se admitted as being rightful done in above 
temporal derivative, when it was concluded the equivalence of Newtonian 
dynamics in all IRS. To highlight this limitation, we rewrite the Galilei 
transformations (reverse) into the so-called general covariance

x x v t
t t

'
'

α α α α

α α

= −
=





with indices of Cartesian directions α =1 2 3( ), ( ), ( )Ox Oy Oz . When consid-
ering the delta- Kronecker tensor definition 

δ
α β
α βαβ =

=
≠





1
0
...
...
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there can be confirmed the invariance nature of the spatial derivate
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but not for the temporal one since the succession of equivalences
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This “weakness” of Galilean transformations, which are not invariant to 
the temporal derivative transformations, will be further remedied by introduc-
ing the so-called quadric-vector, in order to combine the temporal evolution 
with the spatial one (within the so-called Minkowski Universe- see below).

Also, we will highlight the “crisis” of Galilean transformations from 
the perspective of the consequences of Maxwell’s theory of the propaga-
tion of light, regarding the nature of speed of light; from the electromag-
netic field theory one considers the propagation of light as having finite 
(non-infinite) velocity: actually from the wave equation ensues the neces-
sity of a finite speed of propagation, denoted by “c”, for both the electric 
(E) and magnetic (B) fields

∇ −
∂
∂









 =2

2

2

2

1 0
c t
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 =2

2

2

2

1 0
c t
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Otherwise, the electromagnetic wave propagation itself would be compro-
mised, with the all arsenal of the experimental undisputed facts!

This hypothesis was checked by Michelson, in a famous experiment, 
described in Figure A.5.2 and also with a detail in Figure A.5.3. Note that 
Michelson, by the arrangement from Figure A.5.2, wanted to demonstrate 
that the value of the speed of light does not affect the times in which the 
initial beam from the source S (after crossing two equal optical paths) 
reaches the detector at the same time:

t t1 2=

by the hypothesis the universal ether’s existence (considered mobile, 
although with material, continuous and elastic medium properties, and 
existing everywhere in the Universe) supports this motion, respectively 
the propagation of information.

Excluding the common paths of light, from the S (source) to O(1,2) 
(semi-reflective mirrors) to the detector, the times on different parts O-A-O 
and O-B-O will be calculated taking into account the parallel propagation 
and, respectively, the transversal one between the light front and the speed 

FIGURE A.5.2 Michelson experiment scheme (1881) to demonstrate the existence of the 
universal ether; adapted from (HyperPhysics, 2010; Putz, 2010).
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of the Earth’s rotation, which is considered constant v. Then, on the direc-
tion parallel to the Earth’s rotation, we have the time to go through

t l
c v

l
c v

lc
c v

O A A O

1 2 2

2
=

+
+

−
=

−
− −
 

For the second path of the light, on the transversal direction front 
respecting the direction of Earth’s rotation, as is considered in the Figure 
A.5.3 (right side), we write the identity

c t l v t2
2
2 2 2

2
24= +

wherefrom immediately results the second searched time

t l
c v

2 2 2

2
=

−

The ratio of the two durations has the expression

t
t

c
c v

1

2
2 2

=
−

FIGURE A.5.3 Details for Michelson experiment from Figure A.5.2: left - the hypothesis 
of the existence of the universal ether, as supporting the propagation of light and the 
interaction at a distance; right: the path of light front (molded on the universal ether) 
reflecting by the mirror O2 from Figure A.5.2, taking into account the rotation of the Earth 
at a constant speed v; adapted from (HyperPhysics, 2010; Putz, 2010).
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which becomes unity in three instances:

1. The Earth is immobile (v = 0), a non-realistic situation;
2. The speed of light is infinite (c → ∞), which would mean that also 

t t1 2 0= = , in agreement with the instantaneous propagation at a 
distance, provided by the Newtonian description of Nature, but in 
disagreement with the electromagnetic description of light with 
finite speed, according to Maxwell equations (above) - so unlikely 
hypothesis too;

3. The speed of light is finite, but for the parallel propagation of light 
with the Earth’s rotation speed the shrinkage of distance traveled 
occurs with the so-called Lorentz-Fitzgerald factor (longitudinal 
contraction factor)

1
2

2−
v
c

so that the real time to go through on the route O-A-O actually looks like

t l v c
c v

l v c
c v

lc v c
c

O A A O

1

2 2 2 2 2 21 1 2 1
=

−
+

+
−

−
=

−

− −

/ / /

� ��� ��� � ��� ���
22 2 2 2

2
−

=
−v
l

c v

hence automatically resulting in the report t t1 2 1/ = , without any additional 
assumptions concerning the numerical value of the speed of light or of the 
speed of the Earth!

The introduction of the longitudinal contraction factor in present expo-
sition raises a conceptual problem demanding its clarification in a consis-
tent manner. This will be analyzed as follows!

A.6 LORENTZIAN SPACE-TIME TRANSFORMATIONS: THE 
MINKOWSKI UNIVERSE

The necessity of reconsideration of Galilei transformations was above 
exposed, with the opportunity the non-invariance time derivation of these 
transformations was highlighted. In addition, it was introduced the idea that 
light propagates at finite speed (by Maxwell – in theoretical way, in 1873, 
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through the publication of his great Treatise on Electricity and Magnetism, 
as a “response” to the experiment carried out by Michelson, in 1881, and 
not only). Under these conditions, Einstein (in 1905) reformulates the clas-
sical postulates of Newtonian mechanics, which will be called special pos-
tulates (SP) of space-time transformation of physical laws; there are two 
postulates: the first refers to the necessity that the laws of Nature have the 
same forms between IRS, while the second refers to the invariance of light 
speed for the observations from various IRS (inertial reference systems). 
In Einstein’s terms, we have the postulates/principles of special relativity 
formulated as:

SP1: “The laws by which the laws of physical system are changed do not 
depend on the choice of the coordinate system at which those changes are 
reported, from the set of reference systems in uniform translation of each 
other.”

SP2: “Each ray of light moves in the coordinate system <<at rest>> with 
the definite velocity c, independent of whether it is emitted by a body at 
rest or a body in motion.”

With these principles, we will reload the Galilean transformation from 
the point in which we can write the general relation

x x t' = +α β

that we particularize (as in the Galilean case of movement) for 
M O M has the velocity v≡ ⇒'  and thus x vt= , resulting in

0 = + ⇒ = −α β β αvt t v

with consequence in the rewriting of the reciprocal transformations of the 
space as

x x vt' = −( )α

x x vt= +( )α ' '

thus already customaring of the IRS equivalence asserted by SP1. The last 
two relationships can be combined so that we can successively write the 
time in the system O '



Appendices 587

t x x
v

x x vt
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2 2 1

Now, the second postulate of special relativity, written at the level of the 
invariance of speed of light, in any IRS is enforced

c x
t

x
t

= =
'
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to allow the appropriate replacement in (above presented) special (recipro-
cal) transformations in expressing t ' in two equivalent ways by the system 
of equations

ct c v t
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This system is solved (for instance, by forming the ratio of component 
equations) for the search parameter

α =

−

1
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With this, there can be immediately written the coordinate relativistic 
transformation to be

x x vt
v
c

' = −
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but also for the time “coordinate” transformation
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relations which are acknowledged as the Lorentz transformations.
Next, let’s explore the consequences of these new relations of space 

and time relativistic transformations. If we rewrite (as above) the Lorentz 
transformation in a covariant form 

x x v t

t t vx c

'

' /
α α α α

α α α

α

α

= −( )
= −( )






2

we can condense them into a space-time continuum (to so-called 
Minkowski Universe) offered by the generalized Lorentz transformations 
in covariant form (in 4D)

x xi i
j
j' = Λ

with the differential form

dx dxi i
j

j' = Λ

Λi j is written with the indices i j a b c, ,{ , , }= 0  thus resulting in the 4D 
information embodying 4x4 matrices which mix the time-space informa-
tion by indices using Latin letters:

• when i j, = 0  → temporal coordinate
• when i j a Ox b Oy c Oz, ( ), ( ), ( )= → spatial coordinate

The condensed covariant/anti-covariant writing is called as Grosmann-
Einstein type and roughly shows all the natural information from a spa-
tial-temporal transformation in the generalized sense (special relativistic). 
Let’s see what advantages we may have from this writing. First of all, 
one observes how from a “single one shot” the invariance problem from 
spatial-temporal derivatives (specific for Galilei transformations) is imme-
diately solved

∂ =
∂

∂
=

∂
∂

∂
∂

= ∂'
' 'i i

j

i j i
j
jx

x
x x

Λ

showcasting the same transformation law, as coordinates itself. There can 
be noted that both the anticovariant indexing rule was considered for the 
denominator coordinates, in order to obtain a unitary writing (formula), 
very useful for related analysis, see also in the following.
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Accordingly, the so-called spatial-temporal interval (quadratic) 
Minkowski can be formed,

ds g dx dxkp
k p2 =

written like a generalization of the Euler metric, denoted by the tensor gij 
(called as the space-time Lorentz metric). The point is that the principles 
CP1 and CP2 must be now combined, through this spatial-temporal com-
mon metric, in such way the invariance of Minkowski’s interval to be pro-
duced, according the above Lorenz transformations. Further, we are going to 
explore this compatibility. Firstly, let’s notice that the Minkovski invariance

ds g dx dx g dx dx g dx dx dsij
i j

ij
i
k

j
p

k p
kp

k p' ' '2 2= = = =Λ Λ

implies the existence of Minkowski equality

g gij
i
k

j
p kpΛ Λ =

leaving with the matrix transcript

Λ ΛT g g( )( )( ) = ( )

with the consequence that

det detΛ Λ( )  = ⇒ ( ) = ±
2

1 1

This relationships, being the consequences of the invariance of the 
Minkowski interval, let’s check whether such construct is in agreement 
with Lorentz transformations. Thereby, we firstly consider the quadrivec-
tor form in the Minkowski Universe, in the covariant variants (indices 
above) and anticovariant (indices bottom), respectively

x ct x x xi = ( ), , ,1 2 3 , x ct x x xi = − − −( ), , ,1 2 3

and the same for the differential (infinitesimal) distance quadrivectors

dx dx dxi = ( )0 , α , dx dx dxi = −( )0 , α
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Next, the pseudo-Euclidean metric + − − −( ), , ,  is considered just to prevent 
the Galilei transformation non-invariance at the generalized derivative 
operations in the continuous Minkowski spatial-temporal Universe that is 
having the metric

g

g
g

g
g

ij =



















=

+
−

−

00

11

22

33

0 0 0
0 0 0
0 0 0
0 0 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 00 1−



















Under these conditions the quadratic Minkowski interval merely can be 
written

ds c dt dx dx dx c dt d2 2 2 1 2 2 2 3 2 2 2 2= − ( ) − ( ) − ( ) = − r

while the square length of the positional quadrivetors and also of the par-
tial derivatives, also unfold as

x x c ti
i = −2 2 2r , ∂ ∂ = ∂ − ∂i

i
0
2 2


We can check now the Lorentz transformations, based on these rational 
assumptions. One employs the following particular cases

dx cdt
dt dt

i i'

'

=

=







Λ

Λ
0

0
0

whose ratio generates the equality

− = = ⇒ = −v dx
dt

c
c
vi

i i
i i'

'
Λ
Λ

Λ Λ0
0

0
0

0
0

1

The last relationship has to be completed with the temporal component 
of the Minkovski 4D tensor through the appropriate particularization of 
Minkowski equality

g gij
i j i

i
00 0 0

0
0

2

0

2
1= ⇔ = ( ) − ( )∑Λ Λ Λ Λ
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rewritten under the equivalent equation

1 10
0

2

2
0

0

2 2

2

= ( ) − ( ) ( )∑Λ Λ
c

vi
i

v
��� ��

with the immediate solution

Λ0
0 2 2

1
1

=
− v c/

which implies the immediate knowledge of the remaining components

Λ Λ Λi
i

i
i

c
v v c

v c
0

0 0
0 2 2

1
1

= = − =
−

−

/
/

Further, we will analyze the situation from Figure A.5.1, for which the 3D 
vector of velocity has the components v = ( )v, ,0 0 . Although non-unique in 
general, there is convenient to choose the sub-matrix Λα

β, α β, { , , }= 1 2 3 , 
in such way that together with the above (time-time and space-time) com-
ponents to generate Lorentz transformations as phenomenologically 
deduced; this form can be

Λα
β αβ

α βδ= +
−

−










v v
v v c2 2 2

1
1

1
/

for which one can verify the space transformation relativistic law

x x x

x x

v c
v c
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=
−

−
+ +

− −( )
−

=
−

−

vt
v c

x
x v c

v c
x vt
v c

1

1 1

1

1

2 2

2 2

2 2
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/

/

/
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along that of the relativistic time transformation

x ct x

x x

ct
v c

x

j
j

v v

' '

/
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0
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2 2

0
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both resulting in agreement with previous Lorentz determinations.
Returning to the phenomenological approach, beyond the matrix and 

tensor formalism just sketched, several fundamental conclusions can be 
expressed, seen as consequences of the postulates of special relativity 
(Einstein), namely:

• Minkowski space-time Universe is a reality, just like the quadrivec-
tors; in Minkowski’s terms, expressed at a conference in Cologne 
on September 21 (1908). “The views on space and time that I want 
to develop for you were born on the experimental-physical ground. 
In this lays their strength. Their tendency is to give radical demon-
strations. From now on, the space for itself should completely dis-
appear in shadow, considering only the existence of an association 
of the two. “

• The interval (square distance) Minkowski is a size invariant at 
the 4D   transformations, actually bringing together the separate 
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FIGURE A.6.1 Light cone representation and types of knowledge related to the 
Minkowski Universe; adapted from (HyperPhysics, 2010; Putz, 2010).

Galilean-Newtonian postulates of space and time, in a single abso-
lute space-time continuum. Therefore, this universal value is also-
called the Universe line

ds c dt dl2 2 2 2= −

The universe line has different forms of achievement that limits the 
spatial and temporal knowledge, fixed by the Observer placed into 
the origin of time-space ( ds2 0= ), with such information confined 
inside the cone of light perceiving between past and future events, 
Figures A.6.1 and A.6.2.

The consequences of spatial-temporal knowledge, derived from an 
event location on the Universe line, realizes the manifested relative (rela-
tivity) knowledge. The general rule is that for two IRS, with an event mea-
sured in both of them, the so-called proper/self system is the system where 
the event was produced, while the system in which it is measured/received 
by the transmitted signal is denoted as the observer system. With them, the 
panel of possibilities for proper system vs. observer system for space and 
time, can be composed, see Table A.6.1.

From the Table A.6.1, the fundamental ideas related to the relative 
variation of the distance and duration are deduced; remarkably, while two 
separate space events in their IRS are measured in another IRS, mobile to 
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FIGURE A.6.2 The interpretation of knowledge of separate events, in space or time, 
based on light cone applied on the observer (located at the origin of the present moment); 
adapted from (HyperPhysics, 2010; Putz, 2010).

TABLE A.6.1 The Relative Knowledge of the Distance and the Duration in Special 
Relativity (Based on Lorentz Transformations) in Minkovski’s Universe among the 
inertial referential systems (IRS) events (Putz, 2010)

Measured 
size

IRS 
Event

 Event 
characteriz 
ation

Equation for 
working

Relative reception 

DISTANCE Events 
in 
IRS-O’: 
x x' , '1 2

Simultaneously 
measured in 
IRS-O: t t1 2=

x x vt
v c

'
/

=
−

−1 2 2
∆

∆x x
v cself IRS

'
/−

=
−



1 2 2

Events 
in 
IRS-O: 
x x1 2,

Simultaneously 
measured 
in IRS -O’: 
t t' '1 2=

x x vt
v c

=
+

−

' '
/1 2 2

∆
∆x x
v cself IRS−

=
−



'
/1 2 2

DURATION Events 
in 
IRS-O’: 
t t' , '1 2

Collocated 
in IRS-O’: 
x x' '1 2=

t t vx c
v c

=
+

−

' '/
/

2

2 21
∆ ∆t t v c
self IRS

' /
−

= −


1 2 2

Events 
in 
IRS-O: 
t t1 2,

Collocated in 

IRS-O: x x1 2= t t vx c
v c

' /
/

=
−

−

2

2 21
∆ ∆t t v c
self IRS−

= −


' /1 2 2
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the proper, they cannot be simultaneously observed in their own systems 
(to each other), while temporal events from IRS can be collocated by 
reception in the same system. The representation of these ideas is shown 
in Figure A.6.2 in the light cone representation, located on an observer 
(proper IRS) at the present moment in Minkowski universe. Moreover, 
from the Table A.6.1 there is noted that:

• The length of an object, measured in the direction of mobile sys-
tem movement is maximum in the proper system of the object; 
here worth to recall that the effect of contraction, manifested in 
the observer system (not the proper one) is in agreement with the 
Lorentz-FitzGerald longitudinal contraction, previously related with 
the temporal paradox likely to solve the optical path in Michelson 
experiment (see the Section A.5).

• The duration for the development of a process is minimal in its 
proper system, in front of which the phenomenon (the event) is 
at rest.

At the end of this section, there is worth to be mentioning the relativ-
ist verses of Romanian Literature in two ways: those related of the rela-
tive length were admirably synthesized by Tudor Arghezi (1980-1967) 
in the poetry The separation (Despărţirea, in Romanian) (of the volume 
Suitable Words):

... When I left, a pendulum was slowly bitten in the fog,
So scanty that hour passed over the time...

Instead, the lyrics about space and its traveling by the finite, delayed 
light (propagated with the speed of light) are brilliantly embodied by the 
dammed poet Mihai Eminescu (1850–1889) in the mythical poem Toward 
the star/ Ad Astra (La Steaua, in Romanian) (Romanian Voice, 2012), 
written in 1886 (!) long before the formulation of postulates of special 
relativity theory by Einstein, in 1905:

Behold, that star that’s shining 
up there, so far away; 
Her light has traveled on eonsin  
reaching our eyes today.
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Perhaps it died while on its way 
through infinite dark spaces. 
Yet only now does its light stray 
to shine upon your faces.

The icon of the fading star 
slow rises in the sky. 
She was entire, while we didn’t see her fly. 
Despite what we observe today, she’s dying.

A.7 DYNAMICAL CONSEQUENCES OF SPECIAL RELATIVITY: 
EINSTEIN’S MASS AND ENERGY

There is commonly accepted that the dynamic properties of a system may 
be elegantly determined as based on the associated Lagrangian (L); at its 
turn, the Lagrangian of a system determines the so-called action of the 
system defined by the integral

S Ldt
a

b

= ∫

For the relativistic systems, even in the absence of applied forces, the time 
evolution is intrinsically accounted by the inner universe line linking the 
temporal transformation respecting the proper time (with the considered 
innertially system)

ds cdt v c
PROPER TIME

= −1 2 2/� ��� ���

so that the physical action takes the “observed” form

S c v c dt
a

b

= − −∫α 1 2 2/

The minus sign is added for illustrating the loss of action in the environ-
ment by time passing, yet, even without having the minus sign explicitly 
here it will be reached in the final expression of the α  constant to be 
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determined upon the following procedure. Firstly one recognizes from the 
last relation the working relativistic Lagrangian

L c v
crelativist = − −α 1

2

2

Under the absence of the external forces (equivalently with free motion any-
way) the above Lagrangian has to recover in the non-relativistic limit v c<<  
the classical Lagrangian limit (the kinetic energy in fact) of the free particle

L m v
classic = 0

2

2

Accordingly the relativistic Lagrangian is Taylor expanded in the first 
order of the moving velocity respecting the velocity of light and eventu-
ally equated with its classical version

L c v
c

c v
crelativist v c

= − −








 ≅ − −











<<
α α1 1 1

2

2

2

1 2 2

2

/

To obtain the searched factorization constant

α = m c0

and the relativistic Lagrangian

L m c v
crelativist = − −0

2
2

21

With the Lagrangian form known one can unfold the relativistic dynamics 
according with the analytical mechanics principles; actually, for the momen-
tum one uses the form of the conjugated canonical momentum, widely checked 
in the classical framework with the analytical Lagrangian formulation
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( )
2

0
0,

2
classic

classic
L m v

p V q t m v
v v

 ∂ ∂= = − = ∂ ∂  

to provide now at the relativistic level the successive forms

p L
vrelativist

relativist=
∂

∂

= −
∂
∂

−








 = − −









 −

−

m c
v

v
c

m c v
c c

v0
2

2

2

1 2

0
2

2

2

1 2

21 1
2

1 1 1 2
/ /

( )

=

−

=
m v
v
c

m vd0
2

21

From where one identifies the celebrated dynamic relativistic mass

m m
v
c

d =

−

0
2

21

Worth quoting on the experimental reliability of this fundamental expres-
sion of Nature by the cathodic tube of Nacken (Figure A.7.1) who in 
1935 adjusted the electromagnetic fields by collecting-deflecting bob-
bins such that to produce the deflecting trajectories of electrons (the 
cathodic rays) such that upon their unification they are accelerated with 
various velocities up to v/c=0.7! The observed dynamical masses were 
calculated from the ratio of the applied fields with the results listed in 
Table A.7.1 with an excellent agreement between theoretical and experi-
mental data – this way validating the basic dynamical consequences of 
special relativity theory.

Going now to the total energy calculation for the relativistic free sys-
tem, one employs the Hamiltonian relationship with Lagrangian up on the 
general form (see also Section 2.2), with the velocity q v=

H t q p pq L t q q( , , ) ( , , )= − 



Appendices 599

As previous was the case with momentum analytical definition, we firstly 
check the classical reliability of this Hamiltonian-Lagrangian connection: 
under a general potential action one has

E p q L m q q Lclassic classic classic classic= − = ( ) −  0

= − − ( )







 = + ( )m v m v V q t m v V q t0

2 0
2

0
2

2 2
, ,

Confirming the total energy expressions as the conventional sum between 
kinetic and potential energy components. Having the Hamiltonian-
Lagrangian expression proven as reliable in classical side its relativistic 
extension naturally follows in the same way with relativistic Lagrangian as

TABLE A.7.1 Measured vs. Calculated Values for the Electronic Dynamic Masses 
Recorded for the Cathodic Rays of Figure A.7.1 (Nacken, 1935; Putz, 2010)

v/c (m/m0)OBS [(m/m0)CAL]/[(m/m0)OBS]

0.630 1.175 0.988
0.643 1.240 0.988

0.695 1.395 0.988

FIGURE A.7.1 Schematic representation of a cathodic tube for obtaining the accelerated 
electrons as cathodic rays: adapted after (Wikimedia, 2010; Putz, 2010).
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E p q L m v v Lrelativistic relativistic relativistic d relati= − = ( ) − vvistic

m v
v
c

m c v
c

m v m c v c
=

−

− − −










=
+ −( )0

2

2

2

0
2

2

2
0

2
0

2 2 2

1
1

1

1

/

−−

=

−

=
v
c

m c
v
c

m cd2

2

0
2

2

2

2

1

The result is consecrated as the famous Einstein relation for the total 
relativistic energy of a system relating its dynamical mass. Worth not-
ing that to the same results one arrives when takes the force way first, 
namely employing the force-momentum relationship according with the 
2nd Newton law yet with the relativistic momentum

F dp
dt

d
dt

m v

v c

m v

v c
relativist

relativist= =
−( )

=
−(

0

2 2 1 2
0

2 21 1/ /
/



))3 2/

then involved in the mechanical work (energy) produced/consumed under 
the finite time ∆t t t= −2 1  on the finite distance ∆q q q= −2 1  with the form

∆E F dx m

v c

dv
dt
vdt m v

v c
relativist

x

x

t

t

= =
−( )

=
−

∫ ∫
1

2

1

2
0

2 2 3 2
0

21 1/ /
/ 22 3 2

0
2

2 2
1

2

2

1

2

2 1
2

1

2

1

( )

=
−









 =   = −( ) =

∫ /

/

dv

m c
v c

m c m m c

v

v

d d d cc m2∆

where the elementary integral transformation was considered

XdX

aX a
d aX

aX a
dY
Y

aX Y Y

1

1
2 1

1
2 12 3 2

2

2 3 2 3 2

12

−( )
=

( )
−( )

=
−( )

=∫ ∫
= −

/ / /

==

∫ ∫−

=

Z

a
dZ
Z

aZ

1
2

1

3 2

1 2

/

/

The result represents the Einstein relation for variation of the total energy 
as being proportionally with the dynamical mass variation, while having 
the square of the light velocity as the proportionality constant. Together 
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one records the symmetry in momentum and energy relativistic formula-
tions when they both are considered under the relativistic system

p m v
v c

E m c
v c

=
−

=
−











0
2 2

0
2

2 2

1

1

/

/

Which solved for the particle/system’s velocity generated the energy-
momentum relativistic relationship, very useful in nuclear and theory of 
fields and quantum particles

E m c p c= +0
2 4 2 2

When about electron, there is most interesting considering the equation 
formed between the rest energy of an electron with its produced electro-
static potential resulting in the so-called electronic “classical” radii

m c e
r

r e
m c

me
e

2

0

2

0
0

0

2

2
151

4
1

4
2 8 10= ⇒ = = ⋅ −

πε πε
. [ ]

while suggesting the electronic dimension or of its spatial limit till which 
it can be confined; being the electronic classical radii in the real of nuclei 
radii appears as reasonably the Fermi theory of beta (electronic) emission 
of the nuclei, essentially in the proton-nucleon transformations as well as 
in the nuclear scatterings and nucleo-synthesis theory.

Remarkably, as Hans Bethe was remarking on the growing days of 
quantum-relativistic mechanics (pioneering by Einstein and Enrico Fermi) 
a tiny particle may release an enormous quantity of energy due to the mul-
tiplication of its small mass with the huge value obtained from squaring 
the light velocity. This appears even clearer when one consider the energy-
momentum relationship and expands it under the non-relativistic limit 
( pc m c v c<< ⇔ <<0

2 )

E m c p c m c p c
m c

m c p c
m c

= +( ) = +








 = +0

2 4 2 2 1 2

0
2

2 2

0
2 4

1 2

0
2

2 2

0
21 1

2
/

/
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...
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≅ + = +m c p
m

m c m v
0

2
2

0
0

2 0
2

2 2

yet obtaining that the rest energy dominates by far the kinetic term, 
although not visible/observable until the disintegration/fusion or scatter-
ing of it takes place in nuclear or elementary particle realm. This becomes 
even more apparent with the Einstein example

1 gram ...releases cca. 9 × 1013 Joules ... 56.17 × 1031 eV (!!)

through the inter-conversion relation

1 Joule = 6.24150974 × 1018 electrons’ volts (eV)

Giving an ideas of the disintegration power (think the electron in the 
Hydrogen atom has only 13.6 eV!) This way there is natural considering 
the relativistic expressions for mass, momentum and energy when dealing 
with nuclear reactions in general and when modeling the stellar combus-
tion in special.

A.8 FUNDAMENTAL CONSTANTS AND CONVERSION 
FACTORS

A.8.1 ENERGY EQUIVALENTS

TABLE A.8.1 Energetic Conversion Factors Between Conventional Atomic Units (a.u. 
or Hartree Energy Eh), Electron-Volts (eV) and Chemical (Kcal/Mol) and Physical (Joule) 
Energies

a.u. (Eh) eV Kcal/Mol J

a.u. 
(Eh)

1 27.21138386(68) 627.71 4.35974394 
(4.397)×10−18

eV 3.67493254 
(4.430)×10–2

1 23.069 1.602176487 
(40)×10–19

Kcal/
Mol

1.5931×10–3 4.3348×10–2 1 6.947700141×10–21

J 2.29371269 
(4.386)×1017

6.24150965 
(4.391)×1018

1.439325215×1020 1
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A.8.2 FREQUENCY EQUIVALENTS

TABLE A.8.2 Common Frequency Inter-Conversion Factors Within Conventional 
Energetic Framework; E = mc2 = hc/ν= hν = kBT; Eh = 2R∞hc = α2m0c

2; 1 u = mu = (1/12)
m(12C) = 10−3 kg mol−1/NA

Hz

J (1 J)/h = 1.509 190 450(4.413) × 1033 Hz
kg (1 kg)c2/h = 1.356 392 733(68) × 1050 Hz
m-1 (1 m−1)c = 299 792 458 Hz
K (1 K)kB/h = 2.083 6644(36) × 1010 Hz
1eV (1 eV)/h = 2.417 989 454(4.374) × 1014 Hz
a.u. (Eh) (1 Eh)/h = 6.579 683 920 722(44) × 1015 Hz
Kcal/Mol (1 Kcal)/h = 6.318 678 576(4.413) × 1036 Hz
u (1 u)c2/h = 2.252 342 7369(4.407) × 1023 Hz

TABLE A.8.3 Custom Physical Quantities with Their Common Symbols, Measured 
Values (Relative Errors in Parenthesis) and Units Within the International System 
Framework

Quantity Symbol Value Unit

Planck constant h 6.626 068 96(4.408) × 10-34 J s
4.135 667 33(4.385) × 10−15 eV s



1.054 571 628(53) × 10−34 J s

6.582 118 99(4.391) × 10−16 eV s
speed of light in 
vacuum

c, c0 299 792 458 m s−1

magnetic 
constant

µ0 4π × 10−7 = 12.566 370 614... × 10−7 N A−2

electric 
constant ε

µ0
0

2

1
=

c

8.854 187 817... × 10−12 F m−1

electron mass m0 9.109 382 15(45) × 10−31 kg
proton mass mp 1.672 621 637(4.421) × 10−27 kg

A.8.3 PHYSICAL-CHEMICAL CONSTANTS
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TABLE A.8.3 Continued

Quantity Symbol Value Unit

alpha particle 
mass

6.644 656 20(4.408) × 10−27 kg

proton-
electronmass 
ratio

mp / m0 1836.152 672 47(4.418)

elementary 
charge

e 1.602 176 487(40) × 10−19 C

fine-structure 
constant α

πε
= =

e
c

e
c

2

0

0
2

4  

7.297 352 5376(50) × 10−3

inverse fine-
structure 
constant

1/α 137.035 999 679(4.432)

Rydberg 
constant R m c

h
e

∞ =
α 2

2

10 973 731.568 527(4.411) m−1

Bohr radius
a

R0 4
=

∞

α
π

0.529 177 208 59(36) × 10−10 m

Compton 
wavelength

λC
2.426 310 2175(4.408) × 10−12 m

C
C

a
R

=

= =
∞

λ
π

α
α
π

2

40

2

386.159 264 59(53) × 10−15 m

Boltzmann 
constant

kB 1.380 6504(4.399) × 10−23 J K−1

8.617 343(4.390) × 10−5 eV K−1
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